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Abstract 

 

This thesis describes the direct diagenetic effects on porous clean sand substrate due 

to the emplacement of basalt lava flows. The thesis also describes the effects of the 

emplacement of basaltic dykes and sills into clean porous sandstone. The primary 

dataset comes from the Cretaceous Etendeka Group, NW Namibia, where the 

Etendeka Flood Basalts (and associated subsurface plumbing system) interacted with 

the aeolian Twyfelfontein Formation sandstone. Secondary datasets from the recent 

Rekjanes Peninsular basalts, Iceland; the Miocene Columbia River Flood Basalt 

province and the Miocene Snake River Basalts, NW USA are used to constrain the 

direct effects of lava on substrates in a variety of palaeoenvironmental conditions. 

 The thesis makes use of a number of analytical techniques including: 

petrography, scanning electron microscopy, image analysis, X-ray diffraction, X-Ray 

fluorescence, stable isotope spectroscopy (δ
18 

O and δ
13

 C) and gas permeability 

(Hasler and probe). 

 The findings of this work constrain the degree of porosity reduction in clean 

sandstones due to intrusion emplacement over a complete range of thermal regimes, 

controlled by the magma flow pathways and duration. The effects range from mild 

hydrothermal activity and compaction through to intense pyrometamorphism, 

sediment melting and segregation. Beneath lava flows, the degree of porosity loss is 

determined by palaeoenvironment (specifically the availability of free water), the 

lava thickness and the substrate composition. Together the geometries of the igneous 

components (intrusions and extrusive flows) of the Etendeka Group 

compartmentalise the sedimentary components (Twyfelfontein Formation), which 

can be traced due to their effects on hydrothermal activity. The main compartment 

forming lithologies are vertical-subvertical intrusions, with the lava flows being a 

minor contributor. The diagenesis during hydrothermal activity was found to be a 

natural sequestration mechanism of CO2 derived from igneous activity as well as a 

highly compartmentalised porosity degradation mechanism. 
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1.1 Project motivation: the problems 

 

 The existence of hydrocarbons in and around igneous rocks is well 

documented (Schutter, 2003a, b) and as such, the requirement of knowledge 

regarding the impact that igneous rocks have on reservoir lithologies (e.g. sandstone) 

is required for an effective petroleum exploration and production strategy. The 

importance of this understanding is highlighted below, in a selection of known 

petroleum basins globally, for both igneous sills and dykes and extrusive lava flows.  

1.1.1 Lava flows in regions prospective for petroleum 

 

Faroe-Shetland Basin 

 Palaeocene–Eocene lava flows were erupted into the Faroe-Shetland basin 

(Andersen, 1988; Underhill, 2003; Smallwood et al., 2004) in both subaerial and 

submarine environments (e.g. White, 1988; Lamers & Charmichael, 1999; Ellis et 

al., 2002). The lavas are often interbedded with siliciclastic sands in the Faroe-

Shetland basin (e.g. Rosebank (213/27-1z) (Helland-Hansen, 2009), 214/4-1 (Passey, 

2004), 214/9-1 (UK Discovery Digest, 2013).  

 The Rosebank field operated by Chevron was discovered in 2004 in an 

anticlinal structure with ~ 100 m of sediments interbedded with lava flows and 

volcaniclastic sediments (Fig. 1.1, Fig. 1.2.) (Helland-Hansen, 2009). The Rosebank 

discovery appraisal is challenging due to the interfingering volcanic system 

introducing uncertainty due to poor geological knowledge of such systems (Helland-
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Hansen, 2009). Two of the problems identified by Helland-Hansen is the possibility 

of ‘Reservoir sands being degraded by “cooking” of hot volcanic material (lava 

flows and sills)’ and ‘Volcanic material seeping into and decreasing reservoir quality 

through diagenetic processes’. These could be termed DIRECT and INDIRECT 

diagenetic processes. It is the understanding of these uncertainties that this thesis 

seeks to address.  
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 (A) Vertical view of the depositional nature of the Rosebank sediments and Fig. 1.1

volcanic rocks. The section shows the interfingering between siliciclastic sandstone 
(Colsay reservoir units in the Flett Formation) and the volcanic rocks comprising lava 

flows, sills, hyaloclastites and volcaniclastics. (B) Schematic section of the interfingering 

lava flows and siliciclastic sediments. Figure modified from Helland-Hansen (2009). 
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 Composite well log through part of well 213/27-1z showing lava flows and Fig. 1.2

siliciclastic sediments intersected by the Rosebank discovery well (Figure modified from 

Duncan et al., 2009. 

 

Kudu, Offshore Namibia 

 The Kudu gas field was discovered in 1974 and later appraised in 1987–1988 

by Seokor, Chevron and Regent. Results were initially promising, but the reserve 

estimates have fallen from 15 TCF to a current figure of 1.38 TCF proved (Tullow 

Oil, 2006). The Kudu gas field is composed of two reservoir intervals: The Lower 

Gas sand and the Upper Gas sand. The Lower Gas sand is the major reservoir 

interval as the Upper Gas sand is tight having low porosity (0-9 %_ and low 

permeability (0.01 md) (Rijswijk & Steyn, 1990). The Lower Gas sand comprises of 

sedimentary interlayers from 12 to 38 m in thickness between basalt flows (Wickens 
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& McLachlan, 1990; Stanistreet & Stollhofen, 1999). The sandstone consists of 

siliciclastic and volcaniclastic components and thin calcareous layers containing 

bivalves (Fig. 1.3.). Evaporites are common in the sand layers (Stainistreet & 

Stollhofen, 1999). The Lower Gas sand were tentatively assigned to a coastal dune 

complex (Wickens & McLachlan, 1990; Stanistreet & Stollhofen, 1999). The Upper 

Gas sand is shallow marine (Wickens & McLachlan, 1990).  

 The Twyfelfontein Formation (Etjo at the time) was initially proposed as a 

lithological and chronological analogue for the Kudu field by Horsthemke et al. 

(1990) and an assumption of an Early Cretaceous age was made for the Lower Gas 

sand (Horsthemke et al., 1990; Stanistreet & Stollhofen, 1999), despite the Lower 

Gas sand not providing biostratigraphical data or radiometric dating to support the 

Cretaceous age (McMillan, 1990). Later work by Stanistreet & Stollhofen (1999) 

suggested an Early Jurassic age for the Lower Gas sand, and correlation with Karoo 

age Kalkrand flood basalts of southern Namibia. 

 Despite the direct correlation with the Twyfelfontein Formation being less 

likely than originally thought (Horsthemke et al., 1990), the Twyfelfontein 

Formation is still a valuable analogue for the study of the diagenesis at lava-sediment 

contacts. Further, Cretaceous sandstones, directly equivalent to the Twyfelfontein 

Formation probably exist offshore, further north than the Kudu field that are 

interbedded with (probable) Etendeka Group lavas and are affected by igneous 

intrusions (e.g. in the region of the Tapir South Prospect of Chariot Oil, Chariot Oil 

& Gas presentation, www.chariotoilandgas.com accessed March 2013, un-interpreted 

seismic line). 
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 The existence of igneous geology in proximity to potential reservoir units 

provides an additional level of uncertainty, akin to the Rosebank field and highlights 

the uncertainties being addressed in this thesis have application to multiple basins. 

 

 Correlation and lithological summary of Kudu 9A-2 and Kudu 9A-3 wells Fig. 1.3

(1987 and 1988). The lower gas sand is interbedded with lava flows (modified from 

Wickens & McLachlan, 1990). The Lower Gas Sand is aeolian and marine sandstone 
and the Upper Gas Sand is marine, there being a transgressive episode between the two 

sands. 
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1.1.2 Igneous intrusions in regions prospective for petroleum 

 

Faroe-Shetland Basin 

 The Faroe-Shetland basin is prospective from the Devonian to the Eocene 

(Scotchman et al., 1998; Sircar, 2004; Smallwood & Kirk, 2005), indeed 

prospectivity even exists in fractured Precambrian basement (Sircar, 2004). Igneous 

intrusions exist in all of the prospective stratigraphy (e.g. Bell & Butcher, 2002; Ellis 

et al., 2002; Ellefsen et al., 2010; Schofield et al., 2012; Grove, 2013). Fig. 1.4 shows 

a seismic line approximately through the middle of the basin illustrating the intensity 

of sill intrusion (the high amplitude reflectors labelled). Clearly it is instructive to 

determine the effects that these kind of intrusions have on reservoir quality 

sandstone. This thesis addresses this in Chapter 6 and Chapter 7 using the 

Twyfelfontein Formation as an analogue. Verification of this as a suitable analogue 

has been performed using oil industry data (Grove & Curinier, PETEX 2012, award 

winning oral presentation) but is not included within this thesis. 
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 Seismic line showing igneous intrusions in the Faroe-Shetland basin, sill Fig. 1.4
intrusions exist in stratigraphy from the Jurassic to the late Palaeocene, which includes 

all of the major reservoir containing stratigraphy (From presentation given at PETEX 

2012 in collaboration with Vincent Curinier, Total E & P UK). 

 

Offshore Australia 

 The passive margins surrounding Australia are prospective for petroleum 

exploration and are frequently intruded by sills and contain lava flows (Holford et al., 

2012; Magee et al., 2013) e.g. the Bight, Otway, Bass, Gippsland, Ceduna (Fig. 1.5.) 

and Sorel basins (Holford et al., 2012). These Australian occurrences of igneous 

rocks within petroleum basins highlight the requirement of field analogue based data, 

constraining the degree of potential reservoir degradation to be expected. The 

increasing quality and availability of 2D and 3D seismic data covering such basins 

makes this especially important as these data are opening up new prospects in 

association with the igneous rocks (Holford et al., 2012). 
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 Seismic line from the Ceduna sub-basin (from Holford et al., 2012). This Fig. 1.5

seismic line illustrates a variety of igneous features found offshore Australia including 

numerous intrusions. 

 

1.2 Thesis Aims 

 

 The examples presented above have identified that the mapping and 

emplacement mechanisms of igneous rocks in petroleum basins is well understood 

compared to the effects the igneous rocks have on reservoir development. Igneous 

rocks are present in many regions with petroleum prospectively (e.g. The Faroe-

Shetland Basin (Bell & Butcher, 2002; Smallwood et al., 2004; Grove, 2013), 

Southern Atlantic passive volcanic margins (Jungslager, 1999; Stainistreet and 

Stollhofen, 1999; Davison, 1999), Australian passive volcanic margin basins 

(Holford et al., 2012)). These areas have traditionally avoided or overlooked due to 

difficulties associated with seismic imaging and the detrimental short-term and long-

term impacts on petroleum systems, such as reservoir degradation and 

compartmentalisation (Holford et al., 2012). The direct and indirect effects of 

igneous activity (extrusive and intrusive) on potential reservoir development are the 

topics investigated in this thesis and can be split into the following aims: 
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 To characterise the direct diagenetic effects of basaltic lava flows on reservoir 

quality sand substrate. 

 To characterise the direct diagenetic effects of basaltic igneous intrusions on 

reservoir quality sandstone country rocks. Can conventional reservoirs exist 

in proximity to igneous intrusions? 

 To find evidence of compartmentalisation of reservoir quality sandstone by 

igneous intrusions and characterise the effects of the compartmentalisation on 

the development of reservoir quality. 

 To provide evidence of how different igneous lithologies (lava flows, sills 

and dykes) control the hydraulic regime in the compartmentalised sandstone. 

1.3 Hydrothermal Sediment Volcanism 

Sill intrusion can cause host rock fluidisation and the mobilisation of the 

fluidised sediment from the subsurface to the surface. This results in an extrusive 

complex at the palaeosurface composed of material transported through a 

hydrothermal conduit. Such features are present in the Faroe-Shetland basin. One 

such feature is described in Chapter. 9, where a published paper (Grove, 2013) is 

attached in lieu.  

 

1.4 Thesis Outline 

 

Chapter 1 

Introduction to igneous provinces within regions prospective for petroleum and 

motivation, thesis aims and thesis outline 
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Chapter 2 

Introduction to the geology of NW Namibia and the Huab Basin, including the basin 

development and pre-Cretaceous stratigraphy. Detailed description of the Lower 

Cretaceous Twyfelfontein Formation which is the main clastic unit described in the 

thesis. Detailed new work on the burial of the Twyfelfontein Formation. Review of 

previous work on the direct and indirect effects of basaltic igneous intrusions on 

country rock and the effects of lava flows on their substrates. 

Chapter 3 

Overview of methods used in the thesis and the fieldwork undertaken. 

Chapter 4 

Detailed descriptions of the direct effects of the Etendeka basaltic lavas on the 

siliciclastic Twyfelfontein Formation; a substrate in an arid desert 

palaeoenvironment. 

Chapter 5 

Detailed descriptions of the direct effects of lava flows on sediments in wet 

palaeoenvironments. Comparison between the effects in different 

palaeoenvironments and the controls of the effects (e.g. lava flow thickness and 

water). 

Chapter 6 

Detailed description of the full range of direct contact effects in the Twyfelfontein 

Formation as a result of the emplacement and cooling of basaltic dykes and sills. 

Effects span compaction and mild hydrothermal activity to partial melting and melt 

segregation within the sandstone.  

Chapter 7 
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Reports work on indirect effects of igneous intrusions in the Twyfelfontein 

Formation. This chapter uses fossil hydrothermal activity within the sandstone to 

trace fluid flow during cooling of the igneous intrusions and therefore the 

compartmentalisation of the formation. The chapter describes the reservoir 

degradation as a result of hydrothermal activity within the sandstone.  

Chapter 8 

Conclusions and recommendations for future work 

Chapter 9 

Attached article published in Geology on hydrothermal sediment volcanism in the 

Faroe-Shetland Basin. 

Attached article published in Computers & Geosciences on digital image analysis 

and point counting. 

Appendices 

Papers published in support of the thesis. Map of the Huab Outliers field area 

showing geology and other relevant information. Data tables. Logistical information.  
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2. Geological background and a review of direct and 

indirect effects of igneous rocks on porous sediments 

2.1 Chapter summary 

 

 This chapter describes the pre-Cretaceous geology and Cretaceous Etendeka 

Group geology of the Huab Basin, NW Namibia.  New petrographical work is 

presented classifying the background sandstone of the Twyfelfontein Formation, 

which includes new calculations of potential burial; this sets a benchmark for 

comparison of the direct effects of igneous intrusions & lava flows and the indirect 

hydrothermal effects reported. 

 The direct effects of sills and dykes on country rocks intruded are reviewed, 

concentrating on sandstone. The range of effects reported varies from 

pyrometamorphism (Grapes, 2010) where partial melt occurs, through to the more 

common, but less thoroughly studied non-pyrometamorphic contact metamorphism, 

which is essentially a compaction and hydrothermal process, controlled by the 

cooling effect of the sandstone aquifer. 

 The direct effects of lava flows on substrate are reviewed. This subject has a 

paucity of previous studies. The references to sandstone being affected by lava flows 

are usually ‘throw away’ comments with little or no background given or 

justification. 

 Sandstone bleaching is loosely reviewed as Chapter 7 provides a more 

thorough explanation of the processes involved; many of the indirect effects appear 

unique to the Huab Basin in style as currently reported. 
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2.2 Geology of the Huab Basin, NW Namibia. 

2.2.1 Overview 

 The Huab Basin was introduced by Horsthemke et al (1990) to encompass the 

Karoo deposits and Etendeka Group deposits (extrusive volcanic rocks and 

sediments) to the north and south of the Huab River (Jerram et al., 1999a). The 

deposits to the south of the Huab River are known as the Huab Outliers. The 

preserved stratigraphy in the Huab Basin records the geological evolution of the 

region from the end of the Damara orogeny (500-600 Ma), with the basement 

recording deposition and tectonic activity prior to the Damara orogeny (Gray et al., 

2008). The deposition in the Huab Basin records the Carboniferous to Cretaceous 

progressive break-up of Gondwana (Mountney et al., 1998; Stollhofen et al., 1998; 

Mountney et al., 1999a; Jerram et al., 1999a; Jerram et al., 1999b; Faure et al., 1999; 

Stollhofen et al., 2000a). Cretaceous stratigraphy is characterised by the emergence 

of the Etendeka Igneous Province, which forms the eastern most extent of the larger 

Paraná- Etendeka Flood Basalt Province (Peate, 1997; Jerram et al., 1999a, b; 

Waichel et al., 2011). The Etendeka Igneous Province in the Huab Basin occurs as 

intrusive basic dykes and sills (Erlank et al., 1984; Duncan et al., 1989; Marsh et al., 

1991; Thompson et al., 2001) and laccoliths, extrusive basic lava flows (Ewart et al., 

1998a; Jerram et al., 1999a, b; Marsh et al., 2001; Marsh & Milner, 2003; Ewart et 

al., 2004a) and extrusive silicic quartz latite units (Milner et al., 1992; Milner et al., 

1995; Ewart et al., 1998b; Marsh et al., 2001; Ewart et al., 2002; Ewart et al., 2004b; 

Bryan et al., 2010).  
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2.2.2 Assembly of Gondwana and the genesis of the Damara basement rocks.  

 The oldest rocks cropping out belong to the Damara Sequence (considered 

basement). These Damara basement rocks were initially deposited in a passive 

margin and deep water setting as carbonates and turbidites spanning the 

Neoproterozoic (770 Ma– 600 Ma) (Gray et al., 2008). Subsequently the Damara 

deposits were involved in continental collision between the Kalahari, Congo and Río 

de la Plata Cratons during the Pan-African Damara orogenic sequence with peak 

deformation and regional metamorphism at 530–500 Ma (Gray et al., 2008). 

Thrusting onto the Kalahari Craton occurred from 495 Ma to 480 Ma (Gray et al., 

2008). In the field area, these basement rocks consist of meta-greywacke, marble and 

pelite cropping out as NNW trending folds (Fig. 2.5A.) and 10 km diameter granitic 

intrusions. It can be observed that later Cretaceous igneous intrusions are associated 

with the basement structure; the Doros Crater gabbroic pluton is on the SE margin of 

a Damaran syntectonic granitic intrusion (the Doros Pluton, Passchier et al., 2007) 

and the major Cretaceous dyke trend matches the basement structural trend; 

Mesozoic rift geometry is also thought to be controlled by Pan-African basement 

fabrics (Clemson et al., 1997). Fig. 2.1 shows the basement structure and timings for 

the orogenic assembly of Gondwana in the late Neo-proterozoic and earliest 

Palaeozoic.  
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Fig. 2.1. (A) Sketch map of locations of the major cratonic basement zones in Namibia. 

(B) Map of Gondwana showing the locations of the cratonic belts that were created 

during the amalgamation of the constituents. (C) Map showing summary of the 

deformation and kinematic data for the Damara orogeny. Insets provide summary of 

geological timing of geological processes for the key fold belts. Location of the Huab 
Basin is indicated with a red star.  Figure modified from those in Gray et al (2008).  
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2.2.3 The Karoo Supergroup- early intra-continental rift-fill and synrift sediments 

 

 The pre-Etendeka development of the Huab Basin is important, as to 

understand the long term extension (Stollhofen et al., 2000a) from the Carboniferous 

to the Cretaceous that preceded the eventual separation of Gondwana, into South 

America and Africa, to form the South Atlantic Ocean. The sedimentary fill and 

erosional hiatuses preserve the palaeoenvironmental and tectonic evolution of the 

area that led to the deposition of the Cretaceous sequence of interest in this thesis. 

The pre-Etendeka Group rocks comprise a Karoo succession that formed in a Karoo 

sub-basin; separate from the main Karoo foredeep related to the Cape Fold Belt 

(Wanke et al., 2000; Stollhofen et al., 2000a). Undifferentiated Karoo Supergroup is 

mapped as PzKA. 

 Basal Karoo deposits in the Huab Basin are the Dwyka Group (CDw, Fig. 

2.2.)  which comprise rare diamictites and thin turbidite units which accumulated in 

periglacial lakes (Jerram et al., 1999a). They preserve a maximum thickness of 15 m. 

Their deposition records the disintegration of the ice sheets covering southern 

Gondwana during the end of the Carboniferous (Stollhofen et al., 2000a). In Namibia 

the Dwyka Group was deposited in newly formed extensional fault systems 

comprising NW-NE trending grabens and half grabens regarded as early 

intracratonic rifts  and in glacial topography, such as U-shaped valleys (Stollhofen et 

al., 2000a). The Dwyka Group formed during successive periods of glacial retreat, 

preserving four sequences, which are all preserved in southern Namibia (Visser, 

1997; Stollhofen et al., 2000a). Palaeo-U-shaped valleys reflect the shape of the 

developing intracratonic basins, and define a depocentre which reflects the 

embryonic stages of a rift valley depression in Namibia during the latest 
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Carboniferous (~ 302 Ma) (Stollhofen et al., 2000a) (Fig. 2.3.). The mapping of the 

palaeoglacial features such as incised valleys and striations delineates Carboniferous 

rift axes (Fig. 2.3) that suggest the rifting in Namibia was approximately parallel to 

the Cretaceous rifting that opened the Atlantic (Stollhofen et al., 2000a). In the Huab 

Basin, Dwyka Group occurrences are confined to these incised glacial valleys 

(Jerram et al., 1999a). 
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Fig. 2.2. Stratigraphy of the Karoo sequence in the Huab Basin and the Karoo at 

Brandberg (65 km from Huab) and Waterberg (270 km from Huab) adapted from 
Wanke et al (2000). Note major stratigraphical gaps and the absence of the Jurassic 

Etjo Formation in the Huab and Brandberg sections. Dates are shown in pink and are 

from Wanke et al (2000) and Stollhofen et al (2000a). 
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Fig. 2.3. Figures showing the distribution and palaeogeography of the Permo-

Carboniferous Dwyka Formation and the development of the Karoo basins. (A) Map 

showing palaeogeography of Gondwana illustrating the Carboniferous transgression 

and the Permian transgressions. (B) Palaeogeographic reconstruction of south-western 

Gondwana at ~ 250 Ma. Surface outcrops of Karoo-aged rocks are in black and the 

Huab Basin (1) is highlighted. (C) Overview of evidence for a glaciated Gondwana, 

incised glacially shaped valleys exists in the Huab Basin. (D) Compilation of ice flow 

directions suggesting the existence of a rift valley depression (indicated). Figures  

modified from Stollhofen et al (2000a). 
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 The Early Permian Verbrandeberg Formation (PVb) is dominated by 

carbonaceous mudstones, fine sandstones and thin, laterally restricted coal seams and 

is up to 70 m thick in the Huab Basin (Jerram et al., 1999a). The Verbrandeberg 

Formation covers the entire Huab Basin and is also present in the Waterberg area 

(Jerram et al., 1999a; Stollhofen et al., 2000a; Wanke et al., 2000). The 

Verbrandeberg Formation was deposited in cool-temperate post-glacial climates 

(Horsthemke et al., 1990) in a swampy flood basin environment with meandering 

rivers (Wanke et al., 2000). A single thin scoriaceous basaltic lava, up to 1.5 m thick 

is interleaved with the fluvial sediments and forma the only known Permian in-situ 

effusives in Namibia, possibly related to the widespread extensional activity at the 

time (Jerram et al., 1999a; Stollhofen et al., 2000a). 

 The cool-temperate, fluvial and swamp depositional system gradually 

changed during the deposition of the Tsarabis Formation which involves an upward 

transition from fluvio-deltaic to shallow marine near shore environments (Wanke et 

al., 2000) The unit represents two stacked transgressive cycles. The first cycle is 

meandering fluvial sandstones that grade upwards into plane bedded foreshore 

sandstones containing marine trace fossil Siphonichnus. The second cycle is a thin 

widespread unit of laterally amalgamated fluvial sandstone rapidly interfingering 

with foreshore sands (Jerram et al., 1999a). In the eastern part of the Huab Basin the 

Tsarabis Formation is condensed, exclusively comprising fluvial channel sandstones 

deposited in westward flowing rivers (Fig. 2.4.) (Jerram et al., 1999a). Silicified 

wood (Fig. 2.5.) is abundant in the Tsarabis Formation (Bamford, 2000) and based 

on known Main Karoo Basin biozones, the formation is equivalent to the Ecca and 

Beaufort Groups (Permian Prototaxoxylon africanum, Araucarioxylon africanum and 

Araucarioxylon karooensis).  
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 The succeeding stromatolitic carbonates and shales of the Huab Formation 

(PHb)record a continuation of the transgression preserved in the Tsarabis Formation, 

and the establishment of warm Mediterranean climates (Wanke et al., 2000). The 

Huab Formation contains  evidence for vast microbial blooms (Faure & Cole, 1999). 

A widespread bone bed (Fig. 2.5C.) containing abraded bones and teeth of 

Mesosaurus tenuidens esists in one maximum flooding surface in the formation 

(Jerram et al., 1999a; Wanke et al., 2000; Warren et al., 2001). The Huab Formation 

is the equivalent to the Upper Beaufort Formation bases on terrigenous plant remains 

(Bamford, 2000). Extension was ongoing at the time of deposition, evident in north 

trending synsedimentary normal faults and stromatolite drapes over growth faults 

(Jerram et al., 1999a).  

 Following the deposition of the Huab Formation was a significant hiatus 

(Jerram et al., 1999a; Wanke et al., 2000). Field evidence for the hiatus is in the 

abrupt change from marine dominated conditions (Huab Formation) to continental 

red beds of the predominantly lacustrine Late Permian/ earliest Triassic Gia-As 

Formation (Jerram et al., 1999a; Wanke et al., 2000; Stollhofen et al., 2000b). No 

angular unconformity is developed, but non-deposition and erosion are indicated by 

abundant pedogenic features (Wanke et al., 2000). The mudstone-dominated red beds 

contain an endemic bivalve association which provide the basis for a correlation with 

the Serrinha Member of the Rio do Rasto Formation in the Paraná Basin (Jerram et 

al., 1999a; Stollhofen et al., 2000b; David et al., 2011) (Fig. 2.4.). Up to five fallout 

tuff beds contained in the Gai-As Formation (PGa) preserve evidence of a distal 

volcanic province, possibly formed by a magmatic event fringing the southern 

margin of Gondwana (Fig. 2.4.) (Jerram et al., 1999a). The Tuff beds have been 

dated using U/ Pb zircon ages of 265 +/- 2.5 Ma (Wanke et al., 2000). The Gai-As 
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Formation has fossil woods of the Upper Beaufort in the Main Karoo Basin 

(Bamford, 2000). As in the older Karoo strata, northerly trending extensional faults 

are recorded by thickness and facies changes within the formation (Jerram et al., 

1999a). 

 The Doros Formation conformably overlies the Gai-As Formation in part of 

the Huab Basin (Fig. 2.2.) and is composed of sheet-like fluvial sandstone with thin 

lacustrine mudstones and microbial limestones, including drying out features 

(mudcracks and evaporite replacement crystals (Jerram et al., 1999a). 

 A major stratigraphic gap is developed between the Karoo Supergroup and 

the overlying Cretaceous Etendeka Group in the Huab Basin (Wanke et al., 2000). 

The unconformity varies considerably in the Huab Basin, most commonly the basal 

Krone Member of the Twyfelfontein Formation incises into the Karoo sediments 

(Wanke et al., 2000). Deflation surfaces are also observed, particularly west of Gai-

As (see Fig. 2.6. map and detailed map in the Appendix) (Wanke et al., 2000). The 

stratigraphic gap is thought to represent early stages of thermal uplift related to the 

early Cretaceous rifting phase (Jerram et al., 1999a).  

 The Karoo Supergroup in the Huab Basin, therefore records the episodes of 

extension and deposition and erosion related to the long-term rifting of Gondwana 

along a N-S axis from the Carboniferous to the earliest Cretaceous. The lattermost 

expression led to the Cretaceous rifting, igneous activity and later opening of the 

Atlantic. The Cretaceous sediments and igneous rocks are recorded in the Etendeka 

Group. 
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Fig. 2.4. Maps showing the extent of the Paraná, Main Karoo (MKB) and Huab basins 

in south-western Gondwana, in a 250 +/- 50 Ma palinspastic position. The maps show 

the Huab Basin, indicated by a red star. Blue arrows show the main fluvial flow 

direction. Maps modified from Faure & Cole (1999).  
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Fig. 2.5. Photographs showing the main pre-Cretaceous geology in the Huab Basin. (A) 

Neoproterozoic Damara Brak River Formation metamorphic rocks characteristic of the 
basement beneath the Huab Basin. (B) Silicified tree in the Permian Tsarabis 

Formation. (C) Remains of Mesosaurus tenuidens in the Permian Huab Formation 

within calcareous siltstones displaying prominent desiccation cracks. (D) Angular 

contact between the Permian Gai-As Formation (265 +/- 2.5 Ma) and the Major Erg 

unit of the Twyfelfontein Formation (132-133 Ma). 

2.2.4 The Etendeka Group 

 The Lower Cretaceous Etendeka Group comprises fluvial and aeolian units of 

the Twyfelfontein Formation (KTy) (see below for naming of this formation) and the 

igneous rocks of the Etendeka Igneous Province (Peate, 1997; Jerram et al., 1999a). 

The basal sedimentary rocks of the Etendeka rest unconformably on the Karoo 

sequence (Fig. 2.2; Fig 2.5D.) with the stratigraphic gap representing c. 120 Ma 

(Wanke et al., 2000). The subaerial volcanic sequence interfingers and then overlies 

the sediments and is comprised of the eroded remnants of a thick sequence of basalts 

and rheoignimbrites (quartz latites) the entire sequence dated at 132 +/- 1 Ma (Renne 

et al., 1996; Marsh et al., 2001). Eight mafic magma types and 17 silicic magma 

types have been recognised in the province (Marsh et al., 2001). The Etendeka 
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Igneous province forms the eastern part of the Paraná-Etendeka continental flood 

basalt province  (Hawkesworth et al., 1992; Milner et al., 1995a, b; Peate, 1997) and 

the basal sediments are equivalent to the same lithostratigraphical facies in Brazil 

(Scherer & Goldberg, 2007; Petry et al., 2007). Intrusive igneous rocks within the 

Etendeka Igneous Province (132 +/-1 Ma) are horizontal and subhorizontal dolerite 

sills (e.g. the Huab Sill Complex (Duncan et al., 1989)), vertical and subvertical 

dolerite dykes (Marsh et al., 1991; Thompson et al., 2001; Marsh et al., 2001) and 

large felsic to mafic subvolcanic ring intrusions (Marsh et al., 2001).  

 

The Twyfelfontein Formation 

 The Twyfelfontein Formation is mapped and labelled in figures as KTy and 

subdivisions are labelled first according to stratigraphic position and second 

according to colour (see Fig. 2.6. and Fig. 2.7.). 

 For the gestation of the current name- the ‘Twyfelfontein Formation’ for the 

basal Etendeka Group sediments in the Huab Basin please read below. The 

Twyfelfontein Formation has been well studied from the sedimentological and 

stratigraphical perspectives (Horsthemke et al., 1990; Dickinson & Milliken, 1995; 

Mountney et al., 1998; Mountney et al., 1999a, b; Jerram et al., 1999a, b; Stanistreet 

& Stollhofen, 1999; Jerram et al., 2000a; Howell & Mountney, 2001; Jerram et al., 

2002a, b). 

 The Twyfelfontein Formation is the lowest formation in the Etendeka Group 

and lies unconformably on the Karoo Supergroup in the Huab Basin (e.g. at Klein 

Gai-As, Fig. 2.5D.) and directly onto Damara basement at the basin edges (Jerram et 

al., 1999a). 
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 The basal 10 to 15 m of the Twyfelfontein Formation comprises a poorly to 

moderately sorted pebble and cobble conglomerate termed the Krone Member 

(KTyKr) (Mountney et al., 1998; Mountney et al., 1999a). The Krone is well 

exposed west of Krone Farm (20° 29.183’ S 14° 01.919’ E, Fig 2.7. photo 1.) and 

south of the RYD outcrop (see Chapter 6 and 7) at (20° 37.365’ S 14° 04.379’ E), a 

small exposure also exists west of the RYD outcrop. The Krone Member is spatially 

restricted, being confined along the axis of the present-day Huab River and the 

region immediately to the north and south with tributary streams flowing north-

westward into the major system (Mountney et al., 1998). For instance, the Krone 

Member is absent as far south as Klein Gai-As, where  the later Major Erg 

(KTyMaj, see below) aeolian deposits rest directly on the Permian Gai-As 

Formation (Fig. 2.5D.). The Krone Member often has an erosive base that cuts down 

into the underlying Gai-As Formation and along the Huab River axis, further into the 

Tsarabis Formation (Mountney et al., 1998). The Krone Member was deposited by 

flash floods and ephemeral streams with drying out common, with material possibly 

derived from eroding scarps fringing the Huab Basin (Mountney et al., 1998). 

 The Krone Member conglomerates are overlain conformably by up to 30 m 

of mixed fluvial and aeolian sandstones (KTyMix) which record a transition from 

pebble dominated deposition to pure sand deposition (Mountney et al., 1998; 

Mountney et al., 1999a; Jerram et al., 1999a) which includes reworked aeolian 

material. Preserved aeolian bedforms within the mixed unit rarely exceed 2 m in 

thickness (Jerram et al., 1999a). This unit represents the transition from fluvial to 

aeolian facies and the aridification or falling water tables in the region (Mountney et 

al., 1998). A good outcrop of the mixed unit is at 20° 42.520’ S 14° 06.160’ E. 
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 Above the mixed unit there is an abrupt transition to large-scale cross-bedded 

sandstones that dominate the Twyfelfontein Formation (Mountney et al., 1999a). 

This first aeolian unit has been termed the ‘Main aeolian unit’ by Mountney et al. 

(1998), Jerram et al. (1999a) and Mountney et al. (1999a), while Jerram et al. 

(1999b) terms the unit the ‘Major Erg’, which is adopted here (KTyMaj). The Major 

Erg deposition and sedimentology is described in detail be Mountney et al. (1998), 

Mountney et al. (1999a), and Mountney et al. (1999b). The Major Erg obtains a 

thickness of up to 150 m and consists of rounded fine to medium-grained red, yellow 

and white quartz rich sandstones showing high degrees of maturity (see below and 

Mountney et al., 1998; Mountney et al., 1999a). Individual bed-sets are typically 10 

m thick, although single beds can reach 52 m thick in the basin centre (Mountney et 

al., 1999a). Individual transverse dunes preserved have heights up to 100 m with 

wavelengths of < 1 km (Mountney et al., 1999b). The thickness variation of the 

Major Erg is apparent when transecting from Klein Gai-As, via the main S-N track to 

the Huab River. At Klein Gia-As, the erg rests on the Karoo Gai-As Formation and is 

thin (~20-30 m), before being covered by the first basalts; this is towards the edge of 

the basin. At the RYD locality, the Major Erg rests on a pebbly Krone Member and 

is ~ 90-100 m thick and further north, it thickens further to the maximum thickness. 

These thickness variations and the onlapping relationship onto the Karoo at the basin 

margins delineate the Huab Basin. Within the erg, foresets consist of 

grainflow/grainfall cross-strata, with wind rippled sand deposits in the basal parts of 

sets (Mountney et al., 1999a). The onset of flood basalt volcanism uniquely 

preserved the dune forms, including topset beds, from which important information 

regarding aeolian bounding surfaces in the rock record in relationship to the bed 

forms that generated them have been studied (Mountney et al., 1999b; Jerram et al., 
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2000). Palaeowind direction is common throughout the formation suggesting winds 

blowing from the SW to the NE (Mountney et al., 1998) common to the South 

American Botucatu Formation of the Paraná Basin, which is thought to be the source 

of the sand (Mountney et al., 1999b; Scherer & Goldberg, 2007). 

 The Major Erg deposits represent large-scale aeolian sand sea in a sand 

saturated system, with little control from water tables on dune geometry (Mountney 

et al., 1998). In this thesis, the diagenesis at the contact between Etendeka lavas from 

the Tafelkop type and the Tafelberg type and the Major Erg is investigated (Chapter 

4.). The diagenesis and ‘contact metamorphism’ at the contacts between dolerite 

dykes and sills and the Major Erg is also investigated (Chapter 6.). Indirect 

diagenetic effects of the volcanic province on the Major erg are investigated in 

Chapter 7. 

 The Major Erg unit deposition was interrupted by the onset of flood basalt 

volcanism in the area. The Major Erg was progressively flooded with lava, which led 

to the unique preservation of the dune-forms in the Major Erg (Mountney et al., 

1999b; Jerram et al., 2000; Jerram et al., 2002a). Aeolian deposition onto the 

surfaces of the first lava flows that is preserved has been termed the ‘Upper Aeolian 

Unit’ by Mountney et al. (1998), Mountney et al. (1999a), Jerram et al. (1999a) and 

the ‘Minor Erg’ by Jerram et al. (1999b). The latter nomenclature of Minor Erg 

(KTyMin) is adopted here. The Minor Erg comprises of laterally continuous major 

units of aeolian sand dunes occurring directly above the Major Erg in the succession 

(Jerram et al., 1999b) (see Fig. 2.7. for dune drowning sequence). The Minor Erg is 

distinct from the Major Erg because it occurs after the first period of flood basalt 

volcanism, which significantly altered the sediment mobility in the region, such that 

a bounding surface exists between the Major and Minor Ergs even where no basalt 
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exists (Jerram et al., 1999b). The first lavas were laterally discontinuous, which 

allows the Minor Erg to lay either directly on Major Erg or lava flow surfaces. The 

Minor Erg may be up to 60 m thick (e.g. north of the Awahab camp, see Appendix 

map). Palaeowinds for the Minor Erg are towards the NE, as in the Major Erg 

(Jerram et al., 1999b). The diagenesis and ‘contact metamorphism’ at the contacts 

between dolerite dykes and the Minor Erg is investigated in this thesis as well as 

indirect diagenetic effects (Chapter 6 and Chapter 7.). 

 Continued flood basalt emplacement dramatically reduced the amount of 

mobile sand in the basin (Mountney et al., 1998; Jerram et al., 2000), possibly also 

by restricting sand migration (the extrabasinal sediment source) from the Botucatu 

Formation in the west. The consequence was the cessation of large scale dune 

formation was: switching to discontinuous sand pockets in lava topography (Lava 

topography infill, Jerram et al., 1999b); bypass surfaces, where evidence of sand 

migration is preserved within shallow and deep cracks in the basalt lava flows 

(Jerram et al., 1999b) but no with overlying dune preserved between lava flows and; 

isolated barchanoid dunes (Isolated Dunes, Fig. 2.8.) resting on the lava surface, 

which can be single or multiple (i.e. 2 or more barchans linked) (Mountney et al., 

1998; Jerram et al., 1999b).   

 The Isolated Dunes (KTyId) were transported towards the SE, markedly 

different to the Major Erg (Mountney et al., 1998; Jerram et al., 1999b). The change 

in direction may represent a regional change in dominant wind direction or 

restriction of sediment supply from upwind (SW), by lava flooding the erg to the 

west (i.e. flooding of the Botucatu Formation by Paraná lava flows) (Jerram et al., 

1999b) in favour of a lower sediment yielding wind from the NW (Mountney et al., 

1998). Isolated Dunes are well preserved throughout the Huab Outliers, within the  
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Tafelkop type lava, but are most spectacularly preserved in ‘Dune Valley to the SW 

of Mount Awahab (Fig. 2.6, Fig. 2.7.). In this thesis, Isolated Dunes are used to study 

the contact effects of lava emplacement (Chapter 4.), the diagenetic effects of dyke 

emplacement (Chapter 6.) and the indirect hydrothermal effects of the flood basalt on 

the sandstones (Chapter 7.).  

 The Twyfelfontein Formation records the aridification of the Lower 

Cretaceous palaeoclimate and the establishment of a large erg system (Jerram et al., 

1999a). Contemporary and subsequent flood basalt volcanism and intrusive activity 

make it the ideal natural analogue for the study of the effects of igneous rocks on 

clean, reservoir quality sediment. The petrography and burial of the aeolian 

component of the Twyfelfontein Formation is discussed below, followed by a brief 

overview of the volcanology of the Etendeka igneous province. 
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Fig. 2.6. 1:250 k geological map of the Huab Basin field area highlighting the key 

localities focussed on in this thesis. Correlation panel in Fig. 2.7. Is indicated. Geology is 
overlain on a Landsat 7 ETM+ image, bands 3, 4 and 1. For full map at 1: 50 k see the 

appendix. 
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Fig. 2.7. Stratigraphical column with detail directed to the Cretaceous Twyfelfontein Formation and Awahab Formation applicable to the Huab Basin field area. Correlation panel adapted from Jerram et al (1999a) showing the 

distribution of the Krone Member, Mixed fluvial-aeolian unit, the Major Erg and the Isolated Dunes. The interaction with the Etendeka Lavas is also apparent, the Tafelkop basalt predominates in the ease and is earlier than the 

Tafelberg type basalt that onlaps the Tafelkop lava field from the west. Photographs of the key Twyfelfontein Formation units: (1) The Krone Member, here with a neotectonically induced angular unconformity under the Major Erg 

unit. (2) A fluvial bed from the mixed unit. (C) The major Erg unit showing large-scale dipping foresets. (4) Isolated dunes within Tafelkop basalt, which is onlapped further up the succession by the Tafelberg basalts. 
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Fig. 2.8. Schematic diagram of passive drowning of Twyfelfontein erg system in the 

Huab Basin by Lower Cretaceous Basalts (mainly Tafelkop type basalts in Huab 

Outliers south of Huab River and a mix of Tafelkop & Tefelberg type basalts along the 

main river sections). The transverse draa dominated major erg is first drowned (A) 

which restricts sediment mobility. Remaining unburied sediment reworks to form 

minor erg (B) and bypass surfaces where sand infiltrates basalt cooling cracks but does 

not form dunes. The minor erg is then drowned by lava. Further lava drowning isolates 

more sediment from the active aeolian system creating a sediment poor aeolian system 
of isolated barchanoid dunes (C) which are themselves drowned by lava. Successive 

drowning locks up more sediment until no more dunes are formed on lava surfaces (D). 

This is followed by differential diagenesis to form red and white sandstone. Drowning 

sequence modified from Jerram et al., (1999a & 2000). 

 

Naming of the Twyfelfontein Formation   

 The Twyfelfontein Formation is the current name applied to the Lower 

Cretaceous fluvial to aeolian sequence in the Huab Basin Area. The formation has 

undergone recent name changes and has only recently been universally accepted as 

the Twyfelfontein Formation. The current name, the Twyfelfontein Formation was 

proposed by Stanistreet & Stollhofen (1999) based on the compilation of accurate 

biostratigraphic dating of the (true) Early Jurassic Etjo sandstone at Mount Etjo and 

Waterberg, which does not correlate to the Huab Basin sandstones that are associated 

with the radiometrically dated Etendeka basalts (~133-132 Ma, Renne et al., 1996; 

Wanke et al., 2000). The name was subsequently recommended to be incorporated 
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into the Etendeka Group by Marsh et al. (2003). Twyfelfontein Formation is the 

name used on the latest Namibia Geological Survey map (Schreiber, 2006). 

 The Twyfelfontein was formerly included within the upper Karoo Sequence 

as the Etjo Formation, which also crops out at Waterberg and Mount Etjo (Dickinson 

& Milliken, 1995). The Etjo is correlated with the Cave Sandstone of eastern South 

Africa (Fig. 2.11.)(Stanistreet & Stollhofen, 1999). Horsthemke et al, (1990) 

assigned an uncertain age of uppermost Triassic to lowermost Cretaceous in the 

Huab Basin and recognised the interfingering with the Etendeka lavas, which at the 

time were ‘believed’ to be Lower Cretaceous, further they recognised the potential 

correlation with the Botucatu Sandstone in Brazil based on palaeo wind directions. 

The Botucatu Sandstone is Lower Cretaceous (e.g. Scherer, 2000). Milner et al. 

(1994) upgraded the Etendeka succession to group status and assigned the Etjo 

Sandstone Formation as the basal formation of the Etendeka Group.  

 In the late 1990’s reliable dating of the igneous rocks interbedded with the (at 

the time) Etjo Formation produced Lower Cretaceous ages. The first reported reliable 

dating produced ages of 137–124 Ma (Milner et al., 1995b) (Rb-Sr and 
40

Ar/Ar
39

), 

which was further refined by Renne et al, (1996) using 
40

Ar/
39

Ar dating to 131.7 +/- 

0.7 to 132 +/- 0.7 Ma. The intimate relationship between the Major Erg and Isolated 

Dune units of the aeolian sandstone and the basalts clearly demonstrated that the Etjo 

formation in the Huab Basin was of Cretaceous age and not, as formerly thought, 

Jurassic (186-183 Ma).  

 Research on the deposition of the Etjo Formation in the Huab Basin in the 

late 1990’s continued to use the name Etjo Formation (Mountney et al., 1999a; 

Jerram et al., 1999b) or the Cretaceous Etjo Formation (Mountney et al., 1998; 

Mountney et al., 1999b; Jerram et al., 1999a); these contributions recognising the 
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Lower Cretaceous age. The Stanistreet & Stollhofen (1999) proposal of the new 

name of the Twyfelfontein Formation was published prior to Jerram et al., 1999a, but 

the continued use of the old name was justified, as the name Twyfelfontein 

Formation was not widely known; this is understandable considering the 

contemporary use of the Etjo Formation name in the spate of research on-going at the 

time. Jerram & Stollhofen (2002) were the first, after the initial suggestion by 

Stanistreet & Stollhofen (1999) to formally adopt the new name of Twyfelfontein 

Formation. The use of Twyfelfontein Formation removes all confusion with the 

Jurassic Etjo Formation of the Karoo in Namibia and is therefore the current name in 

use (e.g. Schreiber, 2006). 

  

Petrography and non-volcanic-related diagenesis of the Twyfelfontein Formation 

 This is a description of the petrography of the aeolian units of the 

Twyfelfontein Formation, where the sandstone is not affected by direct or indirect 

diagenesis resulting from igneous activity. This is taken to be sandstones with a 

porosity of > 8 %, where the detrital grains are fully or partially coated with 

haematite, giving the sandstone a red appearance. 

 Of the 123 Twyfelfontein Formation sandstone samples analysed, 14 were >8 

% porosity and red from the Isolated Dunes and 27 were >8 % porosity from the 

Major Erg and the Minor Erg. The remaining 83 samples (+ some oddities, basalt, 

dolerite etc.,) were either white sandstone, or indurated as a result of igneous activity 

(lava flows or intrusions). 

 The Twyfelfontein Formation is a highly mature sandstone. Mica is absent as 

a detrital component and lithic grains are rare, typically forming < 1 %, with a 

maximum of 1.8 % and several samples returning zero lithic grains. Fig 2.9 and Fig. 
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2.10 show ternary plots of the Twyfelfontein Sandstone with detrital modal 

percentages plotted (as % of detrital grains). All feldspar in the red sandstone > 8 % 

porosity (n= 41) is 25.8%, with a 1σ of 4.5. The background red sandstone therefore 

plots as a borderline subarkose-arkose (after Pettijohn et al., 1973; Tucker, 2001). 

This classification is in contrast with Mountney et al. (1998) and Dickinson & 

Milliken (1995) who classified the unit as a litharenite-sublitharenite, which would 

require 25 % lithic fragments (Tucker, 2001), which is inconceivable based on these 

data presented in this thesis. True litharenite-sublitharenite sandstones are quite rare, 

with most sands that contain large numbers of lithic clasts also containing significant 

proportions of feldspar, making a feldspathic litharenite (e.g. Taylor et al., 2010). 

Further litharenite-sublitharenites do not commonly exist in the tectonic and 

geological situation here, instead being characteristic of back-arc or fore-arc settings 

(Tucker, 2001). The subarkose-arkose composition reported here, for the red samples 

>8 % porosity, is consistent with the passive margin, transitional continental setting 

(Tucker, 2001). The detrital composition reported in this thesis is also approximately 

equal to the Botucatu Formation, Brazil (personal communication, Claiton Scherer, 

2012). 

 It can be seen in Fig. 2.9 that the variability in the detrital composition of 

sandstone with >8 % porosity is less than the variability of sandstone with <8 % 

porosity. This is due to the lower porosity sandstone being affected by the flood 

basalts preferentially consuming detrital phases. Similarly in Fig 2.10, a more 

sophisticated analysis of the full dataset including samples affected by sill 

emplacement (pyrometamorphism- see below).  This also shows that samples 

affected by flood basalt related diagenesis have more variability. The average values 

for red and white sandstones are plotted for >8 % porosity and <8 % porosity. Both 
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red and white >8 % porosity have a larger proportion of quartz, reflecting the 

dissolution of feldspar in these samples and the formation of diagenetic quartz 

arenite and diagenetic subarkose from more feldspar rich protolith.  The final 

population that stands out in Fig. 2.10 is the red dots representing the 

pyrometamorphic buchite formed where detrital feldspar has melted, leaving a 

diagenetic quartzite (e.g. Grapes, 2010). Buchite- a vitreous metamorphic rock 

produced by the contact metamorphism of basaltic magma. 

 Most heavy minerals are rare in the Twyfelfontein Formation. Detrital 

zircons, amphibole and epidote were encountered during petrographic analysis, with 

epidote being the most common. Detrital epidote was point counted in five of the 123 

Twyfelfontein Formation samples analysed. Detrital amphibole was encountered in 

two samples. Zircon was not encountered under examination with conventional light 

microscopy, but was encountered during SEM analysis, where a perfect euhedral 

crystal was confirmed using EDS. The most common heavy minerals in the 

formation is ilmenite and magnetite, which make up the bulk of detrital opaque 

grains. Ilmenite was confirmed in XRD in some samples and is thought to be 

deposited into placer deposits within dunes. Both ilmenite and magnetite can be 

observed behaving in this way in the modern Namib Desert south of Swakopmund 

(22º 41’ S 14º 32’ E).  

 The observed heavy mineral assemblage suggests the source rocks for the 

Twyfelfontein Formation were granitic basement rocks, with some influence from 

basic igneous rocks (ilmenite) (cf. Tucker, 2001). 
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Fig. 2.9. Ternary plot of the quartz, feldspar and lithic components of all sedimentary 

samples collected (except for pyrometamorphic samples) separated into > 8 % porosity 

and < 8 % porosity. Lower porosity sandstones show more feldspar variation due to 

diagenetic processes, whereas the high porosity sandstones show less variation.  Most 

samples plotting as subarkose arenites, with some as diagenetic quartz arenites and 

more the feldspathic as arkose.  
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Fig. 2.10. Ternary diagram of the detrital composition of the Twyfelfontein Formation 

samples, separated by porosity and by diagenesis (red or white). White sandstones 

affected by hydrothermal fluids show slightly more variation but the average values are 

all clustered in the arkose–sub-arkose border. Red sandstones are more arkosic than 

the diagenetic white sandstones due to feldspar dissolution affecting the white 

sandstones during hydrothermal activity. 

 In the red sandstones (>8 % porosity), the record of early diagenesis is 

minimal, due to the arid palaeoenvironment and minimal organic activity, not 

favouring early authigenic cementation. This compares with the sandstone affected 

by lava emplacement, which is characterised by early diagenesis (Chapter 4, Chapter 

5). The red porous sandstone diagenesis is characterised by processes that occurred 

during burial. The most important process recorded is compaction, which has been 

quantified based on the equations in Lundegard (1992). The average compaction 

component of porosity loss (COPL) in the red porous sandstones is 37.6 % for the 

porous red isolated dunes (KTyIdR) and 39.4 % for the Major Erg. The assumed 

depositional porosity of 49 % is taken from Lundegard (1992) and is based on 
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reported field measurements. The compaction observed is accommodated by 

mechanical reorganisation of framework grains, resulting in closer packing, pressure 

solution (cf. Renton et al., 1969; Rutter, 1983; Houseknecht, 1984, 1988; Tada & 

Siever, 1989) between quartz grains (feldspar grains almost always penetrate quartz) 

and brittle deformation compaction (reported in the Twyfelfontein by Dickinson & 

Milliken, 1995). The brittle compaction is evident in both quartz and feldspar detrital 

grains, but is particularly evident in feldspar grains, where fracturing accommodating 

compaction occurs along cleavage planes (Fig. 2.11B,E, G.). Pressure solution is 

evident as the large number of sutured grains present (Fig. 2.11.) and through cuspate 

embayments that are common.  

 Mineral authigenesis within the red sandstones in minor and is quantified as a 

component of porosity loss using Lundegard’s (1992) cementational porosity loss 

(CEPL). Average CEPL for the red porous Major Erg is 1.9 % and for the red porous 

Isolated Dunes is 2.9 %. The most important authigenic mineral is quartz in the form 

of syntaxial overgrowths on detrital quartz grains (Fig. 2.11G.) which probably 

formed during pressure solution compaction (e.g. Tada & Siever, 1989). Calcite is 

present in some samples as minor replacement of plagioclase, but rarely growing into 

pore space (cf. Chapter 4, Chapter 6 and Chapter 7.). Clay mineralisation is minor 

and is usually confined to within detrital feldspar grains, where it is impossible to 

state whether the clay authigenesis was prior or after deposition. Very rare albite 

overgrowths exist on detrital plagioclase, where extinction and twinning is syntaxial 

with the detrital grain. 

 The relatively simple diagenesis of the porous red Twyfelfontein Formation 

sandstone makes it ideal for the study of the indirect and direct effects of flood basalt 

volcanism.  
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Fig. 2.11. Photomicrographs of Twyfelfontein Formation sandstone away from the 

influence of igneous rocks, which can be taken as ‘normal’ Twyfelfontein Formation. (A 

PPL, B XPL, C PPL) 18.2 % porosity sandstone displaying many of the features typical 

for the formation: rounded detrital grains coated with haematite that interpenetrate 
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and show evidence of brittle compaction. (D PPL) Sample NG52, which is used 

throughout the thesis as a ‘normal’ sandstone for comparison. (E PPL) Sandstone 

showing a finer grain fall layer, containing both plagioclase and potassium feldspar. 

Quarts overgrowths are occasionally present. (F XPL) same as E in XPL. (G PPL) 13.0 

% porosity sandstone showing compaction by brittle deformation of feldspar 

component, grain interpenetrations of quartz. Porosity loss is also through quartz 

authigenesis. (H PPL) Sample showing haematite grain coatings and occasional quartz 

overgrowths in a 12.2 % porosity sandstone.  
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2.2.5 Burial and exhumation of the Twyfelfontein Formation 

 

 There are four methods in which the burial depth of the Twyfelfontein 

Formation can easily be estimated. The first two: (A) correlation with exposed 

stratigraphy to give an overburden thickness, and (B) apatite fission track analyses 

from the literature (e.g. Raab et al, 2005). The final two, come from data collected in 

this study. (C) Porosity (or Porosity minus cement (Pmc) where cements are present)  

values can be directly compared to trends from large porosity-depth datasets (e.g. 

Gluyas & Cade, 1997). Secondly, compaction calculations at vertically separate 

locations within the same formation can be compared to the same parameters from 

larger datasets (in this case calculated from Gluyas & Cade, 1997) and back 

calculated to the surface. 

 Figure 2.12A Shows the hydrostatically pressured, uncemented, rigid-grain 

sandstones from Gluyas & Cade (1997) and the average porosities from the isolated 

dune and the Major Erg units of the Twyfelfontein (with 1σ error bars)  not directly or 

indirectly affected by igneous activity (porosity > 8 %). The isolated dune plots at 

4.91 km deep and the Major Erg at 5.15 km deep, showing a difference in burial 

depth based on porosity of 240 m. The difference (240 m) is slightly less than field 

observations of outcrops in the Huab area (536 m). The disparity may be due to not 

taking into account that some of the samples have low abundances of authigenic 

cements. This discrepancy is within the plotted 1σ error. Some of the samples have 

minor authigenic quartz cements, generally less than 1 %. A more sophisticated 

technique is therefore to factor in this cement by adding the cement volume to the 

porosity to get the uncemented pore volume (Pmc) (Fig. 2.12B.). When compared to 

the sandstones presented in Gluyas & Cade (1997) the Isolated Dunes give a depth of 
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4.24 km and the Major Erg, 3.61 km. This produces a vertical separation of 630 m, 

which is closer to the observed value of 536 m than simply comparing porosities. 

Simply using Pmc does not account for bulk volume changes during compaction; 

using COPL (Lundegard, 1992) (See Chapter 3 also), which accounts for bulk 

volume loss goes a way towards solving this problem. 

 Figure 2.12C shows Compactional Component of Porosity Loss (COPL) 

calculated for the hydrostatically pressured, uncemented, rigid-grain sandstones from 

Gluyas & Cade (1997). The COPL calculation has been made according to 

Lundegard (1992) assuming an initial depositional porosity of 44.75 % (also from 

Lundegard, 1992). When the average COPL for the isolated dunes is plotted, the 

burial depth is estimated as 4.66 km. The Major Erg burial depth is estimated as 5.20 

km, giving a difference of 541 m, approximately equal to the vertical difference 

between the isolated dunes sampled in ‘Dune Valley’ and the RYD lava pond case 

study at the top of the Major Erg, south of the Huab River (536 m). The close match 

between the calculated difference and the field measured difference, when using 

COPL (compared to just using Pmc or porosity) is probably due to COPL taking into 

account volume loss and cement component of porosity loss. Such a close match 

gives great confidence in the use of the COPL technique throughout this thesis.  

 Observed porosity, Pmc and COPL values have also been compared to the 

porosity–depth curve for uncemented quartz arenite by Emery & Robinson (1993) 

(Table. 2.2.), which universally overestimates the burial depth compared to all other 

methods.  

 So how deep was the Twyfelfontein Formation buried? Comparisons with the 

dataset for hydrostatically pressured, uncemented, rigid grain sandstones from 

Gluyas & Cade (1997), with COPL calculated appear to best match the apatite 



50 

 

fission track analyses data of Raab et al (2005), and best match the observed vertical 

separation between the Isolated Dunes and Major Erg. The likely average maximum 

burial depth is therefore ~4.6 km for the Isolated Dunes and ~5.2 km for the Major 

Erg unit. The close match between the calculated separation between the Isolated 

Dunes and the Major Erg unit using COPL and the Gluyas & Cade curve gives 

confidence in the burial estimate by this method. 
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Method Isolated Dune depth  Major Erg depth  

Apatite Fission Track 

(base of Brandberg at land surface 

today) (Raab et al., 2005) 

5 km  

Stratigraphy 

Based on total Etendeka lava 

thickness (e.g. Peate, 1997; Jerram, 

2000b; Jerram personal 

communication). 

3 km  to 4 km  

Porosity 

cf. Gluyas & Cade, 1997  

4.91 km 5.15 m 

Porosity 

Robinson & Gluyas, 1992 

9.16 km 10.37 km 

COPL 

cf. Gluyas & Cade, 1997 

4.66 km 5.20 km 

Pmc 

cf. Gluyas & Cade, 1997 

3.61 km 4.24 km 

Pmc 

Emery & Robinson, 1993 

4.91 km 6.59 km 

 

Table. 2.1. Summary of burial depths from 2.5.2. 

 

 This approximate depth of 5 km is more than can be estimated by using the 

thickness of Etendeka stratigraphy, suggesting there has been erosion of rock units 

deposited in the Cretaceous (uplift and erosion began between 60 Ma and 80 Ma, 

Raab et al., 2005) that are not preserved anywhere in the Etendeka. The Etendeka 
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lava pile could have been much thicker than is currently preserved (by about 1 km to 

2 km).  

 It should be mentioned that basalt (i.e. the Etendeka overburden) is denser 

than a siliciclastic overburden, so the observed compaction for a given burial depth is 

likely to be overestimated compared to the equivalent siliciclastic overburden. For 

this reason the figure of ~ 5 km is probably a slight overestimate; although the close 

match between COPL calculated vertical separation and the true vertical separation 

between the Isolated Dunes and the Major Erg may show that the increased density 

of basalt does not make as significant difference in this regard. This new information 

may be of importance for petroleum exploration offshore Namibia. 
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Fig. 2.12. (A, B) Graphs showing porosity–depth data from Gluyas & Cade (1997) (blue 

trendline) and porosity-depth curve from Emery & Robinson (1993) (orange trendline) 

with (A) average porosity of red sandstone away from igneous effects (B) Pmc of red 

sandstone away from igneous effects. 1σ error bars are shown on porosity and Pmc 

values (C) COPL calculated for the Gluyas & Cade (1998) dataset compared to average 
COPL of red sandstone away from igneous influence. 
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2.3 Volcanology of the Etendeka Large Igneous Province 

 

 Most geological work on the Phanreozoic of the Huab region in Namibia has 

focussed on the igneous geology that makes up the Etendeka Large Igneous Province  

(LIP). The Etendeka LIP and the Paraná LIP once formed a single magmatic 

province prior to the opening of the Atlantic (Hawkesworth et al., 1992; Milner et al., 

1995; Peate, 1997). Together the Paraná-Etendeka province ranks as one of the 

largest continental LIPs, with an estimated volume of > 1x10
6
 km

3
 (Peate, 1997) or > 

3.62x10
6
 km

3
 (Gladczenko et al., 1998). The Paraná province will not be further 

discussed in detail, but suggested reading includes: Hawkesworth et al. (1992); 

Milner et al. (1995b); Renne et al. (1996); Renne et al. (1997); Ernesto et al. (1999); 

Gilg et al. (2003); Waichel et al. (2006); Petry et al. (2007); Waichel et al. (2008); 

Duarte et al. (2009); Waichel et al. (2011). It is important to recognise the 

significance of the two igneous provinces sharing a common origin during the break-

up of Gondwana and that the consideration of both provinces as one is scientifically 

advantageous. The Etendeka LIP formed ~ 5 % of the overall Paraná-Etendeka 

(Jerram et al., 1999a). 

 Igneous rocks, considered part of the Etendeka LIP were formed between 137 

Ma and 124 Ma (Milner et al., 1995), with most of the volcanic activity between 135 

Ma and 130 Ma (Renne at al., 1996; Jerram et al., 1999a). The flood basalt 

volcanism was however relatively short lived, probably lasting about 2-3 Ma from 

135–132 Ma (Milner et al., 1995). Renne et al. (1996) showed that the duration was 

shorter, probably within the resolution of the 
40

Ar/
39

Ar method, giving a duration of 

0.6 +/- 1.0 Ma from 131 +/- 0.7 Ma to 132.3 +/- 0.7 Ma (see discussion in ‘Naming 

of the Twyfelfontein Formation for the relationship between the flood basalt age and 
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the Twyfelfontein Formation). Magmatic activity lingered on past the flood basalts 

for approximately 5 to 10 Ma, during the formation of the Damaraland igneous 

complexes (e.g. Messum, Brandberg, Spitzkuppe, Erongo, Okenyenya) (Watkins et 

al., 1994; Renne et al., 1996). The most reliable dating of the flood basalts seems to 

be that of Renne et al. 1996 (personal communication, Dougal Jerram). Overall, the 

dating is becoming more reliable as better lab techniques are developed or refined 

and the trend is for the duration of magmatism to be reducing to a short period of ~ 2 

Ma (e.g. Wigand et al., 2004).  

 The initiation of magmatism is often cited to be attributable to decompression 

melting of the lithosphere (Hawkesworth et al., 1999), melting of the asthenosphere 

or depleted lithosphere under the influence of the Tristan Plume plume, a 

combination of both (some units showing plume signatures, others less so) (e.g. 

O’Connor & Duncan, 1990; Ewart et al., 1998a; Thompson et al., 2001; Trumbull et 

al., 2003) or melt related to a plume with crustal contamination (e.g. Ewart et al., 

1998a). Initial continental rifting preceded volcanism is apparent in that the pre-flood 

basalt sediments show syn-rift sedimentation (e.g. the Krone Member) and that the 

magma flow trends show that faults exerted control (Glen et al., 1997; Franke, 2012). 

The initial magmatism was followed 15 Ma later by the initiation of sea floor 

spreading (Milner et al., 1995). The Etendeka is clearly spatially associated with both 

the Tristan Plume hot spot trace and regional extension at the time (Hawkesworth et 

al., 1999).  

 The Etendeka LIP  embraces a wide variety of alkaline and tholeitic, mafic to 

felsic igneous rocks (Marsh et al., 2001). The subaerially emplaced part of the 

province is made up of the eroded remnants of a thick sequence of basalts (e.g. 

Tafelkop type and Tafelberg type, Jerram et al., 1999a; Ewart et al., 2004a) and 
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silicic rheoignimbrite sheets (the quartz latites, Milner & Duncan, 1987; Ewart et al., 

1998b), carbonatite is also present (e.g. Ernst & Bell, 2010). The intrusive 

component is made up of subhorizontal, often transgressive dolerite sills (e.g. the 

Huab Sill complex, Duncan et al., 1989), dolerite dyke swarms (Marsh et al., 1991; 

Marsh et al., 2001; Thompson et al., 2001; Trumbull et al., 2004) and a number of 

large subvolcanic ring complexes and Damaraland complexes (e.g. Marsh et al., 

2001; Ewart et al., 2002; Trumbull et al., 2003). The Doros igneous centre in the SE 

of the field area is a basic layered complex (Owen-Smith et al., 2012) thought to feed 

the Tafelkop basalts (Jerram et al., 1999a; Marsh et al., 2001). A comprehensive 

review of the magma types can be found in Marsh et al. (2001). Of the intrusive 

rocks, the effects of the dolerite dykes and sills on the Twyfelfontein Formation are 

presented in this thesis (Chapter 6 and Chapter 7), the occurrence and morphology is 

therefore detailed further below. The effects of the Tafelkop type and Tafelberg type 

basalts are also considered in the thesis (Chapter 4) so are also detailed below. Other 

types such as the quartz latites and the Damara complexes are not further considered. 

2.3.1 Intrusive Igneous Rocks 

 Intrusive dolerites (dykes and sills) in the Huab Basin are referred to as Kdo 

on figures and maps consistent with the 2006 geological map (Schreiber, 2006). 

  

Dykes 

 Dolerite dykes occur throughout the Huab Basin field area, and can be 

geochemically grouped into at least seven magma types by composition (Marsh et 

al., 2001). Some of the dykes are compositional equivalents of extrusive magmas 

found in the Etendeka (e.g. Tafelberg, Albin, Esmerelda and Khumib types, Marsh et 

al., 1991; Marsh et al., 2001; Thompson et al., 2001) but three have no extrusive 
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equivalent discovered as of 2001 (Horingbaai, Huab-1 and Huab-2, Marsh et al., 

2001). Evidence for a feeder dyke from the Doros crater is presented by Jerram et al. 

(1999a). The petrography of the dykes is described by Marsh et al. (1991), who 

remark on the widespread presence on olivine compared to the basaltic lavas (except 

the Tafelkop, which is olivine phyric).  

 Most dykes in the Huab outliers strike between NNW and NNE (e.g. Lord et 

al., 1996), although dykes exist striking in all directions (e.g. Trumbull et al., 2004). 

The thickest and longest dykes tend to strike NNW.  The dykes follow older Damara 

Belt structures within 100 km of the coast (Trumbull et al., 2004). The dykes range 

from 45 cm thick (e.g. the small dyke north of the main RYD outcrop, Chapter 6 and 

Fig. 2.14G.) up to > 10 m and crosscut all stratigraphy exposed in the Huab Basin 

(e.g. Fig. 2.14.). Some dykes terminate in the exposed stratigraphy, most are 

discontinuous both horizontally and vertically. The discontinuous nature supports the 

mode of intrusion being through propagating, then coalescing fingers (cf. Hutton, 

2009) that intrude vertically or sub-vertically (see Fig. 2.14F showing a dyke broken 

bridge illustrating sub vertical emplacement). The consequence of the emplacement 

mechanism is that ‘holes’ exist in dykes, filled with the country rock (sediment or 

lava depending on stratigraphic position). Dykes can be traced up to ~ 20 km, 

although most disappear after > 5 km as traced through discontinuous exposure. 

Duncan et al. (1989) found little geochemical relationship between dykes and sills in 

the Huab Basin, but outcrops clearly illustrate Huab Sills branching into dykes (Fig. 

2.15A.). The dykes weather more readily than the surrounding sediments or 

basement, making observation of internal structure difficult, where dykes are well 

preserved, columnar jointing is sometimes observed perpendicular to the margin 

(Fig. 2. 14B.) suggesting emplacement into an aquifer that cooled the dyke. No dyke 
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has been found with visible displacement attributable to pre-intrusion extensional 

faulting or syn-emplacement extensional faulting; observed displacement is purely 

due to inflation (see Fig 2.15A.). Nevertheless, well developed mineral lineations 

have been found adjacent to dykes (Fig. 2.14C.), where sediments show no offset; 

these can only be attributed to magma flow within the dyke (cf. Varga et al., 1998; 

Correa-Gomes et al., 2001; Muirhead et al., 2012). 
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Fig. 2.13. Photographs of dykes in the Huab Basin. (A) The Red Yellow Dyke (RYD) 

locality, where a ~ 5 m thick dolerite dyke cuts the Major Erg, the sand to the east is 

white and the sand to the west is red. (B) The RYD dyke to the north of the cliff 

showing crude columnar fractures perpendicular to the cooling surface. (C) ‘Hot 

Slickensides’ on the eastern contact of the RYD dyke from the top of the cliff exposure, 

not no apparent offset of the Twyfelfontein Formation is evident, so the slicks must be 

magmatic in origin. (E) RYD exposure trending north. (F) Dyke cutting all Cretaceous 

stratigraphy exposed in Huab Basin, from the Krone Member to the Goboboseb Quartz 
Latite. (G) The thinnest dyke found, calcite induration at the contacts is clearly 

identified. (H) dyke within the Permian Gai-As Formation illustrating two offset 

segments of the same dyke forming a bridge structure meaning the dyke propagated 

sub-vertically (e.g. Magee et al, 2012; Hutton, 2009). 
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Sills 

 The sills within the Huab Basin form part of the Huab Sill complex (Duncan 

et al., 1989), which extends from the Huab Basin westwards to the Atlantic coast. 

The Huab Sill complex consists of at least four different compositional groups 

(distinguished by incompatible element ratios) that form a number of sills that have 

intruded at approximately the same stratigraphic level (the Karoo–basal Etendeka 

Group) (Duncan et al., 1989). The compositions are termed Huab-1 to Huab-4, which 

Huab-1 being the most common and Huab-4 the least common (Duncan et al., 1989). 

All of the sills are tholeiitic in composition with normative hypersthene and olivine 

and are rather primitive in character (High MgO, Ni, Cr, Duncan et al., 1989). None 

of the sills are compositional equivalents of extrusive volcanic rocks in the area 

(Duncan et al., 1989). The sills appear to favour intruding the argillaceous Karoo 

rocks (Fig. 2.15A.) or into the lowermost Twyfelfontein Formation (Fig. 2.15B, D.), 

although a thin (<<5 m thickness) sill does transgress into the Tafelberg lava south of 

Krone Farm (Fig. 2.15F.). In the northeast of the Huab Basin, sills are typically 

intrusive into the Damara schists (Duncan et al., 1989). The sills are up to 130 m 

thick and are formed into broad saucer shapes, although not as pronounced as saucers 

in the Karoo (e.g. Schofield et al., 2010), which is probably related to host sediment 

thickness being much less in the Huab (i.e. less space to develop saucer-shaped 

morphology in non-crystalline rock). Fig. 2.15C shows the sill complex viewed from 

the NW, south of the Huab River, where it is extensive and flat lying, although some 

dipping edges can be seen suggesting a flattened saucer. Fig. 2.15E shows a clearly 

transgressive saucer edge north of the Huab River, where the Twyfelfontein 

Formation is intruded. The sills probably emplaced as propagating magma fingers, 
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like the Golden Valley Sill in the Karoo (cf. Schofield et al., 2010; Schofield et al., 

2012) although no evidence of significant host rock fluidisation was found. At 

transgressive tips, complex morphologies are preserved, showing apophasis 

preceding the sill inflation, often sill tips become steepened to sub-vertical 

orientations (i.e. dykes) (Fig. 2.15D, Chapter 6). Sills also ‘spawn’ dykes along their  

top surfaces not at sill-tips (fig. 2.15A.). Duncan et al. (1989) were only able to link 

two dykes based on geochemistry to type-1 Huab Sill composition.  The Huab Sill 

complex jacks up the overburden south of the Huab River by ~150 m (consistent 

with 3D seismic reflection observations elsewhere e.g. Holford et al., 2012), which 

together with other evidence presented in Duncan et al. (1989) strongly suggests the 

sill complex postdates exposed lavas in the region.  

 This thesis describes the effects of the Huab Sills on the Twyfelfontein 

Formation sandstone in Chapter 6.  



62 

 

 

Fig. 2.14. Photographs of Etendeka sills in the Huab Basin. (A) Dolerite sill within the 

Permian Gai-As Formation, where a dyke is branching from the sill, note preservation 

of angular country rock. (B) Dolerite sill in contact with the Major Erg unit. The sill is 

showing a typical, magma finger morphology (e.g. Schofield et al., 2010). (C) 

Photograph to illustrate the large extent of the Huab Sill complex and the flat geometry 

compared to sill complexes in thicker sedimentary basins, saucer shapes in the Huab 

are poorly developed and transgression tends to be abrupt. (D) Transgressive sill tip, 

multiple apophasis extend from the transgressing sill tip. (E) Dipping limb of a Huab 

Sill, where it is beginning to develop a saucer-like morphology. (F) Thin sill intruding 

along the base of a basalt lava flow at the Major Erg contact (probably at the 

rheological boundary created by the lava induration of the sand), this sill transgresses 
into the lava and is the highest sill (stratigraphically) found. 
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2.3.2 Extrusive Igneous Rocks 

 

 Etendeka mafic magmas (KETb) have been grouped into HTZ and LTZ 

groups based on high and low Ti and Zr concentrations (Marsh et al., 2001). The 

HTZ basalts are confined to the northern Etendeka and the Paraná so will not be 

discussed further. The LTZ (low-Ti suite) basalts in the Goboboseb area are further 

geochemically subdivided based on Ti/Zr ratio into the LTZ.H (higher Ti/Zr) and 

LTZ.L (lower Ti/Zr) series (Ewart et al., 1998a). The LTZ.H basalts reported by 

Ewart et al. (1998a) are geochemically the same as the Tafelkop type basalts (Milner 

et al., 1994) in the Goboboseb area and the Tafelkop-type (Tafelkop interdune 

member, Jerram et al., 1999a) of the Awahab Formation in the Huab Outliers (Fig. 

2.17.). The Tafelkop type basalts are more primitive being more magnesian than the 

later Tafelberg type basalts (LTZ, Ewart et al., 1998a). The Tafelkop type basalts 

have been identified as dominantly mantle plume derived melts (Ewart et al., 1998a). 

The common LTZ basalts of Ewart et al. (1998a) are the most extensive basalts in 

the Etendeka and are also known as the Tafelberg type basalts (Erlank et al., 1984; 

Jerram et al., 1999a; Marsh et al., 2001).  The Tafelberg type basalts vary from 

tholeiitic basalt to tholeiitic andesite (Marsh et al., 2001). Tafelberg type 

basalts/andesites will be referred to as Tafelberg type basalts in this thesis. The 

extrusive igneous rocks in the Huab Outliers mostly belong to the Awahab 

Formation (Fig. 2.7.). Both the Tafelkop type basalt and the Tafelberg basalt crop out 

in the study area and are in contact with Twyfelfontein Formation sandstone. The 

lavas are subdivided based on geochemistry, but also have clear morphological 

differences visible in the field (see Jerram 1999a; 1999b, for detailed descriptions): 

 



64 

 

  (1) The oldest lavas in the study area are Tafelkop type basalts (KETbTk). 

In the Huab Basin (Awahab Formation) these are olivine-phyric basalts often with 

associated interleaved sediments. The basalts were low viscosity compound type 

(senso Walker, 1971) pahoehoe flows. Evidence for the type of flow comes from the 

complex internal morphology (where weathering is minimal, Fig. 2.15B.) and 

preserved pahoehoe prints on overlying lithified sandstone (Fig. 2.15E. Image 

published as front cover of Geology Jan 2013). The Tafelkop Type basalt crops out 

extensively south of the Huab River and is interbedded with the Twyfelfontein 

Sandstone. Complex interactions often result, where the basalt flows have been 

active during dune migration, for example the fractured and inflated dome in Fig 

2.17C where sand was blown over a hot, inflating basalt tumulus (possibly similar to 

the ridges reported by Ibrahim & Al-Malabeh (2006) in similar arid conditions of 

recent volcanism in Jordan). The Tafelkop type flows weather readily and are poorly 

exposed. The flows weather to a grey talus, which often obscures outcrops. The unit  

is better preserved where it has ponded between sand dunes. The Tafelkop type lavas 

in the study area most likely erupted from a shield centred on the Doros complex 

which may have acted as a sub-volcanic magma reservoir (Jerram et al., 1999a; 

Jerram & Robbe, 2001; Marsh et al., 2001). Evidence for this is in the thickening of 

the Tafelkop basalt towards Doros (Jerram & Robbe, 2001) and a feeder dyke linking 

to Doros (Jerram et al., 1999a; personal communication, Dougal Jerram). The 

Tafelkop type lavas in the field area were therefore likely erupted from a large shield 

volcano centred about 18 km SE of the Awahab Camp (Fig. 2.6; Appendix map).  

 Tafelkop type lavas that are in contact with Twyfelfontein Formation 

sandstone are described in Chapter 4 and Chapter 5 and are mainly studied where 

they crop out in Dune Valley (Chapter 7).  
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 A disconformity exists above the Tafelkop type lava flows in Dune Valley 

(Fig. 2.7) which is apparent where the shallow gradient of the northward dipping 

Tafelkop type Doros shield volcano is onlapped by Tafelberg type basalt (KETbTb). 

This surface also has a patchy, poorly developed volcaniclastic sediment beds, 

suggesting a time gap. This time gap may be ~ 100 ka (personal communication, 

Dougal Jerram). Desert environments existed throughout this time gap, as evident in 

sand filled cracks in the vicinity of the volcaniclastic beds. Both the Tafelkop type 

lava and the Tafelberg type lava in area interact with active erg. Fig. 2.15 shows a 

panoramic view of Dune Valley, where the lower Tafelkop type basalts are overlain 

by the later Tafelberg type basalts and Awahab Formation quartz latites (KAwGbi, 

KAwGbii, KAwSp). 

 (2) The Tafelkop type basalts that onlap the Doros shield volcano are more 

voluminous and laterally extensive lava flows (Jerram et al., 1999a). These flows 

form well exposed outcrops (Fig. 2.15A,E.) (in contrast with the weathered Tafelkop 

type basalt). The Tafelkop type flows in this region are up to 60 m thick where 

ponded and have rubbly, vesicular flow tops, the middle parts of the flows are 

massive. A flow front is visible in the east cliff of the mountain to the west of 

Awahab/Mikberg in Dune Valley, suggesting flow from the north, consistent with 

the onlap model (Jerram et al., 1999a) (Fig. 2.7). In the cliffs surrounding Dune 

Valley, the Tafelberg type basalts are interbedded with the Awahab Formation quartz 

latites (Jerram et al., 1999a; Ewart et al., 1998b; Marsh et al., 2001), which were 

possibly sourced from Messum (Milner & Ewart, 1989; Ewart et al., 1998b) where 

intrusive geochemical equivalents occur. The Awahab Formation Quartz latites are 

not present to the north, at the Tafelberg type section (cf. Marsh & Milner, 2003) 

where different quartz latites are present. This suggests there is a volcanic 
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disconformity between the Awahab Formation (this study, Dune Valley) and the 

Tafelberg type section, where the geochemical type of the Tafelberg basalt is the 

same as in the Awahab Formation, but the lava flows are separate (Jerram et al., 

1999a). As a result of this disconformity, Jerram et al., 1999a used the term 

‘Tsuhasis Member’ basalts for the Tafelkop type basalts in the Awahab Formation, 

here Tafelberg type basalt is used. It can be seen in Fig. 2.17 that the Awahab 

Formation Tafelberg type basalts (Tsuhasis Member) plot in the Tafelberg field 

(Erlank et al., 1984; Ewart et al., 1998a). 

 Tafelkop type basalts are directly in contact with aeolian dunes to the north 

and west of the Huab Basin and sediment interlayers are less abundant than in the 

Tafelkop type basalts (Jerram et al., 1999a). The direct diagenetic effects of the 

Tafelberg type basalts on the Twyfelfontein Formation is described in Chapter 4 and 

summarised in Chapter 5.  

 (3) The Tafelberg type basalts in the Awahab Formation are interbedded with 

large volume quartz latite units (Fig. 2.7; Fig. 2.15A). Three quartz latite units are 

present in the Awahab Formation: Goboboseb quartz latite (units I and II; KAwGbi, 

KAwGbii) and the thicker Springbok quartz latite (KAwSp). The Goboboseb I quartz 

latite overlies both the older Tafelkop type basalts (in the SE of the Huab Basin) and 

the younger Tafelberg type basalts elsewhere, providing important 

chronostratigraphic information (Jerram et al., 1999a). The quartz latite units are 

important stratigraphical markers (Milner et al., 1995; Peate, 1997; Ewart et al., 

1998b; Jerram et al., 1999a; Marsh et al., 2001; Marsh & Milner, 2003) in the 

Etendeka and are the main cliff-forming units (Fig. 2.15A.). One example of the 

Goboboseb quartz latite in contact with the Twyfelfontein Formation has been 

reported (Jerram et al., 1999a) but was not studied as part of this thesis. 
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Fig. 2.15. Photographs of key outcrops illustrating the Tafelkop type basalt and the 

Tafelberg type basalt. (A) Panorama of Dune Valley facing north with Mikberg to the 

east. Relationship between the lower Tafelkop basalts (Tafelkop Interdune Member 

basalts, Jerram et al (1999a) and the onlapping Tafelberg type basalts is clear in the 

west. (B) Close up of a typical Tafelkop type outcrop, showing the weathered basalt, an 

indurated sand lens, the compound nature of the flows can just be discerned. This kind 

of weathering is typical of the olivine phyric vesicular Tafelkop flows in Dune Valley. 

(C) An inflated lava dome in the Tafelkop type basalt that has cracked, where sand has 

fallen into the cracks it has been cemented with calcite (typical of hot contacts) proving 

the dome was active during sedimentation. (D) Tafelberg type flow is a tabular classic 

lava, with a thick crystalline core with few vesicles.  (E) Pahoehoe mould preserved in 
an overlying sand bed, proving the Tafelkop basalts were pahoehoe. 
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Fig. 2.16. Geochemical discrimination of the Tafelkop type and the Tafelberg type 

basalts in the Huab Basin from Jerram et al (1999a). Squares are for the Tafelberg type 
basalts of the Tsuhasis Member and circles are for Tafelkop type lavas. 

 

2.4 A review of previous work regarding ‘contact metamorphism’ 

adjacent to basaltic dykes and sills 

 

 The effects of the emplacement and cooling of dykes and sills on host rocks 

have been well studied in the literature, seldom focussing on clean reservoir 

sandstones. Studies generally concern protolith material favouring diagnostic mineral 

reactions, such as fine grained aluminium rich (clay rich, mica rich) protoliths such 

as shale (e.g. Smith, 1969; Brauckmann and Füchtbauer, 1983; Barker et al., 1998; 

Dutrow et al., 2001; Suchy et al., 2004; Aarnes et al., 2011a; Aarnes et al., 2011b; 

Wang et al., 2012; Hudson and Andrews, 1987). Studies of organic rich rocks such 

as coal or shale in proximity to intrusions have the benefit of the vitrinite-reflectance 

geothermometer (Barker et al., 1998; Suchy et al., 2004; Cooper et al., 2007; Stewart 
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et al., 2005). Other studies on organic rich rocks are concerned with the maturation 

and volatile (CO2 and CH4) release with relevance to petroleum sources and global 

warming events (Summer and Verosub, 1992; Suchý et al., 2004; Aarnes et al., 

2011a; Aarnes et al., 2011b). Basaltic intrusions into metamorphic basement 

(comparatively mica rich and low porosity compared to clean reservoir sands) have 

also yielded successful studies, particularly in constraining mineral reaction texture 

and chemistry (e.g. Smith, 1969; Nawaz, 1977; Wartho et al., 2001; Holness & Watt, 

2002; Holness & Humphreys, 2003; Holness et al., 2005). 

 Work on siliciclastic sandstones in contact with basaltic intrusions has had a 

variety of focusses, spanning a complete range of alteration. Of the studies into the 

effects of igneous intrusions on sandstone country rocks, there has been little 

emphasis on (A) the modification of petroleum reservoir properties and (B) the 

normal effects as opposed to the exceptional. Many studies focus on the most intense 

(and rarest) effects leading to pyrometamorphism (Grapes, 2010; Butcher & Grapes 

2011) where sufficient heat has been transferred to the intrusion wall rocks to cause 

partial melting and the formation of a buchite (e.g. Reynolds, 1940; Frankel, 1949; 

Ackermann & Walker, 1960; Wyllie, 1961; Wilson, 1964; Spry & Solomon, 1964; 

Kitchen, 1984; Krynauw et al., 1988; Philpotts & Asher, 1992; Merguerian & 

Saunders, 1995; Balance & Waiters, 2002; Holness, 1999; Holness et al., 2012). 

Contacts that do not lead to melting are more common in the field, but not so well 

documented; effects are hydrothermal, leading to metasomatism and mineral 

authigenesis (e.g. Brauckmann & Füchtbauer, 1983; Summer & Ayalon, 1995; 

Barker et al., 1998; Balance & Waiters, 2002) , often recorded by clay mineralogy 

(e.g. McKinley et al., 2001;  Ahmed, 2003, Balance & Waiters, 2002). The common 

minor effects on red Triassic marls and sandstones have been documented in brief by 
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Walker (1959) along dykes in Antrim, Northern Ireland and comprise bleaching and 

poikilitic calcite cementation, similar to described in Chapter 6. 

 The most intense alteration of sandstone due to intense heating by the 

intrusion is the best understood. As the hot intrusion is neared, characteristic mineral 

transformations occur within the sandstone. These mineral reactions rely on there 

being the appropriate detrital assemblage. The rocks created by the contact 

metamorphism near to igneous intrusions are commonly termed pyrometamorphic, 

which appears to have been used since 1969 (Smith, 1969) and reviewed by Grapes 

(2010). The first description of rocks falling into the Pyrometamorphic facies is 

believed to be by Reynolds (1940) who analysed Triassic sandstone adjacent to a 

bifurcating dyke. Nearly all reported instances of pyrometamorphism occur adjacent 

to sills (e.g. Frankel, 1949; Ackermann & Walker, 1960; Wyllie, 1961; Krynauw et 

al., 1988; Wartho et al., 2001; Balance & Waiters, 2002; Holness & Watt, 2002), 

‘plugs/ necks’ (e.g. Spry & Solomon, 1964; Smith, 1969; Nawaz, 1977; Kitchen, 

1984; Holness, 1999; Holness et al., 2012), with reports rare from adjacent to dykes 

(e.g. Reynolds, 1940). The dykes in Reynolds (1940) evidently were the location of 

flow localisation and increased heat transfer. Plugs and necks are usually inferred to 

be feeders for magma flow localisation over time (Holness, 1999; Holness et al., 

2012) possibly as shallow sub-volcanic feeder conduits. 

 At typical pyrometamorphic thermal aureole is first noticed by the breakdown 

of muscovite (if present) into biotite, potassium feldspar, spinel, corundum and 

aggregates of mullite needles (Holness, 1999; Holness & Humphries, 1993; Holness 

et al., 2005; Holness et al., 2012). Wyllie (1961) noted the disappearance of sericite 

as the first evidence of pyrometamorphism, which is consistent with above. Outside 

of this zone (cooler), the effects are generally hydrothermal, caused by the 
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convection of fluids cooling the intrusion and aureole. The hydrothermal fluids tend 

to be reducing (e.g. Holness, 1999; Young, 2008; Holness et al., 2012). Haematite is 

often reduced to magnetite (Holness, 1999) and sandstones are often bleached (e.g. 

Holness et al., 2012), this zone may be mineralised with calcite or zeolite (Smith, 

1969; Balance & Waiters, 2002). Chlorite is then replaced by biotite (Holness, 1999) 

and muscovite if Fe/Mg is low. Biotite is subsequently replaced by an aggregate of 

oxide minerals. As the intrusion is approached, potassium feldspar begins to invert to 

sanidine (e.g. Ackermann & Walker, 1960; Grapes, 2010; Holness et al., 2012). The 

inversion of potassium feldspars to sanidine is soon accompanied by incipient 

melting of the sanidine along cleavages (Ackermann & Walker, 1960), rims of quartz 

and feldspar intergrown along grain boundaries (Holness et al., 2005). The melt at 

this point frequently vitrifies into a brown-green-clear glass (Frankel, 1949; Spry & 

Solomon, 1964; Kitchen, 1984; Holness et al., 2005), which sometimes subsequently 

devitrifies to a potassium feldspar mantle (Ackermann & Walker, 1960). This melt 

reaction is Qtz+Ab+Or+H2O→melt (after Holness 2012), with possible H2O sources 

being muscovite or chlorite present in the protolith, magmatic H2O or groundwater. 

The four phase sanidine-quartz-liquid-gas curve is described by Shaw (1963). As the 

temperature increases, melt proportion increases, frequently sanidine is completely 

resorbed before quartz and plagioclase which are more refractory (e.g. Ackermann & 

Walker, 1960). The melt is often preserved as granophyric rims and matrix (e.g. 

Kitchen, 1984; Holness et al., 2012). Closer to the intrusion, where temperature is 

higher still, tridymite needles and plates appear (Reynolds, 1940; Frankel, 1949; 

Spry & Solomon, 1964;Wyllie, 1961; Ackermann & Walker, 1960; Holness, 1999; 

Balance & Waiters, 2002; Holness & Humphries, 2003, Holness et al., 2005; Holness 

et al., 2012). Over time the tridymite inverts to quartz paramorphs, which are the 
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mineral observed today. The tridymite frequently mantles restic detrital quartz grains 

(e.g. Frankel, 1949; Wyllie, 1961; Holness et al., 2012) and float freely in the 

granophyric matrix (e.g. Spry & Solomon, 1964; Ballance & Waiters, 2002; Holness 

et al., 2012). Quartz grains are often fractured as a result of shock heating (Holness et 

al., 2005). The tridymite stability field is presented in Grapes (2010) and partially by 

Shaw (1963). Orthopyroxene also frequently occurs at the higher end of the 

pyrometamorphic temperatures (e.g. Holness et al., 2012). At any point in the 

pyrometamorphic gradient, of increasing temperature, the rock can cool to below the 

solidus of the melt, which depending on the rate of cooling can either vitrify the 

melt+ crystals (Tridymite and possibly pyroxene) or crystallise (quartz-K-feldspar 

granophyre containing crystals). Often glasses produced during vitrification devitrify 

over time to spherulitic masses of potassium feldspar (e.g. Ackermann & Walker, 

1960). Pyrometamorphic sediments adjacent to igneous intrusions have frequently 

been reported to display columnar jointing (Spry & Solomon, 1964; Buist, 1980; 

Philpotts & Asher, 1993; Summer & Ayalon, 1995; Young, 2008), suggesting  

fracturing during cooling, possibly by water (e.g. the hydrothermal aquifer). 

 Pyrometamorphism of an arkosic sandstone is not as useful as that of a pelitic 

protolith in the formation of mineral geothermometers (cf. Smith, 1969; Holness & 

Watt, 2002), but nevertheless, up to five isograds can be determined, depending on 

protolith composition, to derive simple thermal models:  

 

(1) (< 5 kbar)  Muscovite + quartz = Al2SiO5 + K-feldspar + H2O + biotite  

 

(2) Fe/Al biotite = Mg/Al biotite + K-feldspar/ melt + magnetite + hercynitic 

spinel + H2O 
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or 

Biotite+ quartz + plagioclase = orthopyroxene +/- K-feldspar + melt 

 

(3) Quartz + Albite + Orthoclase + H2O = melt 

 

(4) The quartz-tridymite inversion 

 

(5) The orthopyroxene thermometer 

 

References: (1, 2, 3, 4, 5) Holness et al., 2005, Grapes, 2010 (3) Shaw (1963), (5) 

Brey & Kohler, (1990) 

 

 Of these geothermometers only the Quartz + Albite + Orthoclase + H2O = 

melt and the quartz-tridymite inversion were apparent in the sandstones sampled in 

this thesis. Previous studies of pyrometamorphism (e.g. Balance & Waiters, 2002; 

Holness et al., 2012) usually show at least these two of these reactions, whereas the 

other mineral reactions are highly dependent on protolith (1, 2, 5). 

 Beyond the pyrometamorphic zone (if present) the recorded mineral 

assemblage is hydrothermal or metasomatic (Walker, 1959; Barker et al., 1998; 

McKinley et al., 2001; Ahmed, 2002). Dykes do not commonly show evidence of 

pyrometamorphism, and the direct effects due to emplacement are usually only 

recorded by a hydrothermal assemblage (Summer & Ayalon, 1995; Barker et al., 

1998; McKinley et al., 2001; Ahmed, 2002). In addition to potential 
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pyrometamorphism and hydrothermal mineralisation, dyke intrusion contacts have 

been reported to be compacted (Summer & Ayalon, 1995; Balance & Waiters, 2002).  

 Hydrothermal systems existing outside of the zone of pyrometamorphism 

have been documented by Spry & Solomon (1964) and Balance & Waiters (2002). 

Holness et al. (2012) also presented observations consistent with a hydrothermal 

system outside of the pyrometamorphic zone (sand bleaching). Hydrothermal effects 

in the Beacon Sandstone, Antarctica, noted by Balance & Waiters (2002) include: 

matrix compaction, potassium feldspar overgrowths on potassium feldspar grains, 

pore filling secondary micas and clay (chlorite and rare smectite), rare pore-filling 

laumontite, and calcite. The calcite occurred as: intergranular pore-filling cement 

(poikilitic), isolated patches replacing all other minerals and replacement of quartz, 

isolated euhedral grains and as thin lenses within detrital grain cleavage planes 

(biotite and feldspar). 

 Hydrothermal effects adjacent to igneous intrusions into sandstone, not 

associated with pyrometamorphism reported are limited to dykes (Summer & 

Ayalon, 1995; Barker et al., 1998; McKinley et al., 2001; Ahmed, 2002). Studies on 

Permo-Triassic sandstones in the United Kingdom (McKinley et al., 2001; Ahmed, 

2002) have found variable effects. McKinlley et al. (2001) found that the  Triassic 

Sherwood Sandstone (cf. Burley, 1984) had a diagenetic transition towards the dyke 

contact, where the background diagenetic minerals (smectite, quartz and dolomite) 

reacted to first form talc at temperatures of 130–180 °C. Closer to the dyke the talc 

reacted with calcite to form actinolite amphibole. Potassium feldsapar was not 

observed to be involved with mineral reactions and no net porosity or permeability 

reduction towards the dyke was observed.  In contrast, Ahmed (2002) (also studying 

the Permo-Triassic sandstones in Northern Ireland, indeed one outcrop (Scrabo 
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Quarry) was used in both studies), found different results. Ahmed (2002) found that 

there was no effect on pre-existing quartz and feldspar overgrowths with proximity 

to the dyke intrusions. Pre-existing authigenic illite/smectite mixed layer clays 

reacted to form illite and chlorite approaching the dykes, where actinolite, albite and 

laumontite were found to be major phases. Ahmed (2002) also studied the sandstones 

of the Hartford Basin, USA for comparison. It was found that sandstone near to 

dykes had modified quartz and feldspar overgrowths which formed microcrystalline 

mosaics near to intrusions (cited as ‘not common’). Abundant albite and quartz 

overgrowths increased in quantity away from the intrusions. Chlorite ‘clumps’ and 

laumontite were also documented. Heamatite is absent near to the intrusions in the 

Hartford Basin, and the sandstone is assumed to have been bleached by the hot fluids 

(Ahmed, 2002). For both examples studied by Ahmed (2002), porosity and 

permeability decreased towards the dyke from 5.4 % to 27.4 % and 1350 md, to 0 to 

1.2 % porosity and 1 md within 5 m of the intrusion. Ahmed (2002) concludes that 

the observed authigenic minerals are due to hydrothermal activity and heat flow form 

the igneous intrusions. 

 Summer & Ayalon (1995) studied the effects of emplacement of dykes into 

the Inmar sandstone, Makhtesh Ramon, Israel. They found that authigenic quartz, 

vermicular kaolinite and iron oxides increased towards dyke contacts. Importantly 

they recognised that compaction adjacent to the dyke was an important process (Fig. 

2.15A.). Calcite existing as grain coatings, fracture fills and as pore-filling cement 

was noted near to the dyke contacts. Porosity and permeability were found to 

decrease from ~ 20 % and 2500 md 6 m from the contact to < 5 % and negligible 

permeability at the contact. Tensile strength and density were found to increase 
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towards the contact. Mild hydrothermal conditions of an acidified meteoric water are 

suggested to have existed.  

 The most thorough study of the diagenetic effects of dyke intrusion on 

sandstone, where no pyrometamorphic effects were observed is on nine basalt dykes 

from the Upper Jurassic–Lower Cretaceous Strzelecki Group, onshore Gippsland 

Basin, Australia (Barker et al., 1998). The study uses petrography, fluid inclusions 

(FI), vitrinite reflectance (Rv-r) and stable isotopes (δ
13

C and δ
18

O)  and heat flow 

modelling to characterise the diagenetic chemistry and conditions caused by the 

dykes. In contrast to the pyrometamorphic studies (e.g. Holness, 2012), Barker at al. 

(1998) approach the contact rocks from the petroleum geoscience and sedimentary 

diagenesis point of view. The Rv-r revealed a zone of elevated temperatures caused 

by a hydrothermal convection cell heated by the dyke adjacent to the largest dykes 

(c. 40 m) and evidence for the rise of heated fluids along smaller dykes but no fully 

developed hydrothermal convection. Temperature profiles away from dykes are 

presented for ideal cooling scenarios: simple conductive, complex conductive, 

incipient convection and convection cell (Fig. 2.15B.). Oxygen stable isotope values 

of carbonate cements were found to negatively correlate with Rv-r values suggesting 

carbonates precipitating in the hydrothermal system also recorded the heat transfer 

from the dyke to the aquifer. Barker et al. (1998) important conclusions were: (1) 

Post depositional FI homogenization temperatures approach the maximum 

temperature reached during contact metamorphism. (2) Heat-flow models based on 

simple conductive cooling in a closed system do not adequately describe 

temperatures reached, the conditions need to be established for each dyke, especially 

system closure (hydrogeological conditions) before making temperature predictions. 
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(3) Rv-r increases towards dykes and the profile can be used to determine the cooling 

mechanism of the dyke.    

 

 

 

Fig. 2.17. (A) Diagram showing dyke intrusion and compaction modified from Summer 

& Ayalon (1995), see figure for caption. (B) Figure modified from Barker at al. (1995) 
showing four models for dyke and wall rock cooling: Four models of cooling in a host 

rock after intrusion of a dike. The host rock system shown initially consists of 

framework grains (solid spots) with pore water H2O. After intrusion the pore water 

may vaporize (indicated as ‘vapor’) or convect forming additional heat sinks. This 

system shows four cooling modes: (1) simple conductive model—after intrusion of the 

dike, pore water does not vaporize and is assumed to have a negligible effect as a heat 

sink; (2) complex conductive model—after intrusion of the dike, pore water is assumed 

to absorb heat and vaporize;  (3) incipient convection model—rapid cooling of the dike 

after intrusion causes rise of heated fluid near the dike without the development of a 

recharge system; and (4) convection cell model—after intrusion, a convection cell 

featuring the buoyant rise of heated fluids next to dike and recharge to the cooled fluids 

away from the dike. The temperature profiles for each model, shown as a function of 

position (X) from the contact divided by dike thickness (D), by shows the different 

responses conjectured to result from the different cooling models. A contact aureole 

that consists of an extended zone of general temperature decrease extending to over 

X/D=2 and a Tcontact>> Tmagma+Thost)/2 appears to be a signature of simple conductive 

cooling. Incipient convection is indicated by a Tmax profile that generally decreases to 
background levels at X/D<1. A convection cell is indicated by a wave-like form of the 

Tmax profile and relatively high temperatures that may not decrease to background 
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levels until beyond distances of X/D>1.5. Because of Tmax sets Rv-r , a similar profile to 

that shown for temperature is expected for vitrinite-reflectance data measured next to a 

dike (caption from Barker et al., 1995, p91.) 

 Many studies in both pyrometamorphism of sandstone and other rocks, non-

pyrometamorphic contact metamorphism of sandstones, argillaceous rocks and 

organic rich rocks have attempted to model the temperature profiles away from the 

intrusions (e.g. Brauckmann & Fuchtbauer, 1983; Krynauw et al., 1988; Barker et al., 

1998; Holness 1999; Svensen et al., 2004; Aarnes et al., 2011a; Aarnes et al., 2011b; 

Holness et al., 2012; Wang et al., 2013). The modelling of such temperatures can be 

useful in predicting temperature dependent processes such as the maturation and 

expulsion of hydrocarbons from source rocks (Svensen et al., 2004; Stewart et al., 

2005; Cooper et al., 2007; Aarnes et al., 2011a, b; Wang et al., 2013) or temperature 

dependent reservoir reducing authigenic mineralisation (e.g. quartz overgrowths cf. 

Houseknecht, 1984). Most numerical models in previous studies overestimate 

temperature compared to observed geothermometers (e.g. Brauckmann & 

Fuchtbauer, 1983; Krynauw et al., 1988; Barker et al., 1995; Wang et al., 2013); the 

earlier studies not taking into account the role of pore-water. Notable is Archer et al., 

(2005), who noticed that their modelled temperatures around sills underestimated the 

vitrinite reflectance temperatures in UKCS well 164/7-1, this could be due to a deep 

seated large intrusion also increasing the regional geotherm (personal 

communication. Stuart Archer, 2013). 

 In reviewing the literature on both pyrometamorphism and non-

pyrometamorphic contact metamorphism (hydrothermal) it is apparent that water 

exerts a dominant control on the cooling regimes and mineralisation around cooling 

igneous intrusions (cf. Barker et al., 1995). Indeed, Barker et al. (1995) state that the 

degree of system closure [to groundwater and hydrothermal cooling] seems to be 
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more important than heating duration in determining the Rv-r resulting from contact 

metamorphism.  

 This thesis will explore these ideas in Chapter 6 where a number of sill and 

dyke intrusions into sandstone are studied. Chapter 6 shows the importance of water  

and shows instances where the magma flow regime within dykes and sills can cause 

intense pyrometamorphic effects, therefore overwhelming the cooling capacity of the 

aquifer. The indirect hydrothermal effects on sandstone are studied in Chapter 7. 

 

2.5 A review of previous work regarding the direct effects of 

basaltic lava flows on substrate sediments 

  

 There is a marked scarcity of literature regarding the direct effects of basalt 

emplacement on sediment substrates. Most references to the process are short 

observations concerning ‘baking’ of sediments, often without follow-up work (e.g. 

Skinner & Ricker, 1968; Waichel et al., 2008; Jerram et al., 1999b; Jerram et al., 

2000a). It appears that ‘baking’ is the assumed process for any field observation of 

colour or hardness change proximal to lava flows. Where follow-up work has been 

conducted, reports are confined to a sentence or two (Petry et al., 2007; Waichel et 

al., 2008), with the most thorough report reaching to a few paragraphs within a 

broader study (Jerram & Stollhofen, 2002). Ghosh et al (2006) examined ‘bole’ like 

substrates in the Deccan Traps and found no evidence of metasomatism (i.e. no direct 

diagenetic effects from the basalt); similarly Sheldon (2003) made the same 

conclusion in the Columbia River Basalts. Smith & McAlister (1995) made detailed 

examinations of clay rich sediments beneath Tertiary Antrim basalts in Northern 



80 

 

Ireland, often making references to ‘baking’ in the top 10 to 30 cm but not clarifying 

the definition. Sheldon (2003) cites Smith & McAlister (1995) as ‘… suggested that 

baking of the underlying palaeosols [sic] was restricted to the upper few decimetres 

of the profiles’. Cooper et al (2011) have developed a new zircon and apatite (U-

THz)/He geochronology method based on ‘baking’, where based on a simple one 

dimensional heat conduction model suggested that temperatures may reach in excess 

of 1000 °C 10 cm below a 7 m lava flow. Their simple model is clearly flawed as 

will be demonstrated throughout this thesis using both previous work (including 

direct temperature measurements (e.g. Keszthelyi, 1995), vitrinite reflectance 

geothermometers (Sheldon, 2003) and numerous original petrographic observations 

in this study. The simple thermal diffusivity model presented does not take into 

account the ‘thermal shielding’ developed at the base of a lava flow or realistic basalt 

flow regimes. Cooper et al (2011) present no petrographic evidence (e.g. melting, 

fusing of grains, dehydration reactions) of such high temperatures being attained in 

their baked sediment, and the provided field photograph does not resemble outcrops 

where true baking has occurred adjacent to sill intrusions studied as part of this 

study. Lava flows have been observed flowing on top of snow in Iceland without 

immediate melting, illustrating on decimetre scale the effective thermal insulation 

between incandescent lava and substrate (Edwards et al., 2012). 

 This thesis is limited to basaltic volcanism typical of flood basalt provinces. It 

is pertinent to mention that other magma compositions and eruptive/intrusive styles 

not considered here have been reported to have measureable effects on substrates. 

For instance, komatiite lava can transfer significant heat (Williams et al., 2000) and 

unusually hot silicic ignimbrites have been reported having clear thermal influence 
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(development of columnar cooling joints in substrate) (Branney et al., 2008) although 

‘baking’ was not defined petrographically. 

 As far as I am aware, all previous work, more detailed than a cursory 

sentence has concentrated either on the ‘baking’ (or lack of) of palaeosols (Sheldon, 

2003; Ghosh et al., 2006) or on the Cretaceous sandstones in the Parana-Etendeka 

region (e.g. Jerram & Stollhofen, 2002).  

 

Palaeosol ‘baking’ 

 Sheldon (2003) states ‘Reddened zones between lava flows have often been 

characterized [sic] as ‘baked zones’ and all visible alteration attributed to heating by 

the overlying flow’. No citations are given for this ‘often’ characterisation. The lack 

of citations mirrors my own findings in the literature. Researchers often refer to these 

‘baked’ zones, without particular evidence to support the interpretation. It appears 

the existence of these ‘baked zones’ is an established geological paradigm, that has 

been poorly investigated. 

 The palaeosols in the Picture Gorge subgroup, Columbia River Group have 

been analysed by Sheldon (2003) using vitrinite reflectance, the results found 

elevated values (Ro 1.14) within 3 cm of the hot contact, declining to the normal 

diagenetic value (Ro 0.32) by 10 cm concluding that the upper 6 cm was heated to 

160–180 °C, declining to no more than 60–80 °C at a depth of 10 cm. These 

temperatures are certainly not sufficient to produce contact metamorphic or 

pyrometamorphic reactions at surface pressures (cf. Grapes, 2010) or match the 

modelled values of Cooper et al (2011). In addition ceramicization of the clay 

component of the palaeosols was not found, thus the process of ‘baking’ was 
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rejected, and it was suggested that no or limited heating occurred below the lava flow 

studied (Sheldon, 2003). 

 

Sand ‘baking’ 

 Of the numerous references to ‘baking’ of substrates below basaltic lava 

flows (Skinner & Ricker, 1968; Smith & McAlister, 1995; Jerram et al., 1999b; 

Jerram et al 2000a; Jerram & Stollhofen, 2002; Petry et al., 2007; Waichel et al., 

2007; Waichel et al., 2008; Cooper et al., 2011), only Jerram & Stollhofen (2002) 

stands out, even then, petrographic detail is minimal and description reaches a 

paragraph. Common observations between each of the papers are, in the field, 

observation a ‘baked’ contact (usually without further elaboration). Petry et al (2007) 

observed very rare dissolution and recrystallization of the sand matrix, inferring high 

temperatures, but did not discuss the nature of the observation or present supporting 

petrographical data.  

 

2.6 Indirect effects- sandstone bleaching 

 

 Chemical bleaching of sandstones is not rare; it has been documented as a 

result of hydrocarbon migration and other reducing fluid flow through sandstone 

(Moulton, 1926; Surdam et al., 1993; Kirkland et al., 1995; Beitler et al., 2003; Parry 

et al., 2004; Beitler et al., 2005;  Schӧner & Gaupp, 2005; Ma et al., 2007). Bleached 

zones have been used to indicate migration pathways of hydrocarbons and to infer 

the existence of emptied reservoirs (Kirkland et al., 1995; Beitler et al., 2003).  
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 Where hydrocarbons have migrated through red coloured sandstones, the 

bleaching has been attributed to acidic, reducing conditions (e.g. Ma et al., 2007; 

Surdam et al., 1993). These conditions can be achieved by biologically mediated 

oxidation of CH4 to produce CO2 and simultaneous reduction of SO4
2-

 to H2S 

(Kirkland et al., 1995). In such a reaction the CO2 and H2S are achieved in conditions 

where dissolved H2S (present as HS
-
) reacts with ferric iron oxide (haematite) to 

form soluble ferrous iron. The HCO
3-

 reacts with Ca
2+

 and Mg
2+

 to form carbonate 

(Surdam et al., 1993; Kirkland et al., 1995). Dissolved ferrous iron and H2S would 

not necessarily react immediately to precipitate as iron minerals (e.g. pyrite) and can 

migrate in pore waters (Kirkland et al., 1995). These conditions could also be 

achieved without contemporary biological mediation, as many hydrocarbons are 

associated with H2S and CO2. Petrographic study of bleached sandstones has 

documented alteration of feldspars to clay (kaolinite) in these settings (Ma et al., 

2007). 

 Sandstone bleaching has also been noticed adjacent to igneous intrusions or 

pyrometamorphic zones (Walker, 1959; Ahmed, 2002; Holness et al., 2012), where 

reducing conditions existed.  

 The essential conditions for bleaching must be capable of removing haematite 

grain coatings (typically < <1 weight %). Haematite is insoluble in water, so must be 

reduced to Fe
2+

. Such conditions are reducing. 
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2.7 Chapter Conclusion 

 

 This review chapter leads into Chapter 4, Chapter 6 and Chapter 7 and to a 

lesser extent Chapter 3 (Geology of the Columbia River Basalts, Snake River Basalts 

and the Rekjanes Peninsular is summarised in the chapter). The background geology 

of the Huab Basin given is sufficient to understand the pre-Cretaceous geology. The 

Cretaceous geology (Etendeka Group) has been summarised in more detail, 

especially the Twyfelfontein Formation, where new data concerning ‘background’ 

diagenesis, burial and compaction has been presented. 

 Reviews have been given on pyrometamorphism of sandstone, and 

hydrothermal effects related to igneous intrusion. The review of pyrometamorphism 

of sandstone is comprehensive; further information on different kinds of 

pyrometamorphism of a range of substrates and further detail of metastable mineral 

reactions not required for the Twyfelfontein Formation can be found in Grapes 

(2010). The review of the contact effects of lava flows on substrate is also 

comprehensive, if bare. This is due to the paucity of literature on the area. The 

bleaching of sandstones is not rare, and there is a plethora of literature on the subject. 

Important references have been given in this chapter and the processes are further 

discussed in Chapter 7.  
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3.1 Chapter summary 

 

 This chapter describes the analytical methods used in this thesis. It covers 

each method in sufficient detail to (A) justify its use and (B) provide enough 

information for further reading or complete clarification. The chapter is not an 

encyclopaedic instruction into each method used.  Errors are discussed for each 

method. 

 The second part outlines the five overseas fieldtrips during which data were 

gathered for this thesis (Namibia x3, USA and Iceland). The Appendix contains 

additional information regarding the undertaking of fieldwork, logistics and contacts.  

 

3.2 Petrography 

 

 All of the chapters make use of quantitative petrographic analyses of thin-

sections using a polarising light microscope.  

 Most of the analyses were carried out on cover-slipped 30 μm thick thin-

sections that were stained for carbonate and potassium feldspar identification. Some 

work has been undertaken on 30 μm thick polished thin-sections which were not 

stained. The polished thin-sections were also analysed using the Hitachi TM-1000 

bench top SEM. Rock chips cleaved from hand specimens not made into polished 

thin-sections were also analysed using the SEM. 
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3.2.1 Thin section preparation  

3.2.1.1 Technicians and labs used 

 The thin sections used in this thesis were prepared by a total of three thin-

section technicians at two laboratories (Dave Sales and Ian Chaplin at Durham 

University and John Coundon).. Ian Chaplin’s initial sections suffered from poor 

staining due to the resins available. These sections were suitable for microscopy, but 

not for image analysis. In all cases, pre-cut rock samples of appropriate size were 

presented to the technician, who followed the usual procedures for modern thin 

section production using epoxy resins (e.g. Allman & Lawrence, 1972). A list of 

commercial thin-section laboratories is contained in the Appendix. 

 

3.2.1.2 Staining 

 

 Detrital feldspar crystals are often difficult to differentiate in thin-section. 

Potassium feldspar is often cleaved along twins such that a simple twin is destroyed 

during erosion and transportation. Both potassium feldspar and plagioclase are 

frequently hydrolysed (Tucker, 2001) and sericitised, giving a dusty appearance that 

makes identification difficult. Most plagioclase feldspars show a characteristic 

polysynthetic twinning, but some do not and show simple Manebach or Carlsbad 

twins (Deer et al., 1996). For these reasons staining is desired. 

 The method followed for staining was that of Wilson & Sedeora (1978). The 

sections were washed with acetone and rinsed with water to remove grease and 

finger prints. The sections were then etched over concentrated HF vapour (49–51 %) 

for 45 seconds. The etching time was chosen based on preliminary tests. The acid 
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was contained within a plastic petri dish, with a hole cut into the lid of the 

dimensions of the area on the thin-section to be etched. The section was then 

immediately immersed in a saturated solution of sodium cobalinitrite for 45 seconds. 

The section was then removed from the sodium cobalinitrite solution and rinsed three 

times in three water baths, the final bath being under a running tap. The sections 

were then dried. The entire procedure was carried out in a fume cupboard using 

standard departmental safety procedures. This process stains potassium feldspar 

yellow. 

 Carbonate staining followed the Dickson method (Allman & Lawrence, 

1972). Thin sections without cover-slips that had already been stained for potassium 

feldspar were etched in 1.5 % HCl for 10–15 seconds. The sections were then 

immersed in the first staining solution (50 ml of Alizarin red S + 1 g of potassium 

ferricyanide in 50 ml 1.5 % HCl) for 30–45 seconds. Following the first solution the 

sections were immersed in the second solution (100 ml of Alizarin red S) for 10 

seconds. Following this, the slides were washed in a series of water baths and dried 

on the hot plate at 50 °C. The Dickson method results in an overall thinning of the 

calcite component of the thin section, from 30 μm to ~ 15 μm. Overzealous etching 

can thin calcite such that under XPL, interference colours can be significantly lower 

than the characteristic 4
th
 order pastel colours (Allman & Lawrence, 1972). See 

Table 3.1 for stain results. 
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Mineral Type Colour after treatment 

Calcite Varying through very pale pink to red 

Ferroan calcite Varying through mauve, purple to royal 

blue 

Dolomite No colour 

Ferroan dolomite Pale to deep turquoise 

 

Table. 3.1. Summary of the colours produced by Dickson’s staining method (from Allman 

& Lawrence, 1972). 

 

3.2.2 Microscopy and petrographical techniques 

3.2.2.1 Point counting 

 

 Much use of point counting has been made in this thesis, largely due to the 

ability to measure a range of phases (feature classes) using the same method so that 

like-for-like comparisons can be made. Point counting was carried out using a Swift 

Model F automated point counting stage on a Nikon Optiphot T2-POL polarising 

microscope using the procedure in Galehouse (1971). It is a standard tool in 

petrographic studies (e.g. Purvis, 1992; Galehouse, 1971), however, it is slow, 

laborious, error-prone and requires specialised equipment (Grove & Jerram, 2011). 

Nevertheless it is a standard tool for the petrographer (e.g. Purvis, 1992; Galehouse, 

1971). Much use of point counting has been made in this thesis, largely due to the 

ability to measure a range of phases (feature classes) using the same method so that 

like for like comparisons can be made. Point counting also requires a high degree of 
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operator control and associated decision-making, which allows the occasional poorly 

impregnated section to be quantified with no less accuracy than the well impregnated 

sections (with a time penalty, however). Analysis of the less well impregnated 

sections was not possible using digital image analysis techniques. 

 Point counting was carried out using a Swift Model F automated point 

counting stage on a Nikon Optiphot T2-POL polarising microscope using the 

procedure in Galehouse (1971).  

 When point counting, both mineral and porosity phases can be considered as 

a mineral phase for the purpose of area fraction measurements (Ehrlich et al., 1984). 

Sources of error during point counting are: (1) Errors as a result of taking systematic 

observations of a thin section and using for areal analysis (Chayes, 1949; Demirmen, 

1971; Galehouse, 1971), this is termed ‘counting error’ or ‘analytical error’ (Chayes 

and Fairbairn, 1951) and is inversely related to the number of points counted. In this 

study, we counted 500 points for each slide, 300 points were recommended as 

sufficient by sedimentologists regularly using point counts (Stuart Jones, Personal 

Communication, 2010), which agrees with the 300 or fewer points that are routinely 

used by other workers in sedimentology (e.g., Purvis, 1992). Therefore 500 points 

comfortably exceeds the general practice, making my data robust. (2) The error 

encountered when using a 2D slice to estimate volume percentage in the hand 

sample, generally termed ‘specimen error’. It arises due to heterogeneity in the hand 

sample that are often not sampled in the thin section (Murphy, 1983) and to 

stereological considerations in converting 2D data to 3D data, where variations in the 

pore size distribution can affect the reproducibility of true 3D from 2D data (e.g., 

Jerram et al., 2009; Mock and Jerram, 2005; Morgan and Jerram, 2006). (3) The 

user-introduced variability commonly termed as ‘operator error’ (Demirmen, 1971) 
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or ‘inter-operator differences’ (Chayes and Fairbairn, 1951). Results obtained by 

multiple operators may disagree due to misidentification of feature classes (mineral 

phases, including porosity), skill of researcher, experience, degree of fatigue, 

psychological state and physical conditions (Griffiths and Rosenfeld, 1954; 

Demirmen, 1972). Data depicting the inter-operator variability in point counting has 

been sourced from the literature (Chayes and Fairbairn, 1951; Griffiths and 

Rosenfeld, 1954; Demirmen, 1972). 

 

 

 Point 

Counting 

(Area %) 

jPOR 

(Area 

%) 

Reason for error 

Counting 

Error (2σ) 

2.5
1 

2.6
3
 

0.039
1
 

 

Result of counting observations being 

an estimate of the true area and not the 

true fraction. 

Operator 

Error (σ) 

3.1
2 

1.2
3 

2.9
4
 

1.2
1
 

 

Misidentification, inconsistent 

identification, mistakes. 

1
This study (Grove & Jerram, 2010) (ten operators, 14 thin sections, porosity), 

2
Griffiths and Rosenfeld (1954) (five operators, three thin sections, quartz area), 

3
Chayes and Fairbairn (1951) (five operators, ten thin sections, quartz area), 

4
Demirmen (1972) (eight operators, five thin sections, limestone constituent) 

Table. 3.2. Comparison of errors between jPOR (Grove & Jerram, 2011) and Point 

Counting. Data sourced from this study and Chayes and Fairbairn (1951); Griffiths and 

Rosenfeld (1954); Demirmen (1972). 
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 Counting error can be estimated using the equations in Galehouse (1971) 

p396 (Fig. 3.1.). In this thesis all point counting errors are plotted at 1σ. Mineral and 

porosity % are all in this thesis are all area %. 

 The inter-operator error is rarely identified in geological studies using point 

counting and is often assumed to be negligible despite its magnitude exceeding the 

often used ‘counting error’, indeed any errors are often not quoted at all in published 

point counts, with common counting values between 200 and 400 (e.g.  Purvis, 1992; 

Stokkendal et al., 2009; Khidir and Catuneanu, 2010). Operator errors in previous 

point count studies by Griffiths & Rosenfeld (1954), Chayes & Fairbairn (1951) and 

Demirmen (1972) are show in Table 3.2. One operator (me) counted all of the 

sections in this thesis, so interoperator error is not plotted on graphs. 
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Fig. 3.1. Graphs showing estimating the point counting error at (A) the 50 confidence 

interval and (B) the 95.5 confidence interval. Note, the error is in actual porosity % not 

% of the observed porosity percentage. 
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Quantification of sandstone compaction 

 Point count data of detrital grains, mineral cements and porosity has been 

used to generate useful parameters to describe compaction during burial (or resulting 

from igneous processes). In this thesis extensive use has been made of the calculated 

Compactional Porosity Loss (COPL) and Cementational Porosity Loss (CEPL), 

which are both described by Lundegard (1992). The calculation of COPL rather than 

simply using the difference between a sandstones original porosity and its present 

minus-cement porosity overcomes the common error of underestimating the 

compaction due to unaccounted bulk volume changes (Lundegard, 1992).  

 

COPL= Pi – (((100 - Pi) * Pmc) / (100 - Pmc)) 

CEPL= (Pi – COPL) * (C/Pmc) 

 

Where Pi is the depositional porosity, C is the proportion of pore-filling cement, Pmc 

is the minus-cement porosity which is calculated from the sum of C and the total 

optical porosity (TOP). 

 The introduction of an assumed depositional porosity introduces additional 

error because of natural variability of depositional porosity in sediments. 

Depositional porosities used in this thesis are from Pryor (1973) and are based on 

direct measurements of unburied natural sediments. The average depositional 

porosity and average standard deviation were used (Pryor investigated multiple 

localities) for each environment (fluvial sand bar and aeolian sand dune). 

 A depositional porosity of 49 % and a standard deviation of 2.6 % porosity 

was used for Aeolian sand. A depositional porosity of 45 % and standard deviation of 
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2 % porosity was used for fluvial sediments. Where the depositional porosity could 

be measured directly, that figure was used (see Chapter 5).  

 This uncertainty was propagated through the COPL calculation such that the 

uncertainty given graphically through this thesis factors in the uncertainty due to 

point counting and the uncertainty due to natural variability in depositional porosity. 

Note well that Lundegard (1992) states that the error is equal to the error in porosity 

determination; the error I report is therefore greater than the error Lundegard would 

report for the same data.  

 

Control Sample 

Sample NG52 was deliberately collected in the 2011 field season in Namibia as a 

reference background sample with which to compare other samples. NG 52 has a 

porosity of 12.4 % (± 1.5 %). This sample is considered representative of the 

background red Twyfelfontein Formation sandstone away from igneous related 

diagenesis. This sample was carefully chosen with this in mind. Petrographical and 

geochemical parameters are referenced for comparison purposes to NG52 throughout 

the thesis. 

 

3.2.2.2 Photography 

 

 All photomicroscopy was performed using a Nikon Optiphot T2-POL 

polarising microscope with a trinocular head. A Pentax K7 14 megapixel SLR 

camera attached to the trinocular was used for image acquisition. Images were 

acquired as RAW files and processed for white balance and exposure using Adobe 

Photoshop.  
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 Field photographs were also taken with the Pentax K7 or a Pentax Optio WG-

1 compact camera. 

3.2.2.3 Scanning Electron Microscopy 

 

 A Hitachi TM-1000 tabletop SEM was used for all SEM analyses. Analyses 

were performed on polished thin-sections and on rock chips cleaved from samples 

with an accelerating voltage of 15 keV. The rock chips were cleaned under the tap, 

followed by acetone to remove dust and grease prior to examination. None of the 

samples were coated, all observations being made of un-coated samples. 

 

3.3 Image Analysis 

 

3.3.1 jPOR: Digital image analysis to quantify porosity 

 

 Due to the relatively poor accuracy of point counting as a tool for the 

estimation of porosity, an image analysis solution was developed. The method uses 

free to download software and requires no specialised scientific equipment. The 

intention was to use the method developed to perform rapid and accurate 

measurement of the samples. Despite the method being proved as at least, if not more 

accurate than point counting (Grove & Jerram, 2010). The method was not used 

extensively in the thesis due to variable thin-section blue resin impregnation. This 

made the requirement of operator decision making, aided by microscopic observation 

essential. Nevertheless, this forms an important part of the work undertaken and was 

published (Grove & Jerram, 2011). 
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 The new developments in image analysis have the added advantage that they 

can potentially provide increased capacity to undertake standard measurements, with 

more speed and accuracy than traditional methods. For example, the quantification of 

rock porosity from thin sections impregnated with blue epoxy resin is routine in 

geosciences, and most commonly undertaken with point counting. Total porosity is 

defined as the ratio of void volume (pores) to the bulk volume of a rock and is 

commonly given as a percentage, hence: total porosity = Vp/Vb x 100. Where Vp is 

the pore volume and Vb is the bulk volume (Curtis, 1971).   Porosity is important in 

determining the reservoir properties of a rock (for both aqueous and hydrocarbon 

fluids), and in studies of diagenesis, compaction and evolution of sediments (Curtis, 

1971; Tucker, 2001). A number of techniques exist to quantify porosity including: 

2D texture measurements (e.g., point counting), mercury injection and helium 

injection porosimetry. Measurements made from 2D sections, which form the basis 

of this study, record the porosity as resolvable from an optical image of the sample 

(total optical porosity).  

 Digital image analysis is potentially superior in speed and accuracy over 

point counting because millions of points can be analysed in the sample and this 

leads to far superior datasets. The key to be able to perform accurate digital porosity 

measurements is the ability to generate a porosity threshold image (one which 

separates the porosity-voids from the rest of the objects in the image). Poor quality 

data can arise from the introduction of noise and inadequate or overzealous pre-

processing methods increasing user bias during thresholding. Additionally, existing 

techniques can require very specific software (e.g., costly proprietary software, 

microscope specific software, etc.). 
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 The jPOR method described in this study overcomes these problems by 

streamlining and standardising colour pre-processing by applying our newly 

developed custom 8-bit palette which has been developed in conjunction with the 

jPOR macro for ImageJ (Rasband, 2009). The newly developed macro jPOR.txt has 

been designed to make quick and accurate porosity analysis available to any 

researcher in possession of a personal computer and high resolution colour digital 

images of blue stained thin sections (e.g., those captured from thin sections mounted 

on slide scanners). 

 The jPOR macro offers instructions at each stage so that inexperienced users 

with no prior image analysis experience will find it easy to use. The method uses 

technically non-specific hardware and software which should be familiar to most 

computer users. The jPOR methodology is discussed with advice about image 

preparation, the steps required for analysis and how the macro is installed. Results 

are presented for both point counting and jPOR calculated porosity for the same 

samples, and in the case of the four ‘fell sandstone’ samples He injection is also 

tested. Inter-operator variability is also tested on the same set of samples analysed by 

ten users, this is compared to point counting studies where multiple operators have 

been evaluated. jPOR is supplied with a user guide and the 8-bit paletted bitmap test 

files used in this study (see Appendix). 

 The jPOR macro for ImageJ requires an 8-bit paletted colour image file (a 

bitmap.bmp file works best in the platform independent version). For Petrographic 

Image Analysis (PIA) there must be a direct relationship between pixel colour and 

feature class (the phase of interest, in this case blue resin filling porosity); clearly the 

more straightforward this relationship, the more reliable the procedure becomes. 
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Here we are only interested in two feature classes (porosity and solids in the form of 

grains and pore-filling cements in the rock).  

  The classic method to measure TOP (total optical porosity) using PIA is to 

acquire a digital image of a thin section using an optical microscope combined with, 

for example, an analogue video camera output (Ehrlich et al., 1984) or as technology 

has advanced higher resolution digital cameras (Lamoureux and Bollmann, 2004). 

Previous workers have then separated the image into red, green and blue components 

and threshold a greyscale histogram of an individual channel (Ehrlich et al., 1984; 

Andriani and Walsh, 2002; Crawford and Mortensen, 2009; Dey et al., 2009). The 

image can then be thresholded to a 2 bit image where the class of interest is black 

and everything else is white. The drawback of greyscale thresholding is that the 

contrast between classes of interest can be low, which necessitates contrast 

enhancement and shading correction (Andriani and Walsh, 2002).  Noise within 

grains can also pose problems. Noise from intra-granular texture difficult to 

threshold away from pore space using greyscale images; the best results came from 

the red band, but nevertheless were visually inferior to the jPOR method. When 

using greyscale thresholding methods it is difficult to produce a binary image where 

the pore space class is entirely thresholded without including some intragranular 

noise, thus inaccurately recording the porosity. To remove the noise component, the 

threshold value requires reduction, which also removes porosity, microporosity also 

becomes difficult to distinguish. A simpler and less subjective method using colour 

thresholding has been developed, that requires less pre-processing and removal of 

noise, thereby reducing inter-operator variability 

 In ImageJ (rasband, 1997-1999) free to download software,  the normal way 

of thresholding a 24-bit colour image, using built in tools, is to open it as a 24-bit 
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image and use the built in 8-bit colour conversion tool (Image>Type>8-Bit Colour) 

set to 256 colours. This image can then be thresholded. The conversion creates an 

indexed 256 colour image which is not sorted according to hue; therefore the colours 

representing specific classes are separated by colours which represent other classes. 

Applying a threshold to separate two classes (e.g., all the blues in the image from the 

other colours) clearly will not work as there is no systematic order of colours 

belonging to individual feature classes, as thresholding only works with a block of 

colours that are numbered together in sequence. We have developed a custom 256 

colour (8-bit) palette which forces the grouping of feature classes (e.g., blues) 

enabling ImageJ to threshold porosity based on colour (hue) which can be applied to 

any 24-bit image using common image editing software (Irfan View, Adobe 

Photoshop, Corel Photo Paint). 

 The custom 8-bit palette pre-processing method developed in this study 

addresses the drawbacks of greyscale thresholding porosity calculation methods, 

without the need for complicated filtering or adjustment. jPOR 60 is a custom 256 

colour palette, sorted by hue, and designed to represent a typical blue resin 

impregnated thin section.  

The palette was constructed using Corel Photo-Paint X3 from digital scans of 

blue resin impregnated thin sections. The thin sections chosen to produce the pallet 

were: 1) basaltic hyaloclastites from Iceland, and 2) aeolian sandstone examples 

from Namibia. The hyaloclastite was first chosen because it displayed a full range of 

colours from blue (resin) to dark brown (clays). The large range of naturally 

occurring colours in the hyaloclastite samples used here result from its diverse 

mineralogy. The nature of formation (hydroclastic fragmentation, and quenching of a 

lava flow entering seawater, in this case, Fischer and Schmincke, 1984), subsequent 
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rapid devitrification of glassy rims, and potentially varied burial diagenesis (clay 

transformation and hydrothermal mineralisation) of the basaltic hyaloclastites, 

provided a large number of characteristic minerals to build into the palette (volcanic 

glass, palagonite, illite, chlorite, zeolite, calcite, and unaltered phenocrysts within 

basalt clasts, such as plagioclase and olivine). The sandstone samples were chosen 

because they had a clear representation of porosity impregnating blue resin and are 

composed of quartz colours absent from the hyaloclastite samples. Corel Photo Paint 

was chosen for this operation over other graphics editing programs (Adobe 

Photoshop, Irfan View) because of its ability to generate an optimised palette which 

could be sorted by hue and then manually edited by dragging and colour editing. To 

further aid thresholding, a blank region was built into the palette of 9 colours which 

did not naturally occur in any of the thin sections. The finalised design comprises of 

59 blues which represent blue resin impregnation of pore space, 9 separator colours 

and 188 rock colours. Most of these blues came directly from the hyaloclastite 

sample (40); additional colours (20) were added from other impregnated samples so 

that there was a more complete range to ensure an accurate capture of the porosity in 

the image. The 9 separator colours are all similar bright greens chosen because they 

did not occur in any test images. The 188 colours representing the rock include black 

and white which left 186 colours that were customisable. Initially there were 206 

colours, 20 were taken up by the additional blues, and 2 were taken up by black and 

white. The Corel Photopaint optimised 8-bit palette automatically creates a 256 

colour palette based on the highest percentage of colours in the image (Corel help); 

this was good as a starting point because the processed 8-bit image had the same 

visual appearance as the 24-bit image (Fig. 3.3.). However, it was biased towards 

similar brown colours; there were few light greys and creams which are common in 
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other sedimentary rocks. A proportion of the browns were therefore edited and 

changed into colours sampled from an aeolian sandstone thin section from the 

Twyfelfontein Formation, Namibia (Dickinson and Milliken, 1995; Jerram et al., 

1999, 2000; Mountney et al., 1999). This supplies a palette of colours that best 

represent the types of colour variation we expect to see in a sedimentary thin section, 

when it is represented in an 8 bit colour image. The resulting custom palette (Fig. 

3.3.) was then saved in a variety of formats so that any common graphics editing 

package can be used to apply it to other images, including Irfan View (freeware).  

When the palette is applied to an image the graphics editor will assign pixels 

to the closest colour within the palette, blues will remain blue, but not necessarily an 

identical blue to the 24-bit image, likewise for other colours. While colour 

representation may not be entirely faithful (false colour) class representation is 

faithful, providing no dithering is set. Dithering introduces noise into the compressed 

representation to visually reproduce the image in the 24-bit image. Dithering 

therefore does not preserve areas and must be unselected when applying a custom 8-

bit colour palette to the 24-bit image. By forcing the colours in a thin section image 

to our pallet, one can still see and assess the main sedimentary features, and now all 

the colours are grouped so that an accurate thresholding of the porosity can be 

realised. 
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3.3.2 Procedure 

3.3.2.1 Procedure 1: Digital Image Acquisition 

 

 The aim is to produce a 24-bit colour .tiff image at high resolution of the 

whole sample without distortion. Typically a digital video camera attached to a 

microscope would be used to acquire a digital image directly from the thin section 

(Ehrlich et al., 1984; Tovey and Hounslow, 1995). The problem with this is the 

difficulty in acquiring a low magnification image of the entire thin section without 

distortion towards the edges of the frame. When measuring relative areas across a 

complete 2D sample variable distortion is detrimental to producing accurate results. 

Additionally, depending on the grain size of the sample, a larger region of interest 

may be required (e.g., whole thin section image), which can be difficult to achieve 

from a microscope. It is acknowledged that sophisticated systems exist that correct 

for image distortion and some examples of microscopes can capture large areas of 

thin sections but for the most part these are specialised systems that may not be 

available to many potential users.  

 In order for jPOR to conform to the ease of access and use principle, we 

chose to explore the capture of thin section images using scanning techniques. The 

method of De Keyser (1999) provides a rapid, cheap, and effective method of 

overcoming and circumventing the use of conventional light microscopy. The 

method used a Nikon LS-2000 digital film scanner capable of a 2700 dots per inch 

(dpi) resolution to directly capture an image of a standard size petrographic thin 

section.  Our method is adapted from De Keyser’s (1999) method to work with the 

Minolta Scan Elite II digital film scanner capable of 2820 dpi resolution. We have 

also experimented with the Epson Expression 1680 Pro flatbed scanner which is 
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designed to scan transparencies at 3200 dpi. The Epson flatbed scanner produced 

acceptable results, the drawback was the fixed dual-focus mechanism which made 

acquiring images as sharp as the Minolta 35 mm film scanner difficult. In order for a 

flatbed scanning system to work with a thin section the light source must be able to 

be transmitted through the sample (not reflected) which makes the slide scanners 

ideal for this type of capture, and limits the choice of multipurpose flatbed scanners 

to those with a top down light source. 

 

 

Fig. 3.2. Flowchart of total optical porosity (TOP) calculation using jPOR, from Grove 

& Jerram (2010). 
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3.3.2.2 Scanning 

 

 The most straightforward and most effective method of acquiring digital 

images for the jPOR porosity measurement method is to use a conventional 35 mm 

film scanner such as the Minolta Scan Elite II, which was used. Like the Nikon LS-

2000 scanner used by De Keyser (1999), the Minolta Scan Elite II comes equipped 

with several adapters used for different sized slides. This method uses the adapter 

designed for 35 mm negative strips (of six exposures). The first stage is to open the 

adapter and place the thin section slide face up into one of the central slots (either ‘3’ 

or ‘4’) with the area to be digitised aligned with the window. The adapter is then 

closed and snapped shut. One slide may be scanned at a time because the elasticity of 

the plastic adapter is relied on to accommodate the glass slide.  The adapter is then 

loaded into the scanner which will automatically grab the adapter after about 2.5 cm 

of insertion. The third stage is to acquire the image using the software bundled with 

the scanner. Images should be scanned at maximum resolution (2820 dpi) and saved 

as .tiff files. Prior to completing the final scan, a preview image should be reviewed. 

We have found that applying the auto focus function and increasing the colour 

saturation necessary to best reproduce the blue epoxy filling the pore spaces. The 

procedure is simply repeated for each sample, maintaining settings throughout the 

batch, typically taking around 2 minutes per sample. The functionality of the slide 

scanner and its software should be considered when using different systems; the 

ability of the scanner to be focused on the image is clearly a desirable to produce 

sharp images for porosity analysis.  
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3.3.2.3 Photomicroscopy 

 

 Low magnification photomicrograph images can be analysed by jPOR. The 

microscope should be used on the lowest magnification available and the recorded 

image resolution set to the highest setting. Photomicrographs on traditional colour 

transparency film or negative film can also be digitised for jPOR analysis. When 

acquiring images using conventional photomicroscopy researchers should be aware 

of the potential disadvantages compared to the method outlined in 3.1.1, and where 

possible use microscopy equipment designed to record high resolution colour images 

corrected for edge distortion. 

 

3.3.3 Procedure 2: Pre-processing 

 

 Pre-processing prepares the digital image of the thin section for the jPOR 

macro in ImageJ. The image is trimmed and converted to an 8-bit paletted .bmp or 

.tiff, the development of the custom palette has already been discussed in 2.2. 

Alternatively each image can be converted to an 8-bit paletted file with its own 

custom optimised palette; this will require much more user biased thresholding 

within ImageJ. Successful pre-processing can be achieved in the freeware program 

IrfanView as well as common image editing programs such as Adobe Photoshop or 

Corel Photo-Paint, a method for all three is described:  

 

1. Open image in chosen image processing software (Corel Photo Paint, Adobe 

Photoshop or IrfanView) 
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2. Crop image to make a rectangle only comprising of sample (i.e., no slide mounting 

or edges). 

3. Convert to an 8-bit paletted file using the provided custom palette. Make sure that 

no dithering is set. The image may look slightly unnatural, but the area of porosity 

will be preserved, albeit with fewer colour values. 

3a. In Corel photo paint: Image>Convert to Paletted 8-bit...>Palette set custom, open, 

navigate to the palette file-OK-set dithering to none-OK. Within the ‘Convert to 

Paletted 8-bit’ box there is the option to run this as a batch. All files within the batch 

must be open. 

3b. In Adobe Photoshop: Image>Mode>Indexed Colour. Set ‘Palette’ to ‘Custom’ 

and you will be presented with a new window- click load and navigate to the custom 

JPOR palette (JPOR_60) and click load- OK this operation. Set dither to none under 

Indexed Colour options and click OK. The image will now be an 8-bit paletted file. 

This can be automated by recording the action then playing it via the 

Automate>Batch tool. 

 

3c. In IrfanView: Image>Palette>Import Palette>navigate to palette-open.  

 

4. ImageJ works best with .bmp images whereas the occasional .tif image will fail to 

be displayed. Therefore we recommend conversion to .bmp format. This can be done 

as a batch in Adobe Photoshop and Corel Photo-Paint. Images within a ‘batch’ must 

then be placed in a dedicated folder. 
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Fig. 3.3. Ai) 24-Bit cropped colour scan of PL12 each pixel is one of 14 million possible 

colours, described by RGB value. Aii) 24-bit PL12 RGB values plotted for each channel, 

traditional methods would threshold the red histogram. Aiii) Image of  outside face of 

RGB cube showing R,G,B corners, courtesy of Steve Sangwine (2010) this wraps 

around cube labelled with RGB corners, white, black and CMY (after Kang 1997). Bi) 

8-bit paletted image with jPOR60 palette applied. Note visual appearance very similar 

to 24-bit image. Biia) Image in Bi is composed of pixels with colours chosen from 256 

colour palette, each colour has RGB value shown by red, green and blue lines. Biib) 

Histogram of number of pixels, for each jPOR 60 colour. Biic) Arrangement of porosity 

forming colours, enabling segmentation using ImageJ Threshold tool. Biii) 16x16 grid of 

jPOR60 palette, porosity separated from rock colours 9 green colours. From Grove & 
Jerram (2010). 
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3.3.4 Procedure 3: using jPOR to calculate porosity in ImageJ 

 ImageJ is a public domain image analysis software designed to be adapted for 

different roles. The ‘freedom’ of the ImageJ package is the cornerstone of jPOR. 

Once ImageJ has been installed, the jPOR macro requires installation. For jPOR to 

run on ImageJ startup replace the file StartupMacros.txt in the ImageJ macros folder 

with StartupMacros.txt distributed with jPOR. When jPOR is installed like this, a 

clickable jPOR icon will appear in the ImageJ menu bar. Alternatively jPOR can be 

installed after ImageJ startup by going to Plugins>Macros>Install… then navigating 

to jPOR.txt and clicking ‘open’.  

 

 

Fig. 3.4. Workflow using jPOR macro within ImageJ. Screenshots are shown for key 

operations. From Grove & Jerram (2010). 
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 To run jPOR click the jPOR icon located in the top right corner of the ImageJ 

menu. This will open a window where the first file in a batch can be located, open 

the first file in the batch. jPOR will then prompt to press F1 to begin porosity 

measurement. Pressing F1 automatically thresholds the image using the default 

values, and displays the threshold command box where the threshold level can be 

manually adjusted to refine the porosity selection. The built in ImageJ zoom tool can 

be used at any stage. When the porosity selection is satisfactory press F2, which will 

perform the area calculation of the thresholded pixels and append it to the results 

table. The ImageJ threshold window has a button labelled ‘Auto’, this button is not 

for jPOR default.  jPOR then prompts to press F3 to load the next image within the 

batch from where the process is restarted (F1, F2, F3, F1., etc.). When the processing 

of a batch is complete, F5 should be pressed which closes redundant windows and 

copies the results table to the clipboard for pasting into a spreadsheet. The jPOR 

workflow is illustrated in Figs. 3.4, 3.5 and 3.6. It should be noted that jPOR will 

work through the batch files in a loop and so will re-open the first file that you 

analysed once you have gone through all the files in the batch, you should press F5 at 

this point to avoid re-analysing the same sample. 
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Fig. 3.5. Enlarged sections (10x and 50x) of sample in Fig.3.3 showing thresholding to 

binary image of pore space. A) 8-bit un-thresholded B) Red mask during thresholding 

operation covering thresholded pixels C) Binary image product of threshold operation. 

jPOR (default) values have been set. From Grove & Jerram (2010). 
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Fig. 3.6. jPOR workflow after thresholding. 1. Results window and option to finish or 

continue batch. 2. Porosity measurement of second sample. 3. Results output. 

 

3.3.5 Testing jPOR 

 

 The performance of jPOR has been evaluated against point counting and He 

injection porosimetry. Additionally the series of test images have been evaluated by 

ten different users to measure the inter-operator variability of the technique. The 

object is to compare point counting with jPOR to show that the latter method is at 

least as precise and accurate. When point counting porosity can be considered as a 

mineral phase for the purpose of area fraction measurements (Ehrlich et al., 1984), 
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sources of error during point counting and PIA are the same as those encountered 

when counting mineral proportions. In this test, we counted 500 points for each slide, 

The number of ‘points’ counted by jPOR equals the number of pixels in the image, 

therefore dramatically reduces the analytical error as described above. The maximum 

image size encountered in our test samples was 3 983 252 pixels and the minimum 

was 957 269 pixels, which can be considered as the number of points analysed in 

comparison to the 500 used for point counting. The inter-operator variability for the 

jPOR method has been tested in the present study by ten different operators (termed 

Researcher 1, 2... 10). Results are presented in Table. 3.3 and Fig. 3.7. 

 Counting errors were calculated at the 95.4% confidence level (2σ) using the 

equations in Galehouse (1971) p396. 500 points were counted for each thin section 

which produced counting errors of between +/- 0 and +/- 3.8 %. Using the same 

equation errors calculated for jPOR were between +/- 0.002 and +/- 0.05 % (smaller 

than graph points so not plotted). For point counting the only variable (as 500 points 

were counted for each sample) was the percent porosity hence the counting error 

reflects that. Where zero porosity was counted the error is zero. jPOR has two 

variables as the number of ‘points’ counted depends on the image size( here between 

3 983 252 and 957 269) and the percent porosity, the increase from 500 points to the 

large numbers of pixels within our prepared images is responsible for the decrease in 

counting error from a maximum of 3.8 % (point count) to 0.1 % (jPOR). 

 Tests between multiple operators showed a mean inter-operator variability of 

3.5 %. The maximum inter-operator difference of 7.8 % which was on sample 

FellSstA. Nine out of fourteen samples had differences between researchers of less 

than 3.8 % (within the counting error of point counting). In this study the mean 

standard deviation between operators over the 14 sections was 1.2 %. For point 
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counting the inter-operator variability is generally considerably higher than between 

operators using jPOR. In the three studies we have used from the literature (Chayes 

and Fairbairn, 1951; Griffiths and Rosenfeld, 1954; Demirmen, 1972) the mean 

inter-operator variability was 6.4 % with a maximum of 12.2 %. The mean standard 

deviation between operators in the three studies was 2.3 % (Chayes and Fairbairn, 

1951; Griffiths and Rosenfeld, 1954; Demirmen, 1972). The inter-operator error is 

rarely identified in geological studies that use point counting and is often assumed to 

be negligible despite its magnitude exceeding the often used ‘counting error’, indeed 

errors are often not quoted at all in published point counts, with common counting 

values between 200 and 400 (e.g.  Purvis, 1992; Stokkendal et al., 2009; Khidir and 

Catuneanu, 2010). 

 The sample set used was the PL (Ponded Lava) thin-sections. The sections 

used in the jPOR test were unstained, un-coverslipped thin-sections. The thin-

sections used in Chapter 4 are stained and coverslipped. The preparation difference 

accounts for the difference in point count values between Table 3.2 and the reported 

results in Chapter 4. 
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Table. 3.3. jPOR test results. 

 

 Most jPOR results fall within the 95.4 % counting error bars for those from 

point counting in the same samples. The mean jPOR value was always within the 

point count counting error and the jPOR 60 (default) value was within the point 

count counting error for 13/14 samples. The difference between jPOR 60 (default) 

and point counting was between 0.0 % and 4.0 % over the 14 sample thin sections 

with a mean difference of 1.4 % with a standard deviation of 1.2 %. The difference 

between the mean jPOR porosity value (10 researchers) and point counting ranged 

from 0.0 % to 3.3 % with a mean difference of 1.2 % and a standard deviation of 1.1 

%. The comparison of jPOR 60 (default) with mean porosity values of the ten test 

researchers produced a good correlation (R2= 0.9923) with a mean difference of 0.6 

%. The porosity measurements achieved by using jPOR can be considered as 

providing the most statistically robust compared to point counting, and considering 
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its speed and ease of use, a vast improvement to the way in which we routinely 

measure porosity from blue stained thin sections. 

 

 

 

Fig. 3.7. Compilation of results graphs. (A) shows porosity vs. Sample for each of the 10 

researchers (grey dashed lines with open markers), He injection porosity (solid triangle 

marker), jPOR60 (solid diamond marker). Point count (double cross marker) and mean 

PIA (solid square). (B) shows PIA vs. Point count with the same symbology as (A). 

Counting errors at the 2σ confidence level are for point count data. (C) Mean PIA vs. 

jPOR60 (D). Point count vs. jPOR 10 Researcher average. 
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3.3.6 jPOR test Conclusions 

 

 Porosity measurement using jPOR combined with the jPOR 60 custom 

palette makes an effective, accurate and easy method of measuring total optical 

porosity. The use of the custom 8-bit palette makes it possible to accurately threshold 

pore space from a rock based on hue rather than a single RGB greyscale channel. 

The calculated counting errors at the 95.4 % confidence level for point counting were 

higher than jPOR, as expected due to the vastly superior number of points counted 

with jPOR (whole image). Both methods (jPOR and point counting) have an inherent 

element of operator error defining porosity.  The inter-operator variability using the 

jPOR method was less than point counting, probably due to the fact that the whole 

slide can be viewed in our process, making comparison within the slide possible 

before a threshold decision is made; this is impossible while point counting. 

 PIA calculated porosities generally agreed with point counting (within (2σ) 

point count counting errors), even with user variability between the ten researchers. 

The mean value of the ten researchers agreed well with the point counting values 

suggesting that the actual porosity of the rock was well defined by both methods. The 

fully default jPOR 60 values also produced good results compared with point 

counting. The similarity between jPOR 60 (default) and the mean value of the ten 

test researchers leads to the conclusion that running jPOR 60 without user action at 

the thresholding stage will produce results as good as point counting but with a 

smaller counting error and if run automatically with the default setting no operator 

variability (by definition) (Table 3.1.). Even if operator error is introduced by manual 
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adjustment during thresholding we have shown that to be less than the operator error 

routinely encountered while point counting. 

 

3.3.7 Summary 

 

 The jPOR method is a significant step-forward and the paper has had 6 

citations to-date, three of which directly use the method to estimate the porosity 

reported within the publication. The other three draw upon work relating to accuracy 

and statistics within the paper.  

 

3.3.8 Other image analysis ideas 

 

 The basic jPOR custom palette and thresholding techniques have been 

developed into methods to extract additional petrographic parameters. For instance a 

complex workflow was developed to measure pore throat diameters, which is 

currently under testing in collaboration with Prof. Rodrigo Bagueira De V. Azeredo 

in Brazil. 

 Given the basic thresholded image, many parameters can be generated, 

including shape descriptors and orientation descriptors. These may be of use in future 

sedimentological analyses.  
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3.4 X-Ray Diffraction 

3.4.1 Brief outline of theory 

 

 Physicists Sir W. H. Bragg and his son Sir W. L. Bragg developed a 

relationship in 1913 to explain why the cleavage faces of crystals appear to reflect X-

ray beams at certain angles of incidence (2θ). The variable‘d’ is the distance between 

atomic layers in a crystal, and the variable λ is the wavelength of the incident X-ray 

beam; n is an integer. The Bragg’s observation is an example of X-ray wave 

interference (http://web.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf). 

 

Bragg’s Law:  

 

nλ= 2d sinθ  (1) 

 

 Understanding Bragg’s law, with the use of an X-ray diffractometer, allows 

the detection of the ‘d’ spacings of planes within unidentified minerals. The 

comparison of measured d-spacings with known standards therefore allows 

identification of the mineral species, or species contained in a mixed sample. 

 For a full account of the development of the XRD technique and laboratory 

methods see Moore & Reynolds (1989). 

 The library of standard d-spacings used here is the one held by the 

Mineralogical Society of America, which includes the 3803 recognised minerals in 

their database (http://www.handbookofmineralogy.org/search.html?p=all). 
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3.4.2 Labs and equipment 

 

 All XRD analyses were carried out on the Bruker D8 diffractometer in the 

Department of Chemistry, Durham University. The D7 uses 1.5406 Å wavelength 

copper (Cu) K-Alpha 1 radiation.  

 Each sample was analysed using coupled detector and source shutter drive, 

starting at 2.0 ° 2θ and traversing to 90 ° 2θ with a step size of 0.02 ° 2θ. A knife 

blade was also used as recommended by regular users of the equipment. The output 

was then graphed in Microsoft Excel, where peaks were compared with the standards 

(http://www.handbookofmineralogy.org/search.html?p=all). No quantitative 

measurement was undertaken; XRD was purely used to identify minerals. Spectra 

were corrected to the quartz 100 peak (26.67 ° 2θ). 

 

3.4.3 Sample preparation 

 

 As no quantitative measurement was required, samples were prepared using 

the oriented slide method, where minerals are allowed to settle, maximising the 

exposure of the basal reflections. Basal reflections of clay minerals are especially 

diagnostic of the mineral species (Gibbs, 1971). The exact method followed the 

advice and recommendations of Samantha Clark and Leo Newport (PhD students at 

Durham University). 

 Samples were lightly crushed by hand to a powder in an agate pestle and 

mortar, with care taken not to over-crush. Samples were then sieved (60 μm mesh) 

onto a special glass slide (designed to fit the diffractometer) which was pre-coated 

with a thin film of petroleum jelly.  The petroleum jelly stops the powder blowing 
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off. Excess powder was removed from the slide by tapping on the bench. At this 

stage samples were directly loaded into the sample stage of the diffractometer and 

run according to the settings in 3.4.2. Only bulk rock samples were analysed, no clay 

separates were run. 

 

3.5 X-Ray Fluorescence 

3.5.1 Brief outline of theory 

 

 X-ray fluorescence spectrometry (XRF) is based on the excitation of a sample 

by X-rays. A primary beam excites secondary X-rays which have wavelengths 

characteristic of the elements present in the sample (Rollinson, 1993). The intensity 

of the secondary X-rays is used to determine the concentrations of the elements 

present by reference to calibration standards (Rollinson, 1993). 

 

3.5.2 Labs and Technicians and procedure used 

 

 Powdered samples were sent to Dr Nicolas Odling, School of Geosciences, 

University of Edinburgh for analysis. The method followed was as follows (personal 

communication N. Odling, 2012): 

 

 “Major element concentrations were determined after fusion with a lithium 

borate flux containing La2O3 as a heavy absorber by a method similar to that of 

Norrish and Hutton (1969).  Rock powder was first dried at 110°C for at least 2 

hours, and a nominal but precisely weighed 1g aliquot ignited at 1100°C for 20 
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minutes to determine loss-on-ignition (LOI).  The residue was then mixed with 

Johnston-Matthey  Spectroflux 105 in a sample: flux ration of 1:5 based on the un-

ignited sample mass and fused at 1100°C in Pt5%Au crucibles in a muffle furnace.  

After initial fusion the crucible and contents were re-weighed and any flux weight 

loss made up with extra flux.  After a second fusion over a Meker burner, the 

mixture was thoroughly mixed by repeated swirling and cast onto a graphite mould 

and flattened into a thin disc using an aluminium plunger, both kept at 220°C on a 

hot plate. 

 Trace element concentrations were determined on pressed powder pellets.  

Eight grams of powder were mixed with 8 drops of a 2% solution of polyvinyl 

alcohol.  The mixture was then backed and surrounded by a 0.5mm thick 

aluminium cup and formed into a 40mm diameter disc by pressing against an 

40mm diameter polished tungsten carbide disc at a load of 0.6 tonnes/cm2.  

The fused and pressed samples were analysed on a Phillips PW2404 automatic X-

ray fluorescence spectrometer with a Rh-anode X-ray tube.  Corrections for matrix 

effects on the intensities of major element line were made using theoretical alpha 

coefficients calculated on-line using Phillips software.  The coefficients were 

calculated to allow for the amount of extra flux replacing volatile components in the 

sample so that analytical totals should be 100% less the measured LOI. Intensities of 

the longer wavelength lines ( La, Ce, Nd, Cu, Ni, Co, Cr, V, Ba and Sc) were 

corrected for matrix effects using alpha coefficients based on major element 

concentrations measured at the same time on the powder samples. Matrix 

corrections were applied to the intensities of the other trace element lines by using 

the count rate from the Rh K alpha Compton scatter line as an internal standard.  

Line overlap corrections were applied using synthetic standards. The spectrometer 
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was calibrated with a range of USGS and CRPG standards using values given by 

Govindaraju (1994)” 

 

 Detection limits (ppm) reported were as follows: 

 

 

Zn Cu Ni Cr V Ba Sc La Ce 

0.7 0.8 1.0 1.4 2.5 3.6 0.9 1.7 2.2 

Nd U Th Pb Nb Zr Y Sr Rb 

1.4 0.4 0.4 0.5 0.1 0.4 0.3 0.3 0.3 

 

Zn Cu Ni Cr V Ba Sc La 

0.7 0.8 1.0 1.4 2.5 3.6 0.9 1.7 

Ce Nd Sr Rb Th Pb Nb Zr 

2.2 1.4 1.3 1.4 0.4 0.5 0.1 0.4 

Sr Rb U Y     

0.3 0.3 0.4 0.3     

 

Table. 3.4. XRF detection limits reported. 
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3.6 Stable Isotope Geochemistry 

3.6.1 Brief outline of theory 

 

 Most naturally occurring elements exist of more than one stable isotope 

(Rollinson, 1993). The total number of naturally occurring stable isotopes for the 

elements varies from 10 for tin (Sn) to 0 for 21 elements that only consist of one kind 

of atom (i.e. a nucleide with no ‘isotopes’, Brownlow, 1996). In elements with an 

atomic mass less than 40, it is possible for the isotopes to be fractionated through 

physical processes as a consequence of the mass differences between isotopes 

(Rollinson, 1993). Of these elements, hydrogen, oxygen, sulphur, carbon and 

nitrogen have the necessary properties for extensive use in geological studies 

(Rollinson, 1993; Brownlow, 1996). Chemical, physical and biological processes can 

cause fractionation (change in relative abundance) of the isotopes of an element. This 

results in small isotopic differences in various compounds (Brownlow, 1996). 

Physical processes such as diffusion or evaporation are important, but more 

significantly, chemical and biological reactions are important (Rollinson, 1993; 

Brownlow, 1996).  

 The fractionation of an isotope between two substances A and B can be 

defined by the fractionation factor α: 

 

αA-B= ratio in A/ ratio in B  (2) 

 

For example, where 
18

O and 
16

O are exchanged between water and calcite, the 

fractionation of 
18

O/
16

O between water and calcite is expressed as 
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αwater-calcite= (
18

O/
16

O) in calcite/ (
18

O/
16

O) in water  (3) 

 

 Normally exchange reactions are written so that only one atom is exchanges, 

in which case α= the equilibrium constant (K) (Rollinson, 1993).  

 When stable isotopic data for both oxygen (δ
18

O) and carbon (δ
13

C) are 

combined, they form a powerful means of distinguishing carbonates of different 

origins, different carbonates plotting as fields and showing characteristic trends 

(Rollinson, 1993).  

 This thesis makes use of both oxygen and carbon stable isotopes, both 

together and using the fractionation of oxygen between calcite and water to model 

precipitation temperatures and water compositions (e.g. Rollinson, 1993, p. 286; 

Brownlow, 1996, p 96) using the equation (Rollinson, 1993; Brownlow, 1996): 

 

1000Lnα= A + B (10
6
/T

2
)  (4) 

 

Where A and B are the fractionation constants (from O’Neil, 1986, listed in 

Rollinson, 1993) and T is temperature. Lnα is calculated using equation 3.  

 

3.6.2 Sample preparation and mass spectrometry 

 

 Forty-two samples were successfully analysed for oxygen (δ
18

O) and carbon 

(δ
13

C) stable isotopes of the calcite component. Samples were selected based on a 

point count calcite threshold of 3 %. Some of the chosen samples failed to yield 

sufficient CO2 during analysis and were rejected. 
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 About 10 g of each of the chosen samples were crushed with an agate mortar 

and pestle. Based on the point count, a quantity was then measured for a yield test (as 

advised by Joanne Peterkin, the lab manager). The yield test then determined the 

actual amount required for the analysis, these are reported in the Appendix. 

 Once the samples had been weighed, the stable isotope analysis was 

conducted at the University of Durham using a Thermo-Finnigan (Bremen, 

Germany, now Thermo Fisher Scientific) MAT 253 Isotope-Ratio Mass 

Spectrometer with Gasbench II, external precision of ca. 0.05–0.10‰. Samples were 

dissolved in up to 40 drops of orthophosphoric acid (H3PO4) under helium (grade 5) 

atmosphere. The solution was left to digest at 50 °C for 2 hours. The resultant gas 

mixture (CO2 and He) was introduced to a gas chromatographic column and the CO2 

separated from the mixture. After passing through water traps the analyte was 

introduced to the mass spectrometer.  Each batch of sample powders were run with 

11 to 16 standard powders (depending on batch); NBS18 (Carbonatite), NBS19 

(Limestone) and two internal standards DCSO1 and LS VEC. Normalisations and 

corrections were made to NBS19 and LS VEC. Isotope ratios are reported in 

standard delta notation relative to the Vienna Pee Dee Belemnite (‰VPDB) 

standard. The external analytical precision for both δ
13

C and δ
18

O is better than 

0.1‰. Samples were run by Joanne Peterkin. 8 samples were run by Chris Harris at 

the University of Capetown, South Africa, these were included where a later repeat 

was not done at Durham (indicated in Appendix). 
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3.7 Fieldwork 

3.7.1 Namibia 

 

 The main field area was the Huab Basin, Kunene Region, NW Namibia (see 

Chapter 2, Chapter 4, Chapter 6 and Chapter 7). Three field trips were conducted to 

Namibia one each in 2009, 2011 and 2012. The first trip (September 2009) 

consisted of 2 weeks in Namibia, undertkaing reconnaissance fieldwork on the main 

outcrops in the field area with Dougal Jerram (leader) and a group from Germany 

lead by Dr Bob Trumbull. Flights were SAA from London Heathrow to Windhoek 

via Johannesburg. Transport in Namibia was by 4x4, with all logistics arranged by 

Dougal Jerram. 2 vehicles were used. 

 The second trip was of 6 weeks duration and was led by myself in July and 

August 2011. Accompanying as field assistant was Tim Watton, Samantha Clark (1 

week) and Victoria Gee (2 weeks). Richard Brown supervised for the first 2 weeks. 

Flights were with SAA on the same route as in 2009. Accommodation in Windhoek 

was at the property of the Karl Steiner, 72 Berg Strasse, Windhoek. Transport into 

the field was by 4x4 and camping was wild. The vehicle was rented from Avis car 

rentals. Resupply was made at Uis and Swakopmund. Accommodation in Uis was at 

the Brandberg Rest Camp and accommodation in Swakopmund was at the hotel 

Gruner Kranz (Swakop Lodge). This was the main sampling trip. Samples from this 

trip are prefixed by NG. 

 Recent rains had increased vegetation in the field area such that route finding 

was difficult, routes and tracks used are appended to the (1:50k) map in the 

Appendix. Entrance to the field area was made via Brandberg West mine and the 
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Rhino camp from the south and from the Doro Nawas Camp road and the Aba-Huab 

river or Fontein Farm from the north.  

 The guidance of Dr Gabi Schneider of the Geological Survey of Namibia was 

most encouraging and was valued. 

 The third trip was of 2 weeks duration and was led by Dougal Jerram in 

September 2012. The trip was in association with a group from Brazil led by Breno 

Waichel. Logistics were arranged by Dougal Jerram, 4x4 vehicles were rented from 

Advanced 4x4, Windhoek. Two vehicles were used. Accommodation was in the 

same as in 2011. Follow-up samples were taken to supplement the 2011 samples. 

These samples are prefixed by NG/12-. 

 Entry to Namibia was by way of a research visa, which was easily obtained 

from the Namibia High Commission, London with appropriate letters from Durham 

University. Sample export was by permission of the Ministry of Mines and Energy, 

Namibia in fulfilment of the Namibian Section 127 of the Minerals (Prospecting and 

Mining) Act, No. 33 of 1992 (form attached to Appendix). The rock export was a 

straightforward process with the support of Gabi Schneider once satisfied of the 

quantity and destiny of samples. Rocks from the 2011 field season were airfreighted 

to Newcastle Airport with Transworld Cargo. Rocks from the 2012 field trip were 

taken as hold luggage on SAA. 

 A list of contacts in Namibia is in the Appendix. 

 

3.7.2 Iceland 

 

 The field trip to Iceland was for one month duration in June–July 2010. The 

trip was with Tim Watton (leader), who organised logistics. Flights were from 
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London Heathrow to Reykjavik. Transport was by car (4x4 Subaru). 

Accommodation was camping. Thor Thordarson took us to the area of the Langjokul 

in the interior and lent a Toyota 4x4 for the final part of the trip. Samples from this 

trip have the prefix IG. Rock export was by sea. 

 

3.7.3 USA 

 

 The fieldtrip to the USA was organised by Tim Watton (leader) and was 

conducted in June–July 2011 for one month duration. The areas visited were the 

Columbia River Flood Basalts and the Snake River basalts. Flights were from 

Newcastle to Portland, Oregon, via Amsterdam on Delta Airlines.  

 Transport in USA was by 4x4 rented from Alamo and accommodation was 

camping, usually in State Park campgrounds, although sometimes wild as conditions 

dictated. Supplies were purchased in Walmart. Samples collected are prefixed USG. 

Rock export was via the US postal service as parcels from the Portland Airport 

office. 

 The first week of the trip was supervised by Richard Brown. Guidance in the 

USA was provided by Terry Tolan, Bill Bonnichsen, Martha Godchaux, and Dennis 

Geist. 
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4 
Diagenesis at lava-sediment contacts in an arid 

palaeoenvironment, the Twyfelfontein 

Formation, Namibia. 
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4.1 Chapter summary 

 

 This chapter aims to fully characterise the nature and intensity of the direct 

diagenetic effects of basaltic lava flows on a dry, high depositional porosity, mature 

sand. Ideas investigated are the impact of increased heat, sudden loading and the 

effect of volcanic volatiles on the development of porosity and permeability in the 

sandstone.  

 The diagenesis in the sandstone that forms the substrate for the emplacement 

of lava flows is characterised by increased compaction porosity loss (COPL) 

compared to the background by ~10% in addition and a zone of calcite cementation 

restricted to high porosity grain flow horizons at contacts, but sometimes beyond the 

zone of maximum compaction, until background porosity is returned. Calcite is 

poikilitic in grain flow horizons at contacts, but is restricted to replacement and then 

partial replacement of plagioclase further below the lava. Increased compaction and 

cementation are no longer apparent at a distance below the lava flow dependent on 

the thickness of the flow. 

 Two case studies are presented for sandstone that has been drowned by the 

Tafelkop basalt lava flows. The Tafelkop lavas at the case study locations are a 

compound type lava. Three case studies are presented for sand that has been drowned 

by Tafelberg type lava. The Tafelberg flows are large tabular lava flows. 

 Petrography, X-Ray diffraction, whole rock major element and whole rock 

trace element (X-Ray fluorescence), stable isotope geochemistry (δ
18

O and δ
13

C) and 

petrophysical measurements (probe permeability and Hasler sleeve (conventional 

permeability) are used. 
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4.2 Diagenesis of the Twyfelfontein Formation, Namibia at lava 

contacts 

4.2.1 Dune Valley  

 Two case studies are presented from a valley to the SW of Awahab Mountain 

(1342 m) informally named ‘Dune Valley’ due to the large number of isolated 

barchans sand dunes within the Tafelkop-Interdune Member basalts (Jerram et al., 

1999a). The case study aeolian sand dunes were both drowned by the low titanium, 

olivine-phyric Tafelkop-type compound pāhoehoe basalt lavas (see Chapter 2; 

Jerram et al., 1999a; Milner et al., 1994; Milner & Ewart 1989; Ewart 1998) which 

were compound pāhoehoe type lava flows (see 2.1.1.1). 

 The first case study is the uppermost of a sequence of three stacked isolated 

dunes encapsulated by Tafelkop type basalt (Fig. 4. And Fig. 4.2A.). The second is 

an individual isolated dune (Dune 16) located 1.7 km to the SE of the ‘three dunes’ 

outcrops. Both case studies are at 840 m altitude. Samples were taken at intervals 

below the upper lava contacts at each of these dunes and above the basal contact for 

the upper dune of the three dunes outcrops where it was exposed (Fig. 4.2; Table. 

4.1.). 

 

Fig. 4.1. Map of Dune Valley showing case studies presented for direct contact 

diagenesis. 3 Dunes outcrops and Dune 16 (Dune B) are indicated and are both ‘red’ 

dunes. Contour interval is 10 m. 
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Fig. 4.2. Photographs of (A) 3 dunes case study and (B) isolated dunes (KTyID) with 

Dune 16 (Dune B) indicated. These two case studies can be seen to be red dunes; the 

alternative ‘white’ dunes discussed elsewhere are also visible in photograph B. 
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Upper 

Dune 

Sample 

20° 38.949 

S 

14° 

07.643E 

Distance 

Below(m) 

Porosity 

(%) 

1 

sigma 

error 

Dune 16 

sample 

20° 39.350 S 

14° 08.541 E 

Distance 

Below(m) 

Porosity 

(%) 

1 

sigma 

error 

NG5 0.0 0.0 0 NG31 0.0 0.6 0.3 

NG7 0.18 7.8 1.2 NG/12-

12 

0.5 4.6 0.9 

NG6 0.3 12.0 1.1 NG32 1.0 7.6 1.2 

NG8 1.0 16.6 1.7 NG/12-

13 

1.5  13.0 1.5 

NG9 2.0 20.2 1.8 NG33 2.0 9.8 1.3 

NG10 3.0 19.8 1.8 NG/12-

14 

2.5 12.2 1.5 

NG11 5.0 16.6 1.7     

NG13 6.85 9.4 1.3     

NG14 6.9 12.2 1.5     

NG12 7.0 1.0 1.5     

 

Table. 4.1. Dune Valley samples, location, distance below lava and porosity (see Appendix 

for complete data table). 
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2.1.1.1 Evidence for dynamic sediment-lava interaction in Dune Valley. 

 

 Of importance when interpreting the nature of lava-sediment interactions and 

effects at the hot contact and downward into the sediment is the type of lava. The 

case studies in Dune Valley presented were exclusively drowned by the Tafelkop 

type lavas, although Tafelberg type lava crops out in the cliffs above beginning at 

about 900 m but only interact with small sand bodies not studied in Dune Valley. 

The lavas in dune valley are strongly weathered such that direct observations are 

difficult. Petrographical and geochemical studies are often fruitful, but additional 

information from field observations of the lava flows are important in constraining 

how the lava emplaced (e.g. Pāhoehoe tabular sheet, compound-braided (cf. Nelson 

et al., 2009) or as an Aa type flow (cf. Crisp & Baloga, 1994). It is clear from the 

best preserved outcrops that the basalt lavas are amygdaloidal and typically 

composed of compound-braided pāhoehoe lobes, but no well-preserved flows were 

observed directly. 

 Indirect preservation of the surface morphology and evidence for the lava 

emplacement mechanisms is however preserved by the Twyfelfontein Formation 

sandstone. The preserved features at contacts reveal detailed information relating to 

the lava emplacement. Most basal contacts are sharp, without clinker breccias 

(Jerram & Stollhofen, 2002), indicating that the sand was passively drowned by the 

lava without disturbance (Fig. 4.3A). Thin subjacent topset beds (~10 cm) complete 

with ripples are preserved along dune faces complete with ripples (Fig. 4.3A). Ripple 

preservation is commonly seen below lava flows where in contact with the 

Twyfelfontein Formation across the entire basin, in all Twyfelfontein Formation sub-

units (KTyMaj, KTyMin, KTyID) and both basalt lava types (Tafelkop-type in Dune 

Valley and at the inflated flow locality (Appendix Map 2) and the Tafelberg-type at 

the Ponded Lava locality (4.2.5) and the hill south of Krone Farm (Appendix Map 2). 

Dune surfaces occasionally show imprints of a rough granular texture (Fig. 4.3B) 

interpreted to be clast imprints of glassy basaltic fragments impressed by the 

advancing lava into the sand surface. Where this texture exists, the basalt 

occasionally adheres to the sandstone, whereas usually the two lithologies cleave. 

 No breccias were found under the Tafelkop-type compound lava flows in 

Dune Valley, although elsewhere breccias have been found at sand contacts under 
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both the Tafelkop and Tafelberg lavas (at the PEP locality, Appendix Map 2 and 

Ponded Lava (4.2.5)). Evidence for dynamic interaction between lava and the 

substrate sand is however preserved in Dune Valley in the form of preservation of 

bulldozing (Jerram & Stollhofen, 2002). Preservation of bulldozing by the advancing 

pāhoehoe appears to occur either by proxy, where an object is scraped along in front 

of the lava (Fig. 4.4A) or directly where a pāhoehoe lobe confronts a steep pile of 

sand (e.g. the slip face of a sand dune). As the pāhoehoe lobe impacts steep sand, it 

naturally becomes apparently invasive as loose sand falls from the already unstable 

slip surface onto the surface of the pāhoehoe (Fig. 4.4C.). The example presented in 

Fig. 4.4C. Shows an invasive pāhoehoe lobe (surface texture preserved in the 

overlying sand) termination embayed in the sandstone. Further evidence for dynamic 

interaction is preserved by a fumerolic gas escape chimney above the invasive flow 

front. The chimney is an inverted cone of sandstone that lacks internal structure 

(bedding) and truncates pre-existing laminations and is cemented with calcite. This is 

evidence for degassing of the lava during and after emplacement of the lava flow. 

 The surface texture of a pāhoehoe lava flow is the basis for recognition in the 

field, as already explained, is not directly preserved in dune valley due to weathering. 

The basis for classification of the Tafelkop lavas in Dune Valley as pāhoehoe comes 

from the numerous inverse mould imprints in the overlying sand that are preserved 

(Fig. 4.4B.) (good localities are 20° 40.099’ S 14° 9.410’ E and 20° 39.937’S 14° 

10.045’E). Where sand blows over solidified pāhoehoe layers, the surface texture is 

filled (sand finds its way into every connected volume). The sand layer, when 

covered by lava becomes indurated (see below) to a depth of ~50 cm. If the thin sand 

layer on top of the pāhoehoe is < ~50 cm thick it will be included within the 

induration and therefore preserved at an early stage. The sandstone is more resistant 

to the style of weathering in the Huab Outliers and so preserved a negative imprint of 

the pāhoehoe mould (Fig. 4.4B.). In summary, Recorded in the Twyfelfontein 

Formation sandstone at lava contacts is occasionally evidence dynamic interaction 

between the pāhoehoe lava and the substrate. The common interaction, however, is 

passive in nature, such that delicate sedimentary features are preserved (e.g. dune 

ripples on topset beds). The Tafelkop basalt in Dune Valley is dominantly compound 

braided type lava (cf. Walker, 1971; e.g. Jerram 2002) as recorded by the sediment 

substrate and limited basalt preservation. Compound braided lavas can vary from 
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0.05 m up to 10 m thick, though most are 0.05 m to 5 m thick (Walker, 1971). The 

Tafelberg type basalt comprises tabular sheet flows that both passively and 

dynamically interact with the substrate (Jerram & Stollhofen, 2002) (Fig. 4.36.). 

 

Fig. 4.3. Evidence of passive drowning of sand dunes by pāhoehoe. A) Preserved aeolian 

ripples on indurated topset bed of isolated dune. B) Imprint of rough lava base on 

topset bed of isolated dune, occasionally lava basal crust is still adhered to the sand. 
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Fig. 4.4. Evidence of lava emplacement preserved within sandstone. A) Disturbance in a 

topset bed caused by lava bulldozing a solid object no longer preserved. This locality is 

shown in Jerram et al., (2000a) B) Inverse pāhoehoe mould preserved in a calcite 

cemented interlayer (Image reproduced as cover of January 2013 Geology). C) 

Fumerolic gas escape structure, cemented with calcite above an invasive pāhoehoe lobe 

within what would have been unconsolidated sand at the time. This is the only invasive 
flow encountered in Dune Valley. Fig. 4.4B was published as the front cover of 

Geology, Jan 2013) 
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2.1.1.2 Direct effects of Tafelkop lava on isolated sand dunes in Dune 

Valley 

 

3 Dunes Case Study 

 This locality is on the north-facing side of an un-named peak at 1065 m 

altitude (20° 38.949 S 14° 07.643 E). The exposure is best viewed from a knoll of 

basalt 300 m to the north, the location of the photographer in The outcrop comprises 

three cross sections of barchanoid sand dunes, each wholly or partially encased in 

Tafelkop lava (Fig. 4.2). The lowest dune overlies lava and is more laterally 

continuous than the upper two and could be classified as a ‘Minor Erg’ (KTyMin). 

The middle dune (KTyIDr) also overlies a lava and is isolated from the underlying 

dune. Flooding of this dune by lava was incomplete before deposition of the upper 

dune, such that the two sand bodies are continuous from the crest of the middle dune. 

At the point where the middle dune becomes the upper dune is an area displaying a 

small degree of dynamic lava-sediment interaction. Between the dunes, the lava 

ranges in thickness from ~10 cm in the east to ~10 m in the west due to the wedge 

shape of the dune. The upper dune (KTyIDr) is 7 m thick at the sample transect 

location (Fig. 4.2A). The topset bed is preserved at the top surface and the underlying 

forests dip to the NE, consistent with the regional aeolian depositional trend 

(Mountney et al., 1999). 

 To investigate the diagenesis in relation to distance below the lava a transect 

of ten samples was taken (Table. 4.1.). 
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Fig. 4.5. XPL Photomicrographs of NG5 upper contact of upper dune with lava. A) 

High degree of compaction, detrital grains deformed so that all faces are in contact 

with adjacent grains. B) Grain contacts sometimes show stylolitic textures that are 

horizontal (i.e. perpendicular to lithostatic load). C) Close up of quartz grain showing 
degree of deformation due to compaction. D) Plagioclase grain is fresh compared to 

regions of lower compaction, suggesting compaction was early, protecting it from later 

fluids. 
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Fig. 4.6. A) PPL, NG7 0.18 m below lava, compaction still high. B) PPL, NG8 1.0 m 

below lava, porosity recovered haematite grain coatings rare. C) PPL, NG10 3.0 m 

below lava. D) PPL, NG11 5.0 m below lava, haematite redistributed into mottled 

patches. 

 

Fig. 4.7. PPL Photomicrographs of base of upper dune. Where dune rests on lava is a 

region cemented with calcite. A) calcite cemented region has sharp boundary with un-

cemented sandstone suggesting caused by ponding of fluids above lava. B) Compaction 

appears less than un-cemented (e.g. Fig. 1.7C.) suggesting early precipitation 

protecting against burial compaction. 

 At the contact with the overlying lava (sample NG5, Fig. 4.5) the porosity of 

the sand has been reduced to a negligible value (TOP= 0 %). Permeability reduces 

with porosity following an exponential relationship. This porosity reduction occurs 

due to both increased compaction and increased cementation compared to the 

unaffected sandstone (e.g. NG52). Petrographic analysis shows that the major 
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porosity reducing mechanism is compactional porosity loss (COPL), which increases 

by about 10 % compared to the background (35 %, ±2.6) within ~ 1 m of the contact 

(Fig. 4.11) to 43 % of total porosity loss. Cementational porosity loss (CEPL) 

reaches ~ 6 % compared to a background of low values (2 or 3 %). Cementation 

increasing towards the contact is exclusively calcite. No correlations were found 

between clay and authigenic quartz overgrowths with distance below the lava (Fig. 

4.9). The background porosity of NG52 is 12.4 % (± 1.5), so the additional effects at 

the contact can easily account for all of the porosity reduction. The compaction of the 

quartz grains appears to be greater than the feldspar grains (i.e. the quartz 

accommodates the compactional strain). Evidence for pressure solution (senso 

Rutter, 1983) between quartz grains (Fig. 4.5) is ubiquitous, as both interpenetrating 

grains and sutured grain contacts. Little evidence is preserved for plastic deformation 

of quartz such as undulose extinction, and although some quartz grains are undulose 

in XPL, they are very rare. Haematite grain coatings, common in unaffected sand, are 

absent in the sand at the contact. 

 The background intergranular primary porosity returns at depths of 0.18 m 

below the contact. Authigenic calcite is at a maxima at this distance (5.6 % ± 1.0), as 

is CEPL, although COPL still dominates. Figure 4.6A shows a PPL photomicrograph 

of sandstone at 0.18 m depth, and the lesser degree of quartz compaction is evident 

(as compared to  Fig. 4.5) Haematite grain coatings are also absent at depths of >0.18 

m.  

 At 1.0 m below the contact, the authigenic mineralisation in the sandstone is 

the same as the background, with calcite only existing as partial replacements of 

occasional plagioclase grains. Pore-filling authigenic phases are restricted to clays 

(probably kaolinite and smectite) which show no correlation with distance below the 

lava (Fig. 4.9, Fig. 4.10.). Haematite grain coatings are rare. Porosity loss is therefore 

dominantly COPL, with little enhancement over the background (~35 %, ±2.6). 

Based on petrographical observations, the direct effects of the lava are minimal at 1.0 

m. Between 1.0 m and 5.0 m (samples NG8, NG9, NG, 10 and NG11) below the 

contact the sandstone is virtually indistinguishable from the background sandstone. 

Porosity reaches a maximum of 20.2 % (±1.8), which is the highest of all 

Twyfelfontein Formation sandstone samples. Haematite grain coatings remain rare, 
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but agglomerates of haematite, forming mottled patches filling pore space are 

frequent (Fig. 4.6D.).  

 The base of the upper dune is cemented by calcite (up to 19.2 %, ±1.8) (Fig. 

4.7.), which reduces porosity to 1 % (±0.4). The calcite is non-ferroan poikilitic, and 

has a sharp horizontal boundary with the un-cemented background sandstone above 

(Fig. 4.7A). Analysis of the COPL and CEPL shows that the increased porosity loss 

here is due to this cementation as opposed to increased compaction (Fig. 4.11.). The 

interpretation is that this calcite is a later hydrothermal cement, precipitated in a 

perched aquifer at the base of the upper dune (see Chapter 7). 

 The overall interpretation of these petrographic data is that the emplacement 

of the lava flow caused early increased compaction due to its weight in the 

uppermost ~1 m of unconsolidated sand; this was accompanied by minor calcite 

precipitation in the remaining pore space during cooling of the lava. Calcite, at 

depths >0.18 m is restricted to replacement of plagioclase rather than pore filling 

cement. Compaction and calcite decrease away from the contact, allowing porosity to 

increase to background levels which are controlled by overburden compaction and 

minor quartz cementation (<1 %, ±0.4). The relevance and origin of the calcite will 

be discussed in 4.3 and Chapter 7. A discussion of the compaction below lava flows 

will be had in 4.6 and 5.4. The porosity against permeability relationship for this 

sandstone is shown in Fig. 4.8C. The porosity-permeability relationship shows 

nothing unusual. 
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Fig. 4.8. Graphs against distance below lava. A) Porosity, for both case studies porosity 

increases away from contact to background levels of > 12.4 %. Upper dune porosity 

decreases at > 7 m due to calcite cementation shown in Fig. 1.8. B) Permeability, 

rapidly increases below lava. C) Permeability against porosity shows an exponential 

relationship. 
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Fig. 4.9. Graphs against distance below lava. A) Calcite, Dune 16 shows a maxima at 0.5 

m immediately below highly compacted zone which decreases to negligible by 1.5 m 

below. Upper Dune decreases away from upper contact and then increases at the 

calcite cemented zone at the base. B) Clay shows no variation with distance. C) Poor 

correlations between authigenic quartz and distance below lava suggest no relationship 

between lava and authigenic quartz. 
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Fig. 4.10.  Graphs against distance below lava. A) Like authigenic quartz, no relationship 

exists between opaque minerals and distance from lava, despite an observed textural 

change between grain coating haematite and pore filling haematite clusters suggesting 

redistribution. B) Upper dune shows a weak negative correlation between K-spar and 
distance below lava but no correlation between plagioclase and distance below lava. 
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Fig. 4.11. Porosity reduction analysis of Dune Valley sandstone. Dune B COPL decreases 
away from upper contact and Pmc decreases towards contact suggesting compaction 

becomes more important closer to lava. This trend is mirrored by Upper Dune 

although complicated by the calcite zone at the base of the dune ‘protecting’ sand from 

later background compaction (> 6 m). 

 

Dune 16 (Dune B) Case Study 

 Dune 16 is one of at least 19 isolated barchanoid dunes (KTyID) resting on 

the initial Tafelkop basalt (KETbTk) lava flows that are exposed in the valley floor 

of Dune Valley. Dune 16 is located on the south-western slope of the valley at 830 m 

altitude at 20° 39.350’ S 14° 08.541’ E. The outcrops includes the upper surface of 

the dune and onlapping lava (highly weathered) the sandstone outcrop is up to 3 m 
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thick. The basal contact with the lava is covered by scree. Dune 16 is a ‘red’ dune, 

unaffected by later hydrothermal fluid flow (see dune B in Grove at al., in review and 

Chapter 7). This dune was chosen for detailed analysis due to the ability to accurately 

define the upper lava contact and to 3.0 m of continuous exposure, which is lacking 

in the other dunes, despite their high surface exposure.  

 The drowning of Dune 16 by lava was by a passive process, no breccias were 

discovered and the contact is smooth. The lava is a compound pāhoehoe type so, the 

lava that drowned Dune 16, despite not exhibiting preserved structure was probably 

0.05 m to 5 m thick (2.75 m +/- 2.25 m) based on evidence elsewhere in Dune 

Valley. The presence of dynamic lava-sediment interaction in other stratigraphic 

equivalent dunes (Fig. 4.3. and Fig. 4.4.) suggests the sand in this dune was also 

unconsolidated at the time of lava emplacement. The association of  

 Six samples were taken from Dune 16, at 0.5 m intervals below the lava 

contact with the topset bed (Table. 4.1). At the contact porosity has been reduced to a 

negligible value (0.6 %, ±0.3). Permeability at the contact is 0.1 md. For Dune 16, 

porosity and permeability values show an exponential relationship as in the ‘upper 

dune’. Sample NG 31 sampled both grain flow and grain fall sand lamellae, which 

were found to exhibit related, but different styles of diagenesis. The finer-grained 

grain fall layers were similar to the upper dune and are typically composed of fine 

sand (~100 μm diameter) of the same modal proportions of detrital minerals found 

throughout the Twyfelfontein Formation (e.g. Fig. 4.10B). Quartz grains are highly 

interpenetrating, often with sutured contacts (Fig. 4.12B, C) and the feldspar grains 

always appear less susceptible to this compaction than quartz. This compaction is 

interpreted to be dominantly pressure solution as opposed to slip deformation (senso 

Bailey et al., 1958; Mainprice et al., 1986) due to the lack of abundant or frequent  

undulose extinction. Authigenic calcite is present, but is rare in the grain fall 

horizons and is restricted to the rims of plagioclase grains. Grain flow layers at the 

contact are apparently less compacted (Fig. 4.12A, B.) than the grain fall layers, and 

are cemented with poikilitic calcite that also replaces plagioclase. Chlorite pore-

filling cements are also present (Fig. 4.12A), and may account for the slightly 

increased permeability value of 0.1 md. Haematite grain coatings are present at the 

contact of Dune 16, unlike at the contact of the ‘upper dune’, which is evident in Fig. 

4.10A where Dune 16 opaque minerals are enriched by ~4% (±0.9)overall compared 
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to the upper dune. Like the upper dune, no correlation in abundance is seen with 

increasing distance below the lava. Porosity loss at Dune 16 lava contact is 

dominantly by compaction (CEPL), which is highest at the contact (44 %, ±3.0) and 

decreases away from the lava contact (Fig. 4.11) to the background value of ~35 % 

(±2.6). Note difference is well outside range of uncertainty. 

 Sample NG/12-12, taken from 0.5 m below the contact records the re-

appearance of primary porosity (4.6 %, ±0.9) and the highest abundance of calcite (6 

%, ±1.1). The calcite is non-ferroan, and both fills pores as poikilitic crystals and 

replaces plagioclase. The porosity is both primary and secondary resulting from 

potassium feldspar dissolution. Primary pores, occasionally have syntaxial quartz 

overgrowths growing from quartz grains that never completely fill the pore. 

Haematite coats most detrital grains. Compaction is less than at the contact, and lies 

on the linear trend of reduction in COPL away from the lava contact (Fig. 4.11). 

Cementational porosity loss is greatest in sample NG/12-12 due to the high calcite 

abundance, this is common with the upper dune example, where the most cemented 

region was immediately below the highly compacted contact (NG7). 

 Porosity and permeability values are 7.6 % (±1.2) and 115 md, respectively, 

at 1.0 m below the lava and calcite is the main cement phase. Clay and opaque 

minerals are at about the same abundances as in all the Dune 16 samples. Calcite 

both fills pores and replaces plagioclase, but the pore-filling variety less abundance 

than it is closer to the contact (Fig. 4.12F.). Haematite coats grains and quartz 

overgrowths are present. Porosity is dominantly primary in this sample, and 

secondary porosity is less important than at 0.5 m depth. Compaction (Fig. 4.11.) is 

less than closer to the contact (39 %, ±4.1) and cementational porosity loss is 

reduced compared to values at 0.5 m depth, but higher (5.6 %, ±1.0) than at the 

contact. 

 At depths of 1.5 m to 2.5 m below the lava contact the sandstone porosity 

increases to background levels by 1.5 m and calcite cementation is negligible (<1 %, 

±0.4) and restricted to rare plagioclase partial replacement. Cements are mainly 

minor authigenic quartz overgrowths and redistributed haematite into mottled 

regions. Most haematite occurs as grain coatings formed during aeolian transport and 

deposition. Figure 4.13 shows sandstone samples at 1.5 m, 2.0 m and 2.5 m, and 
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illustrates that COPL is the dominant porosity reduction mechanism (mean 38 %, 

±4.2) while  CEPL accounts for < 5 %. 

 Petrographic analysis records porosity loss in the sandstone towards the 

basalt contact which is apparent at depths >2 m. The porosity reduction is largely due 

to compaction with only a minor contribution due to cementation. Cementation is 

always less important than compaction and reaches a maxima at 0.5 m below the 

lava. Compaction reaches a maxima at the contact. The increased compaction with 

proximity to the lava suggests that the weight of the emplacing and inflating lava 

flow caused the increased compaction and that it was an early effect. At the contact, 

compaction is about 10 % higher than the background. 

 

Fig. 4.12. Photomicrographs of sandstone below lava contact. A) PPL, Pore filling 

chlorite at contact with preserved haematite grain coatings. B) XPL Pore filling and 

feldspar replacing calcite at contact. C) XPL, Compaction at contact of similar degree 

to top of upper dune (Fig. 1.6.) with plagioclase freshly preserved. D, E) PPL, 0.5 m 
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below contact intergranular porosity reappears together with intensification of grain 

replacement by calcite and pore filling calcite, compaction porosity loss decreases in 

importance. F) PPL, 1.0 m below contact both calcite replacement of feldspar and pore 

filling calcite persists, but intergranular porosity increases. 

 

Fig. 4.13. A) PPL, 1.5 m below contact calcite is rare and feldspars not corroded. B, C) 

PPL, Return to background conditions by 2.0 m below lava, compaction is at 

background levels, haematite grain coatings and connected intergranular porosity 

present. 

 

Fig. 4.14. X-Ray diffraction spectra for NG31 (0.0 m) and NG32 (1.0 m) whole rock 

fraction. Differences in the spectra show that NG31 has more abundant calcite, 
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ilmenite, and possibly fluorite compared to both NG32 and NG52. The 

petrographically identified chlorite was not resolved in XRD. 

4.2.2 Red Yellow Dyke (RYD) lava pond 

 

Fig. 4.15. Map of RYD lava pond (KETb). Contour interval is 10 m. 

This case study (Fig. 4.15) is located at 20° 36.504’ S 14° 4.151’ E at 529 m altitude 

on the hill 440 m north of the RYD locality (Chapter 6). The petrographic analysis is 

based on a transect taken from the SW edge of the lava pond that has complete 

exposure from the lava to 5 m below, where the ground flattens.  

 The lava pond is preserved in an inter-dune depression (Fig. 4.16.) , which is 

sub-circular, 190 m in diameter and filled with at least 32.5 m of Tafelberg Type lava 

preserved at the deepest point (interpreted from photo and GoogleEarth). The summit 

of the pond does not display and lava surface features, or sediment bypass evidence 

(sand crack fills)/ interbeds, so this thickness is a minimum estimate. The underlying 

sandstone belongs to the Major Erg (KTyMAJ) unit of the Twyfelfontein Formation 

and is generally a ‘white sand’ (see Chapter 7 and Grove et al., in review), although 

the sand at the lava contact is preserved as red sand where affected by the lava, 

common to other white sand lava contacts.  

 The sandstone at the contact below the lava at the RYD lava pond locality has 

a porosity of 0.2 % (±0.2) and a negligible permeability of 0.1 md. The sample is 
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composed of grain fall sand of between 100–200 μm diameter (Fig. 4.17A, B, C). No 

coarser-grained material was found at the contact. The sediment detrital composition 

is similar to the background sandstone. Authigenic calcite is negligible, but there is 

potentially some authigenic fluorite. Fluorite in thin section is a low relief purple-

blue mineral with defined cleavage that is isotropic in XPL (Fig. 4.17C.). A mineral 

fitting that description exists in this sample, but overzealous HCl etching during 

staining could thin the calcite, reducing its birefringence such that it appears in 

extinction on a complete stage rotation. Haematite grain coatings are absent.  

 Porosity loss appears petrographically to be due to compaction, the quartz 

grains are highly sutured and interpenetrate and occasional overgrowths (presumably 

early) exist at triple junctions; this is good evidence for pressure solution (senso 

Rutter, 1983). Feldspar grains retain detrital textures and do not appear so affected by 

pressure solution. Plastic deformation of quartz, as indicated by undulatory 

extinction is more common than for the Dune 16 or the Upper Dune case studies, but 

most grains show unit extinction. The compaction porosity loss (COPL) at the 

contact is 46 % (±3.2) compared to the background of ~35 % (±2.6) and 

cementational porosity loss (CEPL) is 2.5 %.  

 Detrital grains at 0.2 m depth below the contact are 200 μm in diameter on 

average and exhibit a similar assemblage to the background sandstone (Fig. 4.21B). 

Porosity is 2.6 % (±0.7), but permeability is still negligible (0.1 md) (Fig. 4.19A) . 

The authigenic mineral assemblage in the sample from 0.2 m below the contact is 

dominated by calcite, and exhibits  quartz overgrowths and an increasing abundance 

of haematite grain coatings and mottled haematite aggregates (Fig. 4.17 D,E; Fig. 

4.20). The calcite exclusively or partially replaces detrital plagioclase. Quartz grains 

are frequently sutured and interpenetrate, suggesting pressure solution is an 

important process. Porosity loss is dominated by compaction (45 %, ±3.1). CEPL is 

2.5 % suggesting cementation is a minor contributor to porosity loss at this distance 

below the lava. 

 As distance increases below the lava contact, detrital grains remain ~ 200 μm 

in diameter and of similar composition to the background (Fig. 4.21B.). Porosity is 

negligible and permeability is 7 md. Authigenic minerals consist of calcite, quartz, 

redistributed haematite, and clay. Quartz, clay and opaques are not correlated with 

distance below the lava and are at background levels (Fig. 4.20C, Fig. 4.21.). The 
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calcite mostly replaces plagioclase grains, but occasionally fills pores. Compaction 

porosity loss is still major (46 %, ±3.2) presenting as sutured and embayed quartz 

crystals, plastic deformation is however possible due to the existence of undulatory 

extinction in occasional quartz grains.  

 By 2.0 m depth below the lava contact, the detrital mineralogy is dominated 

by quartz and potassium feldspar in background proportions, but plagioclase 

decreases as the calcite proportion increases (Fig. 4.18C, D; Fig. 4. 21B). Authigenic 

mineral cements are important at this depth: in sample NG81 calcite accounts for 

16.6 % (±1.7) and is dominated by a pore-filling poikilitic phase with abundant 

replacement of plagioclase. Porosity (1.6 %, ±0.6) remains low due to the increased 

pore-filling calcite cement and permeability is 8.5 md. Cementational porosity loss 

has increased importance over compactional porosity loss as COPL (36.7 %, ±1.6) 

has been reduced to near background and CEPL has increased to 11.3 %. This 

change can be seen in the reduced amount of grain interpenetration and sutured 

contacts.  

 Porosity (12.6 %, ±1.5) and permeability (50 md) have increased to 

background levels at depths of 3.0 m below the lava contact. Detrital potassium 

feldspar and quartz abundances are background values; detrital plagioclase is 

reduced. Despite the high porosity, authigenic calcite remains high (10.6 %, ±1.4) 

and haematite grain coatings are present. The high porosity is due to background 

levels of COPL and the calcite replacing plagioclase rather than filling pores. This 

can be seen in Fig. 4.21B, where plagioclase shows a negative correlation with 

distance below the contact as it is consumed by calcite. Porosity loss is still 

dominated by compaction, but at levels no greater than the background burial 

compaction, and cementational porosity loss has almost reduced to background 

levels for the white sandstone.  

 Five meters below the lava contact, the sandstone is a background white 

sandstone, as its position, to the east of the RYD dyke (Chapter. 6 and 7) would 

suggest. Detrital grains are ~ 200 μm in diameter, potassium feldspar and quartz are 

at background levels, and plagioclase is reduced in abundance due to later 

hydrothermal reactions (Type 3 diagenesis, Grove et al., in review).  

 The trends away from the lava contact at the RYD pond locality record an 

increase in porosity from negligible values to 14 % (±1.6) over a distance of 5 m 
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(Fig. 4.19). This is mostly controlled by increased compaction at the base of the lava 

extending to at least 0.6 m (Fig. 4.22). Below the compacted zone is a region of 

increased calcite cementation which reduces away from the lava. No trends were 

seen in opaque minerals away from the contact as they are dominated by detrital 

ilmenite and magnetite that appear un-reactive. No trend was observed in clay 

mineral abundance, detrital quartz or detrital potassium feldspar abundance away 

from the contact.  
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Fig. 4.16. A, B) RYD lava pond seen from the ridge to the northwest. The lava pond rests 

in an interdune depression of the Major Erg unit (KTyMAJw) which is a ‘white sand’ 

affected by later hydrothermal fluids (see Chapter XX). B) The Major Erg has 

preserved topset beds to the left of the pond (from this view) but not to the right, 

illustrating the migration of the erg from right to left (SSW-NNE). 



161 

 

RYD Lava Pond 

Sample Number 

20° 36.504’ S 14° 4.151’ E 

Distance Below 

Lava (m) 

Porosity (%) 1 sigma error 

NG78 0 0.2 0.2 

NG79 0.2 2.6 0.7 

NG80 0.6 0 0 

NG81 2.0 1.6 0.6 

NG82 3.0 12.6 1.5 

NG83 5.0 14.0 1.6 

 

Table. 4.2. RYD lava pond locality samples, location, distance below lava and porosity. 

(see Appendix for complete data table). 
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Fig. 4.17. Photomicrographs of sandstone below RYD lava pond contact. A, B) PPl and 
XPL of sand a contact showing high degree of compaction. C) PPL, sand at contact 

with possible fluorite cement based on low relief, colour and isotropic extinction; 

otherwise could be ferroan calcite, thinned by too long exposure to HCL or stain (see 

Chapter 3 Methods). D, E) PPL and XPL 0.2 m from contact. Increased compaction is 

still evident, but calcite replacement of plagioclase and pore-filling calcite is present. 



163 

 

 

Fig. 4.18. Photomicrographs of sandstone below RYD lava pond contact. A, B) XPL 0.6 

m below contact showing a now pervasive calcite cement that replaces plagioclase and 

fills pores. C, D) XPL and PPL 2.0 m below contact. Calcite cement now fills pore 

networks as compaction is less. E) PPL 3.0 m below contact, porosity is regained, 

compaction is at background levels and haematite grain coatings are redistributed as 

mottled patches filling pores. F) PPL 5.0 m below lava, porosity and mineralogy Is that 

of white sand (see Indirect Effects Chapter XX) (‘Type 3’ diagenesis Grove et al., in 

review). 
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Fig. 4.19. Graphs against distance below lava for RYD lava pond. A) Porosity increases 

with distance from lava. B) Permeability increases exponentially with distance below 

lava. C) Permeability against porosity, linear relationship is weak, suggesting control 

of pore blocking is not simple compaction (i.e. pore throats blocked at even moderate 
(~5 %) porosities. 
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Fig. 4.20. Graphs against distance below lava. A) Calcite is low near lava due to early 

compaction removing porosity and fluid migration pathways, reaches a maxima at 2.0 

m, then reduces to white dune background levels (5 m). B) Clay does not show 

correlation with distance. C) Authigenic quartz does not show correlation with 
distance.  
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Fig. 4.21. Graphs against distance below lava. A) Opaque minerals show a weak negative 

correlation. B) Potassium feldspar shows no correlation, plagioclase shows a strong 

negative correlation due to ‘white Type 3’ diagenesis, lithic grains show no correlation. 
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Fig. 4.22. Porosity reduction analysis of sandstone below RYD lava pond. Compaction 

porosity loss (COPL) is negatively correlated with distance below lava and Pmc shows 

an exponential correlation. This suggests compaction porosity loss is more important 

closer to the lava. 

4.2.3 Big Dune (BD) 

 

 The Big Dune locality is at 20° 34.980’ S 14° 0.850’ E at 453 m altitude, 2.6 

km south of the Huab River (Fig. 4.23.). The outcrop is on the north side of a hill that 

rises to 782 m altitude. The analysis at this locality is based on a suite of 6 samples 

collected by Dr Dougal Jerram and Mr Graham Thompson in a transect of the 

sandstone below the lava from 0.0 m to 4.0 m. The outcrop consists of a large 

transverse Twyfelfontein Formation (KTyMAJ) sand dune that has been drowned by  

Tafelberg Type lava (KETbTb) (Fig. 4.24.). 
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Fig. 4.23. Map of Big Dune locality. Contour spacing is 10 m. 

 

Fig. 4.24. Photograph of BD locality taken from the north. The transverse dune can be 

seen to be onlapped by lava flows and then completely drowned. Foreset beds are 

highlighted in pink. 
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Big Dune Sample 

Number 

20° 34.980’ S 14° 0.850’ E 

Distance below lava 

(m) 

Porosity (%) 1 sigma error 

BD6 0.0 0.0 0 

BD1 0.0 0.0 0 

BD2 0.12 2.0 0.6 

BD3 0.24 1.2 0.5 

BD4 2.0 5.8 1.0 

BD5 4.0 13.6 1.5 

 

Table. 4.3. BD samples, location, distance below lava and porosity. (see Appendix for 

complete data table). 

 Sample BD6 straddles the lava-sediment contact, and is preserved due to 

adhesion of the glassy lava crust to the sand. This is not common at Tafelkop Lava 

contacts, where weathering separates the lava from the more resistant sand. At this 

locality, the Tafelberg Type basalt is evidently not so weathered. At the contact sand 

grains range from 100 μm to 500 μm in diameter and are generally grain flow in 

depositional nature. The detrital composition is similar to the background 

Twyfelfontein Formation. Detrital grains frequently exhibit haematite coatings. The 

porosity and permeability are negligible . The contact with the sand is passive, and a 

single layer of sand grains is partially enveloped in the lava, which must have been a 

fluid at the time (Fig. 4.26A, B, C). Porosity loss determined from visual analysis 

appears to be mostly due to calcite cementation. The calcite is poikilitic and 

individual crystals are up to 1 mm in diameter and are continuous from the 

sedimentary pores into the basalt pore space (Fig. 4.26A.). The calcite cement has 

occasionally replaced quartz, (see corroded quartz grains in Fig. 4.26B and C). 

Feldspar grains are rare at the contact (within the upper most 2 mm) and I infer that 

they have been entirely replaced by calcite. Interestingly, one quartz grain at the 

contact has been sheared with a sinestral displacement of ~ 0.5 mm, suggesting 
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weakening of quartz and transfer of stress from a potentially moving lava, which is 

yet to be reconciled with the lava emplacement mechanism. 

 A second sample, BD1 also at 0 m below the contact does not include 

attached basalt. The detrital composition is similar to the background composition. 

Sand grains range from 200–500 μm in diameter. It is interpreted as a grain flow 

horizon. The sample has negligible porosity and permeability. Grains are coated with 

haematite. Porosity loss is dominated by compaction (41.8 %, ±2.9) and is ~ 7 % 

above the background. Cementational porosity loss is 7.2 %. Pressure solution 

compaction is evident in the thin sections as embayed grains (Fig. 4.27A, B, and C) 

and sutured contacts (Fig. 27B, C); quartz overgrowths exist as triple junctions 

between grains. Most grains show unit extinction, suggesting plastic deformation 

was minor.   

The cements comprise quartz overgrowths and calcite, unlike below other 

lava contacts, these quartz cements, although volumetrically insignificant (0.8 %, 

±0.4) reduce away from the contact, possibly related to pressure solution and 

compaction. The calcite (10.2 %, ±1.4) is poikilitic and identical in character to that 

in BD6. Figure 4.27D illustrates calcite replacing a quartz grain in extinction in the 

centre of the photomicrograph. X-ray diffraction confirms the petrographically 

determined mineralogy (Fig. 4.25.).  

 Sample BD2, at 0.12 m depth below the contact is characterised by a high 

degree of compaction and a low abundance of authigenic minerals. Porosity is 2 % 

(±0.6), no permeability data were obtainable (Fig. 4.30.). All pores found had quartz 

overgrowths protruding into the space. The detrital composition is similar to the 

background (Fig. 4.32B.). Authigenic mineralisation is minor, unusually for this 

close to the lava, authigenic quartz (2.8 %, ±0.7) is more abundant than calcite (0.6 

%, ±0.3) which is restricted to grain replacement. The high quartz abundance may be 

due to the large degree of pressure solution (Fig. 4.28A, B.) indicated by highly 

embayed quartz grains (Fig. 4.28A.) and extensive suturing (Fig. 4.28B.). Most 

grains show unit extinction, with the occasional undulose quartz crystal. Rare 

polycrystalline quartz grains are highly plastically deformed.  Compaction (COPL) is 

the major contributor to porosity loss (45.5 %, ±3.4), cementational porosity loss 

(CEPL) is minor (2.4 %). COPL is about 10 % above background levels.  
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 Compaction remains high 0.24 m below the lava (BD3) and porosity remains 

low (1.2 %, ±0.5). Detrital minerals, clays and opaque grains, show little variation in 

abundance from the background. Authigenic calcite occurs as pore-filling poikilitic 

cement (Fig. 4.28C, D.) and as replacement of plagioclase. Calcite is the most 

important pore filling cement, but is volumetrically minor (2.0 %, ±0.6). Compaction 

is the largest contributor to porosity loss (COPL= 46.3 %, ±0.5), cementational 

porosity loss is minor (CEPL= 2.0 %). 

 At depths of 2.0 m below the lava, porosity is returning to background levels 

(5.8 %, ±1.0), and permeability is 7.2 md. Authigenic cements are rare, and limited 

to minor quartz overgrowths (1.0 %, ±0.4) (Fig. 4.29A, B.). Sand grains are between 

200 μm and 500 μm with a modal composition similar to the background. Porosity 

loss is dominantly through compaction (COPL= 44.4 %, ±1.0), cementation porosity 

loss is minor (CEPL= 2.0 %). 

 At 4.0 m below the lava, porosity (13.6 %, ±1.5) is comparable to 

background levels and permeability is 201 md. Authigenic cements are limited to 

negligible quartz overgrowths (0.2 %, ±0.6). Detrital grains are within background 

levels, although plagioclase abundance is higher than it is closer to the contact. 

Porosity reduction is due to compaction (COPL=40.4 %, ±1.5), which is slightly 

higher than the background, suggesting that at 4.0 m, porosity may not have reached 

its peak below this lava. CEPL= 0.5 %. Compaction appears to be through pressure 

solution as many grains interpenetrate and are sutured, and through grain crushing, 

which affects feldspars to a greater degree than quartz (Fig. 4.29C.). Crush 

compaction of grains in the Twyfelfontein Formation has been studied by Dickinson 

& Milliken (1995), who noted under the optical microscope and at smaller scales 

under cathode luminescence imaging. 

 Overall, the porosity trend (Fig. 4.30.) is similar to those of the other three 

lava contact examples. Porosity increases with distance below the lava contact, until 

background porosity is reached. Compaction is the major contributor to porosity loss, 

although calcite cementation is important in grain flow layers <0.12 m below the 

contact. Calcite becomes less important further from the contact. Quartz cementation 

appears to accompany compaction through pressure solution, and is most intense 

closer to the contact where compaction is also the greatest. The abundance of 

authigenic quartz remains low, such that no statistical significance exists to the above 
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observation (see Chapter. 3. and Grove & Jerram, 2011, for discussion of point 

counting errors ).  

 

Fig. 4.25. X-Ray Diffraction spectra for BD1 (contact) and BD4 (2 m). 

 

Fig. 4.26. XPL Photomicrographs of sample BD6 at lava contact. A) Glassy vesicular lava 
contact enveloping quartz grains that are thermally unaffected by cooling lava. 

Pokilitic calcite cement is pervasive and continuous into basalt pore space. B) Detrital 

quartz grain at contact is aggressively replaced by calcite. C) Calcite indurated sand at 

contact showing aggressive replacement of one quartz grain, but most keep detrital 

characteristics and are not replaced, feldspars are rare. D) Shearing of quartz grain at 

contact. 
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Fig. 4.27. XPL Photomicrograhs of grain flow lamination at contact showing aggressive 

calcite pokilitic cementation (D) and high compaction between detrital quartz grains 

(B, C). 

 

Fig. 4.28. XPL photomicrographs below BD contact. A, B) 0.12 m below lava contact, 

compaction is the dominant porosity reducing mechanism. The early calcite cement 

appears not to have developed. C, D) 0.24 m, compaction is still the major porosity 
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reducing mechanism. Grains show cuspate and sutured contacts and have deformed to 

fill pore space. 

 

Fig. 4.29. PPL photomicrographs 2.0 m to 4.0 m below BD contact. A, B) By 2.0 m no 

calcite cement or increased compaction is evident. Diagenesis is dominated by quartz 
overgrowth, compaction to form sutured and interpenetrating cuspate grain contacts. 

C), D) 4.0 m below contact the rock is similar to 2.0 m but with less compaction 

porosity loss, diagenesis is the same as 2.0 m; crush compaction of feldspar grains 

becomes common. 
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Fig. 4.30. Graphs against distance below lava. A) Porosity increases with distance below 

lava contact. B) Permeability increases below contact, albeit with very limited data. C) 

Permeability against porosity.  
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Fig. 4.31. Graphs against distance below lava. A) Calcite decreases immediately below 

contact, negligible > 0.24 m; although no valid correlation is shown. B) Clay shows no 

correlation with distance below lava. A) Authigenic quartz is higher near to contact, 

but only shows a very weak correlation with distance below lava. 



177 

 

 

Fig. 4.32. Graphs against distance below LAVA. A) Opaque minerals show no 

correlation with distance below lava. B) All detrital mineral abundances show no 

correlation with distance below lava. 
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Fig. 4.33. Porosity reduction analysis of sandstone below BD lava. COPL shows a weak 

negative correlation, somewhat influenced by the highly cemented samples BD1 and 

BD6 at the contact. Pmc however strongly suggests increased compaction toward the 

contact (ignoring BD1 and BD6). 

4.2.4 Bulk rock geochemistry of BD and Dune 16 samples.  

 X-ray diffraction analysis on four samples from below lava contacts were 

performed at the University of Edinburgh for major and trace elements (Fig. 4.34.). 

The values were normalised to sample NG52 that was analysed as a control as it is a 

good representative of the background red sandstone in the Twyfelfontein Formation. 

The aim was to test for variations in elemental abundances and to identify elements 

that have been enriched or depleted at contacts. 

 SiO2, Al2O3, Fe2O3, K2O, TiO2 and P2O5 showed no significant difference to 

NG52 at either BD1 (0.0 m), BD4 (2.0 m), NG31 (0.0 m) or NG32 (1.0 m). 
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Significant differences between NG52 and the other samples were found in 

concentrations of MgO, CaO, MnO and in loss on ignition (LOI).  

 Samples BD1 and NG31, at the contacts, showed covariation in the major 

elemental plot (Fig. 4.34A.). NG31 CaO, is enriched 24 times over NG52 and BD1 is 

enriched 30 times compared to minor enrichment at NG32 and BD4. This is 

consistent with the petrographical and XRD occurrence and XRD (CaO) of calcite in 

NG31 and BD1. CaO in NG52 would be mostly hosted in anorthite (CaAl2Si2O8). 

MgO is also enriched in samples NG31 and BD1, which is probably also related to 

increased calcite. If the calcite was simply due to the reaction of anorthite to release 

the required calcium, no enrichment would be noticed over NG52. The observed 

enrichment means an external source of calcium is required. It is proposed this is 

oxidising basaltic glass within the lowermost part of the basalt pile, which can 

liberate CaO and MgO as surface oxide phases (Cooper et al., 1996). This is 

supported by observations in sample BD6, where calcite poikilocrysts are continuous 

into the basalt porosity. The enrichment in CaO and MgO is also apparent in NG32 

and BD4, which also covary. MnO is enriched in all except BD4 and is highest in 

NG31, which also is rich in opaque minerals compared to the other samples. MnO 

enrichment is either hosted in opaque minerals or in manganoan calcite. Opaque 

could be of detrital nature (heavy mineral placer deposits are common in aeolian 

settings. e.g. the Namib Desert south of Swakopmund) or diagenetic. Manganoan 

calcite is typically pink, the sandstone at lava contacts is sometimes pinker than the 

background (Fig. 4. 37). Loss on ignition (LOI) is also higher than NG52 for all four 

samples, and like CaO, LOI for NG31 and BD1 covary and NG32 and BD4 covary 

relative to NG52. The origin of the higher LOI values are probably related to the 

calcite abundance as CO2 is driven off on ignition (Heiri et al., 2001). 

 Trace elements are plotted relative to NG52 in Fig. 4.34B. Covariation is 

apparent, but between sample transects (NG31 and NG32; BD1 and BD4) rather than 

distance below lava. This suggests the control on trace element distribution is detrital 

composition determined during deposition. Cu is enriched in NG31 and NG32 , less 

so at 1.0 m below the contact than at the contact. BD1 and BD4 show no enrichment 

over NG52. This is consistent with the Dune Valley samples being drowned by the 

Tafelkop basalt (KRTbTk) which is notable by its high Cu concentration (e.g. Ewart 

et al., 1998a). 
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 In summary, bulk rock analyses suggest that divalent ions (Ca
2+

 and Mg
2+

) 

are enriched relative to NG52 at contacts and become less enriched with distance 

below the lava. Such enrichment suggests that the source for these ions was external, 

as the detrital minerals cannot provide these quantities (e.g. 30 times the detrital 

background) alone. The proposed source is oxidation of basaltic glass in the 

overlying basalts (Cooper et al., 1996). 

 

 

Fig. 4.34. Line graphs of major and trace element analysis of sandstone below lava at BD 

and Dune 16 localities. A) Major elements normalised to NG52. B) Trace elements 

normalised to NG52. 
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4.2.5 Ponded Lava 

 The Ponded Lava case study is the primary case study of this chapter and has 

been the most densely sampled with a total of 14 samples in a transect from the 

contact (0.0 m) to 15.0 m below the lava. The samples were collected by Dr Dougal 

Jerram (1996 to 2005) and myself (2012). 

 The Ponded Lava outcrop is north of the Huab River, and is approached by 

driving 3.2 km north off road across gravel-boulder debris flows and finally up a dry 

riverbed into the Etendeka mountains. The cliffs are remarkable for the exposure of 

the Tafelberg lava-sediment contact with the Major Erg of the Twyfelfontein 

Formation. The outcrop of interest is located at 20° 35.593’ S 13°53.057’ E, at 400 m 

in a SE facing cliff 50 m high, leading to a peak 0.5 km to the north of 515 m (Fig. 

4.35.). The overlying ponded lava flow is ~45 m thick (Fig. 4.36.).  

 The Twyfelfontein Formation sandstone at the Ponded Lava outcrop is the 

SW face of a transverse dune of at least 20 m from interdune to crest amplitude and 

wavelength of ~850 m (measured in the ponded lava canyon from GoogleEarth). The 

forsets dip to the NNE and are covered by a topset bed that is sometimes preserved. 

At outcrop scale the lava pond appears columnar, with a break in jointing towards the 

base. The dune appears red far below the lava contact, but becomes purple/pink, then 

light tan coloured within 1 m of the contact as can be seen in Fig. 4.36.  

 

Fig. 4.35. Map of Ponded Lava locality. Contour spacing is 10 m.  
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Fig. 4.36. Photo montage of PL locality facing NW towards the outcrop. Main Erg (KTyMajR) unit interdune is filled by one Tafelberg Type ponded lava flow. The sand dune is visibly altered below the lava contact from typical red 

colour of the red major erg to a lighter band to dark purple near the contact. Location of PL sample transect shown. 
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Ponded Lava Sample  

20°35.593’S 13°53.057’ E 

Distance below 

lava (m) 

Porosity (%) 1 sigma error 

PL1 0.0 0.2 0.2 

NG/12-31 0.05 0.6 0.3 

PL3 0.1 0.4 0.3 

PL4 0.2 1.4 0.5 

PL5 0.4 3.2 0.8 

PL7 1.3 5.8 1.0 

PL8 1.6 7.2 1.2 

PL9 2.0 13.2 1.5 

PL10 2.7 9.2 1.3 

PL11 3.6 16.2 1.6 

PL12 4.4 13.0 1.5 

NG/12-32 5.6 3.8 0.9 

NG/12-33 10.0 10.0 1.3 

NG/12-34 15.0 10.8 1.4 

 

Table. 4.4. PL lava pond locality samples, location, distance below lava and porosity. (see 

Appendix for complete data table). 

The contact between the lava and the sandstone at the ponded lava locality dune 

shows both passive and active interaction with the lava above. Active mixing is most 

dramatic 3 km to the NE, where at least 3 m thick of intense lava breccia in the 

sandstone has formed (see Jerram & Stollhofen, 2002). Near the sample site, which 

is more representative of the common conditions, lava breccia can extend up to ~ 10 

cm into the sandstone or visa-versa (Fig. 4.37A, B.). Locations that exhibit this kind 

of dynamic mixing lack a well-defined topset bed, therefore grain flow and grain fall 

lamellae are exposed to the lava. Breccia clasts are either angular with clean contacts 

or subrounded with rough, vesicular contacts. Most of the contact is passive. At 

passive contacts (Fig. 4.37C, D) no evidence for dynamic mixing exists, the lava 
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simply envelopes the sand, preserving the topset bed with no erosion. The sample 

transect is in such a locality (Fig. 4.37C, D). Often, at passive contacts, there will be 

evidence of loading of the sand by the lava (Jerram & Stollhofen, 2002). Fig. 4.37B 

shows the location of the sample PL1, and 10 cm to the right is a flame structure 

(Fig. 4.37E.), where the lava has weighted the less dense, unconsolidated sand was 

then displaced as a result of the loading.  

 

Fig. 4.37. Photographs showing the varied nature of lava-sediment interaction at PL 
locality. A) Grain flow and grain fall laminations dipping to the left of the image. 

Higher depositional porosity grain flow horizons tend to be most indurated by calcite 

compared to grain fall. Note angular lava breccia fragment. B) Dynamic mixing 

between lava and sand forming a 5 cm thick dry peperite layer. C, D) Section of PL 

samples showing (D) close up of passive lava-sediment contact where sample PL1 was 

taken. 
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Fig. 4.38. XPL photomicrographs of PL1 at contact. Compaction is the dominant 

porosity reducing mechanism. Grains are deformed to porosity and are frequently 

cuspate at contacts. 

 

Fig. 4.39. PPL photomicrographs of grain flow layer 5 cm below contact (practically at 

contact). A) Non-ferroan calcite cement is poikilitic and protects against grain 

compaction. B) Ferroan calcite is also present, but is after quartz overgrowths, 

suggesting it is a later cement.  
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Fig. 4.40. Photomicrographs away from PL contact. A) XPL 0.1 m below contact 

showing dominance of compaction porosity loss, grains are highly deformed. B) XPL 
0.1m below contact, grains are highly deformed, plagioclase is relatively un-weathered 

compared to below the compacted zone. C) PPL 0.2 m below contact, calcite 

replacement of feldspar grains is common, porosity appears as rare intergranular 

pores and secondary porosity within altered feldspar grains. D) XPL 0.2 m below 

contact shows grain compaction still is an important process compared to background 

compaction. E, F) PPL 0.4 m below contact calcite is rare, both primary and secondary 

porosity common, grain coating haematite is redistributed into mottled patches, giving 

outcrop an overall bleached appearance (Fig. 1.34.). 
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Fig. 4.41. PPL Photomicrographs 1.3 m below lava. A, B) Primary and secondary 

porosity is present, calcite only exists as grain replacement, haematite is redistributed 
as above. 

 

Fig. 4.42. Photomicrographs of sandstone 1.6 m and 2.0 m below lava. A) PPL 1.6 m 

below lava, porosity is dominantly primary, calcite is replacement only and haematite 

is redistributed. B) XPL 1.6 m below lava illustrating that grain compaction is still the 

dominant porosity reducing mechanism. C, D) PPL 2.0 m below lava, calcite is rare, 

compaction less than 1.6 m, porosity still primary and secondary. 
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Fig. 4.43. Photomicrographs 2.7 m to 3.6 m below lava. A, B, C) PPL 2.7 m below lava, 

calcite very rare and restricted to grain replacements, haematite redistributed. D, E, F) 

PPL 3.6 m below lava, no calcite, haematite grain coatings present, occasional quartz 

overgrowths on detrital quartz. Diagenesis dominated by compaction which is less than 

close to contact, shown by cuspate and sutured grain contacts and common crush 

compaction of feldspar grains. 



189 

 

 

Fig. 4.44. Photomicrographs 4.4 m to 15. 0 m below lava contact. A) PPL 4.4 m porosity 

has reached background levels, compaction is evident in grain interpenetrations which 

occurred during and after quartz overgrowth development. B) PPL 5.6 m below lava, 
grain fall horizon primary porosity dominates, calcite present associated with 

plagioclase replacement. C, D) PPL 10.0 m and 15.0 m below lava, petrographically 

similar to 4.4 m, background porosity. 

 Petrographic analysis of the sand at the contact was performed on two 

samples: PL1 is very fine grained (100– 150 μm) topset bed < 5 cm below the 

contact and NG/12-31 is a medium sand (200– 500 μm) grain flow horizon, at 5 cm 

below the contact. Petrographically, these two samples are quite different. 

 Sample PL1 has negligible porosity (0.2 %, ±0.2) and negligible permeability 

(0.3 md). Detrital mineralogy is approximately the same as the background. 

Authigenic mineralisation is dominated by clay (4.4 %, ±0.9) (probably 

illite/chlorite), with minor abundances of calcite replacing plagioclase (1.6 %, ±0.6) 

and quartz (1.0 %, ±0.4) (Fig. 4.38D, C.). Porosity loss is dominated by compaction 

(COPL= 45 %, ±2.8), cementation is increased over the background (CEPL= 3.8 %). 

Compaction is evident in the thin section, dominated by pressure solution of quartz 

(Fig. 4.38.). Quartz grains interpenetrate, and are frequently sutured. Authigenic 

quartz, though rare always forms as overgrowths at grain triple junctions (i.e. the last 

remaining porosity during compaction). Undulose quartz grains are rare. 
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 Sample NG/12-31 also has negligible porosity, permeability was not 

measured. Detrital potassium feldspar is near background, but plagioclase is absent. 

Authigenic mineralisation is dominated by calcite (23.8 %, ±1.9), which exists as 

poikilitic crystals of over 20 mm. Both ferroan and non-ferroan calcite are present. 

The non-ferroan calcite, common to all other lava contacts rarely grows over quartz 

overgrowths (Fig. 4. 39A.). The ferroan calcite has a diffuse boundary with the non-

ferroan calcite (Fig. 4.39B.) and often grows over quartz overgrowths. Authigenic 

clay is not present as a pore filling phase. Quartz overgrowths are rare (0.6 %, ±0.3). 

Porosity loss is still dominated by compaction (COPL= 32 %, ±3.0), but is below 

background levels, suggesting this rock is under-compacted by ~3% or by 13 % 

compared to PL1. Cementational porosity loss is much higher than background 

(CEPL= 16.6 %). The calcite appears to have formed and protected the sandstone 

from subsequent compaction by (1) forming a framework and (2) partially isolating 

quartz grains, reducing grain contact area susceptible to pressure solution. The 

magnitude of the under-compaction being about the same as the difference between 

compacted sandstone (e.g. PL1) and the background is evidence for the calcite being 

early (eogenetic) cement, prior to burial.  

 Porosity is negligible 0.10 m below the contact (0.4 %, ±0.3). Detrital 

mineralogy is similar to the background. Authigenic minerals are dominated by clay 

(9.4 %, ±1.3), like PL1. Detrital plagioclase is usually intact (Fig. 4.40B.) The clay is 

probably chlorite and illite (Fig. 4.40A, B). Calcite (1.4 %, ±0.5) and quartz 

overgrowths (1.2 %, ±0.5) are minor. Porosity loss is dominated by compaction 

(COPL= 41.8 %, ±2.9), and cementational porosity loss is 7.0 %. The contribution of 

the clay cement to porosity loss is not insignificant.  

 By 20 cm below the lava, porosity has increased to 1.4 % (±0.5) and 

permeability is 3.3 md. Porosity is largely secondary within weathered feldspar 

grains, and less commonly as primary pores (Fig. 4.40C). Detrital mineralogy is 

similar to the background, but plagioclase abundance is reduced, possibly related to 

the secondary porosity and authigenic calcite. Authigenic mineralisation is 

dominated by clay (3.8 %, ±0.9), quartz overgrowths not being encountered while 

point counting and calcite forming 1.6 % (±0.6). Calcite almost exclusively replaces 

plagioclase and lithic grains (Fig 4.40C.). Porosity loss is largely through compaction 

(COPL= 45.2 %, ±3.2), cementational porosity loss is minor (CEPL= 3.1 %). 
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Compaction is ~ 10 % higher than the background. Fig. 4.40D shows the compaction 

of quartz grains, where grain interpenetration is common. 

 Sample PL5 (40 cm below lava), is characterised by haematite mineralisation 

as a pore filling cement. Porosity is 3.2 % (±0.8), which is still dominated by 

secondary dissolution of feldspar grains (Fig. 4.40E.). Detrital minerals are similar to 

the background; plagioclase is slightly less abundant, again probably related to the 

amount of secondary porosity. Authigenic minerals are common and dominated by 

precipitation of haematite in pore space (Fig. 4.40F.), which has probably been 

redistributed from closet to the contact, where detrital grains are not coated with 

haematite. Calcite (1.8 %, ±0.6) usually replaced plagioclase. Porosity loss is mostly 

due to compaction (COPL= 45.0 %, ±2.8).  

 Between 1.3 m and 2.0 m below the lava (sampled PL7, PL8 and PL9), 

porosity increases from 5.8 % (±1.0) to 13.2 % (±1.5) and permeability increases to 

6.2 md from 3.4 md. Detrital mineral composition varies little between the samples 

and is approximately background. Grain size varies from 150 μm to 500 μm. Sample 

PL7 (1.3 m) has porosity dominated by secondary dissolution of feldspar grains (Fig.  

4.41.), but by PL9 (2.0 m), porosity is dominantly primary (Fig. 4.42C, D.). 

Authigenic minerals are minor in all three samples and are dominated by calcite 

replacement of occasional plagioclase grains (Fig. 4.41B. Fig 4.42A.). Redistribution 

of haematite into nodules is important in all three samples, seen as a mottled brown 

in hand specimen and patches of pore-filling haematite in thin section. Porosity loss 

is dominated by compaction (COPL) and reduces from 44.7 % (± 3.7) to 40.6 % 

(±4.1) over the three samples; CEPL reduces from 1.1 % to 0.6 %. The compaction 

data suggests that the bulk of the porosity increase over the 0.7 m between PL7 and 

PL9 was due to a decrease in compaction. Compaction, like closer to the lava is not 

dominantly through pressure solution of quartz grains (Fig. 4.42B.), grains can be 

seen interpenetrating and to have sutured contacts, without interstitial opaque grain 

coatings, nor do the grains showing undulose extinction. The lack of haematite grain 

coatings suggests these were dissolved and mobilised synchronous or prior to major 

compaction. 

 PL10, 2.7 m below the contact has a porosity of 9.2 % (±1.3) and a 

permeability of 6.2 md. The sample is characterised by dominant primary porosity 

and poorly developed secondary porosity hosted in partially dissolved plagioclase 
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and the occasional potassium feldspar grains (Fig. 4.43B.). Detrital mineral grains 

show little variation form the background. Authigenic mineralisation is minor, and is 

dominated by occasional quartz overgrowths (1.2 %, ±0.5) and redistribution of 

haematite into nodules. Calcite was found to partially replace some feldspar grains, 

but these were not encountered during point counting (Fig. 4.43C.). Porosity loss is 

dominated by compaction (COPL= 43.1 %, ±3.9), which is visibly noticeably less in 

thin section than for samples closer to the contact. Cementational porosity loss is 

minor (1.5 %).  

 Sample PL11 (3.6 m below the contact) is marked by the apparent absence of 

significant secondary porosity resulting from feldspar dissolution. Porosity is 16.2 % 

(± 1.6) and permeability is 121.4 md. The detrital mineralogy is similar to the 

background. Detrital grains are coated with a thin layer of haematite, as can be seen 

in Fig. 4.43F. separating a quartz overgrowth from the detrital quartz grain. 

Authigenic mineralisation is negligible, quartz overgrowths making up the bulk (1.0 

%, ±0.4).  Calcite is confined to insignificant partial replacement of plagioclase along 

cleavage planes. Porosity loss is dominantly through compaction (Fig. 4.43D, E, and 

F.) (COPL= 43.1 %, ±3.9). Compaction appears to be through both pressure solution 

and crush compaction. Pressure solution is seen as interpenetrating grains, and was 

active after quartz cementation, due to overgrowths being compacted (Fig. 4.43F.). 

Crush compaction is seen as brittle deformation of framework grains (Dickinson & 

Milliken, 1995) and affects potassium feldspar to the greatest degree (Fig. 4.43E.). 

Healing of the fractures must have occurred to preserve the delicate structure 

observed, consistent with the comprehensive crush compaction study of Dickinson & 

Milliken (1995). 

 From 4.4 m to 15.0 m below the lava, porosity and permeability appear not to 

be reduced by the lava flow (e.g. PL12, 4.4 m porosity= 13 % (±1.5) and 

permeability= 328 md). The two grain flow samples (PL12 and NG/12-33) are 

characterised by detrital grains from 200–550 μm in diameter, with mineral 

abundances at background levels. Detrital grains have thin haematite rims (Fig. 

4.44A, C, D.), which give the sandstone a red colouration. Authigenic mineralisation 

is dominated by quartz overgrowths, which pre-date much of the compaction (Fig. 

4.44A.) at this distance below the lava. Quartz overgrowths are negligible in sample 

NG/12-34 (15.0 m below lava). Porosity loss is through compaction (CEPL= 39 % to 
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42 %). Cementational porosity loss is negligible. Sample NG/12-32 is slightly 

anomalous, in that the porosity is lower than its distance below the lava would 

suggest. Grain size is 100–500 μm in diameter. The reduced porosity appears to be 

due to cementation. Authigenic clay filling pores is in increased abundance (6.4 %, 

±1.1) as is calcite (3.4 %, ±0.8) which tends to replace feldspars, rather than fill 

pores.  

 The trends away from the lava contact show increasing porosity with depth, 

from negligible at the contact, to 13 % (±1.5) at 4.4 m below. Further than 4.4 m 

porosity shows the normal background spread (~12.4 % ± 1.5) (Fig. 4.45A.). 

Permeability rapidly increases at 3.6 m below the contact, where primary porosity 

begins to dominate (Fig. 4.45B.). Permeability against porosity shows an exponential 

relationship. Detrital mineralogy (Fig. 4.47B.) appears not to vary much with 

distance below the lava, although plagioclase has a region between 2 m and 4.4 m 

where it is of negligible abundance, possibly due to increased plagioclase dissolution 

in this zone. Opaque minerals are both detrital and authigenic. Grain coatings on 

detrital grains are rare within 3.6 m of the contact, but common further than 4.4 m. 

Where haematite grain coatings are absent, the haematite is usually re-precipitated as 

pore filling nodules that give the outcrop a mottled appearance. Fig. 4.47A. shows 

abundance of opaque minerals, the highest values are closer to the contact, but no 

correlation exists with distance below lava. Authigenic mineralisation is minor in 

most of the samples, with calcite being important in grain flow horizons close to the 

lava. Pore filling clay is generally negligible, although close to the contact clay was 

found up to 9.4 % (±1.3) (PL3, 0.1m). Authigenic quartz abundance shows no 

correlation with distance below the lava. 

 Both the highest and the lowest magnitudes of compaction porosity loss were 

found within 0.2 m of the lava contact. Samples PL1 (0.0 m) and PL4 (0.2 m) have 

COPL of ~45 % (±2.8) whereas sample NG/12-31 (0.05 m) has a COPL  of 32 % 

(±3.0), which is below the background for the high porosity sands away from lava 

contacts. Porosity minus cement (Pmc) values (Fig. 4.47.), although not as 

sophisticated as the COPL and CEPL indexes provide some insight here: Pmc 

reduces towards the contact from a distance of 3.6 m coinciding with the change of 

porosity type to dominant primary. The situation suggested, like the lava-sand 

contacts above is a compaction dominated early diagenetic regime, with early calcite 



194 

 

cement (prior to burial compaction) exploiting the highest permeability pathways 

near to the lava contact. As compaction decreases, porosity increases to background 

levels, with the increase between 2.0 m and 4.4 m.  

 

 

Fig. 4.45. Graphs against distance below lava contact. A) Porosity increases away from 

contact to background of ~ 12 %.  Linear trend line calculated up to the point at which 

background porosity is reached. B) Permeability is low until 2.7 m where it rapidly 
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increases, this corresponds to opening of primary porosity. C) Permeability against 

porosity shown an exponential relationship. 

 

Fig. 4.46. Graphs against distance below lava contact. A) Calcite is generally low except 

in grain flow horizons at the contact. B) Clay bears no relationship with distance below 

lava. C) Authigenic quartz is not correlated with distance below lava. 
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Fig. 4.47. Graphs against distance below lava. A) Opaque minerals are slightly more 

common near to the lava, but no strong correlation exists with distance. B) No 

correlations exist between detrital minerals and distance below lava. C) Porosity loss 

analysis for PL transect. COPL increases slightly approaching lava by ~ 5 % except for 

cemented samples. Pmc decreases strongly toward contact except for cemented 

samples suggesting increased compaction porosity loss near to contact. 
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4.3 On the compaction of the Twyfelfontein Formation 

 

 All of the case studies above have shown that compaction increases towards 

lava contacts, even considering the uncertainty plotted. It is important to identify the 

origin, magnitude and relationship of this compaction with the overlying lava. It is 

also important to identify whether the increased compaction (~10 % more than 

background) occurred in one episode (i.e. ~45 % compaction followed by no 

additional burial compaction) or as ~10 % compaction of unconsolidated sand 

followed by an additional ~35 % compaction during burial. 

 Compaction is evident during optical analyses of most of the contact rocks, 

even the highly calcite cemented samples (e.g. NG/12-31, BD6), albeit of a lower 

magnitude than the less cemented samples (e.g. PL1, BD2, NG78). The compaction 

is a result of increased pressure solution, indicated by abundant interpenetrating 

grains, sutured contacts and by the precipitation of quartz overgrowths in the local 

area (same grain). The these effects decrease away from lava contacts as grain 

contacts become less frequently sutured and concavo-convex, and instead tangential 

contacts become common. During pressure solution, grains dissolve at intergranular 

or intercrystalline contacts, where non-hydrostatic stress is highest (Tada & Siever, 

1989; Rutter, 1983). During this process silica diffuses in an aqueous intergranular 

film and the diffusion is driven by local chemical potential gradients and gradients 

due to local chemical reactions (Rutter, 1983). The controls on pressure solution in 

nature (Tada & Siever, 1989) are:  

 

Depth  

 Pressure solution becomes more intense with depth (increase in number of 

sutured grain contacts and concavo-convex contacts) (Tada & Siever, 1989). 

Pressure solution is common at depths of 1000 m but has been reported at depths of 

900 m (Tada & Siever, 1989 and references therein) 

 

Composition of rock 

 Pressure solution becomes more intense at higher total clay proportion (Tada 

& Siever, 1989), although the Green Pond Conglomerate (also Tada & Siever, 1989) 



198 

 

shows the opposite relationship. The increase is potentially due to the clay enhancing 

the rate of diffusion along contacts as a result of hydrated clay films providing 

increased diffusion paths (Tada & Siever, 1989). Clays may also promote pressure 

solution by impeding overgrowth precipitation. The destination of the quartz 

insolution, wen its nearby re-precipitation is blocked is a mystery. Polycrystalline 

grains are more susceptible to pressure solution than single crystals (Tada & Siever, 

1989). 

 

Grain Size 

 Grain size is a major control on pressure solution intensity. Grain size is 

inversely related to pressure solution. This has been shown in numerous field studies 

(Tada & Siever and references therein) and in a laboratory study (Renton et al., 

1969). 

 

Temperature 

 Temperatures of between 20 °C and 60 °C are required to initiate pressure 

solution in quartzose sandstone  and lithostatic pressures of  18 MPa to 30 MPa, with 

minimum effective pressures of 9 MPa to 11 MPa (Tada & Siever, 1989), as 

calculated from burial depth data for natural sandstone. Tada & Siever (1989) also 

noted that ‘It is also clear that intergranular pressure solution can proceed at 

relatively low pressures, and that very deep burial does not automatically result in 

extensive intergranular pressure solution compaction’. 

 

Solution chemistry 

 Quartz dissolution is favoured in alkaline solutions due to increased solubility 

(Tada & Siever, 1989). 

 

Time 

The duration spent within the depth and temperature range. 

 

 An aqueous film is required to coat grains for pressure solution to proceed. 

This may appear problematic in a desert; however in this situation water can be 

sourced from the cooling lava as volcanic steam/ water vapour (e.g. Henley & Ellis, 
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1983; Rye, 2005; Delmelle & Stix, 2000). Furthermore, dune sand is commonly 

damp due to fog condensation (Eckardt et al., 2012) which would provide shallow 

subsurface water prior to lava emplacement. The origin of the water precipitating the 

calcite associated with the lava contacts is discussed in 4.4. 

 In the examples above, compaction in sandstone near to hot lava contacts is 

almost exclusively due to enhanced pressure solution as opposed to plastic 

deformation of quartz. Plastic deformation of potassium feldspar was however 

common, and was possibly enhanced by breakdown to clay minerals (evidence in the 

form of numerous ‘bent’ feldspar grains around stronger framework grains such as 

quartz). Most quartz grains showed unit extinction, with occasional to rare grains 

showing the undulose extinction characteristic of plastically deformed grains (cf. 

Bailey et al., 1958). The extinction characteristics of the quartz may have been 

inherited from the eroding source region, but originally un-deformed quartz would be 

expected to exhibit undulose extinction if subsequently plastically (senso stricto) 

deformed during lava emplacement. The conditions required for plastic deformation 

of quartz have generally been studied at high temperatures and pressures, 

characteristic of regional metamorphism (e.g. Blacic, 1975; Bailey et al., 1958; 

Carter et al., 1964) suggesting high pressures and temperatures are required. Kerrich 

et al (1977) used oxygen stable isotopes to study quartz in Dalradian metasediments 

from Scotland and found that for 100 μm quartz the transition from intercrystalline 

diffusion (pressure solution) to dislocation creep (plastic deformation) occurred at 

450 °C, where temperatures were determined from inferred metamorphic 

temperature zones. Grain size was found to have the opposite effect on pressure 

solution; larger quartz grains (1000 μm) had a lower transition temperature of 300 

°C. Kerrich et al (1977) also determined that the temperature transition between the 

two regimes was not dependent on stress in the pressure range studied (110 MPa (4 

km) to 350 MPa (12 km)). Temperatures in excess of these are obtainable at the base 

of cooling pāhoehoe lava flows, at least for 8 minutes (Keszthelyi, 1995). A 13.4 m 

thick lava lake in Hawaii (Alae lava lake) cooled to below 100 °C in 5 years and 

another, the Makaopuhi 100 °C isotherm had only reached ~6 m deep after four years  

(Wright et al., 1976; Peck et al., 1977). Clearly in these examples, solidification from 

the base upwards was not measured. 
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 Considering the above, pressure solution is certainly favoured under shallow 

sub-basalt conditions (up to 40 m deep burial, 1177 kPa). If the pressure 

independence noted by Kerrich et al (1977) is valid at low pressures, the substrate 

cannot have exceeded 450 °C for a duration sufficient to promote plastic quartz 

deformation, consistent with petrographic observations, even for coarse grains.  

Pressure solution requires much lower temperatures between 20 °C and 60 °C to 

initiate, so the duration it could last for under the cooling lava is much longer than 

potential plastic deformation. The effect of grain size on pressure solution is also 

consistent petrographic my observations. As noted above, for all of the case studies, 

grain fall and topset beds show the most intense compaction near contacts, whereas 

grain flow horizons are not so compacted, such that porosity may remain open for 

precipitation of authigenic pore-filling calcite. If plastic deformation was the case, 

the opposite might be expected. 

 Brittle compaction of the Twyfelfontein formation is petrographically 

significant outside of the highly compacted region near to lava contacts. Brittle 

compaction is however rare or absent within the highly compacted zone, suggesting 

the compaction occurred under conditions unfavourable for brittle processes. If the 

increased compaction near contacts was early, porosity would have been low during 

later burial, therefore preventing subsequent compaction by brittle mechanisms (e.g. 

Dickinson & Milliken, 1995; Makowitz & Milliken, 2003). This is evidence for an 

early compaction event near to the lava, separate from the later burial compaction of 

the sand not directly affected by the lava emplacement. 

 The effect of grain rotation and slip at low confining pressures may also 

contribute to the observed increase in compaction. The geologically sudden loading 

of the unconsolidated sand with up to 40 m of lava results in relatively low pressures 

(1177 kPa) compared to burial (Makowitz & Milliken, 2003), which can favour 

mechanical reorganisation of grains. Petrographic evidence for this was not found, 

nor expected in sandstone with rounded grains, nor with the overprint of such intense 

pressure solution. The early stage occurrence of this process cannot be ruled out 

however, especially considering the evidence for dynamic interaction between lava 

and sediment in some localities (e.g. flame structure in Fig. 4.37D, E.). 

 Since it has been established that sand below lava contacts shows increased 

compaction, dominated by pressure solution between quartz grains, but probably 
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contributed to by mechanical reorganisation of grains and potentially minor plastic 

deformation, it is necessary to attribute the correlation to a cause. The association of 

the increased compaction with lava is shown in Figure 4.48 and Fig. 4.49. Fig. 4.48. 

illustrates the relationship between COPL and CEPL for sandstones with porosities 

(A) > 8 % and (B) < 8 %. Since porosity is proportional to distance below lava, those 

with porosities < 8 % are near to lava contacts. 8 % was chosen as a threshold due to 

it being below the background porosity by ~ 1/3, no other basis exists for 

establishing this threshold. The two populations of interest for this chapter are 

KTyIDr and KTyMAJr, which are the isolated dunes (Dune 16 and Upper Dune) and 

the Major Erg (RYD pond, BD and PL) case studies respectively. It can be seen on 

the graph that COPL is inversely proportional to CEPL and that both isolated dunes 

and Major Erg have COPL ~ 40 % in this region. When compared to sandstone with 

porosity > 8 %, which exist away from the contacts, COPL and CEPL show no 

relationship and the mean COPL for the Major erg is higher than the stratigraphically 

higher isolated dunes by ~ 2 %. These analysis of the data show that out of the 

influence of the lava, compaction is controlled by burial, and within the influence of 

the lava compaction is inversely related to cementation and not related to 

stratigraphic position. The linear relationship between CEPL and COPL for the low 

porosity sands is striking compared to the lack of relationship for the high porosity 

sands. If the coarse-grained, grain flow (200 μm to 500μm) sample NG/12-31 (0.05 

m) is used as an example due to its high cementation and low compaction a solution 

can be found. The question is: Does early compaction inhibit cementation or does 

cementation protect against compaction? Using the observations of Tada & Siever 

(1989) and petrographic observations in this chapter, it is apparent that pressure 

solution affects small grains more than larger grains. Early pressure solution would 

therefore have not affected this coarse-grained horizon as much as the finer less 

cemented horizons, and would have kept the pore network open for fluid flow, 

potentially during cooling of the lava (see 4.4). This fluid would then be able to 

precipitate the calcite in the pore space. However this mechanism does not account 

for why NG/12-31 is under-compacted (COPL= 32%, ±3.0) compared to the 

background Major Erg. The answer is that the calcite must have been formed prior to 

burial compaction but during or after lava emplacement compaction. The calcite 

would have separated quartz grains, preventing subsequent pressure solution and 
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compaction at grain contacts during regional burial. This is evidence for early 

compaction removing the majority of the porosity from the compacted sand at the 

contact prior to burial compaction. The emplacement of the lava caused up to 45 % 

porosity loss from the contact zone grain flow horizons immediately, rather than an 

initial 10 % loss followed by a  later 35 % loss during burial. As distance from the 

contact increases the proportions of porosity loss from early compaction and burial 

compaction curves will converge. 

 When examined further (Fig. 4.49.) a clear distinction is found between the 

two populations of COPL (isolated dunes drowned by Tafelkop lava and Major Erg 

drowned by Tafelberg type lava) against distance below lava. Both populations 

follow the same trend away from the lava. On average the deeper buried Major Erg, 

(e.g., Fig. 4.48A is more compacted than the shallower, isolated dunes. However, 

when compared to Fig. 4.48B., where no difference is seen in COPL between low 

porosity sandstones from each population, it is concluded that the mean difference 

seen in Fig. 4.49 is due to burial compaction but the low porosity, near contact is due 

to early lava loading.  CEPL does not appear to be related to depth below lava in 

either of the populations (Fig. 4.49.) and the trends shown are opposite, the isolated 

dune examples showing increased cementation with distance and the Major Erg 

showing decreased cement with distance. 

 In summary, the increased compaction observed below lava flows is due to 

the loading by the lava flow, combined with conductive heat transfer, and potentially 

volcanic steam providing aqueous films on quartz grains enabling pressure solution 

to occur. The pressure solution is restricted by the availability of water to form 

aqueous films and temperature, which according to Tada & Siever, (1989) must be at 

least between 20–60 °C at minimum effective pressures of 9–11 MPa (9 MPa 

corresponds to ~ 328 m burial depth). It is therefore, not inconceivable that the 

observed pressure solution compaction could occur at temperatures expected at the 

lava-sand contact (measured by Keszthelyi, 1995) of 850 °C to 900 °C for 8 minutes, 

followed by lava pond cooling to below 100 °C over a period of 4 to 5 years (Wright 

et al., 1976; Peck et al., 1977) would enable the observed pressure solution 

compaction. Temperatures probably did not exceed 450 °C for long, as little plastic 

deformation was observed near to lava contacts. 
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 Beyond the limit where the effect of emplacement is observed in the 

sandstone beneath lava flows (4.3.1. and Fig. 4.50.) compaction is the dominant 

mechanism of porosity loss (as is common to most sandstones worldwide, 

Houseknecht, 1988; Gluyas & Cade, 1997). This compaction appears to have been 

dominated by pressure solution, with optically visible grain crushing of feldspars 

(usually along cleavage) and occasional quartz grains. Dickinson & Milliken (1995), 

in a study of the Twyfelfontein Formation (Etjo Formation at the time), with samples 

taken from the Huab area, noted that effects interpreted as pressure solution resulted 

predominantly through micro-scale brittle deformation. In the Twyfelfontein 

Formation, the brittle deformation was found by Dickinson & Milliken (1995) to 

dominate compaction by producing many intragranular microfractures only 

identifiable in cathode-luminescence, which reorganise to allow grain 

interpenetration. The microfractures then heal with authigenic quartz. Observations 

above of the Twyfelfontein Formation are broadly consistent with these observations, 

apart from the occurrence of sutured grain contacts in the formation, below the 

influence of the lavas. 
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Fig. 4.48. A) Graph of COPL against CEPL for sandstones above with porosity > 8 %.  

These sandstones show no relationship between compaction and cementation. B) 

Graph of COPL against CEPL for sandstones above with porosity < 8 %. The negative 

correlation between COPL and CEPL suggests there is a relationship. Either early 
compaction inhibits cementation near contacts, or cementation inhibits compaction. 

Also shown are averages (with error bars of σ) for each Twyfelfontein unit. Where 

porosity > 8 %, the Major Erg (KTyMAJr and KTyMAJw) is more compacted than 

the shallower isolated dunes (KTyIDr and KTyIDw) which is a consequence of a 

higher stratigraphical position. 
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Fig. 4.49. Relationship of COPL and CEPL with distance below lava for each case study. 

Linear trend lines show that overall compaction increases towards the lava contact and 
that overall the sand below the thicker tabular Tafelberg lavas is more compacted than 

the sand below the thinner compound Tafelkop lavas. Trends for CEPL show that no 

difference exists (between the two lava units therefore cement (mainly calcite) is 

independent to the lava thickness or burial depth. The statistical difference was tested 

with the t-Test in MS Excel giving a P=0.001 suggesting the difference is HIGHLY 

STATISTICALLY SIGNIFICANT. It is important to appreciate the COPL 

uncertainty (Chapter 3), qualitative pretrographical observations strongly support the 

increase of compaction towards lava contacts. 

 

4.3.1 Distance to background porosity in the Twyfelfontein Formation below the 

Tafelberg and Tafelkop lavas. 

 

 A more thorough discussion is given in Chapter 5, where comparisons will be 

made with lava flow-sediment contacts from Iceland, the Columbia River Basalt  

Province, WA, USA  and from the Snake River,  ID, USA. The intention here is to 

report on the range of porosity profiles below the lavas. Chapter 5 will show analysis 

of porosity and thickness of lava flows. 
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 Each case study comprises a range of porosity measurements taken at 

increasing distances below the lava contact. For each example the linear best fit trend 

line was calculated in MS Excel up to the first porosity point to reach or exceed 12.5 

% porosity (the background, see Chapter 3). The distance below the contact where 

the calculated gradient reached 12.5 % was then calculated. These trends are shown 

in Fig. 4.50B. The trends show that the two isolated dunes return to background 

levels most rapidly. The Upper Dune reaches 12.5 % porosity after 0.66 m and Dune 

16 reaches 12.5 % porosity after 2.3 m. The Major Erg dunes were found to take a 

longer distance to return to 12.5 % porosity. The Ponded Lava case study reached 

12.5 % porosity after 3.24 m, Big Dune after 3.8 m and RYD Pond after 4.29 m. 

These data are consistent with the compaction trends, i.e., the isolated dunes being 

less compacted than the Major Erg. Uncertainties in distance plotted (Chapter 5) are 

based on the 1σ error at 12.5 %. The uncertainty of this calculation has been 

propagated using the point count errors. These are plotted in the summary figures in 

Chapter 5.  
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Fig. 4.50. A) All porosity data above plotted against distance below lava. B) Calculated 
gradients of porosity data plotted against distance terminating when background 

porosity (12.5 %) is reached. The trends come from data presented in this chapter in 

Figs 4.8A, 4.19A, 4.30A, 4.45A. These trends are plotted with uncertainties in Chapter 

5. 
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4.4 On the origin and timing of the calcite 

 

 Calcite, near to lava contacts is a usually a minor contributor to porosity loss 

(CEPL), although it can be a major component in some samples (e.g. BD1, BG6 and 

NG/12-31). It is associated with lava contacts as a cement. It is important to examine 

the timing and origin of the calcite because this has the potential to elucidate, through 

simple modelling of stable isotope ratios, the temperature conditions under which the 

calcite precipitated. Measurement of carbon stable isotopes can identify the carbon 

source for the carbonate. Both of these isotopically determinable variables can be 

used as evidence for the paragenesis of the observed effects below lava flows, as 

petrographic links have already been established to compaction timing, porosity and 

detrital mineral replacement. 

 

4.4.1  Stable isotopic evidence 

 Thirteen samples of red sandstone in transects below lava flows returned a 

CO2 yield adequate for stable isotope analysis of calcite cements. Figure 4.51 shows 

the results of these analyses plotted as δ
13

C (PDB) vs. δ
18

O (PDB). Data for all 

analyses in this thesis are also plotted, which include calcite adjacent to sills and 

dykes, calcite from faults cutting the Twyfelfontein Formation (Chapter 6), calcite 

from an amygdale in the Tafelkop-type basalt from Dune Valley and calcite from 

hydrothermally altered white sandstone (Chapter 7). Data from geodes in the Parana 

published by Gilg et al., (2003) is also presented. 

 These data plot as two populations. The data collected from below lava flows 

plots with lower δ
13

C and δ
18

O compared with the calcite formed adjacent to dykes, 

sills and as hydrothermal mineralisation in faults and white sandstone. These two 

fields are labelled ‘hot lava contact field’ and ‘subsurface field’ in figure 5.51. The 

separation of these two fields suggests there is a difference in conditions. The δ
13

C 

values of the lava contact calcites trend towards mantle values (Rollinson, 1993) and 

the δ
18

O values, where there is sufficient data (e.g. PL locality) suggest a trend with 

distance, where δ
18

O becomes heavier away from the lava (indicated on Fig. 4.51.). 
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Fig. 4.51. δ
13

C (PDB) against δ
18

O (PDB) for all samples analysed, including calcite from 

intrusion contacts, hydrothermal calcite from ‘white’ sandstones (Chapter. 6.) and vein 

calcite from faults. Hydrothermal calcite, vein calcite and calcite near intrusions are 

plotted in blue. Each lava flow case study with data is plotted in a unique warm colour. 

 The identification of this trend prompted the modelling of possible oxygen 

isotopic and temperature variability in the water it would have precipitated from. 

Figure 4.52 shows results of the modelling.  

 The model was calculated using fractionation constants of  A=-3.39 and B= 

2.78, (O’Neil et al., 1969) and the equation: 

 

1000 ln α = A + B (10
6
/T

2
) from Rollinson (1993) 

 

 Where T is temperature and  ln α= δ 
18

Ocalcite- δ 
18

Owater. Using this, the 

expected δ 
18

Ocalcite can be calculated for any temperature and water. 

 The model shows for whichever water composition that is chosen, the calcite 

precipitated at a higher temperature closer to the lava contact than further away. For 

Cretaceous meteoric water in Namibia (δ
18

O (SMOW) = 7 ‰, Bowen & Revenaugh, 
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2003) a temperature of 50 °C is calculated at the contact reducing to 15 °C at 20 cm 

depth. The lower magmatic water value (from Rollinson, 1993) calcite precipitation 

temperature at the contact is 190 °C, which reduces to 105 °C at 20 cm. The Upper 

magmatic water value suggests a maximum precipitation temperature of 360 °C at 

the contact. No independent temperature data exists for these samples, so true 

temperatures are not known. However, the range of temperatures calculated suggests 

that the calcite must have formed after initial cooling of the lava, which is consistent 

with the diagenetic sequence reported in this chapter. Given the arid 

palaeoenvironment, large quantities of meteoric water are hard to envisage, but 

occasional precipitation (annual) is expected. Considering the Ponded Lava lava 

pond would have taken several decades to cool, several precipitation episodes would 

have taken place over this time. It is therefore suggested that mixing of meteoric 

water and magmatic water is likely. 

 

  

Fig. 4.52. (A) Modelled calcite δ 
18

O values in equilibrium with waters of different 

origins. Calculated meteoric and magmatic fields are shown (using fractionation 

constants A=-3.39 and B= 2.78, O’Neil et al., 1969) as well as the expected meteoric 

water value for Namibia in the Cretaceous (green line). Max burial temp of 130 °C has 

been calculated based on geothermal gradients and burial data from Raab et al., (2005). It is clear that a 

temperature gradient exists in the measured calcite below PL lava, cooling away from 

the lava (whatever the water).  
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Fig. 4.53. Relationship between distance below the Ponded Lava contact and modelled 

carbonate precipitation temperature for Cretaceous meteoric water in Namibia, the 

lower magmatic water limit and the upper magmatic water limit, All show an increase 

in calcite precipitation temperature towards the lava, supporting an early diagenetic 

origin for the calcite. 

 Linear correlations between calculated calcite precipitation temperature and 

distance below lava have been calculated for the PL locality (Fig. 4.53.). It can be 

seen that temperature reduces away from the lava, suggesting the calcite formed 

during cooling and was an early cement. 

 

4.5 Discussion 

 It has been demonstrated that the emplacement of basaltic lava onto 

unconsolidated sand causes a zone of increased compaction through pressure 

solution that reduces porosity. It has also been established that increased calcite 

cementation is associated with proximity to the lava contacts. Also noteworthy, is the 

common redistribution of haematite from the highly compacted zone to a zone 

further beneath the lava, where it is precipitated as small (< 5mm) nodules that give 

the sandstone a mottled appearance. The major diagenetic reactions above (pressure 

solution, calcite authigenesis and haematite redistribution) all require water. Large 

volumes of water in the setting are problematic, at an early diagenetic stage. 

Nevertheless, there is substantial evidence for the above being of an early diagenetic 

timing (i.e. immediately post lava emplacement) as noted by Jerram et al (2002) and 

Thompson & Jerram (2003) on the initial investigation of these types of contacts in 

the Huab Basin: 
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• Inverse correlation between compaction (COPL) and distance below lava for low 

porosity sandstone (before background characteristics are regained) 

•Correlation of Pmc with distance below lava also suggesting compaction related to 

lava emplacement (albeit less sophisticated than COPL) 

•Correlation between porosity and distance below lava in all cases 

•Correlation between permeability and distance below lava in all cases 

•Inverse relationship between calcite cementation and distance from lava in most 

cases, except for within highly compacted grain fall laminations. 

•Linear relationship between COPL and CEPL near to contacts, combined with 

petrographic observations demonstrates calcite was precipitated during shallow 

compaction (lava induced) or shortly after but before burial compaction. 

•Haematite redistribution requires dissolution, transportation and re-precipitation, 

and requires fluid movement or capillary movement (i.e. solvent required), which 

must be acidic (e.g. Ma et al., 2007; Surdam et al., 1993). It is often studied as the 

result of hydrogen sulphide in hydrocarbon systems (Kirkland et al., 1995; Beitler et 

al., 2003). It is proposed that degassing lava can provide both water and acidification, 

as the major phases degassed by basaltic lava are: water, carbon dioxide, chlorine, 

fluorine, sulphur dioxide, hydrogen sulphide and carbon monoxide (e.g. Delmelle & 

Stix, 2000; Lowenstern, 2001; Simmons and Christenson, 1994; Shevenell and Goff, 

1993; White, 1957). Condensation of these volatiles within the sandstone, or indeed 

vapour presence during compaction would dissolve haematite (reduction of Fe
3+

 to 

soluble Fe
2+

, equation 1), and if migration pathways existed downwards (i.e. not 

completely compacted) the iron-rich solution would dissipate until it either buffered 

by reacting with detrital grains (e.g. plagioclase, which is also reactive in acid 

environments e.g. Hangx & Spiers, 2009), or until the fluid dissipated due to its low 

volume in relation to rock volume. 

 4 Fe2O3 + H2S + 14 H
+
 ↔ 8 Fe

2+
 + SO4

2-
 + 8 H2O (1) 

Clearly if this is the mechanism for the origin of the haematite nodules in the 

sandstone, associated with lava contacts, volcanic fluids are necessary (organic 

influence can be ruled out because of the palaeoenvironment, large scale meteoric 

flux can be ruled out because of the palaeoenvironment). A low volume of water is 
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also suggested due to the location of the haematite nodules, if an aquifer existed, it is 

proposed that the iron would dissipate or precipitate as a front. 

•Carbon stable isotopes δ
13

C at the Ponded Lava locality have  average values of – 

7.5 ‰ (n=4, SD= 0.8 ‰), which are within the range of mantle carbon (Rollinson, 

1993) and magmatic carbon (Taylor, 1967). This suggests the CO2 dissolved in the 

water precipitating these carbonates was potentially sourced from the degassing lava. 

This supports the existence of the magmatic fluids required for haematite 

redistribution and the petrographical interpretations of the calcite having an early 

diagenetic origin. 

•When plotted in carbon and oxygen space, the values for the lava contacts plot as a 

different population to the hydrothermal calcites (white sand, and vein calcite) and 

distinct from calcite in hydrothermal calcite found in geodes in the equivalent lavas 

in the Parana Basin (Gilg et al., 2003). They also plot away from any field shown in 

Rollinson (1993). Where sufficient data exist (e.g. Ponded Lava), a temperature 

dependence is in δ
18

O is evident, as lighter oxygen values are found closer to the 

contact, no trend is noticed in δ
13

C suggesting the fluid is the same.  

•When temperature dependence is modelled for various waters (sufficient data for 

Ponded Lava) precipitating calcite using a temperature gradient exists increasing 

towards the lava (for all water compositions). The lava must have been cooling 

during calcite precipitation, strongly supporting an early diagenetic origin. This 

gradient is the opposite of a normal geotherm, which cools upwards. Furthermore, 

when various water δ
18

O compositions are modelled temperatures can be proposed. 

For an approximate Cretaceous Namibian meteoric water (δ
18

O PDB= -36.8 ‰, 

SMOW= -7.9 ‰, Bowen & Revenaugh, 2003) the gradient ranges from 50 °C at the 

contact to 15 °C 0.2 m below. The gradient ranges from 190 °C at the contact to 105 

°C 0.2 m below when modelled for the lower magmatic water value. The carbon 

origin suggests magmatic volatiles were present which supports a magmatic water, 

especially considering the carbonate must have formed during lava cooling. Meteoric 

water would not have been abundant in the region, due to its aridity, however some 

pre-existing moisture would have been present at depth. The model, combined with 

prior knowledge supports magmatic water with some meteoric input as the favoured 

diagenetic fluid. 
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  There is however, also petrographic evidence for a later origin of the 

calcite cement. Occasionally the calcite cement near to contacts has grown over 

quartz overgrowths (e.g. BD1, Fig. 4.26B.). This would be regarded as evidence of 

the calcite being a late cement post-dating the quartz overgrowth. However it is 

known that quartz overgrowths are related to pressure solution (Rutter, 1983) and 

that here, the pressure solution facilitated compaction, which would have begun prior 

to lava cooling (i.e. as soon as loaded by hot lava), at temperatures of potentially 850 

°C to 900 °C (Keszthelyi & Delinger, 1996). The duration of cooling to 100 °C 

taking in the order of five years (Wright et al., 1976; Peck et al., 1977). Modelling of 

δ 
18

O shows that the likely maximum calcite precipitation temperature, taking the 

upper magmatic water value is 360 °C. So even with this assumption, cooling of the 

lava pond and the contact must have taken place before the initial precipitation of 

calcite, leaving time for early pressure solution, and quartz overgrowth precipitation 

prior to the initial calcite growth. The time for this increases, as the water becomes 

more meteoric, as this lowers the precipitation temperature for a given δ 
18

O calcite 

value in the model (Fig. 4.52.). A detailed fluid inclusion study on both the quartz 

overgrowths and calcite would be of scientific merit for future work. 

 The magnitude of compaction, and hence porosity loss varies depending on 

case study. Correlations exist between both porosity and thickness of overlying lava: 

For instance the isolated dunes show less porosity reduction than the major erg and 

the Tafelkop lava flows that buried the sand are compound in nature (< 5 m for an 

individual flow). The more intense porosity reduction in the Major Erg is below the 

Tafelberg lavas– ponded Tafelberg lavas. The Major Erg case studies’ more intense 

porosity loss, may therefore me due to the thicker lavas. However, the stratigraphic 

position of the two sand units is also separated by ~ 536 m vertically, with the 

isolated dunes, which show the lowest porosity loss the higher unit. This separation 

is apparent in the sandstone away from the influence of the lava (see Chapter 2.5.2.). 

However, the thickness of the indurated zone (influenced by lava) also varies. Is this 

due to burial or lava flow thickness? Based on the observations in this chapter, and 

the general interpretation that the increased porosity loss approaching lava contacts is 

the result of early diagenesis (lava compaction and minor calcite precipitation), it is 

likely that the variation observed is due to the lava style and thickness. 
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4.6 Chapter Conclusions 

 Lava emplacement onto the unconsolidated subarkosic arenite of the 

Twyfelfontein Formation has produced early diagenetic effects that have been 

preserved. The effects are likely to have formed during emplacement and cooling of 

the lavas and are related to the lava flow thickness. This relationship will be 

discussed in Chapter. 5. 

 The observed porosity loss below lava flows is due to compaction dominated 

by pressure solution, which is more intense in the finer grained grain fall horizons 

than the coarser grain flow horizons. Cementation is also apparent near to contacts, 

with calcite, probably originating from volcanic volatiles (e.g. CO2 and H2O) 

reacting with detrital plagioclase and volcanic glass in the lava to precipitate calcite. 

Calcite authigenesis occurred during lava flow cooling as evident from δ 
18

O values 

in the calcite. Minor quartz overgrowths are related to pressure solution, which 

initiated during burial by hot lava. Where not indurated by early pore-filling calcite 

cement during lava cooling quartz cementation continued throughout burial. The 

volcanic volatiles released by the cooling lava were also responsible for the 

redistribution of the haematite from the region proximal to the lava flow to the 

mottled zone further below. 

 The Twyfelfontein Formation, where beyond the influence of the lava has a 

diagenetic history dominated by compaction, as both pressure solution  and brittle 

deformation (Dickinson & Milliken, 1995), with minor quartz overgrowth 

authigenesis growing into pore space (< 1%, ±0.4). The overall difference in 

compactional porosity loss between the indurated contact zones below lavas and the 

background sandstone is ~ 10 %. This difference does not however reveal the timing: 

most of the compaction (~ 45 %) at contacts occurred at an early stage (during lava 

emplacement and cooling) and the background (COPL ~ 35 %, ±2.6) compaction 

(beyond influence of lava) occurred at a later stage. 
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5 

Diagenesis at lava-sediment contacts in wet 

palaeoenvironments, case studies from Iceland, 

the Columbia River Flood Basalts and the 

Snake River Plain Volcanic Province. 
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5.1 Chapter summary 

 This work aims to characterise the direct effects of basaltic lava emplacement 

onto sediments that were initially saturated or partially saturated with water, with 

specific relevance to diagenesis. Numerous studies of sediment-lava interaction in 

settings where free water is present (moist, wet) have been undertaken to characterise 

the dynamics of the less ‘normal’ aspects of this kind of interaction, such as the 

formation of peperites (e.g. White et al., 2000; Passey et al., 2007; Brown & Bell, 

2007). Much, if not most of the observations in this study are however, passive, with 

no dynamic mixing as in the above examples. Furthermore, few of the studies, even 

on the well-studied phenomenon of peperite formation have paid detailed attention to 

the petrography and diagenesis of the host sediment (e.g. Brown & Bell, 2007). 

 Here, the effects of lava emplacement onto a variety of wet sediments are 

investigated, in situations that, arguably, represent the normality (e.g. planar contact), 

rather than exception (e.g. peperite). The case studies presented are important in 

order to compare with the arid sediment-lava effects discussed in the preceding 

chapter. Are the effects noticed in arid settings universal or is there a 

palaeoenvironmental control?  

 The case studies in this chapter are a first attempt to broaden the study to a 

multitude of sedimentary settings, and are act as a control for the Huab Basin 

examples. The two outcrops in Iceland are both Quaternary in age and have not been 

significantly buried. Iceland is a wet country (Reykjavik mean annual rainfall 

between 1949 and 2012= 814 mm, Icelandic Met Office, 2013). By the nature of 

Icelandic geology, siliciclastic sediments do not exist, hence these examples are 

completely basaltic volcaniclastic. Secondly, outcrops of siliciclastic sandstone from 

below lava flows of the Miocene Columbia River Flood Basalts and the Snake River 
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Basalts (also Miocene) are described. These sediments are dominantly siliciclastic 

and are fluvial in the case of the CRB example and lacustrine in the case of the SRB 

examples. The water saturation of these sediments at the time of lava emplacement 

can be assumed as there is evidence for contemporaneous lava emplacement and sub-

aqueous sedimentation (e.g. dynamic mixing strictures, re-establishment of drainage 

networks, pillow lavas forming in lakes). 

 The key variables introduced by the broadening of the study are: water 

saturation of the substrate and substrate composition. For all of the examples, burial 

depth is less than the Huab Basin examples, such that direct comparisons on a like 

for like basis are difficult. Certain parameters can however be reliably compared, 

such as distance to background porosity, increased compaction as a result of lava 

emplacement and the nature of early diagenesis. 

  

5.1.1 Establishing influence of pre-existing sediment wetness 

 

 The direct diagenetic effects discussed in Chapter. 4 were a result of the 

cooling and degassing of  lava combined with compaction loading. In the Huab 

Basin, all of the early diagenetic effects observed as a result of lava emplacement 

were inferred to have occurred during cooling of the lava, therefore at an elevated 

temperature. This is recorded by oxygen stable isotopes (Chapter 4) in the authigenic 

calcite as a temperature gradient increasing towards the lava and by the pressure 

solution enhanced compaction close to hot lava contacts that would have required 

elevated temperatures. This raised the question: What is the effect of pre-existing 

moisture within the substrate on the observed diagenetic effects on substrates where 

the lava-sediment contact is passive? 
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 Firstly water may influence the cooling of the pahoehoe lava. It has been 

established by Wright et al., (1976) that rainfall on cooling lava considerably 

hastened post-solidification cooling of the Kilauea lava lakes, Hawaii (emplaced 

1959 to 1965). It can therefore be expected that in wet palaeoenvironments, a given 

lava flow (equal thickness and composition) would cool more rapidly purely due to 

rainfall. Faster cooling should reduce the time that any underlying sediments are 

subjected to elevated temperatures favourable to early diagenesis as observed in the 

Huab Basin. Furthermore, pre-existing pore water saturating the substrate sediment 

would provide a cooling medium for the lava flow base, beyond that of air saturated 

sediment, increasing the initial cooling rate from the lava flow base. It can be 

expected that this water would boil, taking energy from the lava as the enthalpy of 

evaporation. 

 The presence of water within pore space of the substrate sediment would 

have the capability of modifying the sub-lava pressure regime. This has implications 

to the movement of volatiles in and out of the lava. If the pressure beneath the lava is 

increased by boiling water confined by the overlying lava flow, the pore space will 

be above atmospheric pressure, preventing potential downward degassing of 

magmatic volatiles. Increased pore pressure may also serve to limit compaction. The 

situation envisaged, where pore pressure can increase, would probably be rare due to 

areal extent of lava flows (gas could simply vent around the edges) and due to the 

total pore volume probably being large enough to allow the steam to expand without 

a large pressure increase. Where the pore pressure could potentially increase would 

be a shallow sediment layer, resting on a vertically impermeable rock with 

topographic confinement (e.g. a canyon through crystalline basement or shale, along 

which a later lava flows). 
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5.2 Diagenesis of volcanogenic sediments at lava contacts, Iceland 

5.2.1 Rekjanes Peninsula (IGHC) 

 

Fig. 5.1. Location maps. (A) Map showing location of Rekjanes Peninsular outcrops 

(1.2.1) and Highway 32 outcrop in Iceland. (B) Location of Highway 32 outcrop. (C) 

Location of Rekjanes Peninsular outcrops in Kerlingar Bay, 200 m east of the 

Stampahraun fissure dyke. 

 This locality is located at the SW tip of Iceland at the end of the Rekjanes 

Peninsular (Fig. 5.1.). The outcrop is at 63° 49.004’ N 22° 43.497’ W at 21m above 

sea level (GPS) located in a ~ 25 m high SSW facing sea cliff. The cliff is composed 
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of dominantly unconsolidated (or poorly consolidated) sediment capped by a 4 m 

thick basalt lava flow. The sediments are unlithified except in the lava contact zone 

and comprise angular basaltic scoria clasts with weakly developed clay cement. The 

scoria clasts are made up of volcanic glass, which is highly vesicular and contains 

occasional euhedral plagioclase phenocrysts. The glass shows a variable degree of 

hydration, generally less hydrated away from the lava contact, as shown by the 

brown colour (Watton, Personal communication). The sediments are parallel bedded 

and show no cross bedding. 

 Both the sediment and lava are of volcanic origin. Volcanism has been 

continuous in the Rekjanes peninsula since the Middle Pleistocene (Etienne & Paris, 

2010) with twelve prehistoric eruptions and at least nine historic eruptions. The 

volcanism is related to the south-western rift zone in Iceland (Dietze et al., 2008), the 

active spreading initiated 6-7 Ma due to a major ridge jump (Saemundsson, 1979). 

The peninsula is characterised by numerous eruptive fissures, striking on average 

040°, about 5 km apart (Fig. 5.1C.), one of which forms the Stampahraun fissure of 

1210-1240 AD which is associated with four lava fields and underlying tuff cones 

(Sigurgeirsson, 1995). 

 The outcrop of interest occurs at the south end of the eruption fissure, where 

it extended into the sea. The eruption here was initially surtseyan due to  

phreatomagmatic activity. The Surtseyan activity produced two tuff cones made of 

scoria, the Karl and the Vatnsfell cones. The Karl cone pyroclastic sediments are 

exposed in the cliff section. After the cessation of Surtseyan activity, eruption 

became dominated by fire fountaining along a 4 km long NE trending fissure (Fig. 

5.1C.). The capping lava was formed from the continuation of the same eruption that 
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formed the Karl tuff cone sediments that it rests on (Clifton, unpublished fieldtrip 

guide).  

  

 

Fig. 5.2. Photograph of the Rekjanes Peninsula lava contact outcrop showing base of 

basalt lava flow resting on scoria deposited during the same eruption (1226 A.D). Under 

the lava is 40 cm of lithified sediment of the same composition as the unlithified scoria 

beneath. 

 The lava flow was emplaced onto unconsolidated sediments, which were 

unlithified. The sediments remain unlithified and unconsolidated at depths > than 40 

cm below the lava flow base (Fig. 5.2.) The unconsolidated sediments were sampled 

by pouring superglue onto the unconsolidated surface, and exhuming the hardened 

block after the glue had hardened. This method was based on that of Dickinson & 

Ward (1994). Superglue does not undergo volume change during curing.  

 At the base of the lava, there is a 40 cm thick layer of lithified scoriaceous 

sediment. The strength is sufficient to require sledge hammer and chisel for 

sampling. In hand specimen the rock is grey, weathering to brown, coarse sediment 

with visible porosity. The morphology of individual scoria fragments can be 
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resolved. Examination of thin-sections at the contact reveals the sediment is 

composed of vesicular brown volcanic glass scoria clasts up to 1000 μm containing 

occasional plagioclase and clinopyroxene phenocrysts. The scoria is visibly 

compressed parallel to the contact (Fig. 5.3A, B.) where originally spheroidal 

vesicles have been compacted. Scoria clasts frequently have long contact 

intergranular contacts as opposed to point contacts. Undifferentiated clays (probably 

gel palagonite) (palagonite- the first stable product of volcanic glass alteration, see 

Stroncik & Schminke, 2002) occur at grain contacts and form a cement. Primary 

intergranular porosity exists up to the lava contact (Fig. 5.3C.). As depositional 

porosity could be directly measured from the unconsolidated sediment (62 cm depth 

below lava, primary intergranular porosity= 49.2 %, ±2.2) COPL was calculated. At 

the contact compaction porosity loss is 33.7 % (±3.7), and the porosity is 18. 4 % 

(±1.7). 

 At 20 cm depth below the lava (depth), the sediment is still lithified. Scoria 

clasts are similar to those at the contact and are visibly compacted. Scoria clasts are 

frequently surrounded by annuluses of broken glass (Fig. 5.3D.). The glass is brown 

sideromelane and is probably hydrated. Where the scoria clasts are small (e.g. broken 

clasts) brown clay is common. Long grain contacts are less common than at the 

contact. Primary intergranular porosity is 30.8 % (±2.1) and COPL is 24 % (±4.0).  

 The lower sample within the lithified layer is at 35 cm depth. Here the scoria 

clasts are brown. They only have point contacts with each other and no direct 

evidence for compaction is evident (i.e. no deformed scoria or broken annuluses 

present). Rare clay is present at grain contacts. Primary intergranular porosity is 40.6 

% (±2.2) and COPL is 12.1 % (±3.5).   



226 

 

 

Fig. 5.3. PPL photomicrographs of scoria lithified sediment below lava in Fig. 5.2. (A) 

Scoria composed of vesicular basaltic glass fragments and clasts containing multiple 

vesicles, larger multi-vesicular clasts are compressed with direction indicated by arrow. 

(B) Larger scoria clast compressed so that originally round vesicles are flattened, 

arrows indicate direction of compression. (C) Lava contact with scoria, compaction of 
sediment is clear, although considerable primary porosity remains. (D) 0.2 m below lava 

contact compaction is evident, fragile edge of vesicular scoria has been compressed 

against clast, but remains in situ. (E) 0.2 m below lava, grains show less compaction 

than at 0.0 m (A, B, C). (F) 0.35 m below lava sediment is still lithified by compaction, 

but less than closer to lava. 

 The unconsolidated scoria is petrographically different to the lithified scoria. 

55 cm depth, the scoria consists of both broken and whole clasts which are composed 

of volcanic glass and occasional phenocrysts (similar to the lithified rock above). 

However, the glass in the unconsolidated scoria is clear to very light brown (Fig. 
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5.4A, B vs. Fig 5.4D.). Grain contacts are point contacts and there are numerous 

floating grains (only touching in 3D). Deformed scoria clasts are not present. Clays 

are negligible (0.2 %), porosity is filled with superglue (white) and is 45.3 % (±2.2). 

Compactional porosity loss is 6.6 % (±4.2).  

 Porosity continues to increase until 1.2 cm depth, where the last sample was 

taken (superglue supply was exhausted). At 62 cm below the lava most scoria grains 

appear to be floating and are clear. Surprisingly delicate scoria textures are preserved 

such as the ~5 μm bubble walls in the scoria clast in Fig. 5.4C. Compaction is 

considered to be 0 % as it is the maximum intergranular porosity encountered of 49.2 

% (±2.2). 

 

Fig. 5.4. PPL photomicrographs of the unlithified scoria below the 40 cm lithified layer. 

Loose sediment was impregnated with superglue in the field, porosity is white. (A, B)  

0.55 m below lava contact the sediment is uncompacted, grains rarely touch. (C) 0.62 m 

below the lava, scoria clasts with multiple vesicles are not compressed or deformed by 

compaction. (D) Photomicrograph of lithified scoria for comparison. The glass where 

lithified is darker than the unlithified glass suggesting higher degree of hydration where 

lithified. 
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 The trend developed below this 4 m thick lava flow is of porosity reduction 

towards the contact. The porosity reduction becomes apparent < 62 cm depth (Fig. 

5.5A.) and reduces until the contact where porosity is 18.4 % (±1.7). Two 

permeability measurements also show reduction towards the contact from 4184 md 

35 cm depth to 2036 md at the contact. Permeability measurements were not possible 

in the unconsolidated sediment. The porosity loss is dominated by compaction, and 

cementation is of negligible importance at depths greater than 20 cm below the 

contact. Compaction (COPL) increases from 0 % at 62 cm depth to 33.7 % (±3.7) at 

the contact (Fig. 5.5B.). Compaction follows a linear trend away from the lava 

contact (Fig. 5.5B). 

 Compaction alone cannot produce the lithification which here is due to the 

authigenic clay developed at grain contacts in the lithified zone (<40 cm). 

Intergranular clay increases towards the lava contact (Fig. 5.5C.). From Fig. 5.5C it 

can be seen that ~ 2 % of intergranular authigenic clay is required for lithification at 

40 cm. The increase of clay corresponds to the colour change of the scoria clasts 

from light brown/clear to dark brown. It is proposed that at depths less than 40 cm 

below the lava, the scoria clasts were hydrated and compacted by the overlying lava 

flow. This hydration produced clay minerals at grain contacts that cemented grains 

together. 

 The lithified zone probably became hot enough to boil intergranular water 

within the scoria (it was deposited as a surtseyan eruption so the sea water table must 

be near or coincident). This boiling probably facilitated the rapid palagonitisation of 

the glass in a similar way to that observed on Surtsey (Jakobsson, 1978). On Surtsey, 

rapid palagonitisation is inferred to have proceeded at temperatures of 45–100 °C 

and pressure of 1 atm, the palagonitisation agent being vapourised sea water 
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(Jakobsson, 1978). The experimentally determined rate of palagonitisation was found 

to be three times greater at 90 °C than at 20 °C by Furnes (1975). If the volume of 

palagonite is taken to be 5 % at the contact (Fig. 5.5C.), one third of this is 1.7 %, 

which occurs at ~ 40 cm. I speculate, therefore, it falls that the temperatures reached 

in the lithified zone are probably ~ 100 °C at the lava contact (at which water boils at 

1 atm) and ~ 20 °C 40 cm from the lava. It therefore follows that the lava base was 

cooled by boiling intergranular water within the scoria sediment. The boiling of this 

water is recorded by the lithified zone. Beyond the lithified zone, continuous cooling 

by sea water probably maintained a temperature closer to 20 ºC. 

 The increased compaction towards the lava contact is consistent with loading 

and the observed plastic grain deformation during hydration, brittle deformation 

(broken annuluses) and mechanical compaction. The weakening of clasts during 

palagonitisation probably facilitated increased compaction. Indeed, the brown glass 

may even be gel palagonite pseudomorph (cf. Stroncik & Schminke, 2002). Since the 

intergranular clay (palagonite) only appears to form where grains are in contact and 

does not fill pore throats, the major permeability reducing agent is porosity reduction 

by compaction loading. 
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Sample Distance  

Porosity 

(%) 

 

  

below Lava 

(m)   

1σ error 

IGHC2 0.00 18.40 1.7 

IGHC3 0.20 30.80 2.0 

IGHC4 0.35 40.60 2.2 

IGHC5 0.55 45.30 2.2 

IGHC6 0.62 49.20 2.3 

 

Table. 5.1. Rekjanes peninsular locality samples (IGHC), distance below lava and 

porosity. See Appendix for full table including mineral phases. 
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Fig. 5.5. Graphs against distance below lava. (A) Porosity decreases toward contact 

from 45-50 % background to 18 % at the contact. (B) Porosity loss is dominantly due to 

compaction (COPL) which increases in magnitude towards the contact. CEPL increases 

slightly towards the contact due to clay cementation increase. (C) Pore-filling clay 

increases towards the contact as glass alters to clay. 
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5.2.2 Outcrops beside Highway 32. 

 

Fig. 5.6. Photographs of the outcrop north of Highway 32. (A) Photograph facing north, 

the fluvial volcaniclastic sediment consisting of sand to cobble sized clasts can be seen 

below the basalt lava flow. (B) Contact between lava and sediment, clearly the sediment 

is unlithified.  

This is a roadside outcrop on the northwest side of Highway 32 near Asolfsstadhir 

(Fig. 5.1B.). The outcrop is a small cliff, about 10 m high which faces southeast. 

There is up to 5 m of consolidated fluvial conglomerate, with clasts ranging from 

<0.3 mm to 10 cm (Fig. 5.6A.). Most of the sedimentary rock is clast-supported, 

although some beds appear supported by a silt matrix (Fig. 5.6B.). Unlithified peaty 

palaeosols are intermittently present along the base of the lava.  

 Four samples were taken at increasing depths below the lava contact. All of 

the samples were lithified, but were too weak to transport without wrapping in soft 

paper.  

 At the contact the sediment consists of angular to sub-rounded dark brown 

basaltic glass fragments ranging from 50 μm to 1 mm in diameter. Some of the larger 

glass fragments contain plagioclase phenocrysts. The sample has a fine-grained 



233 

 

matrix at the lava contact. Primary porosity is 30.8 % (±2.1). Authigenic minerals are 

probably pore-filling clay, although a detrital origin for this cannot be ruled out. 

Compactional porosity loss was calculated using a depositional porosity typical of 

fluvial systems (44.75 % (±2.0), Lundegard, 1992, see Chapter 3) and was found to 

be 18 % (±4.0) and CEPL, 1.5 %. Visual evidence for compaction at thin-section 

scale is the abundance of long edge contacts between detrital grains (Fig. 5.7C.), 

although at the contact the grains show point contacts, where a matrix is present. 

 A second sample taken at the contact, which comprised coarser material with 

less matrix. This sample has a porosity of 13 % (±1.5) and COPL of 30 % (±3.5). 

Authigenic, intergranular clay (8 %, ±1.2) is more abundant than for the initially 

matrix-rich sample. The cementation component of porosity loss is 5.6 %. 

 At 10 cm below the contact the sediment is composed of larger volcanic glass 

fragments (~ 500 μm). Scoria clasts can be identified, albeit broken or rounded (Fig. 

5.7D.). Intergranular clay minerals are present (6.2 %, ±1.1) and are usually 

associated with the finer-grained volcanic glass. An absolute authigenic origin cannot 

be attributed considering the depositional facies. Porosity is 15.6 % (±1.6), with most 

porosity reduction by compaction (COPL= 29 %, ±3.6). The cementation component 

of porosity loss, assuming an authigenic origin of the clays is 4.4 %. Compaction is 

evident in thin-section, through occasional long edge contacts between grains and 

rare interpenetrating grains are present where there is a hardness contrast (e.g. the 

two grains in the top right of Fig. 5.7D.). 

 At 30 cm below the lava, the outcrop is clast supported conglomerate 

composed of epiclastic rounded basalt clasts up to 3 cm diameter. The conglomerate 

was not sampled because of dissimilarity to previous samples and the potential 

difficulty in petrographic analysis due to large clast size.  The material sampled at 30 
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cm depth was therefore selected to be similar to the appearance of the 10 cm sample. 

In thin-section, 30 cm below the lava, the sediment is coarser-grained, and is made 

up of highly vesicular scoria clasts and less vesicular dark brown glass clasts, both 

clast types are sub-rounded and up to 1 cm in diameter. Porosity is partially filled by 

a matrix composed of fine-grained volcanic glass fragments, which are inferred to be 

broken scoria. Intergranular porosity is 13.6 % (±1.5), with porosity reduction 

dominated by compaction (COPL= 33.4 % (±3.5), cementation is minor (CEPL= 2.3 

%). Other than mechanical compaction through grain reorganisation, no other 

evidence for compaction is apparent such as grain deformation or crushing. 

 

Sample Distance 

Porosity 

(%) 

 

 

below Lava 

(m) 

 

1 sigma 

error 

IG1 0.00 30.80 2.0 

IG4 0.00 13.00 1.5 

IG3 0.10 15.60 1.6 

IG2 0.30 13.60 1.5 

 

Table. 5.2. Highway 32 locality samples, distance below lava and porosity. See Appendix 

for full table including mineral phases. 
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Fig. 5.7. PPL Photomicrographs of sediment below lava flow in Fig. 5.6. (A) At the 

contact sediment consists of fragments of basaltic glass and lithic clasts of basalt 

(epiclastic volcaniclastic sandstone). Porosity is present and clay minerals make up a 

large proportion of the matrix. (B) (some porosity is white-indicated) At the contact 

grain contacts are point contacts only, some grains show evidence of weathering to 

clays. (C) Where coarser sediment exists at the contact (upper), primary pores are 

larger and interconnected, angular grains contact along edges as well as points 

suggesting some compaction. (D) 0.1 m below the contact primary porosity increases 

and intragranular porosity (vesicles in volcanic glass) are rounded suggesting little 

compaction. (E) 0.3 m below the contact some of the detrital volcanic glass grains are 

light coloured (cf. Fig. 5.4.) and others are dark, the dark grains were probably in the 
fluvial system long before the lava emplaced, but the light glass is probably younger and 

not affected by lava emplacement. (F) 0.3 m below the lava primary and intragranular 

porosity is high, round vesicles appear undeformed. 
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Fig. 5.8. Graphs against distance below lava. (A) Porosity increases towards lava 

contact, unlike any other outcrop in this thesis. (B) No trends are apparent in the 

compaction data. (C) Pore filling clay decreases away from the contact, with a very 

weak correlation. The Highway 32 outcrop shows much variability, with no distinct 

trends developing. 
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 Significant variability was found to exist between all of the samples at the 

Highway 32 locality. This is probably inherited from the depositional facies; the 

sediment is temporally and texturally heterogeneous. The consequence is that no 

correlation between porosity and depth beneath the lava was observed (Fig. 5.8A. 

The weak negative correlation is the opposite of all other localities. The outcrop has 

been included because the overall COPL is high; indeed much higher than expected 

for sediment only buried by ~ 10 m of lava. 

 The average COPL for the highway 32 fluvial sedimentary rocks sampled is 

27.7 % (±3.6). If the assumption is made that the fluvial sediments here behave like 

uncemented siliciclastic sediments (they are largely uncemented and composed of 

rounded to sub-rounded grains), then a comparison with the calculated COPL from 

the data in Gluyas & Cade (1998) would suggest burial depths of ~ 2.4 km (Fig. 

5.9.). This is clearly much higher than the observed burial of ~ 10 m). Even 

considering the possible large uncertainty due to the sediment composition, the 

observed compaction is far in excess of the expected ‘normal’ compaction due to 

normal burial processes alone. It is therefore suggested that the emplacement of the 

lava flow facilitated enhanced compaction in the shallow subsurface. This 

compaction did not completely remove porosity, such that even at the lava contact 

porosity ranges from 13.0 % to 30.8 %. 
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Fig. 5.9. Plot of burial depth against COPL calculated from data in Gluyas & Cade 

(1998). The vertical line is the measured average COPL at the Highway 32 outcrop, 

which corresponds to ~ 2.4 km burial depth. Clearly compaction is above what would 

be expected for ~ 10 m of burial. 
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5.3 Diagenesis of siliciclastic/volcaniclastic sediments, NW USA. 

 

Fig. 5.10. Maps showing locations of case studies in NW USA. (A) Map centred on Idaho, 

Washington and Oregon. Rock Creek Road, Joyce Ranch and Strike Dam are 

indicated.  

Three localities have been included from the Columbia River Basalt province (CRB) 

and Snake River Basalt province (SRB), NW USA.  
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5.3.1 Strike Dam, outcrops, Idaho, Snake River Basalts 

 

Fig. 5.11. Photographs of outcrops to the NW of Strike Dam. (A) Close up of the 

lacustrine sediments below the Bruneau Formation lava flow. The varied lithology of 

the sediments is labelled. (B) Overview of the outcrop in A (bag for scale). The lava flow 

is ~ 5 m thick and is a tabular sheet. Both facing NW. 

 The outcrops at Strike Dam are at 42° 57.677’ N 115° 58.386’ W at 809 m 

altitude in an east facing cliff (Fig. 5.11B.). At outcrop the sediments of interest are 

directly below a lava are lacustrine, and sediments have a significant volcaniclastic 

component (volcaniclastic= 22.4 % (±1.9), siliciclastic= 26.6 %(±2.0)). This 

sediment layer is composed of angular to rounded basalt clasts from large pebbles to 

coarse sand. This coarse layer is approximately 32 cm thick (Fig. 5.11A.). Below this 

layer is 38 cm of fine laminated sandstone composed of rounded to angular quartz 

grains and fragments of scoria or tuff (now broken angular glass). The sand is very 

fine to medium grained and overlies a diatomite ooze that reaches to the bottom of 

the exposure. 

 The palaeoenvironment in the region prior to lava emplacement is suggested 

to be a series of long lived lakes lying within NW-SE trending graben, which 
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probably initiated at 12 Ma (Godchaux & Bonnichsen, 2002). The initiation of 

volcanic activity (rhyolites erupting at 15 Ma and basaltic eruptions at 9 Ma) was 

initially in association with the lakes, producing sub-lacustrine vents and sub-aerial 

vents (Godchaux & Bonnichsen, 2002).   

 The sediments are overlain by a ~ 5 m thick basalt lava flow. The lava flow is 

basaltic and has a well-defined planar contact with the underlying sediments (Fig. 

5.11.) It has a chilled base, which contains crude columnar jointing, the core of the 

lava flow is chaotically jointed (entablature) (cf. Long & Wood, 1986). The upper 

crust of the lava is vesicular. The lava is part of the Pleistocene Bruneau Formation 

(e.g. Bonnichsen & Godchaux, 2002; Malde, 1989). 

 At the lava-sediment contact, primary porosity is 30.6 % (±2.1), and 

intergranular clay is 8.2 % (±1.2). Cementation dominates porosity loss (CEPL= 10.9 

%) and compaction is comparatively minor (COPL= 4.7 %, ±4.0). Evidence for 

compaction is rare; most grains are floating in thin-section.  

 At 30 cm below the contact (depth), both compaction and cementation are 

minor (COPL= 8.2 %(±4.2), CEPL= 0.4 %). porosity is 39.4 % (±2.2). In thin-

section most grains are floating (Fig. 5.12B.). 

 At 50 cm depth, the sediment is finer grained and there is a component of 

biogenic silica (ooze) that fills pores. Porosity is 44.4 % (±2.2) and compaction is 

petrographically minor.  
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Fig. 5.12. Photomicrographs of sediment samples from below the lava at Strike Dam. (A 

PPL) Sediment at the contact, 30.6 % primary porosity is preserved. (B PPL) 0.3 m 
below contact sediment is same composition as at contact but less compacted. (C, D 

PPL) 0.5 m below the contact sediment has high proportion of microcrystalline quartz 

with high microporosity which is a biogenic siliceous ooze. Granular detrital clasts are 

not compacted. 

 The direct effects of the lava emplacement on these lacustrine sediments are 

minor. Porosity increases away from the contact due to decreasing compaction and 

cementation. Both of these measures, however show little real variation. Porosity 

only reduced to 30.6 % (±2.0) at the contact from a hypothesised depositional 

porosity of 44.75 % (Lundegard, 1992). 

 It is inferred that little heating occurred in these high porosity lacustrine 

sediments during lava emplacement. It has been shown that heating and mineral 

reactions facilitate enhanced compaction (above and Chapter 4.). Few such mineral 

reactions are in samples from this outcrop; the volcanic glass remains clear and un-

palagonitised. One such mechanism that could cool the sediment is the heating and 

transport of an excess volume of water. If the lava emplaced onto the water saturated 
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porous sediment, with a hydraulic head generated by recharge at a higher level, water 

would flow through the sub-basalt sediment. If this head was sufficient to overcome 

the overpressure generated due to the heating of the water, continuous subsurface 

flow of water would be possible and cooling would be the effect. This is consistent 

with the palaeogeographical setting. It is in contrast with the Rekjanes peninsular 

outcrop, where due to the interstitial water being sea water, no hydraulic head would 

have existed. Any water would have only been mobile due to pressure gradients 

created by heating. 

 The implication is that somewhere, along the flanks of the lava flow a hot 

spring must have existed during lava cooling. The flow of groundwater through 

shallow sub-basalt sediments under a hydraulic head in fluvial-lacustrine 

depositional systems is not uncommon. For instance a lava flow that dammed a river 

at 64° 43.214’ N 19° 37.116’W in Iceland was found to have continued flow of the 

same river through the sub-basalt sediments (own work). The river reissues along the 

edge of the lava flow. This head would have also been present during flow cooling, 

at which time, these springs would have been at elevated temperatures. 
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Sample Distance  

Porosity 

(%) 

1 sigma 

error 

  

below 

Lava (m)   

 

USG11-2 0.00 30.60 2.0 

USG11-3 0.30 39.40 2.2 

USG11-4 0.50 44.40 2.2 

 

Table. 5.3. Strike Dam, Snake River Basalt (SRB) locality samples, distance below lava 

and porosity. See Appendix for full table including mineral phases. 
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Fig. 5.13. Graphs against distance below lava. (A) Porosity decreases towards the lava 

flow from 44 % to 31 % at the contact. (B) Only 2 reliable points for compaction as the 

biogenic sediment appears not to compact the same way as the clastic sediment, no 

useable data. C) Clay increases towards the contact, although correlation is weak and 

same caveat as for the compaction applies. 
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5.3.2 Outcrop at Joyce Ranch, Idaho. 

 

Fig. 5.14. Photograph of outcrop at Joyce Ranch facing east. Lacustrine sediments are 

directly below an un-invasive pillow lava layer from the Big Foot Bute pillow lava. 10 

cm of the lacustrine sands are lithified with about 20 cm below that un-lithified. Below 

this layer is silicic ooze. 

 

Fig. 5.15. PPL Photomicrographs of contact at Joyce Ranch. (A, B) Glass rich but 

compacted sediment dominated by angular fine to very fine sand quartz grains. 

 The Joyce Ranch outcrop is located on the small track that links Joyce Ranch 

with the  Grand View to Murphy road. The outcrop is at 43° 07.839’ N 116° 30.043’ 

W and at 936 m altitude. The outcrop is a west facing road-cut about 8 m high. It is 

made up of ~ 3 m of lacustrine sediments that are overlain by 5 m of exposed pillow 

lavas. The sedimentary substrate is composed of an uppermost layer ~ 20 cm of 

mixed volcaniclastic-siliciclastic sand (volcaniclastic= 41.4 % (±2.2), siliciclastic= 

10 %(±1.3)). The uppermost 10 cm nearest the pillow basalt is lithified. Below this is 

diatomaceous ooze which reaches to the base of the exposure. The pillow basalts are 
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of the Big Foot Bute formation and individual pillows are ~ 1 m in diameter, the 

skins/rinds of the lobes are palagonitised. 

 One sample was collected at the contact. In hand specimen the rock is 

lithified, with abundant visible porosity. Petrographic analysis reveals that the 

primary porosity is 18.2 % (±1.7), with most porosity reduction through cementation 

by intergranular clays (CEPL= 24.6 %, COPL= 2.4 %, ±3.7). 

 This high degree of cementation may be false at this locality, due to the 

difficulty in distinguishing authigenic clay from detrital clay. If the assumption is 

made that the clay is all authigenic, the production of such large quantities is 

problematic. The only suggestion is that the higher volcaniclastic component 

compared to the Strike Dam locality was more prone to clay authigenesis. It is also 

possible that the high degree of water-rock interaction in the cooling pillows (evident 

in the palagonitisation) enriched circulating water in H2 (e.g. Sansone et al., 1991). 

This would have then provided the acid for enhanced chemical decomposition of the 

substrate to clay. 

 The porosity loss here is likely therefore, a consequence of hydrothermal 

fluids circulating through the sediment and the pillow lava during cooling. Such a 

circulation is less through lava flows than pillows due to pillows having a higher 

permeability due to potential open discontinuities between each pillow.  
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5.3.3 Rock Creek Road outcrops, Washington, Columbia River Basalts 

 

Fig. 5.16. Geological map of Rock Creek road at the location of the outcrop studied. 

 The Rock Creek Road outcrop is at 45° 50.206’ N 120° 31.660’ W at 350 m 

altitude (Fig. 5.17.). The outcrop comprises 1.8 m of siliciclastic sandstone 

(siliciclastic component average= 62.1 % (±2.1), volcaniclastic component average= 

2.0 %, ±0.6) of the Vantage Member sediment interlayer. The sediments are resting 

on the Ginko flow of the Frenchmen Springs Member (Hooper, 1997), Wanapum 

Basalt, Columbia River Basalt Group. It is thought the sediment was invaded and 

rafted on the Ginko flow (Tolan et al. 2009), evidence for rafting suggested by Tolan 

et al., (2009) is the presence of several small dikelets extending upward from the 
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lower flow into the overlying sediment, quenching of the Ginko flow top to glass, 

fragments of the same sediment are found within the Ginko flow which are ‘baked’ 

(no description given of baking) and the sedimentary structure of the interbed is 

disturbed at the base. I was able to make these observations, with the exception of the 

baking. There is evidence for an invasive character of the Ginko flow, but this 

outcrop does not provide compelling evidence for rafting of the Vantage Member 

sediments based on my observations. The sediment interbed is overlain by the Sand 

Hollow flows (15.3 Ma) of the Frenchmen Springs Member (Hooper, 1997). No 

disturbance is noted at the base of the Sand Hollow lava flow (Tolan et al., 2009) and 

the contact is generally sharp. 

  

 

Fig. 5.17. Photograph of the outcrop studied, facing NE from the western part of Rock 

Creek road. The thin inter-basalt fluvial sediment body is outlined and indicated. 
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Fig. 5.18. Relationship between detrital sediment and distance below lava. No 

correlations exist with distance below the lava suggesting a relatively homogenous 

substrate. 

 Petrographically the sediment is a quartz arenite, with minor volcaniclastic 

(glass fragments) and bioclastic (wood, plant material) components. The siliciclastic 

sediment is sub angular to sub-rounded well sorted fine to medium-grained sand. 

 At the contact the sediment detrital composition is approximately the average. 

No correlations between detrital sediment composition and distance below the lava 

are apparent (Fig. 5.18). In hand specimen the sandstone at the contact is hard and 

clearly lithified, which is also apparent in the outcrop where it is harder than the 

underlying sediment and weathers slower than the underlying sediment. In thin-

section the sediment porosity is 19 % (±1.8). Porosity reduction is primarily through 

compaction (COPL= 20.6 %, ±3.7). Compaction is evident in the thin-section: 

mechanical compaction through grain reorganisation is clear, point contacts are rare, 

most grains contact along long faces. Platy detrital fragments, such as the plant 

material in Fig. 5.19B are frequently bent around rigid detrital grains. No evidence 

for pressure solution was encountered. Porosity reduction is also through 

cementation. There is 11.4 % (±1.7) pore-filling clay (probably smectite?), which is 

the contributor to the cementational porosity loss (CEPL= 9 %). 
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Fig. 5.19. Photomicrographs of the mixed, siliciclastic and volcaniclastic sediment at 

Rock Creek road. (A, B PPL) At the contact detrital grains frequently have edge to edge 

contacts clay fills some pores and high aspect ratio clasts (e.g. plant material) bend 
around detrital grains. (C, D PPL) 0.1 m below lava, compaction is less, plant material 

is still deformed around detrital grains, point contacts between grains are now 

dominant. (E PPL) 0.1 m below lava resembles 0.1 m below the lava. (F PPL) 0.6 m 

below lava, occasional grains are floating, point contacts are common and edge to edge 

contacts are rarer than closer to the lava, pore filling clay is rare. 

 At 10 cm depth below the lava, the sandstone is still lithified in hand 

specimen. In thin-section detrital mineral abundance is approximately average. 

Porosity is 28.8 % (±2.0). Porosity reduction, again is dominated by compaction 

(COPL= 12.9 %, ±4.0), which is evident in thin-section. Point contacts are rare, but 

more abundant that at the contact, the grain contacts are still dominated by long edge 
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to edge contacts. Platy detrital grains are bent around rigid grains (Fig. 5.19C, D). 

Clay proportion is 7.8 % (±1.2), giving a CEPL of 6.8 %.  

 At 20 cm depth below the lava, the sandstone is noticeably weaker than the 

lithified layer above. In thin-section detrital composition is near to average values. 

Porosity is 21.2 % (±1.8), porosity reduction is dominated by compaction (COPL= 

25.9 %, ±3.7), which is evident in Fig. 5.19E. Grains are visibly mechanically 

compacted, with few point contacts, and many long edge to edge contacts. 

Cementation is minor, and clay is the authigenic phase (4.2 %, ±0.9) (CEPL= 3.1 %). 

 At 0.6 m depth, the sandstone is friable and uncemented. Porosity is 42.2 % 

(±2.2) (depositional porosity assumed to be 44.75 % (±2.0), Lundegard, 1992). 

Porosity reduction appears to have occurred completely through cementation by clay 

(2.8 %, ±0.7). The sandstone is under compacted (COPL= -0.5 %). The low 

compaction is evident in Fig. 5.19F, where most detrital grains are floating, or have 

point contacts. 

 The base of the sediment layer is cemented with analcite and a zeolite 

mineralisation, which is discussed in 5.3.4. 
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Sample Distance  

Porosity 

(%) 

1 sigma 

error 

  

below 

Lava (m)   

 

USG11-10 0.00 19.00 1.8 

USG11-11 0.10 28.80 2.0 

USG11-12 0.20 21.20 1.8 

USG11-13 0.60 42.40 2.2 

USG11-14 1.20 24.00 1.9 

 

Table. 5.4. Rock Creek Road, Columbia River Basalt (CRB) locality samples, distance 

below lava and porosity. See Appendix for full table including mineral phases. 
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Fig. 5.20.  (A) Graphs of porosity and permeability against distance below contact. Both 

porosity and permeability increase below the lava. (B) Permeability has an exponential 

relationship with porosity, although it is weak with only 3 samples. 
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Fig. 5.21. Relationship of pore-filling clay against distance below lava is exponential and 

decreases below the contact. 

 

Fig. 5.22. Relationship between COPL & CEPL and distance below lava. Note the most 

distant point is strongly influenced by the zeolite cementation. The three samples 

nearest to the lava contact show an increase towards the lava. 

 Overall, the trend in the sediment layer is that of reducing porosity and 

permeability up towards the lava contact (Fig. 5.20A.). The porosity reduction is 

dominated by compaction near to the contact, with less compaction away from the 

contact (Fig. 5.22.). Cementation is also important, and decreases away from the 

contact. The lithification, like in the Rekjanes Peninsular example, is also due to the 

clay proportion, here ~ 4 % clay being required to cement the sandstone with ~ 26 % 
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COPL. The relationship between pore-filling clay abundance and the distance below 

the lava is shown in Fig. 5.21, and fits an exponential curve away from the lava. 

 The mechanism of porosity loss below the lava flow is therefore, like the 

other examples of lava resting on sediment, one where compaction dominates, with 

secondary importance of mineral authigenesis. The authigenesis of the clay is the 

important mechanism for lithification the rock. No evidence of ‘baking’ was found 

under this lava flow. 

 As the environment would have been fluvial at the time of lava emplacement, 

it is assumed that the sediments would have been saturated with water. A similar 

situation to the lacustrine examples (above) is inferred. The pore water would have 

been heated by the overlying lava, which would have facilitated the clay diagenesis 

via hydration of volcanic glass and reactive detrital grains. The weight of the lava 

provided the overburden for compaction. No calcite cement is present. 



257 

 

5.3.4 Zeolite cementation at Rock Creek 

 

Fig. 5.23. Photomicrographs of the cemented sand at the base of the Rock Creek 

sediment interlayer. (A PPL) Relatively un-cemented sand at the interface between un-

cemented sand and the cemented sand; the blue porous sand in E. The grain-coating 

mineral is analcite. (B PPL) At the boundary between un-cemented sand and cemented 

sand. The analcite begins to fill pores. This transition is over < 500 μm. (C PPL and D 

XPL) The sandstone within the cemented zone is first cemented with analcite (clear in 

PPL, nearly isotropic in XPL) and then with zeolite (possibly laumontite). (E) Full slide 

micrograph showing the upper un-cemented sandstone and the sharp transition to the 

analcite and zeolite cemented region. (F XPL and G PPL) Close up of zeolite cemented 

pore. The analcite precipitated first followed by the zeolite. 
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 The basal 1.2 m of the sediment layer is cemented with analcite and zeolite 

(possibly laumontite). The hand specimen from the cemented sandstone is lithified 

and harder than the sandstone at the hot lava contact. Cross bedding is visible in the 

cemented sandstone. The cemented zone lays directly on the lava flow below, which 

has a glassy top. This glassy top of the underlying lava and the cemented sand 

(which was interpreted as ‘baked’) is used as evidence for an invasive flow and 

rafting of the sediment by Tolan et al., (2009). Tolan et al, (2009) also state that the 

sedimentary structures have been disturbed by the invasive flow. However, I made 

observations of cross bedding within the cemented zone at the base of the interlayer. 

The disturbance was localised and due to an invasion of the overlying Sand Hollow 

lava; this is restricted to a small area. 

 The nature of the sharp contact between the cemented and the un-cemented 

zone is of interest. The contact appears horizontal, despite the undulating surface of 

the lava below. It is very similar to the calcite cemented zone at the base of the upper 

of the three stacked dunes in Dune Valley, Namibia (Chapter 4.2.1.2). The 

interpretation is the same. It is suggested that a thin perched aquifer sat on the glassy 

flow top within the sediment interlayer. The aquifer water must have been hot for 

zeolite to form (Deer et al., 1992). The thin interface (Fig. 5.23A) where the analcite 

does not fill pores was probably due to capillary action above the phreatic zone 

lifting a meniscus of hydrothermal water along grain edges. Evidence of 

metamorphic re-equilibration of unstable silicic mineral phases was not observed. 
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5.4 Controls on reservoir quality at lava-sediment contacts 

5.4.1 Lava flow thickness 

 

 The effect of lava flow thickness and how it related to the porosity reduction 

below the lava flow is of importance to this thesis. The effects have been 

investigated, firstly in a dry palaeoenvironment (siliciclastic Twyfelfontein 

Formation) and secondly in wet palaeoenvironments (CRB, SRB and Iceland). In the 

case of wet palaeoenvironments, both siliciclastic and volcaniclastic sediments have 

been studied. 

 To compare these case studies is fundamentally difficult because of the large 

differences in burial depth. The Namibian examples have been buried and exhumed 

~ 5 km, the CRB and SRB have negligible burial and the Icelandic case studies have 

had only the capping lava burying the sediments. For all of the case studies, the 

sediment was unconsolidated at the time of lava emplacement. 

 Comparing the porosity and distance would therefore not be a useful analysis 

technique. Instead, the slope of the porosity-distance relationship has been calculated 

to the estimated background porosity for all of the case studies. The background 

porosity in the Twyfelfontein Formation is taken as 12.5 %, in Iceland the IGHC 

locality was directly measured as 49.2 %, the IG locality was taken as the fluvial 

depositional porosity in Lundegard (1992) 44.75 %, The CRB and SRB localities 

were taken to be the lacustrine depositional porosity in Lundegard (1992) 44.75 %. It 

is probably valid to take depositional porosities as the background for the CRB and 

SRB examples due to their very shallow burial. This measure therefore estimates the 

thickness of porosity reducing influence of the lava flow as opposed to the actual 
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porosity reduction. Fig. 5.24 shows these calculations in graphical form. Each line on 

the graph terminates at the background porosity, for which the distance can be found 

(see Table 1.5.). 

 

Fig. 5.24. Graphs calculating distance to background porosity. The linear trends 

calculated for the porosity depth relationships have been plotted to their respective 

background porosities. Huab basin= 12.5 %, IGHC= 49.2 %, IG= 44.75, RC= 44.75 %, 

Strike Dam= 44.75 %). Linear equations for each line are shown. To inspect each line 

relative to the constituent porosity points please refer to previous figures for each case 

study (this chapter and Chapter 4.). Dashed lines are 1σ uncertainties based on the 

error at 12.5 % porosity. These were used to calculate the uncertainty in distance to 

background porosity that is plotted in Fig. 5.25. 
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Uncertainties have been graphically propagated at the 1 σ level using the 1σ error in 

the point count porosity estimate. This therefore produces a range of distances to 

background which have been subsequently plotted in Fig. 5.25 (y axis error bars). 

 

   

Background  Distance to 

Case Study Equation R^2 

porosity 

(%) 

background 

(m) 

PL y=3.48x+1.22 0.85 12.50 3.24 

BD y=3.15x+0.51 0.98 12.50 3.81 

Dune16 y=4.51x+2.3 0.79 12.50 2.26 

Upper Dune y=12.68x+4.07 0.80 12.50 0.66 

RYDpond y=2.94x-0.12 0.80 12.50 4.29 

IGHC y=48.075x+20.32 0.97 49.20 0.60 

IG y=-27.67x+21.02 0.22 44.75 N/A 

RC y=35.76x+19.75 0.81 44.75 0.70 

StrikeDam y=27.74x+3-.74 0.99 44.75 0.51 

 

Table. 5.5. Equations in Fig. 5.24, R
2
 values, background porosity and distance to 

background. 

 

 The distance calculated to background porosity is plotted against the 

thickness of lava flow (Fig. 5.25.) for all localities except IG (Highway 32), where 

no valid porosity trend was identified. The best fit trend line calculated in MS Excel 

for the Huab Basin case studies is a logarithmic relationship between distance to 

background porosity and lava flow thickness, which gave an R
2
 value of 0.70. 

Thicker lava flows produced a greater thickness of porosity loss. When the same 
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trend is calculated for all the data (dry and wet together), the thickness drops due to 

the thickness of the lava influence generally reducing in the wet localities. This 

reduction can be attributed to the lack of calcite cementation. The R
2
 value for the 

total dataset is 0.68. Errors in the distance to background have been propagated using 

the error in estimating the porosity of the background sandstone. 

  

 

Fig. 5.25. Relationship between distance to background and lava flow thickness for all 

case studies (Huab Basin, Iceland, CRB, SRB). Errors plotted for lava flow thickness, 

due to not being able to measure whole flow thickness and reflect the maximum 

theorised thickness based on field relationships. Errors plotted for distance to 

background porosity are propagated from the 1σ error at the background porosity for 

each case study. 
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Distance to Thickness of  Lava thickness error 

Case Study background (m) lava flow (m) pos neg 

PL 3.24 45.00 5.00 5.00 

BD 3.81 20.00 5.00 0.00 

Dune16 2.26 2.75 2.25 2.25 

Upper Dune 0.66 2.75 2.25 2.25 

RYDpond 4.29 32.50 12.50 0.00 

IGHC 0.60 4.00 0.00 0.00 

RC 0.70 5.00 10.00 0.00 

StrikeDam 0.51 5.00 2.00 0.00 

 

Table. 5.6. Data plotted in Fig. 5.25. Errors for lava flow thickness are positive (pos) and 

negative (neg). The neg error relates to the minimum thickness which most often was 

measured and the pos error relates to the maximum that was occasionally measured but 

sometimes eroded. 

 

 Lava flow thickness is therefore a major control on the distance over which 

porosity reduction is ‘felt’ by the underlying substrate sediment. This is consistent 

with compaction being the dominant porosity loss mechanism below lava flows 

when compared to background compaction. Compaction is probably related to the 

weight of the lava overburden. 

 

5.4.2 Substrate composition and Palaeoenvironment 

 

 As compaction is the major contributor to lava emplacement-related porosity 

loss, the substrate composition is important. For instance, a weak, ductile substrate 

would be expected to deform more than a strong framework of interlocking grains. 
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This study has been restricted to sand substrate. The sand sized grains studied have 

largely been siliciclastic sub-arkoses (e.g. Twyfelfontein sandstone, Vantage interbed 

sandstone) or volcaniclastic sandstones comprising tuffaceous or scoriaceous 

material (e.g. Rekjanes Peninsular, IGHC). 

 It can be seen in Fig. 5.25 that the siliciclastic sands in the Huab Basin have 

the most extensive porosity loss for a given lava thickness. I infer that this results 

from the combined effects of the palaeoenvironmental conditions and the sediment 

composition affecting the rate of compaction and authigenic mineralisation. In the 

Huab Basin, the sediments would have been dry. The lava flow emplacing would 

have been degassing (likely components include: water, carbon dioxide, chlorine, 

fluorine, sulphur dioxide, hydrogen sulphide and carbon monoxide as major phases 

(e.g. Delmelle & Stix, 2000; Lowenstern, 2001; Simmons and Christenson, 1994; 

Shevenell and Goff, 1993; White, 1957). These gases will have been be emanating 

from the cooling lava flow, with the direction of movement determined by pressure 

gradients. This pressure gradient would be towards atmospheric pressure. 

Atmospheric pressure would have existed in the underlying pore space in the 

substrate sediment. A proportion of the volcanic gas would therefore have invaded 

the substrate porosity. It is proposed that these gases, when possibly condensing onto 

grains would have enhanced the pressure solution and dissolution of the quartz grains 

(e.g. H2O, Cl2, F2), probably forming acidic concentrated conditions. This, combined 

with the added heat from the cooling lava (not water-cooled like in wet 

palaeoenvironments) is probably responsible for the increased pressure solution 

observed. The calcite cementation is also proposed as a result of the reaction of 

magmatic CO2 and H2O with detrital minerals and basaltic glass (see Chapter 4.).  



265 

 

 This then raises the question, why do we not see calcite cemented zones 

related to the cooling of the lava in Iceland, the SRB and the CRB? The reason for 

this is suggested to be the existence of pre-existing water in the pore space of the 

substrate sediment. When lava is emplaced onto wet sediment, the pore water 

contained in the substrate below (either fully saturated or partially saturated) begins 

to boil. This boiling water, becoming water vapour would increase the sub-basalt 

pore pressure, such that no volatiles degassing from the lava would pass downwards 

into the sediment. Some volatiles may pass downwards through diffusion, but would 

be minor compared to a water-absent setting. If there are less volcanic volatiles 

invading the pore space it is expected that less diagenetic reactions will occur 

compared to where magmatic volatiles are abundant. Further, compaction will be 

limited to processes that do not require such a degree of grain dissolution, such as 

mechanical compaction. The water would probably serve to cool the base of the lava 

more rapidly, also acting against shallow pressure solution (cf. Houseknecht, 1984). 

If groundwater was able to pass through the substrate during cooling of the lava, the 

effects are anticipated to be even weaker than a static situation.  

 The exception to this theory is the observation of extensive pore-filling clay 

at the Joyce Ranch outcrop (unfortunately the sand was too thin for a sample 

transect). Here pillow lavas rested on the sand. It is proposed that the groundwater 

became acidified due to water-rock interaction (e.g. Sansone et al., 1991; Stevens & 

McKinley, 2000) between the permeable pillow lava field and the circulating water 

that would have been cooling the pillows. This acidified groundwater then reacted 

with the volcaniclastic fragments in the substrate. The other examples, where the 

igneous contribution was a lava flow did not have such fluid circulation and hence 

the water was not modified (acidified) by basalt-water interactions. 
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 In wet settings, if the substrate was entirely siliciclastic, mineral authigenesis 

would be rare due to the effects of pre-existing water (substrate overpressure 

generation, cooling, dilution). In arid settings, where no water is present, the 

substrate overpressure is not developed, no water cooling or dilution is possible and 

the emplacement effects are at a maximum. In subaqueous conditions, where pillows 

form, clay forming mineral reactions are favoured in the substrate. 

 In conclusion, palaeoenvironment (wet or dry) and substrate sediment 

composition influence the porosity reducing effects below lava flows. The greatest 

influence is where compaction can be influenced by facilitating pressure solution at 

shallow depths (e.g. arid, siliciclastic palaeoenvironments). Mineral authigenesis at 

the time of lava emplacement is controlled by palaeoenvironment and sediment 

composition as volcanic volatiles are required to react with the more reactive detrital 

grains (glass or feldspars). Clearly the reactive detrital minerals need to be present 

for this to occur. The volatiles are less likely to make it into the substrate when it is 

overpressured due to interstitial water. The most important factor in controlling the 

distance, over which porosity reduction is apparent, remains, however, the thickness 

of the lava flow and the early compaction caused (Table 5.8.). 
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Table. 5.8. Matrix showing summary of observed effects of lave emplacement. Hypothesised effects are logical continuations of the effects into more 

reactive substrates (e.g. more volcaniclastic) where constraints exist through observation in this study. Extrapolations could not be made where ‘no 

data’ is indicated. 
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6 

Direct effects on sandstone properties caused 

by the emplacement of dolerite sills and dykes, 

case studies from the Twyfelfontein Formation, 

Huab Outliers, Namibia. 
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6.1 Chapter summary 

 

Fig. 6.1. A) Map of Africa showing Namibia. B) Map of Namibia with box showing the 

Huab Outliers enlarged in C. C) Map of the Huab Outliers showing location of case 

studies (in boxes). Cretaceous intrusive rocks (Dykes, Huab Sill Complex, Doros 

Crater) and Cretaceous sub-aerial rocks (Twyfelfontein Formation sandstones, 

Etendeka lava flows, Etendeka Quartz Latites) shown together. 
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The Huab Outliers study area, south of the Huab River, Kunene Region, Namibia 

(Fig. 6.1.) provides good outcrop (~70 %) in a currently arid area in which to study 

the interaction between the intrusive igneous rocks and the Twyfelfontein formation 

(Jerram et al., 1999a). The contacts between the Etendeka basaltic dykes and sills 

and the Twyfelfontein formation allow study of nature of hot contact effects (contact 

metamorphism, pyrometamorphism, pyrometasomatism and hydrothermal 

metamorphism) on clean petroleum reservoir quality sediment. The importance of 

understanding these effects has implications to the successful exploitation of 

sedimentary basins containing igneous intrusions around the globe (e.g. The Faroe-

Shetland Basin (Bell & Butcher, 2002; Smallwood et al., 2004; Grove, 2013), 

Southern Atlantic passive volcanic margins (Jungslager, 1999; Stainistreet and 

Stollhofen, 1999; Davison, 1999), Australian passive volcanic margin basins 

(Holford et al., 2012)). Can non-fractured (cf. Bermúdez and Delpino, 2008) 

petroleum reservoirs potentially exist in sediments around igneous intrusions? 

 The effects of the emplacement and cooling of dykes and sills on host rocks 

have been the focus of some studies in the literature. Studies generally concern 

protolith material favouring diagnostic mineral reactions, such as fine grained 

aluminium rich (clay rich, mica rich) protoliths such as shale (e.g. Wang et al., 2012; 

Dutrow et al., 2001; Aarnes et al., 2011a; Brauckmann and Füchtbauer, 1983; Aarnes 

et al., 2011b; Barker et al., 1998; Hudson and Andrews, 1987). Studies of organic 

rich rocks such as coal or shale in proximity to intrusions have the benefit of the 

vitrinite-reflectance geothermometer (Barker et al., 1998; Cooper et al., 2007; 

Stewart et al., 2005). Other studies on organic rich rocks are concerned with the 

maturation and volatile (CO2 and CH4) release with relevance to petroleum sources 
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and global warming events (Summer and Verosub, 1992; Aarnes et al., 2011a; 

Aarnes et al., 2011b). Basaltic intrusions into metamorphic basement (comparatively 

mica rich  and low porosity compared to clean reservoir sands) have also yielded 

successful studies, particularly in constraining mineral reaction texture and chemistry 

(e.g. Holness & Watt, 2002; Holness & Humphreys, 2003; Holness et al., 2005; 

Wartho et al., 2001; Nawaz, 1977). 

 Work on siliciclastic sandstones in contact with basaltic intrusions has had a 

variety of focusses, spanning a complete range of alteration. Many studies focus on 

the most intense (and rarest) effects leading to pyrometamorphism (Grapes, 2010; 

Butcher & Grapes 2011) where sufficient heat has been transferred to the intrusion 

wall rocks to cause partial melting and the formation of a buchite (e.g. Ackermann & 

Walker, 1960; Frankel, 1949; Spry & Solomon, 1964; Wyllie, 1961; Holness, 1999). 

Contacts that do not lead to melting are more common in the field, but not so well 

documented; effects are hydrothermal, leading to metasomatism and mineral 

authigenesis (e.g. Walker, 1959; Balance & Waiters, 2002; Summer & Ayalon, 1995; 

Brauckmann & Füchtbauer, 1983) , often recorded by clay mineralogy (e.g. 

McKinley et al., 2001;  Ahmed, 2003, Balance & Waiters, 2002). 

 In the Huab Outliers (Fig. 6.1C.), a complete range of intensity is recorded in 

the sandstone wall rocks: from intense pyrometamorphism (Chapter 2, Grapes, 2010) 

and melt segregation where magma flow is intensified, minor pyrometamorphism 

above sills which gives way to hydrothermal mineralisation with distance from the 

intrusion, to hydrothermal mineral authigenesis with no pyrometamorphism flanking 

most dykes. The work presented in this chapter is not constrained to the most intense 

areas (e.g. buchites, Chapter 2.); rather, the aim is to give a realistic overview of the 

range of effects and their relative importance in the area. The tracing of the most 
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intense effects (pyrometamorphic) is used to infer localisation of magma flow in the 

sub-volcanic system. 

 The examples presented below show a range of types and magnitudes of 

direct contact effects. It has been found that the magnitude effects are not simply 

related to the thickness of the intrusion, for both sills and dykes. Instead it is 

suggested that the magma flow regime within the igneous body, combined with the 

country rocks’ ability to dissipate heat (e.g. through an aquifer) controls the mineral 

authigenesis (and indeed melting) and hence porosity reduction. Compaction is also 

important adjacent to igneous intrusions, which is petrographically apparent; this is 

related to the emplacement as opposed to magma flow regime. 
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6.2 Direct effects of Dykes on the Twyfelfontein Formation 

6.2.1 Awahab Dykes 
 

 

Fig. 6.2. Enlarged map of the Awahab dykes case study area.  DA DB and DC refer to 

Dykes A, B and C. See also Fig. 6.7. 

 The Awahab Dykes locality is situated in the SE part of Dune Valley at 

approximately 20° 39.769’ S 14° 10.188’ E, at 792 m, 3.5 km SE of the Awahab 

campsite (see Appendix map). The outcrops consist of at least five dolerite dykes 

striking NW, WNW or N, varying from < 3 m thick up to 8 m thick. No cross cutting 

relationships were found, but definite evidence of co-existence exists in the form of 

linking sill-lets/ apophasis between Dyke A and the major WNW trending dyke (Fig. 

6.2, Fig. 6.7.) A sample (NG/12-20) from Dyke B is an olivine phyric dolerite. The 

lowermost lavas of the Etendeka sequence are also olivine rich (Jerram et al., 1999a) 
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 The sandstone intruded is the Minor Erg unit of the Twyfelfontein Formation 

(KTyMaj), and like the other two dyke localities presented, dykes separate red 

haematite coated sandstone from white bleached sandstone (detail in Chapter 7.). The 

bleaching is interpreted to be a syn-cooling hydrothermal effect (see 6.2.3. and 

Chapter 7.). Only red sandstone contacts are presented as ‘directly’ affected by the 

dyke. 

 Two transects were taken away from dykes, a transect to the east of Dyke A 

(Fig. 6.2.) and a transect to the west of Dyke B (Fig. 6.2.) were collected. 

 

Fig. 6.3. Photomicrographs of red sandstone to the east of Dyke A (DA). (Ai, ii XPL) At 

contact sand is compacted, grains interpenetrate and frequently show undulose 

extinction. (B) 2 m from the dyke, compaction is still evident as abundant concavo-

convex contacts, haematite is redistributed into nodules, porosity appears. (C) By 4.5 m 

compaction has reduced, haematite grain coatings are abundant. Authigenic minerals 

restricted to rare quartz overgrowths. 

 Dyke A is the westernmost of the dykes in Fig. 6.2. The dyke is at least 1.6 

km long, with intermittent exposure. 0.1 m from the contact (NG40), the sandstone is 

visibly bleached and no porosity is visible. In thin section, (Fig. 6.3Ai, ii) detrital 
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mineralogy is approximately at the background proportions. Porosity is negligible. 

Porosity reduction is dominantly through compaction (COPL= 47 %) at the contact 

which is petrographically evident in Fig. 6.3. where quartz grains are commonly 

deformed by plastic deformation (senso Bailey et al., 1958; Mainprice et al., 1986) 

and by pressure solution (senso Rutter, 1983). Plastic deformation is betrayed by a 

dominant proportion of quartz grains showing undulose extinction, combined with 

clearly deformed outlines, and pressure solution is evident as sutured grain contacts 

and concavo-convex interpenetrating grains. Pressure solution leads to the formation 

of rare quartz overgrowths, which themselves are deformed, suggesting a degree of 

compaction (pressure solution) occurred prior to dyke intrusion. The remaining 

porosity 0.1 m from the contact is filled with calcite, which occasionally partially 

replaces detrital feldspars. 

 At ~ 2 m from the contact, are occasional primary pores, but porosity is still 

negligible. Compaction is the major porosity reduction mechanism, with grains 

showing dominantly undulose extinction, with sutured grain contacts and 

interpenetrating grains common. The compactional history is therefore much the 

same as at 0.1 m from the contact. Both deformed quartz overgrowths and quartz 

overgrowths into remaining primary pores suggest that pressure solution continued 

after igneous emplacement. Most remaining porosity is filled with haematite nodules 

and calcite. The haematite nodules are inferred to be redistributed haematite from 

former grain coatings. The calcite, is suggested to be hydrothermal in origin (6.3.). 

 By 4 m, porosity has increased to exceed 12.5 %, (sample NG48 porosity= 

14.6 %, ±1.6). Porosity increase is largely due to less compaction (COPL= 37.5 %, 

±4.3) and less due to less pore-filling authigenic phases (calcite and haematite) 

although total authigenic mineral proportions are higher than at the contact due to 



278 

 

increased clay replacement of feldspars. The sandstone is visibly red in outcrop and 

hand specimen due to haematite grain coatings. 

 Figure 6.3C shows sample NG/12-18, 4.5 m from the dyke contact, porosity 

is 12.2 % (±1.5). Authigenic minerals are quartz overgrowths (4.2 %, ±0.9) with 

negligible clay and calcite. Porosity loss is dominated by compaction (COPL= 38.6 

%, ±4.0), 10 % less than at 0.1 m from the contact. Compaction is by pressure 

solution, as grains frequently interpenetrate, and suture; most quartz grains show unit 

extinction, undulose extinction is rare. Further than 4.5 m from the contact porosity 

and authigenic minerals fluctuate around the average. Two further samples, at 6 m 

and 15 m (NG/12-19) are similar to the background sandstone.  

 The transect into the red sandstone to the east of Dyke A depicts a situation 

where porosity and permeability increase away from the dyke (Fig. 6.5), largely 

influenced by increased compaction towards the dyke contact, and secondarily 

influenced by calcite mineralisation. Haematite has been mobilised away from the 

dyke contacts and re-precipitated in porosity outside of the zone of increased 

compaction (Fig. 6.5D.). The existence of quartz overgrowths, that have been 

deformed near to the contact and overgrown by calcite suggests Dyke A intruded into 

a sediment that was already at least partially lithified. Further quartz overgrowths 

growing into remaining porosity (e.g. NG47) shows that quartz authigenesis and 

probably pressure solution continued for some more time after dyke emplacement. 

This may be evidence for dyke emplacement prior to the maximum burial depth was 

achieved. Dyke A can be seen to cut all exposed stratigraphy (Fig. 6.7), which is up 

to 500 m above the Dyke A locality. Palaeodepth of intrusion is therefore confined to 

>0.5 km and <5 km.  The existence of dominant undulose extinction within 2 m from 

the dyke, compared to the low frequency of undulose grains (displaying original 
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protolith inherited extinction) further than 2 m and in the background sandstone and 

below lava flows (Chapter 4.) suggests that conditions may be different. The plastic 

deformation that undulose extinction implies is normally associated with high 

pressures (in the order of >> 5 kbar, Carter et al., 1964). The lowest pressure that 

Carter et al., (1964) synthesised quartz with undulatory extinction from 

disaggregated natural sandstone was 5 kbar (18 km) at 925 °C for 523 minutes. 18 

km of burial is not achievable for the Twyfelfontein Formation (Chapter. 2.), also, 

outlined below is a crude calculation of the depth of dyke emplacement (based on 

comparison of Dyke A and Dyke B) of ~760 m (an underestimate). If the depth is 

taken as 1 km, lithostatic pressure (ρ= 2800 kgm
-3

) is 0.27 kbar, much less than the 

minimum required pressure from Carter et al (1964). The temperature required for 

plastic deformation increases as pressure decreases, so even if the lithostatic load 

permitted plastic deformation at 1 km, or indeed 5 km depth, the temperatures would 

need to be high enough to melt potassium feldspar under hydrous conditions 

(Holness, 1999; Holness et al., 2012). No feldspar melting is observed adjacent to 

dykes. Further, at 1 km, 925 °C is within the tridymite stability field (Grapes, 2010); 

no tridymite is present. The required conditions for plastic deformation of quartz 

under lithostatic pressure likely at the time of dyke intrusion are therefore unlikely, 

given the petrographic evidence. However, the dominance of undulose grains 

compared to elsewhere must have an explanation. I propose and hypothesis that the 

proximal pressure increase due to the intrusion of the dyke must raise the local 

pressure exerted on the wall rocks to a sufficient level, the required pressure (5 kbar 

– 0.27 kbar) is an internal pressure in the dyke during emplacement of 4.73 kbar. The 

mechanism for achieving such a pressure requires investigation beyond this thesis. 

An alternative explanation is that the presence of water, both pre-existing in the 
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aquifer, from degassing magma and from dehydration reactions could lower the 

pressure and temperature required for plastic deformation (e.g. Mainprice et al., 

1986). The mechanism of plastic deformation remains unresolved for this case, 

however, it is sufficient to say conditions were appropriate adjacent to dykes, but not 

below lava flows, or in the background sandstone.  

 

 

Fig. 6.4. Photomicrographs of contact to the west of Dyke B (DB). (Ai XPL) at the 

contact sand is cemented with aggressive calcite that begins to replace quartz, sample 

appears under compacted. (Aii PPL) At the contact, quartz overgrowths grew first, 

then rare chlorite, then calcite. (Bi PPL, Bii XPL) ).1 m from the dyke, calcite partially 

replaces feldspars some quartz, note incipient replacement of quartz overgrowth. (Ci 

PPL) 3 m from the dyke, sandstone returned to background, occasional quartz 

overgrowths grow from detrital grains. 



281 

 

 

 Dyke B is the eastern of the two dykes studied at this locality (Fig. 6.2.) and 

is parallel to Dyke A, the dyke is ~1.3 km long, although quality exposure is only 

400 m. At the contact porosity is negligible (0 %) and permeability is low (3.7 md). 

Porosity reduction is dominated by compaction (COPL= 38.8 %, ±2.6), but 

cementational porosity loss is also important (CEPL= 10.1 %). Touching quartz 

grains commonly show sutured and interpenetrating contacts, which together with 

quartz overgrowths predate calcite cement. Quartz overgrowths also predate a minor 

chlorite cement, which partially coats grains (Fig. 6.4Aii). The calcite cement is in 

the form of pervasive poikilitic crystals of non-ferroan calcite, that postdates both the 

quartz and the chlorite. The calcite is aggressive, replacing the rims of detrital quartz 

grains (Fig. 6.4Ai) and partially replacing some feldspars.  

 At 0.1 m from the dyke, the sandstone is similar to at the contact, with calcite 

cement occurring after quartz cementation, as calcite overgrows is aggressive 

towards quartz overgrowths (Fig. 6.4Bii). Calcite partially replaces potassium 

feldspars (Fig. 6.4Bi, ii) and plagioclase. Compaction is through both plastic 

deformation and pressure solution at grain contacts and is the dominant mechanism 

of porosity loss (COPL= 36.6 % (±4.2), CEPL= 12.4 %). 

 At 3.0 m from the contact, porosity is up to 14.8 % (±1.6), COPL (39.4 %, 

±2.6), interestingly is slightly higher (still within error, so not conclusive) than closer 

to the contact where the calcite cement is suggesting the calcite is ‘protecting’ the 

sand closer to the contact from further compaction. COPL is the dominant porosity 

reduction mechanism. The sand here is similar to the background; detrital grains are 

coated with haematite, which has occasional quartz overgrowths, postdating the 

haematite. All other cements are negligible. Compaction is evident, but restricted to 
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pressure solution as undulose extinction quartz grains are rare (probably inherited 

from protolith).  

 The contrasting nature of the porosity loss adjacent to these two dykes is 

useful. If we make two assumptions, a crude estimate of the intrusion depth can be 

calculated. The first assumption is that Dyke A intruded at the same time as Dyke B 

(supported by both separating the same red sand compartment) and the second is that 

the calcite cement adjacent to Dyke B protected the sand from subsequent 

compactional porosity loss (i.e. removed all remaining porosity) at the time of dyke 

emplacement. If these assumptions are true the compaction recorded by the cemented 

sample should be the pre-intrusion compaction and, the difference in COPL at the 

contact between Dyke A and Dyke B should be the COPL at the time of dyke 

emplacement. This difference is 8.1 %. When plotted on the COPL against depth plot 

in Chapter 2 (Fig. 2.12C.), this gives a depth of 756 m, which is consistent with the > 

0.5 km and < 5 km palaeodepth for Dyke A. This depth is an underestimate, as some 

compaction would have continued after dyke emplacement. The main point is that 

the dyke was probably intruded at < 1 km depth. It is accepted that this calculation 

has a high uncertainty, probably in the order of 300 m.  

 Permeability and porosity in both examples was found to be exponentially 

related. Dyke A plots with all of the other dykes (Fig. 6.6.), whereas Dyke B plots 

separate, with permeability increasing at a faster rate. The reason for this is 

unknown, but it is proposed that the highly calcite cemented nature may be 

important, compared to the other dykes, where compaction is more important. 
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Fig. 6.5. Graphs of point counted parameters against distance from dykes: Dyke A, 

Dyke B, Dyke 4 (barchan dyke) and RYD dyke. (A) Porosity increases away from all 

dykes. Linear trend line fitted to increase up to first point to exceed 12.5 % porosity. 

Note Dyke B only has 2 points. (B) Permeability increases with distance. (C) Calcite 

decreases with distance and is rare beyond 5 m. Opaque minerals are not correlated 

with distance.  
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Fig. 6.6. Relationship between permeability and porosity for all red sand dykes. RYD, 

Dyke A and Barchan Dyke cluster, while Dyke B is distinct which reflects the 

petrographical differenced. 
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Sample Distance from intrusion 

(m) 

Porosity 

(%) 

RYD Red sand 

NG88 0 1.6 

NG89 2 6.4 

NG90 4 12.2 

RYD09 5.4 9 

RYD08 9 7.6 

RYD10 11.4 11.3 

RYD12 13.6 13 

RYD24 22.5 11.2 

Dyke A 

NG40 0.1 1.2 

NG47 2  

NG48 4 14.6 

NG/12-

8 

4.5 12.2 

NG/12-

19 

6 10.8 

ng52 15 12.4 

Dyke B 

NG49 0 0 

NG50 0.1 0 
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Table. 6.1 Porosity data for sandstone away from dyke-red sand contacts. See the 

Appendix for full data tables. 

 

6.2.1.2 Intensified effects due to magma flow localisation 

 

 Where shallow dykes cut the Twyfelfontein Formation sandstone, there is 

usually a compacted contact zone, indurated with calcite inferred to be of 

hydrothermal origin, with little direct metamorphic influence (e.g. no 

pyrometamorphism) (e.g. Dyke A and Dyke B above).  At ‘normal’ contacts magma 

was probably not turbulent and cooled rapidly (e.g. Delaney & Pollard 1982) (e.g. 

RYD, Dyke A, Dyke B, Barchan Dyke). However, the subject of this section is a 625 

m
2
 (25 m x 25 m) area of intensely thermally altered boulders and outcrop (outlined 

in orange, Fig. 6.7.). The dyke is < 10 m in width at this locality. Here, partial melt of 

the feldspar component has been extracted as melt. Surfaces formerly in contact with 

the dyke show textures indicative of thermal erosion (e.g. regmaglypts, cf. Lin et al. 

1987) and the existence of a viscous-viscous contact between the magma and melted 

sandstone. 

 The locality shows high temperature contact metamorphism (e.g. 

pyrometamorphism, Grapes 2010); melt segregation and assimilation of this melt 

NG51 3 14.8 

Barchan dyke 

NG68 0 0.2 

NG67 0 0.2 

NG65 5 14.8 
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into the mafic magma. The very small area of affected rock compared with the total 

amount of intruded sandstone, together with coincidence of several dykes at this 

location, suggests the increased heat required to produce the observations is due to 

magma flow localisation, possibly feeding a now eroded vent directly above. Such 

feeder dykes are found within this level of the stratigraphy, feeding the lowermost 

olivine rich Etendeka lavas (e.g. Jerram et al., 1999). Magma flow localisation into a 

‘tube’ of ~10 m diameter is likely based on the < 10 m width of the dyke. 
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Thermal Alteration 

 

Fig. 6.7. Photograph of Awahab Dykes focussing on the area of intense thermal 

alteration 

The bulk of the Twyfelfontein Formation (Fig. 2. B) is a very fine to coarse grained, 

grain fall and grain flow laminated sub-arkosic arenite (modal composition: quartz= 

55 % (±2.2), K-spar= 21 % (±1.8), plag= 7 % (±1.7), porosity= 12 % (±1.5)) (cf. 

Chapter 2 and Mountney 2001), while the thermally affected sandstone is 

compositionally distinct from the sediment protolith. Partial melting of the sandstone 

under hydrous conditions (initially in an aquifer) has first melted the feldspar 

component (e.g. Eklund and Lindberg 1992; Holness 1999, Holness et al., 2012), of 

which none remains in the residue sandstone. Primary porosity, such as that normally 

preserved in the background sandstones (e.g. 6.4Ci, ii; Fig. 6.8C.)), is also absent. 
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Porosity present is secondary, in the form of microcrystalline quartz lined vugs, 

probably originally bubbles of gas (probably water vapour). These bubbles scale 

from thin section to the outcrop scale (up to 10 cm diameter), where they are often 

lined with quartz crystals up to 1 cm diameter. The loss of the porosity and detrital 

feldspars left the restic quartz to form a diagenetic quartzite.  This process requires 

volume reduction, under lithostatic pressure. It is suggested, in the absence of finding 

segregated feldspar melt within the wall rocks, that the molten feldspars were forced 

into the magma under lithostatic loading, enriching it in potassium and silica (see 

darkness/colour gradient Fig.6.9D.). The remaining quartz grains show evidence of 

resorbtion, in that the rounded detrital character is often lost and solidified melt rims 

develop between grains (Sawyer 1999). At the boundary between sandstone and 

dolerite is a sheared brown glassy mineral which frequently contains plucked 

remnant detrital quartz grains (Fig.6.8A, C). Plucked grains are also present in the Si 

enriched boundary layer (Fig.6.8C, Fig.  6.9D). 

 As no tridymite paramorphs were identified petrographically, yet feldspar has 

melted, conditions can be constrained. If the calculated depth above holds (~1 km, 

certainly <<5 km), 0.27 kbar lithostatic pressure is appropriate. The melt producing 

reaction within the sandstone is likely Qtz+Ab+Or+H2O→melt, if melting was H2O 

absent pressure would need to be in excess of 0.5 kbar (1.8 km) (after Holness et al., 

2012). The common vugs in the quartzite aureole suggest free fluid during cooling 

(i.e. water vapour). The temperature constraint of these wall rocks is therefore 

between 860 °C and 905 °C, with the onset of melting at 860 °C based on the P-T 

projection of the sanidine+quarz+liquid+gas and sanidine+tridimite+liquid+gas by 

Shaw (1963). Increasing the burial depth increases the range of temperatures that 

sanidine+quarz+liquid+gas is stable, and above 1.4 kbar (5 km) tridymite does not 
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crystallise (Grapes, 2010). It is likely therefore that the wall rocks reached a 

temperature of at least 860 °C if the depth estimate above holds. If intrusion was at 

the (unlikely) maximum burial depth of 5 km, the temperature is slightly lower, 780 

°C. At 1 km, the temperature cannot have reached the tridymite isograd of 905 °C 

(Shaw, 1963; Grapes, 2010) 

 

Fig. 6.8. A) Photomicrograph (PPL) of intrusion-sandstone contact. Residual sandstone 

has had feldspathic component (~30 %) melted and extracted (no feldspars or feldspar 

remains) into the igneous boundary layer which in outcrop grades to dark dolerite (Fig. 

3. D). Residual sandstone shows evidence of partial melt and recrystallization along 

grain contacts, porosity exists as microcrystalline quartz lined vugs which are visible up 

to 10 cm scale in outcrop interpreted to be bubbles (H2O rich vapour) within partially 

molten sandstone. B) Protolith sandstone, phi= 12.5%, 28 % feldspar. C) Magnified 

PPL micrograph of area in box (A). Contact is sheared is glass rich, evidence of grain 

plucking and assimilation is evident. 
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Fig. 6.9. A) Photograph of regmaglypts on surface of altered sandstone. B) 

bulbous/lobate sandstone contact (now broken) outlined in dash, inferred to be viscous 

contact between partially molten sandstone and magma. C) Iron meteorite with 

regmaglypts for comparison to textures in A (image courtesy of James StJohn). D) 

Contact between residual sandstone and dolerite. Dolerite becomes darker away from 

contact inferred to be due to silica enrichment from assimilation of feldspathic 

component and plucked quartz grains. 

Thermal Erosion 

Regmaglypts 

A number of detached blocks of sandstone have surface ablation pits similar to 

regmaglypts found on the fusion surfaces of meteorites (Fig. 6.9A, C) (e.g. Lin & 

Qun 1986). The exposures of these surfaces is somewhat enhanced due to the 

resistant nature of the metamorphosed sandstone and the fact that the olivine rich 

volcanic rocks are weak and weather readily.  In the case of meteorites a regmaglypt 

is a thumbprint like surface that forms due to interference between turbulent vortices 

developing on the ablation surface (during transit through the Earth’s atmosphere). 

The nature of the ablation surface on a meteorite shows a sequential development 
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from smooth surface, narrow grooves, ablation pits, ablation grooves, ablation 

wedges, cross hatching and regmaglypt pattern as Reynolds number of the boundary 

layer on the ablation surface increases (Lin & Qun 1986). The transition to 

regmaglypt surface has been calculated to occur at Reynolds number of about 1.5 x 

10
6
 for the Jilin meteorite (Lin & Qun 1986). Essentially regmaglypts form during 

turbulent conditions on ablation surfaces where pre-existing irregularities on the 

ablation surface cause disturbances to the boundary layer setting up trailing vortices 

that interfere forming new disturbances (Lin & Qun 1986).  

 The existence of regmaglypts therefore infers turbulent conditions within the 

magma conduit at this location. Turbulent flow of magma causing sufficient heat 

transfer from magma to wall rock for melting and assimilation has been described 

before; in the field (e.g. Kille et al. 1986), geochemically (e.g. Rutter 1987; Kerr et 

al. 1995) and through simulations (Huppert & Sparks 1985). Normally it is difficult 

to achieve turbulent flow in magma (Galland et al. 2009), however in this case 

turbulent flow is feasible as concentration of magma flow into the < 10 m conduit 

from a dyke of length > 3 km would require a significant increase in velocity, eddies 

and physical stirring to maintain volume flux of magma (e.g. localisation of flow 

from fissure eruption above to point source). 

  

Viscous-viscous contacts  

 Regmaglypts are not preserved on the entire contact area exposed. Figure 3 B 

shows one of many preserved apparently diapiric lobes. The lobes are composed of 

the same diagenetic quartzite material as in Fig. 6.8A, C.).  

 The interpretation of these lobes is as a fluid-fluid interface between the 

waning or stationary magma after cessation of flow, and the weakened (hot, ductile, 
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partially molten) wall rock. Either low density quartz rich wall rock has risen 

diapirically from the wall into the magma (like a drip) or the potentially 

overpressured magma has begun to invade the wall rocks. The process is clearly 

passive enough not to induce shearing textures on the lobes, or to affect the entirety 

of the wall rocks; hence regmaglypts are preserved. 

 

Implications 

 Regmaglypt-like features preserve direct evidence of turbulent flow within a 

10 m diameter region of concentrated basaltic magma flow, potentially underlying a 

now eroded vent. Evidence for increased heat transfer compared to ‘normal’ dyke 

contacts is preserved by partial melt of the feldspathic component of the wall rock 

and its subsequent extraction into the dolerite to form a silica enriched interface. Two 

mechanisms of shallow level crustal contamination were therefore in operation: 

Assimilation of partial melt extracted from wall rocks and assimilation of thermally 

ablated (process preserved as regmaglypt) bulk wall rock. As the magma flow rate 

waned, hot ductile wall rock interacted with the cooling magma conduit to produce 

apparent fluid-fluid features. 

 The locality is evidence for flow localisation within the dyke system and 

possibly evidence of a vent directly above. This is evidence for the volcanic system 

in the Etendeka being fed from a variety of eruptive locations, rather than a limited 

number of central complexes, probably along fissures that subsequently localise 

eruption to point sources (e.g. Thordarson & Self, 1993). 

  This case study also has implications for the velocity of the magma flowing 

through the conduit. Assuming a 10 m diameter pipe, a magma viscosity of 100 Pa s, 

and a density of 2700 kg m
-3

 (Galland et al., 2009), a velocity 8.2 ms
-1

 would be 
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required for the initiation of turbulent flow (Re= 2200, from Turcotte & Schubert 

1982). It is likely for regmaglypt formation the Re would be higher than this, so 8.2 

ms
-1

 is a minimum number. The volume flux of magma through this conduit would 

therefore (d=10 m, v= 8.2 ms
-1

) be 2576 m
3
s

-1
 or 7 x 10

6 
kg s

-1
, or crudely 7 x 10

5
 kg 

s
-1

 per linear metre of vent (10 m section). Thordarson & Self (1993) estimated up to 

5.6 x 10
3
 kg s

-1
 per metre for the Laki eruptions of 1783–1785. The value calculated 

here is 2 orders of magnitude larger than for Laki, assuming the 10 m diameter holds 

to the surface. This magma flux suggests the eruption rate of the Etendeka basalts 

may have been very large compared to historic flood basalt eruptions. Calculations 

based on parameters for basaltic rock given in Galland et al. (2009), using the 

formula: 

 

Re= ρmagma x h x U / η 

 

Where, ρmagma= density of magma (2700 kgm
-3

), h= 10 m, U= velocity and η= 

viscosity of magma= 100 Pa s. 
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6.2.2 Big Barchan Dyke 

 

Fig. 6.10. Enlarged map of the Big Barchan dyke locality (see also Fig 6.1 for location). 

 The Big Barchan dyke case study (Fig. 6.10.) is located in the SW part of 

Dune Valley at 20° 40.049’ S 14° 09.168’ E, at 859 m, 2.8 km south of the Awahab 

campsite. The outcrop is that of an isolated dune (KTyId) cropping out within 

Tafelkop type lava, which weathers preferentially compared to the sandstone. The SE 

extent of the outcrop is the location of the pahoehoe prints described in Chapter 2 

and Chapter 4. The sediment interlayer represents an isolated body of sand which 

was migrating over the lava landscape as a barchanoid dune, which was halted in its 

tracks by its encasement in lava from a new eruption. In the southern part of the 

outcrop a complete barchan dune form is preserved (Dune 2 of Jerram et al., 2000). 

The sand body is bisected by a dolerite dyke (sample NG69, see Chapter. 2), which 

is probably of the ‘regional dolerite’ affinity (Marsh et al., 2001). The dyke is 
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vertical and strikes 022 ° and is 3.8 m wide. To the west of the dyke, the sand is of 

the hydrothermally altered white variety and to the east it is red (see Chapter 7.).  

 Three samples were collected from the red sand side of the intrusion during 

the 2011 field work and three during the 2012 field work. Only the 2011 samples 

have been thin sectioned, but inspection of the 2012 hand specimens have been used 

as a guide for the diagenetic zone isograds. Sample NG49 is a xenothith of 

Twyfelfontein sandstone found within the dyke at the transect location, 

consequentially, it could have come from the stratigraphically lower Minor/Major 

Erg. 

 

Fig. 6.11. Photomicrographs of red sandstone from the Big Barchan dyke locality. (Ai, ii 

PPL) A small xenolith within the dyke of Twyfelfontein Sandstone shows no 

pyrometamorphism. Sand is relatively under compacted compared to the wall rock 

contact and is cemented with chlorite, then ferroan calcite. (B) 0.1 m from the dyke, 

compaction is high, grains are frequently undulose, contacts are concavo-convex or 

sutured, remaining porosity is cemented with calcite usually non-ferroan. (C) 3 m from 

the contact compaction is normal, cement is limited to rare quartz overgrowths, 

haematite grain coatings are common. 
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 The xenolith sample (Fig. 6.11Ai, ii) is a compacted (COPL= 39.4 %) arkosic 

sandstone, with quartz, chlorite and ferroan calcite authigenic mineralisation. 

Porosity is negligible. Quartz overgrowths are present but rare and grew first. The 

second cement was the chlorite, which is well developed, and can fill pores. Calcite, 

which is poikilitic, fills remaining porosity. Interestingly, this calcite is ferroan, 

whereas the majority of other calcites encountered have been non-ferroan. This 

sample is evidently rather rich in iron, as it is incorporated into the calcite and the 

chlorite. 

 At the contact, sample NG68 is similar to the xenolith, but compaction has 

been greater (COPL= 41.4 %, ±2.8). Detrital mineralogy is similar to background 

proportions. Authigenic cements comprise of: calcite, which is both ferroan and non-

ferroan. The non-ferroan calcite replaced feldspar grains, whereas the ferroan fills 

pores. Both of these carbonate cements came after chlorite, which fills and lines 

pores. (Fig. 6.11B).  

 Five metres east of the dyke, sample NG65 shows that the sandstone has 

reached background sandstone petrographic parameters. Authigenic minerals are 

restricted to clays and quartz overgrowths, calcite is absent and porosity is 14.8 % 

(±1.6). Compaction is at a minima for the locality (COPL= 37.5 %, ±2.8). 

 These three samples provide limited statistical resolution, the un-sectioned 

samples provide some further clarification. 1 m from the contact, sample NG/12-7 is 

a hard, pale grey sandstone with no visible porosity. Permeability is low, but not 

negligible. Hammered faced are white, suggesting a calcite cement. 2 m from the 

contact, sample NG/12-2 is a red, friable sandstone, with considerable visible 

porosity and considerable permeability. Cements are present, which are probably rare 

calcite grain replacements. 3 m and 4 m from the contact the sandstone is friable,  
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red, with considerable visible porosity and considerable permeability. No cements 

are evident at hand specimen scale. 

 In summary, porosity increases away from the Big Barchan dyke, as 

compaction reduced and cementation reduces. By 2 m, porosity is considerable, and 

by 5 m porosity is 14.8 % (±1.6).  
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6.2.3 Red/Yellow Dyke area 
 

 

Fig. 6.12. Enlarged map of the Red/Yellow Dyke locality 

 

Fig. 6.13. A) Photograph of dyke (w= 5 m) facing north cross-cutting major erg unit of 

Twyfelfontein Fmn. Hilux 4x4 for scale, cliff is ~90 m high at dyke. West of dyke is red 

and has been unaffected by hydrothermal activity. East of dyke is bleached white due to 

hydrothermal activity. B) Photograph of dyke contact of dyke in A, pen for scale. 

Calcite cemented contact zone can be seen, this zone reaches into the un-cemented 

sandstone along originally high permeability grain flow horizons (outlined in yellow 

dash). 
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 The Red/Yellow Dyke (RYD) locality is the primary case study for the direct 

and indirect effects of a dyke on the Twyfelfontein Formation. Here the data density 

is highest and exposure quality provides excellent 3D dissected outcrop, in excess of 

the Awahab dykes and the Big Barchan dyke localities. The RYD is so called due to 

the sandstone colour difference separated by the dyke. On the eastern side, the sand 

is bleached to a white colour and on the western side the sand is red. This thesis calls, 

what was originally termed yellow sand white sand, but the outcrop name of RYD 

stuck due to it being in common usage. Investigation into the indirect diagenetic 

effects leading to the white bleaching is discussed in Chapter 7. 

 The RYD dyke is 6.6 m thick at the foot of the 81 m high cliff in Fig. 6.13A 

and extends for probably at least 11 km striking 163 °. Of this 11 km, the central 3.3 

km are of continuous exposure. The locality also has a number of additional dykes 

(Fig. 6. 12.) that differ in trend to the main RYD. To the west, two dykes < 3 m crop 

out 250 and 350 m from the main dyke, striking N-S. To the east, are at least three 

dykes in the main cliff. Dyke 2 (D2) strikes N-S, and dykes 2 and 3 (D2 and D3) 

strike E-W. Dyke 3 is probably the same dyke as crops out to the west of the main 

dyke. Dyke 3 is probably fed from the RYD sill (S2 and S3). Dyke 3 cross cuts the 

main RYD dyke, so is later. In this southern sector of the RYD exposure, only the 

main RYD dyke separates sandstones of white and red varieties. 1.2 km to the north, 

the RYD is intersected by numerous E-W trending dykes that do separate red from 

white sand, these will be discussed in detail in Chapter 7.  

 At the western contact with red sandstone (NG88), the sand has detrital 

composition similar to the background. Porosity is low (1.6 %, ±0.6), permeability is 

negligible (0 md recorded). Petrographically compaction is intense, grains are 

frequently undulose suggesting plastic deformation. Pressure solution is also evident 
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(Fig. 6.16Ai), particularly manifested as sutured grain contacts and re-precipitated 

quartz as overgrowths. Quartz overgrowths are frequently deformed themselves. 

Haematite grain coatings are absent. COPL is 43.7 % (±3.1), which is higher than the 

Major Erg red mean (>8 % porosity) of 39 % COPL. Remaining porosity is filled 

with poikilitic calcite that overgrows quartz overgrowths (Fig. 6.14Ai, ii., Fig. 

6.16Aii.).  

 Sample NG89, 2 m from the contact shows the background detrital 

composition. Porosity is 6.4 % (±1.0), permeability is 24.8 md. Porosity loss is 

dominated by compaction (COPL= 42.3 %, ±3.2). Grains are frequently 

interpenetrating and sutured (Fig. 6.14Bi.), although undulose grains are less 

common. Cementation is important. Early quartz overgrowths are themselves 

compacted and sutured. Calcite cement, where present grows over the earlier quartz 

cement, but does not fill all remaining porosity (Fig. 6.14Bii.). Haematite appears 

disseminated as small nodules and pore linings around the sample. 

 The nature of the calcite cementation can be observed at the contact outcrop 

at the summit of the RYD dyke. Fig. 6.13B. shows the contact, facing NW. The 

calcite cemented rock appears brown, and the un-cemented rock is light red. The 

visibly cemented rock is 100 % near to the dyke contact, but only follows originally 

high permeability layers with increasing distance. These ‘tongues’ of calcite are 

highlighted in Fig 6.13B. Calcite is present in the red sandstone to a distance of 2 m, 

but it is not pervasive, as can be seen in the figure. The fact that the calcite cement is 

following permeability pathways suggests that a constituent, that follows 

permeability pathways has origins within the dyke. This could be calcium, CO2, 

formation fluids driven by the heat of the dyke. 
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 At 4 m from the dyke, porosity has increased to 12.2 % (±1.5) and 

permeability is 596.5 md. Detrital grains are approximately background. Compaction 

is the major contributor to porosity loss (COPL= 40.8 %, ±3.7), with cementation 

negligible (CEPL= 0.9 %). Authigenic minerals consist of rare quartz overgrowths 

(0.2 %, ±0.2) and redistributed haematite, that forms pore filling nodules (Fig. 

6.14Ci.). Haematite coats most grains (Fig. 6.14Cii.). Comparison of the SEM 

images in Fig. 19. Shows the striking difference between the samples at the contact 

and at 4 m. 4 m away, detrital grains are rounded and clear, with connected porosity. 

At the contact grains are deformed and visible porosity is rare, and occluded by 

mineralisation. 

 Five additional samples to a distance of 22.5 m (RYD24) display a variation 

in background sandstone detrital composition typical for the Major Erg unit, with 

porosity ranging from 7.6 % (±1.6)for a grain fall dominated sample to 13.0 % 

(±1.5)for a grain flow dominated sample (RYD 12, Fig. 6.14Di, Dii). These red 

sandstone samples are characterised by red haematite grain coatings and occasional 

quartz overgrowths, but with compaction as the major porosity loss mechanism. 

Other cements are rare or absent. The petrography of these red samples unaffected by 

subsequent mineral authigenesis (other than compaction driven quartz cementation) 

are in stark contrast to the white sandstones. The white sandstones are similar at the 

contact, but are highly modified by later diagenesis away from the dyke. 
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Fig. 6.14. PPL photomicrographs of sandstone from the western (red) contact of the 

RYD dyke. (Ai, ii) At the contact porosity is negligible. Authigenic minerals are calcite, 

developed over quartz overgrowths. Detrital grains are compacted and occasionally 

fractured. (Bi, ii) 2 m from the contact increased compaction is evident, grain contacts 

are sutured or concavo-convex. Haematite grain coatings are present and there is a 

poorly developed calcite cement over quartz overgrowths. (Ci, ii) 4 m from the contact 

the sandstone resembles background sandstone, but haematite is redistributed into 

nodules as well as coating grains. (Di, ii) 13. 6 m from the contact authigenic minerals 

are restricted to rare quartz overgrowths.  
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Fig. 6.15. Photograph of the RYD dyke with porosity and calcite graph overlay. Red 

(west) and white (east) sandstone is evident from image. Porosity increases away from 

contact for red sand, whereas, although there is a general increasing trend for the white 

sand, there is much more variation. Calcite decreases away from the contact in the red 

sand but remains variable in the white sand. The white sand has been affected by 

hydrothermal fluid circulation (Chapter 7.), whereas the red has not been affected to 

the same degree. 

 Figure 6.15 clearly illustrates the difference between the profiles away from 

the dyke contact on either side (red vs. white.). On the red side, porosity increases 

smoothly away from the contact until background values are reached at about 4 m, 

where the profile plateaus (Fig 6.5A., Fig. 6.15.). The porosity increase is 

accompanied by a decrease in calcite. Permeability also increases away from the 

contact (Fig. 6.5B.). The sandstone on the white side has low porosities at the 

contact, that increase away, but with large variability, calcite also has large 

variability and does not reach 0 %. More will be made of this in Chapter 7. Here, the 

direct contact rocks on the white side will be discussed, as the existence of calcite 

persisting with distance is important in constraining dyke and calcite cement timing. 



305 

 

 Figure. 6.16Ci shows the sandstone 0.1 m from the contact. Compaction is 

high, and porosity is filled with calcite. 

 0.2 m from the contact sample RYD02, (Fig. 6.16Ai, ii) sand shows 

approximately detrital composition. Porosity loss is dominated by compaction 

(COPL=31.5 %, ±5.0), grains are dominantly undulose. Pressure solution is also 

evident, as grains are frequently sutured. Cementation is important (CEPL=12.9 %), 

and comprises of early and late quartz overgrowths, followed by chlorite and calcite 

(Fig. 6.16Ai, Aii). Chlorite appears to co-crystallise with the calcite. The calcite is 

aggressive towards quartz grains, as adjacent to Dyke B (above). The aggressive 

nature of the calcite can be seen clearly in Fig. 6.16Cii, where a quartz grain is 

getting dissolved at the rims and is being replaced with calcite. Porosity is secondary, 

relating to hydrothermal processes during later cooling. The hydrothermal mineral 

suite is also visible in Fig. 6.16Cii, typified by the pore filling kaolinite and 

unidentified barium containing mineral intergrowing with the kaolinite in the right 

hand side of the field of view. 

 Further from the dyke, at 0.6 m, sample RYD15 also shows marked porosity 

loss (porosity= 0.2 %, ±0.2), which is dominated by compaction (COPL=46.1 %, 

±3.0). Compaction appears dominated by plastic deformation as nearly every quartz 

grain is undulose (Fig. 6.15Bii.) (cf. the background sandstone). Interpenetrating and 

sutured grains are present. Mineral authigenesis is apparent as early quartz 

overgrowths that are later grown over by calcite. Chlorite is rare. 

 Sample RYD17, 1.9 m from the contact has detrital compositions similar to 

the background, although plagioclase is less. Porosity reduction is dominated by 

compaction (COPL=39.1 %, ±4.7). Like at 0.6 m undulose grains are common 

suggesting plastic deformation occurred, sutured grains and concavo-convex grain 
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contacts are also common (Fig. 6.15Ci, Cii.). Grain fracturing is apparent, but 

usually healed with quartz.  

 Further than 2.8 m from the contact, plastically deformed quartz is rare 

(probably inherited) and compaction is exclusively through pressure solution, brittle 

compaction and grain reorganisation caused by later diagenesis (e.g. RYD04, 2.8 m).  

 Together, the contacts on either side of the dyke show that porosity loss 

occurs in proximity to the dyke, dominated by compaction, but aided by cementation 

that in the case of the red sandstone is absent further than 2 m from the dyke. In the 

case of the yellow sandstone, near-dyke effects are similar. Compaction, through 

pressure solution has clearly affected the sandstone prior to dyke emplacement as 

quartz cements pre-date increased compaction at the contact that is through plastic 

deformation and pressure solution (including of pre-existing quartz overgrowths). 

Quartz overgrowths grew before the calcite. The calcite is demonstrated using stable 

isotopes (below) to have formed during dyke cooling. A degree of lithification 

therefore existed prior to dyke emplacement. Walderhaug (1994) gives a range of 

temperatures for quartz overgrowths in Jurassic sandstones from the North Sea 

subsurface from 75 °C to 165 °C. Sandstones that have passed slowly through the 

temperature range (tens of millions of years) commonly have inclusions showing 

temperatures below 100 °C, but sandstones that have rapidly transited the 

temperature range usually have inclusions trapped above 100 °C (Walderhaug, 

1994). If this holds for the Twyfelfontein Formation, any quartz overgrowths must 

have formed rapidly because initial burial by the lavas was rapid (< 2 Ma), 

suggesting an increased geothermal gradient compared with the current geothermal 

gradient of 22 °C km
-1 

(Raab et al., 2005). The palaeo-geothermal gradient could 

have reached up to 58 °C km
-1

 (Raab et al., 2005), suggesting 1.7 km of burial would 
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have been sufficient to provide enough heat for pressure solution, even assuming 

heat is just from the geothermal gradient, not regional or adjacent intrusions. This is 

clearly greater than the ~ 1 km estimated for the Awahab dykes, which also have pre-

existing quartz overgrowths, but combined with a localised heating due to igneous 

activity, this depth could be reduced. It is therefore suggested that the aquifer that 

pre-existed dyke intrusion was probably above 100 °C at some point (possibly during 

regional intrusion episodes). 
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Fig. 6.16. Photomicrographs of sandstone away from the eastern (white) contact. (Ai, ii 

XPL) 0.2 m from the contact detrital grains are compacted and undulose. Calcite fills 

porosity and is often seen replacing quartz; chlorite is frequently intergrown with 

calcite. (Bi PPL) 0.6 m from the contact calcite and chlorite overgrow quartz 

overgrowths, although high compaction makes available pore space minimal. (Bii XPL) 

Image showing pervasive undulose extinction in detrital quartz grains 0.6 m from 

contact. (Ci XPL) 1.9 m from contact sand is still highly compacted, with evidence for 

both pressure solution and plastic deformation. (Cii PPL) Porosity is present as 

secondary grain dissolution and primary, quartz overgrowths are common and grains 
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are fractured. (Di, ii PPL) By 2.8 m from the contact, background white sand diagenesis 

is dominant, grain dissolution, calcite and clay authigenesis.  

 

Fig. 6.17. SEM micrographs of sandstone away from the RYD dyke. (Ai, ii) At the red 

contact the high degree of compaction is evident as sutured grains, cuspate contacts and 

low porosity, calcite fills remaining porosity and is later than quartz overgrowths. (Bi) 2 

m from the contact porosity is present and rare calcite grows over authigenic quartz. 

(Bii) 4 m from the contact, porosity is higher, detrital grains are clearly discerned and 

are dotted with very fine haematite (light specks). Authigenic minerals are restricted to 

rare quartz overgrowths. (Ci) 0.1 m from the contact, the white sandstone is similar to 

the red sandstone, high compaction with calcite cementation over quartz. (Cii) 0.2 m 

away from the contact, is evidence for the aggressive nature of the calcite cement, 

replacing a quartz grain.  
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6.3 Establishing the origin of the calcite 

6.3.1 Stable isotopes 
 

 

Fig. 6.18. δ 
13

C (PDB) plotted against δ 
18

O (PDB) all of the analysed samples Fields are 

from Rollinson (1993) and Barker (2007). Mid-ocean ridge hydrothermal lies along a 

trend with magmatic (M) and sea water (S) end members. Lava contact and 

hydrothermal diagenetic carbonates plot in two distinct populations, with sub-lava flow 

carbonate cements having more mantle-like δ 
13

C values. Hydrothermal dyke contact 

samples have less mantle influence and suggest mixing with heavier carbon. Also 

plotted are the carbonate stable isotope values from geodes from Parana Flood Basalts 

(Gilg et al., (2003), which plot as two modes, the larger of which overlaps hydrothermal 

calcites from this study.   

 

 Fifteen samples from the Twyfelfontein Formation from transects away from 

intrusive rocks returned a CO2 yield adequate for stable isotope analysis. Six samples 

produced data from the RYD case study on the eastern white side of the dune, which 

are the most useful. All intrusions produced some data, although those that produced 

only two data points are of limited statistical use, but nevertheless, combined with 
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other results are of qualitative interest. Also of interest are samples analysed below 

lava contacts (Chapter 6) which are also plotted for comparative purposes. Data from 

fault calcite, basalt amygdale fill and geode mineralisation are plotted. The geode 

isotope analyses are from Gilg et al. (2003). 

 Overall, when plotted over the fields of Rollinson (1993) and Barker (2007) 

the calcite samples that formed in the subsurface (pink outline, Fig. 6.18.) form a 

field with variable δ 
18

O (PDB) values, from -15 ‰ to 4.7 ‰, δ 
13

C (PDB) varies 

from -8.2 ‰ to 2.3 ‰. This field overlays Rollinson’s (1993) limestones and marbles 

field, the mid-ocean ridge hydrothermal field and the Mississippi Valley type 

hydrothermal field. The field also overlays the field (red, Fig. 6.18.) of the calcite 

and amethyst-bearing geodes of the Rio Grande do Sul area, Brazil (Gilg et al., 

2003). These geodes are found in Parana lava flows. They probably formed at < 100 

°C, with calcium and carbon sourced from host rock basaltic glass (Raab et al., 

2005). Similar smaller geodes are also found in some flows in the Etendeka and are 

mined by hand in the region of the Goboboseb mountains, east of Messum. Also 

plotted is the field of surface formed calcites, probably directly formed below hot 

lava flows. The surface field plots separately from the subsurface field, with lighter 

oxygen and carbon values. Overall the heavier oxygen and carbon stable isotope 

values of the subsurface field suggest cooler temperatures, less magmatic carbon 

influence and probably the influence of more meteoric water as opposed to a 

dominant magmatic water source. The subsurface field also encompasses calcite 

from faults in the field area, calcite that formed above cold lava contacts (i.e. buried 

lava and hydrothermal calcite forming in the subsurface) and calcite in Tafelkop type 

basalt amygdales.  
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 Figure 6.19 shows the same data as in Fig. 6.18. but with the Rollinson 

(1993) fields removed for clarity. The aim here is to interrogate the subsurface 

calcite data in more detail. Within the subsurface field, each case study transect plots 

separately, and each case study shows low δ 
13

C variability, but usually a 

fractionation trend in δ 
18

O. Three such trends are highlighted in Fig. 6.19. Two of 

the ‘trends’ (Dyke A and Sill S1 (Big Sill)) only have 2 data points, so should be 

treated with caution, but the third (RYD) has 6 samples (7 points due to double 

analysis of one sample) showing a strong trend. The trends are from light oxygen 

isotope ratios towards heavier ratios with small carbon isotope ratio variability. The 

samples closer to igneous bodies have lighter oxygen isotope signatures. The fact 

that each case study plots separately suggests that each calcite forming event 

responded to individual local conditions, but in the same manner ( i.e. starting 

conditions were slightly different, but the regime was the same).  

 The identification of these trends prompted the modelling of possible oxygen 

isotopic and temperature variability in the water it would have precipitated from. The 

only sample transect with enough data to compare to the model, with a statistical 

authority is the RYD transect. Fig. 6.20. shows results of the modelling. Fig. 6.20C, 

D.) show plots of δ 
13

C against distance from dyke and δ 
13

C against δ
18

 O 

respectively, both of which show no correlation, which suggests isotopic equilibrium 

conditions (Alex Baker, personal communication 2013).  

 The model was calculated using fractionation constants of  A=-3.39 and B= 

2.78, (O’Neil et al., 1969) and the equation: 

 

1000 ln α = A + B (10
6
/T

2
) from Rollinson (1993) 
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 Where T is temperature and  ln α= δ 
18

Ocalcite- δ 
18

Owater. Using this, the 

expected δ 
18

Ocalcite can be calculated for any temperature and water. 

 The result of the modelling is that a cooling trend has been identified away 

from the RYD dyke. The trend exists for whatever water composition is modelled, 

but the actual temperature values vary. With a value of  δ 
18

O (SMOW) = 7 ‰, 

which is a likely meteoric value for the latitude of Namibia in the Cretaceous 

(Bowen & Revenaugh, 2003), the temperatures ranges from 20 °C 0.5 m from the 

contact to 0 °C 1.9 m from the contact. No data was collected closer than 0.5 m due 

to low CO2 yields (compaction dominating porosity loss). Using the lower limit of 

magmatic waters (Rollinson, 1993), the temperatures range from 115 °C at 0.5 m to 

45 °C at 5.8 m distant. The upper limit of magmatic water, temperatures range from 

205 °C 0.5 m from the contact to 90 °C 5.8 m away. These results from the model 

are plotted in Fig. 6.20B. Using the meteoric water value clearly produces 

unachievable results as freezing water is not likely in this system, nor could the 

calcite precipitate from frozen water. It is likely therefore that the water isotopic 

composition was heavier than meteoric composition. This could be caused by 

contamination with magmatic water or the action of organic fractionation in soils, 

which would affect both the oxygen and carbon isotopes. No soils are preserved in 

the Twyfelfontein formation, nor would any be expected. Water-basalt interaction 

could also produce the required water (Stevens & McKinley, 2000). The favoured 

explanation therefore is the contamination of a meteoric aquifer with magmatic water 

probably degassed from basaltic intrusions and hydrothermal interaction with the 

basalt pile (see Chapter 7). The likely temperatures of calcite precipitation therefore 

falling below the upper magmatic modelled values and likely meteoric values. If Gilg 

et al. (2003) are correct in their 100 °C temperature estimate, and this applies to areas 
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distal to igneous intrusion, our upper magmatic water values may hold. This is also 

consistent with the quartz overgrowths forming prior to dyke intrusion at 100 °C 

(Walderhaug, 1994). 

 The important point, whatever the actual temperatures of precipitation, is that 

the calcite was precipitated while a temperature gradient existed towards the RYD 

dyke. The calcite in the white sand therefore precipitated during dyke cooling. It 

holds therefore that the calcite is a cement formed as a result of dyke intrusion, 

probably supplying CO2 required for the calcite forming reaction. Calcium was 

probably sourced from both the mafic igneous rocks (e.g. Matsui et al., 1974; Gilg et 

al., 2003) and the hydrothermal reaction of plagioclase (Hangx & Spiers, 2009). 

Plagioclase replacement is evident in the sandstone.  

 When δ
18

 O for all of the transects with data showing a lightening of 

measured oxygen isotope values within the calcite towards igneous contacts are 

plotted (Fig. 6.20E.), it is remarkable how the gradients of the lines are so similar 

(granted, amount of data makes it statistically weak). This suggests that the 

hydrothermal cooling regime of the intrusions, by the aquifer precipitating calcite 

was similar. This is not surprising, considering it is the same aquifer being intruded 

by all of the intrusions shown in Fig. 6.20E. This also provides evidence that the 

igneous bodies (both dykes and sills) were being cooled by the aquifer in addition to 

conductive cooling by the country rock as is typically assumed by current numerical 

models (Galland et al., 2009; Aarnes et al., 2010; Aarnes et al., 2011; Holness et al., 

2012). 

 There are data collected in Fig. 6.19. that do not match the dominant trend of 

cooling away from intrusions. The two data points for Dyke B plot the opposite way 

around; these points were only 10 cm separate. The RYD sill samples also plot the 
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other way around, with lighter oxygen near to the contact. Both S2 and S3 samples 

were grouped here. The explanation for this could be active CO2 degassing from the 

sill during calcite precipitation providing an influx of light water near to the sill. The 

‘Big Sill’, S1, is probably the same intrusive body and does not show this reverse 

trend (see Fig 6.19, Fig 6.20.). The most negative δ 
18

O values were both for the 

Barchan Dyke samples, either suggesting these were precipitated at elevated 

temperatures (up to 400 °C, if magmatic water). Complete isotopic data can be found 

in the Appendix, together with data for standards run with the Namibian samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



316 

 

ID Description Distance 

from 

13C12C 18O/16O 18O/16O 

  Intrusion v-pdb v-pdb v-smow 

NG 109 Big sill 4 m 4 -2.90 -1.52 29.34 

NG 110 Big sill 7 m 7 -1.75 1.55 32.51 

NG/12-

27 

RYD sill S3 4 m 4 -2.77 -12.08 18.46 

NG 73 RYD sill S2 1.2 m 1.2 -3.29 -5.52 25.22 

NG 72 RYD sill S2 0.2 m 0.2 -3.37 -11.53 19.02 

NG 42 Dyke A contact red 0 2.33 -2.90 27.92 

NG 44 Dyke A 8 m white 8 0.35 4.65 35.71 

NG 49 Dyke B contact 0 -1.81 -10.17 20.42 

NG 50 Dyke B 10 cm 0.1 -0.98 -11.84 18.70 

NG 68 big barchan red dyke contact 0 -0.09 -15.30 15.13 

NG 67 dyke xenolith 0 0.66 -14.82 15.64 

RYD01 

CH 

RYD 0.5 m 0.5 -3.20 -8.71 21.93 

RYD 02 RYD 0.6 m 0.6 -3.10 -4.51 26.26 

RYD17 

CH 

RYD 1.9 m 1.9 -4.61 -3.92 26.86 

RYD 04 RYD y 2.8 m 2.8 -3.44 -1.29 29.58 

RYD 05 RYD 4.6 m 4.6 -5.14 -2.75 28.07 

RYD06 

CH 

RYD 5.8 m 5.8 -3.21 0.12 31.03 
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RYD 06 RYD 5.8 m 5.8 -3.31 -0.09 30.82 

NG 59 Fault material Awahab Barchan NA -8.19 -5.33 25.42 

NG 54 Awahab camp fault material NA -0.49 1.37 32.32 

NG 62 Tafelkop lava amygdales  NA -4.03 -4.84 25.92 

NG 63 Cold Tafelkop contact big 

barchan 

NA -6.67 -3.97 26.82 

 

Table 6.2. Stable isotope data for dyke and sill sandstone transect samples 

analysed.  

 

Fig. 6.19. δ 
13

C (PDB) plotted against δ 
18

O (PDB) all of the analysed samples with fields 

of Rollinson (1993) and Barker (2007) removed for clarity. Lava contact and 

hydrothermal diagenetic carbonates plot in two distinct populations, with sub-lava flow 

carbonate cements having more mantle-like δ 
13

C values. Hydrothermal dyke contact 

samples have less mantle influence and suggest mixing with heavier carbon. Also 

plotted are the carbonate stable isotope values from geodes from Parana Flood Basalts 

(Gilg et al., (2003), which plot as two modes, the larger of which overlaps hydrothermal 

calcites from this study.  Both populations, within each case study show temperature 

dependent δ 
18

O fractionation trends, which are related to distance from dyke or sill in 

the case of the subsurface field (see Fig. 6.20.) 
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Fig. 6.20.  (A) Modelled calcite δ 
18

O values in equilibrium with waters of different 

origins. Calculated meteoric and magmatic fields are shown (using fractionation 

constants A=-3.39 and B= 2.78, O’Neil et al., 1969) as well as the expected meteoric 

water value for Namibia in the Cretaceous (green line). Max burial temp of 130 °C has 

been calculated based on geothermal gradients and burial data from Raab et al., (2005). 

δ 
18

O values from our analyses are plotted. When measured δ 
18

O calcite from the PL 

samples are plotted, the intersections with water compositions give a precipitation 
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temperature, that decreases away from the dyke. (B) Modelled temperatures for three 

water compositions, meteoric (-36.8 ‰ PDB), magmatic upper (-17.4 ‰ PDB) and 

magmatic lower (-23.2 ‰ PDB), all show temperature decreases away from the dyke. 

(C, D) No correlations exist between δ 
13

C  and distance from dyke or δ 
18

O suggesting 

equilibrium conditions (personal communication, A Baker, 2013). (E)  Relationship 

between δ 
18

O measured and distance from dyke for all intrusion samples successfully 

analysed shows that gradients are the same, suggesting similar cooling regimes (albeit 

only 2 points for Dyke A and Big Sill. 

 

 

6.4 Direct effects of Sills on the Twyfelfontein Formation 

 

 Upper Huab sill contacts with the Twyfelfontein are well exposed leading 

into the Huab valley and have been studied to assess the sills effect on the 

sandstones. Sills are transgressive (i.e. step up stratigraphy as inclined sheets; sill at 

transects S2, S3) and propagate as magma fingers (cf. Schofield et al., 2010) (Fig. 

6.21A.). Three contacts are presented, all from the same sill, but at different locations 

(transects S1, S2, S3, Fig. 6.12.). The direct effect varies depending on the location; 

at all locations a distinct pyrometamorphic zone exists involving partial melting of 

the sandstone, followed by distinct petrographic zones (marking palaeo-isograds). 

All three localities exhibit the same set of features, but the intensity varies. 

 The sill at transect S1 crops out in an east facing cliff (Fig. 6.21A.). The 

lowermost part of the outcrop is a Huab sill displaying a fingered morphology (cf. 

Schofield et al., 2010) with a shallow dip to the west. The fingers are up to 6 m high, 

although the total sill thickness is not exposed. Twyfelfontein Formation sandstone 

above the sill at transect S1 is up to 7 m thick.  

 The sill at transect S2 (Fig. 6.24.) crops out on a desert plain (vegetated in 

2011) and is 35 m thick dipping 28° toward 098° and is continuous in outcrop to S3 

(Fig.6.26.). The dolerite sill weathers more rapidly than the Twyfelfontein Formation 
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in contact. The upper contact sandstone was sampled for both S2 (up to 1.5 m above 

constrained by outcrop) and S3 (up to 5 m above). 

 

6.4.1 Big Sill Locality 
 

6.4.1.1 Sill S1 

 

 The sill that crops out at transect S1 is probably the same sill sampled at 

transects S2 and S3. Transect S1 is located at 20° 35.795’ S 14° 04.367’ E at 452 m 

in an east facing cliff. In outcrop the dolerite sill is up to 6 m high and is exposed as 

the upper surfaces of a number of solidified magma fingers similar to those of the 

Golden Valley Sill, South Africa (Schofield et al., 2010). The total sill thickness is 

probably at least twice that of the exposed outcrop. The sandstone above the sill is of 

the Twyfelfontein Formation, Major Erg unit. The outcrop is located 1.9 km NNE of 

the main RYD dyke outcrop along the track that runs north towards the Huab river 

(Fig. 6.12.). The outcrop at the contact (Fig. 6.21B.) consists of chilled dolerite 

below a 10 cm thick buchite (originally sandstone) contact zone, where original 

sedimentary structure is vague, this zone is discoloured to a darker green-brown. 

Above this the sedimentary structure is again visible, but the rock is still affected by 

pyrometamorphism, there is no visible porosity. Occasional vugs exist in the 

pyrometamorphic zone, that are lined with quartz crystals, suggesting free fluid 

during sediment aureole solidification (e.g. Holness et al., 2012). 

 At the contact (NG112) the dolerite originally had thin 250 μm glassy 

quenched contact, that has now altered to clay (Fig. 6.22A, B.). The material against 

this contact comprises of restic detrital quartz grains in a matrix of granophyre 
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composed of potassium feldspar intergrowth with quartz which contains smaller 

restic quartz grains, needles of quartz paramorphs after tridymite and orthopyroxene 

that has been largely pseudomorphed by chlorite. The quartz paramorphs after 

tridymite fringe restic quartz grains and grow within the granophyre. Chlorite also 

lines fractures within detrital quartz grains (Fig. 6.22B.). A detrital quartz grain that 

is in contact with the dolerite glass (Fig. 6.22B.) shows a thin film of quartz crystals 

that represent crystallised quartz melt (Sawyer, 1999). The granophyric matrix is also 

due to partial melt of the feldspathic component of the protolith, which is no longer 

present in detrital form. The melt reaction is Qtz+Ab+Or+H2O→melt., if melting 

was H2O absent pressure would need to be in excess of 0.5 kbar (1.8 km) (after 

Holness et al., 2012). Vugs in the contact zone suggest hydrous conditions. The melt 

crystallised, firstly as tridymite at high temperatures, then as cooling progressed as 

the granophyric intergrowth of quartz and potassium feldspar (possibly sanidine). 

The total melt proportion is in excess of 50 % (±2.2). 

 At 0.1 m from the contact the sample is much the same as at the contact, 

although chlorite alteration appears less intense (probably related to proximity to 

weathering dolerite). Restic quartz grains, rimmed with quartz paramorphs of 

tridymite exist in a granophyric intergrowth of potassium feldspar and quartz, with, 

now in tact porphyroblasts of orthopyroxene. Sample NG111, shows incipient melt 

segregation, with rare aggregations of restic quartz grains into larger grains (Fig. 

6.22D.). The granophyric matrix contains well developed orthopyroxene crystals and 

rare Carlsbad twinned potassium feldspars, supporting the identification of sanidine 

as the potassium feldspar. Porosity is negligible (0 %) as is permeability (0 md 

recorded) (Fig. 6.23A.).Total melt is probably more than 50 % (±2.2). 



322 

 

 Moving away, by 0.6 m the sandstone consists of restic quartz grains, and 

abundant restic potassium feldspar grains, with minimal granophyric matrix 

(probably ~ 5 %) which is confined to occasional quartz-feldspar grain boundaries 

(Fig. 6.22F.). Tridymite and orthopyroxene are absent. Detrital grains are deformed 

such that porosity is negligible and permeability is >1 md. Calcite is present, filling 

any remaining porosity (1.2 %, ±0.5). 

 Finally by 4m above the sill contact, no pyrometamorphic reactions are 

observed. The sediment is a highly compacted (COPL= 52 %, ±4.0) sandstone, with 

detrital composition similar to the background. Compaction appears dominated by 

pressure solution as sutured quartz grain contacts are abundant. Authigenic 

mineralisation comprised of calcite, which appears to fill remaining porosity and 

aggregates of haematite, probably remobilised from closer to the contact. 

 The furthest sample above the sill on transect S1 is at 7 m. This sample is 

characterised by the return of porosity. The detrital composition is approximately 

background. Porosity loss is dominated by intense compaction (COPL= 50.2 %, 

±4.0), with minor quartz overgrowths and calcite partial pore fills (Fig. 6.22H.). 

Compaction is dominated by pressure solution, grains are rarely undulose and 

sutured contacts are common. Most grains interpenetrate, with feldspar-quartz 

contacts showing marked concavo-convexity. 

 Transect S1 defines two pyrometamorphic palaeo-isograds that can be 

assigned temperature ranges at given pressures: Firstly is the tridymite, 

orthopyroxene, granophyre assemblage, where tridymite is the diagnostic mineral. 

This is a typical pyrometamorphic assemblage created by the partial melting of an 

arkosic sediment protolith (e.g. Grapes, 2010; Wyllie, 1961; Spry & Solomon, 1964; 

Frankel, 1949; Ackermann & Walker, 1960; Balance & Waiters, 2002; Holness, 
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1999; Holness et al., 2012). In this zone, cooling was slow enough to allow 

crystallisation of the melt as opposed to vitrification. The pyrometamorphic 

assemblage depends on the composition of the protolith, and is similar for granitic 

metasediments  (e.g. Holness & Watt, 2002). If the maximum pressure attained by 

the Twyfelfontein Formation during burial was 1.5 kbar, the likely pressure during 

sill emplacement is somewhere between 0.15 kbar (if emplaced at minimum depth of 

exposed outcrop) and 1.5 kbar (emplacement at maximum burial). Further constraint 

on pressure is that tridymite does not crystallise above 1.375 kbar (Grapes, 2010), so 

sill emplacement, must be shallower than 5 km (2800 kgm
-3

). Using the tridymite 

stability field from Grapes (2010) the following constraints apply for the formation 

of tridymite in the Twyfelfontein Formation: At 1.375 kbar tridymite forms at 1170 

°C, at 0.15 kbar tridymite is stable between 900 °C and 1420 °C. The lower 

temperature limit of this petrographic zone was therefore 900 °C and the upper was 

1420 °C, with likely intrusion depth probably not significantly greater than a 

kilometre based on the dykes above (0.3 kbar). At 0.27 kbar tridymite is stable 

between 936 °C and 1268 °C. 1420 °C is higher than the likely temperature of the 

mafic magma (~1150 °C) which should be taken as an absolute maximum, therefore, 

the petrographically determined tridymite zone can be delimited as between ~ 936 °C 

and 1150 °C.  

 The second pyrometamorphic zone is where the melt reaction has occurred, 

but no tridymite has crystallised, instead the granophyre consists of intergrown 

quartz and potassium feldspar. This zone also frequently has spherulitic feldspar, 

suggesting quenching of the melt (or incipient vitrification). The absence of tridymite 

is an important temperature indicator. If the calculated depth above holds (~1 km, 

certainly <<5 km), 0.27 kbar lithostatic pressure is appropriate. The temperature 
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constraint this zone is therefore between 860 °C and 936 °C, with the onset of 

melting at 860 °C based on the P-T projection of the sanidine+quarz+liquid+gas and 

sanidine+tridimite+liquid+gas by Shaw (1963). Increasing the burial depth increases 

the range of temperatures that sanidine+quarz+liquid+gas is stable, and above 1.375 

kbar (5 km) tridymite does not crystallise (Grapes, 2010). It is likely therefore that 

this petrographic zone reached a temperature of at least 860 °C if the depth estimate 

above holds. If intrusion was at the (unlikely) maximum burial depth of 5 km, the 

temperature is slightly lower, 780 °C. At 1 km, the temperature cannot have reached 

the tridymite isograd of 900 °C (Shaw, 1963; Grapes, 2010).  

 Where no melting of the sediment is observed, the sandstone shows increased 

compaction mainly through increased pressure solution, which is probably enhanced 

by the pressure exerted by the sill and the elevated aquifer temperatures (e.g. 

Houseknecht, 1984; Houseknecht, 1988) (evident in the δ
18

O gradients, showing 

increased temperature approaching intrusions, including the S1 transect). 

Cementation with calcite also reduces porosity in this zone. The zone can be 

summarised as a hydrothermally dominated regime, where aquifer water is cooling 

the intrusion below. The water is probably part of a boiling hydrothermal system (if 

pressure allows) or superheated steam (Simmons & Christenson, 1994). The oxygen 

isotope model in Fig.6.20A. would suggest that the calcite here (NG109 δ
18

O= -1.52 

‰ and NG110 δ
18

O= 1.55 ‰) precipitated at between 60 °C at 7 m and 100 °C, at 4 

m, assuming the discussed likely water composition of mixed magmatic-meteoric 

discussed above. Meteoric water only gives low temperatures not consistent with the 

observed gradient, paragenesis or burial depth. Background porosity or petrographic 

conditions were not observed at this transect due to exposure, but are calculated 

based on observed porosity increase to lie at ~22 m (see Fig. 6.33.). 
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Fig. 6.21. Photographs of Big Sill (Sill S1) locality. (A) facing west towards the outcrop. 

Person for scale (Note lobe like morphology on top of sill highlighting location of early 

fingers of the sill during emplacement e.g. Schofield et al., 2010). (B) The sample locality 

at the contact facing west. Note that no sedimentary structure is visible within ~ 10 cm 

of the contact. 
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Fig. 6.22. Photomicrographs above sill S1. (A, B, C XPL) At the contact quartz is the 

only restic detrital mineral, and is rimes with quartz paramorphs after tridymite. The 

chilled sill contact is visible (now altered to clay). The matrix consists of granophyric 

intergrowth of potassium feldspar, quartz and tridymite with occasional opx now 

altered to chlorite. (D, E XPL) 0.1 m above the sill quartz is also the only restic mineral 

and is rimes with quartz paramorphs after tridymite. Detrital quartz occasionally is 

amalgamated to form quartzite ‘conglomerate-like’ clasts. The matrix is granophyric 

and contains occasional twinned potassium feldspars, probably sanidine. Vugs are filled 

with calcite. (F PPL) ).6 m above the contact both quartz and potassium feldspar 

appear restic. Feldspars occasionally show evidence of melting at grain boundaries 
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where granophyre is poorly developed. (G PPL) 4 m above the sill no evidence of 

pyrometamorphism is apparent. Sandstone is highly compacted, haematite occurs in 

redistributed nodules and calcite fills remaining porosity. (H PPL) 7 m above the sill 

porosity returns. Compaction is high and authigenic minerals comprise quartz 

overgrowths and calcite. 

 

Fig. 6.23. Relationship between distance above sill and (A) sandstone porosity, (B) 

authigenic feldspar, (C) calcite.  
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6.4.2 Red Yellow Dyke sills 
 

6.4.3.1 Sill S2 

 

Fig. 6.24. Photos of RYD sill S2 showing location of transect. (A) Sandstone-Sill upper 

contact, the yellow dash is the boundary between sill and sandstone, the green dash is 

the upper limit of partial melt. (B) Looking down on the sill, the green dash shows the 

sill location. 

 Transect S2 lies on the sill exposed 500 m to the west of the main RYD dyke. 

The sill is 35 m thick dipping 28° toward 098° and is continuous in outcrop to S3 

(Fig.6.26.). The exposure is at 20° 36.751’ S 14°03.914’ E and at 521 m, in a small 

cliff facing north. The sill can be traced for some distance to the west, where it 

disappears into a flat vegetated and regolith covered desert plane. To the east the sill 

is continuous to the main RYD sandstone cliff, via transect S3. The sill appears at the 

foot of the intensified effects described in section 6.5. but is no longer exposed 

shortly after, where it either veers to the north, disappearing into the desert plain or 

continues into the cliff.   

 Figure 6.24 shows the outcrop at the location of transect S2. The outcrop 

consists of a weathered dolerite sill (base of photo) which is overlain by a 

pyrometamorphic zone consisting of a buchite of ~20 cm thick, which is visible in 
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outcrop as the darker, more purple band. This zone is the tridymite zone described 

above. No sedimentary structure is visible in this zone. Above this is a transition 

from high temperature partial melt to the calcite zone, via a low volume partial melt, 

tridymite absent zone (green hash, Fig. 6.24A.). 

 Petrographic analysis of the rock at the contact (NG71) shows that porosity is 

absent, and permeability is negligible. Detrital potassium feldspars are absent, and 

plagioclase, which is more restic is rare (Fig. 6.25 Bi). Detrital quartz is rimmed with 

quartz paramorphs after tridymite (Fig. 6.25Ai, ii). Where detrital quartz crystals are 

in contact, there is evidence for compaction or possibly the incipient stages of melt 

segregation (Fig. 6.25C.) as noticed in Fig. 6.22D. The matrix consists of 

granophyric intergrowths of potassium feldspar and quartz with occasional quartz 

paramorph after tridymite needles. The granophyric matrix contains opaque grains, 

probably magnetite. The granophyre occasionally contains spherulitic potassium 

feldspar, which appears fibrous. 

 At 0.2 m above the contact, melting of potassium feldspars is apparent, but 

ghosts of the original grains can be made out. The matrix consists of granophyric 

intergrowth of quartz and potassium feldspar. Within the matrix are vugs, which are 

lined with quartz crystals. These suggest a free fluid phase within the molten matrix, 

probably water. 

 The furthest sample from the contact here is at 1.2 m, where feldspar melt is 

incipient. Melt rims crystallised as potassium feldspar rim detrital grains (Fig. 

6.25F.). The authigenic feldspar is lighter yellow due to subsurface formation, 

whereas the detrital grains contain clays formed during transport and deposition. The 

fresher, authigenic feldspar picks up the potassium tricobaltinitrite stain more 

readily. Quartz is also present as pore linings, but with more of a melt character as 
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opposed to the classic quartz overgrowths noticed elsewhere in the Twyfelfontein 

Formation. Calcite is present at this distance, where it fills remaining porosity as 

poikilitic crystals. 

 

Fig. 6.25. Photomicrographs of samples above the sill at transect S2. (Ai PPL) Restic 

quartz rimmed with paramorphs after tridymite in a granophyric matrix. (Aii XPL) 
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Granophyric matrix, and quartz paramorphs of tridymite around the central quartz 

crystal. Fibrous nature of the feldspar in the matrix can be seen. (Bi) Low magnification 

view of the buchite at the contact, where a plagioclase grain can be seen as restic. (Bii) 

Image showing incipient melt segregation. (Di XPL) 0.2 m from the contact, matrix and 

incipient resorbtion of quartz. (Dii PPL) Version of Di in PPL showing the quartz lined 

vug. (E PPL) Low magnification view of the sand 0.2 m above the sill showing 

granophyric matrix from melt and ghosts from partially melted feldspars. (F) Incipient 

melting of feldspars and quartz, followed by retrograde hydrothermal calcite formed 

during cooling by aquifer. 

 The three samples above the sill at transect S2 show that the tridymite zone 

extends to ~ 0.2 m above the sill and the tridymite absent feldspar melt zone extends 

to ~ 1.2 m although, due to sampling difficulties this is approximate. The limit of the 

calcite zone is inferred to be ~ 9 m above the sill based on outcrop studies nearby, 

although high error is attached to this due to the complexity of the spatial 

distribution, and interaction of igneous intrusions closer to the RYD dyke. 

 

6.4.3.2 Sill S3 

 

Fig. 6.26. Photograph of sill transect S3 contact 

 At the upper contact of the sill is a 60 cm zone of intense pyrometamorphism. 

In this zone, detrital potassium feldspar and plagioclase is absent, having been 
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completely resorbed. Detrital quartz grains are rounded and corroded, they have a 

reaction rim of needle and plate like quartz paramorphs after tridymite (Fig. 6.27A.). 

The matrix is granophyric and consists of quartz paramorphs after tridymite, 

potassium feldspar (often spherulitic, fibrous), orthopyroxene, usually rimmed with 

iron oxides, and quartz. The matrix also contains equant Carlsbad twinned potassium 

feldspars, probably sanidine. Porosity is absent. Interestingly, the tridymite is 

particularly well developed compared to other examples, the needled approach plate 

like dimensions rimming some quartz grains. 

 One meter above the sill is similar to at the contact. Detrital mineralology 

lacks potassium feldspar, quartz grains are restic and rimmed with quartz paramorphs 

after tridymite. Detrital quartz grains are also often rimmed with a mantle of 

disturbed quartz instead of tridymite. The matrix is a granophyric intergrowth of 

quartz and potassium feldspar again, with numerous needles of quartz after tridymite. 

The matrix contains rare vugs lined with quartz, then calcite. These suggest free 

vapour was present, followed by invasion of aquifer water during cooling, which 

precipitated the calcite. 

 At 3 m above the contact at S3 detrital minerals consist of rounded to sub-

rounded quartz, rounded to sub-rounded plagioclase and occasionally remnants of 

potassium feldspar grains that are usually rounded. Porosity is absent and the pore 

filling mineralogy is dominated by anhedral fibrous and spherulitic potassium 

feldspar, rarely granophyric. Quartz grains are not corroded and reaction rims of 

quartz paramorphs after tridymite are absent. The interpretation is that at 3 m above 

the contact, temperatures were not reached sufficient for tridymite to form, but due to 

partial melt of potassium feldspars the K-spar solidus must have been exceeded. This 

interpretation therefor constrains the tridymite isograd to closer than 3 m above the 
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sill. The nature of the quartz rims on detrital quartz at 1 m, instead of a dominance of 

tridymite suggests the isograd may be nearer 1 m than 3 m. 

 Pyrometamorphism does not reach 4 m above the sill. At 4 m detrital 

minerals are sub-rounded and rounded quartz, potassium feldspar, plagioclase and 

opaques. Rims of haematite on detrital grains are absent and there is pervasive 

pokilitic non-ferroan calcite cement that also partially replaces calc plagioclase 

detrital grains. The poikilitic calcite grows over earlier quartz overgrowths as 

adjacent to dykes. Porosity is minimal, usually secondary moulds of detrital grains 

(possibly grains plucked during preparation). The existence of calcite suggests a 

hydrothermal system existed, probably representing convecting groundwater acting 

to cool the sill and hot wall rocks. When the measured δ
18

O of -12 ‰ for calcite at 4 

m is plotted on δ
18

O model in Fig. 6.20A. a likely temperature, assuming mixing of 

meteoric and magmatic water as discussed above is ~ 200 °C. 

 Five metres above the sill contact detrital grains are sub-rounded and rounded 

quartz, potassium feldspar, plagioclase and opaques. Calcite cement is < 1% and 

occurs exclusively as replacement of calc plagioclase. Quartz overgrowths are 

present (8 %) in the highest modal proportion recorded in the Huab dataset. Zone 4 is 

interpreted to be the return to non-boiling hydrothermal conditions, not precipitating 

calcite. Compared to the NG52 control sample, the increased proportion of quartz 

overgrowths may suggest increased temperatures over time, possibly related to long 

term cooling of the sill below.
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Fig. 6.27. Photomicrographs of Twyfelfontein sandstone affected directly by intrusion of dolerite sills, examples from sill S3 (Fig. 3). Ai, Aii, Aiii) At upper contact of sill. Detrital feldspars completely resorbed into melt which has 

crystallised into a matrix of tridymite (now inverted to quartz paramorphs), potassium feldspar, orthopyroxene and quartz, detrital quartz is restic. Bi, Bii, Biii) 3 m above sill, detrital feldspars resorbed and crystallised into a matrix 

of fibrous potassium feldspar, note absence of tridymite paramorphs and opx. Ci, Cii, Ciii) 4 m above sill. Feldspars are all detrital in character, authigenic calcite fills most pores and replaces calcic plagioclase grains (similar to Fig. 

6.14 and Fig. 6.25.). 
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6.5 Intensification of effects at sill-dyke divergence 

 

Fig. 6.28. Photographs of locality where pyrometamorphic effects are intensified. (A) 

Facing east towards the intensified outcrop. Igneous intrusions highlighted in green, 

scale bar is 2 m. (B) Close up of contact between segregated breccia-like melt and glass 

matrix zone. (C) Overview of the breccia-like melt segregation with a super close up on 

the melt segregation ‘breccia’. 
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 The divergence of two NE-SW trending dykes from the sill in Fig. 6.28A. 

(transect M1) has concentrated the magmatic flux.  The junction may have promoted 

turbulent magma flow to further intensify the heat transfer (e.g. Kille et al., 1986). 

Above the sill, at the junction, pyrometamorphism progressed to a stage where 

enough partial melt had formed to begin the process of melt segregation (Fig. 6.28B, 

C, Fig. 6.29.).  At this locality the outer two petrographic zones are the same as 

petrographic above normal sill contacts (hydrothermal calcite zone and normal sand), 

but the lower zones exhibit different characteristics: 

 The lowermost petrographic zone consists of what at outcrop appears to 

resemble a matrix supported conglomerate of sub-rounded quartzite clasts within a 

light brown matrix (Fig. 6.28B, C).). This ‘conglomerate’ zone is 5 m thick and rests 

on dolerite sill. Petrographic analysis of the material (Fig. 6.29Ci, Cii) reveals that 

the matrix is composed of euhedral, often Carlsbad twinned potassium feldspar 

(possibly sanidine),subhedral plagioclase, clinopyroxene, orthopyroxene and opaque 

minerals within a granophyric groundmass of potassium feldspar and quartz. Quartz 

paramorphs after tridymite are present, but are rare. Alteration of both pyroxenes to 

chlorite is common. The quartzite clasts are composed of formerly detrital quartz 

grains that have combined. Occasionally, the outline of a grain can be discerned (Fig. 

6.29Ci.). Detrital grains have completely lost their original shapes and are intergrown 

as either highly sutured contacts, intergrowth along thin films of microcrystalline 

quartz as ‘brain’ boundaries (Sawyer, 1999). Often at the boundaries between 

quartzite clasts and the matrix the form of original detrital grains are truncated 

(corroded). Within quartzite clasts are numerous dykelets filled with a granophyric 

groundmass connected to the matrix (Fig. 6.29Cii). 
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 This petrographic zone is interpreted to be segregation of a high degree of 

partial melt (restic quartz also beginning to melt). The melted feldspars and oxides 

are clearly separating from the quartz component, with the process preserved as the 

granophyric dykelets.  

 At the top of the breccia zone, 5 m above the sill, there is a thin transition 

(~10 cm) to un-segregated material (Fig. 6.28B, C). Over this interval incipient melt 

segregation is observed (Fig. 6.29B.). Fig. 6.29Bi shows this segregation, two 

distinct regions are developing: the first is similar to the tridymite zone above normal 

dyke contacts. Restic detrital quartz is rimmed with needles (e.g. Holness, 1999; 

Holness et al., 2012) of quartz paramorphs after tridymite which are set in a matrix of 

granophyric potassium feldspar, quartz paramorphs after tridymite and quartz. The 

second is in the centre of the photomicrograph (Fig. 6.29 Bi), where the quartz 

components are in the process of amalgamating and the feldspathic components 

(including oxides) are forming a darker matrix. The amalgamated quartz clasts have 

the appearance of the quartz clasts in the segregated material above. The darker 

matrix has crystallised into an assemblage comprising occasional detrital quartz 

grains rimmed with tridymite, some are visibly corroded, quartz paramorphs after 

tridymite, potassium feldspar, orthopyroxene and clinopyroxene and quartz. The dark 

matrix is similar in composition to the matrix in the conglomerate, but crystals are 

not so large (faster cooling?). The interpretation is that the darker matrix material has 

been depleted in silica and enriched in the more iron, magnesium, potassium and 

aluminium rich material that has crystallised from a more mafic segregate.   

 Moving from this transition layer (5 m above sill), up to > 9.2 m is a zone 

composed of restic detrital quartz grains rimmed with needle-like quartz paramorphs 

after tridymite (Fig. 6.29A.), detrital plagioclase is rare at 5 m, but by 9.2 m detrital 
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plagioclase is in similar abundance to the background range (2.4 %) (e.g. NG52). 

Opaque detrital grains are preserved as groups of circular droplets, pseudomorphing 

the original grain shape with interstitial clear glass. The matrix is composed of clear 

glass, with occasional clusters of free floating tridymite needles (now quartz) (cf. 

Ackermann & Walker, 1960, plate XVII). The restic detrital quartz grains are notably 

fractured (Fig. 6.29Aii), with perlitic fractures sometimes extending into the glass 

across quartz-glass boundary.  

 This zone shows that partial melt of the arkosic component persisted to > 9.2 

m above the sill, although melt segregation ceased at 5 m above the sill. The 

distribution of plagioclase, which is less refractory than quartz, shows a temperature 

gradient away from the sill, although still within the tridymite stability field. The 

interstitial melt has clearly completely vitrified, whereas at other sample locations, it 

has crystallised. Together with the perlitic fracturing (interpreted to be the result of 

rapid cooling); the glass suggests the melt in this zone cooled more rapidly than 

elsewhere. This is consistent with being further from the sill than the crystallised 

melt examples; potentially groundwater ingress could have cause the rapid cooling. 

Further than 10 m above the sill, there has been no melting, and porosity appears, the 

detrital assemblage is similar to NG52.  

 Transect M1 records intense pyrometamorphism reaching to at least 9.2 m 

above the sill. Melt segregation is evident in the lowermost 5 m of the sample 

transect. Increased heat flow into these rocks must have existed at the time of 

metamorphism compared to transects S2 and S3, less than 100 m to the SW. It is 

suggested that the increase in heat flow is due to magma flow localisation and 

concentration at the divergence of dykes from the underlying sill. Indeed, other parts 
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of the sill may have solidified while magma was still flowing through the flow 

localisation over time and prolonged heating of the country rocks. 

 

Fig. 6.29. Photomicrographs of intense pyrometamorphism at sill-dyke divergence where 

magma flow was intensified (M1, Fig. 6.1. Fig. 6.12). (Ai, Aii) Detrital feldspars have 

been resorbed into melt which has crystallised quartz paramorphs after tridymite 

fringing restic detrital quartz, subsequently melt quenched to form clear glass matrix 

(rapid cooling by groundwater?). (Bi, Bii) Closer to sill melt has begun to segregate into 

quartz rich enclaves and more mafic matrix, matrix crystallises to fibrous potassium 

feldspar and tridymite where not segregated (same as Fig. 6.25A.) and as tridymite, 

orthopyroxene, clinopyroxene , quartz and potassium feldspar where segregated. Ci, 

Cii) Fully segregated melt, detrital quartz grains becoming resorbed, feldspar melt 

crystallising as orthopyroxene, clinopyroxene, potassium feldspar, plagioclase and 

quartz, granophyric veins occur within quartz enclaves. 



340 

 

 

6.6 Chapter Conclusions 

 

Fig. 6.30. Summary of dyke-sediment contacts showing detrital (bold) and authigenic 

(regular) mineral assemblages. Dyke thickness is indicated in green. 

 The diagenetic, metamorphic and pyrometamorphic record in the 

Tywfelfontein Formation sandstones adjacent to sills and dykes in the Huab Outliers 

area of NW Namibia has recorded a complete range of effects driven by the heat 

from cooling igneous intrusions. Adjacent to dykes, the direct effects are 

hydrothermal and due to increased compaction. The intrusion of the dyke is recorded 

by grain compaction and the cooling hydrothermal groundwater is evident, preserved 

by the authigenic calcite.  

Compaction adjacent to dykes has been found to be by two mechanisms: (1) 

plastic deformation of quartz grains and (2) increased pressure solution between 

quartz grains. Plastic deformation suggests very high pressures and, the lowest 

recorded pressures (5 kbar, 925 °C, Carter et al., 1964) are not achievable through 
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burial in the Huab Basin. It is therefore suggested that increased heat (must be < 860 

°C due to no melt) supplied by the intrusion combined with pressure differential of 

4.75 kbar over the lithostatic confinement. Whether or not these conditions satisfy 

the conditions for the degree of plastic deformation observed is not resolved. It is 

suggested by Rutter (1983) that for quartz sand, plastic deformation begins at 450 °C, 

but no pressure estimates are supplied, comparison with Carter et al. (1964) suggests 

such low temperatures would need in excess of 20 kbar pressure. The increased 

pressure solution is understandable and supported by literature. It is proposed that 

increased temperature and pressure increased the rate of pressure solution (after 

Rutter, 1983; Houseknecht, 1984; Houseknecht, 1988; Tada & Siever, 1989). As the 

conditions for initiation of pressure solution were met prior to dyke intrusion, we 

cannot use this as a geothermometer. 

 A scale summary of the four dyke/red sandstone transects studied is presented 

in Fig. 6.30. From the figure it is clear that more variation exists in dyke width than 

width of the cemented zones. Not all dykes exhibit all of the three recorded zones. 

For instance, RYD shows all of the three zones. Firstly a 1 m thick zone where 

opaque grain coatings are removed and the cement is calcite (Zone 1) followed by a 

calcite cemented zone, with grain coating opaque minerals (Zone 2) out to 4 m. 

Further than 4 m, sand is normal. The barchan dyke does not have zone 1, instead 

zone 2 extends from the contact to < 2 m. Dyke B is the same, both opaque grain 

coatings and calcite are present from the dyke contact. Dyke A does not have zone 2. 

At Dyke A, the calcite zone, with no haematite grain coatings persists until no calcite 

remains at 1 m from the dyke.  

 As cementation is the minor contribution to porosity loss, and compaction is 

the major contributor, Fig. 6.30. is not as useful as Fig. 6.31. at describing the effects 
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of dykes on reservoir quality. Calculated porosity increase up the background of 12.5 

% is remarkably similar for all of the dykes (Fig. 6.30A.) even considering the error, 

although Dyke B behaves slightly differently (outside of error), as it does with other 

parameters). The distance to 12.5 % is plotted against dyke width in Fig. 30B. where, 

based on these four examples it can be seen that no relationship exists between width 

and distance to background porosity. Based on these data, background porosity is 

however always regained after ~ 4 m. Uncertainties were propagated from the 1σ at 

12.5 % porosity. 
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Fig. 6.31. (A) Graphical summary of dyke porosity loss. Porosity equations generated in 

Fig. 6.5. extrapolated and plotted to 12.5 % porosity to find distance to background. 

Dashed lines are 1σ errors at 12.5 % porosity.  (B) Distance to background plotted 

against dyke thickness with error bars calculated in A. 

 Above sills, direct effect intensity varies depending on the magma flow 

regime. For parts of the sill that have intruded and cooled, without significant 

throughput of magma (e.g. S2), the high temperature petrographic the tridymite 
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stability field is <0.2 m. Near the edge of the sill, where fingers are preserved 

(indicating near to the propagating sill tip, Schofield et al., 2010), the tridymite zone 

is at a minima, (although carbonate cementation is high). Where magma flow has 

been concentrated by divergence of dykes from the sill, the magnitude of 

pyrometamorphism increases towards the divergence; this is recorded by transect S3 

having a thicker tridymite zone than the nearby transect S2. At the divergence of the 

dykes pyrometamorphism was found to be at a maximum, with a ~9.2 m tridymite 

zone above sill, compared to 0.1 m to 0.2 m above the sill where no evidence of 

sustained flow exists (S2). 

 Hydrothermal mineralisation (calcite) above sills was found to be variable (2 

to 3 m thick) and independent to the thickness of the pyrometamorphic aureole. The 

relative magnitudes for each of the petrographic zones (melt+ tridymite, melt only, 

calcite)  varies between each of the three transects taken (S1, S2, S3). Fig. 6.23. 

illustrates the variability plotted as porosity, authigenic feldspar (from melt) and 

calcite against distance above sill. Porosity variations between each transect reveal 

that overall the magnitude of porosity loss is S3<S2<S1. The porosity loss is 

primarily influenced by: (1a) compaction by loss of grain framework as feldspars 

melt and subsequently recrystallize. (1b) increased compaction of un melted 

overburden sandstone by increased pressure solution. (2) Hydrothermal calcite 

precipitation in pore space above the pyrometamorphic zone. The thickness of the 

pyrometamorphic zone (tridymite+ melt and melt only) and the hydrothermal zone 

do not appear to be directly related. For instance, the order of pyrometamorphic zone 

thickness (tridymite zone as proxy) is S3<S2<S1 and for hydrothermal calcite it is 

S1<S3<S3. S1 has the smallest tridymite zone, but the greatest extent of calcite (S2 

calcite limit not known).  Whereas S3 has the thickest tridymite zone, but the 
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thinnest hydrothermal calcite zone. No correlation exists between sill thickness and 

distance to background porosity (Fig. 6.33B.). 

 Pyrometamorphism (tridymite zone as proxy) is most intense above the sill 

between the dyke divergences. Here the tridymite zone is 9 times as thick as the 

maximum recorded elsewhere (S2). It is proposed that the internal magma dynamics 

within the sill are responsible for the observed differences in pyrometamorphic zone 

thickness. At this point, more heat has been transferred to the country rock. It is 

probably that this heat transfer is due to magma flow localisation. Where magma 

flow has been localised, flow duration would have been longer, and possibly 

turbulent at the junction. It is possible that the rest of the sill could have solidified, 

while this location remained molten and a conduit for ascending magma. The dykes 

could have fed sills higher in the stratigraphy or now eroded extrusive geology. It is 

common in 3D seismic data to see such inter-related feeder relationships (own 

unpublished work, Thompson & Schofield, 2008). 

 Transect S3 is nearer a sill-dyke divergence (Fig. 6.28; Fig. 6.12.) than S2. It 

is proposed that intensification and localisation of magma flux approaching the dyke 

began to have an effect on the wall rocks by S3, thereby transferring heat over a 

longer period of time, while the magma at S2 had ceased to flow (i.e. flow 

localisation within the sill with a bias to feed branching dykes). Magma flow 

localisation has previously been shown using pyrometamorphic aureoles by Holness 

& Humphreys (2003) and Holness et al. (2012) around Palaeocene dykes, sills and 

plugs, intruding metasediments and schists in Scotland. 

  Overall, sandstones proximal to sills (top sill contacts) show greater thermal 

alteration than near dykes. Porosity loss by pyrometamorphism is controlled by 

magma flow regime (e.g. M1, Awahab and M2, near RYD). Other porosity loss 
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appears controlled by compaction enhanced by the dyke. Near to the dyke, pressure 

perturbation by the intruding magma is probably felt, but further away, elevated pore 

water temperatures (evident as δ18O calcite) facilitate enhanced quartz pressure 

solution. This situation is the same for sills outside of the pyrometamorphic zone. 

Calcite cementation is important in revealing the subsurface conditions at the time of 

igneous intrusion, but less so in reducing porosity, although it certainly contributes. 

The independence of porosity loss on dyke thickness is striking, but understandable 

considering enhanced pressure solution is the key mechanism of porosity loss over 

distance, under lithostatic pressure; the intrusion pressure only being felt << 1 m as 

evident in the undulose extinction.  
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Fig. 6.32. Summary of sill-sediment (S1, S2, S3), intense melt segregation (M1) showing 

major mineral assemblages and relevant distances from igneous intrusion for each 

zone. Detrital minerals are in bold type, authigenic minerals are in regular type. 
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Fig. 6.33. (A) Graphical summary of sill porosity loss. Trend lines for porosity 

significantly extrapolated. Dashed lines are the 1σ error at 12.5 % porosity. (B) 

Distance to background (12.5 %) plotted against sill thickness, note large error bars on 

sill S1 due to exposure, sill S2 and S2 transects entire sill measured. Error in distance to 

background calculated in A. 
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7 

Indirect effects of flood basalt provinces on the 

diagenesis of sub-basalt and inter-basalt 

sandstone: compartmentalisation of 

hydrothermal fluids. Case studies from the 

Twyfelfontein Formation, Huab Outliers, 

Namibia. 
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7.1 Chapter Summary 

 

 After the initial lava flows drowned the Cretaceous desert that was to become 

the Twyfelfontein Formation causing the direct effects described in Chapter 4, 

further diagenetic effects related to the igneous activity occurred. The ‘indirect’ 

diagenetic effects were probably synchronous with the emplacement of igneous 

intrusions, for which there is stable isotopic evidence (this chapter and Chapter 6.). 

 The most common manifestation of indirect diagenetic effects is the common 

bleaching of the Major Erg (KTyMAJ) and of the Isolated Dunes (KTyID) which is 

visible at outcrop. This chapter investigates the causes of the bleaching using 

petrography, X-ray diffraction, X-ray fluorescence (major and trace elements) and 

stable isotope geochemistry (δ
18

O and δ
13

C). 

 The white, bleached sandstone was found to have had the red iron oxide grain 

coatings reduced and either removed or re-precipitated in nodules. The fluid that was 

unique to the white sandstone also caused a hydrothermal mineral assemblage of 

kaolinite, calcite and böhmite to form at the expense of plagioclase feldspars. This 

assemblage has been produced in the laboratory under hydrothermal conditions, from 

plagioclase feldspars by Hangx & Spiers (2009). The diagenetic conditions required 

for the observed mineral assemblage involve a CO2 and H2S rich hydrothermal fluid, 

which is inferred to be of magmatic origin (isotope supported), as hydrocarbon 

generation and migration can be ruled out. Another possibility is the reaction of 

haematite with hydrogen sourced from hot hydrothermal water interacting with 

basalt (Stevens & McKinley, 2000). The bleached sandstone is less porous and less 

permeable than red dunes. 
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 Outcrops of the red and white sandstone reveal that the spatial distribution of 

the different sandstones is complex. If the white sandstone is a result of hydrothermal 

fluid flow, this suggests there is a high degree of heterogeneity and 

compartmentalisation of the sandstone. Both within the lava pile, where the isolated 

dunes occur and in the Major Erg below, igneous dolerite dykes have been found to 

be the major control. The dykes separate compartments of red and white sandstone. 

The dykes are also of fundamental importance in driving the hydrothermal system. 

Within the lava pile, where the Isolated Dunes have been studied in Dune Valley, the 

Tafelkop basalts are vesicular and would have allowed some horizontal fluid flow, 

although 3D basalt relationships may also isolate sand bodies. This suggests even 

within the basalt pile, dykes are the major fluid barrier. 

  Conclusions are: firstly these highly reactive hydrothermal fluids have been 

used to trace heterogeneous fluid migration through a mixed volcanic–sedimentary 

stratigraphy and secondly on the potential reservoir quality-reducing ability of the 

fluids. The fluids have also sequestered natural magmatic CO2 that has been 

degassed by the igneous intrusions as calcite. 

 Also raised in this chapter are three other observations made in the Huab 

Outliers, where diagenesis is different to that of the normal red sandstone. The most 

striking is a band of quartz cemented sandstone that has no association with any 

obvious permeability pathway, nor the direct emplacement of any igneous rock. The 

second is an unidentified green mineral that occurs where white sandstone meets 

altered basalt. The third, the most common, is at some cold sand-lava contacts where 

a calcite cemented zone is often developed, with stable isotopic signatures in the 

field of Type 2 (subsurface formed) calcite rather than the Type 3 hot contact calcite. 
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These are interpreted to be remnants of perched aquifers resting on the lava flow 

crusts of the basalt below. 

 

7.2 Indirect effects within the lava pile- Isolated Dunes: red and 

white 

7.2.1 Differential Diagenesis 

 

Fig. 7.1. Geological map of Dune Valley showing the three case studies: Dune 14 White 

Sand (Dune A), Dune 16 Red Sand (Dune B) and Big Barchan (Dune C). 

 Three types of diagenesis have been petrographically and mineralogically 

identified and described in detail below. Both red and white isolated dunes display 

‘Type 3’ diagenesis near to hot lava contacts, with no appreciable difference between 

red or white isolated dune contact zones. Type 3 hot contact diagenesis is the same 

as described detail within Chapter 4. ‘Type 1’ diagenesis is only found in red 
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isolated dunes and red Major Erg sandstone, it is the ‘background’ (e.g. 

NG52.).‘Type 2’ diagenesis is only found in white isolated dunes and is the major 

subject of this chapter. Type 2 diagenesis is recognised in the field by conspicuous 

bleaching of the ordinarily red sandstone to white. In the major and minor erg unit, 

stratigraphically below the lava interbedded isolated dunes (Jerram et al., 1999a), 

gradations can be seen between Type 1 and Type 2 diagenesis; however in the 

isolated dunes, the styles appear mutually exclusive.
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Fig. 7.2.  (A) Photograph of Dune Valley taken from the top of Awahab/Mikberg mountain (facing ~SSW ), numerous isolated dunes/sand bodies visible, 

completely preserved barchans dunes, Dune A (Type 2 white) and Dune B (Type 1 red) labelled. (B) Close up of completely preserved barchans dune 

with inset showing detailed measurements around the dune (adapted from Jerram et al., 2000a). (C) Photograph of Dune B (facing S) the contrasting 

sand colour apparent together with equivalent stratigraphic level and proximity to each other. 
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Fig. 7.3. Geological map of Dune Valley showing a higher resolution of Dune A white 
and Dune B red sampled in this study. Contour spacing is 10 m, rock unit abbreviations 

are as in Fig.2. 
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Fig. 7.4. Petrological and mineralogical comparison of lava contact sediments at Dune A 

white and Dune B red. (A) White dune 14 contact. (B) Red dune 16 contact. Note no 

appreciable microscopic difference exists between the two contacts. 
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Type 3 Digenesis- Hot lava contacts (Same as Chapter 4) 

 The upper surfaces of fossil dunes in the study area often display features 

such as topset beds and aeolian ripples as well as preserved lava emplacement 

features such as striations and lava imprints (see Jerram et al., 2000a; Jerram & 

Stollhofen, 2002; Chapter 4 for description). These features indicate that the upper 

dune surface was contemporaneous with and covered by flowing lava. Type 3 

diagenesis is only found in these upper dune surfaces. Basal surfaces (i.e. sands that 

were deposited on top of the solid cooled upper surface of lava) usually display Type 

1 or Type 2 depending on overall dune diagenetic type. Generally there is no 

evidence of significant early weathering of the cold lava top surfaces, indicating that 

little time passed between the emplacement of the lava and migration of sand dunes. 

 Sandstones in the Twyfelfontein Formation can be classified as subarkosic 

arenite based on modal mineralogy (Chapter 2, 4). For both Dune A white (NG26) 

and Dune B red (NG31) contacts porosity is always found to decrease towards the 

hot contact (Fig. 7.4; Fig. 7.6A.). Reductions in porosity in the sandstones start to 

become apparent at depths of <2 m from the contact with the base of lavas. At these 

depths porosity values are ~20% and they decrease to <1% at the contacts with the 

lava (see Chapter 4). To summarise, at contacts there is increased compaction due to 

increased pressure solution of the quartz, which combined with calcite cementation 

provides an early mechanism for porosity loss and lithification prior to significant 

burial (Fig. 1.6 A, B.). 

 The results of the X-Ray diffraction are presented in Fig. 7.5. These data 

generally confirm the petrographic observations (Fig. 7.4). Both, red and white dune 

contacts produce strong calcite peaks at 3.035 Å (~29.46° 2θ). NG 31 produced a 

peak at 3.15 Å (28.3 ° 2θ) that corresponds to fluorite, this supports a tentative 
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petrographic identification of this mineral. Fluorite pore fills are also occasionally 

found in the Twyfelfontein Formation elsewhere under other hot other contacts. 

NG26 produced clay peaks at 7.17 Å (12.35 ° 2θ) and 3.58 Å (24.83 ° 2θ), the 

strength of the 3.58 Å peak supports the interpretation clinochlore as the clay phase, 

but kaolinite is possible. Haematite was not detected with XRD, possibly due to its 

presence in very low abundances (petrographic observations overestimating its 

abundance). The key point is that mineralogically and petrographically both red and 

white dunes behave in an identical fashion at hot lava contacts. This suggests that the 

early diagenesis due to lava emplacement affected the same sediment and any 

differential diagenesis after this time must be due to a different process. This also 

provides a ‘locked in’ snapshot of the white sediment unaffected by later processes 

near to the contact. It is for this reason that white sandstone compartments are 

frequently reddened near to to lava contacts (e.g. RYD pond and the Dune Valley 

white dunes). 

 

Fig. 7.5. X-Ray diffraction spectra for three samples: NG52 control, NG31 Dune B red 

contact and NG26 white contact. Note appearance of calcite peak for both contacts and 
weakening of all feldspar peaks. Important minerals labelled.  ch= chlorite, kao= 

kaolinite, f= feldspar, calc= calcite, Il= ilmenite. 
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Fig. 7.6. Photomicrographs of white sandstone from Dune 14 white (Dune A). (A PPL) 

NG33 Dune 16 red, 2 m below the lava for comparison with the white samples. (B PPL, 

C XPL) NG 28, 2 m below the lava in dune 14 white. Porosity is secondary of micro. 

Authigenic minerals visible are kaolinite, calcite. 
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Fig. 7.7. (A) Porosity against distance below lava for Dune 14 white and Dune 16 red. 

Porosity higher for a given distance for red dunes. (B) Compaction and cementation 

plotted for Dune 14 white and Dune 16 reed against distance below lava. Both dunes 

have sharp increase in compaction immediately below lava common to Type 3 

diagenesis. Cementation is greater for a given distance for white sandstone. 
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Fig. 7.8. Graphs against distance below hot contact for Dune 14 white (Dune A) and 
Dune 16 red (Dune B). (A) Red dunes appear to have more authigenic quartz for a 

given distance. (B) The red dune has significantly less authigenic clay for a given 

distance. (C) The red dunes have a greater abundance of opaque minerals. (D) White 

dunes have greater abundance of calcite with distance, persisting well below the 

influence of Type 3 diagenesis. 
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Fig. 7.9. (A) Permeability against distance below lava for Dune 14 white (Dune A) and 

Dune 16 red (Dune B). Permeability for a given distance is always higher for the red 

dune. (B) Relationship between permeability and porosity. Apart from samples affected 

by Type 1 diagenesis, each diagenetic type plots as a clearly separate field. 

 

Type 1 diagenesis-Burial diagenesis- Normal red sand 

 Type 1 sandstone is present beyond the influence of igneous rocks. The 

nature of the sandstones unaffected by igneous activity is presented in Chapter 2. 

This is a summary. Isolated red dunes are compacted subarkosic arenites. They are 

composed of rounded aeolian grains in  well sorted grain flow (fine to coarse sand) 
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less well sorted  rounded to subrounded grain fall (very fine to fine sand) lamellae 

(Howell & Mountney, 2001). The detrital grains comprise of quartz, potassium 

feldspar, plagioclase, lithic grains and opaque minerals (ilmenite). Ilmenite is not 

widely disseminated and appears to form small placer deposits controlled by grain 

density. Detrital grains are coated with haematite, which gives the red colouration 

(Fig. 7.2A). Compaction and pressure solution appears to be the major diagenetic 

control (e.g. Fig 7.4C sutured grains). Cements are rare, although occasional quartz 

overgrowths are present on some grains. Where present, quartz overgrowths do not 

exceed 1 % (±0.4) modal area. Compaction diagenesis of the formation is described 

by Dickinson & Miliken (1995). 

 Dune B has been chosen as a type example of Type 1 diagenesis because its 

superior vertical exposure (2.5 m) and it is only 120 m south of Dune A (white 

dune). In the field, Type 1 dunes are clearly identified compared to Type 2 dunes 

based on colour (Fig. 7.2C B). Red sand is dominant in the minor and major erg 

units, stratigraphically below (Fig. 7.1), separated by lava (e.g. Jerram et al., 1999b). 

We propose that Type 1 diagenesis represents sandstone that has not been subject to 

hot contact diagenesis, or to a flux of fluid that was responsible for Type 2 

diagenesis. 

 

Type 2 diagenesis- isolated white dunes 

 White coloured sandstones are distributed throughout the Twyfelfontein 

Formation, and where interbedded by lava as isolated dunes, there appears to be no 

intrinsic pattern to their distribution (Fig. 7.1; Fig. 7.2A.). At outcrop scale, the only 

difference appears to be colour, with sedimentary structure showing no difference in 

morphology. It can be shown that the white dunes were deposited in the same way as 
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the red dunes (e.g. Mountney et al., 1998; Jerram et al., 2000b, a). The question then 

arises about the diagenesis of these white sandstones, and how it differs from the red 

aeolian units. 

 Thin-sections of the white sandstone indicate that it is also a subarkosic 

arenite. Rounded to subrounded quartz grains occur in grain fall and grain flow 

lamellae, which is usually well sorted. Detrital grains are similar to those in the red 

dunes. Feldspar grains are visibly corroded or are completely replaced by clay (Fig. 

7.6.). Plagioclase feldspar grains show the most intense alteration, with no 

petrographically identifiable grains being encountered under optical microscopy that 

could be identified based on albite twinning. Any plagioclase encountered was 

identified based on lack of yellow staining from sodium cobalinitrite and not being 

quartz (crossed polar examination), therefore plagioclase has probably been 

petrographically overestimated; most counted plagioclase grains are probably in fact 

completely kaolinitised pseudomorphs (SEM analysis confirms this). Potassium 

feldspars in white sandstone (Fig. 7.6.) samples are also frequently corroded or 

partially transformed into clay minerals. Haematite grain coatings are absent in the 

white sandstone, but opaque detrital minerals are still present as are occasional 

nodular aggregates of haematite in pore spaces. 

 Porosity reduction due to compaction appears more intense in thin-sections of 

the white sandstone than in the red sandstone (Fig 7.7 A; Fig. 7.6.). Increased 

compaction may have resulted from the weakening of feldspar grains during 

dissolution. These grains were then deformed to fill adjacent pores, or dissolved, thus 

reducing their volume. Compaction porosity loss (COPL) is generally slightly greater 

in the white dunes than in the red dunes (Fig. 7.7B.) and porosity, as a result of this 

and increased cementation porosity loss (CEPL), is lower than for red. Unlike the red 
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dunes, the white dunes contain an authigenic mineral assemblage that is identifiable 

using petrographic techniques. This assemblage is composed of, kaolinite, calcite, 

and occasional quartz overgrowths. Calcite and kaolinite are usually associated and 

both replace feldspars and fill pore space. 

 Modal analysis of thin-sections indicates that with distance from hot contacts 

white dunes have up to 4 times the amount of clay and 5 times the amount of calcite 

(Fig. 7.8) as the red dunes. Authigenic quartz occurs in approximately the same 

proportions in both red and white dunes, but showing significant variability in the 

white sandstone. Clays may inhibit the formation of quartz overgrowths over 

geological time. Opaque minerals are significantly less abundant in white sandstone 

(the haematite grain coating being absent). 

 SEM examination of the samples confirms the identified assemblage from 

light microscopy and enabled the identification of pore lining böhmite (as pisolithic 

aggregates (Fig. 7.10A, B, D, E.), cf. Wu et al., 2012; Cai et al., 2009, Fig. 7.11 A, 

B). Böhmite proved to be a common lining of pores in the white sandstone, with all 

white samples having the mineral in abundance. Kaolinite can be seen in SEM to 

form books that fill pore space and aggregates that replace feldspars (e.g. Fig. 7.11C, 

D). Calcite in SEM is always found to be associated with kaolinite and frequently 

filled pores. Under SEM observation, comparison between Type 1 red sandstone 

(NG33, Fig. 7.10F) and the Type 2 white sandstone reveals two very different 

diagenetic lithologies. 

 The point count data presented in Fig. 7.7 and Fig. 7.8 were tested using the 

T-Test to show the statistical significance of the differences between the red 

sandstone and the white sandstone petrography. Table 7.1 summarises these results. 

The T-Test supports the petrographic observations showing the differences between 
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the sandstones. Permeability, authigenic quartz and calcite were found to be 

statistically significantly different between the red and white isolated dunes. Porosity 

and clay were found to be highly statistically significant. Opaque mineral abundance 

was not found to be statistically different between the sandstone types supporting the 

re-distribution hypothesis. 

 

 

 

Table. 7.1. Summary of T-test results for red and white sandstone. Most parameters are 

statistically different such that the means are different at the 95 % confidence level. Calcite and 

clay were found to be statistically significant for all case studies and clay was found to be highly 

statistically different for all case studies. These parameters’ statistically differences are not 

surprising considering they represent the main petrographic differences between the red and 

white sandstones. 

 

Study T Tests Probability Statistically Significant (95 %) Parameter Count Yes Count No

Porosity 0.002 Yes* Porosity 2.00 1.00

Permeability 0.096 No Permeability 2.00 1.00

Authigenic Quartz 0.084 No Authi Quartz 2.00 1.00

Authigenic Calcite 0.006 Yes* Authi Calcite 3.00 0.00

Clay 0.000 Yes* Clay* 3.00 0.00

Opaques 0.095 No Opaques 1.00 2.00

COPL 0.021 Yes COPL 1.00 2.00

Porosity 0.098 No Total 14.00 7.00

Permeability 0.048 Yes

Authigenic Quartz 0.026 Yes

Authigenic Calcite 0.020 Yes

Clay 0.004 Yes*

Opaques 0.011 Yes

COPL 0.108 No

Porosity 0.001 Yes*

Permeability 0.013 Yes

Authigenic Quartz 0.046 Yes

Authigenic Calcite 0.048 Yes

Clay 0.000 Yes*

Opaques 0.411 No

COPL 0.237 No
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Fig. 7.10. SEM images for Dune 14 white (Dune A) showing characteristic authigenic 

minerals and diagenesis. (A, B (enlargement of A)). Detrital plagioclase grain being 
replaced by kaolinite and böhmite. (C, D) Böhmite lining pores with kaolinite both 

lining and filling pores. Note feldspar framework in bottom right of C with a veneer of 

böhmite, (E) Complete authigenic assemblage of böhmite, kaolinite and calcite filling 

pore. (F) NG33 red from Dune 16 (Dune B), note how detrital grains are not corroded 

or replaced and are coated with small haematite crystals.  
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Fig. 7.11. Figure to compare böhmite identification with the hydrothermal synthetic 

böhmite of Wu et al., 2012. (A, B) Synthetic böhmite (C, D) natural böhmite found in 

Dune 14 white. 

 X-Ray diffraction analysis was performed on sample NG29, which comes 

from 3 m below the hot contact in isolated white Dune A (Fig. 7.30). This distance is 

significantly below the ~ 30 cm contact zone where Type 3 diagenesis occurs. The 

spectrum for NG 29 was compared with NG32 isolated red Dune B 2 m below the 

contact (limited by outcrop exposure). The white sandstone did not display any 

plagioclase peaks (e.g. Anorthite 100 peak, 3.19 Å (27.96° 2θ)) and orthoclase peaks 

were weakened. Kaolinite (7.17 Å (12.35 ° 2θ) and 3.58 Å (24.83 ° 2θ) peaks are 

present in the white sand (not found in the red sand). Böhmite was not detected in 

XRD, despite it being an obvious phase in SEM. This is probably due to its low 
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abundance. Calcite did not show a clear spike, despite being seen in optical 

microscopy and SEM. Illite does not appear in XRD. 

 

 

Fig. 7.12. X-Ray diffraction spectra for samples NG32 (red line, red sand, Type 1) and 

NG29 (blue line, white sand, Type 2), important peaks labelled. Plagioclase (Albite and 

Anorthite) peaks present in red sand are absent in white sand consistent with 

petrographical observations. White sand has peaks for kaolinite/chlorite whereas red 

sand does not. Orthoclase peaks are also weakened in white sand. Interestingly no peak 
for böhmite was produced despite its identification under SEM. kao= kaolinite, ch= 

chlorite, alb= albite, an= anorthite, or= orthoclase. 
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Fig. 7.13. Graph of major element data in Appendix normalised to NG52 values. (A) 

NG26 white contact (blue line) and NG31 red contact (red line). CaO is enriched in both 

contact samples, other elements except MnO show little variation. (B) NG32 red dune 

(red line) and NG29 white dune (blue line). Note difference between NG52 is order of 

magnitude less. NG29 white has enriched CaO, and LOI and is leached of Fe2O3 and 

Na2O. 

 These observations together depict a system in the isolated white dunes where 

haematite is being dissolved from grain rims, and böhmite, kaolinite and calcite were 

being formed at the expense of feldspar. The haematite re-precipitating as nodules 

close by. These mineral transformations resulted in bleached and compacted 

sandstone, with reduced primary porosity.  
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  Given that all dunes were deposited at the same stratigraphic level and 

subsequently either bleached white or not, it is instructive to determine how the two 

main types of diagenesis in the dunes evolved, red and white, and whether there has 

been any net flux of elements in or out of each system.  X-Ray fluorescence analyses 

were performed on 5 samples with the aim of testing enrichment or depletion in 

elements as a result of dune bleaching. Specifically the hypothesis was that iron 

should have been lost in white dune sandstones. For analysis the data were 

normalised to NG52 which is considered to be a normal background red sandstone.  

 In samples from hot contacts (Fig. 7.13A.) both samples (red and white 

dunes) were geochemically similar with the exception of manganese, which may 

relate to the presence of Ilmenite in NG31. Both contacts were enriched in 

magnesium and calcium, and showed minor enrichment in iron. LOI was also higher 

than NG52, which is an indication of the presence of trapped H2O, probably within 

the clay minerals or release of CO2 from the calcite during fusion. It is inferred that 

enriched magnesium and calcium are hosted in the calcite cement and iron and 

magnesium are in the chlorite. If the elements were simply redistributed from 

feldspars during the Type 3 diagenesis, there should be no enrichment in these 

elements. It is therefore proposed that calcium, magnesium and iron are at least 

partially sourced from the overlying lava, probably during initial cooling and 

hydrothermal decomposition of volcanic glass. Note that the enrichment in calcium 

is ~27 times that of NG52 (also see Chapter 4.). 

 The geochemical differences between the red and white dunes (Fig. 7.13B.) 

match the petrographic observations. Iron and sodium are depleted compared with 

NG52 and NG32. Calcium is enriched in the white sample and LOI is ~ 7 times that 

of NG52 . The interpretation is that a flux of fluid must have been necessary to show 
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enrichment and depletions in minerals. If feldspars were simply transformed into the 

authigenic minerals, with no loss or gain from the system, the bulk rock would be 

similar to NG52. Importantly the loss of sodium in the white dune shows that only 

the calcium from plagioclase was being completely sequestered into authigenic 

minerals as no sodium containing authigenic minerals were found in quantity, 

sodium being mobile in groundwater. Aluminium is conserved, presumably being 

rapidly incorporated into böhmite and kaolinite. The calcium enrichment suggests 

that calcium was being transported from elsewhere in the system and being 

precipitated in white Dune A. A possible source for this calcium is other sand bodies 

being depleted or volcanic glass and/or plagioclase in lavas part of the pile. High LOI 

confirms that NG29 was rich in hydrated minerals (clays) compared to NG52. 

 In both cases (red and white dunes), in once, hot lava contact areas where 

subject to Type 3 diagenesis have permeability approaching negligible values (Fig. 

7.9A.). Permeability in red dunes increases rapidly away from the contact, reaching 

background permeability of between 100 md and 1000 md at depths of ~30 cm 

below the once hot lava contact. Permeability in white dunes does not return to these 

normal background values outside of the contact zone. Permeability in the white 

sandstone increases from negligible values in the contact zone, but do not exceed 44 

md. Permeability reduction in the white sandstone is a result of Type 2 diagenesis 

(hydrothermal dissolution, compaction and precipitation of authigenetic minerals). 
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7.3 Indirect effects below the lavas- Major Erg: red and white. 

7.3.1 Awahab Dykes 

 

Fig. 7.14. Photograph facing south from 20° 39.640’ S 14° 10.075’ E towards the Awahab 

dykes locality. Note Dyke A separates red sand to the left from white sand to the right. 

The other visible dykes do not appear to separate diagenetic sand types. 

 

 The direct effects of the Awahab dykes on the Twyfelfontein Formation have 

been discussed in Chapter 6. Here the indirect effects are approached. The Awahab 

Dykes locality is situated in the SE part of Dune Valley at approximately 20° 39.769’ 

S 14° 10.188’ E, at 792 m, 3.5 km SE of the Awahab campsite. The outcrops consist 

of at least five dolerite dykes striking NW, WNW or N, varying from < 3 m thick up 

to 8 m thick. Of interest here is the difference in sandstone diagenetic style between 

the red sandstone to the east of Dyke A and the white sandstone to the west of Dyke 

A (Fig. 7.14.). At outcrop scale the two styles of sandstone diagenesis (Red= Type 1 

and White = Type 2) are immediately visible as the red sandstone is friable and 
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visibly reddened and the white is bleached to a brilliant white. Occasionally at the 

surface the white sandstone will appear slightly red due to detrital opaque minerals 

leaching under surface conditions, but examination with a geological hammer will 

reveal the white sandstone less than a mm below the surface.  

 Samples were collected in a westwards transect away from the dyke in the 

white sandstone to the south of the parked vehicle in Fig. 7.14. which was directly 

opposite the red sandstone transect discussed with relevance to direct effects in 

Chapter 6. The form of this discussion will not take the style of describing changing 

mineralogy away from a contact, but rather an integrated approach as these 

diagenetic effects are not specifically related to the dyke-sediment contact, but rather 

the whole compartment. 

 

 

Fig. 7.15. Photomicrographs of the white (Type 2) sand to the west of Dyke A. (Ai PPL, 
Aii XPL) 4 m from the contact, beyond major direct effects the sandstone is compacted 

and has an authigenic assemblage comprising kaolinite, calcite and minor other clays, 

probably chlorite. (Bi PPL, Bii XPL) 8 m from the contact, the sand is little changed 

compared to that 4 m from the contact. Authigenic phases are kaolinite and calcite. 
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 The direct effects of the emplacement of Dyke A are still partially apparent at 

4 m into the white sandstone (NG43, Fig. 7.15.) as increased compaction, but are 

minor compared to closer to the contact, where the indirect effects are difficult to 

discern from the direct effects. NG43 has detrital quartz and potassium feldspar at 

approximately background levels, but plagioclase is only 0.2 %. Porosity is 1.6 %. 

The authigenic assemblage consists of kaolinite (Fig. 7.15A, B; Fig 7.17Ai, ii.) 

which replaces plagioclase, lines pores and fills pores and calcite which replaces 

plagioclase feldspars. Böhmite is present in small quantities, where it lines pores (Fig 

7.17Aii.) Porosity loss is still dominated by compaction (COPL= 35.9 %, ±4.3) but 

cementation is considerable (CEPL= 12.0 %). 

 There is little variation with distance away from the dyke. Sample NG44, 8 m 

to the west of the  dyke contact is virtually the same as NG43 (Fig. 7.15Bi, ii.). The 

white sandstone outcrop is continuous to 100 m from the dyke, where sample NG42 

white was collected. This sample is the whitest of all the sandstone samples 

collected. NG42 white, shows a particularly well developed mineral assemblage 

typical of Type 2 diagenesis. Porosity is reduced by both compaction and 

cementation. Detrital mineralogy lacks plagioclase but has background abundances 

of quartz and potassium feldspar. The authigenic assemblage comprises of böhmite, 

which lines nearly all pores (Fig. 7.16A, B, C). In cross polarised light (Fig. 7.16B.) 

böhmite is clear, it has first order birefringence, which rules out being a pisolithic 

illite polymorph on an optical basis. The böhmite can be seen in SEM (Fig. 7.17B, C, 

D, E) to be comprised of pisolithic aggregates of needle-like crystals, with interstitial 

böhmite growing from detrital grain surfaces. Kaolinite generally fills pores and 

replaces plagioclase (Fig. 7.16C, D.) and exists as books that grow over and with 

böhmite. Fig. 7.17D. shows calcite growing as small rhombs growing within pore 
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space with kaolinite. In thin section, calcite appears to replace plagioclase, with 

minor staining attached to kaolinite, which must be the disseminated calcite rhombs. 

 

 

Fig. 7.16. In the same sand compartment ~100 m away from Dyke A, sample NG42 white 

that compaction is less but the mineral assemblage is typical of the white sandstone. 

This sample was the whitest of a ll the white sandstone collected. (A PPL) Detrital 

minerals lack plagioclase and authigenic minerals comprise pore lining böhmite, pore 

filling kaolinite and minor calcite. (B XPL) Close up of böhmite pore lining in XPL to 

illustrate it cannot be illite due to low birefringence. (C PPL) Low power image of 

NG42 white showing abundance of pore filling kaolinite and the preservation of very 

few primary pores. (D PPL) Close up of pore being filled by kaolinite with some 
böhmite visible. Note potassium feldspars appear intact and no plagioclase is present.  

 These cements must have come after deposition and burial as where grains 

have been separated by sample preparation (Fig. 7.17E.) no cements exist within pits 

left as a result of compaction and pressure solution. This rules out a detrital origin of 

the observed differences between the red and white dunes (as does the equal hot 

contact diagenesis). 
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Fig. 7.17. SEM images of white sandstone from the Awahab Dykes locality. (Ai, ii.) Four 

meters from the contact, compaction is still increased, but the pore filling cement is 

clearly kaolinite which is in the form of booklets. Böhmite is present as a small 

percentage. (B) Image showing pisolithic böhmite aggregates lining pores with 

associated kaolinite. (C) Close up of B showing the clear pisolithic aggregates of 

böhmite. (D) Image showing the complete authigenic assemblage of böhmite, kaolinite 

and calcite. (E) Image chosen to show that the cements came after at least some burial 

evident as the indicated pressure solution pit, where grains were previously in contact 

prior to sample preparation having no authigenic phases embedded. 

 Trends and separation between fields of point counted parameters clearly 

display a difference between red Type 1 sandstone and white Type 2 sandstone. Red 
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sandstone has 1–3 % (±0.3) more authigenic quartz on average (based on linear trend 

line) at a given distance compared to the white sandstone (Fig. 7.18A.). This 

difference is probably due to the inhibition of quartz overgrowths by the clay 

cements (cf. Bloch et al., 2002). Authigenic clay is significantly more abundant in 

the white sandstone than the red sandstone (Fig. 7.18B.), but is not related to distance 

from the dyke (i.e. it is pervasive). In the red sandstone it is negligible. This suggests 

the clay is not related to the direct effects of dyke emplacement. Opaque minerals, as 

expected are more abundant in the red sandstone, due to the haematite coating grains. 

Opaque minerals are however still present in the white sandstone as detrital heavy 

mineral grains of magnetite, ilmenite etc., which increase away from the dyke 

contact as direct effects reduce in intensity (like the red sandstone) (Fig. 7.18C.). 

Calcite abundance is higher within the white sandstone and is highly variable with 

distance (Fig. 7.18D.). 
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Fig. 7.18. Graphs of point counted phases against distance from Dyke A for both the 

white (Type 2) sandstone and the red (Type 1) sandstone. (A) Authigenic quartz is more 

abundant in the red sand, probably due to clays inhibiting quartz overgrowth 

development (e.g. Bloch et al., 2002). (B) Authigenic clay (mainly kaolinite in the white 

sandstone) is greater in abundance in the white sandstone by ~ 15 % and is usually 

negligible in the red sandstone. (C) Opaque minerals increase away from the bleached 

contact zone for both red and white (bleached contact zone identified in Chapter 5) but 

the increase is more significant in the red sandstone and at higher levels in the red 

sandstone. Opaques in the white sandstone are mainly detrital. 

 The red sandstone and the white sandstone have separate porosity–Distance 

trends (Fig. 7.19A.). In the red sandstone porosity increases away from the dyke 
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contact, until the background value of ~ 12.5 % is reached, from where it stabilises. 

The white sandstone porosity increases a little away from the contact, but the 

porosity remains low to 8 m, where the final sample was collected. Fig. 7.19B shows 

analysis of the porosity loss. Compaction is the major contributor in both cases (red 

and white); with red sandstone always being slightly more compacted than the white. 

The white sandstone is more cemented at a given distance than the red sandstone by 

~ 10 %.   
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Fig. 7.19. (A) Porosity increases away from Dyke A for both red and white sand due to 

the direct effects of the dyke. Porosity increases more rapidly for the red sandstone and 
to higher levels. The white sandstone porosity remains low, not exceeding 3 %. (B) 

Porosity loss in both samples is dominated by compaction, which largely occurred after 

dyke emplacement and during subsequent burial (Chapter 5.). Note however that 

COPL is slightly lower for white sandstone and that CEPL is always higher due to the 

increased authigenesis. 

 Permeability, like porosity, plots as separate fields for both red and white 

sandstone. Permeability is always higher for the red sandstone (Fig. 7.20A.). When 
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permeability is plotted against porosity, as is the case for the isolated dunes, two 

populations develop, separating the white sandstone from the red sandstone. 

 

 

Fig. 7.20. (A) Like porosity, two clear trends exist between permeability and distance for 

each red and white sandstone. The red sandstone has increased permeability and a 
faster rate of gain in permeability with distance. (B) Two populations plot in 

permeability-porosity space as in the isolated dunes (Fig. 7.9B.) with the red sandstone 

showing as the high permeability and porosity population. 

 

 

 For this case study T-Test results show that porosity, calcite, and clay are 

highly statistically different between red and white sandstone. COPL is statistically 
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significantly different. These analyses support the hypothesis that different 

diagenetic pathways where followed by the sand either side of the dyke. The 

statistically insignificant differences for the other parameters support the proposed 

mechanism in that authigenic quartz was probably formed prior to the dyke 

emplacement and that opaques are redistributed on either side of the dyke into 

nodules. 

 

Fig. 7.21. X-Ray diffraction spectra for sample NG52 (red) and sample NG42 (white). 

Important peaks labelled. Peaks absent in the white sandstone are for plagioclase 

feldspars. Peaks present in the white sandstone but not in the red sandstone are chlorite 

or kaolinite, substantiated as kaolinite based on SEM analysis. kao= kaolinite, ch= 

chlorite, alb= albite, an= anorthite, or= orthoclase, plag= plagioclase, K-f= potassium 

feldspar, sid= siderite. 

 The petrographical analyses are confirmed by the X-ray diffraction analyses 

of two representative samples from the red (NG52) and white sand (NG 42 white). 

Fig. 7.21. shows that the white sand completely lacks any plagioclase peak but has 

gained strong kaolinite peaks. Potassium feldspar peaks have also been weakened in 

NG42 white. Böhmite was not identified in XRD, probably due to the oriented slide 

method used favouring the clay minerals and abundant minerals. The XRD spectra 

are very similar to the white sands in the isolated dunes, but more pronounced; this is 

not surprising considering how NG42 white is the whitest of the sandstones 

encountered.  
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 Major and trace element data are presented in Fig. 7.22. normalised to NG52. 

Major elements within the white sandstone (NG42, dotted line is NG29 3 m Dune 14 

white) show enrichment in calcium and increased LOI. NG42 is depleted in iron, 

sodium, titanium and manganese. This profile is mirrored (except manganese) by the 

isolated dune example. The enrichment in calcium can be explained by the increased 

abundance of calcite, which, like for the isolated dunes must have come from an 

external source. This source is inferred to be basic glass within the basalt pile or 

areas of sandstone depleted in calcium through plagioclase dissolution without 

calcite precipitation. Depletions in sodium can be explained by plagioclase 

dissolution, but the removal of sodium in solution as it is highly mobile in water. The 

depleted metal ions are entirely consistent with the outcrop and petrographic 

observations of bleaching and reduced abundance of opaque minerals. Potassium and 

Aluminium are conserved; the aluminium from the observed feldspar dissolution is 

probably rapidly consumed by kaolinite and böhmite precipitation, which can be 

rapid under hydrothermal conditions, on the order of hours for the observed 5–10 μm 

pisoliths of Wu et al. (2012). The increased LOI is consistent with the kaolinite and 

calcite releasing volatiles when fused during the XRF process. Conservation of 

potassium suggests that the dissolution of potassium feldspars is probably a minor 

process, or the potassium is being sequestered into other clay minerals such as illite, 

despite no 10 Å peak being observed in XRD. 

 The observations are interpreted as two separate compartments either side of 

Dyke A, undergoing separate diagenetic histories. Chapter 6 showed that in the RYD 

white sandstone, the calcite growth was coterminous with the cooling dyke. If this 

also holds for this dyke, showing similar effects it is likely that the divergence of 

diagenetic histories diverged shortly after the intrusion of the dyke and probably 
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during its cooling. This is supported by the contacts of both sandstones being similar. 

The origin of the bleaching and differential diagenesis is discussed in 7.4. 

 

 

Fig. 7.22. (A) Major element geochemistry for NG42 white (solid line) and NG29 white 3 

m normalised to NG52. Both samples show enrichment in calcium and depletion in iron 

and manganese. LOI is increased in both samples. (B) Trace element data plotted for 

NG42 white (solid blue), NG29 (white Dune 14, dashed blue), NG32 (red Dune 16, red) 

and NG52 (red). White sand can generally be seen to be depleted in most trace elements 

compared to the red sand.  
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7.4 Red Yellow Dyke area 

 

 The Red Yellow Dyke locality is so named because of the separation of 

compartments of red (Type 1) sandstone from white (Type 2) sandstone by a 

prominent dyke (see Chapter 6.). Here, the sandstones outside of the direct effects of 

the intrusion are studied, as well as the larger scale compartmentalisation evident to 

the north where the white compartment is bounded by another E-W trending dyke 

(Fig. 7.23A, B). 

 

7.4.1 The main RYD dyke white compartment 

 The foot of the RYD dyke that separates the sandstone compartments is 

located at 20° 36.743’ S 14° 4.136’ E below a prominent south facing cliff (Fig. 

7.23.). At outcrop scale the red sandstone to the west is clear from distance, as is the 

white sandstone to the east. The white compartment is bounded to the west by the 

main RYD dyke, to the north by the E-W trending dyke (Fig. 7.23.), to the east it 

appears unconfined, as the outcrop thins due to erosion and to the south outcrop 

disappears under basalt, but confinement is considered limited due to white sand re-

appearing from the other side of the basalt cover 2.5 km south of the main cliff 

outcrop. From Fig. 7.23. it is evident that the demarcation between the red and white 

sandstones is by dykes. 
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Fig. 7.23. (A) Map of the RYD locality, see Fig. 6.12. for key). (B) GoogleEarth image of 

RYD locality showing striking appearance and contrast of the red and white sandstone 

compartments. (C)Facing north. Close up of the RYD dolerite dyke showing how it 

separates red sand to the left (west) from white sand to the right (east). (D) Panorama of 

the entire southern cliff of the RYD outcrop with Toyota Hilux for scale. 

 The main diagenetic case study is based on a transect away from the main 

RYD dyke at the foot of the major cliff. Samples were also collected from the 

northern compartments for comparison.  

 The white sandstone in hand specimen ranges from a hard white sub-arkose 

with no visible porosity near to the dyke, to a yellow/brown mottled (mottles of 

haematite nodules 1/10’s of mm up to 3 mm), slightly friable white sandstone with 

visible porosity from about 4 m to 6 m. Further than this the sandstone is less mottled 

and visible pores are filled with fine grained white material. Overall, despite the 

sandstone being visibly bleached compared to the red sandstone; it is not as brilliant 

white as the Awahab examples.   
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 It has been established in Chapter 6 that the calcite formed in the white 

sandstone was coterminous with the cooling of the RYD dyke based on an oxygen 

stable isotope trend suggesting higher temperatures closer to the dyke. 

Petrographically the white sandstone here can be grouped into three categories: (A) 

Near to the dyke contact where compaction is increased (<2 m), (B) the more friable 

mottled zone with low clay abundance (< 10 m) and (C) the zone with minor 

mottling and high clay abundance (> 10 m). The mottled zone (B) is visibly 

weakened at outcrop scale. All zones have occasional to abundant calcite. 
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Fig. 7.24. Photomicrographs of white sandstone to the east of the RYD dyke. (Ai XPL) 

2.8 m from the dyke, direct effects are still apparent as increased compaction, chlorite 

and calcite. (B, C XPL) Calcite and kaolinite replaces feldspars. (D PPL) wide view 

image of RYD06 slide showing lack of haematite grain coatings, calcite cement, and 

haematite nodule. Note oversized secondary pores resulting from plagioclase 

dissolution. (E PPL) Close up of haematite nodule in D. (F) Pore filling calcite also exists 

in poikilitic patches. 

 2.8 m from the dyke, the contact zone of direct diagenetic effects is in 

transition to the indirect effects dominated sandstone. Grains become apparently less 

compacted in thin-section (COPL= 39.6 % (±4.3), compared with up to 46 % (±3.5) 

closer to the contact). Detrital mineralogy appears approximately equal to the 

background. Authigenic minerals are dominated by calcite and clay. The calcite fills 

pores and is often aggressive towards both feldspars and quartz (Fig. 7.24Ai.). The 
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calcite is normally associated with clays, identified as kaolinite under SEM (Fi. 

7.25Bi, Bii.), although the brown colour within the calcite suggests chlorite (Mg, Mn 

rich) is also present (Fig. 7.24Ai.). RYD06 (5.8 m and RYD05 (4.6 m) are typical of 

the white sand in the white mottled zone. Porosity is present in thin-section as both 

primary pores and secondary porosity comprising oversized pores; probably 

dissolved feldspar (Fig. 7.24D, F.). The detrital assemblage appears approximately 

background in phase abundances. Authigenic minerals are usually grouped into 

nodular masses rather than disseminated. The nodules primarily comprise of: 

haematite (and goethite) (Fig. 7.24D, E; Fig. 7.25Cii.) which form the outcrop and 

hand specimen visible mottled nodules: Calcite forms within and around the iron 

oxide nodules (Fig. 7.24D.), as well as in nodules of just calcite consisting of 250 μm 

poikilitic crystals (Fig. 7.24F.) and as replacements of plagioclase feldspar grains 

(Fig. 7.24C.): Kaolinite is present throughout as pore throat fills (Fig. 7.25Bi.) and 

attached to skeletal remains of partially dissolved feldspar grains (Fig. 7.25Ci, D.). 
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Fig. 7.25. SEM images of white sandstone to the east of the RYD. (A) 0.2 m from the 

contact kaolinite fills pores. (Bi, ii) 2.8 m kaolinite is still the major authigenic phase 

where it also replaces feldspars (ii). (Ci) Skeletal remains of a potassium feldspar 

partially dissolved and partially replaced with kaolinite. (Cii) Mineralisation within a 

haematite nodule pore fill is small radiating disc and rod shaped haematite and 

probably some goethite. EDS confirmed. (D) 5.8 m from the contact, only feldspars are 

partial framework grains with associated kaolinite. 

 The zone to the east of the mottled zone is characterised by sample NG20 and 

NG21 (both 19 m). In these samples porosity is variable (3 % (±0.8) or 15 % (±1.6)). 

Compaction is about the same as the mottled zone (COPL=38 % (±4.3) and 42 % 
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(±4.0)). Detrital mineralogy is also apparently the same as in the mottled zone. 

Authigenic minerals are dominated by kaolinite with minor calcite associated as 

disseminated grains within the clay. Mottled patches of pore-filling iron oxides are 

absent, but detrital opaque minerals exist. 

 

 

Fig. 7.26. Point counted phases away from the RYD dyke for both white sand and red 

sand. (A) Like other examples quartz overgrowths are more abundant in the red 

sandstone. (B) Authigenic clay is greater and more variable within the white sandstone. 

(C) Opaque minerals are more abundant in the red sandstone. Calcite is more 

abundant in the white sandstone. 
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 Like the other examples of sandstone bleaching and indirect diagenesis as a 

result of igneous geology, there is a clear separation between the red sandstone and 

the white sandstone based on point counted petrographic trends (also see T-Test 

results).  

 Authigenic quartz overgrowths (Fig. 7.26A.) are consistently more abundant 

within the red sandstone. The abundance is not significantly related to distance from 

the dyke, suggesting formation was not related to the intrusion event or cooling. This 

is common with the other case studies. Like other case studies, this is probably due to 

quartz precipitation being inhibited by clay minerals developed during bleaching. 

The evidence suggests the bleaching being a relatively early process, probably prior 

to all the authigenic quartz forming (e.g. prior to the rapid Late Cretaceous 

exhumation, Raab et al., 2005). 

 Authigenic clay abundance is higher in the white sandstone than the red in 

nearly every sample for a given distance. Both sandstone types show little clay 

variation with distance overall, although the white sandstone does show a ‘trough’ in 

the trend between ~ 5 m and 15 m coincident with the mottled zone and high 

secondary porosity. This trough probably represents a zone where during clay 

precipitation; pore water transported mobile clays away, and destroyed weakened 

feldspars. The existence of remaining clays in pore throats supports this.  

 Opaque minerals, comprising both detrital opaques and authigenic opaques 

are higher in the red sandstone than the white sandstone, as expected.  

 Authigenic calcite is higher abundance in the white sandstone than the red 

sandstone. In the red sandstone calcite is very rare beyond 4 m, whereas in the white 

sandstone it persists until at least 19 m. 
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Fig. 7.27. (A) Porosity increases away from the dyke for both red and white sand. 

Porosity increases to greater levels in the red sandstone and is less variable than in the 

white sandstone. (B) White sandstone compaction is dominated by COPL, but is more 

variable than the red sandstone. CEPL is higher for white sandstone than red 

sandstone. 

 Porosity increases away from the dyke contact for both sandstone types. Fig. 

7.27A. show the relationship between porosity and distance from the dyke. The trend 

lines have been applied to the whole data set rather than just the porosity increase to 

background levels. The trends show that porosity for a given distance is always 

higher in the red sandstone than the white sandstone and that the white sandstone 
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shows more variation. The porosity loss (Fig. 7.27B.) in both sandstones is 

dominated by compaction (COPL). The compaction was underway prior to dyke 

emplacement (Chapter 6.) but most occurred during continued burial. There is not 

much to separate the degree of compaction in the red and white sandstone for a given 

distance. The cementation component of porosity loss is however, significantly 

higher for a given distance within the white sandstone and is controlled mostly by 

clay and calcite authigenesis, which is absent in the red sandstone outside of the 

directly affected zone. 

 Limited permeability data exists for the RYD area. The small amount of data 

suggest that permeability increases away from the dyke in both cases and is 

approximately the same (Fig.7.28A.). In permeability-porosity space, no separation 

is observed between the two sandstone types, as it is in the other two case studies.  

 

 

Fig. 7.28. (A) White sandstone permeability appears to lie on trend with the red 
sandstone. Data limited. (B) No separation was observed for this locality between red 

and white sandstone in permeability-porosity space.  

 

Anyalsis using the T-Test (Table 7.1) for the RYD case study shows that the 

permeability, authigenic quartz, calcite, clay and opaques are statistically 

different between the red sandstone and the white sandstone. This supports the 

assertions above. Notably, compared to the other case studies (Isolated Dunes 
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and Awahab RYD) there is a statistical difference between the abundance of 

opaque minerals in the red and white sandstone; this may suggest that the fluid 

flux here actually transported the iron away to be precipitated elsewhere. A 

possible location for this is the identified ‘mottled zone’. 

 

Fig. 7.29. Two RYD white samples, RYD 02 and RYO06 are shown with NG52 red. 

Plagioclase peaks are weakened or absent in the white sandstone and weak 
kaolinite/chlorite peaks appear (confirmed as chlorite by SEM). The calcite peak is very 

weak in the white sandstone, but present at 29.56 ° 2θ. 

 Investigation of the mineralogy of the white sandstone with X-ray diffraction 

results in similar overall mineral transformations to those observed in the other two 

case studies; although the effects are weaker, no böhmite has been found in the RYD 

case study. Both RYD06 and RYD02 show reductions in the peak height of 

plagioclase feldspars compared with NG52. Unlike the Awahab case study and Dune 

14 white, the plagioclase peaks do not completely disappear. A weak kaolinite 

(possibly chlorite) peak appears in both examples at 7.17 Å (12.35 ° 2θ) and a very 

weak peak for kaolinite appears at 3.58 Å (24.83 ° 2θ), confirming the SEM 

observations. A weak calcite peak is also present at 3.035 Å (~29.46° 2θ) which is 

detecting calcite. 

 Samples RYD02 and RYD06 from the white sandstone show that the white 

sandstone is enriched compared to NG52 in magnesium, calcium and manganese. 
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LOI is significantly higher than NG52 (Fig. 7.30A.). The enrichment is magnesium 

and calcium is consistent with the other white sandstones and suggests these divalent 

metal ions were sourced at least partially from elsewhere. Manganese enrichment in 

RYD06, may be related to the mottled texture and the opaque minerals containing 

manganese as well as iron, it would also be consistent with brown Mn chlorite 

(pennantite). Aluminium, iron, sodium, potassium, titanium and phosphorous appear 

conserved. Trace elements (Fig. 7.30B.) are scattered around the NG52 levels. 

Notable enrichment exists in vanadium and uranium in RYD06, which, again is 

probably related to the mottled character of the sample. 
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Fig. 7.30. X-ray fluorescence data plotted for RYD02 and RYD06 plotted normalised to 

NG52. (A) Major elements plotted for white samples show enrichment in calcium, 

magnesium and manganese compared to NG52. LOI is also higher. (B) Trace elements 

are generally clustered around NG52 values but enrichment is noticed in elements 

compatible with calcite. Interestingly vanadium and uranium are enriched, no 
explanation can be offered for this other than the presence of a minor detrital phase 

skewing the data. 

7.4.2 Compartments to the north 

 1.3 km to the north of the main RYD cliff, the western white compartment is 

truncated by a major E-W trending dyke of ~ 5 m thickness. The dyke runs across the 

main RYD dyke and is at least 3 km long. No cross cutting relationship could be 

observed.   



400 

 

 Sample NG87 was taken from the white compartment 40 m south of the E-W 

dyke and 20 m east of the RYD dyke. The sample has porosity of 9.2 % and 

mineralogy similar to RYD21 (19 m) confirming diagenetic style is the same as the 

white sand in the RYD cliff. This is clearly supported by continuous outcrop between 

the two localities. 

 Sample NG84 is from 25 m north of the E-W dyke within the red 

compartment. The sandstone is red, slightly friable with visible porosity in hand 

specimen. Detrital minerals are approximately background. Porosity is 13.4 % 

(±1.5), and opaque mineral abundance is 4.2 % (±0.9) which positively confirms that 

it is of red sandstone affinity. To the west of the main RYD, the sandstone is also still 

red. Samples NG86 (1 m from dyke ) and NG85 (20 m from dyke) confirm this. 

They also confirm that the direct effects (Chapter 6) are also still in operation here.  

 

7.5 Origin of Type 2 Diagenesis- Sand Bleaching in the Huab Area 

 

 Study of the three case studies above has shown that all three share diagenetic 

styles, with the higher level Awahab and Isolated Dunes examples possessing the 

most intense bleaching and authigenesis, followed by the larger compartment of the 

RYD white sand showing broadly similar but less intense bleaching. 

  The observed mineralogy and trends can be used to make an interpretation of 

the origin of this distinct bleached diagenetic style. The data collected can also be 

used to reveal the role that the dykes have played in the compartmentalisation of the 

sandstones. This compartmentalisation is particularly enigmatic as the dyke cooling 
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was coterminous with the diagenesis (evident in the calcite), so why are both sides of 

dykes frequently not displaying the same type of sandstone? 

 

7.5.1 Stable isotopes 

 

Fig. 7.31. δ 
13

C (PDB) plotted against δ 
18

O (PDB) all of the analysed samples with fields 

of Rollinson (1993) and Barker (2007) removed for clarity. Lava contact and 

hydrothermal diagenetic carbonates plot in two distinct populations, with sub-lava flow 

carbonate cements having more mantle-like δ 
13

C values. Hydrothermal samples have 

less mantle influence and suggest mixing with heavier carbon. Also plotted are the 

carbonate stable isotope values from geodes from Parana Flood Basalts (Gilg et al., 
(2003), which plot as two modes, the larger of which overlaps hydrothermal calcites 

from this study.  Both populations, within each case study show temperature dependent 

δ 
18

O fractionation trends, which are related to distance from dyke or sill in the case of 

the subsurface field (see Fig. 6.20.). The RYD trend is presented in Chapter 6. The Dune 

14 trend follows the same temperature dependent path, but is not related to distance 

from igneous any igneous body nearby. 

 

 Stable isotopic analysis of calcite within samples from Dune 14 white, the 

white sandstone from west of Dyke A and the white sandstone east of the RYD dyke 

are used to speculate upon the origin of the diagenetic fluids. The samples from the 
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RYD white sandstone have already been discussed in Chapter 6. The conclusion was 

that the calcite must have been precipitated during the cooling of the dyke based on 

δ
18

O values and at temperatures (depending on water oxygen isotope composition) of 

~ 115 °C near to the contact and 45 °C 5.8 m away. 

 Four samples from Dune B returned an adequate CO2 yield for stable isotopic 

analysis. It is clear from Fig. 7.31. that when δ
13

 C is plotted against δ
18

 O the Type 2 

(white) sandstone samples (subsurface calcite field) form a separate field from Type 

3 diagenesis calcite which formed under cooling lava flows. δ
18

 O and δ
13

 C are 

heavier for Type 2 calcite than for Type 3 calcite. This could be due to influence of 

meteoric groundwater mixing with magmatic volatiles (consistent with magmatic 

volatiles from igneous intrusions at depth contaminating an aquifer) or due to fluid-

basalt interaction (e.g. Xiong & Zhai, 1992; Stevens & McKinley, 2000). No 

relationship is seen between δ
13

 C and distance from dykes or below lava (Dune 14), 

this suggests equilibrium conditions and that the carbon source was the same for all 

the calcite in each case study. Heavier δ
18

 O could also be consistent with a cooler 

system than for Type 3 diagenesis for a given water composition A dominant 

meteoric sourced groundwater mixing with magmatic water is possible based on 

modelling fractionation of various waters into calcite (Fig. 7.33.). There is a trend 

developed for Dune 14 white in Fig. 7.31 between δ
13

 C and δ
18

 O, indicated by the 

green annotation. Such a trend could suggest that H2CO3 is the dominant carbon 

species in solution (Zheng & Hoefs, 1993). Further analysis of this trend (and a 

similar trend below Dune 17 white) shows that there is no correlation of the δ
18

 O 

value of the calcite in Dune 14 with distance below the lava. This shows that the 

calcite is not a result of direct diagenesis (Type 3), as the calcites below the Ponded 

Lava (Chapter 4.), they must be due to a later process (Fig. 7.32A.). Where calcite 
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occurs in Type 2 white sand near to dykes (RYD, Awahab), the δ
18

 O always shows a 

trend towards the dyke, which represents increasing temperature towards the igneous 

body (Fig. 7.32A.). As no such trends exist in white sandstone, not in proximity to a 

dyke (e.g. Dune 14), the white sand must have become white after burial, and during 

dyke intrusion into the sandstone aquifer. Dyke intrusion is stimulating the 

hydrothermal system. 

 Modelling the isotopic concentration of calcite in equilibrium with 

Cretaceous meteoric water (using fractionation constants A=-3.39 and B= 2.78, 

O’Neil et al., 1969) for Namibia (δ 18O ≈ -37 ‰ VPDB) (Bowen & Revebaugh, 

2003) would precipitate calcite with the observed values at temperatures between 10 

°C and below 0 °C, which is clearly not achievable considering: A) the observed 

hydrothermal mineral assemblage, and B) water is solid at temperatures < 0 °C. 

When magmatic values for water and calcite are modelled temperatures required are 

between 50 °C and 150 °C, however a 100 % magmatic water aquifer is not likely so 

the actual temperatures are probably somewhat less than 150 °C, unless the water 

was a product of interaction with the basalt. If the water was isotopically enriched 

with O
18

 by basalt-water interaction, the high temperatures (recorded in the calcite) 

could be achieved without significant magmatic input; a 100 % meteoric aquifer is 

also not likely given the geological situation. Our favoured model is therefore that of 

a magmatic volatile enriched aquifer circulating through both the now white 

sandstone and the basalt as the water precipitating the calcite. 

  The stable isotope data illustrate a hydrothermal system (~100 °C) 

where magmatic volatiles (CO2 and H2O) are probably mixing with the pre-existing 

water in the sandstone-basalt aquifer. The heat and volatiles are sourced from basic 

igneous intrusions into the aquifer at the time of hydrothermal activity (Chapter 6 
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observations). The intrusions are probably supplying the magmatic volatiles (H2O 

and CO2) during ascent and cooling. The intrusions are also supplying heat to the 

aquifer, which is evident in the isotopic signature in the calcites away from intrusions 

(e.g. RYD, Chapter 6.). 

 

  

 

 



405 

 

 

Fig. 7.32. (A) Graphs showing dependence of δ
18

O of calcite formed in the subsurface on 

distance from dyke but no dependence on distance from lava flow.  All calcite formed 

proximal to dykes shows correlation with distance suggesting it formed while the dyke 

was cooling. Calcite formed in isolated Dune 14 shows no such correlation with the lava 

suggesting it was formed after lava cooling (or isotopes were reset). (B) No correlations 

exist with δ
13

C suggesting isotopic equilibrium. 
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Fig. 7.33. (For RYD see Chapter 6.) (A) Modelled calcite δ 
18

O values in equilibrium with 

waters of different origins. Calculated meteoric and magmatic fields are shown (using 

fractionation constants A=-3.39 and B= 2.78, O’Neil et al., 1969) as well as the expected 

meteoric water value for Namibia in the Cretaceous (green line). Max burial temp of 

130 °C has been calculated based on geothermal gradients and burial data from Raab et 

al., (2005). Although no trend with distance exists in these samples (Fig. 7.32A.) the 

trend in Fig. 7.31. suggests calcite was precipitating over a range of temperatures. The 

model, assuming meteoric-magmatic mixing suggests precipitation temperatures in the 
order of 80–100 °C. 

 

7.5.2 Petrology and geochemistry 

 

 The petrographical, mineralogical and geochemical differences between 

isolated red dunes (Type 1 diagenesis) and isolated white dunes (Type 2 diagenesis) 

and between Major Erg compartments separated by dykes have been established. 

Table 7.1 shows the statistical significance of the petrographic observations. Clay 

and calcite are always statistically different between the red and white sandstone, 



407 

 

strongly supporting the hydrothermal origin and compartmentalising hypothesis. 

Porosity, permeability and authigenic quartz were found to be statistically 

significantly different in 2/3 cases reflecting the possible further or earlier 

development of these after hydrothermal activity or before hydrothermal activity.  

Opaque minerals and COPL were only significantly different 1/3 cases, reflecting the 

continued compaction and generally local redistribution of iron oxides. 

 All of the case studies show that the white sand is distinct from the red sand 

that is separated by vertical or sub-vertical dykes. Petrographic distinctions are: 

 

•Red sandstone always has a higher abundance of quartz overgrowths for a given 

distance from the dyke or lava flow. 

 

 Quartz overgrowth formation clearly took place before dyke intrusion 

(Chapter 6) and continued after in the red sandstone case, but where the sand 

experienced Type 2 diagenesis the kaolinite prevented subsequent quartz overgrowth 

formation.  

 

•White sandstone always has more clay (kaolinite) for a given distance compared to 

red sandstone, and does not appear related to distance from the nearest igneous body. 

 

•The red sandstone always has increased abundance of opaque minerals and the 

white sandstone has had haematite grain coatings removed, which are often re-

precipitated as opaque pore-filling nodules. 
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•The white sandstone always has increased abundance of calcite compared to the red 

sandstone. 

 

•Böhmite is present in the white isolated dunes and in the Awahab white sand. 

 

•The white sandstone authigenic assemblage appears to have formed at the expense 

of detrital plagioclase (XRD, SEM and polarising microscope). 

 

•There is evidence of geochemical enrichment in calcium and magnesium in all case 

studies and evidence for depletion in sodium in all case studies. 

 

•Iron usually shows depletion in the white sand, although this is not major as a 

proportion. 

 

 Iron, despite controlling the colour is a minor component by weight % in the 

red sandstone (0.91 wt %) and reduces to 0.14 wt % in NG42 and 0.75 wt % in 

RYD06. So to achieve bleaching, only 0.77 wt % needs to be lost or redistributed 

into nodules (RYD06). 

 The petrographic observations suggest that a fluid has either been present in 

the white sandstone and absent in the red sandstone that has had the capability of 

producing the observed reactions, noticeably bleaching. 

 Chemical bleaching of sandstones is not rare; it has been documented 

elsewhere as a result of hydrocarbon migration through sandstone (Moulton, 1926; 

Surdam et al., 1993; Kirkland et al., 1995; Schӧner & Gaupp, 2005; Ma et al., 2007). 

Bleached zones have been used to indicate migration pathways of hydrocarbons and 
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to infer the existence of emptied reservoirs (Kirkland et al., 1995; Beitler et al., 

2003).  

 Where hydrocarbons have migrated through red coloured sandstones, the 

bleaching has been attributed to acidic, reducing conditions (e.g. Ma et al., 2007; 

Surdam et al., 1993). These conditions can be achieved by biologically mediated 

oxidation of CH4 to produce CO2 and simultaneous reduction of SO4
2-

 to H2S 

(Kirkland et al., 1995). In such a reaction the CO2 and H2S are achieved in conditions 

where dissolved H2S (present as HS-) reacts with ferric iron oxide (haematite) to 

form soluble ferrous iron. The HCO3
-
 reacts with Ca

2+
 and Mg

2+
 to form carbonate 

(Surdam et al., 1993; Kirkland et al., 1995). Dissolved ferrous iron and H2S would 

not necessarily react immediately to precipitate as iron minerals (e.g. pyrite) and can 

migrate in pore waters (Kirkland et al., 1995). These conditions could also be 

achieved without contemporary biological mediation, as many hydrocarbons are 

associated with H2S and CO2. Petrographic study of bleached sandstones has 

documented alteration of feldspars to clay (kaolinite) in these settings (Ma et al., 

2007). 

 The migration of hydrocarbons is an unlikely mechanism for the bleaching of 

the sandstones in the study area because (A) there is no significant source rock in the 

thin underlying Karoo sequence this far south in the Huab Basin, and (B) 

hydrocarbon residues have not been observed in the field or during subsequent 

petrographic studies (with UV light). However, the same chemical species required 

(H2S and CO2) can be generated by magmatic degassing  (e.g. Henley & Ellis, 1983; 

Rye, 2005; Delmelle & Stix, 2000) and are common in hydrothermal systems (e.g. 

White, 1957; Henley & Ellis, 1983). We infer that the fluids that passed through the 

isolated dunes of the Twyfelfontein Formation were hydrothermal in origin and were 
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enriched in magmatic gases originating from degassing mafic intrusions at depth. 

The association of white sandstone with cooling dykes has been shown in Chapter 6 

and this chapter. 

 Our observations test this hypothesis. Firstly, both red and white isolated 

dunes were deposited at similar or the same stratigraphic levels, and have identical 

detrital compositions; this is illustrated by the fact that the Type 3 diagenesis affects 

both the red and white dunes. The eogenic Type 3 diagenesis effectively ‘locked in’ 

the reduced porosity contact zone at an early stage, isolating the detrital red 

sediments from later large fluid fluxes. The oxidation/coating of the sand grains with 

haematite prior to deposition is supported by our observations of present-day 

migrating  red dunes in the Namib desert and by numerous other examples cited (e.g. 

Folk 1976 and references therein). This is can also be applied to dyke contacts, 

where both the red and white sides appear affected equally. Evidence for the Major 

Erg being deposited as a red sandstone also comes from the RYD area, where the 

RYD lava pond (Chapter 4.) has ‘locked in’ the red sand above the white, this can be 

seen in Fig. 7.23B. around the base of lava flows over the white sandstone. 

 Secondly, considering that both the red and white isolated dunes were 

deposited as red haematite coated aeolian sands, the white isolated dunes must result 

from chemical bleaching. It is proposed that this bleaching may have resulted from 

reaction of grain-coating haematite with H2S in hydrothermal groundwater, which 

has circulated through white dunes only. Haematite is reduced to form soluble 

ferrous iron that is transported away in solution (Fe2O3 depletion, Fig. 7.13. and Fig. 

7.22A.): 

 

4 Fe2O3 + H2S + 14 H
+
 ↔ 8 Fe

2+ 
+ SO4

2-
 + 8 H2O  (1) 
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 This reaction should produce pyrite as noted by Kirkland et al (1995), which 

has not been identified in the isolated white dunes. Pyrite is however present in the 

basalt and occasional haematite nodules are present in the white sandstone. These 

haematite nodules may be the oxidation product of diagenetic pyrite. If no pyrite was 

present in the white sandstone it could suggest either: (A) The Fe2+ and SO42- were 

able to migrate into the basalt prior to precipitating or (B) that any H2S within the 

aquifer rapidly reacted with the iron rich basalt prior to reducing iron in the red 

dunes. If the latter is true, the above reaction was doubtfully in operation in the white 

dunes. An alternative explanation that requires less acid and no sulphur is that of a 

hydrothermal system with abundant dissolved hydrogen. Hydrogen could be sourced 

from hot hydrothermal water interacting with basalt (Stevens & McKinley, 2000) or 

from magma degassing at depth (Arnórsson, 1986). Hydrogen and carbon dioxide 

could then bleach the sandstone: 

 

Fe2O3 + H2 
+ 2

 CO2 ↔ 2 FeCO3 + H2O  (2) 

 

 The ferrous iron carbonate would have then been transported away in solution 

(e.g. King, 1998). Based on the lack of pyrite (or other diagenetic sulphides) in the 

white sandstone, the latter reaction (2) is probably most likely. 

 Thirdly, the feldspar dissolution and mineral authigenesis observed in the 

sandstones in the study area is inferred to result from CO2 rich hydrothermal fluids. 

White dunes are almost completely devoid of plagioclase feldspar (XRD analysis) 

and show reduced modal abundances (petrographical analysis, probably 

overestimated due to kaolinite replacement pseudomorphs) and show reduced 
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strength orthoclase XRD peaks compared to red sandstone. Authigenic kaolinite, 

bӧhmite and calcite, found in the white sandstone (Type 2), are not found in the red 

sandstone (Type 1) and are suggested to have formed at the expense of the feldspars 

during reaction with CO2. Hangx & Spiers (2009) proposed and tested reactions 

between plagioclase feldspars and CO2-H2O under laboratory conditions simulating 

hydrothermal conditions. Both albite and anorthite were reacted under a variety of 

pressure and temperature conditions (200– 300 °C and 6– 18 MPa) with the aim to 

test the ideal reactions: 

 

Anorthite + CO2 + 2 H2O ↔ Calcite + Kaolinite  (2) 

 

And 

 

Albite + CO2 + H2O ↔ Dawsonite + 3 Silica (3) 

 

 Hangx & Spiers’ (2009) results failed to fully replicate the above reactions 

and instead produced clays (kaolinite and smectite or illite), böhmite and a nickel, 

iron-hydrotalcite phase derived from their reaction vessel. Dawsonite and calcite 

were not produced in Hanx & Spiers’ (2009) experiments, possibly due to sub-

critical solution state for crystal nucleation and conditions not being alkaline enough 

for dawsonite precipitation. Given sufficient time for further dissolution of 

plagioclase, carbonate phases would be anticipated (Hangx & Spiers, 2009). It is 

proposed that in the white sandstone, the Type 2 diagenesis is a natural analogue for 

the reactions actually observed by Hangx & Spiers (2009) based on the identical 

mineral reaction being observed. Calcite in the natural Type 2 white dunes is inferred 
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to be the result of trace amounts of carbonate dust (common in aeolian environments 

– pers comm Maurice Tucker). This dust provides the nuclei for calcite precipitation 

absent in Hanx & Spiers’ (2009) experiments. Longer duration of plagioclase-CO2 

reaction in our natural geological system produced enough Ca
2+

 ions, combined with 

calcium from basic volcanic rocks in the pile interacting with the fluid. This supports 

the proposed origin of the diagenetic fluids and supports timing coincident with 

emplacement and cooling of the igneous intrusions in the area. Reaction of feldspar 

to form böhmite and kaolinite was also performed by Fu et al., (2009) on perthitic 

alkali-feldspars under acidic hydrothermal conditions, who noted the albite (Na- 

feldspar) component reacted preferentially, which conforms to the observation in Fig 

7.30 and supports the Na depletion observed (Fig. 15). Sodium, once released from 

plagioclase would have gone into solution, but no authigenic minerals found contain 

significant sodium. The sodium must have therefore been transported away in the 

hydrothermal water.  

 The system depicted is a flux of heated groundwater (by intrusions) enriched 

in magmatic volatiles (e.g. CO2, H2S) moving through the sandstone. This water has 

the pre-requisite chemistry to produce all of the mineral reactions identified. 
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7.5.3 Controls on Fluid Flow 

 

Fig. 7.34. (A) GoogleEarth photo of the Big Barchan, in which the white sandstone to the 

north is clearly separated from the red sandstone to the south by a dyke. (B) Geological 

map of the image in A. 

 In the Major Erg, lateral and horizontal permeability would have been high  

(certainly with the 756 m of burial and 8.1 % COPL predicted at the time of dyke 

emplacement in Chapter 6.). Where sandstone is bleached white, it tends to be in 

compartments separated from the red sandstone by dykes. It, very clear from the 

RYD dyke white compartment and the Awahab Dyke A compartmentalisation that 

the dykes are responsible for separating red from white sandstone. This observation 

is problematic as it is likely that the bleaching occurred during dyke cooling. Why 

then is only one side affected? In fact some dykes show that both sides are affected 

(e.g. Dyke A) for a limited distance. If the bleaching came after dyke cooling 

(unlikely with the isotope evidence) the fluids must have come from below; then why 

do the dykes form compartments? 
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 In the isolated dunes, if Type 2 diagenesis is a result of fluid flux and Type 1 

diagenesis is a result of absence of this flux, it is logical to conclude that the 

enveloping lithology (lava) is responsible for compartmentalising either individual 

dunes or volumes of rock encompassing dunes. If we consider that the lava is 

completely impermeable (which is unrealistic), it would also be logical to infer that 

fracture connectivity (i.e. faults and joints) controls fluid flow and some dunes are 

simply part of this fracture network and others have not been intersected. However, 

lava piles are not impermeable (e.g. Saar & Manga, 1999), indeed, they can be major 

conductors of subsurface fluids such as in the Columbia River Basalts, where the 

major aquifers are basalt (Newcomb, 1961; see also Saar & Manga, 1999). 

Permeability in pāhoehoe lava flows is generally highest within the highly vesicular 

upper and lower crusts, the massive central lava cores are typically impermeable 

(Newcomb, 1961; Smith, 2004) and through cooling fractures (Petford, 2003). 

 The lowermost Tafelkop type lava flows exhibit a compound-braided facies 

nature and do not form thick tabular sheets (Jerram, 2002). Such lava flows have 

markedly higher crust to core ratios (e.g. Nelson et al., 2009) and, contain abundant 

vesicles and fractures. The compound nature of these Tafelkop type lavas in Dune 

Valley, combined with the visible occurrence of vesicle rich zones suggests that the 

lava was, at least, partially permeable in the horizontal direction. The stacking of 

many compound pāhoehoe lava flows with relatively permeable crusts and relatively 

impermeable cores would have resulted in a complex permeability distribution. 

However, we consider that this alone could not completely isolate sand bodies from 

groundwater flux. This hypothesis is supported by field relationships in the ‘Big 

Barchan’ Dune C (Fig. 7.34) where the isolated dune is cross–cut by a ~4 m thick 

dolerite dyke (Described in Chapter 6.). An impermeable contact zone is developed 
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where the dyke intersects the sandstone. The dyke separates red Type 1 sand from 

white Type 2 sand. The dyke follows the same ~N-S trend as most dykes in the Huab 

Outliers. Some dykes pass into the lower Tafelkop lava (e.g. Jerram et al., 1999a) 

while others fed lavas that were younger than the youngest exposed lavas in the 

region. Although it is possible that dyke pathways are weaknesses that can be re-used 

by later phases of dyke intrusion, the information from the dykes and outcrops in the 

Huab Outliers  suggests that the timing and depth of compartment formation 

(igneous intrusion) could be from as little as 300 m of burial up to the complete 

volcanic pile thickness. The calculations in Chapter 6 suggest the Awahab dykes may 

have intruded as shallow as 756 m. 

 Fractures are not well preserved in the Tafelkop basalt lavas due to the 

intense desert weathering, but fractures would have formed during cooling and 

possibly subsequent tectonic activity. N-S trending low displacement faults (cm s) 

frequently cross cut sandstone horizons in Dune Valley (Fig. 7.34), but have not been 

found separating Type 1 sand from Type 2 sand. Faults are frequently mineralised 

with calcite, and, depending on timing, may have been pathways for the flow of 

diagenetic fluids. It is therefore proposed that within the Tafelkop lavas, vertical to 

sub-vertical igneous intrusions are largely responsible for isolating red dunes from 

diagenetic fluids, with some control exerted by heterogeneous lava lithology and 

fractures. This is therefore the same control as in the lower Major Erg that is not 

interbedded with lava. 

 The conclusion is therefore that in all cases the compartmentalisation leading 

to differential diagenesis (red and white) is by basic igneous dykes cutting the 

sandstone unit (Major Erg or isolated dune). The origin of the bleaching and 

diagenesis is hydrothermal and related to Cretaceous igneous activity. The timing is 
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therefore before the sediments reached their maximum burial and further diagenesis 

occurred after igneous activity ceased (e.g. quartz overgrowths in the red sand and 

compaction in both). Unresolved at this stage is why the dykes should act as 

compartments and why the diagenetic fluid could not rise and circulate on both sides 

of the dyke.  

 There are three possible explanations: 

 

1. The compartment forming dyke intrudes, followed by more dykes on one side 

only; the hydrothermal system is then only active on one side of the dyke 

 

This is unlikely because dykes are noticed throughout the field area; some are 

not associated with bleaching.  

 

2. The aquifer prior to dyke intrusion was flowing due to a hydraulic head (as 

most unconfined aquifers e.g. Hiscock, 2005). The intrusion of the dyke 

dammed this. One side was upstream and the other downstream: this leaves 

two options that could result in our observations: 

 

a) The downstream side emptied such that little or no water remained for 

hydrothermal cooling of the dyke and hydrothermal activity. This would 

be the red side. 

b) The upstream side had a trapped body of water, isolated from the regional 

groundwater flow which concentrated magmatic volatiles and dissolution 

products in hydrothermal water (white side); while the downstream side 
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remained connected to the regional aquifer which easily cooled and 

diluted any magmatic products (red side). 

 

3. None of the above 

 

 

Fig. 7.35. Illustration of option a. (A) Groundwater flow normal before dyke intrusion. 

(B) Sill intrusion dams groundwater. (C) Resulting cooling and diagenesis regime.  
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Fig. 7.36. Illustration of option b. Two dykes are intruded (green) (A) Groundwater flow 

normal before dyke intrusion. (B) Dyke intrusion traps groundwater in compartment, 

which concentrates heat and magmatic volatiles. (C) Compartments connected to 

regional groundwater flow are kept cool and do not concentrate magmatic volatiles. 

 

7.6 Other diagenetic observations 

 

 In the course of the fieldwork, other localities were visited that showed 

interesting diagenetic effects that have not been fully investigated, but warrant 

mention, if just to stimulate further examination. Firstly, a group of outcrops exists 

south of Mikberg at 20° 38.853’S 14° 09.862’E at 834 m in a white isolated dune 
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where unusual quartz cementation is found (7.5.1). Secondly 295 m northeast of the 

quartz cementation, via a plateau showing the same cementation is another white 

isolated dune that rests on basalt, bleached white (probably talc). The white basalt 

has a high abundance of an unidentified green mineral (7.5.2). 

 Both of these case studies are interesting features that deserve reporting, even 

though no meaningful analysis has been conducted. 
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7.6.1 Intense quartz cementation 
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Fig. 7.37. Photographs of the ‘fluid flow’ locality. (A) The quartz cemented band does not 

follow any sedimentary feature and is ~ 1 m above the top basalt which has transformed 

to a white friable mineral (probably talc). (B) The eastern tip of the band, note sharp 

contact between cemented and un-cemented sandstone. (C) A detached block of the 

same. (D) Boulder below outcrop showing chaotic veining associated with this part of 

the cementation. (E PPL) Photomicrograph of sample in A. Un-cemented sand to left 

and quartz cemented to right, note sharp boundary. (F PPL) Un-cemented sandstone 

showing mouldic porosity at the expense of feldspar. Quartz overgrowths came before 
feldspar dissolution. Chlorite coats grains. (G XPL) Quartz cementation in the 

cemented band consists of syntaxial overgrowths and microcrystalline overgrowths. (H 

XPL) Overgrowths vary in size and came after (or during) feldspar dissolution.  

 The main outcrop of interest (Fig. 7.37A.) is a 3 m thick white isolated dune 

resting on intensely altered basalt. 3.5 m below the sandstone, the basalt is grey, 

fissile and resembles the normal Tafelkop compound type basalt flows of the area. 

This grades upwards into the white, altered basalt, by 2 m below the sandstone the 

originally grey basalt is brilliant white, soft and powdery. Sand-filled cracks 

penetrate into the whitened basalt up to 30 cm deep. Resting on the basalt is a high 

porosity white sandstone (appears red compared to the quartz fluid flow due to 

surface weathering in Fig 7.37A.). One metre above the basalt contact is the base of 

the white, quartz cemented band. The band has been identified as a ‘fluid flow’ in the 

past (Jerram, personal communication), although this term may not in fact be correct. 

The band is characterised at outcrop be increased strength (sampling is difficult), and 

the complete removal of detrital grains other than quartz giving the brilliant white 

colour. Little visible porosity is present. The band does not follow any observed 

sedimentary structure (Fig. 7.37A, B, C.), it cuts cross-beds in the outcrop. The upper 

and lower surfaces of the band are frequently wavy. To the east of the outcrop the 

band terminates abruptly (Fig. 7.37B.), another abrupt termination is apparent in a 

detached block 5 m to the south of the outcrop (Fig. 7.37C.). The contact between the 

quartz cemented sand and the un-cemented sand is abrupt, transitioning over ~ 500 

μm. Detached blocks in the environs of the outcrop are also frequently quartz 
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cemented and resemble the example in Fig. 7.37D, where the quartz cementation is 

equally as abrupt as in the outcrop, but veins of the same material are present.   

 In thin-section the un-cemented white sand is a diagenetic quartz arenite. 

Both primary and secondary porosity is present. All detrital feldspars have 

completely dissolved and have left a mouldic porosity, often with relic diagenetic 

rims of quartz or chlorite around the now removed feldspar grains (Fig. 7.37F.) 

Compaction appears to be the major porosity reduction mechanism. No haematite 

grain coatings are present.  

 Within the quartz cemented band, the detrital mineralogy is entirely quartz, 

like outside of the band. Mouldic porosity exists where feldspars have been removed, 

but this mouldic porosity is frequently occluded by authigenic quartz overgrowths 

from the edges of the oversized pore. Primary and secondary pores are filled with 

both microcrystalline quartz crystals growing inwards of ~ 10-30 μm (Fig. 7.37G, 

H.) or with macro crystalline quartz overgrowths that appear to only affect primary 

pores (Fig. 7.37G.). The larger quartz overgrowths frequently grow over the 

microcrystalline quartz overgrowths (Fig. 7.37G.). 

 The likely order of events was: Deposition> burial> some fluid removes 

haematite and feldspars (probably common to white isolated dunes)> selective quartz 

cementation occurs to form the band. 

 The quartz cementation does not petrographically resemble the quartzite in 

Chapter 6 that formed as a result of partial melt. No partial melt is evident at this 

locality and the quartz cementation is entirely due to precipitation from a fluid 

(presumes aqueous).  

 The problematic part of offering an interpretation of the observations is the 

isolated nature of the quartz band and how it is not related to any sedimentary 
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structure. If it was the result of fluid migration through the sandstone, it would 

follow natural permeability pathways, possibly ponding on top of the basalt, like the 

calcite at the base of the upper of the three isolated dunes (Chapter 4.2.1.2.)  or the 

zeolite at the base of the Rock Creek Road sediment interlayer (Chapter 5.3.3.). It 

simply does not appear to be controlled by gravity! Fluids were clearly migrating 

through the sandstone and basalt to achieve (a) the bleaching and (b) the feldspar 

dissolution and (c) the basalt alteration, prior to or during the quartz cementation. It 

is suggested that the normal white sand forming diagenetic fluid first came through 

which caused the bleaching, followed by another fluid that removed the alteration 

products of the feldspars (clay, calcite and böhmite) to leave the mouldic porosity. 

The quartz band could have formed at a fluid miscibility boundary between a fluid 

rich in dissolved silica and another fluid of a different composition, or density. This 

is the only mechanism that I can envisage for a band with such abrupt boundaries 

occurring with no relationship with the permeability structure of the host rock. 

 Further understanding of this outcrop would require fluid inclusion 

thermometry and stable isotope geochemistry of the sandstone (overgrowth 

separates, and detrital grains) to establish conditions during quartz authigenesis. The 

diagenesis of the basalt to form the white substance recorded is also of interest; the 

association of the quartz cementation and the white basalt is unique in the field area. 

  



425 

 

7.6.2 Green mineralisation 

 

Fig. 7.38. Photographs of the locality with the green mineralisation. (A) Facing east 

towards outcrops from the ‘fluid flow’ locality. Note a white isolated dune sitting on 

highly altered basalt. (B) Close up of base of dune contact showing basalt which is 

brown, friable and altered to clays (identified as formerly basalt by sand filled cracks). 

(C) Close-up of the unidentified green mineral that is present in the altered basalt and 

within the basal part of the white dune.  
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 The green mineralisation 295 m northeast of the quartz cemented band is at 

the same stratigraphic level and also occurs in a white isolated dune. The outcrop 

consists of ~ 2 m of highly altered basalt. The altered basalt is white within 50 cm of 

the sand contact above, and becomes brown further below, by 5 m the basalt is 

normal grey Tafelkop basalt. At outcrop the white and brown basalt is not 

recognisably igneous; identification as basalt (or formerly basalt) is based on sand 

filled cracks (common to basalt cold contacts) penetrating into the igneous material. 

Within the altered basalt are preserved many concentric bands of a rust brown 

mineral (probably an iron oxide) (Fig. 7.38A.). Both the sand and the altered basalt at 

the contact are mineralised with a green-blue mineral, which is always associated 

with fine grained light brown material. The fine grained material is probably 

diagenetic clay. This green mineral remains unidentified, SEM and EDS analysis 

were not conclusive but confirmed it contains iron and does not contain sulphur. The 

mineral is finely disseminated among various potassium-aluminium-calcium 

silicates, probably clays.  

 A similar green mineralisation exists at the base of Dune 18 white (20° 

39.340’ S 14° 08.793’ E), which also has sand-filled cracks extending into the 

underlying basalt. The basalt here is the normal grey typical of the Tafelkop basalts 

in the area. 
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7.6.3 Pore-filling cements resting on cold basalt contacts 

 

 In the Huab basin Pore-filling calcite cements resting on cold sand-basalt 

contacts have been found in three localities: 

 

1. Base of the upper of the three isolated dunes (see above and Chapter 4.2.1.2.) 

 

 Here the calcite fills primary porosity and has a sharp upper contact with the 

un-cemented red sandstone. The calcite cemented sandstone remains friable, whereas 

the calcite cemented sandstone at hot contacts is always hardened. The calcite 

cementation appears to fill the lava topography below and is suggested to be a small 

perched aquifer containing a fluid rich in the calcium and carbonate required to 

precipitate calcite. 

 

2. Base of the big barchan, sampled as sample NG63.  

 

 This calcite is similar in petrographic character to at the base of the upper 

dune. Stable isotopic analysis places it within the field of Type 2 (subsurface formed) 

calcites, plotting separately to calcites formed at hot lava-sand contacts. The 

suggestion is that it is also a perched aquifer resting on the basalt formed during 

burial. 

 

3. The base of the ‘cold contact’ locality. 
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 Twyfelfontein sandstone fills a network of cracks in underlying lava, the 

sandstone is partially cemented with calcite. It is suggested this is a later calcite 

cement, the same as the examples above. 

 

 At the Rock Creek Road locality, Washington, USA as similar cementation 

phenomena is observed. At outcrop, a cemented basal contact of the fluvial 

sandstone and the underlying lava can be observed. The cemented sandstone has a 

sharp upper contact with the un-cemented sandstone, which is level, not following 

sedimentary structure. The cemented sandstone fills lava topography, such that some 

of the lava topography extends above the limit of the cementation into the un-

cemented sandstone. Petrographic analysis (Chapter 5.) shows that this is a zeolite 

cement. It is suggested therefore that this cement is formed by a perched aquifer 

within the sandstone, resting on the basalt surface. The aquifer must have been 

sufficiently saturated and hot enough to precipitate zeolite. 

 

7.7 IMPLICATIONS AND CONCLUSIONS 

 

7.7.1 Major Erg and Isolated Dunes 

 The Major Erg is highly compartmentalised by igneous dykes. These dykes 

separate sand that has had indirect effects relating to igneous geology that are 

hydrothermal in origin. 

 The indirect diagenesis significantly reduces the reservoir quality of the 

sediment (porosity and permeability) by introducing pore-filling and pore 

throat filling authigenic minerals derived from the reaction of detrital 
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minerals with the hydrothermal waters. These directly affected volumes can 

be large, in the case of the RYD white compartment which is at least 5 km x 

3 km x 0.1 m.  

 In the case of the isolated dunes, these poorer reservoir rocks a 

connected to the fluid migration pathways, whereas the better reservoir 

quality red sandstones are not. This dichotomy should be appreciated if 

similar rocks are encountered during exploration. 

 The porosity and permeability characteristics of the Twyfelfontein 

Formation are controlled by diagenetic processes which are both caused by 

igneous intrusions and spatially controlled by igneous intrusions.  

 

 The identification of the indirectly affected sandstone allows tracing and 

proof of compartmentalisation of the Major Erg sandstone unit by dykes. 

  

 Hydrothermal fluid flow traced through inter-basalt sediments (isolated 

dunes) has also been found to be heterogeneous and controlled by igneous 

dykes. Some isolated sediment bodies being connected to the flow regime, 

and some apparently isolated. The implication is that any fluid could be 

controlled in this manner, including petroleum.  

 

 The Dune Valley and Awahab Dyke white sandstone outcrops have been 

identified as natural analogues to the proposed carbon sequestration method 

of Hangx and Spiers (2009); in our case magmatic CO2 is being sequestered. 
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 Apart from the tracing of heterogeneous hydrothermal fluid flow through the 

basalt pile, the results of Type 2 diagenesis left reduced porosity and 

permeability compartments (the white sandstone) which, do not relate to 

depositional environment or geological structure.  

 

 Volume estimates of sediment/lava interbed and sub-basalt reservoirs should 

take into account that not all sediment bodies predicted in similar situations will be 

charged with hydrocarbons, despite sharing stratigraphical location, depositional 

environment and geological structure.  

 The existence of highly cemented sandstone, not apparently related to any 

geological structure, igneous processes (lava flow emplacement, intrusion 

emplacement, or intrusion distribution) has implications for E&P as it is not 

predictable. Encountering a cemented zone such as this during drilling would give a 

false impression of the gross porosity as this study shows that they are rare and 

volumetrically minor. Nevertheless cemented bands would provide significant 

baffles within the reservoir, which the understanding of would be advantageous 

during development and production. 
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Fig. 7.39. Conceptual model of the fluid flow responsible for the bleaching of parts of the Twyfelfontein Formation. Model as described in Fig. 7.36. (A) Dolerite dykes acting as barriers to horizontal fluid flow. (B) Lateral fluid flow 

permitted through sandstone and basalt. (C) Multidirectional flow permitted through sandstone. Diagram is not to scale.
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8  

Conclusions 
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8.1 Direct effects at lava flow–substrate contacts 

 

 The early diagenetic effect on substrates common to both dry and wet 

environments is compaction, which is through mechanical grain reorganisation 

resulting from the weight of the lava and through chemical processes affecting 

detrital grains. In dry environments where the substrate is quartz dominated (e.g. 

Twyfelfontein Formation) early pressure solution dominates, which is enabled by the 

temperature increase and is probably enhanced by condensing acidic volcanic gas 

(e.g. water, carbon dioxide, chlorine, fluorine). In wet siliciclastic settings (e.g. CRB) 

compaction is through mechanical processes and pressure solution is not evident. 

This is probably due to the existence of pre-existing water, which when heated 

created positive pressure below the lava, preventing such quantity of volcanic 

volatiles passing into the substrate; the water would also cool the substrate reducing 

the chance of pressure solution taking place. Where volcaniclastic substrate is 

present (Rekjanes, SRB) both mechanical and chemical compaction processes occur. 

Volcanic glass is unstable and, where substrate pore water has elevated temperatures 

(boiling or near boiling) reacts to form clays, with compaction associated. Where 

there is enhanced basalt-water interaction, such as in pillow lavas, the volcaniclastic 

substrate shows the greatest chemical change due to acidification of the hydrothermal 

waters through interaction with the overlying pillow complex. Where the lava is 

largely impermeable (tabular flow) low degrees of basalt-water interaction occur and 

chemical effects are less during cooling. 

 Cementation has been found to be controlled by palaeoenvironment and 

substrate composition. In dry settings, where volcanic volatiles infiltrate the 
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substrate, calcite is the major early diagenetic phase. It can be shown in the Huab 

Basin using stable isotopes that the calcite precipitated when the lava was still hot 

(cooling) as a temperature gradient is recorded towards the contact. The calcite likely 

formed due to the reaction of magmatic carbon dioxide with basaltic glass and 

detrital plagioclase. Minor phases are fluorite and clay authigenesis is also apparent. 

The clays are usually non-pore-filling feldspar partial replacements although pore-

filling chlorite was encountered. In wet settings early authigenic mineralisation is 

less pervasive and is limited to the formation of clays from reactive detrital grains 

such as feldspar or volcanic glass.  

 The most important porosity reduction mechanism below lava flows is early 

compaction, with authigenesis secondary. In Chapter 5 a logarithmic relationship 

between the thickness of the lava flow and the distance until background porosity is 

regained was found (Fig. 5.25.). For a given flow thickness the distance to the 

background porosity is slightly greater for dry palaeoenvironments than for wet, 

although the confidence in this suffers from the lack of thick ponded lavas studied in 

wet settings. 

 The implications of this work are that porosity can be preserved under lava 

flows in wet settings and that the total porosity reduction is related to the thickness of 

the lava flow. In dry settings, porosity reduction at the lava-sediment contact is 

intense due to compaction and mineral authigenesis, but the distance to which 

porosity reduction persists is controlled by the lava thickness (compaction). This has 

clear implications to exploration and the prediction of hydrocarbons in place in such 

settings.  
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8.2 Direct effects at igneous intrusion–sediment contacts 

 

 Direct effects of igneous intrusions on porous, clean sandstone studied in the 

Twyfelfontein Formation are good analogues for similar geological situations in 

other locations as surface palaeoenvironment (assuming an aquifer exists) is of little 

importance (Chapter 6.). It has been shown that the effects encountered are usually 

minor, never with more than 9 m of authigenesis directly related to normal sills (Fig. 

6.30.) and never more than 4 m of authigenesis directly related to dykes (Fig. 6.32.). 

Background porosity has been calculated to return after a maximum of 20.8 m above 

the most intense ‘normal’ sill and 4 m from dykes (Fig. 6.33. and Fig. 6.31.). The 

discrepancy due to porosity loss also being influenced by increased compaction 

(even if no additional authigenic minerals are present). Rarely, for both dykes 

(6.2.1.2.) and sills (6.5.) intensification of the effects occurs due to concentration of 

magma flow (over time and possibly with magma velocity increase) in the 

subsurface magma plumbing. The impact of this on the host sandstone is intense 

pyrometamorphism, causing partial melt of the feldspar component and an increased 

zone of porosity reduction. 

 Interestingly, the thickness of sills and dykes studied does not appear to 

control the distance to background porosity (Fig. 6.33. and Fig. 6.31.). Dyke case 

studies studied all cluster around 2m–4 m until background porosity is reached, 

showing no or little correlation with dyke thickness. This is probably because outside 

of the compacted zone (e.g. Fig. 6.14A.) porosity reduction is controlled by mineral 

authigenesis which is a hydrothermal process with heat and reactive volatiles 

supplied from the cooling dyke. Stable isotope data supports the authigenic calcite 
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formed during dyke cooling (Fig. 6.20.). The dyke cooling is controlled by the 

magma flow duration, which may not be related to the dyke thickness. The same 

applies for the sills (Fig. 6. 33.), where no relationship was found between sill 

thickness and distance to background porosity (Fig. 6.33.), instead it is proposed that 

the magma flow regime within the sill controls the magnitude of the porosity 

reduction due to combined pyrometamorphism and hydrothermal processes. 

 The applicability to petroleum E & P activities of this research is in that sill 

geometries can be detected in 3 D seismic reflection data and their internal magma 

flow characteristics can be inferred (e.g. Thompson & Schofield, 2008; Schofield et 

al., 2010). Localisation of flow can therefore be mapped in the subsurface and these 

areas marked as where maximum reservoir degradation can be expected. Areas 

where long-lived magma flow is less likely can be mapped as areas where less 

reservoir degradation can be expected. Importantly, this research has shown that 

porous sandstone can exist relatively near to dyke and sill intrusions: in the case of 

dykes, reservoir quality sand occurs less than the width of the dyke from the contact 

and for sills reservoir quality sand can exist less than the thickness of the sill above 

the intrusion top contact. 

 

8.3 Indirect effects of flood basalt provinces on sedimentary rocks 

 

 Later fluid flow traced through inter-basalt sediments has been found to be 

heterogeneous and controlled by igneous geology (Fig. 7.39.). Some sediment 

bodies being connected to the flow regime, and some apparently isolated. The 
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implication is that any fluid could be controlled in this manner, including 

hydrocarbons.  

 The white (Type 2) sandstone outcrops have been identified as a natural 

analogue to the proposed carbon sequestration method of Hangx and Spiers 

(2009); in our case magmatic CO2 is being sequestered. Our findings have 

implications to the total amount of CO2 thought to have been emitted from 

large igneous provinces (e.g. The Paraná-Etendeka or the Deccan Traps). 

Such estimates should account for CO2 that is sequestrated within sediments 

in hydraulic connection with the igneous province (e.g. Caldeira & Ramoino, 

1990; Wignall, 2001; McHone, 2003) as well as within the igneous rock 

themselves. 

 Apart from the tracing of heterogeneous hydrothermal fluid flow through the 

basalt pile, the results of Type 2 (bleaching) diagenesis left reduced porosity 

and permeability compartments (the white sandstone) which, do not relate to 

depositional environment or tectonic structure. These poorer reservoir rocks 

are connected to the fluid migration pathways, whereas the better reservoir 

quality red sandstones are not. This dichotomy should be appreciated if 

similar rocks are encountered during exploration in volcanic provinces. For 

instance, development of mixed basalt-siliciclastic reservoirs (such as 

Rosebank) should not expect all stratigraphically trapped sandstone units in 

the paly to show identical diagenesis, and hence reservoir properties. 

Similarly, if exploration drilling encounters poor quality sandstone, with 

evidence of Type 2 diagenesis, it should be considered that good quality 

sandstone may exist in close proximity.  
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 Volume estimates of sediment/lava interbed reservoirs should take into 

account that not all sediment bodies predicted in similar situations will be 

charged with hydrocarbons, despite sharing stratigraphical location, 

depositional environment and geological structure. 

 Reduced permeability and porosity in hydrothermally affected sandstones, 

combined with compartmentalisation from higher permeability and porosity 

(but hydraulically isolated) sandstone within such settings is likely. It is 

suggested that, because this hydrothermal activity is a subsurface process, 

any siliciclastic sandstone containing plagioclase feldspar with subsequent 

exposure to igneous processed (dyke intrusion) has the potential to be 

affected in a similar manner. 

 

8.4 Recommendations for future work 

 

 This thesis is a first look at the effects of lava emplacement on the porosity 

and permeability of porous sediments and is the first study of the entire range of 

contact effects of igneous intrusions on porous sandstone. As a consequence it is 

very broad; it places ballpark figures on a range of processes and suggests likely 

mechanisms that could cause the observations. As such, it is a beginning rather than 

the end of research in this field. 

 Future research should focus on specific aspects highlighted in the thesis, 

elaborating on scientific methods used and collecting higher resolution datasets. I 

recommend that the effects of lava flows are tackled separately from intrusions as 

this thesis has become very large as a result of attempting to characterise both. All of 
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the techniques employed have yielded useful data and should be used in future work, 

additionally fluid inclusion thermometry should be attempted on authigenic minerals 

(quartz and calcite). It was the intention to make use of fluid inclusions in calcite in 

collaboration with Norman Oxtoby, but my time ran out. Preliminary inspection by 

Norman Oxtoby confirmed the presence of multiphase fluid inclusions within calcite 

samples from the Huab Basin. 

 Research on the effects of igneous intrusions on porous sandstone in the 

Huab Basin should also be explored in more detail. The effect of magma flow 

localisation of host sediments could potentially be used to map the internal magma 

routing within an intrusive complex given high enough resolution sampling. The 

Huab Sill complex also provides an ideal natural laboratory to study anatectic 

melting of country rocks and melt segregation (Chapter 6), for which, greater 

sampling and high precision geochemistry on melt components and detrital minerals 

would yield useful results. Given the exact nature of the country rock (protolith) 

being known, useful experimental petrology could also be performed by melting 

actual Twyfelfontein Sandstone in the laboratory and comparing with the natural 

melts. The architecture of the sill-dyke system is also ideal to study in the Huab 

Basin, specifically how dykes interact with sills. Is there a sweet spot where dykes 

bud from sills that we can map in outcrop and take to 3D seismic? 

 The final aspect of the thesis is compartmentalisation and hydrothermal fluid 

flow in the sandstone related to volcanism. This aspect opens up research avenues 

related to many fields: petroleum exploration in volcanic margins, carbon 

sequestration and hydrothermal geology. The study of the white Type 2 sandstone in 

the Twyfelfontein formation has much to give to these fields. For instance, it would 
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be instructive to take the red (Type 1) sandstone and react it in laboratory conditions 

with the hypothesised reagents (and basalt) to attempt to synthesise the observed 

bleaching and calcite precipitation. Quantification of this process with reference to 

CO2 flux could have important implication to understanding carbon flux into the 

atmosphere in igneous provinces where the CO2 must travel through sedimentary 

strata to reach the atmosphere. Experiments should also be conducted with a range of 

reservoir lithologies (e.g. different sandstones from the Faroe-Shetland basin) to 

determine how they behave during a flux of likely hydrothermal fluids. This would 

be instructive in identifying how each reservoir is affected, thereby delimiting 

prospective regions where sill intrusions are numerous and stratigraphy that is likely 

to be adversely affected. A stable isotope study into the Tafelkop type basalts in the 

Awahab Formation to determine the degree of water-rock interaction would also be 

highly informative in deciphering the hydrothermal system. 
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ABSTRACT
This work presents a new method of coarse-grained sediment 

input into a deep sedimentary basin and presents a new example 
of igneous processes controlling sedimentary facies. The Mesozoic–
Cenozoic Faroe-Shetland Basin sediments are intruded by Late 
Paleocene igneous sills and dikes. Sill intrusions are frequently 
expressed on the paleosurface as hydrothermal mounds and vents 
occurring directly above sill tips. Three-dimensional seismic data 
are used to image a Paleocene submarine mounded structure that 
has been penetrated by an exploration well drilled in A.D. 1984. 
Seismic morphology is combined with petrographic data to show 
that the mound was erupted from a central vent as a series of sedi-
ment pulses consisting of sediments disaggregated and recycled 
from depth—a submarine sediment volcano.

INTRODUCTION
The exploration well 214/28-1 was drilled in A.D. 1984 in the Faroe-

Shetland Basin (Andersen, 1988; Smallwood et al., 2004); one of the tar-
gets was the mound structure that forms the basis of this contribution. 
The predrill interpretation was a Paleocene turbidite lobe, either mounded 
or subject to differential compaction, based on A.D. 1981 vintage two-
dimensional seismic data.

The new interpretation in this paper uses recent three-dimensional 
seismic data and state-of-the-art seismic attribute computations to map the 
structure drilled in 1984. Interpretation of these three-dimensional seis-
mic data reveals multiple subcircular mounds, along a north-south trend, 
dominated by a major conical mound ~380 m high and 3000 m diameter 
(Fig. 1), which dips 0° to 3° away from the center. The mound is linked by 
a chimney structure to seismically resolvable and exploration-well–pen-
etrated transgressive dolerite sill intrusions at 0.7–3 km paleodepth below 
the seabed (now 2.5–4.7 km subsea) (Fig. 2, A–A′).

When combined with petrological interpretation of samples taken 
from a cored section within the mound, it is suggested that the mounds are 
subsea sediment volcanoes resulting from intrusion-driven disaggregation 
of lithifi ed sediment, which was subsequently transported to the surface 
where it erupted to form the conical mounds imaged.

The hydrothermal vents recognized in three dimensions in the 
Faroe-Shetland Basin are similar in morphology and petrography to 
vent complexes found in the Karoo Basin, South Africa (Jamtveit et al., 
2004; Svensen et al., 2006), suggesting that the “chimney” structures are 
probably sediment pipes and dikes. Seismic morphologies of hydrother-
mal vents studied here are identical to those reported in the Vøring and 
Møre Basins (Norway) by Planke et al. (2005) and regionally by Hansen 
(2006). The only other offshore example that has been drilled is reported 
by Svensen et al. (2003) in the Vøring Basin, which is seep carbonate–rich 
and fi ner-grained than the 214/28-1 example. Previously, hydrothermal 
mounds have been linked to global climate change (Svensen et al., 2004), 
but due to lack of offshore data their importance in linking igneous intru-
sions to offshore sedimentology has not been appreciated.

It is believed this is the fi rst time the lithological nature of a sand-
dominated submarine hydrothermal vent complex has been reported and 
combined with three-dimensional seismic methods to link gross three-
dimensional morphology, seismic facies, and petrography. This new 

understanding has implications for fl uid movements around the basin, 
and identifi es a new mechanism to rapidly deposit high-porosity clastic 
sediments in deep marine settings.

PALEOGENE INTRUSIVE IGNEOUS ACTIVITY IN THE 
FAROE-SHETLAND BASIN

The conical mound is directly above, and linked to, transgressive 
saucer-shaped sill intrusions of the Faroe-Shetland sill complex (Gibb and 
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Figure 1. A: Location map showing Block 214, major hydrocar-
bon fi elds, and location of well 214/28-1 in the Faroe-Shetland 
Basin. B: Contoured isochron (TWT) map of Horizon M (see 
Fig. 2), showing topography of three mounded features (black 
circles). Well 214/28-1 is shown as white circle. Sections A–A′ 
and B–B′ are seismic lines shown in Figure 2 (grid is UTM zone 
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Kanaris-Sotiriou, 1988; Thompson and Schofi eld, 2008). Faroe-Shetland 
Basin sills are generally accepted to be of Late Paleocene age (Ritchie 
and Hitchen, 1996; Jolley et al., 2002; Trude et al., 2003), which corre-
lates to the age of sediment the mound rests on (T40; Ebdon et al., 1995). 
The sills are dominantly dolerite of transitional mid-oceanic-ridge basalt 
(T-MORB) composition (Gibb and Kanaris-Sotiriou, 1988) resulting from 
ridge-plume interaction (Smallwood and Gill, 2002). Sills appear on three-
dimensional seismic data as high-amplitude refl ectors, usually assuming 
a saucer-shaped morphology (Thompson and Schofi eld, 2008) and can 
be seen to transgress from the Lower Cretaceous into the Paleocene sedi-
ments, although they probably exist in deeper basin fi ll. Sills intrude by a 
combination of brittle failure and host rock fl uidization (Kokelaar, 1982; 
Schofi eld et al., 2010, 2012). Importantly, the model of Schofi eld et al. 
(2010) invokes disaggregation of host rock accompanied by tensile failure 
of the overburden and fl uid boiling. Based upon interpretation of the three-
dimensional seismic data, the sills in the study area do not reach the Late 
Paleocene paleosurface, nor can they be linked with extrusive activity in 
the form of the lava fl ows seen to the west, which are fed from different 
sills of similar age (T40, T45).

SEISMIC INTERPRETATION
Three-dimensional seismic interpretation reveals that the cored 

mound is in fact the largest of a cluster of three mounds that lie along 
a north-south structure, which mirrors the extent of the sill intrusions 
below (Figs. 1B and 2 [A–A′]). The mound is connected to the intrusion 
tips by a prominent “chimney” structure that can be recognized as a ver-
tical region of disturbed seismic refl ections with apparent disruption of 
sedimentary bed refl ectors. Such chimneys have been recognized farther 
north in the Faroe-Shetland Basin (Davies et al., 2002) and interpreted as 
vertical fl uid-migration pathways linking sill tips with extrusive igneous 
mounds (e.g., hyaloclastite). Davies et al. (2002) did not have lithologi-
cal data in the form of core. In the Vøring and Møre Basins, 734 hydro-
thermal vent complexes have been identifi ed, linked to transgressive sill 
tips at paleodepths of 3–9 km, with vent complexes frequently exhibit-
ing a mounded morphology (Planke et al., 2005). Where the 214/28-1 
chimney structure reaches the base of the mound, there is an inverted 
conical structure, reminiscent of a maar crater (White and Ross, 2011). 
Above this is a tepee-shaped mound structure, which is broadly conical 
(although where the three mounds merge, forms a ridge-like structure 
trending north-south) and consists of refl ectors that dip away from a 
central point (at 0°–3°) and downlap onto the proposed paleoseabed 
refl ector (Fig. 2, B–B′). The mound is then covered by the T45 sequence 
sediments (Ebdon et al., 1995), which consist of approximately paral-
lel bedded refl ectors that initially onlap, then drape the tepee structure. 

The end of the T45 sequence and onset of T50 is recognized by a high-
amplitude trough followed by a peak.

To the east of the mound is a prograding delta system feeding deep 
marine turbidity currents; the relationship between these and the mounds 
is apparent in the east where the distal mound fl anks meet the southeast-
northwest slope (Fig. 1B). The sediments sourced from the east subse-
quently prograded onto the mound fl anks, fi lling the remaining topogra-
phy between the mound and the slope.

The mound consists of a number of lobate refl ectors that are not 
continuous around the whole circumference, suggesting pulsed sediment 
supply and channel avulsion. The fi rst circumferentially constant refl ector 
was picked (Horizon M, Fig. 2) and is inferred to be the last sediments 
deposited during hydrothermal activity or a condensed horizon (in the 
west). This refl ector drapes the structure and provides the best way of 
mapping the three-dimensional confi guration of the mounds.

Horizon M also provided a “Top Horizon” for spectral decompo-
sition. Spectral decomposition transforms the seismic data into the fre-
quency domain using the discrete Fourier transform. Appropriate fre-
quency modules (in this case, 8 Hz, 39 Hz, and 47 Hz) displayed as an 
RBG blend reveal subtle frequency response characteristics (Fig. 3). 
Spectral decomposition reveals a number of radial high-frequency (47 
Hz) dominant lobate branching features trending downslope, away from 
the center of the vent. These are interpreted as submarine density current 
deposits, fl owing down fl ank, much like turbidity currents.

The seismic morphology and spectra suggest that sediment was 
sourced at the center and the top of the mound, which prograded in all 
directions, radially forming the downlapping refl ectors onto the seafl oor. 
This is not consistent with the mound as a turbidite lobe sourced from the 
east, as originally proposed.

WELL 214/28-1 INTERPRETATION

Log Responses
My hypothesis, developed from the seismic interpretation, was 

tested with well data. Exploration well 214/28-1 penetrated the north-
west fl ank of the mound, as imaged in three dimensions. Two cores were 

2.1

3.0

4.0

2 Km

A A’
2.1

2.5

3.0

1 Km

B B’

SILLS

SILLS

MOUND

M

C

CT
(s

) 
W

T
 

T
 (

s)
W

T
 

Horizon M

Core 1 and Core 2

Paleo-seabed

2 Km

532000530000528000526000524000

6
7

8
0

0
0

0
6

7
7

8
0

0
0

6
7

7
6

0
0

0
6

7
7

4
0

0
0

V

V

V

Vent collapse
Sediment 

214/28-1

Figure 2. Left: A–A′ seismic line showing relationship between 
mound and underlying sill intrusions. C—hydrothermal chimney fea-
ture. Gamma ray trace is in black. Well 214/28-1 is thin dotted line. 
Right: B–B′ seismic line through largest mound, showing downlap 
of mound refl ectors onto paleoseafl oor and onlap of later refl ectors. 
Onlap shows that topography must have existed prior to compaction 
and burial. M—maar-like crater; C—hydrothermal chimney structure. 
Location of drill cores are shown.
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taken, and a suite of wireline logs was acquired. Based on log responses, 
the mound lithology is distinct from the surrounding sediments, having 
a higher porosity, lower density, lower sonic velocity, and lower gamma 
ray (GR) response. All logs show marked cyclicity through the mound. 
GR variability and curve shape suggests multiple fi ning-up cycles, typi-
cal of many turbidite interpretations (Shanmugam, 2000). Sills at depth, 
below the mound, show low GR and high P-wave velocities, with sonic 
velocity distributions consistent with the ideal Nelson et al. (2009) 
P-wave velocity histograms.

Core Interpretation
Two cores were cut from the mound (Core 1 and Core 2; see Appen-

dix DR1 in the GSA Data Repository1), which form a continuous length 
from 2550.26 to 2587.14 m. The core comprises sequences of granule to 
sand beds, characterized by erosive bases with rip-up clasts, fi ning up into 
horizontally bedded sands with minor cross beds and ripple lamination. 
The fi ning-upward sequences are dominantly separated by interludes of 
pelagic sedimentation characterized by silt-to-clay deposition and incor-
poration of minor carbonaceous debris. These sequences are interpreted as 
high-density Newtonian fl ows (Shanmugam, 2000).

Core 1 consists of 34 fi ning-up sequences that usually start with an 
erosive basal contact containing gravel or granules with frequent rip-up 
clasts from the subjacent layer. Coarse-grained base lithologies are poorly 
sorted and consist of subrounded quartz and abundant sedimentary and 
crystalline lithic clasts, often with visible original bedding preserved. In 
this basal lithology, dewatering structures injected from the subjacent bed 
are occasional. The fi ning-up sequence usually grades into very fi ne or 
fi ne sand before the onset of condensed pelagic sedimentation of dark gray 
silt or clay with occasional woody fragments.

The uppermost part of Core 2 consists of six fi ning-up packages, of 
the same style as in Core 1. At 2567 m, there is a prominent erosive base, 
cutting the core at a steeper angle than other erosive sequence bases. This 
is interpreted to be closer to a channel axis, whereas other sequences may 
have been more peripheral.

My interpretation is a series of downslope gravity-driven deposits 
originating at the hydrothermal vent, composed of disaggregated sedi-
ments from depth, which could have been sourced from anywhere in the 
hydrothermal column identifi ed in the three-dimensional seismic data. 
On submarine eruption, these fl ows would have moved under gravity as 
a Newtonian fl ow, much like a classical turbidity current (Shanmugam, 
2000). Between eruptive episodes, or on lobe switching, the core records 
interludes of hemipelagic sedimentation and bottom current reworking. 
Notable at hand-specimen scale is the abundance of lithic grains in the 
clastic fi ning-up sequences and the frequent coarse-grained nature of the 
sequence bases.

Petrography
Two samples were thin sectioned, SSK 7236 (2549.3 m) and SSK 

7238 (2568 m), with preparation for petrographic analysis (blue resin 
impregnation and staining for carbonates and K-feldspar).

Both samples contain abundant sedimentary and crystalline lithic 
clasts of varying compositions and shapes. Sedimentary clasts range 
from aggregates of detrital quartz to laminated siltstone up to granule size 
(Fig. 4B). Crystalline clasts consist of basic-composition crystalline frag-
ments such as plagioclase and clinopyroxene. The basic crystalline frag-
ments are composed of coarse subhedral plagioclase and clinopyroxene 
components exhibiting a holocrystalline texture, typical of an intrusive 
dolerite sill (Fig. 4A). Crystalline fragments show remarkably little weath-

ering, such as is expected for a detrital grain that has undergone subaerial 
erosion and transport. A subaerial basalt provenance for the igneous com-
ponent is unlikely, based on this texture and low degree of weathering. 
Cements were not encountered in the sections, and authigenic mineral-
ization was restricted to occasional kaolinite and minor clays (probably 
smectite) unidentifi able with light microscopy. Porosity was 12.6% and 
15% in the sections examined, which were both from the coarse-grained 
sequence bases; porosity is likely to decrease as sediments fi ne upward 
and the detrital clay component increases. In the areas sampled, compac-
tion was minor, and the main reason for porosity degradation was authi-
genic clay and moderate to poor sorting.

The detrital composition suggests that the sediment was sourced 
from multiple locations, including dolerite intrusions, recycled sandstone, 
and recycled siltstone. The immature nature and remarkable preservation 
of mafi c-composition lithic grains suggests that the sediment has not been 
part of a long transport system.

Texture
Grains are generally subangular and do not show evidence of signifi -

cant compaction. The most important textural observation is the frequent 
embayments (Figs. 4B–4D) on isolated quartz grains, suggesting they 
have been recycled from a lithifi ed sedimentary rock. The embayments 
were probably formed where the source sedimentary rock was compacted 
at grain contacts. Disaggregation of this rock has re-granulized grains, 
which were probably not highly cemented (no evidence of recycled over-
growths or calcite cements). It is not uncommon for sedimentary grains 
to be recycled in the Faroe-Shetland Basin (Jolley and Morton, 2007); 
however, the grains here preserve such angularity (Fig. 4C) that it would 
be impossible if they were ever part of a sediment transport system of 
any length, such as from the Hebrides or West Shetland Platform, which 
are thought to supply the majority of sediment into the region (Ebdon et 
al., 1995; Jolley and Morton, 2007). The embayments record a previously 
lithifi ed rock, as opposed to recording dissolution of a formerly present 
granular component, because embayments frequently occur abutting solid 
grains (Figs. 4C [1] and 4B [2]). I propose that the grain texture in these 
two samples is a result of fl uidization and disaggregation of rock at depth, 
as a consequence of intrusive igneous activity (Kokelaar, 1982) and sub-
sequent transport in hydrothermal fl uids to the surface.

1GSA Data Repository item 2013015, uninterpreted seismic lines A–A′ 
and B–B′ through hydrothermal sediment volcano (see Figure 1 for locations, 
and Figure 2 for interpretation), is available online at www.geosociety.org/pubs
/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 4. Photomicrographs from Core 1 and Core 2. A: Plagioclase-
dominated crystalline lithic clast (dolerite). B: Siltstone lithic clast 
with preserved sedimentary laminations surrounded by embayed 
quartz grains. C and D: Quartz grains with embayments indicated 
by arrows. “1” and “2” show evidence for embayments being of re-
cycled origin. plag—plagioclase; q—quartz; slt st—siltstone; sed 
lam—preserved sedimentary laminations.
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CONCLUSIONS
Petrological analysis suggests that the mound sediments were mainly 

sourced from disaggregation of sedimentary rock, and incorporate both 
sedimentary lithic grains and coarse crystalline lithic grains of a prob-
able dolerite intrusive origin. Sedimentologically, the core could suggest a 
classical turbidite-type deposit; however, when combined with the three-
dimensional seismic and petrological data, the likely origin of the mound 
is a hydrothermal sediment volcano. I propose that the mounds studied 
here are submarine equivalents to the exposed hydrothermal mounds 
in the Karoo Basin (South Africa; Jamtveit et al., 2004; Svensen et al., 
2006), and are direct equivalents to the examples in the Vøring and Møre 
Basins (Norway; Svensen et al., 2003; Planke et al., 2005; Hansen, 2006). 
Furthermore, identifi cation of this type of mound in the Faroe-Shetland 
Basin supports the host-rock fl uidization emplacement mechanism of 
Schofi eld et al. (2010) by linking sill tips with the eruptive products of 
host rock disaggregation (see also Jamtveit et al., 2004). This interpreta-
tion contrasts with the interpretation of Davies et al. (2002), who used 
three-dimensional seismic data to suggest that mounds of this nature were 
composed of volcanic material and directly fed from dikes. I conclude that 
the mounds consist of multiple radial, stacked, normally graded sediment 
deposits, erupted from a hydrothermal vent at the cone center. Importantly, 
the sediment-rich nature of the mound may be a future hydrocarbon play 
type in volcanic basins globally.
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A fast and effective method has been developed to measure total optical porosity (TOP) of blue resin-

impregnated thin sections. This utilises a macro file (jPOR.txt) for ImageJ, which can be used on digital

photomicrographs of thin sections. The method requires no specialised scientific equipment and can be

run entirely using free to download software. Digital images are acquired from blue resin-impregnated

thin sections using a conventional film scanner in the present study, though the technique can be

applied to any high resolution colour digital acquired by different means (e.g., flat bed scanning, digital

capture). Images are preprocessed using a newly developed custom 8-bit palette and analysed for

porosity in ImageJ using the simple to use jPOR macro. Our method rapidly calculates TOP for batches

of images with or without the option of user adjustment. Results are compared with conventional

methods (e.g., to point counting), and tested with several users to estimate any user variability. jPOR

provided comparable results to more time-consuming point counting, but with significantly less

‘‘counting error’’ and less interoperator variability than published point counting studies. The jPOR

macro has been integrated into a macro tool set that can be configured to be run on ImageJ start up.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The development of digital images and of computer software
that can perform a variety of image analysis techniques has
revitalised the way that we do modern petrography (e.g., Higgins,
2006; Beggan and Hamilton, 2010). Textures can be digitised and
measurements of, for example, size, shape, and sorting of constitu-
ent grains or crystals quickly acquired (e.g., Higgins and Roberge,
2007; Jerram et al., 2009). Computer models can be used to generate
virtual textures with known 3D properties to be used as reference
textures for image analysis of natural samples (e.g., Jerram, 2001;
Jerram and Cheadle, 2000; Hersum and Marsh, 2007), and even true
3D rock textures can be imaged and analysed directly with the
application of serial sectioning and X-ray CT analysis (e.g., Jerram
and Higgins 2007; Jerram et al., 2009). All of these techniques have
advanced, and in some way been developed in order to push
forward our range and types of analysis that we can perform on
geological samples, but what of the simple standard measurements
that we need to routinely undertake on our rocks?

The new developments in image analysis have the added advan-
tage in that they can potentially provide increased capacity to
undertake standard measurements, with more speed and accuracy
than traditional methods. For example, the quantification of rock
porosity from thin sections impregnated with blue epoxy resin is
ll rights reserved.

rove).
routine in geosciences, and most commonly undertaken with point
counting. Total porosity is defined as the ratio of void volume (pores)
to the bulk volume of a rock and is commonly given as a percentage;
hence, total porosity¼Vp/Vb�100, where Vp is the pore volume
and Vb is the bulk volume (Curtis, 1971). Porosity is important in
determining the reservoir properties of a rock (for both aqueous and
hydrocarbon fluids), and in studies of diagenesis, compaction, and
evolution of sediments (Curtis, 1971; Tucker, 2001). A number of
techniques exist to quantify porosity, including 2D texture measure-
ments (e.g., point counting), mercury injection, and helium injection
porosimetry. Measurements made from 2D sections, which form the
basis of this study, record the porosity as resolvable from an optical
image of the sample (total optical porosity). Point counting of thin
sections is slow, laborious, and requires specialised equipment
whereas digital image analysis is potentially superior in speed and
accuracy over point counting as millions of points can be analysed in
the sample, which leads to far superior datasets. The key to be able to
perform accurate digital porosity measurements is the ability to
generate a porosity threshold image (one which separates the
porosity voids from the rest of the objects in the image). Poor quality
data can arise from the introduction of noise and inadequate or over-
zealous preprocessing methods, increasing user bias during thres-
holding. Additionally, existing techniques can require very specific
software (e.g., costly proprietary software, microscope specific
software).

The jPOR method described in this study overcomes these
problems by streamlining and standardising colour preprocessing
by applying our newly developed custom 8-bit palette, which has

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2011.03.002
mailto:clayton.grove@durham.ac.uk
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been developed in conjunction with the jPOR macro for ImageJ
(Rasband, 2009). The newly developed macro jPOR.txt has been
designed to make quick and accurate porosity analysis available
to any researcher in possession of a personal computer and high
resolution colour digital images of blue-stained thin sections (e.g.,
those captured from thin sections mounted on slide scanners).

The jPOR macro offers instructions at each stage so that
inexperienced users with no prior image analysis experience will
find it easy to use. The method uses technically nonspecific
hardware and software which should be familiar to most com-
puter users. In this contribution we introduce the jPOR macro and
how it can be used to validate the porosity of digital photomicro-
graphs of thin sections produced using desktop scanning equip-
ment. The methodology is discussed with advice about image
preparation, the steps required for analysis, and how the macro is
installed. Results are presented for both point counting and jPOR
calculated porosity for the same samples, and in the case of the
four ‘‘fell sandstone’’ samples He injection is also tested. Inter-
operator variability is also tested on the same set of samples
analysed by 10 users; this is compared to point counting studies
where multiple operators have been evaluated. jPOR is supplied
Fig. 1. Flowchart of total optical porosity (TOP) calculation using jPOR.
with a user guide and the 8-bit paletted bitmap test files used in
this study (see Appendix) (Fig. 1).
2. Development

2.1. Principles and background

The principle behind the development of the jPOR method was
to provide a macro where a wide range of researchers would be
able to use digital image analysis to measure total optical porosity
(TOP) from blue resin-impregnated thin sections with great
accuracy and speed. To fulfil this goal the following criteria had
to be met: (1) no specialised equipment beyond standard IT
(Information Technology) facilities would be needed, (2) novice
users should generate meaningful data without specialist skills,
(3) preprocessing should be minimal and standard, (4) the
method must be more rapid and at least accurate as existing
methods of optical porosity measurement, and (5) users should
have the ability to improve and modify the method.

Nonspecialised equipment use (both software and hardware)
is of fundamental importance in making this method accessible.
Software and hardware choice has reflected this in that the entire
method can be completed using free to download software and
standard computer hardware. The use of a flat bed scanner, such
as the conventional film scanner used in this study, can be
superior to most photomicrographs captured from cameras
attached to microscopes (discussed in detail in Section 3.1). The
equipment used in the present study is listed in Table 1.

2.2. Developing the custom palette

The jPOR macro for ImageJ requires an 8-bit paletted colour
image file (a bitmap.bmp file works best in the platform-inde-
pendent version). For Petrographic Image Analysis (PIA) there
must be a direct relationship between pixel colour and feature
class (the phase of interest, in this case blue resin filling porosity);
clearly the more straightforward this relationship, the more
reliable the procedure becomes. Here we are only interested in
two feature classes (porosity and solids in the form of grains and
pore filling cements in the rock).

The classic method to measure TOP using PIA is to acquire a
digital image of a thin section using an optical microscope
combined with, for example, an analogue video camera output
(Ehrlich et al., 1984) or as technology has advanced higher
resolution digital cameras (Lamoureux and Bollmann, 2004).
Previous workers have then separated the image into red, green,
and blue components and threshold a greyscale histogram of an
individual channel (Ehrlich et al., 1984; Andriani and Walsh,
2002; Crawford and Mortensen, 2009; Dey et al., 2009). The
image can then be thresholded to a 2-bit image where the class
of interest is black and everything else is white. The drawback
of greyscale thresholding is that contrast between classes of
interest can be low, which necessitates contrast enhancement
Table 1
Equipment required to use calculate total optical porosity using jPOR method.

Hardware Software

Scanner—either slide scanner

(recommended) or flatbed scanner

capable of handling transparencies

ImageJ- free from

http://rsb.info.nih.gov/ij/

PC or Mac Image processing software—Adobe

Photoshop/Corel Photo Paint or Irfan

View (free from www.irfanview.com)

Spreadsheet to receive exported data

http://rsb.info.nih.gov/ij/
www.irfanview.com
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and shading correction (Andriani and Walsh, 2002). Noise within
grains can also pose problems. We have found noise from
intragranular texture difficult to threshold away from pore space
using greyscale images; the best results came from the red band
but nevertheless were visually inferior to the jPOR method. When
using the greyscale thresholding methods it is difficult to produce
a binary image where the pore space class is entirely thresholded
without including some intragranular noise, thus inaccurately
recording the porosity. To remove the noise component the
threshold value requires reduction, which also removes porosity;
microporosity also becomes difficult to distinguish. We have
developed a simpler and less subjective method using colour
thresholding that requires less preprocessing and removal of
noise, thereby reducing interoperator variability.

In ImageJ the normal way of thresholding a 24-bit colour
image, using built in tools, is to open it as a 24-bit image and use
the built in 8-bit colour conversion tool (Image4Type48-Bit
Colour) set to 256 colours. This image can then be thresholded.
The conversion creates an indexed 256 colour image which is not
sorted according to hue; therefore, the colours representing
specific classes are separated by colours which represent other
classes. Applying a threshold to separate two classes (e.g., all the
blues in the image from the other colours) clearly will not work as
there is no systematic order of colours belonging to individual
feature classes, as thresholding only works with a block of colours
that are numbered together in sequence. We have developed a
custom 256 colour (8-bit) palette which forces the grouping of
feature classes (e.g., blues), enabling ImageJ to threshold porosity
based on colour (hue), which can be applied to any 24-bit image
using common image editing software (Irfan View, Adobe Photo-
shop, Corel Photo Paint).

The custom 8-bit palette preprocessing method developed in
this study addresses the drawbacks of greyscale thresholding
porosity calculation methods, without the need for complicated
filtering or adjustment. jPOR 60 is a custom 256 colour palette,
sorted by hue, and designed to represent a typical blue resin-
impregnated thin section. The palette was constructed using Corel
Photo Paint X3 from digital scans of blue resin-impregnated thin
sections. The thin sections chosen to produce the pallet were:
(1) basaltic hyaloclastites from Iceland and (2) aeolian sandstone
examples from Namibia. The hyaloclastite was first chosen
because it displayed a full range of colours from blue (resin) to
dark brown (clays). The large range of naturally occurring colours
in the hyaloclastite samples used here results from a diverse
mineralogy. The nature of formation (hydroclastic fragmentation
and quenching of a lava flow entering seawater, in this case)
(Fischer and Schmincke, 1984), subsequent rapid devitrification of
glassy rims, and potentially varied burial diagenesis (clay trans-
formation and hydrothermal mineralisation) of our basaltic hya-
loclastites provided a large number of characteristic minerals to
build into the palette (volcanic glass, palagonite, illite, chlorite,
zeolite, calcite, and unaltered phenocrysts within basalt clasts,
such as plagioclase and olivine). The sandstone samples were
chosen because they had a clear representation of porosity
impregnating blue resin and comprised quartz colours absent
from the hyaloclastite samples. Corel Photo Paint was chosen for
this operation over other graphics editing programs (Adobe
Photoshop, Irfan View) because of its ability to generate an
optimised palette, which could be sorted by hue and then
manually edited by dragging and colour editing. To further aid
thresholding a blank region was built into the palette of 9 colours,
which did not naturally occur in any of the thin sections. The
finalised design comprises 59 blues, which represent blue resin
impregnation of pore space, 9 separator colours, and 188 rock
colours. Most of these blues came directly from the hyaloclastite
sample (40); additional colours (20) were added from other
impregnated samples so that there was a more complete range
to ensure an accurate capture of the porosity in the image. The
9 separator colours are all similar bright greens chosen because
they did not occur in any test images. The 188 colours represent-
ing the rock include black and white, which left 186 colours that
were customisable. Initially there were 206 colours, 20 were
taken up by the additional blues, and 2 were taken up by black
and white. The Corel Photo Paint optimised 8-bit palette auto-
matically creates a 256 colour palette based on the highest
percentage of colours in the image (Corel Help, 2005); this was
good as a starting point because the processed 8-bit image had
the same visual appearance as the 24-bit image (Fig. 2). However,
it was biased toward similar brown colours; there were few light
greys and creams that are common in other sedimentary rocks.
A proportion of the browns were therefore edited and changed
into colours sampled from an aeolian sandstone thin section from
the Twyfelfontein Formation, Namibia (Dickinson and Milliken,
1995; Jerram et al., 1999, 2000; Mountney et al., 1999). This
supplies a palette of colours that best represent the types of
colour variation we expect to see in a sedimentary thin section,
when it is represented in an 8-bit colour image. The resulting
custom palette (Fig. 2) was then saved in a variety of formats so
that any common graphics editing package can be used to apply it
to other images, including Irfan View (freeware). When the
palette is applied to an image the graphics editor will assign
pixels to the closest colour within the palette; blues will remain
blue, but not necessarily an identical blue to the 24-bit image,
likewise for other colours. While colour representation may not
be entirely faithful (false colour) class representation is faithful,
providing no dithering is set. Dithering introduces noise into the
compressed representation to visually reproduce the image in the
24-bit image. Dithering therefore does not preserve areas and
must be unselected when applying a custom 8-bit colour palette
to the 24-bit image. By forcing the colours in a thin section image
to our pallet, one can still see and assess the main sedimentary
features, and now all the colours are grouped so that an accurate
thresholding of the porosity can be realised.
3. Procedure

3.1. Procedure 1: Digital image acquisition

The aim is to produce a 24-bit colour.tiff image at high
resolution of the whole sample without distortion. Typically a
digital video camera attached to a microscope would be used to
acquire a digital image directly from the thin section (Ehrlich et al.,
1984; Tovey and Hounslow, 1995). The problem with this is the
difficulty in acquiring a low magnification image of the entire thin
section without distortion toward the edges of the frame. When
measuring relative areas across a complete 2D sample variable
distortion is detrimental to producing accurate results. Addition-
ally, depending on the grain size of the sample, a larger region of
interest may be required (e.g., whole thin section image), which
can be difficult to achieve from a microscope. We acknowledge
that sophisticated systems exist that correct for image distortion
and some examples of microscopes can capture large areas of thin
sections but for the most part these are specialised systems that
may not be available to many potential users.

In order for jPOR to conform to the ease of access and use
principle, we chose to explore the capture of thin section images
using scanning techniques. The method of DeKeyser (1999) pro-
vides a rapid, cheap, and effective method of overcoming and
circumventing the use of conventional light microscopy. The
method used a Nikon LS-2000 digital film scanner capable of a
2700 dots per inch (dpi) resolution to directly capture an image of



Fig. 2. (Ai) A 24-bit cropped colour scan of PL12. Each pixel is one of 14 million possible colours, described by RGB value. (Aii) The 24-bit PL12 RGB values plotted for each

channel; traditional methods would threshold the red histogram. (Aiii) Image of outside face of RGB cube showing R, G, B corners (courtesy of Steve Sangwine, 2010). This

wraps around cube labelled with RGB corners, white, black, and CMY (after Kang, 1997). (Bi) An 8-bit paletted image with jPOR60 palette applied. Note visual appearance

very similar to 24-bit image. (Biia) Image in Bi is composed of pixels with colours chosen from 256 colour palette; each colour has RGB value shown by red, green, and blue

lines. (Biib) Histogram of number of pixels, for each jPOR 60 colour. (Biic) Arrangement of porosity forming colours, enabling segmentation using ImageJ Threshold tool.

(Biii) A 16�16 grid of jPOR60 palette, porosity separated from rock colours, 9 green colours. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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a standard size petrographic thin section. Our method is adapted
from DeKeyser (1999) method to work with the Minolta Scan Elite
II digital film scanner capable of 2820 dpi resolution. We have also
experimented with the Epson Expression 1680 Pro flatbed scanner
which is designed to scan transparencies at 3200 dpi. The Epson
flatbed scanner produced acceptable results; the drawback was the
fixed dual-focus mechanism which made acquiring images as
sharp as the Minolta 35-mm film scanner difficult. In order for a
flat bed scanning system to work with a thin section the light
source must be able to be transmitted through the sample (not
reflected), which makes the slide scanners ideal for this type of
capture and limits the choice of multipurpose flat bed scanners to
those with a top down light source.
3.1.1. Scanning

The most straightforward and most effective method of
acquiring digital images for the jPOR porosity measurement
method is to use a conventional 35-mm film scanner such as
the Minolta Scan Elite II, which was used. Like the Nikon LS-2000
scanner used by DeKeyser (1999), the Minolta Scan Elite II comes
equipped with several adapters used for different sized slides.
This method uses the adapter designed for 35-mm negative strips
(of six exposures). The first stage is to open the adapter and place
the thin section slide face up into one of the central slots (either
‘3’ or ‘4’) with the area to be digitised aligned with the window.
The adapter is then closed and snapped shut. One slide may be
scanned at a time because the elasticity of the plastic adapter is
relied on to accommodate the glass slide. The adapter is then
loaded into the scanner which will automatically grab the adapter
after about 2.5 cm of insertion. The third stage is to acquire the
image using the software bundled with the scanner. Images
should be scanned at maximum resolution (2820 dpi) and saved
as .tiff files. Prior to completing the final scan, a preview image
should be reviewed. We have found that applying the auto focus
function and increasing the colour saturation necessary are best
for reproducing the blue epoxy filling the pore spaces. The
procedure is simply repeated for each sample, maintaining set-
tings throughout the batch, typically taking around 2 min per
sample. The functionality of the slide scanner and its software
should be considered when using different systems; the ability of
the scanner to be focused on the image is clearly a desirable to
produce sharp images for porosity analysis.
3.1.2. Photomicroscopy

Low magnification photomicrograph images can be analysed
by jPOR. The microscope should be used on the lowest magnifica-
tion available and the recorded image resolution set to the
highest setting. Photomicrographs on traditional colour transpar-
ency film or negative film can also be digitised for jPOR analysis.
When acquiring images using conventional photomicroscopy
researchers should be aware of the potential disadvantages
compared to the method outlined in Section 3.1.1), and where
possible use microscopy equipment designed to record high
resolution colour images corrected for edge distortion.
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3.2. Procedure 2: Preprocessing

Preprocessing prepares the digital image of the thin section for
the jPOR macro in ImageJ. The image is trimmed and converted to
an 8-bit paletted .bmp or .tiff; the development of the custom
palette has already been discussed in Section 2.2). Alternatively
each image can be converted to an 8-bit paletted file with its own
custom optimised palette; this will require much more user
biased thresholding within ImageJ. Successful preprocessing can
be achieved in the freeware program IrfanView as well as
common image editing programs such as Adobe Photoshop or
Corel Photo Paint, a method for all three is described:
1.
 Open image in your chosen image processing software (Corel
Photo Paint, Adobe Photoshop or IrfanView).
2.
 Crop image to make a rectangle only comprising sample (i.e.,
no slide mounting or edges).
3.
 Convert to an 8-bit paletted file using the provided custom
palette. Make sure that no dithering is set. The image may look
slightly unnatural, but the area of porosity will be preserved,
albeit with fewer colour values.
(a) In Corel Photo Paint: Image4Convert to Paletted

8-bity4Palette set custom, open, navigate to the palette
file-OK-set dithering to none-OK. Within the ‘‘Convert to
Paletted 8-bit’’ box there is the option to run this as a
batch. All files within the batch must be open.

(b) In Adobe Photoshop: Image4Mode4 Indexed Colour. Set
‘‘Palette’’ to ‘‘Custom’’ and you will be presented with a
new window—click load and navigate to the custom JPOR
palette (JPOR_60) and click load—OK this operation. Set
dither to none under Indexed Colour options and click OK.
The image will now be an 8-bit paletted file. This can be
automated by recording the action then playing it via the
Automate4Batch tool.

(c) In IrfanView: Image4Palette4 Import Palette4navigate
to palette-open.
4.
 ImageJ works best with .bmp images whereas the occasional
.tif image will fail to be displayed. Therefore we recommend
Fig. 3. Workflow using jPOR macro within ImageJ. Sc
conversion to .bmp format. This can be done as a batch in
Adobe Photoshop and Corel Photo Paint. Images within a
‘‘batch’’ must then be placed in a dedicated folder.
3.3. Procedure 3: Using jPOR to calculate porosity in ImageJ

ImageJ is a public domain image analysis software designed
to be adapted for different roles. The ‘‘freedom’’ of the ImageJ
package is the cornerstone of jPOR. Once ImageJ has been
installed, the jPOR macro requires installation. For jPOR to run
on ImageJ startup replace the file StartupMacros.txt in the ImageJ
macros folder with StartupMacros.txt distributed with jPOR.
When jPOR is installed like this, a clickable jPOR icon will appear
in the ImageJ menu bar. Alternatively jPOR can be installed after
ImageJ startup by going to Plugins4Macros4 Instally then
navigating to jPOR.txt and clicking ‘‘open.’’

To run jPOR click the jPOR icon located in the top right corner
of the ImageJ menu. This will open a window where the first file
in a batch can be located; open the first file in the batch. jPOR will
then prompt to press F1 to begin porosity measurement. Pressing
F1 automatically thresholds the image using the default values,
and displays the threshold command box where the threshold
level can be manually adjusted to refine the porosity selection.
The built in ImageJ zoom tool can be used at any stage. When the
porosity selection is satisfactory press F2, which will perform the
area calculation of the thresholded pixels and append it to the
results table. The ImageJ threshold window has a button labelled
‘‘Auto,’’ this button is not for jPOR default. jPOR then prompts to
press F3 to load the next image within the batch from where the
process is restarted (F1, F2, F3, F1., etc.). When the processing of a
batch is complete, F5 should be pressed which closes redundant
windows and copies the results table to the clipboard for pasting
into a spreadsheet. The jPOR workflow is illustrated in Figs. 3–5. It
should be noted that jPOR will work through the batch files in a
loop and so will reopen the first file that you analysed once you
have gone through all the files in the batch; you should press F5 at
this point to avoid reanalysing the same sample.
reenshots are shown for key operations.



Fig. 4. Enlarged sections (10� and 50� ) of sample in Fig. 3 showing thresholding to binary image of pore space. (A) An 8-bit unthresholded. (B) Red mask during

thresholding operation covering thresholded pixels. (C) Binary image product of threshold operation. jPOR (default) values have been set.
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4. Testing jPOR

The performance of jPOR has been evaluated against point
counting and He injection porosimetry. Additionally the series of
test images have been evaluated by 10 different users to measure
the interoperator variability of the technique. The object is to
compare point counting with jPOR to show that the latter method
is at least as precise and accurate. When point counting porosity it
can be considered as a mineral phase for the purpose of area
fraction measurements (Ehrlich et al., 1984); sources of error
during point counting and PIA are the same as those encountered
when counting mineral proportions. The sources of error are:
(1) Errors as a result of taking systematic observations of a thin
section and using for areal analysis (Chayes, 1949; Demirmen,
1971; Galehouse, 1971); this is termed ‘‘counting error’’ or
‘‘analytical error’’ (Chayes and Fairbairn, 1951) and is inversely
related to the number of points counted. In this study, we counted
500 points for each slide; 300 points were recommended as
sufficient by sedimentologists regularly using point counts (Stuart
Jones, 2010, personal communication), which agrees with the 300
or fewer points that are routinely used by other workers in
sedimentology (e.g., Purvis, 1992). Therefore 500 points comfor-
tably exceeds the general practise, making conclusions from this
test robust. The number of ‘‘points’’ counted by jPOR equals the
number of pixels in the image, therefore dramatically reduces the
analytical error as described above. The maximum image size
encountered in our test samples was 3,983,252 pixels and the
minimum was 957,269 pixels, which can be considered as the
number of points analysed in comparison to the 500 used for
point counting. (2) The error encountered when using a 2D slice
to estimate volume percentage in the hand sample, generally
termed ‘‘specimen error.’’ It exists because of hand sample
heterogeneity often not sampled in the section (Murphy, 1983)
and stereological considerations in converting 2D–3D data where
variations in the pore size distribution can affect the reproduci-
bility of true 3D from 2D data (e.g., Jerram et al., 2009; Mock and
Jerram, 2005; Morgan and Jerram, 2006). Specimen error is equal
for both point counting and PIA using jPOR in this case as the
same specimens are being tested. (3) The user introduced varia-
bility commonly termed as ‘‘operator error’’ (Demirmen, 1971) or
‘‘interoperator differences’’ (Chayes and Fairbairn, 1951). Results
obtained by multiple operators may disagree due to misidentifi-
cation of feature classes (mineral phases, including porosity),
skill of researcher, experience, degree of fatigue, psychological
state, and physical conditions (Griffiths and Rosenfeld, 1954;
Demirmen, 1972). Data depicting the interoperator variability in



Fig. 5. jPOR workflow after thresholding. 1. Results window and option to finish or continue batch. 2. Porosity measurement of second sample. 3. Results output.

Table 2
jPOR test results.

Sample Point counting (porosity%) He injection (porosity%) jPOR (porosity%)

Point count 2r counting error jPOR60 (default) 2r counting
error

PL1 0.00 0.00 – 0.01 0.00

PL3 0.10 0.28 – 0.03 0.00

PL4 2.60 1.42 – 1.28 0.02

PL5 3.00 1.53 – 2.12 0.03

PL07 2.90 1.50 – 2.23 0.03

PL08 2.30 1.34 – 1.68 0.03

PL10 9.10 2.57 – 9.23 0.06

PL11 13.60 3.07 – 15.80 0.07

PL12 15.00 3.19 – 18.96 0.08

FellSst13A-139 20.00 3.58 20.65 22.79 0.04

FellSst1A-3 16.00 3.28 15.57 14.09 0.05

FellSst286 21.10 3.65 17.39 21.76 0.05

FellSst9A-84 16.30 3.30 18.80 15.34 0.04

FellSstA 22.80 3.75 19.92 19.74 0.05

Sample jPOR 10 tested with 10 researchers (porosity%)

1 2 3 4 5 6 7 8 9 10 Mean SD

PL1 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01

PL3 1.76 0.03 0.03 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.18 0.55

PL4 7.90 1.07 1.28 6.32 1.04 1.28 1.28 1.03 1.28 1.43 2.27 2.52

PL5 1.32 2.12 2.12 2.12 1.65 2.12 2.12 1.65 2.46 2.12 1.95 0.33

PL07 1.59 2.23 2.23 0.54 1.44 2.23 2.15 1.44 1.71 2.23 1.75 0.55

PL08 1.68 1.79 1.68 1.41 1.68 1.68 1.68 1.26 1.68 1.68 1.63 0.16

PL10 9.23 8.28 9.23 6.28 9.23 9.23 9.23 7.68 7.14 9.23 8.54 1.09

PL11 13.83 15.80 15.80 15.80 14.47 15.80 15.80 14.31 16.18 15.80 15.28 0.82

PL12 16.29 18.96 18.96 18.96 19.66 16.78 17.53 16.78 16.78 18.96 18.12 1.25

FellSst13A-139 22.79 19.20 22.79 21.82 22.72 22.79 21.82 22.79 25.62 22.79 22.53 1.56

FellSst1A-3 18.10 14.09 14.09 10.34 14.02 14.09 15.51 14.09 14.09 14.09 14.23 1.88

FellSst286 20.77 17.70 21.76 21.76 21.76 21.76 21.76 21.76 20.77 21.76 21.21 1.29

FellSst9A-84 15.34 19.63 15.34 15.34 19.63 15.34 15.34 15.34 14.65 15.34 16.45 1.86

FellSstA 23.59 19.74 19.74 19.74 17.82 19.74 17.82 19.74 19.74 19.74 19.57 1.57
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point counting have been sourced from the literature (Chayes and
Fairbairn, 1951; Griffiths and Rosenfeld, 1954; Demirmen, 1972).
The interoperator variability for the jPOR method has been tested
in the present study by 10 different operators (termed Researcher
1, 2,y,10). Results are presented in Table 2 and Fig. 6.

Counting errors were calculated at the 95.4% confidence level
(2s) using the equations in Galehouse (1971, p. 396). Five
hundred points were counted for each thin section which pro-
duced counting errors of between 70% and 73.8%. Using the
Fig. 6. Compilation of results graphs. (A) Porosity vs. sample for each of the 10 resear

marker), jPOR60 (solid diamond marker). Point count (double cross marker) and mean P

errors at the 2s confidence level are for point count data. (C) Mean PIA vs. jPOR60. (D)

colour in this figure legend, the reader is referred to the web version of this article.)
same equation errors calculated for jPOR were between 70.002%
and 70.05% (smaller than graph points so not plotted). For point
counting the only variable (as 500 points were counted for each
sample) was the percentage porosity; hence the counting error
reflects that. Where zero porosity was counted the error is zero.
jPOR has two variables as the number of ‘‘points’’ counted
depends on the image size (here between 3,983,252 and
957,269) and the percentage porosity; the increase from 500
points to the large numbers of pixels within our prepared images
chers (grey dashed lines with open markers), He injection porosity (solid triangle

IA (solid square). (B) PIA vs. point count with the same symbology as (A). Counting

Point count vs. jPOR 10 researcher average. (For interpretation of the references to



Table 3
Comparison of errors between jPOR and point counting.

Point

counting

(area %)

jPOR

(area%)

Reason for error

Counting

error (2s)

2.5a 0.039a Result of counting observations being

an estimate of the true area and not the

true fraction

2.6b

Operator 3.1c 1.2a Misidentification, inconsistent

identification, mistakeserror (s) 1.2b

2.9d

Data sourced from this study and Chayes and Fairbairn (1951), Griffiths and

Rosenfeld (1954), Demirmen (1972).

a This study (10 operators, 14 thin sections, porosity).
b Chayes and Fairbairn (1951) (5 operators, 10 thin sections, quartz area).
c Griffiths and Rosenfeld (1954) (5 operators, 3 thin sections, quartz area).
d Demirmen (1972) (8 operators, 5 thin sections, limestone constituent).
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is responsible for the decrease in counting error from a maximum
of 3.8% (point count) to 0.1% (jPOR).

Tests between multiple operators showed a mean interopera-
tor variability of 3.5%. The maximum interoperator difference was
7.8%, which was on sample FellSstA; 9/14 samples had differences
between researchers less than 3.8% (within the counting error of
point counting). In this study the mean standard deviation
between operators over the 14 sections was 1.2%. For point
counting the interoperator variability is generally considerably
higher than between operators using jPOR. In the three studies we
have used from the literature (Chayes and Fairbairn, 1951;
Griffiths and Rosenfeld, 1954; Demirmen, 1972) the mean inter-
operator variability was 6.4% with a maximum of 12.2%. The
mean standard deviation between operators in the three studies
was 2.3% (Chayes and Fairbairn, 1951; Griffiths and Rosenfeld,
1954; Demirmen, 1972). Errors in porosity measurement using
point counting and jPOR are listed in Table 3. The interoperator
error is rarely identified in geological studies using point counting
and is often assumed to be negligible despite its magnitude
exceeding the often used ‘‘counting error.’’ Indeed errors are often
not quoted at all in published point counts, with common
counting values between 200 and 400 (e.g., Purvis, 1992;
Stokkendal et al., 2009; Khidir and Catuneanu, 2010).

Most jPOR results fall within the 95.4% counting error bars for
those from point counting in the same samples. The mean jPOR
value was always within the point count counting error and the
jPOR 60 (default) value was within the point count counting error
for 13/14 samples. The difference between jPOR 60 (default) and
point counting was between 0.0% and 4.0% over the 14 sample
thin sections with a mean difference of 1.4% with a standard
deviation of 1.2%. The difference between the mean jPOR porosity
value (10 researchers) and point counting ranged from 0.0% to
3.3% with a mean difference of 1.2% and a standard deviation of
1.1%. The comparison of jPOR 60 (default) with mean porosity
values of the 10 test researchers produced a good correlation
(R2
¼0.9923) with a mean difference of 0.6%. The porosity mea-

surements achieved by using jPOR can be considered as providing
the most statistically robust compared to point counting, and
considering its speed and ease of use, a vast improvement to the
way in which we routinely measure porosity from blue-stained
thin sections.
5. Conclusions

Porosity measurements using jPOR combined with the jPOR 60
custom palette make an effective, accurate, and easy method of
measuring total optical porosity. The use of the custom 8-bit
palette makes it possible to accurately threshold pore space from
rock based on hue rather than a single RGB greyscale channel.
The calculated counting errors at the 95.4% confidence level for
point counting were higher than jPOR, as expected due to the
vastly superior number of points counted with jPOR (whole
image). Both methods (jPOR and point counting) have an inherent
element of operator error defining porosity. The interoperator
variability using the jPOR method was less than point counting,
probably due to the fact that the whole slide can be viewed in
our process, making comparison within the slide possible before
a threshold decision is made; this is impossible while point
counting.

PIA calculated porosities generally agreed with point counting
(within (2s) point count counting errors), even with user varia-
bility among the 10 researchers. The mean value of the 10
researchers agreed well with the point counting values, suggest-
ing that the actual porosity of the rock was well defined by
both methods. The fully default jPOR 60 values also produced
good results compared with point counting. The similarity
between jPOR 60 (default) and the mean value of the 10 test
researchers leads to the conclusion that running jPOR 60 without
user action at the thresholding stage will produce results as
good as point counting but with a smaller counting error and if
run automatically with the default setting no operator variability
(by definition). Even if operator error is introduced by manual
adjustment during thresholding we have shown that to be less
than the operator error routinely encountered while point
counting.
6. jPOR in the future

jPOR will be continually improved by adding functionality and
responding to user reviews. In addition to the appendix attached
to this paper the latest jPOR version, palettes, and test files are
also available to download from www.geoanalysis.org and click-
ing on the jPOR tab.
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