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Abstract

Cultural evolutionary theory is concerned with the social transmission of be-
haviours, beliefs or ideas that constitute culture. In humans, transmission of culture
may be from one generation to the next or between individuals of the same genera-
tion. This thesis contains three models for the transmission of cultural traits, subject
to frequency-dependent social learning. All models are formulated as a system of
differential equations that cannot be solved analytically. By finding the equilibria
of the systems and analysing their stability, the long-term behaviour of the systems
may be determined.

A mathematical model for the spread of drinking behaviour is presented, with a
focus on total recovery. The equilibria of the system are found and a local stability
analysis is performed. The system is found to have a parameter-dependent threshold
at which the two equilibria switch stability. This indicates a change in the long-term
system behaviour. Consequently, whether drinking behaviour dies out or becomes
endemic may be predicted from the values of the model parameters. The rate at
which individuals take up drinking behaviour is found to have the greatest effect on
whether it becomes endemic.

A model for both the linear and nonlinear frequency-dependent transmission of
a cultural trait, with potential applications to binge drinking behaviour, is then
investigated. The system equilibria cannot be found explicitly in terms of the model

parameters. However, by considering different cases corresponding to regions of
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parameter space, qualitative differences in the long-term behaviour of the system
are determined. By comparing the linear and nonlinear frequency-dependent models,
the effect of conformity is determined for different regions of parameter space.
Finally, a reaction-diffusion model for two competing languages, u and v, with
a focus on language coexistence is presented. Language u is assumed to confer a
status advantage to its speakers, thus switching languages is one-directional from v
to u. Four constant system equilibria are found and global instability and stability
thresholds are found for each solution. The coexistence of languages u and v is found
to be globally stable, subject to certain parameter constraints and a sufficiently small

initial population of speakers.
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Chapter 1

Introduction

1.1 Thesis overview

Presented in this thesis are mathematical models for the spread of culture within
human populations via social learning mechanisms. Using techniques developed in
mathematical biology, the models represent the frequency-dependent transmission
of cultural traits. Whilst all models are, to some extent, generally applicable to a
variety of behaviours and situations, chapters 2 and 3 focus on drinking behaviour
and chapter 4 on language competition. The motivation behind developing models
for alcohol problems stems from the increasing concern regarding the health and
economic effects of problem drinking, whether in the form of alcohol addiction or
binge drinking behaviour. To reduce the prevalence of the behaviour (and thus
reduce the negative associated costs) it is necessary to understand what influences
drinking behaviour and how this may be changed. Mathematical modelling alone
does not provide the answer to this, but it provides a mechanism for analysing trends
and predicting future outcomes.

The language model extends existing work aimed at determining whether com-
peting languages can coexist over time. Many of the world’s minority languages are
in decline, so predictions from mathematical models may prove vital to developing
appropriate strategies for the preservation of these languages. We develop a model
for two competing languages, where one is a minority language, and analyse the

global stability and instability properties of all of the constant system equilibria.

1



1.1. Thesis overview 2

This reveals conditions under which the survival of both languages is stable.

Each research chapter has its own distinct novel aspect, however all are concep-
tual contributions to the field of cultural evolution. In chapter 2, this is the inclusion
of a term in the alcohol model which permits individuals to fully recover from an al-
cohol problem. The model is an extension of work by Mulone and Straughan (2011)
and was developed in light of recent theories regarding the nature of recovery. In
chapter 3, the novel aspect is the incorporation of a conformist social learning bias,
from the cultural evolution literature, into an SIS (Susceptible-Infected-Susceptible)
model framework. The model reduces to a single polynomial equation, allowing for
information to be gained through utilising methods from calculus. This is an ap-
proach not previously documented in the literature, thus the model and accompany-
ing analysis are new contributions. The global stability analysis method in chapter
4 is well-documented in the fluid dynamics literature, however here it is applied to
a novel situation: the coexistence of languages.

Following a brief introduction to each of the research chapters, the proceeding
sections of this chapter introduce the main topics of the thesis. A review of cul-
tural evolutionary theory is presented, with a focus on social learning transmission
biases. A critical analysis of mathematical modelling methods follows, leading to
a discussion of the use of this approach, and others, in cultural evolution research.
The remaining sections, 1.5 and 1.6, review existing work which provides an intro-
duction to the modelling approaches utilised in chapters 2 to 4. Specifically, section
1.5 contains a review of an ordinary differential equation (ODE) model for drinking
behaviour by Sanchez et al. (2007). The extension of such models to systems of
partial differential equations (PDEs) is discussed in section 1.6.

As the motivation for this thesis was to develop mathematical modelling tech-
niques applicable to cultural evolution, the merits and pitfalls of the theory itself are
not debated. For an insight into where cultural evolutionary theory lies within the
broader context of human evolution, Laland and Brown (2011) provides an introduc-
tion. The mathematical models presented in the thesis are examples of dynamical
systems and the analytic methods have been widely applied in the fields of epidemi-
ology and fluid mechanics (see Hethcote (2000); Straughan (2004)). Some of the
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material reviewed later in this chapter centres on behaviour transmission, developed
from models for the spread of infectious diseases. For an introduction to dynamical
systems, see any undergraduate textbook on the subject, such as Arrowsmith and
Place (1990); Hale and Kocak (1991); Tu (1992).

Chapter 2 consists of a model for the linear frequency-dependent social transmis-
sion of problem drinking behaviour, extending previous work in this area by Mulone
and Straughan (2011). Binge drinking in the UK is an increasing problem, result-
ing in negative health, social and economic effects. Mathematical modelling allows
for future predictions to be made and may provide valuable information regarding
how to approach solving the problem of binge drinking in the UK. We develop a
3-equation model for alcohol problems, specifically binge drinking, which allows for
total recovery. Individuals are split into those that are susceptible to developing
an alcohol problem, those with an alcohol problem, and those in treatment. We
find that the model has two equilibrium points: one without alcohol problems and
one where alcohol problems are endemic in the population. We compare our results
with those of an existing model that does not allow for total recovery. We show
that without total recovery, the threshold for alcohol problems to become endemic
in the population is lowered. The endemic equilibrium solution is also affected, with
an increased proportion of the population in the treatment class and a decreased
proportion in the susceptible class. Including total recovery does not determine
whether the proportion of individuals with alcohol problems increases or decreases,
however it does affect the size of the change. Parameter estimates are made from
information regarding binge drinking, where we find an increase in the recovery rate
decreases the proportion of binge drinkers in the population.

Chapter 3 develops the preceding work by introducing a social learning bias
into an SIS model framework. Epidemiological models have been applied to hu-
man health-related behaviours that are affected by social interaction, for example
smoking (Sharomi and Gumel, 2008), drinking (Sanchez et al., 2007; Mulone and
Straughan, 2011) or drug use (White and Comiskey, 2007; Mulone and Straughan,
2009). Typically these models have not considered conformity bias, which is the

exaggerated propensity to adopt commonly observed behaviours or opinions, or con-
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tent biases, where the content of the learned trait affects the probability of adoption.
Here we consider an interaction of these two effects, presenting an SIS-type model
for the spread and persistence of a behaviour which is transmitted via social learn-
ing. Uptake is controlled by a nonlinear dependence on the proportion of individuals
demonstrating the behaviour in a population. Three equilibrium solutions are found,
their linear stability analysed, and the results compared with a model for unbiased
social learning. Our analysis focuses on the effects of the strength of the conformity
bias and the effects of content biases which alter a conformity threshold frequency
of the behaviour, above which there is an exaggerated propensity for adoption. The
strength of the conformity bias is found to qualitatively alter the predictions regard-
ing whether the trait becomes endemic within the population and the proportion
of individuals who display the trait when it is endemic. As the conformity strength
increases, the number of feasible equilibrium solutions increases from 2 to 3, leading
to a situation where the stable equilibrium attained is dependent upon the initial
state. Varying the conformity threshold frequency directionally alters the behaviour
invasion threshold.

Neither of these models considers the spatial variation of individuals, which
would increase the complexity of the system. Motivated by existing work by Kan-
dler and Steele (2008), chapter 4 includes a PDE model for competing languages
which incorporates both temporal and spatial variation. One language is assumed
to be dominant so conversion between languages is one-directional to the dominant
language. The system has four equilibria, including a coexistence state, and we
analyse the global stability and instability of each solution. Stability thresholds
are found in each case, and thus we conclude that the coexistence of languages is
possible, subject to certain parameter constraints.

Finally, chapter 5 contains a general discussion of the outcomes of the previous
chapters and how these results are situated within the wider literature. Potential

extensions to the models are highlighted, with an overview of future work presented.



1.2. Introduction to cultural evolution 5

1.2 Introduction to cultural evolution

Cultural evolutionary theory seeks to answer questions about human evolution that
have not been adequately answered by genetic evolutionary theory. For any sound
theory to be developed, it is first necessary to define what is meant by the terms cul-
ture and cultural evolution. Culture has been defined as “information capable of af-
fecting individuals’ behaviour that they acquire from other members of their species
through teaching, imitation, and other forms of social transmission” (Richerson and
Boyd, 2005, Page 5). Information may refer to particular beliefs, behaviours, ideas
or knowledge. Whilst various definitions of culture exist, the key factor in cultural
evolutionary theory is that information which affects behaviour is learned from other
individuals, either consciously or subconsciously. Cultural evolution is therefore a
“process of descent with modification” (Mesoudi, 2011) by which selected socially
learned behaviours spread and persist within a population over time. Assuming that
information is transmitted in this way allows for theories to be constructed within
a Darwinian evolutionary framework, allowing for a scientific approach to be taken.

To allow formal models of cultural evolution to be developed, the concept of
a cultural trait (analogous to a genetic trait in biological evolutionary model) is
used. The trait is a specific behaviour or idea which may be socially transmitted.
Unlike with genes, where transmission is typically from parent to offspring (verti-
cal transmission), Cavalli-Sforza and Feldman (1981) present models for cultural
traits also being transmitted between individuals of the same generation (horizontal
transmission) or from other members of the parent generation to the offspring gen-
eration (oblique transmission). Information may be gained without copying, known
as asocial or individual learning. This is where an individual acquires information
on their own, such as through a trial and error method or by innovation. When
combined with social learning this can give rise to cumulative cultural evolution
whereby information is transmitted and modified over time, leading to more com-
plex or efficient cultural traits being developed (Richerson and Boyd, 2005) . The
effect of this process is that individuals adopt behaviours that could not be learned
by a single individual in their lifetime (Mesoudi, 2011) and is thought to be unique
to humans (Richerson and Boyd, 2005).
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Cultural traits are often modelled as discrete units, analogous to genes, which
are passed from one individual to another (Henrich et al., 2008). This approach
is appropriate in some instances where the cultural trait is a discrete entity. For
example, the model presented in chapter 3 allows individuals to be of type S or
type A, where type S do not have trait A and type A do display trait A. Trait
A in this instance could be binge drinking behaviour, so type A individuals are
those that binge drink. Whilst there is debate over what constitutes binge drinking,
once these limits have been defined then an individual can be classified as either a
binge drinker or not a binge drinker. In some cases a binary choice model such as
this is not appropriate as traits may be best envisioned as lying on a continuum.
One example is arrowhead length, which may vary continuously over a certain value
range (Mesoudi, 2011). In such cases the genetic analogue is no longer appropriate
as genes are discrete entities which are replicated, whereas arrowhead length may
be subject to blending effects where the transmitted length is some combination
(such as a mean average) of all the available model arrowheads (Henrich et al.,
2008). This is one example of where genetic and cultural evolution differ and thus
require different modelling approaches. Another difference is the concept of guided
variation in cultural evolution, which has no genetic analogue. Guided variation is
the intentional modification of a cultural trait (Mesoudi, 2011). In genetic evolution,
modifications are the result of random (unguided) mutations (Mesoudi, 2011), so no
equivalent to guided variation exists.

The study of simultaneous and interacting genetic and cultural evolution is
known as gene-culture coevolutionary theory or dual-inheritance theory (Laland
and Brown, 2011). The influence between genes and culture is two-directional, so
genes may favour the evolution of particular cultural traits which, in turn, then
increase the favourability of specific genes. One widely-referenced example which
supports the theory is the correlation between dairy farming and lactose tolerance
in adults (see, for example, Laland and Brown (2011); Richerson and Boyd (2005)).
Adult human populations vary in their ability to digest cows’ milk (which contains
lactose), controlled by a specific allele. Models suggest that this is an example of

gene-culture coevolution, whereby the uptake of dairy farming increased the relative
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fitness of the gene which allows for adult lactose tolerance as a result of the benefits
of drinking milk (see Feldman and Cavalli-Sforza (1989); Itan et al. (2009); Gerbault
et al. (2011)). This in turn may have influenced cultural practices in such a way that
lactose consumption became more strongly favoured (Richerson and Boyd, 2005).

It is theorised that the persistence of a cultural trait may be influenced by a
number of factors which affect transmission, which Richerson and Boyd (2005) refer
to as forces of cultural evolution. Random forces are cultural mutation and cultural
drift, discussed in both Cavalli-Sforza and Feldman (1981) and Boyd and Richerson
(1985). Individual-level processes, such as misremembering a trait or lacking the
ability to faithfully reproduce the observed trait, result in cultural mutation where
the trait becomes unintentionally modified after transmission. Cultural drift can
occur as a result of sampling size. If only a small number of individuals have a
particular trait then it is possible that they never form part of an observed sample, so
there is no opportunity for the trait to be transmitted. This mechanism may describe
the loss of tool complexity in the Tasmanian population, which arose after their
separation from mainland Australia (Henrich, 2004). Alternatively, a transmitted
trait may be intentionally modified through guided variation. As the changes to
the trait are wilful, this is a decision-making, rather than a random, force. The
remaining decision-making forces are all a result of the biased social transmission of
a cultural trait, which may be further split into content and context biases (Henrich
and McElreath, 2003).

Content biases affect the likelihood of adopting a trait through intrinsic prop-
erties of the trait itself, such as its salience or as a result of cost-benefit analysis.
Context biases refer to external influences which affect trait adoption and have been
split into two categories: model-based biases and frequency-dependent biases (Hen-
rich and McElreath, 2003; Richerson and Boyd, 2005). Model-based biases result
from some characteristic of a sampled individual. For instance, a naive individual
may be more likely to choose to copy a specific individual because of perceived
similarities with the model, or because of the perceived success of the model. The
existence of such biases is supported by experimental work where individuals copy

the most successful individual (Mesoudi, 2008). Other model-based biases consider
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how prestigious or successful the model is perceived to be. Frequency-dependent
biases represent when trait adoption is influenced by the frequency of the trait in
the observed population in a fashion which does not replicate random sampling. If
a trait has frequency of 70% within the sampled population then a naive individual
using a linear frequency-dependent strategy (equivalent to random sampling or un-
biased social learning) has probability 0.7 of adopting the trait. This is equivalent
to the individual randomly choosing one model from the population and copying
them. For a bias to be in action, the probability of a naive individual adopting
the trait must differ from 0.7. Conformist frequency-dependent bias occurs when a
common trait in the population is more likely to be acquired, so a 70% prevalence
of the trait gives a probability of adoption which is greater than 0.7. Conversely,
anti-conformist bias can also occur, where infrequent traits are more likely to be
adopted so the adoption probability would be less than 0.7.

Conformist behaviour contributes to explanations of human cooperative be-
haviour and the use of punishment in large groups (Boyd and Richerson, 1985;
Henrich and Boyd, 2001). Models for trait transmission show that conformist bias
is favourable in spatially and temporally varying environments, including rapidly
changing environments (Kendal et al., 2009; Nakahashi et al., 2012). In a stable
environment social learning dominates, yet conformist transmission has little effect
on a learner’s ability to acquire the adaptive behaviour (Wakano and Aoki, 2007;
Kendal et al., 2009). Whilst research so far has not reached a consensus regarding
the evolution of conformist transmission, it remains a valid explanation for cultural
trait transmission under certain conditions. For instance, Efferson et al. (2008) con-
ducted a study where 28 out of 40 participants self-identified as conformist. These
individuals completed a binary choice task where one choice has a greater expected
payoff. The experiment was controlled so that these individuals could only utilise
social information when making their choice. The 28 individuals who stated that
they were conformist were found to act in a conformist fashion, indicating that some
individuals act conformist, but not all.

Such studies have been criticised as it may be difficult for an individual to ascer-

tain which of two options is most profitable after only a small number of trials, thus
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copying others could be considered to be a rational choice rather than the result of
conformity (Eriksson and Coultas, 2009). A further criticism is that experiments are
generally limited to investigating only one social learning strategy, yet individuals
may employ multiple strategies (Morgan et al., 2011). Experimental evidence where
multiple learning biases can be in action simultaneously suggested that conformist
behaviour was present when a subject had low confidence in their own ability and
a sufficient number of demonstrators to copy (Morgan et al., 2011). Research into
how frequently conformist behaviour occurs, if at all, is not in agreement, hence
further work in this area may provide greater insights. This motivated the work in
chapter 3 where a mathematical model for conformist cultural trait transmission is
presented.

Research into cultural evolution has been approached via both theoretical and
empirical methods. In particular, mathematical models have been devised to ex-
plain many facets of cultural evolutionary theory. To appreciate the utility of this
approach it is necessary to understand the motivation behind such models, and
both the strengths and limitations of the method. A discussion of these factors is

presented in the next section.

1.3 Introduction to mathematical models

Models may be considered to be simplified representations of the real world which
aid our understanding. By eliminating aspects which are not immediately perti-
nent to the problem at hand, they allow us to focus on the key features of interest,
without unnecessary distraction. A model must always be fit for purpose: as simple
as possible but no simpler (Keeling and Rohani, 2008). For example, the London
Tube map is a model designed to help travellers navigate the underground rail net-
work by presenting the railway line intersections and interchange stations (Degani,
2013). The map depicts the rail network’s topology but not the exact location and
relative distances of stations so includes the information of interest whilst omitting
unnecessary details. In the same way that features of the London Underground

can be encapsulated in a diagram, some real-world systems may be described by
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mathematics.

Creating a mathematical model begins with determining the key real-world fea-
tures required to address the question at hand. It is then assumed that only these
variables have any influence on the system, thus mathematical models are always
simplified representations of reality. Often mathematical models appear to be overly

13

simplistic, however “...attempting to deduce the answer to a complex problem by
direct inspection and unaided intuition requires even simpler models and entails
great risk of erroneous reasoning” (Boyd and Richerson, 1985, Page 30). Simplifica-
tion is necessary to enable the discovery of underlying causal relationships. Whilst
results might seem obvious retrospectively, without the formalisation introduced by
the modelling procedure there is no way of being certain that any inferences made
are correct. In some cases counter-intuitive results are revealed only through math-
ematical analysis, as with the well-known Monty Hall problem (Appendix A.1). An
understanding of the real-world problem is achieved by the interpretation of the
mathematical results. If no sensible real-world explanation can be given then the
model has not fulfilled its function and therefore must be refined. In the following
research chapters the model variables represent population frequencies. Mathemat-
ically, these variables may be negative but such cases have no real-world meaning.
This instigates the introduction of certain parameter restrictions to ensure that the
final results can always be interpreted in a meaningful way. Thus the aim of math-
ematical modelling is to provide a good approximation of a reality in a way which
allows for structured analysis. From this, a greater understanding of the real-world
system may arise and enable future predictions to be made.

There is often a trade-off between accuracy, transparency and flexibility within
mathematical models (Keeling and Rohani, 2008). Accuracy refers to how well the
model reproduces observed data and predicts future outcomes, and will often be
improved by increased model complexity. One way of assessing the accuracy of a
mathematical model is to compare the predicted results to known scenarios. This
could be information gained by comparing the model predictions against existing
data sets, as in Bentley et al. (2007) and Hamilton and Buchanan (2009), or from

complementary theoretical and empirical methods, as in Efferson et al. (2008) and
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Eriksson and Coultas (2009). Transparency refers to how easy it is to interpret
the effects of a single variable parameter on the system, independent of all other
parameters. Finally, flexibility refers to how adaptable a model is to a changing
situation. For instance, if there is a real-world system change, can varying a param-
eter account for this variation or is it necessary to formulate a new model? Model
complexity can affect the methods of analysis which are used. Analytic methods
give results which hold true for vast areas of parameter space and make it easy
to identify regions where there is a qualitative difference in the results. This is a
useful method for finding thresholds which indicate a qualitative change in system
behaviour. As model complexity increases, transparency decreases and thus analytic
methods become increasingly difficult and yield fewer tractable results. In such in-
stances numerical computer simulations may be utilised, whereby a solution may be
obtained for a specific set of parameter values.

To gain an understanding of the system as a whole, many simulations must be
run (McElreath and Boyd, 2007). For example, a system consisting of 3 variables,
each taking a possible 15 values, requires 153 = 3375 calculations to be made to
ensure all parameter sets have been considered. As simulation results only give a
snapshot of the system at specific values, finding thresholds and general trends can
be difficult. When possible, it may be advantageous to further simplify a model to
enable analytic results to be found. A simplified model may reveal which parameter
has the greatest effect on the system, thus leading to a more informed investigation
of the complex model by simulations concentrated on varying this parameter. By
comparing the results of the two models a greater understanding of system behaviour
may be gained than could be obtained purely from numerical simulations of the
complex model.

A mathematical approach to real-world problem solving has many advantages,
often in conjunction with other methods, such as empirical studies. Mathematical
language is precise, enabling clear communication of findings with respect to well-
defined assumptions. This makes model results, and the context in which they are
applicable, easily understandable to other researchers. Mathematical models may

also be a cheaper way (both in time and money) of gaining information about a
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system compared with empirical testing or observational studies. As they define
the world in terms of a discrete number of variables, they may be used to highlight
variables of interest and thus influence the direction of any empirical work before a
large investment is made. As more knowledge is gained through the comparison of
different models and empirical results, models can be refined to focus only on the
most pertinent aspects of the system. Provided a model can replicate the results of
empirical work, it may then be used to make future predictions about the state of

the system.

1.4 Modelling approaches used in cultural evolu-
tionary theory

The benefits of mathematical modelling led to its use in the study of cultural evo-
lution, with much initial work consisting of mathematical models developed from
the population genetics literature. For instance, Cavalli-Sforza and Feldman (1981)
construct a model for vertical cultural trait transmission. Cultural traits are often
assumed to be discrete and, in some cases, mutually exclusive. Models may be sim-
ilar to those from population genetics representing the transmission of genes from
parent to child. A simple example of a genetic model (without mutation) consists
of two alleles: the dominant A and the recessive a. If both parents are type Aa
then they display the phenotype coded for by the dominant allele A. If each parent
contributes one allele to the child then the child displays the phenotype coded by the
dominant allele A (from AA or Aa pairings) with probability 3/4 and the phenotype
coded by a (from pairing aa) with probability 1/4.

In a model for vertical cultural trait transmission, Cavalli-Sforza and Feldman
(1981) allow for a cultural trait to take one of two possible states, H or h, where
each parent has one variant. Random mating results in the possible mother-father
pairings HH, Hh, hH and hh. For each pairing there is some probability that the
child acquires variant A which, when summed with the probability of acquiring H,
totals unity. The probability of a child being type h with parental pairing HH is

not assumed to be 0. This could be due to trait mutation, thus similar to a genetic
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model with mutation, or a result of horizontal or oblique transmission, which are
not common in genetic models (Cavalli-Sforza and Feldman, 1981). Alternatively, if
H represents having some cultural trait and A represents not having the trait then
the child may be of type h because of factors which affect the vertical transmission
of the trait. Social learning biases, such as a content bias, may limit the child’s
ability to copy the trait.

By determining the frequency of both H and h over discrete time steps (repre-
senting generations), equilibrium frequencies of both traits can be obtained. The
system has reached equilibrium when the frequencies of both H and h remain the
same from one generation to the next. Equilibria may be classified as either sta-
ble or unstable, with the system only maintaining a stable equilibrium frequency.
Conditions for stability in terms of the model parameters can often be found, either
analytically or numerically. An analytic result was obtained by Cavalli-Sforza and
Feldman (1981) for their model. More complex models for vertical trait transmission
were investigated by Cavalli-Sforza and Feldman (1981), such as where assortative
(as opposed to random) mating occurs or where the sex of the parent has a signifi-
cant effect on the transmission of a trait. They then explore models which assume
oblique and horizontal cultural trait transmission. In particular, they propose the
use of a Lotka-Volterra type model to represent the adoption of a small family ideal,
where a woman chooses to have only a small number of children. The two variables
considered are the natural fertility number n and the voluntarily reduced fertility
number m. Unlike with the previously discussed models, where traits are passed
on at each generation, the adoption of a small family ideal is continuous in time
and only oblique and horizontal transmission can occur. By determining the system
equilibria, conditions on the model parameters can be found which ensure that the
small family ideal either dies out or becomes dominant practice.

A similar approach to modelling cultural evolution was taken by Boyd and Rich-
erson (1985), where again mathematical models from population genetics were used
as a basis to develop theoretical models of cultural evolution. They consider a di-
chotomous cultural trait, with individuals either displaying trait A or not trait A

(denoted by A’). Transmission is from a parent generation to a child generation so
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both vertical and oblique transmission can occur. Naive individuals in the child pop-
ulation choose a sample of three cultural parents to observe and socially learn from,
where linear frequency-dependent transmission of the cultural traits is assumed. If
all cultural parents display trait A then the child will adopt A, however if the parent
generation consists of, say, AAA" then the child develops A with some probability
in (0,1). This is dependent upon the weighted influence of each cultural parent on
the child. Analysis reveals that if the frequency of A in the population at time ¢ is
p, then the frequency of A at time ¢ + 1 is also equal to p.

This model is then altered to represent a nonlinear frequency-dependent trans-
mission bias. The probability of having ¢ parents with trait A, where the frequency
of A is p, is taken to be binomially distributed. Accounting for a transmission bias,

they find that, after transmission, the frequency of A is

p'=p+Dp(2p—1)(1—-p), (L.1)

where D is a parameter controlling the extent of the nonlinear frequency-dependent
bias. The right-hand side expression of equation (1.1), representing both conformist
and anticonformist transmission, has since been advanced, for example in Eriksson
and Coultas (2009) and Kendal et al. (2009). It is also used in the model in chapter
3 where trait uptake is assumed to be continuous in time, rather than occurring at
discrete time steps as with the Boyd and Richerson (1985) model. Equation (1.1) is
not the only mathematical function representing a nonlinear frequency-dependent
bias that has been investigated; alternatives are discussed in Nakahashi (2007) and
Aoki et al. (2011).

Such developments of population genetics models to cultural trait models demon-
strate how the abstract nature of mathematics allows for its application to a variety
of different scenarios after only minor adjustments. However, the existence of genetic
evolution models directed the formulation of similar models for cultural evolution,
with certain assumptions introduced to ensure a fit to the pre-existing mathematical
framework. The assumption that biological and cultural evolution can be understood
by similar mechanisms has been questioned by Strimling et al. (2009). They argue
that a fitness index, as used in biological models, is not an appropriate compari-

son measure for cultural traits. Unlike genetic information, which is acquired once,
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cultural traits may be adopted and abandoned many times by a single individual
during their lifetime. By constructing a model where both the propensity to adopt a
trait and the propensity to keep that trait when presented with alternative options,
the authors find a cultural success index under certain conditions. The index arises
when individuals have a sufficiently large number of learning opportunities, which
allows them to repeatedly develop and change traits, and is applicable whether the
transmission is horizontal, vertical or oblique. Assumptions made in the mathe-
matical model, for instance that all individuals adopt and retain traits with equal
probabilities, reduce its accuracy in representing the complex mechanisms of human
social learning. However, it addresses an important question of the synonymy of
genetic transmission mechanisms with cultural trait transmission mechanisms.

As discussed in section 1.3, mathematical modelling can be most effective along-
side other research methods. For example, a study by Henrich and Broesch (2011)
into the existence and extent of social learning biases within a small-scale society
used both ethnographic observation and interviews to obtain information. Results
reported evidence of social learning biases, including biases towards copying individ-
uals perceived to be successful or knowledgeable. Historical observations have also
been used to support cultural evolutionary theories, such as the correlation between
lactose tolerance in humans and the spread of dairy farming (discussed previously)
or a wave of advance model for farming technologies (Ackland et al., 2007). If a
theory accurately describes the recorded phenomena then it provides a plausible ex-
planation; however, such methods are limited by the access to appropriate data sets
and because often only correlation rather than causal relationships can be inferred
(Simonton, 2003). Experimental work removes this latter problem as it allows for
the control of variables so that casual relationships may be derived from the results
(Simonton, 2003).

An experimental approach has been taken to investigate hypotheses regarding
the social learning mechanisms that affected projectile-point design in the Great
Basin around 300-600 AD (Mesoudi and O’Brien, 2008). The experiment tested
whether guided variation (where individuals copy and then modify) or indirect bias

produced results which matched the archaeological data. Indirect bias arises when
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an individual uses one trait, called the indicator trait, to select a model and then
adopts other traits displayed by this model (Bettinger, 1991). The bias is indirect
as a preference for the indicator trait leads to the choice to copy other traits from
the same model. During the experiment, participants played a computer simulated
game where they designed projectile points and then tested them in a virtual hunting
environment. The experiment was conducted in different phases, allowing control
over the possible learning mechanisms that participants could use. For example,
in the first phase participants had to choose to copy their point design from some
presented options so no innovation or modification was possible. This permitted
indirect-biased social learning. In the second phase they could choose to modify
this design, allowing for guided variation.

As with mathematical modelling, experimental work requires certain details to
be omitted. This is done to allow for causal relationships to be investigated by
controlling certain key variables. Mesoudi and O’Brien (2008) highlight that the
computer simulation task does not consider constraints on the availability of raw
materials or the process of manufacturing, both of which could affect projectile point
design. Laboratory experiments can be changed to focus on different aspects of a
problem and build up a greater wealth of knowledge. The projectile-point design
task was again implemented with different conditions, allowing for a comparison of

results between the two studies (Mesoudi, 2008).

1.5 A review of a model for the horizontal trans-
mission of drinking behaviour

A variety of mathematical techniques have been employed to describe different as-
pects of human behaviour, for example the kinetic theory of active particles (Bellomo
et al., 2009; Bellomo and Carbonaro, 2011). This method models the dynamics of
complex systems comprised of a large number of interacting living entities and has
been applied to opinion formation (Bellomo et al., 2009) and socio-economic sys-
tems (Bellomo et al., 2004). One modelling approach discussed by Cavalli-Sforza

and Feldman (1981) comes from epidemiological literature regarding the spread of
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infectious diseases and the potential application to cultural trait transmission. As
cultural traits can spread through a population from person to person, much like an
infectious disease, the same mathematical techniques may be employed. Typically
such models presume that a specified cultural trait is socially learned and spread via
horizontal transmission. By considering a population of N individuals and splitting
them into distinct classes, the equilibrium frequencies of each class can be deter-
mined and analysed. For example, a typical infectious disease model (known as an
SIR model) consists of splitting the population into three groups: those susceptible
to catching the disease; infected individuals, who are also assumed to be infectious;
and recovered individuals, who have gained immunity. If a susceptible meets an in-
fected then there is a chance that they will catch the disease and therefore move to
the infected class. Over time an infected will recover from the disease and enter the
recovered class. The aim is to determine whether the disease is sufficiently infectious
for it to become endemic within the population, or whether it will die out. This can
usually be determined from a threshold parameter known as the basic reproduction
number, Ry. At Ry = 1 there is a change of state, where the disease moves from
dying out to persisting within the population.

There is an increasing body of literature which uses these techniques to model the
spread of health-related behaviours via social interaction; examples include smoking
(Sharomi and Gumel, 2008), drinking (Sanchez et al., 2007; Benedict, 2007; Mu-
lone and Straughan, 2011; Walters et al., 2012), drug use (White and Comiskey,
2007; Mulone and Straughan, 2009) and eating disorders (Gonzalez et al., 2003).
Individuals prone to developing the behaviour are analogous to the susceptibles in
infectious disease models. Similarly, those displaying the behaviour can be viewed
as ‘infected’. To explain and assess the effectiveness of such models we consider an
application to drinking behaviour, formulated by Sanchez et al. (2007) and further
discussed by Benedict (2007). The model assumes that a total population of N in-
dividuals can be split into three distinct classes: occasional/ moderate drinkers (S);
problem drinkers (D); and temporarily recovered individuals (R). Homogeneous
mixing of the population is assumed to occur, so an individual has an equal chance

of meeting and being influenced by any other member of the population (horizontal
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transmission). Implicit in this assumption is that no spatial or kinship factors affect

interactions between individuals. Figure 1.1 depicts the dynamics of the system.
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Figure 1.1: The model for problem drinking, developed by Sanchez et al. (2007).
Arrows, with corresponding rates, indicate the direction of movement between the
classes of moderate drinking, problem drinking and treatment. The parameter p

controls entry and exit into the modelled population.

Individuals enter the modelled population via the moderate drinking class once
they reach drinking age. The assumption that the net flux of the system is zero
(hence N is constant) is made to simplify the analysis. Moderate drinkers progress
to the problem drinking class via a random copying mechanism, i.e. at a rate pro-
portional to the frequency of problem drinkers within the population. This is shown
by the arrow labelled SSD/N in figure 1.1, where 3 is the rate at which contacts
sufficient for behaviour transmission occur. A problem drinker may seek treatment,
and thus enter the temporarily recovered class, without social influence at a fixed
rate ¢. This parameter could represent another type of influence, for instance an
advertising campaign highlighting the harms of excessive drinking.

By considering a situation where problem drinking is so rare that a treatment
programme is not required, the basic reproduction number Ry = 3/p is calculated.
This comprises the average length of time spent in the system, 1/u, multiplied
by the rate 8. The basic reproduction number represents the average number of
secondary cases generated from the introduction of a single problem drinker into a
wholly susceptible population. If Ry > 1 then, on average, more than one secondary
case occurs and results in the development of a drinking culture. When Ry < 1 the
reproduction rate is too low for this to take place and problem drinking behaviour

dies out. Thus Ry, =1 is a threshold value for a problem drinking culture becoming
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endemic.

Analysis through calculation of Ry is in line with many epidemiological models
for disease spread where transition through the system is one-directional, from sus-
ceptible to infected to recovered. For problem drinking, however, relapse from the
temporarily recovered class to the problem drinking class is possible, thus providing
an alternative supply of individuals to the drinking class D. To account for this, a
second reproduction value is considered. By multiplying g by the average time spent
in the problem drinking class, 1/(u + ¢), the reproduction number with a recovery
class is defined as R, = /(i + ¢), where Ry < Ry for ¢ > 0.

Unlike many epidemiological models, the basic reproduction number is not suf-
ficient to determine the permanence of a subpopulation of problem drinkers under
all circumstances. Provided the initial frequency of problem drinkers is low, then
Ry = 1 provides a threshold between problem drinking dying out and the behaviour
persisting. This result does not apply when the initial frequency of problem drinkers
is large, as the prevalence of problem drinking is greatly affected by the relapse rate.
For a large initial frequency of problem drinkers and a high relapse rate, a drinking
culture may emerge for R4, < 1 and is inevitable for R4 > 1. The maintenance of a
drinking culture even when R, < 1 is a result of ineffective treatment programmes.
Any individuals entering treatment are unlikely to remain there for long (because
of the high relapse rate) and thus quickly return to the problem drinking class D.
This maintains a high frequency of problem drinkers in the population. Individuals
always enter the system as moderate drinkers; if recruitment from S is minimal,
indicated by a sufficiently small 3 value, then R, < 1 and eventually problem drink-
ing would die out. However, as the reproduction number is not dependent upon the
relapse rate p, repopulation of the problem drinking class from those in treatment
can offset a small recruitment rate 3 so that a drinking culture is maintained.

The authors conclude from the model that the reproduction number R, alone
is not sufficient to predict the emergence of a drinking culture. There is also a
dependence upon the initial state, especially when the recovery and relapse rates
are high. This represents treatment programmes which are only short-term effective.

Introducing such programmes into areas with high proportions of problem drinkers
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serves to bolster the issue by creating a subgroup highly sensitive to influence from
problem drinkers. Under such circumstances investing in reducing the initial uptake
of drinking behaviour, controlled by the value of 3, is the most effective way to
tackle problem drinking.

A similar model by Mulone and Straughan (2011) splits the drinking class into
admitting and non-admitting problem drinkers, an approach also used to model
bulimia nervosa (Gonzalez et al., 2003). As with the previous model, individuals
enter the system as moderate drinkers, referred to as susceptibles by the authors.
Through interactions with current problem drinkers, susceptibles can move to be-
ing a non-admitting problem drinker as, initially, they are not aware that their
behaviour is problematic. Only after advancement to the admitting class, through
realising that they have a drinking problem, can individuals enter treatment. Both
of these transitions are assumed to occur at constant rates. Different to the Sanchez
et al. (2007) model, the relapse rate of those in treatment is taken to be a result
of genetic factors rather than social influence, so the constant relapse rate to the
admitting class is pR. The basic reproduction number of the system is calculated,
whereby R, increasing indicates a move from a problem- drinking-free state to one
in which it is endemic. Using parameter estimates obtained from data for binge
drinking behaviour in the North East of England, model predictions indicate that
the behaviour will persist, plateauing when approximately 15% of the population
reside in the drinking classes.

Sanchez et al. (2007) acknowledge that their model does not allow for a return
to different drinking classes, an issue addressed by Walters et al. (2012) by allowing
transition from the treatment class back to a moderate drinking state. The addi-
tional transition was introduced to account for the possibility of total recovery from
problem drinking, so individuals return to what is termed as the susceptible class
after completion of a treatment programme. By performing a sensitivity analysis of
the value Ry, the authors conclude that the most effective way to reduce drinking is
by focusing on reducing the number of susceptible individuals that are recruited to
the problem drinking class, concurring with the conclusions of Sanchez et al. (2007).

Whilst this development addresses one concern of the Sanchez et al. (2007) model,
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it is still an oversimplification of the dynamics. The primary issue is that the model
assumes that an individual who has completed treatment will be equally susceptible
to the influence of problem drinkers as someone that has just entered the population.

Whilst a variety of alternative models have been put forward to focus of differ-
ent aspects of drinking behaviour, some key underlying assumptions feature which
reduce their practical applications. For example, the level of contact between in-
dividuals is not the same for every possible pairing, so homogeneous mixing is an
over-simplification. One possible refinement to such models is to introduce a net-
work structure so that, in order for individuals to interact, they must be connected
within the network. This approach was adopted by Gorman et al. (2006) where a
3-stage SDR alcohol model (with corresponding classes susceptible, drinkers, and
former drinkers) was implemented on a network structure. Each network node cor-
responded to a location containing a subset of the total population, split into the
three classes. At each time step individuals could move location and their class
status could change in accordance with the described SDR, dynamics.

This type of modelling is very powerful as often analytic results can be obtained,
offering a certain outcome for all possible parameter combinations. As a trade-off,
many simplifying assumptions are required for such analysis to be possible and it
is important to tailor the model to the specific questions of interest, highlighted
here by the variety of models discussed. For example, Sanchez et al. (2007) were
interested in analysing a model where social influence was the driving factor for
individuals to become problem drinkers, where as Mulone and Straughan (2011)
and Walters et al. (2012) do not consider a peer-influenced relapse term. Instead
they focus on alternative aspects: the former on the eligibility of individuals to enter
a treatment process by admitting they have a problem, and the latter on the effects
of total recovery from an alcohol problem. Ideally a single model would consider all
of these factors and more, but analysis would then become impossible. Despite this,
the modelling technique does allow for population-wide information to be gained
and can provide cheap and quick predictions regarding how top-down interventions
may affect the system.

Chapters 2 and 3 were both motivated by the application of SIR-type models ap-
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plied to horizontally transmitted behaviours. The SARS model in chapter 2 extends
existing work by Mulone and Straughan (2011) to determine the effect of complete
recovery from an alcohol problem on the basic reproduction number Ry and the en-
demic equilibrium value. In chapter 3 an SAS model for cultural trait transmission
is formulated, where the transmission of the trait may be subject to conformist and
content biases. Whilst both models are constructed within an SIR-type framework,
the varying complexities in terms of model variables and variable parameters require

different methods of analysis to be conducted.

1.6 Mathematical models with spatial variation

Other developments of SIR (and similar) models have been analysed where the
variable S, I and R may depend on more than just time. For instance, Murray (2003)
discusses an SIS infectious disease model where the age, a, of the individual affects
their vulnerability to catching the disease and their infectiousness, mathematically
represented by I = I(t,a). Infectious disease models with a spatial dependence have
also been formulated. These represent the ability of individuals to move between
regions, as with the patchy environment ODE model by Wang and Zhao (2004),
or within a specified region where the variables have a spatial dependence (Mulone
et al., 2007). For disease transmission to occur, an infected individual must be in the
same location as a susceptible individual. As transmission is localised, the diffusion
of infected individuals is required for the disease to spread (Keeling and Rohani,
2008). This can be represented by a reaction-diffusion PDE system of equations,
as in Keeling and Rohani (2008), and similarly for an SIS model (without cross-
diffusion) in Mulone et al. (2007).
These reaction-diffusion systems have the form

8’&2'
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in Q x (0,00) for i = 1,...,m. Each u; represents a class of individuals so, in
the reaction-diffusion SIR model (Keeling and Rohani, 2008), m = 3 as individuals
can either be susceptible (uq), infected (uy) or recovered (u3). The area in which

individuals can traverse is represented by the domain €2, which has a boundary 0f2.
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For a model of disease spread, {2 may represent a particular country or region with
0€) defined by country borders or a geographically boundary, as with an island.
In two spatial dimensions, u; = u;(x,y,t) and represents the density of class u;
at location (z,y) at time ¢. The change in this density in time is controlled by a
diffusion part, D;Au;, and a reaction part, f(uy, ..., u;,) (Kandler and Unger, 2010).
Diffusion of u; is controlled by the Laplace operator, which in two spatial dimensions
15 2 2

A= % + aa—yZ, (1.3)
and the diffusion coefficient D;. The movement of individuals is from crowded areas
to less populated areas which, in terms of human population spread, may represent
moving to an area with a greater proportion of available or preferable resources, such
as food or shelter (Mulone et al., 2007). The coefficient D; represents the tendency
of individuals to move to lesser populated regions. The reaction term is given by
the function f; and describes the remaining system dynamics, such as population
growth or interaction terms between susceptible and infected individuals.

To solve for unique solutions to PDE problems, further conditions must be im-
posed (Strauss, 2008). Initial conditions describe the state of the system at time
t = 0, an example being u;(x,y,0) = g(z,y) for some function g. Boundary condi-
tions can also be imposed which place constraints on the system at the boundary 0f2.
Two common types of boundary condition are Dirichlet conditions and Neumann
conditions. Dirichlet conditions are when the function u; is specified at the boundary,
for example u;(x,y,t) = 0 on 9. This example means that no u; individuals can
exist at the boundary of the spatial region. This may be an appropriate assumption
to make if individuals live on an island where areas at the edge are uninhabitable or
undesirable locations due to environmental factors. Neumann conditions are where
the normal derivative is specified at the boundary. For example if du;/0n = 0 on
012, there is no flux across the boundary 02 in the direction of the outward-pointing
unit normal to the region, n. This example condition means that individuals are
confined to stay within the region €2, be that an island or country, but they may be
located at the boundary 0€2. The choice of boundary conditions is dependent upon

the characteristics of the real-world situation which is being modelled.
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One of the simplest nonlinear reaction-diffusion equations is

ou 0%u

known as the Fisher-Kolmogorov equation (Murray, 2003). Fisher (1937) proposed
the model to represent the spread of an advantageous gene within a population
and Kolmogorov et al. (1937) analysed a more general form of the model with the
reaction component ku(1 — u) replaced by a general function f(u) (Murray, 2003).
An analysis of this model and the associated travelling wave solutions may be found
in Murray (2003). The Fisher-Kolmogorov equation also has applications in cultural
evolutionary theory, such as in models for the evolution of both genes and culture
(Aoki, 1987; Straughan, 2013a). One model considers a similar formulation for the
spread of farmers into a region populated by hunter-gatherers (Aoki et al., 1996).
Individuals can either be farmers (F'), hunter-gatherers (H) or hunter-gatherers who
have converted to farming (C'). Initially farmers are localised, with the remaining
area populated by hunter-gatherers. As the farmers migrate (initially F', then F'+C))
they interact with hunter-gatherers, resulting in some conversion of hunter-gatherers
to (converted) farmers. It is assumed that the growth rate of converted farmers is
greater that that of hunter-gatherers, suggesting that a conversion to farming may be
advantageous to the hunter-gatherer population. The analysis presented in the paper
indicates that farming will dominate and hunter-gatherers will become extinct, with
the subpopulation growth rates affecting whether the surviving farming population
comprises original farmers or converted farmers.

The use of ODE and PDE models has been expanded to investigate the spread
of languages which are in competition for speakers (Abrams and Strogatz, 2003;
Patriarca and Leppénen, 2004; Pinasco and Romanelli, 2006; Kandler and Steele,
2008). Motivated by current research in this area, chapter 4 includes a discussion
of this literature and an analysis of a reaction-diffusion model for two competing

languages.



Chapter 2

Modelling alcohol problems: Total

recovery

2.1 Introduction

Smith and Foxcroft (2009) report that between 1998 to 2006 there was an overall in-
crease in the proportion of individuals in Great Britain who exceed the recommended
alcohol consumption limits, including a doubling of the proportion of women who
binge drink. Excessive alcohol consumption can lead to a range of negative health
and social effects (House of Commons Science and Technology Committee, 2012)
and it is estimated that alcohol misuse costs the NHS £2.7 billion per year, with al-
cohol related hospital admissions having increased by 100% from 2002/03 to 2009/10
(Alcohol Concern, 2011). These figures suggest that there is an increasing trend of
alcohol misuse, which is resulting in costs to health and the economy. Here we devise
a predictive mathematical model which may offer an insight into the best strategy
for tackling problems with alcohol and, in particular, binge drinking.
Mathematical models for behaviours such as alcoholism have been developed
from epidemiological models for the spread of infectious diseases. One of the first
infectious disease models by Kermack and McKendrick (1927) considers a constant
population where individuals are split into those that are susceptible to catching
the disease (S), infected individuals (/) and immune or dead individuals (R). To

maintain a constant population, immune individuals and those that have died from
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the disease enter the removed class, and so models of this form have become known
as SIR models. Developments of SIR models and their extensions continue to be em-
ployed to describe various scenarios in mathematical epidemics: cf. Murray (2003);
Wang and Mulone (2003); Wang and Ruan (2004); Wang and Zhao (2004); Boni and
Feldman (2005); Lou and Ruggeri (2007); Buonomo and Lacitignola (2008); Capone
(2008); Keeling and Rohani (2008); Li et al. (2008); Ma and Li (2009); Buonomo
and Rionero (2010); Buonomo et al. (2010); Mulone et al. (2011); Rionero (2012b);
Rionero and Vitiello (2012).

Another development of such models has been to apply them to situations where
it is assumed that social interaction is the key factor in spreading the behaviour.
Behaviours which can result in adverse health effects have been represented, such as
drinking (Sanchez et al., 2007; Benedict, 2007; Manthey et al., 2008; Mubayi et al.,
2010; Santonja et al., 2010; Mulone and Straughan, 2011), smoking (Sharomi and
Gumel, 2008), drug use (White and Comiskey, 2007; Mulone and Straughan, 2009),
obesity (Jodar et al., 2008; Hill et al., 2010b) and eating disorders (Gonzalez et al.,
2003). Even though the models for each social problem may appear mathemati-
cally similar at the onset, there are fundamental differences which must be catered
for. For example, a small intake of alcohol may be beneficial to health as shown by
the J-shaped curve of alcohol intake against health problems (Marmot and Brun-
ner, 1991; Kloner and Rezkalla, 2007). For smoking however, the graph of amount
smoked against health problems immediately has an increasing gradient, indicating
the detrimental effect of smoking on health.

In this paper we develop a three-stage model which represents the effect of social
influence on drinking habits, with a particular interest in total recovery. The total
population is split into susceptible individuals, individuals with alcohol problems
and individuals in treatment. Susceptible individuals are those who do not consume
alcohol in a way defined to be problematic. We refer to alcohol problems in general
as the model is applicable to a variety of drinking behaviours, for example depen-
dent drinkers who drink every day or binge drinkers who consume many units in
one session. The precise definitions of each class must be determined by the na-

ture of the behaviour being modelled, which we demonstrate in section 2.2.5 using
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information regarding binge drinking. We consider the recovered class to represent
those receiving treatment. Whilst it is possible for individuals to tackle an alcohol
problem without professional help, data regarding the number of individuals opting
for this approach is unavailable. If such information were to become available then a
change to the definition of the class would perhaps be appropriate. The definition of
treatment may also vary depending on the nature of the problem and any associated
withdrawal effects.

The three subpopulations are similar to the classes defined in the work of Sanchez
et al. (2007) (also see Benedict (2007)) and Mulone and Straughan (2011), however
neither of these models allow for total recovery. Sanchez et al. (2007) found that the
basic reproduction number alone is not always the key factor in controlling drinking
in the population. Mulone and Straughan (2011) extended their model by splitting
binge drinkers into those who admit that they have a problem and those that do not
admit. Using data for the north east of England, they conclude that binge drinking
is sustainable in the population.

Other models, by Manthey et al. (2008); Mubayi et al. (2010) and Santonja
et al. (2010), do not contain a treatment class but instead split the population into
three classes depending on the amount of alcohol an individual consumes. Manthey
et al. (2008) consider a students’ 5-year period in a university campus environment,
which is deemed too short for recovery to be determined. Mubayi et al. (2010) also
focused on the drinking habits of students, but they were interested in assessing how
a change from low to high risk drinking environments affected the transition from
susceptible to heavy drinker. Santonja et al. (2010) do not consider a treatment
class, despite an individual spending 50 years in the system, as the aim of the work
is to determine the health and economic costs of risky alcohol consumption. This is
determined by the average alcohol intake alone, irrespective of any recovery process.

We have chosen to include a treatment class as we aim to discover the most
effective way to reduce the proportion of the population in the alcohol problems
class. Such information may be useful to health professionals and policy makers
when devising strategies aimed at reducing the proportion of the population suffering

from alcohol problems. We also allow for individuals to completely recover from
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their alcohol problem. The motivation for this stems from recent ideas regarding
the nature of recovery.

Best (2010) discusses various definitions of recovery and introduces the concept
of recovery champions. These champions are individuals who have successfully re-
covered from misusing alcohol, or other similar problems, and appear as a role model
or an example of success to inspire those currently in treatment. The UK Drug Pol-
icy Commission Recovery Consensus Group report (July 2008) does not contain a
precise definition of recovery as it is an individual process, i.e. recovery cannot be
given a fixed definition which applies to the whole population as it varies depending
on the individual. Instead, a set of key principles of recovery are presented. The
report concludes that some individuals will always remain in treatment, whereas
others will feel that they are fully recovered. To accommodate both these options,
we allow for individuals to move from the treatment class back to the susceptible
population at a given rate.

The model we construct considers a population of N individuals separated into
the three subclasses, represented by a system of three ordinary differential equations.
Susceptible individuals, denoted by S(¢) where ¢ is time, are those without an alcohol
problem. We assume that a susceptible individual develops an alcohol problem
through interactions with those in the alcohol problems class, A(t). Finally an
individual may be in the treatment class, R(t), from which they may relapse and
hence return to A(t). Alternatively, an individual may remain in treatment for a
sufficient length of time so that they totally recover, at which point they return
to the susceptible population as they are no longer experiencing difficulties with
alcohol.

Using stability analysis we calculate a critical threshold value, Ry, which, once
exceeded, determines that alcohol problems will persist in the population. Sensi-
tivity analysis reveals which parameter has the greatest influence on this threshold
value and thus may provide valuable insights into the most effective way of tackling
alcohol misuse in the population. We then consider the stability of the endemic
equilibrium solution and compare our results with the case where total recovery is

not possible. Finally, we use numerical simulations to predict the future proportion
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of binge drinkers in England.

2.2 The mathematical model

As stated in the introduction, we consider a population of N individuals and split
them into three classes: S(t), A(t) and R(t). The probability that a susceptible
individual has contact with someone in the alcohol problems class is A/N. Not all
such contacts will be sufficient for the susceptible individual to develop an alcohol
problem, so we define [ to be the rate at which sufficient contacts occur. This gives
us the rate at which individuals move from being susceptible to having an alcohol
problem as SAS/N. This sort of transmission term has been employed in modelling
drug and alcohol problems, cf. Sanchez et al. (2007); Benedict (2007); Manthey et al.
(2008); Santonja et al. (2010)

Individuals may move to the recovery class by entering a treatment programme,
which we assume occurs at a constant rate ¢. Once in treatment, an individual can
either relapse or they can recover. Relapsing back to A(t) is also assumed to happen
at a constant rate, p, whereas recovery, and hence return to the susceptible class,
is assumed to happen at a constant rate v. We assume that individuals enter and
leave the population at the same constant rate p, where 1/ represents the average
length of time spent in the system. The dynamics of this SAR system are given by

the equations

S:MN—M%+7R—MS,
. AS
A=T220 R (ot A, 2.1)

R=¢A~(p+n+7)R,

where the total population is given by N =S+ A+ Rwith N >0, 5 >0, A >0
and R > 0.
To preserve the direction of flow through the system (see figure 2.1), we take only

positive values for the parameters 3, u, ©, p and . Following the method in Mulone

and Straughan (2011), we now introduce the variables s(t) = S(t)/N, a(t) = A(t)/N



2.2. The mathematical model 30

uN

YR

R — uR

Figure 2.1: Flow diagram showing the movement between the three subpopulations

S(t), A(t) and R(t).
and r(t) = R(t)/N, which enables us to rewrite system (2.1) as

$=pu— pas+yr — ps,
a = fas + pr — (¢ + p)a, (2.2)

r=pa—(p+p+7)r,

where 1 = s+a+7. As s =1 —a—r, we can reduce system (2.2) to the two

equations

0 = —fa*® — ar + (B — ¢ — p)a + pr,

r=ga—(p+p+y)r. (2.3)

2.2.1 Stability analysis

We solve equations (2.3) to find the equilibrium points of the system, which are
the problem-free solution (a,r) = (0,0) and the endemic solution (a,r) = (a,T).
We will now analyse the local stability of the problem-free equilibrium solution by
considering a linearisation of system (2.3) at (a,r) = (0,0). The linearisation of

equations (2.3) around a general point (a,7) is given by a = J(a)(a — @) where .J
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is the Jacobian matrix and a is the vector

The Jacobian matrix at the point (0,0) is given by

7(0.0) = (B—¢—n) p |

@ —(p+p+7)

which has eigenvalues

—z1 + /712 — 4y —71 — /T1? — 4y (2.5)
5 :

2

Oy =

and o_ =

where

T =9+p+2u+y-p

y1=—pp+(p+p+7)(¢+pn—p).

For the problem-free equilibrium point to be locally asymptotically stable we require
the real part of both eigenvalues to be negative. This is true provided z; > 0 and
y; > 0. It is sufficient to consider y; > 0 only as this condition guarantees z; > 0
(see appendix B.1), from which we determine that the inequality

Plo+n+7)
plp+p+v+¢) +7¢

<1 (2.6)

must hold for the equilibrium point to be locally asymptotically stable. If this
situation arises then alcohol problems will eventually die out in the population. If
inequality (2.6) is reversed then the equilibrium solution is unstable and alcohol
problems may persist in the population. We now define the basic reproduction
number Rj to be

Blp+p+7)
plp+p+v+e)+v9’

RO = (27)

where Ry < 1 indicates stability and Ry > 1 indicates instability of the problem-free

equilibrium solution.
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2.2.2 Endemic equilibrium solution

The second equilibrium solution of system (2.3) is (a,r) = (@, ), where

S _Blotpty) —plptptyte) -9

Blp+u+v+¢) 28)
v Bltpt)—plptptyte) e
(p+p+7) Blo+p+v+9) ’

and only exists for Ry > 1. The Jacobian of equations (2.3) at the point (@, ) is

Ja.r) = —20a—Br+B-¢—p)  p-—pa (2.9)

@ —(p+p+7)

and the corresponding eigenvalues are given by

~ —XT9 + \/ !L’22 — 4y2 —T9 — \/!L‘QQ — 4y2 (2 10)
5 .

2 Y

and o_ =

O'+ =
where

xo =200+ Br+9o+2u+p+vy—0,

yo = @(Ba—p) + (p+p+7)28a+ Br+ ¢+ p—B).

For the equilibrium solution (@, 7) to be linearly asymptotically stable then x5 > 0
and y, > 0 must hold. Appendix B.2.1 gives the calculations which show that
Ty > 0 is always true provided yo > 0, so to find the local stability conditions we
need only consider y5 > 0. We can write y, in terms of the model parameters only
by substituting in the values for @ and 7, which is shown in appendix B.2.2. From

this we find that the inequality y» > 0 can be written as

Blo+p+7) —plp+p+v+¢) =7 >0.

This can be rearranged to give

Blp+p+7)

1< :
plp+p+y+e)+ve

which is equivalent to Ry > 1. From this we know that (a, 7) is locally asymptotically
stable when it exists, hence alcohol problems become endemic provided Ry > 1.
Our analysis reveals that the equilibrium point (0,0) is locally asymptotically

stable for Ry < 1, whereas (a, 7) is locally asymptotically stable for Ry > 1. We can
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see that the value of Ry determines whether alcohol problems will die out or become
endemic in the population and so we consider Ky = 1 to be an invasion threshold

value.

2.2.3 Sensitivity analysis

Having defined Ry = 1 as a threshold for the invasion of alcohol problems, we
are now interested in which model parameter has the greatest effect on R, and
hence has the greatest effect in determining whether alcohol problems will per-
sist in the population. To this end, we calculate the normalised sensitivity index,
NSI = (k/Ry)(0Ry/0k), which indicates how sensitive Ry is to a change in some pa-
rameter k, where normalisation allows for a direct comparison between parameters.
A negative normalised sensitivity index indicates that an increase in the parameter
value results in a decrease in the Ry value. As we are only interested in the magni-
tude of the change to the R, value, we consider the absolute value. The normalised

sensitivity indices for the parameters are

B OR| _
Ry 0B ’

wORy| _ plpt+N)ptpt)+oulp+pty+ o) -1
Ry Op | plp+y)(p+p+v)+pulp+p+vy+¢)+G ’
p ORo| _ pe(p+7) “1,
Ry 9p | pp(p+7)+@(p+7)?+ plp+p+7)?

 ORy| _ p(u+7) <1
Ry O¢p | @(p+7)+plp+p+9) ’
7y ORo| _ pY® <1
Ry Oy | pyo+yp(p+y)+plp+p+y)(p+p+vy+e) ’

where G = y(u+ ¢)(p+ p+7) + welp+ 7).

From the calculations here we can see that R, is most sensitive to changes in
the value of 3, which represents the rate at which social interaction mediates the
development of alcohol problems. We can see that equation (2.7) for Ry has the

form Ry = ¢f where
_ (p+p+7)
plp+p+y+e)+ve

so a factor o change in the f value results in a factor v change in the value of R.
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2.2.4 The effect of individuals in treatment returning to the

susceptible population

We now compare the model with the situation where movement from R(t) to S(¢)
is removed, so complete recovery from an alcohol problem is not possible. This
is achieved by allowing v = 0, resulting in the model proposed by Mulone and
Straughan (2011). We focus on how v = 0 affects the basic reproduction number
and the endemic equilibrium solution. With this comparison we aim to highlight

any qualitative differences between the solutions of the two models.

Basic reproduction number

The basic reproduction number is given by equation (2.7). For the case where v =0
we define the basic reproduction number by ﬁo, where
- Blp+ 1)
0o—  — -
plp+p+9)
To study the effect that v > 0 has on the basic reproduction, the difference between
Ry and éo is calculated:

—Bpey

Ry — Ry = .
p(p+p+e) (B2 + pp + py + pe + ¢7)

(2.11)

As the right-hand side of equation (2.11) is always negative, we conclude that Ry <
]:?0 for all possible parameter values. Thus excluding the return to the susceptible
class increases the average number of secondary infections which result from a single
infected individual entering a wholly susceptible population.

As Ry is the average number of secondary cases which arise from a single infected
being introduced into a wholly susceptible population, we know that by taking v =0
the average number of secondary cases increases. This means that a single infected
individual will infect a greater proportion of the population when compared to the

case where v > 0.

Endemic equilibrium solution

Next we look at the change to the endemic equilibrium solution, (3, a, 7). The equi-

librium value for the susceptible population, 3, is calculated using the expressions
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for @ and 7 from system of equations (2.8) in § = 1 — a — 7, resulting in

plp+p+v+0) +yp
Blp+p+7)

The special case v = 0 has the endemic equilibrium solution (s, @, 7) with

5= (2.12)

s Mot pto)
Blp+n)
= _ Blot+p) —plp+p+e)
Blo+ 1+ ) ’
¢ Bl —plptpty)
(p+ 1) Blp+u+e) '

To study the effect that v has on each individual class, we compare the solution
(3,a,7) with the v = 0 solution (s, a,7).
We begin by examining the susceptible population. The equation

s wo Py
Blo+p)(p+p+7)

is always positive, so 5§ > 5. Hence, removing the possibility of total recovery reduces

the proportion of individuals in the susceptible class.

For the alcohol problems class, the change in the proportion of individuals in
the class is not as simple as the previous case. The difference between the two
equilibrium values is given by

I Yo(B—p—p— o)
a—a= :
Blo+un+v+e)p+u+e)

The relationship between @ and a is determined by the sign of the expression f —

p—u—. If B> p+pu+pthen a > a, so preventing a return to the susceptible class
results in a decrease in the proportion of the population with alcohol problems. If
B < p+ p+ ¢ the converse is true so a < a. Finally, @ = a only when 5 = p+ pu+ ¢.
This expression is independent of 7, so it is possible for the two models to agree on
the proportion of alcoholics in the population.

For the recovered class, we find that

_ F
P = gk (2.13)

Blo+uw)p+p+7)p+p+e)(p+p+vy+ep)

where

F==Bp+p)p+p+y)+ulp+u)p+p+y)+pp(p+) — pplp+ @) (2.14)
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As the denominator of the right-hand side of equation (2.13) is always positive, the
sign of 7 — 7 depends on the numerator, specifically on the value of F. As we are
considering the endemic equilibrium solution, the parameters are constrained by the
inequality Ry > 1. We use this information to determine that /' < 0 must be true
and hence 7 < 7 (see appendix B.4). Thus, removing the option of returning to
the susceptible class results in an increase in the proportion of individuals in the

recovered class.

Conclusions

Assuming that 3, u, p and ¢ are fixed, when v = 0 the basic reproduction num-
ber is increased, i.e. the average number of secondary infections resulting from a
single infected being introduced into a wholly susceptible population is increased.
For example, we can consider a situation where ]:?0 =1, thus Ry < 1, and consider
increasing the value of 5. This increase instantly results in alcohol problems be-
coming endemic when v = 0. When v > 0 however, we find that the rate at which
susceptible individuals develop alcohol problems may be increased without resulting
in alcohol problems becoming endemic.

Alternatively we could consider Ry as a strictly decreasing function of v. In some
situations, determined by the other parameter values, an increase in v changes the
stable equilibrium from the endemic to the alcohol problems-free solution. Increased
~ values indicate that more individuals recover from an alcohol problem, perhaps
achievable by improvements to treatment services which discourage individuals from
relapsing. An example situation is shown in figure 2.2. When v = 0.550, Ry = 1 and
the stable equilibrium moves from the endemic solution to the alcohol problems-free
solution. This example highlights the importance in understanding the key variables
that affect drinking behaviour. By comparing the model without total recovery
(equating to considering v = 0) with the model where v > 0.550, we see that the
value of v affects the qualitative nature of the system and hence offers different
predictions.

When v = 0, the endemic equilibrium solution has a decreased proportion of

susceptible individuals and an increased proportion of those in treatment. This
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Figure 2.2: A change in the stability of the two equilibrium solutions occurs when
Ry =1 at v = 0.550. The fized parameter values are p = 0.25, § = 0.3, p = 0.8 and
¢ =0.1.

result is intuitive as v = 0 prevents individuals moving from the treatment class
back to the susceptible population. The relationship between 7 and the alcohol
problems class is not so obvious as whether there is an increase or a decrease does
not depend on the value of v, but the magnitude of the effect does. Recall that if
B < p+ p+ @ then v = 0 increases the proportion of individuals in the alcohol class
but if > p+ pu + ¢ then the proportion is decreased.

Assuming p, p and ¢ are fixed, then the susceptible population is increased when
v > 0. As v relates to totally recovered individuals, v > 0 also results in a reduction
in the treatment class size and hence fewer individuals available to relapse. If 3 is
small then we have an increased number of individuals in the susceptible class, each
with only a small chance of developing alcohol problems. The only way to repopulate
A(t) is by individuals who relapse or by susceptible individuals developing an alcohol
problem. By combining small 5 with v > 0, the number of individuals available to
relapse is small and the chance that susceptible individuals will develop alcohol
problems is low. From this we conclude that v > 0 decreases the proportion of
individuals with alcohol problems when £ is small. Conversely, if £ is large and

v > 0 then we have an increased number of susceptible individuals, each with a
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large chance of developing alcohol problems, so we intuitively expect an increase in

the proportion of those with alcohol problems in the population.

2.2.5 A model for binge drinking in England

We now estimate the parameter values based on recent information regarding binge
drinking in England. Social influence, for example through social norms and peer
pressure, is often considered to play a key role in binge drinking (Gill, 2002; French
and Cooke, 2012). As our model represents the effect of social influence on drinking
behaviour, it is appropriate to apply it to the situation of binge drinking. We shall
consider those who binge drink to form the alcohol problems class.

The term binge drinking has not been strictly defined. However, according to
Deacon et al. (2007), a binge drinker is usually regarded as someone who regularly
consumes at least twice the guideline daily units of alcohol during the heaviest
drinking day of the week. The UK guidelines state that binge drinking is consuming
8+ units for men and 6+ units for women in a single session. It is possible that an
individual may occasionally binge drink in accordance with these guidelines, but this
behaviour may be very rare and hence not indicative of a drinking problem. The data
available in Deacon et al. (2007) considers one week only so may include information
on infrequent binge drinkers, however it can be used as an upper bound when wishing
to determine the proportion of regular binge drinkers in the population.

According to Jones et al. (2008), the government aims to reduce the harm caused
by 18-24 year old binge drinkers so we shall restrict our population to this age group.
In Britain binge drinking is most prevalent among young adults, though it is not
restricted to this age group with those that binge drink in their early 20s being more
likely to do so in their 40s than those that do not binge drink (Institute of Alcohol
Studies, 2010). With this in mind, we argue that tackling the current problem of
binge drinking will not only reduce antisocial behaviour and alcohol related accidents
now, but may also contribute to reducing the number of individuals with alcohol-
related illnesses and alcohol dependence in the future. The 18-24 year old age group
spend a total of 7 years in the system so we take y = 1/7 = 0.143. Information

for the number of binge drinkers in treatment could not be obtained so we shall
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assume that it is the same proportion as for dependent drinkers, which is 6% of the
drinking population according to the 2011 National Institute for Health and Clinical
Excellence (NICE) report. We therefore consider the maximum annual probability

of entering treatment to be 0.06, which we can convert to a rate using

—In(1 - p)

: (2.15)

rate =

where p is the probability of an event over the time period ¢. Using this equation
we calculate a maximum value of ¢ = 0.06109.

El Sheikh and Bashir (2004) report that 35% of alcoholics in treatment relapse
within the first 2 weeks and 58% within the first 3 months. After 4 years, 90% are
expected to have relapsed (Alcohol Relapse and Craving). We use the data for the
greatest time interval, which is 4 years, as we believe this will give the most accurate
information and use equation (2.15) to estimate p = 0.576. Best (2010) indicates
that an individual experiencing a 4 or 5 year period without consuming alcohol can
be considered as recovered. If 90% of individuals relapse after 4 years in treatment
then we know that 10% remain in treatment so we can use this in equation (2.15)
to calculate the rate of recovery. We obtain a value of 0.0263 which we then divide
across a 4-year time period to give a maximum value of v = 0.00659. An estimate
for g is difficult to determine so we will consider the minimum S value which ensures
alcohol problems become endemic in the population, defined as (. We find that
this minimum value is S, = 0.156, calculated using the parameter values stated
above and the equation Ry = 1.

Deacon et al. (2007) give the 2005 percentages for adults that binge drink as
19.3% for males and 8.1% for females. Assuming an even sex-ratio, this averages to
13.7% of the adult population so we take an initial value of a(0) = 0.137. As we
assume that 6% of binge drinkers are in treatment we take r(0) = 0.00874.

According to Smith and Foxcroft (2009), there has been an increase in the num-
ber of people drinking over the guideline weekly amounts from 1988-2006. We find
that the value S.,;, = 0.156 results in a decrease in the binge drinking population
from our a(0) value so this is not an appropriate lower bound. Instead the lowest
value we consider is f = 0.2 as this results in a continuation of the trend. When a

susceptible individual meets a binge drinker, the likelihood that they also become
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(b) B =04, Ry = 2.571,
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(d) B =0.8, Ry = 5.141,
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Figure 2.3: Simulations showing how the value of the parameter [ affects the

endemic equilibrium solution. The other parameters have values p = 0.143, ¢ =

0.0619, p = 0.576 and v = 0.00659.
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a binge drinker is proportional to the value of 5. As [ increases a susceptible indi-
vidual is more likely to become a binge drinker, so as we increase the value of 5 we
expect an increase in the proportion of binge drinkers in the population.

We now take starting values (a(0),7(0)) = (0.137,0.00874) and parameter values
1=10.143, o = 0.0619, p = 0.576, v = 0.00659 and let [ take the values 0.2, 0.4, 0.6
and 0.8. Figure 2.3 shows how the fractions in each of the classes change over time
for the different [ values. The graphs plateau at the equilibrium solution values. It
can be seen from figures 2.3a and 2.3b that the greatest increase in the proportion
of binge drinkers in the population occurs when [ changes from a value of 0.2 to
0.4. This 0.2 increase in /3 results in a change from 20% of the population binge
drinking to 56%. Subsequent increases in 5 do not have such a great effect on the
proportion of binge drinkers in the population. This highlights that, for large 3
values, any inaccuracy in the estimate for § will not greatly affect the results. If 3
is small however, then any inaccuracies could greatly alter the predicted outcome.

Figure 2.4 shows this relationship.

101

Figure 2.4: Graph showing the rate of change of a with respect to [, where we
consider a to be a function of B only. As [ increases, the rate of change in a tends

towards 0.

Figure 2.5 shows the phase portrait in the a, r-plane of the endemic equilibrium

solution for the model where v > 0 and for the case where v = 0. The parameter
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values have been taken as above, along with g = 0.4. We know that u+ p+ ¢ =
0.7809 is greater than the value f = 0.4, so from our analysis in section 2.2.4 we
expect taking v = 0 to increase both the equilibrium value for a(t) and r(¢). Figure

2.5 shows that this is indeed the case.

(a) (b)
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Figure 2.5: Phase portraits showing the endemic equilibrium point for v = 0.00659
and for v = 0, represented by the dashed and dotted lines, respectively. The other
parameters take the values = 0.143, § = 0.4, ¢ = 0.0619 and p = 0.576. The
triangle with vertices (0,0), (1,0) and (0,1) in figure (a) is the boundary of the
positive invariant region D = {(a,7) € R? : a > 0,7 > 0,a +r < 1}, where all
solutions lie. A proof of the positive invariance of D is included in appendiz B.3.

Figure (b) shows the behaviour of the system close to the equilibrium solutions.

2.3 Discussion

We have constructed a model for alcohol problems in a population which allows
for individuals to totally recover and return to the susceptible population. The
threshold Ry = 1 was found, where Ry < 1 indicates that alcohol problems will die
out and Ry > 1 determines that alcohol problems become endemic in the population.
We found that the Ry value was most sensitive to changes in the parameter [,
which affects the rate at which susceptible individuals develop an alcohol problem.

Decreasing [ results in a decrease in the value Ry. This indicates that efforts to
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reduce alcohol problems in the population should focus on preventing susceptible
individuals from developing an alcohol problem.

We compared this model with the special case v = 0, presented in Mulone and
Straughan (2011), which prevents individuals from returning to the susceptible class.
We found that taking v = 0 increased the value of the basic reproduction number
and led to an increase in the proportion of recovered individuals and a decrease in
the proportion of susceptible individuals. Whether the proportion of individuals
with alcohol problems increases or decreases is not determined by including total
recovery, but the size of the change is affected by the value of 7. Thus our analysis
reveals that the effect of v on a is not straightforward. If the situation were such
that [ were large then totally recovery would have an adverse effect on reducing
alcohol misuse in the population.

Estimates were made for the parameters using data for binge drinking in Eng-
land. We were particularly interested in the effect of social influence on binge drink-
ing and so we considered [ values in the interval [0.2,0.8]. Simulations using these
values revealed that any inaccuracies in the § value could have a great effect on the
proportion of binge drinkers in the population if f was small. For larger g values,
any inaccuracies did not have such a great effect.

We have assumed that alcohol abuse is the result of social influence where all
individuals are equally susceptible to developing a problem. This does not cover
the full range of factors which may affect an individual’s propensity to developing
a drinking problem. Experimental evidence from both adoption and twin studies
indicates that there may be a genetic contribution to the development of alcohol
problems, resulting in some individuals being more prone to developing a problem
(McGue, 1999; Hicks et al., 2004). However, whilst genetics factors may contribute
to an individual’s susceptibility to develop a drinking problem, social factors such
as peer group influence had an independent effect on behaviour transmission (Hicks
et al., 2004). Genetic factors are found to influence alcohol dependence, however
binge drinking behaviour does not have a physiological addiction associated with the
behaviour so in this specific case the genetic contribution may be of less importance

when compared with peer group effects. Thus, although our model is not a complete
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picture, it provides a basis for further investigation into the spread of drinking
behaviour.

One model assumption is that fully recovered individuals who have returned to
the susceptible class have the same probability of developing an alcohol problem for
the second time as someone who has had no prior problem with alcohol. A develop-
ment for the future would be to include a fourth class of fully recovered individuals,
as in the four equation smoking model by Sharomi and Gumel (2008), rather than
assuming that they return to the susceptible class. This would distinguish fully
recovered individuals from susceptible individuals without prior alcohol problems.
Alternatively the champion effect discussed by Best (2010) may be better repre-
sented by assuming that those in treatment recover because of interactions with a
recovery champion.

Recovery can be viewed as contagious, as treatment success is improved by the
introduction of an abstinent individual in the social networks of those in treatment
(Best, 2010). Community recovery champions are inspirational figures who have ex-
perienced addiction and successfully completed treatment (Best, 2010). Their pos-
itive effect on those in treatment may be described by model-based social learning
biases: similarity bias and success bias. An individual in treatment may experi-
ence a similarity bias as the recovery champion has experience of addiction and the
difficulties of the treatment process. As the recovery champion has succeeded in
completing treatment, a state which the recovering individual wishes to attain, a
success bias may also be in operation.

The SARS model may be adapted to incorporate both a totally recovered class
and recovery champions through the introduction of a totally recovered class, Ry,
and a social influence term taking individuals from R to Rr. This may be modelled

by the equations
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with the dynamics shown in figure 2.6. The term YRRy /N represents social influ-
ence, where totally recovery is dependent on those in treatment interacting with
fully recovered individuals: the recovery champions. In this instance the recovery
champion effect may be considered as a model-based bias, combining both similarity

and success biases.

BAS (pA YRR
N S il A R ! Rt
I Lo ] I
S pA plt plRr

Figure 2.6: An alcohol model incorporating a separate totally recovered class, Rr,

whose individuals act as recovery champions to those in the treatment class R.

The mathematics presented in this chapter offers a valuable insight into under-
standing patterns in drinking behaviour which are affected by social influence. Fu-
ture work will continue to explore mathematical applications to the study of human

behaviours.



Chapter 3

An SIS model for cultural trait

transmission with conformity bias

3.1 Introduction

Epidemiological models for the spread of infectious diseases, known as SIR models,
have been widely researched since the work of Kermack and McKendrick (1927).
The name derives from the assumed model structure, classifying individuals as ei-
ther susceptible, infected or recovered. Many variations of SIR models exist (Murray,
2003; Hethcote, 2000; McCallum et al., 2001; Keeling and Rohani, 2008), including
SIS models where individuals can be either susceptible or infected. An SIS model
for infectious disease spread considers how the subpopulations of susceptible and
infected individuals change in time, represented mathematically by two ordinary
differential equations (ODEs). It is assumed that all individuals entering the pop-
ulation are susceptible. They may become infected through contact with infected
individuals at a rate proportional to the frequency of infected individuals in the
population. Infected individuals recover to the susceptible state at a constant rate.

The assumption that infection is spread through contact has led to the appli-
cation of SIS and similar models to be applied to a range of human health-related
behaviours where social interaction affects the spread of the behaviour. Examples in-
clude models of addictive behaviours, such as smoking (Sharomi and Gumel, 2008),

drug use (Song et al., 2006; White and Comiskey, 2007; Mulone and Straughan,
46
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2009), drinking (Sanchez et al., 2007; Mubayi et al., 2010; Mulone and Straughan,
2011; Walters et al., 2012), the spread of happiness (Hill et al., 2010a) and the de-
velopment of eating disorders (Gonzalez et al., 2003) or obesity (Hill et al., 2010b).
Such models assume that the rate at which susceptible individuals adopt a behaviour
is proportional to the prevalence of the behaviour in the population. However, we
see from cultural evolutionary theory that this assumption may be oversimplifying
the mechanisms involved in behaviour transmission, and that biases in transmission
can result in qualitatively distinct model predictions.

Cultural evolutionary theory considers the spread and persistence of socially
transmitted traits, including ideas, beliefs, behaviours and material culture (Cavalli-
Sforza and Feldman, 1981; Boyd and Richerson, 1985; Mesoudi, 2011). A cultural
trait is typically acquired by some form of social learning. If social learning is un-
biased (random copying) then the probability that an individual adopts a cultural
trait is equal to the trait’s frequency in the population. The assumption that trans-
mission is linearly frequency-dependent, i.e. unbiased, is commonly applied in the
SIS model literature; cultural trait transmission, however, may be subject to a va-
riety of content or contextual biases (Henrich and McElreath, 2003) which affect
the transmission rate. Content-dependent biases arise from some intrinsic prop-
erty of the cultural trait. Such biases make it, for example, easier to remember
or intrinsically more attractive than other competing traits (Richerson and Boyd,
2005; Mesoudi, 2011). Context-dependent biases can be split into model-based and
frequency-dependent biases (Henrich and McElreath, 2003; Richerson and Boyd,
2005; Mesoudi, 2011). The former is where the choice of a trait is affected by ob-
servable attributes of the cultural parent, for example copying individuals that are
perceived to be successful. The latter is typically where the frequency of the trait in
the population affects its uptake in a nonlinear fashion, such as a disproportionate
tendency to adopt the most common trait. This is termed as a conformist bias
whereas a disproportionate tendency to follow the minority is often known as an-
ticonformist bias (Efferson et al., 2008; Eriksson and Coultas, 2009; Kendal et al.,
2009; Morgan et al., 2011).

A variety of empirical studies examining the extent of conformist bias have been
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conducted, with one of the earliest finding that participants would conform to the
majority viewpoint expressed by confederates (Asch, 1956). This has since been
criticised as the results do not demonstrate a disproportionate inclination to follow
the majority and hence may reflect random copying (Efferson et al., 2008). By
defining conformity as an exaggerated tendency to follow the majority, modelled
by a sigmoidal curve, Efferson et al. (2008) conducted an experiment where players
repeatedly chose between two technologies with different expected, but randomly
distributed, payoffs. A subset of participants that indicated a conformist bias in
their answers to questionnaires copied the technology choice of asocial learners with
an S-shaped probability distribution, indicating conformist behaviour.

Later work by Eriksson and Coultas (2009) offers an alternative theoretical model
of conformity. The authors argue that the S-shaped probability curve originally used
by Boyd and Richerson (1985) is unrealistic. Particularly, the endpoints of the curve
mean that a naive individual cannot acquire a trait which is not being displayed in
the population, nor can they reject a trait which is universally expressed by the
population. Furthermore, the conformity threshold frequency, which we define to
be the intermediate point where the nonlinear frequency dependence curve meets the
linear curve, need not occur when exactly half of the population display the trait.
Allowing the endpoints and the conformity threshold frequency to vary produces
a model which can account for content-dependent biases, such that the attraction
of the trait itself may interact with a nonlinear frequency-dependent probability of
adoption. In applying their model to an experiment testing frequency-dependent
effects on opinion formation they found evidence for anticonformist bias, suggesting
that any expression of conformity bias may be conditional (also see Morgan et al.
(2011)). Results from a series of experiments conducted by Morgan et al. (2011)
suggest that subjects used conformist biased social learning. This, however, required
a large number of demonstrators and for the individuals to have low confidence in
their ability to complete the task independently. In contrast, a high magnitude
of asocial influence resulted in a conformity bias where the conformity threshold
frequency was greater than a half.

In light of these findings, we present a mathematical model to examine the
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dynamics of a cultural trait under conformist biased transmission. Results are com-
pared against the case of unbiased social transmission, before considering the effect
of a variable conformity threshold parameter. Our analysis focuses on the effect of
the strength of conformity on the existence and stability of equilibria. The formu-
lation is equivalent to that of an SIS model, including a frequency-dependent rate
of trait adoption and a constant rate of abandonment. The latter may reflect in-
dividual forgetting or the result of population-wide influences, such as mass media,
or economic and environmental change. The formulation also approximates cases
of frequency-dependent abandonment if this rate is very small. By way of an ex-
ample, we discuss how the model may apply to the case of binge drinking within a

population of young adults (see section 3.4).

3.2 Models for unbiased and conformist cultural
trait transmission

We begin by assuming the existence of a cultural trait A within a population of
N individuals, where trait transmission is frequency-dependent and abandonment
of the trait is (approximately) frequency-independent. Individuals within the pop-
ulation can be categorised as type S, who do not display trait A, or type A, who
do. The time-dependent variables S(t) and A(t) represent the number of type S
and type A individuals respectively. We assume that all individuals enter the pop-
ulation as type S at a rate u; however, they may leave as either type at the same
rate. Type S individuals can only acquire trait A through interactions with type A
individuals, and we assume that the transmission rate is affected by the frequency
of type A individuals in the population. We consider the transmission rate to be
pc(A/N) where [ is the rate at which contact sufficient for transmission occurs. In
the unbiased social learning model the function ¢(A/N) represents the probability
that contact is made with a type A individual. However, in the case of biased so-
cial learning, the function also includes a weighting which represents the conformist
influence. Type A individuals revert to type S at a constant rate 7, although this

term also approximates the effect of a social influence when ~ is very small. For a
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mathematical justification see appendix C.2.

From this we formulate the following equations

S(t) = uN — BSc(A/N) +vA — S,

. (3.1)
A(t) = BSc(A/N) — (v + p)A,

where the total population N = S + A is constant. Figure 3.1 represents these
dynamics with arrows indicating the direction of flow through the system. The
constant total population results from the entering and leaving rates, p, being the
same. This simplifying assumption is made so that the system may be reduced to
one equation, which is non-dimensionalised by introducing the variables s = S/N
and a = A/N to give

a(t) = B(1 — a)e(a) — pa, (3.2)

where p = v + u has been introduced to simplify the mathematical analysis.

uN

BSc

vA

Figure 3.1: Pictorial representation of the SAS model for cultural trait transmis-
sion, relating to equations (3.1). The nodes S and A represent the subpopulations of
type S and type A individuals respectively. The labelled arrows indicate the rate and

direction of movement through the system.

We must now consider the function ¢(a). This function determines the frequency-
dependent relationship between the probability that type S individuals convert to
type A and the frequency of type A individuals in the population. First we introduce
a linear frequency-dependent function

cr, :[0,1] = [0,1],
cr(a) = a,

which gives us a model for unbiased trait transmission, resulting in the standard SIS
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model form. We then introduce a nonlinear frequency-dependent function

¢ :[0,1] — [0, 1],
(3.3)
ci(a) = a[l + D(2a — 1)(1 — a)],

which is the conformity function first proposed by Boyd and Richerson (1985). The
conformity coefficient D € (0, 1] controls the strength of the bias. The value D =0
is not considered as this would result in the linear function c¢;,. We see from figure
3.2 that ¢; is an appropriate function to represent a conformity bias as its sigmoidal
shape ensures that all individuals have a disproportionate tendency to follow the
majority. When the frequency of type A individuals in the population is less than
a half, so a < 1/2, the probability of type S adopting trait A is P(adopting A) < a.
When the frequency of type A individuals is greater than a half then a > 1/2 and
P(adopting A) > a. We refer to a, = 1/2 as the conformity threshold frequency
as this is where P(adopting A) = a, i.e. where the linear and nonlinear frequency-
dependent curves meet.

The criteria for an appropriate conformity function are that exactly one saddle
point and no local extrema must exist in the region (0,1) and, initially, symmetry
about the point (1/2, 1/2). More complex real functions, such as higher order
polynomials or trigonometric functions, can also satisfy these criteria; however, they
may then be locally approximated to a cubic polynomial function. As a result, the
behaviour of such systems pertaining to existence and stability of equilibria will be
qualitatively similar to the results presented here. Precise relationships between
the parameters and the conformity coefficient will, however, vary depending on the
behaviour of the chosen conformity function with respect to the coefficient D.

We begin by analysing the linear frequency-dependent SIS model which is con-

structed from equation (3.2) using the linear function ¢y, to give

a(t) = Ba(l — a) — pa. (3.4)

As equation (3.4) is not analytically solvable we look for equilibrium solutions, which
are values of a which satisfy a(¢) = 0, and analyse their stability. Once a stable equi-
librium is reached, the proportion of type A individuals in the population remains

constant in time and hence we can determine the prevalence of trait A within the
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Figure 3.2: Plot of the functions cy, (bold) and ¢y, given by equations (3.2) and
(3.3) respectively, with conformity strength values D = 0.7 (dot-dashed) and D = 1
(dashed). As the strength of the conformist tendency (D) increases, so does the
concavity of the conformity curve ¢,. Consequently, as D increases, the probability

of adopting trait A decreases for a < 1/2 and increases for a > 1/2.

population. To ensure that the model provides realistic predictions we seek feasible
solutions characterised as those which are unique and lie in the interval [0,1]. As
we are interested in solutions for a we rewrite equation (3.4) as a function of this
variable, giving

fula) = a[B(1—a) — p. (3.5)
Solving fr, = 0 results in two equilibrium solutions: @ = 0, which is feasible for all
parameter values, and al = (8 — p)/3, which is feasible for p < f3.

We now look at equation (3.2) with conformity function ¢; which gives
a(t) = pa(l —a)[1 + D(2a — 1)(1 — a)] — pa. (3.6)

This can be written as @ = af;(a) where we see that aj, = 0 is an equilibrium
solution which always exists, independent of the values of 3, p and D. The remaining

equilibrium solutions are the roots of

fi(a) =B(1—a)[1+D(2a—-1)(1—-a)]—p (3.7)

which can be found explicitly, but their complexity makes further analysis difficult.

By using properties of the function f; it is possible to determine the number and
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nature of equilibrium points under certain conditions. The cubic polynomial f; has
leading coefficient 26D > 0, so it always has one real root, and f;(a) — +oo as
a — +o00. The roots of fi(a) = (6Da? — 10Da + 4D — 1) give the local maximum

and local minimum of f; which are

-~6 6V D 6 6 D

respectively. The vertical intercept occurs at f1(0) = (1 — D) — p.

The parameter p only occurs in the constant term of equation (3.7) so serves
to shift the graph of f; down the vertical axis as it increases; thus we know that
the limiting case of p = 0 maximises the function. This observation leads us to
introduce

g1(a) = A(1 — @)[1 + D(2a — 1)(1 - a)] (3.8)
which is equal to the function f; in the limiting case of p = 0 and hence has the same
turning points as fi. The direct calculation of the turning points reveals g;(al) > 0
and ¢g;(al) < 0, where a! < 1 < al, so g; has three real roots which are a = 1,
a € (—o0,a' ] and a € [al, 00). Consequently fi(al) < 0 and f; has three real roots
for sufficiently small p; however, the root lying in [al , 00) is never feasible as a} > 1
and is therefore disregarded. For the remaining two roots to exist and be unique we

require p < g;(a' ), shown by the shaded region in figure 3.3a, where

6+ D
9+D+(6+D)‘/T

This existence condition allows us to determine the form of the actual solutions,

B
91(01_) Y

which are shown in appendix C.1.

The feasibility of the remaining solutions, defined as @} € (—oo,a') and @) €
(a',1), must be determined when they exist. As we already have the equilibrium
solution aj = 0 we require a} and al to lie in (0, 1] for the equilibrium points to be
unique. By considering the sign of a!, which determines the location of the local

maximum of f;, we construct two cases: D € (0,1/4] and D € (1/4,1], corresponding

to a

' <0anda' > 0 respectively. In the first case a4 can be feasible, which occurs
when the vertical intercept is positive. This provides the condition p < (1 — D).

For the second case, @, is feasible for p < g;(a) (i.e. for when it exists), and aj is
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feasible for 3(1 — D) < p < g1(al) which is where the vertical intercept is negative

and the turning point is positive. These cases are shown in figure 3.3.
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Figure 3.3: (a) The shaded region is the area bounded above and below by the

curves gi(a) (equation (3.7)) and fi(a) (equation (3.8)) respectively, where = 0.8,
D =0.7 and p = g,(a" ) = 0.451. For fi in the limiting case of p =0 (equivalent to
curve g1) only one root is feasible (a = 1, which is independent of B and D). As the
value of p increases the two leftmost roots tend toward a = a*. = 0.318. The central
curve, with p = B(1 — D) = 0.24, highlights where two equilibria become feasible.
Eventually, when p = g1(a'), both of these equilibria cease to exist.

(b) The shaded region is bounded by the curves gi(a) and fi(a) with f = 0.8, D =
0.13 and p = B(1—D) = 0.696. As the value of p increases, the only feasible solution
decreases away from a = 1 toward a = 0, at which point it becomes unfeasible. This
situation where only one equilibrium is feasible arises for D € (0,1/4], unlike the

scenario of (a) where two feasible solutions may exist and D € [1/4,1).

3.2.1 Stability Analysis

To determine the local stability of an equilibrium solution we consider the system
close to the equilibrium point and linearise around this point. For a function F'(a)
and equilibrium point @ we consider F(a + a) where a is small. Linearising around
the point a gives

F(a) = aF'(a) + O(a®)
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as F'(a) = 0, so close to the equilibrium point we have F'(a) = ka for k € R constant.
In our system, linearising results in an ODE of the form @ = ka which has solutions
a(t) = Ke* for K € R constant. For asymptotic stability we require k¥ < 0 as this
ensures that the solution decays with time.

For the unbiased social learning model, equation (3.5), linearising gives

fu=(B—p—2Ba)a

so af and al are asymptotically stable for p > 3 and p < 3 respectively. For the
conformist biased model, equation (3.6), the condition for asymptotic stability is

fi(a) +af{(a) < 0 where fi(a) =0 for a # 0 and
afi(a) = Ba(6Da* — 10Da + 4D — 1).

From this we know that a} is asymptotically stable for p > 3(1 — D). Asymptotic
stability of the remaining feasible solutions requires f{(@) < 0 which is true provided
a € (ar,dl), so a} is never stable and aj is always asymptotically stable. These

results are summarised in table 3.1.

Model comparison

We now identify how a conformity bias affects the persistence of trait A in the
population compared with the linear case. Recall that p = 4+ v was introduced to
simplify the analysis, so any interpretation of p requires an understanding of how u
and v behave. As we are interested in the proportion of type A individuals in the
population we consider the flow to and from this subpopulation, shown in figure 3.1.

Flow into A is only affected by the parameter S and flow out of A happens
at rate p + 7, so p is the rate that individuals leave A. By considering p fixed
across both the linear and nonlinear frequency-dependent models we can define
threshold values of £ required for type A individuals to persist in the population.
In the linear frequency-dependent model the threshold value is 5, = p. In the
nonlinear model the threshold is different as it depends upon the strength of the
conformist tendency. The threshold value is 8y = p/(1 — D) so, for very small D,

the linear and nonlinear threshold values are approximately equal. As the strength



Feasible Asymptotically Stable Unstable

Linear ay Always p>f p<p

at p<p p<p —

ag Always p>pB(1-D) p<pB(1-D)
D e (0,1/4] a; Never — —

a; p<p(l-D) p<p(l-D) —

ag Always p>p(1-D) p<p(1-D)
De(/u1] @ FU-D)<p<pa) B(1-D) < p < gr(al)

ay  p<gilal) p < gia) -

Table 3.1: For the linear frequency-dependent model the stability of the equilibria switches when the rate of transmission (3) is equal

to the rate of leaving the type A class (p). When the leaving rate is greater, p > (3, trait A dies out. When p < [ however, trait A

persists. For a conformity strength D € (0,1/4] the stability of the zero solution and endemic solution switches when p = (1 — D),

that is where the rate of leaving A is equal to the transmission rate, subject to a conformity effect. This threshold is greater than the

linear case so a larger transmission rate [ is required for trait A to become endemic. For an increased conformity strength (D > 1/4)

a bistable state exists where the equilibrium attained is dependent upon the initial frequency of type A individuals.
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of conformity increases so does the threshold value; thus 8% > (7. This indicates
that when there is a conformity bias acting within a population, the contact rate
B must be greater than in the linear case for trait A to become endemic within
the population. This is demonstrated by simulation results, summarised in table
3.2 (section A), where increasing the value of  results in the endemic equilibrium
solution becoming feasible and stable for a linear frequency-dependent relationship,
but not with a nonlinear one. Section B of table 3.2 shows that, as the conformity
strength increases, a larger value of 3 is required for the endemic equilibrium solution
to become feasible. This indicates that conformity effects suppress the spread of
trait A, which is intuitive as initially type A individuals are rare in the population
so conformity acts against them, instead favouring type S individuals.

When D > 1/4, there exists a second threshold value. For trait A to persist
in the population without any dependence on the initial frequency of type A indi-
viduals then the threshold value remains as 33 > [r. This corresponds to when
the equilibrium solution a} is feasible and stable whereas al is not feasible. As D
increases so does the threshold value, though it is undefined at D = 1. This indi-
cates that when conformity strength is at its maximum, it is not possible to have a
contact rate which is sufficiently large to overcome the propensity to conform. Trait

A, therefore, cannot become endemic in this scenario. By introducing a second

threshold, 8}, = p/ki(D) where
6+ D
9+D+(6+D)‘/T

trait A may become endemic. Using the extreme values of D we can bound k(D)

1
k(D) = =1

Y

from above by k(D) < 45/54 < 1 and therefore 8}, > S, so again the threshold
value for the conformity model is greater than that of the unbiased social learning
model. We also see from figure 3.3a that 3(1— D) < g;(a' ) = k(D) and therefore
1/ki(D) < 1/(1 = D) so B3 < B%. This lower nonlinear threshold value means
that trait A can become endemic in the population even when D = 1, dependent
upon the initial state. We know from our stability analysis (section 3.2.1) that the
system can have two asymptotically stable solutions, aj and al, so the solution that

is reached depends on the initial frequency of type A individuals in the population.
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By defining ¢y = 0 then for a(ty) < aj trait A cannot persist in the population and
for a(ty) > @; it becomes endemic. This shows that beginning with very few type
A individuals means it is likely that trait A will die out in the population. If at ¢,
there was, for example, some major environmental change leading to a sufficiently
large number of individuals becoming type A, then trait A would persist in the
population. Table 3.2, section C, gives an example of where the two equilibrium
solutions are feasible and stable for sufficiently large conformity strength, compared

to the model with a weaker conformity strength.

3.3 Model for conformist cultural trait transmis-
sion with varying conformity threshold

We now generalise our model further by allowing the threshold value a, to vary away
from 1/2, which could indicate a content bias acting in the population. We use the
conformity function

co(a) = a[l + D(2a — n)(1 — a)] (3.9)

which produces an asymmetric sigmoidal curve. The threshold value is a, = 7/2
where 1 € (0,2), but restrictions must be placed on the conformity coefficient D to
ensure that ¢y is monotone increasing on [0, 1]. This is achieved by considering the

local minimum and local maximum of ¢,

_2+4n /D> —2Dp+4D%+6D
6 6D

and

_— 2+"+ /D% — 2D + 4D? + 6D
* 6 6D

respectively, where we require a_ < 0 and a, > 1. This gives conditions D < 1/n
and D < 1/(2—mn). As Max{D} = 1, the first condition does not always hold for
n € (1,2) and the second for n € (0,1). For example, when n = 1/2 then D < 2/3
which is a stricter condition on D than we desire. To eliminate this problem we

restrict D so that D € (0,1/(2 —n)) for n € (0,1] and D € (0,1/n) for n € (1, 2).



A B C D
Function cL cL c1 cL c1 €1 c1 1 Co Co Co
B 0.2 027 027 0.3 0.3 03| 045 0.45 0.45 0.45 0.45
D — — 0.1 — 01 07| 01 0.7 0.0.7 0.7 0.7
n — — — - — | — — 0.6 1 0.2
Stable Solution | 0 0.741 0 |0.167 0.103 0 | 0.441 0Oor 0.380 | 0.515 0or 0.380 0O

Table 3.2: Table showing simulation results for different parameter values, with p = 0.25 fized. The stable solution is the frequency
of type A individuals in the population once the system has reached equilibrium, where all values are to three significant figures.

A: Comparison between the linear frequency-dependent function ¢, and the conformity function ¢ highlighting the effect of the
transmission rate B on the stability of an endemic equilibrium (a > 0).

B: For a fized transmission rate 3, the linear frequency-dependent model results in a higher frequency of type A individuals in the
population than the conformity model. Provided that the conformity strength D is large enough, an endemic equilibrium will not be
reached and type A individuals will always die out.

C: For certain parameter values, an increase in the conformity strength will result in a bistable system. In the example given, a
threshold ezists at a(0) = 0.258. For an initial frequency of type A individuals greater than 0.258, trait A will become endemic within
the population with approzimately 38% displaying the trait at equilibrium. For an initial frequency of type A individuals less than
0.258 the trait will eventually die out.

D: The effect of a content bias, controlled by n in conformity function co, is investigated. As the value of n increases, the persistence

of type A individuals first becomes dependent on their initial frequency before becoming impossible.
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Figure 3.4a shows the function for n € (0,1] where the intersection point a,
lies in the interval (0,1/2]. This represents a situation where less than half of the
population displaying trait A is sufficient for a naive individual to be more likely to
take up trait A than in the linear case. Figure 3.4b shows the function for n € (1, 2)
and a, € (1/2,1). Here, more than half the population must display trait A in order
for the probability of behaviour uptake to be greater than in the linear case. An
increase in the value of 7 represents an increased aversion to adopting trait A. As
with the previous conformity function ¢y, an increase in the conformity strength D
increases the concavity of conformity function c,.

The nonlinear frequency-dependent SIS model with variable threshold point 7 is
a(t) = pa(l —a)[1 + D(2a — n)(1 — a)] — pa, (3.10)

formed from equation (3.2) and the conformity function ¢,. We analyse this model
by proceeding as in section 3.2, beginning by defining f»(a), where @ = afs(a) so

that the equilibrium solutions are ai = 0 and the roots of

fola) = B(1 = a) [1+ D(2a — )(1 — a)] — p.
The function f5 has distinct turning points

Avn 1 6 4+n 1 6
2 _ = 9 _ 2 -~ d 2 _ - 92 _ 2 —
a-=———g\2-n+5  an .= T2t
and vertical intercept f»(0) = f(1 — nD) — p. Taking the limiting case of p = 0 we

introduce the function

g2(a) = B(1 —a) [1 + D(2a — n)(1 - a)]

and direct calculation reveals that g»(a?) > 0 and g»(a3) < 0 where > < 1 and

a2 > 1. Hence g, has roots a € (—00,a?), a =1 and a € (a%,00) so fo has three
roots for sufficiently small p. One of the roots is never feasible so we ignore it. For

the three solutions to exist the condition p < go(a? ) must hold where

ga(a?) = 5% 92 —n)+ D2 -7+ (6+D(2— 77)2)\/

6+ D(2 —n)?
— 5 |

As before, we can now determine the form of the exact solutions, shown in appendix

C.1.
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To determine the feasibility of the two roots a? € (—oo,a?) and a3 € (a?,1),
the sign of a®> must be considered, where a®> < 0 gives the case D < 1/(2 + 2n).
Only a3 is ever feasible given p < ¢5(0), where g5(0) = B(1 — nD) is the vertical
intercept. When D > 1/(2 + 2n) both solutions can be feasible if p < gy(a?) for a3

and g2(0) < p < ga(a?) for a?.

(a) (b)
1.0 1.0 _
l// 7/ l//’
7 /
0.8 7 0.8 /
/// //
7 %
0.6 7 0.6 7
V4 4
0.4 ¥/ 0.4 /4
YV 7
4 /
0.2 7 0.2 7’
74 7
/' a / a
02 04 06 08 10 02 04 06 08 10

Figure 3.4: The figures show the functions cp, (equation (3.2), bold) and cy (equa-
tion (3.9)) with D = 1 and (a) n = 0.5 (dot-dashed), n = 0.85 (dashed) and (b)
n = 1.15 (dashed), n = 1.5 (dot-dashed). When more than n/2 of the population
display trait A, the probability of uptake is greater than that of the linear case. As
the value of n increases, the probability of adopting trait A reduces, representing a
content bias which dissuades individuals from adopting the trait. The probability of
adopting trait A is (a) greater than for the function ¢, (equation (3.3), figure 3.2)

when n < 1 and (b) less than ¢; when n > 1.

Stability Analysis

Following the method of linearisation from section 3.2.1 we find that the condition
for asymptotic stability of an equilibrium solution of equation (3.10) is fo(a) +
afy(a) < 0. The equilibrium solution a? is asymptotically stable for p < g5(0) and
the stability of the remaining two solutions requires f5(@) < 0, which corresponds

to solutions lying in the interval (a,a?). Hence we find that a feasible a3 is always
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asymptotically stable and a feasible a? is never stable. The feasibility and stability

conditions for the equilibrium solutions are summarised in table 3.3.

Model comparison

As in section 3.2.1, we can define threshold values of § for which the stable equilib-
rium changes from being trait-A-free to the trait persisting in the population. We
first consider D < 1/(2+2n) and define the threshold value to be 3% = p/(1—nD) so
% > Br. For n <1 we have 3% < B\, which is an intuitive result when comparing

the curves ¢; and c¢y. Defining the distance between these two curves as
d(a) =c; —ca=D(n—1)a(l — a)

then d < 0 for n < 1 which signifies that P( adopting A |c;) > P( adopting A |¢,).
Hence, for some fixed a value, the probability of adopting trait A is greater when we
take conformity function co. The threshold value 3% is lower than 3% as, for each
individual contact, the probability of transmission is greater than with ¢; and hence
fewer contacts are required for trait A to become endemic. For n > 1 the converse is
true, whereby d > 0 and hence P( adopting A |c2) < P( adopting A |c;). The effect
of 1 is shown in table 3.2, section D, where the other parameter values are fixed.
When 7 = 0.7 the endemic solution is feasible so type A individuals will persist in
the population. Comparing this with the previous model (which is equivalent to
n = 1) we see that the persistence of type A individuals is not certain but depends
on the initial state. A further increase to n = 1.2 results in trait A dying out within
the population, owing to the change in the conformity bias effect.

When D > 1/(2 + 2n) the threshold % is defined for nD # 1. As with the
previous conformity model, a second threshold exists where trait A persisting in the

population is dependent upon initial state. This threshold is 32, = p/ko(D) where

(D) = = [9(2 = ) + D= + 65+ D= 1)/

6+ D(2 —n)?
54

D

and 33, < 3%. Again this threshold value increases with n so 83, < 81, when n < 1

and 32, > B}, for n > 1.



Feasible Asymptotically Stable Unstable
ag  Always p>B(1—nD) p < B(1—nD)
D e (0,1/4] a? Never — —
a3 p<B(l—nD) p<B(l—-nD) —
ag  Always p>B(1—nD) p < B(1—nD)
De(/41] @  Bl-nD)<p<gla) — B(1—nD) < p < ga(a?)
a3 p < ga(a?) p < ga(a?) —

Table 3.3: For D € (0,1/4] the stability of the zero and endemic solutions switches at p = B(1 —nD). This is where the leaving rate
s equal to the transmission rate, modified by a combined conformity and content bias term. The value of n, representing a content
bias, affects the magnitude of variation between this threshold and the threshold associated with conformity function ¢, (see table 3.1
for comparison). As with the previous conformity model (section 3.2), increasing the conformity strength (D > 1/4) allows for a

bistable solution where the initial frequency of type A individuals affects their long-term survival.
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3.4 Discussion

Our analysis reveals that varying the conformity threshold frequency a. affects the
[ value required for cultural trait A to become endemic in the population, where
represents the average rate of contacts sufficient for transmission of cultural trait A.
Lowering a. results in an increased probability of adopting trait A for some fixed a
value, and hence lowers the threshold value of # which is required for the trait to
persist. In contrast, § must be large for this to occur when a, is high.

Morgan et al. (2011) found that an increased conformity threshold frequency was
consistent with strong confidence in information acquired asocially. Here we have
a similar asymmetric conformity function, but without requiring asocial learning.
Instead, the value of the conformity threshold frequency coefficient n may capture
the interaction of a content bias with conformity bias. For instance, the conformity
threshold frequency for an attractive cultural trait may be smaller than that of a
trait not in possession of the same intrinsic appeal. Our analysis shows that the
value of n can affect the conditions for trait A extinction.

The effect of a content bias on social transmission may, however, be more complex
than simply altering the conformity threshold. A content bias may also affect the
value of the adoption and abandonment rates, 8 and . For example, a trait that
is highly attractive or salient would have a high rate S at which contact sufficient
for transmission occurs. From the results of our conformity model, we can see that
content, bias affecting 5 will alter the unfeasibility of an endemic equilibrium for a
given conformity bias strength D.

Evidence from Efferson et al. (2008) and Morgan et al. (2011) suggests that some
individuals will exhibit conformist bias under certain circumstances whereas others
will not. An extension to the work here would be to consider the spontaneous uptake
of trait A to account for some of this variation. This development would remove the
trait-free equilibrium and affect the initial trait frequency which, we have shown in
our current model, can have important consequences, such as when conformity bias
is strong and the system is bistable.

The general models presented here can be applied to health-related behaviours

and thus provide an extension to the existing epidemiological literature, some of
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which was discussed in section 3.1. One possible application could be to model the
drinking habits of young people in the U.K. Alcohol consumption within this age
group is predominantly binge drinking (Institute of Alcohol Studies, 2010, 2013),
which is defined as drinking 8+ units for men and 6+ units for women in one
drinking session (Deacon et al., 2007). Evidence suggests that peer group influence
is a major contributor to an individual choosing to binge drink (French and Cooke,
2012; Institute of Alcohol Studies, 2013), so such behaviour could be considered
to be driven by social learning with a likely conformist bias. Our model does not
assume differential mortality as the long term health effects of alcohol misuse are
unlikely to develop within the modelled timescale. Instead, young adults are likely
to leave the modelled population at rate p as a result of lifestyle changes such as
movement out of a student community, or starting a family. For example, Seaman
and Tkegwuonu (2010) found that young adults in the U.K. were more likely to
moderate their drinking when becoming parents.

The frequency-independent term v may represent reversion resulting from ex-
posure to governmental or mass media campaigns to abstain from binge drink-
ing, while assuming any frequency-dependent influence of susceptible individuals on
binge drinkers is small by comparison. The effect of top-down impositions, such
as alcohol minimum pricing or the reduction of sweet-tasting or otherwise attrac-
tive alcoholic drinks, on binge drinking may be predicted. Such scenarios may be
modelled by altering the reversion rate v and the value of the conformity threshold
through 7 to introduce a content bias into the system. This may provide an initial
indicator as to the potential success of proposed strategies to reduce the prevalence
of binge drinking within the young adult population.

If appropriate data were obtained then it may be possible to determine whether
a biased or unbiased social learning model is most representative of the real-world
situation. Once this is understood, comparisons between the actual situation and
ideal scenario predictions may be used to inform policy makers or health profes-
sionals about how to successfully reduce binge drinking within the population. For
instance, if reducing the value of 3 significantly reduces the number of binge drinkers

then efforts would be best focussed on deterring individuals from adopting the be-
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haviour, perhaps through media campaigns or by increasing alcohol prices.

In conclusion, we have developed a model for cultural trait transmission within
an SIS framework by introducing a nonlinear frequency-dependent relationship with
a variable conformity threshold frequency, which could account for the interaction
of conformity and content biases acting within the population. Hence, the anal-
ysis of the conformity threshold frequency advances cultural evolutionary theory
in line with empirical evidence, suggesting that individuals may employ multiple

non-independent learning biases.



Chapter 4

A reaction-diffusion model for

competing languages

4.1 Introduction

It is widely thought that of the estimated 6000 - 7000 languages in the world, over
half will have become extinct by the end of the century (Grenoble and Whaley,
2005). This is a cause of great concern as language death can lead to the irrevocable
loss of cultural information. Language provides a means by which individuals can
maintain links with their cultural heritage and serves to protect unique aspects
of their culture in the present (Grenoble and Whaley, 2005). As culture develops
within a particular linguistic framework, the nuances of specific cultural traits may
not faithfully translate into an alternative language (Fishman, 2001). Consequently,
the trait may not be accurately represented, with subtle differences unapparent to
speakers of an alternative language, and hence information may be lost (Fishman,
2001).

The two methods of language extinction are the death of the language-speaking
population or speakers abandoning their language in favour of another, known as
language shift (Tsunoda, 2006). Population death may occur through natural dis-
asters: for instance all speakers of the Tamboran language of Sumbawa, Indonesia,
died following a volcanic eruption in 1815 (Nettle and Romaine, 2000; Hickey, 2013).

Genocide is also a cause of population death, as was the case of the Yahi Indians

67



4.1. Introduction 68

who were wiped out by white settlers moving into California (Nettle and Romaine,
2000). The languages Wappo and Yuki, also from California, died out via language
shift. The last speaker of Wappo, Laura Fish Somersal, regularly used the language
throughout her life to communicate with her sister (Hickey, 2013). Arthur Ander-
son, the final Yuki speaker, last spoke the language in 1908 despite dying in 1990
(Nettle and Romaine, 2000; Golla, 2011). Unlike Somersal, who spent her childhood
at home caring for her mother, Anderson was schooled in English and shifted to that
language for everyday use (Nettle and Romaine, 2000). Schooling is a key influence
on language shift as, via a process of cultural assimilation, individuals will often
adopt a common group language (Nettle and Romaine, 2000).

For language shift to occur, speakers of two different languages must interact.
Despite this two-way contact, language shift is usually one-directional, with indi-
viduals moving from a lower status language to a higher status language (Hickey,
2013). What constitutes lower status is not well-defined, however speakers of mi-
nority languages are often stigmatised or excluded from political and educational
participation (Brenzinger, 1992). It can therefore be viewed as an advantage to
speak the majority language in order to avoid such problems, which may be inter-
preted as a status advantage. This indicates that minority languages are those that
are at risk from language shift. In order for the minority language to be maintained,
its speakers must value it highly to overcome the incentive to switch (Brenzinger,
1992).

Such strong language loyalty has been displayed by speakers of Catalan, also
known as Valenciana (Catalan, Language of Europe). The majority of its speakers
reside in territories located in Spain, with the remainder in Andorra, France and Italy
(Catalan, Language of Europe). These Catalan-speaking regions are surrounded by
areas dominated by an alternative language, for example Castillian in Spain. During
the dictatorship of Spain (1939-1975) the use of Catalan in education, publications
and telecommunications was prohibited, but it remained as the language spoken
at home in regions such as Catalonia or the Balearic Islands (Catalan, Language of
Europe). Since the end of the dictatorship, Catalan became recognised as the native

language of the territories of Catalonia, the Balearic Islands and the Comunitat
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Valenciana. This allowed for its usage in schools and in government in these areas.
From linguistic census data in the region of Catalonia (Idescat Linguistic Census),
displayed in Table 4.1, the number of speakers of Catalan forms an increasing trend

from 1991 to 2007. This indicates that Catalan is not currently a dying language.

Catalan-speaking population

Year Population (thousands) Number (thousands) % of total
1991 5.949 4.066 68.3
1996 5.948 4.506 75.3
2001 6.215 4.603 74.46
2007 7.050 5.331 75.6

Table 4.1: Data from Idescat Linguistic Census showing the number of Catalan
speakers in Catalonia. This number has increased from 1991 to 2007, implying that

Catalan is gaining speakers with the region of Catalonia.

To help understand the conditions under which a language dies or coexists with
another, mathematical techniques can be employed. In the last decade, population-
wide analytical models pertaining to the spread and persistence of languages have
been motivated by the work of Abrams and Strogatz (2003). They model how the
numbers of speakers of two competing languages change over time. It is assumed
that each language is fixed in structure, for instance grammatically and syntactically,
and that they are in competition for speakers. Thus the model does not consider
the evolution of a language itself, but the propagation of a language through a
population. For simplicity it is assumed that homogeneous mixing occurs within the
population and all individuals are monolingual. The attractiveness of the languages
increases with the number of speakers and relative perceived status of the language.
This takes into account the view that a more dominant language is perceived to
have an increased status associated with it, providing an advantage to its speakers
over those of the subordinate language. Analysis revealed that the coexistence of
two languages, X and Y, was never stable, hence one language would always die out.

Predictions were found to correspond with data for the decline of Scottish Gaelic,
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Quechua and Welsh.

The model has been criticised for its simplicity. In particular, Steele and Kan-
dler (2010) highlighted the following: languages are assumed to be fixed, spatial and
social structure is not incorporated, individuals are monolingual, and the popula-
tion size is assumed to be constant. Such assessments led to a variety of alternative
models being proposed which address some of these criticisms. By including spatial
dependence in the Abrams and Strogatz (2003) model, languages can coexist, with
speakers divided into distinct zones (Patriarca and Leppénen, 2004). Alternatively,
Pinasco and Romanelli (2006) adapted a two-species Lotka-Volterra competition
model, where the population does not remain constant, and applied it to language
competition. Two languages, u(t) and v(t), increase independently via a logistic
growth function. This ensures that there is a cap on population size to represent,
for example, environmental constraints on the number of speakers that can be sup-
ported. Language u is assumed to be dominant so an interaction term is included
allowing speakers of v to convert to dominant language u. Four equilibria exist,
one being a stable coexistence state, again contrary to the findings of Abrams and
Strogatz (2003). The addition of a spatial component by Kandler and Steele (2008)
leads to the same four constant equilibria, however the authors conclude that lan-
guage coexistence is not possible. Modification of the equations (by further capping
the dominant language) yields the possibility of language coexistence under certain
conditions.

The inclusion of bilingual speakers into language models is another possible de-
velopment as, realistically, people do not suddenly switch from being monolingual
in one language to monolingual in another. Modifications to the Abrams and Stro-
gatz (2003) model allow for bilingualism between two similar languages (Mira and
Paredes, 2005; Mira et al., 2011). Similar languages are those that have a common
grammatical structure and some shared vocabulary, such as the Spanish languages
Castillian and Galician (Mira and Paredes, 2005; Mira et al., 2011). Bilingualism is
found to be stable within the population under some circumstances, with a depen-
dence upon the similarity of the two languages.

A mathematical study of Britain’s Celtic languages by Kandler et al. (2010) gave
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conflicting results regarding the persistence of a bilingual state, depending on the
defined nature of the state (Kandler et al., 2010). In the basic model, bilingual-
ism served as a transitionary state; in the other it represented a diglossic state.
Diglossia arises within multilingual communities when a certain language is used
only in specific circumstances (Romaine, 2000). In Egypt, for example, the publicly
recognised language is standard Arabic, whereas a local variant may be used at
home (Romaine, 2000). Numerical simulations revealed that one language would al-
ways become extinct with the basic model, but a bilingual state is sustainable when
assuming a diglossic environment. The models were fitted to 20*" century census
data to describe language shift from Welsh to English in Wales. Results motivated
the implementation of the diglossia model in predicting effective strategies for the
revival of Gaelic in Highland Scotland. Other mathematical works also address
bilingualism, for example see Minett and Wang (2008) for a general case or Bakalis
and Galani (2012) for a study of Greek and Aromanian.

Motivated by previous work, we construct a model to examine the population-
wide dynamics of language competition. Our treatment of the model differs from
pre-existing work as a global stability analysis of each constant equilibrium is con-
ducted. This builds upon previous language competition models where only local
stability criteria have been discussed, e.g. Abrams and Strogatz (2003); Patriarca
and Leppénen (2004); Pinasco and Romanelli (2006); Kandler and Steele (2008).
In such instances, an equilibrium state can only be classified as stable up to small
disturbances. We seek to broaden understanding of how such systems behave by
analysing the response to arbitrarily sized disturbances via methods initially em-
ployed within the fluid mechanics literature. Research from this area has been
applied to aspects of human behaviour. For example, the Cahn-Hilliard equation
for fluid phase transitions (see Fabrizio and Mongiovi (2013a,b); Berti et al. (2014))
has been utilised in the study of integration between migrant and resident human
populations (Fabrizio and Rivera, in press).

The contribution presented here consists of a logistic growth model with diffusion
and a conversion term, first proposed by Kandler and Steele (2008). A key feature of

the model is the small number of variables and variable parameters, which is advan-
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tageous as it allows for a clear understanding how parameter interactions affect the
survival of a language. To ensure a minimal number of parameters are introduced,
a separate bilingual class is not considered. Other modelling techniques have been
used to assess language survival, such as agent-based models (see Minett and Wang
(2008)). These incorporate individual perspectives into the model, however their
increased complexity diminishes the clarity of any mathematical results. A review
of such methods, assessing their strengths and limitations, may be found in Vogt

(2009).

4.2 Reaction-diffusion model for language compe-
tition

We construct a model for two competing languages, where one language is assumed
to be dominant. We denote the number of speakers of these languages to be u(x, t)
and v(x,t), which vary over space and time with £ € Q C R? and ¢t € [0,00).
Following the model construction of Kandler and Steele (2008), both languages
diffuse and grow logistically, independent of each other. This gives rise to a term
diAu + oqu — fru? for language u, where d; is the diffusion coefficient and o; and
B1 are the coefficients associated with logistic growth. A similar result follows for
language v.

As indicated by the case of Arthur Anderson (discussed in the Introduction),
greater exposure to an different language increases the chance of an individual
switching to that language. Combining this with shift being one-directional to-
ward the dominant language, we introduce the cross term yuwv into the equations.
Choosing u to be dominant, the rate of change in the number of speakers of u is
affected by the contact between speakers of the two languages, scaled by a constant
~. This constant represents the strength of the perceived status of language u over

language v. As this process involves individuals shifting languages, this also affects
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the number of speakers of v. Formulating this gives the equations

@ = diAu+ aqu — Biu® + yuv,
0t (4.1)

% = dy AV + v — Bov® — yuw,
where
0? 0?
A= —+—
ox? * Ox3

is the Laplacian operator in two dimensions. The system can be nondimensionalised
by following the method in Cantrell and Cosner (2003). This is advantageous as
it simplifies the problem by reducing the number of variable parameters without
qualitatively affecting the results. By introducing the variables t* = ¢/T and z* =
x/M, where T and M are constants that can be chosen, the system with variables

u(x*, t*) and v(x*,t*) becomes

1 Ou dy .,
Tor = VZA u+ oqu — Bru? + yu,
1 8’0 dQ

Tor = WA*U + v — Bov? — yuw.

Multiplying both equations by T" and choosing T' = M?/d; this becomes

ou M?
proi Au + n (aru — Biu® + yuv),
ov d2 ]\42 9

— D2 Ap+ . _ _
= d, v+ 0 (2w — Bov? — yuv)

Choosing M? = d; /v and introducing the positive coefficients d = dy/dy, a1 = a1 /7,
by = p1/7, az = ag/vy and by = (/7 leads to the nondimensionalised equations

ou
= Au+ ayu — byu® + uw,

ot (4.2)
0 _ jav+ b2

— = dAv + ayv — bov” — uv

ot 2 2 )
where the superscript star notation has been dropped for convenience.

It is now of interest to consider the constant equilibria of system (4.2) to deter-
mine whether languages u and v will persist or die out over time. At equilibrium,
u and v do not vary in time so du/0t = 0 and dv/0t = 0. As the equilibria are
constant solutions, they do not vary spatially so Au = 0 and Av = 0. Thus the

constant equilibria of the system, which we denote generally as (@, 7), are obtained
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by solving
0= ﬂ(al - blﬂ + 17),

0

v(ay — byt — ).

Four constant equilibria exist:

(0,0)  Languages u and v become extinct,

(%, 0> Language u persists and language v dies out,
1

(0, %) Language u dies out and language v persists,
2

a1b2 + a9 a2b1 — aq
biby +17 biby+1

The first three solutions are easily determined, however the fourth requires solving

) Languages v and v coexist.

Ozal—blﬂ—l-@,
Ozag—bgﬁ—ﬂ.

Following a matrix equation procedure, these equations may be written as

aq b1 —1 U
(03] 1 bQ U
and u, v found from
-1
a by —1 a, 1 by 1 ay
v 1 b2 (05} b1b2 +1 -1 bl a9 ,

with b1by + 1 # 0 always holding. Equilibria must satisfy @ > 0 and ¥ > 0 to ensure
that populations are always non-negative, thus the coexistence solution requires
asby > a; for it to be feasible. This condition will be assumed to hold in the
subsequent analysis.

To establish which of these solutions the system reaches over time we need to
analyse the stability of each solution in turn. This is done by investigating the
behaviour of the system (4.2) at a point (z + u, v + v) where (u,v) # (0,0) is some
disturbance to the system at equilibrium. The nonlinear perturbation equations of

the system are

% = Au+ (ay — 2b10 + 0)u + ww + (uv — bju?), (4.3)
o _ dAv + (ag — 2byv — @)v — vu — (uv + byv?). (4.4)

at
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We assume that the population sizes remain constant at the boundary so impose

the Dirichlet boundary conditions
u(x,t) = v(x,t) =0 on 09,

where 0f) is the boundary of the domain ).
We begin by determining instability criteria for the equilibria from the linearised
perturbation equations, before progressing to analyse the nonlinear system. Exam-

ples of using this method of analysis may be found in texts, e.g. Straughan (2004).

4.3 Linear instability analysis

The linearised perturbation equations, found by discarding the second order terms

and higher in equations (4.3) and (4.4), are

0
Y Aut (a1 — 2byu + v)u + uv,

gz (4.5)
— = dAv + (ay — 2bo¥ — @)V — Du.
ot
Denoting the eigenfunctions of the Laplacian operator as ¢, (x) leads to the eigen-
function equation Ag,(x) = —A,on(x). The A, are the corresponding eigenvalues
and we may assume \, < A1 Vn € N. As the eigenfunctions form a basis of L*(Q)

we can consider solutions to the linearised system (4.5) to be a linear combination

of these functions. We therefore look at solutions of the form

U= Z Up o (x)e™™,
=t (4.6)

oo

U= Z Un@n(m)egnta
n=1

where u,, v, and o, are constants. For instability, either u or v must grow in time,
achieved by any one summation term i (x)e’*" increasing in time. The sign of the
real part of o,,, denoted R(o,), controls whether a solution grows or decays in time.
Accordingly, we seek conditions for when the largest R(o,,) becomes positive as this
represents the first growing term. By choosing o; to have the largest real part, the

first growing term will always correspond to n = 1 in equations (4.6).
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Substituting the n = 1 term from equations (4.6) into the linearised equations

(4.5) and rearranging leads to

o1t

0= (01 + A\ —ay + 2bju — 0)uipr (2)e™ — uvy o (x)e”,
0 = (o1 +d\; — ag + 2bov + 6)vyo (2)e” + vuypq (x)e .

This gives rise to the equations

0= (0'1 —+ )\1 — a1 + 2()1@ — @)Ul — ﬂUl,
(4.7)
0= (01 +dA\i — ag + 2by0 + w)vy + Vuy,

as @1 (x)e’tt # 0. Instability occurs for oy > 0 so there is an instability threshold at
o1 = 0. By writing equations (4.7) in matrix form as M (uy,v;)T = 0, where

o1+ A —ay+20t—70 —u
M= T . (48)
v 01+d)\1—a2+2b217+ﬂ

then det(M) = 0 as we desire M(uj,v1) # (0,0). Calculating this determinant

reveals a quadratic equation in oy,

OZO'%—F()\I—(1,1+2b11_t—77+d)\1—a2+2b217+l_t)0'1 ( )
4.9
—+ ()\1 —a + 2()1@ — 77)(61)\1 — a9 + 2[)277 + ’L_L) —+ 17,77,

from which the instability boundary for (u, ) can be established.

Zero solution
For the equilibrium solution (u,?) = (0, 0), quadratic equation (4.9) becomes
0=0?+ (A —ay +d\ — ag)or + (A — ay)(dA; — ag)
= (01 + A1 — a1) (01 + dA\; — ag).

For this equation to hold then either
01 :—)\1+a1 or o1 = —d)\1+a2.

Instability occurs when any one solution grows: that is, the first instance where
o1 > 0. From this we determine the instability boundary for equilibrium point (0, 0)
to be

A1 = min {al, %2} : (4.10)
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Language u persists

Equilibrium solution (@, @) = (a1 /by, 0) substituted into equation (4.9) gives

0=024+ (A +a+d\ —a) oy + (M +ay) <d)\1_a2+%>
1

1

= (01+)\1+a1) (01+d)\1—a2+%> .
This holds for either

ai
0'1:—)\1—CL1 or le—d)\1+a2——

by
The first oy solution is always negative, so the only instability condition (resulting

from the second o solution) is the threshold

d)\l + al/bl = Q9. (4:].].)

Language v persists

Equilibrium solution (@, 7) = (0, as/by) substituted into equation (4.9) gives

OZG%+<)\1—CL1—%+d)\1+CL2> 01+<)\1—a1—%> (d)\1+ag)
2 2

= <0’1+)\1—CL1—%> (01+d)\1+a2)

2
so either

a
01 :—)\1+a1+—2 or o1 :—d)\l—ag.

by
As with the previous case, one solution for o; is always negative, so here the insta-
bility threshold is
)\1 =a + CLQ/bQ. (412)

Coexistence solution

For the coexistence solution

o aiby +ay ashy —aq
(ua U) = )

biby +1 "7 biby +1

equation (4.9) simplifies to

0=07+ (A + biil + d\; + ba®)oy + (A1 + by) (dAy + bo®) + G0 (4.13)
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as u,v > 0. Solutions for o; are found from the quadratic formula, so

200 = —p . \/p? — 4q

where

p =M+ biu+ d\ + by,

q = (A1 +b1@)(d\; + byt) + u,
with p, ¢ > 0. If the discriminant of equation (4.13) is negative (p* — 4¢ < 0) then
the solutions for oy are complex conjugates with a negative real part of R(oy) = —p.
When the discriminant is positive, therefore o; € R, then —p — \/M < 0 so
o1 < 0. Foroy = —p+ \/ﬂ, the solution for o is again negative because ¢ > 0,
leading to p > m In all cases R(oq) < 0, therefore no instability criteria can
be determined for this solution.

Whilst instability criteria for three equilibria has be obtained by analysing the

linearised system, it is not sufficient to determine regions of global stability. In order

to obtain this information the nonlinear system must be addressed.

4.4 Nonlinear stability analysis

Global stability criteria for equilibria can be determined by the construction of an
energy functional. Energy methods have been used to determine the stability of
fluid flow since the work of Orr (1907), with developments by Serrin (1959), Joseph
(1965, 1966, 1970) and Rionero (1967, 1968). The aim is to determine if some
disturbance to a flow will result in a radical change in behaviour or a progression
back to the original flow as t — co. By considering the energy difference between
the original and disturbed flow, conditions for which the energy decreases indicate
stability of the initial flow. Developments of these methods have been widely used
to analyse stability of equilibria, with recent work by Capone and De Luca (2012);
Hill and Malashetty (2012); Mulone et al. (2007); Rionero (2009, 2012a); Straughan
(2013b). Using an energy argument, we progress to finding a stability threshold for
each equilibrium. It is desirable to obtain a stability bound which coincides with
the instability threshold as this provides information about the system’s behaviour

for all possible combinations of parameter values. This is not always possible, but in
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some cases may be achieved by placing conditions on the initial state of the system.
As will be demonstrated in the following analysis, such conditions are necessary
here.

We use [|+]] and (-, -) to denote the L? norm and inner product over €2 respectively,

so that, for example,

||u||2:/u2dQ and (u,v):/ude. (4.14)
Q Q

We notice that multiplying the left-hand side of equation (4.3) by u and integrating

over () gives rise to

ou 1d 1d
4O === 200 = - — 2
/Quatd yar J, =gl

by using the definition of the L? norm. We achieve a similar result for v from
equation (4.4). This is a useful observation as it allows us to construct a function
I

E(t) which is a linear combination of ||u||* and ||v]|?, for example

B(t) = 5 (€l +nllo]P)

with &, > 0 constant. When ¢t — oo, E(t) — 0 only if u,v — 0, which is the
requirement for stability of the solution (u,?). Hence we aim to find conditions on
the parameters such that E(t) is a decreasing function in time, that is E(t) < 0
where the dot indicates a time differential.

Multiplying equation (4.3) by u, equation (4.4) by v, and integrating both over

the spatial domain € results in

1
1d u?dQ :/ uAudQ + (a1 — 2byu + v) / u?dQ) + u/ uvdQ
2dt Jq % Q %
+ / (v*v — biu*) dQ, (4.15)
0
1d
—— [ v*dQ = d/ vAvdQ + (ay — 2by0 — 1) / v?dQ) — 17/ uvdS
2dt Jq Q 0 Q
— / (uv® + byv?) deL. (4.16)
Q

These equations may be rewritten via use of the L? norm and inner product, and
the divergence theorem. The divergence theorem states that, for some function f

over the spatial domain €2,

/V-fdQ: £ ndS
Q o0
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where n is the outward-pointing unit normal to the boundary of €2. Using the
method of integration by parts and the divergence theorem we manipulate the inte-

grand uAu from equation (4.15) in the following manner:

/Q wAudQ = /Q V- (uVu)de — /Q (Vu)2d9)

= / uVu-ndS — /(Vu)2dQ
o0 Q
=— / (Vu)?dQ,
Q
where the integral over 0€) vanishes as u = 0 on the boundary. Utilising this method,
along with the definitions of the L? norm and inner product, equations (4.15) and

(4.16) become

1d
§&||u||2 = —||Vul|® + (a1 — 2bya + 9) ||u|* + @(u, v) +/ (v*v — biu®) dQ,
Q
1d
§EHUHQ = —d||Vv|* + (ag — 2bo0 — @) ||v|* — 0(u, v) — / (qu + b2v3) dQ.
Q

(4.17)
We now construct and analyse a suitable energy function for each equilibrium in

turn, in order to derive a stability threshold.

4.4.1 Zero solution
To analyse the solution (@, v) = (0,0) we construct the energy function
1
B() = 5(llull*+ ll]*) (4.18)

so that

dE
dt

1d 9 9
Sl + o))

— IVul]> = d||Vo|)* + a1 ||ul]* + az||v||* + / w*vdQ — by / udQ
0 0

—/uv2dQ—b2/v3dQ (4.19)
Q Q

after substitution from equations (4.17) with @ = 0 and v = 0. Introducing

D = ||Vul]* + d||Vv]?, (4.20)

I = a1||ul]® + ag||v]?, (4.21)

N:/u2de—b1/u3dQ—/uv2dQ—b2/v3dQ (4.22)
% % Q Q
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and comparing with equation (4.19) enables us to write

dE

Thus, equation (4.23) involves a right-hand side which separates into a positive-
definite quadratic term D, a quadratic term I, and a cubic term N. As will become
apparent, writing dE/d¢ in this way allows for it to be bounded from above by
a function of the form —KFE(t), K € R positive, subject to certain parameter
constraints. For a derived range of parameter values, dE/dt < 0, so u,v — 0 as

t — oo, indicating that (u,v) = (0,0) is globally stable.
Bounding E(t) for the equilibrium (0,0)

I I
— < max | —
D~ % D

for H = {u,v|u,v € H{(Q)} and introduce a constant Rp which satisfies

1 I
- ). 4.24
R % (D) (4.24)

Using I = D(I/D) < D/Rg, the right-hand side of equation (4.23) may be bounded

dE 1
—<-D(1-—)+N.
dt = ( RE>+

We define the value Rp in this way so that the term —D(1 — 1/Rpg) is negative for

Consider

above to reveal

Rg > 1. To progress we assume Rg > 1 and then let ¢ = (1—1/Rp), thus obtaining

FE
Cil—t < -Dg+N. (4.25)

We now concentrate on bounding N (equation (4.22)), addressing each term

separately. To do this we first need the Cauchy-Schwarz inequality for the L? inner

( /Q fng)2 < /Q f2dQ /Q ¢*dQ, (4.26)

where f, g are functions of the domain €). To correspond to the terms in N, we use

product space:

an alternative form of the Cauchy-Schwarz inequality,

/Qfng‘ < (/Q f%lQ)é (/ngdﬂy. (4.27)
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We also require the Sobolev inequality

(/Qf“dﬁf < </Q|Vf|2d9>%
</Q f4dQ>; =¢ (/Q |Vf|2d9> : (4.28)

where ¢ is a constant which depends upon the domain € (see Gilbarg and Trudinger
(1998)).
The first term of N is

in the form

/u%dQ < /uQUdQ‘.
Q Q

Applying inequality (4.27), followed by (4.28) with ¢ = ¢y, gives

1 1 1
/u%dQ < </ u4dQ> </ v2dQ> < cl/ |Vu|?dQ </ v2dQ> ,
Q Q Q Q Q

where ¢; is a constant dependent upon 2. Now we can transform the right-hand

side of this inequality using the definition of the L? norm (equation (4.14)) to give
/UQUdQ < || Vul?|v|- (4.29)
0

Applying the same procedure to the remaining terms of N yields

—bl/u3dQ < blcl/ |Vu|*dS </ u2dQ> < bier||Vul]?]|ul], (4.30)
Q Q 0

—/uv%m < 02/ Vo[2d9 </ u%m) < ol Vol]ull, (4.31)
Q Q Q

N

and

1
—b2/v3dQ < b202/ |Vo|?dQ </ v2dQ> < byco||[ V|20, (4.32)
0 Q Q

where ¢, is a constant dependent upon 2. Comparing the information from inequal-

ities (4.29) to (4.32) with equation (4.22) gives
N < er[Vull® (ballull + [[vl]) + el Vol* (]l + boflo]]) -
From equations (4.18) and (4.20) we may determine that

D
lull < V2E3(2), ||o]| < V2E3(2), ||Vul® < D and [|Vo]* < —.
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Using these, we now bound N by
N < k,DE>(t),

where

b
k1:ﬂ<61+clbl+%+%>.

An upper bound on on E‘(t), following on from inequality (4.25), is therefore

< Do~ kB () (4.33)

We reiterate that we are seeking a bound F(t) < —KE(t), K € R positive, so we
need

q— ki E2(t) > 0. (4.34)

By assuming the constant value E2(0) < q/k;, where E(0) is the initial state of the

system at ¢ = 0, we can show that

M=

E2(0) > E2(t). (4.35)

As a consequence we achieve inequality (4.34) as
0<q—FkE2(0)<q—kFEz2(t).

To prove inequality (4.35) we begin with the assumption E%(O) < q/ky, where
E=(0) > 0. It therefore follows from inequality (4.33) evaluated at ¢ = 0 that
dE/dt < 0, so either:

1. BE3(t) < q/ki ¥Vt > 0, indicating that E(t) is a decreasing function;
2. 3 such that for t = n, E2(n) = q/k,.

Suppose the second of these options is true. Then, for t € (0,7), E%(t) < q/k
so E(t) is a decreasing function because dE/dt < 0. Hence E(t) < E(0) for t €
(0,7). By continuity, E(n) < E(0) and therefore E2(n) < E2(0) < ¢/k; which is
a contradiction. Option 2 is therefore impossible so option 1 must be true, that

is B2(t) < q/k;Vt > 0 provided E2(0) < q/k;. In this case E(t) is a decreasing
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function so it follows that Ez(0) > Ez(t). Applying these results to inequality
(4.33) we see that
dE

' < -D(q— klE%(t)) < —aD (4.36)

where o = ¢ — k1 E2(0).

Poincaré’s inequality for functions ¢ € H}(Q) is
IVell” > Mllell?, (4.37)

where Ay > 0 is the first eigenvalue of the membrane problem Ay = —Ay in 2
and ¢, = 0 on 9Q. Applying Poincaré’s inequality to functions ||u||* and ||v]|? in

equation (4.20) gives

[

u 2 v
P, )

D>2
2 2h 2 2

> pE(t) for p=min{2\, 2\ d},

hence —D < —pF(t). Using this gives a bound of the desired form:

dE
Py < —paE(t). (4.38)

We now know that when inequality (4.38) holds, E(t) decays in time and therefore
(0,0) is a globally stable point. In deriving this bound we assumed that Rgp > 1
(equivalent to ¢ > 0) so we now must find appropriate parameter restrictions which

ensure this, and thus find a stability condition in terms of the model parameters.

Finding Rgp for (0,0)

For inequality (4.38) to hold we have assumed that Rg > 1. We now determine the
value of Rg and thus obtain constraints on the parameters required for stability.
Equation (4.24) informs us that we must maximise //D which can be done by
calculating its variation, §(I/D), by the method which we now outline.
We introduce indicial notation to keep calculations compact. In this notation
Ou
Vu= || =u,

Ou
oxa

where the subscript comma indicates differentiation and ¢ is the i*® component of

x. When an index is repeated it is summed over, so

() = () o () =7 (57
ox; \ Ou,; - Oy ou 0ry \Oup N d (Vu)




4.4. Nonlinear stability analysis 85

and

0 (1)) = 0 6u+ 0 Bu_Au
or; ~ " Ox,0r; Oxedrs

Now consider the general form of functionals I and D to be

:/fl (Q?,U,'U,U’i,v’i) an
Q

D:/fD (x,u,v,u;v,;)dQ.
Q

Then, to find the maximum of I/D, we use the method of calculus of variations.
Assume u, v are admissible functions such that I/D is maximised. Consider the
admissible functions

i=u+en',

b =v+en?
where € is some real number and n', »? are admissible functions which are zero at

the boundary 0€2. Then
= / fI (33, @7 1}7 @,ia @,Z) an
Q
D = / fD (m, 7:L, 1}, ZAL,Z', 1},1) dQ.
Q

To maximise I(€)/D(e) we need € = 0 (as then & = v and ¥ = v are maximising

functions) and the first derivative with respect to € to equal zero, so

sG55

== |- == = 0.
D |de Dde
As I/D is maximised, we can replace this with 1/Rg and use the standard notation

e=0

01 and 0D to represent the derivatives of I and D with respect to € at ¢ = 0. This
gives

RpdI — 6D = 0. (4.39)

To calculate 61 ,

51_/ —fr (@, @, 0,1,,0,;)dOQ

Of1 | L20f | 1 0fr | 501
— . Q
/Qn Ou +77 v +n’8u,i ’8 d

(4.40)

This integral equation may be manipulated so that dependence on both 7} and 77

is eliminated. Using integration by parts,

L Of1 a ( ,0fr / 0 Ofr
a0 = a0 — Q.
/ crm /ani (’7 ou, O; Ou,;
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By the divergence theorem

0 (OfN o [ 10f
/ani ( ou; )dQ N /(9977 Bu,inlds

=0

as a consequence of the boundary conditions on n'. Combining these results reveals

8f[ 0 af[
/ ’18 dQ— / &rlauzdg'

The same method may be applied to the n?i term allowing equation (4.40) to be

Ofr 0 Ofr
6 = N
/Qn < ou  Ox; au,) +
Similarly, for 6D,
dfp 0 9fp
D — 1 oL 2
g /Qn <8u 8x¢8u,i>+n
Replacing 67 and §D in equation (4.39) leads to

ofr 0 9fr 9fp 9 0fp
/g; <RE% B RE 8.%1 811111' B % + 8:1:1 811111'

af] 0 af] afD 0 afD _
(RE ov — g Ox; Ov; o + dx; Ov,; 2 =0.

written as

ofr 0 Ofr
2 RN
7 < ov  Ox; 8v,i> .

dOfp 0 9fp
<W B 8$Z 8U,i> dq.

As this must hold for all possible combinations of admissible functions n' and n? we

have
R ofr 0 Ofr dfp 0 dfp _0
E - - — Y
Ou axi ou ou Ox; Ou (4.41)
%_ 0 Ofr B 8fD_ 0 Jdfp —0 '
E\ ov Oz; 0v; ov Oz; Ov,;

These are the Euler-Lagrange equations associated with the problem of maximising
I/D, which solutions v and v must satisfy.

For the (0,0) solution,

2 2
fr = au” + axv”,

fo = (Vu)® +d(Vv)?

which are found from applying the definition of the L? norm to I (equation (4.21))

and D (equation (4.20)). For these functions, the non-zero terms of equations (4.41)
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are
0
a—J;I = 2aqu,
0
8—];1 = 2ay9v,
0 Jfp _ 0 _
8ﬂfi Bu,i N 28931 (u’l) N QAU’
0 J0fp _ 0 _
o, 00, = 2daxz~ (v;) = 2dAwv,

hence the Euler-Lagrange equations are calculated to be
Rraju + Au =0,
Rrasv + dAv = 0.
These equations are uncoupled so we expect different minimal eigenvalue conditions

for the decay of u and v. As the equations are linear we consider solutions of the

form N
u=y unpn(e),
o (4.42)
v = Z vn@n(m)a
n=1
so the Euler-Lagrange equations become
Rpar ) unpn(®) = Y Anttnpn(®), (4.43)
n=1 n=1
Rpas Z vn@n(m) =d Z )‘nvn@n(m) (444)
n=1 n=1

As )A; is the smallest eigenvalue, from equation (4.43) we know that

Rpar Y tn@n() > A\ > tungn() (4.45)
n=1 n=1

The condition for u to decay is R > 1. Combining this condition to inequality
(4.45), we determine the parameter constraint A; > a; ensures that u will decay. By
similar reasoning applied to equation (4.44) we determine that v decays for d\; > as.
As both u and v must decay for global stability of the equilibrium (0, 0), the stability
threshold is

A1 = min {al, %2} : (4.46)

Through comparison of this result with equation (4.10), we conclude that the insta-

bility and global stability thresholds coincide for equilibrium (a, ) = (0, 0).
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4.4.2 Language u survives, v dies out

To analyse the global stability of (@, 7) = (a;1/b1,0) we proceed as in section 4.4.1.

First we construct the function

E(t) = 5 (&llull® +llv]1*) , (4.47)

DO | —

where ¢ is a constant that we may choose. The differential with respect to time is

dE

1d
FTRREYT (f“U“2 + ||U||2) ,

which, after substituting for @ and ¥ in equations (4.17), is equivalent to

dF a a
= €IVl + Vol +alll + (a5 ol + €500
! ! (4.48)
+§/u2de—§bl/u3dQ—/uv2dQ—b2/v3dQ.
Q Q Q Q
We introduce the terms
D = €[[Vul* + d| T} + € Jul” (1.49)
a a
1= €9 ,0) + (a2 — ) ol (4.50
1 1

N:€/UQUdQ—§b1/U3dQ—/U’UQdQ—bQ/’Ung, (4.51)
% Q Q %

so that equation (4.48) may be written as

E
%;:—D+I+N. (4.52)

Again we wish to bound dE/dt in such a way that allows us to conclude that E(t) is
a decreasing function, implying that the perturbations u and v decay, and therefore

that the equilibrium is globally stable.

Bounding E(t) for (ai/b;,0)

To achieve a bound of the form dE/dt < —KE(t), K € R, we follow the method of

section 4.4.1. The constant Rp is introduced, where
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for H = {u,v|u,v € H{()}. Assuming that R > 1 and defining ¢ =1 — 1/Rg to
simplify notation, the inequality

dE
W D+ N
@ =Pt

is determined from equation (4.52). We now seek to bound N in such a way that
Rp > 1 is a sufficient condition for stability.

We bound N (equation (4.51)) term by term using the Cauchy-Schwarz inequal-
ity (4.27) and Sobolev inequality (4.28), following the procedure detailed in section
4.4.1. Applying the L? norm gives the bound

N < &es|Vull* (0 [lull + l[oll) + callVoll* (Jull + baloll) .

where ¢3, ¢4 are constants depending upon the domain . From equations (4.47)

and (4.49), for E(t) and D respectively, we may conclude
2
ol < /200, ol < V2B, €vull < D, and [Vl < D/

Thus
N < kyDE? (t)

with

- C3b1 Cy C4b2
k2_ﬁ<c3+\/g+d\/g+ y )

Combining the inequality for N with the bound for E(t) gives

dF 1
— < —D(g — ko E>2(1)).
Q= (q 2 ())

By applying Poincaré’s inequality (4.37) to ||u||* and ||v]|* in equation (4.49), we

find that

2
||v2|| > pE(t) for p=min{2X;, 2\ d}.

2
”l;“ +2\d

As proven in section 4.4.1, Ez(t) < E2(0) for E2(0) < q/ks, assuming that Ry > 1

D > 26\,

and replacing the constant k; with k5. So,

< —paB(t
3 < THaB(t)

with constant oo = g — kQE%(O). As with the previous case, we must now determine
parameter values for this inequality to be true by finding conditions which ensure

R >1.
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Finding Rj for (a,/b;,0)

We are interested in when Rp = 1 as this provides a global stability threshold for the
equilibrium solution (ay/b1,0). Following the general method presented in section

4.4.1, we evaluate equations (4.41) with the functions

fr= <CLQ - Z-i) v +§Z—11uv,
fo =&(Vu)? +d(Vo)* + Earu®.

The Euler-Lagrange equations are

Au — aiu + a;iE’U = 0,
R
fn Eu+dAv+RE ag—a— v=20
2b, by

and again we consider solutions of the form of equations (4.42). The Euler-Lagrange

equations become

- R
( (An + a1 un—i—m—Evn) o, =0,
— 2b,

Z <€G1REun + <—d)\n + Rg <a2 — —1>> vn> ©n, = 0.
n=1 2b1 bl

As before, it is sufficient to consider n = 1 and, as u,, v, # 0,

—(\ +ay) ulle 0
(o)

must hold. After substitution of Rg = 1, this gives the stability threshold equation

a1 _ §ar”
(f”l - (“2 - a)) =) (4.53)

Comparing this result with the instability boundary, the two coincide in the limit

&E—0.

4.4.3 Language v survives, u dies out

To analyse the global stability of (@, v) = (0, a2/b2) we proceed as in section 4.4.1,

beginning with constructing the function

E(t) =5 (lull® +ullv]*) . (4.54)

[\Dlr—l
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where 77 is a constant that we may choose. The differential with respect to time is

dE_1d

FT Qa(HU“Q + o),

which, after substituting for @ and ¥ in equations (4.17), is equivalent to

dE a a
& = 19l = ol + (52l = o = 02,0

dt
—l—/udeQ—bl/u3dQ—n/uv2dQ—b2n/v3dQ.
Q Q Q Q

We introduce

D = [|Vul]* + dnl|Vv[|* + azn]|v]?, (4.55)
a a
1= (52 P = w2 w0) (156)
2 2
N = / uvdQ) — bl/u?’dQ —77/ uv®dQ —bgn/ v3deQ, (4.57)
Q Q Q Q
so that
dFE
— =—-D+ 1T+ N.
T + 1+

Bounding E(t) for (0,ay/b,)
Following the method outlined in section 4.4.1, we introduce Rp where

r I B "
R—E_m??x <D>’ H = {u,vju,v € Hy(Q)}.

By assuming Rp > 1 and letting ¢ = 1 — 1/Rg, the bound

AE
& pa N
@ =Pt

is achieved. We now focus on bounding N so that Rg > 1 is a sufficient stability
condition. We bound N (equation (4.51)) term by term using the Cauchy-Schwarz
inequality (4.27) and Sobolev inequality (4.28), following the method in section
4.4.1. Applying the L? norm gives the bound

N < o[ Vull® (o]l + biflull) + nes Vo ll* (lull + boflv]l),

where ¢s5, cg are constants depending upon the domain . From equations (4.54)

and (4.55), respectively, we see that

2
lull < VZEQ®), Jloll < \/;Ea), IVull2 < D, and g Vol < D/d,
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SO

N < ksDE=(t)

where

csby Ce cebo
ks =V2 | — b — .
5 f(\/ﬁ+c51+d+\/ﬁd>

Combining the inequality for N with the bound for E(t) gives

& < D (4-kEND).,

where we have used Ez(0) > E3(t) for E2(0) > ¢/ks. By applying Poincaré’s
inequality (4.37) to ||u||* and ||v||? in equation (4.55), we find that

2 2
D > 2)\1@ + 2)\1dn@ > uE(t) for p=min{2\;,2)\d}.
Consequently, we may bound E (t) by

& 0Bt
3 S TH ()

with & = ¢ — k3E2(0). We now find conditions which ensure Ry > 1.

Finding RE for (0,@2/()2)

To find a stability threshold for (0,a2/bs), we again follow the method in section

4.4.1, using the functions

_ G2\ 2 @2
f1—<a1+b2>u nb2uv,

fo = (Vu)? +dn(Vov)? + nagyv’.

The Euler-Lagrange equations

R
AU+RE <a1+%>u—na2 EUZO,

b 2bs
naRE
2bs

u — dnAv + nasv =0

and again we consider solutions of the form of equations (4.42). The Euler-Lagrange

equations become

= a2 nazRg B
Z<<_)\n+RE <a1+g>>un_ 2b2 Un) 9071—01

n=1
- R
Z 142 Eun + 1 (d\y + a2) v, | n = 0.
2bs

n=1
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It is again sufficient to consider n = 1, so

- <)\1 — Rg <al + %)) _na;ble ~0
—% —n (dA; + as)

as Up, v, # 0. Substituting in the value Rg = 1 gives the stability threshold

2
a2 nas

A — 4+ = = )

( ' <a1 b2>> 4by? (dA1 + as)

In the limit 7 — 0, this coincides with with the instability boundary.

4.4.4 Languages u and v coexist

To analyse the global stability of

(ﬂ 17) _ a1b2 + (03] CLle — a
’ biby +1 7 biby +1

we proceed as in section 4.4.1, beginning with constructing the function
E(t) = ([lull® + v[vl*)/2, (4.58)

where 1) is a constant that we may choose. The differential with respect to time is

B 1d, ,
H;—§Emﬁl+wMH)

which, after substituting for u and v in equations (4.17), is equivalent to

dE
— = — [[Vull> = dpl|Vol|* = biaflull* — beyoulol]* + (@ — ¥o) (u, v)

dt
+ / u?vdQ — by / u3dQ — 1 / uv?dQ — byt) / v3dQ.
Q Q Q Q

By choosing

(4.59)

. a1b2 + a1
asb; — a;

S|

Y =
the (u,v) term in equation (4.59) is eliminated, thus E(¢) may be split into a positive
definite part

D = [|Vull® + di||Vo]|* = byaiflull* — beil|v]]* (4.60)

and an integral part

N = / u2de—b1/u3dQ—w/ UUQdQ—wa/ v3dQ,
Q Q Q Q
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SO

dE
— =—-D+ N. 4.61

We now seek to bound E(t) from above, as in the previous cases. Again we need to

address the terms which form N.

Bounding F(t) for the coexistence equilibrium

We bound N (equation (4.51)) term by term using the Cauchy-Schwarz inequality
(4.27) and Sobolev inequality (4.28), following the method in section 4.4.1. Applying

the L? norm gives the bound

N < cr[Vull® (Joll + biflull) + dhes|| Vo] (

Jull + ba|v]]) ,

where ¢7,cg are constants depending upon the domain . From equations (4.58)

and (4.60), for E(t) and D respectively, we see that
2
HuHSvﬁE@%HMHEV%Eﬁ%HVMPSIDamidMVMFSINd

Thus we may bound N by
N < kyDE(t), (4.62)

where

c7by Cg csbo
ki=V2|— b — .
' f@@m“w+ﬁg

Combining inequality (4.62) for N with equation (4.61) gives

dFE
E < —D(q - k4E%(0))7

where we have used Ez(0) > Ez(t) for E2(0) > 1/k,. The proof of this is the same
as in section 4.4.1 with ¢ replaced by 1. By applying Poincaré’s inequality (4.37) to
||ul]? and ||v]|? in equation (4.60), we find that

2 2
D > 2 ““2” + zAldw””Q” > uE(t) for p=min{2\;,2\d},
SO
dE

with @ = 1 — kyE2(0). Provided E2(0) > 1/ky, hence a > 0, we conclude from

inequality (4.63) that the coexistence state is always globally stable.
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4.5 Results

From the analysis of the perturbation equations (4.3) and (4.4), we have established
that it is possible for each of the four states to be globally stable under certain
conditions. These results are summarised in table 4.2. We find that the coexistence
state is globally stable when it is feasible, so for asb; > a;, provided that initially
E=(0) > 1/ks. This is demonstrated in figure 4.1. These figures show the per-
turbations u(a,t) and v(z,t) around the coexistence state over the spatial domain
z,y €[0,1] x [0,1] C R? at two fixed time points. The perturbations at time ¢ = 0
are given by

u(z,y,t) = sin(mx) sin(my)

v(x,y,t) = 0.8sin(rx) sin(my),
which are zero on the boundary of [0, 1] x [0, 1].

The sign of the expression asb; — a; is of interest as it controls whether the
coexistence state is feasible and stable. From 4.2, we see that the stability condition
for the solution (a;/b1,0) becomes

X\ — s+ Z—i >0
in the limit & — 0. By comparing this with the condition for the coexistence state to
be unfeasible, a; /by > as, the solution (a1 /by, 0) is stable provided E(0) is sufficiently
small. Thus we know that, regardless of the sign of asb; — aq, it is always possible
for the dominant language u to survive, either solely or in conjunction with v. This
result is intuitive as u is the dominant language.

When a; > asb; the coexistence of languages is not possible, yet u may survive
alone. This may be an intuitive result when examining the roles of the parameters
ai, by and ay in the the model equations (4.2). Growth of language u is affected
by the term a;u and an influx of individuals converting from language v. As u
increases, the capping term —b;u? has a greater effect on the rate of change of u,
thus limits the growth of the language. Language v grows according to the term
aov and loses individuals to language u. We now consider the inequality a; > asb;
and assume that one value is significantly greater or smaller than the other two. To

highlight this we now simulate the model equations (4.2) in one spatial dimension



Constant Equilibrium Feasible Unstable Stable
(0,0) Always a;— XN >0o0rayg—d\ >0 a; — M\ <0and ag —d)\; <0
(2.0) Always Gy — 4 —d); > 0 ay— 2 —d\ < it
(0.2) Always 45— >0 a+ 2= A < g
(aglb;;af, “;f;;ff) asb; > a, azb; > a;

Table 4.2: Summary of the results from the linear instability and global stability analysis for the four constant equilibria.
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(a) (b)
ucx,y,0) u(x,y,0.5)
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Figure 4.1: Density plots of the perturbations u(x,y,t) and v(x,y,t) around the
coezistence equilibrium with a; = 22, ay = 16, by =6, by = 3 and d = 0.8. As time
increases the perturbations will eventually reach the x,y-plane, as indicated by the

plots at the discrete time points t =0 and t = 0.5.



4.6. Discussion 98

x € [0,1]. In this instance u(z,t) and v(zx,t) represent the speakers of each language
rather than the perturbations. The zero-flux boundary conditions du/dx = 0 and
Ov/dr = 0 when z = 0 and x = 1 are assumed, preventing speakers from leaving
the spatial region [0, 1].

If a; is large in comparison to as and b; then language u grows quickly, and
faster than language v. This can be seen in figure 4.2a. The logistic growth term
(a1 — byu)u is positive even for large u provided a, is sufficiently large, contributing
to a positive value for the rate of change of u with respect to time. The proportion
of v speakers is depleted by conversions to language u so, over time, large a; allows
for language u to prevail whilst v becomes extinct. If instead a comparatively small
value for a, is assumed then language v grows slowly. As demonstrated in figure 4.2b,
a small a; may be insufficient for the growth of the language. As before, u initially
increases rapidly compared to v and some individuals will convert to language u.
The cap controlled by by may have greater effect, however the population growth of
v may be so slow that the language may die out before the cap on u can have any
significant effect. Finally, if b; is presumed to be significantly smaller than a; and
as then the capping term —b;u? has very little effect on the growth rate of language
u, even when w is large. As such, language u will continually increase independently
by the term a;u and also by gaining speakers from language v. If a; and ay are
similar growth rates, then language v will not increase quickly enough to offset the
loss of speakers to language u and thus will eventually die out. In the example in

figure 4.2¢, a; < as yet language u still dominates.

4.6 Discussion

We have presented a model for two competing languages, seeking to determine if
language coexistence is possible. The stability analysis results indicate that, subject
to appropriate parameter constraints, each of the four equilibria may by stable.
Thus we conclude that the coexistence of two competing languages is possible (in
line with Patriarca and Leppénen (2004) and Pinasco and Romanelli (2006)) but

stability of the state may be dependent upon the initial number of speakers of both
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(a) (b)

t
0.5 10 15 20 25 3.0

t
0.5 1.0 15 20 25 3.0

Figure 4.2: Plots of u(x,t) (pink line) and v(x,t) (blue line) from equations (4.2)
showing the evolution of speakers in time where x = 0.7. The parameter values are
by=2,d=08and (a) a; =24, a; =5 and by =4, (b) a; =8, ay =1 and by =4,
(c) a1 = 4, ay = 5 and by = 0.5. Th distribution of speakers at t = 0 is given
by the functions u(zx,0) = [2nx — sin (2rz)] /47 and v(x,0) = [r + cos (nx)] /7, so
u(0.7,0) = 0.426 and v(0.7,0) = 0.813.
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v and v. This conclusion is supported by the real-world example of Catalan as,
despite being a minority language, it is gaining speakers within certain regions (as
demonstrated in table 4.1).

To fully utilise this model, data for a specific instance of language competition is
required. Once obtained, predictions may be made which indicate whether language
coexistence is possible, determined by the parameter values. Ideal scenarios can
be run where the effect of theoretical campaigns to save an endangered language
are incorporated into the parameter values. This could advise policy makers on
appropriate strategies required to save an endangered language, such as providing
education in the minority language.

Our conclusion that all four equilibria may be stable differs from the findings
of Kandler and Steele (2008). They determine that none of the equilibria are both
feasible and locally stable. This difference is a result of two modelling factors: the
choice of boundary conditions and the imposition of carrying capacity restrictions.
By choosing zero-flux boundary conditions, which restricts individuals to remaining
within the specified spatial domain, a different analytical approach may be under-
taken to analyse the local stability of the system equilibria (see Wang and Zhao
(2012)). They also introduce separate carrying capacities for each language, which
represents environmental constraints on the number of speakers able to be main-
tained. We chose to assume that any environmental cap on the number of speakers
will affect the total number of individuals, comprised of both w and v speakers,
rather than assuming separate capacities for each language. This is because we con-
sider environmental constraints to affect human population growth as a whole, and
languages to then compete for speakers within this total population. Thus the cap
is on the size of the human population rather than on the number of speakers of a
particular language. Our results are therefore not incompatible with the conclusions
of Kandler and Steele (2008), but highlight the effect of mathematical assumptions
on model predictions.

Whilst our model does not contain a separate class of bilingual speakers, this does
not exclude its applicability to such circumstances as it is not necessary to assume

that u and v represent monolingual speakers. A two-state model for the Aromanian
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language in Greece denotes monolingual Greek speakers as X and bilingual speakers
of Greek and Aromanian as Y (Bakalis and Galani, 2012). The survival of the mi-
nority language Aromanian is dependent upon bilingual speakers, so a two-variable
model can appropriately represent bilingual societies. Alternatively, v and v could
represent the preferred language used by individuals. Whilst this may not accu-
rately predict the complete eradication of a language, it could still provide useful
information regarding sociolinguistic preferences over time.

As discussed in the section 4.1, not all mathematical models for language com-
petition contain a spatial component (see Abrams and Strogatz (2003); Pinasco and
Romanelli (2006)). In particular, the construction of the model by Pinasco and
Romanelli (2006) is equivalent to equations (4.1) with the spatial dependence re-
moved. The stability results found here should therefore coincide with the results of
Pinasco and Romanelli (2006) if we dismiss the terms associated with diffusion ()
and d\;). From table 4.2 we see that, without these terms, the equilibria (0,0) and
(0, az/be) would always be unstable. Thus the inclusion of diffusion into the model
has a qualitative effect on the predicted outcome when compared with the model
without diffusion.

If diffusion of u or v speakers is rapid compared with the respective population
growth rates then fewer individuals will be concentrated in one region. This reduces
the interaction between speakers of the same language and thus reduces reproduc-
tive opportunities, which may lead to population extinction. Rapid diffusion also
decreases interaction between speakers of competing languages. The equilibrium
(0, az/by) can be stable when the diffusion of language v is not sufficient for the lan-
guage to die out, however a comparatively slow growth rate of u combined with few
opportunities to convert speakers of language v results in language u dying out. As
the model differs with the one without diffusion, the choice of model must depend on
the specifics of the real-world situation. For instance, for a model for monolingual
and bilingual speakers like that of Bakalis and Galani (2012), diffusion may be an
unnecessary complication to the model. If both languages are established within
a population and the advantage of the dominant language comes from, for exam-

ple, trade opportunities with neighbouring regions where the dominant language
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is spoken, then the modelled population may be unlikely to migrate to new areas
and thus spatial factors may have little effect on language dynamics. If, however,
a situation arose where speakers of language u invaded a region populated with v
speakers (similar to farmers invading regions of hunter-gatherers (Aoki et al., 1996))
then diffusion dynamics may play a greater role in the spread and survival of both
languages.

This model was motivated by existing literature regarding the coexistence of
languages with the aim of furthering understanding about the extinction of minor-
ity languages. Our contribution extends current knowledge by providing a global
stability analysis of the equilibria of a system which assume that language survival
is dependent upon both space and time. Binary choice models such as this language
may be applied to other behaviours, for example religion (Abrams et al., 2011).
Thus the application of this model may extend to a variety of cultural traits where

one variant is deemed to have an advantage over the other.



Chapter 5

Conclusion

5.1 Discussion

Chapters 2 to 4 comprise mathematical models for cultural trait transmission via
frequency-dependent social learning processes. Such models provide population-level
information regarding the persistence and frequency of a cultural trait over time.
Each model is a system of differential equations which are not analytically solvable,
but the long-term behaviour of the systems may be determined by analysing the
stability of the equilibria.

In chapter 2 we assume that problem drinking is a socially learned behaviour
where uptake occurs in a linear (unbiased) frequency-dependent fashion. Individ-
uals are classified as either susceptible to developing a drinking problem, problem
drinkers, or those recovering from a drinking problem. Analysis revealed that to
reduce the frequency of problem drinkers it would be most effective to discourage
the initial adoption of the problem drinking behaviour. The effect of total recovery,
controlled by parameter v, was investigated by comparing results with those from
the model without total recovery (v = 0). Removing the possibility of total recovery
affects the endemic frequency of individuals with alcohol problems, however whether
the frequency is increased or decreased is dependent upon other variable parameters.

A model for the biased transmission of a cultural trait is presented in chapter 3,
seeking to identify how learning biases may affect the population-wide persistence

of a cultural trait by utilising some of the mathematical techniques introduced in
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chapter 2. The population is split into individuals susceptible to acquiring trait A
(type S) and individuals displaying trait A (type A), where the adoption of trait A
by type S individuals is dependent upon the frequency of trait A individuals within
the population. The model with linear (unbiased) frequency-dependent trait trans-
mission is evolved to represent cases of nonlinear (conformist) biased and content
biased transmission, controlled by model parameters D and 7 respectively. The
effects of these social learning biases can be determined by comparing the number
and nature of equilibria of the model with transmission biases to the model without
biased learning. We find that increasing the conformity strength leads to a bistable
equilibrium, hence the persistence of type A individuals within the population is
dependent upon the initial state. In table 3.2, section C, the conformity function
c1 with values = 0.45 and D = 0.7 results in a bistable equilibrium with values
a = 0 and @ = 0.380. An initial value of a(0) = 0.258 provides a threshold which
determines which of these states is attained. Manipulation of 7 in ¢y, controlling the
effect of a content bias, alters the behaviour invasion threshold such that increasing
1 increases the conformity threshold frequency.

This model may be applied to a variety of cultural traits where an individual can
be in one of two states: displaying trait A (type A) or not displaying trait A (type
S). In chapter 3 an application of the model to binge drinking behaviour is discussed,
although it may be applied to a variety of different health-related behaviours. For
example, both the SARS (chapter 2) and SAS model may represent drug-taking,
smoking and eating behaviours, with parameter constraints imposed when appro-
priate. The choice of model will depend upon the characteristics of the behaviour.
Tobacco contains nicotine which is highly addictive and therefore individuals find
stopping smoking difficult and will usually enter a period of treatment or recovery
before quitting (Benowitz and Henningfield, 2013). The SARS model would be the
more appropriate choice as a treatment period is incorporated. In other situations
a recovery period may be unnecessary or be of insignificant duration so the SAS
model would be the preferred choice. The drug LSD is not thought to be addictive
so behaviour cessation may not entail a period of recovery (Liischer and Ungless,

2006); the SAS model may be more appropriate for representing LSD use.
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If applying the SARS model to different behaviours it may be desirable to include
a conformity bias in order to better represent the social learning process driving the
behaviour adoption. For example, adolescents in the USA are more likely to take
up smoking if many of their peers smoke, and this may be in a conformist fashion
(Simons-Morton and Farhat, 2010). Whilst the inclusion of a conformity bias may
increase the accuracy of the SARS model when applied to some behaviours, it will
also increase the model complexity. As a result, finding the model equilibria and
analysing their stability will be more difficult. The equilibria of the SARS model
in chapter 2 may be found in terms of the model parameters. Equations (2.3) at

equilibrium, where (a,7) = (0,0), are easily manipulated to find

oy
r=———a,
p+p+y
from which
O=al-Blp+p+yv+e)at+Blp+p+vy)—plp+u+v+e)—ve, (51)

an equation in terms of a only, is obtained. Equation (5.1) is a factorised quadratic
polynomial, therefore solving for a, and consequently finding the system equilibria,
is possible and relatively simple.

For the SAS model with conformity, finding the system equilibria requires solving
the cubic polynomial (3.7) which cannot be factorised. As discussed in chapter 3,
finding the equilibria in terms of the model parameters is possible, however their
complexity greatly reduces their utility with regard to interpreting the results in
a real-world context. The stability analysis was possible because the system is 1-
dimensional, which allowed for properties of cubic polynomials to be utilised. If a
similar conformity function was introduced into the SARS model then it would be
necessary to solve a system of nonlinear polynomial equations in order to find the
system equilibria. As demonstrated by the analysis of the SAS model, finding these
equilibria in terms of the model parameters will be difficult and, if obtained, are
unlikely to be mathematically tractable. As the SARS system only reduces to a
2-dimensional problem, the procedure to determine the stability of equilibria which
is presented in chapter 2 cannot be implemented. It is probable that the increased

complexity resulting from the inclusion of a conformity bias in the SARS model will
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render analytic methods unfruitful. A numerical solving approach would be more
appropriate for analysing such a model.

Aside from the inclusion of a conformity bias, the SARS model of chapter 2
could be developed to include the asocial learning of drinking behaviour. Mathe-
matically this could be represented by introducing a variable parameter o and a
term oS taking individuals from class S to class A. This allows individuals to de-
velop a behaviour, possibly through innovation or trial and error learning, which
is currently not present within the population. Similarly, an asocial learning term
could be introduced into the SAS conformity model. Asocial learning mechanisms
have been incorporated into SIS-type models (Hill et al., 2010a,b) and a model for
the conformist transmission of a cultural trait (Eriksson and Coultas, 2009). In-
cluding an asocial learning term would generalise the models, thus increasing their
applicability, however the addition of an extra term is likely to increase the calcula-
tional difficulty. Again, numerical methods may be the best option for solving such
systems. Alternatively, it may be possible to obtain analytic results if such systems
were simplified in other ways, such as reducing the number of other variables. This
would highlight different key features of the real-world situation, indicated by a
different set of simplifying assumptions.

In chapter 4 the spread and persistence of two competing languages is modelled
by a reaction-diffusion system, where the language frequency is dependent upon
both space and time. The implementation of different mathematical techniques was
necessary to handle the increased complexity arising from a PDE, rather than ODE;,
system. The four constant equilibria of the system were found, and their stability
analysed. The language coexistence state was of particular interest and was found
to be globally stable. Analysis revealed that the coexistence of languages, where
one is dominant, is a stable equilibrium state, subject to the parameter restriction
asb; > a; and sufficiently small initial populations of v and v speakers such that
a > 0 in inequality (4.63).

This is an extension of the work in previous chapters as the model incorporates
both a spatial and temporal dependence, thus increases the mathematical complex-

ity. The model does not exhibit the form of an SIR-type model with diffusion,
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however its formulation again stems from dynamical systems models in biology. In
particular it contains a logistic growth term used in ecology and the model itself is
similar to a Lotka-Volterra competition model with diffusion (see Murray (2003);
Cantrell and Cosner (2003)). As with the SARS alcohol model, the reaction-diffusion
language model may be applied to other cultural traits which are in competition.
For example, it could represent the spread of religious attitudes. For some traits it
may be of interest to consider the effect of a conformist bias, where the strength of
the status advantage of u is dependent on the proportion of u speakers within the
population. This is discussed further in section 5.2.

The main aspect of the research which warrants improvement is the use of data
to empirically verify the model assumptions and thus achieve accurate predictions.
Whilst some parameter estimates are made for the SARS model in section 2.2.5,
the social influence parameter 3 could not be approximated. To increase the utility
of the models, appropriate data sets are required. It may be possible to obtain
data from existing studies, as was the case with the SIS obesity model by Hill et al.
(2010b) which referred to the Framingham Heart Study Network. Alternatively, an
experiment could be designed to test the model by enabling appropriate data to be
collected. This could then be to fit to the model parameters to test if the model
predictions match the experimental outcome. This is what was done by Efferson
et al. (2008).

As discussed by Morgan et al. (2011), many models assume that only one social
learning bias is in operation which may not be an accurate representation of the
real world situation. This issue was addressed in chapter 3 by developing a model
for both conformist and content biased transmission. The type of models discussed
assume homogeneous mixing, where each individual has an equal chance of inter-
acting with any other, and the influence exerted by each individual on another is
equal. Thus including conformity or content biases, which may be assumed to have
a population-wide influence, is a natural development. This method does not lend
itself to representing model-based biases however, as this requires treating at least
one individual (the model) differently.

In chapter 2 the concept of a recovery champion class (Ry) allows for success and
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similarity biases by assuming that all recovery champions have an equal influence
over individuals in treatment. Generally the creation of another class may not
provide an accurate enough model. In such cases an alternative method may be
required, perhaps considering individuals to be connected on a network. In this
instance only connected individuals could influence each other. A model-based bias
could be represented by allowing one individual to have a greater influence over
other individuals than anyone else. The degree of influence could be proportional
to the number of contacts the model individual has, assuming that the having more

contacts indicates increased status within the social network.

5.2 Future Work

Future work will focus on extending the competing languages model of chapter 4 to
include a conformist social learning bias. Kandler and Laland (2009) constructed a
reaction-diffusion model for n competing cultural variants to investigate the effect
of innovation on the level of cultural diversity within a population. Within their
investigation they consider how a conformist influence compares with an unbiased
learning model. They find that a low to moderate conformity strength decreases
the cultural diversity at equilibrium. Their model formulation may be viewed as an
advancement of the language model in chapter 4 as the system has been generalised
to represent n cultural variants and includes more mathematically complex inter-
action terms. However, the focus of the model was to determine how innovation
affects cultural diversity and thus the mathematical formulation contains specific
functions to represent this. As the proposed future work does not investigate the
effect of innovation, the model is different to that of Kandler and Laland (2009) so
their results cannot be assumed to apply to the language model with conformity,
which is outlined below.

As discussed in chapter 3, section 3.2, a cubic polynomial term may be used to
represent a conformist influence. The interaction term uv in system (4.2) may be
replaced with

wo (14+k(2u—n)(1—u)), (5.2)
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which includes a conformity function of the same form as ¢, (equation (3.9), section
3.3). In this instance k represents the strength of conformity and 7, representing a
possible content bias, controls the frequency for which trait uptake is equal to that of
the linear frequency-dependent case. The resulting model for language competition
with conformity is therefore
ou 9
N =Au+au—bu+uv(1+kQ2u—n)(1—u)),
5.3)
4 (
8_: = dAv + ayv — bov? —uv (1 +k (2u—n) (1 —u)).
The constant equilibria occur when (uy,v,) = (0,0) and (Au, Av) = (0,0) so
may be found by solving
0=aju—bu>+uv(l+kQ2u—mn)(1-u),

(5.4)
0= ayv — byv® —uv (1 +k (2u—n) (1 —u)).

Three constant equilibria which can easily be found are

(a,0) = <0, Z—j) .

These are also solutions to the system without conformity, equations (4.2). The
analytic approaches which have been used in previous chapters to find all equilibria
cannot be utilised in this case. Future work will focus on using numerical methods to
find equilibria of system (5.3) and determining which equilibrium the system reaches
for certain parameter sets. These results may then be compared with the findings
of chapter 4 to try and obtain a greater understanding of how future predictions
are affected by assuming a conformist bias by looking for qualitative differences in

system behaviour.



Bibliography

Catalan, Language of Europe.
http://www20.gencat.cat/docs/Llengcat/Documents/Publicacions/
Catala\’%201lengua\’20Europa/Arxius/cat\_europa\_angles\_07.pdf.
Generalitat de Catalunya, Departament de la Vicepresidencia, Secretaria de

Politica Lingiiistica.

Alcohol Relapse and Craving: 90 percent have at least one relapse after treatment.

http://alcoholism.about.com/cs/alerts/1/blnaa06.htm.

Idescat Linguistic Census.
http://www.idescat.cat/en/poblacio/poblcensling.html, accessed Sept.
2013.

D. M. Abrams and S. H. Strogatz. Modelling the dynamics of language death.
Nature, 424:900, 2003.

D. M. Abrams, H. A. Yaple, and R. J. Wiener. Dynamics of Social Group
Competition: Modeling the Decline of Religious Affiliation. Physical Review
Letters, 107:088701, 2011.

G. J. Ackland, M. Signitzer, K. Stratford, and M. H. Cohen. Cultural hitchhiking
on the wave of advance of beneficial technologies. Proceedings of the National

Academy of Science, 104(21):8714-8719, 2007.

Alcohol Concern. Making alcohol a health priority: Opportunities to reduce
alcohol harms and rising costs. http://www.alcoholconcern.org.uk/

publications/policy-reports/making-alcohol-a-health-priority, 2011.

110



BIBLIOGRAPHY 111

K. Aoki. Gene-culture waves of advance. Journal of Mathematical Biology, 25:

453-464, 1987.

K. Aoki, M. Shida, and N. Shigesada. Travelling wave solutions for the spread of
farmers into a region occupied by hunter-gatherers. Theoretical Population

Biology, 50:1-17, 1996.

K. Aoki, L. Lehmann, and M. W. Feldman. Rates of cultural change and patterns
of cultural accumulation in stochastic models of social transmission. Theoretical

Population Biology, 79:192-202, 2011.

D. K. Arrowsmith and C. M. Place. An introduction to Dynamical Systems.
Cambridge University Press, Cambridge, UK, 1990.

S. E. Asch. Studies of independence and conformity: i. A minority of one against a
unanimous majority. Psychological Monographs: General and Applied, 70:1-70,
1956.

E. Bakalis and A. Galani. Modeling language evolution: aromanian, an endangered
language in Greece. Physica A: Statistical Mechanics and its Applications, 391
(20):4963 — 4969, 2012.

N. Bellomo and B. Carbonaro. Toward a mathematical theory of living systems
focusing on developmental biology and evolution: A review and perspectives.

Physics of Life Reviews, 8:1-18, 2011.

N. Bellomo, M. A. Herrero, and A. Tosin. On the dynamics of social conflicts:

looking for the Black Swan. American Antiquity, 69:135-151, 2004.

N. Bellomo, C. Bianca, and M. Delitala. Toward a mathematical theory of living
systems focusing on developmental biology and evolution: A review and

perspectives. Physics of Life Reviews, 6:144-175, 2009.

B. Benedict. Modeling alcoholism as a contagious disease: how “infected” drinking

buddies spread problem drinking. STAM News, 40(3), 2007.



BIBLIOGRAPHY 112

N. L. Benowitz and J. E. Henningfield. Reducing the nicotine content to make

cigarettes less addictive. Tobacco Control, 22:14-17, 2013.

R. A. Bentley, C. P. Lipo, H. A. Herzog, and M. W. Hahn. Regular rates of
popular culture change reflect random copying. Evolution and Human Behavior,

28:151-158, 2007.

A. Berti, I. Bochicchio, and M. Fabrizio. Phase separation in quasi-incompressible
fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework. Zeitschrift fiir
angewandte Mathematik und Physik, pages 1-13, 2014. doi:
10.1007/s00033-013-0395-0.

D. Best. Scottish Drugs Recovery Consortium: Digesting the Evidence.
http://www.sdrconsortium.org/assets/files/

DigestingTheEvidenceResearch.pdf, 2010.

R. L. Bettinger. Hunter-Gatherers: Archaeological and Evolutionary Theory.
Plenum Press, New York, USA, 1991.

M. F. Boni and M. W. Feldman. Evolution of antibiotic resistance by human and

bacterial niche construction. Evolution, 59:477491, 2005.

R. Boyd and P. Richerson. Culture and the Evolutionary Process. University of
Chicago Press, Chicago, USA, 1985.

M. Brenzinger. Language Death: Factual and Theoretical Explorations with
Special Reference to East Africa. Walter de Gruyter, Berlin, Germany, 1992.

B. Buonomo and D. Lacitignola. On the dynamics of an SEIR, epidemic model
with a convex incidence rate. Ricerche di Matematica, 57:261-281, 2008.

B. Buonomo and S. Rionero. On the Lyapunov stability for SIRS epidemic models
with general nonlinear incidence rate. Applied Mathematics and Computation,

217:40104016, 2010.



BIBLIOGRAPHY 113

B. Buonomo, D. Lacitignola, and S. Rionero. Effect of prey growth and predator
cannibalism rate on the stability of a structured population model. Nonlinear

Analysis: Real World Applications, 11:1170-1181, 2010.

R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations.
John Wiley & Sons, Chichester, UK, 2003.

F. Capone. On the dynamics of predator-prey models with the Beddington-De
Angelis functional response, under Robin boundary conditions. Ricerche di

Matematica, 57:137157, 2008.

F. Capone and R. De Luca. Ultimately boundedness and stability of triply
diffusive mixtures in rotating porous layers under the action of Brinkman law.

International Journal of Non-Linear Mechanics, 47(7):799 — 805, 2012.

L. L. Cavalli-Sforza and M. W. Feldman. Culturural Transmission and Evolution:
A quantitative approach. Princeton University Press, Princeton, New Jersey,

1981.

L. Deacon, S. Hughes, K. Tocque, and M. A. Bellis. Indications of Public Health
in the English Regions. 8: Alcohol, 2007.

A. Degani. A Tale of Two Maps: Analysis of the London Underground “Diagram”.
21(3):7-16, 2013.

C. Efferson, R. Lalive, P. J. Richerson, R. McElreath, and M. Lubell. Conformists
and mavericks: the empirics of frequency-dependent cultural transmission.

Evolution and Human Behavior, 29:56-64, 2008.

S. E. G. El Sheikh and T. Z. Bashir. High-risk relapse situations and self-efficacy:
comparison between alcoholics and heroin addicts. Addictive Behaviors, 29(4):

753-758, 2004.

K. Eriksson and J. C. Coultas. Are people really conformist-biased? An empirical
test and a new mathematical model. Journal of Evolutionary Psychology, 7:

521, 2009.



BIBLIOGRAPHY 114

M. Fabrizio and M. S. Mongiovi. Phase Transition In Liquid 4he by a Mean Field
Model. Journal of Thermal Stresses, 36:135-151, 2013a.

M. Fabrizio and M. S. Mongiovi. Phase transition and A-line in liquid helium.

Journal of Non-Equilibrium Thermodynamics, 38:185-200, 2013b.

M. Fabrizio and J. M. Rivera. Diffusive theory of migration and integration. In
J. J. Bissell, C. C. S. Caiado, M. Goldstein, and B. Straughan, editors, Tipping
Points: Modelling Social Problems and Health. Wiley, in press.

M. W. Feldman and L. L. Cavalli-Sforza. On the theory of evolution under genetic
and cultural transmission with application to the lactose absorption problem. In
M. W. Feldman, editor, Mathematical Evolutionary Theory. Princeton

University Press, Princeton, New Jersey, 1989.

R. A. Fisher. The wave of advance of an advantageous gene. Journal of

Mathematical Biology, 7:355-369, 1937.

J. A. Fishman. Why is it so hard to save a threatened language? In J. A.
Fishman, editor, Can Threatened Languages Be Saved? Multilingual Matters
Ltd, Clevedon, U.K., 2001.

D. P. French and R. Cooke. Using the theory of planned behaviour to understand
binge drinking: The importance of beliefs for developing interventions. British

Journal of Health Psychology, 17:1-17, 2012.

P. Gerbault, A. Liebert, Y. Itan, A. Powell, M. Currat, J. Burger, D. M. Swallow,
and M. G. Thomas. Evolution of lactase persistence: an example of human niche

construction. Philosophical Transactions of the Royal Society B: Biological

Sciences, 366:863—-877, 2011.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second
Order. Springer-Verlag, Berlin, Germany, second edition, 1998.

J. S. Gill. Reported levels of alcohol consumption and binge drinking within the
UK undergraduate student population over the last 25 years. Alcohol and
Alcoholism, 37:109-120, 2002.



BIBLIOGRAPHY 115

V. Golla. California Indian Languages. University of California Press, L.A.
California, US, 2011.

B. Gonzalez, E. Huerta-Sanchez, A. Ortiz-Nieves, T. Vazquez-Alvarez, and
C. Kribs-Zaleta. Am I too fat? Bulimia as an epidemic. .Journal of

Mathematical Psychology, 47(5-6):515-526, 2003.

D. M. Gorman, J. Mezic, I. Mezic, and P. J. Gruenewald. Agent-Based Modeling of
Drinking Behavior: A Preliminary Model and Potential Applications to Theory
and Practice. American Journal of Public Health, 96(11):2055-2060, 2006.

L. A. Grenoble and L. J. Whaley. Saving Languages: An Introduction to Language
Revitalization. Cambridge University Press, Cambridge, U.K., 2005.

J. K. Hale and H. Kocak. Dynamics and Bifurcations. Springer-Verlag, New York,
USA, 1991.

M. J. Hamilton and B. Buchanan. The accumulation of stochastic copying errors
causes drift in culturally transmitted technologies: Quantifying Clovis

evolutionary dynamics. Journal of Anthropological Archaeology, 28:55-69, 2009.

J. Henrich. Demography and Cultural Evolution: How Adaptive Cultural
Processes can Produce Maladaptive Losses: The Tasmanian Case. American

Antiquity, 69:197-214, 2004.

J. Henrich and R. Boyd. Why People Punish Defectors: Weak Conformist
Transmission can Stabilize Costly Enforcement of Norms in Cooperative

Dilemmas. Journal of Theoretical Biology, 208:79-89, 2001.

J. Henrich and J. Broesch. On the nature of cultural transmission networks:
evidence from Fijian villages for adaptive learning biases. Philosophical

Transactions of the Royal Society B, 366:1139-1148, 2011.

J. Henrich and R. McElreath. The Evolution of Cultural Evolution. Evolutionary
Anthropology, 12:123-135, 2003.



BIBLIOGRAPHY 116

J. Henrich, R. Boyd, and P. J. Richerson. Five Misunderstandings About Cultural
Evolution. Human Nature, 19:119-137, 2008.

H. W. Hethcote. The mathematics of infectious diseases. STAM Review, 42(4):
599-653 (electronic), 2000.

R. Hickey, editor. The Handbook of Language Contact. Wiley-Blackwell,
Chichester, U.K., 2013.

B. M. Hicks, R. F. Krueger, W. G. Tacono, M. McGue, and C. J. Patrick. Family
Transmission and Heritability of Externalizing Disorders: A Twin-Family Study.
Archives of General Psychiatry, 61:922-928, 2004.

A. A. Hill and M. S. Malashetty. An operative method to obtain sharp nonlinear
stability for systems with spatially dependent coefficients. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Science, 468(2138):
323-336, 2012.

A. L. Hill, D. G. Rand, M. A. Nowak, and N. A. Christakis. Emotions as
infectious diseases in a large social network: the SISa model. Proceedings of the

Royal Society B, 277:3827-3835, 2010a.

A. L. Hill, D. G. Rand, M. A. Nowak, and N. A. Christakis. Infectious disease
modeling of social contagion in networks. PLoS Computational Biology, 6:

€1000968, 2010b. doi: 10.1371/journal.pcbi.1000968.

House of Commons Science and Technology Committee. Alcohol guidelines:

Eleventh report of session 2010-12, 2012.

Institute of Alcohol Studies. IAS factsheet: binge drinking Nature, prevalence and
causes.

http://www.ias.org.uk/resources/factsheets/binge_drinking.pdf, 2010.

Institute of Alcohol Studies. TAS factsheet: young people and alcohol.
\\http://www.ias.org.uk/Alcohol-knowledge-centre/
Young-people-and-alcohol.aspx, 2013.



BIBLIOGRAPHY 117

Y. Itan, A. Powell, M. A. Beaumont, J. Burger, and M. G. Thomas. The origins of
lactase persistence in europe. PLoS Computational Biology, 5:e1000491, 2009.

L. Jodar, F. J. Santonja, and G. Gonzalez-Parra. Modeling dynamics of infant
obesity in the region of Valencia, Spain. Computers & Mathematics with

Applications, 56(3):679-689, 2008.

L. Jones, M. A. Bellis, D. Dedman, H. Sumnall, and K. Tocque.
Alcohol-attributable fractions for England: alcohol-attributable mortality and
hospital admissions. http:
//www.nwph.net/nwpho/publications/alcoholattributablefractions.pdf,
2008.

D. D. Joseph. On the stability of the Boussinesq equations. Archive for Rational
Mechanics and Analysis, 20(1):59-71, 1965.

D. D. Joseph. Nonlinear stability of the Boussinesq equations by the method of
energy. Archive for Rational Mechanics and Analysis, 22(3):163-184, 1966.

D. D. Joseph. Global stability of the conduction-diffusion solution. Archive for
Rational Mechanics and Analysis, 36(4):285-292, 1970.

A. Kandler and K. Laland. An investigation of the relationship between innovation

and cultural diversity. Theoretical Population Biology, 76:59-67, 2009.

A. Kandler and J. Steele. Ecological Models of Language Competition. Biological
Theory, 3:164-173, 2008.

A. Kandler and R. Unger. Population dispersal via diffusion-reaction equations.

Technical report, Technical University Chemnitz, 2010.

A. Kandler, R. Unger, and J. Steele. Language shift, bilingualism and the future of
Britain’s Celtic languages. Philosophical Transactions of the Royal Society B:
Biological Sciences, 365(1559):3855-3864, 2010. doi: 10.1098/rstb.2010.0051.

M. J. Keeling and P. Rohani. Modeling Infectious Diseases in Humans and

Animals. Princeton University Press, Princeton, New Jersey, 2008.



BIBLIOGRAPHY 118

J. Kendal, L.-A. Giraldeau, and K. Laland. The evolution of social learning rules:
payoff-biased and frequency-dependent biased transmission. Journal of

Theoretical Biology, 260:210-219, 2009.

J. R. Kendal and C. E. Walters. Cultural evolution, gene-culture coevolution and
human health: an introduction to modelling approaches. In J. J. Bissell, C. C. S.
Caiado, M. Goldstein, and B. Straughan, editors, Tipping Points: Modelling
Social Problems and Health. Wiley, in press.

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society A, 115:700-721, 1927.

R. A. Kloner and S. H. Rezkalla. To Drink or Not to Drink? That Is the Question.
Circulation, 116:1306-1317, 2007.

A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov. A study of the diffusion
equation with increase in the amount of substance, and its application to a
biological problem (1937). In V. M. Tikhomirov, editor, Selected Works of A. N.
Kolmogorov. Volume 1: Mathematics and Mechanics. Kluwer Academic

Publishers, Dordrect, The Netherlands, 1991.

K. Laland and G. Brown. Sense and Nonsense: Evolutionary perspectives on

human behaviour. Oxford University Press, Oxford, UK, second edition, 2011.

J. Li, Z. Ma, and F. Zhang. Stability analysis for an epidemic model with stage
structure. Nonlinear Analysis: Real World Applications, 9:1672 1679, 2008.

J. Lou and T. Ruggeri. A time delay model about AIDS-related cancer: equilibria,
cycles and chaotic behavior. Ricerche di Matematica, 56:195208, 2007.

C. Liischer and M. A. Ungless. The mechanistic classification of addictive drugs.
PLOS Medicine, 3:2005-2010, 2006.

Z. Ma and J. Li. Dynamical modeling and analysis of epidemics. World Scientific,

Singapore, 2009.



BIBLIOGRAPHY 119

J. L. Manthey, A. Aidoob, and K.Y.Ward. Campus drinking: An epidemiological
model. Journal of Biological Dynamics, 2:346-356, 2008.

M. Marmot and E. Brunner. Alcohol and cardiovascular disease: the status of the

U-shaped curve. BM.J, 303:565568, 1991.

H. McCallum, N. Barlow, and J. Hone. How should pathogen transmission be
modelled? TRENDS in Ecology & Evolution, 16:295-300, 2001.

R. McElreath and R. Boyd. Mathematical Models of Social Evolution: A Guide for
the Perplexed. University of Chicago Press, Chicago, USA, 2007.

M. McGue. The Behavioural Genetics of Alcoholism. Current Directions in

Psychological Science, 8:109-115, 1999.

A. Mesoudi. An experimental simulation of the copy-successful-individuals cultural
learning strategy: adaptive landscapes, producer-scrounger dynamics, and

informational access costs. Evolution and Human Behavior, 29:350-363, 2008.

A. Mesoudi. Cultural Evolution: How Darwinian theory can explain human

culture and synthesize the social sciences. University of Chicago Press, Chicago,

USA, 2011.

A. Mesoudi and M. J. O’Brien. The Cultural Transmission of Great Basin
Projectile-Point Technology I: An Experimental Simulation. American

Antiquity, 73:3-28, 2008.

J. W. Minett and W. S.-Y. Wang. Modelling endangered languages: The effects of
bilingualism and social structure. Lingua, 118(1):19 — 45, 2008.

J. Mira and A. Paredes. Interlinguistic similarity and language death dynamics.

Europhysics Letters, 69(6):1031-1034, 2005.

J. Mira, L. F. Seoane, and J. J. Nieto. The importance of interlinguistic similarity

and stable bilingualism when two languages compete. New Journal of Physics,

13(3), 033007, 2011.



BIBLIOGRAPHY 120

T. J. H. Morgan, L. E. Rendell, M. Ehn, W. Hoppitt, and K. N. Laland. The
evolutionary basis of human social learning. Proceedings of the Royal Society B,

279:653-662, 2011.

A. Mubayi, P. E. Greenwood, C. Castillo-Chavez, P. Gruenewald, and D. M.
Gorman. Impact of relative residence times in highly distinct environments on
the distribution of heavy drinkers. Socio-Economic Planning Sciences, 44:45-56,

2010.

G. Mulone and B. Straughan. A note on heroin epidemics. Mathematical

Biosciences, 218:138-141, 2009.

G. Mulone and B. Straughan. Modelling binge drinking. International Journal of
Biomathematics, 2011. doi: 10.1142/S1793524511001453.

G. Mulone, B. Straughan, and W. Wang. Stability of epidemic models with
evolution. Studies in Applied Mathematics, 118(2):117-132, 2007.

G. Mulone, S. Rionero, and W. Wang. The effect of density-dependent dispersal
on the stability of populations. Nonlinear Analysis, 74:48314846, 2011.

J. D. Murray. Mathematical Biology I: An Introduction. Springer-Verlag, Berlin,
Germany, third edition, 2003.

W. Nakahashi. The evolution of conformist transmission in social learning when
the environment changes periodically. Theoretical Population Biology, 72:52-66,
2007.

W. Nakahashi, J. Y. Wakano, and J. Henrich. Adaptive Social Learning Strategies
in Temporally and Spatially Varying Environments. Human Nature, 23:

386-418, 2012.

National Institute for Health and Clinical Excellence (NICE) report. Alcohol use
disorders: Diagnosis, assessment and management of harmful drinking and

alcohol dependence, CG115. http://www.nice.org.uk/guidance/CG115, 2011.



BIBLIOGRAPHY 121

D. Nettle and S. Romaine. Vanishing Voices: The Extinction of the World’s
Languages. Oxford University Press, Oxford, U.K., 2000.

W. M. Orr. The Stability or Instability of the Steady Motions of a Perfect Liquid
and of a Viscous Liquid. Part I: A Perfect Liquid. Proceedings of the Royal Irish
Academy. Section A: Mathematical and Physical Sciences, 27:9-68, 1907.

M. Patriarca and T. Leppanen. Modeling language competition. Physica A, 338:
296-299, 2004.

J. P. Pinasco and L. Romanelli. Coexistence of Languages is possible. Physica A,

361:355-360, 2006.

P. J. Richerson and R. Boyd. Not by Genes Alone. The University of Chicago
Press, Chicago and London, 2005.

S. Rionero. Sulla stabilita asintotica in media in magnetoidrodinamica non

isoterma. Ricerche di Matematica, 16:250-263, 1967.

S. Rionero. Metodi variazionali per la stabilita asintotica in media in
magnetoidrodinamica. Annali di Matematica Pura ed Applicata, 78:339-364,
1968.

S. Rionero. L2-energy stability via new dependent variables for circumventing
strongly nonlinear reaction terms. Nonlinear Analysis: Theory, Methods &

Applications, 70(7):2530 — 2541, 2000.

S. Rionero. Absence of subcritical instabilities and global nonlinear stability for
porous ternary diffusive-convective fluid mixtures. Physics of Fluids, 24(10),

104101, 2012a.

S. Rionero. On the nonlinear stability of nonautonomous binary systems.

Nonlinear Analysis, 75:2338 — 2348, 2012b.

S. Rionero and M. Vitiello. Long-time behavior of the solutions of MurrayThomas

model for interacting chemicals. Mathematics and Computers in Simulation, 82:

15971614, 2012.



BIBLIOGRAPHY 122

S. Romaine. Language in Society: An Introduction to Sociolinguistics. Oxford

University Press, Oxford, UK, 2000.

F. Sanchez, X. Wang, C. Castillo-Chavez, D. M. Gorman, and P. J. Gruenewald.
Drinking as an epidemic - A simple mathematical model with recovery and
relapse. In K. Witkiewitz and G. A. Marlatt, editors, Therapist’s guide to

evidence-based relapse prevention. Academic Press, New York, 2007.

F.-J. Santonja, E. Sanchez, M. Rubio, and J.-L.. Morera. Alcohol consumption in
Spain and its economic cost: a mathematical modeling approach. Mathematical

and Computer Modelling, 52:999-1003, 2010.

P. Seaman and T. Tkegwuonu. Drinking to belong: understanding young adults
alcohol use within social networks. http:
//www.jrf.org.uk/sites/files/jrf/alcohol-young-adults-full.pdf,
2010.

J. Serrin. On the stability of viscous fluid motions. Archive for Rational Mechanics

and Analysis, 3(1):1-13, 1959.

O. Sharomi and A. B. Gumel. Curtailing smoking dynamics: a mathematical

modeling approach. Applied Mathematics and Computation, 195:475-499, 2008.

B. G. Simons-Morton and T. Farhat. Recent Findings on Peer Group Influences on

Adolescent Smoking. The Journal of Primary Prevention, 31:191-208, 2010.

D. K. Simonton. Qualitative and quantitative analyses of historical data. Annual

Review of Psychology, 54:617-640, 2003.

L. Smith and D. Foxcroft. Drinking in the UK: an exploration of trends.
http://www.jrf.org.uk/sites/files/jrf/UK-alcohol-trends-FULL.pdf,
2009.

B. Song, M. Castillo-Garsow, K. R. Rios-Soto, M. Mejran, L.. Henso, and
C. Castillo-Chavez. Raves, clubs and ecstasy: the impact of peer pressure.

Mathematical Bioscience and Engineering, 3:249-266, 2006.



BIBLIOGRAPHY 123

J. Steele and A. Kandler. Language trees # gene trees. Theory in Biosciences, 129:
223-233, 2010.

B. Straughan. The Energy Method, Stability and Nonlinear Convection.
Springer-Verlag, New York, USA, 2004.

B. Straughan. Gene-culture shock waves. Physics Letters A, 337:2531-2534, 2013a.

B. Straughan. Nonlinear stability for a simple model of a protoplanetary disc.

Nonlinear Analysis: Real World Applications, 17:23-32, 2013b.

W. A. Strauss. Partial Differential Equations: An Introduction. John Wiley &
Sons, USA, second edition, 2008.

P. Strimling, M. Enquist, and K. Eriksson. Repeated learning makes cultural
evolution unique. Proceedings of the National Academy of Science, 106(33):

1387013874, 2009.

The UK Drug Policy Commission Recovery Consensus Group report. A vision of
recovery. http://www.ukdpc.org.uk/Recovery_Consensus_Statement.shtml,

July 2008.

T. Tsunoda. Language Endangerment and Language Revitalization: An

Introduction. Walter de Gruyter, Berlin, Germany, 2006.
P. N. V. Tu. Dynamical Systems. Springer-Verlag, Berlin, Germany, 1992.

P. Vogt. Modeling Interactions Between Language Evolution and Demography.
Human Biology, 81:237-258, 2009.

J. Y. Wakano and K. Aoki. Do social learning and conformist bias coevolve?

Henrich and Boyd revisited. Theoretical Population Biology, 72:504-512, 2007.

C. E. Walters and J. R. Kendal. An SIS model for cultural trait transmission with

conformity bias. Theoretical Population Biology, 90:56-63, 2013.

C. E. Walters, B. Straughan, and J. R. Kendal. Modelling alcohol problems: total
recovery. Ricerche di Matematica, 2012. doi: 10.1007/s11587-012-0138-0.



BIBLIOGRAPHY 124

W. Wang and G. Mulone. Threshold of disease transmission in a patch
environment. Journal of Mathematical Analysis and Applications, 285:321335,
2003.

W. Wang and S. Ruan. Simulating the SARS outbreak in Beijing with limited
data. Journal of Theoretical Biology, 227:369379, 2004.

W. Wang and X. Zhao. Basic reproduction numbers for reaction-diffusion epidemic

models. STAM Journal on Applied Dynamical Systems, 11(4):1652-1673, 2012.

W. Wang and X.-Q. Zhao. An epidemic model in a patchy environment.
Mathematical Biosciences, 190:97112, 2004.

E. White and C. Comiskey. Heroin epidemics, treatment and ODE modelling.
Mathematical Biosciences, 208:312-324, 2007.



Appendix A

A.1 The Monty Hall problem

A gameshow contestant, wishing to win a car, is given the choice of three doors: A,
B or C. The car is behind one door, and goats behind the other two. The contestant
chooses a door then the gameshow host opens one remaining door to reveal a goat.
The contestant then has the opportunity to switch from their door to the other
unopened door. Should they stick or switch?

Intuitively the result appears to be that the probability of winning the car is
1/2 if you stick or switch, so neither option increases the chance of winning the car.
However, the chance of winning the car when switching is 2/3 and 1/3 for sticking,
hence it is always beneficial to switch. This arises as the host is restricted in his
choice of door as he must always reveal a goat.

Assume that the contestant picks door A. If the car is behind door A, which
has probability 1/3, then the probability of winning the car when sticking is 1 and
0 when switching. If the car is behind B or C (probability 2/3), then one goat is
behind door A and the host is forced to reveal the second goat from behind either
B or C. The car is behind the door that the host does not open so the probability
of winning the car is 0 when sticking and 1 when switching. The probability of
winning the car when not switching is therefore 1 x 1/3 = 1/3 and the probability
of winning when switching is 1 x 2/3 = 2/3. Thus, the contestant should switch

doors to maximise their chance of winning the car.
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Appendix B

B.1 Proof of y; > 0 implies z; > 0
We need to show that xz; > 0 always holds provided y; > 0, where

T =@+ p+2u+y— B,

y1=—pp+(p+p+7)(¢+pu—F).

We first consider the inequality y; > 0 which can be written in terms of the param-

eters as

0<—=pp+(p+pn+7)(n+e—p)
& 0<=Blp+u+7)+ulp+p+y+e)+7p

& Blp+p+y) <plp+p+vy+e)+7p. (B.1.1)

We now consider the necessary condition for x; > 0 by rewriting this inequality in

terms of the parameters,

O<o+p+2u+~v—p
& [f<p+p+2u+y. (B.1.2)

We now multiply inequality (B.1.2) by (p+p+) so that it may be directly compared
with (B.1.1), which results in

Blp+p+v)< (p+p+2u+7)(p+p+7)
& Blptu+y) < pwlp+p+y+e) +ye+p’+pp (B.1.3)

+(p+7Cu+p+7)
126
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By comparison, we see that inequality (B.1.1) imposes a stronger comdition on
B(p+ p+ ) than inequality (B.1.3). From this we conclude that y; > 0 implies

x> 0.

B.2 Endemic equilibrium solution calculations

B.2.1 Proof of y, > 0 implies x5 > 0

We need to show that x5 > 0 always holds provided y, > 0, where

Ty =20a+pr4+o+2u+p+v—73

Y2 = p(Ba—p) + (p+p+7) 280+ Br+ o+ p—pB).

We can write y, in terms of z5 as

yo=0Ba—p)+(p+u+)(28a+BF+o+2u+p+v—0—[p+up+7)

=pBa—p) +(p+p+7)(@2—[p+p+7]), (B.2.4)
and, from (2.8), the equation for @ in terms of ys as

i — & . B.2.5
“TBo+utr+o) ( )

Substituting equation (B.2.5) into equation (B.2.4) gives

PY2

=——— —po+(p+p+y)(z2—[p+p+7]),
p+pu+y+e

Y2

from which we find the equation for xz,,

Y2 Py

Ty = + +p+p+n. (B.2.6)
ptutyte ptp+y

From equation (B.2.6) we see that o > 0 is always true if yo > 0.

B.2.2 Simplification of ys

We have

Y2 = @(Ba—p) + (p+p+7v)(28a+ Br+ ¢+ p—B)
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and we want to write this equation in terms of the model parameters only. We begin

by substituting for 7 using

N R
F=——"+—#—a,
p+p+y
which follows from equations (2.8). This gives
zmzwwa—m+%p+u+w(w%+——&i—a+¢+u—6>
p+ 4+

o o e
=pBa—p)+(p+p+y)(e+p 5)+5a(p+ﬂ+7)<2+p+u+7>

=p(Ba—p)+(p+p+7)(e+p—0)+Ba2p+ 21+ 27+ ¢)

=2Ba(p+p+y+¢) = Blp+p+y)+ulp+p+y+9)+7e.

Using equation (2.8) for @, we write y in terms of the parameters only as

y2=2B(p+p+7) —2ulp+p+v+¢) =270 —Blp+p+7)
+ulp+p+y+e)tp

=Blo+n+7) —plp+nr+y+¢) —ve

B.3 Positive invariant region

We show that provided we always take our initial conditions to lie in D, the solution
will always be in D. We do this by considering the direction field at the boundary,
0D, which is the triangle in the ar-plane with vertices (0,0), (1,0) and (0,1). We
want to show that the direction field at 0D always enters D. This ensures that any
trajectory starting in D remains in D.

The boundary will be considered as the union of six sets: each of the three
vertices, and each of the three edges minus the vertices. Firstly we shall look at the
direction field across the line r = 0 for a € (0,1). To determine the direction field

along this boundary line we consider equations (2.3) along r = 0. This gives
a=—pa>+ (8 — ¢ — pa,
T’ = pa. (B.3.7)

As a > 0 along the boundary, equation (B.3.7) determines that 7 > 0 along the

boundary line r = 0. This is sufficient for us to determine that the direction field



B.3. Positive invariant region 129

arrows at the boundary line always point into D. Similarly we now evaluate equa-

tions (2.3) along the bounday line a = 0 with r € (0, 1) to obtain

a= pr, (B.3.8)

P=—(p+p+y)r

As r > 0 we can conclude from equation (B.3.8) that @ > 0, hence all direction field
arrows along this boundary line point into the region D.

The final boundary line is a +r = 1 for (a,r) € (0,1)?. Along this line we can
write equations (2.3) in terms of one variable by using r = 1 — a which gives the

equations

a=—(p+pn+patp,

F=(p+tp+y+ela—(p+p+7).

To determine the direction that arrows cross the boundary line a+r = 1 we use the

vector dot product. The vector dot product for two vectors  and y is
x-y = |x||y|cosb, (B.3.9)

where 6 is the angle between the two vectors. We consider the vector (1,1)T, which
is orthogonal to the boundary line, and dot this with the vector (a,7)T. We find
that
a 1
g1 =—(ptpt+e)atp+(ptp+ty+ela—(p+p+y)
7

— - (1—a)y. (B.3.10)

As (1 —a) > 0, the right hand side of equation (B.3.10) is negative. By applying the
vector dot product formula (B.3.9) we conclude that cosf < 0 so 6 € (7/2,37/2).
For these values of #, the direction field always crosses the boundary line a +r =1
in a direction which enters the region D.

We now consider the direction field at each of the vertices of the boundary

triangle. No trajectories can pass through the point (0,0) as (a,7) = (0,0). At the
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point (1,0),

The equation of the line passing through (0, 1) for which (&, ) is the direction vector
is 7 = —p(1 — a)/(p + ) which has a gradient less than that of the boundary line
a +r =1, hence trajectories passing through the boundary point (1,0) will always
enter D. At the point (0, 1),

a=p,
F=—(p+pu+ty)

The equation of the line passing through (0, 1) corresponding to the direction vector
(a,7)isrT = —(p+ pu+v)a/p+ 1. As the magnitude of the gradient of this line is
greater than that of the boundary line a+r = 1 we can conclude that all trajectories

passing through the point (0, 1) will always enter the feasible region.

B.4 Endemic equilibrium solution comparison

We show that if the inequality Ry > 1 is satisfied then the inequality F' < 0 must

also be true. We begin by considering the inequality F' < 0, which gives
0> =pp+w)(p+p+7)+ulp+p)(p+u+7)+pplu+7y) —pelp+¢)
This rearranges to
Blp+p)p+p+7y)>ulp+p)(p+p+y) +pe(p+7) = pelp+e). (B411)

We now look at the constraints on the parameter values which come from Ry > 1.

This can be written as

Blp+u+7)>plp+p+v+9)+ 7. (B.4.12)

By multiplying both sides of inequality (B.4.12) by (p + p) we get

Blp+u)(p+u+7) > plp+p)(p+p+7y) + pe(p+) +pp(p+7), (B.4.13)
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which has the same left hand side as inequality (B.4.11). We now compare inequal-
ities (B.4.11) and (B.4.13) and find that inequality (B.4.13) imposes the greatest
lower bound on the expression S(p + u)(p +  + ). From this we conclude that if
the parameter values satisfy Ry > 1 then they will satisfy F' < 0.



Appendix C

C.1 Exact solutions to fi(a) =0 and fi(a) =0

Following the method described by Murray (2003, appendix 2.3), let

_D+6 B(D+9) — 54p

36D 7T 108D

Y
5
Then, for p < g;(a'), the exact solutions to fi(a) = 0 are
1 1T L (T
a=2x2singp—z, a= —2x2sin <§ + qﬁ) —2z, a=2x2sin (§ — qb) -z, (C.1.1)

for ¢ = sin~'[y/222]/3, |¢| < 7/6. For the model with varying conformity threshold
frequency, the solutions to fa(a) = 0 for p < ga(a?) are given by equations (C.1.1)
with

_6+D2-n? _BOC-—m+D2-n))=5dp _ 4+n

36D 7 1086D ! 6

C.2 Justification of the linear reversion term vA
for small ~

Consider the two functions

r ="a,

Ty = ’yCLS[]. + b(zs - 1)(1 - S)]’

representing reversion from type A back to type S. The function r; assumes no

social influence, whereas ro assumes a conformist influence of the same form as ¢

132
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(used in section 3.2) with conformity coefficient D. The difference between these

two functions can be calculated by subtracting ry from rq, resulting in
d,(a) = ya*(=2Da* + 3Da + 1 — D).

The turning points of this function occur at a = 0 and

9 1 64
=% 6V T

By considering these points as D — 0 it can be determined that, for all values of
D, the function d, is strictly monotonically increasing on (0, 1), therefore attains its
maximum within [0, 1] at @ = 1. By direct calculation, d,(1) = v so the maximum
error magnitude which can arise from using the linear function r; over the conformity
function ry is . As stated in section 3.2 we assume 7 to be very small, and much
smaller than 3, therefore using r; is appropriate owing to the small magnitude of

the error.



