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Abstrat

Cultural evolutionary theory is onerned with the soial transmission of be-

haviours, beliefs or ideas that onstitute ulture. In humans, transmission of ulture

may be from one generation to the next or between individuals of the same genera-

tion. This thesis ontains three models for the transmission of ultural traits, subjet

to frequeny-dependent soial learning. All models are formulated as a system of

di�erential equations that annot be solved analytially. By �nding the equilibria

of the systems and analysing their stability, the long-term behaviour of the systems

may be determined.

A mathematial model for the spread of drinking behaviour is presented, with a

fous on total reovery. The equilibria of the system are found and a loal stability

analysis is performed. The system is found to have a parameter-dependent threshold

at whih the two equilibria swith stability. This indiates a hange in the long-term

system behaviour. Consequently, whether drinking behaviour dies out or beomes

endemi may be predited from the values of the model parameters. The rate at

whih individuals take up drinking behaviour is found to have the greatest e�et on

whether it beomes endemi.

A model for both the linear and nonlinear frequeny-dependent transmission of

a ultural trait, with potential appliations to binge drinking behaviour, is then

investigated. The system equilibria annot be found expliitly in terms of the model

parameters. However, by onsidering di�erent ases orresponding to regions of



iv

parameter spae, qualitative di�erenes in the long-term behaviour of the system

are determined. By omparing the linear and nonlinear frequeny-dependent models,

the e�et of onformity is determined for di�erent regions of parameter spae.

Finally, a reation-di�usion model for two ompeting languages, u and v, with

a fous on language oexistene is presented. Language u is assumed to onfer a

status advantage to its speakers, thus swithing languages is one-diretional from v

to u. Four onstant system equilibria are found and global instability and stability

thresholds are found for eah solution. The oexistene of languages u and v is found

to be globally stable, subjet to ertain parameter onstraints and a suÆiently small

initial population of speakers.
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Chapter 1

Introdution

1.1 Thesis overview

Presented in this thesis are mathematial models for the spread of ulture within

human populations via soial learning mehanisms. Using tehniques developed in

mathematial biology, the models represent the frequeny-dependent transmission

of ultural traits. Whilst all models are, to some extent, generally appliable to a

variety of behaviours and situations, hapters 2 and 3 fous on drinking behaviour

and hapter 4 on language ompetition. The motivation behind developing models

for alohol problems stems from the inreasing onern regarding the health and

eonomi e�ets of problem drinking, whether in the form of alohol addition or

binge drinking behaviour. To redue the prevalene of the behaviour (and thus

redue the negative assoiated osts) it is neessary to understand what inuenes

drinking behaviour and how this may be hanged. Mathematial modelling alone

does not provide the answer to this, but it provides a mehanism for analysing trends

and prediting future outomes.

The language model extends existing work aimed at determining whether om-

peting languages an oexist over time. Many of the world's minority languages are

in deline, so preditions from mathematial models may prove vital to developing

appropriate strategies for the preservation of these languages. We develop a model

for two ompeting languages, where one is a minority language, and analyse the

global stability and instability properties of all of the onstant system equilibria.

1



1.1. Thesis overview 2

This reveals onditions under whih the survival of both languages is stable.

Eah researh hapter has its own distint novel aspet, however all are onep-

tual ontributions to the �eld of ultural evolution. In hapter 2, this is the inlusion

of a term in the alohol model whih permits individuals to fully reover from an al-

ohol problem. The model is an extension of work by Mulone and Straughan (2011)

and was developed in light of reent theories regarding the nature of reovery. In

hapter 3, the novel aspet is the inorporation of a onformist soial learning bias,

from the ultural evolution literature, into an SIS (Suseptible-Infeted-Suseptible)

model framework. The model redues to a single polynomial equation, allowing for

information to be gained through utilising methods from alulus. This is an ap-

proah not previously doumented in the literature, thus the model and aompany-

ing analysis are new ontributions. The global stability analysis method in hapter

4 is well-doumented in the uid dynamis literature, however here it is applied to

a novel situation: the oexistene of languages.

Following a brief introdution to eah of the researh hapters, the proeeding

setions of this hapter introdue the main topis of the thesis. A review of ul-

tural evolutionary theory is presented, with a fous on soial learning transmission

biases. A ritial analysis of mathematial modelling methods follows, leading to

a disussion of the use of this approah, and others, in ultural evolution researh.

The remaining setions, 1.5 and 1.6, review existing work whih provides an intro-

dution to the modelling approahes utilised in hapters 2 to 4. Spei�ally, setion

1.5 ontains a review of an ordinary di�erential equation (ODE) model for drinking

behaviour by Sanhez et al. (2007). The extension of suh models to systems of

partial di�erential equations (PDEs) is disussed in setion 1.6.

As the motivation for this thesis was to develop mathematial modelling teh-

niques appliable to ultural evolution, the merits and pitfalls of the theory itself are

not debated. For an insight into where ultural evolutionary theory lies within the

broader ontext of human evolution, Laland and Brown (2011) provides an introdu-

tion. The mathematial models presented in the thesis are examples of dynamial

systems and the analyti methods have been widely applied in the �elds of epidemi-

ology and uid mehanis (see Hethote (2000); Straughan (2004)). Some of the
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material reviewed later in this hapter entres on behaviour transmission, developed

from models for the spread of infetious diseases. For an introdution to dynamial

systems, see any undergraduate textbook on the subjet, suh as Arrowsmith and

Plae (1990); Hale and Ko�ak (1991); Tu (1992).

Chapter 2 onsists of a model for the linear frequeny-dependent soial transmis-

sion of problem drinking behaviour, extending previous work in this area by Mulone

and Straughan (2011). Binge drinking in the UK is an inreasing problem, result-

ing in negative health, soial and eonomi e�ets. Mathematial modelling allows

for future preditions to be made and may provide valuable information regarding

how to approah solving the problem of binge drinking in the UK. We develop a

3-equation model for alohol problems, spei�ally binge drinking, whih allows for

total reovery. Individuals are split into those that are suseptible to developing

an alohol problem, those with an alohol problem, and those in treatment. We

�nd that the model has two equilibrium points: one without alohol problems and

one where alohol problems are endemi in the population. We ompare our results

with those of an existing model that does not allow for total reovery. We show

that without total reovery, the threshold for alohol problems to beome endemi

in the population is lowered. The endemi equilibrium solution is also a�eted, with

an inreased proportion of the population in the treatment lass and a dereased

proportion in the suseptible lass. Inluding total reovery does not determine

whether the proportion of individuals with alohol problems inreases or dereases,

however it does a�et the size of the hange. Parameter estimates are made from

information regarding binge drinking, where we �nd an inrease in the reovery rate

dereases the proportion of binge drinkers in the population.

Chapter 3 develops the preeding work by introduing a soial learning bias

into an SIS model framework. Epidemiologial models have been applied to hu-

man health-related behaviours that are a�eted by soial interation, for example

smoking (Sharomi and Gumel, 2008), drinking (Sanhez et al., 2007; Mulone and

Straughan, 2011) or drug use (White and Comiskey, 2007; Mulone and Straughan,

2009). Typially these models have not onsidered onformity bias, whih is the

exaggerated propensity to adopt ommonly observed behaviours or opinions, or on-
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tent biases, where the ontent of the learned trait a�ets the probability of adoption.

Here we onsider an interation of these two e�ets, presenting an SIS-type model

for the spread and persistene of a behaviour whih is transmitted via soial learn-

ing. Uptake is ontrolled by a nonlinear dependene on the proportion of individuals

demonstrating the behaviour in a population. Three equilibrium solutions are found,

their linear stability analysed, and the results ompared with a model for unbiased

soial learning. Our analysis fouses on the e�ets of the strength of the onformity

bias and the e�ets of ontent biases whih alter a onformity threshold frequeny

of the behaviour, above whih there is an exaggerated propensity for adoption. The

strength of the onformity bias is found to qualitatively alter the preditions regard-

ing whether the trait beomes endemi within the population and the proportion

of individuals who display the trait when it is endemi. As the onformity strength

inreases, the number of feasible equilibrium solutions inreases from 2 to 3, leading

to a situation where the stable equilibrium attained is dependent upon the initial

state. Varying the onformity threshold frequeny diretionally alters the behaviour

invasion threshold.

Neither of these models onsiders the spatial variation of individuals, whih

would inrease the omplexity of the system. Motivated by existing work by Kan-

dler and Steele (2008), hapter 4 inludes a PDE model for ompeting languages

whih inorporates both temporal and spatial variation. One language is assumed

to be dominant so onversion between languages is one-diretional to the dominant

language. The system has four equilibria, inluding a oexistene state, and we

analyse the global stability and instability of eah solution. Stability thresholds

are found in eah ase, and thus we onlude that the oexistene of languages is

possible, subjet to ertain parameter onstraints.

Finally, hapter 5 ontains a general disussion of the outomes of the previous

hapters and how these results are situated within the wider literature. Potential

extensions to the models are highlighted, with an overview of future work presented.
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1.2 Introdution to ultural evolution

Cultural evolutionary theory seeks to answer questions about human evolution that

have not been adequately answered by geneti evolutionary theory. For any sound

theory to be developed, it is �rst neessary to de�ne what is meant by the terms ul-

ture and ultural evolution. Culture has been de�ned as \information apable of af-

feting individuals' behaviour that they aquire from other members of their speies

through teahing, imitation, and other forms of soial transmission" (Riherson and

Boyd, 2005, Page 5). Information may refer to partiular beliefs, behaviours, ideas

or knowledge. Whilst various de�nitions of ulture exist, the key fator in ultural

evolutionary theory is that information whih a�ets behaviour is learned from other

individuals, either onsiously or subonsiously. Cultural evolution is therefore a

\proess of desent with modi�ation" (Mesoudi, 2011) by whih seleted soially

learned behaviours spread and persist within a population over time. Assuming that

information is transmitted in this way allows for theories to be onstruted within

a Darwinian evolutionary framework, allowing for a sienti� approah to be taken.

To allow formal models of ultural evolution to be developed, the onept of

a ultural trait (analogous to a geneti trait in biologial evolutionary model) is

used. The trait is a spei� behaviour or idea whih may be soially transmitted.

Unlike with genes, where transmission is typially from parent to o�spring (verti-

al transmission), Cavalli-Sforza and Feldman (1981) present models for ultural

traits also being transmitted between individuals of the same generation (horizontal

transmission) or from other members of the parent generation to the o�spring gen-

eration (oblique transmission). Information may be gained without opying, known

as asoial or individual learning. This is where an individual aquires information

on their own, suh as through a trial and error method or by innovation. When

ombined with soial learning this an give rise to umulative ultural evolution

whereby information is transmitted and modi�ed over time, leading to more om-

plex or eÆient ultural traits being developed (Riherson and Boyd, 2005) . The

e�et of this proess is that individuals adopt behaviours that ould not be learned

by a single individual in their lifetime (Mesoudi, 2011) and is thought to be unique

to humans (Riherson and Boyd, 2005).
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Cultural traits are often modelled as disrete units, analogous to genes, whih

are passed from one individual to another (Henrih et al., 2008). This approah

is appropriate in some instanes where the ultural trait is a disrete entity. For

example, the model presented in hapter 3 allows individuals to be of type S or

type A, where type S do not have trait A and type A do display trait A. Trait

A in this instane ould be binge drinking behaviour, so type A individuals are

those that binge drink. Whilst there is debate over what onstitutes binge drinking,

one these limits have been de�ned then an individual an be lassi�ed as either a

binge drinker or not a binge drinker. In some ases a binary hoie model suh as

this is not appropriate as traits may be best envisioned as lying on a ontinuum.

One example is arrowhead length, whih may vary ontinuously over a ertain value

range (Mesoudi, 2011). In suh ases the geneti analogue is no longer appropriate

as genes are disrete entities whih are repliated, whereas arrowhead length may

be subjet to blending e�ets where the transmitted length is some ombination

(suh as a mean average) of all the available model arrowheads (Henrih et al.,

2008). This is one example of where geneti and ultural evolution di�er and thus

require di�erent modelling approahes. Another di�erene is the onept of guided

variation in ultural evolution, whih has no geneti analogue. Guided variation is

the intentional modi�ation of a ultural trait (Mesoudi, 2011). In geneti evolution,

modi�ations are the result of random (unguided) mutations (Mesoudi, 2011), so no

equivalent to guided variation exists.

The study of simultaneous and interating geneti and ultural evolution is

known as gene-ulture oevolutionary theory or dual-inheritane theory (Laland

and Brown, 2011). The inuene between genes and ulture is two-diretional, so

genes may favour the evolution of partiular ultural traits whih, in turn, then

inrease the favourability of spei� genes. One widely-referened example whih

supports the theory is the orrelation between dairy farming and latose tolerane

in adults (see, for example, Laland and Brown (2011); Riherson and Boyd (2005)).

Adult human populations vary in their ability to digest ows' milk (whih ontains

latose), ontrolled by a spei� allele. Models suggest that this is an example of

gene-ulture oevolution, whereby the uptake of dairy farming inreased the relative
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�tness of the gene whih allows for adult latose tolerane as a result of the bene�ts

of drinking milk (see Feldman and Cavalli-Sforza (1989); Itan et al. (2009); Gerbault

et al. (2011)). This in turn may have inuened ultural praties in suh a way that

latose onsumption beame more strongly favoured (Riherson and Boyd, 2005).

It is theorised that the persistene of a ultural trait may be inuened by a

number of fators whih a�et transmission, whih Riherson and Boyd (2005) refer

to as fores of ultural evolution. Random fores are ultural mutation and ultural

drift, disussed in both Cavalli-Sforza and Feldman (1981) and Boyd and Riherson

(1985). Individual-level proesses, suh as misremembering a trait or laking the

ability to faithfully reprodue the observed trait, result in ultural mutation where

the trait beomes unintentionally modi�ed after transmission. Cultural drift an

our as a result of sampling size. If only a small number of individuals have a

partiular trait then it is possible that they never form part of an observed sample, so

there is no opportunity for the trait to be transmitted. This mehanism may desribe

the loss of tool omplexity in the Tasmanian population, whih arose after their

separation from mainland Australia (Henrih, 2004). Alternatively, a transmitted

trait may be intentionally modi�ed through guided variation. As the hanges to

the trait are wilful, this is a deision-making, rather than a random, fore. The

remaining deision-making fores are all a result of the biased soial transmission of

a ultural trait, whih may be further split into ontent and ontext biases (Henrih

and MElreath, 2003).

Content biases a�et the likelihood of adopting a trait through intrinsi prop-

erties of the trait itself, suh as its saliene or as a result of ost-bene�t analysis.

Context biases refer to external inuenes whih a�et trait adoption and have been

split into two ategories: model-based biases and frequeny-dependent biases (Hen-

rih and MElreath, 2003; Riherson and Boyd, 2005). Model-based biases result

from some harateristi of a sampled individual. For instane, a na��ve individual

may be more likely to hoose to opy a spei� individual beause of pereived

similarities with the model, or beause of the pereived suess of the model. The

existene of suh biases is supported by experimental work where individuals opy

the most suessful individual (Mesoudi, 2008). Other model-based biases onsider
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how prestigious or suessful the model is pereived to be. Frequeny-dependent

biases represent when trait adoption is inuened by the frequeny of the trait in

the observed population in a fashion whih does not repliate random sampling. If

a trait has frequeny of 70% within the sampled population then a na��ve individual

using a linear frequeny-dependent strategy (equivalent to random sampling or un-

biased soial learning) has probability 0.7 of adopting the trait. This is equivalent

to the individual randomly hoosing one model from the population and opying

them. For a bias to be in ation, the probability of a na��ve individual adopting

the trait must di�er from 0.7. Conformist frequeny-dependent bias ours when a

ommon trait in the population is more likely to be aquired, so a 70% prevalene

of the trait gives a probability of adoption whih is greater than 0.7. Conversely,

anti-onformist bias an also our, where infrequent traits are more likely to be

adopted so the adoption probability would be less than 0.7.

Conformist behaviour ontributes to explanations of human ooperative be-

haviour and the use of punishment in large groups (Boyd and Riherson, 1985;

Henrih and Boyd, 2001). Models for trait transmission show that onformist bias

is favourable in spatially and temporally varying environments, inluding rapidly

hanging environments (Kendal et al., 2009; Nakahashi et al., 2012). In a stable

environment soial learning dominates, yet onformist transmission has little e�et

on a learner's ability to aquire the adaptive behaviour (Wakano and Aoki, 2007;

Kendal et al., 2009). Whilst researh so far has not reahed a onsensus regarding

the evolution of onformist transmission, it remains a valid explanation for ultural

trait transmission under ertain onditions. For instane, E�erson et al. (2008) on-

duted a study where 28 out of 40 partiipants self-identi�ed as onformist. These

individuals ompleted a binary hoie task where one hoie has a greater expeted

payo�. The experiment was ontrolled so that these individuals ould only utilise

soial information when making their hoie. The 28 individuals who stated that

they were onformist were found to at in a onformist fashion, indiating that some

individuals at onformist, but not all.

Suh studies have been ritiised as it may be diÆult for an individual to aser-

tain whih of two options is most pro�table after only a small number of trials, thus
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opying others ould be onsidered to be a rational hoie rather than the result of

onformity (Eriksson and Coultas, 2009). A further ritiism is that experiments are

generally limited to investigating only one soial learning strategy, yet individuals

may employ multiple strategies (Morgan et al., 2011). Experimental evidene where

multiple learning biases an be in ation simultaneously suggested that onformist

behaviour was present when a subjet had low on�dene in their own ability and

a suÆient number of demonstrators to opy (Morgan et al., 2011). Researh into

how frequently onformist behaviour ours, if at all, is not in agreement, hene

further work in this area may provide greater insights. This motivated the work in

hapter 3 where a mathematial model for onformist ultural trait transmission is

presented.

Researh into ultural evolution has been approahed via both theoretial and

empirial methods. In partiular, mathematial models have been devised to ex-

plain many faets of ultural evolutionary theory. To appreiate the utility of this

approah it is neessary to understand the motivation behind suh models, and

both the strengths and limitations of the method. A disussion of these fators is

presented in the next setion.

1.3 Introdution to mathematial models

Models may be onsidered to be simpli�ed representations of the real world whih

aid our understanding. By eliminating aspets whih are not immediately perti-

nent to the problem at hand, they allow us to fous on the key features of interest,

without unneessary distration. A model must always be �t for purpose: as simple

as possible but no simpler (Keeling and Rohani, 2008). For example, the London

Tube map is a model designed to help travellers navigate the underground rail net-

work by presenting the railway line intersetions and interhange stations (Degani,

2013). The map depits the rail network's topology but not the exat loation and

relative distanes of stations so inludes the information of interest whilst omitting

unneessary details. In the same way that features of the London Underground

an be enapsulated in a diagram, some real-world systems may be desribed by
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mathematis.

Creating a mathematial model begins with determining the key real-world fea-

tures required to address the question at hand. It is then assumed that only these

variables have any inuene on the system, thus mathematial models are always

simpli�ed representations of reality. Often mathematial models appear to be overly

simplisti, however \. . . attempting to dedue the answer to a omplex problem by

diret inspetion and unaided intuition requires even simpler models and entails

great risk of erroneous reasoning" (Boyd and Riherson, 1985, Page 30). Simpli�a-

tion is neessary to enable the disovery of underlying ausal relationships. Whilst

results might seem obvious retrospetively, without the formalisation introdued by

the modelling proedure there is no way of being ertain that any inferenes made

are orret. In some ases ounter-intuitive results are revealed only through math-

ematial analysis, as with the well-known Monty Hall problem (Appendix A.1). An

understanding of the real-world problem is ahieved by the interpretation of the

mathematial results. If no sensible real-world explanation an be given then the

model has not ful�lled its funtion and therefore must be re�ned. In the following

researh hapters the model variables represent population frequenies. Mathemat-

ially, these variables may be negative but suh ases have no real-world meaning.

This instigates the introdution of ertain parameter restritions to ensure that the

�nal results an always be interpreted in a meaningful way. Thus the aim of math-

ematial modelling is to provide a good approximation of a reality in a way whih

allows for strutured analysis. From this, a greater understanding of the real-world

system may arise and enable future preditions to be made.

There is often a trade-o� between auray, transpareny and exibility within

mathematial models (Keeling and Rohani, 2008). Auray refers to how well the

model reprodues observed data and predits future outomes, and will often be

improved by inreased model omplexity. One way of assessing the auray of a

mathematial model is to ompare the predited results to known senarios. This

ould be information gained by omparing the model preditions against existing

data sets, as in Bentley et al. (2007) and Hamilton and Buhanan (2009), or from

omplementary theoretial and empirial methods, as in E�erson et al. (2008) and
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Eriksson and Coultas (2009). Transpareny refers to how easy it is to interpret

the e�ets of a single variable parameter on the system, independent of all other

parameters. Finally, exibility refers to how adaptable a model is to a hanging

situation. For instane, if there is a real-world system hange, an varying a param-

eter aount for this variation or is it neessary to formulate a new model? Model

omplexity an a�et the methods of analysis whih are used. Analyti methods

give results whih hold true for vast areas of parameter spae and make it easy

to identify regions where there is a qualitative di�erene in the results. This is a

useful method for �nding thresholds whih indiate a qualitative hange in system

behaviour. As model omplexity inreases, transpareny dereases and thus analyti

methods beome inreasingly diÆult and yield fewer tratable results. In suh in-

stanes numerial omputer simulations may be utilised, whereby a solution may be

obtained for a spei� set of parameter values.

To gain an understanding of the system as a whole, many simulations must be

run (MElreath and Boyd, 2007). For example, a system onsisting of 3 variables,

eah taking a possible 15 values, requires 15

3

= 3375 alulations to be made to

ensure all parameter sets have been onsidered. As simulation results only give a

snapshot of the system at spei� values, �nding thresholds and general trends an

be diÆult. When possible, it may be advantageous to further simplify a model to

enable analyti results to be found. A simpli�ed model may reveal whih parameter

has the greatest e�et on the system, thus leading to a more informed investigation

of the omplex model by simulations onentrated on varying this parameter. By

omparing the results of the two models a greater understanding of system behaviour

may be gained than ould be obtained purely from numerial simulations of the

omplex model.

A mathematial approah to real-world problem solving has many advantages,

often in onjuntion with other methods, suh as empirial studies. Mathematial

language is preise, enabling lear ommuniation of �ndings with respet to well-

de�ned assumptions. This makes model results, and the ontext in whih they are

appliable, easily understandable to other researhers. Mathematial models may

also be a heaper way (both in time and money) of gaining information about a
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system ompared with empirial testing or observational studies. As they de�ne

the world in terms of a disrete number of variables, they may be used to highlight

variables of interest and thus inuene the diretion of any empirial work before a

large investment is made. As more knowledge is gained through the omparison of

di�erent models and empirial results, models an be re�ned to fous only on the

most pertinent aspets of the system. Provided a model an repliate the results of

empirial work, it may then be used to make future preditions about the state of

the system.

1.4 Modelling approahes used in ultural evolu-

tionary theory

The bene�ts of mathematial modelling led to its use in the study of ultural evo-

lution, with muh initial work onsisting of mathematial models developed from

the population genetis literature. For instane, Cavalli-Sforza and Feldman (1981)

onstrut a model for vertial ultural trait transmission. Cultural traits are often

assumed to be disrete and, in some ases, mutually exlusive. Models may be sim-

ilar to those from population genetis representing the transmission of genes from

parent to hild. A simple example of a geneti model (without mutation) onsists

of two alleles: the dominant A and the reessive a. If both parents are type Aa

then they display the phenotype oded for by the dominant allele A. If eah parent

ontributes one allele to the hild then the hild displays the phenotype oded by the

dominant allele A (from AA or Aa pairings) with probability 3/4 and the phenotype

oded by a (from pairing aa) with probability 1/4.

In a model for vertial ultural trait transmission, Cavalli-Sforza and Feldman

(1981) allow for a ultural trait to take one of two possible states, H or h, where

eah parent has one variant. Random mating results in the possible mother-father

pairings HH, Hh, hH and hh. For eah pairing there is some probability that the

hild aquires variant h whih, when summed with the probability of aquiring H,

totals unity. The probability of a hild being type h with parental pairing HH is

not assumed to be 0. This ould be due to trait mutation, thus similar to a geneti
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model with mutation, or a result of horizontal or oblique transmission, whih are

not ommon in geneti models (Cavalli-Sforza and Feldman, 1981). Alternatively, if

H represents having some ultural trait and h represents not having the trait then

the hild may be of type h beause of fators whih a�et the vertial transmission

of the trait. Soial learning biases, suh as a ontent bias, may limit the hild's

ability to opy the trait.

By determining the frequeny of both H and h over disrete time steps (repre-

senting generations), equilibrium frequenies of both traits an be obtained. The

system has reahed equilibrium when the frequenies of both H and h remain the

same from one generation to the next. Equilibria may be lassi�ed as either sta-

ble or unstable, with the system only maintaining a stable equilibrium frequeny.

Conditions for stability in terms of the model parameters an often be found, either

analytially or numerially. An analyti result was obtained by Cavalli-Sforza and

Feldman (1981) for their model. More omplex models for vertial trait transmission

were investigated by Cavalli-Sforza and Feldman (1981), suh as where assortative

(as opposed to random) mating ours or where the sex of the parent has a signi�-

ant e�et on the transmission of a trait. They then explore models whih assume

oblique and horizontal ultural trait transmission. In partiular, they propose the

use of a Lotka-Volterra type model to represent the adoption of a small family ideal,

where a woman hooses to have only a small number of hildren. The two variables

onsidered are the natural fertility number n and the voluntarily redued fertility

number m. Unlike with the previously disussed models, where traits are passed

on at eah generation, the adoption of a small family ideal is ontinuous in time

and only oblique and horizontal transmission an our. By determining the system

equilibria, onditions on the model parameters an be found whih ensure that the

small family ideal either dies out or beomes dominant pratie.

A similar approah to modelling ultural evolution was taken by Boyd and Rih-

erson (1985), where again mathematial models from population genetis were used

as a basis to develop theoretial models of ultural evolution. They onsider a di-

hotomous ultural trait, with individuals either displaying trait A or not trait A

(denoted by A

0

). Transmission is from a parent generation to a hild generation so
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both vertial and oblique transmission an our. Na��ve individuals in the hild pop-

ulation hoose a sample of three ultural parents to observe and soially learn from,

where linear frequeny-dependent transmission of the ultural traits is assumed. If

all ultural parents display trait A then the hild will adopt A, however if the parent

generation onsists of, say, AAA

0

then the hild develops A with some probability

in (0; 1). This is dependent upon the weighted inuene of eah ultural parent on

the hild. Analysis reveals that if the frequeny of A in the population at time t is

p, then the frequeny of A at time t + 1 is also equal to p.

This model is then altered to represent a nonlinear frequeny-dependent trans-

mission bias. The probability of having i parents with trait A, where the frequeny

of A is p, is taken to be binomially distributed. Aounting for a transmission bias,

they �nd that, after transmission, the frequeny of A is

p

0

= p+Dp(2p� 1)(1� p); (1.1)

where D is a parameter ontrolling the extent of the nonlinear frequeny-dependent

bias. The right-hand side expression of equation (1.1), representing both onformist

and antionformist transmission, has sine been advaned, for example in Eriksson

and Coultas (2009) and Kendal et al. (2009). It is also used in the model in hapter

3 where trait uptake is assumed to be ontinuous in time, rather than ourring at

disrete time steps as with the Boyd and Riherson (1985) model. Equation (1.1) is

not the only mathematial funtion representing a nonlinear frequeny-dependent

bias that has been investigated; alternatives are disussed in Nakahashi (2007) and

Aoki et al. (2011).

Suh developments of population genetis models to ultural trait models demon-

strate how the abstrat nature of mathematis allows for its appliation to a variety

of di�erent senarios after only minor adjustments. However, the existene of geneti

evolution models direted the formulation of similar models for ultural evolution,

with ertain assumptions introdued to ensure a �t to the pre-existing mathematial

framework. The assumption that biologial and ultural evolution an be understood

by similar mehanisms has been questioned by Strimling et al. (2009). They argue

that a �tness index, as used in biologial models, is not an appropriate ompari-

son measure for ultural traits. Unlike geneti information, whih is aquired one,
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ultural traits may be adopted and abandoned many times by a single individual

during their lifetime. By onstruting a model where both the propensity to adopt a

trait and the propensity to keep that trait when presented with alternative options,

the authors �nd a ultural suess index under ertain onditions. The index arises

when individuals have a suÆiently large number of learning opportunities, whih

allows them to repeatedly develop and hange traits, and is appliable whether the

transmission is horizontal, vertial or oblique. Assumptions made in the mathe-

matial model, for instane that all individuals adopt and retain traits with equal

probabilities, redue its auray in representing the omplex mehanisms of human

soial learning. However, it addresses an important question of the synonymy of

geneti transmission mehanisms with ultural trait transmission mehanisms.

As disussed in setion 1.3, mathematial modelling an be most e�etive along-

side other researh methods. For example, a study by Henrih and Broesh (2011)

into the existene and extent of soial learning biases within a small-sale soiety

used both ethnographi observation and interviews to obtain information. Results

reported evidene of soial learning biases, inluding biases towards opying individ-

uals pereived to be suessful or knowledgeable. Historial observations have also

been used to support ultural evolutionary theories, suh as the orrelation between

latose tolerane in humans and the spread of dairy farming (disussed previously)

or a wave of advane model for farming tehnologies (Akland et al., 2007). If a

theory aurately desribes the reorded phenomena then it provides a plausible ex-

planation; however, suh methods are limited by the aess to appropriate data sets

and beause often only orrelation rather than ausal relationships an be inferred

(Simonton, 2003). Experimental work removes this latter problem as it allows for

the ontrol of variables so that asual relationships may be derived from the results

(Simonton, 2003).

An experimental approah has been taken to investigate hypotheses regarding

the soial learning mehanisms that a�eted projetile-point design in the Great

Basin around 300-600 AD (Mesoudi and O'Brien, 2008). The experiment tested

whether guided variation (where individuals opy and then modify) or indiret bias

produed results whih mathed the arhaeologial data. Indiret bias arises when
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an individual uses one trait, alled the indiator trait, to selet a model and then

adopts other traits displayed by this model (Bettinger, 1991). The bias is indiret

as a preferene for the indiator trait leads to the hoie to opy other traits from

the same model. During the experiment, partiipants played a omputer simulated

game where they designed projetile points and then tested them in a virtual hunting

environment. The experiment was onduted in di�erent phases, allowing ontrol

over the possible learning mehanisms that partiipants ould use. For example,

in the �rst phase partiipants had to hoose to opy their point design from some

presented options so no innovation or modi�ation was possible. This permitted

indiret-biased soial learning. In the seond phase they ould hoose to modify

this design, allowing for guided variation.

As with mathematial modelling, experimental work requires ertain details to

be omitted. This is done to allow for ausal relationships to be investigated by

ontrolling ertain key variables. Mesoudi and O'Brien (2008) highlight that the

omputer simulation task does not onsider onstraints on the availability of raw

materials or the proess of manufaturing, both of whih ould a�et projetile point

design. Laboratory experiments an be hanged to fous on di�erent aspets of a

problem and build up a greater wealth of knowledge. The projetile-point design

task was again implemented with di�erent onditions, allowing for a omparison of

results between the two studies (Mesoudi, 2008).

1.5 A review of a model for the horizontal trans-

mission of drinking behaviour

A variety of mathematial tehniques have been employed to desribe di�erent as-

pets of human behaviour, for example the kineti theory of ative partiles (Bellomo

et al., 2009; Bellomo and Carbonaro, 2011). This method models the dynamis of

omplex systems omprised of a large number of interating living entities and has

been applied to opinion formation (Bellomo et al., 2009) and soio-eonomi sys-

tems (Bellomo et al., 2004). One modelling approah disussed by Cavalli-Sforza

and Feldman (1981) omes from epidemiologial literature regarding the spread of
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infetious diseases and the potential appliation to ultural trait transmission. As

ultural traits an spread through a population from person to person, muh like an

infetious disease, the same mathematial tehniques may be employed. Typially

suh models presume that a spei�ed ultural trait is soially learned and spread via

horizontal transmission. By onsidering a population of N individuals and splitting

them into distint lasses, the equilibrium frequenies of eah lass an be deter-

mined and analysed. For example, a typial infetious disease model (known as an

SIR model) onsists of splitting the population into three groups: those suseptible

to athing the disease; infeted individuals, who are also assumed to be infetious;

and reovered individuals, who have gained immunity. If a suseptible meets an in-

feted then there is a hane that they will ath the disease and therefore move to

the infeted lass. Over time an infeted will reover from the disease and enter the

reovered lass. The aim is to determine whether the disease is suÆiently infetious

for it to beome endemi within the population, or whether it will die out. This an

usually be determined from a threshold parameter known as the basi reprodution

number, R

0

. At R

0

= 1 there is a hange of state, where the disease moves from

dying out to persisting within the population.

There is an inreasing body of literature whih uses these tehniques to model the

spread of health-related behaviours via soial interation; examples inlude smoking

(Sharomi and Gumel, 2008), drinking (Sanhez et al., 2007; Benedit, 2007; Mu-

lone and Straughan, 2011; Walters et al., 2012), drug use (White and Comiskey,

2007; Mulone and Straughan, 2009) and eating disorders (Gonzalez et al., 2003).

Individuals prone to developing the behaviour are analogous to the suseptibles in

infetious disease models. Similarly, those displaying the behaviour an be viewed

as `infeted'. To explain and assess the e�etiveness of suh models we onsider an

appliation to drinking behaviour, formulated by Sanhez et al. (2007) and further

disussed by Benedit (2007). The model assumes that a total population of N in-

dividuals an be split into three distint lasses: oasional/ moderate drinkers (S);

problem drinkers (D); and temporarily reovered individuals (R). Homogeneous

mixing of the population is assumed to our, so an individual has an equal hane

of meeting and being inuened by any other member of the population (horizontal
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transmission). Impliit in this assumption is that no spatial or kinship fators a�et

interations between individuals. Figure 1.1 depits the dynamis of the system.

S D

�S

D

N

R

�D

�R

D

N

�S �D �R

�

Figure 1.1: The model for problem drinking, developed by Sanhez et al. (2007).

Arrows, with orresponding rates, indiate the diretion of movement between the

lasses of moderate drinking, problem drinking and treatment. The parameter �

ontrols entry and exit into the modelled population.

Individuals enter the modelled population via the moderate drinking lass one

they reah drinking age. The assumption that the net ux of the system is zero

(hene N is onstant) is made to simplify the analysis. Moderate drinkers progress

to the problem drinking lass via a random opying mehanism, i.e. at a rate pro-

portional to the frequeny of problem drinkers within the population. This is shown

by the arrow labelled �SD=N in �gure 1.1, where � is the rate at whih ontats

suÆient for behaviour transmission our. A problem drinker may seek treatment,

and thus enter the temporarily reovered lass, without soial inuene at a �xed

rate �. This parameter ould represent another type of inuene, for instane an

advertising ampaign highlighting the harms of exessive drinking.

By onsidering a situation where problem drinking is so rare that a treatment

programme is not required, the basi reprodution number R

0

= �=� is alulated.

This omprises the average length of time spent in the system, 1=�, multiplied

by the rate �. The basi reprodution number represents the average number of

seondary ases generated from the introdution of a single problem drinker into a

wholly suseptible population. If R

0

> 1 then, on average, more than one seondary

ase ours and results in the development of a drinking ulture. When R

0

< 1 the

reprodution rate is too low for this to take plae and problem drinking behaviour

dies out. Thus R

0

= 1 is a threshold value for a problem drinking ulture beoming
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endemi.

Analysis through alulation of R

0

is in line with many epidemiologial models

for disease spread where transition through the system is one-diretional, from sus-

eptible to infeted to reovered. For problem drinking, however, relapse from the

temporarily reovered lass to the problem drinking lass is possible, thus providing

an alternative supply of individuals to the drinking lass D. To aount for this, a

seond reprodution value is onsidered. By multiplying � by the average time spent

in the problem drinking lass, 1=(�+ �), the reprodution number with a reovery

lass is de�ned as R

�

= �=(�+ �), where R

�

< R

0

for � > 0.

Unlike many epidemiologial models, the basi reprodution number is not suf-

�ient to determine the permanene of a subpopulation of problem drinkers under

all irumstanes. Provided the initial frequeny of problem drinkers is low, then

R

0

= 1 provides a threshold between problem drinking dying out and the behaviour

persisting. This result does not apply when the initial frequeny of problem drinkers

is large, as the prevalene of problem drinking is greatly a�eted by the relapse rate.

For a large initial frequeny of problem drinkers and a high relapse rate, a drinking

ulture may emerge for R

�

< 1 and is inevitable for R

�

> 1. The maintenane of a

drinking ulture even when R

�

< 1 is a result of ine�etive treatment programmes.

Any individuals entering treatment are unlikely to remain there for long (beause

of the high relapse rate) and thus quikly return to the problem drinking lass D.

This maintains a high frequeny of problem drinkers in the population. Individuals

always enter the system as moderate drinkers; if reruitment from S is minimal,

indiated by a suÆiently small � value, then R

�

< 1 and eventually problem drink-

ing would die out. However, as the reprodution number is not dependent upon the

relapse rate �, repopulation of the problem drinking lass from those in treatment

an o�set a small reruitment rate � so that a drinking ulture is maintained.

The authors onlude from the model that the reprodution number R

�

alone

is not suÆient to predit the emergene of a drinking ulture. There is also a

dependene upon the initial state, espeially when the reovery and relapse rates

are high. This represents treatment programmes whih are only short-term e�etive.

Introduing suh programmes into areas with high proportions of problem drinkers
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serves to bolster the issue by reating a subgroup highly sensitive to inuene from

problem drinkers. Under suh irumstanes investing in reduing the initial uptake

of drinking behaviour, ontrolled by the value of �, is the most e�etive way to

takle problem drinking.

A similar model by Mulone and Straughan (2011) splits the drinking lass into

admitting and non-admitting problem drinkers, an approah also used to model

bulimia nervosa (Gonzalez et al., 2003). As with the previous model, individuals

enter the system as moderate drinkers, referred to as suseptibles by the authors.

Through interations with urrent problem drinkers, suseptibles an move to be-

ing a non-admitting problem drinker as, initially, they are not aware that their

behaviour is problemati. Only after advanement to the admitting lass, through

realising that they have a drinking problem, an individuals enter treatment. Both

of these transitions are assumed to our at onstant rates. Di�erent to the Sanhez

et al. (2007) model, the relapse rate of those in treatment is taken to be a result

of geneti fators rather than soial inuene, so the onstant relapse rate to the

admitting lass is �R. The basi reprodution number of the system is alulated,

whereby R

0

inreasing indiates a move from a problem- drinking-free state to one

in whih it is endemi. Using parameter estimates obtained from data for binge

drinking behaviour in the North East of England, model preditions indiate that

the behaviour will persist, plateauing when approximately 15% of the population

reside in the drinking lasses.

Sanhez et al. (2007) aknowledge that their model does not allow for a return

to di�erent drinking lasses, an issue addressed by Walters et al. (2012) by allowing

transition from the treatment lass bak to a moderate drinking state. The addi-

tional transition was introdued to aount for the possibility of total reovery from

problem drinking, so individuals return to what is termed as the suseptible lass

after ompletion of a treatment programme. By performing a sensitivity analysis of

the value R

0

, the authors onlude that the most e�etive way to redue drinking is

by fousing on reduing the number of suseptible individuals that are reruited to

the problem drinking lass, onurring with the onlusions of Sanhez et al. (2007).

Whilst this development addresses one onern of the Sanhez et al. (2007) model,
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it is still an oversimpli�ation of the dynamis. The primary issue is that the model

assumes that an individual who has ompleted treatment will be equally suseptible

to the inuene of problem drinkers as someone that has just entered the population.

Whilst a variety of alternative models have been put forward to fous of di�er-

ent aspets of drinking behaviour, some key underlying assumptions feature whih

redue their pratial appliations. For example, the level of ontat between in-

dividuals is not the same for every possible pairing, so homogeneous mixing is an

over-simpli�ation. One possible re�nement to suh models is to introdue a net-

work struture so that, in order for individuals to interat, they must be onneted

within the network. This approah was adopted by Gorman et al. (2006) where a

3-stage SDR alohol model (with orresponding lasses suseptible, drinkers, and

former drinkers) was implemented on a network struture. Eah network node or-

responded to a loation ontaining a subset of the total population, split into the

three lasses. At eah time step individuals ould move loation and their lass

status ould hange in aordane with the desribed SDR dynamis.

This type of modelling is very powerful as often analyti results an be obtained,

o�ering a ertain outome for all possible parameter ombinations. As a trade-o�,

many simplifying assumptions are required for suh analysis to be possible and it

is important to tailor the model to the spei� questions of interest, highlighted

here by the variety of models disussed. For example, Sanhez et al. (2007) were

interested in analysing a model where soial inuene was the driving fator for

individuals to beome problem drinkers, where as Mulone and Straughan (2011)

and Walters et al. (2012) do not onsider a peer-inuened relapse term. Instead

they fous on alternative aspets: the former on the eligibility of individuals to enter

a treatment proess by admitting they have a problem, and the latter on the e�ets

of total reovery from an alohol problem. Ideally a single model would onsider all

of these fators and more, but analysis would then beome impossible. Despite this,

the modelling tehnique does allow for population-wide information to be gained

and an provide heap and quik preditions regarding how top-down interventions

may a�et the system.

Chapters 2 and 3 were both motivated by the appliation of SIR-type models ap-
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plied to horizontally transmitted behaviours. The SARS model in hapter 2 extends

existing work by Mulone and Straughan (2011) to determine the e�et of omplete

reovery from an alohol problem on the basi reprodution number R

0

and the en-

demi equilibrium value. In hapter 3 an SAS model for ultural trait transmission

is formulated, where the transmission of the trait may be subjet to onformist and

ontent biases. Whilst both models are onstruted within an SIR-type framework,

the varying omplexities in terms of model variables and variable parameters require

di�erent methods of analysis to be onduted.

1.6 Mathematial models with spatial variation

Other developments of SIR (and similar) models have been analysed where the

variable S, I andRmay depend on more than just time. For instane, Murray (2003)

disusses an SIS infetious disease model where the age, a, of the individual a�ets

their vulnerability to athing the disease and their infetiousness, mathematially

represented by I = I(t; a). Infetious disease models with a spatial dependene have

also been formulated. These represent the ability of individuals to move between

regions, as with the pathy environment ODE model by Wang and Zhao (2004),

or within a spei�ed region where the variables have a spatial dependene (Mulone

et al., 2007). For disease transmission to our, an infeted individual must be in the

same loation as a suseptible individual. As transmission is loalised, the di�usion

of infeted individuals is required for the disease to spread (Keeling and Rohani,

2008). This an be represented by a reation-di�usion PDE system of equations,

as in Keeling and Rohani (2008), and similarly for an SIS model (without ross-

di�usion) in Mulone et al. (2007).

These reation-di�usion systems have the form

�u

i

�t

= D

i

�u

i

+ f

i

(u

1

; : : : ; u

m

) (1.2)

in 
 � (0;1) for i = 1; : : : ; m. Eah u

i

represents a lass of individuals so, in

the reation-di�usion SIR model (Keeling and Rohani, 2008), m = 3 as individuals

an either be suseptible (u

1

), infeted (u

2

) or reovered (u

3

). The area in whih

individuals an traverse is represented by the domain 
, whih has a boundary �
.
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For a model of disease spread, 
 may represent a partiular ountry or region with

�
 de�ned by ountry borders or a geographially boundary, as with an island.

In two spatial dimensions, u

i

= u

i

(x; y; t) and represents the density of lass u

i

at loation (x; y) at time t. The hange in this density in time is ontrolled by a

di�usion part, D

i

�u

i

, and a reation part, f(u

1

; :::; u

m

) (Kandler and Unger, 2010).

Di�usion of u

i

is ontrolled by the Laplae operator, whih in two spatial dimensions

is

� =

�

2

�x

2

+

�

2

�y

2

; (1.3)

and the di�usion oeÆient D

i

. The movement of individuals is from rowded areas

to less populated areas whih, in terms of human population spread, may represent

moving to an area with a greater proportion of available or preferable resoures, suh

as food or shelter (Mulone et al., 2007). The oeÆient D

i

represents the tendeny

of individuals to move to lesser populated regions. The reation term is given by

the funtion f

i

and desribes the remaining system dynamis, suh as population

growth or interation terms between suseptible and infeted individuals.

To solve for unique solutions to PDE problems, further onditions must be im-

posed (Strauss, 2008). Initial onditions desribe the state of the system at time

t = 0, an example being u

i

(x; y; 0) = g(x; y) for some funtion g. Boundary ondi-

tions an also be imposed whih plae onstraints on the system at the boundary �
.

Two ommon types of boundary ondition are Dirihlet onditions and Neumann

onditions. Dirihlet onditions are when the funtion u

i

is spei�ed at the boundary,

for example u

i

(x; y; t) = 0 on �
. This example means that no u

i

individuals an

exist at the boundary of the spatial region. This may be an appropriate assumption

to make if individuals live on an island where areas at the edge are uninhabitable or

undesirable loations due to environmental fators. Neumann onditions are where

the normal derivative is spei�ed at the boundary. For example if �u

i

=�n = 0 on

�
, there is no ux aross the boundary �
 in the diretion of the outward-pointing

unit normal to the region, n. This example ondition means that individuals are

on�ned to stay within the region 
, be that an island or ountry, but they may be

loated at the boundary �
. The hoie of boundary onditions is dependent upon

the harateristis of the real-world situation whih is being modelled.
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One of the simplest nonlinear reation-di�usion equations is

�u

�t

= D

�

2

u

�x

2

+ ku(1� u); (1.4)

known as the Fisher-Kolmogorov equation (Murray, 2003). Fisher (1937) proposed

the model to represent the spread of an advantageous gene within a population

and Kolmogorov et al. (1937) analysed a more general form of the model with the

reation omponent ku(1� u) replaed by a general funtion f(u) (Murray, 2003).

An analysis of this model and the assoiated travelling wave solutions may be found

in Murray (2003). The Fisher-Kolmogorov equation also has appliations in ultural

evolutionary theory, suh as in models for the evolution of both genes and ulture

(Aoki, 1987; Straughan, 2013a). One model onsiders a similar formulation for the

spread of farmers into a region populated by hunter-gatherers (Aoki et al., 1996).

Individuals an either be farmers (F ), hunter-gatherers (H) or hunter-gatherers who

have onverted to farming (C). Initially farmers are loalised, with the remaining

area populated by hunter-gatherers. As the farmers migrate (initially F , then F+C)

they interat with hunter-gatherers, resulting in some onversion of hunter-gatherers

to (onverted) farmers. It is assumed that the growth rate of onverted farmers is

greater that that of hunter-gatherers, suggesting that a onversion to farming may be

advantageous to the hunter-gatherer population. The analysis presented in the paper

indiates that farming will dominate and hunter-gatherers will beome extint, with

the subpopulation growth rates a�eting whether the surviving farming population

omprises original farmers or onverted farmers.

The use of ODE and PDE models has been expanded to investigate the spread

of languages whih are in ompetition for speakers (Abrams and Strogatz, 2003;

Patriara and Lepp�anen, 2004; Pinaso and Romanelli, 2006; Kandler and Steele,

2008). Motivated by urrent researh in this area, hapter 4 inludes a disussion

of this literature and an analysis of a reation-di�usion model for two ompeting

languages.



Chapter 2

Modelling alohol problems: Total

reovery

2.1 Introdution

Smith and Foxroft (2009) report that between 1998 to 2006 there was an overall in-

rease in the proportion of individuals in Great Britain who exeed the reommended

alohol onsumption limits, inluding a doubling of the proportion of women who

binge drink. Exessive alohol onsumption an lead to a range of negative health

and soial e�ets (House of Commons Siene and Tehnology Committee, 2012)

and it is estimated that alohol misuse osts the NHS $2.7 billion per year, with al-

ohol related hospital admissions having inreased by 100% from 2002/03 to 2009/10

(Alohol Conern, 2011). These �gures suggest that there is an inreasing trend of

alohol misuse, whih is resulting in osts to health and the eonomy. Here we devise

a preditive mathematial model whih may o�er an insight into the best strategy

for takling problems with alohol and, in partiular, binge drinking.

Mathematial models for behaviours suh as aloholism have been developed

from epidemiologial models for the spread of infetious diseases. One of the �rst

infetious disease models by Kermak and MKendrik (1927) onsiders a onstant

population where individuals are split into those that are suseptible to athing

the disease (S), infeted individuals (I) and immune or dead individuals (R). To

maintain a onstant population, immune individuals and those that have died from

25
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the disease enter the removed lass, and so models of this form have beome known

as SIR models. Developments of SIR models and their extensions ontinue to be em-

ployed to desribe various senarios in mathematial epidemis: f. Murray (2003);

Wang and Mulone (2003); Wang and Ruan (2004); Wang and Zhao (2004); Boni and

Feldman (2005); Lou and Ruggeri (2007); Buonomo and Laitignola (2008); Capone

(2008); Keeling and Rohani (2008); Li et al. (2008); Ma and Li (2009); Buonomo

and Rionero (2010); Buonomo et al. (2010); Mulone et al. (2011); Rionero (2012b);

Rionero and Vitiello (2012).

Another development of suh models has been to apply them to situations where

it is assumed that soial interation is the key fator in spreading the behaviour.

Behaviours whih an result in adverse health e�ets have been represented, suh as

drinking (Sanhez et al., 2007; Benedit, 2007; Manthey et al., 2008; Mubayi et al.,

2010; Santonja et al., 2010; Mulone and Straughan, 2011), smoking (Sharomi and

Gumel, 2008), drug use (White and Comiskey, 2007; Mulone and Straughan, 2009),

obesity (Jodar et al., 2008; Hill et al., 2010b) and eating disorders (Gonzalez et al.,

2003). Even though the models for eah soial problem may appear mathemati-

ally similar at the onset, there are fundamental di�erenes whih must be atered

for. For example, a small intake of alohol may be bene�ial to health as shown by

the J-shaped urve of alohol intake against health problems (Marmot and Brun-

ner, 1991; Kloner and Rezkalla, 2007). For smoking however, the graph of amount

smoked against health problems immediately has an inreasing gradient, indiating

the detrimental e�et of smoking on health.

In this paper we develop a three-stage model whih represents the e�et of soial

inuene on drinking habits, with a partiular interest in total reovery. The total

population is split into suseptible individuals, individuals with alohol problems

and individuals in treatment. Suseptible individuals are those who do not onsume

alohol in a way de�ned to be problemati. We refer to alohol problems in general

as the model is appliable to a variety of drinking behaviours, for example depen-

dent drinkers who drink every day or binge drinkers who onsume many units in

one session. The preise de�nitions of eah lass must be determined by the na-

ture of the behaviour being modelled, whih we demonstrate in setion 2.2.5 using
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information regarding binge drinking. We onsider the reovered lass to represent

those reeiving treatment. Whilst it is possible for individuals to takle an alohol

problem without professional help, data regarding the number of individuals opting

for this approah is unavailable. If suh information were to beome available then a

hange to the de�nition of the lass would perhaps be appropriate. The de�nition of

treatment may also vary depending on the nature of the problem and any assoiated

withdrawal e�ets.

The three subpopulations are similar to the lasses de�ned in the work of Sanhez

et al. (2007) (also see Benedit (2007)) and Mulone and Straughan (2011), however

neither of these models allow for total reovery. Sanhez et al. (2007) found that the

basi reprodution number alone is not always the key fator in ontrolling drinking

in the population. Mulone and Straughan (2011) extended their model by splitting

binge drinkers into those who admit that they have a problem and those that do not

admit. Using data for the north east of England, they onlude that binge drinking

is sustainable in the population.

Other models, by Manthey et al. (2008); Mubayi et al. (2010) and Santonja

et al. (2010), do not ontain a treatment lass but instead split the population into

three lasses depending on the amount of alohol an individual onsumes. Manthey

et al. (2008) onsider a students' 5-year period in a university ampus environment,

whih is deemed too short for reovery to be determined. Mubayi et al. (2010) also

foused on the drinking habits of students, but they were interested in assessing how

a hange from low to high risk drinking environments a�eted the transition from

suseptible to heavy drinker. Santonja et al. (2010) do not onsider a treatment

lass, despite an individual spending 50 years in the system, as the aim of the work

is to determine the health and eonomi osts of risky alohol onsumption. This is

determined by the average alohol intake alone, irrespetive of any reovery proess.

We have hosen to inlude a treatment lass as we aim to disover the most

e�etive way to redue the proportion of the population in the alohol problems

lass. Suh information may be useful to health professionals and poliy makers

when devising strategies aimed at reduing the proportion of the population su�ering

from alohol problems. We also allow for individuals to ompletely reover from
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their alohol problem. The motivation for this stems from reent ideas regarding

the nature of reovery.

Best (2010) disusses various de�nitions of reovery and introdues the onept

of reovery hampions. These hampions are individuals who have suessfully re-

overed from misusing alohol, or other similar problems, and appear as a role model

or an example of suess to inspire those urrently in treatment. The UK Drug Pol-

iy Commission Reovery Consensus Group report (July 2008) does not ontain a

preise de�nition of reovery as it is an individual proess, i.e. reovery annot be

given a �xed de�nition whih applies to the whole population as it varies depending

on the individual. Instead, a set of key priniples of reovery are presented. The

report onludes that some individuals will always remain in treatment, whereas

others will feel that they are fully reovered. To aommodate both these options,

we allow for individuals to move from the treatment lass bak to the suseptible

population at a given rate.

The model we onstrut onsiders a population of N individuals separated into

the three sublasses, represented by a system of three ordinary di�erential equations.

Suseptible individuals, denoted by S(t) where t is time, are those without an alohol

problem. We assume that a suseptible individual develops an alohol problem

through interations with those in the alohol problems lass, A(t). Finally an

individual may be in the treatment lass, R(t), from whih they may relapse and

hene return to A(t). Alternatively, an individual may remain in treatment for a

suÆient length of time so that they totally reover, at whih point they return

to the suseptible population as they are no longer experiening diÆulties with

alohol.

Using stability analysis we alulate a ritial threshold value, R

0

, whih, one

exeeded, determines that alohol problems will persist in the population. Sensi-

tivity analysis reveals whih parameter has the greatest inuene on this threshold

value and thus may provide valuable insights into the most e�etive way of takling

alohol misuse in the population. We then onsider the stability of the endemi

equilibrium solution and ompare our results with the ase where total reovery is

not possible. Finally, we use numerial simulations to predit the future proportion
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of binge drinkers in England.

2.2 The mathematial model

As stated in the introdution, we onsider a population of N individuals and split

them into three lasses: S(t), A(t) and R(t). The probability that a suseptible

individual has ontat with someone in the alohol problems lass is A=N . Not all

suh ontats will be suÆient for the suseptible individual to develop an alohol

problem, so we de�ne � to be the rate at whih suÆient ontats our. This gives

us the rate at whih individuals move from being suseptible to having an alohol

problem as �AS=N . This sort of transmission term has been employed in modelling

drug and alohol problems, f. Sanhez et al. (2007); Benedit (2007); Manthey et al.

(2008); Santonja et al. (2010)

Individuals may move to the reovery lass by entering a treatment programme,

whih we assume ours at a onstant rate '. One in treatment, an individual an

either relapse or they an reover. Relapsing bak to A(t) is also assumed to happen

at a onstant rate, �, whereas reovery, and hene return to the suseptible lass,

is assumed to happen at a onstant rate . We assume that individuals enter and

leave the population at the same onstant rate �, where 1=� represents the average

length of time spent in the system. The dynamis of this SAR system are given by

the equations

_

S = �N �

�AS

N

+ R� �S;

_

A =

�AS

N

+ �R � ('+ �)A; (2.1)

_

R = 'A� (� + �+ )R;

where the total population is given by N = S + A + R with N > 0, S � 0, A � 0

and R � 0.

To preserve the diretion of ow through the system (see �gure 2.1), we take only

positive values for the parameters �; �; '; � and . Following the method in Mulone

and Straughan (2011), we now introdue the variables s(t) = S(t)=N , a(t) = A(t)=N
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S A

�AS

N

R

�R 'A

R

�N

�S �A

�R

Figure 2.1: Flow diagram showing the movement between the three subpopulations

S(t), A(t) and R(t).

and r(t) = R(t)=N , whih enables us to rewrite system (2.1) as

_s = �� �as+ r � �s;

_a = �as+ �r � ('+ �)a; (2.2)

_r = 'a� (�+ �+ )r;

where 1 = s + a + r. As s = 1 � a � r, we an redue system (2.2) to the two

equations

_a = ��a

2

� �ar + (� � '� �)a+ �r;

_r = 'a� (�+ �+ )r: (2.3)

2.2.1 Stability analysis

We solve equations (2.3) to �nd the equilibrium points of the system, whih are

the problem-free solution (a; r) = (0; 0) and the endemi solution (a; r) = (�a; �r).

We will now analyse the loal stability of the problem-free equilibrium solution by

onsidering a linearisation of system (2.3) at (a; r) = (0; 0). The linearisation of

equations (2.3) around a general point (â; r̂) is given by
_
a = J(

^
a)(a�

^
a) where J
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is the Jaobian matrix and a is the vetor

a =

0

�

a

r

1

A

: (2.4)

The Jaobian matrix at the point (0; 0) is given by

J(0; 0) =

0

�

(� � '� �) �

' �(� + �+ )

1

A

;

whih has eigenvalues

�

+

=

�x

1

+

p

x

1

2

� 4y

1

2

and �

�

=

�x

1

�

p

x

1

2

� 4y

1

2

(2.5)

where

x

1

= '+ �+ 2�+  � �;

y

1

= ��' + (�+ �+ )('+ �� �):

For the problem-free equilibrium point to be loally asymptotially stable we require

the real part of both eigenvalues to be negative. This is true provided x

1

> 0 and

y

1

> 0. It is suÆient to onsider y

1

> 0 only as this ondition guarantees x

1

> 0

(see appendix B.1), from whih we determine that the inequality

�(�+ �+ )

�(�+ �+  + ') + '

< 1 (2.6)

must hold for the equilibrium point to be loally asymptotially stable. If this

situation arises then alohol problems will eventually die out in the population. If

inequality (2.6) is reversed then the equilibrium solution is unstable and alohol

problems may persist in the population. We now de�ne the basi reprodution

number R

0

to be

R

0

:=

�(�+ �+ )

�(�+ �+  + ') + '

; (2.7)

where R

0

< 1 indiates stability and R

0

> 1 indiates instability of the problem-free

equilibrium solution.
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2.2.2 Endemi equilibrium solution

The seond equilibrium solution of system (2.3) is (a; r) = (�a; �r), where

8

>

>

>

<

>

>

>

:

�a =

�(�+ �+ )� �(�+ �+  + ')� '

�(�+ �+  + ')

;

�r =

'

(�+ �+ )

�

�(�+ �+ )� �(� + �+  + ')� '

�(�+ �+  + ')

;

(2.8)

and only exists for R

0

> 1. The Jaobian of equations (2.3) at the point (�a; �r) is

J(�a; �r) =

0

�

�2��a� ��r + (� � '� �) �� ��a

' �(� + �+ )

1

A

(2.9)

and the orresponding eigenvalues are given by

e�

+

=

�x

2

+

p

x

2

2

� 4y

2

2

and e�

�

=

�x

2

�

p

x

2

2

� 4y

2

2

; (2.10)

where

x

2

= 2��a+ ��r + '+ 2�+ �+  � �;

y

2

= '(��a� �) + (�+ �+ )(2��a+ ��r + '+ �� �):

For the equilibrium solution (�a; �r) to be linearly asymptotially stable then x

2

> 0

and y

2

> 0 must hold. Appendix B.2.1 gives the alulations whih show that

x

2

> 0 is always true provided y

2

> 0, so to �nd the loal stability onditions we

need only onsider y

2

> 0. We an write y

2

in terms of the model parameters only

by substituting in the values for �a and �r, whih is shown in appendix B.2.2. From

this we �nd that the inequality y

2

> 0 an be written as

�(�+ �+ )� �(�+ �+  + ')� ' > 0:

This an be rearranged to give

1 <

�(�+ �+ )

�(�+ �+  + ') + '

;

whih is equivalent toR

0

> 1. From this we know that (�a; �r) is loally asymptotially

stable when it exists, hene alohol problems beome endemi provided R

0

> 1.

Our analysis reveals that the equilibrium point (0; 0) is loally asymptotially

stable for R

0

< 1, whereas (�a; �r) is loally asymptotially stable for R

0

> 1. We an



2.2. The mathematial model 33

see that the value of R

0

determines whether alohol problems will die out or beome

endemi in the population and so we onsider R

0

= 1 to be an invasion threshold

value.

2.2.3 Sensitivity analysis

Having de�ned R

0

= 1 as a threshold for the invasion of alohol problems, we

are now interested in whih model parameter has the greatest e�et on R

0

and

hene has the greatest e�et in determining whether alohol problems will per-

sist in the population. To this end, we alulate the normalised sensitivity index,

NSI = (k=R

0

)(�R

0

=�k), whih indiates how sensitive R

0

is to a hange in some pa-

rameter k, where normalisation allows for a diret omparison between parameters.

A negative normalised sensitivity index indiates that an inrease in the parameter

value results in a derease in the R

0

value. As we are only interested in the magni-

tude of the hange to the R

0

value, we onsider the absolute value. The normalised

sensitivity indies for the parameters are

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

= 1;

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

=

�(�+ )(�+ �+ ) + ��(� + �+  + ')

�(�+ )(� + �+ ) + ��(�+ �+  + ') +G

< 1;

�

�

�

�

�

R

0

�R

0

��

�

�

�

�

=

�'(�+ )

�'(�+ ) + '(�+ )

2

+ �(�+ �+ )

2

< 1;

�

�

�

�

'

R

0

�R

0

�'

�

�

�

�

=

'(�+ )

'(�+ ) + �(�+ �+ )

< 1;

�

�

�

�



R

0

�R

0

�

�

�

�

�

=

�'

�'+ '(�+ ) + �(�+ �+ )(�+ �+  + ')

< 1;

where G = (�+ ')(� + �+ ) + �'(�+ ).

From the alulations here we an see that R

0

is most sensitive to hanges in

the value of �, whih represents the rate at whih soial interation mediates the

development of alohol problems. We an see that equation (2.7) for R

0

has the

form R

0

= � where

 =

(� + �+ )

�(�+ �+  + ') + '

so a fator � hange in the � value results in a fator � hange in the value of R

0

.



2.2. The mathematial model 34

2.2.4 The e�et of individuals in treatment returning to the

suseptible population

We now ompare the model with the situation where movement from R(t) to S(t)

is removed, so omplete reovery from an alohol problem is not possible. This

is ahieved by allowing  = 0, resulting in the model proposed by Mulone and

Straughan (2011). We fous on how  = 0 a�ets the basi reprodution number

and the endemi equilibrium solution. With this omparison we aim to highlight

any qualitative di�erenes between the solutions of the two models.

Basi reprodution number

The basi reprodution number is given by equation (2.7). For the ase where  = 0

we de�ne the basi reprodution number by

e

R

0

, where

e

R

0

=

�(�+ �)

�(�+ �+ ')

:

To study the e�et that  > 0 has on the basi reprodution, the di�erene between

R

0

and

e

R

0

is alulated:

R

0

�

e

R

0

=

���'

� (�+ � + ') (�

2

+ ��+ � + �'+ ')

: (2.11)

As the right-hand side of equation (2.11) is always negative, we onlude that R

0

<

e

R

0

for all possible parameter values. Thus exluding the return to the suseptible

lass inreases the average number of seondary infetions whih result from a single

infeted individual entering a wholly suseptible population.

As R

0

is the average number of seondary ases whih arise from a single infeted

being introdued into a wholly suseptible population, we know that by taking  = 0

the average number of seondary ases inreases. This means that a single infeted

individual will infet a greater proportion of the population when ompared to the

ase where  > 0.

Endemi equilibrium solution

Next we look at the hange to the endemi equilibrium solution, (�s; �a; �r). The equi-

librium value for the suseptible population, �s, is alulated using the expressions
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for �a and �r from system of equations (2.8) in �s = 1� �a� �r, resulting in

�s =

�(�+ �+  + ') + '

�(�+ �+ )

: (2.12)

The speial ase  = 0 has the endemi equilibrium solution (es;ea; er) with

es =

�(�+ �+ ')

�(�+ �)

;

ea =

�(�+ �)� �(�+ �+ ')

�(�+ �+ ')

;

er =

'

(�+ �)

�

�(�+ �)� �(�+ �+ ')

�(�+ �+ ')

:

To study the e�et that  has on eah individual lass, we ompare the solution

(�s; �a; �r) with the  = 0 solution (es;ea; er).

We begin by examining the suseptible population. The equation

�s� es =

�'

�(�+ �)(�+ �+ )

is always positive, so �s > es. Hene, removing the possibility of total reovery redues

the proportion of individuals in the suseptible lass.

For the alohol problems lass, the hange in the proportion of individuals in

the lass is not as simple as the previous ase. The di�erene between the two

equilibrium values is given by

�a� ea =

'(� � �� �� ')

�(�+ �+  + ')(�+ �+ ')

:

The relationship between �a and ea is determined by the sign of the expression � �

����'. If � > �+�+' then �a > ea, so preventing a return to the suseptible lass

results in a derease in the proportion of the population with alohol problems. If

� < �+�+' the onverse is true so �a < ea. Finally, �a = ea only when � = �+�+'.

This expression is independent of , so it is possible for the two models to agree on

the proportion of aloholis in the population.

For the reovered lass, we �nd that

�r � er =

'F

�(�+ �)(�+ �+ )(�+ �+ ')(�+ �+  + ')

(2.13)

where

F = ��(�+ �)(�+ �+ ) + �(�+ �)(�+ �+ ) + �'(�+ )� �'(�+ '): (2.14)
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As the denominator of the right-hand side of equation (2.13) is always positive, the

sign of �r � er depends on the numerator, spei�ally on the value of F . As we are

onsidering the endemi equilibrium solution, the parameters are onstrained by the

inequality R

0

> 1. We use this information to determine that F < 0 must be true

and hene �r < er (see appendix B.4). Thus, removing the option of returning to

the suseptible lass results in an inrease in the proportion of individuals in the

reovered lass.

Conlusions

Assuming that �, �, � and ' are �xed, when  = 0 the basi reprodution num-

ber is inreased, i.e. the average number of seondary infetions resulting from a

single infeted being introdued into a wholly suseptible population is inreased.

For example, we an onsider a situation where

e

R

0

= 1, thus R

0

< 1, and onsider

inreasing the value of �. This inrease instantly results in alohol problems be-

oming endemi when  = 0. When  > 0 however, we �nd that the rate at whih

suseptible individuals develop alohol problems may be inreased without resulting

in alohol problems beoming endemi.

Alternatively we ould onsider R

0

as a stritly dereasing funtion of . In some

situations, determined by the other parameter values, an inrease in  hanges the

stable equilibrium from the endemi to the alohol problems-free solution. Inreased

 values indiate that more individuals reover from an alohol problem, perhaps

ahievable by improvements to treatment servies whih disourage individuals from

relapsing. An example situation is shown in �gure 2.2. When  = 0:550, R

0

= 1 and

the stable equilibrium moves from the endemi solution to the alohol problems-free

solution. This example highlights the importane in understanding the key variables

that a�et drinking behaviour. By omparing the model without total reovery

(equating to onsidering  = 0) with the model where  > 0:550, we see that the

value of  a�ets the qualitative nature of the system and hene o�ers di�erent

preditions.

When  = 0, the endemi equilibrium solution has a dereased proportion of

suseptible individuals and an inreased proportion of those in treatment. This
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Figure 2.2: A hange in the stability of the two equilibrium solutions ours when

R

0

= 1 at  = 0:550. The �xed parameter values are � = 0:25, � = 0:3, � = 0:8 and

' = 0:1.

result is intuitive as  = 0 prevents individuals moving from the treatment lass

bak to the suseptible population. The relationship between  and the alohol

problems lass is not so obvious as whether there is an inrease or a derease does

not depend on the value of , but the magnitude of the e�et does. Reall that if

� < �+�+' then  = 0 inreases the proportion of individuals in the alohol lass

but if � > �+ �+ ' then the proportion is dereased.

Assuming �, � and ' are �xed, then the suseptible population is inreased when

 > 0. As  relates to totally reovered individuals,  > 0 also results in a redution

in the treatment lass size and hene fewer individuals available to relapse. If � is

small then we have an inreased number of individuals in the suseptible lass, eah

with only a small hane of developing alohol problems. The only way to repopulate

A(t) is by individuals who relapse or by suseptible individuals developing an alohol

problem. By ombining small � with  > 0, the number of individuals available to

relapse is small and the hane that suseptible individuals will develop alohol

problems is low. From this we onlude that  > 0 dereases the proportion of

individuals with alohol problems when � is small. Conversely, if � is large and

 > 0 then we have an inreased number of suseptible individuals, eah with a
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large hane of developing alohol problems, so we intuitively expet an inrease in

the proportion of those with alohol problems in the population.

2.2.5 A model for binge drinking in England

We now estimate the parameter values based on reent information regarding binge

drinking in England. Soial inuene, for example through soial norms and peer

pressure, is often onsidered to play a key role in binge drinking (Gill, 2002; Frenh

and Cooke, 2012). As our model represents the e�et of soial inuene on drinking

behaviour, it is appropriate to apply it to the situation of binge drinking. We shall

onsider those who binge drink to form the alohol problems lass.

The term binge drinking has not been stritly de�ned. However, aording to

Deaon et al. (2007), a binge drinker is usually regarded as someone who regularly

onsumes at least twie the guideline daily units of alohol during the heaviest

drinking day of the week. The UK guidelines state that binge drinking is onsuming

8+ units for men and 6+ units for women in a single session. It is possible that an

individual may oasionally binge drink in aordane with these guidelines, but this

behaviour may be very rare and hene not indiative of a drinking problem. The data

available in Deaon et al. (2007) onsiders one week only so may inlude information

on infrequent binge drinkers, however it an be used as an upper bound when wishing

to determine the proportion of regular binge drinkers in the population.

Aording to Jones et al. (2008), the government aims to redue the harm aused

by 18-24 year old binge drinkers so we shall restrit our population to this age group.

In Britain binge drinking is most prevalent among young adults, though it is not

restrited to this age group with those that binge drink in their early 20s being more

likely to do so in their 40s than those that do not binge drink (Institute of Alohol

Studies, 2010). With this in mind, we argue that takling the urrent problem of

binge drinking will not only redue antisoial behaviour and alohol related aidents

now, but may also ontribute to reduing the number of individuals with alohol-

related illnesses and alohol dependene in the future. The 18-24 year old age group

spend a total of 7 years in the system so we take � = 1=7 = 0:143. Information

for the number of binge drinkers in treatment ould not be obtained so we shall
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assume that it is the same proportion as for dependent drinkers, whih is 6% of the

drinking population aording to the 2011 National Institute for Health and Clinial

Exellene (NICE) report. We therefore onsider the maximum annual probability

of entering treatment to be 0.06, whih we an onvert to a rate using

rate =

� ln(1� p)

t

(2.15)

where p is the probability of an event over the time period t. Using this equation

we alulate a maximum value of ' = 0:0619.

El Sheikh and Bashir (2004) report that 35% of aloholis in treatment relapse

within the �rst 2 weeks and 58% within the �rst 3 months. After 4 years, 90% are

expeted to have relapsed (Alohol Relapse and Craving). We use the data for the

greatest time interval, whih is 4 years, as we believe this will give the most aurate

information and use equation (2.15) to estimate � = 0:576. Best (2010) indiates

that an individual experiening a 4 or 5 year period without onsuming alohol an

be onsidered as reovered. If 90% of individuals relapse after 4 years in treatment

then we know that 10% remain in treatment so we an use this in equation (2.15)

to alulate the rate of reovery. We obtain a value of 0.0263 whih we then divide

aross a 4-year time period to give a maximum value of  = 0:00659. An estimate

for � is diÆult to determine so we will onsider the minimum � value whih ensures

alohol problems beome endemi in the population, de�ned as �

min

. We �nd that

this minimum value is �

min

= 0:156, alulated using the parameter values stated

above and the equation R

0

= 1.

Deaon et al. (2007) give the 2005 perentages for adults that binge drink as

19.3% for males and 8.1% for females. Assuming an even sex-ratio, this averages to

13.7% of the adult population so we take an initial value of a(0) = 0:137. As we

assume that 6% of binge drinkers are in treatment we take r(0) = 0:00874.

Aording to Smith and Foxroft (2009), there has been an inrease in the num-

ber of people drinking over the guideline weekly amounts from 1988-2006. We �nd

that the value �

min

= 0:156 results in a derease in the binge drinking population

from our a(0) value so this is not an appropriate lower bound. Instead the lowest

value we onsider is � = 0:2 as this results in a ontinuation of the trend. When a

suseptible individual meets a binge drinker, the likelihood that they also beome
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(a) � = 0:2, R

0

= 1:285,

(�s; �a; �r) = (0:778; 0:205; 0:0174)

(b) � = 0:4, R

0

= 2:571,

(�s; �a; �r) = (0:389; 0:562; 0:0480)

() � = 0:6, R

0

= 3:856,

(�s; �a; �r) = (0:259; 0:682; 0:0582)

(d) � = 0:8, R

0

= 5:141,

(�s; �a; �r) = (0:195; 0:742; 0:0633)

Figure 2.3: Simulations showing how the value of the parameter � a�ets the

endemi equilibrium solution. The other parameters have values � = 0:143, ' =

0:0619, � = 0:576 and  = 0:00659.
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a binge drinker is proportional to the value of �. As � inreases a suseptible indi-

vidual is more likely to beome a binge drinker, so as we inrease the value of � we

expet an inrease in the proportion of binge drinkers in the population.

We now take starting values (a(0); r(0)) = (0:137; 0:00874) and parameter values

� = 0:143, ' = 0:0619, � = 0:576,  = 0:00659 and let � take the values 0.2, 0.4, 0.6

and 0.8. Figure 2.3 shows how the frations in eah of the lasses hange over time

for the di�erent � values. The graphs plateau at the equilibrium solution values. It

an be seen from �gures 2.3a and 2.3b that the greatest inrease in the proportion

of binge drinkers in the population ours when � hanges from a value of 0.2 to

0.4. This 0.2 inrease in � results in a hange from 20% of the population binge

drinking to 56%. Subsequent inreases in � do not have suh a great e�et on the

proportion of binge drinkers in the population. This highlights that, for large �

values, any inauray in the estimate for � will not greatly a�et the results. If �

is small however, then any inauraies ould greatly alter the predited outome.

Figure 2.4 shows this relationship.

Figure 2.4: Graph showing the rate of hange of �a with respet to �, where we

onsider �a to be a funtion of � only. As � inreases, the rate of hange in �a tends

towards 0.

Figure 2.5 shows the phase portrait in the a; r-plane of the endemi equilibrium

solution for the model where  > 0 and for the ase where  = 0. The parameter
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values have been taken as above, along with � = 0:4. We know that � + � + ' =

0:7809 is greater than the value � = 0:4, so from our analysis in setion 2.2.4 we

expet taking  = 0 to inrease both the equilibrium value for a(t) and r(t). Figure

2.5 shows that this is indeed the ase.

(a) (b)

Figure 2.5: Phase portraits showing the endemi equilibrium point for  = 0:00659

and for  = 0, represented by the dashed and dotted lines, respetively. The other

parameters take the values � = 0:143, � = 0:4, ' = 0:0619 and � = 0:576. The

triangle with verties (0; 0), (1; 0) and (0; 1) in �gure (a) is the boundary of the

positive invariant region D = f(a; r) 2 R

2

: a � 0; r � 0; a + r � 1g, where all

solutions lie. A proof of the positive invariane of D is inluded in appendix B.3.

Figure (b) shows the behaviour of the system lose to the equilibrium solutions.

2.3 Disussion

We have onstruted a model for alohol problems in a population whih allows

for individuals to totally reover and return to the suseptible population. The

threshold R

0

= 1 was found, where R

0

< 1 indiates that alohol problems will die

out and R

0

> 1 determines that alohol problems beome endemi in the population.

We found that the R

0

value was most sensitive to hanges in the parameter �,

whih a�ets the rate at whih suseptible individuals develop an alohol problem.

Dereasing � results in a derease in the value R

0

. This indiates that e�orts to
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redue alohol problems in the population should fous on preventing suseptible

individuals from developing an alohol problem.

We ompared this model with the speial ase  = 0, presented in Mulone and

Straughan (2011), whih prevents individuals from returning to the suseptible lass.

We found that taking  = 0 inreased the value of the basi reprodution number

and led to an inrease in the proportion of reovered individuals and a derease in

the proportion of suseptible individuals. Whether the proportion of individuals

with alohol problems inreases or dereases is not determined by inluding total

reovery, but the size of the hange is a�eted by the value of . Thus our analysis

reveals that the e�et of  on �a is not straightforward. If the situation were suh

that � were large then totally reovery would have an adverse e�et on reduing

alohol misuse in the population.

Estimates were made for the parameters using data for binge drinking in Eng-

land. We were partiularly interested in the e�et of soial inuene on binge drink-

ing and so we onsidered � values in the interval [0:2; 0:8℄. Simulations using these

values revealed that any inauraies in the � value ould have a great e�et on the

proportion of binge drinkers in the population if � was small. For larger � values,

any inauraies did not have suh a great e�et.

We have assumed that alohol abuse is the result of soial inuene where all

individuals are equally suseptible to developing a problem. This does not over

the full range of fators whih may a�et an individual's propensity to developing

a drinking problem. Experimental evidene from both adoption and twin studies

indiates that there may be a geneti ontribution to the development of alohol

problems, resulting in some individuals being more prone to developing a problem

(MGue, 1999; Hiks et al., 2004). However, whilst genetis fators may ontribute

to an individual's suseptibility to develop a drinking problem, soial fators suh

as peer group inuene had an independent e�et on behaviour transmission (Hiks

et al., 2004). Geneti fators are found to inuene alohol dependene, however

binge drinking behaviour does not have a physiologial addition assoiated with the

behaviour so in this spei� ase the geneti ontribution may be of less importane

when ompared with peer group e�ets. Thus, although our model is not a omplete
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piture, it provides a basis for further investigation into the spread of drinking

behaviour.

One model assumption is that fully reovered individuals who have returned to

the suseptible lass have the same probability of developing an alohol problem for

the seond time as someone who has had no prior problem with alohol. A develop-

ment for the future would be to inlude a fourth lass of fully reovered individuals,

as in the four equation smoking model by Sharomi and Gumel (2008), rather than

assuming that they return to the suseptible lass. This would distinguish fully

reovered individuals from suseptible individuals without prior alohol problems.

Alternatively the hampion e�et disussed by Best (2010) may be better repre-

sented by assuming that those in treatment reover beause of interations with a

reovery hampion.

Reovery an be viewed as ontagious, as treatment suess is improved by the

introdution of an abstinent individual in the soial networks of those in treatment

(Best, 2010). Community reovery hampions are inspirational �gures who have ex-

periened addition and suessfully ompleted treatment (Best, 2010). Their pos-

itive e�et on those in treatment may be desribed by model-based soial learning

biases: similarity bias and suess bias. An individual in treatment may experi-

ene a similarity bias as the reovery hampion has experiene of addition and the

diÆulties of the treatment proess. As the reovery hampion has sueeded in

ompleting treatment, a state whih the reovering individual wishes to attain, a

suess bias may also be in operation.

The SARS model may be adapted to inorporate both a totally reovered lass

and reovery hampions through the introdution of a totally reovered lass, R

T

,

and a soial inuene term taking individuals from R to R

T

. This may be modelled

by the equations

_

S = �N �

�AS

N

� �S;

_

A =

�AS

N

+ �R � ('+ �)A;

_

R = 'A� (�+ �)R�

RR

T

N

;

_

R

T

=

RR

T

N

� �R

T

;
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with the dynamis shown in �gure 2.6. The term RR

T

=N represents soial inu-

ene, where totally reovery is dependent on those in treatment interating with

fully reovered individuals: the reovery hampions. In this instane the reovery

hampion e�et may be onsidered as a model-based bias, ombining both similarity

and suess biases.

S A

�AS

N

R

R

T

RR

T

N

'A

�R

T

�S �A �R �R

T

�N

Figure 2.6: An alohol model inorporating a separate totally reovered lass, R

T

,

whose individuals at as reovery hampions to those in the treatment lass R.

The mathematis presented in this hapter o�ers a valuable insight into under-

standing patterns in drinking behaviour whih are a�eted by soial inuene. Fu-

ture work will ontinue to explore mathematial appliations to the study of human

behaviours.



Chapter 3

An SIS model for ultural trait

transmission with onformity bias

3.1 Introdution

Epidemiologial models for the spread of infetious diseases, known as SIR models,

have been widely researhed sine the work of Kermak and MKendrik (1927).

The name derives from the assumed model struture, lassifying individuals as ei-

ther suseptible, infeted or reovered. Many variations of SIR models exist (Murray,

2003; Hethote, 2000; MCallum et al., 2001; Keeling and Rohani, 2008), inluding

SIS models where individuals an be either suseptible or infeted. An SIS model

for infetious disease spread onsiders how the subpopulations of suseptible and

infeted individuals hange in time, represented mathematially by two ordinary

di�erential equations (ODEs). It is assumed that all individuals entering the pop-

ulation are suseptible. They may beome infeted through ontat with infeted

individuals at a rate proportional to the frequeny of infeted individuals in the

population. Infeted individuals reover to the suseptible state at a onstant rate.

The assumption that infetion is spread through ontat has led to the appli-

ation of SIS and similar models to be applied to a range of human health-related

behaviours where soial interation a�ets the spread of the behaviour. Examples in-

lude models of additive behaviours, suh as smoking (Sharomi and Gumel, 2008),

drug use (Song et al., 2006; White and Comiskey, 2007; Mulone and Straughan,

46
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2009), drinking (Sanhez et al., 2007; Mubayi et al., 2010; Mulone and Straughan,

2011; Walters et al., 2012), the spread of happiness (Hill et al., 2010a) and the de-

velopment of eating disorders (Gonzalez et al., 2003) or obesity (Hill et al., 2010b).

Suh models assume that the rate at whih suseptible individuals adopt a behaviour

is proportional to the prevalene of the behaviour in the population. However, we

see from ultural evolutionary theory that this assumption may be oversimplifying

the mehanisms involved in behaviour transmission, and that biases in transmission

an result in qualitatively distint model preditions.

Cultural evolutionary theory onsiders the spread and persistene of soially

transmitted traits, inluding ideas, beliefs, behaviours and material ulture (Cavalli-

Sforza and Feldman, 1981; Boyd and Riherson, 1985; Mesoudi, 2011). A ultural

trait is typially aquired by some form of soial learning. If soial learning is un-

biased (random opying) then the probability that an individual adopts a ultural

trait is equal to the trait's frequeny in the population. The assumption that trans-

mission is linearly frequeny-dependent, i.e. unbiased, is ommonly applied in the

SIS model literature; ultural trait transmission, however, may be subjet to a va-

riety of ontent or ontextual biases (Henrih and MElreath, 2003) whih a�et

the transmission rate. Content-dependent biases arise from some intrinsi prop-

erty of the ultural trait. Suh biases make it, for example, easier to remember

or intrinsially more attrative than other ompeting traits (Riherson and Boyd,

2005; Mesoudi, 2011). Context-dependent biases an be split into model-based and

frequeny-dependent biases (Henrih and MElreath, 2003; Riherson and Boyd,

2005; Mesoudi, 2011). The former is where the hoie of a trait is a�eted by ob-

servable attributes of the ultural parent, for example opying individuals that are

pereived to be suessful. The latter is typially where the frequeny of the trait in

the population a�ets its uptake in a nonlinear fashion, suh as a disproportionate

tendeny to adopt the most ommon trait. This is termed as a onformist bias

whereas a disproportionate tendeny to follow the minority is often known as an-

tionformist bias (E�erson et al., 2008; Eriksson and Coultas, 2009; Kendal et al.,

2009; Morgan et al., 2011).

A variety of empirial studies examining the extent of onformist bias have been
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onduted, with one of the earliest �nding that partiipants would onform to the

majority viewpoint expressed by onfederates (Ash, 1956). This has sine been

ritiised as the results do not demonstrate a disproportionate inlination to follow

the majority and hene may reet random opying (E�erson et al., 2008). By

de�ning onformity as an exaggerated tendeny to follow the majority, modelled

by a sigmoidal urve, E�erson et al. (2008) onduted an experiment where players

repeatedly hose between two tehnologies with di�erent expeted, but randomly

distributed, payo�s. A subset of partiipants that indiated a onformist bias in

their answers to questionnaires opied the tehnology hoie of asoial learners with

an S-shaped probability distribution, indiating onformist behaviour.

Later work by Eriksson and Coultas (2009) o�ers an alternative theoretial model

of onformity. The authors argue that the S-shaped probability urve originally used

by Boyd and Riherson (1985) is unrealisti. Partiularly, the endpoints of the urve

mean that a na��ve individual annot aquire a trait whih is not being displayed in

the population, nor an they rejet a trait whih is universally expressed by the

population. Furthermore, the onformity threshold frequeny, whih we de�ne to

be the intermediate point where the nonlinear frequeny dependene urve meets the

linear urve, need not our when exatly half of the population display the trait.

Allowing the endpoints and the onformity threshold frequeny to vary produes

a model whih an aount for ontent-dependent biases, suh that the attration

of the trait itself may interat with a nonlinear frequeny-dependent probability of

adoption. In applying their model to an experiment testing frequeny-dependent

e�ets on opinion formation they found evidene for antionformist bias, suggesting

that any expression of onformity bias may be onditional (also see Morgan et al.

(2011)). Results from a series of experiments onduted by Morgan et al. (2011)

suggest that subjets used onformist biased soial learning. This, however, required

a large number of demonstrators and for the individuals to have low on�dene in

their ability to omplete the task independently. In ontrast, a high magnitude

of asoial inuene resulted in a onformity bias where the onformity threshold

frequeny was greater than a half.

In light of these �ndings, we present a mathematial model to examine the
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dynamis of a ultural trait under onformist biased transmission. Results are om-

pared against the ase of unbiased soial transmission, before onsidering the e�et

of a variable onformity threshold parameter. Our analysis fouses on the e�et of

the strength of onformity on the existene and stability of equilibria. The formu-

lation is equivalent to that of an SIS model, inluding a frequeny-dependent rate

of trait adoption and a onstant rate of abandonment. The latter may reet in-

dividual forgetting or the result of population-wide inuenes, suh as mass media,

or eonomi and environmental hange. The formulation also approximates ases

of frequeny-dependent abandonment if this rate is very small. By way of an ex-

ample, we disuss how the model may apply to the ase of binge drinking within a

population of young adults (see setion 3.4).

3.2 Models for unbiased and onformist ultural

trait transmission

We begin by assuming the existene of a ultural trait A within a population of

N individuals, where trait transmission is frequeny-dependent and abandonment

of the trait is (approximately) frequeny-independent. Individuals within the pop-

ulation an be ategorised as type S, who do not display trait A, or type A, who

do. The time-dependent variables S(t) and A(t) represent the number of type S

and type A individuals respetively. We assume that all individuals enter the pop-

ulation as type S at a rate �; however, they may leave as either type at the same

rate. Type S individuals an only aquire trait A through interations with type A

individuals, and we assume that the transmission rate is a�eted by the frequeny

of type A individuals in the population. We onsider the transmission rate to be

�(A=N) where � is the rate at whih ontat suÆient for transmission ours. In

the unbiased soial learning model the funtion (A=N) represents the probability

that ontat is made with a type A individual. However, in the ase of biased so-

ial learning, the funtion also inludes a weighting whih represents the onformist

inuene. Type A individuals revert to type S at a onstant rate , although this

term also approximates the e�et of a soial inuene when  is very small. For a
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mathematial justi�ation see appendix C.2.

From this we formulate the following equations

_

S(t) = �N � �S(A=N) + A� �S;

_

A(t) = �S(A=N)� ( + �)A;

(3.1)

where the total population N = S + A is onstant. Figure 3.1 represents these

dynamis with arrows indiating the diretion of ow through the system. The

onstant total population results from the entering and leaving rates, �, being the

same. This simplifying assumption is made so that the system may be redued to

one equation, whih is non-dimensionalised by introduing the variables s = S=N

and a = A=N to give

_a(t) = �(1� a)(a)� �a;

(3.2)

where � =  + � has been introdued to simplify the mathematial analysis.

S A

�S

A

�S �A

�N

Figure 3.1: Pitorial representation of the SAS model for ultural trait transmis-

sion, relating to equations (3.1). The nodes S and A represent the subpopulations of

type S and type A individuals respetively. The labelled arrows indiate the rate and

diretion of movement through the system.

We must now onsider the funtion (a). This funtion determines the frequeny-

dependent relationship between the probability that type S individuals onvert to

type A and the frequeny of type A individuals in the population. First we introdue

a linear frequeny-dependent funtion



L

: [0; 1℄! [0; 1℄;



L

(a) = a;

whih gives us a model for unbiased trait transmission, resulting in the standard SIS
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model form. We then introdue a nonlinear frequeny-dependent funtion



1

: [0; 1℄! [0; 1℄;



1

(a) = a[1 +D(2a� 1)(1� a)℄;

(3.3)

whih is the onformity funtion �rst proposed by Boyd and Riherson (1985). The

onformity oeÆient D 2 (0; 1℄ ontrols the strength of the bias. The value D = 0

is not onsidered as this would result in the linear funtion 

L

. We see from �gure

3.2 that 

1

is an appropriate funtion to represent a onformity bias as its sigmoidal

shape ensures that all individuals have a disproportionate tendeny to follow the

majority. When the frequeny of type A individuals in the population is less than

a half, so a < 1=2, the probability of type S adopting trait A is P (adopting A) < a.

When the frequeny of type A individuals is greater than a half then a > 1=2 and

P (adopting A) > a. We refer to a

e

= 1=2 as the onformity threshold frequeny

as this is where P (adopting A) = a, i.e. where the linear and nonlinear frequeny-

dependent urves meet.

The riteria for an appropriate onformity funtion are that exatly one saddle

point and no loal extrema must exist in the region (0; 1) and, initially, symmetry

about the point (1/2, 1/2). More omplex real funtions, suh as higher order

polynomials or trigonometri funtions, an also satisfy these riteria; however, they

may then be loally approximated to a ubi polynomial funtion. As a result, the

behaviour of suh systems pertaining to existene and stability of equilibria will be

qualitatively similar to the results presented here. Preise relationships between

the parameters and the onformity oeÆient will, however, vary depending on the

behaviour of the hosen onformity funtion with respet to the oeÆient D.

We begin by analysing the linear frequeny-dependent SIS model whih is on-

struted from equation (3.2) using the linear funtion 

L

to give

_a(t) = �a(1� a)� �a:

(3.4)

As equation (3.4) is not analytially solvable we look for equilibrium solutions, whih

are values of a whih satisfy _a(t) = 0, and analyse their stability. One a stable equi-

librium is reahed, the proportion of type A individuals in the population remains

onstant in time and hene we an determine the prevalene of trait A within the



3.2. Models for unbiased and onformist ultural trait transmission 52

ae =
1
2

0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

probability of

adopting trait A

Figure 3.2: Plot of the funtions 

L

(bold) and 

1

, given by equations (3.2) and

(3.3) respetively, with onformity strength values D = 0:7 (dot-dashed) and D = 1

(dashed). As the strength of the onformist tendeny (D) inreases, so does the

onavity of the onformity urve 

1

. Consequently, as D inreases, the probability

of adopting trait A dereases for a < 1=2 and inreases for a > 1=2.

population. To ensure that the model provides realisti preditions we seek feasible

solutions haraterised as those whih are unique and lie in the interval [0; 1℄. As

we are interested in solutions for a we rewrite equation (3.4) as a funtion of this

variable, giving

f

L

(a) = a[�(1� a)� �℄:

(3.5)

Solving f

L

= 0 results in two equilibrium solutions: �a

L

0

= 0, whih is feasible for all

parameter values, and �a

L

1

= (� � �)=�, whih is feasible for � < �.

We now look at equation (3.2) with onformity funtion 

1

whih gives

_a(t) = �a(1� a)[1 +D(2a� 1)(1� a)℄� �a:

(3.6)

This an be written as _a = af

1

(a) where we see that �a

1

0

= 0 is an equilibrium

solution whih always exists, independent of the values of �, � andD. The remaining

equilibrium solutions are the roots of

f

1

(a) = �(1� a)[1 +D(2a� 1)(1� a)℄� �

(3.7)

whih an be found expliitly, but their omplexity makes further analysis diÆult.

By using properties of the funtion f

1

it is possible to determine the number and
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nature of equilibrium points under ertain onditions. The ubi polynomial f

1

has

leading oeÆient 2�D > 0, so it always has one real root, and f

1

(a) ! �1 as

a! �1. The roots of f

0

1

(a) = �(6Da

2

� 10Da+ 4D � 1) give the loal maximum

and loal minimum of f

1

whih are

a

1

�

=

5

6

�

1

6

r

D + 6

D

and a

1

+

=

5

6

+

1

6

r

D + 6

D

respetively. The vertial interept ours at f

1

(0) = �(1�D)� �.

The parameter � only ours in the onstant term of equation (3.7) so serves

to shift the graph of f

1

down the vertial axis as it inreases; thus we know that

the limiting ase of � = 0 maximises the funtion. This observation leads us to

introdue

g

1

(a) = �(1� a)[1 +D(2a� 1)(1� a)℄

(3.8)

whih is equal to the funtion f

1

in the limiting ase of � = 0 and hene has the same

turning points as f

1

. The diret alulation of the turning points reveals g

1

(a

1

�

) > 0

and g

1

(a

1

+

) < 0, where a

1

�

< 1 < a

1

+

, so g

1

has three real roots whih are a = 1,

a 2 (�1; a

1

�

℄ and a 2 [a

1

+

;1). Consequently f

1

(a

1

+

) < 0 and f

1

has three real roots

for suÆiently small �; however, the root lying in [a

1

+

;1) is never feasible as a

1

+

> 1

and is therefore disregarded. For the remaining two roots to exist and be unique we

require � < g

1

(a

1

�

), shown by the shaded region in �gure 3.3a, where

g

1

(a

1

�

) =

�

54

"

9 +D + (6 +D)

r

6 +D

D

#

:

This existene ondition allows us to determine the form of the atual solutions,

whih are shown in appendix C.1.

The feasibility of the remaining solutions, de�ned as �a

1

1

2 (�1; a

1

�

) and �a

1

2

2

(a

1

�

; 1), must be determined when they exist. As we already have the equilibrium

solution �a

1

0

= 0 we require �a

1

1

and �a

1

2

to lie in (0; 1℄ for the equilibrium points to be

unique. By onsidering the sign of a

1

�

, whih determines the loation of the loal

maximum of f

1

, we onstrut two ases: D 2 (0; 1=4℄ andD 2 (1=4; 1℄, orresponding

to a

1

�

� 0 and a

1

�

> 0 respetively. In the �rst ase �a

1

2

an be feasible, whih ours

when the vertial interept is positive. This provides the ondition � < �(1 � D).

For the seond ase, �a

1

2

is feasible for � < g

1

(a

1

�

) (i.e. for when it exists), and �a

1

1

is
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feasible for �(1�D) < � < g

1

(a

1

�

) whih is where the vertial interept is negative

and the turning point is positive. These ases are shown in �gure 3.3.

(a)

a-
1

g1Ia-1M

Β(1−D)

a+
1-0.5 0.5 1.0 1.5

a

-0.6

-0.4

-0.2

0.2

0.4

(b)

Β(1−D)

-0.5 0.5 1.0
a

-0.2

0.2

0.4

0.6

0.8

Figure 3.3: (a) The shaded region is the area bounded above and below by the

urves g

1

(a) (equation (3.7)) and f

1

(a) (equation (3.8)) respetively, where � = 0:8,

D = 0:7 and � = g

1

(a

1

�

) = 0:451. For f

1

in the limiting ase of � = 0 (equivalent to

urve g

1

) only one root is feasible (a = 1, whih is independent of � and D). As the

value of � inreases the two leftmost roots tend toward a = a

1

�

= 0:318. The entral

urve, with � = �(1 � D) = 0:24, highlights where two equilibria beome feasible.

Eventually, when � = g

1

(a

1

�

), both of these equilibria ease to exist.

(b) The shaded region is bounded by the urves g

1

(a) and f

1

(a) with � = 0:8, D =

0:13 and � = �(1�D) = 0:696. As the value of � inreases, the only feasible solution

dereases away from a = 1 toward a = 0, at whih point it beomes unfeasible. This

situation where only one equilibrium is feasible arises for D 2 (0; 1=4℄, unlike the

senario of (a) where two feasible solutions may exist and D 2 [1=4; 1).

3.2.1 Stability Analysis

To determine the loal stability of an equilibrium solution we onsider the system

lose to the equilibrium point and linearise around this point. For a funtion F (a)

and equilibrium point �a we onsider F (�a + a) where a is small. Linearising around

the point �a gives

F (a) = aF

0

(�a) +O(a

2

)
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as F (�a) = 0, so lose to the equilibrium point we have F (a) = ka for k 2 R onstant.

In our system, linearising results in an ODE of the form _a = ka whih has solutions

a(t) = Ke

kt

for K 2 R onstant. For asymptoti stability we require k < 0 as this

ensures that the solution deays with time.

For the unbiased soial learning model, equation (3.5), linearising gives

f

L

= (� � �� 2��a)a

so �a

L

0

and �a

L

1

are asymptotially stable for � > � and � < � respetively. For the

onformist biased model, equation (3.6), the ondition for asymptoti stability is

f

1

(�a) + �af

0

1

(�a) < 0 where f

1

(�a) = 0 for �a 6= 0 and

�af

0

1

(�a) = ��a(6D�a

2

� 10D�a+ 4D � 1):

From this we know that �a

1

0

is asymptotially stable for � > �(1�D). Asymptoti

stability of the remaining feasible solutions requires f

0

1

(�a) < 0 whih is true provided

�a 2 (a

1

�

; a

1

+

), so �a

1

1

is never stable and �a

1

2

is always asymptotially stable. These

results are summarised in table 3.1.

Model omparison

We now identify how a onformity bias a�ets the persistene of trait A in the

population ompared with the linear ase. Reall that � = �+  was introdued to

simplify the analysis, so any interpretation of � requires an understanding of how �

and  behave. As we are interested in the proportion of type A individuals in the

population we onsider the ow to and from this subpopulation, shown in �gure 3.1.

Flow into A is only a�eted by the parameter � and ow out of A happens

at rate � + , so � is the rate that individuals leave A. By onsidering � �xed

aross both the linear and nonlinear frequeny-dependent models we an de�ne

threshold values of � required for type A individuals to persist in the population.

In the linear frequeny-dependent model the threshold value is �

L

= �. In the

nonlinear model the threshold is di�erent as it depends upon the strength of the

onformist tendeny. The threshold value is �

1

N

= �=(1� D) so, for very small D,

the linear and nonlinear threshold values are approximately equal. As the strength
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Feasible Asymptotially Stable Unstable

Linear �a

L
0

Always � > � � < �

�a

L
1

� < � � < � |

�a

1
0

Always � > �(1�D) � < �(1�D)

D 2 (0; 1=4℄ �a

1
1

Never | |

�a

1
2

� < �(1�D) � < �(1�D) |

�a

1
0

Always � > �(1�D) � < �(1�D)

D 2 (1=4; 1℄ �a

1
1

�(1�D) < � < g

1

(a

1
�

) | �(1�D) < � < g

1

(a

1
�

)

�a

1
2

� < g

1

(a

1
�

) � < g

1

(a

1
�

) |

Table 3.1: For the linear frequeny-dependent model the stability of the equilibria swithes when the rate of transmission (�) is equal

to the rate of leaving the type A lass (�). When the leaving rate is greater, � > �, trait A dies out. When � < � however, trait A

persists. For a onformity strength D 2 (0; 1=4℄ the stability of the zero solution and endemi solution swithes when � = �(1�D),

that is where the rate of leaving A is equal to the transmission rate, subjet to a onformity e�et. This threshold is greater than the

linear ase so a larger transmission rate � is required for trait A to beome endemi. For an inreased onformity strength (D > 1=4)

a bistable state exists where the equilibrium attained is dependent upon the initial frequeny of type A individuals.
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of onformity inreases so does the threshold value; thus �

1

N

> �

L

. This indiates

that when there is a onformity bias ating within a population, the ontat rate

� must be greater than in the linear ase for trait A to beome endemi within

the population. This is demonstrated by simulation results, summarised in table

3.2 (setion A), where inreasing the value of � results in the endemi equilibrium

solution beoming feasible and stable for a linear frequeny-dependent relationship,

but not with a nonlinear one. Setion B of table 3.2 shows that, as the onformity

strength inreases, a larger value of � is required for the endemi equilibrium solution

to beome feasible. This indiates that onformity e�ets suppress the spread of

trait A, whih is intuitive as initially type A individuals are rare in the population

so onformity ats against them, instead favouring type S individuals.

When D > 1=4, there exists a seond threshold value. For trait A to persist

in the population without any dependene on the initial frequeny of type A indi-

viduals then the threshold value remains as �

1

N

> �

L

. This orresponds to when

the equilibrium solution �a

1

2

is feasible and stable whereas �a

1

1

is not feasible. As D

inreases so does the threshold value, though it is unde�ned at D = 1. This indi-

ates that when onformity strength is at its maximum, it is not possible to have a

ontat rate whih is suÆiently large to overome the propensity to onform. Trait

A, therefore, annot beome endemi in this senario. By introduing a seond

threshold, �

1

M

= �=k

1

(D) where

k

1

(D) =

1

54

"

9 +D + (6 +D)

r

6 +D

D

#

;

trait A may beome endemi. Using the extreme values of D we an bound k

1

(D)

from above by k

1

(D) < 45=54 < 1 and therefore �

1

M

> �

L

, so again the threshold

value for the onformity model is greater than that of the unbiased soial learning

model. We also see from �gure 3.3a that �(1�D) < g

1

(a

1

�

) = �k

1

(D) and therefore

1=k

1

(D) < 1=(1 � D) so �

1

M

< �

1

N

. This lower nonlinear threshold value means

that trait A an beome endemi in the population even when D = 1, dependent

upon the initial state. We know from our stability analysis (setion 3.2.1) that the

system an have two asymptotially stable solutions, �a

1

0

and �a

1

2

, so the solution that

is reahed depends on the initial frequeny of type A individuals in the population.
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By de�ning t

0

= 0 then for a(t

0

) < �a

1

1

trait A annot persist in the population and

for a(t

0

) > �a

1

1

it beomes endemi. This shows that beginning with very few type

A individuals means it is likely that trait A will die out in the population. If at t

0

there was, for example, some major environmental hange leading to a suÆiently

large number of individuals beoming type A, then trait A would persist in the

population. Table 3.2, setion C, gives an example of where the two equilibrium

solutions are feasible and stable for suÆiently large onformity strength, ompared

to the model with a weaker onformity strength.

3.3 Model for onformist ultural trait transmis-

sion with varying onformity threshold

We now generalise our model further by allowing the threshold value a

e

to vary away

from 1=2, whih ould indiate a ontent bias ating in the population. We use the

onformity funtion



2

(a) = a[1 +D(2a� �)(1� a)℄ (3.9)

whih produes an asymmetri sigmoidal urve. The threshold value is a

e

= �=2

where � 2 (0; 2), but restritions must be plaed on the onformity oeÆient D to

ensure that 

2

is monotone inreasing on [0; 1℄. This is ahieved by onsidering the

loal minimum and loal maximum of 

2

,

~a

�

=

2 + �

6

�

p

D

2

�

2

� 2D

2

� + 4D

2

+ 6D

6D

and

~a

+

=

2 + �

6

+

p

D

2

�

2

� 2D

2

� + 4D

2

+ 6D

6D

respetively, where we require ~a

�

� 0 and ~a

+

� 1. This gives onditions D � 1=�

and D � 1=(2 � �). As MaxfDg = 1, the �rst ondition does not always hold for

� 2 (1; 2) and the seond for � 2 (0; 1). For example, when � = 1=2 then D � 2=3

whih is a striter ondition on D than we desire. To eliminate this problem we

restrit D so that D 2 (0; 1=(2� �)) for � 2 (0; 1℄ and D 2 (0; 1=�) for � 2 (1; 2).
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9

A B C D

Funtion 

L



L



1



L



1



1



1



1



2



2



2

� 0.2 0.27 0.27 0.3 0.3 0.3 0.45 0.45 0.45 0.45 0.45

D | | 0.1 | 0.1 0.7 0.1 0.7 0.0.7 0.7 0.7

� | | | | | | | | 0.6 1 0.2

Stable Solution 0 0.741 0 0.167 0.103 0 0.441 0 or 0.380 0.515 0 or 0.380 0

Table 3.2: Table showing simulation results for di�erent parameter values, with � = 0:25 �xed. The stable solution is the frequeny

of type A individuals in the population one the system has reahed equilibrium, where all values are to three signi�ant �gures.

A: Comparison between the linear frequeny-dependent funtion 

L

and the onformity funtion 

1

highlighting the e�et of the

transmission rate � on the stability of an endemi equilibrium (a > 0).

B: For a �xed transmission rate �, the linear frequeny-dependent model results in a higher frequeny of type A individuals in the

population than the onformity model. Provided that the onformity strength D is large enough, an endemi equilibrium will not be

reahed and type A individuals will always die out.

C: For ertain parameter values, an inrease in the onformity strength will result in a bistable system. In the example given, a

threshold exists at a(0) = 0:258. For an initial frequeny of type A individuals greater than 0:258, trait A will beome endemi within

the population with approximately 38% displaying the trait at equilibrium. For an initial frequeny of type A individuals less than

0:258 the trait will eventually die out.

D: The e�et of a ontent bias, ontrolled by � in onformity funtion 

2

, is investigated. As the value of � inreases, the persistene

of type A individuals �rst beomes dependent on their initial frequeny before beoming impossible.
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Figure 3.4a shows the funtion for � 2 (0; 1℄ where the intersetion point a

e

lies in the interval (0; 1=2℄. This represents a situation where less than half of the

population displaying trait A is suÆient for a na��ve individual to be more likely to

take up trait A than in the linear ase. Figure 3.4b shows the funtion for � 2 (1; 2)

and a

e

2 (1=2; 1). Here, more than half the population must display trait A in order

for the probability of behaviour uptake to be greater than in the linear ase. An

inrease in the value of � represents an inreased aversion to adopting trait A. As

with the previous onformity funtion 

1

, an inrease in the onformity strength D

inreases the onavity of onformity funtion 

2

.

The nonlinear frequeny-dependent SIS model with variable threshold point � is

_a(t) = �a(1� a) [1 +D(2a� �)(1� a)℄� �a; (3.10)

formed from equation (3.2) and the onformity funtion 

2

. We analyse this model

by proeeding as in setion 3.2, beginning by de�ning f

2

(a), where _a = af

2

(a) so

that the equilibrium solutions are �a

2

0

= 0 and the roots of

f

2

(a) = �(1� a) [1 +D(2a� �)(1� a)℄� �:

The funtion f

2

has distint turning points

a

2

�

=

4 + �

6

�

1

6

r

(2� �)

2

+

6

D

and a

2

+

=

4 + �

6

+

1

6

r

(2� �)

2

+

6

D

and vertial interept f

2

(0) = �(1� �D)� �. Taking the limiting ase of � = 0 we

introdue the funtion

g

2

(a) = �(1� a) [1 +D(2a� �)(1� a)℄

and diret alulation reveals that g

2

(a

2

�

) > 0 and g

2

(a

2

+

) < 0 where a

2

�

< 1 and

a

2

+

> 1. Hene g

2

has roots a 2 (�1; a

2

�

), a = 1 and a 2 (a

2

+

;1) so f

2

has three

roots for suÆiently small �. One of the roots is never feasible so we ignore it. For

the three solutions to exist the ondition � < g

2

(a

2

�

) must hold where

g

2

(a

2

�

) =

�

54

"

9(2� �) +D(2� �)

3

+ (6 +D(2� �)

2

)

r

6 +D(2� �)

2

D

#

:

As before, we an now determine the form of the exat solutions, shown in appendix

C.1.
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To determine the feasibility of the two roots �a

2

1

2 (�1; a

2

�

) and �a

2

2

2 (a

2

�

; 1),

the sign of a

2

�

must be onsidered, where a

2

�

� 0 gives the ase D � 1=(2 + 2�).

Only �a

2

2

is ever feasible given � < g

2

(0), where g

2

(0) = �(1 � �D) is the vertial

interept. When D > 1=(2 + 2�) both solutions an be feasible if � < g

2

(a

2

�

) for �a

2

2

and g

2

(0) < � < g

2

(a

2

�

) for �a

2

1

.

(a)

0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

(b)

0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

Figure 3.4: The �gures show the funtions 

L

(equation (3.2), bold) and 

2

(equa-

tion (3.9)) with D = 1 and (a) � = 0:5 (dot-dashed), � = 0:85 (dashed) and (b)

� = 1:15 (dashed), � = 1:5 (dot-dashed). When more than �=2 of the population

display trait A, the probability of uptake is greater than that of the linear ase. As

the value of � inreases, the probability of adopting trait A redues, representing a

ontent bias whih dissuades individuals from adopting the trait. The probability of

adopting trait A is (a) greater than for the funtion 

1

(equation (3.3), �gure 3.2)

when � < 1 and (b) less than 

1

when � > 1.

Stability Analysis

Following the method of linearisation from setion 3.2.1 we �nd that the ondition

for asymptoti stability of an equilibrium solution of equation (3.10) is f

2

(�a) +

�af

0

2

(�a) < 0. The equilibrium solution �a

2

0

is asymptotially stable for � < g

2

(0) and

the stability of the remaining two solutions requires f

0

2

(�a) < 0, whih orresponds

to solutions lying in the interval (a

2

�

; a

2

+

). Hene we �nd that a feasible �a

2

2

is always
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asymptotially stable and a feasible �a

2

1

is never stable. The feasibility and stability

onditions for the equilibrium solutions are summarised in table 3.3.

Model omparison

As in setion 3.2.1, we an de�ne threshold values of � for whih the stable equilib-

rium hanges from being trait-A-free to the trait persisting in the population. We

�rst onsiderD � 1=(2+2�) and de�ne the threshold value to be �

2

N

= �=(1��D) so

�

2

N

> �

L

. For � < 1 we have �

2

N

< �

1

N

, whih is an intuitive result when omparing

the urves 

1

and 

2

. De�ning the distane between these two urves as

d(a) = 

1

� 

2

= D(� � 1)a(1� a)

then d < 0 for � < 1 whih signi�es that P( adopting A j

2

) > P( adopting A j

1

).

Hene, for some �xed a value, the probability of adopting trait A is greater when we

take onformity funtion 

2

. The threshold value �

2

N

is lower than �

1

N

as, for eah

individual ontat, the probability of transmission is greater than with 

1

and hene

fewer ontats are required for trait A to beome endemi. For � > 1 the onverse is

true, whereby d > 0 and hene P( adopting A j

2

) < P( adopting A j

1

). The e�et

of � is shown in table 3.2, setion D, where the other parameter values are �xed.

When � = 0:7 the endemi solution is feasible so type A individuals will persist in

the population. Comparing this with the previous model (whih is equivalent to

� = 1) we see that the persistene of type A individuals is not ertain but depends

on the initial state. A further inrease to � = 1:2 results in trait A dying out within

the population, owing to the hange in the onformity bias e�et.

When D > 1=(2 + 2�) the threshold �

2

N

is de�ned for �D 6= 1. As with the

previous onformity model, a seond threshold exists where trait A persisting in the

population is dependent upon initial state. This threshold is �

2

M

= �=k

2

(D) where

k

2

(D) =

1

54

"

9(2� �) +D(2� �)

3

+ (6 +D(2� �)

2

)

r

6 +D(2� �)

2

D

#

and �

2

M

< �

2

N

. Again this threshold value inreases with � so �

2

M

< �

1

M

when � < 1

and �

2

M

> �

1

M

for � > 1.
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3

Feasible Asymptotially Stable Unstable

�a

2
0

Always � > �(1� �D) � < �(1� �D)

D 2 (0; 1=4℄ �a

2
1

Never | |

�a

2
2

� < �(1� �D) � < �(1� �D) |

�a

2
0

Always � > �(1� �D) � < �(1� �D)

D 2 (1=4; 1℄ �a

2
1

�(1� �D) < � < g

2

(a

2
�

) | �(1� �D) < � < g

2

(a

2
�

)

�a

2
2

� < g

2

(a

2
�

) � < g

2

(a

2
�

) |

Table 3.3: For D 2 (0; 1=4℄ the stability of the zero and endemi solutions swithes at � = �(1��D). This is where the leaving rate

is equal to the transmission rate, modi�ed by a ombined onformity and ontent bias term. The value of �, representing a ontent

bias, a�ets the magnitude of variation between this threshold and the threshold assoiated with onformity funtion 

1

(see table 3.1

for omparison). As with the previous onformity model (setion 3.2), inreasing the onformity strength (D > 1=4) allows for a

bistable solution where the initial frequeny of type A individuals a�ets their long-term survival.
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3.4 Disussion

Our analysis reveals that varying the onformity threshold frequeny a

e

a�ets the

� value required for ultural trait A to beome endemi in the population, where �

represents the average rate of ontats suÆient for transmission of ultural trait A.

Lowering a

e

results in an inreased probability of adopting trait A for some �xed a

value, and hene lowers the threshold value of � whih is required for the trait to

persist. In ontrast, � must be large for this to our when a

e

is high.

Morgan et al. (2011) found that an inreased onformity threshold frequeny was

onsistent with strong on�dene in information aquired asoially. Here we have

a similar asymmetri onformity funtion, but without requiring asoial learning.

Instead, the value of the onformity threshold frequeny oeÆient � may apture

the interation of a ontent bias with onformity bias. For instane, the onformity

threshold frequeny for an attrative ultural trait may be smaller than that of a

trait not in possession of the same intrinsi appeal. Our analysis shows that the

value of � an a�et the onditions for trait A extintion.

The e�et of a ontent bias on soial transmission may, however, be more omplex

than simply altering the onformity threshold. A ontent bias may also a�et the

value of the adoption and abandonment rates, � and . For example, a trait that

is highly attrative or salient would have a high rate � at whih ontat suÆient

for transmission ours. From the results of our onformity model, we an see that

ontent bias a�eting � will alter the unfeasibility of an endemi equilibrium for a

given onformity bias strength D.

Evidene from E�erson et al. (2008) and Morgan et al. (2011) suggests that some

individuals will exhibit onformist bias under ertain irumstanes whereas others

will not. An extension to the work here would be to onsider the spontaneous uptake

of trait A to aount for some of this variation. This development would remove the

trait-free equilibrium and a�et the initial trait frequeny whih, we have shown in

our urrent model, an have important onsequenes, suh as when onformity bias

is strong and the system is bistable.

The general models presented here an be applied to health-related behaviours

and thus provide an extension to the existing epidemiologial literature, some of
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whih was disussed in setion 3.1. One possible appliation ould be to model the

drinking habits of young people in the U.K. Alohol onsumption within this age

group is predominantly binge drinking (Institute of Alohol Studies, 2010, 2013),

whih is de�ned as drinking 8+ units for men and 6+ units for women in one

drinking session (Deaon et al., 2007). Evidene suggests that peer group inuene

is a major ontributor to an individual hoosing to binge drink (Frenh and Cooke,

2012; Institute of Alohol Studies, 2013), so suh behaviour ould be onsidered

to be driven by soial learning with a likely onformist bias. Our model does not

assume di�erential mortality as the long term health e�ets of alohol misuse are

unlikely to develop within the modelled timesale. Instead, young adults are likely

to leave the modelled population at rate � as a result of lifestyle hanges suh as

movement out of a student ommunity, or starting a family. For example, Seaman

and Ikegwuonu (2010) found that young adults in the U.K. were more likely to

moderate their drinking when beoming parents.

The frequeny-independent term  may represent reversion resulting from ex-

posure to governmental or mass media ampaigns to abstain from binge drink-

ing, while assuming any frequeny-dependent inuene of suseptible individuals on

binge drinkers is small by omparison. The e�et of top-down impositions, suh

as alohol minimum priing or the redution of sweet-tasting or otherwise attra-

tive aloholi drinks, on binge drinking may be predited. Suh senarios may be

modelled by altering the reversion rate  and the value of the onformity threshold

through � to introdue a ontent bias into the system. This may provide an initial

indiator as to the potential suess of proposed strategies to redue the prevalene

of binge drinking within the young adult population.

If appropriate data were obtained then it may be possible to determine whether

a biased or unbiased soial learning model is most representative of the real-world

situation. One this is understood, omparisons between the atual situation and

ideal senario preditions may be used to inform poliy makers or health profes-

sionals about how to suessfully redue binge drinking within the population. For

instane, if reduing the value of � signi�antly redues the number of binge drinkers

then e�orts would be best foussed on deterring individuals from adopting the be-
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haviour, perhaps through media ampaigns or by inreasing alohol pries.

In onlusion, we have developed a model for ultural trait transmission within

an SIS framework by introduing a nonlinear frequeny-dependent relationship with

a variable onformity threshold frequeny, whih ould aount for the interation

of onformity and ontent biases ating within the population. Hene, the anal-

ysis of the onformity threshold frequeny advanes ultural evolutionary theory

in line with empirial evidene, suggesting that individuals may employ multiple

non-independent learning biases.



Chapter 4

A reation-di�usion model for

ompeting languages

4.1 Introdution

It is widely thought that of the estimated 6000 - 7000 languages in the world, over

half will have beome extint by the end of the entury (Grenoble and Whaley,

2005). This is a ause of great onern as language death an lead to the irrevoable

loss of ultural information. Language provides a means by whih individuals an

maintain links with their ultural heritage and serves to protet unique aspets

of their ulture in the present (Grenoble and Whaley, 2005). As ulture develops

within a partiular linguisti framework, the nuanes of spei� ultural traits may

not faithfully translate into an alternative language (Fishman, 2001). Consequently,

the trait may not be aurately represented, with subtle di�erenes unapparent to

speakers of an alternative language, and hene information may be lost (Fishman,

2001).

The two methods of language extintion are the death of the language-speaking

population or speakers abandoning their language in favour of another, known as

language shift (Tsunoda, 2006). Population death may our through natural dis-

asters: for instane all speakers of the Tamboran language of Sumbawa, Indonesia,

died following a volani eruption in 1815 (Nettle and Romaine, 2000; Hikey, 2013).

Genoide is also a ause of population death, as was the ase of the Yahi Indians

67
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who were wiped out by white settlers moving into California (Nettle and Romaine,

2000). The languages Wappo and Yuki, also from California, died out via language

shift. The last speaker of Wappo, Laura Fish Somersal, regularly used the language

throughout her life to ommuniate with her sister (Hikey, 2013). Arthur Ander-

son, the �nal Yuki speaker, last spoke the language in 1908 despite dying in 1990

(Nettle and Romaine, 2000; Golla, 2011). Unlike Somersal, who spent her hildhood

at home aring for her mother, Anderson was shooled in English and shifted to that

language for everyday use (Nettle and Romaine, 2000). Shooling is a key inuene

on language shift as, via a proess of ultural assimilation, individuals will often

adopt a ommon group language (Nettle and Romaine, 2000).

For language shift to our, speakers of two di�erent languages must interat.

Despite this two-way ontat, language shift is usually one-diretional, with indi-

viduals moving from a lower status language to a higher status language (Hikey,

2013). What onstitutes lower status is not well-de�ned, however speakers of mi-

nority languages are often stigmatised or exluded from politial and eduational

partiipation (Brenzinger, 1992). It an therefore be viewed as an advantage to

speak the majority language in order to avoid suh problems, whih may be inter-

preted as a status advantage. This indiates that minority languages are those that

are at risk from language shift. In order for the minority language to be maintained,

its speakers must value it highly to overome the inentive to swith (Brenzinger,

1992).

Suh strong language loyalty has been displayed by speakers of Catalan, also

known as Valeniana (Catalan, Language of Europe). The majority of its speakers

reside in territories loated in Spain, with the remainder in Andorra, Frane and Italy

(Catalan, Language of Europe). These Catalan-speaking regions are surrounded by

areas dominated by an alternative language, for example Castillian in Spain. During

the ditatorship of Spain (1939-1975) the use of Catalan in eduation, publiations

and teleommuniations was prohibited, but it remained as the language spoken

at home in regions suh as Catalonia or the Baleari Islands (Catalan, Language of

Europe). Sine the end of the ditatorship, Catalan beame reognised as the native

language of the territories of Catalonia, the Baleari Islands and the Comunitat
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Valeniana. This allowed for its usage in shools and in government in these areas.

From linguisti ensus data in the region of Catalonia (Idesat Linguisti Census),

displayed in Table 4.1, the number of speakers of Catalan forms an inreasing trend

from 1991 to 2007. This indiates that Catalan is not urrently a dying language.

Catalan-speaking population

Year Population (thousands) Number (thousands) % of total

1991 5.949 4.066 68.3

1996 5.948 4.506 75.3

2001 6.215 4.603 74.46

2007 7.050 5.331 75.6

Table 4.1: Data from Idesat Linguisti Census showing the number of Catalan

speakers in Catalonia. This number has inreased from 1991 to 2007, implying that

Catalan is gaining speakers with the region of Catalonia.

To help understand the onditions under whih a language dies or oexists with

another, mathematial tehniques an be employed. In the last deade, population-

wide analytial models pertaining to the spread and persistene of languages have

been motivated by the work of Abrams and Strogatz (2003). They model how the

numbers of speakers of two ompeting languages hange over time. It is assumed

that eah language is �xed in struture, for instane grammatially and syntatially,

and that they are in ompetition for speakers. Thus the model does not onsider

the evolution of a language itself, but the propagation of a language through a

population. For simpliity it is assumed that homogeneous mixing ours within the

population and all individuals are monolingual. The attrativeness of the languages

inreases with the number of speakers and relative pereived status of the language.

This takes into aount the view that a more dominant language is pereived to

have an inreased status assoiated with it, providing an advantage to its speakers

over those of the subordinate language. Analysis revealed that the oexistene of

two languages, X and Y, was never stable, hene one language would always die out.

Preditions were found to orrespond with data for the deline of Sottish Gaeli,
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Quehua and Welsh.

The model has been ritiised for its simpliity. In partiular, Steele and Kan-

dler (2010) highlighted the following: languages are assumed to be �xed, spatial and

soial struture is not inorporated, individuals are monolingual, and the popula-

tion size is assumed to be onstant. Suh assessments led to a variety of alternative

models being proposed whih address some of these ritiisms. By inluding spatial

dependene in the Abrams and Strogatz (2003) model, languages an oexist, with

speakers divided into distint zones (Patriara and Lepp�anen, 2004). Alternatively,

Pinaso and Romanelli (2006) adapted a two-speies Lotka-Volterra ompetition

model, where the population does not remain onstant, and applied it to language

ompetition. Two languages, u(t) and v(t), inrease independently via a logisti

growth funtion. This ensures that there is a ap on population size to represent,

for example, environmental onstraints on the number of speakers that an be sup-

ported. Language u is assumed to be dominant so an interation term is inluded

allowing speakers of v to onvert to dominant language u. Four equilibria exist,

one being a stable oexistene state, again ontrary to the �ndings of Abrams and

Strogatz (2003). The addition of a spatial omponent by Kandler and Steele (2008)

leads to the same four onstant equilibria, however the authors onlude that lan-

guage oexistene is not possible. Modi�ation of the equations (by further apping

the dominant language) yields the possibility of language oexistene under ertain

onditions.

The inlusion of bilingual speakers into language models is another possible de-

velopment as, realistially, people do not suddenly swith from being monolingual

in one language to monolingual in another. Modi�ations to the Abrams and Stro-

gatz (2003) model allow for bilingualism between two similar languages (Mira and

Paredes, 2005; Mira et al., 2011). Similar languages are those that have a ommon

grammatial struture and some shared voabulary, suh as the Spanish languages

Castillian and Galiian (Mira and Paredes, 2005; Mira et al., 2011). Bilingualism is

found to be stable within the population under some irumstanes, with a depen-

dene upon the similarity of the two languages.

A mathematial study of Britain's Celti languages by Kandler et al. (2010) gave
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oniting results regarding the persistene of a bilingual state, depending on the

de�ned nature of the state (Kandler et al., 2010). In the basi model, bilingual-

ism served as a transitionary state; in the other it represented a diglossi state.

Diglossia arises within multilingual ommunities when a ertain language is used

only in spei� irumstanes (Romaine, 2000). In Egypt, for example, the publily

reognised language is standard Arabi, whereas a loal variant may be used at

home (Romaine, 2000). Numerial simulations revealed that one language would al-

ways beome extint with the basi model, but a bilingual state is sustainable when

assuming a diglossi environment. The models were �tted to 20

th

entury ensus

data to desribe language shift from Welsh to English in Wales. Results motivated

the implementation of the diglossia model in prediting e�etive strategies for the

revival of Gaeli in Highland Sotland. Other mathematial works also address

bilingualism, for example see Minett and Wang (2008) for a general ase or Bakalis

and Galani (2012) for a study of Greek and Aromanian.

Motivated by previous work, we onstrut a model to examine the population-

wide dynamis of language ompetition. Our treatment of the model di�ers from

pre-existing work as a global stability analysis of eah onstant equilibrium is on-

duted. This builds upon previous language ompetition models where only loal

stability riteria have been disussed, e.g. Abrams and Strogatz (2003); Patriara

and Lepp�anen (2004); Pinaso and Romanelli (2006); Kandler and Steele (2008).

In suh instanes, an equilibrium state an only be lassi�ed as stable up to small

disturbanes. We seek to broaden understanding of how suh systems behave by

analysing the response to arbitrarily sized disturbanes via methods initially em-

ployed within the uid mehanis literature. Researh from this area has been

applied to aspets of human behaviour. For example, the Cahn-Hilliard equation

for uid phase transitions (see Fabrizio and Mongiov�� (2013a,b); Berti et al. (2014))

has been utilised in the study of integration between migrant and resident human

populations (Fabrizio and Rivera, in press).

The ontribution presented here onsists of a logisti growth model with di�usion

and a onversion term, �rst proposed by Kandler and Steele (2008). A key feature of

the model is the small number of variables and variable parameters, whih is advan-
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tageous as it allows for a lear understanding how parameter interations a�et the

survival of a language. To ensure a minimal number of parameters are introdued,

a separate bilingual lass is not onsidered. Other modelling tehniques have been

used to assess language survival, suh as agent-based models (see Minett and Wang

(2008)). These inorporate individual perspetives into the model, however their

inreased omplexity diminishes the larity of any mathematial results. A review

of suh methods, assessing their strengths and limitations, may be found in Vogt

(2009).

4.2 Reation-di�usion model for language ompe-

tition

We onstrut a model for two ompeting languages, where one language is assumed

to be dominant. We denote the number of speakers of these languages to be u(x; t)

and v(x; t), whih vary over spae and time with x 2 
 � R

2

and t 2 [0;1).

Following the model onstrution of Kandler and Steele (2008), both languages

di�use and grow logistially, independent of eah other. This gives rise to a term

d

1

�u + �

1

u� �

1

u

2

for language u, where d

1

is the di�usion oeÆient and �

1

and

�

1

are the oeÆients assoiated with logisti growth. A similar result follows for

language v.

As indiated by the ase of Arthur Anderson (disussed in the Introdution),

greater exposure to an di�erent language inreases the hane of an individual

swithing to that language. Combining this with shift being one-diretional to-

ward the dominant language, we introdue the ross term uv into the equations.

Choosing u to be dominant, the rate of hange in the number of speakers of u is

a�eted by the ontat between speakers of the two languages, saled by a onstant

. This onstant represents the strength of the pereived status of language u over

language v. As this proess involves individuals shifting languages, this also a�ets
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the number of speakers of v. Formulating this gives the equations

�u

�t

= d

1

�u+ �

1

u� �

1

u

2

+ uv;

�v

�t

= d

2

�v + �

2

v � �

2

v

2

� uv;

(4.1)

where

� =

�

2

�x

2

1

+

�

2

�x

2

2

is the Laplaian operator in two dimensions. The system an be nondimensionalised

by following the method in Cantrell and Cosner (2003). This is advantageous as

it simpli�es the problem by reduing the number of variable parameters without

qualitatively a�eting the results. By introduing the variables t

�

= t=T and x

�

=

x=M , where T and M are onstants that an be hosen, the system with variables

u(x

�

; t

�

) and v(x

�

; t

�

) beomes

1

T

�u

�t

�

=

d

1

M

2

�

�

u+ �

1

u� �

1

u

2

+ uv;

1

T

�v

�t

�

=

d

2

M

2

�

�

v + �

2

v � �

2

v

2

� uv:

Multiplying both equations by T and hoosing T =M

2

=d

1

this beomes

�u

�t

�

= �u+

M

2

d

1

�

�

1

u� �

1

u

2

+ uv

�

;

�v

�t

�

=

d

2

d

1

�v +

M

2

d

1

�

�

2

v � �

2

v

2

� uv

�

:

ChoosingM

2

= d

1

= and introduing the positive oeÆients d = d

2

=d

1

, a

1

= �

1

=,

b

1

= �

1

=, a

2

= �

2

= and b

2

= �

2

= leads to the nondimensionalised equations

�u

�t

= �u+ a

1

u� b

1

u

2

+ uv;

�v

�t

= d�v + a

2

v � b

2

v

2

� uv;

(4.2)

where the supersript star notation has been dropped for onveniene.

It is now of interest to onsider the onstant equilibria of system (4.2) to deter-

mine whether languages u and v will persist or die out over time. At equilibrium,

u and v do not vary in time so �u=�t = 0 and �v=�t = 0. As the equilibria are

onstant solutions, they do not vary spatially so �u = 0 and �v = 0. Thus the

onstant equilibria of the system, whih we denote generally as (�u; �v), are obtained
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by solving

0 = �u(a

1

� b

1

�u+ �v);

0 = �v(a

2

� b

2

�v � �u):

Four onstant equilibria exist:

(0; 0) Languages u and v beome extint,

�

a

1

b

1

; 0

�

Language u persists and language v dies out,

�

0;

a

2

b

2

�

Language u dies out and language v persists,

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

Languages u and v oexist.

The �rst three solutions are easily determined, however the fourth requires solving

0 = a

1

� b

1

�u+ �v;

0 = a

2

� b

2

�v � �u:

Following a matrix equation proedure, these equations may be written as

0

�

a

1

a

2

1

A

=

0

�

b

1

�1

1 b

2

1

A

0

�

�u

�v

1

A

and �u, �v found from

0

�

�u

�v

1

A

=

0

�

b

1

�1

1 b

2

1

A

�1

0

�

a

1

a

2

1

A

=

1

b

1

b

2

+ 1

0

�

b

2

1

�1 b

1

1

A

0

�

a

1

a

2

1

A

;

with b

1

b

2

+1 6= 0 always holding. Equilibria must satisfy �u � 0 and �v � 0 to ensure

that populations are always non-negative, thus the oexistene solution requires

a

2

b

1

> a

1

for it to be feasible. This ondition will be assumed to hold in the

subsequent analysis.

To establish whih of these solutions the system reahes over time we need to

analyse the stability of eah solution in turn. This is done by investigating the

behaviour of the system (4.2) at a point (�u+ u; �v + v) where (u; v) 6= (0; 0) is some

disturbane to the system at equilibrium. The nonlinear perturbation equations of

the system are

�u

�t

= �u+ (a

1

� 2b

1

�u+ �v)u+ �uv + (uv � b

1

u

2

); (4.3)

�v

�t

= d�v + (a

2

� 2b

2

�v � �u)v � �vu� (uv + b

2

v

2

): (4.4)
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We assume that the population sizes remain onstant at the boundary so impose

the Dirihlet boundary onditions

u(x; t) = v(x; t) = 0 on �
;

where �
 is the boundary of the domain 
.

We begin by determining instability riteria for the equilibria from the linearised

perturbation equations, before progressing to analyse the nonlinear system. Exam-

ples of using this method of analysis may be found in texts, e.g. Straughan (2004).

4.3 Linear instability analysis

The linearised perturbation equations, found by disarding the seond order terms

and higher in equations (4.3) and (4.4), are

�u

�t

= �u+ (a

1

� 2b

1

�u+ �v)u+ �uv;

�v

�t

= d�v + (a

2

� 2b

2

�v � �u)v � �vu:

(4.5)

Denoting the eigenfuntions of the Laplaian operator as '

n

(x) leads to the eigen-

funtion equation �'

n

(x) = ��

n

'

n

(x). The �

n

are the orresponding eigenvalues

and we may assume �

n

� �

n+1

8n 2 N . As the eigenfuntions form a basis of L

2

(
)

we an onsider solutions to the linearised system (4.5) to be a linear ombination

of these funtions. We therefore look at solutions of the form

u =

1

X

n=1

u

n

'

n

(x)e

�

n

t

;

v =

1

X

n=1

v

n

'

n

(x)e

�

n

t

;

(4.6)

where u

n

, v

n

and �

n

are onstants. For instability, either u or v must grow in time,

ahieved by any one summation term '

k

(x)e

�

k

t

inreasing in time. The sign of the

real part of �

n

, denoted <(�

n

), ontrols whether a solution grows or deays in time.

Aordingly, we seek onditions for when the largest <(�

n

) beomes positive as this

represents the �rst growing term. By hoosing �

1

to have the largest real part, the

�rst growing term will always orrespond to n = 1 in equations (4.6).
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Substituting the n = 1 term from equations (4.6) into the linearised equations

(4.5) and rearranging leads to

0 = (�

1

+ �

1

� a

1

+ 2b

1

�u� �v)u

1

'

1

(x)e

�

1

t

� �uv

1

'

1

(x)e

�

1

t

;

0 = (�

1

+ d�

1

� a

2

+ 2b

2

�v + �u)v

1

'

1

(x)e

�

1

t

+ �vu

1

'

1

(x)e

�

1

t

:

This gives rise to the equations

0 = (�

1

+ �

1

� a

1

+ 2b

1

�u� �v)u

1

� �uv

1

;

0 = (�

1

+ d�

1

� a

2

+ 2b

2

�v + �u)v

1

+ �vu

1

;

(4.7)

as '

1

(x)e

�

1

t

6= 0. Instability ours for �

1

> 0 so there is an instability threshold at

�

1

= 0. By writing equations (4.7) in matrix form as M(u

1

; v

1

)

T

= 0, where

M =

0

�

�

1

+ �

1

� a

1

+ 2b

1

�u� �v ��u

�v �

1

+ d�

1

� a

2

+ 2b

2

�v + �u

1

A

; (4.8)

then det(M) = 0 as we desire M(u

1

; v

1

) 6= (0; 0). Calulating this determinant

reveals a quadrati equation in �

1

,

0 = �

2

1

+ (�

1

� a

1

+ 2b

1

�u� �v + d�

1

� a

2

+ 2b

2

�v + �u)�

1

+ (�

1

� a

1

+ 2b

1

�u� �v)(d�

1

� a

2

+ 2b

2

�v + �u) + �u�v;

(4.9)

from whih the instability boundary for (�u; �v) an be established.

Zero solution

For the equilibrium solution (�u; �v) = (0; 0), quadrati equation (4.9) beomes

0 = �

2

1

+ (�

1

� a

1

+ d�

1

� a

2

)�

1

+ (�

1

� a

1

)(d�

1

� a

2

)

= (�

1

+ �

1

� a

1

)(�

1

+ d�

1

� a

2

):

For this equation to hold then either

�

1

= ��

1

+ a

1

or �

1

= �d�

1

+ a

2

:

Instability ours when any one solution grows: that is, the �rst instane where

�

1

> 0. From this we determine the instability boundary for equilibrium point (0; 0)

to be

�

1

= min

n

a

1

;

a

2

d

o

: (4.10)
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Language u persists

Equilibrium solution (�u; �v) = (a

1

=b

1

; 0) substituted into equation (4.9) gives

0 = �

2

1

+ (�

1

+ a

1

+ d�

1

� a

2

) �

1

+ (�

1

+ a

1

)

�

d�

1

� a

2

+

a

1

b

1

�

= (�

1

+ �

1

+ a

1

)

�

�

1

+ d�

1

� a

2

+

a

1

b

1

�

:

This holds for either

�

1

= ��

1

� a

1

or �

1

= �d�

1

+ a

2

�

a

1

b

1

:

The �rst �

1

solution is always negative, so the only instability ondition (resulting

from the seond �

1

solution) is the threshold

d�

1

+ a

1

=b

1

= a

2

: (4.11)

Language v persists

Equilibrium solution (�u; �v) = (0; a

2

=b

2

) substituted into equation (4.9) gives

0 = �

2

1

+

�

�

1

� a

1

�

a

2

b

2

+ d�

1

+ a

2

�

�

1

+

�

�

1

� a

1

�

a

2

b

2

�

(d�

1

+ a

2

)

=

�

�

1

+ �

1

� a

1

�

a

2

b

2

�

(�

1

+ d�

1

+ a

2

)

so either

�

1

= ��

1

+ a

1

+

a

2

b

2

or �

1

= �d�

1

� a

2

:

As with the previous ase, one solution for �

1

is always negative, so here the insta-

bility threshold is

�

1

= a

1

+ a

2

=b

2

: (4.12)

Coexistene solution

For the oexistene solution

(�u; �v) =

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

;

equation (4.9) simpli�es to

0 = �

2

1

+ (�

1

+ b

1

�u+ d�

1

+ b

2

�v)�

1

+ (�

1

+ b

1

�u)(d�

1

+ b

2

�v) + �u�v (4.13)
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as �u; �v > 0. Solutions for �

1

are found from the quadrati formula, so

2�

1

= �p�

p

p

2

� 4q

where

p = �

1

+ b

1

�u+ d�

1

+ b

2

�v;

q = (�

1

+ b

1

�u)(d�

1

+ b

2

�v) + �u�v;

with p; q > 0. If the disriminant of equation (4.13) is negative (p

2

� 4q < 0) then

the solutions for �

1

are omplex onjugates with a negative real part of <(�

1

) = �p.

When the disriminant is positive, therefore �

1

2 R, then �p �

p

p

2

� 4q < 0 so

�

1

< 0. For �

1

= �p+

p

p

2

� 4q, the solution for �

1

is again negative beause q > 0,

leading to p >

p

p

2

� 4q. In all ases <(�

1

) < 0, therefore no instability riteria an

be determined for this solution.

Whilst instability riteria for three equilibria has be obtained by analysing the

linearised system, it is not suÆient to determine regions of global stability. In order

to obtain this information the nonlinear system must be addressed.

4.4 Nonlinear stability analysis

Global stability riteria for equilibria an be determined by the onstrution of an

energy funtional. Energy methods have been used to determine the stability of

uid ow sine the work of Orr (1907), with developments by Serrin (1959), Joseph

(1965, 1966, 1970) and Rionero (1967, 1968). The aim is to determine if some

disturbane to a ow will result in a radial hange in behaviour or a progression

bak to the original ow as t ! 1. By onsidering the energy di�erene between

the original and disturbed ow, onditions for whih the energy dereases indiate

stability of the initial ow. Developments of these methods have been widely used

to analyse stability of equilibria, with reent work by Capone and De Lua (2012);

Hill and Malashetty (2012); Mulone et al. (2007); Rionero (2009, 2012a); Straughan

(2013b). Using an energy argument, we progress to �nding a stability threshold for

eah equilibrium. It is desirable to obtain a stability bound whih oinides with

the instability threshold as this provides information about the system's behaviour

for all possible ombinations of parameter values. This is not always possible, but in
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some ases may be ahieved by plaing onditions on the initial state of the system.

As will be demonstrated in the following analysis, suh onditions are neessary

here.

We use k�k and (�; �) to denote the L

2

norm and inner produt over 
 respetively,

so that, for example,

kuk

2

=

Z




u

2

d
 and (u; v) =

Z




uv d
:

(4.14)

We notie that multiplying the left-hand side of equation (4.3) by u and integrating

over 
 gives rise to

Z




u

�u

�t

d
 =

1

2

d

dt

Z




u

2

d
 =

1

2

d

dt

kuk

2

by using the de�nition of the L

2

norm. We ahieve a similar result for v from

equation (4.4). This is a useful observation as it allows us to onstrut a funtion

E(t) whih is a linear ombination of kuk

2

and kvk

2

, for example

E(t) =

1

2

�

�kuk

2

+ �kvk

2

�

with �; � > 0 onstant. When t ! 1, E(t) ! 0 only if u; v ! 0, whih is the

requirement for stability of the solution (�u; �v). Hene we aim to �nd onditions on

the parameters suh that E(t) is a dereasing funtion in time, that is

_

E(t) < 0

where the dot indiates a time di�erential.

Multiplying equation (4.3) by u, equation (4.4) by v, and integrating both over

the spatial domain 
 results in

1

2

d

dt

Z




u

2

d
 =

Z




u�ud
 + (a

1

� 2b

1

�u+ �v)

Z




u

2

d
 + �u

Z




uvd


+

Z




�

u

2

v � b

1

u

3

�

d
; (4.15)

1

2

d

dt

Z




v

2

d
 = d

Z




v�vd
 + (a

2

� 2b

2

�v � �u)

Z




v

2

d
� �v

Z




uvd


�

Z




�

uv

2

+ b

2

v

3

�

d
: (4.16)

These equations may be rewritten via use of the L

2

norm and inner produt, and

the divergene theorem. The divergene theorem states that, for some funtion f

over the spatial domain 
,

Z




r � fd
 =

Z

�


f �ndS
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where n is the outward-pointing unit normal to the boundary of 
. Using the

method of integration by parts and the divergene theorem we manipulate the inte-

grand u�u from equation (4.15) in the following manner:

Z




u�ud
 =

Z




r � (uru)d
�

Z




(ru)

2

d


=

Z

�


uru � ndS �

Z




(ru)

2

d


= �

Z




(ru)

2

d
;

where the integral over �
 vanishes as u = 0 on the boundary. Utilising this method,

along with the de�nitions of the L

2

norm and inner produt, equations (4.15) and

(4.16) beome

1

2

d

dt

kuk

2

= �kruk

2

+ (a

1

� 2b

1

�u+ �v)kuk

2

+ �u(u; v) +

Z




�

u

2

v � b

1

u

3

�

d
;

1

2

d

dt

kvk

2

= �dkrvk

2

+ (a

2

� 2b

2

�v � �u)kvk

2

� �v(u; v)�

Z




�

uv

2

+ b

2

v

3

�

d
:

(4.17)

We now onstrut and analyse a suitable energy funtion for eah equilibrium in

turn, in order to derive a stability threshold.

4.4.1 Zero solution

To analyse the solution (�u; �v) = (0; 0) we onstrut the energy funtion

E(t) =

1

2

(kuk

2

+ kvk

2

) (4.18)

so that

dE

dt

=

1

2

d

dt

(kuk

2

+ kvk

2

)

= � kruk

2

� dkrvk

2

+ a

1

kuk

2

+ a

2

kvk

2

+

Z




u

2

vd
� b

1

Z




u

3

d


�

Z




uv

2

d
� b

2

Z




v

3

d
 (4.19)

after substitution from equations (4.17) with �u = 0 and �v = 0. Introduing

D = kruk

2

+ dkrvk

2

; (4.20)

I = a

1

kuk

2

+ a

2

kvk

2

; (4.21)

N =

Z




u

2

vd
� b

1

Z




u

3

d
�

Z




uv

2

d
� b

2

Z




v

3

d
 (4.22)
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and omparing with equation (4.19) enables us to write

dE

dt

= �D + I +N: (4.23)

Thus, equation (4.23) involves a right-hand side whih separates into a positive-

de�nite quadrati term D, a quadrati term I, and a ubi term N . As will beome

apparent, writing dE=dt in this way allows for it to be bounded from above by

a funtion of the form �KE(t), K 2 R positive, subjet to ertain parameter

onstraints. For a derived range of parameter values, dE=dt < 0, so u; v ! 0 as

t!1, indiating that (�u; �v) = (0; 0) is globally stable.

Bounding

_

E(t) for the equilibrium (0; 0)

Consider

I

D

� max

H

�

I

D

�

for H = fu; vju; v 2 H

1

0

(
)g and introdue a onstant R

E

whih satis�es

1

R

E

= max

H

�

I

D

�

: (4.24)

Using I = D(I=D) � D=R

E

, the right-hand side of equation (4.23) may be bounded

above to reveal

dE

dt

� �D

�

1�

1

R

E

�

+N:

We de�ne the value R

E

in this way so that the term �D(1� 1=R

E

) is negative for

R

E

> 1. To progress we assume R

E

> 1 and then let q = (1�1=R

E

), thus obtaining

dE

dt

� �Dq +N: (4.25)

We now onentrate on bounding N (equation (4.22)), addressing eah term

separately. To do this we �rst need the Cauhy-Shwarz inequality for the L

2

inner

produt spae:

�

Z




fgd


�

2

�

Z




f

2

d


Z




g

2

d
; (4.26)

where f; g are funtions of the domain 
. To orrespond to the terms in N , we use

an alternative form of the Cauhy-Shwarz inequality,

�

�

�

�

Z




fgd


�

�

�

�

�

�

Z




f

2

d


�

1

2

�

Z




g

2

d


�

1

2

: (4.27)
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We also require the Sobolev inequality

�

Z




f

4

d


�

1

4

� 

1

2

�

Z




jrf j

2

d


�

1

2

in the form

�

Z




f

4

d


�

1

2

� 

�

Z




jrf j

2

d


�

; (4.28)

where  is a onstant whih depends upon the domain 
 (see Gilbarg and Trudinger

(1998)).

The �rst term of N is

Z




u

2

vd
 �

�

�

�

�

Z




u

2

vd


�

�

�

�

:

Applying inequality (4.27), followed by (4.28) with  = 

1

, gives

Z




u

2

vd
 �

�

Z




u

4

d


�

1

2

�

Z




v

2

d


�

1

2

� 

1

Z




jruj

2

d


�

Z




v

2

d


�

1

2

;

where 

1

is a onstant dependent upon 
. Now we an transform the right-hand

side of this inequality using the de�nition of the L

2

norm (equation (4.14)) to give

Z




u

2

vd
 � 

1

kruk

2

kvk: (4.29)

Applying the same proedure to the remaining terms of N yields

�b

1

Z




u

3

d
 � b

1



1

Z




jruj

2

d


�

Z




u

2

d


�

1

2

� b

1



1

kruk

2

kuk; (4.30)

�
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uv

2

d
 � 

2

Z




jrvj

2

d


�

Z




u

2

d


�

1

2

� 

2

krvk

2

kuk; (4.31)

and

�b

2

Z




v

3

d
 � b

2



2

Z




jrvj

2

d


�

Z




v

2

d


�

1

2

� b

2



2

krvk

2

kvk; (4.32)

where 

2

is a onstant dependent upon 
. Comparing the information from inequal-

ities (4.29) to (4.32) with equation (4.22) gives

N � 

1

kruk

2

(b

1

kuk+ kvk) + 

2

krvk

2

(kuk+ b

2

kvk) :

From equations (4.18) and (4.20) we may determine that

kuk �

p

2E

1

2

(t); kvk �

p

2E

1

2

(t); kruk

2

� D and krvk

2

�

D

d

:
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Using these, we now bound N by

N � k

1

DE

1

2

(t);

where

k

1

=

p

2

�



1

+ 

1

b

1

+



2

d

+



2

b

2

d

�

:

An upper bound on on

_

E(t), following on from inequality (4.25), is therefore

dE

dt

� �D(q � k

1

E

1

2

(t)): (4.33)

We reiterate that we are seeking a bound

_

E(t) � �KE(t), K 2 R positive, so we

need

q � k

1

E

1

2

(t) > 0: (4.34)

By assuming the onstant value E

1

2

(0) < q=k

1

, where E(0) is the initial state of the

system at t = 0, we an show that

E

1

2

(0) > E

1

2

(t): (4.35)

As a onsequene we ahieve inequality (4.34) as

0 < q � k

1

E

1

2

(0) < q � k

1

E

1

2

(t):

To prove inequality (4.35) we begin with the assumption E

1

2

(0) < q=k

1

, where

E

1

2

(0) > 0. It therefore follows from inequality (4.33) evaluated at t = 0 that

dE=dt < 0, so either:

1. E

1

2

(t) < q=k

1

8 t > 0, indiating that E(t) is a dereasing funtion;

2. 9� suh that for t = �, E

1

2

(�) = q=k

1

.

Suppose the seond of these options is true. Then, for t 2 (0; �), E

1

2

(t) < q=k

1

so E(t) is a dereasing funtion beause dE=dt < 0. Hene E(t) < E(0) for t 2

(0; �). By ontinuity, E(�) < E(0) and therefore E

1

2

(�) < E

1

2

(0) < q=k

1

whih is

a ontradition. Option 2 is therefore impossible so option 1 must be true, that

is E

1

2

(t) < q=k

1

8 t > 0 provided E

1

2

(0) < q=k

1

. In this ase E(t) is a dereasing
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funtion so it follows that E

1

2

(0) > E

1

2

(t). Applying these results to inequality

(4.33) we see that

dE

dt

� �D(q � k

1

E

1

2

(t)) � ��D (4.36)

where � = q � k

1

E

1

2

(0).

Poinar�e's inequality for funtions ' 2 H

1

0

(
) is

kr'k

2

� �

1

k'k

2

; (4.37)

where �

1

> 0 is the �rst eigenvalue of the membrane problem �' = ��' in 


and '

n

= 0 on �
. Applying Poinar�e's inequality to funtions kuk

2

and kvk

2

in

equation (4.20) gives

D � 2�

1

kuk

2

2

+ 2�

1

d

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg;

hene �D � ��E(t). Using this gives a bound of the desired form:

dE

dt

� ���E(t): (4.38)

We now know that when inequality (4.38) holds, E(t) deays in time and therefore

(0; 0) is a globally stable point. In deriving this bound we assumed that R

E

> 1

(equivalent to q > 0) so we now must �nd appropriate parameter restritions whih

ensure this, and thus �nd a stability ondition in terms of the model parameters.

Finding R

E

for (0; 0)

For inequality (4.38) to hold we have assumed that R

E

> 1. We now determine the

value of R

E

and thus obtain onstraints on the parameters required for stability.

Equation (4.24) informs us that we must maximise I=D whih an be done by

alulating its variation, Æ(I=D), by the method whih we now outline.

We introdue indiial notation to keep alulations ompat. In this notation

ru =

0

�

�u

�x

1

�u

�x

2

1

A

� u

;i

where the subsript omma indiates di�erentiation and i is the i

th

omponent of

x. When an index is repeated it is summed over, so

�

�x

i

�

�f

I

�u

;i

�

=

�

�x

1

�

�f

I

�u

;1

�

+

�

�x

2

�

�f

I

�u

;2

�

= r �

�

�f

I

� (ru)

�
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and

�

�x

i

(u

;i

) =

�

�x

1

�u

�x

1

+

�

�x

2

�u

�x

2

= �u:

Now onsider the general form of funtionals I and D to be

I =

Z




f

I

(x; u; v; u

;i

; v

;i

) d
;

D =

Z




f

D

(x; u; v; u

;i

; v

;i

) d
:

Then, to �nd the maximum of I=D, we use the method of alulus of variations.

Assume u, v are admissible funtions suh that I=D is maximised. Consider the

admissible funtions

û = u+ ��

1

;

v̂ = v + ��

2

;

where � is some real number and �

1

, �

2

are admissible funtions whih are zero at

the boundary �
. Then

I =

Z




f

I

(x; û; v̂; û

;i

; v̂

;i

) d
;

D =

Z




f

D

(x; û; v̂; û

;i

; v̂

;i

) d
:

To maximise I(�)=D(�) we need � = 0 (as then û = u and v̂ = v are maximising

funtions) and the �rst derivative with respet to � to equal zero, so

d

d�

�

I

D

�

�

�

�

�

�=0

=

1

D

�

dI

d�

�

I

D

dI

d�

�

�

�

�

�

�=0

= 0:

As I=D is maximised, we an replae this with 1=R

E

and use the standard notation

ÆI and ÆD to represent the derivatives of I and D with respet to � at � = 0. This

gives

R

E

ÆI � ÆD = 0: (4.39)

To alulate ÆI ,

ÆI =

Z




d

d�

f

I
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;i

; v̂

;i

) d


=
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1
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I

�u
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�f

I

�v

;i

d


(4.40)

This integral equation may be manipulated so that dependene on both �

1

;i

and �

2

;i

is eliminated. Using integration by parts,
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�x
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�
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�
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�
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�u
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d
:
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By the divergene theorem
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�

d
 =

Z

�


�

1

�f

I

�u
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n

i

dS

= 0

as a onsequene of the boundary onditions on �

1

. Combining these results reveals
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�f

I

�u
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d
 = �
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�

1

�

�x

i

�f

I

�u

;i

d
:

The same method may be applied to the �

2

;i

term allowing equation (4.40) to be

written as

ÆI =

Z




�

1

�

�f

I

�u

�

�

�x
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I
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�
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d
:

Similarly, for ÆD,

ÆD =
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�
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d
:

Replaing ÆI and ÆD in equation (4.39) leads to
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�

R

E
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E

�
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�
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D
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�
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i

�f
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�

d
 = 0:

As this must hold for all possible ombinations of admissible funtions �

1

and �

2

we

have

R

E

�
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I
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�

�

�x

i

�f

I

�u
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�

�

�

�f

D

�u

�

�

�x

i

�f

D
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�

= 0;

R

E

�
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I
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�

�
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i

�f

I

�v

;i

�

�

�

�f

D

�v

�

�

�x

i

�f

D

�v

;i

�

= 0:

(4.41)

These are the Euler-Lagrange equations assoiated with the problem of maximising

I=D, whih solutions u and v must satisfy.

For the (0; 0) solution,

f

I

= a

1

u

2

+ a

2

v

2

;

f

D

= (ru)

2

+ d(rv)

2

;

whih are found from applying the de�nition of the L

2

norm to I (equation (4.21))

and D (equation (4.20)). For these funtions, the non-zero terms of equations (4.41)
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are

�f

I

�u

= 2a

1

u;

�f

I

�v

= 2a

2

v;

�

�x

i

�f

D

�u

;i

= 2

�

�x

i

(u

;i

) = 2�u;

�

�x

i

�f

D

�v

;i

= 2d

�

�x

i

(v

;i

) = 2d�v;

hene the Euler-Lagrange equations are alulated to be

R

E

a

1

u+�u = 0;

R

E

a

2

v + d�v = 0:

These equations are unoupled so we expet di�erent minimal eigenvalue onditions

for the deay of u and v. As the equations are linear we onsider solutions of the

form

u =

1

X

n=1

u

n

'

n

(x);

v =

1

X

n=1

v

n

'

n

(x);

(4.42)

so the Euler-Lagrange equations beome

R

E

a

1

1

X

n=1

u

n

'

n

(x) =

1

X

n=1

�

n

u

n

'

n

(x); (4.43)

R

E

a

2

1

X

n=1

v

n

'

n

(x) = d

1

X

n=1

�

n

v

n

'

n

(x) (4.44)

As �

1

is the smallest eigenvalue, from equation (4.43) we know that

R

E

a

1

1

X

n=1

u

n

'

n

(x) > �

1

1

X

n=1

u

n

'

n

(x) (4.45)

The ondition for u to deay is R

E

> 1. Combining this ondition to inequality

(4.45), we determine the parameter onstraint �

1

> a

1

ensures that u will deay. By

similar reasoning applied to equation (4.44) we determine that v deays for d�

1

> a

2

.

As both u and v must deay for global stability of the equilibrium (0; 0), the stability

threshold is

�

1

= min

n

a

1

;

a

2

d

o

: (4.46)

Through omparison of this result with equation (4.10), we onlude that the insta-

bility and global stability thresholds oinide for equilibrium (�u; �v) = (0; 0).
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4.4.2 Language u survives, v dies out

To analyse the global stability of (�u; �v) = (a

1

=b

1

; 0) we proeed as in setion 4.4.1.

First we onstrut the funtion

E(t) =

1

2

�

�kuk

2

+ kvk

2

�

; (4.47)

where � is a onstant that we may hoose. The di�erential with respet to time is

dE

dt

=

1

2

d

dt

�

�kuk

2

+ kvk

2

�

;

whih, after substituting for �u and �v in equations (4.17), is equivalent to

dE
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�
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d
:

(4.48)

We introdue the terms

D = �kruk

2

+ dkrvk

2

+ �a

1

kuk

2

; (4.49)

I = �

a

1

b

1

(u; v) + (a

2

�

a

1

b

1

)kvk

2

; (4.50)

N = �

Z




u

2

vd
� �b

1

Z




u

3

d
�

Z




uv

2

d
� b

2

Z




v

3

d
; (4.51)

so that equation (4.48) may be written as

dE

dt

= �D + I +N: (4.52)

Again we wish to bound dE=dt in suh a way that allows us to onlude that E(t) is

a dereasing funtion, implying that the perturbations u and v deay, and therefore

that the equilibrium is globally stable.

Bounding

_

E(t) for (a

1

=b

1

; 0)

To ahieve a bound of the form dE=dt < �KE(t), K 2 R, we follow the method of

setion 4.4.1. The onstant R

E

is introdued, where

1

R

E

= max

H

�

I

D

�
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for H = fu; vju; v 2 H

1

0

(
)g. Assuming that R

E

> 1 and de�ning q = 1� 1=R

E

to

simplify notation, the inequality

dE

dt

� �Dq +N

is determined from equation (4.52). We now seek to bound N in suh a way that

R

E

> 1 is a suÆient ondition for stability.

We bound N (equation (4.51)) term by term using the Cauhy-Shwarz inequal-

ity (4.27) and Sobolev inequality (4.28), following the proedure detailed in setion

4.4.1. Applying the L

2

norm gives the bound

N � �

3

kruk

2

(b

1

kuk+ kvk) + 

4

krvk

2

(kuk+ b

2

kvk) ;

where 

3

; 

4

are onstants depending upon the domain 
. From equations (4.47)

and (4.49), for E(t) and D respetively, we may onlude

kuk �

r

2

�

E(t); kvk �

p

2E(t); �kruk

2

� D; and krvk

2

� D=d:

Thus

N � k

2

DE

1

2

(t)

with

k

2

=

p

2

�



3

+



3

b

1

p

�

+



4

d

p

�

+



4

b

2

d

�

:

Combining the inequality for N with the bound for

_

E(t) gives

dE

dt

� �D(q � k

2

E

1

2

(t)):

By applying Poinar�e's inequality (4.37) to kuk

2

and kvk

2

in equation (4.49), we

�nd that

D � 2��

1

kuk

2

2

+ 2�

1

d

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg:

As proven in setion 4.4.1, E

1

2

(t) < E

1

2

(0) for E

1

2

(0) < q=k

2

, assuming that R

E

> 1

and replaing the onstant k

1

with k

2

. So,

dE

dt

� ���E(t)

with onstant � = q � k

2

E

1

2

(0). As with the previous ase, we must now determine

parameter values for this inequality to be true by �nding onditions whih ensure

R

E

> 1 .
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Finding R

E

for (a

1

=b

1

; 0)

We are interested in when R

E

= 1 as this provides a global stability threshold for the

equilibrium solution (a

1

=b

1

; 0). Following the general method presented in setion

4.4.1, we evaluate equations (4.41) with the funtions

f

I

=

�

a

2

�

a

1

b

1

�

v

2

+ �

a

1

b

1

uv;

f

D

= �(ru)

2

+ d(rv)

2

+ �a

1

u

2

:

The Euler-Lagrange equations are

�u� a

1

u+

a

1

R

E

2b

1

v = 0;

�a

1

R

E

2b

1

u+ d�v +R

E

�

a

2

�

a

1

b

1

�

v = 0

and again we onsider solutions of the form of equations (4.42). The Euler-Lagrange

equations beome

1

X

n=1

�

�(�

n

+ a

1

)u

n

+

a

1

R

E

2b

1

v

n

�

'

n

= 0;

1

X

n=1

�

�a

1

R

E

2b

1

u

n

+

�

�d�

n

+R

E

�

a

2

�

a

1

b

1

��

v

n

�

'

n

= 0:

As before, it is suÆient to onsider n = 1 and, as u

n

; v

n

6= 0,

�

�

�

�

�

�

�(�

1

+ a

1

)

a

1

R

E

2b

1

�a

1

R

E

2b

1

�

�

d�

1

� R

E

�

a

2

�

a

1

b

1

��

�

�

�

�

�

�

= 0

must hold. After substitution of R

E

= 1, this gives the stability threshold equation

�

d�

1

�

�

a

2

�

a

1

b

1

��

=

�a

1

2

4b

1

2

(�

1

+ a

1

)

: (4.53)

Comparing this result with the instability boundary, the two oinide in the limit

� ! 0.

4.4.3 Language v survives, u dies out

To analyse the global stability of (�u; �v) = (0; a

2

=b

2

) we proeed as in setion 4.4.1,

beginning with onstruting the funtion

E(t) =

1

2

�

kuk

2

+ �kvk

2

�

; (4.54)
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where � is a onstant that we may hoose. The di�erential with respet to time is

dE

dt

=

1

2

d

dt

(kuk

2

+ �kvk

2

);

whih, after substituting for �u and �v in equations (4.17), is equivalent to

dE

dt

=� kruk

2

� d�krvk

2

+

�

a

1

+

a

2

b

2

�

kuk

2

� a

2

�kvk

2

� �

a

2

b

2

(u; v)

+

Z




u

2

vd
� b

1

Z




u

3

d
� �

Z




uv

2

d
� b

2

�

Z




v

3

d
:

We introdue

D = kruk

2

+ d�krvk

2

+ a

2

�kvk

2

; (4.55)

I =

�

a

1

+

a

2

b

2

�

kuk

2

� �

a

2

b

2

(u; v); (4.56)

N =

Z




u

2

vd
� b

1

Z




u

3

d
� �

Z




uv

2

d
� b

2

�

Z




v

3

d
; (4.57)

so that

dE

dt

= �D + I +N:

Bounding

_

E(t) for (0; a

2

=b

2

)

Following the method outlined in setion 4.4.1, we introdue R

E

where

1

R

E

= max

H

�

I

D

�

; H = fu; vju; v 2 H

1

0

(
)g:

By assuming R

E

> 1 and letting q = 1� 1=R

E

, the bound

dE

dt

� �Dq +N

is ahieved. We now fous on bounding N so that R

E

> 1 is a suÆient stability

ondition. We bound N (equation (4.51)) term by term using the Cauhy-Shwarz

inequality (4.27) and Sobolev inequality (4.28), following the method in setion

4.4.1. Applying the L

2

norm gives the bound

N � 

5

kruk

2

(kvk+ b

1

kuk) + �

6

krvk

2

(kuk+ b

2

kvk) ;

where 

5

; 

6

are onstants depending upon the domain 
. From equations (4.54)

and (4.55), respetively, we see that

kuk �

p

2E(t); kvk �

r

2

�

E(t); kruk

2

� D; and �krvk

2

� D=d;
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so

N � k

3

DE

1

2

(t)

where

k

3

=

p

2

�



5

b

1

p

�

+ 

5

b

1

+



6

d

+



6

b

2

p

�d

�

:

Combining the inequality for N with the bound for

_

E(t) gives

dE

dt

� �D

�

q � k

3

E

1

2

(0)

�

;

where we have used E

1

2

(0) > E

1

2

(t) for E

1

2

(0) > q=k

3

. By applying Poinar�e's

inequality (4.37) to kuk

2

and kvk

2

in equation (4.55), we �nd that

D � 2�

1

kuk

2

2

+ 2�

1

d�

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg:

Consequently, we may bound

_

E(t) by

dE

dt

� ���E(t)

with � = q � k

3

E

1

2

(0). We now �nd onditions whih ensure R

E

> 1.

Finding R

E

for (0; a

2

=b

2

)

To �nd a stability threshold for (0; a

2

=b

2

), we again follow the method in setion

4.4.1, using the funtions

f

I

=

�

a

1

+

a

2

b

2

�

u

2

� �

a

2

b

2

uv;

f

D

= (ru)

2

+ d�(rv)

2

+ �a

2

v

2

:

The Euler-Lagrange equations

�u+R

E

�

a

1

+

a

2

b

2

�

u�

�a

2

R

E

2b

2

v = 0;

�a

2

R

E

2b

2

u� d��v + �a

2

v = 0

and again we onsider solutions of the form of equations (4.42). The Euler-Lagrange

equations beome

1

X

n=1

��

��

n

+R

E

�

a

1

+

a

2

b

2

��

u

n

�

�a

2

R

E

2b

2

v

n

�

'

n

= 0;

1

X

n=1

�

�a

2

R

E

2b

2

u

n

+ � (d�

n

+ a

2

) v

n

�

'

n

= 0:
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It is again suÆient to onsider n = 1, so

�

�

�

�

�

�

�

�

�

1

� R

E

�

a

1

+

a

2

b

2

��

�

�a

2

R

E

2b

2

�

�a

2

R

E

2b

2

�� (d�

1

+ a

2

)

�

�

�

�

�

�

= 0

as u

n

; v

n

6= 0. Substituting in the value R

E

= 1 gives the stability threshold

�

�

1

�

�

a

1

+

a

2

b

2

��

=

�a

2

2

4b

2

2

(d�

1

+ a

2

)

:

In the limit � ! 0, this oinides with with the instability boundary.

4.4.4 Languages u and v oexist

To analyse the global stability of

(�u; �v) =

�

a

1

b

2

+ a

2

b

1

b

2

+ 1

;

a

2

b

1

� a

1

b

1

b

2

+ 1

�

we proeed as in setion 4.4.1, beginning with onstruting the funtion

E(t) = (kuk

2

+  kvk

2

)=2; (4.58)

where  is a onstant that we may hoose. The di�erential with respet to time is

dE

dt

=

1

2

d

dt

(kuk

2

+  kvk

2

)

whih, after substituting for �u and �v in equations (4.17), is equivalent to

dE

dt

=� kruk

2

� d krvk

2

� b

1

�ukuk

2

� b

2

 �vkvk

2

+ (�u�  �v)(u; v)

+

Z




u

2

vd
� b

1

Z




u

3

d
�  

Z




uv

2

d
� b

2

 

Z




v

3

d
:

(4.59)

By hoosing

 =

�u

�v

=

a

1

b

2

+ a

1

a

2

b

1

� a

1

the (u; v) term in equation (4.59) is eliminated, thus

_

E(t) may be split into a positive

de�nite part

D = kruk

2

+ d krvk

2

� b

1

�ukuk

2

� b

2

�ukvk

2

(4.60)

and an integral part

N =

Z




u

2

vd
� b

1

Z




u

3

d
�  

Z




uv

2

d
� b

2

 

Z




v

3

d
;
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so

dE

dt

= �D +N: (4.61)

We now seek to bound

_

E(t) from above, as in the previous ases. Again we need to

address the terms whih form N .

Bounding

_

E(t) for the oexistene equilibrium

We bound N (equation (4.51)) term by term using the Cauhy-Shwarz inequality

(4.27) and Sobolev inequality (4.28), following the method in setion 4.4.1. Applying

the L

2

norm gives the bound

N � 

7

kruk

2

(kvk+ b

1

kuk) +  

8

krvk

2

(kuk+ b

2

kvk) ;

where 

7

; 

8

are onstants depending upon the domain 
. From equations (4.58)

and (4.60), for E(t) and D respetively, we see that

kuk �

p

2E(t); kvk �

r

2

 

E(t); kruk

2

� D and  krvk

2

� D=d:

Thus we may bound N by

N � k

4

DE

1

2

(t); (4.62)

where

k

4

=

p

2

�



7

b

1

p

 

+ 

7

b

1

+



8

d

+



8

b

2

p

 d

�

:

Combining inequality (4.62) for N with equation (4.61) gives

dE

dt

� �D(q � k

4

E

1

2

(0));

where we have used E

1

2

(0) > E

1

2

(t) for E

1

2

(0) > 1=k

4

. The proof of this is the same

as in setion 4.4.1 with q replaed by 1. By applying Poinar�e's inequality (4.37) to

kuk

2

and kvk

2

in equation (4.60), we �nd that

D � 2�

1

kuk

2

2

+ 2�

1

d 

kvk

2

2

� �E(t) for � = minf2�

1

; 2�

1

dg;

so

dE

dt

� ���E(t) (4.63)

with � = 1 � k

4

E

1

2

(0). Provided E

1

2

(0) > 1=k

4

, hene � > 0, we onlude from

inequality (4.63) that the oexistene state is always globally stable.
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4.5 Results

From the analysis of the perturbation equations (4.3) and (4.4), we have established

that it is possible for eah of the four states to be globally stable under ertain

onditions. These results are summarised in table 4.2. We �nd that the oexistene

state is globally stable when it is feasible, so for a

2

b

1

> a

1

, provided that initially

E

1

2

(0) > 1=k

4

. This is demonstrated in �gure 4.1. These �gures show the per-

turbations u(x; t) and v(x; t) around the oexistene state over the spatial domain

x; y 2 [0; 1℄� [0; 1℄ � R

2

at two �xed time points. The perturbations at time t = 0

are given by

u(x; y; t) = sin(�x) sin(�y)

v(x; y; t) = 0:8 sin(�x) sin(�y);

whih are zero on the boundary of [0; 1℄� [0; 1℄.

The sign of the expression a

2

b

1

� a

1

is of interest as it ontrols whether the

oexistene state is feasible and stable. From 4.2, we see that the stability ondition

for the solution (a

1

=b

1

; 0) beomes

d�

1

� a

2

+

a

1

b

1

> 0

in the limit � ! 0. By omparing this with the ondition for the oexistene state to

be unfeasible, a

1

=b

1

> a

2

, the solution (a

1

=b

1

; 0) is stable provided E(0) is suÆiently

small. Thus we know that, regardless of the sign of a

2

b

1

� a

1

, it is always possible

for the dominant language u to survive, either solely or in onjuntion with v. This

result is intuitive as u is the dominant language.

When a

1

> a

2

b

1

the oexistene of languages is not possible, yet u may survive

alone. This may be an intuitive result when examining the roles of the parameters

a

1

, b

1

and a

2

in the the model equations (4.2). Growth of language u is a�eted

by the term a

1

u and an inux of individuals onverting from language v. As u

inreases, the apping term �b

1

u

2

has a greater e�et on the rate of hange of u,

thus limits the growth of the language. Language v grows aording to the term

a

2

v and loses individuals to language u. We now onsider the inequality a

1

> a

2

b

1

and assume that one value is signi�antly greater or smaller than the other two. To

highlight this we now simulate the model equations (4.2) in one spatial dimension



4
.
5
.
R
e
s
u
l
t
s

9
6

Constant Equilibrium Feasible Unstable Stable

(0; 0) Always a

1

� �

1

> 0 or a

2

� d�

1

> 0 a

1

� �

1

< 0 and a

2

� d�

1

< 0

�

a

1

b

1

; 0

�

Always a

2

�

a

1

b

1

� d�

1

> 0 a

2

�

a

1

b

1

� d�

1

<

�a

2
1

4b

2
1

(a

1

+�

1

)

�

0;

a

2

b

2

�

Always a

1

+

a

2

b

2

� �

1

> 0 a

1

+

a

2

b

2

� �

1

<

�a

2
2

4b

2
2

(a

2

+d�

1

)

�

a

1

b

2

+a

2

b

1

b

2

+1

;

a

2

b

1

�a

1

b

1

b

2

+1

�

a

2

b

1

> a

1

| a

2

b

1

> a

1

Table 4.2: Summary of the results from the linear instability and global stability analysis for the four onstant equilibria.
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Figure 4.1: Density plots of the perturbations u(x; y; t) and v(x; y; t) around the

oexistene equilibrium with a

1

= 22, a

2

= 16, b

1

= 6, b

2

= 3 and d = 0:8. As time

inreases the perturbations will eventually reah the x; y-plane, as indiated by the

plots at the disrete time points t = 0 and t = 0:5.
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x 2 [0; 1℄. In this instane u(x; t) and v(x; t) represent the speakers of eah language

rather than the perturbations. The zero-ux boundary onditions �u=�x = 0 and

�v=�x = 0 when x = 0 and x = 1 are assumed, preventing speakers from leaving

the spatial region [0; 1℄.

If a

1

is large in omparison to a

2

and b

1

then language u grows quikly, and

faster than language v. This an be seen in �gure 4.2a. The logisti growth term

(a

1

� b

1

u)u is positive even for large u provided a

1

is suÆiently large, ontributing

to a positive value for the rate of hange of u with respet to time. The proportion

of v speakers is depleted by onversions to language u so, over time, large a

1

allows

for language u to prevail whilst v beomes extint. If instead a omparatively small

value for a

2

is assumed then language v grows slowly. As demonstrated in �gure 4.2b,

a small a

2

may be insuÆient for the growth of the language. As before, u initially

inreases rapidly ompared to v and some individuals will onvert to language u.

The ap ontrolled by b

1

may have greater e�et, however the population growth of

v may be so slow that the language may die out before the ap on u an have any

signi�ant e�et. Finally, if b

1

is presumed to be signi�antly smaller than a

1

and

a

2

then the apping term �b

1

u

2

has very little e�et on the growth rate of language

u, even when u is large. As suh, language u will ontinually inrease independently

by the term a

1

u and also by gaining speakers from language v. If a

1

and a

2

are

similar growth rates, then language v will not inrease quikly enough to o�set the

loss of speakers to language u and thus will eventually die out. In the example in

�gure 4.2, a

1

< a

2

yet language u still dominates.

4.6 Disussion

We have presented a model for two ompeting languages, seeking to determine if

language oexistene is possible. The stability analysis results indiate that, subjet

to appropriate parameter onstraints, eah of the four equilibria may by stable.

Thus we onlude that the oexistene of two ompeting languages is possible (in

line with Patriara and Lepp�anen (2004) and Pinaso and Romanelli (2006)) but

stability of the state may be dependent upon the initial number of speakers of both
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Figure 4.2: Plots of u(x; t) (pink line) and v(x; t) (blue line) from equations (4.2)

showing the evolution of speakers in time where x = 0:7. The parameter values are

b

2

= 2, d = 0:8 and (a) a

1

= 24, a

2

= 5 and b

1

= 4, (b) a

1

= 8, a

2

= 1 and b

1

= 4,

() a

1

= 4, a

2

= 5 and b

1

= 0:5. Th distribution of speakers at t = 0 is given

by the funtions u(x; 0) = [2�x� sin (2�x)℄ =4� and v(x; 0) = [� + os (�x)℄ =�, so

u(0:7; 0) = 0:426 and v(0:7; 0) = 0:813.
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u and v. This onlusion is supported by the real-world example of Catalan as,

despite being a minority language, it is gaining speakers within ertain regions (as

demonstrated in table 4.1).

To fully utilise this model, data for a spei� instane of language ompetition is

required. One obtained, preditions may be made whih indiate whether language

oexistene is possible, determined by the parameter values. Ideal senarios an

be run where the e�et of theoretial ampaigns to save an endangered language

are inorporated into the parameter values. This ould advise poliy makers on

appropriate strategies required to save an endangered language, suh as providing

eduation in the minority language.

Our onlusion that all four equilibria may be stable di�ers from the �ndings

of Kandler and Steele (2008). They determine that none of the equilibria are both

feasible and loally stable. This di�erene is a result of two modelling fators: the

hoie of boundary onditions and the imposition of arrying apaity restritions.

By hoosing zero-ux boundary onditions, whih restrits individuals to remaining

within the spei�ed spatial domain, a di�erent analytial approah may be under-

taken to analyse the loal stability of the system equilibria (see Wang and Zhao

(2012)). They also introdue separate arrying apaities for eah language, whih

represents environmental onstraints on the number of speakers able to be main-

tained. We hose to assume that any environmental ap on the number of speakers

will a�et the total number of individuals, omprised of both u and v speakers,

rather than assuming separate apaities for eah language. This is beause we on-

sider environmental onstraints to a�et human population growth as a whole, and

languages to then ompete for speakers within this total population. Thus the ap

is on the size of the human population rather than on the number of speakers of a

partiular language. Our results are therefore not inompatible with the onlusions

of Kandler and Steele (2008), but highlight the e�et of mathematial assumptions

on model preditions.

Whilst our model does not ontain a separate lass of bilingual speakers, this does

not exlude its appliability to suh irumstanes as it is not neessary to assume

that u and v represent monolingual speakers. A two-state model for the Aromanian
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language in Greee denotes monolingual Greek speakers as X and bilingual speakers

of Greek and Aromanian as Y (Bakalis and Galani, 2012). The survival of the mi-

nority language Aromanian is dependent upon bilingual speakers, so a two-variable

model an appropriately represent bilingual soieties. Alternatively, u and v ould

represent the preferred language used by individuals. Whilst this may not au-

rately predit the omplete eradiation of a language, it ould still provide useful

information regarding soiolinguisti preferenes over time.

As disussed in the setion 4.1, not all mathematial models for language om-

petition ontain a spatial omponent (see Abrams and Strogatz (2003); Pinaso and

Romanelli (2006)). In partiular, the onstrution of the model by Pinaso and

Romanelli (2006) is equivalent to equations (4.1) with the spatial dependene re-

moved. The stability results found here should therefore oinide with the results of

Pinaso and Romanelli (2006) if we dismiss the terms assoiated with di�usion (�

1

and d�

1

). From table 4.2 we see that, without these terms, the equilibria (0; 0) and

(0; a

2

=b

2

) would always be unstable. Thus the inlusion of di�usion into the model

has a qualitative e�et on the predited outome when ompared with the model

without di�usion.

If di�usion of u or v speakers is rapid ompared with the respetive population

growth rates then fewer individuals will be onentrated in one region. This redues

the interation between speakers of the same language and thus redues reprodu-

tive opportunities, whih may lead to population extintion. Rapid di�usion also

dereases interation between speakers of ompeting languages. The equilibrium

(0; a

2

=b

2

) an be stable when the di�usion of language v is not suÆient for the lan-

guage to die out, however a omparatively slow growth rate of u ombined with few

opportunities to onvert speakers of language v results in language u dying out. As

the model di�ers with the one without di�usion, the hoie of model must depend on

the spei�s of the real-world situation. For instane, for a model for monolingual

and bilingual speakers like that of Bakalis and Galani (2012), di�usion may be an

unneessary ompliation to the model. If both languages are established within

a population and the advantage of the dominant language omes from, for exam-

ple, trade opportunities with neighbouring regions where the dominant language
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is spoken, then the modelled population may be unlikely to migrate to new areas

and thus spatial fators may have little e�et on language dynamis. If, however,

a situation arose where speakers of language u invaded a region populated with v

speakers (similar to farmers invading regions of hunter-gatherers (Aoki et al., 1996))

then di�usion dynamis may play a greater role in the spread and survival of both

languages.

This model was motivated by existing literature regarding the oexistene of

languages with the aim of furthering understanding about the extintion of minor-

ity languages. Our ontribution extends urrent knowledge by providing a global

stability analysis of the equilibria of a system whih assume that language survival

is dependent upon both spae and time. Binary hoie models suh as this language

may be applied to other behaviours, for example religion (Abrams et al., 2011).

Thus the appliation of this model may extend to a variety of ultural traits where

one variant is deemed to have an advantage over the other.



Chapter 5

Conlusion

5.1 Disussion

Chapters 2 to 4 omprise mathematial models for ultural trait transmission via

frequeny-dependent soial learning proesses. Suh models provide population-level

information regarding the persistene and frequeny of a ultural trait over time.

Eah model is a system of di�erential equations whih are not analytially solvable,

but the long-term behaviour of the systems may be determined by analysing the

stability of the equilibria.

In hapter 2 we assume that problem drinking is a soially learned behaviour

where uptake ours in a linear (unbiased) frequeny-dependent fashion. Individ-

uals are lassi�ed as either suseptible to developing a drinking problem, problem

drinkers, or those reovering from a drinking problem. Analysis revealed that to

redue the frequeny of problem drinkers it would be most e�etive to disourage

the initial adoption of the problem drinking behaviour. The e�et of total reovery,

ontrolled by parameter , was investigated by omparing results with those from

the model without total reovery ( = 0). Removing the possibility of total reovery

a�ets the endemi frequeny of individuals with alohol problems, however whether

the frequeny is inreased or dereased is dependent upon other variable parameters.

A model for the biased transmission of a ultural trait is presented in hapter 3,

seeking to identify how learning biases may a�et the population-wide persistene

of a ultural trait by utilising some of the mathematial tehniques introdued in

103
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hapter 2. The population is split into individuals suseptible to aquiring trait A

(type S) and individuals displaying trait A (type A), where the adoption of trait A

by type S individuals is dependent upon the frequeny of trait A individuals within

the population. The model with linear (unbiased) frequeny-dependent trait trans-

mission is evolved to represent ases of nonlinear (onformist) biased and ontent

biased transmission, ontrolled by model parameters D and � respetively. The

e�ets of these soial learning biases an be determined by omparing the number

and nature of equilibria of the model with transmission biases to the model without

biased learning. We �nd that inreasing the onformity strength leads to a bistable

equilibrium, hene the persistene of type A individuals within the population is

dependent upon the initial state. In table 3.2, setion C, the onformity funtion



1

with values � = 0:45 and D = 0:7 results in a bistable equilibrium with values

�a = 0 and �a = 0:380. An initial value of a(0) = 0:258 provides a threshold whih

determines whih of these states is attained. Manipulation of � in 

2

, ontrolling the

e�et of a ontent bias, alters the behaviour invasion threshold suh that inreasing

� inreases the onformity threshold frequeny.

This model may be applied to a variety of ultural traits where an individual an

be in one of two states: displaying trait A (type A) or not displaying trait A (type

S). In hapter 3 an appliation of the model to binge drinking behaviour is disussed,

although it may be applied to a variety of di�erent health-related behaviours. For

example, both the SARS (hapter 2) and SAS model may represent drug-taking,

smoking and eating behaviours, with parameter onstraints imposed when appro-

priate. The hoie of model will depend upon the harateristis of the behaviour.

Tobao ontains niotine whih is highly additive and therefore individuals �nd

stopping smoking diÆult and will usually enter a period of treatment or reovery

before quitting (Benowitz and Henning�eld, 2013). The SARS model would be the

more appropriate hoie as a treatment period is inorporated. In other situations

a reovery period may be unneessary or be of insigni�ant duration so the SAS

model would be the preferred hoie. The drug LSD is not thought to be additive

so behaviour essation may not entail a period of reovery (L�usher and Ungless,

2006); the SAS model may be more appropriate for representing LSD use.
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If applying the SARS model to di�erent behaviours it may be desirable to inlude

a onformity bias in order to better represent the soial learning proess driving the

behaviour adoption. For example, adolesents in the USA are more likely to take

up smoking if many of their peers smoke, and this may be in a onformist fashion

(Simons-Morton and Farhat, 2010). Whilst the inlusion of a onformity bias may

inrease the auray of the SARS model when applied to some behaviours, it will

also inrease the model omplexity. As a result, �nding the model equilibria and

analysing their stability will be more diÆult. The equilibria of the SARS model

in hapter 2 may be found in terms of the model parameters. Equations (2.3) at

equilibrium, where ( _a; _r) = (0; 0), are easily manipulated to �nd

r =

'

� + �+ 

a;

from whih

0 = a [��(� + �+  + ')a+ �(�+ �+ )� �(�+ �+  + ')� '℄ ; (5.1)

an equation in terms of a only, is obtained. Equation (5.1) is a fatorised quadrati

polynomial, therefore solving for a, and onsequently �nding the system equilibria,

is possible and relatively simple.

For the SAS model with onformity, �nding the system equilibria requires solving

the ubi polynomial (3.7) whih annot be fatorised. As disussed in hapter 3,

�nding the equilibria in terms of the model parameters is possible, however their

omplexity greatly redues their utility with regard to interpreting the results in

a real-world ontext. The stability analysis was possible beause the system is 1-

dimensional, whih allowed for properties of ubi polynomials to be utilised. If a

similar onformity funtion was introdued into the SARS model then it would be

neessary to solve a system of nonlinear polynomial equations in order to �nd the

system equilibria. As demonstrated by the analysis of the SAS model, �nding these

equilibria in terms of the model parameters will be diÆult and, if obtained, are

unlikely to be mathematially tratable. As the SARS system only redues to a

2-dimensional problem, the proedure to determine the stability of equilibria whih

is presented in hapter 2 annot be implemented. It is probable that the inreased

omplexity resulting from the inlusion of a onformity bias in the SARS model will
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render analyti methods unfruitful. A numerial solving approah would be more

appropriate for analysing suh a model.

Aside from the inlusion of a onformity bias, the SARS model of hapter 2

ould be developed to inlude the asoial learning of drinking behaviour. Mathe-

matially this ould be represented by introduing a variable parameter � and a

term �S taking individuals from lass S to lass A. This allows individuals to de-

velop a behaviour, possibly through innovation or trial and error learning, whih

is urrently not present within the population. Similarly, an asoial learning term

ould be introdued into the SAS onformity model. Asoial learning mehanisms

have been inorporated into SIS-type models (Hill et al., 2010a,b) and a model for

the onformist transmission of a ultural trait (Eriksson and Coultas, 2009). In-

luding an asoial learning term would generalise the models, thus inreasing their

appliability, however the addition of an extra term is likely to inrease the alula-

tional diÆulty. Again, numerial methods may be the best option for solving suh

systems. Alternatively, it may be possible to obtain analyti results if suh systems

were simpli�ed in other ways, suh as reduing the number of other variables. This

would highlight di�erent key features of the real-world situation, indiated by a

di�erent set of simplifying assumptions.

In hapter 4 the spread and persistene of two ompeting languages is modelled

by a reation-di�usion system, where the language frequeny is dependent upon

both spae and time. The implementation of di�erent mathematial tehniques was

neessary to handle the inreased omplexity arising from a PDE, rather than ODE,

system. The four onstant equilibria of the system were found, and their stability

analysed. The language oexistene state was of partiular interest and was found

to be globally stable. Analysis revealed that the oexistene of languages, where

one is dominant, is a stable equilibrium state, subjet to the parameter restrition

a

2

b

1

> a

1

and suÆiently small initial populations of u and v speakers suh that

� > 0 in inequality (4.63).

This is an extension of the work in previous hapters as the model inorporates

both a spatial and temporal dependene, thus inreases the mathematial omplex-

ity. The model does not exhibit the form of an SIR-type model with di�usion,
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however its formulation again stems from dynamial systems models in biology. In

partiular it ontains a logisti growth term used in eology and the model itself is

similar to a Lotka-Volterra ompetition model with di�usion (see Murray (2003);

Cantrell and Cosner (2003)). As with the SARS alohol model, the reation-di�usion

language model may be applied to other ultural traits whih are in ompetition.

For example, it ould represent the spread of religious attitudes. For some traits it

may be of interest to onsider the e�et of a onformist bias, where the strength of

the status advantage of u is dependent on the proportion of u speakers within the

population. This is disussed further in setion 5.2.

The main aspet of the researh whih warrants improvement is the use of data

to empirially verify the model assumptions and thus ahieve aurate preditions.

Whilst some parameter estimates are made for the SARS model in setion 2.2.5,

the soial inuene parameter � ould not be approximated. To inrease the utility

of the models, appropriate data sets are required. It may be possible to obtain

data from existing studies, as was the ase with the SIS obesity model by Hill et al.

(2010b) whih referred to the Framingham Heart Study Network. Alternatively, an

experiment ould be designed to test the model by enabling appropriate data to be

olleted. This ould then be to �t to the model parameters to test if the model

preditions math the experimental outome. This is what was done by E�erson

et al. (2008).

As disussed by Morgan et al. (2011), many models assume that only one soial

learning bias is in operation whih may not be an aurate representation of the

real world situation. This issue was addressed in hapter 3 by developing a model

for both onformist and ontent biased transmission. The type of models disussed

assume homogeneous mixing, where eah individual has an equal hane of inter-

ating with any other, and the inuene exerted by eah individual on another is

equal. Thus inluding onformity or ontent biases, whih may be assumed to have

a population-wide inuene, is a natural development. This method does not lend

itself to representing model-based biases however, as this requires treating at least

one individual (the model) di�erently.

In hapter 2 the onept of a reovery hampion lass (R

T

) allows for suess and
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similarity biases by assuming that all reovery hampions have an equal inuene

over individuals in treatment. Generally the reation of another lass may not

provide an aurate enough model. In suh ases an alternative method may be

required, perhaps onsidering individuals to be onneted on a network. In this

instane only onneted individuals ould inuene eah other. A model-based bias

ould be represented by allowing one individual to have a greater inuene over

other individuals than anyone else. The degree of inuene ould be proportional

to the number of ontats the model individual has, assuming that the having more

ontats indiates inreased status within the soial network.

5.2 Future Work

Future work will fous on extending the ompeting languages model of hapter 4 to

inlude a onformist soial learning bias. Kandler and Laland (2009) onstruted a

reation-di�usion model for n ompeting ultural variants to investigate the e�et

of innovation on the level of ultural diversity within a population. Within their

investigation they onsider how a onformist inuene ompares with an unbiased

learning model. They �nd that a low to moderate onformity strength dereases

the ultural diversity at equilibrium. Their model formulation may be viewed as an

advanement of the language model in hapter 4 as the system has been generalised

to represent n ultural variants and inludes more mathematially omplex inter-

ation terms. However, the fous of the model was to determine how innovation

a�ets ultural diversity and thus the mathematial formulation ontains spei�

funtions to represent this. As the proposed future work does not investigate the

e�et of innovation, the model is di�erent to that of Kandler and Laland (2009) so

their results annot be assumed to apply to the language model with onformity,

whih is outlined below.

As disussed in hapter 3, setion 3.2, a ubi polynomial term may be used to

represent a onformist inuene. The interation term uv in system (4.2) may be

replaed with

uv (1 + k (2u� �) (1� u)) ; (5.2)
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whih inludes a onformity funtion of the same form as 

2

(equation (3.9), setion

3.3). In this instane k represents the strength of onformity and �, representing a

possible ontent bias, ontrols the frequeny for whih trait uptake is equal to that of

the linear frequeny-dependent ase. The resulting model for language ompetition

with onformity is therefore

�u

�t

= �u+ a

1

u� b

1

u

2

+ uv (1 + k (2u� �) (1� u)) ;

�v

�t

= d�v + a

2

v � b

2

v

2

� uv (1 + k (2u� �) (1� u)) :

(5.3)

The onstant equilibria our when (u

t

; v

t

) = (0; 0) and (�u;�v) = (0; 0) so

may be found by solving

0 = a

1

u� b

1

u

2

+ uv (1 + k (2u� �) (1� u)) ;

0 = a

2

v � b

2

v

2

� uv (1 + k (2u� �) (1� u)) :

(5.4)

Three onstant equilibria whih an easily be found are

(�u; �v) = (0; 0) ;

(�u; �v) =

�

a

1

b

1

; 0

�

;

(�u; �v) =

�

0;

a

2

b

2

�

:

These are also solutions to the system without onformity, equations (4.2). The

analyti approahes whih have been used in previous hapters to �nd all equilibria

annot be utilised in this ase. Future work will fous on using numerial methods to

�nd equilibria of system (5.3) and determining whih equilibrium the system reahes

for ertain parameter sets. These results may then be ompared with the �ndings

of hapter 4 to try and obtain a greater understanding of how future preditions

are a�eted by assuming a onformist bias by looking for qualitative di�erenes in

system behaviour.
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Appendix A

A.1 The Monty Hall problem

A gameshow ontestant, wishing to win a ar, is given the hoie of three doors: A,

B or C. The ar is behind one door, and goats behind the other two. The ontestant

hooses a door then the gameshow host opens one remaining door to reveal a goat.

The ontestant then has the opportunity to swith from their door to the other

unopened door. Should they stik or swith?

Intuitively the result appears to be that the probability of winning the ar is

1=2 if you stik or swith, so neither option inreases the hane of winning the ar.

However, the hane of winning the ar when swithing is 2/3 and 1/3 for stiking,

hene it is always bene�ial to swith. This arises as the host is restrited in his

hoie of door as he must always reveal a goat.

Assume that the ontestant piks door A. If the ar is behind door A, whih

has probability 1=3, then the probability of winning the ar when stiking is 1 and

0 when swithing. If the ar is behind B or C (probability 2=3), then one goat is

behind door A and the host is fored to reveal the seond goat from behind either

B or C. The ar is behind the door that the host does not open so the probability

of winning the ar is 0 when stiking and 1 when swithing. The probability of

winning the ar when not swithing is therefore 1� 1=3 = 1=3 and the probability

of winning when swithing is 1 � 2=3 = 2=3. Thus, the ontestant should swith

doors to maximise their hane of winning the ar.
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Appendix B

B.1 Proof of y

1

> 0 implies x

1

> 0

We need to show that x

1

> 0 always holds provided y

1

> 0, where

x

1

= '+ �+ 2�+  � �;

y

1

= ��' + (�+ �+ )('+ �� �):

We �rst onsider the inequality y

1

> 0 whih an be written in terms of the param-

eters as

0 < ��' + (�+ �+ )(�+ '� �)

, 0 < ��(�+ �+ ) + �(�+ �+  + ') + '

, �(�+ �+ ) < �(�+ �+  + ') + ': (B.1.1)

We now onsider the neessary ondition for x

1

> 0 by rewriting this inequality in

terms of the parameters,

0 < '+ �+ 2�+  � �

, � < '+ �+ 2�+ : (B.1.2)

We now multiply inequality (B.1.2) by (�+�+) so that it may be diretly ompared

with (B.1.1), whih results in

�(�+ �+ ) < ('+ �+ 2�+ )(�+ �+ )

, �(�+ �+ ) < �(�+ �+  + ') + '+ �

2

+ �' (B.1.3)

+ (�+ )(2�+ �+ ):
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By omparison, we see that inequality (B.1.1) imposes a stronger omdition on

�(� + � + ) than inequality (B.1.3). From this we onlude that y

1

> 0 implies

x

1

> 0.

B.2 Endemi equilibrium solution alulations

B.2.1 Proof of y

2

> 0 implies x

2

> 0

We need to show that x

2

> 0 always holds provided y

2

> 0, where

x

2

= 2��a+ ��r + '+ 2�+ �+  � �;

y

2

= '(��a� �) + (�+ �+ )(2��a+ ��r + '+ �� �):

We an write y

2

in terms of x

2

as

y

2

= '(��a� �) + (�+ �+ )([2��a+ ��r + '+ 2�+ �+  � �℄� [� + �+ ℄)

= '(��a� �) + (�+ �+ )(x

2

� [� + �+ ℄); (B.2.4)

and, from (2.8), the equation for �a in terms of y

2

as

�a =

y

2

�(�+ �+  + ')

: (B.2.5)

Substituting equation (B.2.5) into equation (B.2.4) gives

y

2

=

'y

2

� + �+  + '

� �'+ (�+ �+ )(x

2

� [�+ �+ ℄);

from whih we �nd the equation for x

2

,

x

2

=

y

2

�+ �+  + '

+

�'

� + �+ 

+ �+ �+ : (B.2.6)

From equation (B.2.6) we see that x

2

> 0 is always true if y

2

> 0.

B.2.2 Simpli�ation of y

2

We have

y

2

= '(��a� �) + (� + �+ )(2��a+ ��r + '+ �� �)
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and we want to write this equation in terms of the model parameters only. We begin

by substituting for �r using

�r =

'

� + �+ 

�a;

whih follows from equations (2.8). This gives

y

2

= '(��a� �) + (�+ �+ )

�

2��a+

�'

�+ �+ 

�a+ '+ �� �

�

= '(��a� �) + (�+ �+ )('+ �� �) + ��a(�+ �+ )

�

2 +

'

� + �+ 

�

= '(��a� �) + (�+ �+ )('+ �� �) + ��a(2�+ 2�+ 2 + ')

= 2��a(�+ �+  + ')� �(�+ �+ ) + �(�+ �+  + ') + ':

Using equation (2.8) for �a, we write y

2

in terms of the parameters only as

y

2

= 2�(�+ �+ )� 2�(�+ �+  + ')� 2'� �(�+ �+ )

+ �(�+ �+  + ') + '

= �(�+ �+ )� �(�+ �+  + ')� ':

B.3 Positive invariant region

We show that provided we always take our initial onditions to lie in D, the solution

will always be in D. We do this by onsidering the diretion �eld at the boundary,

�D, whih is the triangle in the ar-plane with verties (0; 0); (1; 0) and (0; 1). We

want to show that the diretion �eld at �D always enters D. This ensures that any

trajetory starting in D remains in D.

The boundary will be onsidered as the union of six sets: eah of the three

verties, and eah of the three edges minus the verties. Firstly we shall look at the

diretion �eld aross the line r = 0 for a 2 (0; 1). To determine the diretion �eld

along this boundary line we onsider equations (2.3) along r = 0. This gives

_a = ��a

2

+ (� � '� �)a;

_r = 'a: (B.3.7)

As a > 0 along the boundary, equation (B.3.7) determines that _r > 0 along the

boundary line r = 0. This is suÆient for us to determine that the diretion �eld
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arrows at the boundary line always point into D. Similarly we now evaluate equa-

tions (2.3) along the bounday line a = 0 with r 2 (0; 1) to obtain

_a = �r; (B.3.8)

_r = �(� + �+ )r:

As r > 0 we an onlude from equation (B.3.8) that _a > 0, hene all diretion �eld

arrows along this boundary line point into the region D.

The �nal boundary line is a + r = 1 for (a; r) 2 (0; 1)

2

. Along this line we an

write equations (2.3) in terms of one variable by using r = 1 � a whih gives the

equations

_a = �(� + �+ ')a+ �;

_r = (� + �+  + ')a� (� + �+ ):

To determine the diretion that arrows ross the boundary line a+ r = 1 we use the

vetor dot produt. The vetor dot produt for two vetors x and y is

x � y = jxjjyj os �; (B.3.9)

where � is the angle between the two vetors. We onsider the vetor (1; 1)

T

, whih

is orthogonal to the boundary line, and dot this with the vetor ( _a; _r)

T

. We �nd

that

0

�

_a

_r

1

A

�

0

�

1

1

1

A

= �(� + �+ ')a+ � + (�+ �+  + ')a� (�+ �+ )

= ��� (1� a): (B.3.10)

As (1�a) > 0, the right hand side of equation (B.3.10) is negative. By applying the

vetor dot produt formula (B.3.9) we onlude that os � < 0 so � 2 (�=2; 3�=2).

For these values of �, the diretion �eld always rosses the boundary line a+ r = 1

in a diretion whih enters the region D.

We now onsider the diretion �eld at eah of the verties of the boundary

triangle. No trajetories an pass through the point (0; 0) as ( _a; _r) = (0; 0). At the
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point (1; 0),

_a = �('+ �);

_r = ':

The equation of the line passing through (0; 1) for whih ( _a; _r) is the diretion vetor

is r = �'(1� a)=(' + �) whih has a gradient less than that of the boundary line

a + r = 1, hene trajetories passing through the boundary point (1; 0) will always

enter D. At the point (0; 1),

_a = �;

_r = �(�+ �+ ):

The equation of the line passing through (0; 1) orresponding to the diretion vetor

( _a; _r) is r = �(� + � + )a=� + 1. As the magnitude of the gradient of this line is

greater than that of the boundary line a+r = 1 we an onlude that all trajetories

passing through the point (0; 1) will always enter the feasible region.

B.4 Endemi equilibrium solution omparison

We show that if the inequality R

0

> 1 is satis�ed then the inequality F < 0 must

also be true. We begin by onsidering the inequality F < 0, whih gives

0 > ��(� + �)(�+ �+ ) + �(�+ �)(�+ �+ ) + �'(�+ )� �'(�+ '):

This rearranges to

�(�+ �)(�+ �+ ) > �(�+ �)(�+ �+ ) + �'(�+ )� �'(�+ '): (B.4.11)

We now look at the onstraints on the parameter values whih ome from R

0

> 1.

This an be written as

�(�+ �+ ) > �(�+ �+  + ') + ': (B.4.12)

By multiplying both sides of inequality (B.4.12) by (�+ �) we get

�(�+ �)(�+ �+ ) > �(�+ �)(�+ �+ ) + �'(�+ ) + �'(�+ ); (B.4.13)
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whih has the same left hand side as inequality (B.4.11). We now ompare inequal-

ities (B.4.11) and (B.4.13) and �nd that inequality (B.4.13) imposes the greatest

lower bound on the expression �(� + �)(� + � + ). From this we onlude that if

the parameter values satisfy R

0

> 1 then they will satisfy F < 0.



Appendix C

C.1 Exat solutions to f

1

(a) = 0 and f

1

(a) = 0

Following the method desribed by Murray (2003, appendix 2.3), let

x =

D + 6

36D

; y =

�(D + 9)� 54�

108�D

; z = �

5

6

:

Then, for � < g

1

(a

1

�

), the exat solutions to f

1

(a) = 0 are

a = 2x

1

2

sin��z; a = �2x

1

2

sin

�

�

3

+ �

�

�z; a = 2x

1

2

sin

�

�

3

� �

�

�z; (C.1.1)

for � = sin

�1

[y=2x

3

2

℄=3, j�j � �=6. For the model with varying onformity threshold

frequeny, the solutions to f

2

(a) = 0 for � < g

2

(a

2

�

) are given by equations (C.1.1)

with

x =

6 +D(2� �)

2

36D

; y =

�(9(2� �) +D(2� �)

3

)� 54�

108�D

; z = �

4 + �

6

:

C.2 Justi�ation of the linear reversion term A

for small 

Consider the two funtions

r

1

= a;

r

2

= as[1 +

^

D(2s� 1)(1� s)℄;

representing reversion from type A bak to type S. The funtion r

1

assumes no

soial inuene, whereas r

2

assumes a onformist inuene of the same form as 

1

132
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(used in setion 3.2) with onformity oeÆient

^

D. The di�erene between these

two funtions an be alulated by subtrating r

2

from r

1

, resulting in

d



(a) = a

2

(�2

^

Da

2

+ 3

^

Da+ 1�

^

D):

The turning points of this funtion our at a = 0 and

a =

9

16

�

1

16

r

17 +

64

^

D

:

By onsidering these points as

^

D ! 0 it an be determined that, for all values of

^

D, the funtion d



is stritly monotonially inreasing on (0; 1), therefore attains its

maximum within [0; 1℄ at a = 1. By diret alulation, d



(1) =  so the maximum

error magnitude whih an arise from using the linear funtion r

1

over the onformity

funtion r

2

is . As stated in setion 3.2 we assume  to be very small, and muh

smaller than �, therefore using r

1

is appropriate owing to the small magnitude of

the error.


