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Abstra
t

Cultural evolutionary theory is 
on
erned with the so
ial transmission of be-

haviours, beliefs or ideas that 
onstitute 
ulture. In humans, transmission of 
ulture

may be from one generation to the next or between individuals of the same genera-

tion. This thesis 
ontains three models for the transmission of 
ultural traits, subje
t

to frequen
y-dependent so
ial learning. All models are formulated as a system of

di�erential equations that 
annot be solved analyti
ally. By �nding the equilibria

of the systems and analysing their stability, the long-term behaviour of the systems

may be determined.

A mathemati
al model for the spread of drinking behaviour is presented, with a

fo
us on total re
overy. The equilibria of the system are found and a lo
al stability

analysis is performed. The system is found to have a parameter-dependent threshold

at whi
h the two equilibria swit
h stability. This indi
ates a 
hange in the long-term

system behaviour. Consequently, whether drinking behaviour dies out or be
omes

endemi
 may be predi
ted from the values of the model parameters. The rate at

whi
h individuals take up drinking behaviour is found to have the greatest e�e
t on

whether it be
omes endemi
.

A model for both the linear and nonlinear frequen
y-dependent transmission of

a 
ultural trait, with potential appli
ations to binge drinking behaviour, is then

investigated. The system equilibria 
annot be found expli
itly in terms of the model

parameters. However, by 
onsidering di�erent 
ases 
orresponding to regions of



iv

parameter spa
e, qualitative di�eren
es in the long-term behaviour of the system

are determined. By 
omparing the linear and nonlinear frequen
y-dependent models,

the e�e
t of 
onformity is determined for di�erent regions of parameter spa
e.

Finally, a rea
tion-di�usion model for two 
ompeting languages, u and v, with

a fo
us on language 
oexisten
e is presented. Language u is assumed to 
onfer a

status advantage to its speakers, thus swit
hing languages is one-dire
tional from v

to u. Four 
onstant system equilibria are found and global instability and stability

thresholds are found for ea
h solution. The 
oexisten
e of languages u and v is found

to be globally stable, subje
t to 
ertain parameter 
onstraints and a suÆ
iently small

initial population of speakers.
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Chapter 1

Introdu
tion

1.1 Thesis overview

Presented in this thesis are mathemati
al models for the spread of 
ulture within

human populations via so
ial learning me
hanisms. Using te
hniques developed in

mathemati
al biology, the models represent the frequen
y-dependent transmission

of 
ultural traits. Whilst all models are, to some extent, generally appli
able to a

variety of behaviours and situations, 
hapters 2 and 3 fo
us on drinking behaviour

and 
hapter 4 on language 
ompetition. The motivation behind developing models

for al
ohol problems stems from the in
reasing 
on
ern regarding the health and

e
onomi
 e�e
ts of problem drinking, whether in the form of al
ohol addi
tion or

binge drinking behaviour. To redu
e the prevalen
e of the behaviour (and thus

redu
e the negative asso
iated 
osts) it is ne
essary to understand what in
uen
es

drinking behaviour and how this may be 
hanged. Mathemati
al modelling alone

does not provide the answer to this, but it provides a me
hanism for analysing trends

and predi
ting future out
omes.

The language model extends existing work aimed at determining whether 
om-

peting languages 
an 
oexist over time. Many of the world's minority languages are

in de
line, so predi
tions from mathemati
al models may prove vital to developing

appropriate strategies for the preservation of these languages. We develop a model

for two 
ompeting languages, where one is a minority language, and analyse the

global stability and instability properties of all of the 
onstant system equilibria.

1



1.1. Thesis overview 2

This reveals 
onditions under whi
h the survival of both languages is stable.

Ea
h resear
h 
hapter has its own distin
t novel aspe
t, however all are 
on
ep-

tual 
ontributions to the �eld of 
ultural evolution. In 
hapter 2, this is the in
lusion

of a term in the al
ohol model whi
h permits individuals to fully re
over from an al-


ohol problem. The model is an extension of work by Mulone and Straughan (2011)

and was developed in light of re
ent theories regarding the nature of re
overy. In


hapter 3, the novel aspe
t is the in
orporation of a 
onformist so
ial learning bias,

from the 
ultural evolution literature, into an SIS (Sus
eptible-Infe
ted-Sus
eptible)

model framework. The model redu
es to a single polynomial equation, allowing for

information to be gained through utilising methods from 
al
ulus. This is an ap-

proa
h not previously do
umented in the literature, thus the model and a

ompany-

ing analysis are new 
ontributions. The global stability analysis method in 
hapter

4 is well-do
umented in the 
uid dynami
s literature, however here it is applied to

a novel situation: the 
oexisten
e of languages.

Following a brief introdu
tion to ea
h of the resear
h 
hapters, the pro
eeding

se
tions of this 
hapter introdu
e the main topi
s of the thesis. A review of 
ul-

tural evolutionary theory is presented, with a fo
us on so
ial learning transmission

biases. A 
riti
al analysis of mathemati
al modelling methods follows, leading to

a dis
ussion of the use of this approa
h, and others, in 
ultural evolution resear
h.

The remaining se
tions, 1.5 and 1.6, review existing work whi
h provides an intro-

du
tion to the modelling approa
hes utilised in 
hapters 2 to 4. Spe
i�
ally, se
tion

1.5 
ontains a review of an ordinary di�erential equation (ODE) model for drinking

behaviour by San
hez et al. (2007). The extension of su
h models to systems of

partial di�erential equations (PDEs) is dis
ussed in se
tion 1.6.

As the motivation for this thesis was to develop mathemati
al modelling te
h-

niques appli
able to 
ultural evolution, the merits and pitfalls of the theory itself are

not debated. For an insight into where 
ultural evolutionary theory lies within the

broader 
ontext of human evolution, Laland and Brown (2011) provides an introdu
-

tion. The mathemati
al models presented in the thesis are examples of dynami
al

systems and the analyti
 methods have been widely applied in the �elds of epidemi-

ology and 
uid me
hani
s (see Heth
ote (2000); Straughan (2004)). Some of the
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material reviewed later in this 
hapter 
entres on behaviour transmission, developed

from models for the spread of infe
tious diseases. For an introdu
tion to dynami
al

systems, see any undergraduate textbook on the subje
t, su
h as Arrowsmith and

Pla
e (1990); Hale and Ko�
ak (1991); Tu (1992).

Chapter 2 
onsists of a model for the linear frequen
y-dependent so
ial transmis-

sion of problem drinking behaviour, extending previous work in this area by Mulone

and Straughan (2011). Binge drinking in the UK is an in
reasing problem, result-

ing in negative health, so
ial and e
onomi
 e�e
ts. Mathemati
al modelling allows

for future predi
tions to be made and may provide valuable information regarding

how to approa
h solving the problem of binge drinking in the UK. We develop a

3-equation model for al
ohol problems, spe
i�
ally binge drinking, whi
h allows for

total re
overy. Individuals are split into those that are sus
eptible to developing

an al
ohol problem, those with an al
ohol problem, and those in treatment. We

�nd that the model has two equilibrium points: one without al
ohol problems and

one where al
ohol problems are endemi
 in the population. We 
ompare our results

with those of an existing model that does not allow for total re
overy. We show

that without total re
overy, the threshold for al
ohol problems to be
ome endemi


in the population is lowered. The endemi
 equilibrium solution is also a�e
ted, with

an in
reased proportion of the population in the treatment 
lass and a de
reased

proportion in the sus
eptible 
lass. In
luding total re
overy does not determine

whether the proportion of individuals with al
ohol problems in
reases or de
reases,

however it does a�e
t the size of the 
hange. Parameter estimates are made from

information regarding binge drinking, where we �nd an in
rease in the re
overy rate

de
reases the proportion of binge drinkers in the population.

Chapter 3 develops the pre
eding work by introdu
ing a so
ial learning bias

into an SIS model framework. Epidemiologi
al models have been applied to hu-

man health-related behaviours that are a�e
ted by so
ial intera
tion, for example

smoking (Sharomi and Gumel, 2008), drinking (San
hez et al., 2007; Mulone and

Straughan, 2011) or drug use (White and Comiskey, 2007; Mulone and Straughan,

2009). Typi
ally these models have not 
onsidered 
onformity bias, whi
h is the

exaggerated propensity to adopt 
ommonly observed behaviours or opinions, or 
on-



1.1. Thesis overview 4

tent biases, where the 
ontent of the learned trait a�e
ts the probability of adoption.

Here we 
onsider an intera
tion of these two e�e
ts, presenting an SIS-type model

for the spread and persisten
e of a behaviour whi
h is transmitted via so
ial learn-

ing. Uptake is 
ontrolled by a nonlinear dependen
e on the proportion of individuals

demonstrating the behaviour in a population. Three equilibrium solutions are found,

their linear stability analysed, and the results 
ompared with a model for unbiased

so
ial learning. Our analysis fo
uses on the e�e
ts of the strength of the 
onformity

bias and the e�e
ts of 
ontent biases whi
h alter a 
onformity threshold frequen
y

of the behaviour, above whi
h there is an exaggerated propensity for adoption. The

strength of the 
onformity bias is found to qualitatively alter the predi
tions regard-

ing whether the trait be
omes endemi
 within the population and the proportion

of individuals who display the trait when it is endemi
. As the 
onformity strength

in
reases, the number of feasible equilibrium solutions in
reases from 2 to 3, leading

to a situation where the stable equilibrium attained is dependent upon the initial

state. Varying the 
onformity threshold frequen
y dire
tionally alters the behaviour

invasion threshold.

Neither of these models 
onsiders the spatial variation of individuals, whi
h

would in
rease the 
omplexity of the system. Motivated by existing work by Kan-

dler and Steele (2008), 
hapter 4 in
ludes a PDE model for 
ompeting languages

whi
h in
orporates both temporal and spatial variation. One language is assumed

to be dominant so 
onversion between languages is one-dire
tional to the dominant

language. The system has four equilibria, in
luding a 
oexisten
e state, and we

analyse the global stability and instability of ea
h solution. Stability thresholds

are found in ea
h 
ase, and thus we 
on
lude that the 
oexisten
e of languages is

possible, subje
t to 
ertain parameter 
onstraints.

Finally, 
hapter 5 
ontains a general dis
ussion of the out
omes of the previous


hapters and how these results are situated within the wider literature. Potential

extensions to the models are highlighted, with an overview of future work presented.
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1.2 Introdu
tion to 
ultural evolution

Cultural evolutionary theory seeks to answer questions about human evolution that

have not been adequately answered by geneti
 evolutionary theory. For any sound

theory to be developed, it is �rst ne
essary to de�ne what is meant by the terms 
ul-

ture and 
ultural evolution. Culture has been de�ned as \information 
apable of af-

fe
ting individuals' behaviour that they a
quire from other members of their spe
ies

through tea
hing, imitation, and other forms of so
ial transmission" (Ri
herson and

Boyd, 2005, Page 5). Information may refer to parti
ular beliefs, behaviours, ideas

or knowledge. Whilst various de�nitions of 
ulture exist, the key fa
tor in 
ultural

evolutionary theory is that information whi
h a�e
ts behaviour is learned from other

individuals, either 
ons
iously or sub
ons
iously. Cultural evolution is therefore a

\pro
ess of des
ent with modi�
ation" (Mesoudi, 2011) by whi
h sele
ted so
ially

learned behaviours spread and persist within a population over time. Assuming that

information is transmitted in this way allows for theories to be 
onstru
ted within

a Darwinian evolutionary framework, allowing for a s
ienti�
 approa
h to be taken.

To allow formal models of 
ultural evolution to be developed, the 
on
ept of

a 
ultural trait (analogous to a geneti
 trait in biologi
al evolutionary model) is

used. The trait is a spe
i�
 behaviour or idea whi
h may be so
ially transmitted.

Unlike with genes, where transmission is typi
ally from parent to o�spring (verti-


al transmission), Cavalli-Sforza and Feldman (1981) present models for 
ultural

traits also being transmitted between individuals of the same generation (horizontal

transmission) or from other members of the parent generation to the o�spring gen-

eration (oblique transmission). Information may be gained without 
opying, known

as aso
ial or individual learning. This is where an individual a
quires information

on their own, su
h as through a trial and error method or by innovation. When


ombined with so
ial learning this 
an give rise to 
umulative 
ultural evolution

whereby information is transmitted and modi�ed over time, leading to more 
om-

plex or eÆ
ient 
ultural traits being developed (Ri
herson and Boyd, 2005) . The

e�e
t of this pro
ess is that individuals adopt behaviours that 
ould not be learned

by a single individual in their lifetime (Mesoudi, 2011) and is thought to be unique

to humans (Ri
herson and Boyd, 2005).
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Cultural traits are often modelled as dis
rete units, analogous to genes, whi
h

are passed from one individual to another (Henri
h et al., 2008). This approa
h

is appropriate in some instan
es where the 
ultural trait is a dis
rete entity. For

example, the model presented in 
hapter 3 allows individuals to be of type S or

type A, where type S do not have trait A and type A do display trait A. Trait

A in this instan
e 
ould be binge drinking behaviour, so type A individuals are

those that binge drink. Whilst there is debate over what 
onstitutes binge drinking,

on
e these limits have been de�ned then an individual 
an be 
lassi�ed as either a

binge drinker or not a binge drinker. In some 
ases a binary 
hoi
e model su
h as

this is not appropriate as traits may be best envisioned as lying on a 
ontinuum.

One example is arrowhead length, whi
h may vary 
ontinuously over a 
ertain value

range (Mesoudi, 2011). In su
h 
ases the geneti
 analogue is no longer appropriate

as genes are dis
rete entities whi
h are repli
ated, whereas arrowhead length may

be subje
t to blending e�e
ts where the transmitted length is some 
ombination

(su
h as a mean average) of all the available model arrowheads (Henri
h et al.,

2008). This is one example of where geneti
 and 
ultural evolution di�er and thus

require di�erent modelling approa
hes. Another di�eren
e is the 
on
ept of guided

variation in 
ultural evolution, whi
h has no geneti
 analogue. Guided variation is

the intentional modi�
ation of a 
ultural trait (Mesoudi, 2011). In geneti
 evolution,

modi�
ations are the result of random (unguided) mutations (Mesoudi, 2011), so no

equivalent to guided variation exists.

The study of simultaneous and intera
ting geneti
 and 
ultural evolution is

known as gene-
ulture 
oevolutionary theory or dual-inheritan
e theory (Laland

and Brown, 2011). The in
uen
e between genes and 
ulture is two-dire
tional, so

genes may favour the evolution of parti
ular 
ultural traits whi
h, in turn, then

in
rease the favourability of spe
i�
 genes. One widely-referen
ed example whi
h

supports the theory is the 
orrelation between dairy farming and la
tose toleran
e

in adults (see, for example, Laland and Brown (2011); Ri
herson and Boyd (2005)).

Adult human populations vary in their ability to digest 
ows' milk (whi
h 
ontains

la
tose), 
ontrolled by a spe
i�
 allele. Models suggest that this is an example of

gene-
ulture 
oevolution, whereby the uptake of dairy farming in
reased the relative
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�tness of the gene whi
h allows for adult la
tose toleran
e as a result of the bene�ts

of drinking milk (see Feldman and Cavalli-Sforza (1989); Itan et al. (2009); Gerbault

et al. (2011)). This in turn may have in
uen
ed 
ultural pra
ti
es in su
h a way that

la
tose 
onsumption be
ame more strongly favoured (Ri
herson and Boyd, 2005).

It is theorised that the persisten
e of a 
ultural trait may be in
uen
ed by a

number of fa
tors whi
h a�e
t transmission, whi
h Ri
herson and Boyd (2005) refer

to as for
es of 
ultural evolution. Random for
es are 
ultural mutation and 
ultural

drift, dis
ussed in both Cavalli-Sforza and Feldman (1981) and Boyd and Ri
herson

(1985). Individual-level pro
esses, su
h as misremembering a trait or la
king the

ability to faithfully reprodu
e the observed trait, result in 
ultural mutation where

the trait be
omes unintentionally modi�ed after transmission. Cultural drift 
an

o

ur as a result of sampling size. If only a small number of individuals have a

parti
ular trait then it is possible that they never form part of an observed sample, so

there is no opportunity for the trait to be transmitted. This me
hanism may des
ribe

the loss of tool 
omplexity in the Tasmanian population, whi
h arose after their

separation from mainland Australia (Henri
h, 2004). Alternatively, a transmitted

trait may be intentionally modi�ed through guided variation. As the 
hanges to

the trait are wilful, this is a de
ision-making, rather than a random, for
e. The

remaining de
ision-making for
es are all a result of the biased so
ial transmission of

a 
ultural trait, whi
h may be further split into 
ontent and 
ontext biases (Henri
h

and M
Elreath, 2003).

Content biases a�e
t the likelihood of adopting a trait through intrinsi
 prop-

erties of the trait itself, su
h as its salien
e or as a result of 
ost-bene�t analysis.

Context biases refer to external in
uen
es whi
h a�e
t trait adoption and have been

split into two 
ategories: model-based biases and frequen
y-dependent biases (Hen-

ri
h and M
Elreath, 2003; Ri
herson and Boyd, 2005). Model-based biases result

from some 
hara
teristi
 of a sampled individual. For instan
e, a na��ve individual

may be more likely to 
hoose to 
opy a spe
i�
 individual be
ause of per
eived

similarities with the model, or be
ause of the per
eived su

ess of the model. The

existen
e of su
h biases is supported by experimental work where individuals 
opy

the most su

essful individual (Mesoudi, 2008). Other model-based biases 
onsider
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how prestigious or su

essful the model is per
eived to be. Frequen
y-dependent

biases represent when trait adoption is in
uen
ed by the frequen
y of the trait in

the observed population in a fashion whi
h does not repli
ate random sampling. If

a trait has frequen
y of 70% within the sampled population then a na��ve individual

using a linear frequen
y-dependent strategy (equivalent to random sampling or un-

biased so
ial learning) has probability 0.7 of adopting the trait. This is equivalent

to the individual randomly 
hoosing one model from the population and 
opying

them. For a bias to be in a
tion, the probability of a na��ve individual adopting

the trait must di�er from 0.7. Conformist frequen
y-dependent bias o

urs when a


ommon trait in the population is more likely to be a
quired, so a 70% prevalen
e

of the trait gives a probability of adoption whi
h is greater than 0.7. Conversely,

anti-
onformist bias 
an also o

ur, where infrequent traits are more likely to be

adopted so the adoption probability would be less than 0.7.

Conformist behaviour 
ontributes to explanations of human 
ooperative be-

haviour and the use of punishment in large groups (Boyd and Ri
herson, 1985;

Henri
h and Boyd, 2001). Models for trait transmission show that 
onformist bias

is favourable in spatially and temporally varying environments, in
luding rapidly


hanging environments (Kendal et al., 2009; Nakahashi et al., 2012). In a stable

environment so
ial learning dominates, yet 
onformist transmission has little e�e
t

on a learner's ability to a
quire the adaptive behaviour (Wakano and Aoki, 2007;

Kendal et al., 2009). Whilst resear
h so far has not rea
hed a 
onsensus regarding

the evolution of 
onformist transmission, it remains a valid explanation for 
ultural

trait transmission under 
ertain 
onditions. For instan
e, E�erson et al. (2008) 
on-

du
ted a study where 28 out of 40 parti
ipants self-identi�ed as 
onformist. These

individuals 
ompleted a binary 
hoi
e task where one 
hoi
e has a greater expe
ted

payo�. The experiment was 
ontrolled so that these individuals 
ould only utilise

so
ial information when making their 
hoi
e. The 28 individuals who stated that

they were 
onformist were found to a
t in a 
onformist fashion, indi
ating that some

individuals a
t 
onformist, but not all.

Su
h studies have been 
riti
ised as it may be diÆ
ult for an individual to as
er-

tain whi
h of two options is most pro�table after only a small number of trials, thus
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opying others 
ould be 
onsidered to be a rational 
hoi
e rather than the result of


onformity (Eriksson and Coultas, 2009). A further 
riti
ism is that experiments are

generally limited to investigating only one so
ial learning strategy, yet individuals

may employ multiple strategies (Morgan et al., 2011). Experimental eviden
e where

multiple learning biases 
an be in a
tion simultaneously suggested that 
onformist

behaviour was present when a subje
t had low 
on�den
e in their own ability and

a suÆ
ient number of demonstrators to 
opy (Morgan et al., 2011). Resear
h into

how frequently 
onformist behaviour o

urs, if at all, is not in agreement, hen
e

further work in this area may provide greater insights. This motivated the work in


hapter 3 where a mathemati
al model for 
onformist 
ultural trait transmission is

presented.

Resear
h into 
ultural evolution has been approa
hed via both theoreti
al and

empiri
al methods. In parti
ular, mathemati
al models have been devised to ex-

plain many fa
ets of 
ultural evolutionary theory. To appre
iate the utility of this

approa
h it is ne
essary to understand the motivation behind su
h models, and

both the strengths and limitations of the method. A dis
ussion of these fa
tors is

presented in the next se
tion.

1.3 Introdu
tion to mathemati
al models

Models may be 
onsidered to be simpli�ed representations of the real world whi
h

aid our understanding. By eliminating aspe
ts whi
h are not immediately perti-

nent to the problem at hand, they allow us to fo
us on the key features of interest,

without unne
essary distra
tion. A model must always be �t for purpose: as simple

as possible but no simpler (Keeling and Rohani, 2008). For example, the London

Tube map is a model designed to help travellers navigate the underground rail net-

work by presenting the railway line interse
tions and inter
hange stations (Degani,

2013). The map depi
ts the rail network's topology but not the exa
t lo
ation and

relative distan
es of stations so in
ludes the information of interest whilst omitting

unne
essary details. In the same way that features of the London Underground


an be en
apsulated in a diagram, some real-world systems may be des
ribed by
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mathemati
s.

Creating a mathemati
al model begins with determining the key real-world fea-

tures required to address the question at hand. It is then assumed that only these

variables have any in
uen
e on the system, thus mathemati
al models are always

simpli�ed representations of reality. Often mathemati
al models appear to be overly

simplisti
, however \. . . attempting to dedu
e the answer to a 
omplex problem by

dire
t inspe
tion and unaided intuition requires even simpler models and entails

great risk of erroneous reasoning" (Boyd and Ri
herson, 1985, Page 30). Simpli�
a-

tion is ne
essary to enable the dis
overy of underlying 
ausal relationships. Whilst

results might seem obvious retrospe
tively, without the formalisation introdu
ed by

the modelling pro
edure there is no way of being 
ertain that any inferen
es made

are 
orre
t. In some 
ases 
ounter-intuitive results are revealed only through math-

emati
al analysis, as with the well-known Monty Hall problem (Appendix A.1). An

understanding of the real-world problem is a
hieved by the interpretation of the

mathemati
al results. If no sensible real-world explanation 
an be given then the

model has not ful�lled its fun
tion and therefore must be re�ned. In the following

resear
h 
hapters the model variables represent population frequen
ies. Mathemat-

i
ally, these variables may be negative but su
h 
ases have no real-world meaning.

This instigates the introdu
tion of 
ertain parameter restri
tions to ensure that the

�nal results 
an always be interpreted in a meaningful way. Thus the aim of math-

emati
al modelling is to provide a good approximation of a reality in a way whi
h

allows for stru
tured analysis. From this, a greater understanding of the real-world

system may arise and enable future predi
tions to be made.

There is often a trade-o� between a

ura
y, transparen
y and 
exibility within

mathemati
al models (Keeling and Rohani, 2008). A

ura
y refers to how well the

model reprodu
es observed data and predi
ts future out
omes, and will often be

improved by in
reased model 
omplexity. One way of assessing the a

ura
y of a

mathemati
al model is to 
ompare the predi
ted results to known s
enarios. This


ould be information gained by 
omparing the model predi
tions against existing

data sets, as in Bentley et al. (2007) and Hamilton and Bu
hanan (2009), or from


omplementary theoreti
al and empiri
al methods, as in E�erson et al. (2008) and
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Eriksson and Coultas (2009). Transparen
y refers to how easy it is to interpret

the e�e
ts of a single variable parameter on the system, independent of all other

parameters. Finally, 
exibility refers to how adaptable a model is to a 
hanging

situation. For instan
e, if there is a real-world system 
hange, 
an varying a param-

eter a

ount for this variation or is it ne
essary to formulate a new model? Model


omplexity 
an a�e
t the methods of analysis whi
h are used. Analyti
 methods

give results whi
h hold true for vast areas of parameter spa
e and make it easy

to identify regions where there is a qualitative di�eren
e in the results. This is a

useful method for �nding thresholds whi
h indi
ate a qualitative 
hange in system

behaviour. As model 
omplexity in
reases, transparen
y de
reases and thus analyti


methods be
ome in
reasingly diÆ
ult and yield fewer tra
table results. In su
h in-

stan
es numeri
al 
omputer simulations may be utilised, whereby a solution may be

obtained for a spe
i�
 set of parameter values.

To gain an understanding of the system as a whole, many simulations must be

run (M
Elreath and Boyd, 2007). For example, a system 
onsisting of 3 variables,

ea
h taking a possible 15 values, requires 15

3

= 3375 
al
ulations to be made to

ensure all parameter sets have been 
onsidered. As simulation results only give a

snapshot of the system at spe
i�
 values, �nding thresholds and general trends 
an

be diÆ
ult. When possible, it may be advantageous to further simplify a model to

enable analyti
 results to be found. A simpli�ed model may reveal whi
h parameter

has the greatest e�e
t on the system, thus leading to a more informed investigation

of the 
omplex model by simulations 
on
entrated on varying this parameter. By


omparing the results of the two models a greater understanding of system behaviour

may be gained than 
ould be obtained purely from numeri
al simulations of the


omplex model.

A mathemati
al approa
h to real-world problem solving has many advantages,

often in 
onjun
tion with other methods, su
h as empiri
al studies. Mathemati
al

language is pre
ise, enabling 
lear 
ommuni
ation of �ndings with respe
t to well-

de�ned assumptions. This makes model results, and the 
ontext in whi
h they are

appli
able, easily understandable to other resear
hers. Mathemati
al models may

also be a 
heaper way (both in time and money) of gaining information about a
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system 
ompared with empiri
al testing or observational studies. As they de�ne

the world in terms of a dis
rete number of variables, they may be used to highlight

variables of interest and thus in
uen
e the dire
tion of any empiri
al work before a

large investment is made. As more knowledge is gained through the 
omparison of

di�erent models and empiri
al results, models 
an be re�ned to fo
us only on the

most pertinent aspe
ts of the system. Provided a model 
an repli
ate the results of

empiri
al work, it may then be used to make future predi
tions about the state of

the system.

1.4 Modelling approa
hes used in 
ultural evolu-

tionary theory

The bene�ts of mathemati
al modelling led to its use in the study of 
ultural evo-

lution, with mu
h initial work 
onsisting of mathemati
al models developed from

the population geneti
s literature. For instan
e, Cavalli-Sforza and Feldman (1981)


onstru
t a model for verti
al 
ultural trait transmission. Cultural traits are often

assumed to be dis
rete and, in some 
ases, mutually ex
lusive. Models may be sim-

ilar to those from population geneti
s representing the transmission of genes from

parent to 
hild. A simple example of a geneti
 model (without mutation) 
onsists

of two alleles: the dominant A and the re
essive a. If both parents are type Aa

then they display the phenotype 
oded for by the dominant allele A. If ea
h parent


ontributes one allele to the 
hild then the 
hild displays the phenotype 
oded by the

dominant allele A (from AA or Aa pairings) with probability 3/4 and the phenotype


oded by a (from pairing aa) with probability 1/4.

In a model for verti
al 
ultural trait transmission, Cavalli-Sforza and Feldman

(1981) allow for a 
ultural trait to take one of two possible states, H or h, where

ea
h parent has one variant. Random mating results in the possible mother-father

pairings HH, Hh, hH and hh. For ea
h pairing there is some probability that the


hild a
quires variant h whi
h, when summed with the probability of a
quiring H,

totals unity. The probability of a 
hild being type h with parental pairing HH is

not assumed to be 0. This 
ould be due to trait mutation, thus similar to a geneti
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model with mutation, or a result of horizontal or oblique transmission, whi
h are

not 
ommon in geneti
 models (Cavalli-Sforza and Feldman, 1981). Alternatively, if

H represents having some 
ultural trait and h represents not having the trait then

the 
hild may be of type h be
ause of fa
tors whi
h a�e
t the verti
al transmission

of the trait. So
ial learning biases, su
h as a 
ontent bias, may limit the 
hild's

ability to 
opy the trait.

By determining the frequen
y of both H and h over dis
rete time steps (repre-

senting generations), equilibrium frequen
ies of both traits 
an be obtained. The

system has rea
hed equilibrium when the frequen
ies of both H and h remain the

same from one generation to the next. Equilibria may be 
lassi�ed as either sta-

ble or unstable, with the system only maintaining a stable equilibrium frequen
y.

Conditions for stability in terms of the model parameters 
an often be found, either

analyti
ally or numeri
ally. An analyti
 result was obtained by Cavalli-Sforza and

Feldman (1981) for their model. More 
omplex models for verti
al trait transmission

were investigated by Cavalli-Sforza and Feldman (1981), su
h as where assortative

(as opposed to random) mating o

urs or where the sex of the parent has a signi�-


ant e�e
t on the transmission of a trait. They then explore models whi
h assume

oblique and horizontal 
ultural trait transmission. In parti
ular, they propose the

use of a Lotka-Volterra type model to represent the adoption of a small family ideal,

where a woman 
hooses to have only a small number of 
hildren. The two variables


onsidered are the natural fertility number n and the voluntarily redu
ed fertility

number m. Unlike with the previously dis
ussed models, where traits are passed

on at ea
h generation, the adoption of a small family ideal is 
ontinuous in time

and only oblique and horizontal transmission 
an o

ur. By determining the system

equilibria, 
onditions on the model parameters 
an be found whi
h ensure that the

small family ideal either dies out or be
omes dominant pra
ti
e.

A similar approa
h to modelling 
ultural evolution was taken by Boyd and Ri
h-

erson (1985), where again mathemati
al models from population geneti
s were used

as a basis to develop theoreti
al models of 
ultural evolution. They 
onsider a di-


hotomous 
ultural trait, with individuals either displaying trait A or not trait A

(denoted by A

0

). Transmission is from a parent generation to a 
hild generation so
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both verti
al and oblique transmission 
an o

ur. Na��ve individuals in the 
hild pop-

ulation 
hoose a sample of three 
ultural parents to observe and so
ially learn from,

where linear frequen
y-dependent transmission of the 
ultural traits is assumed. If

all 
ultural parents display trait A then the 
hild will adopt A, however if the parent

generation 
onsists of, say, AAA

0

then the 
hild develops A with some probability

in (0; 1). This is dependent upon the weighted in
uen
e of ea
h 
ultural parent on

the 
hild. Analysis reveals that if the frequen
y of A in the population at time t is

p, then the frequen
y of A at time t + 1 is also equal to p.

This model is then altered to represent a nonlinear frequen
y-dependent trans-

mission bias. The probability of having i parents with trait A, where the frequen
y

of A is p, is taken to be binomially distributed. A

ounting for a transmission bias,

they �nd that, after transmission, the frequen
y of A is

p

0

= p+Dp(2p� 1)(1� p); (1.1)

where D is a parameter 
ontrolling the extent of the nonlinear frequen
y-dependent

bias. The right-hand side expression of equation (1.1), representing both 
onformist

and anti
onformist transmission, has sin
e been advan
ed, for example in Eriksson

and Coultas (2009) and Kendal et al. (2009). It is also used in the model in 
hapter

3 where trait uptake is assumed to be 
ontinuous in time, rather than o

urring at

dis
rete time steps as with the Boyd and Ri
herson (1985) model. Equation (1.1) is

not the only mathemati
al fun
tion representing a nonlinear frequen
y-dependent

bias that has been investigated; alternatives are dis
ussed in Nakahashi (2007) and

Aoki et al. (2011).

Su
h developments of population geneti
s models to 
ultural trait models demon-

strate how the abstra
t nature of mathemati
s allows for its appli
ation to a variety

of di�erent s
enarios after only minor adjustments. However, the existen
e of geneti


evolution models dire
ted the formulation of similar models for 
ultural evolution,

with 
ertain assumptions introdu
ed to ensure a �t to the pre-existing mathemati
al

framework. The assumption that biologi
al and 
ultural evolution 
an be understood

by similar me
hanisms has been questioned by Strimling et al. (2009). They argue

that a �tness index, as used in biologi
al models, is not an appropriate 
ompari-

son measure for 
ultural traits. Unlike geneti
 information, whi
h is a
quired on
e,
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ultural traits may be adopted and abandoned many times by a single individual

during their lifetime. By 
onstru
ting a model where both the propensity to adopt a

trait and the propensity to keep that trait when presented with alternative options,

the authors �nd a 
ultural su

ess index under 
ertain 
onditions. The index arises

when individuals have a suÆ
iently large number of learning opportunities, whi
h

allows them to repeatedly develop and 
hange traits, and is appli
able whether the

transmission is horizontal, verti
al or oblique. Assumptions made in the mathe-

mati
al model, for instan
e that all individuals adopt and retain traits with equal

probabilities, redu
e its a

ura
y in representing the 
omplex me
hanisms of human

so
ial learning. However, it addresses an important question of the synonymy of

geneti
 transmission me
hanisms with 
ultural trait transmission me
hanisms.

As dis
ussed in se
tion 1.3, mathemati
al modelling 
an be most e�e
tive along-

side other resear
h methods. For example, a study by Henri
h and Broes
h (2011)

into the existen
e and extent of so
ial learning biases within a small-s
ale so
iety

used both ethnographi
 observation and interviews to obtain information. Results

reported eviden
e of so
ial learning biases, in
luding biases towards 
opying individ-

uals per
eived to be su

essful or knowledgeable. Histori
al observations have also

been used to support 
ultural evolutionary theories, su
h as the 
orrelation between

la
tose toleran
e in humans and the spread of dairy farming (dis
ussed previously)

or a wave of advan
e model for farming te
hnologies (A
kland et al., 2007). If a

theory a

urately des
ribes the re
orded phenomena then it provides a plausible ex-

planation; however, su
h methods are limited by the a

ess to appropriate data sets

and be
ause often only 
orrelation rather than 
ausal relationships 
an be inferred

(Simonton, 2003). Experimental work removes this latter problem as it allows for

the 
ontrol of variables so that 
asual relationships may be derived from the results

(Simonton, 2003).

An experimental approa
h has been taken to investigate hypotheses regarding

the so
ial learning me
hanisms that a�e
ted proje
tile-point design in the Great

Basin around 300-600 AD (Mesoudi and O'Brien, 2008). The experiment tested

whether guided variation (where individuals 
opy and then modify) or indire
t bias

produ
ed results whi
h mat
hed the ar
haeologi
al data. Indire
t bias arises when
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an individual uses one trait, 
alled the indi
ator trait, to sele
t a model and then

adopts other traits displayed by this model (Bettinger, 1991). The bias is indire
t

as a preferen
e for the indi
ator trait leads to the 
hoi
e to 
opy other traits from

the same model. During the experiment, parti
ipants played a 
omputer simulated

game where they designed proje
tile points and then tested them in a virtual hunting

environment. The experiment was 
ondu
ted in di�erent phases, allowing 
ontrol

over the possible learning me
hanisms that parti
ipants 
ould use. For example,

in the �rst phase parti
ipants had to 
hoose to 
opy their point design from some

presented options so no innovation or modi�
ation was possible. This permitted

indire
t-biased so
ial learning. In the se
ond phase they 
ould 
hoose to modify

this design, allowing for guided variation.

As with mathemati
al modelling, experimental work requires 
ertain details to

be omitted. This is done to allow for 
ausal relationships to be investigated by


ontrolling 
ertain key variables. Mesoudi and O'Brien (2008) highlight that the


omputer simulation task does not 
onsider 
onstraints on the availability of raw

materials or the pro
ess of manufa
turing, both of whi
h 
ould a�e
t proje
tile point

design. Laboratory experiments 
an be 
hanged to fo
us on di�erent aspe
ts of a

problem and build up a greater wealth of knowledge. The proje
tile-point design

task was again implemented with di�erent 
onditions, allowing for a 
omparison of

results between the two studies (Mesoudi, 2008).

1.5 A review of a model for the horizontal trans-

mission of drinking behaviour

A variety of mathemati
al te
hniques have been employed to des
ribe di�erent as-

pe
ts of human behaviour, for example the kineti
 theory of a
tive parti
les (Bellomo

et al., 2009; Bellomo and Carbonaro, 2011). This method models the dynami
s of


omplex systems 
omprised of a large number of intera
ting living entities and has

been applied to opinion formation (Bellomo et al., 2009) and so
io-e
onomi
 sys-

tems (Bellomo et al., 2004). One modelling approa
h dis
ussed by Cavalli-Sforza

and Feldman (1981) 
omes from epidemiologi
al literature regarding the spread of
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infe
tious diseases and the potential appli
ation to 
ultural trait transmission. As


ultural traits 
an spread through a population from person to person, mu
h like an

infe
tious disease, the same mathemati
al te
hniques may be employed. Typi
ally

su
h models presume that a spe
i�ed 
ultural trait is so
ially learned and spread via

horizontal transmission. By 
onsidering a population of N individuals and splitting

them into distin
t 
lasses, the equilibrium frequen
ies of ea
h 
lass 
an be deter-

mined and analysed. For example, a typi
al infe
tious disease model (known as an

SIR model) 
onsists of splitting the population into three groups: those sus
eptible

to 
at
hing the disease; infe
ted individuals, who are also assumed to be infe
tious;

and re
overed individuals, who have gained immunity. If a sus
eptible meets an in-

fe
ted then there is a 
han
e that they will 
at
h the disease and therefore move to

the infe
ted 
lass. Over time an infe
ted will re
over from the disease and enter the

re
overed 
lass. The aim is to determine whether the disease is suÆ
iently infe
tious

for it to be
ome endemi
 within the population, or whether it will die out. This 
an

usually be determined from a threshold parameter known as the basi
 reprodu
tion

number, R

0

. At R

0

= 1 there is a 
hange of state, where the disease moves from

dying out to persisting within the population.

There is an in
reasing body of literature whi
h uses these te
hniques to model the

spread of health-related behaviours via so
ial intera
tion; examples in
lude smoking

(Sharomi and Gumel, 2008), drinking (San
hez et al., 2007; Benedi
t, 2007; Mu-

lone and Straughan, 2011; Walters et al., 2012), drug use (White and Comiskey,

2007; Mulone and Straughan, 2009) and eating disorders (Gonzalez et al., 2003).

Individuals prone to developing the behaviour are analogous to the sus
eptibles in

infe
tious disease models. Similarly, those displaying the behaviour 
an be viewed

as `infe
ted'. To explain and assess the e�e
tiveness of su
h models we 
onsider an

appli
ation to drinking behaviour, formulated by San
hez et al. (2007) and further

dis
ussed by Benedi
t (2007). The model assumes that a total population of N in-

dividuals 
an be split into three distin
t 
lasses: o

asional/ moderate drinkers (S);

problem drinkers (D); and temporarily re
overed individuals (R). Homogeneous

mixing of the population is assumed to o

ur, so an individual has an equal 
han
e

of meeting and being in
uen
ed by any other member of the population (horizontal
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transmission). Impli
it in this assumption is that no spatial or kinship fa
tors a�e
t

intera
tions between individuals. Figure 1.1 depi
ts the dynami
s of the system.

S D

�S

D

N

R

�D

�R

D

N

�S �D �R

�

Figure 1.1: The model for problem drinking, developed by San
hez et al. (2007).

Arrows, with 
orresponding rates, indi
ate the dire
tion of movement between the


lasses of moderate drinking, problem drinking and treatment. The parameter �


ontrols entry and exit into the modelled population.

Individuals enter the modelled population via the moderate drinking 
lass on
e

they rea
h drinking age. The assumption that the net 
ux of the system is zero

(hen
e N is 
onstant) is made to simplify the analysis. Moderate drinkers progress

to the problem drinking 
lass via a random 
opying me
hanism, i.e. at a rate pro-

portional to the frequen
y of problem drinkers within the population. This is shown

by the arrow labelled �SD=N in �gure 1.1, where � is the rate at whi
h 
onta
ts

suÆ
ient for behaviour transmission o

ur. A problem drinker may seek treatment,

and thus enter the temporarily re
overed 
lass, without so
ial in
uen
e at a �xed

rate �. This parameter 
ould represent another type of in
uen
e, for instan
e an

advertising 
ampaign highlighting the harms of ex
essive drinking.

By 
onsidering a situation where problem drinking is so rare that a treatment

programme is not required, the basi
 reprodu
tion number R

0

= �=� is 
al
ulated.

This 
omprises the average length of time spent in the system, 1=�, multiplied

by the rate �. The basi
 reprodu
tion number represents the average number of

se
ondary 
ases generated from the introdu
tion of a single problem drinker into a

wholly sus
eptible population. If R

0

> 1 then, on average, more than one se
ondary


ase o

urs and results in the development of a drinking 
ulture. When R

0

< 1 the

reprodu
tion rate is too low for this to take pla
e and problem drinking behaviour

dies out. Thus R

0

= 1 is a threshold value for a problem drinking 
ulture be
oming
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endemi
.

Analysis through 
al
ulation of R

0

is in line with many epidemiologi
al models

for disease spread where transition through the system is one-dire
tional, from sus-


eptible to infe
ted to re
overed. For problem drinking, however, relapse from the

temporarily re
overed 
lass to the problem drinking 
lass is possible, thus providing

an alternative supply of individuals to the drinking 
lass D. To a

ount for this, a

se
ond reprodu
tion value is 
onsidered. By multiplying � by the average time spent

in the problem drinking 
lass, 1=(�+ �), the reprodu
tion number with a re
overy


lass is de�ned as R

�

= �=(�+ �), where R

�

< R

0

for � > 0.

Unlike many epidemiologi
al models, the basi
 reprodu
tion number is not suf-

�
ient to determine the permanen
e of a subpopulation of problem drinkers under

all 
ir
umstan
es. Provided the initial frequen
y of problem drinkers is low, then

R

0

= 1 provides a threshold between problem drinking dying out and the behaviour

persisting. This result does not apply when the initial frequen
y of problem drinkers

is large, as the prevalen
e of problem drinking is greatly a�e
ted by the relapse rate.

For a large initial frequen
y of problem drinkers and a high relapse rate, a drinking


ulture may emerge for R

�

< 1 and is inevitable for R

�

> 1. The maintenan
e of a

drinking 
ulture even when R

�

< 1 is a result of ine�e
tive treatment programmes.

Any individuals entering treatment are unlikely to remain there for long (be
ause

of the high relapse rate) and thus qui
kly return to the problem drinking 
lass D.

This maintains a high frequen
y of problem drinkers in the population. Individuals

always enter the system as moderate drinkers; if re
ruitment from S is minimal,

indi
ated by a suÆ
iently small � value, then R

�

< 1 and eventually problem drink-

ing would die out. However, as the reprodu
tion number is not dependent upon the

relapse rate �, repopulation of the problem drinking 
lass from those in treatment


an o�set a small re
ruitment rate � so that a drinking 
ulture is maintained.

The authors 
on
lude from the model that the reprodu
tion number R

�

alone

is not suÆ
ient to predi
t the emergen
e of a drinking 
ulture. There is also a

dependen
e upon the initial state, espe
ially when the re
overy and relapse rates

are high. This represents treatment programmes whi
h are only short-term e�e
tive.

Introdu
ing su
h programmes into areas with high proportions of problem drinkers
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serves to bolster the issue by 
reating a subgroup highly sensitive to in
uen
e from

problem drinkers. Under su
h 
ir
umstan
es investing in redu
ing the initial uptake

of drinking behaviour, 
ontrolled by the value of �, is the most e�e
tive way to

ta
kle problem drinking.

A similar model by Mulone and Straughan (2011) splits the drinking 
lass into

admitting and non-admitting problem drinkers, an approa
h also used to model

bulimia nervosa (Gonzalez et al., 2003). As with the previous model, individuals

enter the system as moderate drinkers, referred to as sus
eptibles by the authors.

Through intera
tions with 
urrent problem drinkers, sus
eptibles 
an move to be-

ing a non-admitting problem drinker as, initially, they are not aware that their

behaviour is problemati
. Only after advan
ement to the admitting 
lass, through

realising that they have a drinking problem, 
an individuals enter treatment. Both

of these transitions are assumed to o

ur at 
onstant rates. Di�erent to the San
hez

et al. (2007) model, the relapse rate of those in treatment is taken to be a result

of geneti
 fa
tors rather than so
ial in
uen
e, so the 
onstant relapse rate to the

admitting 
lass is �R. The basi
 reprodu
tion number of the system is 
al
ulated,

whereby R

0

in
reasing indi
ates a move from a problem- drinking-free state to one

in whi
h it is endemi
. Using parameter estimates obtained from data for binge

drinking behaviour in the North East of England, model predi
tions indi
ate that

the behaviour will persist, plateauing when approximately 15% of the population

reside in the drinking 
lasses.

San
hez et al. (2007) a
knowledge that their model does not allow for a return

to di�erent drinking 
lasses, an issue addressed by Walters et al. (2012) by allowing

transition from the treatment 
lass ba
k to a moderate drinking state. The addi-

tional transition was introdu
ed to a

ount for the possibility of total re
overy from

problem drinking, so individuals return to what is termed as the sus
eptible 
lass

after 
ompletion of a treatment programme. By performing a sensitivity analysis of

the value R

0

, the authors 
on
lude that the most e�e
tive way to redu
e drinking is

by fo
using on redu
ing the number of sus
eptible individuals that are re
ruited to

the problem drinking 
lass, 
on
urring with the 
on
lusions of San
hez et al. (2007).

Whilst this development addresses one 
on
ern of the San
hez et al. (2007) model,
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it is still an oversimpli�
ation of the dynami
s. The primary issue is that the model

assumes that an individual who has 
ompleted treatment will be equally sus
eptible

to the in
uen
e of problem drinkers as someone that has just entered the population.

Whilst a variety of alternative models have been put forward to fo
us of di�er-

ent aspe
ts of drinking behaviour, some key underlying assumptions feature whi
h

redu
e their pra
ti
al appli
ations. For example, the level of 
onta
t between in-

dividuals is not the same for every possible pairing, so homogeneous mixing is an

over-simpli�
ation. One possible re�nement to su
h models is to introdu
e a net-

work stru
ture so that, in order for individuals to intera
t, they must be 
onne
ted

within the network. This approa
h was adopted by Gorman et al. (2006) where a

3-stage SDR al
ohol model (with 
orresponding 
lasses sus
eptible, drinkers, and

former drinkers) was implemented on a network stru
ture. Ea
h network node 
or-

responded to a lo
ation 
ontaining a subset of the total population, split into the

three 
lasses. At ea
h time step individuals 
ould move lo
ation and their 
lass

status 
ould 
hange in a

ordan
e with the des
ribed SDR dynami
s.

This type of modelling is very powerful as often analyti
 results 
an be obtained,

o�ering a 
ertain out
ome for all possible parameter 
ombinations. As a trade-o�,

many simplifying assumptions are required for su
h analysis to be possible and it

is important to tailor the model to the spe
i�
 questions of interest, highlighted

here by the variety of models dis
ussed. For example, San
hez et al. (2007) were

interested in analysing a model where so
ial in
uen
e was the driving fa
tor for

individuals to be
ome problem drinkers, where as Mulone and Straughan (2011)

and Walters et al. (2012) do not 
onsider a peer-in
uen
ed relapse term. Instead

they fo
us on alternative aspe
ts: the former on the eligibility of individuals to enter

a treatment pro
ess by admitting they have a problem, and the latter on the e�e
ts

of total re
overy from an al
ohol problem. Ideally a single model would 
onsider all

of these fa
tors and more, but analysis would then be
ome impossible. Despite this,

the modelling te
hnique does allow for population-wide information to be gained

and 
an provide 
heap and qui
k predi
tions regarding how top-down interventions

may a�e
t the system.

Chapters 2 and 3 were both motivated by the appli
ation of SIR-type models ap-
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plied to horizontally transmitted behaviours. The SARS model in 
hapter 2 extends

existing work by Mulone and Straughan (2011) to determine the e�e
t of 
omplete

re
overy from an al
ohol problem on the basi
 reprodu
tion number R

0

and the en-

demi
 equilibrium value. In 
hapter 3 an SAS model for 
ultural trait transmission

is formulated, where the transmission of the trait may be subje
t to 
onformist and


ontent biases. Whilst both models are 
onstru
ted within an SIR-type framework,

the varying 
omplexities in terms of model variables and variable parameters require

di�erent methods of analysis to be 
ondu
ted.

1.6 Mathemati
al models with spatial variation

Other developments of SIR (and similar) models have been analysed where the

variable S, I andRmay depend on more than just time. For instan
e, Murray (2003)

dis
usses an SIS infe
tious disease model where the age, a, of the individual a�e
ts

their vulnerability to 
at
hing the disease and their infe
tiousness, mathemati
ally

represented by I = I(t; a). Infe
tious disease models with a spatial dependen
e have

also been formulated. These represent the ability of individuals to move between

regions, as with the pat
hy environment ODE model by Wang and Zhao (2004),

or within a spe
i�ed region where the variables have a spatial dependen
e (Mulone

et al., 2007). For disease transmission to o

ur, an infe
ted individual must be in the

same lo
ation as a sus
eptible individual. As transmission is lo
alised, the di�usion

of infe
ted individuals is required for the disease to spread (Keeling and Rohani,

2008). This 
an be represented by a rea
tion-di�usion PDE system of equations,

as in Keeling and Rohani (2008), and similarly for an SIS model (without 
ross-

di�usion) in Mulone et al. (2007).

These rea
tion-di�usion systems have the form

�u

i

�t

= D

i

�u

i

+ f

i

(u

1

; : : : ; u

m

) (1.2)

in 
 � (0;1) for i = 1; : : : ; m. Ea
h u

i

represents a 
lass of individuals so, in

the rea
tion-di�usion SIR model (Keeling and Rohani, 2008), m = 3 as individuals


an either be sus
eptible (u

1

), infe
ted (u

2

) or re
overed (u

3

). The area in whi
h

individuals 
an traverse is represented by the domain 
, whi
h has a boundary �
.
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For a model of disease spread, 
 may represent a parti
ular 
ountry or region with

�
 de�ned by 
ountry borders or a geographi
ally boundary, as with an island.

In two spatial dimensions, u

i

= u

i

(x; y; t) and represents the density of 
lass u

i

at lo
ation (x; y) at time t. The 
hange in this density in time is 
ontrolled by a

di�usion part, D

i

�u

i

, and a rea
tion part, f(u

1

; :::; u

m

) (Kandler and Unger, 2010).

Di�usion of u

i

is 
ontrolled by the Lapla
e operator, whi
h in two spatial dimensions

is

� =

�

2

�x

2

+

�

2

�y

2

; (1.3)

and the di�usion 
oeÆ
ient D

i

. The movement of individuals is from 
rowded areas

to less populated areas whi
h, in terms of human population spread, may represent

moving to an area with a greater proportion of available or preferable resour
es, su
h

as food or shelter (Mulone et al., 2007). The 
oeÆ
ient D

i

represents the tenden
y

of individuals to move to lesser populated regions. The rea
tion term is given by

the fun
tion f

i

and des
ribes the remaining system dynami
s, su
h as population

growth or intera
tion terms between sus
eptible and infe
ted individuals.

To solve for unique solutions to PDE problems, further 
onditions must be im-

posed (Strauss, 2008). Initial 
onditions des
ribe the state of the system at time

t = 0, an example being u

i

(x; y; 0) = g(x; y) for some fun
tion g. Boundary 
ondi-

tions 
an also be imposed whi
h pla
e 
onstraints on the system at the boundary �
.

Two 
ommon types of boundary 
ondition are Diri
hlet 
onditions and Neumann


onditions. Diri
hlet 
onditions are when the fun
tion u

i

is spe
i�ed at the boundary,

for example u

i

(x; y; t) = 0 on �
. This example means that no u

i

individuals 
an

exist at the boundary of the spatial region. This may be an appropriate assumption

to make if individuals live on an island where areas at the edge are uninhabitable or

undesirable lo
ations due to environmental fa
tors. Neumann 
onditions are where

the normal derivative is spe
i�ed at the boundary. For example if �u

i

=�n = 0 on

�
, there is no 
ux a
ross the boundary �
 in the dire
tion of the outward-pointing

unit normal to the region, n. This example 
ondition means that individuals are


on�ned to stay within the region 
, be that an island or 
ountry, but they may be

lo
ated at the boundary �
. The 
hoi
e of boundary 
onditions is dependent upon

the 
hara
teristi
s of the real-world situation whi
h is being modelled.
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One of the simplest nonlinear rea
tion-di�usion equations is

�u

�t

= D

�

2

u

�x

2

+ ku(1� u); (1.4)

known as the Fisher-Kolmogorov equation (Murray, 2003). Fisher (1937) proposed

the model to represent the spread of an advantageous gene within a population

and Kolmogorov et al. (1937) analysed a more general form of the model with the

rea
tion 
omponent ku(1� u) repla
ed by a general fun
tion f(u) (Murray, 2003).

An analysis of this model and the asso
iated travelling wave solutions may be found

in Murray (2003). The Fisher-Kolmogorov equation also has appli
ations in 
ultural

evolutionary theory, su
h as in models for the evolution of both genes and 
ulture

(Aoki, 1987; Straughan, 2013a). One model 
onsiders a similar formulation for the

spread of farmers into a region populated by hunter-gatherers (Aoki et al., 1996).

Individuals 
an either be farmers (F ), hunter-gatherers (H) or hunter-gatherers who

have 
onverted to farming (C). Initially farmers are lo
alised, with the remaining

area populated by hunter-gatherers. As the farmers migrate (initially F , then F+C)

they intera
t with hunter-gatherers, resulting in some 
onversion of hunter-gatherers

to (
onverted) farmers. It is assumed that the growth rate of 
onverted farmers is

greater that that of hunter-gatherers, suggesting that a 
onversion to farming may be

advantageous to the hunter-gatherer population. The analysis presented in the paper

indi
ates that farming will dominate and hunter-gatherers will be
ome extin
t, with

the subpopulation growth rates a�e
ting whether the surviving farming population


omprises original farmers or 
onverted farmers.

The use of ODE and PDE models has been expanded to investigate the spread

of languages whi
h are in 
ompetition for speakers (Abrams and Strogatz, 2003;

Patriar
a and Lepp�anen, 2004; Pinas
o and Romanelli, 2006; Kandler and Steele,

2008). Motivated by 
urrent resear
h in this area, 
hapter 4 in
ludes a dis
ussion

of this literature and an analysis of a rea
tion-di�usion model for two 
ompeting

languages.



Chapter 2

Modelling al
ohol problems: Total

re
overy

2.1 Introdu
tion

Smith and Fox
roft (2009) report that between 1998 to 2006 there was an overall in-


rease in the proportion of individuals in Great Britain who ex
eed the re
ommended

al
ohol 
onsumption limits, in
luding a doubling of the proportion of women who

binge drink. Ex
essive al
ohol 
onsumption 
an lead to a range of negative health

and so
ial e�e
ts (House of Commons S
ien
e and Te
hnology Committee, 2012)

and it is estimated that al
ohol misuse 
osts the NHS $2.7 billion per year, with al-


ohol related hospital admissions having in
reased by 100% from 2002/03 to 2009/10

(Al
ohol Con
ern, 2011). These �gures suggest that there is an in
reasing trend of

al
ohol misuse, whi
h is resulting in 
osts to health and the e
onomy. Here we devise

a predi
tive mathemati
al model whi
h may o�er an insight into the best strategy

for ta
kling problems with al
ohol and, in parti
ular, binge drinking.

Mathemati
al models for behaviours su
h as al
oholism have been developed

from epidemiologi
al models for the spread of infe
tious diseases. One of the �rst

infe
tious disease models by Kerma
k and M
Kendri
k (1927) 
onsiders a 
onstant

population where individuals are split into those that are sus
eptible to 
at
hing

the disease (S), infe
ted individuals (I) and immune or dead individuals (R). To

maintain a 
onstant population, immune individuals and those that have died from

25
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the disease enter the removed 
lass, and so models of this form have be
ome known

as SIR models. Developments of SIR models and their extensions 
ontinue to be em-

ployed to des
ribe various s
enarios in mathemati
al epidemi
s: 
f. Murray (2003);

Wang and Mulone (2003); Wang and Ruan (2004); Wang and Zhao (2004); Boni and

Feldman (2005); Lou and Ruggeri (2007); Buonomo and La
itignola (2008); Capone

(2008); Keeling and Rohani (2008); Li et al. (2008); Ma and Li (2009); Buonomo

and Rionero (2010); Buonomo et al. (2010); Mulone et al. (2011); Rionero (2012b);

Rionero and Vitiello (2012).

Another development of su
h models has been to apply them to situations where

it is assumed that so
ial intera
tion is the key fa
tor in spreading the behaviour.

Behaviours whi
h 
an result in adverse health e�e
ts have been represented, su
h as

drinking (San
hez et al., 2007; Benedi
t, 2007; Manthey et al., 2008; Mubayi et al.,

2010; Santonja et al., 2010; Mulone and Straughan, 2011), smoking (Sharomi and

Gumel, 2008), drug use (White and Comiskey, 2007; Mulone and Straughan, 2009),

obesity (Jodar et al., 2008; Hill et al., 2010b) and eating disorders (Gonzalez et al.,

2003). Even though the models for ea
h so
ial problem may appear mathemati-


ally similar at the onset, there are fundamental di�eren
es whi
h must be 
atered

for. For example, a small intake of al
ohol may be bene�
ial to health as shown by

the J-shaped 
urve of al
ohol intake against health problems (Marmot and Brun-

ner, 1991; Kloner and Rezkalla, 2007). For smoking however, the graph of amount

smoked against health problems immediately has an in
reasing gradient, indi
ating

the detrimental e�e
t of smoking on health.

In this paper we develop a three-stage model whi
h represents the e�e
t of so
ial

in
uen
e on drinking habits, with a parti
ular interest in total re
overy. The total

population is split into sus
eptible individuals, individuals with al
ohol problems

and individuals in treatment. Sus
eptible individuals are those who do not 
onsume

al
ohol in a way de�ned to be problemati
. We refer to al
ohol problems in general

as the model is appli
able to a variety of drinking behaviours, for example depen-

dent drinkers who drink every day or binge drinkers who 
onsume many units in

one session. The pre
ise de�nitions of ea
h 
lass must be determined by the na-

ture of the behaviour being modelled, whi
h we demonstrate in se
tion 2.2.5 using
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information regarding binge drinking. We 
onsider the re
overed 
lass to represent

those re
eiving treatment. Whilst it is possible for individuals to ta
kle an al
ohol

problem without professional help, data regarding the number of individuals opting

for this approa
h is unavailable. If su
h information were to be
ome available then a


hange to the de�nition of the 
lass would perhaps be appropriate. The de�nition of

treatment may also vary depending on the nature of the problem and any asso
iated

withdrawal e�e
ts.

The three subpopulations are similar to the 
lasses de�ned in the work of San
hez

et al. (2007) (also see Benedi
t (2007)) and Mulone and Straughan (2011), however

neither of these models allow for total re
overy. San
hez et al. (2007) found that the

basi
 reprodu
tion number alone is not always the key fa
tor in 
ontrolling drinking

in the population. Mulone and Straughan (2011) extended their model by splitting

binge drinkers into those who admit that they have a problem and those that do not

admit. Using data for the north east of England, they 
on
lude that binge drinking

is sustainable in the population.

Other models, by Manthey et al. (2008); Mubayi et al. (2010) and Santonja

et al. (2010), do not 
ontain a treatment 
lass but instead split the population into

three 
lasses depending on the amount of al
ohol an individual 
onsumes. Manthey

et al. (2008) 
onsider a students' 5-year period in a university 
ampus environment,

whi
h is deemed too short for re
overy to be determined. Mubayi et al. (2010) also

fo
used on the drinking habits of students, but they were interested in assessing how

a 
hange from low to high risk drinking environments a�e
ted the transition from

sus
eptible to heavy drinker. Santonja et al. (2010) do not 
onsider a treatment


lass, despite an individual spending 50 years in the system, as the aim of the work

is to determine the health and e
onomi
 
osts of risky al
ohol 
onsumption. This is

determined by the average al
ohol intake alone, irrespe
tive of any re
overy pro
ess.

We have 
hosen to in
lude a treatment 
lass as we aim to dis
over the most

e�e
tive way to redu
e the proportion of the population in the al
ohol problems


lass. Su
h information may be useful to health professionals and poli
y makers

when devising strategies aimed at redu
ing the proportion of the population su�ering

from al
ohol problems. We also allow for individuals to 
ompletely re
over from
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their al
ohol problem. The motivation for this stems from re
ent ideas regarding

the nature of re
overy.

Best (2010) dis
usses various de�nitions of re
overy and introdu
es the 
on
ept

of re
overy 
hampions. These 
hampions are individuals who have su

essfully re-


overed from misusing al
ohol, or other similar problems, and appear as a role model

or an example of su

ess to inspire those 
urrently in treatment. The UK Drug Pol-

i
y Commission Re
overy Consensus Group report (July 2008) does not 
ontain a

pre
ise de�nition of re
overy as it is an individual pro
ess, i.e. re
overy 
annot be

given a �xed de�nition whi
h applies to the whole population as it varies depending

on the individual. Instead, a set of key prin
iples of re
overy are presented. The

report 
on
ludes that some individuals will always remain in treatment, whereas

others will feel that they are fully re
overed. To a

ommodate both these options,

we allow for individuals to move from the treatment 
lass ba
k to the sus
eptible

population at a given rate.

The model we 
onstru
t 
onsiders a population of N individuals separated into

the three sub
lasses, represented by a system of three ordinary di�erential equations.

Sus
eptible individuals, denoted by S(t) where t is time, are those without an al
ohol

problem. We assume that a sus
eptible individual develops an al
ohol problem

through intera
tions with those in the al
ohol problems 
lass, A(t). Finally an

individual may be in the treatment 
lass, R(t), from whi
h they may relapse and

hen
e return to A(t). Alternatively, an individual may remain in treatment for a

suÆ
ient length of time so that they totally re
over, at whi
h point they return

to the sus
eptible population as they are no longer experien
ing diÆ
ulties with

al
ohol.

Using stability analysis we 
al
ulate a 
riti
al threshold value, R

0

, whi
h, on
e

ex
eeded, determines that al
ohol problems will persist in the population. Sensi-

tivity analysis reveals whi
h parameter has the greatest in
uen
e on this threshold

value and thus may provide valuable insights into the most e�e
tive way of ta
kling

al
ohol misuse in the population. We then 
onsider the stability of the endemi


equilibrium solution and 
ompare our results with the 
ase where total re
overy is

not possible. Finally, we use numeri
al simulations to predi
t the future proportion
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of binge drinkers in England.

2.2 The mathemati
al model

As stated in the introdu
tion, we 
onsider a population of N individuals and split

them into three 
lasses: S(t), A(t) and R(t). The probability that a sus
eptible

individual has 
onta
t with someone in the al
ohol problems 
lass is A=N . Not all

su
h 
onta
ts will be suÆ
ient for the sus
eptible individual to develop an al
ohol

problem, so we de�ne � to be the rate at whi
h suÆ
ient 
onta
ts o

ur. This gives

us the rate at whi
h individuals move from being sus
eptible to having an al
ohol

problem as �AS=N . This sort of transmission term has been employed in modelling

drug and al
ohol problems, 
f. San
hez et al. (2007); Benedi
t (2007); Manthey et al.

(2008); Santonja et al. (2010)

Individuals may move to the re
overy 
lass by entering a treatment programme,

whi
h we assume o

urs at a 
onstant rate '. On
e in treatment, an individual 
an

either relapse or they 
an re
over. Relapsing ba
k to A(t) is also assumed to happen

at a 
onstant rate, �, whereas re
overy, and hen
e return to the sus
eptible 
lass,

is assumed to happen at a 
onstant rate 
. We assume that individuals enter and

leave the population at the same 
onstant rate �, where 1=� represents the average

length of time spent in the system. The dynami
s of this SAR system are given by

the equations

_

S = �N �

�AS

N

+ 
R� �S;

_

A =

�AS

N

+ �R � ('+ �)A; (2.1)

_

R = 'A� (� + �+ 
)R;

where the total population is given by N = S + A + R with N > 0, S � 0, A � 0

and R � 0.

To preserve the dire
tion of 
ow through the system (see �gure 2.1), we take only

positive values for the parameters �; �; '; � and 
. Following the method in Mulone

and Straughan (2011), we now introdu
e the variables s(t) = S(t)=N , a(t) = A(t)=N
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S A

�AS

N

R

�R 'A


R

�N

�S �A

�R

Figure 2.1: Flow diagram showing the movement between the three subpopulations

S(t), A(t) and R(t).

and r(t) = R(t)=N , whi
h enables us to rewrite system (2.1) as

_s = �� �as+ 
r � �s;

_a = �as+ �r � ('+ �)a; (2.2)

_r = 'a� (�+ �+ 
)r;

where 1 = s + a + r. As s = 1 � a � r, we 
an redu
e system (2.2) to the two

equations

_a = ��a

2

� �ar + (� � '� �)a+ �r;

_r = 'a� (�+ �+ 
)r: (2.3)

2.2.1 Stability analysis

We solve equations (2.3) to �nd the equilibrium points of the system, whi
h are

the problem-free solution (a; r) = (0; 0) and the endemi
 solution (a; r) = (�a; �r).

We will now analyse the lo
al stability of the problem-free equilibrium solution by


onsidering a linearisation of system (2.3) at (a; r) = (0; 0). The linearisation of

equations (2.3) around a general point (â; r̂) is given by
_
a = J(

^
a)(a�

^
a) where J
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is the Ja
obian matrix and a is the ve
tor

a =

0

�

a

r

1

A

: (2.4)

The Ja
obian matrix at the point (0; 0) is given by

J(0; 0) =

0

�

(� � '� �) �

' �(� + �+ 
)

1

A

;

whi
h has eigenvalues

�

+

=

�x

1

+

p

x

1

2

� 4y

1

2

and �

�

=

�x

1

�

p

x

1

2

� 4y

1

2

(2.5)

where

x

1

= '+ �+ 2�+ 
 � �;

y

1

= ��' + (�+ �+ 
)('+ �� �):

For the problem-free equilibrium point to be lo
ally asymptoti
ally stable we require

the real part of both eigenvalues to be negative. This is true provided x

1

> 0 and

y

1

> 0. It is suÆ
ient to 
onsider y

1

> 0 only as this 
ondition guarantees x

1

> 0

(see appendix B.1), from whi
h we determine that the inequality

�(�+ �+ 
)

�(�+ �+ 
 + ') + 
'

< 1 (2.6)

must hold for the equilibrium point to be lo
ally asymptoti
ally stable. If this

situation arises then al
ohol problems will eventually die out in the population. If

inequality (2.6) is reversed then the equilibrium solution is unstable and al
ohol

problems may persist in the population. We now de�ne the basi
 reprodu
tion

number R

0

to be

R

0

:=

�(�+ �+ 
)

�(�+ �+ 
 + ') + 
'

; (2.7)

where R

0

< 1 indi
ates stability and R

0

> 1 indi
ates instability of the problem-free

equilibrium solution.
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2.2.2 Endemi
 equilibrium solution

The se
ond equilibrium solution of system (2.3) is (a; r) = (�a; �r), where

8

>

>

>

<

>

>

>

:

�a =

�(�+ �+ 
)� �(�+ �+ 
 + ')� 
'

�(�+ �+ 
 + ')

;

�r =

'

(�+ �+ 
)

�

�(�+ �+ 
)� �(� + �+ 
 + ')� 
'

�(�+ �+ 
 + ')

;

(2.8)

and only exists for R

0

> 1. The Ja
obian of equations (2.3) at the point (�a; �r) is

J(�a; �r) =

0

�

�2��a� ��r + (� � '� �) �� ��a

' �(� + �+ 
)

1

A

(2.9)

and the 
orresponding eigenvalues are given by

e�

+

=

�x

2

+

p

x

2

2

� 4y

2

2

and e�

�

=

�x

2

�

p

x

2

2

� 4y

2

2

; (2.10)

where

x

2

= 2��a+ ��r + '+ 2�+ �+ 
 � �;

y

2

= '(��a� �) + (�+ �+ 
)(2��a+ ��r + '+ �� �):

For the equilibrium solution (�a; �r) to be linearly asymptoti
ally stable then x

2

> 0

and y

2

> 0 must hold. Appendix B.2.1 gives the 
al
ulations whi
h show that

x

2

> 0 is always true provided y

2

> 0, so to �nd the lo
al stability 
onditions we

need only 
onsider y

2

> 0. We 
an write y

2

in terms of the model parameters only

by substituting in the values for �a and �r, whi
h is shown in appendix B.2.2. From

this we �nd that the inequality y

2

> 0 
an be written as

�(�+ �+ 
)� �(�+ �+ 
 + ')� 
' > 0:

This 
an be rearranged to give

1 <

�(�+ �+ 
)

�(�+ �+ 
 + ') + 
'

;

whi
h is equivalent toR

0

> 1. From this we know that (�a; �r) is lo
ally asymptoti
ally

stable when it exists, hen
e al
ohol problems be
ome endemi
 provided R

0

> 1.

Our analysis reveals that the equilibrium point (0; 0) is lo
ally asymptoti
ally

stable for R

0

< 1, whereas (�a; �r) is lo
ally asymptoti
ally stable for R

0

> 1. We 
an
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see that the value of R

0

determines whether al
ohol problems will die out or be
ome

endemi
 in the population and so we 
onsider R

0

= 1 to be an invasion threshold

value.

2.2.3 Sensitivity analysis

Having de�ned R

0

= 1 as a threshold for the invasion of al
ohol problems, we

are now interested in whi
h model parameter has the greatest e�e
t on R

0

and

hen
e has the greatest e�e
t in determining whether al
ohol problems will per-

sist in the population. To this end, we 
al
ulate the normalised sensitivity index,

NSI = (k=R

0

)(�R

0

=�k), whi
h indi
ates how sensitive R

0

is to a 
hange in some pa-

rameter k, where normalisation allows for a dire
t 
omparison between parameters.

A negative normalised sensitivity index indi
ates that an in
rease in the parameter

value results in a de
rease in the R

0

value. As we are only interested in the magni-

tude of the 
hange to the R

0

value, we 
onsider the absolute value. The normalised

sensitivity indi
es for the parameters are

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

= 1;

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

=

�(�+ 
)(�+ �+ 
) + ��(� + �+ 
 + ')

�(�+ 
)(� + �+ 
) + ��(�+ �+ 
 + ') +G

< 1;

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

=

�'(�+ 
)

�'(�+ 
) + '(�+ 
)

2

+ �(�+ �+ 
)

2

< 1;

�

�

�

�

'

R

0

�R

0

�'

�

�

�

�

=

'(�+ 
)

'(�+ 
) + �(�+ �+ 
)

< 1;

�

�

�

�




R

0

�R

0

�


�

�

�

�

=

�
'

�
'+ 
'(�+ 
) + �(�+ �+ 
)(�+ �+ 
 + ')

< 1;

where G = 
(�+ ')(� + �+ 
) + �'(�+ 
).

From the 
al
ulations here we 
an see that R

0

is most sensitive to 
hanges in

the value of �, whi
h represents the rate at whi
h so
ial intera
tion mediates the

development of al
ohol problems. We 
an see that equation (2.7) for R

0

has the

form R

0

= 
� where


 =

(� + �+ 
)

�(�+ �+ 
 + ') + 
'

so a fa
tor � 
hange in the � value results in a fa
tor � 
hange in the value of R

0

.
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2.2.4 The e�e
t of individuals in treatment returning to the

sus
eptible population

We now 
ompare the model with the situation where movement from R(t) to S(t)

is removed, so 
omplete re
overy from an al
ohol problem is not possible. This

is a
hieved by allowing 
 = 0, resulting in the model proposed by Mulone and

Straughan (2011). We fo
us on how 
 = 0 a�e
ts the basi
 reprodu
tion number

and the endemi
 equilibrium solution. With this 
omparison we aim to highlight

any qualitative di�eren
es between the solutions of the two models.

Basi
 reprodu
tion number

The basi
 reprodu
tion number is given by equation (2.7). For the 
ase where 
 = 0

we de�ne the basi
 reprodu
tion number by

e

R

0

, where

e

R

0

=

�(�+ �)

�(�+ �+ ')

:

To study the e�e
t that 
 > 0 has on the basi
 reprodu
tion, the di�eren
e between

R

0

and

e

R

0

is 
al
ulated:

R

0

�

e

R

0

=

���'


� (�+ � + ') (�

2

+ ��+ �
 + �'+ '
)

: (2.11)

As the right-hand side of equation (2.11) is always negative, we 
on
lude that R

0

<

e

R

0

for all possible parameter values. Thus ex
luding the return to the sus
eptible


lass in
reases the average number of se
ondary infe
tions whi
h result from a single

infe
ted individual entering a wholly sus
eptible population.

As R

0

is the average number of se
ondary 
ases whi
h arise from a single infe
ted

being introdu
ed into a wholly sus
eptible population, we know that by taking 
 = 0

the average number of se
ondary 
ases in
reases. This means that a single infe
ted

individual will infe
t a greater proportion of the population when 
ompared to the


ase where 
 > 0.

Endemi
 equilibrium solution

Next we look at the 
hange to the endemi
 equilibrium solution, (�s; �a; �r). The equi-

librium value for the sus
eptible population, �s, is 
al
ulated using the expressions
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for �a and �r from system of equations (2.8) in �s = 1� �a� �r, resulting in

�s =

�(�+ �+ 
 + ') + 
'

�(�+ �+ 
)

: (2.12)

The spe
ial 
ase 
 = 0 has the endemi
 equilibrium solution (es;ea; er) with

es =

�(�+ �+ ')

�(�+ �)

;

ea =

�(�+ �)� �(�+ �+ ')

�(�+ �+ ')

;

er =

'

(�+ �)

�

�(�+ �)� �(�+ �+ ')

�(�+ �+ ')

:

To study the e�e
t that 
 has on ea
h individual 
lass, we 
ompare the solution

(�s; �a; �r) with the 
 = 0 solution (es;ea; er).

We begin by examining the sus
eptible population. The equation

�s� es =

�
'

�(�+ �)(�+ �+ 
)

is always positive, so �s > es. Hen
e, removing the possibility of total re
overy redu
es

the proportion of individuals in the sus
eptible 
lass.

For the al
ohol problems 
lass, the 
hange in the proportion of individuals in

the 
lass is not as simple as the previous 
ase. The di�eren
e between the two

equilibrium values is given by

�a� ea =


'(� � �� �� ')

�(�+ �+ 
 + ')(�+ �+ ')

:

The relationship between �a and ea is determined by the sign of the expression � �

����'. If � > �+�+' then �a > ea, so preventing a return to the sus
eptible 
lass

results in a de
rease in the proportion of the population with al
ohol problems. If

� < �+�+' the 
onverse is true so �a < ea. Finally, �a = ea only when � = �+�+'.

This expression is independent of 
, so it is possible for the two models to agree on

the proportion of al
oholi
s in the population.

For the re
overed 
lass, we �nd that

�r � er =


'F

�(�+ �)(�+ �+ 
)(�+ �+ ')(�+ �+ 
 + ')

(2.13)

where

F = ��(�+ �)(�+ �+ 
) + �(�+ �)(�+ �+ 
) + �'(�+ 
)� �'(�+ '): (2.14)
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As the denominator of the right-hand side of equation (2.13) is always positive, the

sign of �r � er depends on the numerator, spe
i�
ally on the value of F . As we are


onsidering the endemi
 equilibrium solution, the parameters are 
onstrained by the

inequality R

0

> 1. We use this information to determine that F < 0 must be true

and hen
e �r < er (see appendix B.4). Thus, removing the option of returning to

the sus
eptible 
lass results in an in
rease in the proportion of individuals in the

re
overed 
lass.

Con
lusions

Assuming that �, �, � and ' are �xed, when 
 = 0 the basi
 reprodu
tion num-

ber is in
reased, i.e. the average number of se
ondary infe
tions resulting from a

single infe
ted being introdu
ed into a wholly sus
eptible population is in
reased.

For example, we 
an 
onsider a situation where

e

R

0

= 1, thus R

0

< 1, and 
onsider

in
reasing the value of �. This in
rease instantly results in al
ohol problems be-


oming endemi
 when 
 = 0. When 
 > 0 however, we �nd that the rate at whi
h

sus
eptible individuals develop al
ohol problems may be in
reased without resulting

in al
ohol problems be
oming endemi
.

Alternatively we 
ould 
onsider R

0

as a stri
tly de
reasing fun
tion of 
. In some

situations, determined by the other parameter values, an in
rease in 
 
hanges the

stable equilibrium from the endemi
 to the al
ohol problems-free solution. In
reased


 values indi
ate that more individuals re
over from an al
ohol problem, perhaps

a
hievable by improvements to treatment servi
es whi
h dis
ourage individuals from

relapsing. An example situation is shown in �gure 2.2. When 
 = 0:550, R

0

= 1 and

the stable equilibrium moves from the endemi
 solution to the al
ohol problems-free

solution. This example highlights the importan
e in understanding the key variables

that a�e
t drinking behaviour. By 
omparing the model without total re
overy

(equating to 
onsidering 
 = 0) with the model where 
 > 0:550, we see that the

value of 
 a�e
ts the qualitative nature of the system and hen
e o�ers di�erent

predi
tions.

When 
 = 0, the endemi
 equilibrium solution has a de
reased proportion of

sus
eptible individuals and an in
reased proportion of those in treatment. This
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Figure 2.2: A 
hange in the stability of the two equilibrium solutions o

urs when

R

0

= 1 at 
 = 0:550. The �xed parameter values are � = 0:25, � = 0:3, � = 0:8 and

' = 0:1.

result is intuitive as 
 = 0 prevents individuals moving from the treatment 
lass

ba
k to the sus
eptible population. The relationship between 
 and the al
ohol

problems 
lass is not so obvious as whether there is an in
rease or a de
rease does

not depend on the value of 
, but the magnitude of the e�e
t does. Re
all that if

� < �+�+' then 
 = 0 in
reases the proportion of individuals in the al
ohol 
lass

but if � > �+ �+ ' then the proportion is de
reased.

Assuming �, � and ' are �xed, then the sus
eptible population is in
reased when


 > 0. As 
 relates to totally re
overed individuals, 
 > 0 also results in a redu
tion

in the treatment 
lass size and hen
e fewer individuals available to relapse. If � is

small then we have an in
reased number of individuals in the sus
eptible 
lass, ea
h

with only a small 
han
e of developing al
ohol problems. The only way to repopulate

A(t) is by individuals who relapse or by sus
eptible individuals developing an al
ohol

problem. By 
ombining small � with 
 > 0, the number of individuals available to

relapse is small and the 
han
e that sus
eptible individuals will develop al
ohol

problems is low. From this we 
on
lude that 
 > 0 de
reases the proportion of

individuals with al
ohol problems when � is small. Conversely, if � is large and


 > 0 then we have an in
reased number of sus
eptible individuals, ea
h with a
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large 
han
e of developing al
ohol problems, so we intuitively expe
t an in
rease in

the proportion of those with al
ohol problems in the population.

2.2.5 A model for binge drinking in England

We now estimate the parameter values based on re
ent information regarding binge

drinking in England. So
ial in
uen
e, for example through so
ial norms and peer

pressure, is often 
onsidered to play a key role in binge drinking (Gill, 2002; Fren
h

and Cooke, 2012). As our model represents the e�e
t of so
ial in
uen
e on drinking

behaviour, it is appropriate to apply it to the situation of binge drinking. We shall


onsider those who binge drink to form the al
ohol problems 
lass.

The term binge drinking has not been stri
tly de�ned. However, a

ording to

Dea
on et al. (2007), a binge drinker is usually regarded as someone who regularly


onsumes at least twi
e the guideline daily units of al
ohol during the heaviest

drinking day of the week. The UK guidelines state that binge drinking is 
onsuming

8+ units for men and 6+ units for women in a single session. It is possible that an

individual may o

asionally binge drink in a

ordan
e with these guidelines, but this

behaviour may be very rare and hen
e not indi
ative of a drinking problem. The data

available in Dea
on et al. (2007) 
onsiders one week only so may in
lude information

on infrequent binge drinkers, however it 
an be used as an upper bound when wishing

to determine the proportion of regular binge drinkers in the population.

A

ording to Jones et al. (2008), the government aims to redu
e the harm 
aused

by 18-24 year old binge drinkers so we shall restri
t our population to this age group.

In Britain binge drinking is most prevalent among young adults, though it is not

restri
ted to this age group with those that binge drink in their early 20s being more

likely to do so in their 40s than those that do not binge drink (Institute of Al
ohol

Studies, 2010). With this in mind, we argue that ta
kling the 
urrent problem of

binge drinking will not only redu
e antiso
ial behaviour and al
ohol related a

idents

now, but may also 
ontribute to redu
ing the number of individuals with al
ohol-

related illnesses and al
ohol dependen
e in the future. The 18-24 year old age group

spend a total of 7 years in the system so we take � = 1=7 = 0:143. Information

for the number of binge drinkers in treatment 
ould not be obtained so we shall
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assume that it is the same proportion as for dependent drinkers, whi
h is 6% of the

drinking population a

ording to the 2011 National Institute for Health and Clini
al

Ex
ellen
e (NICE) report. We therefore 
onsider the maximum annual probability

of entering treatment to be 0.06, whi
h we 
an 
onvert to a rate using

rate =

� ln(1� p)

t

(2.15)

where p is the probability of an event over the time period t. Using this equation

we 
al
ulate a maximum value of ' = 0:0619.

El Sheikh and Bashir (2004) report that 35% of al
oholi
s in treatment relapse

within the �rst 2 weeks and 58% within the �rst 3 months. After 4 years, 90% are

expe
ted to have relapsed (Al
ohol Relapse and Craving). We use the data for the

greatest time interval, whi
h is 4 years, as we believe this will give the most a

urate

information and use equation (2.15) to estimate � = 0:576. Best (2010) indi
ates

that an individual experien
ing a 4 or 5 year period without 
onsuming al
ohol 
an

be 
onsidered as re
overed. If 90% of individuals relapse after 4 years in treatment

then we know that 10% remain in treatment so we 
an use this in equation (2.15)

to 
al
ulate the rate of re
overy. We obtain a value of 0.0263 whi
h we then divide

a
ross a 4-year time period to give a maximum value of 
 = 0:00659. An estimate

for � is diÆ
ult to determine so we will 
onsider the minimum � value whi
h ensures

al
ohol problems be
ome endemi
 in the population, de�ned as �

min

. We �nd that

this minimum value is �

min

= 0:156, 
al
ulated using the parameter values stated

above and the equation R

0

= 1.

Dea
on et al. (2007) give the 2005 per
entages for adults that binge drink as

19.3% for males and 8.1% for females. Assuming an even sex-ratio, this averages to

13.7% of the adult population so we take an initial value of a(0) = 0:137. As we

assume that 6% of binge drinkers are in treatment we take r(0) = 0:00874.

A

ording to Smith and Fox
roft (2009), there has been an in
rease in the num-

ber of people drinking over the guideline weekly amounts from 1988-2006. We �nd

that the value �

min

= 0:156 results in a de
rease in the binge drinking population

from our a(0) value so this is not an appropriate lower bound. Instead the lowest

value we 
onsider is � = 0:2 as this results in a 
ontinuation of the trend. When a

sus
eptible individual meets a binge drinker, the likelihood that they also be
ome
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(a) � = 0:2, R

0

= 1:285,

(�s; �a; �r) = (0:778; 0:205; 0:0174)

(b) � = 0:4, R

0

= 2:571,

(�s; �a; �r) = (0:389; 0:562; 0:0480)

(
) � = 0:6, R

0

= 3:856,

(�s; �a; �r) = (0:259; 0:682; 0:0582)

(d) � = 0:8, R

0

= 5:141,

(�s; �a; �r) = (0:195; 0:742; 0:0633)

Figure 2.3: Simulations showing how the value of the parameter � a�e
ts the

endemi
 equilibrium solution. The other parameters have values � = 0:143, ' =

0:0619, � = 0:576 and 
 = 0:00659.
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a binge drinker is proportional to the value of �. As � in
reases a sus
eptible indi-

vidual is more likely to be
ome a binge drinker, so as we in
rease the value of � we

expe
t an in
rease in the proportion of binge drinkers in the population.

We now take starting values (a(0); r(0)) = (0:137; 0:00874) and parameter values

� = 0:143, ' = 0:0619, � = 0:576, 
 = 0:00659 and let � take the values 0.2, 0.4, 0.6

and 0.8. Figure 2.3 shows how the fra
tions in ea
h of the 
lasses 
hange over time

for the di�erent � values. The graphs plateau at the equilibrium solution values. It


an be seen from �gures 2.3a and 2.3b that the greatest in
rease in the proportion

of binge drinkers in the population o

urs when � 
hanges from a value of 0.2 to

0.4. This 0.2 in
rease in � results in a 
hange from 20% of the population binge

drinking to 56%. Subsequent in
reases in � do not have su
h a great e�e
t on the

proportion of binge drinkers in the population. This highlights that, for large �

values, any ina

ura
y in the estimate for � will not greatly a�e
t the results. If �

is small however, then any ina

ura
ies 
ould greatly alter the predi
ted out
ome.

Figure 2.4 shows this relationship.

Figure 2.4: Graph showing the rate of 
hange of �a with respe
t to �, where we


onsider �a to be a fun
tion of � only. As � in
reases, the rate of 
hange in �a tends

towards 0.

Figure 2.5 shows the phase portrait in the a; r-plane of the endemi
 equilibrium

solution for the model where 
 > 0 and for the 
ase where 
 = 0. The parameter
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values have been taken as above, along with � = 0:4. We know that � + � + ' =

0:7809 is greater than the value � = 0:4, so from our analysis in se
tion 2.2.4 we

expe
t taking 
 = 0 to in
rease both the equilibrium value for a(t) and r(t). Figure

2.5 shows that this is indeed the 
ase.

(a) (b)

Figure 2.5: Phase portraits showing the endemi
 equilibrium point for 
 = 0:00659

and for 
 = 0, represented by the dashed and dotted lines, respe
tively. The other

parameters take the values � = 0:143, � = 0:4, ' = 0:0619 and � = 0:576. The

triangle with verti
es (0; 0), (1; 0) and (0; 1) in �gure (a) is the boundary of the

positive invariant region D = f(a; r) 2 R

2

: a � 0; r � 0; a + r � 1g, where all

solutions lie. A proof of the positive invarian
e of D is in
luded in appendix B.3.

Figure (b) shows the behaviour of the system 
lose to the equilibrium solutions.

2.3 Dis
ussion

We have 
onstru
ted a model for al
ohol problems in a population whi
h allows

for individuals to totally re
over and return to the sus
eptible population. The

threshold R

0

= 1 was found, where R

0

< 1 indi
ates that al
ohol problems will die

out and R

0

> 1 determines that al
ohol problems be
ome endemi
 in the population.

We found that the R

0

value was most sensitive to 
hanges in the parameter �,

whi
h a�e
ts the rate at whi
h sus
eptible individuals develop an al
ohol problem.

De
reasing � results in a de
rease in the value R

0

. This indi
ates that e�orts to
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redu
e al
ohol problems in the population should fo
us on preventing sus
eptible

individuals from developing an al
ohol problem.

We 
ompared this model with the spe
ial 
ase 
 = 0, presented in Mulone and

Straughan (2011), whi
h prevents individuals from returning to the sus
eptible 
lass.

We found that taking 
 = 0 in
reased the value of the basi
 reprodu
tion number

and led to an in
rease in the proportion of re
overed individuals and a de
rease in

the proportion of sus
eptible individuals. Whether the proportion of individuals

with al
ohol problems in
reases or de
reases is not determined by in
luding total

re
overy, but the size of the 
hange is a�e
ted by the value of 
. Thus our analysis

reveals that the e�e
t of 
 on �a is not straightforward. If the situation were su
h

that � were large then totally re
overy would have an adverse e�e
t on redu
ing

al
ohol misuse in the population.

Estimates were made for the parameters using data for binge drinking in Eng-

land. We were parti
ularly interested in the e�e
t of so
ial in
uen
e on binge drink-

ing and so we 
onsidered � values in the interval [0:2; 0:8℄. Simulations using these

values revealed that any ina

ura
ies in the � value 
ould have a great e�e
t on the

proportion of binge drinkers in the population if � was small. For larger � values,

any ina

ura
ies did not have su
h a great e�e
t.

We have assumed that al
ohol abuse is the result of so
ial in
uen
e where all

individuals are equally sus
eptible to developing a problem. This does not 
over

the full range of fa
tors whi
h may a�e
t an individual's propensity to developing

a drinking problem. Experimental eviden
e from both adoption and twin studies

indi
ates that there may be a geneti
 
ontribution to the development of al
ohol

problems, resulting in some individuals being more prone to developing a problem

(M
Gue, 1999; Hi
ks et al., 2004). However, whilst geneti
s fa
tors may 
ontribute

to an individual's sus
eptibility to develop a drinking problem, so
ial fa
tors su
h

as peer group in
uen
e had an independent e�e
t on behaviour transmission (Hi
ks

et al., 2004). Geneti
 fa
tors are found to in
uen
e al
ohol dependen
e, however

binge drinking behaviour does not have a physiologi
al addi
tion asso
iated with the

behaviour so in this spe
i�
 
ase the geneti
 
ontribution may be of less importan
e

when 
ompared with peer group e�e
ts. Thus, although our model is not a 
omplete
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pi
ture, it provides a basis for further investigation into the spread of drinking

behaviour.

One model assumption is that fully re
overed individuals who have returned to

the sus
eptible 
lass have the same probability of developing an al
ohol problem for

the se
ond time as someone who has had no prior problem with al
ohol. A develop-

ment for the future would be to in
lude a fourth 
lass of fully re
overed individuals,

as in the four equation smoking model by Sharomi and Gumel (2008), rather than

assuming that they return to the sus
eptible 
lass. This would distinguish fully

re
overed individuals from sus
eptible individuals without prior al
ohol problems.

Alternatively the 
hampion e�e
t dis
ussed by Best (2010) may be better repre-

sented by assuming that those in treatment re
over be
ause of intera
tions with a

re
overy 
hampion.

Re
overy 
an be viewed as 
ontagious, as treatment su

ess is improved by the

introdu
tion of an abstinent individual in the so
ial networks of those in treatment

(Best, 2010). Community re
overy 
hampions are inspirational �gures who have ex-

perien
ed addi
tion and su

essfully 
ompleted treatment (Best, 2010). Their pos-

itive e�e
t on those in treatment may be des
ribed by model-based so
ial learning

biases: similarity bias and su

ess bias. An individual in treatment may experi-

en
e a similarity bias as the re
overy 
hampion has experien
e of addi
tion and the

diÆ
ulties of the treatment pro
ess. As the re
overy 
hampion has su

eeded in


ompleting treatment, a state whi
h the re
overing individual wishes to attain, a

su

ess bias may also be in operation.

The SARS model may be adapted to in
orporate both a totally re
overed 
lass

and re
overy 
hampions through the introdu
tion of a totally re
overed 
lass, R

T

,

and a so
ial in
uen
e term taking individuals from R to R

T

. This may be modelled

by the equations

_

S = �N �

�AS

N

� �S;

_

A =

�AS

N

+ �R � ('+ �)A;

_

R = 'A� (�+ �)R�


RR

T

N

;

_

R

T

=


RR

T

N

� �R

T

;
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with the dynami
s shown in �gure 2.6. The term 
RR

T

=N represents so
ial in
u-

en
e, where totally re
overy is dependent on those in treatment intera
ting with

fully re
overed individuals: the re
overy 
hampions. In this instan
e the re
overy


hampion e�e
t may be 
onsidered as a model-based bias, 
ombining both similarity

and su

ess biases.

S A

�AS

N

R

R

T


RR

T

N

'A

�R

T

�S �A �R �R

T

�N

Figure 2.6: An al
ohol model in
orporating a separate totally re
overed 
lass, R

T

,

whose individuals a
t as re
overy 
hampions to those in the treatment 
lass R.

The mathemati
s presented in this 
hapter o�ers a valuable insight into under-

standing patterns in drinking behaviour whi
h are a�e
ted by so
ial in
uen
e. Fu-

ture work will 
ontinue to explore mathemati
al appli
ations to the study of human

behaviours.



Chapter 3

An SIS model for 
ultural trait

transmission with 
onformity bias

3.1 Introdu
tion

Epidemiologi
al models for the spread of infe
tious diseases, known as SIR models,

have been widely resear
hed sin
e the work of Kerma
k and M
Kendri
k (1927).

The name derives from the assumed model stru
ture, 
lassifying individuals as ei-

ther sus
eptible, infe
ted or re
overed. Many variations of SIR models exist (Murray,

2003; Heth
ote, 2000; M
Callum et al., 2001; Keeling and Rohani, 2008), in
luding

SIS models where individuals 
an be either sus
eptible or infe
ted. An SIS model

for infe
tious disease spread 
onsiders how the subpopulations of sus
eptible and

infe
ted individuals 
hange in time, represented mathemati
ally by two ordinary

di�erential equations (ODEs). It is assumed that all individuals entering the pop-

ulation are sus
eptible. They may be
ome infe
ted through 
onta
t with infe
ted

individuals at a rate proportional to the frequen
y of infe
ted individuals in the

population. Infe
ted individuals re
over to the sus
eptible state at a 
onstant rate.

The assumption that infe
tion is spread through 
onta
t has led to the appli-


ation of SIS and similar models to be applied to a range of human health-related

behaviours where so
ial intera
tion a�e
ts the spread of the behaviour. Examples in-


lude models of addi
tive behaviours, su
h as smoking (Sharomi and Gumel, 2008),

drug use (Song et al., 2006; White and Comiskey, 2007; Mulone and Straughan,

46
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2009), drinking (San
hez et al., 2007; Mubayi et al., 2010; Mulone and Straughan,

2011; Walters et al., 2012), the spread of happiness (Hill et al., 2010a) and the de-

velopment of eating disorders (Gonzalez et al., 2003) or obesity (Hill et al., 2010b).

Su
h models assume that the rate at whi
h sus
eptible individuals adopt a behaviour

is proportional to the prevalen
e of the behaviour in the population. However, we

see from 
ultural evolutionary theory that this assumption may be oversimplifying

the me
hanisms involved in behaviour transmission, and that biases in transmission


an result in qualitatively distin
t model predi
tions.

Cultural evolutionary theory 
onsiders the spread and persisten
e of so
ially

transmitted traits, in
luding ideas, beliefs, behaviours and material 
ulture (Cavalli-

Sforza and Feldman, 1981; Boyd and Ri
herson, 1985; Mesoudi, 2011). A 
ultural

trait is typi
ally a
quired by some form of so
ial learning. If so
ial learning is un-

biased (random 
opying) then the probability that an individual adopts a 
ultural

trait is equal to the trait's frequen
y in the population. The assumption that trans-

mission is linearly frequen
y-dependent, i.e. unbiased, is 
ommonly applied in the

SIS model literature; 
ultural trait transmission, however, may be subje
t to a va-

riety of 
ontent or 
ontextual biases (Henri
h and M
Elreath, 2003) whi
h a�e
t

the transmission rate. Content-dependent biases arise from some intrinsi
 prop-

erty of the 
ultural trait. Su
h biases make it, for example, easier to remember

or intrinsi
ally more attra
tive than other 
ompeting traits (Ri
herson and Boyd,

2005; Mesoudi, 2011). Context-dependent biases 
an be split into model-based and

frequen
y-dependent biases (Henri
h and M
Elreath, 2003; Ri
herson and Boyd,

2005; Mesoudi, 2011). The former is where the 
hoi
e of a trait is a�e
ted by ob-

servable attributes of the 
ultural parent, for example 
opying individuals that are

per
eived to be su

essful. The latter is typi
ally where the frequen
y of the trait in

the population a�e
ts its uptake in a nonlinear fashion, su
h as a disproportionate

tenden
y to adopt the most 
ommon trait. This is termed as a 
onformist bias

whereas a disproportionate tenden
y to follow the minority is often known as an-

ti
onformist bias (E�erson et al., 2008; Eriksson and Coultas, 2009; Kendal et al.,

2009; Morgan et al., 2011).

A variety of empiri
al studies examining the extent of 
onformist bias have been
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ondu
ted, with one of the earliest �nding that parti
ipants would 
onform to the

majority viewpoint expressed by 
onfederates (As
h, 1956). This has sin
e been


riti
ised as the results do not demonstrate a disproportionate in
lination to follow

the majority and hen
e may re
e
t random 
opying (E�erson et al., 2008). By

de�ning 
onformity as an exaggerated tenden
y to follow the majority, modelled

by a sigmoidal 
urve, E�erson et al. (2008) 
ondu
ted an experiment where players

repeatedly 
hose between two te
hnologies with di�erent expe
ted, but randomly

distributed, payo�s. A subset of parti
ipants that indi
ated a 
onformist bias in

their answers to questionnaires 
opied the te
hnology 
hoi
e of aso
ial learners with

an S-shaped probability distribution, indi
ating 
onformist behaviour.

Later work by Eriksson and Coultas (2009) o�ers an alternative theoreti
al model

of 
onformity. The authors argue that the S-shaped probability 
urve originally used

by Boyd and Ri
herson (1985) is unrealisti
. Parti
ularly, the endpoints of the 
urve

mean that a na��ve individual 
annot a
quire a trait whi
h is not being displayed in

the population, nor 
an they reje
t a trait whi
h is universally expressed by the

population. Furthermore, the 
onformity threshold frequen
y, whi
h we de�ne to

be the intermediate point where the nonlinear frequen
y dependen
e 
urve meets the

linear 
urve, need not o

ur when exa
tly half of the population display the trait.

Allowing the endpoints and the 
onformity threshold frequen
y to vary produ
es

a model whi
h 
an a

ount for 
ontent-dependent biases, su
h that the attra
tion

of the trait itself may intera
t with a nonlinear frequen
y-dependent probability of

adoption. In applying their model to an experiment testing frequen
y-dependent

e�e
ts on opinion formation they found eviden
e for anti
onformist bias, suggesting

that any expression of 
onformity bias may be 
onditional (also see Morgan et al.

(2011)). Results from a series of experiments 
ondu
ted by Morgan et al. (2011)

suggest that subje
ts used 
onformist biased so
ial learning. This, however, required

a large number of demonstrators and for the individuals to have low 
on�den
e in

their ability to 
omplete the task independently. In 
ontrast, a high magnitude

of aso
ial in
uen
e resulted in a 
onformity bias where the 
onformity threshold

frequen
y was greater than a half.

In light of these �ndings, we present a mathemati
al model to examine the
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dynami
s of a 
ultural trait under 
onformist biased transmission. Results are 
om-

pared against the 
ase of unbiased so
ial transmission, before 
onsidering the e�e
t

of a variable 
onformity threshold parameter. Our analysis fo
uses on the e�e
t of

the strength of 
onformity on the existen
e and stability of equilibria. The formu-

lation is equivalent to that of an SIS model, in
luding a frequen
y-dependent rate

of trait adoption and a 
onstant rate of abandonment. The latter may re
e
t in-

dividual forgetting or the result of population-wide in
uen
es, su
h as mass media,

or e
onomi
 and environmental 
hange. The formulation also approximates 
ases

of frequen
y-dependent abandonment if this rate is very small. By way of an ex-

ample, we dis
uss how the model may apply to the 
ase of binge drinking within a

population of young adults (see se
tion 3.4).

3.2 Models for unbiased and 
onformist 
ultural

trait transmission

We begin by assuming the existen
e of a 
ultural trait A within a population of

N individuals, where trait transmission is frequen
y-dependent and abandonment

of the trait is (approximately) frequen
y-independent. Individuals within the pop-

ulation 
an be 
ategorised as type S, who do not display trait A, or type A, who

do. The time-dependent variables S(t) and A(t) represent the number of type S

and type A individuals respe
tively. We assume that all individuals enter the pop-

ulation as type S at a rate �; however, they may leave as either type at the same

rate. Type S individuals 
an only a
quire trait A through intera
tions with type A

individuals, and we assume that the transmission rate is a�e
ted by the frequen
y

of type A individuals in the population. We 
onsider the transmission rate to be

�
(A=N) where � is the rate at whi
h 
onta
t suÆ
ient for transmission o

urs. In

the unbiased so
ial learning model the fun
tion 
(A=N) represents the probability

that 
onta
t is made with a type A individual. However, in the 
ase of biased so-


ial learning, the fun
tion also in
ludes a weighting whi
h represents the 
onformist

in
uen
e. Type A individuals revert to type S at a 
onstant rate 
, although this

term also approximates the e�e
t of a so
ial in
uen
e when 
 is very small. For a
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mathemati
al justi�
ation see appendix C.2.

From this we formulate the following equations

_

S(t) = �N � �S
(A=N) + 
A� �S;

_

A(t) = �S
(A=N)� (
 + �)A;

(3.1)

where the total population N = S + A is 
onstant. Figure 3.1 represents these

dynami
s with arrows indi
ating the dire
tion of 
ow through the system. The


onstant total population results from the entering and leaving rates, �, being the

same. This simplifying assumption is made so that the system may be redu
ed to

one equation, whi
h is non-dimensionalised by introdu
ing the variables s = S=N

and a = A=N to give

_a(t) = �(1� a)
(a)� �a;

(3.2)

where � = 
 + � has been introdu
ed to simplify the mathemati
al analysis.

S A

�S



A

�S �A

�N

Figure 3.1: Pi
torial representation of the SAS model for 
ultural trait transmis-

sion, relating to equations (3.1). The nodes S and A represent the subpopulations of

type S and type A individuals respe
tively. The labelled arrows indi
ate the rate and

dire
tion of movement through the system.

We must now 
onsider the fun
tion 
(a). This fun
tion determines the frequen
y-

dependent relationship between the probability that type S individuals 
onvert to

type A and the frequen
y of type A individuals in the population. First we introdu
e

a linear frequen
y-dependent fun
tion




L

: [0; 1℄! [0; 1℄;




L

(a) = a;

whi
h gives us a model for unbiased trait transmission, resulting in the standard SIS
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model form. We then introdu
e a nonlinear frequen
y-dependent fun
tion




1

: [0; 1℄! [0; 1℄;




1

(a) = a[1 +D(2a� 1)(1� a)℄;

(3.3)

whi
h is the 
onformity fun
tion �rst proposed by Boyd and Ri
herson (1985). The


onformity 
oeÆ
ient D 2 (0; 1℄ 
ontrols the strength of the bias. The value D = 0

is not 
onsidered as this would result in the linear fun
tion 


L

. We see from �gure

3.2 that 


1

is an appropriate fun
tion to represent a 
onformity bias as its sigmoidal

shape ensures that all individuals have a disproportionate tenden
y to follow the

majority. When the frequen
y of type A individuals in the population is less than

a half, so a < 1=2, the probability of type S adopting trait A is P (adopting A) < a.

When the frequen
y of type A individuals is greater than a half then a > 1=2 and

P (adopting A) > a. We refer to a

e

= 1=2 as the 
onformity threshold frequen
y

as this is where P (adopting A) = a, i.e. where the linear and nonlinear frequen
y-

dependent 
urves meet.

The 
riteria for an appropriate 
onformity fun
tion are that exa
tly one saddle

point and no lo
al extrema must exist in the region (0; 1) and, initially, symmetry

about the point (1/2, 1/2). More 
omplex real fun
tions, su
h as higher order

polynomials or trigonometri
 fun
tions, 
an also satisfy these 
riteria; however, they

may then be lo
ally approximated to a 
ubi
 polynomial fun
tion. As a result, the

behaviour of su
h systems pertaining to existen
e and stability of equilibria will be

qualitatively similar to the results presented here. Pre
ise relationships between

the parameters and the 
onformity 
oeÆ
ient will, however, vary depending on the

behaviour of the 
hosen 
onformity fun
tion with respe
t to the 
oeÆ
ient D.

We begin by analysing the linear frequen
y-dependent SIS model whi
h is 
on-

stru
ted from equation (3.2) using the linear fun
tion 


L

to give

_a(t) = �a(1� a)� �a:

(3.4)

As equation (3.4) is not analyti
ally solvable we look for equilibrium solutions, whi
h

are values of a whi
h satisfy _a(t) = 0, and analyse their stability. On
e a stable equi-

librium is rea
hed, the proportion of type A individuals in the population remains


onstant in time and hen
e we 
an determine the prevalen
e of trait A within the
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ae =
1
2
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adopting trait A

Figure 3.2: Plot of the fun
tions 


L

(bold) and 


1

, given by equations (3.2) and

(3.3) respe
tively, with 
onformity strength values D = 0:7 (dot-dashed) and D = 1

(dashed). As the strength of the 
onformist tenden
y (D) in
reases, so does the


on
avity of the 
onformity 
urve 


1

. Consequently, as D in
reases, the probability

of adopting trait A de
reases for a < 1=2 and in
reases for a > 1=2.

population. To ensure that the model provides realisti
 predi
tions we seek feasible

solutions 
hara
terised as those whi
h are unique and lie in the interval [0; 1℄. As

we are interested in solutions for a we rewrite equation (3.4) as a fun
tion of this

variable, giving

f

L

(a) = a[�(1� a)� �℄:

(3.5)

Solving f

L

= 0 results in two equilibrium solutions: �a

L

0

= 0, whi
h is feasible for all

parameter values, and �a

L

1

= (� � �)=�, whi
h is feasible for � < �.

We now look at equation (3.2) with 
onformity fun
tion 


1

whi
h gives

_a(t) = �a(1� a)[1 +D(2a� 1)(1� a)℄� �a:

(3.6)

This 
an be written as _a = af

1

(a) where we see that �a

1

0

= 0 is an equilibrium

solution whi
h always exists, independent of the values of �, � andD. The remaining

equilibrium solutions are the roots of

f

1

(a) = �(1� a)[1 +D(2a� 1)(1� a)℄� �

(3.7)

whi
h 
an be found expli
itly, but their 
omplexity makes further analysis diÆ
ult.

By using properties of the fun
tion f

1

it is possible to determine the number and
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nature of equilibrium points under 
ertain 
onditions. The 
ubi
 polynomial f

1

has

leading 
oeÆ
ient 2�D > 0, so it always has one real root, and f

1

(a) ! �1 as

a! �1. The roots of f

0

1

(a) = �(6Da

2

� 10Da+ 4D � 1) give the lo
al maximum

and lo
al minimum of f

1

whi
h are

a

1

�

=

5

6

�

1

6

r

D + 6

D

and a

1

+

=

5

6

+

1

6

r

D + 6

D

respe
tively. The verti
al inter
ept o

urs at f

1

(0) = �(1�D)� �.

The parameter � only o

urs in the 
onstant term of equation (3.7) so serves

to shift the graph of f

1

down the verti
al axis as it in
reases; thus we know that

the limiting 
ase of � = 0 maximises the fun
tion. This observation leads us to

introdu
e

g

1

(a) = �(1� a)[1 +D(2a� 1)(1� a)℄

(3.8)

whi
h is equal to the fun
tion f

1

in the limiting 
ase of � = 0 and hen
e has the same

turning points as f

1

. The dire
t 
al
ulation of the turning points reveals g

1

(a

1

�

) > 0

and g

1

(a

1

+

) < 0, where a

1

�

< 1 < a

1

+

, so g

1

has three real roots whi
h are a = 1,

a 2 (�1; a

1

�

℄ and a 2 [a

1

+

;1). Consequently f

1

(a

1

+

) < 0 and f

1

has three real roots

for suÆ
iently small �; however, the root lying in [a

1

+

;1) is never feasible as a

1

+

> 1

and is therefore disregarded. For the remaining two roots to exist and be unique we

require � < g

1

(a

1

�

), shown by the shaded region in �gure 3.3a, where

g

1

(a

1

�

) =

�

54

"

9 +D + (6 +D)

r

6 +D

D

#

:

This existen
e 
ondition allows us to determine the form of the a
tual solutions,

whi
h are shown in appendix C.1.

The feasibility of the remaining solutions, de�ned as �a

1

1

2 (�1; a

1

�

) and �a

1

2

2

(a

1

�

; 1), must be determined when they exist. As we already have the equilibrium

solution �a

1

0

= 0 we require �a

1

1

and �a

1

2

to lie in (0; 1℄ for the equilibrium points to be

unique. By 
onsidering the sign of a

1

�

, whi
h determines the lo
ation of the lo
al

maximum of f

1

, we 
onstru
t two 
ases: D 2 (0; 1=4℄ andD 2 (1=4; 1℄, 
orresponding

to a

1

�

� 0 and a

1

�

> 0 respe
tively. In the �rst 
ase �a

1

2


an be feasible, whi
h o

urs

when the verti
al inter
ept is positive. This provides the 
ondition � < �(1 � D).

For the se
ond 
ase, �a

1

2

is feasible for � < g

1

(a

1

�

) (i.e. for when it exists), and �a

1

1

is
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feasible for �(1�D) < � < g

1

(a

1

�

) whi
h is where the verti
al inter
ept is negative

and the turning point is positive. These 
ases are shown in �gure 3.3.

(a)

a-
1

g1Ia-1M

Β(1−D)

a+
1-0.5 0.5 1.0 1.5

a

-0.6

-0.4

-0.2

0.2

0.4

(b)

Β(1−D)

-0.5 0.5 1.0
a

-0.2

0.2

0.4

0.6

0.8

Figure 3.3: (a) The shaded region is the area bounded above and below by the


urves g

1

(a) (equation (3.7)) and f

1

(a) (equation (3.8)) respe
tively, where � = 0:8,

D = 0:7 and � = g

1

(a

1

�

) = 0:451. For f

1

in the limiting 
ase of � = 0 (equivalent to


urve g

1

) only one root is feasible (a = 1, whi
h is independent of � and D). As the

value of � in
reases the two leftmost roots tend toward a = a

1

�

= 0:318. The 
entral


urve, with � = �(1 � D) = 0:24, highlights where two equilibria be
ome feasible.

Eventually, when � = g

1

(a

1

�

), both of these equilibria 
ease to exist.

(b) The shaded region is bounded by the 
urves g

1

(a) and f

1

(a) with � = 0:8, D =

0:13 and � = �(1�D) = 0:696. As the value of � in
reases, the only feasible solution

de
reases away from a = 1 toward a = 0, at whi
h point it be
omes unfeasible. This

situation where only one equilibrium is feasible arises for D 2 (0; 1=4℄, unlike the

s
enario of (a) where two feasible solutions may exist and D 2 [1=4; 1).

3.2.1 Stability Analysis

To determine the lo
al stability of an equilibrium solution we 
onsider the system


lose to the equilibrium point and linearise around this point. For a fun
tion F (a)

and equilibrium point �a we 
onsider F (�a + a) where a is small. Linearising around

the point �a gives

F (a) = aF

0

(�a) +O(a

2

)
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as F (�a) = 0, so 
lose to the equilibrium point we have F (a) = ka for k 2 R 
onstant.

In our system, linearising results in an ODE of the form _a = ka whi
h has solutions

a(t) = Ke

kt

for K 2 R 
onstant. For asymptoti
 stability we require k < 0 as this

ensures that the solution de
ays with time.

For the unbiased so
ial learning model, equation (3.5), linearising gives

f

L

= (� � �� 2��a)a

so �a

L

0

and �a

L

1

are asymptoti
ally stable for � > � and � < � respe
tively. For the


onformist biased model, equation (3.6), the 
ondition for asymptoti
 stability is

f

1

(�a) + �af

0

1

(�a) < 0 where f

1

(�a) = 0 for �a 6= 0 and

�af

0

1

(�a) = ��a(6D�a

2

� 10D�a+ 4D � 1):

From this we know that �a

1

0

is asymptoti
ally stable for � > �(1�D). Asymptoti


stability of the remaining feasible solutions requires f

0

1

(�a) < 0 whi
h is true provided

�a 2 (a

1

�

; a

1

+

), so �a

1

1

is never stable and �a

1

2

is always asymptoti
ally stable. These

results are summarised in table 3.1.

Model 
omparison

We now identify how a 
onformity bias a�e
ts the persisten
e of trait A in the

population 
ompared with the linear 
ase. Re
all that � = �+ 
 was introdu
ed to

simplify the analysis, so any interpretation of � requires an understanding of how �

and 
 behave. As we are interested in the proportion of type A individuals in the

population we 
onsider the 
ow to and from this subpopulation, shown in �gure 3.1.

Flow into A is only a�e
ted by the parameter � and 
ow out of A happens

at rate � + 
, so � is the rate that individuals leave A. By 
onsidering � �xed

a
ross both the linear and nonlinear frequen
y-dependent models we 
an de�ne

threshold values of � required for type A individuals to persist in the population.

In the linear frequen
y-dependent model the threshold value is �

L

= �. In the

nonlinear model the threshold is di�erent as it depends upon the strength of the


onformist tenden
y. The threshold value is �

1

N

= �=(1� D) so, for very small D,

the linear and nonlinear threshold values are approximately equal. As the strength
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M
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6

Feasible Asymptoti
ally Stable Unstable

Linear �a

L
0

Always � > � � < �

�a

L
1

� < � � < � |

�a

1
0

Always � > �(1�D) � < �(1�D)

D 2 (0; 1=4℄ �a

1
1

Never | |

�a

1
2

� < �(1�D) � < �(1�D) |

�a

1
0

Always � > �(1�D) � < �(1�D)

D 2 (1=4; 1℄ �a

1
1

�(1�D) < � < g

1

(a

1
�

) | �(1�D) < � < g

1

(a

1
�

)

�a

1
2

� < g

1

(a

1
�

) � < g

1

(a

1
�

) |

Table 3.1: For the linear frequen
y-dependent model the stability of the equilibria swit
hes when the rate of transmission (�) is equal

to the rate of leaving the type A 
lass (�). When the leaving rate is greater, � > �, trait A dies out. When � < � however, trait A

persists. For a 
onformity strength D 2 (0; 1=4℄ the stability of the zero solution and endemi
 solution swit
hes when � = �(1�D),

that is where the rate of leaving A is equal to the transmission rate, subje
t to a 
onformity e�e
t. This threshold is greater than the

linear 
ase so a larger transmission rate � is required for trait A to be
ome endemi
. For an in
reased 
onformity strength (D > 1=4)

a bistable state exists where the equilibrium attained is dependent upon the initial frequen
y of type A individuals.
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of 
onformity in
reases so does the threshold value; thus �

1

N

> �

L

. This indi
ates

that when there is a 
onformity bias a
ting within a population, the 
onta
t rate

� must be greater than in the linear 
ase for trait A to be
ome endemi
 within

the population. This is demonstrated by simulation results, summarised in table

3.2 (se
tion A), where in
reasing the value of � results in the endemi
 equilibrium

solution be
oming feasible and stable for a linear frequen
y-dependent relationship,

but not with a nonlinear one. Se
tion B of table 3.2 shows that, as the 
onformity

strength in
reases, a larger value of � is required for the endemi
 equilibrium solution

to be
ome feasible. This indi
ates that 
onformity e�e
ts suppress the spread of

trait A, whi
h is intuitive as initially type A individuals are rare in the population

so 
onformity a
ts against them, instead favouring type S individuals.

When D > 1=4, there exists a se
ond threshold value. For trait A to persist

in the population without any dependen
e on the initial frequen
y of type A indi-

viduals then the threshold value remains as �

1

N

> �

L

. This 
orresponds to when

the equilibrium solution �a

1

2

is feasible and stable whereas �a

1

1

is not feasible. As D

in
reases so does the threshold value, though it is unde�ned at D = 1. This indi-


ates that when 
onformity strength is at its maximum, it is not possible to have a


onta
t rate whi
h is suÆ
iently large to over
ome the propensity to 
onform. Trait

A, therefore, 
annot be
ome endemi
 in this s
enario. By introdu
ing a se
ond

threshold, �

1

M

= �=k

1

(D) where

k

1

(D) =

1

54

"

9 +D + (6 +D)

r

6 +D

D

#

;

trait A may be
ome endemi
. Using the extreme values of D we 
an bound k

1

(D)

from above by k

1

(D) < 45=54 < 1 and therefore �

1

M

> �

L

, so again the threshold

value for the 
onformity model is greater than that of the unbiased so
ial learning

model. We also see from �gure 3.3a that �(1�D) < g

1

(a

1

�

) = �k

1

(D) and therefore

1=k

1

(D) < 1=(1 � D) so �

1

M

< �

1

N

. This lower nonlinear threshold value means

that trait A 
an be
ome endemi
 in the population even when D = 1, dependent

upon the initial state. We know from our stability analysis (se
tion 3.2.1) that the

system 
an have two asymptoti
ally stable solutions, �a

1

0

and �a

1

2

, so the solution that

is rea
hed depends on the initial frequen
y of type A individuals in the population.
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By de�ning t

0

= 0 then for a(t

0

) < �a

1

1

trait A 
annot persist in the population and

for a(t

0

) > �a

1

1

it be
omes endemi
. This shows that beginning with very few type

A individuals means it is likely that trait A will die out in the population. If at t

0

there was, for example, some major environmental 
hange leading to a suÆ
iently

large number of individuals be
oming type A, then trait A would persist in the

population. Table 3.2, se
tion C, gives an example of where the two equilibrium

solutions are feasible and stable for suÆ
iently large 
onformity strength, 
ompared

to the model with a weaker 
onformity strength.

3.3 Model for 
onformist 
ultural trait transmis-

sion with varying 
onformity threshold

We now generalise our model further by allowing the threshold value a

e

to vary away

from 1=2, whi
h 
ould indi
ate a 
ontent bias a
ting in the population. We use the


onformity fun
tion




2

(a) = a[1 +D(2a� �)(1� a)℄ (3.9)

whi
h produ
es an asymmetri
 sigmoidal 
urve. The threshold value is a

e

= �=2

where � 2 (0; 2), but restri
tions must be pla
ed on the 
onformity 
oeÆ
ient D to

ensure that 


2

is monotone in
reasing on [0; 1℄. This is a
hieved by 
onsidering the

lo
al minimum and lo
al maximum of 


2

,

~a

�

=

2 + �

6

�

p

D

2

�

2

� 2D

2

� + 4D

2

+ 6D

6D

and

~a

+

=

2 + �

6

+

p

D

2

�

2

� 2D

2

� + 4D

2

+ 6D

6D

respe
tively, where we require ~a

�

� 0 and ~a

+

� 1. This gives 
onditions D � 1=�

and D � 1=(2 � �). As MaxfDg = 1, the �rst 
ondition does not always hold for

� 2 (1; 2) and the se
ond for � 2 (0; 1). For example, when � = 1=2 then D � 2=3

whi
h is a stri
ter 
ondition on D than we desire. To eliminate this problem we

restri
t D so that D 2 (0; 1=(2� �)) for � 2 (0; 1℄ and D 2 (0; 1=�) for � 2 (1; 2).
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A B C D

Fun
tion 


L




L




1




L




1




1




1




1




2




2




2

� 0.2 0.27 0.27 0.3 0.3 0.3 0.45 0.45 0.45 0.45 0.45

D | | 0.1 | 0.1 0.7 0.1 0.7 0.0.7 0.7 0.7

� | | | | | | | | 0.6 1 0.2

Stable Solution 0 0.741 0 0.167 0.103 0 0.441 0 or 0.380 0.515 0 or 0.380 0

Table 3.2: Table showing simulation results for di�erent parameter values, with � = 0:25 �xed. The stable solution is the frequen
y

of type A individuals in the population on
e the system has rea
hed equilibrium, where all values are to three signi�
ant �gures.

A: Comparison between the linear frequen
y-dependent fun
tion 


L

and the 
onformity fun
tion 


1

highlighting the e�e
t of the

transmission rate � on the stability of an endemi
 equilibrium (a > 0).

B: For a �xed transmission rate �, the linear frequen
y-dependent model results in a higher frequen
y of type A individuals in the

population than the 
onformity model. Provided that the 
onformity strength D is large enough, an endemi
 equilibrium will not be

rea
hed and type A individuals will always die out.

C: For 
ertain parameter values, an in
rease in the 
onformity strength will result in a bistable system. In the example given, a

threshold exists at a(0) = 0:258. For an initial frequen
y of type A individuals greater than 0:258, trait A will be
ome endemi
 within

the population with approximately 38% displaying the trait at equilibrium. For an initial frequen
y of type A individuals less than

0:258 the trait will eventually die out.

D: The e�e
t of a 
ontent bias, 
ontrolled by � in 
onformity fun
tion 


2

, is investigated. As the value of � in
reases, the persisten
e

of type A individuals �rst be
omes dependent on their initial frequen
y before be
oming impossible.
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Figure 3.4a shows the fun
tion for � 2 (0; 1℄ where the interse
tion point a

e

lies in the interval (0; 1=2℄. This represents a situation where less than half of the

population displaying trait A is suÆ
ient for a na��ve individual to be more likely to

take up trait A than in the linear 
ase. Figure 3.4b shows the fun
tion for � 2 (1; 2)

and a

e

2 (1=2; 1). Here, more than half the population must display trait A in order

for the probability of behaviour uptake to be greater than in the linear 
ase. An

in
rease in the value of � represents an in
reased aversion to adopting trait A. As

with the previous 
onformity fun
tion 


1

, an in
rease in the 
onformity strength D

in
reases the 
on
avity of 
onformity fun
tion 


2

.

The nonlinear frequen
y-dependent SIS model with variable threshold point � is

_a(t) = �a(1� a) [1 +D(2a� �)(1� a)℄� �a; (3.10)

formed from equation (3.2) and the 
onformity fun
tion 


2

. We analyse this model

by pro
eeding as in se
tion 3.2, beginning by de�ning f

2

(a), where _a = af

2

(a) so

that the equilibrium solutions are �a

2

0

= 0 and the roots of

f

2

(a) = �(1� a) [1 +D(2a� �)(1� a)℄� �:

The fun
tion f

2

has distin
t turning points

a

2

�

=

4 + �

6

�

1

6

r

(2� �)

2

+

6

D

and a

2

+

=

4 + �

6

+

1

6

r

(2� �)

2

+

6

D

and verti
al inter
ept f

2

(0) = �(1� �D)� �. Taking the limiting 
ase of � = 0 we

introdu
e the fun
tion

g

2

(a) = �(1� a) [1 +D(2a� �)(1� a)℄

and dire
t 
al
ulation reveals that g

2

(a

2

�

) > 0 and g

2

(a

2

+

) < 0 where a

2

�

< 1 and

a

2

+

> 1. Hen
e g

2

has roots a 2 (�1; a

2

�

), a = 1 and a 2 (a

2

+

;1) so f

2

has three

roots for suÆ
iently small �. One of the roots is never feasible so we ignore it. For

the three solutions to exist the 
ondition � < g

2

(a

2

�

) must hold where

g

2

(a

2

�

) =

�

54

"

9(2� �) +D(2� �)

3

+ (6 +D(2� �)

2

)

r

6 +D(2� �)

2

D

#

:

As before, we 
an now determine the form of the exa
t solutions, shown in appendix

C.1.
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To determine the feasibility of the two roots �a

2

1

2 (�1; a

2

�

) and �a

2

2

2 (a

2

�

; 1),

the sign of a

2

�

must be 
onsidered, where a

2

�

� 0 gives the 
ase D � 1=(2 + 2�).

Only �a

2

2

is ever feasible given � < g

2

(0), where g

2

(0) = �(1 � �D) is the verti
al

inter
ept. When D > 1=(2 + 2�) both solutions 
an be feasible if � < g

2

(a

2

�

) for �a

2

2

and g

2

(0) < � < g

2

(a

2

�

) for �a

2

1

.
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0.8

1.0

Figure 3.4: The �gures show the fun
tions 


L

(equation (3.2), bold) and 


2

(equa-

tion (3.9)) with D = 1 and (a) � = 0:5 (dot-dashed), � = 0:85 (dashed) and (b)

� = 1:15 (dashed), � = 1:5 (dot-dashed). When more than �=2 of the population

display trait A, the probability of uptake is greater than that of the linear 
ase. As

the value of � in
reases, the probability of adopting trait A redu
es, representing a


ontent bias whi
h dissuades individuals from adopting the trait. The probability of

adopting trait A is (a) greater than for the fun
tion 


1

(equation (3.3), �gure 3.2)

when � < 1 and (b) less than 


1

when � > 1.

Stability Analysis

Following the method of linearisation from se
tion 3.2.1 we �nd that the 
ondition

for asymptoti
 stability of an equilibrium solution of equation (3.10) is f

2

(�a) +

�af

0

2

(�a) < 0. The equilibrium solution �a

2

0

is asymptoti
ally stable for � < g

2

(0) and

the stability of the remaining two solutions requires f

0

2

(�a) < 0, whi
h 
orresponds

to solutions lying in the interval (a

2

�

; a

2

+

). Hen
e we �nd that a feasible �a

2

2

is always
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asymptoti
ally stable and a feasible �a

2

1

is never stable. The feasibility and stability


onditions for the equilibrium solutions are summarised in table 3.3.

Model 
omparison

As in se
tion 3.2.1, we 
an de�ne threshold values of � for whi
h the stable equilib-

rium 
hanges from being trait-A-free to the trait persisting in the population. We

�rst 
onsiderD � 1=(2+2�) and de�ne the threshold value to be �

2

N

= �=(1��D) so

�

2

N

> �

L

. For � < 1 we have �

2

N

< �

1

N

, whi
h is an intuitive result when 
omparing

the 
urves 


1

and 


2

. De�ning the distan
e between these two 
urves as

d(a) = 


1

� 


2

= D(� � 1)a(1� a)

then d < 0 for � < 1 whi
h signi�es that P( adopting A j


2

) > P( adopting A j


1

).

Hen
e, for some �xed a value, the probability of adopting trait A is greater when we

take 
onformity fun
tion 


2

. The threshold value �

2

N

is lower than �

1

N

as, for ea
h

individual 
onta
t, the probability of transmission is greater than with 


1

and hen
e

fewer 
onta
ts are required for trait A to be
ome endemi
. For � > 1 the 
onverse is

true, whereby d > 0 and hen
e P( adopting A j


2

) < P( adopting A j


1

). The e�e
t

of � is shown in table 3.2, se
tion D, where the other parameter values are �xed.

When � = 0:7 the endemi
 solution is feasible so type A individuals will persist in

the population. Comparing this with the previous model (whi
h is equivalent to

� = 1) we see that the persisten
e of type A individuals is not 
ertain but depends

on the initial state. A further in
rease to � = 1:2 results in trait A dying out within

the population, owing to the 
hange in the 
onformity bias e�e
t.

When D > 1=(2 + 2�) the threshold �

2

N

is de�ned for �D 6= 1. As with the

previous 
onformity model, a se
ond threshold exists where trait A persisting in the

population is dependent upon initial state. This threshold is �

2

M

= �=k

2

(D) where

k

2

(D) =

1

54

"

9(2� �) +D(2� �)

3

+ (6 +D(2� �)

2

)

r

6 +D(2� �)

2

D

#

and �

2

M

< �

2

N

. Again this threshold value in
reases with � so �

2

M

< �

1

M

when � < 1

and �

2

M

> �

1

M

for � > 1.
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Feasible Asymptoti
ally Stable Unstable

�a

2
0

Always � > �(1� �D) � < �(1� �D)

D 2 (0; 1=4℄ �a

2
1

Never | |

�a

2
2

� < �(1� �D) � < �(1� �D) |

�a

2
0

Always � > �(1� �D) � < �(1� �D)

D 2 (1=4; 1℄ �a

2
1

�(1� �D) < � < g

2

(a

2
�

) | �(1� �D) < � < g

2

(a

2
�

)

�a

2
2

� < g

2

(a

2
�

) � < g

2

(a

2
�

) |

Table 3.3: For D 2 (0; 1=4℄ the stability of the zero and endemi
 solutions swit
hes at � = �(1��D). This is where the leaving rate

is equal to the transmission rate, modi�ed by a 
ombined 
onformity and 
ontent bias term. The value of �, representing a 
ontent

bias, a�e
ts the magnitude of variation between this threshold and the threshold asso
iated with 
onformity fun
tion 


1

(see table 3.1

for 
omparison). As with the previous 
onformity model (se
tion 3.2), in
reasing the 
onformity strength (D > 1=4) allows for a

bistable solution where the initial frequen
y of type A individuals a�e
ts their long-term survival.
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3.4 Dis
ussion

Our analysis reveals that varying the 
onformity threshold frequen
y a

e

a�e
ts the

� value required for 
ultural trait A to be
ome endemi
 in the population, where �

represents the average rate of 
onta
ts suÆ
ient for transmission of 
ultural trait A.

Lowering a

e

results in an in
reased probability of adopting trait A for some �xed a

value, and hen
e lowers the threshold value of � whi
h is required for the trait to

persist. In 
ontrast, � must be large for this to o

ur when a

e

is high.

Morgan et al. (2011) found that an in
reased 
onformity threshold frequen
y was


onsistent with strong 
on�den
e in information a
quired aso
ially. Here we have

a similar asymmetri
 
onformity fun
tion, but without requiring aso
ial learning.

Instead, the value of the 
onformity threshold frequen
y 
oeÆ
ient � may 
apture

the intera
tion of a 
ontent bias with 
onformity bias. For instan
e, the 
onformity

threshold frequen
y for an attra
tive 
ultural trait may be smaller than that of a

trait not in possession of the same intrinsi
 appeal. Our analysis shows that the

value of � 
an a�e
t the 
onditions for trait A extin
tion.

The e�e
t of a 
ontent bias on so
ial transmission may, however, be more 
omplex

than simply altering the 
onformity threshold. A 
ontent bias may also a�e
t the

value of the adoption and abandonment rates, � and 
. For example, a trait that

is highly attra
tive or salient would have a high rate � at whi
h 
onta
t suÆ
ient

for transmission o

urs. From the results of our 
onformity model, we 
an see that


ontent bias a�e
ting � will alter the unfeasibility of an endemi
 equilibrium for a

given 
onformity bias strength D.

Eviden
e from E�erson et al. (2008) and Morgan et al. (2011) suggests that some

individuals will exhibit 
onformist bias under 
ertain 
ir
umstan
es whereas others

will not. An extension to the work here would be to 
onsider the spontaneous uptake

of trait A to a

ount for some of this variation. This development would remove the

trait-free equilibrium and a�e
t the initial trait frequen
y whi
h, we have shown in

our 
urrent model, 
an have important 
onsequen
es, su
h as when 
onformity bias

is strong and the system is bistable.

The general models presented here 
an be applied to health-related behaviours

and thus provide an extension to the existing epidemiologi
al literature, some of
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whi
h was dis
ussed in se
tion 3.1. One possible appli
ation 
ould be to model the

drinking habits of young people in the U.K. Al
ohol 
onsumption within this age

group is predominantly binge drinking (Institute of Al
ohol Studies, 2010, 2013),

whi
h is de�ned as drinking 8+ units for men and 6+ units for women in one

drinking session (Dea
on et al., 2007). Eviden
e suggests that peer group in
uen
e

is a major 
ontributor to an individual 
hoosing to binge drink (Fren
h and Cooke,

2012; Institute of Al
ohol Studies, 2013), so su
h behaviour 
ould be 
onsidered

to be driven by so
ial learning with a likely 
onformist bias. Our model does not

assume di�erential mortality as the long term health e�e
ts of al
ohol misuse are

unlikely to develop within the modelled times
ale. Instead, young adults are likely

to leave the modelled population at rate � as a result of lifestyle 
hanges su
h as

movement out of a student 
ommunity, or starting a family. For example, Seaman

and Ikegwuonu (2010) found that young adults in the U.K. were more likely to

moderate their drinking when be
oming parents.

The frequen
y-independent term 
 may represent reversion resulting from ex-

posure to governmental or mass media 
ampaigns to abstain from binge drink-

ing, while assuming any frequen
y-dependent in
uen
e of sus
eptible individuals on

binge drinkers is small by 
omparison. The e�e
t of top-down impositions, su
h

as al
ohol minimum pri
ing or the redu
tion of sweet-tasting or otherwise attra
-

tive al
oholi
 drinks, on binge drinking may be predi
ted. Su
h s
enarios may be

modelled by altering the reversion rate 
 and the value of the 
onformity threshold

through � to introdu
e a 
ontent bias into the system. This may provide an initial

indi
ator as to the potential su

ess of proposed strategies to redu
e the prevalen
e

of binge drinking within the young adult population.

If appropriate data were obtained then it may be possible to determine whether

a biased or unbiased so
ial learning model is most representative of the real-world

situation. On
e this is understood, 
omparisons between the a
tual situation and

ideal s
enario predi
tions may be used to inform poli
y makers or health profes-

sionals about how to su

essfully redu
e binge drinking within the population. For

instan
e, if redu
ing the value of � signi�
antly redu
es the number of binge drinkers

then e�orts would be best fo
ussed on deterring individuals from adopting the be-
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haviour, perhaps through media 
ampaigns or by in
reasing al
ohol pri
es.

In 
on
lusion, we have developed a model for 
ultural trait transmission within

an SIS framework by introdu
ing a nonlinear frequen
y-dependent relationship with

a variable 
onformity threshold frequen
y, whi
h 
ould a

ount for the intera
tion

of 
onformity and 
ontent biases a
ting within the population. Hen
e, the anal-

ysis of the 
onformity threshold frequen
y advan
es 
ultural evolutionary theory

in line with empiri
al eviden
e, suggesting that individuals may employ multiple

non-independent learning biases.



Chapter 4

A rea
tion-di�usion model for


ompeting languages

4.1 Introdu
tion

It is widely thought that of the estimated 6000 - 7000 languages in the world, over

half will have be
ome extin
t by the end of the 
entury (Grenoble and Whaley,

2005). This is a 
ause of great 
on
ern as language death 
an lead to the irrevo
able

loss of 
ultural information. Language provides a means by whi
h individuals 
an

maintain links with their 
ultural heritage and serves to prote
t unique aspe
ts

of their 
ulture in the present (Grenoble and Whaley, 2005). As 
ulture develops

within a parti
ular linguisti
 framework, the nuan
es of spe
i�
 
ultural traits may

not faithfully translate into an alternative language (Fishman, 2001). Consequently,

the trait may not be a

urately represented, with subtle di�eren
es unapparent to

speakers of an alternative language, and hen
e information may be lost (Fishman,

2001).

The two methods of language extin
tion are the death of the language-speaking

population or speakers abandoning their language in favour of another, known as

language shift (Tsunoda, 2006). Population death may o

ur through natural dis-

asters: for instan
e all speakers of the Tamboran language of Sumbawa, Indonesia,

died following a vol
ani
 eruption in 1815 (Nettle and Romaine, 2000; Hi
key, 2013).

Geno
ide is also a 
ause of population death, as was the 
ase of the Yahi Indians

67
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who were wiped out by white settlers moving into California (Nettle and Romaine,

2000). The languages Wappo and Yuki, also from California, died out via language

shift. The last speaker of Wappo, Laura Fish Somersal, regularly used the language

throughout her life to 
ommuni
ate with her sister (Hi
key, 2013). Arthur Ander-

son, the �nal Yuki speaker, last spoke the language in 1908 despite dying in 1990

(Nettle and Romaine, 2000; Golla, 2011). Unlike Somersal, who spent her 
hildhood

at home 
aring for her mother, Anderson was s
hooled in English and shifted to that

language for everyday use (Nettle and Romaine, 2000). S
hooling is a key in
uen
e

on language shift as, via a pro
ess of 
ultural assimilation, individuals will often

adopt a 
ommon group language (Nettle and Romaine, 2000).

For language shift to o

ur, speakers of two di�erent languages must intera
t.

Despite this two-way 
onta
t, language shift is usually one-dire
tional, with indi-

viduals moving from a lower status language to a higher status language (Hi
key,

2013). What 
onstitutes lower status is not well-de�ned, however speakers of mi-

nority languages are often stigmatised or ex
luded from politi
al and edu
ational

parti
ipation (Brenzinger, 1992). It 
an therefore be viewed as an advantage to

speak the majority language in order to avoid su
h problems, whi
h may be inter-

preted as a status advantage. This indi
ates that minority languages are those that

are at risk from language shift. In order for the minority language to be maintained,

its speakers must value it highly to over
ome the in
entive to swit
h (Brenzinger,

1992).

Su
h strong language loyalty has been displayed by speakers of Catalan, also

known as Valen
iana (Catalan, Language of Europe). The majority of its speakers

reside in territories lo
ated in Spain, with the remainder in Andorra, Fran
e and Italy

(Catalan, Language of Europe). These Catalan-speaking regions are surrounded by

areas dominated by an alternative language, for example Castillian in Spain. During

the di
tatorship of Spain (1939-1975) the use of Catalan in edu
ation, publi
ations

and tele
ommuni
ations was prohibited, but it remained as the language spoken

at home in regions su
h as Catalonia or the Baleari
 Islands (Catalan, Language of

Europe). Sin
e the end of the di
tatorship, Catalan be
ame re
ognised as the native

language of the territories of Catalonia, the Baleari
 Islands and the Comunitat
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Valen
iana. This allowed for its usage in s
hools and in government in these areas.

From linguisti
 
ensus data in the region of Catalonia (Ides
at Linguisti
 Census),

displayed in Table 4.1, the number of speakers of Catalan forms an in
reasing trend

from 1991 to 2007. This indi
ates that Catalan is not 
urrently a dying language.

Catalan-speaking population

Year Population (thousands) Number (thousands) % of total

1991 5.949 4.066 68.3

1996 5.948 4.506 75.3

2001 6.215 4.603 74.46

2007 7.050 5.331 75.6

Table 4.1: Data from Ides
at Linguisti
 Census showing the number of Catalan

speakers in Catalonia. This number has in
reased from 1991 to 2007, implying that

Catalan is gaining speakers with the region of Catalonia.

To help understand the 
onditions under whi
h a language dies or 
oexists with

another, mathemati
al te
hniques 
an be employed. In the last de
ade, population-

wide analyti
al models pertaining to the spread and persisten
e of languages have

been motivated by the work of Abrams and Strogatz (2003). They model how the

numbers of speakers of two 
ompeting languages 
hange over time. It is assumed

that ea
h language is �xed in stru
ture, for instan
e grammati
ally and synta
ti
ally,

and that they are in 
ompetition for speakers. Thus the model does not 
onsider

the evolution of a language itself, but the propagation of a language through a

population. For simpli
ity it is assumed that homogeneous mixing o

urs within the

population and all individuals are monolingual. The attra
tiveness of the languages

in
reases with the number of speakers and relative per
eived status of the language.

This takes into a

ount the view that a more dominant language is per
eived to

have an in
reased status asso
iated with it, providing an advantage to its speakers

over those of the subordinate language. Analysis revealed that the 
oexisten
e of

two languages, X and Y, was never stable, hen
e one language would always die out.

Predi
tions were found to 
orrespond with data for the de
line of S
ottish Gaeli
,
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Que
hua and Welsh.

The model has been 
riti
ised for its simpli
ity. In parti
ular, Steele and Kan-

dler (2010) highlighted the following: languages are assumed to be �xed, spatial and

so
ial stru
ture is not in
orporated, individuals are monolingual, and the popula-

tion size is assumed to be 
onstant. Su
h assessments led to a variety of alternative

models being proposed whi
h address some of these 
riti
isms. By in
luding spatial

dependen
e in the Abrams and Strogatz (2003) model, languages 
an 
oexist, with

speakers divided into distin
t zones (Patriar
a and Lepp�anen, 2004). Alternatively,

Pinas
o and Romanelli (2006) adapted a two-spe
ies Lotka-Volterra 
ompetition

model, where the population does not remain 
onstant, and applied it to language


ompetition. Two languages, u(t) and v(t), in
rease independently via a logisti


growth fun
tion. This ensures that there is a 
ap on population size to represent,

for example, environmental 
onstraints on the number of speakers that 
an be sup-

ported. Language u is assumed to be dominant so an intera
tion term is in
luded

allowing speakers of v to 
onvert to dominant language u. Four equilibria exist,

one being a stable 
oexisten
e state, again 
ontrary to the �ndings of Abrams and

Strogatz (2003). The addition of a spatial 
omponent by Kandler and Steele (2008)

leads to the same four 
onstant equilibria, however the authors 
on
lude that lan-

guage 
oexisten
e is not possible. Modi�
ation of the equations (by further 
apping

the dominant language) yields the possibility of language 
oexisten
e under 
ertain


onditions.

The in
lusion of bilingual speakers into language models is another possible de-

velopment as, realisti
ally, people do not suddenly swit
h from being monolingual

in one language to monolingual in another. Modi�
ations to the Abrams and Stro-

gatz (2003) model allow for bilingualism between two similar languages (Mira and

Paredes, 2005; Mira et al., 2011). Similar languages are those that have a 
ommon

grammati
al stru
ture and some shared vo
abulary, su
h as the Spanish languages

Castillian and Gali
ian (Mira and Paredes, 2005; Mira et al., 2011). Bilingualism is

found to be stable within the population under some 
ir
umstan
es, with a depen-

den
e upon the similarity of the two languages.

A mathemati
al study of Britain's Celti
 languages by Kandler et al. (2010) gave
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on
i
ting results regarding the persisten
e of a bilingual state, depending on the

de�ned nature of the state (Kandler et al., 2010). In the basi
 model, bilingual-

ism served as a transitionary state; in the other it represented a diglossi
 state.

Diglossia arises within multilingual 
ommunities when a 
ertain language is used

only in spe
i�
 
ir
umstan
es (Romaine, 2000). In Egypt, for example, the publi
ly

re
ognised language is standard Arabi
, whereas a lo
al variant may be used at

home (Romaine, 2000). Numeri
al simulations revealed that one language would al-

ways be
ome extin
t with the basi
 model, but a bilingual state is sustainable when

assuming a diglossi
 environment. The models were �tted to 20

th


entury 
ensus

data to des
ribe language shift from Welsh to English in Wales. Results motivated

the implementation of the diglossia model in predi
ting e�e
tive strategies for the

revival of Gaeli
 in Highland S
otland. Other mathemati
al works also address

bilingualism, for example see Minett and Wang (2008) for a general 
ase or Bakalis

and Galani (2012) for a study of Greek and Aromanian.

Motivated by previous work, we 
onstru
t a model to examine the population-

wide dynami
s of language 
ompetition. Our treatment of the model di�ers from

pre-existing work as a global stability analysis of ea
h 
onstant equilibrium is 
on-

du
ted. This builds upon previous language 
ompetition models where only lo
al

stability 
riteria have been dis
ussed, e.g. Abrams and Strogatz (2003); Patriar
a

and Lepp�anen (2004); Pinas
o and Romanelli (2006); Kandler and Steele (2008).

In su
h instan
es, an equilibrium state 
an only be 
lassi�ed as stable up to small

disturban
es. We seek to broaden understanding of how su
h systems behave by

analysing the response to arbitrarily sized disturban
es via methods initially em-

ployed within the 
uid me
hani
s literature. Resear
h from this area has been

applied to aspe
ts of human behaviour. For example, the Cahn-Hilliard equation

for 
uid phase transitions (see Fabrizio and Mongiov�� (2013a,b); Berti et al. (2014))

has been utilised in the study of integration between migrant and resident human

populations (Fabrizio and Rivera, in press).

The 
ontribution presented here 
onsists of a logisti
 growth model with di�usion

and a 
onversion term, �rst proposed by Kandler and Steele (2008). A key feature of

the model is the small number of variables and variable parameters, whi
h is advan-
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tageous as it allows for a 
lear understanding how parameter intera
tions a�e
t the

survival of a language. To ensure a minimal number of parameters are introdu
ed,

a separate bilingual 
lass is not 
onsidered. Other modelling te
hniques have been

used to assess language survival, su
h as agent-based models (see Minett and Wang

(2008)). These in
orporate individual perspe
tives into the model, however their

in
reased 
omplexity diminishes the 
larity of any mathemati
al results. A review

of su
h methods, assessing their strengths and limitations, may be found in Vogt

(2009).

4.2 Rea
tion-di�usion model for language 
ompe-

tition

We 
onstru
t a model for two 
ompeting languages, where one language is assumed

to be dominant. We denote the number of speakers of these languages to be u(x; t)

and v(x; t), whi
h vary over spa
e and time with x 2 
 � R

2

and t 2 [0;1).

Following the model 
onstru
tion of Kandler and Steele (2008), both languages

di�use and grow logisti
ally, independent of ea
h other. This gives rise to a term

d

1

�u + �

1

u� �

1

u

2

for language u, where d

1

is the di�usion 
oeÆ
ient and �

1

and

�

1

are the 
oeÆ
ients asso
iated with logisti
 growth. A similar result follows for

language v.

As indi
ated by the 
ase of Arthur Anderson (dis
ussed in the Introdu
tion),

greater exposure to an di�erent language in
reases the 
han
e of an individual

swit
hing to that language. Combining this with shift being one-dire
tional to-

ward the dominant language, we introdu
e the 
ross term 
uv into the equations.

Choosing u to be dominant, the rate of 
hange in the number of speakers of u is

a�e
ted by the 
onta
t between speakers of the two languages, s
aled by a 
onstant


. This 
onstant represents the strength of the per
eived status of language u over

language v. As this pro
ess involves individuals shifting languages, this also a�e
ts
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the number of speakers of v. Formulating this gives the equations

�u

�t

= d

1

�u+ �

1

u� �

1

u

2

+ 
uv;

�v

�t

= d

2

�v + �

2

v � �

2

v

2

� 
uv;

(4.1)

where

� =

�

2

�x

2

1

+

�

2

�x

2

2

is the Lapla
ian operator in two dimensions. The system 
an be nondimensionalised

by following the method in Cantrell and Cosner (2003). This is advantageous as

it simpli�es the problem by redu
ing the number of variable parameters without

qualitatively a�e
ting the results. By introdu
ing the variables t

�

= t=T and x

�

=

x=M , where T and M are 
onstants that 
an be 
hosen, the system with variables

u(x

�

; t

�

) and v(x

�

; t

�

) be
omes

1

T

�u

�t

�

=

d

1

M

2

�

�

u+ �

1

u� �

1

u

2

+ 
uv;

1

T

�v

�t

�

=

d

2

M

2

�

�

v + �

2

v � �

2

v

2

� 
uv:

Multiplying both equations by T and 
hoosing T =M

2

=d

1

this be
omes

�u

�t

�

= �u+

M

2

d

1

�

�

1

u� �

1

u

2

+ 
uv

�

;

�v

�t

�

=

d

2

d

1

�v +

M

2

d

1

�

�

2

v � �

2

v

2

� 
uv

�

:

ChoosingM

2

= d

1

=
 and introdu
ing the positive 
oeÆ
ients d = d

2

=d

1

, a

1

= �

1

=
,

b

1

= �

1

=
, a

2

= �

2

=
 and b

2

= �

2

=
 leads to the nondimensionalised equations

�u

�t

= �u+ a

1

u� b

1

u

2

+ uv;

�v

�t

= d�v + a

2

v � b

2

v

2

� uv;

(4.2)

where the supers
ript star notation has been dropped for 
onvenien
e.

It is now of interest to 
onsider the 
onstant equilibria of system (4.2) to deter-

mine whether languages u and v will persist or die out over time. At equilibrium,

u and v do not vary in time so �u=�t = 0 and �v=�t = 0. As the equilibria are


onstant solutions, they do not vary spatially so �u = 0 and �v = 0. Thus the


onstant equilibria of the system, whi
h we denote generally as (�u; �v), are obtained
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by solving

0 = �u(a

1

� b

1

�u+ �v);

0 = �v(a

2

� b

2

�v � �u):

Four 
onstant equilibria exist:

(0; 0) Languages u and v be
ome extin
t,

�

a

1

b

1

; 0

�

Language u persists and language v dies out,

�

0;

a

2

b

2

�

Language u dies out and language v persists,

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

Languages u and v 
oexist.

The �rst three solutions are easily determined, however the fourth requires solving

0 = a

1

� b

1

�u+ �v;

0 = a

2

� b

2

�v � �u:

Following a matrix equation pro
edure, these equations may be written as

0

�

a

1

a

2

1

A

=

0

�

b

1

�1

1 b

2

1

A

0

�

�u

�v

1

A

and �u, �v found from

0

�

�u

�v

1

A

=

0

�

b

1

�1

1 b

2

1

A

�1

0

�

a

1

a

2

1

A

=

1

b

1

b

2

+ 1

0

�

b

2

1

�1 b

1

1

A

0

�

a

1

a

2

1

A

;

with b

1

b

2

+1 6= 0 always holding. Equilibria must satisfy �u � 0 and �v � 0 to ensure

that populations are always non-negative, thus the 
oexisten
e solution requires

a

2

b

1

> a

1

for it to be feasible. This 
ondition will be assumed to hold in the

subsequent analysis.

To establish whi
h of these solutions the system rea
hes over time we need to

analyse the stability of ea
h solution in turn. This is done by investigating the

behaviour of the system (4.2) at a point (�u+ u; �v + v) where (u; v) 6= (0; 0) is some

disturban
e to the system at equilibrium. The nonlinear perturbation equations of

the system are

�u

�t

= �u+ (a

1

� 2b

1

�u+ �v)u+ �uv + (uv � b

1

u

2

); (4.3)

�v

�t

= d�v + (a

2

� 2b

2

�v � �u)v � �vu� (uv + b

2

v

2

): (4.4)
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We assume that the population sizes remain 
onstant at the boundary so impose

the Diri
hlet boundary 
onditions

u(x; t) = v(x; t) = 0 on �
;

where �
 is the boundary of the domain 
.

We begin by determining instability 
riteria for the equilibria from the linearised

perturbation equations, before progressing to analyse the nonlinear system. Exam-

ples of using this method of analysis may be found in texts, e.g. Straughan (2004).

4.3 Linear instability analysis

The linearised perturbation equations, found by dis
arding the se
ond order terms

and higher in equations (4.3) and (4.4), are

�u

�t

= �u+ (a

1

� 2b

1

�u+ �v)u+ �uv;

�v

�t

= d�v + (a

2

� 2b

2

�v � �u)v � �vu:

(4.5)

Denoting the eigenfun
tions of the Lapla
ian operator as '

n

(x) leads to the eigen-

fun
tion equation �'

n

(x) = ��

n

'

n

(x). The �

n

are the 
orresponding eigenvalues

and we may assume �

n

� �

n+1

8n 2 N . As the eigenfun
tions form a basis of L

2

(
)

we 
an 
onsider solutions to the linearised system (4.5) to be a linear 
ombination

of these fun
tions. We therefore look at solutions of the form

u =

1

X

n=1

u

n

'

n

(x)e

�

n

t

;

v =

1

X

n=1

v

n

'

n

(x)e

�

n

t

;

(4.6)

where u

n

, v

n

and �

n

are 
onstants. For instability, either u or v must grow in time,

a
hieved by any one summation term '

k

(x)e

�

k

t

in
reasing in time. The sign of the

real part of �

n

, denoted <(�

n

), 
ontrols whether a solution grows or de
ays in time.

A

ordingly, we seek 
onditions for when the largest <(�

n

) be
omes positive as this

represents the �rst growing term. By 
hoosing �

1

to have the largest real part, the

�rst growing term will always 
orrespond to n = 1 in equations (4.6).
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Substituting the n = 1 term from equations (4.6) into the linearised equations

(4.5) and rearranging leads to

0 = (�

1

+ �

1

� a

1

+ 2b

1

�u� �v)u

1

'

1

(x)e

�

1

t

� �uv

1

'

1

(x)e

�

1

t

;

0 = (�

1

+ d�

1

� a

2

+ 2b

2

�v + �u)v

1

'

1

(x)e

�

1

t

+ �vu

1

'

1

(x)e

�

1

t

:

This gives rise to the equations

0 = (�

1

+ �

1

� a

1

+ 2b

1

�u� �v)u

1

� �uv

1

;

0 = (�

1

+ d�

1

� a

2

+ 2b

2

�v + �u)v

1

+ �vu

1

;

(4.7)

as '

1

(x)e

�

1

t

6= 0. Instability o

urs for �

1

> 0 so there is an instability threshold at

�

1

= 0. By writing equations (4.7) in matrix form as M(u

1

; v

1

)

T

= 0, where

M =

0

�

�

1

+ �

1

� a

1

+ 2b

1

�u� �v ��u

�v �

1

+ d�

1

� a

2

+ 2b

2

�v + �u

1

A

; (4.8)

then det(M) = 0 as we desire M(u

1

; v

1

) 6= (0; 0). Cal
ulating this determinant

reveals a quadrati
 equation in �

1

,

0 = �

2

1

+ (�

1

� a

1

+ 2b

1

�u� �v + d�

1

� a

2

+ 2b

2

�v + �u)�

1

+ (�

1

� a

1

+ 2b

1

�u� �v)(d�

1

� a

2

+ 2b

2

�v + �u) + �u�v;

(4.9)

from whi
h the instability boundary for (�u; �v) 
an be established.

Zero solution

For the equilibrium solution (�u; �v) = (0; 0), quadrati
 equation (4.9) be
omes

0 = �

2

1

+ (�

1

� a

1

+ d�

1

� a

2

)�

1

+ (�

1

� a

1

)(d�

1

� a

2

)

= (�

1

+ �

1

� a

1

)(�

1

+ d�

1

� a

2

):

For this equation to hold then either

�

1

= ��

1

+ a

1

or �

1

= �d�

1

+ a

2

:

Instability o

urs when any one solution grows: that is, the �rst instan
e where

�

1

> 0. From this we determine the instability boundary for equilibrium point (0; 0)

to be

�

1

= min

n

a

1

;

a

2

d

o

: (4.10)
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Language u persists

Equilibrium solution (�u; �v) = (a

1

=b

1

; 0) substituted into equation (4.9) gives

0 = �

2

1

+ (�

1

+ a

1

+ d�

1

� a

2

) �

1

+ (�

1

+ a

1

)

�

d�

1

� a

2

+

a

1

b

1

�

= (�

1

+ �

1

+ a

1

)

�

�

1

+ d�

1

� a

2

+

a

1

b

1

�

:

This holds for either

�

1

= ��

1

� a

1

or �

1

= �d�

1

+ a

2

�

a

1

b

1

:

The �rst �

1

solution is always negative, so the only instability 
ondition (resulting

from the se
ond �

1

solution) is the threshold

d�

1

+ a

1

=b

1

= a

2

: (4.11)

Language v persists

Equilibrium solution (�u; �v) = (0; a

2

=b

2

) substituted into equation (4.9) gives

0 = �

2

1

+

�

�

1

� a

1

�

a

2

b

2

+ d�

1

+ a

2

�

�

1

+

�

�

1

� a

1

�

a

2

b

2

�

(d�

1

+ a

2

)

=

�

�

1

+ �

1

� a

1

�

a

2

b

2

�

(�

1

+ d�

1

+ a

2

)

so either

�

1

= ��

1

+ a

1

+

a

2

b

2

or �

1

= �d�

1

� a

2

:

As with the previous 
ase, one solution for �

1

is always negative, so here the insta-

bility threshold is

�

1

= a

1

+ a

2

=b

2

: (4.12)

Coexisten
e solution

For the 
oexisten
e solution

(�u; �v) =

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

;

equation (4.9) simpli�es to

0 = �

2

1

+ (�

1

+ b

1

�u+ d�

1

+ b

2

�v)�

1

+ (�

1

+ b

1

�u)(d�

1

+ b

2

�v) + �u�v (4.13)
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as �u; �v > 0. Solutions for �

1

are found from the quadrati
 formula, so

2�

1

= �p�

p

p

2

� 4q

where

p = �

1

+ b

1

�u+ d�

1

+ b

2

�v;

q = (�

1

+ b

1

�u)(d�

1

+ b

2

�v) + �u�v;

with p; q > 0. If the dis
riminant of equation (4.13) is negative (p

2

� 4q < 0) then

the solutions for �

1

are 
omplex 
onjugates with a negative real part of <(�

1

) = �p.

When the dis
riminant is positive, therefore �

1

2 R, then �p �

p

p

2

� 4q < 0 so

�

1

< 0. For �

1

= �p+

p

p

2

� 4q, the solution for �

1

is again negative be
ause q > 0,

leading to p >

p

p

2

� 4q. In all 
ases <(�

1

) < 0, therefore no instability 
riteria 
an

be determined for this solution.

Whilst instability 
riteria for three equilibria has be obtained by analysing the

linearised system, it is not suÆ
ient to determine regions of global stability. In order

to obtain this information the nonlinear system must be addressed.

4.4 Nonlinear stability analysis

Global stability 
riteria for equilibria 
an be determined by the 
onstru
tion of an

energy fun
tional. Energy methods have been used to determine the stability of


uid 
ow sin
e the work of Orr (1907), with developments by Serrin (1959), Joseph

(1965, 1966, 1970) and Rionero (1967, 1968). The aim is to determine if some

disturban
e to a 
ow will result in a radi
al 
hange in behaviour or a progression

ba
k to the original 
ow as t ! 1. By 
onsidering the energy di�eren
e between

the original and disturbed 
ow, 
onditions for whi
h the energy de
reases indi
ate

stability of the initial 
ow. Developments of these methods have been widely used

to analyse stability of equilibria, with re
ent work by Capone and De Lu
a (2012);

Hill and Malashetty (2012); Mulone et al. (2007); Rionero (2009, 2012a); Straughan

(2013b). Using an energy argument, we progress to �nding a stability threshold for

ea
h equilibrium. It is desirable to obtain a stability bound whi
h 
oin
ides with

the instability threshold as this provides information about the system's behaviour

for all possible 
ombinations of parameter values. This is not always possible, but in
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some 
ases may be a
hieved by pla
ing 
onditions on the initial state of the system.

As will be demonstrated in the following analysis, su
h 
onditions are ne
essary

here.

We use k�k and (�; �) to denote the L

2

norm and inner produ
t over 
 respe
tively,

so that, for example,

kuk

2

=

Z




u

2

d
 and (u; v) =

Z




uv d
:

(4.14)

We noti
e that multiplying the left-hand side of equation (4.3) by u and integrating

over 
 gives rise to

Z




u

�u

�t

d
 =

1

2

d

dt

Z




u

2

d
 =

1

2

d

dt

kuk

2

by using the de�nition of the L

2

norm. We a
hieve a similar result for v from

equation (4.4). This is a useful observation as it allows us to 
onstru
t a fun
tion

E(t) whi
h is a linear 
ombination of kuk

2

and kvk

2

, for example

E(t) =

1

2

�

�kuk

2

+ �kvk

2

�

with �; � > 0 
onstant. When t ! 1, E(t) ! 0 only if u; v ! 0, whi
h is the

requirement for stability of the solution (�u; �v). Hen
e we aim to �nd 
onditions on

the parameters su
h that E(t) is a de
reasing fun
tion in time, that is

_

E(t) < 0

where the dot indi
ates a time di�erential.

Multiplying equation (4.3) by u, equation (4.4) by v, and integrating both over

the spatial domain 
 results in

1

2

d

dt

Z




u

2

d
 =

Z




u�ud
 + (a

1

� 2b

1

�u+ �v)

Z




u

2

d
 + �u

Z




uvd


+

Z




�

u

2

v � b

1

u

3

�

d
; (4.15)

1

2

d

dt

Z




v

2

d
 = d

Z




v�vd
 + (a

2

� 2b

2

�v � �u)

Z




v

2

d
� �v

Z




uvd


�

Z




�

uv

2

+ b

2

v

3

�

d
: (4.16)

These equations may be rewritten via use of the L

2

norm and inner produ
t, and

the divergen
e theorem. The divergen
e theorem states that, for some fun
tion f

over the spatial domain 
,

Z




r � fd
 =

Z

�


f �ndS
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where n is the outward-pointing unit normal to the boundary of 
. Using the

method of integration by parts and the divergen
e theorem we manipulate the inte-

grand u�u from equation (4.15) in the following manner:

Z




u�ud
 =

Z




r � (uru)d
�

Z




(ru)

2

d


=

Z

�


uru � ndS �

Z




(ru)

2

d


= �

Z




(ru)

2

d
;

where the integral over �
 vanishes as u = 0 on the boundary. Utilising this method,

along with the de�nitions of the L

2

norm and inner produ
t, equations (4.15) and

(4.16) be
ome

1

2

d

dt

kuk

2

= �kruk

2

+ (a

1

� 2b

1

�u+ �v)kuk

2

+ �u(u; v) +

Z




�

u

2

v � b

1

u

3

�

d
;

1

2

d

dt

kvk

2

= �dkrvk

2

+ (a

2

� 2b

2

�v � �u)kvk

2

� �v(u; v)�

Z




�

uv

2

+ b

2

v

3

�

d
:

(4.17)

We now 
onstru
t and analyse a suitable energy fun
tion for ea
h equilibrium in

turn, in order to derive a stability threshold.

4.4.1 Zero solution

To analyse the solution (�u; �v) = (0; 0) we 
onstru
t the energy fun
tion

E(t) =

1

2

(kuk

2

+ kvk

2

) (4.18)

so that

dE

dt

=

1

2

d

dt

(kuk

2

+ kvk

2

)

= � kruk

2

� dkrvk

2

+ a

1

kuk

2

+ a

2

kvk

2

+

Z




u

2

vd
� b

1

Z




u

3

d


�

Z




uv

2

d
� b

2

Z




v

3

d
 (4.19)

after substitution from equations (4.17) with �u = 0 and �v = 0. Introdu
ing

D = kruk

2

+ dkrvk

2

; (4.20)

I = a

1

kuk

2

+ a

2

kvk

2

; (4.21)

N =

Z




u

2

vd
� b

1

Z




u

3

d
�

Z




uv

2

d
� b

2

Z




v

3

d
 (4.22)
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and 
omparing with equation (4.19) enables us to write

dE

dt

= �D + I +N: (4.23)

Thus, equation (4.23) involves a right-hand side whi
h separates into a positive-

de�nite quadrati
 term D, a quadrati
 term I, and a 
ubi
 term N . As will be
ome

apparent, writing dE=dt in this way allows for it to be bounded from above by

a fun
tion of the form �KE(t), K 2 R positive, subje
t to 
ertain parameter


onstraints. For a derived range of parameter values, dE=dt < 0, so u; v ! 0 as

t!1, indi
ating that (�u; �v) = (0; 0) is globally stable.

Bounding

_

E(t) for the equilibrium (0; 0)

Consider

I

D

� max

H

�

I

D

�

for H = fu; vju; v 2 H

1

0

(
)g and introdu
e a 
onstant R

E

whi
h satis�es

1

R

E

= max

H

�

I

D

�

: (4.24)

Using I = D(I=D) � D=R

E

, the right-hand side of equation (4.23) may be bounded

above to reveal

dE

dt

� �D

�

1�

1

R

E

�

+N:

We de�ne the value R

E

in this way so that the term �D(1� 1=R

E

) is negative for

R

E

> 1. To progress we assume R

E

> 1 and then let q = (1�1=R

E

), thus obtaining

dE

dt

� �Dq +N: (4.25)

We now 
on
entrate on bounding N (equation (4.22)), addressing ea
h term

separately. To do this we �rst need the Cau
hy-S
hwarz inequality for the L

2

inner

produ
t spa
e:

�

Z




fgd


�

2

�

Z




f

2

d


Z




g

2

d
; (4.26)

where f; g are fun
tions of the domain 
. To 
orrespond to the terms in N , we use

an alternative form of the Cau
hy-S
hwarz inequality,

�

�

�

�

Z




fgd


�

�

�

�

�

�

Z




f

2

d


�

1

2

�

Z




g

2

d


�

1

2

: (4.27)
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We also require the Sobolev inequality

�

Z




f

4

d


�

1

4

� 


1

2

�

Z




jrf j

2

d


�

1

2

in the form

�

Z




f

4

d


�

1

2

� 


�

Z




jrf j

2

d


�

; (4.28)

where 
 is a 
onstant whi
h depends upon the domain 
 (see Gilbarg and Trudinger

(1998)).

The �rst term of N is

Z




u

2

vd
 �

�

�

�

�

Z




u

2

vd


�

�

�

�

:

Applying inequality (4.27), followed by (4.28) with 
 = 


1

, gives

Z




u

2

vd
 �

�

Z




u

4

d


�

1

2

�

Z




v

2

d


�

1

2

� 


1

Z




jruj

2

d


�

Z




v

2

d


�

1

2

;

where 


1

is a 
onstant dependent upon 
. Now we 
an transform the right-hand

side of this inequality using the de�nition of the L

2

norm (equation (4.14)) to give

Z




u

2

vd
 � 


1

kruk

2

kvk: (4.29)

Applying the same pro
edure to the remaining terms of N yields

�b

1

Z




u

3

d
 � b

1




1

Z




jruj

2

d


�

Z




u

2

d


�

1

2

� b

1




1

kruk

2

kuk; (4.30)

�

Z




uv

2

d
 � 


2

Z




jrvj

2

d


�

Z




u

2

d


�

1

2

� 


2

krvk

2

kuk; (4.31)

and

�b

2

Z




v

3

d
 � b

2




2

Z




jrvj

2

d


�

Z




v

2

d


�

1

2

� b

2




2

krvk

2

kvk; (4.32)

where 


2

is a 
onstant dependent upon 
. Comparing the information from inequal-

ities (4.29) to (4.32) with equation (4.22) gives

N � 


1

kruk

2

(b

1

kuk+ kvk) + 


2

krvk

2

(kuk+ b

2

kvk) :

From equations (4.18) and (4.20) we may determine that

kuk �

p

2E

1

2

(t); kvk �

p

2E

1

2

(t); kruk

2

� D and krvk

2

�

D

d

:
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Using these, we now bound N by

N � k

1

DE

1

2

(t);

where

k

1

=

p

2

�




1

+ 


1

b

1

+




2

d

+




2

b

2

d

�

:

An upper bound on on

_

E(t), following on from inequality (4.25), is therefore

dE

dt

� �D(q � k

1

E

1

2

(t)): (4.33)

We reiterate that we are seeking a bound

_

E(t) � �KE(t), K 2 R positive, so we

need

q � k

1

E

1

2

(t) > 0: (4.34)

By assuming the 
onstant value E

1

2

(0) < q=k

1

, where E(0) is the initial state of the

system at t = 0, we 
an show that

E

1

2

(0) > E

1

2

(t): (4.35)

As a 
onsequen
e we a
hieve inequality (4.34) as

0 < q � k

1

E

1

2

(0) < q � k

1

E

1

2

(t):

To prove inequality (4.35) we begin with the assumption E

1

2

(0) < q=k

1

, where

E

1

2

(0) > 0. It therefore follows from inequality (4.33) evaluated at t = 0 that

dE=dt < 0, so either:

1. E

1

2

(t) < q=k

1

8 t > 0, indi
ating that E(t) is a de
reasing fun
tion;

2. 9� su
h that for t = �, E

1

2

(�) = q=k

1

.

Suppose the se
ond of these options is true. Then, for t 2 (0; �), E

1

2

(t) < q=k

1

so E(t) is a de
reasing fun
tion be
ause dE=dt < 0. Hen
e E(t) < E(0) for t 2

(0; �). By 
ontinuity, E(�) < E(0) and therefore E

1

2

(�) < E

1

2

(0) < q=k

1

whi
h is

a 
ontradi
tion. Option 2 is therefore impossible so option 1 must be true, that

is E

1

2

(t) < q=k

1

8 t > 0 provided E

1

2

(0) < q=k

1

. In this 
ase E(t) is a de
reasing
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fun
tion so it follows that E

1

2

(0) > E

1

2

(t). Applying these results to inequality

(4.33) we see that

dE

dt

� �D(q � k

1

E

1

2

(t)) � ��D (4.36)

where � = q � k

1

E

1

2

(0).

Poin
ar�e's inequality for fun
tions ' 2 H

1

0

(
) is

kr'k

2

� �

1

k'k

2

; (4.37)

where �

1

> 0 is the �rst eigenvalue of the membrane problem �' = ��' in 


and '

n

= 0 on �
. Applying Poin
ar�e's inequality to fun
tions kuk

2

and kvk

2

in

equation (4.20) gives

D � 2�

1

kuk

2

2

+ 2�

1

d

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg;

hen
e �D � ��E(t). Using this gives a bound of the desired form:

dE

dt

� ���E(t): (4.38)

We now know that when inequality (4.38) holds, E(t) de
ays in time and therefore

(0; 0) is a globally stable point. In deriving this bound we assumed that R

E

> 1

(equivalent to q > 0) so we now must �nd appropriate parameter restri
tions whi
h

ensure this, and thus �nd a stability 
ondition in terms of the model parameters.

Finding R

E

for (0; 0)

For inequality (4.38) to hold we have assumed that R

E

> 1. We now determine the

value of R

E

and thus obtain 
onstraints on the parameters required for stability.

Equation (4.24) informs us that we must maximise I=D whi
h 
an be done by


al
ulating its variation, Æ(I=D), by the method whi
h we now outline.

We introdu
e indi
ial notation to keep 
al
ulations 
ompa
t. In this notation

ru =

0

�

�u

�x

1

�u

�x

2

1

A

� u

;i

where the subs
ript 
omma indi
ates di�erentiation and i is the i

th


omponent of

x. When an index is repeated it is summed over, so

�

�x

i

�

�f

I

�u

;i

�

=

�

�x

1

�

�f

I

�u

;1

�

+

�

�x

2

�

�f

I

�u

;2

�

= r �

�

�f

I

� (ru)

�
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and

�

�x

i

(u

;i

) =

�

�x

1

�u

�x

1

+

�

�x

2

�u

�x

2

= �u:

Now 
onsider the general form of fun
tionals I and D to be

I =

Z




f

I

(x; u; v; u

;i

; v

;i

) d
;

D =

Z




f

D

(x; u; v; u

;i

; v

;i

) d
:

Then, to �nd the maximum of I=D, we use the method of 
al
ulus of variations.

Assume u, v are admissible fun
tions su
h that I=D is maximised. Consider the

admissible fun
tions

û = u+ ��

1

;

v̂ = v + ��

2

;

where � is some real number and �

1

, �

2

are admissible fun
tions whi
h are zero at

the boundary �
. Then

I =

Z




f

I

(x; û; v̂; û

;i

; v̂

;i

) d
;

D =

Z




f

D

(x; û; v̂; û

;i

; v̂

;i

) d
:

To maximise I(�)=D(�) we need � = 0 (as then û = u and v̂ = v are maximising

fun
tions) and the �rst derivative with respe
t to � to equal zero, so

d

d�

�

I

D

�

�

�

�

�

�=0

=

1

D

�

dI

d�

�

I

D

dI

d�

�

�

�

�

�

�=0

= 0:

As I=D is maximised, we 
an repla
e this with 1=R

E

and use the standard notation

ÆI and ÆD to represent the derivatives of I and D with respe
t to � at � = 0. This

gives

R

E

ÆI � ÆD = 0: (4.39)

To 
al
ulate ÆI ,

ÆI =

Z




d

d�

f

I

(x; û; v̂; û

;i

; v̂

;i

) d


=

Z




�

1

�f

I

�u

+ �

2

�f

I

�v

+ �

1

;i

�f

I

�u

;i

+ �

2

;i

�f

I

�v

;i

d


(4.40)

This integral equation may be manipulated so that dependen
e on both �

1

;i

and �

2

;i

is eliminated. Using integration by parts,

Z




�

1

;i

�f

I

�u

;i

d
 =

Z




�

�x

i

�

�

1

�f

I

�u

;i

�

d
�

Z




�

1

�

�x

i

�f

I

�u

;i

d
:



4.4. Nonlinear stability analysis 86

By the divergen
e theorem

Z




�

�x

i

�

�

1

�f

I

�u

;i

�

d
 =

Z

�


�

1

�f

I

�u

;i

n

i

dS

= 0

as a 
onsequen
e of the boundary 
onditions on �

1

. Combining these results reveals

Z




�

1

;i

�f

I

�u

;i

d
 = �

Z




�

1

�

�x

i

�f

I

�u

;i

d
:

The same method may be applied to the �

2

;i

term allowing equation (4.40) to be

written as

ÆI =

Z




�

1

�

�f

I

�u

�

�

�x

i

�f

I

�u

;i

�

+ �

2

�

�f

I

�v

�

�

�x

i

�f

I

�v

;i

�

d
:

Similarly, for ÆD,

ÆD =

Z




�

1

�

�f

D

�u

�

�

�x

i

�f

D

�u

;i

�

+ �

2

�

�f

D

�v

�

�

�x

i

�f

D

�v

;i

�

d
:

Repla
ing ÆI and ÆD in equation (4.39) leads to

Z




�

1

�

R

E

�f

I

�u

�R

E

�

�x

i

�f

I

�u

;i

�

�f

D

�u

+

�

�x

i

�f

D

�u

;i

�

+ �

2

�

R

E

�f

I

�v

�R

E

�

�x

i

�f

I

�v

;i

�

�f

D

�v

+

�

�x

i

�f

D

�v

;i

�

d
 = 0:

As this must hold for all possible 
ombinations of admissible fun
tions �

1

and �

2

we

have

R

E

�

�f

I

�u

�

�

�x

i

�f

I

�u

;i

�

�

�

�f

D

�u

�

�

�x

i

�f

D

�u

;i

�

= 0;

R

E

�

�f

I

�v

�

�

�x

i

�f

I

�v

;i

�

�

�

�f

D

�v

�

�

�x

i

�f

D

�v

;i

�

= 0:

(4.41)

These are the Euler-Lagrange equations asso
iated with the problem of maximising

I=D, whi
h solutions u and v must satisfy.

For the (0; 0) solution,

f

I

= a

1

u

2

+ a

2

v

2

;

f

D

= (ru)

2

+ d(rv)

2

;

whi
h are found from applying the de�nition of the L

2

norm to I (equation (4.21))

and D (equation (4.20)). For these fun
tions, the non-zero terms of equations (4.41)
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are

�f

I

�u

= 2a

1

u;

�f

I

�v

= 2a

2

v;

�

�x

i

�f

D

�u

;i

= 2

�

�x

i

(u

;i

) = 2�u;

�

�x

i

�f

D

�v

;i

= 2d

�

�x

i

(v

;i

) = 2d�v;

hen
e the Euler-Lagrange equations are 
al
ulated to be

R

E

a

1

u+�u = 0;

R

E

a

2

v + d�v = 0:

These equations are un
oupled so we expe
t di�erent minimal eigenvalue 
onditions

for the de
ay of u and v. As the equations are linear we 
onsider solutions of the

form

u =

1

X

n=1

u

n

'

n

(x);

v =

1

X

n=1

v

n

'

n

(x);

(4.42)

so the Euler-Lagrange equations be
ome

R

E

a

1

1

X

n=1

u

n

'

n

(x) =

1

X

n=1

�

n

u

n

'

n

(x); (4.43)

R

E

a

2

1

X

n=1

v

n

'

n

(x) = d

1

X

n=1

�

n

v

n

'

n

(x) (4.44)

As �

1

is the smallest eigenvalue, from equation (4.43) we know that

R

E

a

1

1

X

n=1

u

n

'

n

(x) > �

1

1

X

n=1

u

n

'

n

(x) (4.45)

The 
ondition for u to de
ay is R

E

> 1. Combining this 
ondition to inequality

(4.45), we determine the parameter 
onstraint �

1

> a

1

ensures that u will de
ay. By

similar reasoning applied to equation (4.44) we determine that v de
ays for d�

1

> a

2

.

As both u and v must de
ay for global stability of the equilibrium (0; 0), the stability

threshold is

�

1

= min

n

a

1

;

a

2

d

o

: (4.46)

Through 
omparison of this result with equation (4.10), we 
on
lude that the insta-

bility and global stability thresholds 
oin
ide for equilibrium (�u; �v) = (0; 0).
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4.4.2 Language u survives, v dies out

To analyse the global stability of (�u; �v) = (a

1

=b

1

; 0) we pro
eed as in se
tion 4.4.1.

First we 
onstru
t the fun
tion

E(t) =

1

2

�

�kuk

2

+ kvk

2

�

; (4.47)

where � is a 
onstant that we may 
hoose. The di�erential with respe
t to time is

dE

dt

=

1

2

d

dt

�

�kuk

2

+ kvk

2

�

;

whi
h, after substituting for �u and �v in equations (4.17), is equivalent to

dE

dt

= �kruk

2

+ dkrvk

2

+ �a

1

kuk

2

+

�

a

2

�

a

1

b

1

�

kvk

2

+ �

a

1

b

1

(u; v)

+ �

Z




u

2

vd
� �b

1

Z




u

3

d
�

Z




uv

2

d
� b

2

Z




v

3

d
:

(4.48)

We introdu
e the terms

D = �kruk

2

+ dkrvk

2

+ �a

1

kuk

2

; (4.49)

I = �

a

1

b

1

(u; v) + (a

2

�

a

1

b

1

)kvk

2

; (4.50)

N = �

Z




u

2

vd
� �b

1

Z




u

3

d
�

Z




uv

2

d
� b

2

Z




v

3

d
; (4.51)

so that equation (4.48) may be written as

dE

dt

= �D + I +N: (4.52)

Again we wish to bound dE=dt in su
h a way that allows us to 
on
lude that E(t) is

a de
reasing fun
tion, implying that the perturbations u and v de
ay, and therefore

that the equilibrium is globally stable.

Bounding

_

E(t) for (a

1

=b

1

; 0)

To a
hieve a bound of the form dE=dt < �KE(t), K 2 R, we follow the method of

se
tion 4.4.1. The 
onstant R

E

is introdu
ed, where

1

R

E

= max

H

�

I

D

�
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for H = fu; vju; v 2 H

1

0

(
)g. Assuming that R

E

> 1 and de�ning q = 1� 1=R

E

to

simplify notation, the inequality

dE

dt

� �Dq +N

is determined from equation (4.52). We now seek to bound N in su
h a way that

R

E

> 1 is a suÆ
ient 
ondition for stability.

We bound N (equation (4.51)) term by term using the Cau
hy-S
hwarz inequal-

ity (4.27) and Sobolev inequality (4.28), following the pro
edure detailed in se
tion

4.4.1. Applying the L

2

norm gives the bound

N � �


3

kruk

2

(b

1

kuk+ kvk) + 


4

krvk

2

(kuk+ b

2

kvk) ;

where 


3

; 


4

are 
onstants depending upon the domain 
. From equations (4.47)

and (4.49), for E(t) and D respe
tively, we may 
on
lude

kuk �

r

2

�

E(t); kvk �

p

2E(t); �kruk

2

� D; and krvk

2

� D=d:

Thus

N � k

2

DE

1

2

(t)

with

k

2

=

p

2

�




3

+




3

b

1

p

�

+




4

d

p

�

+




4

b

2

d

�

:

Combining the inequality for N with the bound for

_

E(t) gives

dE

dt

� �D(q � k

2

E

1

2

(t)):

By applying Poin
ar�e's inequality (4.37) to kuk

2

and kvk

2

in equation (4.49), we

�nd that

D � 2��

1

kuk

2

2

+ 2�

1

d

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg:

As proven in se
tion 4.4.1, E

1

2

(t) < E

1

2

(0) for E

1

2

(0) < q=k

2

, assuming that R

E

> 1

and repla
ing the 
onstant k

1

with k

2

. So,

dE

dt

� ���E(t)

with 
onstant � = q � k

2

E

1

2

(0). As with the previous 
ase, we must now determine

parameter values for this inequality to be true by �nding 
onditions whi
h ensure

R

E

> 1 .
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Finding R

E

for (a

1

=b

1

; 0)

We are interested in when R

E

= 1 as this provides a global stability threshold for the

equilibrium solution (a

1

=b

1

; 0). Following the general method presented in se
tion

4.4.1, we evaluate equations (4.41) with the fun
tions

f

I

=

�

a

2

�

a

1

b

1

�

v

2

+ �

a

1

b

1

uv;

f

D

= �(ru)

2

+ d(rv)

2

+ �a

1

u

2

:

The Euler-Lagrange equations are

�u� a

1

u+

a

1

R

E

2b

1

v = 0;

�a

1

R

E

2b

1

u+ d�v +R

E

�

a

2

�

a

1

b

1

�

v = 0

and again we 
onsider solutions of the form of equations (4.42). The Euler-Lagrange

equations be
ome

1

X

n=1

�

�(�

n

+ a

1

)u

n

+

a

1

R

E

2b

1

v

n

�

'

n

= 0;

1

X

n=1

�

�a

1

R

E

2b

1

u

n

+

�

�d�

n

+R

E

�

a

2

�

a

1

b

1

��

v

n

�

'

n

= 0:

As before, it is suÆ
ient to 
onsider n = 1 and, as u

n

; v

n

6= 0,

�

�

�

�

�

�

�(�

1

+ a

1

)

a

1

R

E

2b

1

�a

1

R

E

2b

1

�

�

d�

1

� R

E

�

a

2

�

a

1

b

1

��

�

�

�

�

�

�

= 0

must hold. After substitution of R

E

= 1, this gives the stability threshold equation

�

d�

1

�

�

a

2

�

a

1

b

1

��

=

�a

1

2

4b

1

2

(�

1

+ a

1

)

: (4.53)

Comparing this result with the instability boundary, the two 
oin
ide in the limit

� ! 0.

4.4.3 Language v survives, u dies out

To analyse the global stability of (�u; �v) = (0; a

2

=b

2

) we pro
eed as in se
tion 4.4.1,

beginning with 
onstru
ting the fun
tion

E(t) =

1

2

�

kuk

2

+ �kvk

2

�

; (4.54)
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where � is a 
onstant that we may 
hoose. The di�erential with respe
t to time is

dE

dt

=

1

2

d

dt

(kuk

2

+ �kvk

2

);

whi
h, after substituting for �u and �v in equations (4.17), is equivalent to

dE

dt

=� kruk

2

� d�krvk

2

+

�

a

1

+

a

2

b

2

�

kuk

2

� a

2

�kvk

2

� �

a

2

b

2

(u; v)

+

Z




u

2

vd
� b

1

Z




u

3

d
� �

Z




uv

2

d
� b

2

�

Z




v

3

d
:

We introdu
e

D = kruk

2

+ d�krvk

2

+ a

2

�kvk

2

; (4.55)

I =

�

a

1

+

a

2

b

2

�

kuk

2

� �

a

2

b

2

(u; v); (4.56)

N =

Z




u

2

vd
� b

1

Z




u

3

d
� �

Z




uv

2

d
� b

2

�

Z




v

3

d
; (4.57)

so that

dE

dt

= �D + I +N:

Bounding

_

E(t) for (0; a

2

=b

2

)

Following the method outlined in se
tion 4.4.1, we introdu
e R

E

where

1

R

E

= max

H

�

I

D

�

; H = fu; vju; v 2 H

1

0

(
)g:

By assuming R

E

> 1 and letting q = 1� 1=R

E

, the bound

dE

dt

� �Dq +N

is a
hieved. We now fo
us on bounding N so that R

E

> 1 is a suÆ
ient stability


ondition. We bound N (equation (4.51)) term by term using the Cau
hy-S
hwarz

inequality (4.27) and Sobolev inequality (4.28), following the method in se
tion

4.4.1. Applying the L

2

norm gives the bound

N � 


5

kruk

2

(kvk+ b

1

kuk) + �


6

krvk

2

(kuk+ b

2

kvk) ;

where 


5

; 


6

are 
onstants depending upon the domain 
. From equations (4.54)

and (4.55), respe
tively, we see that

kuk �

p

2E(t); kvk �

r

2

�

E(t); kruk

2

� D; and �krvk

2

� D=d;
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so

N � k

3

DE

1

2

(t)

where

k

3

=

p

2

�




5

b

1

p

�

+ 


5

b

1

+




6

d

+




6

b

2

p

�d

�

:

Combining the inequality for N with the bound for

_

E(t) gives

dE

dt

� �D

�

q � k

3

E

1

2

(0)

�

;

where we have used E

1

2

(0) > E

1

2

(t) for E

1

2

(0) > q=k

3

. By applying Poin
ar�e's

inequality (4.37) to kuk

2

and kvk

2

in equation (4.55), we �nd that

D � 2�

1

kuk

2

2

+ 2�

1

d�

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg:

Consequently, we may bound

_

E(t) by

dE

dt

� ���E(t)

with � = q � k

3

E

1

2

(0). We now �nd 
onditions whi
h ensure R

E

> 1.

Finding R

E

for (0; a

2

=b

2

)

To �nd a stability threshold for (0; a

2

=b

2

), we again follow the method in se
tion

4.4.1, using the fun
tions

f

I

=

�

a

1

+

a

2

b

2

�

u

2

� �

a

2

b

2

uv;

f

D

= (ru)

2

+ d�(rv)

2

+ �a

2

v

2

:

The Euler-Lagrange equations

�u+R

E

�

a

1

+

a

2

b

2

�

u�

�a

2

R

E

2b

2

v = 0;

�a

2

R

E

2b

2

u� d��v + �a

2

v = 0

and again we 
onsider solutions of the form of equations (4.42). The Euler-Lagrange

equations be
ome

1

X

n=1

��

��

n

+R

E

�

a

1

+

a

2

b

2

��
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n

�

�a

2

R

E

2b

2
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n

�

'

n

= 0;

1

X

n=1

�

�a

2

R

E

2b

2

u

n

+ � (d�

n

+ a

2

) v

n

�

'

n

= 0:
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It is again suÆ
ient to 
onsider n = 1, so

�

�

�

�

�

�

�

�

�

1

� R

E

�

a

1

+

a

2

b

2

��

�

�a

2

R

E

2b

2

�

�a

2

R

E

2b

2

�� (d�

1

+ a

2

)

�

�

�

�

�

�

= 0

as u

n

; v

n

6= 0. Substituting in the value R

E

= 1 gives the stability threshold

�

�

1

�

�

a

1

+

a

2

b

2

��

=

�a

2

2

4b

2

2

(d�

1

+ a

2

)

:

In the limit � ! 0, this 
oin
ides with with the instability boundary.

4.4.4 Languages u and v 
oexist

To analyse the global stability of

(�u; �v) =

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

we pro
eed as in se
tion 4.4.1, beginning with 
onstru
ting the fun
tion

E(t) = (kuk

2

+  kvk

2

)=2; (4.58)

where  is a 
onstant that we may 
hoose. The di�erential with respe
t to time is

dE

dt

=

1

2

d

dt

(kuk

2

+  kvk

2

)

whi
h, after substituting for �u and �v in equations (4.17), is equivalent to

dE

dt

=� kruk

2

� d krvk

2

� b

1

�ukuk

2
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2

 �vkvk

2

+ (�u�  �v)(u; v)

+

Z
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uv
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d
:

(4.59)

By 
hoosing

 =

�u

�v

=

a

1

b

2

+ a

1

a

2

b

1

� a

1

the (u; v) term in equation (4.59) is eliminated, thus

_

E(t) may be split into a positive

de�nite part

D = kruk

2

+ d krvk

2

� b

1

�ukuk

2

� b

2

�ukvk

2

(4.60)

and an integral part

N =

Z




u

2

vd
� b

1

Z




u

3

d
�  

Z




uv

2

d
� b

2

 

Z




v

3

d
;
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so

dE

dt

= �D +N: (4.61)

We now seek to bound

_

E(t) from above, as in the previous 
ases. Again we need to

address the terms whi
h form N .

Bounding

_

E(t) for the 
oexisten
e equilibrium

We bound N (equation (4.51)) term by term using the Cau
hy-S
hwarz inequality

(4.27) and Sobolev inequality (4.28), following the method in se
tion 4.4.1. Applying

the L

2

norm gives the bound

N � 


7

kruk

2

(kvk+ b

1

kuk) +  


8

krvk

2

(kuk+ b

2

kvk) ;

where 


7

; 


8

are 
onstants depending upon the domain 
. From equations (4.58)

and (4.60), for E(t) and D respe
tively, we see that

kuk �

p

2E(t); kvk �

r

2

 

E(t); kruk

2

� D and  krvk

2

� D=d:

Thus we may bound N by

N � k

4

DE

1

2

(t); (4.62)

where

k

4

=

p

2

�




7

b

1

p

 

+ 


7

b

1

+




8

d

+




8

b

2

p

 d

�

:

Combining inequality (4.62) for N with equation (4.61) gives

dE

dt

� �D(q � k

4

E

1

2

(0));

where we have used E

1

2

(0) > E

1

2

(t) for E

1

2

(0) > 1=k

4

. The proof of this is the same

as in se
tion 4.4.1 with q repla
ed by 1. By applying Poin
ar�e's inequality (4.37) to

kuk

2

and kvk

2

in equation (4.60), we �nd that

D � 2�

1

kuk

2

2

+ 2�

1

d 

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg;

so

dE

dt

� ���E(t) (4.63)

with � = 1 � k

4

E

1

2

(0). Provided E

1

2

(0) > 1=k

4

, hen
e � > 0, we 
on
lude from

inequality (4.63) that the 
oexisten
e state is always globally stable.
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4.5 Results

From the analysis of the perturbation equations (4.3) and (4.4), we have established

that it is possible for ea
h of the four states to be globally stable under 
ertain


onditions. These results are summarised in table 4.2. We �nd that the 
oexisten
e

state is globally stable when it is feasible, so for a

2

b

1

> a

1

, provided that initially

E

1

2

(0) > 1=k

4

. This is demonstrated in �gure 4.1. These �gures show the per-

turbations u(x; t) and v(x; t) around the 
oexisten
e state over the spatial domain

x; y 2 [0; 1℄� [0; 1℄ � R

2

at two �xed time points. The perturbations at time t = 0

are given by

u(x; y; t) = sin(�x) sin(�y)

v(x; y; t) = 0:8 sin(�x) sin(�y);

whi
h are zero on the boundary of [0; 1℄� [0; 1℄.

The sign of the expression a

2

b

1

� a

1

is of interest as it 
ontrols whether the


oexisten
e state is feasible and stable. From 4.2, we see that the stability 
ondition

for the solution (a

1

=b

1

; 0) be
omes

d�

1

� a

2

+

a

1

b

1

> 0

in the limit � ! 0. By 
omparing this with the 
ondition for the 
oexisten
e state to

be unfeasible, a

1

=b

1

> a

2

, the solution (a

1

=b

1

; 0) is stable provided E(0) is suÆ
iently

small. Thus we know that, regardless of the sign of a

2

b

1

� a

1

, it is always possible

for the dominant language u to survive, either solely or in 
onjun
tion with v. This

result is intuitive as u is the dominant language.

When a

1

> a

2

b

1

the 
oexisten
e of languages is not possible, yet u may survive

alone. This may be an intuitive result when examining the roles of the parameters

a

1

, b

1

and a

2

in the the model equations (4.2). Growth of language u is a�e
ted

by the term a

1

u and an in
ux of individuals 
onverting from language v. As u

in
reases, the 
apping term �b

1

u

2

has a greater e�e
t on the rate of 
hange of u,

thus limits the growth of the language. Language v grows a

ording to the term

a

2

v and loses individuals to language u. We now 
onsider the inequality a

1

> a

2

b

1

and assume that one value is signi�
antly greater or smaller than the other two. To

highlight this we now simulate the model equations (4.2) in one spatial dimension
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l
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�
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�
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� �

1

> 0 a

1

+

a
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b

2

� �

1

<

�a

2
2

4b

2
2

(a

2

+d�

1

)

�

a

1

b

2

+a

2

b

1

b

2

+1

;

a

2

b

1

�a

1

b

1

b

2

+1

�

a

2

b

1

> a

1

| a

2

b

1

> a

1

Table 4.2: Summary of the results from the linear instability and global stability analysis for the four 
onstant equilibria.
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Figure 4.1: Density plots of the perturbations u(x; y; t) and v(x; y; t) around the


oexisten
e equilibrium with a

1

= 22, a

2

= 16, b

1

= 6, b

2

= 3 and d = 0:8. As time

in
reases the perturbations will eventually rea
h the x; y-plane, as indi
ated by the

plots at the dis
rete time points t = 0 and t = 0:5.
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x 2 [0; 1℄. In this instan
e u(x; t) and v(x; t) represent the speakers of ea
h language

rather than the perturbations. The zero-
ux boundary 
onditions �u=�x = 0 and

�v=�x = 0 when x = 0 and x = 1 are assumed, preventing speakers from leaving

the spatial region [0; 1℄.

If a

1

is large in 
omparison to a

2

and b

1

then language u grows qui
kly, and

faster than language v. This 
an be seen in �gure 4.2a. The logisti
 growth term

(a

1

� b

1

u)u is positive even for large u provided a

1

is suÆ
iently large, 
ontributing

to a positive value for the rate of 
hange of u with respe
t to time. The proportion

of v speakers is depleted by 
onversions to language u so, over time, large a

1

allows

for language u to prevail whilst v be
omes extin
t. If instead a 
omparatively small

value for a

2

is assumed then language v grows slowly. As demonstrated in �gure 4.2b,

a small a

2

may be insuÆ
ient for the growth of the language. As before, u initially

in
reases rapidly 
ompared to v and some individuals will 
onvert to language u.

The 
ap 
ontrolled by b

1

may have greater e�e
t, however the population growth of

v may be so slow that the language may die out before the 
ap on u 
an have any

signi�
ant e�e
t. Finally, if b

1

is presumed to be signi�
antly smaller than a

1

and

a

2

then the 
apping term �b

1

u

2

has very little e�e
t on the growth rate of language

u, even when u is large. As su
h, language u will 
ontinually in
rease independently

by the term a

1

u and also by gaining speakers from language v. If a

1

and a

2

are

similar growth rates, then language v will not in
rease qui
kly enough to o�set the

loss of speakers to language u and thus will eventually die out. In the example in

�gure 4.2
, a

1

< a

2

yet language u still dominates.

4.6 Dis
ussion

We have presented a model for two 
ompeting languages, seeking to determine if

language 
oexisten
e is possible. The stability analysis results indi
ate that, subje
t

to appropriate parameter 
onstraints, ea
h of the four equilibria may by stable.

Thus we 
on
lude that the 
oexisten
e of two 
ompeting languages is possible (in

line with Patriar
a and Lepp�anen (2004) and Pinas
o and Romanelli (2006)) but

stability of the state may be dependent upon the initial number of speakers of both
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Figure 4.2: Plots of u(x; t) (pink line) and v(x; t) (blue line) from equations (4.2)

showing the evolution of speakers in time where x = 0:7. The parameter values are

b

2

= 2, d = 0:8 and (a) a

1

= 24, a

2

= 5 and b

1

= 4, (b) a

1

= 8, a

2

= 1 and b

1

= 4,

(
) a

1

= 4, a

2

= 5 and b

1

= 0:5. Th distribution of speakers at t = 0 is given

by the fun
tions u(x; 0) = [2�x� sin (2�x)℄ =4� and v(x; 0) = [� + 
os (�x)℄ =�, so

u(0:7; 0) = 0:426 and v(0:7; 0) = 0:813.
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u and v. This 
on
lusion is supported by the real-world example of Catalan as,

despite being a minority language, it is gaining speakers within 
ertain regions (as

demonstrated in table 4.1).

To fully utilise this model, data for a spe
i�
 instan
e of language 
ompetition is

required. On
e obtained, predi
tions may be made whi
h indi
ate whether language


oexisten
e is possible, determined by the parameter values. Ideal s
enarios 
an

be run where the e�e
t of theoreti
al 
ampaigns to save an endangered language

are in
orporated into the parameter values. This 
ould advise poli
y makers on

appropriate strategies required to save an endangered language, su
h as providing

edu
ation in the minority language.

Our 
on
lusion that all four equilibria may be stable di�ers from the �ndings

of Kandler and Steele (2008). They determine that none of the equilibria are both

feasible and lo
ally stable. This di�eren
e is a result of two modelling fa
tors: the


hoi
e of boundary 
onditions and the imposition of 
arrying 
apa
ity restri
tions.

By 
hoosing zero-
ux boundary 
onditions, whi
h restri
ts individuals to remaining

within the spe
i�ed spatial domain, a di�erent analyti
al approa
h may be under-

taken to analyse the lo
al stability of the system equilibria (see Wang and Zhao

(2012)). They also introdu
e separate 
arrying 
apa
ities for ea
h language, whi
h

represents environmental 
onstraints on the number of speakers able to be main-

tained. We 
hose to assume that any environmental 
ap on the number of speakers

will a�e
t the total number of individuals, 
omprised of both u and v speakers,

rather than assuming separate 
apa
ities for ea
h language. This is be
ause we 
on-

sider environmental 
onstraints to a�e
t human population growth as a whole, and

languages to then 
ompete for speakers within this total population. Thus the 
ap

is on the size of the human population rather than on the number of speakers of a

parti
ular language. Our results are therefore not in
ompatible with the 
on
lusions

of Kandler and Steele (2008), but highlight the e�e
t of mathemati
al assumptions

on model predi
tions.

Whilst our model does not 
ontain a separate 
lass of bilingual speakers, this does

not ex
lude its appli
ability to su
h 
ir
umstan
es as it is not ne
essary to assume

that u and v represent monolingual speakers. A two-state model for the Aromanian
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language in Gree
e denotes monolingual Greek speakers as X and bilingual speakers

of Greek and Aromanian as Y (Bakalis and Galani, 2012). The survival of the mi-

nority language Aromanian is dependent upon bilingual speakers, so a two-variable

model 
an appropriately represent bilingual so
ieties. Alternatively, u and v 
ould

represent the preferred language used by individuals. Whilst this may not a

u-

rately predi
t the 
omplete eradi
ation of a language, it 
ould still provide useful

information regarding so
iolinguisti
 preferen
es over time.

As dis
ussed in the se
tion 4.1, not all mathemati
al models for language 
om-

petition 
ontain a spatial 
omponent (see Abrams and Strogatz (2003); Pinas
o and

Romanelli (2006)). In parti
ular, the 
onstru
tion of the model by Pinas
o and

Romanelli (2006) is equivalent to equations (4.1) with the spatial dependen
e re-

moved. The stability results found here should therefore 
oin
ide with the results of

Pinas
o and Romanelli (2006) if we dismiss the terms asso
iated with di�usion (�

1

and d�

1

). From table 4.2 we see that, without these terms, the equilibria (0; 0) and

(0; a

2

=b

2

) would always be unstable. Thus the in
lusion of di�usion into the model

has a qualitative e�e
t on the predi
ted out
ome when 
ompared with the model

without di�usion.

If di�usion of u or v speakers is rapid 
ompared with the respe
tive population

growth rates then fewer individuals will be 
on
entrated in one region. This redu
es

the intera
tion between speakers of the same language and thus redu
es reprodu
-

tive opportunities, whi
h may lead to population extin
tion. Rapid di�usion also

de
reases intera
tion between speakers of 
ompeting languages. The equilibrium

(0; a

2

=b

2

) 
an be stable when the di�usion of language v is not suÆ
ient for the lan-

guage to die out, however a 
omparatively slow growth rate of u 
ombined with few

opportunities to 
onvert speakers of language v results in language u dying out. As

the model di�ers with the one without di�usion, the 
hoi
e of model must depend on

the spe
i�
s of the real-world situation. For instan
e, for a model for monolingual

and bilingual speakers like that of Bakalis and Galani (2012), di�usion may be an

unne
essary 
ompli
ation to the model. If both languages are established within

a population and the advantage of the dominant language 
omes from, for exam-

ple, trade opportunities with neighbouring regions where the dominant language
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is spoken, then the modelled population may be unlikely to migrate to new areas

and thus spatial fa
tors may have little e�e
t on language dynami
s. If, however,

a situation arose where speakers of language u invaded a region populated with v

speakers (similar to farmers invading regions of hunter-gatherers (Aoki et al., 1996))

then di�usion dynami
s may play a greater role in the spread and survival of both

languages.

This model was motivated by existing literature regarding the 
oexisten
e of

languages with the aim of furthering understanding about the extin
tion of minor-

ity languages. Our 
ontribution extends 
urrent knowledge by providing a global

stability analysis of the equilibria of a system whi
h assume that language survival

is dependent upon both spa
e and time. Binary 
hoi
e models su
h as this language

may be applied to other behaviours, for example religion (Abrams et al., 2011).

Thus the appli
ation of this model may extend to a variety of 
ultural traits where

one variant is deemed to have an advantage over the other.



Chapter 5

Con
lusion

5.1 Dis
ussion

Chapters 2 to 4 
omprise mathemati
al models for 
ultural trait transmission via

frequen
y-dependent so
ial learning pro
esses. Su
h models provide population-level

information regarding the persisten
e and frequen
y of a 
ultural trait over time.

Ea
h model is a system of di�erential equations whi
h are not analyti
ally solvable,

but the long-term behaviour of the systems may be determined by analysing the

stability of the equilibria.

In 
hapter 2 we assume that problem drinking is a so
ially learned behaviour

where uptake o

urs in a linear (unbiased) frequen
y-dependent fashion. Individ-

uals are 
lassi�ed as either sus
eptible to developing a drinking problem, problem

drinkers, or those re
overing from a drinking problem. Analysis revealed that to

redu
e the frequen
y of problem drinkers it would be most e�e
tive to dis
ourage

the initial adoption of the problem drinking behaviour. The e�e
t of total re
overy,


ontrolled by parameter 
, was investigated by 
omparing results with those from

the model without total re
overy (
 = 0). Removing the possibility of total re
overy

a�e
ts the endemi
 frequen
y of individuals with al
ohol problems, however whether

the frequen
y is in
reased or de
reased is dependent upon other variable parameters.

A model for the biased transmission of a 
ultural trait is presented in 
hapter 3,

seeking to identify how learning biases may a�e
t the population-wide persisten
e

of a 
ultural trait by utilising some of the mathemati
al te
hniques introdu
ed in

103
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hapter 2. The population is split into individuals sus
eptible to a
quiring trait A

(type S) and individuals displaying trait A (type A), where the adoption of trait A

by type S individuals is dependent upon the frequen
y of trait A individuals within

the population. The model with linear (unbiased) frequen
y-dependent trait trans-

mission is evolved to represent 
ases of nonlinear (
onformist) biased and 
ontent

biased transmission, 
ontrolled by model parameters D and � respe
tively. The

e�e
ts of these so
ial learning biases 
an be determined by 
omparing the number

and nature of equilibria of the model with transmission biases to the model without

biased learning. We �nd that in
reasing the 
onformity strength leads to a bistable

equilibrium, hen
e the persisten
e of type A individuals within the population is

dependent upon the initial state. In table 3.2, se
tion C, the 
onformity fun
tion




1

with values � = 0:45 and D = 0:7 results in a bistable equilibrium with values

�a = 0 and �a = 0:380. An initial value of a(0) = 0:258 provides a threshold whi
h

determines whi
h of these states is attained. Manipulation of � in 


2

, 
ontrolling the

e�e
t of a 
ontent bias, alters the behaviour invasion threshold su
h that in
reasing

� in
reases the 
onformity threshold frequen
y.

This model may be applied to a variety of 
ultural traits where an individual 
an

be in one of two states: displaying trait A (type A) or not displaying trait A (type

S). In 
hapter 3 an appli
ation of the model to binge drinking behaviour is dis
ussed,

although it may be applied to a variety of di�erent health-related behaviours. For

example, both the SARS (
hapter 2) and SAS model may represent drug-taking,

smoking and eating behaviours, with parameter 
onstraints imposed when appro-

priate. The 
hoi
e of model will depend upon the 
hara
teristi
s of the behaviour.

Toba

o 
ontains ni
otine whi
h is highly addi
tive and therefore individuals �nd

stopping smoking diÆ
ult and will usually enter a period of treatment or re
overy

before quitting (Benowitz and Henning�eld, 2013). The SARS model would be the

more appropriate 
hoi
e as a treatment period is in
orporated. In other situations

a re
overy period may be unne
essary or be of insigni�
ant duration so the SAS

model would be the preferred 
hoi
e. The drug LSD is not thought to be addi
tive

so behaviour 
essation may not entail a period of re
overy (L�us
her and Ungless,

2006); the SAS model may be more appropriate for representing LSD use.
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If applying the SARS model to di�erent behaviours it may be desirable to in
lude

a 
onformity bias in order to better represent the so
ial learning pro
ess driving the

behaviour adoption. For example, adoles
ents in the USA are more likely to take

up smoking if many of their peers smoke, and this may be in a 
onformist fashion

(Simons-Morton and Farhat, 2010). Whilst the in
lusion of a 
onformity bias may

in
rease the a

ura
y of the SARS model when applied to some behaviours, it will

also in
rease the model 
omplexity. As a result, �nding the model equilibria and

analysing their stability will be more diÆ
ult. The equilibria of the SARS model

in 
hapter 2 may be found in terms of the model parameters. Equations (2.3) at

equilibrium, where ( _a; _r) = (0; 0), are easily manipulated to �nd

r =

'

� + �+ 


a;

from whi
h

0 = a [��(� + �+ 
 + ')a+ �(�+ �+ 
)� �(�+ �+ 
 + ')� 
'℄ ; (5.1)

an equation in terms of a only, is obtained. Equation (5.1) is a fa
torised quadrati


polynomial, therefore solving for a, and 
onsequently �nding the system equilibria,

is possible and relatively simple.

For the SAS model with 
onformity, �nding the system equilibria requires solving

the 
ubi
 polynomial (3.7) whi
h 
annot be fa
torised. As dis
ussed in 
hapter 3,

�nding the equilibria in terms of the model parameters is possible, however their


omplexity greatly redu
es their utility with regard to interpreting the results in

a real-world 
ontext. The stability analysis was possible be
ause the system is 1-

dimensional, whi
h allowed for properties of 
ubi
 polynomials to be utilised. If a

similar 
onformity fun
tion was introdu
ed into the SARS model then it would be

ne
essary to solve a system of nonlinear polynomial equations in order to �nd the

system equilibria. As demonstrated by the analysis of the SAS model, �nding these

equilibria in terms of the model parameters will be diÆ
ult and, if obtained, are

unlikely to be mathemati
ally tra
table. As the SARS system only redu
es to a

2-dimensional problem, the pro
edure to determine the stability of equilibria whi
h

is presented in 
hapter 2 
annot be implemented. It is probable that the in
reased


omplexity resulting from the in
lusion of a 
onformity bias in the SARS model will



5.1. Dis
ussion 106

render analyti
 methods unfruitful. A numeri
al solving approa
h would be more

appropriate for analysing su
h a model.

Aside from the in
lusion of a 
onformity bias, the SARS model of 
hapter 2


ould be developed to in
lude the aso
ial learning of drinking behaviour. Mathe-

mati
ally this 
ould be represented by introdu
ing a variable parameter � and a

term �S taking individuals from 
lass S to 
lass A. This allows individuals to de-

velop a behaviour, possibly through innovation or trial and error learning, whi
h

is 
urrently not present within the population. Similarly, an aso
ial learning term


ould be introdu
ed into the SAS 
onformity model. Aso
ial learning me
hanisms

have been in
orporated into SIS-type models (Hill et al., 2010a,b) and a model for

the 
onformist transmission of a 
ultural trait (Eriksson and Coultas, 2009). In-


luding an aso
ial learning term would generalise the models, thus in
reasing their

appli
ability, however the addition of an extra term is likely to in
rease the 
al
ula-

tional diÆ
ulty. Again, numeri
al methods may be the best option for solving su
h

systems. Alternatively, it may be possible to obtain analyti
 results if su
h systems

were simpli�ed in other ways, su
h as redu
ing the number of other variables. This

would highlight di�erent key features of the real-world situation, indi
ated by a

di�erent set of simplifying assumptions.

In 
hapter 4 the spread and persisten
e of two 
ompeting languages is modelled

by a rea
tion-di�usion system, where the language frequen
y is dependent upon

both spa
e and time. The implementation of di�erent mathemati
al te
hniques was

ne
essary to handle the in
reased 
omplexity arising from a PDE, rather than ODE,

system. The four 
onstant equilibria of the system were found, and their stability

analysed. The language 
oexisten
e state was of parti
ular interest and was found

to be globally stable. Analysis revealed that the 
oexisten
e of languages, where

one is dominant, is a stable equilibrium state, subje
t to the parameter restri
tion

a

2

b

1

> a

1

and suÆ
iently small initial populations of u and v speakers su
h that

� > 0 in inequality (4.63).

This is an extension of the work in previous 
hapters as the model in
orporates

both a spatial and temporal dependen
e, thus in
reases the mathemati
al 
omplex-

ity. The model does not exhibit the form of an SIR-type model with di�usion,
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however its formulation again stems from dynami
al systems models in biology. In

parti
ular it 
ontains a logisti
 growth term used in e
ology and the model itself is

similar to a Lotka-Volterra 
ompetition model with di�usion (see Murray (2003);

Cantrell and Cosner (2003)). As with the SARS al
ohol model, the rea
tion-di�usion

language model may be applied to other 
ultural traits whi
h are in 
ompetition.

For example, it 
ould represent the spread of religious attitudes. For some traits it

may be of interest to 
onsider the e�e
t of a 
onformist bias, where the strength of

the status advantage of u is dependent on the proportion of u speakers within the

population. This is dis
ussed further in se
tion 5.2.

The main aspe
t of the resear
h whi
h warrants improvement is the use of data

to empiri
ally verify the model assumptions and thus a
hieve a

urate predi
tions.

Whilst some parameter estimates are made for the SARS model in se
tion 2.2.5,

the so
ial in
uen
e parameter � 
ould not be approximated. To in
rease the utility

of the models, appropriate data sets are required. It may be possible to obtain

data from existing studies, as was the 
ase with the SIS obesity model by Hill et al.

(2010b) whi
h referred to the Framingham Heart Study Network. Alternatively, an

experiment 
ould be designed to test the model by enabling appropriate data to be


olle
ted. This 
ould then be to �t to the model parameters to test if the model

predi
tions mat
h the experimental out
ome. This is what was done by E�erson

et al. (2008).

As dis
ussed by Morgan et al. (2011), many models assume that only one so
ial

learning bias is in operation whi
h may not be an a

urate representation of the

real world situation. This issue was addressed in 
hapter 3 by developing a model

for both 
onformist and 
ontent biased transmission. The type of models dis
ussed

assume homogeneous mixing, where ea
h individual has an equal 
han
e of inter-

a
ting with any other, and the in
uen
e exerted by ea
h individual on another is

equal. Thus in
luding 
onformity or 
ontent biases, whi
h may be assumed to have

a population-wide in
uen
e, is a natural development. This method does not lend

itself to representing model-based biases however, as this requires treating at least

one individual (the model) di�erently.

In 
hapter 2 the 
on
ept of a re
overy 
hampion 
lass (R

T

) allows for su

ess and
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similarity biases by assuming that all re
overy 
hampions have an equal in
uen
e

over individuals in treatment. Generally the 
reation of another 
lass may not

provide an a

urate enough model. In su
h 
ases an alternative method may be

required, perhaps 
onsidering individuals to be 
onne
ted on a network. In this

instan
e only 
onne
ted individuals 
ould in
uen
e ea
h other. A model-based bias


ould be represented by allowing one individual to have a greater in
uen
e over

other individuals than anyone else. The degree of in
uen
e 
ould be proportional

to the number of 
onta
ts the model individual has, assuming that the having more


onta
ts indi
ates in
reased status within the so
ial network.

5.2 Future Work

Future work will fo
us on extending the 
ompeting languages model of 
hapter 4 to

in
lude a 
onformist so
ial learning bias. Kandler and Laland (2009) 
onstru
ted a

rea
tion-di�usion model for n 
ompeting 
ultural variants to investigate the e�e
t

of innovation on the level of 
ultural diversity within a population. Within their

investigation they 
onsider how a 
onformist in
uen
e 
ompares with an unbiased

learning model. They �nd that a low to moderate 
onformity strength de
reases

the 
ultural diversity at equilibrium. Their model formulation may be viewed as an

advan
ement of the language model in 
hapter 4 as the system has been generalised

to represent n 
ultural variants and in
ludes more mathemati
ally 
omplex inter-

a
tion terms. However, the fo
us of the model was to determine how innovation

a�e
ts 
ultural diversity and thus the mathemati
al formulation 
ontains spe
i�


fun
tions to represent this. As the proposed future work does not investigate the

e�e
t of innovation, the model is di�erent to that of Kandler and Laland (2009) so

their results 
annot be assumed to apply to the language model with 
onformity,

whi
h is outlined below.

As dis
ussed in 
hapter 3, se
tion 3.2, a 
ubi
 polynomial term may be used to

represent a 
onformist in
uen
e. The intera
tion term uv in system (4.2) may be

repla
ed with

uv (1 + k (2u� �) (1� u)) ; (5.2)
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whi
h in
ludes a 
onformity fun
tion of the same form as 


2

(equation (3.9), se
tion

3.3). In this instan
e k represents the strength of 
onformity and �, representing a

possible 
ontent bias, 
ontrols the frequen
y for whi
h trait uptake is equal to that of

the linear frequen
y-dependent 
ase. The resulting model for language 
ompetition

with 
onformity is therefore

�u

�t

= �u+ a

1

u� b

1

u

2

+ uv (1 + k (2u� �) (1� u)) ;

�v

�t

= d�v + a

2

v � b

2

v

2

� uv (1 + k (2u� �) (1� u)) :

(5.3)

The 
onstant equilibria o

ur when (u

t

; v

t

) = (0; 0) and (�u;�v) = (0; 0) so

may be found by solving

0 = a

1

u� b

1

u

2

+ uv (1 + k (2u� �) (1� u)) ;

0 = a

2

v � b

2

v

2

� uv (1 + k (2u� �) (1� u)) :

(5.4)

Three 
onstant equilibria whi
h 
an easily be found are

(�u; �v) = (0; 0) ;

(�u; �v) =

�

a

1

b

1

; 0

�

;

(�u; �v) =

�

0;

a

2

b

2

�

:

These are also solutions to the system without 
onformity, equations (4.2). The

analyti
 approa
hes whi
h have been used in previous 
hapters to �nd all equilibria


annot be utilised in this 
ase. Future work will fo
us on using numeri
al methods to

�nd equilibria of system (5.3) and determining whi
h equilibrium the system rea
hes

for 
ertain parameter sets. These results may then be 
ompared with the �ndings

of 
hapter 4 to try and obtain a greater understanding of how future predi
tions

are a�e
ted by assuming a 
onformist bias by looking for qualitative di�eren
es in

system behaviour.
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Appendix A

A.1 The Monty Hall problem

A gameshow 
ontestant, wishing to win a 
ar, is given the 
hoi
e of three doors: A,

B or C. The 
ar is behind one door, and goats behind the other two. The 
ontestant


hooses a door then the gameshow host opens one remaining door to reveal a goat.

The 
ontestant then has the opportunity to swit
h from their door to the other

unopened door. Should they sti
k or swit
h?

Intuitively the result appears to be that the probability of winning the 
ar is

1=2 if you sti
k or swit
h, so neither option in
reases the 
han
e of winning the 
ar.

However, the 
han
e of winning the 
ar when swit
hing is 2/3 and 1/3 for sti
king,

hen
e it is always bene�
ial to swit
h. This arises as the host is restri
ted in his


hoi
e of door as he must always reveal a goat.

Assume that the 
ontestant pi
ks door A. If the 
ar is behind door A, whi
h

has probability 1=3, then the probability of winning the 
ar when sti
king is 1 and

0 when swit
hing. If the 
ar is behind B or C (probability 2=3), then one goat is

behind door A and the host is for
ed to reveal the se
ond goat from behind either

B or C. The 
ar is behind the door that the host does not open so the probability

of winning the 
ar is 0 when sti
king and 1 when swit
hing. The probability of

winning the 
ar when not swit
hing is therefore 1� 1=3 = 1=3 and the probability

of winning when swit
hing is 1 � 2=3 = 2=3. Thus, the 
ontestant should swit
h

doors to maximise their 
han
e of winning the 
ar.
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Appendix B

B.1 Proof of y

1

> 0 implies x

1

> 0

We need to show that x

1

> 0 always holds provided y

1

> 0, where

x

1

= '+ �+ 2�+ 
 � �;

y

1

= ��' + (�+ �+ 
)('+ �� �):

We �rst 
onsider the inequality y

1

> 0 whi
h 
an be written in terms of the param-

eters as

0 < ��' + (�+ �+ 
)(�+ '� �)

, 0 < ��(�+ �+ 
) + �(�+ �+ 
 + ') + 
'

, �(�+ �+ 
) < �(�+ �+ 
 + ') + 
': (B.1.1)

We now 
onsider the ne
essary 
ondition for x

1

> 0 by rewriting this inequality in

terms of the parameters,

0 < '+ �+ 2�+ 
 � �

, � < '+ �+ 2�+ 
: (B.1.2)

We now multiply inequality (B.1.2) by (�+�+
) so that it may be dire
tly 
ompared

with (B.1.1), whi
h results in

�(�+ �+ 
) < ('+ �+ 2�+ 
)(�+ �+ 
)

, �(�+ �+ 
) < �(�+ �+ 
 + ') + 
'+ �

2

+ �' (B.1.3)

+ (�+ 
)(2�+ �+ 
):

126
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By 
omparison, we see that inequality (B.1.1) imposes a stronger 
omdition on

�(� + � + 
) than inequality (B.1.3). From this we 
on
lude that y

1

> 0 implies

x

1

> 0.

B.2 Endemi
 equilibrium solution 
al
ulations

B.2.1 Proof of y

2

> 0 implies x

2

> 0

We need to show that x

2

> 0 always holds provided y

2

> 0, where

x

2

= 2��a+ ��r + '+ 2�+ �+ 
 � �;

y

2

= '(��a� �) + (�+ �+ 
)(2��a+ ��r + '+ �� �):

We 
an write y

2

in terms of x

2

as

y

2

= '(��a� �) + (�+ �+ 
)([2��a+ ��r + '+ 2�+ �+ 
 � �℄� [� + �+ 
℄)

= '(��a� �) + (�+ �+ 
)(x

2

� [� + �+ 
℄); (B.2.4)

and, from (2.8), the equation for �a in terms of y

2

as

�a =

y

2

�(�+ �+ 
 + ')

: (B.2.5)

Substituting equation (B.2.5) into equation (B.2.4) gives

y

2

=

'y

2

� + �+ 
 + '

� �'+ (�+ �+ 
)(x

2

� [�+ �+ 
℄);

from whi
h we �nd the equation for x

2

,

x

2

=

y

2

�+ �+ 
 + '

+

�'

� + �+ 


+ �+ �+ 
: (B.2.6)

From equation (B.2.6) we see that x

2

> 0 is always true if y

2

> 0.

B.2.2 Simpli�
ation of y

2

We have

y

2

= '(��a� �) + (� + �+ 
)(2��a+ ��r + '+ �� �)
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and we want to write this equation in terms of the model parameters only. We begin

by substituting for �r using

�r =

'

� + �+ 


�a;

whi
h follows from equations (2.8). This gives

y

2

= '(��a� �) + (�+ �+ 
)

�

2��a+

�'

�+ �+ 


�a+ '+ �� �

�

= '(��a� �) + (�+ �+ 
)('+ �� �) + ��a(�+ �+ 
)

�

2 +

'

� + �+ 


�

= '(��a� �) + (�+ �+ 
)('+ �� �) + ��a(2�+ 2�+ 2
 + ')

= 2��a(�+ �+ 
 + ')� �(�+ �+ 
) + �(�+ �+ 
 + ') + 
':

Using equation (2.8) for �a, we write y

2

in terms of the parameters only as

y

2

= 2�(�+ �+ 
)� 2�(�+ �+ 
 + ')� 2
'� �(�+ �+ 
)

+ �(�+ �+ 
 + ') + 
'

= �(�+ �+ 
)� �(�+ �+ 
 + ')� 
':

B.3 Positive invariant region

We show that provided we always take our initial 
onditions to lie in D, the solution

will always be in D. We do this by 
onsidering the dire
tion �eld at the boundary,

�D, whi
h is the triangle in the ar-plane with verti
es (0; 0); (1; 0) and (0; 1). We

want to show that the dire
tion �eld at �D always enters D. This ensures that any

traje
tory starting in D remains in D.

The boundary will be 
onsidered as the union of six sets: ea
h of the three

verti
es, and ea
h of the three edges minus the verti
es. Firstly we shall look at the

dire
tion �eld a
ross the line r = 0 for a 2 (0; 1). To determine the dire
tion �eld

along this boundary line we 
onsider equations (2.3) along r = 0. This gives

_a = ��a

2

+ (� � '� �)a;

_r = 'a: (B.3.7)

As a > 0 along the boundary, equation (B.3.7) determines that _r > 0 along the

boundary line r = 0. This is suÆ
ient for us to determine that the dire
tion �eld
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arrows at the boundary line always point into D. Similarly we now evaluate equa-

tions (2.3) along the bounday line a = 0 with r 2 (0; 1) to obtain

_a = �r; (B.3.8)

_r = �(� + �+ 
)r:

As r > 0 we 
an 
on
lude from equation (B.3.8) that _a > 0, hen
e all dire
tion �eld

arrows along this boundary line point into the region D.

The �nal boundary line is a + r = 1 for (a; r) 2 (0; 1)

2

. Along this line we 
an

write equations (2.3) in terms of one variable by using r = 1 � a whi
h gives the

equations

_a = �(� + �+ ')a+ �;

_r = (� + �+ 
 + ')a� (� + �+ 
):

To determine the dire
tion that arrows 
ross the boundary line a+ r = 1 we use the

ve
tor dot produ
t. The ve
tor dot produ
t for two ve
tors x and y is

x � y = jxjjyj 
os �; (B.3.9)

where � is the angle between the two ve
tors. We 
onsider the ve
tor (1; 1)

T

, whi
h

is orthogonal to the boundary line, and dot this with the ve
tor ( _a; _r)

T

. We �nd

that

0

�

_a

_r

1

A

�

0

�

1

1

1

A

= �(� + �+ ')a+ � + (�+ �+ 
 + ')a� (�+ �+ 
)

= ��� (1� a)
: (B.3.10)

As (1�a) > 0, the right hand side of equation (B.3.10) is negative. By applying the

ve
tor dot produ
t formula (B.3.9) we 
on
lude that 
os � < 0 so � 2 (�=2; 3�=2).

For these values of �, the dire
tion �eld always 
rosses the boundary line a+ r = 1

in a dire
tion whi
h enters the region D.

We now 
onsider the dire
tion �eld at ea
h of the verti
es of the boundary

triangle. No traje
tories 
an pass through the point (0; 0) as ( _a; _r) = (0; 0). At the
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point (1; 0),

_a = �('+ �);

_r = ':

The equation of the line passing through (0; 1) for whi
h ( _a; _r) is the dire
tion ve
tor

is r = �'(1� a)=(' + �) whi
h has a gradient less than that of the boundary line

a + r = 1, hen
e traje
tories passing through the boundary point (1; 0) will always

enter D. At the point (0; 1),

_a = �;

_r = �(�+ �+ 
):

The equation of the line passing through (0; 1) 
orresponding to the dire
tion ve
tor

( _a; _r) is r = �(� + � + 
)a=� + 1. As the magnitude of the gradient of this line is

greater than that of the boundary line a+r = 1 we 
an 
on
lude that all traje
tories

passing through the point (0; 1) will always enter the feasible region.

B.4 Endemi
 equilibrium solution 
omparison

We show that if the inequality R

0

> 1 is satis�ed then the inequality F < 0 must

also be true. We begin by 
onsidering the inequality F < 0, whi
h gives

0 > ��(� + �)(�+ �+ 
) + �(�+ �)(�+ �+ 
) + �'(�+ 
)� �'(�+ '):

This rearranges to

�(�+ �)(�+ �+ 
) > �(�+ �)(�+ �+ 
) + �'(�+ 
)� �'(�+ '): (B.4.11)

We now look at the 
onstraints on the parameter values whi
h 
ome from R

0

> 1.

This 
an be written as

�(�+ �+ 
) > �(�+ �+ 
 + ') + 
': (B.4.12)

By multiplying both sides of inequality (B.4.12) by (�+ �) we get

�(�+ �)(�+ �+ 
) > �(�+ �)(�+ �+ 
) + �'(�+ 
) + �'(�+ 
); (B.4.13)
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whi
h has the same left hand side as inequality (B.4.11). We now 
ompare inequal-

ities (B.4.11) and (B.4.13) and �nd that inequality (B.4.13) imposes the greatest

lower bound on the expression �(� + �)(� + � + 
). From this we 
on
lude that if

the parameter values satisfy R

0

> 1 then they will satisfy F < 0.



Appendix C

C.1 Exa
t solutions to f

1

(a) = 0 and f

1

(a) = 0

Following the method des
ribed by Murray (2003, appendix 2.3), let

x =

D + 6

36D

; y =

�(D + 9)� 54�

108�D

; z = �

5

6

:

Then, for � < g

1

(a

1

�

), the exa
t solutions to f

1

(a) = 0 are

a = 2x

1

2

sin��z; a = �2x

1

2

sin

�

�

3

+ �

�

�z; a = 2x

1

2

sin

�

�

3

� �

�

�z; (C.1.1)

for � = sin

�1

[y=2x

3

2

℄=3, j�j � �=6. For the model with varying 
onformity threshold

frequen
y, the solutions to f

2

(a) = 0 for � < g

2

(a

2

�

) are given by equations (C.1.1)

with

x =

6 +D(2� �)

2

36D

; y =

�(9(2� �) +D(2� �)

3

)� 54�

108�D

; z = �

4 + �

6

:

C.2 Justi�
ation of the linear reversion term 
A

for small 


Consider the two fun
tions

r

1

= 
a;

r

2

= 
as[1 +

^

D(2s� 1)(1� s)℄;

representing reversion from type A ba
k to type S. The fun
tion r

1

assumes no

so
ial in
uen
e, whereas r

2

assumes a 
onformist in
uen
e of the same form as 


1
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(used in se
tion 3.2) with 
onformity 
oeÆ
ient

^

D. The di�eren
e between these

two fun
tions 
an be 
al
ulated by subtra
ting r

2

from r

1

, resulting in

d




(a) = 
a

2

(�2

^

Da

2

+ 3

^

Da+ 1�

^

D):

The turning points of this fun
tion o

ur at a = 0 and

a =

9

16

�

1

16

r

17 +

64

^

D

:

By 
onsidering these points as

^

D ! 0 it 
an be determined that, for all values of

^

D, the fun
tion d




is stri
tly monotoni
ally in
reasing on (0; 1), therefore attains its

maximum within [0; 1℄ at a = 1. By dire
t 
al
ulation, d




(1) = 
 so the maximum

error magnitude whi
h 
an arise from using the linear fun
tion r

1

over the 
onformity

fun
tion r

2

is 
. As stated in se
tion 3.2 we assume 
 to be very small, and mu
h

smaller than �, therefore using r

1

is appropriate owing to the small magnitude of

the error.


