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Abstract

The aim of this work is to investigate whether a failed MOM total hip resurfacing 

arthroplasty (THRA) can be converted to a successful total hip arthroplasty (THA) 

during partial revision surgery using an alternative bearing surface for the femoral 

bearing surface only. It is estimated that around 10% of primary hip replacements will 

fail each year and with a large number of patients receiving hip replacements at a 

younger age, as well as living longer, it is essential that the quality of options for 

revision surgery is as high as possible. 

The alternative femoral component used in this study was the Biomet Dual Mobility 

(DM) femoral bearing, comprising of a small head and a mobile bearing Vitamin-E 

infused UHMWPE liner which is completely free to move between the head and cup.  

DM bearings are suggested in this project for use during partial revision procedures 

because one of the main reasons for implant failure after revision surgery is joint 

instability and DM bearings are reported to improve joint stability and prevent 

component dislocation. 

This thesis is structured with four main results sections: 

Firstly, retrieved CoCrMo components from failed THA were analysed and the surface 

features were characterised using zygo non-contacting profilometry, optical microscopy 

and scanning electron microscopy. The average surface roughness across the explanted 

CoCrMo cups was 0.031 ± 0.03 µm with a corresponding surface skewness of -5.04 ± 

4.68 µm. Microscopy images showed a wide range of surface features including 

multidirectional scratching and carbide removal. 

Secondly, MOM biotribological studies using the Durham hip simulator were 

undertaken in order to generate physiologically scratched CoCrMo acetabular cups in 

vitro that were similar to the retrievals. This was done through two methods; one 

simulation used ISO-standard wear conditions whilst another simulation investigated 

the effect of clinically relevant third-body particles on the MOM articulation. The aim 

was to produce CoCrMo cups with the desired surface roughness from multirdirectional 

abrasive scratching combined with negative surface skewness. 
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Thirdly, DM biotribological studies using the ProSim hip simulator were then carried 

out using the previously scratched CoCrMo cups under aggressive testing conditions in 

order to fully assess the performance of the DM joint and its suitability for use in partial 

revision procedures. This project has tested a wide variety of CoCrMo cups with worn 

features similar to that seen in vivo from failed MOM bearings against DM heads and all 

vitamin-E infused UHMWPE liners have experienced very low wear rates in comparison 

to UHMWPE, from 0.23 – 5.15 mm3/MC depending on the test conditions. 

Finally, test serum from the MOM ISO-standard simulation was analysed and compared 

to digested test serum from the DM simulations. Problems encountered with isolating 

CoCr particles from the DM test serum raised important concerns about the initial test 

set up which would have to be modified in order for future work to produce clinically 

relevant wear debris. 

Overall this research has successfully increased the understanding of DM bearings for 

application in partial revision procedures and the results indicate that DM heads are 

indeed a viable solution for the conversion of a failed MOM THRA into a successful THA. 
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1. Introduction 

1.1 Motivation and aim 

The problems associated with Metal-on-Metal (MOM) hip implants have been well 

publicised in the media. Most notably DePuy issued a product recall in August 2010 

after numerous medical studies confirmed two of their metal systems failed early 

following implantation, many due to the growth of pseudotumors. With hundreds of 

thousands of hip replacement operations being carried out each year around the world 

it is imperative that the problems associated with metal implants are addressed. 

Although the wear rates are low when the implants are surgically well positioned, the 

metal wear debris being produced can cause a foreign body response resulting in 

implant failure and the need for revision surgery. The reason why the debris induces 

this response is unknown. It may be due to the size of the particles, the form of the 

metal or the quantity being produced.  

The aim of this project is to investigate whether a failed MOM resurfacing arthroplasty 

can be converted to a successful Total Hip Arthroplasty (THA) during partial revision 

surgery using an alternative bearing surface for the femoral bearing surface only.  

This is especially important because a larger number of patients are receiving hip 

replacements at a younger age, and also living longer, so the quality of options for 

revision surgery must be as high as possible. According to Kurtz et al. [1] if the historical 

growth trajectory of joint replacement surgeries continues then demand for primary 

THA among patients below sixty-five years old will account for 52% of all THAs in 2030. 

Therefore it is essential that THAs provide long-term durability, stability, function and 

relieve any pain experienced by the patient. The wear debris produced by the implant 

must also be kept to a minimum in order to reduce any foreign body reactions that 

could result in discomfort and the need for further revision surgery. 

This project tested new alternative femoral components against worn acetabular cups. 

This was in order to fully mimic the situation whereby a patient undergoing revision 

surgery receives a new femoral component, which would then articulate against the 

metal cup left in the body from their original hip replacement operation. It was hoped 
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that the alternative femoral component to be tested in this project would be proven to 

be a better option than the current metal resurfacing heads. 

The alternative femoral component used in this study was the Biomet Dual Mobility 

femoral bearing, comprising of a small CoCrMo head and a mobile bearing liner which is 

completely free to move between the CoCrMo head and CoCrMo cup. The liner was 

made from Vitamin-E infused UHMWPE. The infusion of Vitamin E has been shown to 

dramatically improve the wear properties of UHMWPE in vitro.  

The concept of dual mobility was introduced in the 1970s in an attempt to prevent 

component dislocation and provide patients with a large range of motion. It is suggested 

for employment during partial revision in this project due to joint instability being one 

of the main concerns with implant failure post-revision surgery. 

Aggressive testing conditions were employed in order to engage the outer articulation 

of the dual mobility bearing and assess the worst case wear scenario for the new 

femoral component. 

Leslie et al. [2] stated that “the combination of high inclination angle and 

microseparation resulted in greater increases in wear rate than when tested with 

increased cup angle alone, thus bringing the experimental model closer to replicating 

the higher wear rates reported clinically when edge loading occurs”.  

Therefore it is hoped that the combination of high inclination and microseparation used 

in this project will provide an adequate insight into how the dual mobility heads will 

perform clinically in two scenarios; firstly in a partial revision surgery using scratched 

CoCrMo cups and also in THA using unworn CoCrMo cups. 

To the author’s best knowledge, it is the first time that investigations into the dual 

mobility articulation under both high inclination and microseparation have been 

undertaken.  

There are concerns that the use of dual mobility joints, which have three contact areas 

that can produce wear debris, will experience increased wear over a traditional MOP 

THA. As well as this, there is very limited information on the effect of using worn cups 

with dual mobility heads. This project aims to address these concerns and increase the 

understanding of dual mobility bearings for application in partial revision procedures. 
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1.2 Organisation of thesis 

Following on from this introduction will be the literature review (Chapter 2) which 

provides a more in-depth discussion of the work that has led to this project. The results 

from this work are detailed in Chapters 3-6 and the materials and methods used in each 

section are reviewed at the start of each chapter. 

A schematic diagram showing the structure of the results chapters is provided for the 

reader in Figure 1.1.  

 

 

 

 

 

 

 

 

 

Figure 1.1: Overview of results chapters 3-6. Relevant chapter sections are shown in bold square brackets. 

Chapter 3 shows the analysis of retrieved CoCrMo components. It is essential during 

this project to ensure that the worn acetabular cups have a wear pattern similar to 

those seen in vivo, hence in this report surface analysis of retrieved acetabular cups has 

been performed and the surface features have been characterised. 

Chapter 4 details the methods used in order to generate physiologically scratched 

CoCrMo cups with wear patterns similar to those seen in the retrievals from chapter 3. 

Firstly in MOM Test 1 the MOM articulation using new CoCrMo resurfacing heads and 

cups was studied in vitro.  Secondly, wear screening with the use of a multidirectional 

pin-on-plate machine was carried out prior to MOM Test 2 in order to trial the effect of 

clinically relevant third body particle concentration on the MOM articulation. The 

Retrieval 

analysis 

[3.3] 

Wear 

screening 

[4.7] 

MOM Test 1 

[4.6] 

MOM Test 2 

[4.8] 

DM Test 1 

[5.3] 

DM Test 2 

[5.4] 

DM Test 3 

[5.5] 

Metal particle 

analysis 

[6] 



1. Introduction 

 

 Page 4 
 

particles investigated were hydroxyapatite and titanium. Thirdly, in MOM Test 2, the 

effects of the clinically relevant third body particles on the MOM articulation using new 

CoCrMo resurfacing heads and the CoCrMo cups from DM Test 2 were investigated. The 

worn cups from both simulations were assessed in comparison to the retrieved cups. 

To the author’s best knowledge, it is the first time that the effect of hydroxyapatite and 

titanium particles on the MOM interface using resurfacing joints has been examined. 

Chapter 5 shows the results from the three aggressive dual mobility (DM) simulations 

carried out using the ProSim hip simulator. DM Test 1 uses the worn cups from MOM 

Test 1 against DM heads. DM Test 2 uses previously unworn CoCrMo cups against DM 

heads. This test not only provides the cups for MOM Test 2 but also acts as a baseline for 

comparison against the two other DM studies. DM Test 3 then uses the worn cups from 

MOM Test 2 against DM heads. Both DM Test 1 and DM Test 3 simulate in vitro partial 

revision of a failed MOM resurfacing arthroplasty with DM femoral bearings. 

Chapter 6 shows the results of digesting test serum from MOM Test 1 and DM Test 1, 2 

and 3 in order to isolate and characterise metal wear particles. 

Finally, the data is discussed and concluded in Chapter 7. 

This work includes a large number of references therefore the relevant references are 

listed at the end of each chapter for the convenience of the reader. 

1.3 References 

[1] S.M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly, K.J. Bozic, Clinical Orthopaedics and 

Related Research 467 (2009) 2606-2612. 

[2] I.J. Leslie, S. Williams, G. Isaac, E. Ingham, J. Fisher, Clinical Orthopaedics and 

Related Research 467 (2009) 2259-2265. 
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2. Literature review 

2.1 Osteoarthritis and the need for total hip arthroplasty 

Total Hip Arthroplasty (THA) is the surgical replacement of the natural hip joint with a 

prosthetic hip joint and is the ultimate solution for patients suffering from 

osteoarthritis.  Osteoarthritis currently affects over 27 million people in the world and 

this figure is increasing [1]. It is a painful, degenerative joint disease that can affect any 

joint in the body, with the hip joint being the most commonly affected. The cause of 

osteoarthritis is unknown and many factors can play a part in its development including 

age, sex, weight or genetic predisposition. During osteoarthritis the cartilage present at 

the ends of bones deteriorates allowing the bones under the cartilage to rub together. 

This can result in distress due to pain, uncomfortable swelling and loss of motion.  

Walking aids can reduce the stress put on the hip but when pain is severe and 

movement is limited THA is recommended to restore normality to a patient’s everyday 

life. It is estimated that more than 600,000 hip arthroplasties are performed each year 

worldwide. THA involves the surgical resection of the head and proximal neck of the 

femur along with the removal of the acetabular cartilage and subchondral bone. An 

artificial canal is created in the proximal medullary region of the femur and a metal 

femoral prosthesis is inserted into the femoral medullary canal. An acetabular 

component is then inserted proximally into the enlarged acetabular space. 

2.2 Historical Overview 

2.2.1 Total hip arthroplasty  

There are a range of artificial hip implants on offer today.  A THA consists of three parts: 

the femoral prosthetic stem, which fits into the femur; the femoral prosthetic head, 

which replaces the head of the femur; and the acetabular prosthesis, which is the new 

hip socket (see Figure 2.1). Each part can be made from a range of materials, in a range 

of sizes, based specifically on the patient’s requirements. 
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Figure 2.1: Total hip arthroplasty, schematic modified from Quigley et al. 2010 [2]. 

The most commonly used THA implants are Metal-on-Polyethylene (MOP). This means 

that the prosthetic stem and prosthetic femoral head are made from metals such as 

titanium and cobalt chrome. The acetabular component is made from polyethylene (PE).  

Metal-on-Metal (MOM) implants are available, where each of the three components is 

manufactured from the metals listed above. This has the advantage of a volumetric rate 

of wear 60 times lower than that of PE implants [3]. However, there is controversy 

about the effects of metal debris build up in the body.  This will be discussed later in 

greater detail.  

Ceramic-on-Ceramic (COC) implants are also available, with wear rates lower than 

MOM, but there is no long-term data obtainable on the success of these implants over 

time. 

Philip Wiles was reported to have performed the first THA in 1938. It was a MOM 

prosthesis made from stainless steel that was attached to the bone by “carpentry” with 

screws. In 1960, John Charnley pioneered the use of polymethylmethacrylate (PMMA) 

in joint replacement by using it as cement with which to hold arthroplasty components 

in place.  
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Early stainless steel prosthetics would loosen or 

fracture within a year of implantation. This led to 

the introduction of the McKee-Farrar prosthesis in 

the 1960s [4], see Figure 2.2. The whole prosthesis 

was made of cobalt chrome alloy and employed 

cement fixation. This design was popular up until 

the 1970s when the Charnley MOP articulation 

gained favour due to increasing concern about the 

effect of long-term exposure to metal debris. 

However a follow-up study carried out by Zahiri et 

al. [5] argued that failure of the implants due to 

aseptic loosening were a result of the femoral stem 

design, biomechanics and surgical implantation 

technique.  

The Charnley MOP articulation continued to gain popularity with the acetabular 

component made from Ultra High Molecular Weight Polyethylene (UHMWPE).  

Charnley’s initial designs were made from Polytetrafluoroethylene (PTFE).  Although 

the follow up after ten months in vivo was encouraging [6], over 99% had to be revised 

within two to three years due to severe wear and inflammatory response [7]. The 

replacement of PTFE with UHMWPE is described in Charnley’s biography [8]: 

“After running day and night for three weeks, this new material, which very few 

people in engineering circles had heard about at that time, had not worn as much 

as PTFE would have worn in 24 hours under the same conditions. There was no 

doubt about it, ‘we were on’. “ 

The chemical structures for both PTFE and polyethylene are shown in Figure 2.3. 

Figure 2.2: McKee-Farrar prosthesis, 
McKee et al. 1966 [4]. 
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Figure 2.3: Chemical structures of polytetrafluoroethylene and polyethylene. 

After the promising wear results from UHMWPE, Charnley then went on to carry out 

personal biocompatibility tests by implanting both UHMWPE and PTFE into his own 

thigh [9].  He was convinced that UHMWPE wear debris was biocompatible hence he 

began to implant UHMWPE into patients in 1962 but withheld from publishing his 

experience with UHMWPE until the 1970s [7]. 

Publications throughout the 1980s [10; 11] reported that the clinical performance of the 

MOM McKee-Farrar prosthesis was in fact comparable to that of the newly popular MOP 

Charnley design. This led to the development of a second generation of MOM implants 

to address the design problems associated with that of the earlier articulation. 

CoCrMo alloys are currently the most commonly used MOM bearings in orthopaedic 

applications due to their high wear resistance as well as their high resistance to 

corrosion [12]. The chemical composition for such alloys is defined by the American 

Society for Testing and Materials (ASTM) standards and this project will focus on the 

use of ASTM F75, as shown in Table 2.1.  
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Table 2.1: Chemical composition for ASTM F75 CoCrMo alloy. 

Element Weight % 

Chromium, Cr 27-30 

Molybdenum, Mo 5-7 

Nickel, Ni <0.5 

Iron, Fe <0.75 

Carbon, C <0.35 

Silicone, Si <1 

Manganese, Mn <1 

Tungsten, W <0.2 

Phosphorus, P <0.02 

Sulphur, S <0.01 

Nitrogen, N <0.25 

Aluminium, Al <0.1 

Titanium, Ti <0.1 

Boron, B <0.01 

Cobalt, Co Balance 

It is the presence of chromium in the alloy that allows a chromium-rich passive oxide 

layer, typically 1-4 nm thick, to spontaneously form on the surface of the metal bearing 

which provides good corrosion resistance [12-15]. It is this passive oxide layer that is 

the main reason for the alloy being biocompatible [12]. Molybdenum also helps to 

improve the mechanical properties of the alloy by providing good localised corrosion 

resistance [13]. 

CoCrMo alloys can be either ‘high carbon’ or ‘low carbon’ depending on the amount of 

carbon added during the casting process. High carbon alloys typically contain 0.15-0.25 

wt% carbon whereas low carbon alloys usually have <0.06 wt% carbon [13]. 

High carbon CoCrMo alloys have been proven to have lower wear rates and superior 

corrosion resistance in comparison to low carbon alloys [13; 16]. The increase in wt% 

of carbon has been shown to favour the formation of carbides [17; 18].  
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The carbide microstructure and therefore the mechanical and tribological properties of 

CoCrMo alloys can not only differ with variation in the carbon content of the alloy but 

also with variation in the conditions of manufacture and any subsequent thermal 

treatments [18-23]. 

This project utilizes as-cast high carbon CoCrMo bearings. As-cast CoCrMo has a 

dendritic structure with M23C6 carbides present in the matrix [24]. Carbides are rich in 

chromium and molybdenum and have a large, irregular and blocky morphology within 

the grains and at the grain boundaries [21]. These carbides have the same hardness as 

alumina ceramic and confer wear resistance on the metal bearing surface [25]. 

During in vitro mechanical wear testing, CoCrMo bearings are reported to exhibit low 

wear rates typically below 1 mm3/MC [26; 27]. However under adverse loading of the 

femoral head onto the rim of the cup, the wear rate of MOM bearings has been seen to 

increase dramatically by between 10 and 100 fold [27-29]. This is a huge concern 

affecting the consideration of metal bearings for continued use in orthopaedic 

applications as it can lead to adverse tissue reactions and joint failure. This is discussed 

further in chapter section 2.5.1. 

Today, CoCrMo femoral heads articulating against UHMWPE cups are considered to be 

the ‘gold standard’ in THA with a clinical track record for MOP bearings spanning the 

last fifty years. However, as with metal bearings, UHMWPE has also been developed and 

the wear properties have been improved over the last five decades. 

In order to produce UHMWPE acetabular cups, ethylene gas must be polymerised to 

form UHMWPE in the form of a resin powder which is then consolidated into sheets or 

rods and machined into its final shape, as shown in  [30].  
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Figure 2.4: Production of UHMWPE acetabular cups. A: UHMWPE resin powder. B: Semi-finished UHMWPE 
rods that have been consolidated from the resin powder. C: Machining of the UHMWPE rods on a lathe. D: 

UHMWPE acetabular cups after machining. Images from Kurtz et al. 2009 [30]. 

Once the UHMWPE acetabular components are complete they must be packaged and 

sterilised prior to distribution. Historically, Charnley acetabular cups were 

commercially provided by Thackray from 1968 and were gamma irradiated with 25 kGy 

of gamma radiation in the presence of air [31].  

Gamma radiation has been proven to induce cross-linking in UHMWPE. Ionising 

radiation induces radiolytic cleavage of the polymer chains in UHMWPE, forming 

carbon and hydrogen free radicals. Recombination reactions along the backbone are 

favoured which limits the polymer chains breaking apart. The remaining free radicals 

then recombine with free radicals on different chains to form cross-links [32].  

By the 1990s the dose of gamma radiation had increased by many manufacturers to 

between 50 and 100 kGy in a reduced oxygen environment [33] and highly cross-linked 
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UHMWPE was developed. UHMWPE that has been irradiated with the historical 

sterilization dose of 25 to 40 kGy is referred to as ‘conventional’ UHMWPE whereas 

UHMWPE that has been irradiated with a dose greater than 40 kGy is referred to as 

‘highly cross-linked’. 

Gamma radiation is now carried out in a reduced oxygen environment because 

radiation in the presence of air was shown to cause oxidative degradation of the 

polymer, both in vitro prior to implantation as well as in vivo after implantation. This 

has been shown to increase the wear rate [34]. Delamination, cracking or rim fracture 

may also occur as oxidation is concentrated in the subsurface areas [35]. A diagram 

explaining how gamma radiation can break carbon-carbon or carbon-hydrogen bonds, 

leading to chain scission or immediate oxidation in the presence of oxygen is shown in 

Figure 2.5 [36]. As a result of this, alternative sterilisation techniques using ethylene 

oxide or gas plasma are preferred by some manufacturers [37]. However these 

techniques do not induce cross-linking within UHMWPE and this affect has been shown 

to substantially lower wear rates in vitro when articulating against smooth femoral 

heads [38-40].  

 

Figure 2.5: UHMWPE undergoing gamma radiation, from Campbell et al. 2004 [36]. 

During in vitro mechanical testing of MOP bearings under standard walking conditions, 

the wear rate of 28 mm acetabular cups is reported to range between 30-40 mm3/MC 

[41; 42]. This means that these bearings can reach the cumulative threshold for 
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osteolysis of 500 mm3 [43] in 10-15 years. Wear particle induced osteolysis has been 

the number one failure mode in MOP bearings and is the biggest problem affecting the 

long-term survivorship of polyethylene [44]. The in vivo effect of polyethylene wear 

debris is discussed further in chapter section 2.5.1. Metal wear from the femoral head in 

MOP bearings is often assumed to be negligible in comparison to polyethylene wear 

[45]. 

With highly cross-linked MOP bearings the wear rate is reported to lie between 5 and 

10 mm3/MC for 28 mm and 36 mm acetabular cups respectively [46]. This is a 

substantial reduction in comparison to conventional UHMWPE. 

However, in any form of irradiated UHMWPE, breaking of the C-H bonds results in 

carbon free radicals [47]. In the presence of oxygen, O2 will react with the carbon free 

radicals to form peroxy free radicals which can then abstract a hydrogen atom from 

other polyethylene chains [48; 49]. This then creates more carbon free radicals which 

spur on the reaction with oxygen. Peroxy free radicals can also react with hydrogen to 

form hydroperoxides, Figure 2.6, which are unstable and degrade into oxidation 

products like ketones, esters and acids [50-52]. 

  

Figure 2.6: Structure of hydroperoxides. 

Their formation causes shortening of the overall chain length and hence the molecular 

weight of polyethylene is reduced. Any reduction in molecular weight means a 

reduction in mechanical properties of the polyethylene and hence an increase in wear 

rate [53; 54]. This problem with oxidative degradation has initiated the addition of 

antioxidants to UHMWPE.  

Vitamin E is the most abundant and effective chain-breaking antioxidant present in the 

human body [55]. α-tocopherol is the most relevant form for human physiology since it 

accounts for the majority of vitamin E present in human tissues [56].  



2. Literature review 
 

 Page 14 
 

In the presence of the powerful antioxidant vitamin E, the peroxy free radicals abstract 

a hydrogen atom from vitamin E instead, Figure 2.7, without the production of any new 

carbon free radicals. Hence the oxidation process which weakens the polyethylene is 

hindered and the wear is reduced [57]. 

 

Figure 2.7: α-tocopherol free radical. 

This project utilizes Biomet ‘E1’ polymer bearings. E1 is made from the same 

isostatically compressed moulded polyethylene barstock as Biomet’s ArCom. The bars 

are then gamma ray irradiated to induce a high level of cross-linking. Vitamin E is 

subsequently infused into the highly crosslinked polyethylene to neutralise residual 

free radicals present after irradiation. The production process is summarised in Figure 

2.8. 
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Figure 2.8: Biomet E1 production process. 

ArCom was the first polyethylene to be packaged in Argon and undergo Compression 

moulding manufacturing techniques, hence the name. The infusion of vitamin E into 

ArCom is reported to provide outstanding oxidation resistance whilst offering similar 

mechanical strength and very low wear rates below 1 mm3/MC [58]. 

E1 was introduced to the orthopaedic market in 2010 and long term clinical studies 

over the next twenty years will be needed in order to determine any differences in 

survivorship for these bearings in comparison to conventional and highly cross-linked 

UHMWPE under normal walking conditions. 

2.2.2 Total hip resurfacing arthroplasty 

Total Hip Resurfacing Arthroplasty (THRA) is a bone conserving alternative to THA. 

THA involves the complete removal of the head of the femur and insertion of a 

prosthetic stem into the femoral medullary canal whereas THRA involves reshaping of 

the femoral head and placing a metal shell over the top of the femur instead.  This saves 

both the femoral head and neck without any need to enter the medullary canal.  

Parts are infused with Vitamin E and then 

machined into the final geometry, cleaned, 

packaged and gamma sterilised 

ArCom barstock is machined into parts, 

packaged and gamma irradiated to 100 kGy 

ArCom barstock is manufactured in a hot-

isostatic compression moulding process 
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Figure 2.9: Comparison of A: THA and B: THRA in terms of femoral bone conservation [Image modified from 
http://www.mcminncentre.co.uk/birmingham-hip-resurfacing.html]. 

As well as preserving bone stock, the procedure is reported to provide the patient with 

greater stability and decreased risk of dislocation due to the larger femoral head size 

[59-61]. It has been introduced as a solution for younger patients with end-stage hip 

arthritis due to the ease of revision if necessary later in life.  

Currently only metallic bearings can be manufactured with sufficient strength to 

provide THRAs capable of long-term clinical success. Early attempts at hip resurfacing 

using polyethylene cups were criticised because the procedure had to accommodate a 

thick UHMWPE cup articulating against a large diameter femoral head and hence was 

not bone conserving on the acetabular side [62]. 

Although attempts to treat osteoarthritic hips without resecting the femoral head and 

neck have been made since the late 1940s [63], it is only since new generation MOM 

THRA were developed in 1990s that their popularity has increased [64]. 

THRA became widely criticised by the media after data published from the UK Joint 

Registry indicated that the revision rates for the DePuy ASR resurfacing system within 5 

years were approximately 13%. This led DePuy to issue a product recall on 24 August 

2010 affecting over 93,000 patients [65]. The revision rates for the main hip resurfacing 

brands, as published by the UK Joint Registry 2012 [66], are given in Table 2.2 with 

images of the corresponding resurfacing systems provided in Figure 2.10. 
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Table 2.2: Revision rates (all-cause) for main hip resurfacing brands (95% confidence intervals) as published 
by the UK Joint Registry 2012 [66]. 

 

 

 

Figure 2.10: Commonly used resurfacing systems in the UK, as described in Table 2.2. 

The reasons why the DePuy ASR failure rate has been so high have been widely 

investigated [67-70]. Penny et al. [68] concluded that the ASR femoral component 

achieves initial stability and that early migration is not the mode of failure. Langton et 

al. [70] suggested that wear at the trunion-taper interface is an important factor in the 

development of adverse tissue reactions and subsequent joint failure.  

Underwood et al. [67] compared sixty-six ASR components with sixty-four BHR 

components. As can be seen in Table 2.2, the BHR has a much lower rate of revision 
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after seven years in comparison to the ASR joint. Underwood found a significantly 

increased occurrence of edge loading (p<0.005) for the ASR components which implied 

that the ASR design is more sensitive to suboptimal positioning than the BHR design. 

Suboptimal positioning leads to increased wear rates and increased metal wear debris 

release into the joint cavity. The in vivo reaction to metal wear debris is discussed in 

chapter section 2.5.1. 

2.2.3 Dual mobility THA  

The concept of dual mobility was introduced by Professor G. Bousquet in 1976 in an 

attempt to prevent component dislocation [71].  

The concept combines the fundamental principle established by Sir J. Charnley, stating 

how a small 22 mm head articulating against a polyethylene liner has a low risk of 

failure due to wear [72], with that of McKee stating how the use of large diameter 

bearings minimises the risk of subluxation. 

The small metal head is designed to press-fit in to the polyethylene liner and cannot be 

removed unless it is levered out.  The larger diameter liner then requires the head to 

travel more distance before it can ‘jump’ out of the metal cup and hence the design 

offers a greater stability, resistance to subluxation and intra-prosthetic dislocation [73]. 

A screenshot taken from a video produced by Biomet to demonstrate the dual mobility 

concept is shown in Figure 2.11 and has been labelled to highlight the three bearings 

which together form a dual mobility THA.  
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Figure 2.11: Labelled diagram of a dual mobility total hip arthroplasty, modified from video supplied by 
Biomet. 

The dual mobility concept also has the benefit of giving a large range of motion. The first 

motion occurs between the small metal head and the concave surface of the 

polyethylene liner until the neck of the femoral stem comes into contact with the liner. 

This is also known as the ‘inner articulation’. 

The neck of the femoral stem will only contact the polyethylene liner when a larger 

range of motion is required and a secondary motion then occurs between the 

polyethylene liner and the metal shell [74]. This is known as the ‘outer articulation’. 

The difference between the inner and outer articulation is summarised in Figure 2.12. 

 

Figure 2.12: Diagram showing the inner and outer articulation for dual mobility total hip arthroplasty. 
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Interest in dual mobility bearings is currently increasing due to the failure of new-

generation MOM THRA’s which has led to the need for revision surgery.  

Springer et al. [75] found that the most common cause of failure after revision surgery is 

joint instability and this accounts for 35% of all failed revision THAs. It is estimated that 

between 7-20% of revision THAs will dislocate [76; 77]. 

Dual mobility heads were designed in order to prevent component dislocation and have 

been proven to reduce the risk of dislocation in THA [78; 79]. It has also been shown 

that they prevent dislocation following revision THA [80-83]. Hence dual mobility 

bearings are investigated in this project as a solution for partial revision THA.  

2.3 In vitro testing of orthopaedic biomaterials used in THA and THRA 

There are a large range of different testing methods available which can be utilised in 

order to study the tribology of different orthopaedic biomaterials. Initially a relatively 

simple and inexpensive wear screening such as a pin-on-plate test is carried out in 

order to assess the wear properties of the materials under investigation. If the results 

are promising then hip simulator studies are carried out in order to further assess the 

implants with testing conditions more similar to that seen in vivo.  

Test results from different laboratories do not always agree with each other because the 

test conditions used in each can vary in terms of lubricant, load profile, inclination 

angle, bearing diameter, clearance, microseparation and test duration. 

2.3.1 Wear screening 

Biomaterials are initially assessed for use in orthopaedic applications using wear 

screening devices. Different laboratories have slight variations in the devices they use 

for wear screening, see Figure 2.13. All tests involve simplified components, rather than 

actual prosthetic joints and provide information exclusively on the intrinsic features of 

the materials under investigation [84]. 
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Figure 2.13: Examples of wear screening devices, Affatato et al. 2008 [84]. 

Within Durham University the bioengineering group use pin-on-plate machines for 

wear screening which provide both reciprocation and rotational motion. The machine 

used during this project is described in detail in section 3.3. Similar machines are also in 

use in other institutions [23; 85]. 

Pin-on-plate machines do not aim to recreate the exact loading and motions 

experienced in the body. However, the reciprocating and rotational motion that the 

materials incur during the tests are comparable contact speeds and stresses to those 

found in vivo. Hence they are a relatively fast and inexpensive method for ranking 

different materials [86; 87]. 

Wear screening is an important first step in evaluating biomaterials. After wear 

screening has been carried out, further testing is then required in order to determine 

the likely clinical performance of the bearing combination.  This is achieved through the 

use of hip simulators and biocompatibility studies in order to determine the effects that 

the wear debris may have in vivo.  

Hip simulators and the effect of wear debris from THA are discussed in greater detail in 

sections 2.3.2 and 2.5 respectively. 
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2.3.2 The human gait cycle and hip simulators  

A hip simulator is defined to be: 

“any device which, under appropriate test conditions, causes a prosthesis to wear 

in a manner substantially equivalent to that which it would experience in typical 

clinical use in a patient. In order to accomplish this, a hip joint wear simulator will 

typically apply a set of motions and loads and a lubricant that, in combination, 

create tribological conditions comparable, but not necessarily identical, to those 

occurring in vivo” [88]. 

To understand hip simulator motion it is first important to consider the human gait 

cycle as seen in Figure 2.14 [89]. 

 

Figure 2.14: The human gait cycle, Zajac et al. 2003 [89]. 

Each cycle involves a period of ‘stance’ when the foot is in contact with the ground. This 

is followed by a ‘swing phase’ where the foot is in contact with the air and the limbs 

exchange their weight-bearing roles. The cycle ends when the swing foot contacts the 

floor, this is known as ‘heel strike’. From 30° flexion at initial contact, the hip 

progressively extends. The maximum extension is accomplished at the end of the 

terminal stance [90]. 

The hip joint allows motion in three planes: the sagittal plane, the coronal plane and the 

transverse plane, see Figure 2.15 [91]. Abduction is the movement of the limb away 

from the sagittal plane while adduction is the movement towards the sagittal plane. 

Internal rotation is the rotation towards the centre of the body (medial) while external 

Time (s) 
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rotation is the rotation away from the centre of the body (lateral). In the body, the lower 

gluteus maximus and adductor magnus serve as the primary extensor muscles. The 

hamstrings also have a role in extension. Abductor support of the hip is through three 

muscles: gluteus medius-minimus complex; upper gluteus maximus and tensor fascia 

lata. Flexion of the hip is provided by the iliacus, adductor longus, rectus femoris, 

sartorius and gracilis. The adductor magnus, adductor longus and gracilis are the three 

hip adductors. 

 

Figure 2.15: Transverse, sagittal and coronal planes of the body, Applegate et al. 2010 [91]. 

 

In order to determine the loading profile during normal gait, Paul [92] measured the 

muscle activity during walking from sixteen young and healthy adults. Markers placed 

on the skin of each person were used to measure movement with cinematic film whilst a 

force plate on the floor measured the ground to foot forces. The loading profile 

established in this work is now the most commonly used loading profile for hip 

simulator testing. 



2. Literature review 
 

 Page 24 
 

There are a wide variety of hip simulators employed worldwide which differ from each 

other in many parameters.  

Table 2.3 gives a summary of different hip simulators available for use today. Only 

multi-station simulators are described because they are able to perform multivariate 

analyses with greater confidence within a single test [93].    
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Table 2.3: Description of different hip simulators available. A/A: Abduction/Adduction, F/E: Flexion/Extension, I/E: Internal/External rotation. 

Hip Simulator Degrees of Freedom Load Data Test Lubricant No. of Test 

Stations 

Reference 

Durham Mark II 

(custom-made) 

F/E: + 30° to – 10° 

I/E: ± 10° 

Type: pneumatic 

Profile: square wave 

Lmax: 2500 N, Lmin: 100 N 

Frequency: 1Hz 

25 % newborn  

calf serum 

Five [94; 95] 

Endolab 

(commercial) 

A/A: + 7° to – 4° 

F/E: + 25° to – 4° 

I/E: +2° to – 11° 

Type: hydraulic 

Profile: Paul 

Lmax: 3000 N, Lmin: 300 N 

Frequency: 1Hz 

25 % newborn 

 calf/bovine serum 

 

Six [96-98] 

HUT-4 

(Helsinki University 

of Technology, 

custom-made) 

A/A: ± 6° 

F/E: ± 23° 

Type: pneumatic 

Profile: Paul 

Lmax: 2000 N, Lmin: 400 N 

Frequency: 1 Hz 

50 % calf serum Twelve [99] 

Leeds Mark II 

(custom-made) 

F/E: +30° to – 15° 

I/E: ± 10° 

Type: pneumatic 

Profile: Paul 

Lmax: 3000 N, Lmin: 0 N 

Frequency: 1 Hz 

25 % bovine serum Six [100-102] 
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Table 2.3 (cont.) 

Hip Simulator Degrees of Freedom Load Data Test Lubricant No. of Test 

Stations 

Reference 

MTS-Bionix 

(commercial) 

Bi-axial Rocking 

Motion, ± 22.5° 

Type: Hydraulic 

Profile: Paul 

Lmax: 2450 N, Lmin: 50 N 

Frequency: 1Hz 

50 % calf serum Twelve [103; 104] 

ProSim 

(commercial) 

F/E: +30° to – 15° 

I/E: ± 10° 

Type: pneumatic 

Profile: Paul 

Lmax: 3000 N, Lmin: 100N 

Frequency: 1Hz 

25 % newborn  

calf serum 

Ten [28; 41] 

Shore Western 

(commercial) 

Bi-axial Rocking 

Motion, ± 22.5° 

Type:  Hydraulic 

Profile: Sinusoidal 

Lmax: 2450 N, Lmin: 150 N 

Frequency: 1.1 Hz 

Bovine 

calf serum 

 

Twelve [105-108] 
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Images from four of the simulators described in Table 2.3 can be seen in Figure 2.16. 

The in vitro mechanical testing of orthopaedic implants carried out during this project 

utilised the Durham Mark II hip simulator and the ProSim hip simulator. Calonius et al. 

[109] showed both of these simulators to produce wear vectors comparable to ISO-

14242-1. Images of the aforementioned simulators are provided later in Chapter 4. ISO 

14242-1 is provided in the Appendix. The standard specifies the relative angular 

movement between articulating components, the pattern of the applied force, speed and 

duration of testing for wear testing of hip joint prosthesis. Figure 2.17 shows the 

variation with time of angular movement to be applied to the femoral test specimen in 

accordance with ISO 14242-1. 

 

Figure 2.16: Images of simulators used for in vitro mechanical testing of orthopaedic implants. A: MTS-Bionix 
Hip Simulator, B: Endolab Hip Simulator, C: Leeds Mark II Hip Simulator, D: Shore Western Hip Simulator. 



2. Literature review 
 

 Page 28 
 

 

Figure 2.17: Variation with time of angular movement to be applied to the femoral test specimen, ISO 14242-
1. 

The MTS-Bionix and Shore Western hip simulators both have a bi-axial rocking motion 

as mentioned in Table 2.3. The acetabular cup is fixed in the anatomical position above 

the head which is mounted on a rotating shaft set at an angle to a rotating block. A single 

vertical load is applied and as the block rotates the head rotates about two axes to 

generate biaxial motion at the articulating interface. 

The remainder of the hip simulators described in Table 2.3 have either two or three 

degrees of freedom. Whilst a hip simulator with A/A, F/E and I/E will provide the most 

accurate wear conditions in comparison to those seen physiologically, the resulting 

simulators are complex and costly. Barbour et al. [100] established that simplified hip 
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simulators with one axis of load and two axes of rotation (F/E and I/E) provided similar 

wear rates so long as the two axes of rotation were modified to be 90° out of phase. 

Smith et al. [110] verified that the simplified square loading profile utilised by the 

Durham Mark II hip simulator provided similar wear data to that produced by a 

simulator following a Paul loading profile and was also more cost effective. 

2.3.3 Lubricant used for biotribological testing  

One of the most important things to consider when testing biomaterial combinations for 

use in orthopaedic applications is the choice of lubricant. 

Synovial fluid is the body’s natural lubricant. It is found within the cavities of synovial 

joints. 

The protein concentration of synovial fluid in healthy adults has been reported between 

15 g/l and 35 g/l [111-113]. For patients with osteoarthritis and rheumatoid arthritis 

the concentration has been reported as 30 g/l [114] and 45 g/l [113] respectively. 

Albumin is the most abundant protein in synovial fluid, accounting for 56% of the 

protein content [115]. 

Hyaluronic acid is the largest molecule in synovial fluid [116] and is reported to 

determine the efficiency of hydrodynamic lubrication by synovial fluid in the natural hip 

joint [117].  

Synovial fluid is non-Newtonian in nature and so the viscosity decreases greatly when 

the shear rate increases [118]. For patients with osteoarthritis or rheumatoid arthritis, 

the viscosity and elasticity of the synovial fluid decreases [115].   

The natural hip joint is lubricated by 0.2-0.4 ml synovial fluid [113; 119]. The volume of 

lubricant required during in vitro mechanical testing can range between 40 and 600 ml 

[120]. This means that for a 5 MC simulator study the volume of lubricant required can 

be around 40 L. Needless to say, it would not be possible to obtain such a large quantity 

of human synovial fluid for these tests. 

A range of alternative lubricants for in vitro biomaterial testing have been used in the 

literature and their effectiveness has been analysed based on comparison of the wear 

rates and wear debris with that seen in vivo. Water, Ringer’s solution, bovine or calf 
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serum and gelatine-based protein solutions are among the lubricants which have been 

trialled. The advantages and disadvantages of each have been summarised by Harsha et 

al. [121] and the results are shown in Table 2.4. 

Table 2.4: Commonly used lubricants for in vitro testing and their advantages/disadvantages [121]. 

Lubricant Advantages Disadvantages 

Water Inexpensive and safe, 

minimal degradation or 

contamination by bacteria 

Wear rates are inconsistent due to transfer 

film. Wear debris size and shape are not 

representative of clinical wear debris 

Ringer’s solution Inexpensive and safe, 

minimal degradation or 

contamination by bacteria 

Wear rates are inconsistent due to transfer 

film. Wear debris size and shape are not 

representative of clinical wear debris 

Dilute bovine 

serum 

Wear rates generally of the 

same order of magnitude 

as those seen clinically 

Relatively expensive, degrades fairly 

quickly and may be contaminated by 

bacteria 

Gelatin-based 

protein solution 

(Gelofusine) 

Wear rates are similar to 

bovine serum 

Expensive and may be contaminated by 

bacteria. Wear debris size is similar to that 

produced when water is the lubricant 

Gelatin-based 

protein solution 

(Plasmion) 

Synthetic serum with 

protein content of 30 g/l 

Expensive, wear rates are similar to that 

observed when water is used as the 

lubricant. Wear debris produced is not 

representative of clinical wear debris 

 

The lubricant chosen for use in this project was bovine serum. This was in accordance 

with the recommendation by the International Organisation for Standardisation (ISO) 

standard 14242-1. This standard is provided in the Appendix and states that the test 

lubricant must not have a protein mass concentration less than 17 g/l. 

The test lubricant was replaced every 0.5 MC and the anti-microbial reagent sodium 

azide was added in order to overcome the problems of degradation and potential 

microbial contamination. EDTA was also added in order to prevent calcium deposition. 

Bovine serum can vary from batch to batch and hence there may be variation in wear 

data between different investigators using different batches of serum. 
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2.3.4 The need for aggressive testing conditions  

1) Increased inclination angle 

The inclination angle of the acetabular component can be determined clinically by 

measuring the angle between a line drawn along the opening of the acetabular cup and 

one joining the ischial tuberosities, as shown in Figure 2.18 [122]. 

 

Figure 2.18: Radiograph showing method of determining inclination angle, labelled ‘α’ [122]. 

Analysis of retrieved THAs of various designs has shown a large variation in wear with 

wear rates exceeding that anticipated from simulator studies. Often the retrievals with 

high wear rates have inclination angles above 55° and surface wear features which 

suggest an edge-loading mechanism.  

Standard simulation conditions currently assume that: 

1. The prosthesis is correctly positioned within the patient, at approximately 45°. 

2. The patient has a standard walking cycle.  

3. The patient has a standard weight and physiology.  

In reality however: 

1. Both rotational and translational mal-positioning of the prosthesis can occur in 

vivo based on the surgical technique. Rotational mal-positioning occurs when the 

acetabular cup is inclined at a steep angle which moves the wear patch towards 

the cup rim and can result in edge loading. Translational mal-positioning occurs 

when the centre of rotation of the femoral head is not in-line with the centre of 

rotation of the acetabular cup. This can also result in edge-loading. [28; 29; 123-

128] 
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2. The patient may also undergo activities such as jogging or walking up stairs 

which can place additional strain on the prosthesis.  

3. Patients can vary greatly in terms of weight, height, synovial fluid and adverse 

reaction to the prosthesis. 

The contradictions between data from simulator studies and clinical data confirm the 

need for more aggressive testing conditions in order to fully anticipate the clinical 

performance of any replacement hip joint. 

Clinically, cup inclination angles over 50° have been shown to increase the whole blood 

level concentrations of metal ions after MOM THRA [129; 130]. In vitro, MOM simulator 

studies with cups positioned at 55° and 60° have been shown to cause an increase in 

wear rate [29; 131]. Increased wear rate has also been reported clinically for COC and 

MOP bearings with increased cup inclination angles [132-134]. 

2) Microseparation 

Since the early 2000’s, video fluoroscopy has been used to determine the in vivo 

kinematics of the hip joint [135-138]. Lombardi et al. [135] investigated the extent to 

which hip joints separate during normal gait, known as microseparation. Eight patients 

with a total of ten THA’s performed successive gait motions on a treadmill whilst under 

fluoroscopy, see Figure 2.19. 

 

Figure 2.19: Subject undergoing a fluoroscopic evaluation whilst walking on a treadmill, Lombardi et al. 2000 
[135]. 
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X-rays and a fluorescent screen coupled to a camera allowed two-dimensional images of 

the internal hip bearings to be recorded. The images were then analysed using a three-

dimensional model-fitting technique that converts two-dimensional fluoroscopic images 

into three-dimensional real time images. Hip joint separation was determined to be 

present if the amount of separation was greater than 0.75 mm, which was the calculated 

linear error. The results confirmed that all ten joints experienced separation between 

the head and the cup although contact was maintained at the superior most tip of the 

cup. The magnitude of separation ranged from 0.8 to 2.8 mm with an average 

separation of 1.2 mm. 

In a separate investigation by Komistek et al. [137], ten patients with MOM THAs were 

compared to ten patients with MOP THAs whilst performing normal gait on a treadmill 

under fluoroscopy. No separation of the hip joint was observed in patients with MOM 

THAs over the threshold value of 0.75 mm whilst all of the patients with MOP THAs 

experienced separation. The magnitude of separation ranged from 0.8 to 3.1 mm with 

an average of 2 mm. 

However the accuracy of fluoroscopic measurements for the investigation of in vivo 

kinematics has been criticised [139]. More recently a study by Glaser et al. [138] 

claimed higher accuracy and hip joint separation could be determined if the amount of 

separation was greater than 0.5 mm. The investigation showed that separation occurred 

in all bearings and also suggested that the timing and separation could vary between 

patients and bearings.  

Despite the controversy surrounding fluoroscopic measurements, the addition of 

‘microseparation’ testing conditions to hip simulators has been applied successfully in 

order to produce wear patterns found in retrieval studies such as stripe wear seen in 

ceramic joints [140; 141]. 

Researchers have modified hip simulators using a number of different techniques in 

order to incorporate microseparation into their simulator studies, see Table 2.5. It is 

suggested that high inclination angle as well as microseparation testing conditions are 

employed in order to sufficiently and aggressively test new implants and to provide 

clinically relevant wear data [28]. 
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Table 2.5: Previous work using hip simulators that have been modified to achieve microseparation. 

Author Year Bearing 

Combination 

Test 

Simulator 

Modification made in order to  

achieve microseparation 

Microseparation 

(mm) 

Nevelos 

[142] 

2000 COC Not stated 

 

Achieved by applying a force of approx. 400 N in the lateral direction using 

a spring. This force, combined with a low swing phase load of less than 200 

N allowed the joint to separate 

0.2-0.8 

Stewart 

[143] 

2003 COC Leeds 

Mark II 

A small lateral to medial load was applied with a spring which during 

swing phase produced medial and superior translation of the insert 

relative to the head 

0.2-0.5 

Williams 

[127] 

2003 COP ProSim A small negative load (less than 100 N) was applied to separate the 

components during swing phase 

0.7 

Manaka 

[140] 

2004 COC Shore 

Western 

Horizontal displacement applied by spring, vertical displacement provided 

by applying a negative load 

0.5-1.0 

Brown 

[144] 

2007 MOM Leeds 

Mark II 

A small lateral load applied to the cup relative to the head during swing 

phase 

0.5 

Bowsher 

[145] 

2008 MOP  

 

Shore 

Western 

Preloading spring provided separation during each swing phase, set using 

a dial gauge-indicator 

1.0-1.5 

Williams 

[95] 

2011 COM Durham  

Mark II 

A displacement block together with a modified loading cycle (0 to 2500 N) 

allowed the head to displace inferiorly and laterally during the low load 

swing phase 

1.0 ± 0.2 

Williams 

[146] 

2013 COM,  

MOM 

Leeds  

Mark II 

Lateral to medial load was applied to the acetabular cup using a spring 

which during swing phase produced medial and superior translation of the 

cup relative to the head 

0.4-0.5 
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3) Addition of third body particles 

There have also been incidences with increased wear in retrievals due to the presence 

of third body particles. Third body wear occurs when external wear particles are 

trapped in-between the bearing surfaces and act like an abrasive asperity removing 

material from the articulating surfaces [147].   

Third body particle wear analysis has been used extensively in literature to analyse the 

affect of PMMA concentration on UHMWPE bearings and to assess the potential for 

causing osteolysis due to increased implant wear, see Table 2.6. Third body wear has a 

greater effect on hard-on-soft articulations as opposed to hard-on-hard articulations as 

is the case in MOM joint combinations. This thesis focuses specifically on the effect of 

third body particles on the MOM articulation in order to produce worn cups with 

features similar to that seen in retrievals; hence the data in Table 2.6 only presents the 

effect of the PMMA particles on the metal bearing surface. The addition of third body 

particles to test lubricant during hip simulations was shown to generally produce mild 

multidirectional scratches on the CoCrMo surface.  

The concentration of PMMA particles added to the test lubricant in the studies shown in 

Table 2.6 varied between 0.15 mg/ml and 10 mg/ml but it is difficult to know the exact 

concentration of particles which will have entered the tribocontact. Clinically, it is also 

extremely difficult to know the concentration of debris that may actually migrate to the 

articulating surface because some wear particles will be removed from the joint space 

by the surrounding tissues, digestion and via the lymphatic system. 
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Table 2.6: Comparison of previous simulator studies with the addition of third body particles. 

Author Year Bearing 
Combination 

Test 
lubricant 

Third body 
particle  

Particle size 
and 

concentration 

Test duration Effect on CoCr 

Wang  
[148] 

2001 CoCr vs. UHMWPE 
(32 mm) 

50 % bovine 
serum 

PMMA 160 µm,  
10 mg/ml 

1 MC Mild scratching 

Affatato 
 [149] 

2002 CoCr vs. UHMWPE 
(28 mm) 

 
 
- 

Radiopaque 
PMMA (90% 
PMMA, 10% 

BaSO4) 

170 µm,  
1 mg/ml 

2.5 MC Evidence of 
macroscopic 

damage, looping 
scratches 
observed 

Wang 
 [150] 

2003 CoCr, alumina and 
zirconia vs. CXPE 

(32 mm) 

50 % bovine 
serum  

(20 g/l) 

PMMA 150 µm,  
5 mg/ml 

1.5 MC 
standard, 

2 MC PMMA, 
1 MC standard 

Multiple scratches 

Bragdon 
[151] 

2003 CoCr vs. CXPE  
(28 mm) 

 
 

 
- 

Aluminium 
oxide  

(severe wear)  
and PMMA  
(mild wear) 

1 µm and 30 µm 
respectively,  
0.15 mg/ml 

1 MC standard, 
5 MC aluminium 

oxide, 
2 MC standard, 

5 MC PMMA 

Highly scratched 
with aluminium 

oxide 
Fine scratches 

with PMMA 
 

Bragdon 
 [152] 

2005 CoCr vs. UHMWPE 
(28, 38, 46 mm) 

 
- 

PMMA 
containing 

BaSO4 

< 30 µm,  
0.15 mg/ml 

5 MC Multidirectional 
scratches 

Kubo  
[153] 

2009 CoCr vs. CXPE  
(32 mm) 

CoCr vs. HXPE  
(44 mm) 

Bovine serum 
(20 g/l) 

PMMA 40 µm,  
5 mg/ml 

1.5 MC 
standard, 

1.5 MC PMMA 

Mild 
multidirectional 

scratches 

Sorimachi  
[154] 

2009 CoCr vs. CXPE  
(32 mm) 

CoCr vs. HXPE  
(44 mm) 

50 % bovine 
serum  

(20 g/l) 

PMMA 40 µm,  
10 mg/ml 

1.5 MC 
standard, 

2 MC PMMA, 
2 MC standard 

Surface roughness 
unaffected 
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PMMA is a third body particle which can be commonly found in the joint cavity from the 

bone cement which was used to fix the joint in place but it is not the only third body 

particle which may be present. There are many sources of third body wear, see Table 

2.7 [155]. 

Table 2.7: Sources of third body wear, Brown et al. 2009 [155]. 

Source 

Bone cement 

Radiopacifier particles 

Bone particles 

Trochanteric reattachment wires 

Burnishing from loose stems 

Hydroxyapatite particles 

Fixation screw fretting 

Neck impingement 

Matt/precoat stem abrasion 

Instrument scratching 

Modular connection fretting 

Cutting guide abrasion 

Porous coating particles 

Locking mechanism breakage 

Microseparation impact 

Assembly/impaction chipping 

 

If a THA or THRA fails due to implant loosening then it is possible that particulate debris 

from the porous coating on the back of the acetabular cup or the femoral head stem may 

disintegrate and enter the joint cavity which could then have the ability to accelerate 

wear as well as cortical bone debris [156; 157].  

Hydroxyapatite and titanium are common coatings which are used in order to aid 

fixation and prevent components from loosening. Morscher et al. [156] have seen 

clinically that hydroxyapatite wear particles have scratched CoCrMo femoral heads 

when articulating against UHMWPE in vivo. Davidson et al. [157] have reported that 
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titanium particles can cause light abrasive wear to CoCrMo when using a reciprocating, 

linear wear tester in a deionized water bath.  

This project will investigate the effect of both of these wear particles, hydroxyapatite 

and titanium, on the MOM articulation.  

Further to this, the performance of dual mobility bearings under aggressive testing 

conditions will be investigated. The aggressive conditions employed in the project 

include the use of scratched CoCrMo cups, testing at a high inclination angle as well as 

under microseparation conditions. 

2.4 Wear and lubrication theory 

2.4.1 Wear mechanisms  

A wear mechanism is the fundamental microscopic process by which material is 

removed from a surface [158]. The most common wear mechanisms are shown in 

Figure 2.20 and include [84; 158-160]: 

1) Adhesive wear 

During adhesive wear, adhesion (or bonding) occurs at the asperity contacts on the 

interface. Fragments from one surface are pulled off and adhere to the alternate surface. 

In MOM bearings, adhesion is often prevented by an oxide layer but adhesion can occur 

readily in hard-on-soft bearings, such as MOP, where small fragments of the 

polyethylene surface adhere to the opposing metal bearing surface. It is believed that 

the material transferred by adhesion will finally be detached from the alternate surface 

through fatigue wear. 

2) Fatigue wear 

Fatigue wear occurs when the surface and subsurface are subject to repeating loading 

and unloading cycles which result in subsurface delamination and cracking. Large 

fragments break off resulting in pitting on the surface. In MOP bearings, where 

polyethylene is the weaker of the two materials, fatigue wear damage to the 

polyethylene component is dominant. The wear particles formed through fatigue wear 

are typically larger than those formed through abrasive wear. 
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3) Abrasive wear 

Abrasive wear occurs when micro-roughened regions and small asperities on a hard 

bearing surface locally plough through the softer bearing surface. The softer material is 

progressively lost from the track traced by the asperity during motion of the harder 

surface. Abrasive wear is also called ploughing, scratching, scoring, gouging or cutting 

depending on the degree of severity. 

4) Third-body wear  

Third-body wear is a form of abrasive wear that occurs when hard third-body particles 

from sources such as those listed in Table 2.7 become embedded in a soft surface. In 

MOM bearings, which form a passivation layer with the surrounding medium, third-

body particles may be in the form of corrosion products. These particles are usually 

oxides which have different shear strengths than those of the metal bearing surfaces 

from which they were derived.  

Third-body particles act in the same way as an asperity of a harder material in abrasive 

wear by removing material from its path. 
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Figure 2.20: Common wear mechanisms, Wright et al. 2001 [159]. 

 

2.4.2 Lubrication 

As discussed in section 2.3.3, synovial fluid is the body’s natural lubricant. A lubricant is 

any substance which, when applied to the interface between two solids, will reduce 

friction and wear between the two surfaces. There are four principal lubrication 

regimes and they are defined below [161]. 

1) Hydrodynamic lubrication (also known as fluid-film lubrication) 

This occurs when a lubricant film is sufficiently thick enough to prevent opposing 

bearing surfaces from coming into contact with each other. The two surfaces are 

completely separate and friction is only generated through shearing of the lubricant. 
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This is considered to be the ideal lubrication regime and results in low friction and low 

wear. 

2) Elastohydrodynamic lubrication 

This is a form of hydrodynamic lubrication whereby the fluid-film thickness is smaller 

and the pressure in the film causes elastic deformation of the bearing surfaces. However 

the articulating surfaces are still protected and no gross asperity contact occurs 

between the surfaces. 

3) Boundary lubrication 

This occurs when the lubricant films adsorb to the surface and wear occurs through 

contact between asperities which have broken through the fluid film. The friction 

behaviour can be similar to that seen in dry contact. 

4) Mixed Lubrication 

This occurs when boundary and hydrodynamic lubrication regimes are operating 

simultaneously. Partial fluid-film lubrication operates in the bulk of the space between 

two articulating surfaces, but asperity contact may also occur. Generally, this regime 

results in less wear than boundary lubrication but more wear than during 

hydrodynamic lubrication. 

Fluid-film lubrication is the predominant lubrication mechanism in natural synovial hip 

joints under physiological walking conditions [162]. It has been shown that fluid-film 

lubrication may be achieved in hard-on-hard bearings such as MOM and COC provided 

that the bearing surface is manufactured within certain tolerances and that the radial 

clearance is chosen correctly and can be maintained [163]. 

It is not possible to achieve full fluid-film lubrication for MOP bearings which 

experience mixed lubrication of boundary lubrication regimes instead [164]. This is 

because the roughness of the UHMWPE bearing is much larger than the generated 

lubricating film thickness.  
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2.5 Wear debris from THA and THRA 

Wear is the removal of material from one or both of two solid surfaces in a solid-state 

contact and will occur when the surfaces are in a sliding, rolling or impact motion 

relative to one another [160]. The wear particles released from the articulating bearing 

surfaces in THA and THRA are discussed in the following sections 2.5.1-2.5.2 with the 

focus being on the in vivo effect, isolation and characterisation of both polymeric and 

metallic wear debris. 

2.5.1 In vivo reaction to wear debris 

The majority of available clinical data regarding the in vivo reaction to wear debris from 

THA concerns polyethylene and metal debris.  

1) In vivo reaction to polymeric wear debris 

The biological response to polyethylene wear debris, either alone or in combination 

with other factors, can cause aseptic loosening of the components which is ultimately 

responsible for the failure of MOP THA.  

The polyethylene wear debris generated at the articulating surfaces enters the 

periprosthetic tissue where it is phagocytised by macrophages. This occurs when the 

concentration of the wear volume is within 0.2 – 0.8 µm which is the critical size for 

macrophage activation. Cytokines and proinflammatory mediators are then released 

which stimulates osteo-clastic bone resorption causing the bone surrounding the 

implant to break down and the prosthesis to become loose [165].  

Initially in the early 1980s PMMA was believed to be the problem causing the bone 

resorption [166-168] but by the late 1980s retrieval analyses and animal studies were 

showing polyethylene wear debris to be responsible [169-173]. 

By the mid 1990s it was established that retrieved UHMWPE particles are generally 

globular spheroids and on average 0.5 µm in diameter with range from 0.1 to 2.0 µm 

[174]. It has been reported that ninety per cent of particles are less than 1 µm in 

diameter [175; 176]. These studies imply that most polyethylene particles generated 

from the bearing surface are within the critical size range to initiate an inflammatory 

response. 
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As research into improving the wear properties of conventional UHMWPE progressed 

and highly cross-linked UHMWPE developed it was hoped that the occurrence of wear 

particle induced osteolysis would reduce as the wear rate reduced. Baxter et al. [177] 

collected tissue samples taken at revision surgery from nine conventional UHMWPE as 

well as nine highly cross-linked UHMWPE cups.  For both sets of UHMWPE cups 

correlations were observed between the wear debris present and the magnitude of 

individual patient macrophage responses. Numbers of both wear debris and 

macrophages were lower in highly cross-linked UHMWPE however this may have been 

a consequence of shorter implantation times. The highly cross-linked UHMWPE cups 

had an average implantation time of only 3.3 years whereas the conventional UHMWPE 

cups had been implanted for on average 13.3 years. Baxter concluded that the short-

term clinical data does suggest that wear debris from highly cross-linked UHMWPE may 

still contribute to early implant loosening. Despite this, several clinical studies in the 

mid 2000s have reported no incidence of osteolysis at mid-term follow up for highly 

cross-linked UHMWPE [178-181]. 

It was this failure due to implant loosening in MOP THA that has led to a resurgence of 

interest in hard-on-hard bearings such as MOM. 

2) In vivo reaction to metallic wear debris 

Metal wear particles released from artificial hip implants are also phagocytised by 

macrophages that accumulate around the implant, in the periprosthetic tissues and 

local bone marrow [182]. Metal wear debris are typically much smaller than 

polyethylene wear particles and are nanometre in size, see Figure 2.21 [183].  
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Figure 2.21: Length of particles isolated from tissue samples collected from different periprosthetic capsular 
sites, measured by image analysis of TEM micrographs, Catelas et al. 2004 [183]. 
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The nanometre-sized particles can also be bound into proteins and so are transported 

within lymphatic channels and can reach distant lymph nodes, the liver, and the spleen. 

This process can lead to the production of pseudotumors, see Figure 2.22 [184] . 

 

Figure 2.22: MRI scan showing a pseudotumor arising from the posterior joint space (arrow), Pandit et al. 
2008 [184]. 

A pseudotumor is a large focal solid or semiliquid mass, normally occurring on the 

medial aspect of the femoral component just below the midpoint of the prosthesis 

[185]. It is not infective but can be locally destructive and often requires revision 

surgery [186]. Hart et al. [187] looked at tissue from a range of failed MOM prostheses 

and established a clear correlation between the dark macrophages and the presence of 

chromium. Xia et al. [188] analysed biopsies from a typical case of pseudotumor 

following MOM THRA using light microscopy, transmission electron microscopy, 

backscatter electron microscopy and energy dispersive x-ray spectrometry. Chromium 

nanoparticles were predominant in the tissue and the study suggested that it was 

actually the corrosion of cobalt in the macrophages and the resultant cobalt ion release 

that led to tissue necrosis and adverse reactions. The exact cause of pseudotumors 

remains unclear. 
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Figure 2.23:  TEM micrographs showing the presence of metal wear nanoparticles in living macrophages and 
in tissue taken at biopsy from a pseudotumor, Xia et al. 2011 [188]. 

Incidences of MOM hypersensitivity have been reported in less than 1% of cases and the 

mechanism is still not completely understood. Skin patch testing has documented an 

overall increase in the prevalence of metal allergy in people with metal implants [189; 

190] but it is still unclear whether metal sensitivity is a contributing factor to implant 

failure. 

Delayed hypersensitivity-like reactions, including metal hypersensitivity and 

pseudotumors, have been termed aseptic lymphocytic vasculitis-associated lesions 

(ALVAL).  

Whilst histopathologic descriptions of ALVAL are similar to general samples of soft 

tissue taken from around failed THAs and feature an increase in macrophages, the 
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single unique feature of ALVAL is the presence of a dense perivascular infiltrate [191]. 

Hence the term “vasculitis-associated lesion”.  

Recently the numerous reports of adverse tissue reactions to MOM bearings for THA 

and even more so for THRA have raised doubts in the orthopaedic community over the 

benefits of metal bearing surfaces for orthopaedic applications. Whilst some think it is 

worth pursuing and improving the design and surgical technique, the media coverage 

has caused anxiety among patients and surgeons alike [192]. 

2.5.2 In vitro isolation and characterisation of wear debris 

As concern surrounding the in vivo reaction to wear debris from THA grew, increasing 

importance was placed on determining not only the wear rates of potential bearing 

combinations for orthopaedic applications but also the size and shape of the wear 

debris produced during wear testing. 

In order to isolate wear particles from the bovine serum used as lubricant in wear 

simulations the protein in the serum must first be digested. This then releases any 

particles bound within it. Great care must be taken so as not to damage the particles or 

change their size and shape during the digestion process. 

1) In vitro isolation and characterisation of polymeric wear debris 

Polyethylene wear particles have been isolated using a number of methods. A brief 

overview of previously employed techniques is provided in Table 2.8 which comprises 

strong base, acid and enzymatic digestion processes. The ‘Silicon Wafer Display (SWD) 

protocol’ mentioned in Table 2.8 was awarded the John Charnley Award and is shown 

fully in Figure 2.24 alongside images of isolated polyethylene particles obtained through 

the procedure. 

Highly cross-linked polyethylene particles are reported to be smaller than conventional 

UHMWPE particles [42; 193; 194] and size is expected to vary between implants 

depending on irradiation procedure and machining [195].  
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Table 2.8: Overview of techniques used to isolate polyethylene wear debris from in vitro test serum. 

Author Year Digestion process Particle size 

Hailey 

[196] 

1996 Serum added to 12 M KOH at 60° followed by centrifugation 

and filtration. 

Aggregates of particles, generally ranging from 10-100 µm. 

Some mm in size. 

Wang 

[197] 

1996 5 N KOH added to serum in ratio 2:1 at 65° followed by 

density gradient centrifugation and filtration. 

Spherical particles generally less than 0.3 µm diameter. 

Fibrous particles generally 1-2 µm long and less than 0.5 µm 

wide. 

Affatato 

[198] 

2001 Serum added to 12 M KOH at 60° followed addition of ethanol 

with continuous stirring and filtration. 

Generally 10-15 µm in diameter and flakes up to 100µm also 

seen. 

Niedzwiecki 

[199] 

2001 37 vol % HCl added to serum in ratio 5:1 at 60°, 1 ml 

extracted and added to methanol for filtration. 

Majority of particles were less than 0.1 µm2. 

Niedzwiecki 

[199] 

2001 30 mg of Proteinase K added to diluted serum in ratio 1:1 

with distilled water at 37°, 1 ml extracted and added to 10 ml 

distilled water for filtration. 

Majority of particles were less than 0.1 µm2. 

Endo 

[42] 

2002 Serum added to 12 M KOH at 60° followed by 

chloroform/methanol extraction of lipids, centrifugation and 

filtration. 

Generally 0.1-1 µm for non cross-linked UHMWPE and 0.1-

0.5 µm for moderately cross-linked UHMWPE. 

Billi 

[194] 

2012 SWD protocol, as detailed in Figure 2.24. Separated into round, oval, rod, irregular and fibril shapes 

with average size ranging from 0.1-48 µm depending on 

particle shape and degree of UHMWPE cross-linking. 
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Figure 2.24: A: Schematic diagram showing the SWD Protocol, B: polyethylene wear debris displayed on 
silicon wafer, C: magnified polyethylene wear debris, Billi et al. 2012 [194]. 

Whilst smaller polyethylene particles have been reported to be more biologically active 

in stimulating cytokine release and bone resorbing activity [200] it has to be 

remembered that this potential increase in biological activity, in comparison to wear 

particles produced from conventional UHMWPE bearings, will be counterbalanced in 

vivo by lower wear rates due to cross-linking and hence a smaller volume of 

polyethylene particles being generated  [102].  
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2) In vitro isolation and characterisation of metallic wear debris 

Isolation of metal debris from test serum is more challenging due to the nature of the 

particles which tend to be nanometre in size, reactive in nature and can form 

agglomerations. Catelas et al. [201; 202] showed that digestion protocols using strong 

base could potentially damage metal particles, reduce their size and affect their shape. 

Chromium oxide particles were found to disappear increasingly after treatment with 

base digestion as the time and base concentration increased. Instead, enzymatic 

digestion is preferred for metal debris isolation because damage to particles is low and 

no hazardous waste is produced. 

Table 2.9 gives a brief overview of previously used techniques to isolate metal particles 

from in vitro test serum generated from simulations using CoCrMo bearings. The 

particles isolated are typically CoCr or Cr-rich in composition. Cr-rich particles are 

indicative of mild wear removing the protective passivation layer at the bearing surface 

and the production of chromium oxide particles [203]. Figure 2.25 shows TEM images 

of previously isolated metal wear particles. 

Table 2.9: Overview of techniques used to isolate metal wear debris from in vitro test serum. 

Author Year Digestion process Particle size and 

composition 

Tipper 

[23] 

1999 Digestion with KOH at 60° followed by extraction 

with chloroform/methanol extraction and repeated 

washes with 50% acetone 

60-90 nm CoCr 

particles. 

(pin-on-plate test) 

Catelas 

[201] 

2001 Comparison of four techniques: three with base 

digestion (2N KOH, 12N KOH and 5N NaOH for 

either 2 or 48 hours) and enzymatic digestion using 

papain, proteinase K and six purification steps 

12-250 nm with mean 

80±40 nm. Either CoCr 

or Cr-rich particles. 

Brown 

[144] 

2007 Digestion with papain, proteinase K, yeast lytic 

enzyme, zymolase and twelve step purification 

process 

6-156 nm with mean 

typically 30-40 nm. 

CoCr particles. 

Billi 

[203] 

2011 Digestion with proteinase K and one step 

purification process using density gradient 

centrifugation 

Cr-rich particles 

100±80 nm. CoCr 

particles 300±200 nm. 
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Figure 2.25: Images of isolated metal wear particles from A: Catelas et al. 2001 [201] (TEM image). B: Billi et 
al. 2011 [203] (TEM image) The darker particles indicate presence of cobalt. C: Tipper et al. 1999 [23] (SEM 

image). D. Brown et al. 2007 [144] (SEM image). 

Wear debris isolation is challenging but crucial since it is only once wear particles have 

been successfully isolated and characterised that the in vivo reaction, in terms of cell 

and macrophage/cytokine response, can be assessed. 

It is very difficult to produce samples of isolated metal wear particles from in vitro hip 

simulator studies that are free from impurities and of sufficient concentration for 

biological studies. Often pin-on-plate tests are run in water in order to provide a large 

quantity of CoCr particles, or commercially available CoCr is used. Table 2.10 provides a 

summary of studies applying metal wear particles to cells. Questions remain whether 

the particles used in these studies are sufficiently similar to particles produced in vivo in 

order to provide clinically relevant results and research in this area is ongoing. 
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Table 2.10: Summary of biological studies using CoCr particles. 

Author Year Wear 

particles 

Particle source Cell-line used 

Doran 

[204] 

1998 Co, Cr, Ni, Fe, 

Mo, Al, V and 

Ti 

Co-Cr alloy particles (˂ 104 µm) 

from Howmedica Inc. 

C3H10T½ mouse 

fibroblast 

 

Germain 

[205] 

2003 CoCr Generated using pin-on-plate test 

run in water 

U937 

macrophages 

and L929 

fibroblasts 

Williams 

[206] 

2004 CoCr and CrN Generated using pin-on-plate test 

run in water 

U937 

macrophages 

and L929 

fibroblasts 

Papageorgiou 

[182] 

2008 CoCr From Osprey Ltd with composition 

similar to that used in orthopaedic 

joints 

THP-1 

monocytes 

Andrews 

[207] 

2011 Co2+, Cr3+, Cr6+ Cobalt (II) chloridehexahydrate, 

chromium (III) chloride 

hexahydrate from Sigma, and 

chromium (VI) oxide from BDH 

SaOS-2 

osteoblast-like 

cells 

Zijlstra 

[208] 

2011 Co2+, Cr3+, 

Co2+, and Cr3+ 

in ratio 1:2 

CoCl2.6H20 and CrCl3.6H20 SaOS-2 

osteoblast-like 

cells 

2.6 Revision THA 

The failure of a THA or THRA leads to the need for revision surgery. Potential reasons 

for hip revisions can be summarised into three categories [209]: 

 Patient-related factors including sickle cell anaemia, poor bone quality and 

possibly high body mass index. 

 Implant-related factors including osteolysis, aseptic loosening, metallosis, 

periprosthetic fractures and delamination of the porous coating. 
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 Failures related to inadequate surgical technique through malpositioning of the 

components. 

 About 40,000 primary THAs are performed in NHS hospitals in England with about 

4,000 revision procedures being performed each year [210]. Figure 2.26 is taken from 

the UK Joint Registry 2012 [66] and shows the risk of revision according to the primary 

bearing surface. A large number of patients are receiving THAs at a younger age, and 

also living longer, so it is important that the initial implant allows for revision. Revision 

surgery can involve either the revision of the acetabular component, with restoration of 

bone stock, or revision of the femoral component.  

 

Figure 2.26: Risk of revision by bearing surface (cumulative hazard with 95% confidence intervals), UK 
National Joint Registry [66]. 

The key points for treatment in case of failure that must be considered are [211]: 

 To identify the origin of the problem in order to avoid repeating the failure 

 To verify implant stability 

 To evaluate if components are malpositioned 

 To optimize the new coupling in order to reduce further wear 

 To restore the centre of rotation and bone stock where possible 

 To treat any soft tissue damage 
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 To treat and avoid any impingement 

The aim of revision surgery is to provide the patient with a low wearing THA through a 

surgical procedure that is as minimally invasive as possible. 

There are two main types of revision implants available; cemented or cementless. A 

cemented prosthesis requires cement to attach the metal components to the bone 

whereas a cementless prosthesis has a porous backing which allows for bone ingrowth 

and hence biological fixation. 

The top five cup-stem brand combinations for both primary and revision hip 

procedures performed during 2012 are compared in Table 2.11 and Table 2.12 

respectively from data published by the UK National Joint Registry [66]. The cup and 

stem brands shown in italics are cemented prostheses. The remaining brands are 

cementless prostheses. 

Note that the top five cup-stem brand combinations in Table 2.11 account for 45% of all 

primary hip procedures performed in 2012 whereas the corresponding top five cup-

stem brand combinations in Table 2.12 account for only 21% of all revision hip 

procedures performed in the same year. This indicates that there are less ‘common 

choices’ for cup-stem brand combinations at revision surgery since the combination 

selection is dependent on the reason for primary hip failure. 

The cup-stem brand combinations which account for the highest percentage of both 

primary and revision hip procedures during 2012 are shown in Figure 2.27 and Figure 

2.28 respectively. 

The femoral-acetabular prosthesis combinations used with these fixation devices, in 

terms of both material choice and head size, are shown in Table 2.13 from the UK 

National Joint Registry [66]. This data shows that the most commonly used femoral-

acetabular prosthesis combination during 2012 was MOP with femoral head size 28 mm 

and also indicates that 56% of the components used in MOM articulations were over 50 

mm in diameter. 
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Table 2.11: Top five cup-stem brand combinations for primary hip procedures performed during 2012 [66] . 
Cemented prostheses are shown in italics. 

Cup 

manufacturer 

Cup brand Stem 

manufacturer 

Stem 

brand 

Number of 

procedures 

% of total 

procedures 

DePuy Pinnacle DePuy Corail 13,032 18 

Stryker Contemporary Stryker Exeter V40 8,656 12 

Stryker Trident Stryker Exeter V40 5,094 7 

Stryker Trident Stryker Accolade 3,176 4 

Biomet Exceed ABT Biomet Taperloc 

cementless 

stem 

2,936 4 

 

 

 

Figure 2.27: Cup-stem brand combination that accounted for the highest percentage of total primary hip 
procedures in 2012 according to the UK National Joint Registry 
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Table 2.12:  Top five cup-stem brand combinations for revision hip procedures performed during 2012 [66] . 
Cemented prostheses are shown in italics. 

Cup 

manufacturer 

Cup brand Stem 

manufacturer 

Stem 

brand 

Number of 

procedures 

% of total 

procedures 

Zimmer Trabecular 

Metal 

Cementless 

Cup 

Stryker Exeter 

V40 

226 5 

Stryker Exeter Rimfit Stryker Exeter 

V40 

196 4 

Stryker Contemporary Stryker Exeter 

V40 

193 4 

DePuy Pinnacle DePuy Corail 178 4 

Stryker Tritanium Stryker Exeter 

V40 

170 4 

 

 

 

Figure 2.28: Cup-stem brand combination that accounted for the highest percentage of total revision hip 
procedures in 2012 according to the UK National Joint Registry 
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Table 2.13: Frequency of femoral head sizes for hip procedures performed in 2012 [66]. 
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2.7 Clinical relevance of project  

The aim of this project is to simulate and explore the viability of partial revision surgery 

(where only the femoral component is revised) using a dual mobility head for a patient 

who has suffered a failed MOM THRA.  

The project aims to investigate:  

1. How to recreate surface features seen in vivo in CoCrMo acetabular cups from 

failed MOM THRA. 

2. How the wear rate of a dual mobility head is affected by the initial surface 

roughness of the mating CoCrMo acetabular cup. 

3. How the wear rate of dual mobility THA is affected by high inclination and 

microseparation testing conditions. 

4. Whether dual mobility THA produces comparable wear rates to traditional MOP 

THA.  

5. Whether the form, size and shape of metallic debris released from MOM THRA 

vary in comparison to that from dual mobility THA. 

6. Whether a failed MOM THRA can be converted into a successful THA using a dual 

mobility head. 

The literature review in this chapter has provided a historical overview of THA and the 

problems encountered with MOM bearings with special focus on the failure of MOM 

THRA. Whilst further research is still needed in order to understand the cause of 

adverse reaction to metal debris, it is hoped that by providing patients with high quality 

options at revision surgery that their pain and discomfort will be improved and the 

need for any further revision surgery will be avoided.  

This is especially important today when MOM THRA failure rates are high and media 

attention has heightened the concern surrounding metal prostheses.  
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3. Analysis of retrieved CoCrMo 
components 

3.1 Introduction 

Fourteen retrieved metal components have been supplied by Biomet throughout this 

project for surface analysis. All explants were made from CoCrMo and manufactured by 

Biomet, from either their M2a-Magnum MOM or ReCap Resurfacing systems.  

This chapter aims to thoroughly examine the surface features of the retrieved 

components through zygo non-contacting profilometry and imaging with both optical 

microscopy and scanning electron microscopy. These three surface characterisation 

techniques are discussed in chapter sections 3.2.  

The results and limitations will then be discussed in sections 3.3 and 3.4 respectively. 

The aim of the MOM biotribological studies shown in chapter 4 will be to generate 

physiologically scratched CoCrMo acetabular cups with features similar to that seen in 

this chapter. Hence, as well as comparing the surface characterisation results with 

previous literature, methods that have previously been employed to scratch CoCrMo 

components in vitro will be reviewed in the discussion in section 3.5. The results are 

concluded in section 3.6. 

Information about all of the explants is shown in Table 3.1, followed by photos of the 

components in Figure 3.1 and Figure 3.2. Five modular CoCrMo femoral heads, one 

resurfacing CoCrMo femoral head and eight CoCrMo acetabular cups have been 

analysed. 
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Table 3.1: Available information from all received retrievals. 

Reference Type Component Notes Available 

FAR 4 M2a Cup Metallosis of surrounding tissue, dull highly 
scratched regions on both head and shell. FAR 4 M2a Head 

FAR 33 M2a Cup 60 year old male, impingement of stem on shell 
FAR 33 M2a Head 

FAR 72 Recap Head Failure of recap femoral head via fracture of stem 
due to bending overload/fatigue 

FAR 77 M2a PC Cup Significant metallosis in joint, shell fixed in 
acetabulum FAR 77 M2a Head 

FAR 80 Recap Cup Bone ingrowth on PPS coating, not significant 
amount though 

FAR 86 Recap Cup Revised after around 2 years due to pain 

FAR 101 Recap Cup Revised after 3 years due to dislocation 

FAR 149 M2a Ringloc Ring detached, liner rim fracture, high inclination 
angle FAR 149 M2a Head 

FAR 164 M2a Flared cup Possible adverse loading 
FAR 164 M2a Head 

 

 

 

Figure 3.1: Retrieved femoral components, A: FAR 4, B: FAR 33, C: FAR 72, D: FAR 77, E: FAR 149, F: FAR 164. 
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Figure 3.2: Retrieved acetabular components, A: FAR 4, B: FAR 33, C: FAR 77, D: FAR 80, E: FAR 86, F: FAR 101, 
G: FAR 149, H: FAR 164. 

3.2 Surface characterisation techniques 

1) Zygo non-contacting profilometry 

Measurements of the surface topography were taken at ten points across each bearing 

surface. Three-dimensional surface profiles were created using the Zygo NewView 100 

non-contacting 3D profilometer with the 10x Mirau lens and 0.1 nm resolution. This 

technique is non-contact and is based on scanning white light interferometry whereby a 

fringe pattern of bright and dark lines result from an optical path difference between an 

internal reference and a sample beam.  

In literature, most authors [1-8] report information about the surface profile of hip 

bearings in terms of average surface roughness (Ra). Ra is defined as the height 

deviation taken within the evaluation length or area and is measured from the mean 

linear surface. The equation for Ra is given below. 
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Affatato et al. [9] have reported the significance of also considering skewness (Rskw) 

when discussing surface roughness. Rskw is a measure of symmetry of the surface profile 

around the mean line. A positive skewness measure denotes asymmetry above the 

mean line indicating that a surface has a predominance of peaks. A negative skewness 

measure denotes asymmetry below the mean line indicating a predominance of valleys. 

It is beneficial for bearing surfaces to have negative skew. The equation for Rskw is given 

below, where rms is the root mean square roughness-the average of the measured 

height deviations taken within the evaluation length or area as measured from the mean 

linear surface. 

     
 

    
                 

 

  

 

  

 

Zygo non-contacting profilometry has been used throughout this project not only to 

look at the retrieved CoCrMo components in this chapter but also to track the change in 

surface features of the bearings subject to biotribological testing shown later in 

chapters 4 and 5. The only bearing surface in this project which was unable to be 

successfully tracked by zygo profilometry was the inner pole of the E1 liners in chapter 

5. This was because the lens was too wide to image inside the convex area which would 

ordinarily press fit onto the 28 mm CoCrMo heads. This surface was only able to be 

imaged optically. 

2) Optical microscopy 

An Axiotech optical microscope was used to image the worn surfaces of retrieved hip 

components. The majority of images were taken with the 10x magnification lens. Optical 

microscopy also allowed the changes on the surface of each component due to 

biotribological wear testing to be followed and recorded in chapters 4 and 5. Images 

were taken within the wear patch of the bearing surfaces throughout the hip simulator 

studies at atleast 0, 0.5, 1.0, 2.5 and 5.0 MC of each 5 MC test. When a test was shorter in 

duration images were taken more frequently at every 0.5 MC. This is in contrast to the 

images taken from the retrieved CoCrMo components in this chapter where only the 

final images after implant removal were possible to obtain. 
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3) Scanning electron microscopy 

Scanning electron microscopy (SEM) was used to investigate the topography of the 

retrieved metal cups using a Philips/FEI XL30 ESEM operating at between 20-25kV. The 

same SEM (in Environmental mode) was used later in chapter 5 to image the wear 

around the rim of each E1 liner operating at 20kV without coating the samples. 

SEM works by generating a focused beam of high energy electrons which is accelerated 

towards the sample. The accelerated electrons can either pass through the sample 

without interaction or undergo elastic or inelastic scattering. Elastic and inelastic 

scattering produce the secondary and backscattered electrons which are commonly 

used for imaging. Secondary electrons are the electrons responsible for showing 

morphology and topography at the sample surface. They are attracted towards an 

electrically biased grid and accelerated towards the detector. The topographical image 

of the sample surface is dependent on how many secondary electrons reach the 

detector. 

3.3 Surface characterisation results 

1) Zygo non-contacting profilometry 

Initial surface roughness values for the articulating surfaces of MOM prostheses have 

been approximated to lie in the range between 0.005 and 0.025 µm Ra [10]. As a 

comparison from this study, the seven ReCap resurfacing femoral heads used in MOM 

Test 1 had an average initial surface roughness value of 0.009 ± 0.004 µm. 

Figure 3.3 shows the average surface roughness Ra data ± standard deviation from ten 

points across each bearing surface. The average surface roughness across the six 

explanted CoCrMo heads was 0.078 ± 0.09 µm. Evidently the roughness values of the 

bearing surface have increased whilst in the body.  

Head sample FAR 149 has the highest surface roughness of the samples investigated 

(0.208 ± 0.130 µm Ra) with a large variation. This is indicative of the varied wear 

conditions it has experienced due to the high inclination angle and possible contact with 

the detached liner rim. 
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Head sample FAR 77 has the lowest surface roughness (0.017 ± 0.008 µm Ra) which is 

surprising given the significant metallosis around the joint. Zygo analysis of the heads 

from FAR 4, 33, 72 and 164 were similar in magnitude and range. 

 

Figure 3.3: Surface roughness (Ra) of retrieved CoCrMo heads. 

Surface skewness is not commonly reported in literature because it can have great 

range and variation. From the initial data from the seven heads used in MOM Test 1, the 

average surface skewness was -1.910 ± 6.255 µm. Figure 3.4 shows the average surface 

skewness Rskw data ± standard deviation from ten points across each bearing surface. 

The average surface skewness across the six explanted heads was -2.261 ± 3.051 µm. 

This indicates that the skewness has become more negative whilst in the body. 

Interestingly the head from FAR 77 has the lowest skewness value of the samples 

investigated (-4.934 ± 2.752 µm Rskw). This is indicative of material loss from the metal 

matrix and/or carbide removal which could explain the metallosis around the joint. 

Head sample FAR 72 was the only ReCap resurfacing femoral explanted head under 

investigation in this project and zygo data in terms of both surface roughness and 

skewness has been comparable to the M2a modular CoCrMo heads. 
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Figure 3.4: Skewness (Rskw) of retrieved CoCrMo heads. 

An example of the zygo images taken from the explanted heads is shown in Figure 3.5. 

Deep scratching is clearly visible. In unworn metal bearing surfaces, zygo images 

normally show carbides as obvious asperities which protrude above the metal matrix. 

Carbides are not as distinct in the images taken from the explants which indicate that 

they have been worn away whilst in the body. 

-2.261 

-10.000 

-8.000 

-6.000 

-4.000 

-2.000 

0.000 

2.000 

R
sk

w
, µ

m
 

FAR 4 

FAR 33 

FAR 72 

FAR 77 

FAR 149 

FAR 164 

Average 



3. Analysis of retrieved CoCrMo components 

 

 Page 78 
 

 

Figure 3.5: Selection of surface profiles taken from retrieved femoral heads. 

In comparison to the retrieved cups, the seven acetabular CoCrMo cups used in MOM 

Test 1 had an average initial surface roughness value of 0.010 ± 0.004 µm Ra with an 

average surface skewness of 0.075 ± 4.446 µm.  

Zygo analysis of the eight explanted CoCrMo cups showed that the average surface 

roughness of the bearing surface at the point of revision was 0.031 ± 0.03 µm with a 

surface skewness of -5.042 ± 4.682 µm. Zygo data for each explant in shown in Figure 

3.6 and Figure 3.7 for the surface roughness and skewness respectively. 

As with the heads, surface roughness of the cups has increased whilst surface skewness 

has decreased whilst in the body. 
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Figure 3.6: Surface roughness (Ra) of retrieved CoCrMo cups 

 

Figure 3.7: Skewness (Rskw) of retrieved CoCrMo cups. 

Cup sample FAR 33 had the largest surface roughness, and also has a higher surface 

roughness than its head counterpart. This is a result of the impingement of the head 

stem onto the cup bearing surface in vivo. 

The retrieved CoCrMo cups are similar in terms of surface skewness with the exception 

of FAR 101 which has a less negative Rskw value (-0.246 ± 2.952 µm).  
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Although the average value of surface roughness across all explanted cups is lower than 

the average value for the heads, in the instance where both the head and corresponding 

cup have been available for analysis at the time of revision there is no correlation in 

terms of surface roughness between the two articulating surfaces.  

In samples FAR 33 and 77, the cups have a higher surface roughness than the explanted 

heads. In samples FAR 4, 149 and 164 the converse statement is true. This will vary 

patient to patient depending on numerous factors including inclination angle, surgical 

implant technique, patient activity, age and gender. 

Cup samples FAR 80, 86 and 101 were from resurfacing joints. As with the heads, the 

surface roughness and skewness data was comparable to data from the M2a-Magnum 

MOM system.  

Examples of the zygo images taken at the surface of the retrieved CoCrMo cups can be 

seen in Figure 3.8. Multidirectional scratching and carbide pull-out is apparent. 
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Figure 3.8: Selection of surface profiles taken from retrieved CoCrMo cups. 
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2) Optical microscopy 

Optical images taken from the bearing surface of each retrieved implant are presented 

in Figure 3.9 and Figure 3.10 for the heads and cups respectively.  

Head sample FAR 72 was too large to focus on with the optical microscope. The surface 

was instead imaged using SEM. 

 

Figure 3.9: Selection of optical images taken from retrieved femoral heads. 
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Figure 3.10: Selection of optical images taken from retrieved acetabular cups. 
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The optical images from the retrievals show a wide range of features including abrasive 

multidirectional scratching and pitting on the surface. Images from head sample FAR 

149, which had the highest surface roughness, highlight the extent of the damage 

experienced at the bearing surface.  

Pitting can be seen most clearly in Figure 3.9 from FAR 4 and Figure 3.10 from cup 

sample FAR 4 and FAR 33.  

3) Scanning electron microscopy 

The bearing surface of selected retrievals was additionally analysed using SEM. Figure 

3.11 shows a range of images from the ReCap samples FAR 72, 86 and 101. Abrasive 

scratching and carbide pull-out are shown in images A, C and D.  

Image B shows the set up inside the SEM chamber. The normal imaging stage had to be 

removed first in order to allow adequate room for the joints to be positioned.  

 
Figure 3.11: Selection of SEM images. A: scratching and metal removal from FAR 86, B: FAR 86 positioned in 

SEM chamber, C: scratching from FAR 72, D: scratching from FAR 101. 
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Figure 3.12 shows two SEM images taken from head sample FAR 72. Image A captures a 

carbide with abrasive scratching around it. The carbide itself has not been scratched; 

this indicates how hard the structures are. Image B shows a magnified image of a 

carbide, highlighting their porous structure. 

 

Figure 3.12: SEM images of carbides from FAR 72, A: Carbides among scratching, B: Magnified image of 
carbide. 

3.4 Limitations 

One aim of this project is to recreate the worn features of a metal resurfacing cup at the 

stage of revision. Hence characterisation of the surface properties from retrieved 

CoCrMo cups is vital. The main limitation of the retrieval analysis was that only three 

explanted ReCap resurfacing cups were available for examination.  

Five cups from the M2a-magnum system, made from the same CoCrMo alloy, were also 

available and since the surface roughness data from zygo analysis was comparable to 

that from the resurfacing cups it can be assumed that all surface features seen could 

theoretically have been produced in a resurfacing joint. 

Most of the retrievals examined in this work have common features which include 

multidirectional scratching, pitting and high surface roughness coupled with a decrease 

in surface skewness.  

As fourteen retrievals in total have been analysed, it is important that the zygo data 

should only be used as a guide when attempting to recreate the wear properties of the 

CoCrMo cups. The average values may not be representative of a larger collection of 

retrieved CoCrMo components. Variation in patient lifestyle and initial operating 
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technique will have a large affect on the wear conditions that the implants are subject to 

which will result in a wide variety of surface features.  

3.5 Discussion 

In literature, analysis of explanted prostheses has been carried out using coordinate 

measuring machines, roundness and out of roundness machines in order to assess the 

wear rate of failed hip joints [11].  

Lord et al. [12] used a high-precision coordinate measuring machine to show that the 

mean volumetric wear rate for twenty-two acetabular cups at revision ranged from 0.30 

to 63.59 mm3/yr. The mean volumetric wear rate for thirty-two femoral heads ranged 

from 0.21 to 31.91 mm3/yr. These wear rates were much higher than anticipated from 

previous simulator studies which has demonstrated wear rates in the region of 0.03-

3.59 mm3/MC[13-15]. 

Joyce et al. [16] used MOM surface roughness data to demonstrate the self-polishing 

effect sometimes seen in metals. This was characterised by a reduction in surface 

roughness accompanied by a reduction in skewness. Two MOM total hip prostheses 

were obtained at revision surgery. The surface roughness of head 1 was shown to be 

14.7 ± 7.4 nm in the ‘unworn’ region of explanted head 1 in comparison to 8.1 ± 5.8 nm 

in the ‘worn’ region of the same head. 

This chapter aims to assess the surface features of failed hip explants with increased 

wear and discuss the possible causes in order to reproduce cups with similar features. 

In 2009 Joyce et al. [17] published surface roughness data from a single-surgeon clinical 

cohort of failed resurfacing hip prosthesis. Data is reported for five explanted heads and 

two explanted cups with articulating diameters ranging from 42.5 to 50.5 mm. For each 

component ten roughness measurements were taken and the average of these was 

calculated and compared to a ‘Do Not Implant’ (DNI) ASR prosthesis. The surface 

roughness values are given below.  
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Table 3.2: Experimental results from explanted resurfacing implants, published by Joyce et al.2009 [17]. 

Sample/Patient DNI Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Roughness 

head (µm Ra) 

0.010 0.135 0.045 0.047 0.025 0.062 

Roughness cup 

(µm Ra) 

0.012 0.058 0.044 - - - 

 

All the Ra values presented in Table 3.2 fall within the range of the surface roughness data 

collected in this chapter. The average surface roughness (± the standard deviation) for 

the retrievals analysed in this project is shown in comparison to the data published by 

Joyce et al. [17] It was established that, as in the explants investigated in this project, all 

components studied had roughened whilst in the body. It is worth noting that no 

surface skewness data was provided in the publication. 

 

Figure 3.13: Zygo roughness data from the current study compared to (*) data from Joyce et al. 2009 [17]. 

 A zygo image was also shown of the explanted femoral head from patient 1 in the study 

which shows carbide pull-out and metal loss which has also been seen in the retrievals 

analysed in this chapter. 
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Figure 3.14: Zygo image of explanted femoral head from patient 1 in Joyce et al. 2009 [17]. 

Joyce et al. [17] suggested that the explanted prostheses may have operated under 

boundary lubrication rather than fluid film lubrication. 

During fluid film lubrication the two articulating surfaces are completely separate and 

do not contact whereas in boundary lubrication asperities break through the fluid film 

layer and hence contact between the two surfaces can occur. This leads to increased 

friction and wear. 

Other factors which are known to cause an increase in wear include joint fracture (seen 

here in FAR 72 and 149), impingement (seen in FAR 33), high inclination angle (seen in 

FAR 149), edge loading (possibly seen in FAR 164 as well as in previous literature [18-

20]) and the effect of third body particles [21]. 

In February 2013 work by Loving et al. [22] was 

published that investigated the performance of 

Stryker UHMWPE dual mobility heads. One of the 

tests in the study included the use of physiologically 

worn cups. The cups were scratched prior to testing 

using a Rockwell C diamond indenter to create a 

sinusoidal abrasion pattern. An image of the 

resulting cup is shown in Figure 3.15. No optical 

images taken from the surface of the cup are 
Figure 3.15: Scratched acetabular cup 

from Loving et al. 2013 [22]. 
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provided in the paper so it is not known how the surface of the cup compares to that 

seen in retrievals. 

The method used by Loving et al. [22] to scratch the cups was verified by a previous 

study carried out by Lee et al. [23] which aimed to produce metal heads with scratches 

similar to that seen in vivo. This method was justified with comparison to one explanted 

head. The resultant scratched femoral head can be seen in Figure 3.16.  

 

 

Figure 3.16: Scratched femoral CoCrMo head taken from Lee et al. 2009 [23]. 
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The resulting zygo image in Figure 3.16 is similar to that seen in the head from FAR 4 in 

Figure 3.5 but is not comparable to any of the images produced from the retrieved cups 

in this study as shown in Figure 3.6. The optical image is also not comparable to those 

seen in Figure 3.10. 

Studying the effects of physiologically scratched CoCrMo femoral heads articulating 

against UHMWPE has been extensively studied in literature with varied results. Table 

3.3 gives a summary of techniques that have been employed previously to scratch 

femoral heads prior to testing. 

As seen above, scratching using a diamond stylus generates deep, narrow scratches with 

sharp, high peaks whereas for the acetabular retrievals studied in this chapter 

shallower scratches were more common.  

Scratching femoral heads using emery paper has been employed in several studies but 

there are concerns that third body particles which are not clinically relevant may 

remain in the metal matrix and affect the subsequent test data. 

Simulator studies have been carried out with the addition of third body particles to the 

test serum in order to generate multidirectional scratches to the femoral component. 

PMMA is a common choice of third body particle to use, with concentrations ranging 

from 1 to 10 mg/ml.  

There are many sources of third body particles found in the hip joint at revision surgery. 

As well as PMMA cement debris, there can also be corrosion products from the metal 

tapers, metal fragments from other fixation devices, bone particles, metal beads or 

fibres from porous coatings and hydroxyapatite coatings [24]. 
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Table 3.3: Methods previously employed to scratch femoral heads in vitro. 

Author Year Components 

used 

Method of wear Outcome 

Wang et 

al.[25] 

1998 32 mm CoCr head Grinding against various grit SiC paper in random 

motion 

Ra ranged from 0.01 to 0.85 µm 

Barbour et 

al.[26] 

2000 28 mm CoCr head Either scratched using a diamond stylus or with a 

spherical CoCr bead embedded into a UHMWPE pin 

Ra for embedded bead was 0.017 ± 

0.004 µm, and 0.035 ± 0.019 µm for 

diamond stylus 

Bowsher et 

al.[27] 

2001 28 mm CoCr head Manually roughened with 400 grit SiC paper Ra = 0.38 ± 0.014 µm 

Wang et 

al.[28]  

2001 32 mm CoCr head Addition of 10 mg/ml 160 µm PMMA to test serum 

for 1 MC (CoCr vs. UHMWPE) 

Mild CoCr scratches 

Saikko et 

al.[29] 

2002 28 mm CoCr head Manually roughened with emery paper Ra ranged from 0.017 to 0.057 µm 

Wang et 

al.[30] 

2003 32 mm CoCr head Addition of 5 mg/ml 150 µm PMMA to test serum 

for 2 MC (CoCr vs. UHMWPE) 

Ra = 0.057 ± 0.049 µm 

Affatato et 

al.[9] 

2006 28 mm CoCr head Either addition of 10 mg alumina powder for 

18000 cycles or addition of PMMA at 1 mg/ml for 

2.5 MC. (CoCr vs. UHMWPE) 

Ra ranged from 0.017 to 0.057 µm 

Lee et al.[23] 2009 28 mm CoCr head Scratched with diamond stylus Sinusoidal abrasive scratching 

pattern applied 

Sorimachi et 

al.[31] 

2009 32 mm, 44 mm 

CoCr head 

Addition of 10 mg/ml 40 µm PMMA to test serum 

for 2 MC (CoCr vs. UHMWPE) 

Ra (32 mm) = 0.018 µm,  

              Ra (44 mm) = 0.022 µm 

Jedenmalm et 

al.[32] 

2009 28 mm CoCr head Manually roughened with P320 grit SiC paper Ra = 0.4 µm 
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This project will look at two alternative ways to recreate the wear features seen in this 

chapter. Initially, a 5 MC MOM simulator study will be carried out using ReCap 

resurfacing joints. This is because all the retrievals analysed in this chapter have been 

subject to MOM wear so it is important that the metal articulation is studied.  

A 5 MC simulator study is representative of the implants being in the body for five years, 

which is a longer duration than some of the joints analysed here have been in vivo. 

Furthermore, a second MOM simulator study will be carried out which investigates the 

effect of third body wear particles in the test serum and the resulting effect with respect 

to both the wear rate and the surface properties of the two articulating surfaces.  

 The resulting cups from both of these studies will then be analysed in comparison to 

the retrieved samples and it is hoped that they will have features characteristic of the 

data shown in this chapter. 

3.6 Conclusion 

One CoCrMo head and three CoCrMo cups from the ReCap Resurfacing system along 

with five CoCrMo heads and five CoCrMo cups from the M2a-Magnum system were 

provided by Biomet for retrieval analysis.  

The average surface roughness across the six explanted CoCrMo heads was 0.078 ± 0.09 

µm whilst the average surface skewness was -2.261 ± 3.051 µm. 

The average surface roughness across the eight explanted CoCrMo cups was 0.031 ± 

0.03 µm with a corresponding surface skewness of -5.042 ± 4.682 µm. 

In comparison to unworn components, the average surface roughness of both the heads 

and cups has increased whilst the average surface skewness has decreased during 

implantation in the body. Optical images of the retrievals show a wide range of features 

including abrasive multidirectional scratching and pitting on the surface. SEM images of 

the retrievals look at the structure of the carbides present in the metal matrix. Carbide 

pull out has been imaged as well as carbides which have not been affected by the 

abrasive scratching in the surrounding area. 
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Physiological scratching has previously been applied in literature with the use of a 

diamond stylus. However the resultant surface features were not comparable to the 

data from the retrieved cups in this study and so the research shown in Chapter 4 will 

use alternative methods with the aim of creating worn cups comparable to the 

retrievals. 
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4. Generation of physiologically 
scratched CoCrMo cups  

4.1 Introduction 

This chapter details the studies carried out in order to generate physiologically 

scratched CoCrMo cups similar to the retrievals which were analysed in chapter 3.  

The materials and methods used in this chapter are discussed in sections 4.2 – 4.5. 

Section 4.2 introduces the Durham hip simulator which is used during the two 

biotribological MOM studies in this chapter in section 4.6 and 4.8.  

Section 4.3 introduces the pin-on-plate machine used in the wear screening test for 

MOM Test 2 that is given in section 4.7.  

Section 4.4 and 4.5 explain the lubricant and wear characterisation techniques used 

throughout the two simulator studies and the pin-on-plate test in this chapter. 

The experimental results are discussed in sections 4.6 – 4.8.  

Section 4.6 gives the results from an ISO-standard MOM biotribological study testing 60 

mm CoCrMo ReCap resurfacing joints. 

Section 4.7 gives the results from a MOM pin-on-plate wear screening test designed to 

investigate and compare the effect of hydroxyapatite and titanium particles on the MOM 

interface.  

Section 4.8 gives the results from an aggressive third-body MOM biotribological study 

testing the effect of hydroxyapatite and titanium particles on 60 mm CoCrMo ReCap 

resurfacing joints.  

Each experimental section will include a discussion whereby the resulting scratched 

CoCrMo cups are compared to the retrieved CoCrMo cups from chapter 3. 
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4.2 Durham hip simulator 

Both MOM simulations detailed later in this chapter were completed in the Durham hip 

simulator [1], [2]. 

  

Figure 4.1: Durham hip simulator. 

An AC motor and gearbox drove a crank and connecting rod which provided 

flexion/extension in the horizontal plane and oscillated the femoral component with an 

approximate sinusoidal motion through +30° to -15° at a frequency of 1 Hz. 

Internal/external rotation along the top axis was generated by a second crank and 

connecting rod which oscillated the acetabular component with an approximate 

sinusoidal motion of ±10°.  

The simulator does not have abduction/adduction so internal/external rotation and 

flexion/extension were 90° out of phase to produce the figure 8 wear track over the 

acetabular surface.  

A self-aligning gimbal mechanism ensured that the centre of the acetabular cup was in 

line with the centre of the femoral head. Loading was controlled by three optical 

switches and a pneumatic proportional valve which ensured load was applied during 

the stance phase of the walking cycle. The output pressure from the proportional valve 

was pneumatically amplified using a booster valve and a manifold was used to supply 

an equal pressure to the pneumatic actuator in each of the six stations.  
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Of these six stations, five underwent motion as well as loading. Station 6 was subject 

only to load. During wear testing, the load was set to a maximum of 2500 ± 400 N and a 

minimum of 150 ± 100 N. 

4.3 Pin-on-plate machine 

The pin-on-plate machine used in section 4.7 consisted of four stations that applied both 

reciprocation and rotational motion. The cycle frequencies of both motions were set at 

approximately 1 Hz. The machine can be seen in Figure 4.2 and Figure 4.3. 

 

Figure 4.2: Pin-on-plate machine, front view. 

Reciprocation was applied by a sledge moving along two fixed parallel hardened steel 

bars. The sledge was driven by a 150 W DC shunt motor. The speed of the motor was 

controlled using a variable voltage supply. The heater bed, stainless steel bath and plate 

holder were positioned on top of this sledge. The test lubricant was heated by resistors 

positioned within the heater bed controlled by a thermocouple which maintained a 

constant temperature of 37° throughout the test. Any evaporation from the lubricant 

was restored by topping up with deionised water using an automatic water level sensor 

made from platinum wire which was fitted to prevent the rig running without lubricant. 

The four loaded pins were held in stainless steel holders and a load of 40 N was applied 

to each station via a lever arm mechanism. 
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An electronic counter was connected to the reciprocating sledge to count the number of 

cycles completed and tests were carried out in 0.25 MC intervals. The stroke length was 

set to 25 mm, giving a sliding distance of 50 mm per cycle.  

 

Figure 4.3: Pin-on-plate machine, side view. 

Whilst the test was in operation a perspex cover was placed over the entire rig to 

prevent dust contamination from the atmosphere. 

4.4 Lubricant 

4.4.1 ISO-standard lubricant 

The lubricant used in this study was 25% bovine serum diluted with deionised water in 

accordance with ISO 14242-1. In addition, 8-10 pellets of NaOH, 20 mMol EDTA and 

0.2% w/v of sodium azide were added. NaOH creates the desired pH to allow EDTA to 

dissolve. EDTA stops calcium deposition while sodium azide slows down any bacterial 

growth in the lubricant. The simulator ran in 0.5 MC intervals for 1.5 MC. After every 0.5 

MC, the lubricant was extracted from the set-up and frozen for storage and future 

digestion.  
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The newborn calf serum was supplied by PAA (PAA Laboratories Ltd, Somerset, BA22 

8YG). The same batch number, B00109-0614, was used consistently for all simulator 

tests within this study. The test lubricant had a resulting protein content of 17 g/L. 

4.4.2 Lubricant with Third-Body Particles 

Two third-body particle tests were carried out during this study, both using two types 

of particles, hydroxyapatite (HA) and titanium (Ti). 

Titanium is commonly used on the back of 

replacement acetabular cups in order to create a 

rough coating, see Figure 4.4, that aids in short 

and long term fixation and greatly reduces the 

risk of osteolysis [1].  

Hydroxyapatite is an optional coating available 

for the acetabular cups in order to accelerate 

bony ingrowth. It has been demonstrated that 

HA stimulates osteoblastic activity for optimal initial stability when applied over the top 

of the Ti backing [2].  Both Ti and HA offer great benefits and hope to increase the 

longevity of a successful hip resurfacing. 

As discussed in the literature review, if a resurfacing fails due to implant loosening then 

it is possible that particulate debris from the coating on the back of the cup may 

disintegrate and enter the joint cavity which could then have the ability to accelerate 

wear [3; 4]. Hence both HA and Ti are discussed here as clinically relevant third-body 

particles and our objective is to analyse the effect of these particles on metal resurfacing 

joints. 

The first test was a pin-on-plate simulation (section 4.7) to assess any difference in 

effect on the MOM interface due to the presence of HA or Ti third-body wear particles. 

Biomet UK supplied two samples of HA and Ti particles to be used in this project.  

Both samples were examined using SEM and characterised from analysis of the images. 

A summary is shown in Table 4.1. There is a notable difference in morphology and size 

between the two types of particle. Ti is both sharper in structure and larger in size.   

Figure 4.4: Porous titanium coating on the 
back of CoCrMo acetabular cup. 
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Table 4.1: Summary of morphology and size of third-body particles. 

Particle Type Morphology Average diameter/ 

length, µm 

± Standard 

Deviation 

HA Mostly spherical 

and globular shapes 

57 16 

Ti Irregular with sharp 

edges 

234 73 

An example of the SEM images of the particles can be seen in Figure 4.5 and Figure 4.7 

for HA and Ti respectively. The size distribution of each sample is given in Figure 4.6 

and Figure 4.8. 

 

Figure 4.5: SEM image of HA particles. 
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Figure 4.6: Size distribution of HA particles from SEM images. 

 

 

 

Figure 4.7: SEM image of Ti particles. 
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Figure 4.8: Size distribution of Ti particles from SEM images. 

The pin-on-plate test was carried out in 0.25 MC intervals. In addition to the standard 

test lubricant, 5 mg/ml of third-body wear particles (either HA or Ti depending on the 

stage of the test) were added to the solution. Half of the wear particles were placed 

directly on to the plates during set up and half of the particles were mixed in the serum 

for four hours prior to testing, see Figure 4.9. 

 

Figure 4.9: HA stirring in test lubricant for 4 hours prior to pin-on-plate simulation. 
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standard test lubricant for the hip simulation was increased to 10 mg/ml. Half of the 

wear particles were applied directly to the cups during set up, half of the particles were 

mixed in the serum overnight prior to testing. It was especially important whilst 

working with Ti wear particles that the lubricant was swirled whilst pouring into the 

gaiter during set up to ensure that the majority of the particles entered each station. 

4.5 Wear characterisation 

4.5.1 Gravimetric method 

Each component was cleaned, dried and weighed in intervals of 0.5 MC for any 

component undergoing testing in a hip simulator and 0.25 MC for any sample 

undergoing testing in a pin-on-plate machine, as described in ISO 14242-2. The cleaning 

protocol is provided in Appendix B.  

The weighing balance used in this study for each component is the Mettler Toledo 

AX205. It is accurate to 0.01 mg and can withstand a maximum weight of 220 g. The 

balance had a readability of 0.1 mg and repeatability of 0.03 mg. Initially each sample 

was left to acclimatise next to the balance for thirty minutes prior to weighing. Three 

consecutive masses within ± 0.1 mg were recorded for each sample. This accuracy was 

achieved for all metal components. Volume change was then calculated from the mass 

data using the density of the material, which for CoCrMo was 8.276 g/cm3. After this, 

volume change was plotted versus number of cycles in Microsoft Excel and the wear 

rate in mm3/MC was calculated using linear regression analysis. 

4.5.2 Surface characterisation techniques 

The surface topography of the metal bearings used in this chapter have been analysed 

throughout each MOM test using zygo non-contacting profilometry as discussed in 

section 3.2. Images of the worn surfaces have also been taken with optical microscopy 

(also discussed previously in section 3.2). The only bearings which could not 

successfully be imaged were the 60 mm CoCrMo resurfacing heads which were too large 

to focus on. These bearing surfaces were only able to be investigated via zygo 

profilometry. However the 60 mm CoCrMo cups were imaged successfully and the 

carbides were clearly defined. 
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4.6 MOM Test 1: ISO-standard biotribological study 

For this test 60mm ReCap CoCrMo resurfacing components were articulating under 

standard conditions in the Durham hip simulator at 45° (standard inclination angle). 

There were five active stations, a loaded soak control and a soak control under no 

loading, left at room temp throughout the test. 

 

Figure 4.10: 60mm ReCap CoCrMo Resurfacing Head and Cup. 

4.6.1 Joint replacement clearance 

Eight resurfacing CoCrMo femoral heads were paired with CoCrMo acetabular cups. The 

samples were paired to give a radial clearance that was as close as possible. The mean 

radial clearance across the active samples was 118 µm. The mean radial clearance 

across all the samples was 121 µm. Table 4.2 shows the full list of clearances. 

It is worth noting that the initial resurfacing head and cup being tested in Station 1 

(referenced as Stn 1a) had to be replaced after 1 MC. The reason for this will be 

explained in the following section. The bearing combination that replaced it is shown in 

Table 4.2 as Stn 1b. 
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Table 4.2: Radial clearance of 60mm CoCrMo components. 

Test 1 Femoral Batch, 

Batch ID 

Shell Batch, 

Batch ID 

Clearance, 

µm 

Stn 1a 1 2410669, 1 38 2410665, 2 119 

Stn 1b 25 2410694, 1 48 2410667, 2 119 

Stn 2 4 2410669, 4 39 2410665, 3 117 

Stn 3 9 2410670, 3 43 2410666, 2 119 

Stn 4 6 2410669, 6 42 2410666, 1 117 

Stn 5 15 2410671, 3 45 2410666, 4 119 

Load cntrl 3 2410669, 3 40 2410665, 4 132 

Soak cntrl 20 2410672, 2 47 2410667, 1 122 

 

4.6.2 Wear results 

The test consisted of five active stations, all under standard conditions. In addition to 

this, there was a load soak control, and a soak control under no loading. There were 

problems throughout the test with the quality of the silicon gaiters which led to serum 

loss and increased wear during leakages from the neck of the gaiters during the stress of 

internal/external rotation. The main leakage events are summarised in Figure 4.11. 

After Station 1 had suffered a large serum loss during the first 0.5 MC and ripped again 

between 0.5-1MC, at the start of 1.5 MC the station began to squeak due to the increased 

friction between the components as a result of dry wear. The station bearing had also 

become loose so it is probable that the station oscillation had an additional effect on the 

wear. The station was tightened and the bearing was replaced with fresh components 

(represented in the data as Station 1b). The test then ran to 6MC in order to obtain 5 MC 

of data for this station. 

During the test, only Station 1b and 4 did not suffer any leaks at all, so the wear data has 

been split into those that suffered leaks and those that did not. There is a considerable 

difference between the two sets of data and the change in lubrication conditions and 

mode of wear has had a significant effect on the rate of wear. 
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Figure 4.11: Summary of complications with gaiters throughout 5 MC. 

 

The mass loss of each component was corrected by the change of the load soak to 

account for the fluctuations in mass measurements over the test. The cumulative weight 

loss from the femoral resurfacing heads and acetabular cups in Stations 1b and 4 are 

shown in Figure 4.12 and Figure 4.13 respectively. The cumulative weight loss from the 

femoral resurfacing heads and acetabular cups in Stations 2, 3 and 5 are shown in 

Figure 4.14 and Figure 4.15. 
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Figure 4.12: Cumulative weight loss of 60mm resurfacing CoCrMo heads from Stn 1b and Stn 4, accounting for 
the load soak. 

 

 

Figure 4.13: Cumulative weight loss of 60mm acetabular CoCrMo cups from Stn 1b and Stn 4, accounting for 
the load soak. 
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Figure 4.14: Cumulative weight loss of 60mm resurfacing CoCrMo heads from Stns 2,3 and 5, accounting for 
the load soak. 

 

 

Figure 4.15: Cumulative weight loss of 60mm acetabular CoCrMo cups from Stns 2,3 and 5, accounting for the 
load soak. 
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It is clear to see wear in Stations 1b and 4 has been very low, whereas the leakages have 

had a huge detrimental effect on the wear rates in Stations 2, 3 and 5, creating ‘runaway 

wear’.  

Wear rates (mm3/MC) have been calculated for each station. For Stations 1b and 4, 

wear has been divided into run-in wear (0-1 MC) and steady-state wear (1-5 MC). The 

results are shown in Table 4.3. For the ‘runaway’ stations which have suffered multiple 

leaks, the overall (0-5 MC) wear rate is shown in Table 4.4. Station 5 has experienced a 

lower wear rate than Stations 2 or 3 since it suffered its most major leak further along 

in the test. 

 

Table 4.3: Wear rates for 60mm resurfacing CoCrMo heads, mm3/MC. 

Wear Rates Run-in Steady State Overall 
Head 1b 0.069 0.009 - 
Head 2 - - 32.19 
Head 3 - - 19.62 
Head 4 0.060 0.009 - 
Head 5 - - 7.53 

 

Table 4.4: Wear rates for 60mm acetabular CoCrMo cups, mm3/MC. 

Wear Rates Run-in Steady State Overall 
Cup 1b 0.34 0.041 - 
Cup 2 - - 41.78 
Cup 3 - - 35.82 
Cup 4 0.32 0.031 - 
Cup 5 - - 5.28 

 

 

At worst, the wear rates in the ‘runaway’ stations are over 1000 times greater than 

those which have not experienced any leaks. This is thought to be due to the increased 

friction between the articulating surfaces which later decreased the stability of the head 

stem in the head stem holder causing slight additional wear around the head stem. 

With the exception of Station 5, the acetabular components have had a greater wear 

rate than the femoral components. 
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4.6.3 Surface characterisation 

1) Zygo non-contacting profilometry 

Ten zygo images were taken at the pole and at 33° around the pole for each component 

in the five active stations at different stages throughout the test. The load control and 

soak control were also analysed for comparison. 

Wear testing has caused the surface roughness (Ra) to increase slightly in Stations 1b 

and 4 for both the heads and cups. In Stations 2, 3 and 5, that have leaked, the increase 

in roughness is much greater for all components. The surface roughness of the load 

control components have barely changed. Again, data has been collected and averaged 

over the stations that have not encountered leaks, and those that have. Figure 4.16 and 

Figure 4.17 show the results; the error bars indicate the standard deviation of the data. 

 

 

Figure 4.16: Surface roughness of 60mm resurfacing CoCrMo heads during testing. 
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Figure 4.17: Surface roughness of 60mm acetabular CoCrMo cups during testing. 

The trend in the changing skewness is much harder to see, especially since any 

measurement that has a significant positive or negative skewness can affect the mean 

value.  This can be seen in the load control data, where the skewness has decreased 

throughout the test, but at the same time the standard deviation has increased also. 

Generally, during the run-in phase of the test, skewness has decreased, which is more 

favourable for lubrication. 

 

 

Figure 4.18: Skewness of 60mm resurfacing CoCrMo heads during testing. 
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Figure 4.19: Skewness of 60mm acetabular CoCrMo cups during testing.  

 

Figure 4.20 and Figure 4.21 show a selection of zygo images showing 3D profiles of the 

surface of the femoral and acetabular components. The first is a typical image taken 

from the cups at 0 MC. The images that follow are taken after 5 MC from each station. 

The surface topography from the bearings in Stations 1b and 4, shown in images B and 

E from both Figure 4.20 and Figure 4.21, is much smoother than from the bearings that 

experienced leaks. 
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Figure 4.20: Surface profiles of femoral resurfacing heads imaged throughout this test. A: OMC from Station 
1b, B: 5 MC from Station 1b, C: 5 MC from Station 2, D: 5 MC from Station 3, E: 5 MC from Station 4, F: 5 MC 

from Station 5. 
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Figure 4.21: Surface profiles of acetabular cups imaged throughout this test. A: OMC from Station 1b, B: 5 MC 
from Station 1b, C: 5 MC from Station 2, D: 5 MC from Station 3, E: 5 MC from Station 4, F: 5 MC from Station 5. 

 

2) Optical microscopy 

The following images were taken with an Axiotech optical microscope. Figure 4.22 

shows a typical image of the surface of the cups at 0 MC in comparison to those after the 

very first 0.5 MC, the carbides are clearly visible. Figure 4.23 and Figure 4.24 then show 

images from the cup surfaces after 2.5 MC and 5 MC respectively, including the load 

control station. 
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Figure 4.22: Surface images taken throughout this test. A: OMC from Station 1b, B: 0.5 MC from Station 1b, C: 
0.5 MC from Station 2, D: 0.5 MC from Station 3, E: 0.5 MC from Station 4, F: 0.5 MC from Station 5. 
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Figure 4.23: Surface images taken after 2.5 MC of this test. A: Station 1b, B: Station 2, C: Station 3, D: Station 4, 
E: Station 5, F: the load control station. 
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Figure 4.24: Surface images taken after 5 MC of this test. A: Station 1b, B: Station 2, C: Station 3, D: Station 4, E: 
Station 5, F: the load control station. 

 

The difference in the worn areas on the surfaces of the cups from stations that have 

experienced serum loss through gaiter leaks is clear to see. Stations 1b and 4 were only 

slightly scratched at the end of the test, but Station 2, 3, 5 are deeply scarred with 

possible carbide removal. 
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4.6.4 Limitations 

The main limitation in this test has been the poor quality of the gaiters, leading to 

increased loss of serum at certain stages throughout the wear simulation. Alternative 

gaiters were trialled in the hope of minimising leakages, however the option available, 

shown in Figure 4.25 below, did not fit the cup holder well, and air bubbles collected in 

the concertinaed edges. Therefore it was decided to continue with the current style of 

gaiter, under careful observation, whilst the suppliers looked into the problem. Any 

leaks that occurred overnight were, sadly, unavoidable. 

 

Figure 4.25: Alternative available gaiter with concertinaed edges (pulled over cup holder and base plate). 

4.6.5 Discussion 

In order to compare the test results seen here, the data will be considered in two parts.  

Firstly the data from the stations which did not experience dry wear (one and four) will 

be compared to previous simulator studies using metal resurfacing bearings.  

Secondly the data from the stations which experienced runaway wear (two, three and 

five) will be compared to data from analysis on retrieved resurfacing bearings. 

The data from the 60 mm ReCap resurfacing femoral heads in Stations 1b and 4 has 

been combined with the data from the acetabular cups in order to compare the total 

run-in and steady state wear rates with previous studies by Leslie et al. [5], Heisel et al. 

[6], Saikko et al. [7] and Vassilou et al. [8] using a range of resurfacing joints with 

different diameters. The clearance of the bearings ranged from 0.111 µm to 0.210 µm. 
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Figure 4.26: Comparison of the run-in wear data from Stns 1b and 4 with previously published simulator 
studies.

 

Figure 4.27: Comparison of the steady state wear data from Stns 1b and 4 with previously published 
simulator studies. 
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A comparison of the run-in wear rates is given in Figure 4.26 while Figure 4.27 shows 

the comparison of the steady state wear rates. 

The run-in wear rate seen in the well-functioning stations in this study was much lower 

than those seen in previous studies, whereas the steady state wear rate was more 

comparable with the previous work.  

Sieber et al. [9] studied 65 retrieved second-generation MOM heads and 53 retrieved 

cups. 115 retrievals had a diameter of 28 mm, 3 had a diameter of 32 mm. The average 

linear wear rate was found to be 0.025 mm for the whole articulation per year in the 

first year, and then 0.005 mm/year after the third year.  The average volumetric wear 

rate was 0.3 mm3/year, this corresponds well to the run-in wear rate seen in bearings in 

stations 1b and 4 which functioned well, with their wear rates dropping as they 

continued to steady state. 

However, the bearings in this study that suffered leaks had much higher wear rates 

which were within the range of severe wear rates experienced in failed metal 

resurfacing joints as determined by Lord et al. [10] and can be seen in Figure 4.28. 

The additional wear around the stem of the metal resurfacing femoral heads seen in 

bearings 2, 3 and 5 has also been seen clinically in retrieved implants from patients who 

have suffered adverse reactions to metal debris and is considered by Takamura et al. 

[11] to be a major concern for large diameter MOM bearings. The study looked at 90 

retrieved resurfacing heads produced by several manufacturers. 
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Figure 4.28: Comparison of the wear data from Stns 2, 3 and 5 with retrieval data published by Lord et al. [10].
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It is important throughout this test to consider that the whole reason behind it is to 

provide worn cups for the next simulation representing a retrieval operation, replacing 

the worn femoral component for a new, dual mobility, head. 

Initially it was assumed that additional, external wear would be needed to try to make 

the cups as rough as those extracted during revision procedures. This would have been 

problematic due to the possible introduction of third-body wear particles from any 

emery paper, etc used to wear the surface. However, the problems with leaking gaiters 

have caused such an increase in wear that it has been surprisingly beneficial. Below is a 

comparison from the zygo data between the test cups and eight retrieval acetabular 

components that have been studied. The surface roughness of the cups which have 

experienced leaks is greater than that seen in the retrievals in this project. 

 

Figure 4.29:  Zygo data showing average surface roughness (Ra) and skewness (Rskw) values across all test 
components in comparison to retrieved acetabular components. 

Cups 1b and 4 are smoother than the retrievals but are still relevant since they share 

some similar features regarding scratching at the surface, this can be seen in Figure 

4.30, as well as smoothed carbides at the bearing surface which are shown in the earlier 

zygo images that are in common with retrieved acetabular cups. 
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Figure 4.30: Optical images taken from the surfaces of A: Cup 1b after 5 MC, B: retrieved component FAR 77, 
C: Cup 4 after 5 MC, D: retrieved component FAR 164. 

The major, expected difference between the test cups and the retrievals is that the 

retrievals feature a lot more multidirectional scratches, Figure 4.31. Multidirectional 

scratches are not possible to create in a standard wear test due to the controlled 

movement of the simulator. However, the wear tracks seen in the ‘runaway’ stations are 

so deep that if the next test reduces the wear from stations 2, 3, and 5, then it would 

really be a strong indication that dual mobility heads are a viable solution to a failed hip 

resurfacing arthroplasty. These three stations have all experienced wear rates within 

the range seen clinically in retrieved failed metal hip resurfacing joints [10]. 

 

Figure 4.31: Optical images taken from A: retrieved component FAR 4 (a lot of multidirectional scratches), B: 
Cup 2 after 5 MC (a lot of deep, unidirectional scratches). 
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4.6.6 Conclusion 

Five resurfacing 60 mm CoCrMo heads have been tested against 60 mm CoCrMo 

acetabular cups for 5 MC under standard conditions at a standard incline. 

Stations 2 and 3 experienced dry wear during the run-in phase, whereas Station 5 

experienced dry wear during steady-state, and this led to runaway wear in these 

stations. The overall wear rates of the CoCrMo resurfacing heads ranged from 7.53 

mm3/MC to 32.19 mm3/MC in these stations. The overall wear rates of the CoCrMo cups 

ranged from 5.28 mm3/MC to 41.78 mm3/MC. 

Stations 1 and 4 did not experience any leaks. The wear rates of the CoCrMo resurfacing 

heads ranged from 0.06 – 0.07 mm3/MC during run-in wear and was 0.009 mm3/MC 

during steady state. The wear rates of the CoCrMo cups ranged from 0.32 – 0.34 

mm3/MC during run-in wear and from 0.03 – 0.04 mm3/MC during steady state. 

Surface roughness generally increased for all components over the course of 5 MC, and 

was much rougher in the components that had experienced runaway wear. Optical 

images for these components showed also deep scratches with possible carbide 

removal. 

The wear rates of the CoCrMo cups in the stations which have experienced leaks have 

been seen clinically in failed MOM THRA hence the complications in this test have 

provided worn cups for the following dual mobility simulation which represents a 

retrieval operation in vitro. 

4.7 MOM pin-on-plate wear screening for MOM Test 2: third-body 

aggressive wear 

The purpose of the following pin-on-plate investigation was to establish whether 

hydroxyapatite (HA) or titanium (Ti) particles have a greater third-body particle effect 

on the CoCrMo-CoCrMo interface. It was a trial with the aim being to decide the order of 

third-body particle testing of future hip simulations in order to provide worn cups with 

similar surface features to those seen in vivo. CoCrMo pins with a diameter of 6mm, 

length 18 mm were tested against CoCrMo plates with dimensions 44 x 24 x 3 mm. The 

samples had been previously tested. The wear under standard conditions in 25% bovine 
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serum is not important; it is the comparative wear once the third-body particles have 

been added that is of interest in this chapter. 

Pin-on-plate simulations are carried out in 0.25 MC intervals. For the first 0.5 MC, the 

pins were worn against the plates under standard conditions in 25% bovine serum. 

Between 0.5-1.0 MC the test was run in 25% bovine serum plus 5 mg/ml HA particles. 

Then between 1.0-1.5 MC the pins were worn against the plates under standard 

conditions again to act as a recovery stage. Between 1.5-2.0 MC the test was run in 25% 

bovine serum plus 5 mg/ml Ti particles. In each third-body test, half of the particles 

were mixed in the serum for four hours prior to testing, and the remaining particles 

were applied directly to the plates during set up. It was hoped that this would ensure 

particles to be located in the wear track, and also dispersed in the test lubricant. 

4.7.1 Wear results 

The cumulative weight loss from each pin is shown in Figure 4.32 while Figure 4.33 

shows the average mass loss of the four pins and notes the change in lubricant 

conditions during the 2MC. The mass loss of each pin has been corrected by the change 

of a soak pin to account for fluctuations in mass measurements during the test. The pins 

have worn consistently throughout this simulation, despite the change in lubricant 

conditions.  

 

Figure 4.32: Cumulative weight loss of CoCrMo pins, accounting for the soak control. 
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Figure 4.33: Cumulative weight loss from an average of the four active pins, noting the different test 
conditions. 

At the start of 0.5 MC, when HA was first added to the test lubricant, there was a 

technical problem with the water level sensor. HA particles collected and built up 

around the sensor and overnight the sensor failed, water evaporated from the serum 

which was not replaced and this lead to dry wear for an unknown amount of time after. 

This did not affect the wear data for the pins; however the effect is evident in the wear 

data for the plates. The plates suffered a significant mass loss. Because this was the first 

test interval where HA particles were added, the extent of wear due to third-body 

particles or dry wear from the sensor failing was unknown. However during 0.75-1.0 

MC when more HA particles were added, and there were no technical issues with the 

water level sensor, the mass loss from the plates was not significant. This indicates that 

the mass loss during 0.5-0.75 MC was directly down to dry wear, rather than any third-

body particle effect. The cumulative weight loss from each plate is shown in Figure 4.34, 

and has been corrected by the change in mass of a soak plate. Figure 4.35 shows the 

average mass loss of the four plates, noting the change in lubricant conditions during 

the 2MC, as well as the incident of dry wear. 
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Figure 4.34: Cumulative weight loss of CoCrMo plates, accounting for the soak control. 

 

Figure 4.35: Cumulative weight loss from an average of the four active plates, noting the different test 
conditions. 

 

Using the density of CoCrMo, the volume loss from each test component during each test 

interval has been calculated from the weight loss. The four sets of values were then 

averaged and the result is shown in Figure 4.36.   
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Figure 4.36: Average volume loss from the pins and plates over 2 MC, noting the test conditions. 

The total volume loss from each pin and plate in each station has been combined to 

calculate the total wear rate for each 0.5 MC to separate the different test conditions. 

The results are shown in Table 4.5. It is clear to see that the change in lubricant, 

irrespective of the addition of HA or Ti, has had no effect on the wear data. 

Table 4.5: Total wear rate at different stages during pin-on-plate test, mm3/MC. 

Total wear rate, 

mm3/MC 

0 – 0.5 

MC 

Serum 

0.5 – 1.0 MC 

Serum with 

HA 

1.0  – 1.5 MC 

Serum 

1.5 – 2.0 MC 

Serum with 

Ti 

Station 1 4.27 3.76 3.98 3.59 

Station 2 4.01 4.02 4.50 4.82 

Station 3 3.78 3.98 3.64 3.61 

Station 4 3.78 4.14 4.13 4.16 

Average 

(± SD) 

3.96  

(± 0.23)  

3.97 

(± 0.16) 

4.06 

(± 0.36) 

4.04 

(± 0.58) 
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4.7.2 Surface characterisation 

1) Zygo non-contacting profilometry 

Five zygo images were taken within the wear track of each active plate, and three from 

the soak plate, at each 0.5 MC stage of the pin-on-plate test where the test lubricant 

conditions changed. The results were combined and shown in Figure 4.37; there is little 

change in surface roughness over the course of the test. 

 

 

Figure 4.37: Surface roughness of CoCrMo plates during 2.0 MC. 

 

2) Optical microscopy 

Images within the wear track, at the edge of the wear track, and outside the wear track 

were taken for each active plate with an optical microscope throughout the test. Figure 

4.38 shows three images taken from plate 2 at the edge of the wear track after each 

million cycles of testing. There is little change in the features of the wear track, despite 

the addition of either HA or Ti.  
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Figure 4.38: The edge of wear track on plate 2 throughout test in comparison to the soak control. 

The same result is visible in Figure 4.39, which shows the centre of the wear track in 

plate 1, where again no change is evident. This result is also typical of the images 

collected for plates 3 and 4. 
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Figure 4.39: The centre of the wear track on plate 1 throughout test in comparison to the soak control. 

Images were also taken from each pin throughout the test. Figure 4.40 shows how even 

after 2 MC of testing with the addition of two different types of lubricant with third-

body particles, there are little surface features or signs of scratching on the pin head 

surface. 

The optical images support the conclusion from the zygo and wear data that the 

lubricant with third-body particles has had no real comparative effect on the wear of the 

pins and plates throughout this study. 
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Figure 4.40: Centre of all active pins at 2 MC. 

4.7.3 Limitations 

The main problem with this pin-on-plate test was that the third-body wear particles 

visibly moved out of the wear track very quickly so no effect was seen on the CoCrMo-

CoCrMo interface. The particles settled on the bottom of the sample tray instead of 

interfering with the wear track.  It is hoped that the motion of a hip simulator would 

stop this occurring in future hip simulations by ‘shaking up’ the particles more.  

Ti did not seem to mix as well in the serum as HA, and settled quickly in the beaker 

before being added to the sample tray. For future hip simulations the third-body 

particles will be spun in the serum overnight prior to testing and it is important to swirl 

the beaker whilst adding the lubricant with third-body particles to the samples.  

The only increase in wear throughout this test occurred when the water level sensor 

failed, resulting in dry wear. This was a problem caused by the collection of third-body 

particles around the water sensor. The problem was prevented from happening in 

further third-body tests by the careful monitoring and regular cleaning of the sensor. It 
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was important that the test was started early in the day to ensure the sensor was 

cleaned before leaving it to run overnight. 

4.7.4 Discussion 

This pin-on-plate test has been unsuccessful in establishing whether HA or Ti particles 

have a greater third-body effect on the CoCrMo-CoCrMo interface. There has been very 

little change in wear, optical or zygo data throughout the test despite the changes in test 

lubricant. This is believed to be due to the third-body particles not entering the wear 

track and highlights how difficult it is to know the concentration of third-body particles 

present in the tribocontact even when the initial total concentration in the test serum is 

known. For this reason the concentrations of HA and Ti added to the test lubricant for 

future hip simulations will be increased from 5 mg/ml to 10 mg/ml. This is the upper 

limit seen in previously published third-body tests (Table 3.3) and will hopefully 

increase the likelihood that third-body particles will enter the tribocontact, accelerate 

the wear and produce worn CoCrMo acetabular cups with features similar to that seen 

in vivo.  

Both HA and Ti particles could theoretically co-exist within the joint through implant 

loosening. Since HA is an optional additional coating to the porous Ti coating it is 

feasible to assume that HA particles count enter the joint cavity primarily which would 

then expose the Ti coating for further wear. Hence the order of testing for future hip 

simulations will follow the same order as this test with HA being added to the test 

lubricant before Ti. 

4.7.5 Conclusion 

Previously worn CoCrMo pins have been worn against previously worn CoCrMo plates 

to try to anticipate the effect of third-body particles on the CoCrMo-CoCrMo interface 

for future hip simulations.  

The pin-on-plate simulation ran for 2 MC. During 0-0.5 MC the test lubricant was 25% 

bovine serum. Between 0.5-1.0 MC the lubricant was 25% bovine serum plus 5 mg/ml 

HA particles. Between 1.0-1.5 MC the lubricant returned to 25% bovine serum and in 

the final 1.5-2.0 MC the lubricant was 25% bovine serum plus 5 mg/ml Ti particles. 
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Combining and averaging the wear data from all the pins and plates that have 

undergone wear testing, the wear rate for each 0.5 MC stage of the test ranged from 

3.96 mm3/MC to 4.06 mm3/MC, regardless of the test lubricant. Hence it can be 

assumed that the change in lubricant with the addition of third-body particles has had 

no effect on the wear data. Optical images and zygo data also confirm that there was 

little change in surface features of the samples during the 2 MC. The third-body particles 

moved out of the wear track very quickly and so no effect was seen on the CoCrMo-

CoCrMo interface. 

4.8 MOM Test 2: aggressive third-body biotribological study 

For this test 60 mm ReCap CoCrMo resurfacing components, Figure 4.41, were 

articulating under standard conditions in the Durham hip simulator at 45° (standard 

inclination angle). The test lubricant was varied during each 0.5 MC interval of the test 

for the five active stations to assess the effect of third-body particles and produce worn 

acetabular cups for further testing against dual mobility heads.  

Between 0-0.5 MC the test was run in 25% bovine serum plus 10 mg/ml HA particles. 

Between 0.5-1.0 MC the test was run in standard 25% bovine serum to act as a recovery 

stage. Between 1.0-1.5 MC the test was run in 25% bovine serum plus 10 mg/ml Ti 

particles, and then from 1.5-2.0 MC was another recovery stage where the test was run 

in standard 25% bovine serum. In each third-body test half of the particles were applied 

directly to the cups during set up whilst the other half of the particles were mixed in the 

serum overnight prior to testing. There was also a loaded soak control and a soak 

control under no loading left at room temp throughout the test in 25 % bovine serum. 
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Figure 4.41: A: 60 mm ReCap CoCrMo resurfacing head and cup, B: HA particles, C: Ti particles. 

 

4.8.1 Joint replacement clearance 

The acetabular cups from Dual Mobility Test 2 were paired with resurfacing CoCrMo 

femoral heads.  The mean radial clearance across the active samples was 121 µm. Table 

4.6 shows the full list of clearances. 

Table 4.6: Radial clearance of 60 mm CoCrMo components. 

Third-

body test 

Femoral Batch, 

Batch ID 

Shell Batch, 

Batch ID 

Clearance, 

µm 

Stn 1 16 2410671, 4 49 2410667, 3 132 

Stn 2 11 2410670, 5 44 2410666, 3 117 

Stn 3 23 2410692, 1 50 2410667, 4 119 

Stn 4 17 2410671, 5 46 2410666, 5 117 

Stn 5 13 2410671, 1 52 2410667, 6 119 

Load cntrl 3 2410669, 3 40 2410665, 4 132 

Soak cntrl 20 2410672, 2 47 2410667, 1 122 
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4.8.2 Wear results 

The test consisted of five active stations all under standard conditions and with either 

standard lubricant or third-body particle lubricant depending on the stage of testing. 

There was also a loaded soak control and a soak control under no loading which were 

both stored in standard lubricant throughout the test. 

As before, the mass loss of each component was corrected by the change of the load 

soak. The cumulative weight loss for each CoCrMo resurfacing head in the changing 

lubricant conditions are given in Figure 4.42, whilst Figure 4.43 shows the 

corresponding data for the articulating CoCrMo cups. 

 

Figure 4.42: Cumulative weight loss of 60 mm resurfacing CoCrMo heads during third-body particle test, 
accounting for the load soak. 
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Figure 4.43: Cumulative weight loss of 60 mm acetabular CoCrMo cups during third-body particle test, 
accounting for the load soak. 

 

The wear rate (mm3/MC) for each 0.5 MC interval during the 2.0 MC simulation has 

been calculated for each station. The results are shown in Table 4.7.  

Both HA and Ti have caused an increase in wear for the heads and cups in each active 

station in this test. The wear rate was greatest when HA was added, though it is possible 

that this is due to the addition of the particles during the run-in stage of the test, where 

wear is typically at its maximum. 
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Table 4.7: Wear rates for each stage of third-body particle test, mm3/MC. 

Test stage, 

Lubricant 

condition 

0 – 0.5 MC, 

25% BS + 

10 mg/ml HA 

0.5 – 1.0 MC, 

25% BS 

1.0 – 1.5 MC, 

25% BS + 

10 mg/ml Ti 

1.5 – 2.0 MC, 

25 % BS 

Head 1 1.29 0.11 0.19 0.02 

Head 2 1.54 0.11 0.19 0.02 

Head 3 1.32 0.12 0.18 0.03 

Head 4 1.10 0.09 0.17 0.02 

Head 5 1.31 0.14 0.18 0.04 

Cup 1 1.44 0.06 0.50 0.08 

Cup 2 0.85 0.08 0.43 0.06 

Cup 3 1.07 0.07 0.52 0.05 

Cup 4 0.94 0.06 0.24 0.08 

Cup 5 1.36 0.04 0.53 0.06 

 

 

4.8.3 Surface characterisation 

1) Zygo non-contacting profilometry 

Ten zygo images were taken at the pole and at 33° around the pole for each component 

in the five active stations at each 0.5 MC interval of this test. The load control and soak 

control were also analysed in comparison.  

Figure 4.44 and Figure 4.45 shows the zygo data for the CoCrMo resurfacing heads. The 

wear testing has generally caused an increase in surface roughness and a decrease in 

skewness throughout the test. The error bars indicate the standard deviation of the 

data. 
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Figure 4.44: Surface roughness of 60 mm CoCrMo resurfacing heads during 2.0 MC third-body test. 

 

Figure 4.45: Skewnesss of 60 mm CoCrMo resurfacing heads during 2.0 MC third-body test. 

Figure 4.46 shows the surface features near the pole for each active head in this test in 

comparison to the control which has only experienced loading throughout the test. 

Scratching is visible on every head that has been tested. 
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Figure 4.46: Surface profiles of CoCrMo heads after 2 MC of third-body particle test. 

 

Figure 4.47 and Figure 4.48 show the zygo data for the CoCrMo cups. After an initial 

drop in surface roughness based on the end data from the dual mobility testing, the 

surface roughness has then increased over the course of the test.  
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Figure 4.47: Surface roughness of 60 mm CoCrMo acetabular cups during 2.0 MC third-body test. 

 

 

Figure 4.48: Skewness of 60 mm CoCrMo acetabular cups during 2.0 MC third-body test. 

The initial drop after 0.5 MC in both the surface roughness and skewness indicates that 

the protruding carbides which were present at the end of DM Test 2 have been removed 

straight away.  

Figure 4.49 shows that after 0.5 MC the carbide peaks that were previously protruding 

roughly 0.2 µm from the surface at the end of DM Test 2 have been diminished to less 

than 0.02 µm which were the original height of the carbides prior to any wear testing. 
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 As with the heads, the surface roughness has increased and the skewness has then 

become more negative over the course of the test as scratching has increased.  

 

Figure 4.49: Zygo data from Cup 1 after 0.5 MC showing the 2D plot and the corresponding line profile of the 
surface. 

Whilst Figure 4.47 shows how the typical Ra values averaged over each active cup in this 

test are quite similar to those at the end of the dual mobility test; Figure 4.50 shows that 

the surface features are very different and the number of scratches and pitting has 

increased greatly through the third-body particle test. 
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Figure 4.50: Comparison of surface profiles of the CoCrMo cups at the end of the dual mobility test with the 

resulting surface at the end of the third-body particle test. 

The zygo data also shows evidence of carbide pull out. Figure 4.51 shows data from Cup 

5 after 1.5 MC. The distinctive carbide shapes which were previously shown in red prior 

to testing, indicating that they were protruding above the surface, are now shown in 

blue. The blue represents that the region is now below the surface and indicate that the 

carbides have been removed due to wear. 
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Figure 4.51: Zygo data from Cup 5 after 1.5 MC showing the 2D plot and the corresponding line profile of the 
surface. 

 

2) Optical microscopy 

The following images were taken with an Axiotech optical microscope. The images 

taken of the surface features from the cups prior to the start of the third-body particle 

test can be seen in Figure 5.60.  

Figure 4.52 to Figure 4.55 show the surface features within the wear patch at each stage 

of the simulation. There is a great difference in surface features in terms of scratching 

and marking from the end of the dual mobility test. 

Optical images of the CoCrMo resurfacing heads were impossible to obtain due to the 

large nature of the joint which were unable to be focused on. Changes in surface 

features were tracked using zygo instead. 
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Figure 4.52: Optical images taken within the wear patch of 60 mm CoCrMo cups after 0.5 MC (serum with HA). 
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Figure 4.53: Optical images taken within the wear patch of 60 mm CoCrMo cups after 1.0 MC (serum). 
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Figure 4.54: Optical images taken within the wear patch of 60 mm CoCrMo cups after 1.5 MC (serum with Ti). 
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Figure 4.55: Optical images taken within the wear patch of 60 mm CoCrMo cups after 2.0 MC (serum). 

 

4.8.4 Limitations 

The main difficulty in this test was trying to ensure a consistent concentration of 

particles in each active station when using the lubricant with third-body particles. It 

was impossible to stop some of the particles from settling in the station before the test 

began. Each station was inverted prior to placing in the simulator but then the particles 

had the chance to settle again in the time it took to secure each station in place so it is 
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difficult to know the concentration of particles that have actually affected each MOM 

interface in this study. 

At the end of each test interval using lubricant with third-body particles it was clear 

when taking apart the station that a lot of the particles has settled on the base of the 

head platform. Figure 4.56 shows Station 3 after removing the lubricant from the 

station, where Ti particles are still visible on the base. A similar situation occurred for 

each active station after the addition of HA particles to the test serum during 0-0.5 MC. 

 

Figure 4.56: Settled Ti particles on base of platform 3 after 1.5 MC. 

Thorough cleaning of the backing of each CoCrMo cup was essential in this test because 

the HA and Ti particles stuck to the coating which would have effected wear data if it 

was not removed properly. 

4.8.5 Discussion 

The data from this test has been compared to the data from Station 1b and Station 4 

from MOM T1 in section 4.6. Since both of these stations experienced no problems with 

leaking or dry wear throughout the test, they are a viable baseline for comparison. The 

addition of both HA and Ti to the test lubricant has resulted in increased wear in every 

active component. Figure 4.57 shows a plot of the data from the heads in Station 1b and 

Station 4 averaged over the first 2 MC of MOM T1 in comparison to the average wear 

data over all five active stations in this third-body test. Figure 4.58 shows the 

corresponding data for the cups. 

Ti particles 
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When standard lubricant was used between 0.5 – 1.0 MC and 1.5 – 2.0 MC during the 

recovery stages of this third-body test, wear rates were similar to those seen in MOM 

T1. This is shown in Table 4.8 and Table 4.9 for the heads and cups respectively. When 

lubricant with third-body particles was used between 0 – 0.5 MC and 1.0 – 1.5 MC in 

MOM T2, the wear rates were higher than those seen in MOM T1.  

 

Figure 4.57: Comparison of the average cumulative weight loss of 60 mm resurfacing CoCrMo heads during 
the third-body particle test (MOM T2) with an average of cumulative weight loss of 60 mm resurfacing 

CoCrMo heads in MOM test 1 which did not experience dry wear. 

 

Table 4.8: Comparison of wear rates for the heads in MOM T1 with MOM T2, mm3/MC. 

Test stage 0 – 0.5 MC 0.5 – 1.0 MC 1.0 – 1.5 MC 1.5 – 2.0 MC 
Average over Heads 1b & 4 

 in MOM T1 ± SD 
0.08 ± 0.01 0.04 ± 0.00  0.02 ± 0.01 0.01 ± 0.01 

Average over Heads 1 – 5  
in MOM T2 ± SD 

1.31 ± 0.15 0.12 ± 0.02 0.18 ± 0.01 0.03 ± 0.01 
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Figure 4.58: Comparison of the average cumulative weight loss of 60 mm acetabular CoCrMo cups during the 
third-body particle test (MOM T2) with an average of cumulative weight loss of 60 mm acetabular CoCrMo 

cups in MOM test 1 which did not experience dry wear. 

 

Table 4.9: Comparison of wear rates for the cups in MOM T1 with MOM T2, mm3/MC. 

Test stage 0 – 0.5 MC 0.5 – 1.0 MC 1.0 – 1.5 MC 1.5 – 2.0 MC 

Average over Cups 1b & 4 
 in MOM T1 ± SD 

0.44 ± 0.02 0.17 ± 0.00 0.10 ± 0.02 0.05 ± 0.02 

Average over Cups 1 – 5  
in MOM T2 ± SD 

1.13 ± 0.26 0.06 ± 0.01 0.44 ± 0.12 0.07 ± 0.01 

 

It is important to remember that the aim of this test is to produce worn cups that could 

be representative of a cup left in the body during revision surgery. From comparing the 

optical data from the well functioning cups from Stations 1b and 4 after 2.0 MC of MOM 

T1 to the images taken from the cups in this third-body particle test after 2.0 MC it is 

clear that the cups in this test show more scratching and signs of wear on the surface. 

The same is true for the same cups from MOM T1 even after 5.0 MC of testing. Figure 

4.59 shows a comparison of optical images taken throughout both MOM simulator 

studies. From the wear data and surface analysis of the components, it can be concluded 

that the addition of the third-body particles has helped to accelerate wear.   
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Figure 4.59: Optical images taken from CoCrMo cups in MOM T1 and MOM T2. 

It is worth noting that the CoCrMo cups in this test have not experienced such great 

wear as that seen in Cups 2, 3 and 5 in MOM T1 that experienced dry wear.  

As well as areas of unidirectional scratching shown in Figure 4.55 there are also areas 

with multidirectional scratches and surface features which are more comparable to that 

seen in the retrievals from Chapter 3. This comparison is shown in Figure 4.60. 
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Figure 4.60: Optical images taken from retrieved CoCrMo cups in comparison to cups from MOM T2. 

The Ra data from the cups at the end of this test is shown in comparison to the data 

taken from the retrievals in Figure 4.61. The average surface roughness of the test cups 

fall within the range of the retrieval data. 

The zygo data from this test coupled with the optical data show that MOM Test 2 has 

been successful in producing cups with similar surface features to that seen in 

retrievals. 
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Figure 4.61: Comparison of zygo Ra data from retrieved cups (yellow) to MOM T2 cups (green). 

 

4.8.6 Conclusion 

With the addition of 10 mg/ml hydoxyapatite particles to standard test lubricant, during 

0 – 0.5 MC, the wear rates of the CoCrMo resurfacing heads ranged from 1.10  mm3/MC 

to 1.54 mm3/MC. The wear rates of the CoCrMo acetabular cups ranged from 0.85 

mm3/MC to 1.44 mm3/MC. 

With the addition of 10 mg/ml titanium particles to standard test lubricant, during 1.0 – 

1.5 MC, the wear rates of the CoCrMo resurfacing heads ranged from 0.17 mm3/MC to 

0.19 mm3/MC. The wear rates of the CoCrMo acetabular cups ranged from 0.24 

mm3/MC to 0.53 mm3/MC. 

Surface roughness of the CoCrMo heads has generally increased over the 2 MC test 

whilst surface skewness has decreased. 

After an initial drop in surface roughness based on the end data from DM Test 2 for the 

CoCrMo cups, the surface roughness has generally increased over the course of testing 

and surface skewness has decreased. 
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Comparison of the wear data from this test with the data from Stations 1b and 4 in MOM 

T1 indicate that the addition of the third-body particles has helped to accelerate wear. 

Comparison of the wear, zygo and optical data from MOM T2 with MOM T1 have shown 

that this test has been successful in producing cups with similar surface features to that 

seen in vivo from a failed hip replacement. 
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5. DM biotribological studies including 
two in vitro partial revision simulations 

5.1 Introduction 

This chapter details the three dual mobility biotribological studies carried out in order 

to assess the viability of DM femoral bearings for use in partial revision procedures in 

vivo. 

The dual mobility heads used in the following three studies consisted of a 28 mm 

CoCrMo head and an E1 liner with an inner diameter of 28mm, outer diameter 60 mm. 

In vivo, the 28mm CoCrMo head is designed to press-fit into the E1 liner. Once this has 

happened, it is extremely difficult to remove. For the benefit of testing, where it is 

essential that the components are separated, washed and cleaned after every 0.5 MC it 

was necessary to create a sectioned cut around the head to allow the insertion into, and 

removal from, the E1 liner. 

Four dummy 28 mm heads were trialled, see Figure 5.1. It was decided to section each 

28 mm CoCrMo head at 25° to maximise the inner contact area of the head with the 

liner at the high inclination angle, whilst allowing the repeated insertion and removal 

from the liner. 

 

Figure 5.1: Selection of dummy 28 mm heads with sectioned cuts at four different angles: 0°, 15°, 20°, 25°. 

The 28mm CoCrMo heads were held in the correct position using a threaded stainless 

steel taper coated with a thin layer of PMMA, Figure 5.2. The threaded section directly 

below the PMMA taper had to be smoothed so as to not adversely wear the E1 liners 

which are freely mobile throughout the entirety of each wear simulation. Markings on 

the head and liner were used to re-position each component after removal. 

0° 15° 20° 25° 
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Figure 5.2: Left, PMMA coated stainless steel taper. Right, dual mobility head arrangement held in place with 

locking nut. 

The sectioning of the 28 mm CoCrMo heads was completed by Tony Lane in Biomet UK 

while all other cup holders, resurfacing head stem holders and head tapers were made 

by Arthur Newman in the Durham School of Engineering Mechanical Workshop. 

Section 5.2 discusses the Prosim hip simulator that was used during DM Tests 1, 2 and 

3. Wear characterisation has been carried out using the same gravimetric methodology 

and surface characterisation techniques that have already been outlined in section 4.5. 

For the E1 liners, volume loss has been calculated from the mass data using the density 

of the material which was 0.935 g/cm3. The inner pole of the E1 liners was the only 

bearing surface which was unable to be successfully tracked by zygo profilometry. This 

was because the lens was too wide to image inside the convex area which would 

ordinarily press fit onto the 28 mm CoCrMo heads. This surface was only able to be 

imaged optically. Optical microscopy was successful in effectively showing the different 

rate of removal of the manufacturing streaks from the inner and outer poles of the E1 

liners during each test which highlighted the difference between the two articulations 

and the results are shown in each experimental section. 

Section 5.3 gives the results from DM Test 1 which uses the worn CoCrMo cups from 

MOM Test 1. Section 5.4 gives the results from DM Test 2 which uses unworn CoCrMo 

cups and provides the cups for MOM Test 2 but also acts as a baseline for comparison 

against DM Test 1 and DM Test 3. Section 5.5 gives the results from DM Test 3 which 

uses the worn CoCrMo cups from MOM Test 2. 
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5.2 Prosim hip simulator 

The dual mobility simulations were completed in a six-station biomechanical fatigue-

loading simulator manufactured by ProSim, Figure 5.3. 

 

Figure 5.3: ProSim Hip Simulator. 

Each station has three controlled axes of motion: acetabular rotation (top axis), 

flexion/extension (side axis) and axial load. Similar to the Durham wear simulator, the 

ProSim simulator does not have abduction/adduction so again the internal/external 

rotation and flexion/extension were 90° out of phase to produce the correct figure 8 

wear track. A pneumatic load cylinder applies the axial load and the top and side axes 

are controlled by programmable motor drives. The Eurotherm motor drives used in the 

hip simulator can position the top and side axes anywhere in a 60° arc at velocities up to 

183°/sec and with a repeatability of +/- 0.5°. A digital Sentronic pneumatic valve 

controls the load applied by the pneumatic load cylinders. One Sentronic valve controls 

the load on the five active stations. The maximum load is 4 kN and the resolution of the 

applied load is 15.6 N. The load during each test followed a Paul cycle  with a twin peak 

[3], maximum load 2850 ± 50 N, minimum load 50 N ± 25 N. The load profile aims to 

follow ISO-14242-1 with reduced max/min load. 

Stations 1, 2 and 5 were subject to standard testing conditions. Stations 3 and 4 were 

subject to testing with microseparation. Station 6 was subject only to load.   

Microseparation conditions were enabled in Stations 3 and 4 with the use of movement-

limiting screws positioned at the bottom of the front and back of each base plate, as 

designed by Daniel Giddings during a previous PhD project at Durham University.  
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During DM Tests 1 – 3 all acetabular cups were positioned at 62° inclination angle. This 

combination of testing at a high inclination angle, as well as under microseparation 

conditions in two of the five active stations, has been applied in order to maximise the 

aggressive nature of the tests and assess the viability of using DM joints during partial 

revision of a failed MOM THRA in vivo.  

5.3 DM Test 1: aggressive biotribological study with worn CoCrMo 

cups from MOM Test 1 

For this simulation, the worn cups from MOM Test 1 were tested against a dual mobility 

head consisting of a 28 mm CoCrMo head and an E1 liner with an inner diameter of 

28mm, outer diameter 60mm. The test was carried out in the Prosim simulator with five 

active stations. Three stations were operating under standard conditions; two stations 

were operating under microseparation conditions. All stations were positioned at 62° 

(high inclination angle). In addition to the active stations, there was also a loaded soak 

control and a soak control under no loading, left at room temp throughout the test. 

  

Figure 5.4: 28 mm CoCrMo head, E1 liner, 60 mm CoCrMo cup. 

5.3.1 Joint replacement clearance 

There are two bearing articulations to consider in this test; the inner articulation, 

between the 28 mm CoCrMo femoral head and the E1 liner, and the outer articulation, 

between the E1 liner and the 60 mm CoCrMo cup. Since the CoCrMo cups have already 

been tested, the combinations of heads and liners were considered primarily and the 

chosen combinations are shown in Table 5.1. Cups were then assigned to each station 

based on wear. The mean radial clearance across the active samples was 123 µm. The 
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radial clearance across the load soak was 128 µm and only the soak had a larger 

clearance.  

Table 5.1: Radial clearance of dual mobility components. 

 Head Batch ID Liner Batch ID Clearance, µm 

Station 1 10 163662 7 P0561E66 122 

Station 2 11 163662 4 P0561E66 121 

Station 3 12 163662 8 P0561E66 121 

Station 4 13 163662 3 P0561E66 125 

Station 5 14 163662 5 P0561E66 127 

Load Station 5 163662 1 P0561E66 128 

Soak control 8 163662 19 P0561E66 224 

 

Two stations (stations 3 and 4) were set up under microseparation conditions. It was 

decided that one microseparation station would contain the cup from the previous test 

that has received the worst wear, and the other would have a cup that had experienced 

little wear. The rest of the worn cups would then be distributed across the standard 

stations. Table 5.2 details how the cups from MOM Test 1 were assigned. 

Table 5.2: Cup combinations for the dual mobility test. 

 Worn cup from MOM Test 1 
Station 1, standard Cup 1b 
Station 2, standard Cup 3 
Station 3, microseparation Cup 2 
Station 4, microseparation Cup 4 
Station 5, standard Cup 5 

 

5.3.2 Soaking data 

It was necessary to soak the E1 liners in serum at 37 °C prior to testing due to the 

nature of the polymer which increases in mass due to fluid adsorption. The E1 liners 

were repeatedly removed from the soak serum for gravimetric assessment at the same 

frequency as that used for simulator wear testing. Standard cleaning protocol normally 

involves leaving the joints to acclimatise for 30 minutes post drying before weighing. 

However the weight of the large liners fluctuated greatly within this time and 

stabilisation of three weight data points to within 0.1 mg was not possible. Figure 5.5 
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shows the weight data for the liners over 5 weeks prior to testing, including error bars 

showing the standard deviation. Throughout the test the joints were left overnight to 

acclimatise post drying, and were weighed the following morning, this helped to 

minimise the range of the weight data. Soaking had little effect on the surface roughness 

data as shown in Figure 5.6. 

 

Figure 5.5: Cumulative weight change of E1 liners during soaking over 5 weeks prior to the wear simulation. 

 

Figure 5.6: Surface roughness of E1 liners prior to test, before and after soaking. 

5.3.3 Wear results 

The test consisted of five active stations, three set up under standard conditions and 

two under microseparation. In addition to this, there was a loaded soak control, and a 
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soak control under no loading. There were problems during the first 0.5 MC with the 

quality of the silicon gaiters which lead to Station 1 losing a third of its serum in an 

overnight leak. After 0.5 MC the current gaiters were replaced with a new style. 

After 2.5 MC of testing, it became clear that station 3 and 4 were producing different 

wear rates. Whether this was due to a difference in the microseparation conditions or 

whether it was a result of the difference in worn cups used in the test had to be 

determined. Between 2.5 and 3.5 MC the joints were switched between the stations (i.e. 

the joints from station 3 were placed into station 4 and vice versa). However there was 

no change in the wear data and after 3.5 MC the joints were restored to their original 

station. Hence it can be assumed that the increased wear seen in station 3 was a result 

of the initial increased roughness of that cup.  

The mass loss of each component was corrected by the change of the load soak to 

account for fluctuations in mass measurements over the test. The cumulative weight 

loss after 5 MC from the 28 mm CoCrMo heads, E1 liners and 60 mm CoCrMo cups have 

been split into those tested under standard conditions, and those under 

microseparation conditions. The results are shown in Figures 5.7-5.12. 

 

 

Figure 5.7: Cumulative weight loss of 28 mm CoCrMo heads under standard conditions, accounting for the 

load soak.  
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Figure 5.8: Cumulative weight loss of 28 mm CoCrMo heads under microseparation conditions, accounting for 

the load soak and a comparison with the mean of the corresponding data for standard conditions.  

 

 

 

Figure 5.9: Cumulative weight loss from E1 liners under standard conditions, accounting for the load soak. 
Note that station 1 was affected by serum loss during the first 0.5 MC. 
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Figure 5.10: Cumulative weight loss from E1 liners under microseparation conditions, accounting for the load 
soak. 

 

 

 

Figure 5.11: Cumulative weight loss of 60 mm CoCrMo cups under standard conditions, accounting for the 
load soak. 
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Figure 5.12: Cumulative weight loss of 60 mm CoCrMo cups under microseparation conditions, accounting for 
the load soak. 
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Table 5.3: Wear rates based on overall test, mm3/MC. * Wear rate calculated between 1-5 MC. 

Station, Test Condition 28 mm CoCrMo Head E1 Liner 60 mm CoCrMo Cup 

1, Standard 0.005 0.427* 0.004 

2, Standard 0.006 0.230 0.016 

3, Microseparation 0.010 3.759 0.023 

4, Microseparation 0.008 2.493 0.019 

5, Standard 0.006 0.397 0.008 

All the wear rates for the 28 mm CoCrMo heads were linear (R2 = 0.93 – 0.99).  

Only the CoCrMo cup in Station 3 had non-linear regression (R2 = 0.6, for the cups in the 

remaining stations R2 = 0.99). This was the most previously worn cup from MOM Test 1 

and it experienced increased wear during 0 – 1 MC. 

The E1 liners in stations 2 – 4 all experienced a linear wear rate (R2 = 0.97 – 0.99). Liner 

1 had non linear regression (R2 = 0.7) due to the station experiencing a leak between 0 – 

0.5 MC which increased the initial wear of the liner. This then stabilised during the 

remainder of the test. 

5.3.4 Surface characterisation 

1) Zygo non-contacting profilometry 

Ten zygo images were taken at and around the pole for each component in the five 

active stations at 0, 0.5, 1.0, 2.5 and 5.0 MC of the test. The load control and soak control 

were also analysed for comparison. 

Wear testing has caused the surface roughness (Ra) and skewness (Rskw) to decrease 

across all the liners. The CoCrMo heads and cups have not changed too much in 

comparison. Figure 5.13 and Figure 5.14 show the zygo data for the worn CoCrMo shells 

from the previous test. There is little difference in surface roughness and skewness at 

the end of the test with the values measured before the test. Figure 5.15 and Figure 5.16 

show the zygo data for the CoCrMo heads, there is little difference in the data. Figure 

5.17 and Figure 5.18 show the zygo data for the E1 liners. The behaviour across all the 

stations was quite similar so the data across Stations 1, 2 and 5 has been averaged to 

give the standard result. The data from Stations 3 and 4 has been averaged to give the 

microseparation result. The error bars indicate the standard deviation of the data.  
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Figure 5.13: Surface roughness of 60 mm CoCrMo cups during 5.0 MC. 

 

 

Figure 5.14: Skewness of 60 mm CoCrMo cups during 5.0 MC. 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

Station 
1 

Station 
2 

Station 
3 

Station 
4 

Station 
5 

Load 
Station 

Soak 
control 

R
a,

 µ
m

 
Ra, 0 MC 

Ra, 0.5 MC 

Ra, 1.0 MC 

Ra, 2.5 MC 

Ra, 5.0 MC 

-20.0 

-15.0 

-10.0 

-5.0 

0.0 

5.0 

10.0 

Station 
1 

Station 
2 

Station 
3 

Station 
4 

Station 
5 

Load 
Station 

Soak 
control 

R
sk

w
, µ

m
 Rskw, 0 MC 

Rskw, 0.5 MC 

Rskw, 1.0 MC 

Rskw, 2.5 MC 

Rskw, 5.0 MC 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 168 
 

 

 

Figure 5.15: Surface roughness of 28 mm CoCrMo heads during 5.0 MC. 

 

 

Figure 5.16: Skewness of 28 mm CoCrMo heads during 5.0 MC. 
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Figure 5.17: Surface roughness of E1 liners during 5.0 MC. 

 

 

Figure 5.18: Skewness of E1 liners during 5.0 MC. 
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Eight additional zygo measurements were taken at 45° around the liners after 5 MC, as 

seen in     Figure 5.19.  Here the manufacturing streaks, which are most noticeable at the 

pole, are not as evident.  

The results are shown in Figure 5.20. As before, 

the data from Stations 1, 2, and 5 were 

averaged to give the result for the standard 

stations. The data from Stations 3 and 4 were 

averaged to give the result for the 

microseparation stations. The surface 

roughness of the liners in the microseparation 

stations have decreased more than those in the 

standard stations, and the skewness has also 

become more negative. Figure 5.21 shows the 

3D surface profiles of the E1 liners.  

 

     Figure 5.19: Zygo set up at 45° with E1 liner. 

 

 

Figure 5.20: Additional data for surface roughness and skewness at 45° around E1 liners. 
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Figure 5.21: Surface profiles of E1 liners imaged after 5 MC at 45 °. 

 

Figure 5.21 shows that the surface topography is smoother in each liner that has 

undergone testing, and surface roughness is the least in liners 3 and 4 that were subject 

to testing under microseparation conditions. 

2) Optical microscopy 

The following images were taken with an Axiotech optical microscope. Figure 5.22 

shows the inner pole of one E1 liner before the test in comparison to after 0.5 MC for all 

liners. Figure 5.23 shows corresponding data for the outer pole. The difference between 

these two figures highlight that the inner articulation experiences greater wear than the 

outer articulation. Figure 5.23 also indicates that the outer articulation is engaged more 

during microseparation than under standard testing. 
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Figure 5.22: Inner pole of E1 liners after 0.5 MC. 
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Figure 5.23: Outer pole of E1 liners after 0.5 MC. 

Figure 5.24 shows the inner pole of the E1 liners after 2.5 MC in comparison to the load 

soak control, whilst Figure 5.25 shows the outer poles at the same stage of the test. The 

outer articulation is still much less worn than the inner articulation. Figure 5.26 and 

Figure 5.27 show the inner and outer poles respectively at the end of the test after 5 MC. 
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Figure 5.24: Inner pole of E1 liners after 2.5 MC. 
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Figure 5.25: Outer pole of E1 liners after 2.5 MC. 
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Figure 5.26: Inner pole of E1 liners after 5.0 MC.  
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Figure 5.27: Outer pole of E1 liners after 5.0 MC. 

Figure 5.27 shows that after 5MC, the manufacturing streaks on the outer poles of the 

liners in the standard stations are still partially visible, though they are subject to some 

scratches. This is not the case in the microseparation stations which have experienced 

more wear. This is in great comparison to the manufacturing streaks on the inner poles 

of the liners which were removed from all liners within 0.5 MC, highlighting the 

difference between the inner and outer articulations. 
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Figure 5.28 and Figure 5.29 look at the 28 mm CoCrMo heads after 1.0 MC and 5.0 MC 

respectively. 

 

Figure 5.28: Pole of 28 mm CoCrMo heads after 1.0 MC. 
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Figure 5.29: Pole of 28 mm CoCrMo heads after 5.0 MC. 

The optical images show that each metal head has experienced light scratching, and a 

vast improvement to the optical images seen in MOM Test 1. 

Figure 5.30 compares a selection of the CoCrMo cups from the end of the MOM test with 

the end of the dual mobility test and supports the conclusion from the weight and zygo 

data that little has changed in the cups throughout the test. 
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Figure 5.30: Optical images taken from 60 mm CoCrMo cups from Stations 1, 3 and 5 before and after the dual 
mobility test. 

  



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 181 
 

3) Environment scanning electron microscopy 

Photographs were taken to show the change to the rim after 5 MC of wear testing of the 

liners, see Figure 5.31. Image F shows the load control liner at 5 MC, which is 

representative of all the liners at 0 MC. All liner rims have experienced wear.  The liners 

numbered 3 and 4 in the microseparation stations have experienced greater wear than 

those in the standard stations. ESEM images taken at the liner rim after 5 MC can be 

seen in Figure 5.32. 

 

Figure 5.31: Photographs of the E1 liners at 5 MC. 
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Figure 5.32: ESEM images around the liner rim after 5 MC. 

5.3.5 Limitations 

During the first 0.5 MC, station 1 suffered a leak overnight where it lost a third of the 

serum. After this test, SimSol terminated the production of the gaiters currently in use. 

A new manufacturer was found and a new tool was made for a slightly larger gaiter with 

improved quality. The new style of gaiter required clamping with cable ties rather than 

O-rings to provide a tighter fit around the cup holder, and they lasted longer in testing 

without ripping. 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 183 
 

 

Figure 5.33: Left: 'New' gaiter, Right: 'Old' gaiter. 

The second limitation was that the E1 liners sometimes would not stabilise to give three 

weight data points within 0.1 mg, even after being left overnight. For this reason, four 

weight data measurements were recorded at each stage of the test and averaged to give 

the final result. 

The third limitation was that it was impossible to be certain if the E1 liners started in 

the same position at the start of every 0.5 MC stage of the test. This is due to the mobile 

nature of the design. The best that could be done was to make sure that the liner was 

pushed on to the head in the same way every time, but it is unknown whether the liner 

remained in that position by the time the joint was arranged in the station. 

5.3.6 Discussion 

In the previous test, MOM Test 1, three stations were experiencing runaway wear. Cup 

2, in particular, was wearing at a rate of 41.78 mm3/MC. Even though this cup was then 

subject to wear at a higher inclination angle, and under microseparation conditions, the 

replacement of the 60 mm resurfacing CoCrMo head by the dual mobility head has 

decreased its wear to less than 0.1 % of its previous value. This is an incredible result 

and is a strong indication that replacing failed MOM hip replacements with a dual 

mobility head should be a success. 

Figure 5.34 and Figure 5.35 show the wear data from the least and most worn cups 

respectively from the initial MOM test combined with the wear data from the complete 

5.0 MC of the current dual mobility test. Note that the blue line indicates where the 60 

mm resurfacing CoCrMo head was replaced with the dual mobility head after 5 MC.  
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Figure 5.34: Cumulative weight loss of 60 mm CoCrMo cups throughout both tests, accounting for the load 
soak. 

 

 

Figure 5.35: Cumulative weight loss of 60 mm CoCrMo cups throughout both tests, accounting for the load 

soak. 

As can be seen in Figure 5.35, replacing the metal femoral heads with the dual mobility 

heads has really helped to end the runaway wear. Table 5.4 compares the volume loss 

from each cup in the 2.5 MC prior to the replacement of the metal femoral head with the 

dual mobility head with the volume loss in the 2.5 MC after the replacement. It can be 

seen from both Figure 5.34 and Table 5.4 that Cup 4 is the only bearing to experience an 
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increase in wear, but given that the cup had previously been wearing well and in this 

current test it had been subject to testing under microseparation at a high incline, this is 

expected.  

Table 5.4: Volume loss from each cup 2.5 MC prior to the replacement of the femoral head with the dual 
mobility head compared with the corresponding data after the replacement. ‘m’ indicates that the cup was 

subject to microseparation. 

 Volume loss 

in 2.5 MC 

prior to change 

(mm3) 

Volume loss 

in 2.5 MC 

after change 

(mm3) 

Cup 1b 0.08 0.01 

Cup 2 182.81 0.15 (m) 

Cup 3 124.22 0.04 

Cup 4 0.04 0.05 (m) 

Cup 5 28.24 0.02 

 

Rieker et al. [1] have analysed 172 second generation 28 mm CoCrMo retrievals. A 

linear regression analysis gave a running-in metal wear volume of 1.70 mm3 for the first 

year and a steady state wear of 0.44 mm3/yr for the whole bearing. In the worst case 

scenario in this test (station 3; which featured the most worn cup undergoing 

microseparation at a high incline), the metal wear volume released was 0.15 mm3 for 

the first MC and a wear volume of 0.02 mm3/MC between 1-5 MC. So the aim to reduce 

the amount of CoCrMo being released through the use of a dual mobility head has 

definitely been achieved. It is important to note that on average 3.76 mm3/MC of 

polyethylene particles are also being released from the E1 liner in addition to the 

CoCrMo particles, but this is much lower than the wear rate reported from conventional 

polyethylene bearings which lies in the range 38-191 mm3/yr [2]. 

Wear rates of dual mobility total hip arthroplasty has been investigated in vivo [3-5]. It 

is usual for the wear rate to be presented as a linear wear rate showing how far the 

head has penetrated into the cup liner. It is possible to calculate the volumetric wear 

rate from this; however the method uses assumptions that produce error [6]. Kusaba et 

al. [5] measured the annual wear rate in 68 dual mobility prostheses, with 22mm inner 
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head diameter, to be 0.17 mm/yr by taking radiographs of the inner articulation. 

Osteolysis occurred in 25 hips and there was no difference between the annual wear 

rate of hips with and without osteolysis. By looking at 19 retrieved dual mobility 

prostheses, abrasion of the rim was deeper in the hips with osteolysis than those 

without it. This suggests that wear around the rim can play an important part in the 

onset of osteolysis.  

Homogenous and symmetrical wear around the liner rim similar to that seen in this 

study has been seen in vivo and an image taken from the study by Fessy et al. [7] is 

shown in Figure 5.36. Whilst all liners in this test have experienced wear around the 

rim, the wear rate has been very low, even in the microseparation stations. 

 

Figure 5.36: Photo taken from [7] showing homogenous and symmetrical wear around the rim of a retrieved 
DM liner. 

Adam et al. [4] analysed 40 polyethylene liners after a mean implantation time of 8 

years which were removed after prosthesis infection or mechanical failure. Every liner 

had lost their manufacturing streaks on the outer pole of the convex surface, while 40% 

of the liners showed visible wear of the collar retention. The mean annual wear for the 

outer pole was 0.009 mm/yr, and 0.073 mm/yr for the inner pole. The volumetric wear 

in the middle of the tolerance averaged 28.9 mm3/yr for the outer pole, and 25.5 

mm3/yr for the inner pole, so that the annual total volumetric wear rate was 54.3 

mm3/yr. Adam et al. concluded that the dual articulation was not associated with 

increased wear in comparison with conventional metal-on-polyethylene bearings, with 

the goal of retention and the advantage of greater stability. In this test, the inner pole 
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has also experienced greater wear than the outer pole, although after 5 MC in the 

standard testing stations, the manufacturing streaks were still partially visible on the 

outer pole. It was only in the stations subject to microseparation conditions that the 

manufacturing streaks had been removed. The total volumetric wear rate per MC has 

been much lower in this test than that seen in vivo using standard polyethylene liners, 

indicating that this combination using vitamin E infused polyethylene liners has greatly 

improved the wear properties of the dual mobility head, whilst retaining all the stability 

advantages associated with that of the polyethylene dual mobility set up. 

More information about the nature of the polyethylene particles produced throughout 

this test needs to be established. Green et al. [8] have shown that only polyethylene 

particles between 0.5 to 10 µm can induce secretion of interleukin 6 in macrophages 

with the subsequent formation of granuloma and hence osteolysis. 

5.3.7 Conclusion 

Five dual mobility heads, consisting of a 28 mm CoCrMo head and an E1 liner with an 

inner diameter of 28 mm, outer diameter 60 mm have been tested against a range of 

previously worn 60 mm CoCrMo cups.  The 28 mm heads were sectioned to allow 

removal from the E1 liner for cleaning throughout the test. 

Over 5 MC of testing, under either standard or microseparation conditions at a high 

incline, the wear rates of the 28 mm CoCrMo heads ranged from 0.005 and 0.010 

mm3/MC. The wear rates of the E1 liners ranged from 0.230 to 3.759 mm3/MC. Vitamin 

E has greatly improved the wear properties of the dual mobility head. The wear rates of 

the 60 mm CoCrMo cups ranged from 0.004 to 0.023 mm3/MC. 

For all the CoCrMo heads and cups there was little difference in surface roughness at the 

end of the test compared with the data recorded at the start. 

Surface roughness has decreased across all the liners, and is smoothest in the liners that 

were subject to testing under microseparation conditions. 

Optical images of the outer and inner pole of the E1 liners indicates that the inner 

articulation experiences greater wear than the outer articulation, and also that the outer 

articulation is engaged more during microseparation than under standard testing.  

Circumferential abrasion was experienced in each E1 liner in the test. 
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The wear, optical and zygo data all indicate low wear rate even under harsh testing 

conditions and are a strong indication that the partial revision of a failed MOM THRA 

with a dual mobility head is a viable solution.  

5.4 DM Test 2: aggressive biotribological study with unworn CoCrMo 

cups 

During this simulation, unworn 60 mm CoCrMo cups were tested against a dual mobility 

head consisting of a 28 mm CoCrMo head and an E1 liner with an inner diameter of 

28mm, outer diameter 60mm. The test was carried out in the ProSim hip simulator with 

five active stations, using the same test conditions as in the previous test. Again, each 

28mm head was sectioned at 25° prior to testing to allow for removal from the liner 

throughout the test. Three stations were operating under standard conditions; two 

stations were operating under microseparation conditions. All stations were positioned 

at 62° (high inclination angle). In addition to the active stations, there was also a loaded 

soak control and a soak control under no loading, left at room temp throughout the test. 

 

Figure 5.37: 28 mm CoCrMo head, E1 liner, 60 mm CoCrMo cup. 

5.4.1 Joint replacement clearance 

Two articulations are considered in this test; the inner articulation, between the 28 mm 

CoCrMo femoral head and the E1 liner, and the outer articulation, between the E1 liner 

and the 60 mm CoCrMo cup. The chosen combinations are shown in Tables 5.5 and 5.6.  
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 Table 5.5: Inner clearance of dual mobility components.  

 Head Batch ID Liner Batch ID Clearance, µm 

Station 1 2 163662 9 P0561E66 77 

Station 2 3 163662 11 P0561E66 78 

Station 3 4 163662 2 P0561E66 99 

Station 4 7 163662 12 P0561E66 90 

Station 5 9 163662 10 P0561E66 80 

Load Station 6 163662 6 P0561E66 112 

Soak control 8 163662 16 P0561E66 229 

 

Table 5.6: Outer clearance of dual mobility components. 

 Cup Batch, Batch ID Liner Batch ID Clearance, µm 

Station 1 49 2410667, 3 9 P0561E66 315 

Station 2 44 2410666, 3 11 P0561E66 302 

Station 3 46 2410666, 5 2 P0561E66 312 

Station 4 50 2410667, 4 12 P0561E66 299 

Station 5 52 2410667, 6 10 P0561E66 297 

Load Station 40 2410665, 4 6 P0561E66 325 

Soak control 47 2410667, 1 16 P0561E66 305 

 

The mean inner radial clearance across the active samples was 85 µm. The mean inner 

radial clearance across the load soak was 112 µm and only the soak had a larger 

clearance. The mean outer radial clearance across the active samples was 305 µm, and 

308 µm across all samples including the load soak and soak control. 

5.4.2 Soaking data 

The E1 liners were soaked in serum at 37 °C prior to testing to account for an increase 

in mass due to fluid adsorption. The E1 liners were repeatedly removed from the soak 

serum for gravimetric assessment at the same frequency as that used for simulator 

wear testing. Standard cleaning protocol normally involves leaving the joints to 

acclimatise for 30 minutes post drying before weighing. However the weight of the large 

liners fluctuated greatly within this time and stabilisation of three weight data points to 

within 0.1 mg was impossible. To overcome this issue, liners were left overnight to 

acclimatise and were weighed the following morning. This helped to minimise the range 

of the weight data. Figure 5.38 shows the weight data for the liners over 5 weeks prior 
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to testing. Soaking had little effect on the surface roughness data as shown in Figure 

5.39. 

 

Figure 5.38: Cumulative weight change of E1 liners during soaking over 5 weeks prior to the wear simulation. 

 

Figure 5.39: Surface roughness of E1 liners prior to test, before and after soaking. 

 

5.4.3 Wear results 

The test consisted of five active stations, three set up under standard conditions and 

two under microseparation. In addition to this, there was a loaded soak control, and a 

soak control under no loading.  
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The mass loss of each component was corrected by the change of the load soak to 

account for fluctuations in mass measurements over the test. The cumulative weight 

loss after 5 MC from the 28 mm CoCrMo heads, E1 liners and 60 mm CoCrMo cups are 

shown in Figures 5.40-5.42. 

 

 

Figure 5.40: Cumulative weight loss of 28 mm CoCrMo heads under standard and microseparation conditions, 
accounting for the load soak. 

 

 

Figure 5.41: Cumulative weight loss from E1 liners under standard and microseparation conditions, 
accounting for the load soak. 
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Figure 5.42: Cumulative weight loss of 60 mm CoCrMo cups under standard and microseparation conditions, 
accounting for the load soak. 

The overall wear rate (mm3/MC) has been calculated for each station. The results are 

shown in Table 5.7. Station 2 experienced a slightly higher wear rate for both the liner 

and cup throughout the test. No increased wear affected the head. After 1.0 MC of 

testing the simulator was serviced and it was discovered that the bearing in Station 2 

had become worn and had to be replaced. It is possible that this may have caused an 

increase in wear initially that then continued throughout the test. 

Table 5.7: Wear rates based on overall test, mm3/MC. 

Station, Test Condition 28 mm CoCrMo Head E1 Liner 60 mm CoCrMo Cup 

1, Standard 0.005 0.635 0.132 

2, Standard 0.003 2.146 0.141 

3, Microseparation 0.042 5.146 0.170 

4, Microseparation 0.048 4.973 0.175 

5, Standard 0.005 1.007 0.122 

All the wear rates for the 28 mm CoCrMo heads were linear (R2 = 0.86 – 0.99).  

All the wear rates for the 60 mm CoCrMo cups were linear (R2 = 0.99). 

All the wear rates for the E1 liners were linear (R2 = 0.98 – 0.99).  

Student’s t-test was performed for each type of component to see whether the data from 

the standard stations (1, 2 and 5) was statistically significantly different from the data 
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from the microseparation stations (3 and 4). The two sets of data will be considered to 

be significantly different if p ≤ 0.05. 

The wear data from the CoCrMo heads (p = 0.04), E1 liners (p = 0.01) and CoCrMo cups 

(p = 0.01) were significantly different between the two test conditions. 

5.4.4 Surface characterisation 

 1) Zygo non-contacting profilometry 

Ten zygo images were taken at the pole and at positions 33° from the pole for each 

component in the five active stations at 0, 0.5, 1.0, 2.5 and 5.0 MC of the test. The load 

control and soak control were also analysed for comparison. Figure 5.43 and Figure 

5.44 show the zygo data for the CoCrMo cups. Wear testing has caused the surface 

roughness to increase across all samples, with the greatest increase seen in the 

microseparation stations. The skewness also generally increased for all the cups. The 

error bars indicate the standard deviation of the data. 

 

Figure 5.43: Surface roughness of 60 mm CoCrMo cups during 5.0 MC. 
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Figure 5.44: Skewness of 60 mm CoCrMo cups during 5.0 MC. 

Figure 5.45 and Figure 5.46 show the zygo data for the CoCrMo heads. Surface 

roughness increased in three stations; station 2, 3 and 4, whilst remaining quite similar 

in station 5 throughout the test. In station 1 the surface roughness decreased slightly 

throughout the test, though the initial surface roughness was higher for this head than 

the others. There was little change in skewness throughout the test. 

 

Figure 5.45: Surface roughness of 28 mm CoCrMo heads during 5.0 MC. 
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Figure 5.46: Skewness of 28 mm CoCrMo heads during 5.0 MC. 
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1, 2 and 5 has been averaged to give the standard results. The data from Stations 3 and 

4 has been averaged to give the microseparation result. Surface roughness has 

decreased across all the liners, with a greater effect being seen for the microseparation 

stations. Skewness has also decreased across all liners that have undergone wear 

testing. 

 

Figure 5.47: Surface roughness of E1 liners during 5.0 MC. 
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Figure 5.48: Skewness of E1 liners during 5.0 MC. 

Eight additional zygo measurements were taken at 45° around the liners after 5 MC.  

The results are shown in Figure 5.49. As before, the data from Stations 1, 2, and 5 were 

averaged to give the result for the standard stations. The data from Stations 3 and 4 

were averaged to give the result for the microseparation stations. The surface 

roughness of the liners in the microseparation stations have decreased more than those 

in the standard stations, and the skewness has also decreased. Figure 5.50 shows the 3D 

surface profiles of the E1 liners.   The surface topography is smoother in each liner that 

has undergone wear testing, and surface roughness is the least in liners 3 and 4 that 

were tested under microseparation conditions. For these stations the manufacturing 

streaks have been removed, whilst they are still visible in the standard stations and the 

control liner. 
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Figure 5.49: Additional data for surface roughness and skewness at 45° around E1 liners. 

 

Figure 5.50: Surface profiles of E1 liners imaged after 5 MC at 45 °. 
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2) Optical microscopy 

The following images were taken with an Axiotech optical microscope. Figure 5.51 

shows the inner pole of after 0.5 MC for all liners, liner 6 acts as the control because it 

has only been subject to loading. Figure 5.52 shows corresponding data for the outer 

pole. The difference between these two figures highlight that the inner articulation 

experiences greater wear than the outer articulation. In Figure 5.52 it can be seen that 

only in the microseparation stations were the manufacturing streaks removed. They are 

partially visible in liner 2, whilst liner 1 and 5 were worn much less, reflecting the wear 

data for the three standard stations where the cup and liner had worn more in station 2 

suggesting that the outer articulation had experienced greater wear. 

Figure 5.53 shows the inner pole of the E1 liners after 2.5 MC in comparison to the load 

soak control, whilst Figure 5.54 shows the outer poles at the same stage of the test. 

Figure 5.54 shows that after 2.5 MC of wear testing, only in liner 1 are the 

manufacturing streaks on the outer pole still partially visible. This also correlates with 

the wear data which showed that liner 1 had the lowest wear rate. Figure 5.55 and 

Figure 5.56 show the inner and outer poles respectively at the end of the test after 5 MC. 

Figure 5.56 shows the outer poles of each liner after 5MC and that the manufacturing 

streaks have been removed from each liner that has undergone wear testing. From 

further inspection of all the optical data taken at each 0.5 MC interval throughout the 

test, the manufacturing streaks were completely removed from the outer pole of the 

liners in the microseparation stations after 0.5 MC, and removed from the standard 

stations after 4.0 MC. This shows that the outer articulation is engaged more under 

microseparation conditions.  

In direct comparison, the manufacturing streaks from the inner poles were removed 

from all liners within 0.5 MC, showing that the inner articulation experiences greater 

wear than the outer articulation. 
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Figure 5.51: Inner pole of E1 liners after 0.5 MC. 

 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 200 
 

 

 

Figure 5.52: Outer pole of E1 liners after 0.5 MC. 
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Figure 5.53: Inner pole of E1 liners after 2.5 MC. 
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Figure 5.54: Outer pole of E1 liners after 2.5 MC. 
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Figure 5.55: Inner pole of E1 liners after 5.0 MC.  
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Figure 5.56: Outer pole of E1 liners after 5.0 MC. 

Figure 5.57 and Figure 5.58 look at the 28 mm CoCrMo heads after 1.0 MC and 5.0 MC 

respectively. 
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Figure 5.57: Pole of 28 mm CoCrMo heads after 1.0 MC. 
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Figure 5.58: Pole of 28 mm CoCrMo heads after 5.0 MC. 

The optical images show that each metal head has experienced light scratching 

throughout the test. The same was seen in the CoCrMo cups, which also experienced 

light scratching. Figure 5.59 and Figure 5.60 show images taken within the wear patch 

of each CoCrMo cup after 1.0 and 5.0 MC respectively. 
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Figure 5.59: Optical images taken within the wear patch of 60mm CoCrMo cups after 1.0 MC. 
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Figure 5.60: Optical images taken within the wear patch of 60mm CoCrMo cups after 5.0 MC. 
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3) Environmental scanning electron microscopy 

All liners that have undergone testing have experienced wear around the liner rim. 

ESEM has been used to track the wear throughout the test. Figure 5.61 shows the wear 

around the liner rim at 1.0 MC, while Figure 5.62 shows the wear after 5.0 MC. 

 

Figure 5.61: ESEM images taken around the E1 liner rim at 1.0 MC. 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 210 
 

 

 

Figure 5.62: ESEM images taken around the E1 liner rim at 5.0 MC. 

5.4.5 Limitations 

The limitations encountered during DM Test 2 are those that are common in testing 

dual mobility joints. The dual mobility joint provides three potential surfaces for wear 

debris production: 

1. The inner articulation from movement between the CoCrMo head and the inner 

pole of the E1 liner. 
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2. The outer articulation from movement between the outer pole of the E1 liner 

and the CoCrMo cup. 

3. The liner rim from interaction between the head stem and the rim of the E1 liner. 

It has not been possible during this study to quantify the amount of wear attributed to 

each articulation, only the total volume loss for each component has been calculated. 

However the differences between these surfaces during testing have been explored 

qualitatively as much as possible using zygo, optical and SEM analysis.  

The only bearing surface which could not be analysed using zygo profilometry was the 

inner pole of the E1 liner. This was due to size restrictions. 

5.4.6 Discussion 

Perhaps unexpectedly, all components in this test have experienced greater wear than 

in DM Test 1 despite the fact that the cups used were unworn prior to testing. A notable 

difference between these two tests is the difference in the zygo and optical data for the 

CoCrMo cups and E1 liners. 

Whereas in DM Test 1 the surface roughness only slightly fluctuated for the cups 

throughout the test, the cups in this test witnessed an increase in surface roughness. 

This was accompanied by the E1 liners becoming much smoother. The optical images 

evidenced that the manufacturing streaks were removed from the pole of the liners in 

all five active stations after 5 MC, whereas in DM Test 1 the manufacturing stations had 

been removed from the microseparation stations only. 

All zygo data has been thoroughly analysed in order to explain why this has happened. 

Initially the zygo data of all cups in DM Test 2 showed the presence of carbides 

protruding from the surface. As the test continued the zygo data indicated an increase in 

both surface roughness as well as skewness for the CoCrMo cups. 

From further inspection of the line plots across the surface of the cups, it is clear that 

material from the metal matrix has been removed during wear testing. This has caused 

the carbides to protrude increasingly higher above the metal surface. 
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Figure 5.63 shows zygo data about the surface profile from cup 1 prior to testing that is 

representative of each cup in the test. The carbides can be seen to protrude roughly 0.02 

µm from the surface. 

 

Figure 5.63: Zygo data from Cup 1 at 0 MC showing the 2D plot and the corresponding line profile of the 
surface. 

In comparison, Figure 5.64 shows the profile of cup 1 at the end of the test, where the 

height of the carbides has increased to approximately 0.15 µm. 

 

Figure 5.64: Zygo data from Cup 1 after 5 MC showing the 2D plot and corresponding line profile of the 
surface. 
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The increased height of the carbide asperities will have caused an increase in wear of 

the E1 liners and explains why the liners have experienced greater mass loss, removal 

of manufacturing streaks from the pole and reduction in both surface roughness and 

skewness during DM Test 2.  

This effect was not so apparent in DM Test 1 where the carbides in the worn cups had 

already been smoothed or removed during MOM Test 1 prior to testing against the dual 

mobility heads. 

5.4.7 Conclusion 

Five dual mobility heads, consisting of a 28 mm CoCrMo head and an E1 liner with an 

inner diameter of 28 mm, outer diameter 60 mm have been tested against unworn 60 

mm CoCrMo cups.  The 28 mm heads were sectioned to allow removal from the E1 liner 

for cleaning throughout the test.  

Over 5 MC of testing, under either standard or microseparation conditions at a high 

incline, the wear rates of the 28 mm CoCrMo heads ranged from 0.003 to 0.048 

mm3/MC. The wear rates of the E1 liners ranged from 0.635 to 5.146 mm3/MC. The 

wear rates of the 60 mm CoCrMo cups ranged from 0.122 to 0.175 mm3/MC. 

Surface roughness generally increased throughout the test for the CoCrMo heads and 

CoCrMo cups. Surface roughness has decreased across all the liners, and is smoothest in 

the liners that were subject to testing under microseparation conditions. 

Optical images show slight scratching on the CoCrMo heads and CoCrMo cups during the 

test. Optical images taken from each E1 liner from the inner and outer pole indicate that 

the inner articulation experienced greater wear than the outer articulation. They also 

show that the outer articulation experienced greater wear under microseparation 

conditions than under standard wear testing conditions. Circumferential abrasion was 

experienced in each E1 liner in the test. 
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5.5 DM Test 3: aggressive biotribological study with worn CoCrMo 

cups from MOM Test 2 

This simulation articulates the worn cups from the third body simulation in MOM Test 2 

against a dual mobility head consisting of the same 28 mm CoCrMo heads that were 

used in Dual Mobility Test 2, with unworn E1 liners with an inner diameter of 28 mm, 

outer diameter 60 mm. Three stations operated under standard conditions; two stations 

under microseparation conditions. All testing was carried out with the cups positioned 

at 62° (high inclination angle). In addition to this there was also a loaded soak control 

and a soak control under no loading which was left at room temp throughout the test. 

 

 

Figure 5.65: 28 mm CoCrMo head, E1 liner, 60 mm CoCrMo cup. 

5.5.1 Joint replacement clearance 

The two articulations considered in this test are the inner articulation, between the 28 

mm CoCrMo femoral head and the E1 liner, and the outer articulation, between the E1 

liner and the 60 mm CoCrMo cup. The chosen combinations are shown in Table 5.8 and 

Table 5.9. 

Table 5.8: Inner clearance of dual mobility components. 

 Head Batch ID Liner Batch ID Clearance, µm 

Station 1 2 163662 13 P0561E66 182 
Station 2 3 163662 20 P0561E66 178 
Station 3 4 163662 15 P0561E66 184 
Station 4 7 163662 14 P0561E66 190 

Station 5 9 163662 17 P0561E66 180 
Load Station 6 163662 6 P0561E66 112 
Soak control 8 163662 16 P0561E66 229 
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Table 5.9: Outer clearance of dual mobility components. 

 Cup Batch, Batch ID Liner Batch ID Clearance, µm 

Station 1 49 2410667, 3 13 P0561E66 320 

Station 2 44 2410666, 3 20 P0561E66 297 

Station 3 46 2410666, 5 15 P0561E66 297 

Station 4 50 2410667, 4 14 P0561E66 299 

Station 5 52 2410667, 6 17 P0561E66 302 

Load Station 40 2410665, 4 6 P0561E66 325 

Soak control 47 2410667, 1 16 P0561E66 304 

 

The mean inner radial clearance across the active samples was 183 µm. The mean inner 

radial clearance across the load soak was 112 µm and only the soak had a larger 

clearance. The mean outer radial clearance across the active samples was 303 µm, and 

306 µm across all samples including the load soak and soak control. 

5.5.2 Soaking data 

As in the previous dual mobility tests, the five E1 liners selected for use in the active 

stations were soaked in serum at 37 °C for five weeks prior to testing. The load control 

and soak control liners were the same liners that were used in Dual Mobility Test 2. The 

cleaning and weighing procedures were carried out for the active E1 liners at the same 

frequency as that used during simulator wear testing. Figure 5.66 shows the weight 

data for the active E1 liners over 5 weeks prior to testing. Soaking had little effect on the 

surface roughness data as shown in Figure 5.67. 
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Figure 5.66: Cumulative weight change of E1 liners during soaking over 5 weeks prior to the wear simulation. 

 

Figure 5.67: Surface roughness of E1 liners prior to test, before and after soaking. 

 

5.5.3 Wear results 

The test consisted of five active stations, three set up under standard conditions and 

two under microseparation. In addition to this, there was a loaded soak control, and a 

soak control under no loading.  

The mass loss of each component was corrected by the change of the load soak to 

account for fluctuations in mass measurements over the test. The cumulative weight 
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loss after 5 MC from the 28 mm CoCrMo heads, E1 liners and 60 mm CoCrMo cups are 

shown in Figures 5.68-5.70. 

 

 

Figure 5.68: Cumulative weight loss of 28 mm CoCrMo heads under standard and microseparation conditions, 
accounting for the load soak. 

 

 

Figure 5.69: Cumulative weight loss from E1 liners under standard and microseparation conditions, 
accounting for the load soak. 
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Figure 5.70: Cumulative weight loss of 60 mm CoCrMo cups under standard and microseparation conditions, 
accounting for the load soak. 

The overall wear rate (mm3/MC) has been calculated for each station. The results are 

shown in Table 5.10.  

Table 5.10: Wear rates based on overall test, mm3/MC. 

Station, Test Condition 28 mm CoCrMo Head E1 Liner 60 mm CoCrMo Cup 

1, Standard 0.005 0.691 0.040 

2, Standard 0.005 0.642 0.049 

3, Microseparation 0.035 3.878 0.088 

4, Microseparation 0.030 3.567 0.093 

5, Standard 0.004 0.459 0.042 

All the wear rates for the 28 mm CoCrMo heads were linear (R2 = 0.96 – 0.99).  

All the wear rates for the 60 mm CoCrMo cups were linear (R2 = 0.99). 

All the wear rates for the E1 liners were linear (R2 = 0.93 – 0.99).  

Student’s t-test was performed for each type of component to see whether the data from 

the standard stations (1, 2 and 5) was statistically significantly different from the data 

from the microseparation stations (3 and 4). The two sets of data will be considered to 

be significantly different if p ≤ 0.05. 

The wear data from the CoCrMo heads (p = 0.05), E1 liners (p = 0.01) and CoCrMo cups 

(p = 0.003) were significantly different between the two test conditions. 
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5.5.4 Surface characterisation 

1) Zygo non-contacting profilometry 

Ten zygo images were taken at the pole and at positions 33° from the pole for each 

component in the five active stations at 0, 0.5, 1.0, 2.5 and 5.0 MC of the test. The load 

control and soak control were also analysed for comparison. Figure 5.71 and Figure 

5.72 show the zygo data for the CoCrMo cups. Wear testing has caused the surface 

roughness to increase across the cups in the microseparation stations only. The trend in 

skewness over the course of the test is difficult to see due to the variation in the data. 

 

Figure 5.71: Surface roughness of 60 mm CoCrMo cups during 5.0 MC. 

 

Figure 5.72: Skewness of 60 mm CoCrMo cups during 5.0 MC. 
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Figure 5.73 and Figure 5.74 show the zygo data for the CoCrMo heads. Surface 

roughness has increased in the two microseparation stations; stations 3 and 4, whilst 

remaining quite similar in the standard stations over the 5 MC. There was only slight 

variation in skewness throughout the test. 

 

Figure 5.73: Surface roughness of 28 mm CoCrMo heads during 5.0 MC. 

 

 

Figure 5.74: Skewness of 28 mm CoCrMo heads during 5.0 MC. 
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decreased across all the liners, with a greater effect being seen for the microseparation 

stations. Skewness has also decreased across all liners that have undergone wear 

testing, and decreased at a greater rate for the liners which have undergone 

microseparation. 

 

Figure 5.75: Surface roughness of E1 liners during 5.0 MC. 

 

 

Figure 5.76: Skewness of E1 liners during 5.0 MC. 
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roughness of the liners in the microseparation stations have decreased more than those 

in the standard stations, and the skewness has also decreased more. Figure 5.78 shows 

the 3D surface profiles of the E1 liners.   The surface topography is smoother in each 

liner that has undergone wear testing, and surface roughness is the least in liners 3 and 

4 that were tested under microseparation conditions. For these stations the 

manufacturing streaks have been removed, whilst they are still visible in the standard 

stations and the control liner. 

 

Figure 5.77: Additional data for surface roughness and skewness at 45° around E1 liners. 
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Figure 5.78: Surface profiles of E1 liners imaged after 5 MC at 45 °. 

 

2) Optical microscopy 

The following images were taken with an Axiotech optical microscope. Figure 5.79 

shows the inner pole of all E1 liners after 0.5 MC, including the control liner which has 

only undergone load and no motion. Figure 5.80 shows corresponding data for the outer 

pole. The difference between these two figures highlight that the inner articulation 

experiences greater wear than the outer articulation. In Figure 5.80 it can be seen that 

only in the microseparation stations were the manufacturing streaks removed.  

 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 224 
 

 

 

Figure 5.79: Inner pole of E1 liners after 0.5 MC. 
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Figure 5.80: Outer pole of E1 liners after 0.5 MC. 

Figure 5.81 shows the inner pole of the E1 liners after 2.5 MC in comparison to the load 

soak control, whilst Figure 5.82 shows the outer poles at the same stage of the test. 

Figure 5.82 shows that after 2.5 MC of wear testing, manufacturing streaks on the outer 

pole of the liners in the standard stations are still partially visible. Figure 5.83 and 

Figure 5.84 show the inner and outer poles respectively at the end of the test after 5 MC. 
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Figure 5.81: Inner pole of E1 liners after 2.5 MC. 
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Figure 5.82: Outer pole of E1 liners after 2.5 MC. 
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Figure 5.83: Inner pole of E1 liners after 5.0 MC.  
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Figure 5.84: Outer pole of E1 liners after 5.0 MC. 
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Figure 5.84 shows that even after 5.0 MC the manufacturing streaks on the outer poles 

of the liners undergoing standard testing conditions are still partially visible, in contrast 

to the same stage in DM Test 2 where they had all been removed. The fact that the 

manufacturing streaks from the outer poles of the liners in the microseparation stations 

were removed after 0.5 MC, yet the streaks on the outer poles of the liners from the 

standard stations are still partially visible at 5 MC, highlights that the outer articulation 

is engaged more under microseparation conditions than standard conditions.  

In direct comparison, the manufacturing streaks from the inner poles were removed 

from all liners within 0.5 MC, showing that the inner articulation experiences greater 

wear than the outer articulation under standard testing conditions and is the dominant 

articulation. 

Figure 5.85 and Figure 5.86 look at the 28 mm CoCrMo heads after 1.0 MC and 5.0 MC 

respectively. 
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Figure 5.85: Pole of 28 mm CoCrMo heads after 1.0 MC. 
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Figure 5.86: Pole of 28 mm CoCrMo heads after 5.0 MC. 

The optical images show that each metal head has experienced light scratching 

throughout the test. The same was seen in the CoCrMo cups, which also experienced 

light scratching. Figure 5.87 and Figure 5.88 show images taken within the wear patch 

of each CoCrMo cup after 1.0 and 5.0 MC respectively. 
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Figure 5.87: Optical images taken within the wear patch of 60mm CoCrMo cups after 1.0 MC. 
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Figure 5.88: Optical images taken within the wear patch of 60mm CoCrMo cups after 5.0 MC. 
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3) Environmental scanning electron microscopy 

All liners that have undergone testing have experienced wear. ESEM has been used to 

track the wear throughout the test. Figure 5.89 shows the wear at 1.0 MC, while Figure 

5.90 shows the wear after 5.0 MC. 

 

Figure 5.89: ESEM images taken around the E1 liner rim at 1.0 MC. 
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Figure 5.90: ESEM images taken around the E1 liner rim at 5.0 MC. 

5.5.5 Limitations 

The limitations in this study were exactly the same as detailed in section 5.4.5. 
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5.5.6 Discussion 

The data for the acetabular cups used in MOM Test 2 and DM Test has been combined 

and is shown in Figure 5.91. 

 

Figure 5.91: Cumulative weight loss of 60 mm CoCrMo cups throughout MOM Test 2 and DM Test 3, 
accounting for the load soak. 

The wear rates experienced by the CoCrMo cups are higher than those in DM Test 1, but 

still lower than those in DM Test 2. The zygo data has been thoroughly examined in 

order to explain why this is the case. 

Zygo analysis highlights another important difference between the three DM tests; the 

E1 liners in DM Test 3 have experienced the greatest drop in surface roughness, Ra, 

during the first 0.5 MC. This is shown in Table 5.11. The data from the E1 liners in Stns 

1, 2 and 5 has been averaged to provide the ‘standard’ result and the data from Stns 3 

and 4 has been averaged to provide the ‘microseparation’ result.  

  

0.000 

0.002 

0.004 

0.006 

0.008 

0.010 

0.012 

0 1 2 3 4 5 6 7 

C
u

m
u

la
ti

ve
 w

e
ig

h
t 

lo
ss

, g
 

Number of cycles, MC 

Cup 1, standard Cup 2, standard Cup 3, microseparation 

Cup 4, microseparation Cup 5, standard 

MOM Test 2 DM Test 3 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 238 
 

Table 5.11: Ra data taken from the E1 liners at 0 and 0.5 MC during the three DM tests. 

Stage of Test Standard E1 liners 

Ra, µm 

Microseparation E1 liners 

Ra, µm 

DM T1-Initial Ra 1.83 ± 0.58 2.09 ± 0.56 

DM T1-Ra (0.5 MC) 1.64 ± 0.48 1.31 ± 0.52 

DM T2-Initial Ra 1.92 ± 0.26 1.78 ± 0.29 

DM T2-Ra (0.5 MC) 1.23 ± 0.55 0.53 ± 0.32 

DM T3-Initial Ra 1.94 ± 0.55 1.83 ± 0.16 

DM T3-Ra (0.5 MC) 0.83 ± 0.31 0.39 ± 0.22 

 

This drop in Ra can be explained by comparing the zygo images taken at the surface of 

the CoCrMo cups between 0 and 0.5 MC.  

Figure 5.92 compares two zygo images taken at 0 and 0.5 MC from DM Test 3 for a cup 

from a standard station, whereas Figure 5.93 shows corresponding images for a cup 

from a microseparation station.  

 

Figure 5.92: Zygo data from Cup 1 at 0 MC (left) and 0.5 MC (right) showing the 2D plot and corresponding 
image taken at the surface. 
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Figure 5.93: Zygo data from Cup 3 at 0 MC (left) and 0.5 MC (right) showing the 2D plot and corresponding 
image taken at the surface. 

The zygo images taken at 0.5 MC show the appearance of ‘comet-tail’ scratching. This 

effect has not been seen in the CoCrMo cups during the first 0.5 MC of either DM Test 1 

or DM Test 2. Figure 5.93 shows that the effect has been greater in the cups in the 

microseparation stations than in the standard stations due to the outer articulation 

being engaged more during this test condition. 

The scratching is due to the presence of third body particles which have remained 

embedded in the CoCrMo cups after MOM Test 2 and have scratched through the metal 

matrix during the initial wear testing in DM Test 3.  

This has increased the initial wear rate of the E1 liners, causing them to smooth at a 

faster rate. As the test has continued, and the test serum has been replaced every 0.5 

MC, these particles have been washed out. Hence the E1 liners do not continue to 

smooth at such a fast rate, see Figure 5.75. 

This is an unintended side affect of using third body particles in MOM Test 2 to scratch 

the CoCrMo cups prior to testing in DM Test 3. It was hoped that the final 0.5 MC 

‘recovery stage’ at the end of MOM Test 2 (where the test was ran in standard lubricant) 

would remove any remaining third body particles. 



5. DM biotribological studies including two in vitro partial revision simulations 
 

 Page 240 
 

However since both the HA and Ti particles used in MOM Test 2 are clinically relevant, it 

is possible that this effect could be seen in vivo if a failed resurfacing cup which had 

been subject to third body wear was left in the body during partial revision surgery.  

The positive implication of DM Test 3 is that even if such an occurrence were to happen 

in vivo, then the resulting simulated wear rates with the new E1 dual mobility head 

were still very low and indicate that replacing a failed metal resurfacing head with a 

dual mobility head should be a success. 

5.5.7 Conclusion 

Five dual mobility heads, consisting of a 28 mm CoCrMo head and an E1 liner with an 

inner diameter of 28 mm, outer diameter 60 mm have been tested against worn 60 mm 

CoCrMo cups from MOM Test 2.  The 28 mm heads were sectioned to allow removal 

from the E1 liner for cleaning throughout the test.  

Over 5 MC of testing, under either standard or microseparation conditions at a high 

incline, the wear rates of the 28 mm CoCrMo heads ranged from 0.004 to 0.035 

mm3/MC. The wear rates of the E1 liners ranged from 0.459 to 3.878 mm3/MC. The 

wear rates of the 60 mm CoCrMo cups ranged from 0.040 to 0.093 mm3/MC. 

Surface roughness experienced only small fluctuations throughout the test for the 

CoCrMo heads and CoCrMo cups in the standard stations. Surface roughness of the 

CoCrMo cups increased throughout the test in the microseparation stations. 

Surface roughness has decreased across all the liners, and is smoothest in the liners that 

were subject to testing under microseparation conditions. 

Zygo analysis showed that third body particles had remained in the metal cups after 

MOM Test 2 which caused both the initial increase in the wear rate of the E1 liners as 

well as in the increase in surface roughness of the CoCrMo cups. 

Optical images taken from each E1 liner from the inner and outer pole indicate that the 

inner articulation experienced greater wear than the outer articulation. They also show 

that the outer articulation experienced greater wear under microseparation conditions 

than under standard wear testing conditions. Circumferential abrasion was experienced 

in each E1 liner in the test. 
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6. Metal particle analysis 

6.1 Introduction 

Test serum from MOM Test 1 and DM Test 1, 2 and 3 has been digested with the aim to 

isolate and characterise the CoCrMo wear particles generated throughout the wear 

testing.  

The isolation protocol used was based on work by Catelas et al. [5] and is described in 

section 6.2. The resulting solution was then analysed using transmission electron 

microscopy as explained in section 6.3 and any distinct CoCrMo or Cr particles found 

were analysed using the Digital Micrograph image analysis software. The chemical 

composition of any particles found was determined using Energy Dispersive X-Ray 

(EDX) analysis. Inductively coupled plasma mass spectrometry has also been used in 

this project to assess the efficiency of the digestion protocol and this process is 

explained in section 6.4. 

Prior to digesting the serum from the simulator studies carried out in this project, test 

serum from a previous ceramic-on-metal (COM) simulator study carried out by Dr. 

Qianqian Wang from the Bioengineering group of Durham University was used first as a 

trial to practice the enzymatic digestion protocol, and the results are provided in section 

6.5. 

Section 6.6 then shows the results from digesting the serum from MOM Test 1 while 

section 6.7 shows the results from digesting serum from DM Tests 1, 2 and 3. The 

findings are compared and discussed at the end of the chapter. 

6.2 Serum digestion 

An isolation protocol based on work by Catelas et al. [5] has been used. Each bottle of 

serum analysed has been allowed to defrost overnight. 125 mL of the CoCrMo particle 

solution generated by the hip simulator is divided into 40 mL plastic centrifuge tubes 

and centrifuged at 16,000 x g for 10 min (Beckman Coulter Avanti J-20I). The 

supernatant was discarded and the particle pellet was resuspended in 3 mL of 
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remaining serum and split into 2 mL Eppendorf tubes. A photograph of the particle 

pellet after centrifugation is shown in Figure 6.1. 

 

Figure 6.1: Particle pellet from dual mobility test serum after centrifugation at 16,000 x g. 

Each tube was washed once with 0.5 mL of distilled-deionised water, boiled in 1 mL of 

distilled deionised water and 150 µL of 20% SDS for 10 min, then washed once with 1 

mL 80% acetone and three times with 1 mL of 50 mM Tris-HCl, pH 7.6. They were then 

sonicated and incubated with 1.5U of papain in 1.5 mL of 50 mM Tris HCl, pH 7.6 at 65 

°C for 24 h.  

After incubation, the tubes were cooled at room temp for 10 min before being 

centrifuged at 16,000 x g for 10 min (Thermo Scientific Heraeus Fresco 17). Next they 

were boiled in 1 mL of 2.5% SDS for 10 min, then washed twice with 1 mL of 50mM 

Tris-HCl, pH 7.6 and then sonicated for a few seconds using a mesh. This was then 

incubated with 400 µg of proteinase K in 1 mL of Tris-HCl at 55 °C for 24 h. 

After incubation, the tubes were allowed to cool at room temp for 10 min and then 

centrifuged at 16,000 x g for 10 min. They were boiled in 1 mL of 2.5 % SDS for 10 min, 

and then washed once with 1 mL of 50mM Tris-HCl, pH 7.6, once with 500 µL of 80% 

acetone added to 100 µL of 20% SDS, and once with 1 mL of distilled-deionised water. 

Finally, the particles were stored in 0.5 mL 100% ethanol at 4 °C. A brief summary is 

given in Figure 6.2. 
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Figure 6.2: Overview of the digestion protocol. 

The particles were then sonicated to ensure that they were evenly dispersed within the 

ethanol solution. A few drops were extracted using a pipette and placed onto a holey 

carbon disc (300 mesh) on a copper grid (supplied by Agar) for examination under a 

transmission electron microscope (TEM). The image analysis software Digital 

Micrograph was used to size the particles from the TEM images. 

6.3 Transmission electron microscopy 

During Transmission Electron Microscopy (TEM) a beam of electrons travel through the 

vacuum in the column of the microscope and are then focused using electromagnetic 

lenses into a very thin beam. This beam is directed through the sample and the 

electrons are scattered depending on the density of the material.  

The TEM used in this study was the JEOL 2100F FEG TEM, Figure 6.3. This is a high 

performance TEM which uses a Schottky field emission electron source operating at 200 

kV to deliver high long-term stable currents for high performance analysis. It also used a 

high resolution pole piece giving 2.3 Å point resolution. 

With the addition of Energy Dispersive X-Ray (EDX) analysis the TEM can identify 

elements in areas less than 0.5 µm in diameter. This was used to identify the chemical 

composition of the wear particles isolated from the test serum.  
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Figure 6.3: JEOL 2100F FEG TEM used in the Physics Dept. of Durham University. 

6.4 Inductively coupled plasma mass spectrometry 

Inductively Coupled Plasma Mass Spectrometry (ICPMS) is a highly sensitive type of 

mass spectrometry that can detect metals at a concentration below one part in 1012. The 

sample to be analysed is placed in a chamber containing argon and transformed into an 

aerosol of very fine droplets. The aerosol then passes through oxygen plasma at 8,000 – 

10,000 °C which is capable of dissociating, atomizing and ionising most elements. A 

differential vacuum system accelerates the plasma ions towards electrostatic discs that 

extract the positively charged ions and transport them to the mass filter which selects 

the ions according to their mass and charge. The process is summarised in Figure 6.4. 

 

Figure 6.4: ICPMS overview. 

ICPMS has been used in this project to assess the efficiency of the protocol used to 

isolate metal wear particles by comparing the concentration of Co, Cr and Mo present 

before and after the isolation protocol, see Appendix C. 
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6.5 Results from COM study 

Zirconia-toughened-alumina (ZTA) ceramic modular femoral heads were tested against 

60 mm CoCrMo acetabular cups, as used in this project. An image of the joints tested is 

shown in Figure 6.5. 

 

Figure 6.5: 60mm ZTA ceramic modular head and 60 mm CoCrMo acetabular cup. 

Serum samples from two test conditions in the COM study have been analysed: 

Wear Condition 1, COM: Combined microseparation and standard inclination angle 

(45° anatomical angle) 

Wear Condition 2, COM: Combined microseparation and high inclination angle (62° 

anatomical angle) 

From Wear Condition 1 the TEM images acquired were clear and EDX analysis 

confirmed the particles to be Chromium, see Figure 6.6.  
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Figure 6.6: TEM image: Cr particles after 3.8 MC from Wear Condition 1 including EDX spectra. 

All the particles isolated were Chromium, no Cobalt was found. Molybdenum is difficult 

to detect because its peak coincides with that of Sulphur, which will always be present 

in a biological system. The presence of Chromium alone is indicative of mild abrasive 

wear from the continuous generation and removal of the protective layer of the metal 

surface. The peak showing the presence of copper will be present in all EDX analysis due 

to the wear particles being displayed on a copper grid. 

An adequate number of images were taken in order to be able to size at least one 

hundred particles using Digital Micrograph software.  Particles were either spherical or 

rod-like in nature. The distribution after 3.8 MC can be seen in Figure 6.7. The average 

length of the rod-like particles (± 95% confidence limit) was 68 ± 8 nm, the average 

width was 20.5 ± 3 nm, and the average diameter of the spherical particles was 41 ± 7 

nm.  

Another sample, frozen after 5 MC, was then subjected to the same enzymatic protocol. 

The distribution is shown in Figure 6.8. The distribution has shifted slightly to the left as 

the average particle size has decreased. The average length of the rod-like particles was 

55 ± 12nm, the average width was 16.1 ± 4 nm, and the average diameter of the 

spherical particles was 22 ± 3 nm.  Again, only Cr particles were detected. This result 

has also been seen in work by Catelas et al. [7] 
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Figure 6.7: Particle distribution after 3.8 MC from Wear Condition 1. 

 

 

Figure 6.8: Particle distribution after 5 MC from Wear Condition 1.  

Two serum samples from Wear Condition 2 of the COM study were also digested and 

the wear debris has been successfully isolated and analysed. Samples were digested 
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after 0.5 and 1.0 MC. Again, only Cr particles were found. An example of the particles 

imaged is shown in Figure 6.9. 

 

Figure 6.9: TEM image: Cr particles after 0.5 MC from Wear Condition 2 including EDX spectra. 

There was a significant decrease in particle size at the higher inclination angle. Figure 

3.5 shows the particle distribution of the debris isolated after 0.5 MC from Simulation 2. 

The average length of the rod-like particles was 17 ± 6 nm, the average width was 2.7 

±0.4 nm, and the average diameter of the spherical particles was 13 ± 3 nm.  

 

Figure 6.10: Particle distribution after 0.5 MC from Wear Condition 2. 
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After 1 MC, the particles were even smaller and the range also decreased. Figure 3.7 

shows their distribution. The average length of the rod-like particles was 7 ± 2 nm, the 

average width was 2.5 ±0.3 nm, and the average diameter of the spherical particles was 

3 ± 1 nm. Again, only Cr particles were detected. 

 

Figure 6.11: Particle distribution after 1 MC from Wear Condition 2. 

6.6 Results from MOM Test 1 

This analysis uses serum that was frozen after the test carried out in section 4.6.  

Initially serum taken from Station 2 was digested and analysed. After this station 

started to suffer from weak gaiters, serum was digested and analysed from Station 4 

instead, which did not suffer from any gaiter leaks. 

Samples taken after 0.5 and 1.0 MC from Station 2 were analysed, and examples of the 

particles found can be seen in Figure 6.12. Serum samples taken after 1.0, 2.5, and 5.0 

MC from Station 4 were analysed, examples of the particles found are shown in Figure 

6.13.  

The process to find distinct particles that were not part of agglomerates was very time 

consuming. After 1.0 MC from Station 4 only small, indistinguishable Cr particles and 

one larger CoCr particle could be found. This is indicative of only a little wear occurring 
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at the very surface of the components. From every other sample, CoCr rod-like particles 

with a polycrystalline structure were seen. At 5MC from Station 4 (where wear was 

minimal), multiple samples had to be viewed to find even a few CoCr particles.  

Statistical analysis of these images is difficult due to the low number of particles imaged 

(not more than 25 particle images were achievable for any sample in the allocated TEM 

sessions). Size analysis for the particles that were imaged is given below. NanoSight 

analysis of the digested serum would be a preferential method in order to give a larger 

sample analysis and size distribution. However the samples were not purely composed 

of the CoCr alloy. Silicon particles were a common impurity, which is unable to be 

differentiated from the CoCr particles within NanoSight. It is likely that silicon has 

entered the serum due to the silicon gaiters wearing against the cup holder during 

simulator motion. Also the NanoSight cannot account for agglomerates which were also 

in the sample.  

Table 6.1: Average particle size of CoCr particles isolated from MOM serum samples, shown with 95% 
confidence intervals. 

Particle Size Average Length (nm) Average Width (nm) 

0.5 MC, Stn 2 194 ± 52 44 ± 9 

1.0 MC, Stn 2 169 ± 68 53 ± 22 

1.0 MC, Stn 4 63 31 

2.5 MC, Stn 4 107 ± 19 34 ± 11 

5.0 Mc, Stn 4 106 ± 35 49 ± 18 
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Figure 6.12: TEM images of CoCr particles seen from Station 2 after A: 0.5 MC, B: 1.0MC. E showing particles to 
be CoCr at the bottom right. 

 

Figure 6.13: TEM images of CoCr particles seen from Station 4 after A: 1.0 MC, B: 2.5 MC, C: 5.0 MC, D: EDX 
analysis showing particles confirming CoCr present. 
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6.7 Results from Dual Mobility Tests 1-3 

The test serum from the first 0.5 MC of testing from all three of the dual mobility tests 

was analysed. For each DM test, one sample of serum frozen after testing in a standard 

station (1,2 or 5) and one sample of serum frozen after testing in a microseparation 

station (3 or 4) was analysed. Six serum samples were analysed in total. 

Isolation of CoCr or Cr particles proved very challenging due to the presence of stainless 

steel wear particles that were also present in the serum. Figure 6.14 shows a selection 

of TEM images from the DM test samples. The EDX analysis confirmed the presence of 

Chromium, Iron and Nickel, which is indicative of stainless steel wear debris. 

  

Figure 6.14: Selection of TEM images taken of stainless steel wear particles present in DM Test samples. A: 
DM Test 1 (standard), B: DM Test 1 (Microseparation), C: DM Test 2 (standard), D: DM Test 3 (standard), E: 

EDX spectra confirming presence of Chromium, Iron and Nickel. 
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The presence of these stainless steel wear particles confirm that there has been contact 

between the rim of the E1 liner and the stainless steel head stem. A photograph of the 

area in question is provided below in Figure 6.15. 

 

 

Figure 6.15: Photograph showing the dry set up of the dual mobility joint. 

 

This contact between the head stem and the E1 liner has been further verified by 

carrying out zygo analysis on the six head stems used for the dual mobility tests.  

Zygo data was recorded at six points taken at 60° increments around the head stem. The 

results are shown in Figure 6.16. The data from stations 1, 2 and 5 were combined to 

give the ‘standard’ result, the ‘microseparation’ result is an average of the head stem 

data from stations 3 and 4, and the head stem in the load station acts as the ‘control’ 

since it has not undergone any motion and hence will not have contacted the E1 liner.  

The results show that both the surface roughness and the skewness of each head stem 

undergoing wear testing has decreased, indicating that the head stem has become 

smoother as a result of wear. The effect was greatest in the microseparation stations. 



6. Metal particle analysis 
 

 Page 255 
 

 

Figure 6.16: Zygo data taken from around the head stems at the end of dual mobility testing. 

 

Only in the test serum from DM Test 2 undergoing microseparation (ie. the test 

condition which experienced the highest amount of CoCr wear) was it possible to find 

CoCr particles, but only a handful were found and they were not distinct enough to be 

able to give any size analysis data. The TEM images are shown in Figure 6.17. 

In the microseparation test sample from DM Test 3, Figure 6.18, the EDX analysis 

confirmed that the stainless steel wear particles and the CoCr wear particles had 

agglomerated. It is possible that this could have happened either within the serum 

during testing or during the digestion process. 
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Figure 6.17: A and B: TEM images of CoCr particles found in serum from DM Test 2 (microseparation) C: EDX 
spectra confirming presence of CoCr. 

 

Figure 6.18: A: TEM image showing agglomeration of CoCr/stainless steel wear debris, B: EDX spectra 
confirming presence of Co, Cr, Fe. 
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On the occasions where the EDX analysis verified the presence of Cr without the 

presence of either cobalt or iron and nickel, it is not possible to know whether this is Cr 

from the stainless steel head stem or the CoCrMo bearings. 

 

Figure 6.19: A: TEM image from DM Test 2 (microseparation), B: TEM image from DM Test 3 
(microseparation) C: EDX spectra confirming presence of Cr. 

Whilst the presence of stainless steel wear particles has been beneficial in confirming 

the contact between the head stem and the E1 liner, it has made the isolation and 

separation of CoCr wear particles a lot more complex and it has not been possible to 

isolate CoCr wear debris alone from the dual mobility test serum. 

  



6. Metal particle analysis 
 

 Page 258 
 

6.8 Limitations 

One limitation of this work was that the experimental protocol used in this study was 

relatively time consuming. The enzymatic digestion protocol followed here took at least 

three consecutive days per sample to reach the stage where the particles were isolated. 

This meant that the protocol could only be followed whilst simulator tests were not in 

operation due to time constraints.  

This was most evident when working with the large dual mobility joints because the 

procedure between each 0.5 MC stage of testing which included cleaning, weighing and 

surface analysis, could easily take three continuous days prior to starting the next 0.5 

MC stage of the test. It would be extremely beneficial for a protocol to be developed that 

could be completed alongside simulator work.  

As with other published metal particle analysis studies the main limitation of this type 

of research revolves around the difficulty in isolating a large number of particles from 

test serum which has a low volume of wear debris. The reactive nature of the metal 

particles prevents them from being isolated using acids and bases which successfully 

denature proteins [4; 5; 8] hence enzymatic protocols are favoured. Particle loss and 

agglomeration are also a common problem [3].  

The greatest number of particles imaged in this study was obtained from the COM test 

serum. From combining the average size of at least 100 particles presented in this 

project with the volumetric wear data provided by Dr. Wu the results implied that 1012 - 

1013 wear particles were being released every 0.5 MC under Wear Condition 1. This 

indicates that potentially only 0.00000000001% of the particles have been sized.  

In order to address the reason why such a low amount of particles were able to be 

imaged ICPMS was carried out on the digested COM test serum and found that only 5% 

of the expected total metal concentrations were present, indicating that metal debris 

has been lost through the numerous washing and centrifugation steps utilized in the 

isolation protocol. The ICPMS results are shown in Table 6.2. 
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Table 6.2: ICPMS carried out on digested serum after 1.0 MC from Wear Condition 2. The corrected total 
weight loss was determined by ICPMS on serum taken from the load control. 

Weight loss determined by ICPMS, mg Co Cr Mo Total 

0.3308 0.0008 0.0019 0.3335 

Corrected total weight loss, mg 0.3297 

Gravimetric weight loss, mg 6.99 

Protocol efficiency, % 4.7 

 

When only a small percentage of particles are isolated it is not realistic to assume that 

the distribution is representative of the whole sample. Sizing a larger sample of 

particles would require extensive TEM sessions and further time spent analysing the 

images which was not able to be done whilst also carrying out simulator studies.  

The number of metal particles analysed in previously published data ranges from 20 to 

over 1000, see Figure 6.20.  

 

Figure 6.20: Timeline showing the number of metal wear particles sized in previous studies. 

Even in the metal particle analysis work published by Billi et al. [3] which won The John 

Charnley Award in 2011, the number of particles yielded ranged from 300 to 2,100 

particles per sample.  
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This method took four years to develop and there is no doubt that this is a great 

achievement. However the exact wear data for the samples analysed is not reported and 

hence it can be speculated that since the particles under consideration are nanometre in 

size then even this number of particles may not be enough to provide a size distribution 

that is relative of the whole sample.  

This is an important concern and highlights the time intensive nature of the research 

that is required for thorough metal particle analysis. The development of a novel 

method for metal particle isolation capable of being implemented alongside wear 

testing has not been investigated in this work. Metal particle analysis is worthy of being 

a stand-alone project.  

Another limitation, which is a feature of this project specifically, was that the stainless 

steel wear particles were not able to be separated from the CoCr wear debris in the dual 

mobility test serum. Normally if two types of wear debris have different densities they 

can be separated using density gradient centrifugation. This method has been employed 

in literature to separate polyethylene particles, which have a density of 0.94 kg/dm3, 

from both test serum [9; 10]and tissues taken from the body during revision surgery 

[11]. 

The two metal alloys present in the dual mobility test serum both have very similar and 

high densities. Stainless steel has a density of 8.0 kg/dm3 in comparison to the CoCrMo 

alloy which has a density of 8.27 kg/dm3. It is not possible to make liquid density 

gradients with such a high density capable of separating these two alloys. Hence it is not 

possible to analyse CoCr wear debris using density gradient centrifugation.  

Also there is still the problem when considering the source of wear particles which are 

confirmed by EDX analysis to be chromium only which could have resulted from either 

the CoCrMo bearing surface or the stainless steel head stem.  

For future work, one solution to this issue is to change the initial test set up and replace 

the stainless steel head stems. This scenario is considered further in the discussion. 
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6.9 Discussion 

Chromium wear particles have been successfully isolated from test serum taken from 

COM testing subject to two different wear conditions and studied under TEM. The TEM 

images produced were relatively clear and at least one hundred particles were sized 

from each sample.  

The average particle size of the two samples from Wear Condition 1 corresponds well to 

data published by Brown et al. [4] from another COM simulation study with 

microseparation at a standard incline. The distribution of particles also corresponds 

well to that seen in vivo in work by Catelas et al. [7] where the majority of the particles 

are distributed around 20-40 nm. 

In the COM study when the inclination angle was increased in Wear Condition 2 from 

45° to 62° the Cr wear particles decreased in size. The ratio of rods to spheres has also 

changed with more particles tending to be spherical in shape, with an aspect ratio 

ranging from 1:1 to approximately 1:9. Only rod-like CoCr wear particles were isolated 

from MOM Test 1. This can be seen in Figure 6.21.  

 

Figure 6.21: Ratio of rod-like particles to spherical particles in all digested samples from the COM 

studies and MOM Test 1. 
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The comparatively larger, rod-like CoCr wear particles isolated from MOM Test 1 serum 

indicates that a harsher wear mechanism is operating than for the COM simulations. 

The generation of Cr particles is indicative of mild abrasive wear at the surface of the 

components whereas the production of rod-like CoCr wear particles are more likely to 

be from abrasive cutting into the bulk mass of the material. This can be seen by 

comparing optical images of the surface of metal acetabular components between 0 and 

1.0 MC from Simulation 3 in Figure 6.22.  

 

Figure 6.22: Optical images taken at the surface of a CoCrMo acetabular component from Simulation 3.  
A: At 0 MC, B: At 1.0 MC. 

It is not possible to compare the wear particles from the dual mobility test serum with 

those from either the COM studies or MOM Test 1. This is due to the difficulty 

experienced when trying to isolate the CoCr debris from the stainless steel wear debris 

that was also present in the test serum. 

The stainless steel wear debris has been beneficial in confirming that there has been 

interaction between the head stem and the liner. No such particles containing 

chromium, iron and nickel have been found in the previous test serum samples from the 

COM studies or MOM Test 1. 

The interaction between the head stem and the E1 liner has been extremely important 

in the dual mobility tests. Only when the liner contacts the head stem is the outer 

articulation engaged.  

As this project seeks to understand the effect of leaving a worn metal cup in the body 

whilst replacing the failed metal resurfacing head with a new dual mobility head it is 
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essential that the outer surface of the liner articulates against the worn cup during the 

test simulations. 

Under standard conditions the majority of wear occurs within the inner articulation, 

between the CoCrMo head and the inner pole of the E1 liner. For this reason high 

inclination, head stem contact and microseparation have all been used within the three 

dual mobility tests detailed here in order to engage the outer articulation.  

This articulation then causes the outer pole of the liner to wear against the previously 

worn cups which allows the change in wear volume and the change in surface features 

to be recorded. Hence the worst case wear scenario in vivo can be envisaged. 

The contact between the head stem and the E1 liner has been essential to this project. 

However the problem with wear particle analysis for this test set up is that the stainless 

steel head stems used throughout these tests were not clinically relevant. The presence 

of stainless steel wear particles in the test serum has meant that finding CoCr wear 

debris is very difficult.  It has also meant that there are two sources of Cr in the test set 

up and it is not possible to know which of these any lone Cr particles have come from. 

In the body, it is estimated that the outer articulation will only be engaged around 20% 

of the time [12]. Although the interaction between the head stem and the E1 liner will 

not occur for the majority of the time and so may not produce as much wear debris as 

that from the inner/outer articulation, it is still an additional source of wear debris that 

should be considered. Especially since it is not known whether the debris will differ in 

size and morphology to that produced at the bearing surfaces and so may induce a 

different reaction in vivo. 

The commercial head stems currently manufactured for use with the dual mobility joint 

are typically either polished CoCrMo alloy or Ti alloy.  An example of one head stem 

currently available from Biomet’s ‘Echo hip system’ is shown in Figure 6.23. 
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Figure 6.23: Photograph of the Echo FX Stem taken from the Biomet Echo Hip System product brochure. 

The work presented in this chapter has shown that if the analysis of the wear debris 

from a dual mobility joint is the main focus of a research project then it is essential that 

the head stem used in the initial set up is made from the same material with the same 

polishing and quality control as is manufactured for use in the body. It is worth noting 

that both CoCrMo and Ti alloy are difficult to machine and a head stem made from 

either alloy could not have been manufactured within the mechanical workshop at 

Durham University, which is where the stainless steel head stems were made. This 

would require extra cost, manufacturing time and collaboration with Biomet prior to 

testing in order to use head stems that would produce clinically relevant wear debris.  

It could be argued that the method devised by Billi et al. [3] for metal particle isolation 

would decrease the time needed for particle analysis since it is a two-step particle 

isolation method designed to minimise particle loss and improve particle purification. 

However this method would still not remove the stainless steel wear debris currently 

present in the dual mobility test serum and hence the initial test conditions need to be 

addressed first and modified before clinically relevant metal particle analysis studies 

can be carried out.  
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6.10 Conclusion 

Four serum samples taken from Dr Wang’s COM study were analysed. All particles 

isolated were confirmed by EDX analysis to be Cr and either spherical or rod-like in 

nature. At least 100 particles per sample were isolated and sized. 

The average length and width of the rod-like particles produced after 3.8 MC of Wear 

Condition 1 in the COM study was 68 ± 8 nm and 20.5 ± 3 nm respectively. The average 

diameter of the spherical particles was 41 ± 7 nm. After 5 MC of testing subject to the 

same wear condition the average particle size decreased. The average length and width 

of the rod-like particles was 55 ± 12nm and 16.1 ± 4 nm respectively. The average 

diameter of the spherical particles was 22 ± 3 nm. 

Increasing the inclination angle from 45° in Wear Condition 1 to 62° in Wear Condition 

2 of the COM study decreased the size of the wear debris produced. The average length 

and width of the rod-like particles produced after 0.5 MC of Wear Condition 2 in the 

COM study was 17 ± 6 nm and 2.7 ±0.4 nm respectively. The average diameter of the 

spherical particles was 13 ± 3 nm. After 1 MC of testing subject to the same wear 

condition the average particle size decreased.  The average length and width of the rod-

like particles was 7 ± 2 nm, and 2.5 ±0.3 nm respectively. The average diameter of the 

spherical particles was 3 ± 1 nm. 

Five serum samples taken from MOM Test 1 were analysed. It was common for particles 

to agglomerate which meant that they were not suitable for size analysis. Small, 

indistinguishable Cr particles were seen. CoCr rod-like particles with a polycrystalline 

structure were imaged. The chemical composition of all particles was confirmed by EDX 

analysis. Not more than 25 isolated particles were analysed per sample. 

Six samples in total were analysed from DM Test 1, 2 and 3. Isolation of CoCr or Cr 

particles was not achievable due to the presence of wear particles confirmed with EDX 

analysis to be composed of chromium, iron and nickel. This is indicative of stainless 

steel wear debris and verifies that there has been contact between the stainless steel 

head stem and the rim of the E1 liner during simulator motion. 

In order to produce clinically relevant wear debris from a dual mobility test the head 

stems in the current set up have to be modified and a head stem made from the same 
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material with the same polishing and quality control as is manufactured for use in the 

body is required. 
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7. Discussion and conclusion 

7.1 Discussion 

7.1.1 Comparison of retrieved CoCrMo cups with physiologically scratched 

CoCrMo cups from MOM Test 1 and 2 

This section compares the retrieval analysis data from Chapter 3 with the resulting cups 

from MOM Test 1 and 2 from Chapter 4. 

The two simulator studies in Chapter 4 have been carried out with the aim to produce 

cups with features similar to that seen in retrievals. An overview of the two simulations 

is given below. 

 

MOM Test 1: 

 5 MC standard simulator study with the cups positioned at 45° inclination angle. 

Important features of test:  

Stations 2, 3 and 5 experienced leaks leading to runaway wear.  This occured during the 

running-in stage for Station 2 and 3 and during steady state for Station 5. 

MOM Test 2:  

2 MC simulator study with third body particles added to the test lubricant at different 

stages of the test. All cups were positioned at 45° inclination angle. 

Important features of test:  

The test lubricant was varied according to the details below. 

0 – 0.5 MC: 25% bovine serum + 10 mg/ml HA 

0.5 – 1.0 MC: 25% bovine serum 

1.0 – 1.5 MC: 25% bovine serum + 10 mg/ml Ti 

1.5 – 2.0 MC: 25% bovine serum 

 

Figure 7.1 and Figure 7.2 compare the surface roughness and skewness data from each 

of the ten cups at the end of the above simulations in comparison to the retrieved 

acetabular cups. 
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Figure 7.1: Comparison of zygo Ra data from retrieved CoCrMo cups (blue) with CoCrMo cups from MOM T1 and T2 (green).
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Figure 7.2: Comparison of zygo Rskw data from retrieved CoCrMo cups (blue) with CoCrMo cups from MOM T1 and T2 (green).
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MOM Test 1 suffered from dry wear due to the supply of low quality gaiters for testing. 

Cup 2 in particular suffered a great mass loss and the surface roughness was much 

greater than in the explants analysed in this study. The wear rate for cup 2 over the 5 

MC was 41.78 mm3/MC. Wear rates of this magnitude have been seen in vivo based on 

CMM analysis after revision surgery [1]. Cup 3 and 5, both of which experienced leaks, 

also had high wear rates  (35.82 mm3/MC and 5.28 mm3/MC respectively) as seen in 

vivo. Cups 1 and 4 had low wear rates, with very little change in surface roughness or 

skewness over the course of the test.  

The difference in test conditions due to the occurrence of dry wear led to a variety of 

surface features and wear rates for each of the cups tested. The components were 

unable to recover during the test and the results were representative of the 

unpredictable nature of the MOM articulation which has been seen in vivo. 

The main difference between the cups from MOM Test 1 and the retrievals was that the 

test cups had mainly unidirectional scratching. Multidirectional scratches of the type 

seen in the optical images from retrievals are not easy to create in a simulator study 

undergoing controlled standard motion. However multidirectional scratches occur 

easily in vivo due to the varied movement and activities carried out by each patient. 

MOM Test 2 was carried out with the addition of clinically relevant third body particles 

to the test serum with the aim to obtain surface features representative of those seen in 

vivo. 

From Figure 7.1 and Figure 7.2 it is clear that MOM Test 2 has produced cups with 

surface roughness values closer to that seen in retrievals as well as the desired negative 

skewness. 

Whilst unidirectional scratches were still a common feature, areas of multidirectional 

scratching were also present on the surface. The cups from MOM Test 2 were also more 

uniform with respect to both wear rate and surface features across the five test stations 

in comparison to MOM Test 1. This is because Simulation Solutions improved the 

quality of the gaiters supplied and hence dry wear did not affect this test. 
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The results from MOM Test 2 also indicated that third body particles present in the 

tribocontact between two CoCrMo components can accelerate wear. HA had a greater 

effect on the wear rate of both the heads and the cups in MOM Test 2 than Ti. 

Figure 7.3 shows a comparison of zygo images from the retrievals and cups from the 

MOM tests. The retrieval images show that the carbides have been smoothed and, in 

some places, removed. Scratching of the metal matrix has also occurred. In MOM Test 1, 

carbides have been smoothed but for those cups subject to dry wear the scratches are 

much deeper than seen in vivo in this study. In MOM Test 2 carbide smoothing, removal 

and scratching of the matrix are visible and similar to that seen in retrievals. 

 

Figure 7.3: Comparison of surface profiles from retrieved CoCrMo cups with the CoCrMo cups at the end of 
MOM T1 and T2. 

The same result can also be seen in the optical images.  Figure 7.4 shows a comparison 

of images taken from the retrievals and the cups from the two tests. 
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Figure 7.4: Optical images taken within the wear patch of retrieved CoCrMo cups in comparison to the 
CoCrMo cups at the end of MOM T1 and T2. 

In conclusion, MOM Test 1 produced a variety of cups with wear rates similar to that 

seen in failed implants but with unrealistic surface features in some cups due to dry 

wear causing deep unidirectional scratching. MOM Test 2 had greater success in 

providing cups with surface features similar to the eight retrieved cups studied in this 

project. 
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7.1.2 Comparison of results from DM Tests 1-3 

This section compares the results from DM Tests 1-3 as detailed in Chapters 5. Three 5 

MC DM tests have been carried out in this project and an overview of the test conditions 

are given below. 

 

DM Test 1: DM heads vs. Worn cups from MOM Test 1 

DM Test 2: DM heads vs. Unworn cups 

DM Test 3: DM heads vs. Worn cups from MOM Test 2 

 

Important features of each DM test:  

Stations 1, 2 and 5 were subject to standard testing conditions.  

Stations 3 and 4 were subject to microseparation testing conditions.  

All cups were positioned at 62° inclination angle. 

 

 

The wear data from the standard and microseparation testing conditions in each of the 

three DM tests has been combined and is presented in Figure 7.5 to Figure 7.10. The 

data for DM Test 2 and DM Test 3 has been analysed using Student’s T test to see 

whether the increased roughness of the cups used in DM Test 3 has made any statistical 

difference to the data. The corresponding comparison between DM Test 1 and DM Test 

2 was not valid due to the large variance in the roughness of the cups in DM Test 1. 

Figure 7.5 shows the cumulative volume loss of the CoCrMo heads under standard 

testing conditions. There has been no statistical difference for the wear rate between 

the different tests. This shows that under standard conditions when the majority of the 

wear occurs at the inner articulation, the heads are not affected by the variance in 

roughness of the cup used in the outer articulation. 

Figure 7.6 shows the cumulative volume loss of the CoCrMo heads under 

microseparation testing conditions. There was no statistical difference between the data 

from DM Test 2 and DM Test 3 (p=0.09) but each head used in DM Test 1 and 3 did 

experience a lower wear rate than those in DM Test 2.  
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Figure 7.5: Cumulative volume loss of 28 mm CoCrMo heads in all dual mobility tests under standard 
conditions, accounting for the load soak. 

 

Figure 7.6: Cumulative volume loss of 28 mm CoCrMo heads in all dual mobility tests under microseparation 
conditions, accounting for the load soak. 
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Figure 7.7 shows the cumulative volume loss from the E1 liners under standard testing 

conditions. Liner 1 in DM Test 1 experienced a leak during the initial 0.5 MC of the study 

which has led to an initial increase in wear which stabilised over the course of the test. 

The standard liners in DM Test 2 and DM Test 3 have not experienced statistically 

different results (p=0.3) which again concludes that the inner articulation is dominant 

under standard testing conditions and that it has not been affected by the change in 

surface roughness of the cups. 

Figure 7.8 shows the cumulative volume loss from the E1 liners under microseparation 

conditions. Initially over the first 1 MC of testing, the liners in DM Test 3 wore more 

than the liners in DM Test 2. This is due to the presence of third body particles which 

were present in the metal matrix of the CoCrMo cups at the start of DM Test 3 and 

shows that the outer articulation is engaged more during microseparation. It is assumed 

that these particles will have been lost from the test as the serum was replaced at each 

0.5 MC interval. Despite this initial increase the liners in DM Test 3 wore statistically 

less than the liners in DM Test 1 based on analysis of the full 5 MC data.  

 

Figure 7.7: Cumulative volume loss from E1 liners in all dual mobility tests under standard conditions, 
accounting for the load soak. 
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Figure 7.8: Cumulative volume loss from E1 liners in all dual mobility tests under microseparation 
conditions, accounting for the load soak. 

Figure 7.9 shows the cumulative volume loss of the CoCrMo cups under standard testing 

conditions. The cups in DM Test 3 have worn statistically less than the cups in DM Test 2 

(p = 0.0008). It is clear from the graph that the cups in DM Test 1 have also worn less 

than the cups in DM Test 2.  

Figure 7.10 shows the cumulative volume loss of the CoCrMo cups under 

microseparation conditions. The cups in DM Test 3 have worn statistically less than the 

cups in DM Test 2 (p = 0.002) and again it is clear that the cups in DM Test 1 have also 

worn less than the cups in DM Test 2.  

The increase in wear under both standard and microseparation conditions between the 

CoCrMo cups in DM Test 3 in comparison to those in DM Test 1 may have been a 

consequence of residual third body particles still present in the CoCrMo cups after MOM 

Test 2. 
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Figure 7.9: Cumulative volume loss of 60 mm CoCrMo cups in all dual mobility tests under standard 
conditions, accounting for the load soak. 

 

Figure 7.10: Cumulative volume loss of 60 mm CoCrMo cups in all dual mobility tests under microseparation 
conditions, accounting for the load soak. 
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The previously unworn CoCrMo cups used in DM Test 2 have experienced greater wear 

than the previously worn CoCrMo cups used in both DM Test 1 and 3. The reasons for 

this will be discussed further with the use of zygo and optical data. 

A summary of the wear rates from each component in the three DM tests is given in 

Table 7.1. 

Table 7.1: Wear rates from each component in each of the three dual mobility tests, mm3/MC.  
Components undergoing microseparation conditions (m) are shown in bold. 

Wear rates, mm3/MC 
(0 – 5 MC) 

DM Test 1 DM Test 2 DM Test 3 

Head 1  0.005 0.005 0.005 
Head 2 0.006 0.003 0.005 

Head 3 (m) 0.010 0.042 0.035 
Head 4 (m) 0.008 0.048 0.030 

Head 5 0.006 0.005 0.004 

Liner 1 1.171 0.635 0.691 
Liner 2 0.230 2.146 0.642 

Liner 3 (m) 3.759 5.146 3.878 
Liner 4 (m) 2.493 4.973 3.567 

Liner 5 0.397 1.007 0.459 

Cup 1 0.004 0.132 0.040 
Cup 2 0.016 0.141 0.049 

Cup 3 (m) 0.023 0.170 0.088 
Cup 4 (m) 0.019 0.175 0.093 

Cup 5 0.008 0.122 0.042 
 

Three bearing surfaces were consistently analysed using zygo profilometry and optical 

microscopy over the course of the three DM tests;  

1. The outer bearing surface of the E1 liners 

2. The convex bearing surface of the 28 mm CoCrMo heads  

3. The concave bearing surface of the 60 mm CoCrMo cups 

The inner bearing surface of the E1 liners was too small to allow the zygo lens to fit 

inside without damaging the liner. This bearing surface was followed by optical 

microscopy alone. 

Zygo profilometry tracked the change in surface roughness, Ra, and surface skewness, 

Rskw, throughout each test. 
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The 28mm CoCrMo heads only experienced small fluctuations in surface roughness and 

skewness over time in comparison to the CoCrMo cups and E1 liners. 

When considering the CoCrMo cups in this project, perhaps the most surprising 

outcome was that the unworn cups in DM Test 2 experienced greater wear than the 

previously scratched CoCrMo cups. This was accompanied by both an increase in 

surface roughness and surface skewness that was not seen in the cups in DM Test 1 or 

DM Test 3. 

As can be seen in Figure 5.64 this is because the metal matrix surrounding the unworn 

carbides in the CoCrMo cups was removed during testing which caused the carbides to 

protrude further above the metal surface. This in turn increased the wear rate of the E1 

liners.  

The general trend in wear rates shows that the components in DM Test 2 wore the most, 

followed by DM Test 3, and that the components in DM Test 1 wore the least. This 

difference between DM Test 3 and DM Test 1 was also explained by looking at the zygo 

data.  

The CoCrMo cups used in DM Test 3 had been previously worn using third body 

particles (HA followed by Ti) in MOM Test 2. This is fully described in Chapter 4. It was 

hoped that the final 0.5 MC of MOM Test 2 which was performed using standard test 

lubricant would remove any residual third body particles.  However zygo data taken 

from the cups after the first 0.5 MC of DM Test 3 showed the appearance of comet-tail 

scratches which had not been seen in the first 0.5 MC of either DM Test 1 or DM Test 2. 

The images can be seen in Figures 5.92 and 5.93. The scratches were clearly a 

consequence of residual third body particles which had remained embedded in the 

metal matrix. Their presence has also resulted in an increase in the initial wear rate of 

the E1 liners as well as causing the surface roughness of the liners to decrease at a 

higher rate in the first 0.5 MC. 

Due to the test serum being replaced every 0.5 MC, the third body particles were 

removed from DM Test 3 set up over time. As a consequence, the wear rate decreased as 

the test continued and the rate of smoothing in the E1 liners also slowed down. 
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The optical images taken at the inner and outer pole of the E1 liners highlight important 

differences between the inner and outer articulations in the three tests using CoCrMo 

cups of varying roughness. A selection of images taken at 5 MC from the outer pole of 

one standard E1 liner, one microseparation E1 liner and the control E1 liner from each 

test is provided for comparison in Figure 7.11 to Figure 7.13. 

Under standard testing conditions against the worn cups in DM Test 1 and DM Test 3, 

the manufacturing streaks on the outer pole of the liners were still partially visible even 

after 5 MC of testing.  

In the microseparation stations in DM Test 1, the manufacturing streaks were removed 

after approx. 2.5 MC (with some variation between the two stations due to the 

difference in initial cup roughness) whereas in DM Test 3 the manufacturing streaks 

were removed within 0.5 MC in the microseparation stations. This is thought to have 

occurred faster due to the presence of third body particles remaining embedded in the 

CoCrMo cups after MOM Test 2 which have increased the initial wear rate of the E1 

liners. 

In DM Test 2 where the liners articulated against unworn cups, the outer pole of the E1 

liners were removed from all liners within 4 MC in the standard stations, and within 0.5 

MC in the microseparation stations. This observation confirms two points: firstly, that 

the microseparation testing conditions engage the outer articulation more than 

standard testing conditions and secondly that even under standard conditions the E1 

liners have experienced greater wear against the unworn cups in this study. This is due 

to the effect of the carbides protruding increasingly higher above the metal surface as 

the test has continued. 

The optical images (Figures 5.22, 5.51 and 5.79) taken at the inner pole of the E1 liners 

showed that the manufacturing streaks were removed within the first 0.5 MC for all 

liners under both standard and microseparation testing conditions in each of the DM 

tests. This verifies that the inner articulation is dominant over the outer articulation. 

  



7. Discussion and conclusion 

 

 Page 281 
 

 

 

 

Figure 7.11: Optical images taken from around the pole of the E1 liners in Dual Mobility Test 1: Worn cups 
from MOM Test 1 vs. dual mobility heads. 

Liner 1 (Standard) 

Liner 3 (Microseparation) 

Liner 6 (Control) 
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Figure 7.12: Optical images taken from around the pole of the E1 liners in Dual Mobility Test 2: Unworn cups 
vs. dual mobility heads. 

  

Liner 1 (Standard) 

Liner 3 (Microseparation) 

Liner 6 (Control) 
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Figure 7.13: Optical images taken from around the pole of the E1 liners in Dual Mobility Test 3: Worn cups 
from MOM Test 2 vs. dual mobility heads. 

 

Liner 1 (Standard) 

Liner 3 (Microseparation) 

Liner 6 (Control) 
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The difference in the results between DM Test 1 and 3 with DM Test 2 shows that 

previous carbide removal and smoothing has been beneficial in improving the wear 

properties of the E1 liners against the CoCrMo cups. Alvarez et al. [2] are researching 

the effect of a novel electropolishing treatment named ‘Ultra Polish’ in order to reduce 

the carbide concentration and protrusion at the surface of CoCrMo bearings.   

Initial results have shown no improvement in the wear properties of the CoCrMo 

bearings after the polishing treatment due to the polish not only removing the carbides 

but significant areas surrounding the carbide as well. However the author still considers 

the process of carbide removal from metal bearings to be extremely beneficial for future 

orthopaedic applications, and the results seen in the DM tests in this project support 

this conclusion. 

A previous study by Loving et al. [3] which tested dual mobility heads with highly cross-

linked UHMWPE liners against CoCrMo cups that had been scratched prior to testing, 

showed that the scratching caused no statistical difference to the wear of the UHMWPE 

liner under standard testing conditions.  

This study also saw no statistical difference in the wear of the E1 liners under standard 

testing conditions when using cups of varying roughness. However under 

microseparation testing conditions, the E1 liners and CoCrMo cups wore statistically 

less when the CoCrMo cups had been scratched prior to testing. 

The volumetric wear of the liners during 2.5 MC in the previous study [3] was within the 

range of 1.4 – 6.0 mm3. No metal wear data was reported in the paper and 

microseparation was not investigated for the scratched cups. 

During the initial 2.5 MC of DM Test 1 and DM Test 3, the volumetric wear of the E1 

liners ranged from 0.4 – 6.7 mm3 including the liner which had a leak during the first 0.5 

MC, and from 0.4 – 1.7 mm3 if this liner was omitted from the data. This lower wear 

volume is indicative of the improvement the infusion of Vitamin E makes to the wear 

properties of UHMWPE. 

In conclusion the wear, zygo and optical data from the three DM tests have shown that 

the DM heads with the E1 liners have worn incredibly well against every worn and 
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unworn cup tested and suggest that they are a viable option for the partial revision of 

failed resurfacing operations as well as for total hip replacement. 

7.1.3 Particle analysis 

Metal particle analysis has been carried out for a COM study, MOM Test 1 and DM Test 

1, 2 and 3. Problems were encountered with size analysis due to the low number of 

metal particles isolated. 

The Cr particles isolated from the COM study were either rod-like or spherical in nature 

and corresponded well with previously published work from both in vitro and in vivo 

studies [4; 5]. 

The CoCr particles isolated from MOM Test 1 were polycrystalline and rod-like in nature 

and tended to be within 100-200 nm in length. This was comparable to metal particles 

isolated from a previous MOM study by Catelas et al. [6]  where the particles ranged 

from 12 - 250 nm. In comparison Doorn et al. [7] isolated CoCr wear particles from 

retrieved tissues around MOM implants and found that the particles ranged in size from 

51 - 116 nm. 

After serum from the DM tests had been digested it became apparent that there was an 

additional type of metal wear debris present: stainless steel wear particles. This made 

the isolation of CoCr particles very challenging however it did verify that there had been 

interaction between the head stem and the rim of the E1 liner. This interaction has 

further been confirmed by zygo analysis around the head stem which showed that the 

head stems have become smoother during testing. ESEM images taken around the E1 

liner rim also showed signs of wear in the test liners.  

Since the interaction between the head stem and the E1 liner rim is a genuine source of 

wear particles in vivo, it is recommended that the initial test set up is modified for future 

work in order to produce clinically relevant wear debris. The use of a head stem which 

is made from the same materials with the same polishing and quality control as is 

manufactured for implantation in the body is recommended. 

It must be remembered that metal particles are not the only wear particles of interest in 

the DM studies. Replacing a metal resurfacing femoral head with a dual mobility head 

also incurs the introduction of polyethylene wear debris and the risk of osteolysis. 
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The polyethylene wear debris in the DM test serum has been analysed by Saurabh Lal in 

the Bioengineering group at Durham University who has specialised in the isolation and 

size analysis of UHMWPE wear particles during his PhD. The results are discussed fully 

in his thesis.  

From comparison of the results from the current DM studies with previous simulator 

studies testing 28 mm CoCrMo heads against the ‘gold standard’ UHMWPE cups, the 

wear rates of the liners in this study have been very low. Table 7.2 shows a full 

comparison of test details between the current study and previous work. The 

corresponding wear rates are shown in Figure 7.15.  

The only bearings to have performed as well as the E1 liners seen here were vitamin-E 

doped UHMWPE cups. Similar low wear rates were also seen by Traynor et al. [8] 

testing 40 mm CoCrMo heads against ECiMa cups as seen in Figure 7.14. This again 

shows the benefit of adding Vitamin E to cross-linked UHMWPE in order to improve the 

wear properties.  

 

Figure 7.14: Comparison of wear rate (mm3/MC) from the three different materials studied by Traynor et al. 
[8] (after 5 MC for HXLPE and ECiMa, 3 MC for UHMWPE). 

Hence it is hoped that the risk of osteolysis due to polyethylene wear after replacing a 

failed resurfacing metal head with a DM head will be reduced because the E1 liner 

releases a smaller volume of wear particles into the test serum in comparison to 

conventional and highly cross linked UHMWPE. 
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Table 7.2: Comparison of previous in vitro testing of 28 mm CoCrMo heads against single articulation UHMWPE bearings with the current DM study. 

Author Year Femoral 

Component 

Acetabular Component Test Details Wear Rate 

Clarke et al. [9] 2000 28 mm CoCr UHMWPE (2.5-4 Mrad/N2) 10 MC test with 90% 

Bovine Serum (BS) 

13 mm3/MC 

Saikko et al. [10] 2001 28 mm CoCr UHMWPE (2.5-4 Mrad) 3 MC test with 50% BS 56.4 ± 13.3 

mg/MC 

Affatato et al. [11] (a) 2002 28 mm CoCr UHMWPE (EtO-sterilised, 3 

Mrad) 

5 MC test with 30% BS 15 mg/MC 

Affatato et al. [11] (b) 2002 28 mm CoCr UHMWPE (gamma-

sterilised, 3 Mrad) 

5 MC test with 30% BS 13 mg/MC 

Galvin et al. [12]  (a) 2006 28 mm CoCr Non cross-linked UHMWPE 

GUR 1050 

5 MC test with 25% BS 45.6 ± 1.35 

mm3/MC 

Galvin et al. [12] (b) 2006 28 mm CoCr Slightly cross-linked 

UHMWPE 2.5 Mrad 

5 MC test with 25% BS 46.9 ± 9.4 

mm3/MC 

Galvin et al. [12] (c) 2006 28 mm CoCr Highly cross-linked 

UHMWPE 7.5 Mrad 

5 MC test with 25% BS 15.04 ± 4.28 

mm3/MC 

Galvin et al. [12] (d) 2006 28 mm CoCr Highly cross-linked 

UHMWPE 10 Mrad 

5 MC test with 25% BS 8.7 ± 3.11 

mm3/MC 

Oral et al. [13] (a) 2006 28 mm CoCr Conventional gamma-

irradiated UHMWPE 

5 MC test with 100% BS 9.54 ± 0.73 

mg/MC 

Oral et al. [13] (b) 2006 28 mm CoCr Vitamin E-doped UHMWPE 5 MC test with 100% BS 0.78 ± 0.28 

mg/MC 

Current Study (based on 

standard stations in DM T2) 

2013 28 mm CoCr E1 dual mobility liner and 

CoCr cup 

5 MC test with 25% BS 1.26 ± 0.79 

mm3/MC 
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Figure 7.15: Comparison of previous in vitro testing of 28 mm CoCrMo heads against single articulation UHMWPE bearings with the current DM study.
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7.1.4 Options available for partial revision of failed MOM THRA 

This project has focused on the viability of replacing a failed metal resurfacing head 

with a dual mobility bearing. This section will discuss and compare alternative options 

to the dual mobility bearing for partial revision surgery.  

One option is to replace the metal resurfacing femoral head with a modular ceramic 

head. The reported in vitro wear rates for COM joints are very low. Alumina has an ionic 

structure which creates a hydrophilic surface with higher wettability than metals, thus 

facilitating lubrication [14]. 

Williams et al. [15] found that the mass loss from ceramic heads articulating against 

CoCrMo cups to be immeasurable using gravimetric methods. The wear rate of the 

corresponding CoCrMo cups ranged from 0.023 ± 0.005 mm3/MC under standard 

testing conditions to 0.623 ± 0.252 mm3/MC under microseparation testing conditions. 

Ishida et al. [16] determined the overall wear rate for 38 mm COM joints to be 0.29 ± 

0.19 mm3/MC with a cup wear ratio of 82 ± 9 %. Williams et al. [17] found that the wear 

rate for 36 mm COM joints ranged from 0.02 ± 0.01 mm3/MC under standard testing to 

0.36 ± 0.55 mm3/MC under microseparation conditions.  

Clinically, Isaac et al. [18] have measured whole blood metal ion levels in patients with 

COM total hip replacements and found that Cr levels were significantly lower in COM 

bearings than MOM bearings. Co levels were also lower but the difference was not 

significant. 

The clinical data available for metal and polyethylene THR bearings is far more 

extensive than that available for ceramic joints. Alumina wear particle-induced 

osteolysis is a very rare phenomenon but has been seen clinically [19]. 

It is not known how the ceramic wear rate would be affected by the surface roughness 

of the cup left in the body at revision surgery. Brockett et al. [20] tested two explanted 

COM bearings in a simulator study and found the steady-state wear rate to be 

comparable with new COM bearings. However there are concerns that ceramic joints 

can fracture in vivo [21-24]. 

Revision surgery after ceramic fracture shows high rates of early complications due to 

third body wear after incomplete synovectomy [25; 26]. If the ceramic joint is replaced 
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with MOP then ceramic particles can be embedded in the PE cup articulating surface, 

resulting in severe destruction of the metal femoral head and extensive periprosthetic 

metallosis [27]. The results of this can be fatal in isolated cases [28].  

 

Figure 7.16: A-Metallosis 1.5 years after treatment with a MOP bearing in the case of a ceramic fracture. [27] 

The use of a metal modular head would not be advised in cases where MOM failure has 

led to severe metallosis and adverse reaction to metal debris. Potentially the use of 

modular metal heads with physical vapour deposition (PVD) coatings could be used to 

remove the MOM interface. 

Ortega-Saenz et al. [29] have shown that PVD coatings including TiN/CrN, CrN and 

diamond-like carbon (DLC) protect the metal femoral head and reduce wear up to five 

times in the case of the DLC coating, and twenty-eight and fifty-five times in the case of 

the multilayer (TiN/CrN)x3 and CrN respectively compared with standard MOM 

femoral heads in vitro. However, clinical data is limited. 
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The concern with only replacing the failed metal resurfacing head with a modular head 

of any material is that with a traditional joint combination the scratched cup may have a 

great effect on the wear rate. In comparison, the outer articulation of a dual mobility 

joint is only engaged a small percentage of the time. Whilst the hard bearings discussed 

above are presented as potential options for partial revision surgery, the author does 

not consider them to be viable because hard-on-hard bearings generally follow a 

distinct wear pattern with a run-in and steady state wear phase.  

Run-in wear could generate a large number of metal wear particles which could be 

detrimental to the success of the implant and cause further problems for the patient. 

THA is a commonly used option in order to extract the failed MOM articulation 

completely. The problem with this method is that more bone stock is lost than during 

partial revision surgery and this may cause problems for younger patients in the future. 

Springer et al. [30] found that the most common cause of failure after revision surgery is 

joint instability and accounts for 35% of all failed revision THAs. It is estimated that 

between 7-20% of revision THAs will dislocate [31; 32]. 

There are limited articles which address the effect of femoral head size in revision THA 

but Garbuz et al. [33] determined that a large femoral head reduces dislocation rates in 

patients undergoing revision THA. 

Dual mobility heads are proven to reduce the risk of dislocation in THA [34]. It has also 

been shown that they prevent dislocation following revision THA [35; 36].  In addition 

to this they provide patients with a large range of motion [37]. Short-term clinical 

results after six months have been promising [38], and over 5 MC of simulator testing all 

the DM heads in this study have worn consistently well against scratched CoCrMo cups 

which have features similar to that seen in retrievals.  

However there have also been clinical issues with DM bearings using conventional 

UHMWPE liners in vivo. Rare cases of intraprosthetic dislocation (IPD) where the 

femoral heads have escaped from inside the DM liners [39-41] have occurred. Cases are 

isolated and do not yet provide a clear mechanism for failure. Philippot et al. [42] have 

established cup loosening and blockage of the liner due to extrinsic phenomena such as 

arthrofibrosis and ectopic ossification as contributing to the onset of IPD. 
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It is worth noting that there have not yet been any reported clinical incidences of IPD in 

patients with dual mobility bearings with E1liners. At this current moment in time only 

short-term clinical data is available, it will take at least another ten years to assess the 

long-term clinical performance of the bearings. 

Ultimately, selecting the course of action for a patient who has experienced a failed 

metal THRA can only be determined after the careful consideration of many factors 

including patient age, sex, lifestyle and reason for primary THRA failure. 

7.2 Conclusion 

The aims of the project as summarised in section 2.7 are outlined below with the 

resulting conclusions from this work.  

1. Investigate how to recreate surface features seen in vivo in CoCrMo 

acetabular cups from failed MOM THRA. 

Firstly, surface features seen in vivo from failed MOM bearing systems were analysed by 

examining eight retrieved CoCrMo acetabular cups using optical microscopy, SEM and 

zygo profilometry. The average surface roughness was 0.031 ± 0.03 µm with a 

corresponding average surface skewness of -5.042 ± 4.682 µm. Optical microscopy and 

SEM showed a wide range of surface features including abrasive multidirectional 

scratching, pitting on the surface and carbide removal. Two simulator studies were then 

completed using MOM ReCap resurfacing joints in order to produce worn CoCrMo cups 

with surface features similar to that seen in the retrievals. 

MOM Test 1 was a standard 5 MC simulator study where three stations experienced 

leaks and runaway wear. The three CoCrMo cups from these stations had a resulting 

average surface roughness of 0.089 ± 0.072 µm and average surface skewness 0.312 ± 

0.848 µm. The two CoCrMo cups which did not experience leaks had a resulting average 

surface roughness of 0.013 ± 0.009 µm and average surface skewness -2.517 ± 3.885 

µm. Whilst the magnitude of the wear rates from the cups which experienced leaks have 

been seen clinically in failed MOM THRA, the surface features differed from those seen 

in vivo due to the deep unidirectional nature of the scratching. 



7. Discussion and conclusion 

 

 Page 293 
 

MOM Test 2 was a 2 MC simulator study completed using MOM ReCap resurfacing joints 

with the addition of third body particles to the test lubricant. The resulting average 

surface roughness of the CoCrMo acetabular cups was 0.027 ± 0.021 µm and average 

surface skewness -3.217 ± 2.625 µm. Whilst unidirectional scratching was still a 

common feature, areas of multidirectional scratching were also present on the surface 

of the resulting CoCrMo cups. Carbide smoothing and removal was also visible and 

similar to that seen in retrievals.  

Comparison of the wear, zygo and optical data from the two MOM simulations have 

shown that MOM Test 2 was more effective than MOM Test 1 in producing cups with 

similar surface features to that seen in vivo. However both simulations have been 

beneficial in providing a wide variety of CoCrMo cups with different surface features for 

further testing with DM heads. 

2. Investigate how the wear rate of a DM head is affected by the initial surface 

roughness of the mating CoCrMo acetabular cup. 

DM Test 1 used the worn CoCrMo cups from MOM Test 1 with surface roughness and 

skewness as detailed in the previous section. The corresponding E1 liner wear rate at 

62° inclination angle ranged from 0.23 – 1.17 mm3/MC. Under both high inclination and 

microseparation the wear rate ranged from 2.49 – 3.76 mm3/MC. 

DM Test 2 used unworn CoCrMo cups with an average initial surface roughness of 0.008 

± 0.004 µm and surface skewness 0.419 ± 0.341 µm. The E1 liner wear rate at 62° 

inclination angle ranged from 0.64 – 2.15 mm3/MC. Under both high inclination and 

microseparation the wear rate ranged from 4.97 – 5.15 mm3/MC. 

DM Test 3 used the worn CoCrMo cups from MOM Test 2 with surface roughness and 

skewness as detailed previously. The corresponding E1 liner wear rate at 62° 

inclination angle ranged from 0.46 – 0.69 mm3/MC. Under both high inclination and 

microseparation the wear rate ranged from 3.57– 3.88 mm3/MC. 

The E1 liners exhibited lower wear rates when tested against the previously worn 

CoCrMo acetabular cups from MOM Test 1 and 2. This result was not statistically 

different under standard testing conditions but was statistically different under 

microseparation testing conditions when comparing DM Test 2 and DM Test 3. 
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3. Investigate how the wear rate of DM THA is affected by high inclination and 

microseparation testing conditions. 

In each DM test the combination of both high inclination and microseparation testing 

conditions increased the wear rate of the E1 liners above that experienced under wear 

testing at high inclination alone. This result was statistically different for both DM Test 2 

and DM Test 3. Optical images taken at the outer pole of the E1 liners also show that the 

outer articulation has been engaged more under microseparation testing conditions. 

4. Investigate whether DM THA produces comparable wear rates to 

traditional MOP THA.  

The E1 wear rates from DM Test 2 using unworn CoCrMo acetabular cups have been 

compared to previous in vitro mechanical testing of 28 mm CoCrMo heads vs. UHMWPE 

bearings, see Table 7.2. The wear rates from this study are lower than those seen 

previously using conventional and highly cross-linked UHMWPE bearings and 

comparable to previous studies using vitamin E doped UHMWPE bearings.  

This indicates that DM bearings will not release a higher volume of polyethylene debris 

into the body than traditional MOP THA despite the additional wear surfaces from the 

two articulating surfaces as well as the interaction between the head stem and the liner 

rim. 

5. Investigate whether the form, size and shape of metallic debris released 

from MOM THRA vary in comparison to that from DM THA.  

Test serum taken after 0.5, 1.0, 2.5 and 5.0 MC from MOM Test 1 as well as test serum 

taken after 0.5 MC from both standard and microseparation testing conditions from DM 

Test 1, 2 and 3 has been digested using an enzymatic protocol. A low number of 

nanometre sized rod-like CoCr particles with a polycrystalline structure were imaged 

from the MOM test serum. Although six DM samples were analysed, isolation of either 

Cr or CoCr particles were not achievable due to the additional presence of stainless steel 

wear particles in the DM test serum. 

The presence of stainless steel wear debris was beneficial in confirming that there had 

been contact between the stainless steel head stem and the rim of the E1 liner during 

the DM simulations. However the head stems used in these tests are not representative 
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of the head stems which would be used in vivo and hence the current DM test set up 

would have to be modified for future work in order to produce clinically relevant wear 

debris. 

6. Investigate whether a failed MOM THRA can be converted into a successful 

THA using a DM head. 

Whilst metal wear particle isolation from the DM tests has been unsuccessful, the wear 

rates of the CoCrMo heads and cups during the DM tests, using either previously worn 

or unworn cups, have been consistently low. Hence it is hoped that incidences of 

adverse reaction to metallic debris post-revision surgery would be low for patients who 

receive DM THA. Also, MOM Test 1 had three stations which were experiencing 

runaway wear and after replacement of the metal femoral head with a DM head in DM 

Test 1 the wear rate of the CoCrMo cups stabilised immediately at a low level. 

The wear rates of the E1 liners have also been very low in all tests using previously 

worn cups therefore it is hoped that incidences of implant loosening due to osteolysis 

from build up of polyethylene wear debris will be lower than for patients receiving MOP 

THA with conventional or highly cross-linked UHMWPE bearings. 

DM bearings are reported to provide greater stability and reduced risk of dislocation 

which is hugely beneficial given that the principal cause of failure after revision surgery 

is joint instability. DM bearings are presented in this work as an option for partial 

revision surgery because the outer articulation is only engaged a small percentage of 

the time under standard walking conditions. This project has tested a wide variety of 

CoCrMo cups with worn features similar to that seen in vivo from failed MOM bearings 

against DM heads and all have worn consistently well. The E1 liners have greatly 

improved the wear properties of the DM heads whilst retaining all the stability 

advantages associated with the DM set up. 

This project has successfully increased the understanding of DM bearings for 

application in partial revision procedures and the results indicate that DM heads are 

indeed a viable solution for the conversion of a failed MOM THRA into a successful THA. 
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7.3 Suggestions for further work 

This project has been successful in achieving five of the six aims detailed in section 2.7. 

The exception was that the form, size and shape of metallic debris released from DM 

THA were unable to be determined due to the additional presence of stainless steel 

wear debris in the test serum which was not clinically relevant.  

In future work it is suggested that: 

1) For DM studies, the stainless steel head stems from the current test set up should be 

replaced with head stems made from the same material (either CoCrMo or Ti alloy) with 

the same polishing and quality control as is manufactured for use in the body. It must be 

remembered that the interaction between the head stem and the E1 liner rim will also 

contribute to the production of polyethylene wear debris as well as metallic wear debris 

in the test serum. It is not yet known how the size and shape of polyethylene wear 

debris released from DM THA compares to that from MOP THA. Therefore although the 

production of clinically relevant head stems for DM wear testing would require extra 

time, cost and collaboration with Biomet, it is essential in order to produce clinically 

relevant CoCrMo and polyethylene wear debris for further biological assessment. 

2) Further metal particle isolation analysis using test serum from MOM pin-on-plate 

studies should be carried out in order to try and increase the number of metal particles 

imaged. Pin-on-plate studies will have a high concentration of test particles in a small 

volume of serum which would allow the digestion protocol to be varied until the 

particle loss was minimised. 

3) The duration of DM testing could be extended up to 15 MC per test. Simulations with 

this duration would not have been viable during the current project due to time 

constraints. However longer testing would be beneficial in order to assess the long term 

wear around the liner rim in terms of susceptibility to intra-prosthetic dislocation. This 

is yet to be seen clinically for E1 bearings but has been seen for a small percentage of 

patients with conventional DM bearings after around ten years in vivo. 
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Appendix B 

Cleaning, Drying and Weighing Protocol 

1. Run the ultrasonic bath on degas for 5 minutes. 

2. Rinse components and gently clean the backs of the CoCrMo cups with a soft 

brush to remove any residue. 

3. Rinse with deionised water. 

4. Put the components into the holding tray and place into ultrasonic bath. 

5. Sonicate for 10 mins in deionised water. 

6. Remove from bath and rinse with deionised water. 

7. Sonicate for 10 mins in a mixture of deionised water with 2 squirts of neutrocon. 

8. Remove and rinse in deionised water. 

9. Sonicate for 10 mins in deionised water. 

10. Remove and rinse in deionised water. 

11. Sonicate for 3 mins in deionised water. 

12. Dry with lint free tissue. 

13. Rinse metal surfaces in isopropanol. 

14. Dry with lint free tissue. 

15. Dry with a jet of filtered inert gas. 

16. Leave all components in the vacuum oven to dry for 30 mins. 

17. Leave all components to acclimatise next to weighing balance for 30 mins. 

18. Weigh each component to get 3 consecutive results within 0.1 mg. 
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Appendix C 

ICPMS Protocol 

1. Serum frozen after biotribological studies was subject to an enzymatic isolation 

protocol and stored in an eppendorf tube for analysis. (A blank sample, from 

applying the isolation protocol to pre-test serum, was also subject to the steps 2-

14.) 

2. Eppendorf tube was left open in a fume hood (to avoid contamination) at room 

temp over a weekend to let the ethanol evaporate off and leave the metal 

residue. 

3. Metal residue was transferred to a sample vial and left overnight in 2 ml of conc. 

HCl to dissolve. (Can weigh sample to prepare CoCrMo predictions to have some 

concentrations in mind.) 

4. Once dissolved, sample was made up to 50 ml with distilled deionised water. 

5. Three standards of known concentrations of CoCrMo in 3.5% HNO3 were made 

(50 ppb, 100 ppb, 200ppb), along with a blank sample of 50 ml 3.5% HNO3. 

6. To check ICPMS is working, run a test sample of a known concentration of a mix 

of analytes six times. 

7. Run a wash to flush out the system. 

8. Run blank HNO3. 

9. Run 3 CoCrMo standards to calibrate the machine and check the calibration 

curves. Should look like: 
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10. Run two washes to clean out the high metal concentrations. 

11. Run serum blank. 

12. Run samples. 

13. Run wash. 

14. Run standard to check it is still correct. 
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