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Abstract 

Leishmaniasis is a tropical disease caused by protozoan parasite of the genus 

Leishmania.  

The temporins are a class of antimicrobial peptides (AMPs) and have documented 

antibacterial and antileishmanial activity. Temporins A, B, C, F, L and 1Sa were 

synthesised. Fluorescein and tetramethylrhodamine, used as biological imaging agents, 

were attached to temporins A and B and used in biological testing to track the progress 

of the peptides through infected macrophage cells, and in an in vitro skin model.  

Temporins A and L were found to be active against both promastigotes and amastigotes, 

and alanine and lysine scans of these peptides were performed to attempt to identify any 

residues causing activity. No residues to this effect were identified, however based on 

this work, the largest library of antimicrobial peptides to date was synthesised and 

tested gainst Leishmania mexicana promastigotes and axenic amastigotes. Data 

obtained was subsequently used in the first reported study of computational modelling 

to predict the sequences of antileishmanials peptides. Based on this work, peptide 

sequences were predicted that may show activity as antileishmanials agents.  

The Ciliatamides consist of three lipopeptides named Ciliatamides A-C, of which 

Ciliatamide B was shown to possess high levels of antileishmanial activity. (S,S), (R,S), 

(S,R) and (R,R) forms of Ciliatamide B were synthesised and used in biological testing. 

The activity of both temporins A and B was assayed against L. mexicana promastigote 

and axenic amastigotes, as well as murine macrophages: Allowing for an as yet 

undocumented comparison between both stages of the Leishmania spp. lifecyle. 

Differences were noted in the activity of the promastigotes and amastigotes lifecycle 

stages of the parasite, with promastigotes being significantly more responsive to AMPs 

than the amastigotes. As all previous studies had taken place on the promastigotes 

lifecycle stage, this finding must be taken into consideration in planning future studies.  
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Chapter 1 Introduction 

 

Tropical diseases are defined as those diseases that mainly occur in tropical or 

subtropical regions. A sub-group of tropical diseases, designated as neglected tropical 

diseases includes 17 diseases, according to the first World Health Organisation (WHO) 

report on the subject. To be regarded by the WHO as a neglected tropical disease, a 

disease must meet the following criteria: (1) it prominently affects poor countries, (2) it 

affects low-income and politically marginalized populations, (3) it does not spread 

widely as its distribution is restricted by climate and the effects of climate on the 

distribution of vectors and reservoir hosts, (4) it causes stigma and social 

discrimination, especially in women, (5) it has a relevant impact on morbidity and 

mortality, (6) it is relatively neglected by researchers
1
.  

The seventeen tropical diseases classified by the WHO as being neglected are: Buruli 

Ulcer (Mycobacterium ulcerans infection), Chagas disease, Dengue/Severe dengue, 

Dracunculiasis (guinea-worm disease), Echinococcosis, Foodborne trematodiases, 

Human African trypanosomiasis (Sleeping sickness), Leishmaniasis, Leprosy, 

Lymphatic filariasis, Onchocerciasis (River blindness), Rabies, Schistosomiasis, Soil 

transmitted helminthiases, Taeniasis/Cysticercosis, Trachoma, and  Yaws (Endemic 

treponematoses); other 'neglected' conditions are: Podoconiosis, Snakebite and 

Strongyloidiasis. 

Infectious diseases caused by parasites are a major threat to mankind, especially in the 

tropics. More than 1 billion people world-wide are directly exposed to tropical parasites 

such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, 

lymphatic filariasis and onchocerciasis, which represent a major health problem, 
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particularly in impecunious areas. The selection of antiparasitic drugs varies between 

different organisms. Some of the currently available drugs are chemically de novo 

synthesized, however, the majority of antimalarial drugs are derived from natural 

sources such as plants which have subsequently been chemically modified to warrant 

higher potency against these human pathogens
2
. 

1.1 Leishmaniasis 

Tropical diseases such as leishmaniasis, malaria, and Chagas’ disease affect millions of 

people in equatorial countries each year
3
. As per World Health Organization statistics, 

leishmaniasis currently threatens 350 million men, women, and children in 88 countries 

around the world. As the disease is vector borne, the transmission of leishmaniasis is 

most favourable in developing world countries due to poor living conditions and 

sanitation 
4
. Over 90% of the cases of leishmaniasis occur in parts of India, Bangladesh, 

Nepal, Sudan, and Brazil 
5
. Inhabitants of these developing-world tropical countries are 

at high risk from infection and are often those with the least socioeconomic ability to 

obtain proper treatments; therefore, they are the most likely to develop serious and often 

fatal illnesses
6
. An increase in the incidence of leishmaniasis can be associated with 

urban development, forest devastation, environmental changes and migrations of people 

to areas where the disease is endemic
7
. 
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Figure 1.1 Regions of the world affected by leishmaniasis (dark blue) and co-infection with 

HIV (Light blue) 

http://www.who.int/csr/resources/publications/CSR_ISR_2000_1leish/en/ 

Tropical diseases have been largely overlooked in drug discovery programs by major 

pharmaceutical companies due to the lack of significant financial return on this 

expensive and time-consuming process (only 13 of the 1300 new drugs introduced 

during the period 1975 through 1999 were for treating tropical diseases)
3
. 

 

Species of the genus Leishmania, a protozoan member of the hemoflagellate group, are 

the causative agents of human leishmaniasis, which has a reservoir in rodents, dogs, 

saguins, marsupials and others in the wild animal population
8
. Two genera of sandfly 

transmit Leishmania to humans: Lutzomyia in the New World and Phlebotomous in the 

Old World
9
. The disease is formerly known as Orient Boil, Baghdad Boil, black fever, 

sand fly disease, Dum-Dum fever, or espundia
9
. Leishmaniasis presents in several areas 

http://www.who.int/csr/resources/publications/CSR_ISR_2000_1leish/en/
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including Africa, Central and South America, the Middle East, the Indian subcontinent 

and more recently southern Europe. The disease is caused by Leishmania, protozan 

parasites and presents in four forms in humans, as shown in Figure 1.2; cutaneous 

leishmanisis (CL), diffuse cutaneous leishmanisis (DCL), mucocutaneous leishmanisis 

(MC) and visceral leishmanisis (VL) which is also known as kala-azar
10

. The symptoms 

of these various leishmaniasis forms range in severity from skin lesions (CL) to serious 

disFigurement (MC) and in the worse cases fatal systemic infection (VL)
11

. Visceral 

leishmanisis carries a significantly higher mortality rate than other forms and if left 

untreated 100% of cases prove fatal. Cutaneous leishmanisis is the most prevalent form 

of the disease, with an incidence of 1.5 million cases each year concentrated mainly in 

central and South America
11

.  

 

Figure 1.2 Typical Presentations of leishmaniasis (A) Mucocutaneous leishmaniasis; (B) Post 

kala azar dermal leishmaniasis (PKDL); (C) Visceral leishmaniasis; (D) Sandfly Vector; (E) 

Cutaneous leishmaniasis
10a,12

. 

The disease is initiated through the bite of female phlebotomine sandflies infected with 

the Leishmania protozoan. The parasite is internalised via macrophages in the liver, 

A C 

B 
E 

D 
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spleen and bone marrow.
13

 Following an incubation period of two to eight weeks, an 

erythematous papule arises at the site of the sandfly bite. The papule gradually develops 

into a nodule, increasing in size until ulceration occurs. Multiple lesions may occur if 

the patient has been bitten in several places. The lifecycle of the leishmania parasite is 

shown in Figure 1.3. The cutaneous form of the disease may also be further complicated 

by secondary bacterial infections at the site of the ulcers. The lesions formed as a 

symptom of cutaneous leishmaniasis may heal spontaneously, however a growing 

problem is increasing incidence of co-infection of the disease with patients previously 

infected with HIV. In these cases cutaneous leishmaniasis may not heal for many 

years
14

. Mucocutaneous leishmanisis occurs following a primary infection of cutaneous 

leishmanisis. Lesions arise in the tissues of the nose or palate and subsequently increase 

in size, destroying mucosa and cartilage. Obvious effects of this form of the disease are 

to cause serious disfigurement, with resulting social isolation and psychological impact 

upon the patient. In addition, if the lesions associated with this form of the disease 

obstruct the trachea or lungs, death can result rapidly.
15

 

The problem of leishmaniasis has been worsened by the evolution of AIDS due to 

parallel infections in AIDS patients, as well as by the development of drug-resistance by 

parasites
16

.  
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1.1.2 Leishmania lifecycle 

 

Figure 1.3 Leishmania lifecycle 

http://www.dpd.cdc.gov/dpdx/HTML/leishmaniasis.htm 

 

Leishmania have a digenic life cycle, Figure 1.3. In the mammalian host, the non-motile 

amastigote is an obligate intracellular parasite, multiplying within a parasitophorous 

vacuole. Leishmania amastigotes are adapted to thrive in the phagolysosome of 

mammalian macrophages. Host cells with a heavy burden of parasites are prone to lysis, 

releasing amastigotes which can infect further macrophages. Blood-feeding activity by a 

sandfly vector can result in ingestion of infected macrophages. Amastigotes are released 

into the insect gut as the host cell is digested, and the parasite undergoes a 

developmental switch to the promastigote stage. This transformation is exemplified by 

elaboration of a motile flagellum and can be reproduced under axenic conditions by 

changes in temperature and pH of in vitro culture media
17

. In the lumen of the insect 

http://www.dpd.cdc.gov/dpdx/HTML/leishmaniasis.htm
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gut, promastigotes multiply and give rise to non-dividing metacyclic promastigotes 

which are able to establish infection in a mammalian host.  

Until recently, Leishmania promastigotes have been the focus of much study. However, 

developments in techniques permitting the in vitro growth of amastigote-like organisms 

have allowed studies to take place in order to draw comparisons and highlight important 

differences between the Leishmania promastigotes and amastigotes
18

.  

Amastigotes are the cause of acute disease (ranging from self-healing cutaneous 

infections to severe disfiguring mucocutaneous and lethal visceral disease), as well as 

chronic or latent infections that can persist for the life time of the host. Despite the 

importance of amastigotes in perpetuating disease and as the target of antileishmanial 

drugs, comparatively little is known about either the metabolism of this stage in vivo or 

the biochemical composition of the phagolysosome.
18

 

The cell surface of procyclic promastigotes (the insect stage of the parasite) is 

surrounded by a glycocalix layer, composed mainly by the lipophosphoglycan (LPG), a 

highly negative molecule encompassing phosphorylated disaccharide repeating units 

and bound to the membrane through a glycosylphosphoinositol (GPI) anchor 
19

. LPG is 

absent or very low in amastigotes (the intracellular pathological form of the parasite for 

vertebrates) 
20

, and this might explain the weak activity of the majority of cationic 

AMPs towards this stage of the parasite. Also metacyclic promastigotes (the circulating 

form of Leishmania in the blood of an infected mammal for about 24 h, before being 

engulfed by macrophages and transformed into amastigotes) are less sensitive to the 

activity of AMPs. This could be related to the fact that the number of repetitive units of 

LPG is double on the metacyclic stage of the parasite, favouring electrostatic 
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interactions with AMPs, and thereby limiting the peptides’ partitioning into the 

cytoplasmic membrane, Figure 1.4.
21

 

 

 

 

 

 

 

Figure 1.3 Structure of Leishmania parasite cell surface
18

 lipophosphoglycan (LPG), 

glycoinositol phospholipids (GIPLs), glycosylphosphatidylinositol (GPI), proteophosphoglycan 

(PPG). 

In order to fully understand the differences displayed between amastigote and 

promastigote forms of Leishmania spp., genetically modified mutants have been 

designed to exploit the discrepancy between the two forms. Promastigotes particularly, 

have been developed lacking key surface coat constituents
18, 22

. The GPI anchored 

proteins, LPG and GIPL membrane constituents have been a focus of study 
23, 24

.  

Research into L. major Lpg1 parasitic mutants reveals that deletion of genes used for 

LPG or GPI anchor synthesis result in a loss of virulence 
25

. In L. mexicana, the 

inability to produce clones containing a deletion of GPI proteins suggests that these 

glycolipids may be essential for parasite growth 
17

. In some cases modifications of the 

surface coat result in reduced growth rate, inability to transform, altered morphology 
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and, occasionally, no change at all
 22, 23

. Leishmania spp. mutants remain an essential 

tool for understanding the mechanism of survival and transformation of the parasite. 

Mutants can also be beneficial to drug screens, where alterations to the target molecule 

or site can be utilized to fully understand the mechanism and site of drug action. 

In vitro cultivated amastigotes (derived from in vitro differentiated promastigotes or 

lesion amastigotes) have been used to investigate some aspects of amastigote 

metabolism, these stages are typically grown in rich medium that is unlikely to mimic 

the biochemical milieu of the phagolysosome
18

. Analysis of amastigote metabolism in 

vivo is further complicated by the fact that different species of Leishmania reside within 

different populations of macrophages and can induce morphologically distinct 

phagolysosomes within the same population of macrophages 
26

. 

For example, members of the Leishmania mexicana complex induce spacious 

communal vacuoles rather than the tight fitting individual phagolysosomes occupied by 

many other species (e.g. Leishmania major, Leishmania donovani). Moreover, the L. 

mexicana-occupied phagolysosomes become filled with electron-dense material over 

the course of several days, thus indicating temporal changes in the biochemical 

composition of the phagolysosome lumen 
27

. 

The treatment of leishmaniasis is difficult because of the intramacrophagic location of 

the infectious form. Victims of this illness present an immune deficiency and are not 

able to eliminate the parasites through a natural mechanism of defence
8
. The problem of 

leishmaniasis has been worsened by the evolution of AIDS due to parallel infections in 

AIDS patients, as well as by the development of drug-resistance by parasites
16

. 
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1.2  Current Chemotherapy of Leishmaniasis 

 

Treatment of cutaneous leishmaniasis (CL) should be directed toward the eradication of 

the amastigotes and reduction of the size of the lesions with minimal scarring and 

toxicity. No single treatment modality to date has been shown to be indisputably 

superior to others
28

. The majority of current treatments are based on chemotherapy 

(although other treatments including heat therapy are also possible), relying on a 

handful of drugs with significant limitations, including high cost and toxicity, difficult 

route of administration and lack of efficacy in rural areas
11

. The most common 

syndrome is localised cutaneous leishmaniasis, which is frequently caused by 

Leishmania major and Leishmania tropica in the old world (Mediterranean basin, 

Middle East and Africa), and by Leishmania braziliensis, Leishmania Mexicana, and 

related species in the New World (Mexico, Central America and South America)
29

.
 

Several uncontrolled trials, have demonstrated moderate to excellent treatment efficacy 

and cosmetic outcomes via cryotherapy or heat administration. The use of surgical 

excision and curettage is rarely recommended in New World disease because of high 

risk of relapse, lymphatic dissemination, and disfigurement. Several drugs such as 

allopurinol (1), nifurtimox (2), dapsone (3), chloroquine (4), and rifampicin (5) have 

been proposed as treatment alternatives for leishmaniasis
30

 Figure 1.5. Their 

implementation, however, is not widely accepted as treatment efficacy is not 

convincing, and experience with their use is limited.
28                         
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Figure 1.4 Drugs currently approved for the treatment of other diseases proposed as treatment 

alternatives for leishmaniasis 

 

1.2.1 First line therapies: Pentavalent antimonials 

 

The pentavalent antimonials such as sodium stibogluconate (Pentostam) (7) and 

meglumine antimoniate (Glucantime) (8) have been used for the treatment of 

leishmaniasis for over 70 years
31

, unfortunately, resistance to the pentavalent 

antimonials is increasing, and in some areas, particularly Bihar, India, their use is 

becoming severely limited due to lack of efficacy
12

. This class of drugs are toxic with 

severe side effects including acute pancreatitis and cardiac arrthymia, and usually 

reversible muscle pains, renal failure, cardiotoxicity and hepatoxicity
31

. 

The poor accumulation of antimonial drugs in the skin has caused some posologic 

differences in their administration in patients affected with cutaneous leishmaniasis. In 

addition, little or no immune response at the lower temperature of the skin (33.0 °C) in 
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comparison to core body temperature (37.0 °C) can explain the longer regimes of 

antimonial medication against dermal leishmaniasis. Several randomised trials 

performed against New World cutaneous leishmaniasis demonstrated that, in following 

the WHO recommendations, the efficacy of sodium stibogluconate is far from being 

complete and relapses occur after healing. However, with increased doses or an 

extension of the length of time of treatment, cures and no relapses have been reported.
32

 

The formulation’s active ingredient is the heavy metal antimony (Sb), and in order to 

obtain significant plasma levels, a large dose of drug must be injected. The spleen is one 

of the organs of accumulation, targeting Leishmania-infected macrophages.  

As is the case with arsenic, pentavalent antimony is reduced to more toxic trivalent 

forms that may be responsible for the toxic side effects in the host. Antimonials are not 

safe drugs, and the WHO limitation can prevent use of toxic levels of the drug. In 

patients for whom medication must be increased because of relapse, no healing, or 

persisting symptoms in overweight patients – abdominal cramps, myalgais, artharlgias, 

alteration of hepatic transaminases, and changes (frequently reversible) in 

electrocardiographic patterns – are common.
32

 

               

Sodium stibogluconate (7) and meglumine antimoniate (8) 
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1.2.2 Second-line therapies 

 

Pentamidine isethionate 

Pentamidine isethionate (9) has been shown to have clinical activity against a number of 

protozoa such as Leishmania, certain strains of Trypanosoma, and Babesia, as well as 

certain fungi, such as Candida albicans. The precise mode of its antiprotozoal action is 

not fully understood. This treatment may also be used in individuals intolerant to 

antimonial treatment, or in cases of antimonial resistance.
28

 

The pentamidine regimen has the advantage of a short time course. Despite this, 

frequent adverse reactions with moderate morbidity have been associated with its use, to 

include an unusually high rate (50%) of hyperglycemia, most likely as a result of 

pancreatic damage, as well as hypotension, tachycardia, and electrocardiographic 

changes.
30a

 

 

 

Pentamide isethionate (9) 

Inidazoles/triazoles (ketoconazole, fluconazole, itraconazole) 

Imidazoles (eg ketoconazole (10)) and triazoles (eg fluconazole (11) and itraconazole 

(12)) are separate classes of antifungal compounds sharing the same antifungal 
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spectrum and mechanism of action, however triazoles are metabolised more slowly, 

interfere less with human sterol synthesis, and are therefore less toxic than imidazoles.
33

 

 

Studies on use of oral ketoconazole for the treatment of New World CL emphasize the 

importance of speciation because the efficacy of treatment has been shown to vary 

according to species. Moreover, in vitro studies have failed to produce consistent results 

on the susceptibility of each of the Leishmania species to the azole compounds.
28

 The 

modest activity of oral ketoconazole against L. mexicana, and the substantially lower 

efficacy against L. braziliensis has, also, been demonstrated by other trials.
34

 It appears 

that oral ketoconazole may be effective in the treatment of the more readily self-curing 

forms of CL (cutaneous disease caused by L. mexicana and L. panamensis) and, 

therefore, can reasonably but cautiously be recommended as initial treatment.
35

 As of 

this date, no studies on the use of fluconazole or itraconazole for the treatment of New 

World CL were available. 
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Amphotericin B 

Amphotericin B (13), a widely used antifungal compound, is also commonly used 

where antimonial failure occurs. Newer drugs, including the lipid formations of 

amphotericin B (AmBisome, Amphocil and Abelcet) have been shown to be effective in 

the treatment of visceral leishmaniasis
36

.  However although these preparations are less 

toxic they are also more expensive. This is a prohibitive factor in the use of these 

formulations as treatments, a direct result of which, testing against cutaneous 

leishmaniasis has been severely limited, thus reducing treatment for the majority of 

patients presenting with visceral leishmaniasis
36

. Amphotericin B is generally not 

indicated for CL, except for mucosal lesions unresponsive to antimonial therapy.
37

 

A limited number of studies have been conducted to determine the treatment efficacy of 

amphotericin B in New World CL. Solomon et al 
38

 reported complete clinical cure with 

liposomal amphotericin B in seven patients with cutaneous lesions caused by L. 

braziliensis infection. This study, however, was nonrandomized and included relatively 

few patients. Similarly, several case reports of successful treatment of New World CL 

(most caused by L. braziliensis) with amphotericin B exist.
38b, 39
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Amphotericin B (13) 

13 
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Miltefosine 

Miltefosine (14) was originally developed as an anticancer drug
40

, and is the most recent 

drug to be introduced into clinical practice. Promisingly, this has been shown to be an 

effective oral treatment for visceral leishmaniasis in India
40

 and has also been used for 

the treatment of cutaneous leishmaniasis caused by L. vianna panamensis, but not L. V. 

braziliensis
40

. At the date of data being published (2009), there were no reported cases 

of miltefosine resistant leishmaniasis, although it is expected that non-adherence to the 

recommended treatment regimen could lead to the emergence of parasite resistance
41

, 

due largely to the relative ease with which miltefosine resistant parasites can be 

generated in vivo
42

. It is expected that miltefosine will be the major form of treatment in 

India and the surrounding regions in the foreseeable future
36

. 

 

14 

 Structure of alkylphospholipid miltefosine (14) 

Paromycin (aminosidine) 

Paromomycin sulphate (15) is a broad-spectrum aminoglycoside antibiotic, shown to 

possess antileishmanial properties for both visceral
43

 and cutaneous
44

 leishmaniasis. The 

advantages of this treatment include a broad spectrum of activity, and low cost. The 

drug is marketed as an oral antiparasitic drug and a topical antileishmaniasis agent.
28

 in 

addition, although resistance to aminoglycosides is well documented in bacteria, no 

clinical resistance has been reported for Leishmania. 
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Strains of L. mexicana, on the other hand, have been found to be highly susceptible to 

paromomycin sulfate treatment.
45

 Currently, topical treatment of New World CL is not 

recommended except in cases of infection with L. mexicana where the risk of 

progression to mucosal leishmaniasis is unlikely.
37, 46

 In cases of L. mexicana infection 

topical 15% paromomycin/12% methylbenzethonium ointment may be an acceptable, 

less costly alternative if first-line treatment with pentavalent antimony is not readily 

available. 

A combination of 15% paromomycin and 0.5% gentamicin was used topically twice 

daily for 10 days to treat CL in mice. For ulcers caused by L. mexicana, L. panamensis, 

and L. amazonensis, the researchers reported 100% cure rate and no evidence of 

relapse.
47

 However, a phase II trial in human beings that was conducted in Colombia 

failed to reproduce these findings. Treatment with this combination ointment resulted in 

nonstatistically significant difference in the cure rates between those individuals who 

were treated and those who were given a placebo.
48

 

 

15 

Paromomycin dihydrogen sulfate salt (15) 
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1.3 The development of antileishmanial vaccines 

Visceral leishmaniasis is a deadly disease, however there are as yet no human vaccines 

licensed for use, and most vaccines studies have focused on the less severe cutaneous 

form of the disease
49

 Despite the knowledge about various life stages of the parasite and 

the ongoing work, designing an effective vaccine against leishmaniasis is still a matter 

of research, there are a number of potent vaccine candidates, however issues regarding 

the cost, antigenic complexity along with the variability of organisms and the mixed 

type of responses produced in the host are limiting the progress in the relevant direction. 

Thus the technical challenges and the complexity in the immunity against the parasites 

clearly contribute to the absence of vaccines. The major hurdle in developing a potent 

vaccine is lack of more than one experimental model for studies which do not provide 

us all the facets of immune responses in humans and the safety issues further limits their 

development.
50

 

1.4 Natural products as drug molecules 

 

The increasing incidence of drug-resistant pathogens has drawn the attention of the 

pharmaceutical and scientific communities towards studies on the potential 

antimicrobial activity of plant-derived substances, an untapped source of antimicrobial 

chemotypes, which are used in traditional medicine in different countries.
51

 

Nature has been a source of medicinal products for millennia, with many useful drugs 

developed from plant sources. Following discovery of the penicillins, drug discovery 

from microbial sources occurred and diving techniques in the 1970s led to more drug 

discovery from marine based compounds. Combinatorial chemistry (late 1980s), shifted 
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the focus of drug discovery efforts from Nature to the laboratory bench, however the 

move is now back to drugs derived from nature.
52

 

The explosion of genetic information led not only to novel screens, but the genetic 

techniques permitted the implementation of combinatorial biosynthetic technology and 

genome mining. The knowledge gained has allowed unknown molecules to be 

identified. These novel bioactive structures can be optimized by using combinatorial 

chemistry generating new drug candidates for many diseases.
52
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1.5 Natural products as a new source of antileishmanials 

 

Research is taking place to discover new antileishmanial agents derived from natural 

products, as these have been shown to be rich sources of active bioactive compounds for 

the treatment of Leishmania.
53

 

 

1.5.1 Plant derived natural products  

The potential antileishmanial properties of plant-derived compounds have also been 

investigated, with many being used as folk-remedies. Plant-derived products form a 

large group of compounds containing several products with leishmanicidal activity that 

includes quinines, alkaloids, termenes, saponins, phenolic derivatives and other 

metabolites
54

. The most promising antileishmanial compounds have been shown to be 

some alkaloids including benzoquinolizidine alkaloids
55

, terpenes: diterpenoids
56

, 

sesquiterpenes
57

 and phenolics such as neolignans
58

 or naphthoquinones
59

. Novel 

compounds isolated shown to possess antileishmanial activity include manzamine 

alkaloids
60

, triterpenoids
61

, compounds isolated from medicinal plants of ivory coast
62

, 

ferns
63 

and 2-substituted quinolinines
64

.  However, most of these plant-derived 

compounds do not meet the required levels of in vivo activity or cytotoxicity for drug 

development, and would require additional modifications to their chemical structure in 

order to be considered further.  
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1.5.2 Antimicrobial Peptides 

 

In recent years, the widespread overuse of conventional antibiotics has led to the 

emergence of multi-drug-resistant bacterial and fungal strains. This has become a 

serious concern in the developing world, increasing the urgency of the search for new 

antimicrobials with new modes of action
65

. In mammals, AMPs produced in response to 

infection and represent key components of the innate immune system
14

. They are 

expressed by a wide variety of cell types and predominate at portals of microbe entry 

such as the gastrointestinal, respiratory, urogenital tracts and in the skin,
65-66

 and are 

also expressed in plants. 

AMPs consist of short polypeptides of 10-40 residues produced in bacteria and fungi
66, 

67,68
, in addition to higher eukaryotes (plants, animals and humans) where they represent 

key components of the immune system
68, 69, 70, 71, 72

. Since their discovery in plants in 

1972, over 800 AMPs have been isolated from members of almost every kingdom and 

phylam including humans
73, 74

.  Due to the high cost for the commercial production of 

long peptides, particular interest has been given to small linear peptides that can be 

efficiently made by chemical synthesis at competitive costs and that have reduced or no 

immunogenicity
21

. 

 

Based on their secondary structures AMPs are classified into four major classes: α-

helical, β-sheet, looped, and extended peptides 
75

. Importantly, AMPs are active against 

pathogens resistant to traditional antibiotics
75-76

, and thus offer the possibility to develop 

a new class of antibiotics. In addition some AMPs might be useful in treating cancer, 
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and there are already several peptides in preclinical and clinical trials
77

. Certain subsets 

of AMPs (defensins and some cathelicidins) have been found to be cysteine-rich, 

allowing extensive intra-disulfide bonding to occur, which is important for activity
78

.  

 

Antimicrobial peptides (AMPs) are promising novel antibiotics and antiprotozal agents, 

as they have been shown to exhibit broad antimicrobial spectra and do not easily induce 

resistance
79

. However, the use of AMPs as antiprotozal agents has yet to be fully 

investigated, largely attributed to parasitic infections being largely prevalent in 

developing countries, and therefore not being financially viable for pharmaceutical 

companies.  

There is a consensus that, in general, cationic AMPs and some lipopeptides recognize 

and interact with the acidic phospholipids (e.g., phosphatidylglycerol, cardiolipin) 

exposed on the outer leaflet of the bacterial membrane. In contrast, in mammalian cells, 

the outer leaflet is zwitterionic, which should reduce the binding capacity of the cationic 

AMPs. This can account for the preferential activity of AMPs against bacteria and 

partially against fungi 
80

. 

In addition to their large spectrum of antibacterial and antifungal activities, it has been 

shown that several amphibian AMPs can also inhibit cell-mediated HIV capture and 

infection,
81

 a useful attribute as HIV co-infection with leishmaniasis is rapidly 

becoming a problem in the developing world
82

.  



Chapter II: Initial Investigations into the potential application of antimicrobial peptides as new 

antileishmanials 

 
 

24 

 

 

Figure. 1.9 Overview of the broad spectrum of cellular interactions associated with 

antimicrobial peptides. In addition to exerting antimicrobial activity by disrupting bacterial 

membranes, peptides may also bind to specific target proteins within microbial cells and 

activate the innate immune system. The binding of peptides to cell-surface LPS molecules and 

proteolysis contribute to bacterial resistance to AMPs.
83

  

 

1.5.3 Antileishmanial activity of AMPS 

 

AMPs are a promising target for development of antileishmanial agents for a number of 

reasons (see figure 1.6); they have been shown to exhibit a lack of toxicity towards 

mammalian cells at concentrations required to kill Leishmania parasites, and 

importantly, their mechanism of action has been shown to operate via disruption of 

biological membranes, a mechanism significantly different to those of current therapies 
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to which resistance has developed. There are however trials beginning to take place 

within countries where the prevalence of leishmaniasis is high, in order to test potential 

therapies within the country where the treatment is most needed.  

In the case of other microorganisms, such as parasites of Leishmania genus, the cell 

surface of procyclic promastigotes (the insect stage of the parasite) is surrounded by a 

glycocalix layer, composed mainly by the lipophosphoglycan (LPG), a highly anionic 

molecule encompassing phosphorylated disaccharide repeating units and bound to the 

membrane through a glycosylphosphoinositol anchor
19

. LPG is absent in amastigotes 

(the intracellular pathological form of the parasite for vertebrates)
20

, and this might 

explain the weak activity of the majority of cationic AMPs towards this stage of the 

parasite. Also metacyclic promastigotes (the circulating form of Leishmania in the 

blood of an infected mammal for about 24 h, before being engulfed by macrophages and 

transformed into amastigotes) are less sensitive to the activity of AMPs.
21

 

AMPs do not easily induce resistance due to their proposed mechanism of action, 

(Figure 1.6) in which they physically permeate and destroy the cell membrane, causing 

damage that is difficult for the bacteria to repair, rather than acting via a receptor-

mediated mechanism
84

. Conversely, commonly used drugs operate on specific 

intracellular targets and do not modify the bacterial morphology, making it easy for the 

microorganisms to become resistant to those drugs
84

. 

 

More than a dozen companies are developing antibiotic peptides and peptidomimetics, 

including the cationic peptide Melamine, as a coating, to help reduce the risk of contact-

lense related infections, and numerous others of which are in clinical trials
85

. However 
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the trials are limited to topical applications, due the fact that peptides which have 

previously indicated limited toxicity towards mammalian cells in vitro are usually toxic 

when injected into the bloodstream, although this issue had not been well documented
79, 

86
. The synergistic effects of AMPs, both as combinations of different AMPs

68
 as well 

as in combination with other host defence mechanisms, are currently being investigated. 

In the area of the temporin peptides, these effects are in relation to the use of Temporin 

L in synergism with other Temporin peptides
84

. Temporins A and B, in combination 

with temporin L, have been shown to possess antibacterial activity against gram 

negative bacteria
87

.  

Amphibian skin secretions represent one of the richest natural sources of AMPs, with 

one such family of peptides, isolated from this source, the temporins being the smallest 

AMPs found in nature to date
65

. 

1.5.4 The Temporin peptides 

 

The temporin family of peptides includes more than forty members possessing 

properties to render them molecules of interest for further investigation of their 

biological function and mode of action. The properties leading to the temporins being of 

considerable interest are as follows: (i) temporins are among the smallest amphipathic 

α-helical AMPs found in nature (10-14 amino acids); (ii) their net positive charge at 

neutral pH is low, ranging from 0 to +3; (iii) some act efficiently  and rapidly against a 

wide range of pathogens (bacteria, viruses, fungi, yeasts and protozoa) and have low 

toxicity to mammalian cells; (iv) their mode of action includes perturbation of the 

cytoplasmic membrane, but in a different way to that proposed for the majority of 

cationic α-helical AMPs
87

; (v) some temporins display immunomodulatory effects
87

; 
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(vi) they preserve biological function in serum
87

; and (vii) they possess an in vivo 

efficacy in preventing prosthetic graft infections
87

 and against sepsis
87

. 

Recent studies have revealed that temporins A (16) and B (17) have a strong 

antiparasitic action on promastigotes of the Leishmania genus L. donovani (temporin A 

50 % growth inhibition, 8.4 M, temporin B 50 % growth inhibition, 8.6 M) and 

axenic amastigotes of the Leishmania genus Leishmania pifanoi. (temporin A 50 % 

growth inhibition, 14.6 M, temporin B 50 % growth inhibition, 7.1 M)
88

. These 

results are of significance, as the antileishmanial activity is present at concentrations not 

toxic to human red blood cells, and that in addition, in contrast to most AMPs, 

temporins preserve biological function in serum
89

. 

 

Temporin A, FLPLIGRVLSGIL (16) 

 

Temporin B, LLPIVGWLLKSLL (17)  
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Temporins are mainly active on Gram-positive bacteria, including clinically isolated 

methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus 

faecium and E. faecalis, with minimal inhibitory concentrations ranging from 2.5 to 20 

MM
90, 91

. Some members are also lethal to Gram-negative bacteria and fungi, such as 

Batrachochytrium dendrobatidis, which is associated with a global amphibian decline
87

, 

and Candida albicans. Furthermore, a very broad spectrum of activity was observed 

with temporin L (net charge +3), against both Gram-positive and Gram-negative 

bacteria, yeasts, human erythrocytes and cancer cells
92

, Table 1. 

 

The mechanism of action of the temporin peptides is yet to be fully understood. It is 

thought by some groups that the presence of sphingomyelin and cholesterol in the 

plasma membranes of eukaryotes (a major difference from the plasma membrane 

composition of the bacterial cell membrane) acts to provide the most effective barrier 

against the insertion of AMPs into mammalian cells
93

. 

 

As previously mentioned, the temporins all possess a net positive charge at neutral pH, 

an attribute crucial to their proposed mechanism of action. It is thought that cationic 

AMPs interact preferably with the negatively charged bacterial membranes by altering 

the membrane permeability
94, 95

. 

Cationic side chains of the amphipathic α-helicalpeptides further interact 

electrostatically with negatively charged lipids, which neutralize the excess positive 
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charge of the surface associated peptides and reduce peptide–peptide repulsion
96

. The 

membrane bound AMP then associate to form aggregates, oligomers, which 

simultaneously cause membrane permeabilization. Membranes thus provide an 

environment where AMPs can and must adopt conformations and orientations, which 

promote peptide aggregation, all these processes being intimately coupled
97

. Monolayer 

experiments have revealed temporins B and L to be highly membrane active, effectively 

inserting into zwitterionic phosphatidylcholine (PC) monolayers. The lipid insertion 

was augmented by the negatively charged phosphatidylglycerol (PG), an abundant 

constituent of the bacterial target membranes
98

. 

 

Data reported on AMPs derived from a combinatorial library suggests that the 

antimicrobial activity of an AMP is related to the ability of the peptide to destabilise 

membranes by partitioning into membrane interfaces and disrupting the organisation of 

the lipids
99

, Figure 1.7. 
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i) Electrostatically enhanced initial association of a random coil peptide to the membrane surface. 

ii) The ensuing second step involves several simultaneous processes: intercalation into the bilayer, with the peptide 

long axis parallel to the membrane layer plane, a conformational change from a random coil to an amphipathic α-

helix100, 101, and ion-pairing of acidic phospholipids with positive residues of the peptide. 

iii) Reorientation and membrane insertion of the peptide, its long axis becoming perpendicular to the monolayer 

surface94, 102. In this step some peptide associated acidic phospholipids can be removed from their initial location, so 

as to have their acyl chains oriented more or less parallel to the plane of the bilayer103, as required for instance by the 

toroidal pore model104.  

Figure 1.11 Schematic illustration of the stages in the membrane 

association/folding/aggregation pathway. Reproduced from Carotenuto
 
et al.

100
 

 

The activity of temporins A (16) and B (17) has also been tested against wild-type 

parasites and mutants expressing diminished levels of the dense surface polyanionic 

glycoconjugate, lipophosphoglycan (LPG), suggesting that electrostatic forces between 

the peptide and the parasitic membrane are not an important deteriminant in their 

activity
104

. 

 

The temporin peptides are active against gram positive bacteria, including methicillin 

and vancomycin-resistant Staphylococci and Enterococchi, and are non-toxic towards 

mammalian cells. Temporin L, a temporin containing both an arginine and lysine 

residue in its sequence, has been shown to be the only member of the family to exhibit 

antibacterial activity against both gram positive and negative bacteria
105

.  



Chapter II: Initial Investigations into the potential application of antimicrobial peptides as new 

antileishmanials 

 
 

31 

 

 

 

 

Figure 1.12: Models of transmembrane pore formations: (A) α-helix association with the 

membrane surface; (B) Peptide accumulation and disruption of membrane packing; (C) Peptide 

insertion into the membrane as a Barrel Stave pore; (D) Formation of a torroidal pore 
75

. 

 

In vivo studies involving a large number of mice have been conducted, alongside in 

vitro experiments aimed at isolating resistant mutants, from which no resistant bacterial 

colonies have been recovered. The results of these studies suggest that the bacterial 

membrane not easily altered in order for drug resistance to emerge
106

.  

The small size and the low net positive charge of temporins could make it easier for 

them to cross the parasite’s glycocalix and permeate the membrane compared with other 

AMPs that have a higher net positive charge and can stick easily to the negatively 

charged cell surface. Furthermore, unlike a few natural AMPs that exhibit antiparasitic 

properties, temporins preserve activity against the more resistant morphological stage of 

Leishmania, the amastigote
87

. This suggests that ionic interactions between the peptide 

and the parasite do not contribute significantly to the potency of temporins.
21, 87
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The length of temporins has also been shown to be important in determining 

antimicrobial activity. This is demonstrated by results showing that temporins H, 

LSPNLLKSLL-NH2 and K, LLPNLLKSLL-NH2, both with 10 amino acid residues, do 

not kill gram positive or negative bacteria (although temporin H has been shown to act 

synergistically against Gram negative strains when combined with classical 

antibiotics
(76)

. However, despite their shorter length and diminished charge when 

compared to other AMPs, temporins A (net charge +2, 13 amino acid residues) and B 

(net charge +2, 13 amino acid residues) have both been shown to be highly active 

against both promastigotes and amstigotes of L. donovani, and L. azurea axenic 

amastigotes, wherein they act to disrupt the surface membrane and cause loss of 

intracellular ATP
76

. 

Temporins can also disintegrate the membrane of Leishmania parasites, causing a loss 

of intracellular material. The membrane of Leishmania protozoa is less anionic than that 

of bacteria and is devoid of phosphatidylglycerol. Temporins are among the smallest 

natural antiparasitic peptides reported so far that exert their activity by disrupting the 

parasitic membrane.
107

 

Temporins are one of only a few AMPs have so far displayed anti-protozoa activity, and 

reports on their mode of action are scarce
106

. For Leishmania, these include the frog 

skin polypeptide YY
108

, indolicidin isolated from granules of bovine neutrophils
108

, 

gomesin, from the tarantula spider Achantoscurria gomesiana 
109

 and the cecropin-

melittin hybrid peptides
87

.    

In contrast with temporins, which are highly active towards both the insect 

(promastigote) and the mammalian intracellular stage (amastigote) of the parasite, the 
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other mentioned AMPs exhibited considerably lower efficacy against amastigotes 

compared to promastigotes; (see table 1) however, the molecular basis for these 

differences is not yet clear. An appealing and therapeutically advantageous peculiarity 

of temporins is that they do not harm macrophages (the host cell for amastigotes) at 

doses that are lethal to the intracellular parasites
106

. 

Peptide Source Sequence Activity (% growth inhibition, 

concentration in µM) 

Ref 

promastigotes axenic 

amastigotes 

Dermaseptin

-S1 (DRS1) 

amphibia ALWKTMLKKLGTMALHAGKAALGAAADTISQ

GTQ 

L. major (50,4.5) 

L. Mexicana (50, 

1.5) 

n/a 110 

Dermaseptin

-S4 (DRS4) 

amphibia ALWMTLLKKVLKAAAKALNAVLGANA L. major  

(50, 2.0) 

n/a 110a, 

111 

Dermaseptin

-O1)  (DRS-

01) 

amphibia GLWSTIKNVGKEAAIAAGKAALGAL-NH2 L. amazonensis 

(100, 23.4) 

n/a 112 

Dermaseptin

-H3)  (DRS-

H3) 

amphibia GLWISTIKNVGEAAIAAGKAALGAL-NH2 L. amazonensis 

(78, 13.5) 

n/a 112 

Cecropin A Insect KWKLFKKIEKVGQNIRDGIIKAGPAVAWGQAT

QIAK-NH2 

L. donovani 

(50, 0.3) 

n/a 113 

Melittin Insect GIGAVLKVLTTGLPALISWIKRKQQ-NH2 L. donovani 

(50, 0.3) 

n/a 113 

Phylloseptin-

1 

amphibia FLSLIPHAINAVSAIAKHN-NH2 L. amazonensis 

(50,50) 

n/a 105 

Temporin A amphibia FLPLIGRVLSGIL-NH2 L. donovani 

(50, 8.4) 

L. pifanoi 

(50, 14.6) 

114 

Temporin B amphibia LLPIVGNLLKSLL-NH2 L. donovani 

(50, 8.6) 

L. Pifanoi 

(50, 7.1) 

114 

Temporin 

1Sa 

amphibia FLSGIVGMLGKLF-NH2 L. donovani 

(50, 18.1) 

L. infantium 

(50, 22.8) 

115 

Bombin H2 amphibia IIGPVLGLVGSALGGLL-NH2 L. donovani L. pifanoi 116 



Chapter II: Initial Investigations into the potential application of antimicrobial peptides as new 

antileishmanials 

 
 

34 

 

(50, 7.3) (50, 11) 

Bombanin 

H4 

amphibia aLiGPVLGLVGSALGGLLKKI-NH2 L. donovani 

(50, 1.7) 

L. pifanoi 

(50, 5.6) 

116 

Tachyplesin 

-1 

crustacean KWCFRVCYRGICYRRC L. braziliensis 

(100, 12.5) 

n/a 87 

Skin 

polypeptide 

YY 

mammal YPPKPESPGEDASPEEMNKYLTALRHYINLVTR

QRY-NH2 

L. major 

(100, 5.9) 

L. majord 

(100, 6.2) 

117 

Decoralin insect SLLSLIRKLIT L. major 

(50, 7.2) 

n/a 118 

Indolicidin bovine ILPWKWPWWPWRR L. donovali 

(50, 35) 

n/a 119 

P. duboscqui 

defensin 

insect ATCDLLSAFGVGHAACAAHCIGHGYRGGYCNS

KAVCTCRRc 

L.major 

(50, 68-85) 

n/a 119 

Gomesin insect ZCRRLCYKQRCVTYCRGRb,c L. amazonensis 

(50, 2.5) 

n/a 106 

Defensin 

PTH1 

plant RNCKSLSHRFKGPCTRDSNC L. donovani 

(50, 33.4) 

n/a 120 

Histatin-5 mammal DSHAKRHHGYKRKFHEKHHSHRGY L. donovani 

(50, 7.3) 

L. pifanoi 

(50, 14.4) 

121 

a i, stands for D-allo-isoleucine,   
bZ, stands for pyroglutamic acid  
c single line indicates disulfide bridge between atoms 
d testing was carried out using ex vivo amastigotes not axenic 

 

Table 1.1: Antimicrobial peptides with activity against Leishmania spp.122 

 

Histain-5 (His-5) (Asp-Ser-His-Ala-Lys-Arg-His-His-Gly-Tyr-Lys-Arg-Lys-Phe-His-

Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr-NH2) is an AMP isolated from the saliva of 

higher primates and has been shown to possess defined antimicrobial, particularly 

candidacidal activity. As with many AMPs, His-5s activity is independent of 

enantiomeric composition, verified by a study on His-5 and analogues (the all-d-osomer 

is also active). However, unlike the majority of AMPs, His-5 has been shown to cross 
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the membrane of L. donovani and subsequently attack the mitochondria of the parasites, 

inhibiting the F1-F0 ATPase, resulting in disrupted oxidative phosphorylation. The 

observed higher accumulation of His-5 is accounted for by a naturally lower 

susceptibility to enzymatic degradation. The activity of His-5, particularly against 

amastigotes, is assumed to be enhanced due to the abundance of His residues in the 

primary structure; as the acidic pH of the phagolysosome increases the cationic 

character of the peptide. Whether His-5 has far reaching antileishmanial activity 

remains to be seen, however there is still merit in researching Histatin as a shuttle for 

other antileishmanial peptides or drugs
123

. 

 

1.5.5 Lipopeptides  

 

Antimicrobial lipopeptides (LiPs) are produced nonribosomally in bacteria and fungi 

during cultivation on various carbon sources. They are a class of antibiotics that are 

highly active against multidrug-resistant bacteria. Some also display antifungal 

activity.
124

 Most native LiPs consist of a short (six to seven amino acids) linear or cyclic 

peptide sequence, with either a net positive or a negative charge, to which a fatty acid 

moiety is covalently attached to the N-terminus. 
124b, 125

 

1.3.3.1 Dragonamide E 

Research within The International Cooperative Biodiversity Group (ICBG) programme 

has been focused in Panama, searching among marine cyanobacteria and tropical plant 

endophytes for new, more efficacious, and less expensive treatments for tropical 

diseases
126, 127, 53

.  During the course of this research, a new modified linear lipopeptide, 
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dragonamide E (7), as well as two related compounds previously reported in the 

literature, dragonamide A (8) and herbamide B (9), were isolated from a field-collected 

marine cyanobacterium and found to be active against leishmaniasis in an in vitro 

screening assay. 

 

18 

Dragonamide E (18) 

 

 

 

19 

Dragonamide A (19) 

 

 

20 

Herbamide B (20) 
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21 

Dragonamide B (21) 

Compounds 1-3 were tested for activity against three tropical disease parasites, 

Plasmodium falciparum (malaria), Leishmania donovani (Leishmaniasis), and 

Trypanosoma cruzi (Chagas’ disease). Compound 4 was previously tested in these 

assays, and those results are also reported here to allow for direct comparison with the 

biological properties of dragonamides A (19), B (21), and E (18). Dragonamide E (18) 

exhibited moderately strong in vitro activity against Leishmania promastigotes (5.1 

μM), with dragonamide A (19) and herbamide B (20) also showing comparable activity 

against this parasite (6.5 and 5.9 μM, respectively). Dragonamide B (21) was inactive 

against all of the tested parasites (up to 100 μM), indicating that the aromatic ring-

containing residue at the peptide terminus is necessary for activity. The in vitro activity 

of dragonamide E (18) and herbamide B (20) against the Leishmania donovani 

promastigotes, the causative agent of visceral leishmaniasis supports their further 

examination through in vivo evaluations
128

.  
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1.3.3.2 Ciliatamides 

The Ciliatamides are a family of peptide-based compounds isolated from the deep sea 

sponge Aaptos ciliate, isolated as a result of a drug discovery project from Japenese 

marine invertebrates, discovered by a Nako et al
129

. 

The Ciliatamides consist of three lipopeptides named Ciliatamides A-C, shown in 

below. 

          

 

 

Figure 1.13 Ciliatamides A (22), B (23) and C (24), as reported by Nako et al.
129

  

 

Ciliatamides A-C (22-24) have previously been tested for activity against promastigotes 

of Leishmania major. Ciliatamide C was found to be inactive, while Ciliatamide A and 

Ciliatamide B were shown to possess considerable activity. At concentrations of 10 

µg/µl, Ciliatamides A and B showed 50 % and 45 % growth inhibition respectively, 

although the mechanism through which this occurs remains unknown. The organic 

extract of Aaptos ciliate exhibited 86 % growth inhibition at  an identical concentration, 
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a result which suggests that there are other compounds present within the sea sponge 

Aaptos ciliate, which possess higher antileishmanial activities than the Ciliatamides. 

However at the present date, these compounds have not been isolated. 

In August 2008, Lewis et al.
130

 Published a total synthesis of Ciliatamides A-C, which 

included a revision of the stereochemistry proposed in the initial isolation paper. 

Synthesis of only (S,S) Ciliatamides was undertaken by Lewis et al., as this was the 

stereochemistry reported by Nako et al. However due to disagreements in the suggested 

stereochemistry of the synthesised Ciliatamaides and those of the natural products, 

Lewis et al. undertook synthesis of (S,S), (S,R), (R,S), and (R,R) Ciliatamides A and B. 

Comparison of NMR data and optical rotations of the four enantiomers revealed the 

stereochemistry of the natural Ciliatamides to be (R,R). To date, work has yet to be 

undertaken to investigate the effect (if any) of stereochemistry on the antileishmanial 

activities of Ciliatamides A and B. 

Ciliatamides A and B were selected as good synthetic targets as antileishmanial 

compounds as they have been shown to exhibit high activity against Leishmania major 

promastigotes, and the structures of these compounds are relatively simple when 

compared to those of current treatments. The Ciliatamides are therefore likely to be 

easier to synthesise prior to biological testing. Further biological testing against both 

promastigotes and amastigotes of a wider range of Leishmania species is required in 

order to determine the full therapeutic potential of these compounds. In addition, studies 

to determine the biological mode of action of Ciliatamide A would also be useful to 

determine their potential as antileishmanial agents. 
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1.4 Aims and Objectives 

The aims of this research are to develop new peptide based antileishmanial agents. The 

development of antileishmanial agents will focus on the temporin family of 

antimicrobial peptides, and on the Ciliatamide family of lipopeptides. Initial testing will 

focus of the identification of active compounds against both promastigote and axenic 

asmastigote lifecycle stages of Leishmania mexicana parasites. Testing of a large scale 

library of temporin peptide will take place, in order to further develop structure activity 

relationships, and to develop compounds with increased activity in comparison to 

naturally occurring peptides. On generation of a large scale library of results, the data 

obtained will be used to attempt to predict active sequences of peptides through the use 

of computational modelling systems similar to those currently used in the generation of 

antibacterial compounds. This will be the first time this type of modelling will have 

been attempted in the prediction of antileishmanial agents.   

Investigations in to the activity of the Ciliatamide family of compounds will take place; 

again with the intention of identifying structure activity relationships and synthesising 

and identifying related compounds with increased activity.   
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2.1 Introduction and aims 

2.1.1 Introduction  

In the last 5 years antimicrobial peptides (AMPs) have emerged as a potential source of 

new and promising antiparasitic agents.
1
  AMPs possess a mechanism of action through 

which bacterial resistance struggles to develop (i.e. cell membrane permeation) and it 

has been shown that a similar mode of action is in operation against parasite species for 

many AMPs
2
. This mode of action is one of the main reasons that researchers have 

begun to look at AMPs as a potentially new source of novel anti-parasitic agents. One 

of the parasitic infections that AMPs have been found to be active against is 

Leishmaniasis
3
. As previously discussed Leishmaniasis is a parasitic infection for which 

the development of new drugs is currently needed (Section 1, Introduction). The current 

first and second line therapies for the treatment of Leishmaniasis rely on a handful of 

drugs, to which resistance emerging, 
4
 and the use of which results in highly toxic side 

effects.
4-5

 Although only  six AMPs to have been tested against the amstigote forms of 

the parasite have currently been tested against leishmania species, they have shown 

activity against range of different species (i.e. mexicana, donovani, infantum, pifanoi).
1b 

This range of activity coupled with a mode of action that differs from all current mean 

that AMPs are excellent candidates for further studies and the potential development of 

new antileishmanial agents.   

2.1.2 Aims 

The temporin peptides
6
 were selected as a class of AMPs for further study as activity 

had previously been reported for temporins A, 1Sa and L against leishmania mexicana, 
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leishamania donovani, and leishmania pifanoi species
6
. It is worth noting that no 

temporin peptides had been screened against L. mexicana, the species of parasite of 

interest in our investigation. Additionaly the temporins appear to act via cell membrane 

permeation.
3
 This mode of action is different to currently available treatments for 

leishmaniasis and given the complexity associated with altering cell membrane structure 

the chance of parasite resistance emerging to this class of peptides is relatively low. The 

initial aims of the investigation were therefore to synthesis of small number of temporin 

peptides using Solid-Phase Peptide Synthesis (SPPS) and screen these peptides for 

activity against L. mexicana. The results obtained from this initial screen would be used 

to inform the further selection of additional peptides for future studies.  

 

2.2 Solid-Phase Peptide Synthesis 

Solid-Phase Peptide Synthesis (SPPS) is the standard method used for the chemical 

synthesis of peptides. SPPS is a process by which chemical transformations are carried 

out in a step-wise fashion on a solid support. There are a number of benefits to the use 

of SPPS over conventional solution-phase peptide synthesis. These are namely that in 

the solution-phase synthesis of peptides, in particular longer sequences, the repetition of 

coupling and deprotection cycles are labour intensive, and often require purification of 

the intermediates. Conversely the use of a solid support in SPPS allows the individual 

peptide coupling reactions to be pushed to ‘completion’ through the use of excess 

reagents and multiple couplings.  

SPPS proceeds via a repeating cycle of coupling and deprotection reactions, as shown in 

Scheme 2.1. A solution of the amino acid to be coupled, together with an activating 

agent is added to the resin and coupled under microwave conditions. Unreacted amino 
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acids were removed by draining the solution-phase from the microwave vessel. The 

coupled amino acids were deprotected by addition of base (piperidine) before coupling 

of the subsequent amino acid to the growing chain. Upon completion of the peptide 

chain, the peptide was cleaved typically using trofluoroacetic acid (TFA), which also 

served to remove side chain protecting groups present on amino acid side chains. A 

solid support was selected based on the requirements of the final peptide sequence. 

Considerations which are taken when choosing a solid support include; the length of the 

peptide to be synthesised, (low loading resins, 0.1mmol - 0.3 mmol were used in the 

synthesis of longer peptides) the solvent system used, (the reagents must be soluble in 

the same solvent system in which the resin swells) activating compounds used, and the 

presence of amino acids which may have presented difficulties coupling onto the 

growing peptide chain. Automated SPPS represents an important step forwards in the 

synthesis of peptides. The introduction of automated commercial peptide synthesisers 

has allowed chemists to synthesise peptides with minimal effort and in a reduce time 

frame when compared to previously utilised manual techniques.  
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Scheme 2.1 Outline of the general procedure used in Fmoc-SPPS. 

2.3 Microwave peptide synthesis 
Microwave irradiation has been around since the late 1940’s, however it was not until 

1986 that microwave energy was used in organic chemistry
7
. Microwave energy was an 

obvious source for completing chemical reactions in minutes that would otherwise take 

several hours to days
8
. The introduction of microwave heating technology into SPPS 

represented an important advancement in the area. It enabled the synthesis of medium to 

large sized peptides (15-40 amino acids) in a matter of hours, whereas previously this 

would have taken weeks or indeed months to complete. While conventional heating 

(e.g. water circulated jacket peptide vessels) had been applied successfully in SPPS, 

precise microwave irradiation to heat the reaction mixture during coupling and Nα-

deprotection has become increasingly popular as it affords more control. Microwave 

heating can be used to overcome long standing difficulties that are associated with the 

coupling certain amino acid residues or sequences
7
. For example specific heating 

programmes can be used to introduce arginines and other bulky amino acid residues into 
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a peptide sequence. Microwave heating has been proven especially relevant for 

sequences which might form β-sheet type structures and for sterically difficult 

couplings. The beneficial effect of microwave heating appears so far to be due to the 

precise nature of this type of heating, rather than a peptide-specific microwave effect
7
. 

There is however no clear evidence that microwave is better than simple heating and 

some peptide laboratories regard microwave just as a convenient method for rapid 

heating of the peptidyl resin. In peptide synthesis, microwave irradiation has been used 

to complete long peptide sequences with high degrees of yield and low degrees of 

racemisation
8 

It has been shown that heating to above 50-55 °C also prevents 

aggregation and accelerates the coupling
7
. 

Despite the main advantages of microwave irradiation of peptide synthesis, the main 

disadvantage is the racemisation which may occur with the coupling of cysteine and 

histidine residues
8
.  It is thought that performing coupling of these amino acids at lower 

temperatures may overcome this
8
. Racemisation is a base-induced side reaction, and 

therefore occurs at the activation and coupling stages of synthesis. Deprotonation at the 

α-carbon of an α-amino acid residue results in racemisation as the carbanion 

intermediate can reprotonate on either side. Racemisation is fastest with strongly 

electron withdrawing groups (best leaving groups) and unhindered strong bases in 

dipolar aprotic solvents such as dimethyl sulfoxide (DMSO) and dimethylformamide 

(DMF). However, although strong bases will increase the rate of racemisation, the most 

important factor is the balance between the rate of racemisation, and the rate of 

coupling; the amount of racemisation taking place via this pathway is, in most cases 

insignificant
7
. 
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Currently, there are two manufacturers of microwave-assisted peptide synthesizers, 

CEM and Biotage, both providing fully automated synthesizers. The major differences 

between the two systems are the liquid handling and the mixing of the reaction mixture, 

as the valve-based CEM instrument relies on nitrogen bubbling, while the Biotage 

instrument is a valve-free robot using vortexing to mix reactants. Most, if not all, 

microwave-assisted peptide syntheses reported in literature are on a scale below 0.2 

mmol.
7
 

 

2.4 The temporins 
The temporin peptides are a family of AMPs isolated from the skin of the European red 

frog Rana temporaria and they are among some of the smallest AMPs found in nature 

(typically 13 amino acids long)
9
. The modes of action, along with their antimicrobial 

and reported antileishmanial properties make temporins good molecules for an in-depth 

understanding of host defence peptides in general. The temporin mechanism of action 

(against both bacteria and parasites
10

) has been shown to involve plasma membrane 

permeation based on the facts that; (i) they induce a rapid collapse of the plasma 

membrane potential, (ii) they induce the influx of the vital dye SYTOXTM Green, (iii) 

they reduce intracellular ATP levels and (iv) they severely damage the membrane of the 

parasite, as shown by transmission electron microscopy.
10
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2.4.1 Selection of temporins A, B and 1sa 

AMPs isolated from a range of organisms have been screened against different 

Leishmania species however there are currently no reports of studies being carried out 

against the clinically relevant amastigote form of Leishmania mexicana. Temporin A 

FLPLIGRVLSGIL-NH2 (16), temporin B LLPIVGNLLKSLL-NH2 (17) and temporin 

1Sa FLSGIVGMLGKLF-NH2 (25) were selected as they had previously been shown to 

have activity at low micro-molar concentrations (promastigotes, temporin A 50 % 

growth inhibition L. donovani, 8.4 µM temporin B 50 % growth inhibition L. donovani, 

8.6 µM temporin 1Sa 50 % growth inhibition L. infantium, 18.1 µM; axemic amistoges 

temporin A 50 % growth inhibition L. pafanoi, 14.6 µM, temporin B 50 % growth 

inhibition L. pafanoi, 7.1 µM, temporin 1Sa 50 % growth inhibition L. infantum, 22.8 

µM) against Leishmania species 
10-11

. Given the ease of cell culture, AMPs have most 

commonly been screened against insect stage, promastigote Leishmania
1b

. However, in 

order to fully assess the efficacy of any compound, it must be assayed against 

pathogenic, mammalian stage axenic amastigotes. Therefore to facilitate comparative 

analyses of the antileishmanial action of selected, synthesised temporins, it was chosen 

to utilise L. mexicana, where axenic culture of both lifecycle stages is long 

established
12

. 

The antimicrobial activities of temporins 1Sa (25), temporin 1Sb (26) and 1Sc (27) have 

previously been tested for biological activity by Ladram et al. The peptides were 

assayed against Gram-positive and Gram-negative bacteria, filamentous fungi, and 

yeasts (Table 2.1). It was found that their spectra of action differ considerably. Whereas 

temporin 1Sa (25) was active against most of the tested microorganisms at micromolar 

concentrations, temporin 1Sc was found to be inactive against Gram-negative bacteria 
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and temporin 1Sb was inactive or weakly active against all the tested microorganisms. 

The ability of the peptides to kill the L. infantum promastigotes and axenic axenic 

amastigotes was also investigated. Temporin 1Sa (25) exerted a significant 

leishmanicidal activity against both the promastigotes (insect stage) and axenic axenic 

amastigotes (mammalian stage) with an IC50 of 18.1 mM (log IC50 = - 4.741 ± 0.034) 

and 22.8 mM (log IC50 = -4.643 ± 0.036), respectively (Table 2.1). No activity was 

detected for either temporin1Sb or temporin 1Sc. It was for this reason that temporin 

1Sa (25) was selected for investigation in our initial screening.  

 

 Temporin 1Sa 

FLSGIVGMLGK

LF-NH2 (25) 

Temporin 1Sb 

FLPIVTNLLSGL

L-NH2 (26) 

Temporin 1Sc 

FLSHIAGFLSNL

F-NH2 (27) 

MIC (MM)    

Gram-positive bacteria    

S. aureus ATCC 25923 3 58 10 

E. faecalis ATCC 29212 10 >116 >80 

B. megaterium 2 46 4 

Gram-negative bacteria 

 

   

E. coli ATCC 25922 10 234 161 

E. coli ATCC 35218 10 >116 >80 

P. aeruginosa ATCC 27853 31 >231 >161 

Fungus 

 

   

A. flavus  

 

ND
a
 58 10 

Yeasts 

 

   

C. albicans ATCC 90028  16 >116 20 

C. parapsilosis ATCC 22019  31 >116 20 

S. cerevisiae  8 >116 10 

LC50 (mM) 

 

   

Erythrocytes  

 

25 >116 >80 

MICs and LC50 are expressed as average values from 

three independent experiments performed in 

triplicate. a not determined 

 

Table 2.1. Results obtained from previous testing of temporins 1Sa (25), 1Sb (26) and 1Sc(27) 
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2.4.2 Solid Phase Peptide Synthesis  

Microwave-assisted Fmoc-SPPS was used for the synthesis of the target temporins, A 

(16), B (17) and 1Sa (25). The peptides were synthesised on Rink amide AM resin to 

ensure that an amidated C-terminus was provided upon cleavage from the resin (Figure 

2.1) 
7
.  

O

NH2O

H3CO

Peptide coupling site

 

Figure 2.1 Rink Amide AM Resin 

There are several common coupling agents that can be used in Fmoc-SPPS to enable   

amide bond formation. Common reagents include 1-ethyl-3-(3’-dimethylaminopropyl) 

carbodimide (28, EDCI), N,N'-Dicyclohexylcarbodiimide (29, DCC), benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphateme (30, PyBOP™) and 1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (31, HATU). Coupling agents are required in the process as there 

is a high activation energy to be overcome during amide bond formation. Amino acid 

derivatives with a strongly electron withdrawing group are formed with a range of 

activating agents used, making the carbonyl carbon more prone to nucleophilic attack 

and thereby achieving high reaction rates at room temperatures. Given its relative 

stability we selected PyBOP™ as a coupling reagent. PyBOP™ reacts to produce an 

activated benzotriazole ester (active ester) and avoids epimerisation taking place 

through formation of an oxazoline intermediate
7
. 
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Figure 2.2 Common peptide coupling reagents utilised in Fmoc-SPPS 

 

2.4.3 Synthesis of temporin A (16) 
 

Temporin A (16), primary structure FLPLIGRVLSGIL-NH2 was synthesised using the 

general Fmoc-SPPS procedure outlined in Scheme 2.2. The synthesis was carried out on 

500mg (0.31 mmol) of Rink Amide AM resin and microwave assisted peptide couplings 

were used (See Experimental Section 7.2).  

 

 

Scheme 2.2 General overview of the Fmoc-SPPS synthesis approached applied for the 

formation of temporin peptides 16, 17 and 25 (sequence shown in reaction scheme is for 

temporin A). 
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During the synthesis, the structure of the growing peptide chain was confirmed at 

approximately five amino acid intervals by use of Matrix-assisted laser 

desorption/ionization time of flight (MALDI-TOF) mass spectrometry. When all amino 

acids were coupled, a final Fmoc deprotection step was carried out using 20% 

piperidine/DMF, and the peptide was then cleaved from Rink Amid resin using TFA 

(90%), TIPS (5%), H2O (5%) at room temperature. MALDI-TOF mass spectrometry 

analysis of the crude peptide was used to confirm the presence of the correct peptide. 

Temporin A (16) was purified using reverse phase HPLC (RP-HPLC). Fractions that 

were shown by mass spectrometry analysis to contain 16 were pooled and lyophilisation 

afforded the peptide as a white powder. The MALDI-TOF spectrum of the purified 

temporin A (16) is given in Figure 2.3. The purity of 16 was confirmed using reverse 

phase analytical HPLC prior to biological evaluation (Figure 2.4).  

  

Figure 2.3 MALDI-TOF mass spectrum for purified temporin A (16) 
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Figure 2.4 Analytical RP-HPLC analysis of purified temporin A (16) 
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2.4.4 Synthesis of temporin B (17) 
 

Temporin B (17), primary structure LLPIVGNLLKSLL-NH2 was synthesised using the 

general Fmoc-SPPS procedure outlined in Scheme 2.2. The synthesis was carried out on 

500mg (0.31 mmol) of Rink Amide AM resin and microwave assisted peptide couplings 

were used (See Experimental Section 7.2).  

During the synthesis, the structure of the growing peptide chain was confirmed at 

approximately five amino acid intervals by use of Matrix-assisted laser 

desorption/ionization time of flight (MALDI-TOF) mass spectrometry. When all amino 

acids were coupled, a final Fmoc deprotection step was carried out using 20% 

piperidine/DMF, and the peptide was then cleaved from Rink Amid resin using TFA 

(90%), TIPS (5%), H2O (5%) at room temperature. MALDI-TOF mass spectrometry 

analysis of the crude peptide was used to confirm the presence of the correct peptide. 

Temporin B (17) was purified using reverse phase HPLC (RP-HPLC). Fractions that 

were shown by mass spectrometry analysis to contain 17 were pooled and lyophilisation 

afforded the peptide as a white powder. The MALDI-TOF spectrum of the purified 

temporin B (17) is given in Figure 2.5. The purity of 17 was confirmed using reverse 

phase analytical HPLC prior to biological evaluation Figure 2.6. 



Chapter II: Initial Investigations into the potential application of antimicrobial peptides as new 

antileishmanials 

 
 

73 

 

  

Figure 2.5 MALDI-TOF mass spectrum for purified temporin B (17) 

 

Figure 2.6 Analytical RP-HPLC analysis of purified temporin B (17) 
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2.4.5 Synthesis of temporin 1Sa (25) 
 

 

Figure 2.7 Chemical structure of temporin 1Sa (25) 

Temporin 1Sa, primary structure FLSGIVGMLGKLF-NH2 was synthesised using the 

general Fmoc-SPPS procedure outlined in Scheme 2.2. The synthesis was carried out on 

500mg (0.31 mmol) of Rink Amide AM resin and microwave assisted peptide couplings 

were used (See Experimental Section 7.2).  

During the synthesis, the structure of the growing peptide chain was confirmed at 

approximately five amino acid intervals by use of Matrix-assisted laser 

desorption/ionization time of flight (MALDI-TOF) mass spectrometry. When all amino 

acids were coupled, a final Fmoc deprotection step was carried out using 20% 

piperidine/DMF, and the peptide was then cleaved from Rink Amid resin using TFA 

(90%), TIPS (5%), H2O (5%) at room temperature. MALDI-TOF mass spectrometry 

analysis of the crude peptide was used to confirm the presence of the correct peptide. 

Temporin 1Sa (25) was purified using reverse phase HPLC (RP-HPLC). Fractions that 

were shown by mass spectrometry analysis to contain 25 were pooled and lyophilisation 

afforded the peptide as a white powder. The MALDI-TOF spectrum of the purified 

temporin 1Sa (25) is given in Figure 2.9. The purity of 25 was confirmed using reverse 

phase analytical HPLC prior to biological evaluation. 
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Figure 2.8 (left) Gel initially obtained on attempted synthesis of Temporin 1Sa (25), due to the 

presence of FLSGIVGMLGKL-NH2 (middle) Partial gel obtained from synthesis of Temporin 

1Sa analogue, ALSGIVGMLGKLF-NH2, (right) Powder obtained on successful synthesis of 

Temporin 1Sa (25), FLSGIVGMLGKLF-NH2. 

 

 

 

Figure 2.9 MALDI-TOF spectrum obtained upon initial synthesis of temporin 1Sa (25) 

The problem of self-association is recognised in solid-phase synthesis, and arises 

suddenly, typically 6-12 residues into the synthesis
7
. It is thought that formation of the 

gel structure in Figure 2.8 may be due to alignment of peptide chains, either as β-sheets 

aligning through self-association, while attached onto the resin and once cleaved, 

aligning to form a gel. It is now accepted that a major contributing factor to the problem 

of aggregation originates in the intrinsic properties of the peptide sequence itself, and 
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that aggregation occurs primarily through the self-association of polymer-bound peptide 

sequences by intermolecular hydrogen bonding
7
, as shown in Figure 2.10. The tendency 

for aggregation depends on the nature of the peptide and side-chain protecting groups, 

with sequences containing a high proportion of Ala, Val, Ile, Asn and Gln residues 

exhibiting a high predisposition to peptide aggregation. A fully solvated peptide-

polymer is considered to contain a soluble peptide chain, whilst an aggregated matrix 

contains a partially soluble or insoluble chain
7
. In light of this, a possible solution to 

aggregation may be to use an alternative solvent such as DMSO or trifluoroethanol in 

order to aid solvation. In addition, Mendal et al has also described the use of PEGA gel 

resin to overcome aggregation in the synthesis of peptides other than 1Sa.  Literature to 

date (September 2013) reports one chemical synthesis of temporin 1Sa
13

, in which did 

not describe the occurrence of aggregation in Temporin 1Sa analogues. 

 

Figure 2.10 Intermolecular aggregation of polymer chains 

Initial purification by RP-HPLC was attempted (on approximately ¼ of the crude 

material obtained) in order to separate Temporin 1Sa (25) from the unwanted analogues 

formed, peptides LSGIVGMLGKLF-NH2 (32, temporin 1Sa analogue 1), and 

FLSGIVGMLGKLF-NH2 (33, temporin 1Sa analogue 2). Fraction collection and 

subsequent mas spec. analysis confirmed that the peptide FLSGIVGMLGKL-NH2 

(temporin 1Sa analogue 2) was the major product of the synthesis.  Unfortunately it was 

not possible to isolate any temporin 1Sa (25) during the purification which suggested 
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that although visible in MALDI-TOF analysis (Figure 2.9) 25 must have only been a 

very minor component of the crude reaction mixture. Given this it was decided not to 

attempt HPLC purification the remaining crude peptide mixture with but rather attempt 

a second synthesis of temporin 1Sa (25). 

A subsequent synthesis of temporin 1Sa (25) was attempted on a smaller scale, using 

250 mg (0.15 mmol) of Rink Amide resin, following peptide coupling procedure 

outlined in Scheme 2.2. The final coupling of amino acid residue 12 (lys) to 13 (phe) 

was carried out using a double coupling, and a fraction of the resin (50 mg) was 

removed and cleaved for analysis. The MALDI-TOF results obtained were very similar 

to those from the initial synthesis, indicating that FLSGIVGMLGKL-NH2 (temporin 

1Sa analogue 2) was again the major product produced. 

A different approach was subsequently taken; LiCl can be used in peptide synthesis in 

order to disrupt aggregation, although this is not usually considered necessary to be 

used with peptides consisting of only 13 amino acids in length. An 8M solution of LiCl 

was used to wash the deprotected peptide FLSGIVGMLGKL-NH2 prior to the final 

coupling of residues12 (lys) to 13 (phe) using standard peptide coupling conditions. The 

peptide was subsequently cleaved by use of microwave cleavage as outlined in 

procedure 4. MALDI-MS results obtained from this attempted synthesis showed no 

evidence of peaks corresponding to the presence of temporin 1Sa (25). 

A synthesis of a temporin 1Sa analogue (26, ALSGIVGMLGKLF-NH2) was attempted, 

substituting the alanine residue in place of the phenylalanine at residue 13. This used a 

‘manual’ coupling of the initial phenylalanine (non-microwave conditions). All reagents 

used were identical to previous conditions, with the exception that the coupling took 
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place for two hours at room temperature, the reagents were removed by washing with 

DMF, and the process repeated a second time in an attempt to obtain successful 

coupling. This was attempted in order to determine if the problematic phenylalanine 

coupling was residue 1 or 13, and if coupling of a less bulky group onto the leucine 

residue 12 was possible, or if the physical properties of the 12-mer peptide following 

coupling of the leucine residue at the 12 position were preventing any further amino 

acid couplings taking place. Following a manual deprotection, a gel was obtained, and 

this coupling was shown to be successful, indicated by a MALDI-MS peak at m/z 

1305.0 [M+H
+
]. 

 

Figure 2.11 MALDI-TOF mass spectrum obtained upon synthesis of a temporin 1Sa analogue 

(26) (m/z 1305.0) 

 

A repeated synthesis of temporin 1Sa (25) was attempted, following identical conditions 

to those used to successfully couple alanine as residue 13. Following cleavage from the 
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resin, a white powder was obtained, corresponding to the presence of temporin 1Sa, 

FLSGIVGMLGKLF-NH2 indicated by a MALDI-MS peak at m/z 1380.5 [M+H
+
]. 

 

Figure 2.12 MALDI-TOF mass spectrum obtained for temporin 1Sa (25) 

 

  

Figure 2.13 Analytical RP-HPLC analysis of purified temporin 1Sa (25) 
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Figure 2.14 MALDI-TOF mass spectrum obtained upon synthesis of temporin 1Sa, using 

manual deprotection and coupling strategy, note the presence of m/z 1382.1 [M+H
+
] 

 

It is likely that temporin 1Sa analogues have aggregated to form β-sheets, not α-helices, 

due to the high levels of glycine present, which deters α-helical formation. A possible 

reason for the peptide aggregation of the temporin 1Sa analogues FLSGIVGMLGKL-

NH2 (32) and ALSGIVGMLGKLF-NH2 (33) while temporin 1Sa FLSGIVGMLGKLF-

NH2 (25) is a powder may be that alignment of the β-sheets is able to occur without the 

presence of the two bulky phenylalanine groups at residues 1 and 13 (either end of the 

peptide) and when the final phenylalanine coupling has been successful, aggregation is 

disrupted and a powder is obtained in place of the gels obtained with temporin 1Sa 

analogues formed. 

An alternative approach which may provide a partial solution to the problem of peptide 

aggregation could be to use a lower loading resin to lessen the degree of aggregation of 

the peptide chains as subsequent amino acids are coupled Although it is likely that in 

order for this approach to have any observable effect, the yield obtained would be 

significantly lowered and it is likely that there would still be a significant degree of 
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peptide aggregation observed. This would improve the likelihood of the initial 

phenylalanine coupling taking place, as the steric hindrance on the resin will be 

reduced, and as Temporin 1Sa did not aggregate once cleaved from the resin, will lessen 

the likelihood of an aggregated peptide being obtained on cleavage of the peptide from 

resin. There are also potential problems associated with methionine, with regards to the 

susceptibility of the thioether to alkylation and oxidation,
7
 although these were not 

observed. It is also worth noting that the synthesis of other AMPs within the laboratory 

has resulted in a similar problem becoming apparent. It appears that an initial 

phenylalanine coupling is consistently problematic using the microwave assisted 

peptide synthesis conditions previously outlined. This may be due to the relatively 

bulky size of this particular amino acid, but this does not fit with the fact that non-

microwave coupling conditions (i.e. rt coupling) works without any problems. At this 

time the exact reasons for the problems encountered with coupling a C-terminal 

phenylalanine residue on to the Rink Amide resin under microwave Fmoc-SPPS cannot 

be fully explained.  
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2.6 Antileishmanial testing Part I 
Temporins A (16), B (17) and 1Sa (25) were synthesised and purified, experimental 

data is given in Table 2.2. 

Peptide Rt(HPLC) Mr(Calc)
a
 Mr(Obs)

a,b
 

    

Temporin A (16) 9.05 1395.9 1397.0 

FLPLIGRVLSGIL-NH2    

    

Temporin B (17) 9.41 1390.9 1413.8 

LLPIVGNLLKSLL-NH2    

    

Temporin 1Sa (25) 9.24 1379.8 1380.5 

FLSGIVGMLGKLF-NH2    
a
 The calculated (calc) and observed (obs) masses are monoisotopic. 

b
 Mr (obs) are the observed protonated [M + H]

+
 or sodiated [M + Na]

+
 species as obtained by MALDI-

TOF-MS. 
 

Table 2.2 Sequence, chemical and physical data for temporins A (16), B (17) and 1Sa (25)

  

2.6.1. Optimisation of Assay 
 

Temporins A (16), B (17) and 1Sa (25) were screened against both promastigote and 

axenic amastigote L. mexicana using the optimised Alamar Blue assay.  To determine 

the most effective protocol for Alamar Blue
®
 assay of MYNC/BZ/62/M379 Leishmania 

mexicana procyclic promastigotes two 96 well plates were set up using serial dilution to 

achieve a triplicate series of cell culture concentrations between 1.0 x10
7
 cells/ml and 

5.0 x 10
3
 cells/ml. Each plate also contained a triplicate control of promastigote medium 

to indicate the minimum fluorescence that would be observed for cells incapable of 

metabolising Alamar Blue
®
. Following the recommended reagent protocol, 10% Alamar 

Blue
®
 was added to each well. One plate was then incubated at 26

o
C and the other at 

37
o
C, with absorbance measurements taken after the recommended 4 hour interval and 

the maximum recommended 24 hour interval. Temperatures were chosen to reflect the 
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recommended Alamar Blue
®
 assay incubation temperature (37

o
C) and the temperature 

used to culture promastigotes (26
o
C).  

 

Figure 2.15  Alamar Blue
®
 fluorescence assays for increasing concentrations of L. mexicana 

promastigote culture to determine the most effective conditions for Alamar Blue
®
 usage.  

Conditions of assays: (A) 4 hours, 26
o
C; (B) 24 hours, 26

o
C; (C) 4 hours, 37

o
C; (D) 24 hours, 

37
o
C.  

 

Alamar Blue
®
 was reduced by L. mexicana promastigotes in a time dependant and 

temperature dependant manner, seen in Figure 2.15. It was determined that 4 hour 

incubation is an inadequate time interval, as cell viability cannot be assessed effectively 

due to the small variance between the observed fluorescence for high concentrations of 

healthy promastigotes and those of the control (or low concentrations of healthy 

promastigotes). The poor metabolism of Alamar Blue
® 

in the recommended assay 

timeframe may be a result of the thick glycocalyx, present on promastigotes, that is 
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absent in cell lines where a 4 hour incubation period is considered adequate (e.g. 

macrophage and L. mexicana amastigote). Physically, Alamar Blue
® 

diffusion or 

transport through the glycocalyx and membrane into the promastigote cytosol may be 

slower than in cells lines lacking a thick glycocalyx. Temperature had been suggested as 

an explanation for the variation in efficacy of Alamar Blue results, and thus metabolism. 

However, the results observed at 4 hours, 37
o
C discount this theory: whilst there is a 

slight increase in observed maximal fluorescence, and therefore metabolism, it is still 

too low to be utilised effectively for a cytotoxicity assay; or to be considered 

comparable to amastigote or macrophage assay fluorescence results. Incubation at 37
o
C, 

whilst adequate at the 24 hour interval was not adopted as the protocol for L. mexicana 

promastigote Alamar Blue
® 

assay. This is due to the fact that the 26
o
C, 24 hour 

incubation provided the widest range of observed fluorescence between high 

concentrations of healthy promastigotes and those of the control wells or low 

concentrations of healthy promastigotes. The smaller range of fluorescence discerned at 

37
o
C, 24 hour can be accounted for by the level of fluorescence detected from the 

control wells: the 37
o
C assay showed higher baseline levels of fluorescence, suggesting 

that L. mexicana metabolism is increased at 37
o
C. Whilst this could be considered 

advantageous to cytotoxic assay results, as it is the recommended assay incubation 

temperature, the reduced fluorescence range precludes 37
o
C incubation as the most 

accurate measure of cell viability.  The most effective assay, 26
o
C, 24 hour is run at the 

native culture temperature for L. mexicana promastigotes. Thus, administering the 

Alamar Blue
® 

assay at 26
o
C not only provides the widest range of fluorescence results, 

allowing for the most accurate determination of cell viability; it also
 
allows the 

promastigotes to proliferate and differentiate naturally. Consequently, any results for the 
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26
o
C, 24h assay would correlate more readily to other experimental in vivo and in vivo 

results. For these reasons the 26
o
C, 24h Alamar Blue

® 
assay was adopted to determine 

cell viability for any cytotoxicity assay procedures described that utilise L. mexicana 

promastigotes. 

 

Figure 2.16  Twofold serial dilutions starting at 4×10
5
 ml

−1
 of Leishmania 

mexicana promastigotes (A) and axenic axenic amastigotes (B) pre-incubated for 24 h before 

the addition of Alamar Blue and further incubation for 4 h (●) or 24 (▪) h. Note the linear 

correlation between cell number and fluorescent readout with a 4-h incubation (r
2
 = 0.999 in A 

and B). The lower signal seen for axenic amastigotes (B) reflects their relatively slow rate of 

replication
14

. All points in triplicate with standard deviation indicated. AFU—arbitrary 

fluorescence units 

 

In the presence of serum only temporin A (16) demonstrated any significant 

antileishmanial activity against L. mexicana promastigotes (Figure 2.16, 57% inhibition 

at 100 µM). None of the peptides tested showed significant activity at the concentrations 

tested against L. mexicana axenic amastigotes (Figure 2.18). Given that temporins A, B 

and 1Sa have previously been shown to be active other Leishmania species
1b

, these 
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results were unexpected. However, by preincubating the parasites with the temporins 

studied in the absence of serum the peptide activity profiles were altered (Figure 2.17). 

In this assay, which reflects the conditions employed in previous studies 
10

, temporins A 

and B demonstrated improved efficacy against promastigote L. mexicana (Figure 2.17; 

63% inhibition at 12.5 µM and 38% at 50 µM respectively). However, amastigote forms 

remained largely resistant to these compounds with only temporin A demonstrating any 

significant activity (Figure 2.19; only 23% inhibition at 12.5 µM but 98% at 100 µM). 

Notably, temporin 1Sa remained largely inactive against both lifecycle stages.  

It is noTable that whilst the temporins A and B showed encouraging activity against 

insect stage promastigotes, a low level of activity was observed against the clinically 

relevant amastigote stage of L. mexicana. Many of the AMPs studied previously have 

focused on the Leishmania species promastigotes rather than the intra-macrophage 

amastigote form. Given the results obtained here it is evident that it is important to 

screen against axenic amastigotes, as well as promastigotes, if lead antileishmanial 

AMPs are to be identified and developed. Temporin peptides are believed to exert their 

antileishmanial activity through disruption of the parasite membrane
10

. Given this mode 

of action, it appears likely that the major differences seen in the surface structure of 

promastigote and amastigote Leishmania are responsible for the differential activity 

observed above
1b

. However, previous studies have reported significant activity of these 

peptides against both promastigotes and amastigiotes of L. pifanoi and L. infantum
10-11

. 

This may be because of more subtle differences in the surface structure between 

Leishmania species and indicates that it may be difficult to develop an AMP that has 

broad-spectrum antileishmanial activity. 
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Figure 2.17 Using the Alamar Blue assay system, L. mexicana promastigote (A) and axenic 

amastigote (B) viability in the presence of various concentrations of temporins A (16), B (17) 

and 1Sa (25) was determined with respect to untreated, negative controls. Amphotericin B 

(Amp) was utilised as a positive control. Data points represent the mean of 2 independent 

experiments performed in triplicate. Standard error indicated. 
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Figure 2.18 L. mexicana promastigote (A) and axenic amastigote (B) viability after exposure to 

various concentrations of temporins A (16), B (17) and 1Sa (25) in the absence of serum using 

the Alamar Blue assay system as above. Amphotericin B (Amp) was utilised as a positive 

control. Data points represent the mean of 2 independent experiments performed in triplicate. 

Standard error is indicated. 
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2.7. Synthesis and testing of further temporins AMPs 
Following the initial biological testing of temporins A (16), temporin B (17) and 

temporin 1Sa (25), additional temporins peptides were synthesised and tested for 

activity against L. mexicana promastigotes and axenic amastigotes. These peptides were 

selected based on previously reported activity against gram negative bacteria
15

, and also 

structural similarities to temporins A (16), temporin B (17) and temporin 1Sa (25), with 

an initial aim to identify any structure activity relationships when minor alterations to 

the primary sequence occurred  

2.7.1 Synthesis of temporin C  

The synthesis of temporin C (34), primary structure LLPILGNLLNGLL-NH2 was 

carried out following Fmoc-SPPS microwave coupling procedures in Scheme 2.2, 

starting with 500 mg (0.31 mmol) of resin. The synthesis proceeded without incident. 

During the synthesis, the structure of the growing peptide chain was confirmed at 

approximately five amino acid intervals by use of MALDI-MS. When all amino acids 

were coupled, a final Fmoc deprotection step was carried out following Fmoc-SPPS 

procedures in procedure 7.2, and the peptide cleaved from resin by use of TFA, TIPS 

and H2O using microwave chemistry. On confirmation of the presence of the correct 

structure by use of MALDI-MS, analytical HPLC showed the product to elute at 7.80 

minutes. 
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Figure 2.19 MALDI-TOF mass spectrum obtained upon synthesis of temporin C (34) 

 

2.8.2 Synthesis of temporin F  

The synthesis of temporin F (35), primary structure FLPLIGKVLSGIL-NH2 was carried 

out following Fmoc-SPPS microwave coupling procedures in Scheme 2.2, starting with 

500 mg (0.31 mmol) of resin. The synthesis proceeded without incident. During the 

synthesis, the structure of the growing peptide chain was confirmed at approximately 

five amino acid intervals by use of MALDI-MS. When all amino acids were coupled, a 

final Fmoc deprotection step was carried out following Fmoc-SPPS procedures in 

Scheme 2.2, and the peptide cleaved from resin by use of TFA, TIPS and H2O using 

microwave chemistry. On confirmation of the presence of the correct structure by use of 

MALDI-MS, analytical HPLC showed the product to elute at 7.20 minutes. 

 

Temporin C (34) 
LLPILGNLLNGLL-NH2 (m/z 1384.0) 
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Figure 2.20 MALDI-TOF mass spectrum purified temporin F (35) 

2.8.3 Synthesis of temporin L  
 

Literature results published have shown temporin L (36) to have a synergistic effect 

with temporins A and B when tested against Gram-negative bacteria in 

lipopolysaccharide detoxification.
9
 However, these effects have yet to be tested in 

parasites. It was therefore decided to synthesise and purity temporin L in order to 

investigate the effects on the activity of these temporins used synergistically. Due to the 

nature of the primary structure of temporin L, this peptide presented a more challenging 

synthetic target than temporins A (16) and B (17) previously synthesised. The synthesis 

of temporin L, primary structure FVQWFSKFLGRIL-NH2 was carried out following 

Fmoc-SPPS microwave coupling procedures in Scheme 2.2. starting with 500 mg (0.31 

mmol) of rink amide resin. During the synthesis, the structure of the growing peptide 

chain was confirmed following coupling of phenylalanine and valine by use of MALDI-

MS. When all amino acids were coupled, a final Fmoc deprotection step was carried out 

Tenporin F (35) 

FLPLIGKVLSGIL-NH2 

(m/z 1391.0) 
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following Fmoc-SPPS procedures in Scheme 2.2, and the peptide cleaved from resin by 

use of TFA, TIPS and H2O using microwave chemistry. On confirmation of the 

presence of the correct structure by use of MALDI-MS, analytical HPLC showed the 

product to elute at 7.79 minutes. MALDI analysis showed a small peak for temporin L 

at m/z 1640.1 [M+H
+
], but also that significant impurities were also present in the crude 

product cleaved from the resin.  

 

 

Figure 2.21 MALDI-TOF mass spectrum of purified Temporin L (36) 

These fragments have been found to correspond to the presence of the fragments listed 

in Table 2.3 in MALDI-MS. As MALDI is a very mild ionisation technique, the 

presence of these fragments was not attributed to fragmentation in MALDI-MS. Instead, 

it was thought that there were problems when coupling amino acids in this particular 

sequence. In order to identify the structure of the fragment(s) corresponding to the large 

impurity present, MS/MS analysis could be performed, and resulting ions identified 
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based on the masses of fragments formed as isoleucine or leucine is present at different 

positions in each of the potential products identified. 

m/z of impurity Sequence of peptide fragment Cause of impurity 

1527.0 FVQWFSKFGRIL-NH2 or 

FVQWFSKFLGRL-NH2 or 

FVQWFSKFLGRI-NH2 

Failed coupling of one 

residue of leucine or 

isoleucine (peak may be 

due to a mixture of these 

three peptide fragments). 

 

Table 2.3 Assignment of peptide fragments responsible for the major peak given by the 

MALDI-TOF spectrum of Temporin L, and reasons for presence in spectrum. 

 

Following the unsuccessful synthesis of Temporin L (36), it was decided that a 

subsequent synthesis will take place taking samples for analysis by MALDI-TOF 

following each coupling of leucine or isoleucine, in order to identify the coupling(s) 

which resulted in the presence of the impurities(s) shown in Table 2.3. A manual (non-

microwave) coupling strategy from tryptophan onwards may also be used. Temporin L 

was subsequently purified by use of reverse phase HPLC. 
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2.9 Antileishmanial testing Part II 
Temporins C (34), F (35) and L (36) were synthesised and purified, experimental data is 

given in Table 2.4. 

Peptide Mr(Calc)
a
 Mr(Obs)

a,b
 

   

Temporin C (XX) 1360.87 1384.0 

LLPILGNLLNGLL-NH2   

   

Temporin F (XX) 1367.88 1391.0 

FLPLIGKVLSGIL-NH2   

   

Temporin L (XX) 

FVQWFSKFLGRIL-NH2 

 

1638.93 1641.1 

a
 The calculated (calc) and observed (obs) masses are monoisotopic. 

b
 Mr (obs) are the observed protonated [M + H]

+
 or sodiated [M + Na]

+
 species as obtained by MALDI-

TOF-MS. 

 
Table 2.4 Sequence, chemical and physical data for temporins C (34), F (35) and L (36). 

 

Figure 2.22 L. mexicana promastigote viability after exposure to 50 µM and 100 µM 

concentrations of temporins A (16), B (17), 1Sa (25), C (34), F (35), and L (36) in the absence 

of serum using the Alamar Blue assay system as described previously. Amphotericin B (Amp) 

was utilised as a positive control. Data points represent the mean of 2 independent experiments 

performed in triplicate. Standard error is indicated.  
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Figure 2.23 L. mexicana axenic amastigote viability after exposure to 50 µM and 100 µM 

concentrations of temporins A (16), B (17), 1Sa (25), C (34), F (35), and L (36) in the absence 

of serum using the Alamar Blue assay system as described previously. Amphotericin B (Amp) 

was utilised as a positive control. Data points represent the mean of 2 independent experiments 

performed in triplicate. Standard deviation is indicated. 

 

Temporins C (34), F (35) and L (36) were screened against both promastigote and 

amastigote L. mexicana using the optimised Alamar Blue assay decribed previously, 

involving incubation for 1 hour in the absence of serum. In this assay, which reflects the 

conditions employed in previous studies 
10

, temporin L (36) was the only peptide tested 

to show activity against L. mexicana axenic amastigotes (Figure 2.23; 60% cell viability 

at 50 µM and 10% at 100 µM respectively). Temporins C, and F remain largely inactive 

against both lifecycle stages.  

A point of interest is that temporin L (36) exhibited greater activity when tested against 

L. mexicana axenic amastigotes, than the promastigote lifecylcle stage. This is in 

contrast to patterns of activity observed for other AMPs tested. It is possible that this 
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diference in acivity is due to temporin L being the only peptide tested to possess a +3 

charge, which may affect the interactions with the parasite membrane, as this is known 

to differ between the two lifecycle stages of the L. mexicana parasites. It should 

however be noted that temporin L (35) has a significantly lower LD50 than other AMPs 

when tested against erythrocytes and macrophage cells
16

. Therefore although this 

peptide may possess higher activity against the L. mexicana amastigote lifecycle stage, 

it is likely that the peptide would prove to be toxic to other mamalian cells in clinically 

relevant concentrations.  

 

Figure 2.24 L. mexicana promastigote temporin L LD50 determined in the absence of serum 

using the Alamar Blue assay system as described previously. Amphotericin B (Amp) was 

utilised as a positive control. Data points represent the mean of 2 independent experiments 

performed in triplicate. Standard error indicated.  

 

Previous studies have shown temporins A (16) and L (36) to possess synergistic activity 

when tested against bacteria. 17
 However the results shown in figure 2.24 did not 

indicate this against L. mexicana promastigotes. Further investigations would be 

required to investigate these results, however it is likely that this occurred for similar 
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reasons to the other differences observed in activity when drawing comparisons 

between antileishmanials and antibacterial activity. 

 

Figure 2.26 L. mexicana promastigote viability following exposure to combined concentrations 

of 100 µM to 1.5 µM (equal volunes of both peptides) of temporins A (16) and temporin L (35) 

in the absence of serum using the Alamar Blue assay system as described previously. 

Amphotericin B (Amp) was utilised as a positive control. Data points represent the mean of 2 

independent experiments performed in triplicate. Standard error is indicated. 
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2.8.10 Peptide Toxicity  
 

As temporins A (16) and L (35) were found to be the most active against the amastigote form 

of the parasite the toxicity of these peptide was investigated. It was important to investigate 

the toxicity of these peptides as peptides may be toxic to the host cells, in addition to 

leishmania parasites. Given the interest in 16 and 35 as antibacterial agents some toxicity 

data had previously been reported
16

. As summary of the published data is given in Table 2.6.  
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Temporin L FVQWFSKFLGR

IL-NH2 

- 93 µM 2 µM
16

 55 µM
16

 50-100 µM 

(Cobb et 

al., 

unpublished 

data) 

Temporin A FLPLIGRVLSGI

L-NH2 

L. pifanoi (ama) 

50% inhibition 

at 5.6 µM 
10

 

62.5 µM 1.25 

µM
18

 

>120 µM 
19

 50-100 µM 
11

 

 

Table 2.6. A summary of the published toxicity data relating to temporin A (16) and temporin L (36). 

 

Temporin L (35) hemolytic activity: beyond 2 µM, considerable haemolysis was observed, 

with 100% lysis at approx. 55 µM 
16 

Temporin A haemolytic activity: at 1.25 µM, 0.5 % lysis 

occurred, at 40.0 µM, 27.5 % lysis occurred. 
18

  

The toxicity of temporin A (16) against murine macrophages  - 62.5 µM (C. Raleigh MSci 

report) Preliminary experiments have also shown that both temporins are devoid of cytotoxic 



Chapter II: Initial Investigations into the potential application of antimicrobial peptides as new 

antileishmanials 

 
 

99 

 

effects on murine macrophages (RAW 264,7 line)
10

 Temporin A is chemotactic for human 

monocytes and neutrophils temporin A induced monocyte migration with a bell-shaped dose 

response curve. The peak response was observed at 250 nM.
20

 Toxicity analysis of temporins 

A and L showed temporin A to be cytotoxic at 500 µM, and temporin L to be cytotoxic at 

250 µM (shown in figure 2.26 below). These results are supported by results previously 

published
16

, indicating that temporin L possesses a high toxicity against erythrocytes.  

 

Figure 2.27 Percentage macrophage viability following 24 hours incubation with temporin A (16), 

temporin L (36) with combined concentrations as shown, in the absence of serum using the Alamar 

Blue assay system as described previously. Amphotericin B (Amp) was utilised as a positive control. 

Data points represent the mean of 2 or 3 independent experiments performed in triplicate. Standard 

deviation is indicated. Viability is greater than 100 % in some cases due to statistical variation in 

controls used. Data points represent the mean of 2 independent experiments performed in triplicate. 

Standard error indicated. 
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Figure 2.28 Percentage macrophage viability following 48 hours incubation with temporins A (16), 

temporin L (36) with combined concentrations as shown, in the absence of serum using the Alamar 

Blue assay system as described previously. Amphotericin B (Amp) was utilised as a positive control. 

Data points represent the mean of 2 independent experiments performed in triplicate. Standard 

deviation is indicated. 

2.9 Chapter Summary  

Initially temporin peptides A (16), B (17) and 1Sa (25) were tested against L. mexicana 

axenic axenic amastigotes and promastigotes. Following on from this initial temporin 

peptides C (34), F (35) and L (36) were tested suing the same assay system. An overview of 

the anti-leishmanial results obtained from both these rounds of screening is presented in 

Figure 2.29 below.  
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Figure 2.29 L. mexicana promastigote and amastigote viability following exposure to 50 µM and 100 

µM concentrations of temporins A (16), B (17), C (34), F (35), and L (36) in the absence of serum 

using the Alamar Blue assay system as described previously. Amphotericin B (Amp) was utilised as a 

positive control. Data points represent the mean of 2 independent experiments performed in triplicate. 

Standard deviation is indicated.  

 

However, as the data highlights temporins A (16) and L (36) were the only peptides tested 

that exhibited moderate to significant levels of activity against L. mexicana axenic axenic 

amastigotes, the clinically relevant form of L. mexicana published data has only reported 

activity on promastigotes. In contrast to insect stage promastigotes, pathogenic amastigote L. 
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mexicana are significantly more resistant to all of the temporins tested. This demonstrates the 

importance of screening against both forms of the parasite, particularly in light of available 

literature on the subject; in which reported testing on the amastigote lifecycle stage is scarce. 

Results obtained suggest that axenic amastigotes of different Leishmania species display 

varying susceptibility to peptides from the temporin family indicating that broad-spectrum 

antileishmanial AMPs may be challenging to develop. In addition, the ability of AMPs to 

translocate the host membrane and reach intra-macrophage axenic amastigotes has not been 

widely studied and remains unknown. 

Given the size of the data set studied and the lack of any available data in the literature it is 

difficult to begin to draw useful conclusions about the properties that are required for 

biological activity. A summary of some of the physical and chemical properties for all the 

peptides analysed is given in Table 2.6.     
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Table 2.5 previously reported data associated with temporin peptides synthesised in this study. 
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Temporin A 

FLPLIGRVL

SGIL-NH2 

13 Gram+, Virus, 

Chemotactic 

+2 -0.9 14 15% 

Temporin B 

LLPIVGNLL

KSLL-NH2 

13 Gram + +2 -0.8 14 23% 

Temporin C 

LLPILGNLL

NGLL-NH2 

13 Gram + +1 -1.1 14 15% 

Temporin F 

FLPLIGKVL

SGIL-NH2 

13 Gram+  +1 -0.9 14 15% 

Temporin L 

FVQWFSKF

LGRIL-NH2 

13 Gram+ & Gram-, 

Fungi, Mammalian 

cells, Cancer cells 

+3 -0.9   14 30% 

Temporin 1Sa 

FLSGIVGML

GKLF-NH2 

13 Gram + +2 -0.9 14 15% 
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Temporins A (16) and L (36) have been studied to a greater degree than any of the other 

temporin peptides. It is possible that the charge is important; as the parasite membrane is 

negatively charged a positively charged peptide may be attracted to the membrane through 

electrostatic attraction which may in turn facilitate the disruption of the parasite membrane, 

and account for a lower active concentration of drug needed to kill the parasites.  Temporin L 

has the highest overall charge of the peptides studied in the table below (+3, compared to +1 

or +2) which may facilitate the ability of the peptide to interact with the negatively charged 

parasite membranes. Temporin L also has a higher ration of hydrophobic residues /total 

number of residues (30, compared to 15-23 for other peptides), which may also account for 

the higher levels of antileishmanial activity observed with temporin L, this may be because 

the hydrophobic residues will more favourably interact with the lipid environment in the 

parasite membrane, and these interactions draw the peptide into the membrane more strongly 

than those peptides with proportionally fewer hydrophobic residues. The mean 

hydrophobicity is calculated using the Kyte-Doolittle scale. The Kyte-Doolittle scale is 

widely used for detecting hydrophobic regions in proteins. Regions with a positive value are 

hydrophobic. This scale can be used for identifying both surface-exposed regions as well as 

transmembrane regions, depending on the used window size. Short window sizes of 5-7 

generally works well for predicting putative surface-exposed regions. Large window sizes of 

19-21 is well suited for finding transmembrane domains if the values calculated are above 

1.6
144

. These values should be used as a rule of thumb and deviations from the rule may 

occur. The values in the table for peptides synthesised in this work suggest a pattern of 

increasing mean hydrophobicity may indicate increasing antileishmanials activity. However 

the data set presented here is too small to form any further conclusions.  
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Temporins A and L the two most active peptides against axenic axenic amastigotes were then 

tested for cytotoxicity against uninfected murine macrophages, and against infected murine 

macrophages. Toxicity analysis of temporins A and L showed temporin A to be cytotoxic to 

50 % of cells at 500 µM, and temporin L to be cytotoxic at 250 µM. These results are in 

alignment with previously published data
16

, and show that temporin L possesses a high 

toxicity against erythrocytes. These results place the viability of temporin L as a potential 

therapeutic agent in question, as this peptide appears to be cytotoxic across a broad spectrum 

of biological tissues and would likely cause cell death in the host in addition to leishmania 

parasites. The eventual aim is to use AMPs in order to develop a topical leishmanicidal 

application; however it is likely that the levels of cytotoxicity reported here for temporin L 

would prevent the regrowth and healing of healthy tissues in the affected areas in addition to 

causing death of the leishmania parasites.  
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Chapter 3:  Evaluation of a second generation of antimicrobial 

peptides 
3.1 Introduction 

Following the synthesis and biological evaluation of a small number of the temporin 

peptides (Chapter II), it became apparent that a high throughput method of screening 

would be required in order to successfully identify AMPs that had promising 

antileishmanial activity. The initial testing carried out had been guided by previously 

reported activity for peptides against various Leishmania sp.
1
  However, the results 

obtained from our initial study provide strong evidence that that antileishmanial activity 

against one Leishmania sp. cannot be used as an accurate indicator of potential 

antileishmanial activity against other Leishmania sp. In addition a clear difference in the 

biological activity of the temporin peptides against promastigotes and axenic amastigotes 

forms of the parasite showed that even within the same species there is a considerable 

difference in antileishmanial activity between the different life cycle stages of the parasite. 

It was also interesting to note that that antimicrobial activity cannot be used as a useful tool 

to accurately predict antileishmanial activity
2
. Given the considerable differences in the 

physical makeup of the parasite and bacterial membranes, which are the target for the 

temporin peptides this latter observation is not unexpected, but surprisingly it had not been 

well documented in the literature.   

3.2 Computational modelling as a predictor of peptide biological activity  

Antimicrobial peptides (AMPs) represent an important class of compounds in the search 

for new treatments against pathogens
3
. Membrane-active peptides (MAPs) represent a 

broad variety of molecules, and biological functions of most are directly associated with 

their ability to interact with membranes. Taking into account the effect of MAPs on living 

cells, they can be nominally divided into three major groups - fusion (FPs), 

antimicrobial/cytolytic (AMPs/CPs) and cell-penetrating (CPPs) peptides. Although spatial 
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structure of different MAPs varies to a great extent, linear alpha-helical peptides represent 

the most studied class. These peptides possess relatively simple structural organization and 

share a set of similar molecular features, which make them very attractive to both 

experimental and computational studies.
4 

Different molecular modelling methods are used depending on the purpose of the study, 

i.e. the application for which the AMPs studied are intended.  The most sophisticated 

methods, such as molecular dynamics simulations, give information about molecular 

interactions driving peptide binding to the water-lipid interface, cooperative mechanisms 

of membrane destabilization and thermodynamics of these processes. Significant progress 

has been achieved in this field during the last few years, resulting in an increased interest 

in the identification of active peptides through these methodologies.
4
 

As a result of the need to identify greater numbers of active AMPs, some in silico methods 

have been developed to find AMPs with potential therapeutic application.
5
 Several 

algorithms take advantage of data mining and high-throughput screening techniques and 

apply vector-like analysis to scan protein and peptide sequences
6
. Other bioinformatics' 

strategies include supervised learning techniques, such as artificial neural networks (ANN) 

or support vector machines, in order to evaluate easily and reliably a great amount of 

complex data
7
. Although the majority of attempts have been centred in the prediction of 

highly active peptides using quantitative structure-activity relationships (QSAR) 

descriptors together with ANN
8 

linear discriminant
9
 or principal component analysis

10
. 

These systems use mainly 3D-QSAR descriptors to detail the antimicrobial properties of 

peptides. Recently, a QSAR-based ANN system was experimentally validated using SPOT 

high-throughput peptide synthesis, showing that this methodology can accomplish a 

reliable prediction by means of conventional and “inductive” QSAR descriptors
11

. 

However, the datasets used contained only peptides with fixed length and the leeds found 
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were only populated in few amino acids (W, R and K and, more limitedly, L, V and I). 

Although AMPs are actually enriched in these residues, a wide diversity in the amino acid 

content can be found in natural AMPs
5, 6b, 12

. 

Despite the inherent complexity in designing a prediction system only by means of 

computational chemistry and bioinformatics, the recent methods mentioned above have 

made remarkable advances. Hence, it is likely that in the future the combined use of 

bioinformatics and experimental screening techniques will be essential for the discovery 

and refinement of new anti-infective AMPs
5, 6b, 13

. 

Given the success that has been derived from the application of prediction systems in the 

development of antibacterial AMPs
14

 we were keen to develop this approach to aid in the 

design of AMPs that had antileishmanial properties. However, when our work in the area 

was started there were no predictive systems in place that could be used to investigate 

antileishmanial, or even anti-parasitic properties of AMPs.  In addition given that most 

AMPs disrupt the cell membrane of their targets, systems developed to predict antibacterial 

activity were unlikely to be of use in predicting antiprotozoal activity where the eukaryotic 

plasma membrane is the target. Furthermore, simply adapting the existing antibacterial 

prediction models is not straight forward as the experimental data sets available for 

peptides with, for example, antileishmanial activity
 
are considerably smaller and gathered 

from across multiple, divergent species
15

. This makes them difficult to utilise in developing 

a predictive algorithm. Thus are vision was to generate a suitable data set of peptides that 

could then be used to develop a mathematical model to predict the activity of AMP 

sequences, and use that model to power a computational/rational design package aimed at 

producing new antileishmanial AMPs as lead compounds for CL (see Figure 3.1)  
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Figure 3.1 Schematic illustrating the process through which computational modelling will be used 

to predict active peptides. Step 1) synthesise and purify peptides, Step 2) test peptides for activity 

in assay, Step 3) enter testing data into computational modelling system and Step 4) preparation of 

a topical formulation and animal testing. 

 

3.2 Evaluation of extended temporin peptide libraries  

3.2.1 Peptide Selection  

 

Our previous results, discussed in Chapter II had shown temporin A (16) and temporin L 

(36) to possess the greatest levels of antiparasitic activity against Leishmania mexicana 

promastigotes and axenic amastigotes.
2
 In the presence of serum, only temporin A (16) 

demonstrated any significant antileishmanial activity against L. mexicana promastigotes 

(57% inhibition at 100 μM). Neither temporin A (16) or temporin L (36) peptides showed 

significant activity at the concentrations tested [temporin A: 98% at 100 µM; temporin L: 

93% inhibition at 100 µM] against L. mexicana axenic amastigotes. Given that the 

temporins investigated in this study have previously been shown to be active against other 
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Leishmania species
16

 these results were unexpected. Mangoni et al
16

 have previously 

reported that temporins A (16) and B (17) are active on both the insect and the mammalian 

stages of L. donovani with complete inhibition of parasite viability at 15–25 µM. 

However, by pre-incubating the parasites with the temporins studied in minimal serum the 

peptide activity profiles were altered. In this assay, which reflects the conditions employed 

in previous studies
[18]

, temporins A (16) and B (17) demonstrated improved efficacy 

against promastigote L. mexicana (63% inhibition at 12.5 μM and 38% at 50 μM 

respectively). However, axenic amastigote L. mexicana  remained largely resistant to these 

compounds with only temporin A (16) demonstrating any significant activity (only 23% 

inhibition at 12.5 μM but 98% at 100 μM).
2
 

In order to identify potential residues within the sequences of temporin A (16) and 

temporin L (36) that could be modified to potentially enhance biological activity it was 

decided to carry out alanine scans of these peptides. An alanine scan is a commonly used 

technique in peptide chemistry in which every residue in the sequence is systemically 

replaced by an alanine
17

. As the α-carbon in alanine contains only a non-reactive methyl 

group, it can be viewed as essentially inert, in terms of contributing to factors such as 

target binding. This means that by sequentially substituting each amino acid residue with 

alanine, the effects of a particular residue can be observed. The aim would be to use this 

alanine scan approach to begin to develop a more detailed understanding of any structure 

activity relationships that might exist.  

In the case where there is no defined molecular target, alanine scanning can be used to alter 

the secondary structure of the peptides, and thus the way in which the peptides are able to 

interact with each other, and with the parasite membrane.  
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In addition to the testing of alanine scans of temporins A (16) and temporin L (36), and a 

Lys scan of temporin L (36) would also be carried out (Section 3.2.2). Lysine scans can be 

used to evaluate the impact of charge interactions on the peptides’ biological activity
18

 . 

Furthermore, a range of temporin peptides previously reported in the literature as 

possessing the greatest levels of activity against mammalian cells, gram positive bacteria, 

gram negative bacteria, fungi and viruses were also selected.  These peptides were 

synthesised by Cambridge Research Biochemicals Ltd (CRB) as described in Section 

3.2.2. Following testing of this library of peptides, a second library was synthesised and 

tested, to include those temporin peptides not previously reported as possessing no 

biological activity. Generally, activities of AMPs against bacteria, fungi and mammalian 

cells are determined by a complex interaction between cationicity, hydrophobicity, α-

helicity and amphipathicity. The purpose of these syntheses is to develop analogs of 

temporins A (16) and temporin L (36) with a higher therapeutic index than the native 

peptides.  

3.2.2 Preparation and screening of the Temporin A and Temporin L libraries  

 

Both the alanine scan library of temporin A (16) and temporin L (36) were synthesised by 

CRB- using their in house PepArray
TM

 system. The peptides were synthesised on a 3-5 µM 

scale, and were evaluated by CRB prior to providing them to us to have a purity of 70-

90%. The evaluation of purity and quality control is determined by HPLC and MS analysis 

of a fraction (10%) of the peptides in the given library. The purity of the peptides supplied 

was deemed to be acceptable for initial screening applications, and with regard to cost and 

time it was the most reasonable method by which to screen larger libraries of peptides. It 

was anticipated that if a peptide was identified from the PepArray™ libraries as having 

antileishmanial activity, then it could be remade on a larger scale in house, purified, and 
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tested at a higher purity for more accurate analysis. Temporin A (16) was also synthesised 

by CRB as one of the peptides in the Peparray
TM

, in order to provide another measure of 

the purity of the Peparray
TM

 peptides produced. The activity of the “Peparray
TM”

 temporin 

A (16) would be compared to previous results obtained using a temporin A peptide that 

had been prepared and purified by HPLC previously at Durham. . The sequences for all the 

Temporin A peptides in the alanine scan library are shown in Table 3.1 below.  

Peptide Amino acid sequence 

TA1 ALPLIGRVLSGIL-NH2 

TA2 FAPLIGRVLSGIL-NH2 

TA3 FLALIGRVLSGIL-NH2 

TA4 FLPAIGRVLSGIL-NH2 

TA5 FLPLAGRVLSGIL-NH2 

TA6 FLPLIARVLSGIL-NH2 

TA7 FLPLIGAVLSGIL-NH2 

TA8 FLPLIGRALSGIL-NH2 

TA9 FLPLIGRVASGIL-NH2 

TA10 FLPLIGRVLAGIL-NH2 

TA11 FLPLIGRVLSAIL-NH2 

TA12 FLPLIGRVLSGAL-NH2 

TA13 FLPLIGRVLSGIA-NH2 

 

Table 3.1 Alanine scan of temporin A (16) 

 

All of the Tenporin A peptides (Table 3.1, TA1-TA13) were dissolved in DMSO to give 

25 mM stock solutions and these were stored at -20°C until use. A solution of 

Amphotericin B, and pure DMSO were stored under identical conditions throughout the 

screening process. Temporin A peptides (Table 3.1, TA1-TA13) were initially tested for 

activity at a concentration of 200 µM. This concentration was selected so as to detect any 

active peptides.  It also assumes that the concentrations of the peptides tested are likely to 

be less than predicted (i.e. below 200 µM) given the purity range of 70-90% provided by 

CRB the suppliers of the peptide library.  All of the peptides were screened a minimum of 

two times, in triplicate. The result of the screening against L. mexicana promastigotes and 

L. mexicana axenic amastigotes are shown in Figures 3.2 and 3.3 respectively. 
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Figure 3.2 Alanine scan of temporin A (16), showing % amastigote viability following a 24 hour 

incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

  

0

10

20

30

40

50

60

70

80

90

100

TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA11 TA12 TA13

%
 a

m
as

ti
go

te
 v

ia
b

ili
ty

 

Peptide  (Temporin A - Ala scan) 



Chapter III: Evaluation of a second generation of antimicrobial peptides  
 

119 

 

 

 

Figure 3.3 Alanine scan of temporin A (16), showing % promastigote viability following a 24 hour 

incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

Firstly, it should be noted that the temporin A (16) provided from CRB showed 5% 

promastigotes cell viability and 4% amastigotes cell viability at 200 µM (results not shown 

in Figures 3.2 and 3.3). These results correlate very well with those previously obtained 

within the group using HPLC purified temporin A (4% promastigotes cell viability and 3% 

amastigotes cell viability at 100 µM)
2
. This provided a level of confidence that the 

estimation of peptide purity of 70-90 % was likely to be accurate. 

Upon initial evaluation of the data it was decided to set a threshold at which an ‘active’ 

peptide would be recorded as being gone which produced a percentage cell viability of 60 

% or less. This activity threshold was set in order to prevent any ‘hits’ being missed in the 

initial screen. Also, as this was an initial large screening shotgun approach, any peptides 

producing a percentage cell viability of 60% or lower would be synthesised on a larger 

scale and purified in order to provide a more accurate evaluation of antileishmanial 

activity. 
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As the data in Figure 3.2 and Figure 3.3 highlight none of the peptides tested (Table 3.1, 

TA1-TA13) were found to show activity below the threshold against either promastigotes 

or axenic amastigotes. These results indicate that there are no residues within the Temporin 

A sequence that are suitable for further modification to enhance antileishmanial activity. It 

is worth while noting that peptides TA7 [FLPLIGAVLSGIL-NH2] and Ta10 

[FLPLIGRVLAGIL-NH2] in which the overall charge of the peptide has been modified, 

little or no change in activity was observed. This is in contrast to structure-function 

relationship studies performed against a range of bacteria
19

. A previous study by Wade et 

al
19 

reported that replacing isoleucine with leucine at amino acid positions 5 and 12 

resulted in the greatest enhancement of antibacterial activity. In addition, this study also 

showed that there was little difference between the activities of temporin D (16) and its all-

D enantiomer. This resulted indicate that the 16 probably exerts its biological effect on 

bacteria via non-chiral interactions with membrane lipids. 

Previous structure-function relationship studies
17, 19

 have been performed on temporin A 

(16), although to date, only one previous study has demonstrated the contribution of each 

individual amino acid residue to the antimicrobial and haemolytic activities of this peptide 

through alanine-positional scanning
17

. This previous study by Grieco et al
17

 has reported 

an alanine scan of temporin A (termed temporin 1Ta in the paper). In this study, four 

analogs were identified with a higher hydrophobicity and higher percentage of α-helix 

compared to the natural peptide, in both DPC and SDS
17

. In the study by Grieco et al
17 

the 

temporin A analogs (TA3, TA6, TA10, and TA11, sequences shown in Table 3.4) were 

tested for haemolytic activity, and also for activity against a range of gram-positive and 

gram-negative bacteria. All of the peptides tested displayed the same or enhanced 

antimicrobial activity compared to natural temporin A (16), but also a higher lytic effect on 

human erythrocytes
17

. Significantly, these substitutions reside at the hydrophilic face of the 
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peptide. However, substitution of Arg with Ala (TA7), also located at the polar face of the 

peptide, suppressed its antimicrobial effect against all of the microorganisms tested. This is 

in agreement with reports from other authors
20

 and is probably due to the loss of the single 

positively charged residue (Arg) in the sequence, causing a weaker electrostatic interaction 

with the microbial membrane. In comparison, when alanine substitutions are introduced on 

to the hydrophobic side of the molecule (TA1, TA2, TA4, TA5, TA8, TA9, TA12, and 

TA13), a clear decrease or almost abolishment of the antimicrobial activity occurs, along 

with a significant decrease in the hemolytic activity. TA1 is an exception, because it 

exhibits two to threefold higher haemolytic activity compared to the parent peptide (Table 

3.4).
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     MIC (µM) 

    % Helix Gram-negatives Gram-positives Yeasts 

Peptides Amino acid sequences Charge H  
µ
H DPC SDS E. coli Y. 

pseudo-

tuberculo

sis 

S. 

aureus 

B. 

megateri

um 

S. 

capi

tis 

C. 

albicans 

1Ta FLPLIGRVLSGIL-NH2 +2 0.22 0.35 55 50 >40 20 5 2.5 5 5 

TaA1 ALPLIGRVLSGIL-NH2 +2 0.2 0.33 60 50 >40 >40 >40 20 >40 >40 

TaA2 FAPLIGRVLSGIL-NH2 +2 0.2 0.34 54 49 >40 40 20 5 20 10 

TaA3 FLALIGRVLSGIL-NH2 +2 0.25 0.33 69 57 >40 20 2.5 2.5 2.5 1.25 

TaA4 FLPAIGRVLSGIL-NH2 +2 0.2 0.36 53 49 >40 40 40 5 20 10 

TaA5 FLPLAGRVLSGIL-NH2  +2 0.19 0.31     50     46 >40    >40     40       20   40      20 

TaA6 FLPLIARVLSGIL-NH2 +2 0.23 0.35 71 65 >40 20 2.5 2.5 5 2.5 

TaA7 FLPLIGAVLSGIL-NH2 +2 0.38 0.21 63 52 >40 >40 >40 >40 >40 >40 

TaA8 FLPLIGRALSGIL-NH2 +2 0.2 0.34 54 51 >40 40 20 5 20 10 

TaA9 FLPLIGRVASGIL-NH2 +2 0.2 0.34 51 46 >40 >40 >40 >40 >40 >40 

TaA10 FLPLIGRVLAGIL-NH2 +2 0.26 0.32 56 50 >40 20 2.5 2.5 5 2.5 

TaA11 FLPLIGRVLSAIL-NH2 +2 0.23 0.35 71 61 >40 20 2.5 2.5 5 2.5 

TaA12 FLPLIGRVLSGAL-NH2 +2 0.19 0.32 55 49 >40 >40 40 20 >40 20 

TaA13 FLPLIGRVLSGIA-NH2 +2 0.2 0.35 55 50 >40 >40 >40 20 >40 20 

             

 

Table 3.4. Temporin A Ala-scan comparison with respect to charge, H, µH, % helicity and MIC on different microbial strains
[3]

.  
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Screening of the large scale library against L. mexicana promastigotes and axenic 

amastigotes continued with the peptides synthesised in the Ala scan of temporin L. Results 

are shown in Figures 3.5 and 3.6.  

Temporin L (36) was also synthesised by CRB, in order to provide a measure of purity of 

the Peparray
TM

 peptides. Temporin L (36) showed 3% promastigotes cell viability and 

22% axenic amastigotes cell viability at 200 µM. These results correlate very well with 

those previously obtained by us when an HPLC purified 36 was utilised.
2
 Again this result 

proved evidence that a purity of 70-90 % for the peptides used was accurate, and that 

peptides leading to less than 60 % cell viability are logically active at 100 µM or lower 

concentrations. The peptides synthesised in the alanine scan of temporin L (36) are shown 

below in Table 3.2.   
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Peptide Amino acid sequence 

TL1 AVQWFSKFLGRIL-NH2 

TL2 FAQWFSKFLGRIL-NH2 

TL3 FVAWFSKFLGRIL-NH2 

TL4 FVQAFSKFLGRIL-NH2 

TL5 FVQWASKFLGRIL-NH2 

TL6 FVQWFAKFLGRIL-NH2 

TL7 FVQWFSAFLGRIL-NH2 

TL8 FVQWASKALGRIL-NH2 

TL9 FVQWFAKFAGRIL-NH2 

TL10 FVQWFSKFLARIL-NH2 

TL11 FVQWFSKFLGAIL-NH2 

TL12 FVQWFSKFLGRAL-NH2 

TL13 FVQWFSKFLGRIA-NH2 

TL FVQWFSKFLGRIL-NH2 

 

Table 3.2 Alanine scan of temporin L (36). 

 

 

 

Figure 3.5 Alanine scan of temporin L (36), showing % axenic amastigote viability following a 24 

hour incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 
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Figure 3.6 Alanine scan of temporin L (36), showing % promastigote viability following a 24 hour 

incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

Six peptides were found to be active against promastigotes, and three against amastigotes. 

The following sequences were active at 200 µM:  

Peptide Primary Sequence of 

Peptide 

Promastigote cell 

viability 

Axenic Amastigote 

cell viability 

TL2 FAQWFSKFLGRIL-NH2 43% no activity 

TL3 FVAWFSKFLGRIL-NH2 52% no activity 

TL6 FVQWFAKFLGRIL-NH2 48% no activity 

TL8 FVQWFSKALGRIL-NH2 23% 8% 

TL10 FVQWFSKFLARIL-NH2 22% 20% 

TL11 FVQWFSKFLGAIL-NH2 20% 20% 

 

Table 3.3 Biologically active peptides in alanine scan of temporin L (36) 

 

Analogs of temporin L were shown to possess the greatest activity of all analogs tested 

against leishmnia mexicana promastigotes and axemic amastigotes; subsequently peptides 

were synthesised to produce a series of peptides with the amino acid lysine sequentially 

replacing each residue along the length of the chain. The lysine scan was conducted in 

order to determine the effect of insertion of a positive charge into the amino acid chain. 
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These peptides were synthesised on a 3-5 µM scale, and were tested at 70-90% purity. 

Peptides synthesised in the lysine scan of temporin L were as shown in Table 3.4.  
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Peptide Amino acid sequence 

TL14 KVQWFSKFLGRIL-NH2 

TL15 FKQWFSKFLGRIL-NH2 

TL16 FVKWFSKFLGRIL-NH2 

TL17 FVQKFSKFLGRIL-NH2 

TL18 FVQWKSKFLGRIL-NH2 

TL19 FVQWFKKFLGRIL-NH2 

TL20 FVQWFSGFLGRIL-NH2 

TL21 FVQWKSKALGRIL-NH2 

TL22 FVQWFSKFKGRIL-NH2 

TL23 FVQWFSKFLKRIL-NH2 

TL24 FVQWFSKFKGKIL-NH2 

TL25 FVQWFSKFLGRKL-NH2 

TL26 FVQWFSKFLGRIK-NH2 

 

Table 3.4 Lysine scan of temporin L (36) 

Screening against L. mexicana promastigotes and axenic amastigotes continued with the 

peptides synthesised in the Lys scan of temporin L. Results are shown in Figures 3.7 and 

3.8.  
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Figure 3.7 Lysine scan of temporin L, showing % promastigote viability following a 24 hour 

incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

 

Figure 3.8 Lysine scan of temporin L, showing % amastigote viability following a 24 hour 

incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

Five peptides from the Lys scan were found to be active against L. mexicana: five peptides 

showed activity against promastigotes: TL15, TL16, TL17, TL25, TL26 and one sequence 

was active against both promastigotes and axenic amastigotes: TL15.  

Peptide Primary sequence Promastigote cell viability Axenic Amastigote cell 

viability 

TL15 FKQWFSKFLGRIL-NH2 7% 60% 

TL16 FVKWFSKFLGRIL-NH2 6% no activity 

TL17 FVQKFSKFLGRIL-NH2 6% no activity 

TL25 FVQWFSKFLGRKL-NH2 16% no activity 

TL26 FVQWFSKFLGRLK-NH2 16% no activity 

 

Table 3.5 Active peptides from Lysine scan of temporin L. Peptides were tested at a concentration 

of 200 μM 
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 3.2.3 Natural temporin peptide library 

 

A library of temporin peptides were synthesised by Cambridge Research Biochemicals 

(CRB) using their PepArray
TM

 technology. The peptides were synthesised on a 3-5 µM 

scale, and were evaluated by the suppliers to have a purity of 70-90%. This evaluation of 

purity is and quality control is determined by HPLC and MS analysis of a fraction (10%) 

of the peptides in the given library. The purity of the peptides supplied was deemed to be 

acceptable for initial screening applications, and with regard to cost and time it was the 

most reasonable method by which to screen larger libraries of peptides. It was anticipated 

that if a peptide was identified from the PepArray™ libraries as having antileishmanial 

activity, then it could be remade on a larger scale in house, purified, and tested at a higher 

purity for more accurate analysis. Temporin L was also synthesised by CRB, in order to 

provide another measure of the purity of the Peparray
TM

 peptides produced. The activity of 

the “Peparray
TM”

 Temporin L would be compared to previous results obtained using a 

Temporin L peptide that had been prepared and HPLC purified in Durham. The full 

sequences for all the temporin peptides in the library synthesised are shown in Table 3.6. 
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Peptide Sequence Name 

1 NFLGTLVNLAKKIL-NH2 Temporin-1CSd   

2 FLPILGKLLSGIL -NH2 Temporin-1TGa 

3 FLPLLASLFSRLL-NH2 Temporin-1Oa  

4 FLPLIGKILGTIL-NH2 Temporin-1Ob  

5 FLPIVGRLISGLL-NH2 Temporin 1ARa  

6 FLPIIAKVLSGLL-NH2  Temporin 1Bya  

7 ILPLVGNLLNDLL-NH2  Temporin 1Ja 

8 FLPIVGKLLSGLL-NH2  Temporin 1M  

9 ILPILGNLLNGLL-NH2  Temporin 1Pra  

10 FLPLVGKILSGLI-NH2  Temporin 1VE  

11 FLSSIGKILGNLL-NH2  Temporin 1Va  

12 FLSGIVGMLGKLF-NH2 Temporin-SHa  

13 FLSHIAGFLSNLF-NH2  Temporin-SHc  

14 ILPILGNLLNSLL-NH2  Temporin-1PRb  

15 HFLGGTLVNLAKKIL-NH2  Temporin-1DRa 

16 FLPVILPVIGKLLSGIL-NH2  Temporin-1TGc  

17 FFPLVLGALGSILPKIF-NH2  Temporin-LTa  

18 FFGSVLKLIPKIL-NH2  Temporin-PTa  

19 FLPGLIAGIAKML-NH2  Temporin-LT1  

20 FLPIALKALGSIFPKIL-NH2  Temporin-LT2  

21 FLPIITNLLGKLL-NH2  Temporin-PRb 

22 FVDLKKIANIINSIF-NH2  Temporin-1CEa  

23 FLPFLAKILTGVL-NH2 Temporin-1Ca 

24  FLPLFASLIGKLL-NH2  Temporin-1Cb  

25 FLPFLASLLTKVL-NH2 Temporin-1Cc  

26 FLPFLASLLSKV-NH2 Temporin-1Cd  

27 FLPFLATLLSKVL-NH2  Temporin-1Ce  

28 FLPIVGKLLSGLL-NH2  Temporin-1P  

29 FLPLLFGAISHLL-NH2  Temporin-GH  

30 FLPIVGKLLSGLL-NH2  Temporin-1CSa  

31 FLPIIGKLLSGLL-NH2  Temporin-1CSb 

32 FLPLVTGLLSGLL-NH2  Temporin-1CSc  

33 FLSAITSLLGKLL-NH2 Temporin-1SPb  

34 FIGPIISALASLFG-NH2  Temporin-1DYa  

35 FLPLVGKILSGLI-NH2  Temporin-1PLa  

36 FLPLLASLFSRLF-NH2 Temporin-1Oc  

37 FLPLLASLFSGLF-NH2 Temporin-1Od  
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38 SILPTIVSFLSKVF-NH2  Temporin-1Ga  

39 SILPTIVSFLSKFL-NH2  Temporin-1Gb  

40 SILPTIVSFLTKFL-NH2  Temporin-1Gc  

41 FILPLIASFLSKFL-NH2  Temporin-1Gd  

42 FLPIVGKLLSGLSGLL-NH2  Temporin-ALa  

43 FLPIIGQLLSGLL-NH2  Temporin 1AUa  

44 FLPVIAGLLSKLF-NH2  Temporin 1Ec  

45  SIFPAIVSFLSKFL-NH2  Temporin 1HKa  

46 FLPFLKSILGKIL-NH2  Temporin 1OLa  

47 FLPFFASLLGKLL-NH2  Temporin 1OLb 

48 FLSIIAKVLGSLF-NH2  Temporin 1Vb  

49 FLPIVTNLLSGLL-NH2  Temporin-SHb  

50 FLPLVTMLLGKLF-NH2  Temporin-1Vc  

51 AVDLAKIANKVLSSLF-NH2  Temporin-1TGb  

52 FIITGLVRGLTKLF-NH2  Temporin-LTb  

53 SLSRFLSFLKIVYPPAF-NH2  Temporin-LTc  

54 FFGSVLKLIPKIL-NH2  Temporin-PTa  

55 FLSAITSILGKFF-NH2  Temporin-1SPa  

56  IPPFIKKVLTTVF-NH2  Temporin-CPa  

57  FLPIVGRLISGIL-NH2  Temporin-CPb 

58 FLPILGNLLSGLL-NH2  Temporin-PRa  

59 NFLDTLINLAKKFI-NH2  Temporin-PRc  

 

Table 3.6 List of the naturally occurring temporin peptides selected for the study. 

Screening of the large scale library against L. mexicana promastigotes and amastigotes 

concluded with the remainder of the library of naturally occurring temporin peptides. 

Results are shown in Figures 3.9 and 3.10.  

3.2.4 The Aureins and other antimicrobial peptides 

 

The Aureins are a family of α-helical AMPs of a similar structure and size to the 

temporins
21

. They are also derived from frogs, in this case produced by the dorsal gland of 

the Australian Bell Frogs Litoria aurea and Litoria raniformis
22

.  Aureins 2.1, 2.2, 2.3, 2.5, 
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2.6 and 3.1, were a gift from Dr Sarah Dennison (University of Lancaster, UK). Peptide 

sequences of aureins 2.1, 2.2, 2.3, 2.5, 2.6 and 3.1 are shown in Table 3.10  

Peptide Sequence Chemical 

formula 

MW 

Aurein 2.1 GLLDIVKKVVGAFGSL-NH2 C76H131N19O19 1614.98 

Aurein 2.2 GLFDIVKKVVGALGSL-NH2 C76H131N19O19 1614.98 

Aurein 2.3 GLFDIVKKVVGAIGSL-NH2 C76H131N19O19 1614.98 

Aurein 2.5 GLFDIVKKVVGAFGSL-NH2 C79H129N19O19 1648.99 

Aurein 2.6 GLFDIAKKVIGVIGSL-NH2 C77H133N19O19 1629.00 

Aurein 3.1 GLFDIVKKIAGHIAGSI-NH2 C81H136N22O20 1738.09 

 

Table 3.10  Summary of the aurein peptides investigated.  

All aurein peptides provided were tested as pure compounds (purified by RP-HPLC). 

Peptides were tested for activity against promastigote and axenic amastigote life cycle 

stages of L. mexicana. None of the aureins screened showed any activity against the axenic 

amastigotes. Of the aurein peptides that were investigated three showed activity against the 

promastigote form the parasite. Aureins 2.2, 2.3 and 2.5 (<50% parasite viability), but only 

at the higher concentration: aurein 2.2 (5% cell viability at 100 μM, 77% at 50 μM), aurein 

2.3 (9% cell viability at 100 μM, 86% at 50 μM) and aurein 2.5 (38% cell viability at 100 

μM, 84% at 50 μM). These results are shown in Figures 3.11 and 3.12.  
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Figure 3.11 % viability (axenic amastigote) when incubated with aureins 2.1, 2.2, 2.3, 2.5, 2.6, 3.1. 

Amphotericin B was used as a control. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

Figure 3.12 % viability (promastigotes) when incubated with aureins 2.1, 2.2, 2.3, 2.5, 2.6, 3.1 

Amphotericin B was used as a control. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated. 

 

Results obtained from testing of the aureins support our previous findings
2
 in which the 

promastigote lifecycle stage appears to be significantly more susceptible to the effects of 

the temporin AMPs. The aurein peptides are thought to act through bacterial membrane 
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disruption via the carpet mechanism
23

, as has been reported for the temporin peptides
24

. 

The analogous reported mechanisms of action support findings reported here, in that both 

temporin and aurein peptides exhibit similar differences in activity in L. mexicana 

promastigote and axenic amastigote lifecycle stages.  
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Figure 3.9 % viability (axenic amastigote) following a 24 hour incubation period with peptide library at 200 µM. Data points represent results of two 

independent experiments performed in triplicate. Standard error indicated. 
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Figure 3.10 % viability (promastigote) following a 24 hour incubation period with peptides at 200 µM. Data points represent results of two independent 

experiments performed in triplicate. Standard error indicated.
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Peptides with the sequences shown in Table 3.7 displayed activity against promastigotes 

and peptides shown in Table 3.8 were found to possess activity against axenic amastigotes. 

Peptide Compound 

number 

Active promastigotes only Chemical formula MW 

Temporin-1Cc  25 FLPFLASLLTKVL-NH2 C74H121N15O15 1460.85 

Temporin-1Ce  27 FLPFLATLLSKVL-NH2  C74H121N15O15 1460.85 

Temporin-1CSa  30 FLPIVGKLLSGLL-NH2  C68H117N15O14 1368.76 

Temporin-1CSb 31 FLPIIGKLLSGLL-NH2  C69H119N15O14 1382.78 

Temporin 1AUa  43 FLPIIGQLLSGLL-NH2  C68H115N15O15 1382.74 

Temporin 1Ec  44 FLPVIAGLLSKLF-NH2  C72H117N15O14 1416.8 

Temporin 1HKa  45  SIFPAIVSFLSKFL-NH2  C79H122N16O17 1567.92 

Temporin 1Vb  48 FLSIIAKVLGSLF-NH2  C70H115N15O15 1406.76 

Temporin-SHb  49  FLPIVTNLLSGLL-NH2  C68H115N15O16 1398.74 

Temporin-1Vc  50 FLPLVTMLLGKLF-NH2  C75H123N15O14S1 1490.94 

Temporin-LTc  53 SLSRFLSFLKIVYPPAF-NH2  C99H150N22O21 1984.4 

Temporin-PTa  54 FFGSVLKLIPKIL-NH2  C75H124N16O14 1473.89 

Temporin-CPa  56  IPPFIKKVLTTVF-NH2  C76H124N16O15 1501.9 

Temporin L Lys 

scan 

TL16 FVKWFSKFLGRIL-NH2 C84H126N20O14 1640.03 

 TL17 FVQKFSKFLGRIL-NH2 C78H124N20O15 1581.95 

 TL25 FVQWFSKFLGRKL-NH2 C83H123N21O15 1655 

 TL26 FVQWFSKFLGRLK-NH2 C83H123N21O15 1655 

TL ala scan TL2 FAQWFSKFLGRIL-NH2 C81H118N20O15 1611.94 

 TL3 FVQWFAKFLGRIL-NH2 C83H122N20O14 1623.99 

 TL6 FVQWFSKALGRIL-NH2 C77H118N20O15 1563.89 

Temporin-1CSd   1 NFLGTLVNLAKKIL-NH2 C73H127N19O17 1542.91 

Temporin-1Oa  3 FLPLLASLFSRLL-NH2 C74H121N17O15 1488.87 

Temporin-SHa  12 FLSGIVGMLGKLF-NH2 C67H109N15O14S1 1380.75 

Temporin-LT2  20 FLPIALKALGSIFPKIL-NH2  C93H154N20O18 1840.35 

Temporin-1CEa  22 FVDLKKIANIINSIF-NH2  C83H136N20O20 1734.1 

  

Table 3.7 Peptides that displayed activity against L. mexicana promastigotes. 
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Name Compound 

number 

Active promastigotes + 

amastigotes 

Chemical formula MW 

Temporin-GH  29 FLPLLFGAISHLL-NH2  C73H114N16O14 1439.79 

Temporin-

1SPb  

33 FLSAITSLLGKLL-NH2 C66H115N15O16 1374.72 

Temporin-

1DYa  

34 FIGPIISALASLFG-NH2  C69H109N15O16 1404.7 

Temporin 

1OLa  

46 FLPFLKSILGKIL-NH2  C76H126N16O14 1487.92 

Temporin-PRc  59 NFLDTLINLAKKFI-

NH2  

C79H129N19O19 1648.99 

Temporin L 

Lys scan 

TL15 FKQWFSKFLGRIL-NH2 C84H125N21O15 1669.03 

TL ala scan TL8 FVAWFSKFLGRIL-NH2 C81H119N19O14 1582.94 

TL ala scan TL10 FVQWFSKFLARIL-NH2 C84H124N20O15 1654.02 

TL ala scan TL11 FVQWFSKFLGAIL-

NH2 

C80H115N17O15 1554.88 

Temporin A  FLPLIGRVLSGIL-NH2 C68H117N17O14 1396.77 

Temporin L  FVQWFSKFLGRIL-NH2 C83H122N20O15 1639.99 

 

Table 3.8 Peptides showing activity against L. mexicana promastigotes and axenic amastigotes. 

 

Name Compound 

number 

No activity against either 

form  of the parasite 

Chemical 

formula 

MW 

Temporin-1Ca 23 FLPFLAKILTGVL-NH2 C73H119N15O14 1430.83 

Temporin-1Cb  24 FLPLFASLIGKLL-NH2  C73H119N15O14 1430.83 

Temporin-1Cd  26 FLPFLASLLSKV-NH2 C67H108N14O14 1333.67 

Temporin-1P  28 FLPIVGKLLSGLL-NH2  C68H117N15O14 1368.76 

Temporin-

1CSc  

32 FLPLVTGLLSGLL-NH2  C66H112N14O15 1341.69 

Temporin-

1PLa  

35 FLPLVGKILSGLI-NH2  C68H117N15O14 1368.76 

Temporin-1Oc  36 FLPLLASLFSRLF-NH2 C77H119N17O15 1522.88 

Temporin-1Od  37 FLPLLASLFSGLF-NH2 C73H110N14O15 1423.75 

Temporin-1Ga  38 SILPTIVSFLSKVF-NH2  C76H124N16O18 1549.9 

Temporin-1Gb  39 SILPTIVSFLSKFL-NH2  C77H126N16O18 1563.93 

Temporin-1Gc  40 SILPTIVSFLTKFL-NH2  C78H128N16O18 1577.96 

Temporin-1Gd  41 FILPLIASFLSKFL-NH2  C83H130N16O16 1608.03 

Temporin-ALa  42 FLPIVGKLLSGLSGLL-

NH2  

C79H136N18O18 1626.04 

Temporin 

1OLb 

47 FLPFFASLLGKLL-NH2  C76H117N15O14 1464.84 

Temporin-

1TGb  

51 AVDLAKIANKVLSSLF-

NH2  

C78H134N20O21 1688.03 

Temporin-LTb  52 FIITGLVRGLTKLF-NH2  C77H129N19O16 1576.97 

Temporin-

1SPa  

55 FLSAITSILGKFF-NH2  C72H111N15O16 1442.75 
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Temporin-CPb 57  FLPIVGRLISGIL-NH2  C68H117N17O14 1396.77 

Temporin-PRa  58 FLPILGNLLSGLL-NH2  C67H113N15O15 1368.71 

Temporin L 

Lys scan 

TL14 KVQWFSKFLGRIL-NH2 C80H125N21O15 1620.99 

 TL19 FVQWKSKFLGRIL-NH2 C80H125N21O15 1620.99 

 TL20 FVQWFKKFLGRIL-NH2 C86H129N21O14 1681.09 

 TL21 FVQWFSGFLGRIL-NH2 C79H113N19O15 1568.87 

 TL22 FVQWFSKKLGRIL-NH2 C80H125N21O15 1620.99 

 TL23 FVQWFSKFKGRIL-NH2 C83H123N21O15 1655.00 

 TL24 FVQWFSKFLKRIL-NH2 C87H131N21O15 1711.11 

  FVQWFSKFLGKIL-NH2 C83H122N18O15 1611.98 

Temporin B   LLPIVGNLLKSLL-NH2 C67H122N16O15 1391.79 

Temporin 1Sa  FLSGIVGMLGKLF-NH2 C67H109N15O14S1 1380.75 

Temporin C  LLPILGNLLNGLL-NH2  C65H116N16O15 1361.72 

Temporin F  FLPLIGKVLSGIL-NH2 C62H113N17O14 1320.67 

TA ala scan TA1 ALPLIGRVLSGIL-NH2 C65H111N17O14 1354.69 

 TA2 FAPLIGRVLSGIL-NH2 C66H115N17O14 1370.73 

 TA3 FLALIGRVLSGIL-NH2 C65H111N17O14 1354.69 

 TA4 FLPAIGRVLSGIL-NH2 C65H111N17O14 1354.69 

 TA5 FLPLAGRVLSGIL-NH2 C69H119N17O14 1410.80 

 TA6 FLPLIARVLSGIL-NH2 C65H110N14O14 1311.66 

 TA7 FLPLIGAVLSGIL-NH2 C66H113N17O14 1368.72 

 TA8 FLPLIGRALSGIL-NH2 C65H111N17O14 1354.69 

 TA9 FLPLIGRVASGIL-NH2 C68H117N17O13 1380.77 

 TA10 FLPLIGRVLAGIL-NH2 C69H119N17O14 1410.80 

 TA11 FLPLIGRVLSAIL-NH2 C65H111N17O14 1354.69 

 TA12 FLPLIGRVLSGAL-NH2 C65H111N17O14 1354.69 

 TA13 FLPLIGRVLSGIA-NH2 C65H111N17O14 1354.69 

TL ala scan TL1 AVQWFSKFLGRIL-NH2 C77H118N20O15 1563.89 

 TL4 FVQWASKFLGRIL-NH2 C77H118N20O15 1563.89 

 TL5 FVQWFSAFLGRIL-NH2 C80H115N19O15 1582.9 

 TL7 FVQWFSKFAGRIL-NH2 C80H116N20O15 1597.91 

 TL9 FVQWFSKFLGRAL-NH2 C80H116N20O15 1597.91 

 TL12 FVQWFSKFLGRIA-NH2 C80H116N20O15 1597.91 

Temporin-

1TGa 

2 FLPILGKLLSGIL-NH2  C69H119N15O14 1382.78 

Temporin-1Ob  4 FLPLIGKILGTIL-NH2 C70H121N15O14 1396.81 

Temporin 

1ARa  

5 FLPIVGRLISGLL-NH2  C68H117N17O14 1396.77 

Temporin 

1Bya  

6 FLPIIAKVLSGLL-NH2  C69H119N15O14 1382.78 

Temporin 1Ja 7 ILPLVGNLLNDLL-NH2  C66H116N16O17 1405.73 

Temporin 1M  8 FLPIVGKLLSGLL-NH2  C68H117N15O14 1368.76 

Temporin 1Pra  9 ILPILGNLLNGLL-NH2  C65H116N16O15 1361.72 

Temporin 1VE  10 FLPLVGKILSGLI-NH2  C68H117N15O14 1368.76 

Temporin 1Va  11 FLSSIGKILGNLL-NH2  C65H112N16O16 1373.69 

Temporin-SHc  13 FLSHIAGFLSNLF-NH2  C72H105N17O16 1464.72 



Chapter III: Evaluation of a second generation of antimicrobial peptides  
 

140 

 

Temporin-

1PRb  

14 ILPILGNLLNSLL-NH2  C66H118N16O16 1391.75 

Temporin-

1DRa 

15 HFLGGTLVNLAKKIL-

NH2  

C77H131N21O17 1623.00 

Temporin-

1TGc  

16 FLPVILPVIGKLLSGIL-

NH2  

C90H155N19O18 1791.32 

Temporin-LTa  17 FFPLVLGALGSILPKIF-

NH2  

C94H147N19O18 1831.30 

Temporin-PTa  18 FFGSVLKLIPKIL-NH2  C75H124N16O14 1473.89 

Temporin-LT1  19 FLPGLIAGIAKML-NH2  C65H111N15O13S1 1342.74 

Temporin-PRb 21 FLPIITNLLGKLL-NH2  C72H124N16O15 1453.86 

 

Table 3.9 Peptides that displayed no antileishmanial activity against either L. mexicana 

promastigotes or amastigotes 

 

 

3.3 Retesting of selected temporin peptides 
 

Peptides resulting in ≤ 60% cell viability were tested in assays to determine LD50 values. 

The values were determined using the peptides supplied by CRB (purity assumed to be 70-

90%) with the exception of temporins A (16) and temporin L (36), which were determined 

using RP-HPLC purified peptides prepared in house. LD50 values were determined through 

testing peptides at concentration intervals of 10 µM three times in triplicate. These results 

were plotted on graphs and the values contained in the Table below obtained through a line 

of best fit. 

Peptide Compound 

number 

Sequence LD50 

promastigote

s (µM) 

LD50 axenic 

amastigotes (µM) 

Temporin-

1Cc 

25 FLPFLASLLTKVL-NH2 150 >200 

Temporin-

1Ce 

27 FLPFLATLLSKVL-NH2  97 >200 

Temporin-

GH 

29 FLPLLFGAISHLL-NH2  105 147 

Temporin-

CSa 

30 FLPIVGKLLSGLL-NH2 103 >200 

Temporin-

CSb 

31 FLPIIGKLLSGLL-NH2 62 >200 

Temporin- 33 FLSAITSLLGKLL-NH2 86 74 
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1SPb 

Temporin-

1DYa 

34 FIGPIISALASLFG-NH2  89 92 

Temporin-

1AUa 

43 FLPIIGQLLSGLL-NH2  72 98 

Temporin-

1Ec 

44 FLPVIAGLLSKLF-NH2  63 >200 

Temporin-

1HKa 

45 SIFPAIVSFLSKFL-NH2  41 >200 

Temporin-

1OLa 

46 FLPFLKSILGKIL-NH2  82 85 

Temporin-

1Vb 

48 FLSIIAKVLGSLF-NH2  147 >200 

Temporin-

SHb 

49 FLPIVTNLLSGLL-NH2  105 >200 

Temporin-

1Vc 

50 FLPLVTMLLGKLF-NH2  74 >200 

Temporin-

LTc 

53 SLSRFLSFLKIVYPPAF-

NH2  

49 >200 

Temporin-

PTa 

54 FFGSVLKLIPKIL-NH2  39 >200 

Temporin-

CPa 

56 IPPFIKKVLTTVF-NH2  66 >200 

Temporin-

PRc 

59 NFLDTLINLAKKFI-NH2  71 57 

Temporin-

1CSd 

1 NFLGTLVNLAKKIL-NH2 56 >200 

Temporin-

1Oa 

3 FLPLLASLFSRLL-NH2 174 >200 

Temporin-

SHa 

12 FLSGIVGMLGKLF-NH2 167 >200 

Temporin-

LT2 

20 FLPIALKALGSIFPKIL-

NH2  

154 >200 

Temporin-

1CEa 

22 FVDLKKIANIINSIF-NH2  147 >200 

Temporin-A  FLPLIGRVLSGIL-NH2 9 72 

Temporin-L  FVQWFSKFLGRIL-NH2 68 67 

Temporin-L 

Ala Scan 

TL2 

 

TL3 

 

TL6 

TL8 

 

TL10 

 

TL11 

FAQWFSKFLGRIL-NH2 

FVQWFAKFLGRIL-NH2 

FVQWFSKALGRIL-NH2 

FVAWFSKFLGRIL-NH2 

FVQWFSKFLARIL-NH2 

FVQWFSKFLGAIL-NH2 

 

147 

123 

122 

74 

67 

 

>200 

>200 

>200 

>200 

>200 

Temporin L 

Lys Scan 

TL26 

 

TL16 

TL17 

 

TL25 

 

TL15 

FVQWFSKFLGRLK-NH2 

FVKWFSKFLGRIL-NH2 

FVQKFSKFLGRIL-NH2 

FVQWFSKFLGRKL-NH2 

FKQWFSKFLGRIL-NH2 

170 

78 

65 

43 

62 

>200 

165 

>200 

>200 

>200 
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Table 3.11 LD50 values for all peptides showing activity at less than 200 µM. 

3.5 Synthesis and purification of active hits from library testing 
 

Following more detailed analysis of the data obtained from screening the temporin peptide 

libraries, the peptides shown in Tables 3.12 and 3.13 were chosen to be synthesised, and 

the RP-HPLC purified peptides retested under identical conditions to those used in the 

initial library screening. As previously stated the purity of the commercial peptides was 

deemed to be greater be between 70-90% however in order to take any of the potential 

leads identified forward pure peptides that were synthesised in house were required. This 

work was carried out in collaboration with Miss Kathryn Sweeney (undergraduate MSci 

project 2013). The temporins that were chosen for re-synthesis were based on their activity 

profiles against promastigotes and axenic amastigotes (shown previously in Figures 3.9 

and 3.10). 

 

Peptide Peptide Sequence Charge 

at pH 7 

Mean Kyte-

Doolittle 

hydrophobicity 

pI 

Temporin 10a (3) FLPLLASLFSRLL-NH2 +2 1.73 14 

Temporin 1CEa (22) FVDLKKIANIINSIF-NH2 +2 0.95 10.6 

Temporin SHa (12) FLSGIVGMLGKLF-NH2 +2 1.67 14 

Temporin 1CSd (1) NFLGTLVNLAKKIL-NH2 +3 0.90 14 

 

Table 3.12 Peptides from the CRB library of natural temporins selected for resynthesis. 

The temporin L analogs to be re-synthesized (TL 8, TL 10 and TL 11) were selected, based 

on their activity against promastigotes. TL10 and TL11 also displayed activity against 

axenic amastigotes. TA3 was selected as although it showed low activity against 
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Leishmania mexicana, it was active against gram negative bacteria including S. aureus and 

the yeast C. albicans
17

. 

Peptide PeptideSequence Charge 

at pH 7 

Mean Kyte-

Doolittle 

hydrophobicity 

pI 

Temporin L (36) FVQWFSKFLGRIL-NH2 +3 0.82 14 

  

TL8 

FVQWFSKALGRIL-NH2 +3 0.75 14 

  

TL10 

FVQWFSKFLARIL-NH2 +3 0.99 14 

  

TL11 

FVQWFSKFLGAIL-NH2 +2 1.31 14 

Temporin A (16) FLPLIGRVLSGIL-NH2 +2 1.81 14 

 

TA3 

FLALIGRVLSGIL-NH2 +2 2.07 14 

 

Table 3.13 Peptides from the alanine scans of temporin L (36) and temporin A (16) selected for re-

synthesis and further investigation.  
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3.6 Biological Testing of temporin L and temporin A analogs 
 

As described in Section 3.2.2, alanine scans of temporins L and A had previously been 

performed and the analogs tested against L. mexicana axenic amastigotes and 

promastigotes at 200 µM. Based on these results, the analogs in Table 3.13 were chosen to 

be resynthesised, purified and tested at varying concentrations using serial dilutions from 

200µM.  

When treated with TL 8 [FVQWFSKALGRIL-NH2], wild type promastigotes showed low 

viability at 200 µM and 100 µM, with an average of 5% and 15% respectively. At lower 

concentrations viability rapidly increased, with an average of 59% viability at 50 µM, 88% 

at 25 µM and 100% at lower concentrations (see Figure 3.13 (b)). When tested against 

axenic amastigotes, cell viability was, 73% at 200µM and even higher at lower 

concentrations (see Figure 3.3 (a)). 

 TL10 [FVQWFSKFLARIL-NH2] resulted in promastigote viability of <10% at 

concentrations as low as 25µM. TL2 gave cell viability of around 10% at 200 µM  when 

tested against axenic amastigotes but significantly higher cell viability at lower 

concentrations (see Figure 3.3 (a)). 

Viability of promastigotes treated with TL11 [FVQWFSKFLGAIL-NH2] was 8% at 200 

µM and 43% at 100 µM and 50 µM. At concentrations lower than this there was little to no 

inhibition of growth, with viability being 87% at 25 µM and 100% at lower concentrations. 

Axenic amastigotes treated with TL11 showed 27% viability at 200 µM, and 100% at 

lower concentrations (see Figure 3.13 (b)). 

Promastigotes and axenic amastigotes were also treated with the Temporin A analoge TA3 

[FLALIGRVLSGIL-NH2] however antileishmanial activity was low, as predicted based on 
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the results previously obtained (see figure 3.13). Viability of promastigotes was 71% when 

treated with this peptide at 200 µM and over 90% at lower concentrations. Viability of 

amastigotes was 91% at 200 µM and 100% at lower concentrations (Figure 3.13 (a)). The 

reduced activity of this peptide when compared to native temporin A may be due to a 

number of factors including possible alterations in the secondary structure of the peptide 

and in the possible removal of a residue affecting the antileishmanial properties of the 

peptide. 

  



Chapter III: Evaluation of a second generation of antimicrobial peptides  
 

146 

 

 

 

b)  

 

Figure 3.13 (a) axenic amastigote and (b) promastigote viability when treated with temporin L 

(36), temporin A (16) and analogues TL 8, TL 10, TL 11 and TA 3. Data points represent results of 

two independent experiments performed in triplicate. Standard error indicated. 
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3.7 Testing against mutant Leishmania mexicana 
 

As described previously in Chapter I, AMPs are thought to target cell membranes. 

Therefore, changes in the membrane composition of parasites are of interest in order to 

determine the effects of specific mutations on AMP activity.  

Experimental work in this Section was carried out by Kathryn Sweeney (MSci 2013) and 

Dr Paul Denny. Peptides discussed in Sections 3.2.2 and their native equivalents were also 

tested against promastigote lpg1 mutants. These parasites are unable to synthesise the 

glycan core of lipophosphoglycan (LPG). Given that axenic amastigotes lack LPG
25

, this 

experimental work was carried out in order to attempt to determine the effect of the 

presence or absence of LPG to peptide activity. 

Lpg1 mutant promastigotes treated with Temporin L (36) [FWQWFSKFLGRIL-NH2] at 

200µM were, on average, only 14% viable but at lower concentrations viability quickly 

rose to over 90% at concentrations up to 100µM, indicating temporin L (36) is less potent 

against these mutants than either the wild type promastigotes or axenic amastigotes. 

However, only one triplicate was successfully performed so this would have to be repeated 

to be confirmed (Figure 3.14). 

Temporin L analogs tested all recorded efficacies against the mutants between those of the 

wild type promastigotes and axenic amastigotes. Mutants treated with TL8 gave around 

48% viability at 200 µM. Viability at 100 µM was similar on average, increasing to 74% at 

50 µM and over 90% at lower concentrations. Mutants treated with TL10 at 200 µM had 

6% viability, increasing to 49% at 100 µM, 69% at 50 µM and over 80% at lower 

concentrations. Mutants treated with TL11 had 14% viability at 200 µM and over 90% at 

lower concentrations. Again, analogue TA3 showed no antileishmanial properties. The 
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native temporin A (16) was active at concentrations down to 50 µM and weak activity at 

25µM (Figure 3.14). 

 

Figure 3.14  lpg1 mutant viability when treated with 16, 36 and analogues TL8, TL10, TL11 and 

TA 3. Data points represent results of two independent experiments performed in triplicate. 

Standard error indicated. 

 

Based on previously discussed results, IC50 values for temporin L (36), TL8, TL10, TL11, 

temporin A (16) and TA3 were calculated for both L. mexicana promastigotes and axenic 

amastigotes. These values are shown in Table 3.14. 

 

 TL TL 8 TL 10 TL 11 TA TA 3 

Promastigote WT 24±3 55±6 12±1 70±11 60±7 >200 

Axenic amastigote >200 >200 >200 >200 191 ± 30 >200 

Promastigote lpg1 

mutant 

208±31 >200 69±4 >200 36±4 >200 

 

Table 3.14 IC50 values for temporin A (16), temporin L (36) and analogues TL8, TL10, TL11 and 

TA3 
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The results for the Temporin L lysine scan analogs at 200 µM agree with those previously 

obtained (see Figures 3.7 and 3.8) and overall they show that of the 3 analogs TL10, 

[FVQWFSKFLARIL-NH2], showed the greatest activity against both L. mexicana axenic 

amastigotes and promastigotes, with similar activity when compared to  native Temporin 

L. This is unsurprising, given the only amino acid substitution is a glycine for an alanine, 

which is relatively minor given they have similar properties, both being small and neutral, 

despite their differences in hydrophobicity according to the Kyte-Doolittle model (native 

temporin L 0.82, TL8 0.75, TL10 0.99, TL11 1.31). 

TL11, [FVQWFSKFLGAIL-NH2], showed the least activity of all analogs tested against 

axenic amastigotes or promastigotes at lower concentrations.  The removal of arginine 

leads to a peptide with a lower charge ( +2 as opposed to +3) and higher hydrophobicity 

(69% as opposed to 62% hydrophobic residue), both of which could affect activity.  

TL8, [FVQWFSKALGRIL-NH2], also showed low levels of activity against both 

promastigotes and axenic amastigotes, which is perhaps surprising given the peptide has 

the same net charge (+3) and a very similar hydrophobicity (62% hydrophobic residue) as 

native Temporin L (36). However, the substitution of phenylalanine, a large, aromatic 

amino acid, for alanine, a small, aliphatic amino acid, will likely affect the integral 

structure of the peptide, including its ability to form helices, and hence its activity. 

Previously it has been shown that helicity can severely affect a peptides properties (study 

of temporin L analogues
18

). However, although it was shown that although helicity 

affected membrane permeability, it did not affect antimicrobial activity
17

.  

The initial alanine scan of temporin A showed that no analogues possessed antileishmanial 

activity against either axenic amastigotes or promastigotes.  This suggests the 
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antileishmanial activity of native temporin A is very sensitive to even changes in its amino 

acid sequence.  

The results obtained in this study (i.e. work carried out by K. Sweeney) for native 

Temporins A (16) and L (36) do not correspond exactly to previously obtained results (see 

Figures 2.20, 2.27 and 2.28).  This discrepancy was attributed to an error in the weighing 

out of the peptide for the stock solution; given concentrated stocks were initially made up 

any small error in weighing could be significant. Temporin L (36) appears to be more 

active against promastigotes but less active against amastigotes than previously reported, 

whereas Temporin A (16) is less active against both forms of the parasite. Given the time-

constrains of this study (carried out as an MSci project) there was not sufficient time to 

exams this further.  
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3. 8 Data Analysis of biological screening Part I: Analysis of known 

biological activity  
 

Having screened over one hundred peptides analysis of the data to try and identify possible 

indicators that could be used to predict antileishmanial activity was carried out. This was 

done in two parts (Section 3.8 and Section 3.9). The following section explores finding 

possible links between known or published biological activity and that obtained in the 

screening against L. mexicana. Tables 3.16 and 3.17 provide summaries of the reported 

biological activity for peptides that had antileishmanial properties (promasitgotes only and 

both respectively). Table 3.18 lists the peptides that displayed no activity against the L. 

mexicana parasite. The net charge and the hydrophobic residue percentage for each peptide 

are also provided within the Tables.  

At first glance it can be seen that the peptides that appear in all three tables display a range 

of reported biological activities and net positive charges (+1 to +4). There is no peptide 

that appears within the tables with reported activity against Gram-negative bacteria only. 

As this is a relatively small study, this does not necessarily indicate that AMPs that only 

display activity against Gram-negative bacteria are less likely to be antileishmanial 

peptides. Furthermore, the majority of AMPs isolated to date are activity against Gram-

positive bacteria with far a fewer number displaying activity against both Gram-negative 

and Gram-positive bacteria. With no obvious pattern present and the low number of active 

hits identified it was not possible to draw any solid conclusions or useful information 

simply by looking at previously reported biological activities. In light of this a more 

rigorous computational analysis was undertaken (See Section 3.9). 
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Name Primary Sequence Reported 

Activity 

Net 

charge 

Hydrophobic 

residue % 

Ref  

Temporin-1Cc  FLPFLASLLTKVL-NH2 Gram +ve +2 69% 
26

 

Temporin-1Ce  FLPFLATLLSKVL-NH2  Gram +ve +2 69% 
26

 

Temporin-

1CSa  

FLPIVGKLLSGLL-NH2  Gram +ve 

fungi 

mammalian 

cells 

+2 61% 
27

 

Temporin-

1CSb 

FLPIIGKLLSGLL-NH2  Gram +ve +2 61% 
28

 

Temporin 

1AUa  

FLPIIGQLLSGLL-NH2  Gram +ve +1 61% 
29

 

Temporin 1Ec  FLPVIAGLLSKLF-NH2  Gram +ve +2 69% 
30

 

Temporin 

1HKa  

 SIFPAIVSFLSKFL-NH2  None reported +2 64% 
31

 

Temporin 1Vb  FLSIIAKVLGSLF-NH2  Gram +ve +2 69% 
31

 

Temporin-SHb   FLPIVTNLLSGLL-NH2  Gram +ve +1 61% 
32

 

Temporin-1Vc  FLPLVTMLLGKLF-NH2  Gram +ve +2 69% 
26

 

Temporin-LTc  SLSRFLSFLKIVYPPAF-NH2  Gram +ve  

Gram - ve  

HIV 

+3 52% 
33

 

Temporin-PTa  FFGSVLKLIPKIL-NH2  Gram +ve  

Gram -ve  

HIV 

+3 61% 
34

 

Temporin-CPa   IPPFIKKVLTTVF-NH2  Gram + ve 

Gram -ve,  

fungi 

+3 53% 
35

 

Temporin L 

Lys scan 

FVKWFSKFLGRIL-NH2 None reported +3 62% n/a 

 FVQKFSKFLGRIL-NH2 None reported +3 54% n/a 

 FVQWFSKFLGRKL-NH2 None reported +3 54% n/a 

 FVQWFSKFLGRLK-NH2 None reported +3 54% n/a 

TL ala scan FAQWFSKFLGRIL-NH2 None reported +2 62% n/a 

 FVQWFAKFLGRIL-NH2 None reported +2 69% n/a 

 FVQWFSKALGRIL-NH2 None reported +2 62% n/a 

Temporin-

1CSd   

NFLGTLVNLAKKIL-NH2 Gram +ve  

Gram -ve  

fungi  

+3 57% 
28

 

Temporin-1Oa  FLPLLASLFSRLL-NH2 Gram +ve  

Gram -ve 

+2 69 % 
36

 

Temporin-SHa  FLSGIVGMLGKLF-NH2 Gram +ve  

Gram -ve  

fungi  

parasites  

+2 61% 
32

 

Temporin-LT2  FLPIALKALGSIFPKIL-NH2  Gram +ve  

Gram - ve 

+3 64% 
37

 

Temporin-

1CEa  

FVDLKKIANIINSIF-NH2  Gram +ve,  

cancer cells 

+3 52% 
38

 

 

Table 3.16 Summary of previously reported biological activity for peptides that displayed activity 

against L. mexicana promastigotes only. 
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Name Primary Sequence Reported 

Activity 

Net charge Hydrophobic 

residue % 

Ref  

Temporin-GH  FLPLLFGAISHLL-NH2  Gram +ve +1 69% 
39

 

Temporin-

1SPb  

FLSAITSLLGKLL-NH2 Gram +ve +2 61% 
33

 

Temporin-

1DYa  

FIGPIISALASLFG-NH2  Gram +ve   

Gram -ve 

+1 64% 
40

 

Temporin-

1OLa  

FLPFLKSILGKIL-NH2  None reported +3 61% n/a 

Temporin-

PRc  

NFLDTLINLAKKFI-NH2  Gram +ve +2 57% 
41

 

Temporin L 

Lys scan 

FKQWFSKFLGRIL-NH2 None reported +3 54% 
42

 

TL ala scan FVAWFSKFLGRIL-NH2 None reported +2 69%  

TL ala scan FVQWFSKFLARIL-NH2 None reported +2 69%  

TL ala scan FVQWFSKFLGAIL-NH2 None reported +1 69%  

Temporin A FLPLIGRVLSGIL-NH2 Gram +ve 

Gram -ve  

HIV 

Parasites 

Chemotactic 

+2 61%  

Temporin L FVQWFSKFLGRIL-NH2 Gram +ve  

Gram -ve  

Fungi 

Mammalian cells 

Cancer cells 

 

+3 61%  

 

Table 3.17 Summary of previously reported biological activity for peptides that displayed activity 

against L. mexicana promastigotes and axenic amastigotes. 

 

Name Primary Sequence Reported 

Activity 

Net 

charge 

Hydrophobic 

residue % 

Ref  

Temporin-

1Spa 

FLSAITSILGKFF-NH2 None reported +2 61% 
39

 

Temporin-

LTa 

FFPLVLGALGSILPKIF-NH2 Gram +ve 

Mammalian cells 

+2 64% 
33

 

Temporin-

1TGc 

FLPVILPVIGKLLSGIL-NH2 Gram +ve 

Mammalian cells 

+2 64% 
40

 

Temporin-

1DRa 

HFLGTLVNLAKKIL-NH2 Gram +ve  

Gram -ve  

Fungi  

Mammalian cells 

+4 57% 
43

 

Temporin-

1VE 

FLPLVGKILSGLI-NH2 Gram +ve  

Gram -ve 

+2 61% 
41

 

Temporin-

1PRb 

ILPILGNLLNSLL-NH2 Gram +ve 

Gram -ve  

Fungi 

+1 61% 
42

 

 

Table 3.18 Summary of previously reported biological activity for peptides that displayed no 

activity against L. mexicana promastigotes or axenic amastigotes. 
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3.9 Data analysis from biological screening Part II: Computational studies and 

development of predictive tools  

 

The full data set that arose from the peptide screening was supplied to Dr Marc Torrent at 

the MRC, Cambridge. Dr Torrent has experience in the development of predictive tools 

and computational models that can be utilised to enhance the antibacterial properties of 

AMPs. A full copy of the report produced by Dr Torrent is provided in the Appendices and 

his initial conclusions are summarised below. 

 The main overall conclusion is that a machine-learning approach has the potential 

to classify between active and inactive peptides. 

 From the data we have at this stage we can conclude that the specificity is in 

general not good enough to accurately predict active peptide sequences.  

 We have a high false positive rate, which decreases the specificity / accuracy of the 

predication. The reason for a high false positive rate is that we have a small number 

of active peptides compared with inactive peptides. 

 We need to design several more peptides with high a probability of being active 

and screen them. The new peptides will provide us with more data to refine the 

model and, hopefully, complete our goal to design an algorithm able to predict 

antileishmanial compounds. 

 

The key point was that additional experimental data that could be used to train the model 

further and enhance the reliability of the predications was required. The computational 

analysis also showed that there were significant differences between active and inactive 

peptides in terms of bulkiness, ß-sheet propensity and turn propensity. Peptides that could 

be used to probe these areas would be extremely useful in refining and improving the 

model. The peptides designed to probe bulkiness, ß-sheet propensity and turn propensity 

and that would have been synthesised had time permitted are outlined in the following 

section.  
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3.9.1 Refining the model via additional library screening (future work) 

 

It is predicted that substitution of each residue in Aurein 2.1 (GLLDIVKKVVGAFGSL-

NH2) for Ile will give us information on bulkiness and ß-sheet propensity on a peptide that 

has been found to be active (at 200 μM) and relatively robust in the computational 

modelling. The information obtained could also help to dissect the importance of these two 

descriptors. An Ile scan of Aurein 2.1 would require the preparation of the 15 peptides 

shown in Table 3.19.  
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Peptide primary sequence  

(GLLDIVKKVVGAFGSL-NH2) 

ILLDIVKKVVGAFGSL-NH2 

GILDIVKKVVGAFGSL-NH2 

GLIDIVKKVVGAFGSL-NH2 

GLLIVKKVVGAFGSL-NH2 

GLLDIKKVVGAFGSL-NH2 

GLLDVIVVGAFGSL-NH2 

GLLDIVKIVVGAFGSL-NH2 

GLLDIVKKIVGAFGSL-NH2 

GLLDIVKKVIGAFGSL-NH2 

GLLDIVKKVVIAFGSL-NH2 

GLLDIVKKVVGIFGSL-NH2 

GLLDIVKKVVGAIGSL-NH2 

GLLDIVKKVVGAFISL-NH2 

GLLDIVKKVVGAFGIL-NH2 

GLLDIVKKVVGAFGSI-NH2 

 

Table 3.19 Isoleucine (I) scan of Aurein 2.1 

Temporin A (16)(FLPLIGRVLSGIL-NH2) which was found to be one of the most active 

peptides was highlighted for further investigation. The core of 16 is very sensitive to 

changes in terms of turn and ß-sheet propensity. As such variants of 16 with modifications 

in the core region would provide an insight on structural changes when i) a positive charge 

is added, ii) bulkiness is changed and iii) the structure is disrupted. Substitution of the Gly 

(G) residue in position 6 of temporin A by: K, R, L, I, P, W (6 peptides) would be carried 

out.  Substitution of the Val (V) residue at position 8 in temporin A, by K, R, L, I, G, P, W 

(7 peptides) would also be carried out. As the original peptide (16) was active it is 
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predicted that a number of the new peptides (Table 3.20 and Table 3.21) may also be 

active, and this would help to improve model training by providing more active “hits”. 

Peptide primary sequence 

(FLPLIGRVLSGIL-NH2) 

FLPLIKRVLSGIL-NH2 

FLPLIRRVLSGIL-NH2 

FLPLILRVLSGIL-NH2 

FLPLIIRVLSGIL-NH2 

FLPLIPRVLSGIL-NH2 

FLPLIWRVLSGIL-NH2 

 

Table 3.20 Substitution of the Gly (G) residue in position 6 of temporin A by: K, R, L, I, G, P, W 

 

Peptide primary sequence 

(FLPLIGRVLSGIL-NH2) 

FLPLIKRKLSGIL-NH2 

FLPLIRRRLSGIL-NH2 

FLPLILRLLSGIL-NH2 

FLPLIIRILSGIL-NH2 

FLPLIGRGLSGIL-NH2 

FLPLIPRPLSGIL-NH2 

FLPLIWRWLSGIL-NH2 

 

Table 3.21 Substitution of the Val (V) residue at position 8 in temporin A, by K, R, L, I, G, P, W 

The peptides sequences below are all highly ranked (in terms of predicted activity) 

according to the computational models created and as such they would provide a good test 

of predictive power of the model at the current stage.  
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Peptide primary sequence 

FLPLIKRKLSGIL-NH2 

FLPLIRRRLSGIL-NH2 

FLPLILRLLSGIL-NH2 

FLPLIIRILSGIL-NH2 

FLPLIGRGLSGIL-NH2 

FLPLIPRPLSGIL-NH2 

FLPLIWRWLSGIL-NH2 

 

Table 3.22 Peptides designed to test the predictive power of the current model. 
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3.10  Conclusions  

 

As the data in Figures 3.2 and 3.3 highlights, none of the peptides tested (Table 3.1, TA1-

TA3) were found to show activity below the threshold against either promastigotes or 

axenic amastigotes. These results indicate that there are no residues within the natural 

temporin A (16) sequence that are suitable for further modification to enhance 

antileishmanials activity. 

Lysine and alanine scans of temporin L (36) indicate that the nature of positively charged 

residues in the sequence of temporin L affect the antileishmanial activity of the peptide. 

Removal of a charged residue from temporin L (a peptide with reported antibacterial and 

antileishmanial activity) does appear to reduce antileishmanial activity. However, in this 

study there was not sufficient time to determine if this also affects the haemolytic activity; 

as a relatively high haemolytic activity of natural temporin L (36) currently prevents this 

peptide from being developed as a therapeutic agent.  

The libraries of peptides synthesised commercially by Cambridge Research Biochemicals 

Ltd (CRB) were supplied with a suspected purity of between 70-90% (10% were analysed 

by HPLC and MS). Several peptides that showed activity were resynthesised in house at 

Durham. The biological activity obtained using the ‘pure peptides’ matched with a 10% 

error that obtained initially in the library screen. Temporin L (36) was also synthesised by 

CRB, in order to provide another measure of the purity of the Peparray
TM

 peptides 

produced. The activity of the peparray
TM

 temporin L (36) compared well to previous 

results obtained using a temporin L peptide that had been prepared and purified in Durham. 

Computational analysis conducted by Dr Marc Torrent (Cambridge University) did not 

identify any patterns of activity when applying the algorithms applied as predictors of 

antibacterial activity. Conclusions reached through this analysis were that the parameters 
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applied to analyse peptide sequences for antibacterial activity are not suitable to be used in 

antiparasitic (antileishmanial) models of predictive activity. As this is the first study to use 

computational analysis to attempt to predict antileishmanial activity, a larger data set is 

required, as there were relatively few active peptides identified through this study, and as 

indicated in Tables 3.15 and 3.16, there appears to be no correlation between the physical 

parameters used in the algorithms and antileishmanial activity (or lack thereof). In 

conclusion, the data obtained through this library screening approach has not identified any 

sequences predictive of activity against Leishmania mexicana. However, as detailed in 

Section 3.9, the work carried out in our study has generated the largest data set in this field, 

and this will enable further studies in this area to be carried out. The ultimate aim is that 

the work carried out will lead to the first prediction systems being developed that can be 

used to rationally design peptides with anti-parasitic activities. 
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Chapter IV: Temporin peptides as a means of reducing 

current drug toxicity  

4.1 Introduction and Aims  

 

The main aim of the work present in this chapter was to investigate the ability of 

the temporin peptides to penetrate the host cell membrane (macrophage) and reach 

intracellular Leishmania amastigotes. In addition to probing the ability of these 

AMPs to act directly against the intracellular form of L. mexicana, any specific 

targeting properties of the temporins would be analysed. It was envisaged that if 

the temporins could enter Leishmania infected macrophages then perhaps they 

may be important delivery vehicles that could be used to increase the efficacy and 

reduce the toxicity of current treatments. Table 4.1 Summaries the AMPs that 

have previously been screened against the amastigote form of various Leishmania 

sp. Table 4.1 shows antimicrobial peptides reported as being tested against the 

amastigote forms of the parasite. 
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A c t i v i t y  ( %  g r o w t h  i n h i b i t i o n ,  c o n c e n t r a t i o n  i n  µ M ) Ref 

promastigotes axenic amastigotes 

Temporin 

A 

amphibia FLPLIGRVLSGIL-NH2 L. donovani 

(50, 8.4) 

L. pifanoi 

(50, 14.6) 

1 

Temporin 

B 

amphibia LLPIVGNLLKSLL-NH2 L. donovani 

(50, 8.6) 

L. Pifanoi 

(50, 7.1) 

1 

Temporin 

1Sa 

amphibia FLSGIVGMLGKLF-NH2 L. donovani 
(50, 18.1) 

L. infantium 
(50, 22.8) 

2 

Bombin 

H2 

amphibia IIGPVLGLVGSALGGLL-NH2 L. donovani 

(50, 7.3) 

L. pifanoi 

(50, 11) 

3 

Bombanin 

H4 

amphibia 
aLiGPVLGLVGSALGGLLKKI-NH2 L. donovani 

(50, 1.7) 

L. pifanoi 

(50, 5.6) 

3 

Skin 

polypeptid

e YY 

mammal YPPKPESPGEDASPEEMNKYLTALRHY

INLVTRQRY-NH2 
L. major 
(100, 5.9) 

L. majord 
(100, 6.2) 

4 

Histatin-5 mammal DSHAKRHHGYKRKFHEKHHSHRGY L. donovani 
(50, 7.3) 

L. pifanoi 
(50, 14.4) 

5 

a
 i, stands for D-allo-isoleucine,  

b
Z, stands for pyroglutamic acid  

c 
single line indicates disulfide bridge between atoms 

d
 testing was carried out using ex vivo amastigotes not axenic 

Table 4.1 Antimicrobial peptides with activity against Leishmania spp.
6
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4.2 Synthesis of Fluorescently labelled peptides 

 

4.2.1 Selection of temporin peptides for investigation 

Despite showing moderate activity against L. mexicana axenic amastigotes, 

temporin A (16) and temporin L (36) demonstrated no measurable efficacy 

against intra-macrophage L. mexicana parasites (see Chapter II, Figure 2.19). The 

next step would be to investigate whether this lack of efficacy against infected 

macrophages was due to problems penetrating the host cell and reaching the target 

amastigotes.  However, it was decided that Temporin L would not investigated in 

this manner due to its generic toxicity, including against host cells. Temporins A 

(16) and B (17) demonstrated efficacy against L. mexicana promastigotes (63% 

inhibition at 12.5 µM and 38% at 50 µM respectively). However, the amastigote 

forms of the parasite remained largely resistant to these peptides with only 

temporin A (16) demonstrating any significant activity (23% inhibition at 12.5 

µM but 98% at 100 µM). Temporin B was selected as it had been demonstrated 

that the peptide was not active against Leishmania Mexicana at the concentrations 

tested, and also that it was not toxic when tested against mammalian cells (see 

Chapter II).  

 

4.2.1 Selection of Fluorescent dyes  

In order to investigate the activity of the temporins against intracellular L. 

mexicana parasites, it was decided to investigate how they interact with both the 

un-infected murine macrophages and axenic amastigote infected murine 
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macrophages. To examine the mode of action (or toxicity to the host cell) we 

chose to synthesise a fluorescent analogue of two temporin peptides (temporin A 

and temporin B) so that fluorescence microscopy could be used to look at various 

aspects such as the cell penetration.  

FAM was selected as one of the fluorescent tag as it is a cost effective peptide 

labelling dye. The 5-, 6- isomeric mixture of FAM was determined to be adequate 

for the initial synthesis as it was not clear whether labelling the peptide would be 

possible. For initial biological screening a single isomer of the dye was not 

deemed necessary as both the 5- and 6-isomers have identical fluorescent 

properties (460 nm) Importantly, FAM is membrane impermeable, implying that 

any cellular localization of FAM within the biological screening is due to 

membrane permeating properties of the attached peptide. FAM is particularly 

valuable to the biological screening of temporin B within infected and non-

infected macrophage as it is a highly polar, water soluble dye that is frequently 

used to track liposomal and cellular interactions.  In the context of this biological 

screen of the FAM tagged peptides would allow the movement and localization of 

the peptides within the macrophage to be probed. Fluorescein is a more pH-

sensitive dye than tetramethylrhodamine. For optimum results, with Fluorescein 

the pH should be between 6 and 10. Fluorescence drops very sharply at pH values 

below 5.5, and it was speculated that this may cause a potential problem, given 

the acidic environment in the macrophage vacuoles where the parasite appears to 

reside (pH 5.5). It was for this reason that Rhodamine was also selected to be used 

in the tagging of the peptides.  
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4.2.2 Synthesis of Fluorescently labelled temporin B 

The first step in the preparation of a fluorescently tagged temporin B required the 

synthesis of the un-tagged peptide. The synthesis of temporin B proceeded 

without incident on Rink Amide AM resin (0.31 mmol) using microwave Fmoc-

SPPS. The successful synthesis of the peptide was verified with MALDI-TOF 

mass spectrometry. A third of the synthesised peptide (0.10 mmol) was then 

removed from the reaction vessel.  The addition of the fluorescent tag, 5-6-

Carboxyfluorescein (FAM) was achieved in the same manner as an amino acid 

coupling. First the N-terminal Fmoc was removed and the tagging reaction with 

FAM was carried out using a coupling agent (PyBOP) and a base (N-

methylmorpholine). It is worth noting that the addition of FAM was carried out 

manual at rt due to the novel nature of the reaction and the potential sensitivity 

towards heating of the FAM group. The fluorescently peptide was then cleaved 

from the resin using standard reaction conditions. The crude fluorescently tagged 

peptide, FAM-TB (37) was then characterised by MALDI-TOF mass 

spectrometry. The MALDI-TOF mass spectrum obtained indicated that the 

coupling of FAM to temporin B (17) did not go to completion. The desired 

product, FAM-LLPIVGNLLKSLL-NH2 (37) was detected as a minor peak with 

the major peak corresponding to unreacted temporin B (LLPIVGNLLKSLL-NH2.) 

However, as MALDI-TOF analysis is largely dependent upon the peptide 

dissolving fully it was speculated that the differences in peak strength observed 

may simply be a result of the lower solubility of FAM-TB in the analysis solution 

(MeCN/ H2O) compared to temporin B (17). This would correlate with the 

observation that often weaker MALDI-TOF signals for Fmoc protected peptides 
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are obtained versus the free peptide. Given that both the Fmoc group and FAM 

are large aromatic systems as it is possible that the additional hydrophobicity of 

the FAM group prevented effective suspension of the peptide in the solvent 

required for MALDI-TOF analysis.  The decision was therefore made to proceed 

with RP-HPLC purification of the crude reaction mixture. After purification 

MALDI-TOF analysis showed that a small amount of un-tagged temporin B (17) 

was still present in the sample. Given the sensitive nature of the FAM-TB (37) 

peptide it was deemed to be more appropriate to continue with biological 

screening rather than repeat the RP-HPLC purification and risk degrading the 

fluorescently tagged peptide.  

 

Temporin B-fluorescein (37) 

 

Temporin B, primary structure LLPIVGNLLKSLL-NH2 was synthesised 

according to microwave coupling procedure illustrated in Scheme 2.2, starting 

with 500 mg (0.31 mmol) of rink amide resin. During the synthesis, the structure 

of the growing peptide chain was confirmed at approximately five amino acid 

intervals by use of MALDI-TOF mass spectrometry. 5,6-Carboxy-

tetramethylrhodamine was coupled onto the resin bound peptide using 0.1 mmol 



Chapter IV: Temporin peptides as a means of reducing current drug toxicity 
 
 

174 
 

of 5,6-Carboxy-tetramethylrhodamine (TMR). The ratio of 1:3 was used as 5-

Carboxy-tetramethylrhodamine is considerably more expensive than the amino 

acids used to form the growing peptide chain (a 1:5 ration used). When all amino 

acids were coupled, a final Fmoc deprotection step was carried out, and the 

peptide cleaved from resin by use of TFA, TIPS and H2O using microwave 

chemistry. On confirmation of the presence of the correct structure, temporin A 

coupled to 5,6-Carboxy-tetramethylrhodamine was purified by use of HPLC and 

dried by lyophilisation. The purity of TMR-TB (38) was confirmed by use of 

analytical HPLC, and the compound subsequently used in biological testing. 

 

Temporin B-tetramethylrhodamine (38) 

 

 

4.2.1 Synthesis of fluorescently labelled temporin A 

 

Methods used for the synthesis of fluorescently labelled temporin A were as for 

the synthesis of fluorescently tagged temporin B. Full procedures are detailed in 

Chapter VII.  
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Temporin A-Fluorescein (39) 

 

 

 Temporin A-Tetramethylrhodamine (40) 

 

 

4.3 Investigating the cell penetration and the targeting effects of the 

temporins 

 

Control experiments showed that as expected fluorescein alone did not penetrate 

the host macrophage (data not shown). However, when conjugated to either 
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temporin A (FAB-TA, 40) or B (FAB-TB, 37) fluorescein was taken into 

uninfected macrophages when incubated with the cells in serum-free conditions 

(Figure 4.1 and 4.2). Notably this effect was temperature dependent with the 

uptake of the labelled peptides not being evident when incubated with the cells on 

ice (data not shown). In contrast to the diffuse staining observed in the uninfected 

macrophages, FAB-TB (37) clearly led to the accumulation of the fluorophore in 

the macrophage vacuole occupied by the amastigote parasites (Figure 4.2). A 

similar, although less distinct, effect was observed with FAB-TA (39) (Figure 

4.1). 
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Panels from left: Blue, DAPI staining of DNA; Green, FAB-TA (39) localisation; Overlay of first 

two. Scale bar indicates 10 µm. 

A. Uninfected RAW264.7 macrophage-like host cells. Nuclei stained blue. FAB-TA (39) 
conjugate demonstrated diffuse localisation. 

B. L. mexicana infected RAW264.7 cells. Parasite nuclei and mitochondrial genomes 
(kinetoplasts) stained blue and indicated with *. FAB-TA (39) conjugate localised in a 
punctate pattern including the region occupied by parasites. 

 

Figure 4.1 Experiments carried out using FAB-TA (39) 
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Panels from left: Blue, DAPI staining of DNA; Green, FAB-TB (37) localisation; Overlay of first 

two. Scale bar indicates 10 µm. 

A. Uninfected RAW264.7 macrophage-like host cells. Nuclei stained blue. FAB-TB (37) 
demonstrated diffuse localisation. 

B. L. mexicana infected RAW264.7 cells. Parasite nuclei and mitochondrial genomes 
(kinetoplasts) stained blue and indicated with*. FAB-TB (37) localised exclusively to the 
region occupied by parasites. 

 

Figure 4.2  Experiments carried out using FAB-TB (37) 

 

As data without confocal support does not confirm findings, this data suggests 

that the temporin-fluorophores conjugates (37 and 39) penetrate the host 

macrophage cell, and were also able to reach the phagolysosome in which the 

leishmania parasites reside. Whilst this may not lead to efficacy of the peptides 

studied here it indicated that temporins have the capacity and, furthermore, these 

short peptides offer the potential to target toxic, antiprotozoal compounds directly 

to their intended target. If develop further peptide such as temporin B may be 

useful delivery agents and help to reduce the undesirable cytotoxicity of current or 



Chapter IV: Temporin peptides as a means of reducing current drug toxicity 
 
 

179 
 

future antileishmanials. However, although a highly attractive prospect further 

experiments are required. Results obtained are not conclusive as to whether the 

fluorophore was taken into the lumen of the amastigote-containing 

phagolysosomes. Given the acidic nature of this compartment
7
 the acid-labile 

fluorescein
8
 would probably be significantly quenched. To aid in the investigation 

of this process the temporin conjugates were resynthesized with the acid stable 

fluorophore, tetramethylrhodamine
8
 (to give TMR-TB (38) and TMR-TA (40)). 

This was important, as the rhodamine tags on the peptides would not be affected 

by the acidic environment in which the peptides concentrate. Both of the 

tetramethylrhodamine tagged temporin A and B conjugates also facilitated 

diffusion of the fluorophore into uninfected macropahges (data not shown as this 

experiment was performed once due to time constraints and difficulties working 

with the infected macrophages) and, although time constraints prevented the 

analyses of infected cells, these remain key tools for future studies.    

 

4.4 The potential of temporins to penetrate the epidermis 

 

In considering the potential of temporins in the treatment of CL, either as direct 

treatments or as vehicles for other antileishmanials, it is important to investigate 

the permeability of skin to these agents. Microskin
®
 is a sphere consisting of a 

central sphere of human dermal cells, surrounded by an outer sphere of epidermal 

cells (Figure 4.3). When grown together the two cell types produce proteins 

characteristic of the in vivo skin barrier. This testing was carried out in 
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conjunction with Mr Craig Manning, Department of Biological and Biomedical 

Sciences, Durham University.  

 

 

Figure 4.3 Microskin
®
 dermal model 

  

Dermal sphere: cultured human 

Dermal cells form a central 

sphere 

Epidermal shell: epidermal cells 

are supported by the dermal 

sphere 
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4 4.5 Results from intracellular testing  

 

The images below were obtained following 18 Hr 37
o
C treatment with FAB-TA 

(39) and TMR-TA (40) at 100μM. The Microskin
®
 used was subsequently washed 

in excess PBS three times then imaged immediately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Microskin
®
 treated with TMR-TA 100μM (left) and DMSO control (right). 

Top: 1hr peptide treatment (Immediate image) Middle: 1hr peptide treatment (18hrs 

incubation  image) Bottom: 18hr peptide treatment (Immediate image). 

 

TMR-TA 
DMSO control 
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Figure 4.8 Microskin
®
 treated with TA-TMR 100μM (left) and DMSO control (right). 

Top: 1hr peptide treatment (Immediate image) Middle: 1hr peptide treatment (18hrs 

incubation  image) Bottom: 18hr peptide treatment (Immediate image). 

 

It was observed that the spheres appeared to be alive (the spheres were intact, and 

have been shown to fall apart if not alive and healthy) 18hrs after a 1 hr peptide 

treatment. Therefore this shows that 100 μM peptide is not immediately fatal to 

the cells in the Microskin
®
. Peptides can penetrate the skin, and fluorescence is 

seen after 1 hr incubation for both flouroscein and tetramethylrhodamine labelled 

peptides. (A small amount of auto-flourecence were observed, however this is 

FAB-TA DMSO control 
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clearly distinguishable from peptide treated samples). Therefore, longer treatment 

may result in deep dermal cell penetration. The fluorescence is gone 18hrs after 

the spheres are washed (1hr treatment). This could indicate that the flourophore 

has degraded however it is likely that the peptide remains in the Microskin
®
. An 

alternate explanation for this is that both the peptide and flourophore are degraded 

by cells in the Microskin
®
. 

4.6 Conclusions 

Temporins A and temporin B were both successfully synthesised and labelled 

with the dyes fluorescein (FAB) and tetramethylrhodamine (TMR). The labelled 

peptides (37-40) were subsequently used to investigate the cell penetration and 

toxicity of the temporin peptides through infected macrophage cells, and also 

through a Microskin
®
 model.  

The visualisation of FAM-TB (37) shows the distinct localisations observed in 

infected and non-infected macrophages (figures 4.1 and 4.2). Clearly FAM-TB 

(37) concentrates at the parasitophorous vacuole within the infected macrophage. 

This suggests that temporin activity is much more specific than originally thought; 

as non-specific membrane perturbation within an infected macrophage would 

affect cellular components distinct from the parasitophorous vacuole. Since this 

does not appear to be the case, a more complex, cell mediated, directed system 

must be considered. As AMP’s are synthesised within the cell and are effectors of 

innate immunity, through both immunomodulatory and extracellular means, it is 

not unimaginable that AMPs have a lesser characterised intracellular role in 

addition to their extracellular role. As such, AMPs could be part of a complex cell 
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signalling response designed to degrade and destroy pathogens phagocytosed by 

the macrophage as part of the immune process. If this is the case then FAM-TB 

(37) could simply be incorporated into the natural immune response of the 

macrophage to the intracellular pathogens. This could explain the observed 

localisation around the intracellular amastigote L. mexicana.  This is further 

supported by evidence that purports temporin B modulation of secretory 

phospholipase A2 from bee venom
9
. This modification led to the enhancement, 

and subsequent lysis, of the anionic phosphatidylcholine liposomes studied. In this 

paper
10

 it was suggested that the membrane perturbation enhance activity, 

however, given the evidence from this study it may be possible that Temporin B 

exerts an immunomodulatory effect, directing and enhancing the activity of the 

lytic enzymes.  

The studies involving the microskin
®
 model have shown the potential to use 

temporins A (16) and B (17) as cell penetrating peptides. As the biological 

activity of these peptides is not of the level required to be a potential therapeutic 

agent, it may be possible to use these peptides to attach onto a known drug 

treatment that does not easily cross the cell membrane. This could in turn decrease 

the toxicity of the known treatment if a lower dose is required following 

attachment to temporin A or B in order to facilitate crossing the macrophage cell 

membrane.  

This is one of the first skin studies involving the temporin peptides, and as these 

peptides have been shown to have good activity against gram positive bacteria 

(see Chapters II and III), these have potential to be developed as topical 

antibacterials, in addition to the potential as new antileishmanials agents.  
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Chapter V: The development of lipopeptide antileishmanials  

5.1 Introduction  
 

First line treatments for Leishmaniasis now include liposomal Amphotericin B, 

which is highly effective and requires only a short course of treatment but is too 

expensive to be a viable treatment option in most developing nations.
1 

Given the 

success of Amphotericin B we were keen to investigate if other simpler 

lipopeptides could be exploited as potential antileishmanial agents.  

Lipopeptides are compounds that contain a cyclic or linear peptide linked to a 

lipid tail or other lipophilic moiety.
2
 Lipopeptides are widely found in nature and 

as such they have become a wide investigated class of molecules.
3
 Lipopeptides 

have been found to exhibit surfactant properties,
4
 antimicrobial,

5
 and cytotoxic 

activities.
2
 In terms of their development as anti-infective agents lipopeptides are 

of particular interest because as like AMPs they typically target the plasma 

membrane of microorganisms. The considerable challenge presented to a 

microorganism to either repair or mutate their plasma cell membrane highlights 

that this structure is an ideal drug target. This mode of action also significantly 

decreases the likelihood of microorganisms developing resistance to lipopeptides 

which can occur with other molecules that target specific enzymes.
6
 The number 

of reported cases of resistance towards lipopetides and AMPs is lower compared 

to other traditionally used antimicrobial agents.
[7]

 This is, in part, due to the lower 

number of AMPs and lipopeptides use in animal husbandry vs. other 

antimicrobials, which has greatly reduced the opportunities available for 

microorganisms, such as enterococci, to develop mechanisms of resistance.
7 
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Despite their attractive biological profiles, some lipopeptides have a high 

production cost (due to large size or complex structure), making them unsuitable 

for large scale production. In addition, there are inherent limitations on the in vivo 

stability of lipopeptides as their peptide component can often be readily degraded 

by peptidases. Thus, investments into the research and development of new 

lipopeptides, whether natural or synthetic, are extremely important, and the 

knowledge of the biological activities of different lipopeptides can be very useful 

to develop more biologically active compounds of this type.
2
 

In relation to the development of new antileishmanials Sabchez et al have recently 

reported promising activity for the lipopeptides 41 and 42 against L. donovani. 1
 

Biological evaluation showed that 41 and 42 possessed strong in vitro 

antiparasitic activity against L. donovani axenic amastigotes (IC50 2.4 and 1.9 μM, 

respectively. For reference, the two most widely used treatments against 

leishmaniasis (sodium stibogluconate and miltefosine) are active in vitro against 

L. donovani axenic amastigotes with IC50 values of 44.7 and 0.5 μM, 

respectively.
1 

 

Figure 5.1  Compounds 41 and 42 tested against in vitro against L. donovani axenic 

amastigotes
 1
. 
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5.2 The Ciliatamides 

 

The Ciliatamides are a family of lipopeptides discovered by a group in Tokyo as a 

result of a drug discovery project from Japanese marine invertebrates. They are 

isolated from the deep sea sponge Aaptos ciliate.
5 

The Ciliatamides consist of 

three Ciliatamides A-C (22-24), shown in Figure 5.2.
 

         

Figure 5.2 Structures of Ciliatamides A (22), B (23) and C (24), as reported by Nako et 

al.
5
  

 

Ciliatamides A-C (22-24) were screened for activity against HeLa human uterine 

cervix carcinoma cells. Ciliatamide B (23) was found to exhibit marginal toxicity 

towards these cells (IC50 4.5  μg/mL), Ciliatamides A (22), and C (24) also 

inhibited growth of the HeLa cells but to a lesser extent with IC50 values of 50 and 

50 μg/mL, respectively
5
. The Ciliatamides were also tested for activity against 

promastigotes of Leishmania major
5
. Ciliatamide C (24) was found to be inactive 

at concentrations of 10 µg/ml, while Ciliatamides A (22) and B (23) were shown 

to possess moderate activity. At concentrations of 10µg/ml, Ciliatamides A (22) 
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and B (23) showed 50% and 45% growth inhibition respectively. The mode of 

action of the Ciliatamides is likely to proceed in a similar manner to that of other 

lipopeptides; through disruption of the cell membrane
2
, although this was not 

investigated in the original isolation paper. It is interesting to note that the original 

organic extract from Aaptos ciliate exhibited 86% growth inhibition.
5
 This result 

suggests that there are other compounds produced by Aaptos ciliate, which 

possess higher antileishmanial activities than the Ciliatamides, or that there is a 

synergistic activity at work.  

In August 2008, Lewis et al.
8
 published a total chemical synthesis of 

Ciliatamides A-C (22-24), which included a revision of the stereochemistry 

proposed in the initial isolation paper. Initially, Lewis undertook the synthesis of 

the (S,S) isomers of Ciliatamides A-C as this was the stereochemistry reported by 

Nakao et al.
5
 However, discrepancies between the optical rotations of synthesised 

Ciliatamides and those obtained for the isolated compounds were obtained. To 

clarify the stereochemistry Lewis et al. undertook synthesis of (S,S), (R,R) (S,R) 

and (R,S), and isomers of Ciliatamides A and B. On comparison of the NMR data 

and the optical rotations of the four isomers the stereochemistry of the natural 

Ciliatamides A and B was determined to be (R,R).  
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Figure 5.3 Revised structures for Ciliatamides A (22a), B (23a) and C (24a), as reported 

by Lewis et al
8
. 

 

 

5.3 Aims  

Figure 5.5 shows the three Ciliatamides reported previously
8
. It was decided to 

initially focus on one of the Ciliatamides in this study.  

Ciliatamides B (23) was selected as its lipid tail could be assessed via commercial 

building blocks whereas this was not possible with the tail on Ciliatamide A (22). 

Ciliatamide B was also selected for further study in the development of new 

antileishmanial compounds as they had been shown to have greatest activity 

against Leishmania major promastigotes
5
. Further biological testing against both 

promastigotes and axenic amastigotes of Leishmania mexicana will be used to 

start to determine in more detail the therapeutic potential of these compounds in 

the treatment of CL In addition, we will look determine the biological mode of 

action, and the effect of stereochemistry if any, on the anti-infective activity of 

Ciliatamide B.  
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5.4  The total synthesis of (S,S) Ciliatamide B and isomers  

5.4.1 Previous synthetic efforts from within the Cobb group 

 

The synthesis of Ciliatamides A (22) and B (23) reported by Lewis et al. in 2008,
8
 

achieved following the route outlined in Scheme 5.1
8
.  The synthesis used the 

starting materials L-α-amino-ε-caprolactam 43 (prepared from lysine), N-methyl 

Boc-protected phenylalanine (44), and decenoic acid (Ciliatamide A, 22) or 

octanoyl chloride (Ciliatamide B, 23). Initially, the additive 

Hydroxybenzoltriazole (HOBt)(31) was used together with resin-bound coupling 

reagent polymer-supported-Dicyclohexylcarbodiimide (PS-DCC), in order to 

couple the caprolactam ring onto a Boc-protected N-methyl phenylalanine. The 

initial step was followed by removal of the protecting group using of hydrochloric 

acid in dioxane. The final step was addition of either deconic or octanoic acid to 

the free nitrogen under the conditions detailed in Scheme 5.1. An alternative route 

was addition of deconoyl or octonyl chloride under microwave conditions 

(Method B, Scheme 5.1). This strategy was used with success in the first total 

synthesis of Ciliatamides A (22) and B (23). The same approach was also  used to 

synthesise a further library of 50 (S,S) analogues via substitution of the lipid 

chains
8
.  

An email was sent to the authors of the original study
8
, requesting samples of the 

compounds to test, however no reply was received. Work is continuing in the 

Cobb group to answer questions relating to the original study. 
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Scheme 5.1 Synthesis of Ciliatamides A (22) and B (23) as carried out by Lewis et al
8
. 

 

In order to perform biological testing to examine the effect of stereochemistry of 

Ciliatamide A on biological activity, it was necessary to synthesise both the 

(R,R)(compound 23a), and (S,S)(compound 23) enantiomers of the natural 

product. To produce a cost effective synthesis, it was hoped that the (S,S) 

enantiomer would possess equal or greater activity than the (R,R) enantiomer, as 

D-phenylalanine and the D-α-amino-ε-caprolactam (47) are considerably more 

expensive than L-phenylalanine and the L-α-amino-ε-caprolactam (43), thus the 

(S,S) enantiomer of Cilatamide B (23) would be more financially viable as a lead 

compound. 



Chapter V: The development of lipopeptide antileishmanials 
 

192 

 

Given that all of the necessary building blocks were commercially available, an 

initial racemic approach to prepare the (R,R) isomer of Ciliatamide B (23a) had 

been previously attempted in the Cobb group (by Stephanie Maddrell, MChem 

student 2009, Scheme 5.2). This strategy was driven by the fact that the only 

commercially available forms of the caprolactam moiety are the pure L-form (43), 

and the racemic D/L-mixture (43/47), the initial strategy used within the group was 

to prepare dipeptides with D-stereochemistry at the caprolactam centre from a 

commercially available D/L-α-amino-ε-caprolactam mixture.  

To obtain the required R,R lipopeptide the D/L-α-amino-ε-aprolactam (43/47) was 

used in the preparation of distereomeric dipeptide (49). Attempts to subsequently 

separate the resulting mixture of diastereomers by column chromatography on 

silica gel proved not to be possible. The decision was made to take the 

distereomeric dipeptide (49) through to a mixture of (R,R) 23a and (R,S) 23b 

diastereomers of Ciliatamide B. This was achieved as outlined in Scheme 5.2 

below but again separation of the diastereoisomers was not achieved. In light of 

the problems associated with separating the stereoisomers at both the dipeptide 

and the final lipopeptide stage of the synthesis an alternative strategy was 

required.   
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Scheme 5.2 Attempted Synthesis of the (R,R) and (S,R) isomers Ciliatamide B. (S. 

Maddrell, 2009).  

 

5.4.2 Synthesis of the four possible stereoisomers of Ciliatamides B 

 

Given that a racemic synthetic approach proved to be unsuccessful (Section 5.4.1) 

an alternative approach that would not require the separation of diasetreomers was 

sought. The alternative enatiomerically pure synthesis of the (R,R) isomer of 

Ciliatamide B would require the preparation of the D-α-amino-ε-caprolactam (47) 

as it is not commercially available. A method published in 1987 by Pellegata et 

al.
131

 describes a method for the cyclisation of lysine (51) to yield L-α-amino-ε-

caprolactam (43) using hexamethyldisilazane and catalytic trimethylsilylchloride 

(Scheme 5.3). Importantly, this reaction was reported not to racemise, the α-

proton, and it was therefore thought that it would be possible to synthesise the D-
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α-amino-ε-aprolactam (47) from D-lysine (50), a readily available and inexpensive 

starting material.  Unfortunately the method outlined in Scheme 5.3 only gave D-

α-amino-ε-aprolactam (47) in very low yield (<7%). Several attempts were made 

to vary the reaction conditions in which only unreacted starting material was 

obtained. Hence an alternative strategy was required in order to obtain D-α-

amino-ε-caprolactam (47). 

 

Scheme 5.3 Non-racemising cyclisation of D-lysine (50) to form D-α-amino-ε-

caprolactam (47) (Attempted previously in Cobb group by S. Maddrell, 2009.) 

 

In order to produce the D-α-amino-ε-caprolactam (47) it was decided to remove 

the Boc-protecting group from Fmoc-D-Lys(Boc)-OH (51) by use of TFA, and 

then use an intramolecular ring closure to produce a protected lactam (52)
8
 simply 

removal of the Fmoc group from 52 would generated the desired building block 

47 as required for dipeptide formation. Following removal of the Boc group, 

(intermediate was not isolated) coupling of the free nitrogen to the acid is 

achieved by use of PyBOP. Using these conditions the formation of 52 occurred 

in a 69% yield, and the NMR data and physical data matching that provided in 

literature
8
. 
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Scheme 5.4 Synthesis of an Fmoc protected D-α-amino-ε-caprolactam (52). 

 

The method used in Scheme 5.4 was also used to synthesise Fmoc protected L-α-

amino-ε-caprolactam (53) in a 74 % yield. 

            

 

In order to prepare each of the four stereoisomers, enantiomerically pure Boc-Me-

Phe-OH in both L- and D- forms are required. A similar problem arose to that 

encountered with the D-α-amino-ε-caprolactam (47), in that the L-Boc-N-Me-Phe-

OH (44) is inexpensive and readily available, however although the D-Boc-N-Me-

Phe-OH (48) is commercially available, it is considerably more expensive. 

Therefore, a simple procedure to synthesise 48 was sought. The literature showed 

that the reaction condition outlined in Scheme 5.5 to be the most suitable
8
. 

Synthesis initially proceeded via methylation of Boc-protected L-phenylalanine 

(54), as reported by Coggins et al. Synthesis of Boc-protected D-phenylalanine 

(55) proceeded by the same synthesis as shown in Scheme 5.5.  
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Scheme 5.5 Synthesis of N-methylated Boc-protected phenylalanines 44 and 48.  

 

Following formation of the Fmoc-protected L-α-amino-ε-caprolactam (53), the 

Fmoc group was removed using piperidine to give the L-α-amino-ε-caprolactam 

43. This building block was subsequently coupled immediately without further 

purification to the L-Boc-protected N-methyl phenylalanine 44 using PyBOP and 

NMM to generate the (S,S) dipeptide isomer (45), as shown in Scheme 5.6. 

 

Scheme 5.6 Synthesis of (S,S)-dipeptide (45) 

 

 



Chapter V: The development of lipopeptide antileishmanials 
 

197 

 

The 
1
H NMR data of 45 indicated that rotamers were presents (doubling of peaks 

at 4.78 - 4.49 ppm and 2.75-2.65 ppm). Rotamers commonly occur for peptides 

that contain a a methyl group on the Boc-protected amine. The reaction sequence 

outlined in Scheme 5.6 was repeated with each α-amino-ε-caprolactam and 

methylated phenylalanine combination in order to obtain the remaining (R,R)(56), 

(R,S)(57), and (S,R)(58), isomers of the Boc-protected dipeptides (Figure 5.. The 

1
H and 

13
C NMR data obtained for 56-58 matched that data previously reported

8
. 

                        

Figure 5.4 N-Methylated dipeptides 56-58 

 

Previously within the Cobb group [Steph Maddrell, MChem 2009] removal of the 

Boc protecting group from the (S,S) di-peptide (45) using of TFA/ DCM, followed 

by coupling to octanoic acid using Bromotripyrrolidinophosphonium 

hexafluorophosphate (PyBrOP
®
) and NMM gave the desired lipopeptide (23). 

PyBrOP
®
 was chosen over of PyBOP

®
 as it is widely recognised to give greater 

yields for couplings onto methylated amino acids. However, even with the more 
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reactive PyBrOP
® 

 coupling reagent the reaction was found to proceed in very low 

yield (<15 %).  In part this is due to purification problems (described later) which 

were also reported by Lindsley et al
13

.
 

 

 

                                                                                       

Scheme 5.7 Removal of Boc-group prior to coupling acylation and amide coupling of 

octanoic acid to a dipeptide using PyBrOP
®
 as the coupling agent to give (S,S) 

Ciliatamide B (23). 

 

In attempt to improve the reaction yield coupling using octanoyl chloride and 

TEA as shown in Scheme 5.8 as this method was found to give an improved yield 

of 54%
130

.  
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Scheme 5.8 Reaction of octanoyl chloride with dipeptide to give (S,S) Ciliatamide B (23)  

 

The method shown in Scheme 5.8 was then used to acylate all the Ciliatamide B 

dipeptide isomers 45 (S,S), 56 (R,R) 57 (S,R) and 58 (R,S) that had been prepared. 

Acylation resulted in the successfully synthesise of 23 (S,S), 23a (R,R), 23b (S,R) 

and 23c (R,R) isomers of Ciliatamide B (Figure 5.5) Purity was confirmed by use 

of 
1
H NMR and TLC. The biological evaluation of 23, 23a, 23b and 23c is 

discussed in Section 5.2.  
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Figure 5.5 The four possible stereo-isomers of Ciliatamide B 

 

Regarding the synthesis of Ciliatamide B (23) and it’s isomers, there are several 

points that should be noted regarding the technicalities of performing the 

reactions. It was found that complete removal of the residual TFA prior to 

acylation of the dipeptide (required for Boc deprotection) required repeated co-

evaporation with diethyl ether steps under vacuum. It is also worth noting that as 

previously reported
8
 the Ciliatamide lipopeptides proved to be very difficult 

compounds to purify using silica gel column chromatography. In particular, 

separation of tri-ethylamine (TEA) and PyBOP
®

 from the Ciliatamides proved to 

be very problematic. Initially the crude reaction mixture was added directly to the 

column and separation using standard column chromatography (silica gel in a 
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range of solvent systems) was attempted. However, despite running the 

compounds through multiple columns, residual TEA and PyBOP
®
 was still shown 

to be present by use of 
1
H NMR. A second strategy was then employed, involving 

the use of 5% sodium bicarbonate to wash the reaction mixture in order to 

separate TEA and PyBOP
®
 from the Ciliatamides prior to column purification. 

Following washing, the Ciliatamides were further purified by use of column 

chromatography in EtOAc/hexane 1:1, and then subsequently run through another 

column in DCM/MeOH 9:1, in order to obtain the purified Ciliatamides.  

 

5.4.3 Attempted Solid Phase Peptide Synthesis (SPPS) of a Ciliatamide B 

analog (with Miriam Edwards, MSci 2012) 

 

As previously discussed (Section 5.3.2), purification of the final Ciliatamide 

compounds proved to be problematic, producing unfavourably low yields of the 

compounds. It was decided to attempt a solid-phase approach to the synthesis as 

an alternative method for producing the natural Ciliatamides and Ciliatamide-like 

structures. Solid phase peptide synthesis (SPPS) presents notable advantages over 

solution phase synthesis as the use of a solid support allows remaining reactants 

and bi-products from the reaction to be washed away following each 

coupling/deprotect cycle. It was hoped that this approach would allow removal of 

octanoyl chloride prior to cleavage of the peptide, as this was the predominant 

problematic compound requiring separation from the peptide in solution-phase 

synthesis.  
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SPPS of a Ciliatamide B analog (59) was carried out using Wang resin preloaded 

with Boc-protected Lysine (60). As outlined in Scheme 5.9 below, preloaded resin 

was used in order to increase the efficiency of synthesis, removing the need to 

couple the first amino acid to the resin linker. An intramolecular cyclisation was 

carried out, using the nitrogen of the secondary amine on the lysine side chain as a 

nucleophile to attack the carbonyl centre and form a seven membered ring. 

  

Scheme 5.9 SPPS of Ciliatamide-like Lipopeptide 59 on Preloaded Wang Resin. 

Reagents and Conditions: a) 20% piperidine in DMF, rt, 5 min, followed by DMF wash x 

3, b) Fmoc-Phe-OH, TBTU, DIPEA, DMF, 75°C, 20 W, 10 min, c) 20% piperidine in 

DMF, rt, 5 min, followed by DMF wash x 3, d) octanoic acid, TBTU, DIPEA, DMF, 
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75°C, 20 W, 10 min, e) TFA, H2O, TIPS, rt, 2 h, f) DCM, DIPEA, DIC, rt, 18 h, followed 

by wash with H2O, extract with DCM x 3. 

 

 

Figure 5.6 ESI spectra for: (a) the linear lipopeptide 64 prepared in Scheme 5.9 and (b) 

cyclised product 59, m/z 424 [M+Na]
+
. 

 

ESI analysis of the cleavage product obtained in Step e (Scheme 5.9) confirmed 

that the linear lipopeptide (64) had been made as indicated by the peak present at 

m/z 420.4 [M+H]
+
 (Figure 5.6, Spectrum a). This suggested that solid phase 

synthesis of the linear lipopeptide 64 on resin was successful. Intramolecular 

cyclisation of the free lysine side chain to form a seven-membered ring and the 

target lipopeptide 59 was attempted (Scheme 5.9, Step f). ESI analysis of the 

crude reaction mixture after cyclisation is shown in Figure 5.6 (Spectrum b). The 

peak at m/z = 424.4 was assigned to be the Na adduct of the desired product 59, 

indicating the ring closure had been successful. Purification of the crude reaction 

mixture was attempted, however due to time limitations, this was not pursued 

further. However, the SPPS approach does appear to be a potentially useful 

method by which to access analogs of Ciliatamide B more rapidly.  

5  

A B 
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5.5 The synthesis of simplified Ciliatamide B analogs (carried out with 

Miriam Edwards, MSci 2012.) 

 

As a result of the need to reduce the cost of the synthesis, and due to difficulties in 

preparing the lactams, it was decided to synthesise simplified Ciliatamide B 

analogs, containing a cycloheptane ring in place of the lactam ring. 

Synthesis of dipeptide 66 was easily achieved as outlined in scheme 5.11 below. 

 

Scheme 5.11 Synthesis of pseudo dipeptide 66: Reagents and Conditions: a) PyBOP / 

DCM, DIPEA followed by cooling to 0°C, addition cycloheptylamine, warm to rt, stirring 

18 h 

 

Scheme 5.12. Synthesis of lipopeptides 67 and 68: Reagents and Conditions: a) TFA / 

DCM, rt, 2h b) DCM, octanoyl chloride, Et3N, rt, 24 h c) TFA / DCM, rt, 2h d) DCM, 

butyryl chloride, Et3N, rt, 24 h.  



Chapter V: The development of lipopeptide antileishmanials 
 

205 

 

Following purification by column chromatography on a standard silica gel 

column, the targets lipopeptides 67 and 68 were recovered yields of 7% and 5% 

respectively. The reason for this is that the final peptides and the starting materials 

both have very similar polarities and as such they were extremely difficult to 

separate using standard silica gel column chromatography. In an attempt to 

increase the yields, lipopeptides 67 and 68 were resynthesized and purified using 

preparative TLC (Silica gel plates).   

 

Scheme 5.12 Synthesis of lipopeptides 67 and 68 from Boc-Phe-OH. Reagents and 

conditions: a) PyBOP / DCM, DIPEA followed by cooling to 0°C, addition 

cycloheptylamine, warm to rt, stirring 18 h. b) TFA / DCM, rt, 2 h followed by addition 

DCM, octanoyl chloride, Et3N, rt, 24 h. c) TFA / DCM, rt, 2 h followed by addition 

DCM, butyryl chloride, Et3N, rt, 24 h. 

 

Due to the low yields of 67 and 68, the reaction was attempted a second time, 

along with synthesis of the dipeptide precursor (Scheme 5.13). In this case the 

yields were increased when purification was achieved and the NMR spectra for 

the two compounds showed a greater removal of reactants through preparative 

TLC. This suggested that preparative TLC was a more successful purification 

method than column chromatography and so it was decided that all other 

lipopeptides synthesised utilising solution phase methods would be purified in this 

way. However, due to the presence of some contaminant, as discussed in section 
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5.4.3, yields are reported remain ‘crude’ yields and the pure yields could only be 

calculated once the contaminant had been removed.   

Solution phase synthesis of the target molecules 69-74 was achieved with yields 

of 19, 18, 14, 11, 21 and 15% respectively, from their Boc-protected amino acid 

precursors (75-77) (Scheme 5.13). Structures of all final compounds and 

intermediates were confirmed by NMR and ESI analysis.    

 

 

Scheme 5.13 General Solution Phase Synthesis of Ciliatamide-like Lipopeptides. 

Reagents and conditions: a) PyBOP / DCM, DIPEA followed by cooling to 0°C, addition 

cycloheptylamine, warm to rt, stirring 18 h. b) TFA / DCM, rt, 2 h followed by addition 

DCM, octanoyl chloride, Et3N, rt, 24 h. c) TFA / DCM, rt, 2 h followed by addition 

DCM, butyryl chloride, Et3N, rt, 24 h. 

 



Chapter V: The development of lipopeptide antileishmanials 
 

207 

 

 

Figure 5.10 Intermediate pseudo-dipeptides 75, 76 and 77 prepared. 

 

  

Figure 5.11 Chemical structures of the library of lipopeptides prepared (69-74). 



Chapter V: The development of lipopeptide antileishmanials 
 

208 

 

5.6 Biological evaluation of lipopeptides  

5.6.1 Initial testing of Ciliatamide B (and isomers)   

 

Screening of Ciliatamides 23, 23a, 23b and 23c revealed no activity when tested 

against Leishmania mexicana axenic axenic amastigotes and promastigotes at 

concentrations of 200 µM. This is in contrast to previously reported testing 

against Leishmania major promastigotes
5
. Previously the Ciliatamide B (assumed 

to be S,S) 23 has previously been been reported to, at concentrations of 10µg/ml, 

give 45% growth inhibition
5
. The differences in results obtained in our study and 

that reported by Nako et al
5
 are likely to be due to the differences in cell 

membrane structure between the different Leishmania species (major and 

mexicanna), as the lipopeptides are thought to target the cell membrane. Stark 

differences in the levels of activity that a given compound may show towards 

different species of Leishmania was also clearly highlighted in the previous 

Chapters II and III for the studies carried out on AMPs.  It is likely that the 

Ciliatamides act via a similar mode of action to that proposed for the temporin 

AMPs, although there are differences in structural conformations in the two 

classes of compounds (i.e. in terms of secondary structure etc, which will be 

altered due to the presence of a lipid tail). Data has shown that pore formation in 

membranes occurs after lipopeptide oligomer binding, some of which are Ca
2 +

 

dependent multimers
9
. These pores may cause transmembrane ion influxes, 

including Na
+
 and K

+
, which result in membrane disruption and cell death. The 

modes of action (if any) of the compounds tested in this chapter are difficult to 

propose, as my current results do not suggest any antileishmanial activity. 
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However, it is likely that the lipopeptide family of compounds disrupts cell 

membrane formation.
2
  

 

5.6.3 Biological evaluation of simplified Cilliatamide analogs  

 

Ciliatamide analogs 69-74 were screened for activity against L. mexicana axenic 

axenic amastigotes and the cell viability measured using the Alamar Blue 

fluorescence assay system (See Chapter VII, 7.5). The stock solutions of each 

compound and Amphotericin B (13) (used as a positive control) in DMSO were 

serially diluted to produce 100 and 50 µM concentrations of the compounds in the 

axenic amastigote cell culture. DMSO solutions of the same concentrations were 

used as a negative control for comparison and normalisation of the cell viability 

results. Compounds (69), (70), (71), (68) and (73) (see figure below) were 

screened.  
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Figure 5.14 L. mexicana amastigote viability, as determined by Alamar Blue assay, when 

treated with different concentrations of targets 68, 69, 70, 71, 73 with Amphotericin B 

(Amph B) as a positive control. Viability was determined with respect to negative 

controls, which were untreated with drugs. Data points represent results of two 

independent experiments performed in triplicate. Standard error indicated. 

 

The Alamar Blue viability assay results indicate that no of the compounds show 

significant (or any) activity against L. mexicana axenic axenic amastigotes at the 

concentrations tested (100 and 50 µM), with negligible difference between results 

at the different concentrations. It was therefore decided that further testing was 

unnecessary. 

Compounds 67, 68, 69, 70 and 74 (see Figure 5.15 below) were also screened 

against the bacterial species E. coli, B. subtilis and S. epidermis in order to 

determine the minimum inhibitory concentration of each compound. The degree 

of inhibition was determined from absorbance readings. Stock solutions of each 

compound and Ampicillin (used as a positive control) in DMSO were serially 

diluted to produce concentrations of 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5 and 0.25 
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mg/L in nutrient broth. Serial dilutions of DMSO in nutrient broth were also 

prepared as a negative control for normalisation of the compound results. A 

further row of untreated broth was also run to represent a 0 mg/L concentration of 

each compound in order to confirm that any inhibitory activity is due to the 

compound screened. As none of the compounds screened resulted in complete 

growth inhibition of the bacteria species at the concentrations tested, minimum 

inhibitory concentrations could not be determined. Instead, results for % viability, 

calculated using untreated bacteria control absorbance values as 100% viability 

are shown for each species.  

 

Figure 5.15 Compounds tested for antimicrobial activity, results shown in figure 5.16 
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Figure 5.16  B. subtilis viability, treated with a range of concentrations of 67, 68, 69, 70 

and 74 with Ampicillin (Amp) as a positive control. Viability was determined with 

respect to the DMSO control untreated bacteria. Data points represent results of two 

independent experiments performed in triplicate. *Unfortunately the raw data for Figures 

5.16, 5.17 and 5.18 was no longer available at the time of writing (as previously 

mentioned this data was obtained as part of a MChem project). It was however agreed to 

include the data in the printed state as these results form an important part of this chapter. 

 

No real cytotoxicity against B. subtilis was demonstrated below concentrations of 

128 mg/L (Figure 5.15) in any of the target compounds screened. Compounds 69 

and 70 however, displayed reasonable activity at 256 mg/L concentrations with 

almost 60% growth inhibition demonstrated by 69. As both 69 and 70 contain 

alanine units this suggests that the nature of the side chain may play a role in the 

molecules’ antibacterial action. In order to further support these findings, the 

screening would need to be repeated in triplicate in order to show reproducibility 

of the results. Although the cytotoxicity is still overall, quite poor, especially 

when compared with the Ampicillin control so these target compounds do not 
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present particularly promising lead compounds for antibacterial agent 

development. 

 

Figure 5.17  E. coli viability, treated with a range of concentrations of targets 67, 68, 69, 

70 and 74 with Ampicillin (Amp) as a positive control. Viability was determined with 

respect to the DMSO control untreated bacteria. Data points represent results of two 

independent experiments performed in triplicate. 

 

Percentage viability results for the target compounds screened against E. coli and 

S. epidermis (Figure 5.16 are not particularly strong, however they do show a 

general increase in cytotoxicity with increased concentration. All compounds 

showed reasonable activity against E.coli and S. epidermis at 256 mg/L and 

interestingly, compound 69 showed the greatest cell growth inhibition, as was the 

case with B. subtilis screening; this pattern suggests that further development and 

modification of 69 could produce an antibacterial agent. However, further repeats 

of screening 69 would need to be carried out to determine the reliability of the 

0

20

40

60

80

100

120

140

160

256 128 64 32 16 8 4 2 1 0.5 0.25

%
 E

. c
o

li 
C

e
ll 

V
ia

b
ili

ty
 

Lipopeptide Concentration (mg/L) 

31

32

33

34

40

AMP

67 

68 

69 

70 

74 



Chapter V: The development of lipopeptide antileishmanials 
 

214 

 

results. The compounds were also tested with the silica residue contaminant 

present and so the residue would need to be screened as a control to confirm 

whether it is the compound or the residue that possesses the biological activity.  

 

Figure 5.18 S. epidermis viability, treated with a range of concentrations of targets  67, 

68, 69, 70 and 74 with Ampicillin (Amp) as a positive control. Viability was determined 

with respect to the DMSO control untreated bacteria. Data points represent results of two 

independent experiments performed in triplicate.  

 

The cytotoxicity results for the compounds screened against the bacterial species 

are not completely representative of the true antibacterial activity of the 

compounds in their pure form due to the presence of contaminant (as discussed 

above). These results do however give an indication of the potency of the 

compounds as antibacterial agents. Ideally, the compounds tested would be 

synthesised again retested as pure compounds. 
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5.7 Conclusions 

 

There were several difficulties encountered with the purification and synthesis of 

the compounds discussed in this chapter. Namely, in obtaining a reasonable yield, 

and in the purification of the lipopeptides, as these compounds proved to be 

extremely difficult to separate from the starting materials.  

The lipopeptide compounds tested did not show any antileishmanial activity 

against Leishmania mexicana when tested at concentrations of up to 200 µM.  

Testing the compounds at higher concentrations in vitro may result in activity 

against Leishmania mexicana. This may lead to the identification of analogs with 

activity at lower concentrations. It is unlikely that in vitro testing at concentrations 

higher than this would highlight a compound with in vivo activity at levels not 

cytotoxic to the host organism. The synthesis of the Ciliatamides using and SPPS 

approach may provide a solution to the difficulties encountered in the purification 

of these compounds, however additional work is required to further explore the 

viability of this option.  

Considering the difficulties previously discussed in the synthesis and purification 

of these compounds, further investigations were not carried out to synthesise and 

test further analogs. It remains however an interesting question of the possible 

mode of action when tested against Leishmania major, and indeed if the 

Ciliatamides would prove to be effective antileishmanials agents when tested 

against other Leishmania species.  
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Chapter VI 

Overall Conclusions 

 



 

 

6.1 Overall Conclusions 

Temporins A (16) and L (36) were initially tested against axenic amastigotes, for cytotoxicity 

against uninfected murine macrophages, and against infected murine macrophages. Toxicity 

analysis (uninfected macrophages) showed temporin A (16) to be cytotoxic at 500 µM, and 

temporin L (36) to be cytotoxic at 250 µM. These results are in keeping with other published 

studies and they place the viability of temporin L (36) as a potential therapeutic agent in 

question, as this peptide appears to be cytotoxic across a broad spectrum of biological tissues 

and would likely cause cell death in the host in addition to leishmania parasites. The eventual 

aim is to use AMPs in order to develop a topical leishmanicidal application; however it is 

likely that the levels of cytotoxicity reported here for temporin L would prevent the regrowth 

and healing of healthy tissues in the affected areas in addition to causing death of the 

leishmania parasites.  

Temporins A and L were initially found to be the only peptides tested to exhibit significant 

levels of activity against L. mexicana axenic amastigotes, the clinically relevant form of L. 

mexicana published data has only reported activity on promastigotes.  

In contrast to insect stage promastigotes, pathogenic amastigote L. mexicana are significantly 

more resistant to all the temporins tested. This demonstrates the importance of screening 

against both forms of the parasite, particularly in light of available literature on the subject; in 

which reported testing on the amastigote lifecycle stage is scarce. Results obtained suggest 

that amastigotes of different Leishmania species display varying susceptibility to peptides 

from the temporin family indicating that broad-spectrum antileishmanial AMPs may be 

challenging to develop.  Mass spectral analysis of the lipid content of the parasite cell walls 

from L. mexicana promastigotes and amastigotes was carried out in collaboration with Dr 

Jackie Mosely (MS, Durham University) and Dr Terry Smith (Chemistry Department, 



 

 

University of St. Andrews). The analysis (data not reported) showed significantly higher 

levels of specific peptidoglycans in the promastigote cell walls, compared to the amastigote 

cell walls on comparison of two samples of equal volumes of cells in solutions analysed.  

 

In addition, the ability of AMPs to translocate the host membrane and reach intra-

macrophage amastigotes has not been widely studied and remains unknown. Temporins A 

and L have been studied to a greater degree than any of the other temporin peptides. It is 

possible that the charge is important; as the parasite membrane is negatively charged a 

positively charged peptide may be attracted to the membrane through electrostatic attraction 

which may in turn facilitate the disruption of the parasite membrane, and account for a lower 

active concentration of drug needed to kill the parasites.  Temporin L has the highest overall 

charge of the peptides studied in the table below (+2, compared to 0 or +1) which may 

facilitate the ability of the peptide to interact with the negatively charged parasite membranes. 

Temporin L also has a higher ration of hydrophobic residues /total number of residues (30, 

compared to 15-23 for other peptides), which may also account for the higher levels of 

antileishmanial activity observed with temporin L, this may be because the hydrophobic 

residues will more favourably interact with the lipid environment in the parasite membrane, 

and these interactions draw the peptide into the membrane more strongly than those peptides 

with proportionally fewer hydrophobic residues.   

Temporins A and B were both successfully labelled with fluorescein and 

tetramethylrhodamine. The labelled peptides were subsequently used to investigate the 

progress of the temporin peptides through infected macrophage cells, and also through a 

microskin
®
 model. 



 

 

The visualisation of FAM-TB (37) (Chapter IV) shows the distinct localisations observed in 

infected and non-infected macrophages. Clearly FAM-TB (37) concentrates at the parasite 

location within the infected macrophage. This suggests that temporin activity is much more 

specific than originally thought, and that a more complex, cell mediated, directed system 

must be considered.  

The studies involving the microskin
®
 model have shown the potential to use temporins A 

(16) and B (17) as cell penetrating peptides. As the biological activity of these peptides is not 

of the level required to be a potential therapeutic agent, it may be possible to use these 

peptides to attach onto a known drug treatment that does not easily cross the cell membrane.  

The lipopeptide compounds tested (Chapter V) did not show any antileishmanial activity 

against L. mexicana when tested at concentrations of up to 200 µM.  The synthesis of the 

Ciliatamides using solid phase synthesis may provide a solution to the difficulties 

encountered in the purification of these compounds, however additional work is required to 

further explore this option. Additional biological evaluation and toxicity studies of all the 

lipopeptides prepared is required to gain a more complete picture on whether or not these 

compounds are worth pursuing as anti-infective agents. 

The large scale screening program, carried out generated a considerable amount of 

information and is the first real data set that could be used to design predictive models for the 

development of antiparasitic AMPs (Chapter V). The data obtained through this library 

screening approach did not identify any sequences predictive of activity against Leishmania 

Mexicana. However, it does represent the first step towards developing a computational 

model/prediction system that can be used to rationally design peptides with antiparasitic 

properties.
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7.0 Experimental  

7.1. General  

7.1.1 Instrumentation  

NMR spectra were recorded on a Brucker Avance-400 or Varian VNMRS-700 spectrometer. 

Mass spectra were recorded on a Micromass LCT ToF (LRMS) or Thermo-Finnigan LTQ FT 

(HRMS) electrospray ionisation instrument in positive (ES+) or negative (ES-) as specified. 

Optical rotations were measured on a Jasco P-1020 polarimeter (589 nm) at ambient 

temperature (20-22°C). RP-HPLC data was recorded on a Waters Mass Directed Prep System 

instrument, using a 3100 Mass Detector and Diode Array Detector. For analytical RP-HPLC, 

a 4.6 x 100 mm xbridge column was used, with a flow rate of 1 ml/min (run time 16.5 min). 

For Preparatory scale RP-HPLC, 1 19 x 100 mm xbridge column was used, with a flow rate 

of 17 ml/min (run time 16.5 min). 

 

All the commercially available reagents and solvents were purchased and used without 

further purification. All reactions were carried out under an atmosphere unless otherwise 

stated. Microwave assisted reactions were performed on a Biotage Initiator™ Microwave. All 

fractions from column chromatography were monitored by thin layer chromatography using 

aluminium plates with a UV fluorescent indicator (Macherey-Nagel 60 SIL G/UV254). One or 

more of the following methods were used for visualisation: UV absorption by fluorescence 

quenching, Ninhydrin in EtOH or PDMA in EtOH. Column chromatography was performed 

using Fluorochem type 60, 40-63 micron silica gel. 

 

7.1.2 Characterisation  

MALDI-TOF mass spectra were recorded on an Applied BiosystemsTM Voyager-DE STR 

instrument in positive ion mode using an α-cyano-4-hydroxycinnamic acid matrix. RP-HPLC 



 

 

data was recorded on a Waters Mass Directed Prep System instrument, using a 3100 Mass 

Detector and Diode Array Detector. For analytical RP-HPLC, a 4.6 x 100 mm xbridge 

column was used, with a flow rate of 1 ml/min (run time 16.5 min). For Preparatory scale RP-

HPLC, 1 19 x 100 mm xbridge column was used, with a flow rate of 17 ml/min (run time 

16.5 min). 

 

7.1.3 Materials  

All commercially available reagents, solvents and Fmoc-protected amino acids were 

purchased and used without further purification. 

 

7.2 Solid Phase Peptide Synthesis   

 

7.2.1 General Procedures   

 

All peptides were synthesised by use of microwave assisted couplings performed on a CEM 

Discovery microwave system unless otherwise indicated. In each of the reaction conditions 

listed, pressure is not included as peptide couplings take place in open vessels and therefore 

pressure cannot be altered from room pressure, 14.50 psi. 

 



 

 

Procedure 1 Swelling of resin 

All peptides were synthesised on Rink Amide AM resin with 0.62 mmol/g loading unless 

otherwise stated. The resin was swollen in DCM (7 ml) for 15 minutes and washed with 

DMF prior to use in subsequent steps. 

 

Procedure 2 Fmoc deprotection conditions 

Fmoc deprotection of peptides was achieved by addition of 5 ml of a 20 % piperidine in DMF 

solution to the resin in a SPPS microwave vessel, then reacted using the conditions outlined 

below: 

Temperature 75 °C, Power 20 W, Time 3 minutes.  

Following Fmoc deprotection, the resin was washed with DMF (5 x 5 ml) using a vacuum 

manifold. 

Procedure 3 Peptide Coupling conditions (amide bond formation) 

Coupling of peptides was achieved by addition of four equivalents of the amino acid, 

dissolved in DMF (2 ml) to which was added four equivalents of PyBOP™ in DMF (2 ml). 

The two solutions were mixed, and NMM (four equivalents) added. The solution was shaken 

and left four ten minutes before being added to deprotected resin in a SPPS microwave 

vessel, then reacted using the conditions outlined below: 

Temperature 75 °C, Power 20 W, Time 10 minutes. Following coupling, the resin was 

washed with DMF (2 x 5 ml) using a vacuum manifold. 

 

Procedure 4 Microwave Assisted Peptide Cleavage 

To cleave a peptide from 500 mg of resin, TFA (9 ml), water (750 µl) and TIPS (750 µl) 

were added to the microwave vessel containing the resin. 

Cleavage of peptides was achieved using the conditions outlined below: 



 

 

Temperature 38 °C, Power 20 W, Time 18 minutes.  

Following cleavage of the peptide, the solution-phase was filtered into a r.b.f. and the resin 

rinsed through with DCM to ensure complete removal of the peptide from the microwave 

vessel. Solvent was removed en vacuo, with addition of ether (5 x 10 ml) to ensure complete 

removal of TFA. 

 

Procedure 5 Non-Microwave Assisted Peptide Cleavage 

To cleave a peptide from 500 mg of resin, TFA (9 ml), water (750 µl) and TIPS (750 µl) 

were added to a microwave vessel containing the resin (in this instance the microwave vessel 

is used as a filter). The vessel was sealed and left to react at r.t for 3 h with stirring. 

Following cleavage of the peptide, the solution-phase was filtered into a r.b.f. and the resin 

rinsed through with DCM to ensure complete removal of the peptide from the microwave 

vessel. Solvent was removed en vacuo, with addition of ether (5 x 10 ml) to ensure complete 

removal of TFA. 

 

Procedure 6 Non-microwave-assisted Fmoc-deprotection 

20% piperidine in DMF (5 ml) was added to the resin and shaken for five minutes. The resin 

was washed with DMF (5 x 5 ml) and 20% piperidine in DMF (5 ml) was added to the resin 

and shaken for five minutes. The resin was washed with DMF (5 x 5 ml) and 20% piperidine 

in DMF (5 ml) was added to the resin and shaken for five minutes. The resin was washed 

with DMF (5 x 5 ml) and used in the next step of the reaction. 

 

Procedure 7 Peptide Purification 

Following conformation of the presence of the desired peptide by MALDI-MS, peptides were 

purified by use of reverse phase RP-HPLC (RP-RP-HPLC). For analytical RP-HPLC, a 4.6 x 



 

 

100 mm xbridge column was used, with a flow rate of 1 ml/min (run time 16.5 min). For 

Preparatory scale RP-HPLC, 1 19 x 100 mm xbridge column was used, with a flow rate of 17 

ml/min (run time 16.5 min). 

 

All peptides were purified gradually by RP-RP-HPLC, using the following method, with 

solution A, 95% Water 5% acetonitrile 0.1% TFA and solution B, 95% acetonitrile, 5% water 

and 0.1% TFA; 

1) 100% solution A for 2 minutes (2ml/min) 

2) 100% solution A to 100% solution B over 12 minutes (2ml/min) 

3) 100% Solution B for 1 minute (2ml/min) 

4) 100% solution B to 100% solution A over 1.5 minutes (2ml/min) 

 

All peptides were dissolved in a mix of water and acetonitrile to a concentration of between 5 

and 10mg/ml, with 1ml being injected for each run. A C18 reverse phase column was used. 

When between 3 and 6 runs for each peptide had been completed equivalent fractions were 

combined and freeze dried using procedure 16. 

 

 Analytical scale RP-HPLC was initially run for each peptide, in order to obtain an elution 

time for the individual peptides. On confirmation of the presence of the desired peptide, 

preparative scale RP-HPLC was subsequently run. UV-active fractions were collected and 

MS data was obtained for each fraction. Fractions containing the pure peptide were collected 

and solvent removed en vacuo. MALDI-MS was used to confirm the presence of the peptide 

and analytical-scale RP-HPLC run again to confirm the purity of the compound. The purified 

peptide was then lyophilised and stored under argon prior to use in biological testing. 

 



 

 

 



 

 

7.2.2 Synthesis of Temporins  

7.2.2.1 Temporin A (16) 

 

 

 

Synthesis of temporin A (16) with primary structure FLPLIGRVLSGIL-NH2 was achieved 

following general procedures 1-4 (Section 7.2.1) suing 500 mg of Rink Amide resin (0.31 

mmol). When all amino acids were coupled, a final Fmoc deprotection step was carried out 

by use of 20% piperidine/DMF, and the peptide cleaved from resin by use of TFA (90%), 

TIPS (5%) and H2O (5%) for four hours at room temperature. On confirmation of the 

presence of the correct structure, temporin A (16) was purified by use of RP-RP-HPLC 

(procedure 7) and dried by lyophilisation. The purity of temporin A (16) was confirmed by 

use of analytical RP-HPLC-MS (MALDI-TOF) calcd for C68H117N17O14 [M + H
+
] 1396.8, 

found 1396.9. RP-HPLC: eluted at 9.05 minutes. 

 

 

 

 

 

 

7.2.2.2 Temporin B (17) 



 

 

 

 

 

Synthesis of temporin B (17) with primary structure LLPIVGNLLKSLL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin. 

When all amino acids were coupled, a final Fmoc deprotection step was carried out by use of 

20% piperidine/DMF, and the peptide cleaved from resin by use of TFA (90 %), TIPS (5 %) 

and H2O (5 %) using microwave chemistry. On confirmation of the presence of the correct 

structure, temporin B was purified by use of RP-HPLC (procedure 7) and dried by 

lyophilisation. The purity of temporin B was confirmed by use of analytical RP-HPLC, and 

the compound subsequently used in biological testing. 

MS (MALDI-TOF) calcd for C67H122N16O15 [M + Na
+
] 1413.79, found 1413.8. 

RP-HPLC: eluted at 9.41 minutes. 

 



 

 

7.2.2.3 Temporin C (29) 

 

 

 

Synthesis of temporin C (29) with primary structure LLPILGNLLNGLL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin. 

When all amino acids were coupled, a final Fmoc deprotection step was carried out by use of 

20 % piperidine/DMF, and the peptide cleaved from resin by use of TFA (90 %), TIPS (5 %) 

and H2O (5 %) using microwave chemistry. On confirmation of the presence of the correct 

structure, Temporin C was purified by use of RP-HPLC and dried by lyophilisation. The 

purity of Temporin C was confirmed by use of analytical RP-HPLC, and the compound 

subsequently used in biological testing. 

MS (MALDI-TOF) calcd for C67H122N16O15 [M + Na
+
] 1384.0, found 1384.0. 

RP-HPLC: eluted at 7.80 minutes. 

 



 

 

7.2.2.4 Temporin F (35) 

 

 

 

Synthesis of temporin F (35) with primary structure FLPLIGKVLSGIL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin. 

When all amino acids were coupled, a final Fmoc deprotection step was carried out by use of 

20 % piperidine/DMF, and the peptide cleaved from resin by use of TFA (90 %), TIPS (5 %) 

and H2O (5 %) using microwave chemistry. On confirmation of the presence of the correct 

structure, temporin F was purified by use of RP-HPLC (procedure 7) and dried by 

lyophilisation. The purity of temporin F was confirmed by use of analytical RP-HPLC, and 

the compound subsequently used in biological testing. 

MS (MALDI-TOF) calcd for C67H125N15O15 [M + Na
+
] 1391.0, found 1391.0. 

RP-HPLC: eluted at 7.20 minutes. 

 

 



 

 

7.2.2.5 Temporin L (36) 

 

 

 

Synthesis of temporin L (36) with primary structure FVQWFSKFLGRIL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin. Following MALDI-MS 

analysis to confirm the correct structure of the peptide H2N-WFSKFLGRIL-NH2, the resin 

was split into two equal halves by weight and synthesis continued on one half to give the 

peptide FVQWFSKFLGRIL-NH2. When all amino acids were coupled, a final Fmoc 

deprotection step was carried out by use of 20 % piperidine/DMF, and the peptide cleaved 

from resin by use of TFA (90 %), TIPS (5 %) and H2O (5 %) using microwave chemistry. On 

confirmation of the presence of the correct structure, temporin L was purified by use of RP-

HPLC (procedure 7) and dried by lyophilisation. The purity of temporin L was confirmed by 

use of analytical RP-HPLC, and the compound subsequently used in biological testing. 

MS (MALDI-TOF) calcd. for C83H122N20O15 [M + H
+
] 1639.99, found 1640.1. 

RP-HPLC: eluted at 7.79 minutes. 

 

 



 

 

7.2.2.6 Temporin 1Sa (25) 

 

25 

Synthesis of temporin 1Sa (25) with primary structure FLSGIVGMLGKLF-NH2 was 

achieved following SPPS procedures 1-4 with 250 mg of Rink Amide resin. 

When all amino acids were coupled, a final Fmoc deprotection step was carried out by use of 

20 % piperidine/DMF, and the peptide cleaved from resin by use of TFA (90 %), TIPS (5 %) 

and H2O (5 %) using microwave chemistry. On confirmation of the presence of the correct 

structure, temporin B was purified by use of RP-HPLC (Procedure 7) and dried by 

lyophilisation. The purity of temporin B was confirmed by use of analytical RP-HPLC, and 

the compound subsequently used in biological testing. 

MS (MALDI-TOF) calcd for C67H110H15O14S, 1381.1, found 1381.2 [M+H
+
]. 

RP-HPLC: eluted at 8.92 minutes. 

 

 



 

 

7.3 Synthesis of fluorescently labelled peptides 

7.3.1 General information  

Temporins A and B were synthesised by use of standard microwave SPPS, and labelled with 

fluorescein, and tetramethylrhodamine through peptide coupling procedure 3. Peptides were 

subsequently purified by use of RP-HPLC prior to use in biological testing 

Synthesis of 5-6-carboxyfluorescein-Temporin B (FAM-TB) (37), structure FAM-

LLPIVGNLLKSLL-NH2, is achieved by coupling TB (17) with 5-6-carboxyfluorescein 

(FAM). One third of the Rink Amide resin (133 mg) + Fmoc-LLPIVGNLLKSLL-NH2 

peptide synthesised in the Temporin B (Microwave) section was deprotected following 

Fmoc-SPPS Procedure 2. The deprotected resin was then coupled with FAM following 

Fmoc-SPPS Procedure 3, with FAM used in place of the amino acid. Equivalents were scaled 

appropriately to the 133 mg of Rink Amide resin. The fluorescent peptide was then cleaved 

from resin following Fmoc-SPPS Procedure 5 and isolated as a yellow solid.  

Synthesis was checked, where a small amount of LLPIVGNLLKSLL-NH2 and FAM-

LLPIVGNLLKSLL-NH2 peptides + resin were cleaved from resin for MALDI-ToF analysis 

following Fmoc-SPPS Procedure 6. LLPIVGNLLKSLL-NH2 spectrum MALDI-ToF (MS) 

calcd for C67H122N16O15H
+
 [M + H

+
] 1391.8 found: 1413.8 [M + Na

+
]. FAM-

LLPIVGNLLKSLL-NH2 MALDI-ToF (MS) calcd for C87H132N16O19H
+
 1749.1 [M + H

+
], 

found: 1750.4 [M + H
+
] as a minor peak. Major peaks were observed corresponding to 

unreacted LLPIVGNLLKSLL-NH2 [M + H
+
] and [M + Na

+
]. RP-HPLC analysis: 

LLPIVGNLLKSLL-NH2 was observed with 9.41 min retention. FAM- LLPIVGNLLKSLL-

NH2 was observed with 11.63 min retention and ES+ (MS) for doubly charged fragments at 

696.64.  

 

7.3.2 Synthesis of Temporin B – Fluorescein (37) 



 

 

 

 

 

Synthesis of temporin B (17) with primary structure LLPIVGNLLKSLL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin as described I section 6.3.1 

above. Synthesis of 5-6-carboxyfluorescein-Temporin B (FAM-TB) (34), structure FAM-

LLPIVGNLLKSLL-NH2, was achieved by coupling temporin B (18) with 5-6-

carboxyfluorescein (FAM). One third of the Rink Amide resin (133 mg) + Fmoc-

LLPIVGNLLKSLL-NH2 peptide synthesised in the Temporin B (Microwave) section was 

deprotected following Fmoc-SPPS Procedure 2. The deprotected resin was then coupled with 

FAM following Fmoc-SPPS Procedure 3, with FAM in place of the amino acid. Equivalents 

were scaled appropriately to the 133 mg of Rink Amide resin. The fluorescent peptide was 

cleaved from resin following Fmoc-SPPS Procedure 5 and isolated as a yellow solid. The 

peptide was cleaved following microwave cleavage procedure 4. LLPIVGNLLKSLL-NH2 

spectrum MALDI-ToF (MS) calcd for C67H122N16O15H
+
 [M + H

+
] 1391.8 found: 1413.8 [M 

+ Na
+
]. FAM-LLPIVGNLLKSLL-NH2 MALDI-ToF (MS) calcd for C87H132N16O19H

+
 

1749.1 [M + H
+
], found: 1750.4 [M + H

+
] as a minor peak. Major peaks were observed 

corresponding to unreacted LLPIVGNLLKSLL-NH2 [M + H
+
] and [M + Na

+
]. RP-HPLC 

analysis: LLPIVGNLLKSLL-NH2 was observed with 9.41 min retention. FAM- 

LLPIVGNLLKSLL-NH2 was observed with 11.63 min retention and ES+ (MS) for doubly 



 

 

charged fragments at 696.64 MS (MALDI-TOF) calcd for C67H122N16O15 [M + H
+
] 1391.79, 

found 1391.8. RP-HPLC: eluted at 11.63 minutes. 

 

 

7.3.3 Temporin A-fluorescein (39) 

 

 

Synthesis of temporin A (16) with primary structure FLPLIGRVLSGIL-NH2 -NH2 was 

achieved following SPPS procedures 1-4 with 500 mg of Rink Amide resin as described I 

section 6.3.1 above. Synthesis of 5-6-carboxyfluorescein-temporin A (FAM-TA) (39), 

structure FAM- FLPLIGRVLSGIL-NH2, was achieved by coupling temporin A (16) with 5-

6-carboxyfluorescein (FAM). One third of the Rink Amide resin (133 mg) + Fmoc-

LLPIVGNLLKSLL-NH2 peptide synthesised in the temporin A (Microwave) section was 

deprotected following Fmoc-SPPS Procedure 2. The deprotected resin was then coupled with 

FAM following Fmoc-SPPS Procedure 3, with FAM in place of the amino acid. Equivalents 

were scaled appropriately to the 133 mg of Rink Amide resin. The fluorescent peptide was 

cleaved from resin following Fmoc-SPPS Procedure 5 and isolated as a yellow solid. The 

peptide was cleaved following microwave cleavage procedure 4. FLPLIGRVLSGIL-NH2 

spectrum MALDI-ToF (MS) calcd for C68H117N17O14 H
+
[M + H

+
] 1396.7found: 1396.7 [M + 



 

 

Na
+
]. FAM- FLPLIGRVLSGIL -NH2 MALDI-ToF (MS) calcd for C88H137N17O18 H

+
 1754.8 

[M + H
+
], found: 1754.8 [M + H

+
] as a minor peak. Major peaks were observed 

corresponding to unreacted FLPLIGRVLSGIL-NH2 [M + H
+
] and [M + Na

+
]. RP-HPLC 

analysis: FLPLIGRVLSGIL -NH2 was observed with 9.05 min retention. FAM-

FLPLIGRVLSGIL-NH2 was observed with 11.19 min retention and ES+ (MS) for doubly 

charged fragments at 877.4 MS (MALDI-TOF) calcd for C88H137N17O18 [M + H
+
] 1754.8, 

found 1754.8. RP-HPLC: eluted at 11.19 minutes. 

 

7.3.4 Temporin B-Tetramethylrhodamine (41) 

 

 

 

Synthesis of temporin B (17) with primary structure LLPIVGNLLKSLL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin as described I section 6.3.1 

above. Synthesis of 5-6-carboxytetramethylrhodamine-temporin B (TMR-TB- (41), structure 

TMR-LLPIVGNLLKSLL-NH2, was achieved by coupling temporin B (17) with 5-6-

carboxytetrafluororhodamine (TMR). One third of the Rink Amide resin (133 mg) + Fmoc-

LLPIVGNLLKSLL-NH2 peptide synthesised in the temporin B (Microwave) section was 

deprotected following Fmoc-SPPS Procedure 2. The deprotected resin was then coupled with 

FAM following Fmoc-SPPS Procedure 3, with FAM in place of the amino acid. Equivalents 

were scaled appropriately to the 133 mg of Rink Amide resin. The fluorescent peptide was 



 

 

cleaved from resin following Fmoc-SPPS Procedure 5 and isolated as a red solid. The peptide 

was cleaved following microwave cleavage procedure 4.  

MALDI-ToF (MS) calcd for C67H122N16O15H
+
 [M + H

+
] 1391.8 found: 1413.8 [M + Na

+
]. 

TMR-LLPIVGNLLKSLL-NH2 MALDI-ToF (MS) calcd for C92H144N18O30H
+
 1821.4 [M + 

H
+
], found: 1821.7 [M + H

+
] as a minor peak. Major peaks were observed corresponding to 

unreacted LLPIVGNLLKSLL-NH2 [M + H
+
] and [M + Na

+
]. RP-RP-HPLC analysis: 

LLPIVGNLLKSLL-NH2 was observed with 9.41 min retention. FAM- LLPIVGNLLKSLL-

NH2 was observed with 11.13 min retention and ES+ (MS) for doubly charged fragments at 

910.7, RP-HPLC: eluted at 10.32 minutes. 

 



 

 

7.3.5 Temporin A-Tetramethylrhodamine (40) 

 

 

Synthesis of temporin A (16) with primary structure FLPLIGRVLSGIL-NH2 was achieved 

following SPPS procedures 1-4 with 500 mg of Rink Amide resin as described I section 6.3.1 

above. Synthesis of 5-6-carboxytetramethylrhodamine-temporin A (TMR-TA) (40), structure 

TMR- FLPLIGRVLSGIL-NH2, was achieved by coupling temporin A (16) with 5-6-

carboxytetrafluororhodamine (TMR). One third of the Rink Amide resin (133 mg) + Fmoc-

FLPLIGRVLSGIL-NH2 peptide synthesised in the temporin A (Microwave) section was 

deprotected following Fmoc-SPPS Procedure 2. The deprotected resin was then coupled with 

TMR following Fmoc-SPPS Procedure 3, with TMR in place of the amino acid. Equivalents 

were scaled appropriately to the 133 mg of Rink Amide resin. The fluorescent peptide was 

cleaved from resin following Fmoc-SPPS Procedure 5 and isolated as a red solid. The peptide 

was cleaved following microwave cleavage procedure 4. FLPLIGRVLSGIL-NH2 spectrum 

MALDI-ToF (MS) calcd for C68H117N17O14 H
+
 [M + H

+
] 1396.77 found: 1396.7 [M + H

+
]. 

TMR- FLPLIGRVLSGIL-NH2 MALDI-ToF (MS) calcd for C93H139N19O19H
+
 1827.15 [M + 

H
+
], found: 1827.2 [M + H

+
] as a minor peak. Major peaks were observed corresponding to 

unreacted FLPLIGRVLSGIL-NH2 [M + H
+
] and [M + Na

+
]. RP-HPLC analysis: 

FLPLIGRVLSGIL-NH2 was observed with 9.05 min retention. FAM-FLPLIGRVLSGIL -

NH2 was observed with 10.23 min retention and ES+ (MS) for doubly charged fragments at 

913.5 MS RP-HPLC: eluted at 110.23 minutes. 



 

 

 

 



 

 

7.4 Synthesis of Ciliatamides and Ciliatamide analogs
2
  

7.4.1 General Procedures  

Procedure 1: Preparation of Fmoc- α-amino Caprolactams 

Fmoc-Lys-(Boc)-OH (51) (1.00 mmol) was added to TFA (10 ml) and DCM (10 ml) and 

reacted at r.t with stirring for 3 h. The solvent was removed en vacuo and co evaporated with 

ether (3 x 10 ml) to ensure complete removal of TFA. The resulting yellow oil was dissolved 

in DCM (10 ml) to which was added PyBOP (0.95 mmol, 454 mg) and NMM, (0.95 mmol, x 

mg). The reaction was left for 18 h at r.t. with stirring. Solvent was removed en vacuo to give 

the crude product. Purification took place by use of column chromatography. 

 

Procedure 2: Preparation of N-methylated amino acids 

Boc-Phe-OH (500 mg, 1.90 mmol) was dissolved in dry THF (~5 ml). The solution was 

cooled to 0°C. NaH (60 %) in mineral oil) (535 mg, 13.2 mmol) and methyliodide (940 µl, 

15.20 mmol) were added slowly to the solution. The resulting mixture was stirred at 25°C for 

24 h. On completion of the reaction the mixture was poured onto H2O (~20 ml). THF was 

removed en vacuo. The mineral oil from the NaH was extracted by use of hexane (2 x 7 ml). 

The aqueous layer was acidified to pH 3 by use of 5 % citric acid. The product was extracted 

by use of EtOAc (3 x 25 ml), the EtOAc layer was then dried (Na2SO4) and filtered. Solvent 

was removed en vacuo to give the crude product. Purification took place by use of silica gel 

column chromatography. 

 

 

 

Procedure 3: Preparation of di-peptides 



 

 

A magnetically stirred solution of the Fmoc protected α-amino caprolactam (1.00 mmol) was 

dissolved in dry THF at 25 °C under Argon, to which was added piperidine (3 ml). After 3 h, 

the reaction mixture was concentrated en vacuo to afford the α-amino caprolactam, a pale 

yellow solid used without purification in the next step of the reaction sequence. A 

magnetically stirred solution of the N-methylated phenylalanine (1.0 mmol) was dissolved in 

DMF (5 ml), to which was added PyBOP (0.95 mmol) and NMM (2.0 mmol). After 30 

minutes, the reaction mixture was cooled to 0°C and treated drop wise via cannula with a 

solution of the Fmoc deprotected α-amino caprolactam dissolved in DMF (8 ml). The 

reaction was left to react for 18 h at r.t. After 18 h, the mixture was diluted with HCl (5 ml of 

a 5 %v/v aq. Solution and extracted by use of diethyl ether (3 x 25 ml) and brine (1 x 10 ml) 

before being dried (MgSO4), filtered and concentrated en vacuo to give a light yellow oil. 

 

Procedure 4: Attachment of lipid tails to Boc-protected di-peptides.  

The Boc-protected dipeptide (1.00 mmol) was dissolved in DCM (2.5 ml). TFA (2.5 ml) was 

added and the resulting solution stirred for 2 h. On completion of the reaction, the solvent 

was removed en vacuo. Co-evaporation with ether was carried out three times to ensure 

complete removal of TFA. The resulting TFA salt was dissolved in DCM (5 ml). 

Octonylchloride (1.50 mmol) and TEA (3.00 mmol) were added to the solution. The resulting 

solution was stirred at 25 °C for 24 h. On completion of the reaction solvent was removed en 

vacuo. 

 

 

Procedure 1a: Acetylation of dipeptides 

The Boc-protected peptide (1.0 mmol, 1.0 eq.) was dissolved in DCM (2.5 mL) and TFA (3 

mL) was then added and the resulting solution was stirred for 2 h at rt. The solvent was 



 

 

removed en vacuo on completion of the reaction by co-evaporation with excess ether (x 5) 

The resulting crude TFA salt was dissolved in DCM (5 mL) and the acid chloride (1.5 mmol, 

1.5 eq.) and Et3N (3.0 mmol, 3 eq.) were then added to the solution. The resulting solution 

was stirred at 25 °C for 24 h. Solvent was removed en vacuo on completion of reaction to 

give the crude product which is purified by column chromatography on silica gel.  

 

Procedure 2a: Coupling of peptide with cycloheptylamine 

The Boc-protected peptide (1.0 mmol, 1.0 eq.) was dissolved in DCM (5 mL). PyBOP (1.0 

mmol, 1.0 eq.) in DCM and DIPEA (2.0 mmol, 2.0 eq.) were added to the solution with 

stirring under inert conditions. After 30 minutes of stirring at room temperature, the mixture 

was cooled, using an ice bath, to 0 °C. Cycloheptylamine (1.2 mmol, 1.2 eq.) was added to 

the mixture via syringe and the resulting mixture was then stirred, whilst warming to room 

temperature, for 18 h. The solvent was removed en vacuo, to give the crude product, which 

was purified by column chromatography on silica gel. 

 

Procedure 3a: Coupling of peptide with cyclohexylamine 

The Boc-protected peptide (1.0 mmol, 1.0 eq.) was dissolved in DCM (5 mL). PyBOP (1.0 

mmol, 1.0 eq.) in DCM and DIPEA (2.0 mmol, 2.0 eq.) were added to the solution with 

stirring under inert conditions. After 30 minutes of stirring at rt, the mixture was cooled, 

using an ice bath, to 0 °C. Cyclohexylamine (1.2 mmol, 1.2 eq.) was then added to the 

mixture via syringe. The resulting mixture was then stirred, whilst warming to room 

temperature, for 18 h. The solvent was removed en vacuo to give the crude product, which 

was purified by column chromatography on silica gel. 

 

Procedure 5a: Coupling of acid with amino acid preloaded wang resin 



 

 

DMF was added to the resin (1.0 mmol, 1.0 eq.) and left to stir at rt for 5 minutes to allow the 

resin to swell. The DMF was then removed en vacuo. The resin linker was then deprotected 

(Fmoc cleavage) by addition of 20% piperidine in DMF in excess with stirring for 5 minutes 

at rt. (x3) After each 5 minute stirring period, the piperidine was removed en vacuo and the 

resin was washed thoroughly with DMF. 

The acid (4.0 mmol, 4.0 eq.) was activated in a separate vessel by addition of TBTU (4.0 

mmol, 4.0 eq.) and DIPEA (4.0 mmol, 4.0 eq.) with thorough mixing. The activated acid was 

then added to the deprotected, washed resin linker and just enough DMF was added to ensure 

all components were in solution. Coupling-3 programme was used in the manual microwave 

to couple the acid with the resin. The column was then washed through with DCM to remove 

any amine by-products. 

 

Procedure 6a: Cleavage of peptide from resin 

For 50 mg of resin, an 18:1:1 mixture of trifluoroacetic acid (TFA)(0.9 ml): water (0.05 mL): 

triisopropylsilane (TIPS) (0.05 mL) was added to the resin to cleave the peptide from the 

resin. Protecting groups that are acid sensitive are also removed from side chains in this step. 

The vessel was then left for 2 h, stoppered, with occasional agitation and the mixture filtered 

to remove the resin. The TFA solution was then partially removed by rotary evaporation (47 

o
C, 10 mbarr). The TFA was further removed by coevaporation with diethyl ether (6 ml), en 

vacuo (47 
o
C, 10 mbarr). Once a wet solid had formed, diethyl ether (6 ml) was added to 

precipitate out the peptide. To ensure complete removal of TFA and any remaining coupling 

agents, the excess diethyl ether was carefully pipetted off to leave the solid peptide in the 

bottom of the vessel. Diethyl ether (3 ml) was then added and removed en vacuo (47 
o
C, 10 

mbarr) to give the peptide as a white solid.  

 



 

 

7.4.2 Synthesis of Ciliatamide analogs and precursors 

(S)-(9H-fluoren-9-yl)methyl 2-oxoazepan-3-ylcarbamate (53) 

 

Fmoc protected α-amino caprolactam (53) was synthesised on a 1.07 mmol scale according to 

amide coupling Procedure 1. Purification via column chromatography (SiO2 3:1 EtOAc 

/EtOAc, Rf 0.45 (EtOAc)) yielded 53 as a white powder (257 mg, 69%). δH (400 MHz; 

CDCl3): 7.95-7.27 (10H, m, NH, Ar); 4.95 (2H, s, CH2-O(C=O)N); 4.04-4.02 (1H, m, NH-

CH) 4.15-4.05 (1H, m, CH2-CH); 3.35 – 3.20 (1H, m*,CHNHCH2); 2.10-2.00 (2H, S, CH2-

O(C=O)); 1.31-1.22 (6H, m, CH2, Lactam ring); δH 
13

C (400 MHz; CDCl3): 191.9 (C=O 

(Lactam)); 173.4 (C=O)O); 128.4-119.1 (C-Ar); 68.7 (CH2O(C=O)); 52.5 (CH-NH); 47.1 

(CH-CH2O(C=O)); 40.1 (CH2-NH(C=O)-NH); 32.5-22.4 (CH2 (Lactam)); LRMS (ES+) 

calcd for C21H22N2O3 [M+H
+
] 351.16, found 351.2. HRMS: calcd. 351.1709 (for 

C21H23N2O3), found 351.1710 [M+H
+
]. Data obtained matches that in available literature

1
.  

 

(R)-(9H-fluoren-9-yl)methyl 2-oxoazepan-3-ylcarbamate 52 

 

 

Fmoc protected α-amino caprolactam (52) was synthesised on a 1.07 mmol scale according to 

amide coupling procedure 1. The crude product was purified by column chromatography 

(SiO2 3:1 EtOAc /EtOAc, Rf 0.45 (EtOAc))) gave 53 as a white powder (278 mg, 74 %). δH 

(400 MHz; CDCl3): 7.95-7.27 (10H, m, NH, Ar)4.95 (2H, s, CH2-O(C=O)N); 4.04-4.02 (1H, 



 

 

m, NH-CH) 4.15-4.05 (1H, m, CH2-CH); 3.35 – 3.20 (1H, m,CHNHCH2); 2.10-2.00 (2H, S, 

CH2-O(C=O)); 1.31-1.22 (6H, m, CH2, lactam ring); δH 
13

C (400 MHz; CDCl3): 191.9 (C=O 

(Lactam)); 173.4 (C=O)O); 128.4-119.1 (C-Ar); 68.7 (CH2O(C=O)); 52.5 (CH-NH); 47.1 

(CH-CH2O(C=O)); 40.1 (CH2-NH(C=O)-NH); 32.5-22.4 (CH2 (Lactam)); LRMS (ES+) 

calcd for C21H22N2O3 [M+H
+
] 351.16, found 351.2. HRMS: calcd. 351.1709 (for 

C21H23N2O3), found 351.1709 [M+H
+
]. Data obtained matched that in available literature

1
. 

 

(S)-2-(tert-butoxycarbonyl(methyl)amino)-3-phenylpropanoic acid (44) 

 

Boc-L-phenylalanine (500 mg, 1.90 mmol) was dissolved in dry THF (~5 ml). The solution 

was cooled to 0°C. NaH (60 %) in mineral oil) (535 mg, 13.2 mmol) and methyliodide (940 

µl, 15.20 mmol) were added slowly to the solution. The resulting mixture was stirred at 25°C 

for 24 h. On completion of the reaction the mixture was poured onto H2O (~20 ml). THF was 

removed en vacuo. The mineral oil from the NaH was extracted by use of hexane (2 x 7 ml). 

The aqueous layer was acidified to pH 3 by use of 5 % citric acid. 44 was extracted by use of 

EtOAc, (3 x 25 ml) the EtOAc layer was then dried (Na2SO4) and filtered. Solvent was 

removed en vacuo to give a dark orange oil. Column chromatography (SiO2 1:1 hexane : 

EtOAc, Rf 0.46) afforded 44 as a yellow oil (321 mg, 61 %). δH (400 MHz; CDCl3): 9.51 

(1H, bs, OH); 7.28-7.10 (5H, m, 5 x Ar-H); 4.78 -  4.49 (1H, multiple signals*, Hα); 3.20 

(1H, m, Ar-CHaHb); 2.93 (1H, m, Ar-CHaHb) 2.75-2.65 (3H, multiple signals*, HCH3); 1.38-

1.10 (9H, multiple signals*, C(CH3)3); δC (400 MHz; CDCl3)*: 202.8, 232.4, 129.4, 129.0, 

128.91, 128.6, 128.5, 126.8, 126.7, 107.6, 103.4, 90.9, 61.5, 60.5, 60.3, 45.4, 37.1, 35.3, 34.7, 



 

 

32.7, 32.5, 28.3, 28.3, 21.1; LRMS (ES+)  calcd. for C15H21NO4 [M
 -
] 278.15, found 278.2. 

HRMS: calcd. 278.1392 (for C15H20NO4), found 278.1401 [M
-
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 

(R)-2-(tert-butoxycarbonyl(methyl)amino)-3-phenylpropanoic acid (48) 

 

 

Boc-D-phenylalanine (500 mg, 1.90 mmol) was dissolved in dry THF (~5 ml). The solution 

was cooled to 0°C. NaH (60 %) in mineral oil) (535 mg, 13.2 mmol) and methyliodide (940 

µl, 15.20 mmol) were added slowly to the solution. The resulting mixture was stirred at 25°C 

for 24 h. On completion of the reaction the mixture was poured onto H2O (~20 ml). THF was 

removed en vacuo. The mineral oil from the NaH was extracted by use of hexane (2 x 7 ml). 

The aqueous layer was acidified to pH 3 by use of 5 % citric acid. 48 was extracted by use of 

EtOAc (3 x 25 ml), the EtOAc layer was then dried (Na2SO4) and filtered. Solvent was 

removed en vacuo to give the crude product 48 as a dark orange oil (427 mg, 81 %) The 

crude product was purified by column chromatography (SiO2 1:1 hexane : EtOAc, Rf 0.46) 

gave 48 as a yellow oil (427 mg, 81 %). δH (400 MHz; CDCl3): 10.37 (1H, bs, OH); 7.23-

7.09 (5H, m, 5 x Ar-H); 4.79 -  4.52 (1H, multiple signals*, Hα); 3.34 (1H, m, Ar-CHaHb); 

3.05 (1H, m, Ar-CHaHb) 2.82-2.64 (3H, multiple signals*, HCH3); 1.38-1.16 (9H, multiple 

signals*, C(CH3)3); δC (400 MHz; CDCl3)*: 128.9, 128.9, 128.6, 128.5, 126.7, 126.7, 61.5, 

60.6, 60.4, 35.3, 34.7, 32.9, 32.5, 28.3, 28.2, 21.1; LRMS (ES+) calcd for C15H21NO4 [M
 -
] 

278.15, found 278.1. HRMS: calcd. 278.1392 (for C15H20NO4), found 278.1405 [M
-
] 



 

 

*Doubling of peaks observed due to the presence of rotamers. 

 

 

(S)-2-(tert-butoxycarbonyl(methyl)amino)-3-phenylpropanoic acid (45) 

 

 

L-α-amino-ε-caprolactam 53 was coupled to methylated Boc-D-phenylalanine 44 on a 0.56 

mmol scale following amide coupling procedure 3. The crude product was purified by 

column chromatography (SiO2 3:1 hexane: EtOAc to 100% EtOAc, Rf EtOAc 0.45) gave 45 

as a white solid (137 mg, 60 %). δH (400 MHz; CDCl3): 7.71 (1H, s, NH); 7.45-7.10 (5H, m, 

Ar-H); 5.03-4.71 (1H, bs, multiple signals*, Hα (Phe)); 4.35-4.13 (1H, m, Hα (Lactam)); 3.41 

(3H, s*, NCH3); 2.9 (2H, m, CH2); 2.80 (2H, m, CH2); 1.98-1.80 (6H, m, CH2 (caprolactam 

ring)); 1.22-1.10 (9H, d, C(CH3)3); δC (400 MHz; CDCl3): 177.09 ((C=O) caprolactam); 

169.99 (NH(C=O)); 156.85 ((C=O)O); 129.97-129.10 (C-Ar); 81.33 (C(CH3)3); 62.50 

((C=O)CH2N); 60.67 (Cα (Lactam); 41.00 (CH2NH); 35.07 (CH2); 34.00-27.34 (CH2 

(Lactam), C(CH3)3, NCH3); LRMS (ES+) calcd for C15H21NO4 [M + H
 +

] 389.23, found 

390.1. HRMS: calcd for C15H21NO4Na
+
 [M + Na

 +
] 412.2701, found 412.2014 [M+Na

+
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 

 

 

Tert-butyl-methyl((R)-azepan-2-one-3-ylamino-(S)-oxo-3-phenylpropan-2-yl)carbamate (56) 



 

 

 

 

D-α-amino-ε-caprolactam 53 was coupled to methylated Boc-D-phenylalanine 48 on a 1.23 

mmol scale following amide coupling procedure 3. The crude product was purified by 

column chromatography (SiO2 3:1 hexane: EtOAc to 100% EtOAc, Rf EtOAc 0.45) gave 56 

as a white powder (254 mg, 76 %). δH (400 MHz; CDCl3): 7.89 (1H, s, NH); 7.31-7.13 (5H, 

m, Ar-H); 4.92-4.78 (1H, multiple signals*, Hα (Phe)); 4.21-4.09 (1H, m, Hα (Lactam)); 3.11 

(3H, s*, NCH3); 2.80 (2H, m, CH2); 2.91 (2H, m, CH2); 1.98-1.80 (6H, m, CH2 (caprolactam 

ring)); 1.21-1.13 (9H, d, C(CH3)3); δC (400 MHz; CDCl3): 177.09 ((C=O) caprolactam); 

169.99 (NH(C=O)); 156.85 ((C=O)O); 129.97-129.10 (C-Ar); 81.33 (C(CH3)3); 62.50 

((C=O)CH2N); 60.67 (Cα (Lactam); 41.00 (CH2NH); 35.07 (CH2); 34.00-27.34 (CH2 

(Lactam), C(CH3)3, NCH3); LRMS (ES+) calcd for C15H21NO4 [M + Na
 +

] 412.22, found 

412.0. HRMS: calcd for C15H21NO4Na
+
 [M + Na

 +
] 412.2701, found 412.2933 [M+Na

+
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 

 

Tert-butyl methyl((S)-azepan-2-one-3-ylamino-(R)-oxo-3-phenylpropan-2-yl)carbamate (57) 

 

L-α-amino-ε-caprolactam 53 was coupled to methylated Boc-D-phenylalanine 48 on a 1.23 

mmol scale following amide coupling procedure 3. The crude product was purified by 



 

 

column chromatography (SiO2 3:1 hexane: EtOAc to 100% EtOAc, Rf EtOAc 0.45) gave 57 

as a white powder (214 g, 63 %). δH (400 MHz; CDCl3): 7.70 (1H, s, NH); 7.28-7.05 (5H, m, 

Ar-H); 4.95-4.85 (1H, multiple signals*, Hα (Phe)); 4.23-4.11 (1H, m, Hα (Lactam)); 3.10 

(3H, s*, NCH3); 2.9 (2H, m, CH2); 2.80 (2H, m, CH2); 1.98-1.80 (6H, m, CH2 (caprolactam 

ring)); 1.23-1.10 (9H, d, C(CH3)3); δC (400 MHz; CDCl3): 177.09 ((C=O) caprolactam); 

169.99 (NH(C=O)); 156.85 ((C=O)O); 129.97-129.10 (C-Ar); 81.33 (C(CH3)3); 62.50 

((C=O)CH2N); 60.67 (Cα (Lactam); 41.00 (CH2NH); 35.07 (CH2); 34.00-27.34 (CH2 

(Lactam), C(CH3)3, NCH3);LRMS (ES+) calcd for C15H21NO4 [M + Na
 +

] 412.2, found 

412.2. HRMS: HRMS: calcd for C15H21NO4Na
+
 [M + Na

 +
] 412.2701, found 412.3107 

[M+Na
+
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 



 

 

Tert-butyl methyl((R)-azepan-2-one-3-ylamino-(S)-oxo-3-phenylpropan-2-yl)carbamate (58) 

 

D-α-amino-ε-caprolactam 53 was coupled to methylated Boc-D-phenylalanine 44 on a 0.95 

mmol scale following amide coupling procedure 3. The crude product was purified by 

column chromatography (SiO2 3:1 hexane: EtOAc to 100% EtOAc, Rf EtOAc 0.45) gave 58 

as a white powder (180 mg, 51%). δH (400 MHz; CDCl3): 7.98 (1H, s, NH); 7.31-7.02 (5H, 

m, Ar-H); 4.96-4.84 (1H, multiple signals*, Hα (Phe)); 4.21-4.11 (1H, m, Hα (Lactam)); 3.10 

(3H, s*, NCH3); 2.91 (2H, m, CH2); 2.80 (2H, m, CH2); 1.99-1.80 (6H, m, CH2 (caprolactam 

ring)); 1.24-1.10 (9H, d, C(CH3)3); δC (400 MHz; CDCl3): 177.09 ((C=O) caprolactam); 

169.99 (NH(C=O)); 156.85 ((C=O)O); 129.97-129.10 (C-Ar); 81.33 (C(CH3)3); 62.50 

((C=O)CH2N); 60.67 (Cα (Lactam); 41.00 (CH2NH); 35.07 (CH2); 34.00-27.34 (CH2 

(Lactam), C(CH3)3, NCH3);LRMS (ES+) calcd for C15H21NO4 [M + H
 +

] 389.23, found 

390.2. HRMS: calcd for C15H21NO4Na
+
 [M + Na

 +
] 412.2701, found 412.2711 [M+Na

+
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 

 

 



 

 

N-methyl-N-((S)-1-oxo-1-((S)-2-oxoazepan-3-ylamino)-3-phenylpropan-2-yl)octanamide 

(23) (S,S-Ciliatamide B) 

 

 

 

Dipeptide 45 was coupled to octanoyl chloride on a 0.257 mmol scale following amide 

coupling procedure 4. The crude product was purified by column chromatography (SiO2 1:9 

MeOH : DCM), Rf 0.45) gave 23 as an orange oil (57 mg, 54%). δH (400 MHz; CDCl3): 7.58-

6.84 (6H, m, Ar-H, NH); 5.51 (1H, bs, NH); 4.52 (1H, m, Hα (Lactam)); 3.46-3.11 (3H, m, 

CHNHCH2, Ar-CHaHb); 3.06-2.76 (5H, m, Ar-CHaHb, Hα(Phe), NCH3); 2.31-0.54 (21H, m, 

9x CH2, CCH3); δC (400 MHz; CDCl3)*; 129.03, 128.90, 128.83, 128.42, 126.53, 57.43, 

52.33, 52.21, 42.10, 34.62, 34.20, 34.02, 33.64, 31.74, 31.68, 29.22, 29.07, 29.03, 28.93, 

28.81, 27.91, 24.92, 24.81, 22.62, 14.09; LRMS (ES+) calcd for C24H38N3O3 [M+H
+
] 416.58, 

found 416.4. HRMS: calcd. 438.3071 (for C24H38N3O3Na
+
), found 438.4140 [M+Na

+
]. 

*Doubling of peaks observed due to the presence of rotamers. 

 



 

 

R,R-Ciliatamide B N-methyl-N-((R)-1-oxo-1-((R)-2-oxoazepan-3-ylamino)-3-phenylpropan-

2-yl)octanamide (23a) 

 

 

Dipeptide 56 was coupled to octanoyl chloride on a 0.267 mmol scale following amide 

coupling procedure 4. The crude product was purified by column chromatography (SiO2 1:9 

MeOH : DCM), Rf 0.45) gave 23a as a yellow oil (106 mg, 54 %). δH (400 MHz; CDCl3): 

8.02-7.94 (1H, m, NH); 7.49-7.17 (5H, m, Ar-H); 6.16 (1H, m, NH); 5.19 (1H, m, 

Hα(Lactam)); 3.58 (3H, s, NCH3); 2.95-2.28 (4H, m, CH2Ar, CH2N (lactam); 3.00-2.77 (2H, 

CH2); 1.61-1.05 (18H, m, 9x CH2) 0.83 (3H, m, CCH3); δC (400 MHz; CDCl3)*; 177.20, 

175.79, 172.60, 168.65, 136.25, 127.97, 129.90, 128.81, 128.45, 126.49, 107.55, 103.41, 

42.82, 35.28, 34.06,31.68, 31.63, 31.58, 29.48, 29.23, 29.08, 29.01, 28.90, 28.85, 28.82, 

24.68, 24.22, 23.90, 22.59, 14.05; LRMS (ES+) calcd for C24H38N3O3 [M+H
+
] 416.58, found 

416.4. HRMS: calcd. 438.3071 (for C24H38N3O3Na
+
), found 438.3891 [M+Na

+
]. 

 

 



 

 

S,R-Ciliatamide B N-methyl-N-((S)-1-oxo-1-((R)-2-oxoazepan-3-ylamino)-3-phenylpropan-

2-yl)octanamide (23b) 

 

Dipeptide 57 was coupled to octanoyl chloride on a .103 mmol scale following amide 

coupling procedure 4. The crude product was purified by column chromatography (SiO2 1:9 

MeOH : DCM) Rf 0.45) gave 23b as a yellow oil (79 mg, 54 %). δH (400 MHz; CDCl3): 

7.34-7.14 (5H, m, Ar-H); 7.03 (1H, t, JHH 6.10, NH); 5.56 (1H, dd, JHH 6.44, J 9.82, NH); 

4.54 (1H, m, Hα(Lactam)); 3.53-3.11 (3H, m, CHNHCH2, Ar-CHaHb); 3.00-2.77 (5H, m, Ar-

CHaHb, Hα(Phe), NCH3); 2.37-0.30 (21H, m, 9x CH2, CCH3); δC (400 MHz; CDCl3)*; 

178.20, 175.99, 174.60, 169.61, 137.29, 128.97, 128.91, 128.81, 128.36, 126.49, 77.35, 

77.03, 76.71, 57.15, 52.03, 42.08, 34.13, 33.95, 33.57, 31.91, 31.66, 31.64, 31.49, 31.15, 

29.68, 29.64, 29.34, 29.18, 29.00, 28.93, 28.71, 27.97, 24.91, 24.84, 24.82, 24.78, 22.70, 

22.67, 22.66, 22.65, 22.64, 22.60, 22.59, 22.58, 22.52; LRMS (ES+) calcd for C24H38N3O3 

[M+H
+
] 416.58, found 416.4. HRMS: calcd. 438.3071 (for C24H38N3O3Na

+
), found 438.3390 

[M+Na
+
].  

*Doubling of peaks observed due to the presence of rotamers. 

 

 



 

 

R,S-Ciliatamide B N-methyl-N-((R)-1-oxo-1-((S)-2-oxoazepan-3-ylamino)-3-phenylpropan-

2-yl)octanamide (23c) 

 

 

Dipeptide 58 was coupled to octanoyl chloride on a 0.64 mmol scale following amide 

coupling procedure 4. Purification on SiO2 (1:9 MeOH : DCM), Rf 0.45) gave 23c as a 

yellow oil (117 mg, 44 %). δH (400 MHz; CDCl3): 8.01-7.93 (1H, m, NH); 7.7 (1H, m, 

Hα(Lactam)); 7.20 (5H, m, Ar-H); 4.01 (3H, s, NCH3); 3.34, (2H, m, CH2Ar) 3.00-2.77 (2H, 

CH2); 1.60-1.05 (18H, m, 9x CH2) 0.84 (3H, m, CCH3); δC (400 MHz; CDCl3)*; 177.40, 

172.76, 172.69, 171.15, 170.21, 169.55, 168.28, 143.45, 137.43, 133.01, 132.79, 132.56, 

130.32, 129.44, 128.69, 128.49, 128.24, 126.72, 126.43, 126.06, 124.79, 124.30, 120.51, 

120.09, 116.10, 115.49, 114.45, 108.16, 63.79, 60.38, 53.11, 48.05, 46.51,43.39, 42.80, 

42.03, 39.98, 39.35, 38.54, 35.72, 35.51, 35.05, 33.94, 33.78, 33.43, 33.38,33.10,31.71, 

31.67, 31.64, 31.60, 31.53, 31.50, 31.28, 30.75, 29.47, 29.26, 29.21; LRMS (ES+) calcd for 

C24H38N3O3 [M+H
+
] 416.58, found 416.4. HRMS: calcd. 438.3071 (for C24H38N3O3Na

+
), 

found 438.0251 [M+Na
+
].  

 



 

 

Synthesis of (66) 

 

General procedure 2a was carried out on the Boc-protected peptide (Boc-Phe-OH) (715 mg, 

2.69 mmol, 1.0 eq.) The crude product was then purified by column chromatography (solvent 

system of 3:1, hexane:ethyl acetate), giving 66 as a pale yellow solid (788 mg, 2.19 mmol, 

81% ).  [α]D
25 

= + 20.2 (c 1.0 in CHCl3); H (400 MHz, CDCl3) 1.45 (9H, s, tBu), 1.10 - 1.75 

(12H, m, HN-CH(CH2)6), 1.75 – 1.85 (2H, m, 2 x CH), 2.95 (1H, dd, 16.0 and 24.0 Hz, CH2-

Ar), 3.10 (1H, dd, J 12.0 and 24.0 Hz, CH2-Ar), 3.85 (1H, br s, NH-CH(CH2)6), 4.25 (1H, q, 

Hα), 5.15 (1H, br s, NH), 5.50 (1H, br s, NH), 7.25 (5H, m, Ar); m/z (ESI) 383.4 (M
+
 + Na), 

743.7 (2M
+ 

+ Na) Accurate mass: 383.2310 m/z = [M+Na]
+ 

 

Synthesis of (67) 

 

General procedure 1a was carried out on the Boc-protected peptide (66) (280 mg, 0.78 

mmol). The crude product was then purified by column chromatography (solvent system of 

3:1, hexane:ethyl acetate), leaving the product as a yellow solid (5%).  H (400 MHz, CDCl3) 

1.20 – 1.45 (12H, m, CH3(CH2)6), 1.47 – 1.75 (12H, m, HN-CH(CH2)6), 2.22 (2H, t, J 8.0 Hz, 

CH3CH2), 2.40 (1H, t, J 8.0 Hz, CH3CH2), 3.00 (1H, dd, J 8.0 and 12.0 Hz, CH2-Ar), 3.10 

(1H, dd, J 4.0 and 8.0 Hz, CH2-Ar), 3.85 (1H, br s, NH-CH(CH2)6), 4.70 (1H, q, J 8.0 Hz, 



 

 

Hα), 6.1 (1H, s, NH), 6.84 (1H, br s, NH), 7.30 (5H, m, Ar); m/z  (ESI) 409.5 (M
+
 + Na), 

795.8 (2M
+ 

+ Na) 

 

Synthesis of (68) General procedure 1a was carried out on 250 mg of the Boc-protected 

peptide (66) (0.94 mmol, 1 eq.) with octanoyl chloride (0.23 g, 1.41 mmol, 1.5 eq.). H (400 

MHz, CDCl3) 1.20 – 1.45 (12H, m, CH3(CH2)6), 1.47 – 1.75 (12H, m, HN-CH(CH2)6), 2.22 

(2H, t, J 8.0 Hz, CH3CH2), 2.40 (1H, t, J 8.0 Hz, CH3CH2), 3.00 (1H, dd, J 8.0 and 12.0 Hz, 

CH2-Ar), 3.10 (1H, dd, J 4.0 and 8.0 Hz, CH2-Ar), 3.85 (1H, br s, NH-CH(CH2)6), 4.70 (1H, 

q, J 8.0 Hz, Hα), 6.1 (1H, s, NH), 6.84 (1H, br s, NH), 7.30 (5H, m, Ar); m/z  (ESI) 387.5 

(M
+
 + H), 409.7  (M

+
 + Na), 795.8 (2M

+ 
+ Na). 

 

Synthesis of (72) 

 

General procedure 1a was carried out on the Boc-protected peptide (75) (200 mg, 0.56 mmol, 

1.0 eq.) with butyryl chloride (89 mg, 0.83 mmol, 1.5 eq.). The crude product was then 

purified by column chromatography (solvent system of 3:1, hexane:ethyl acetate), leaving the 

product as a yellow solid. (7 %) H (400 MHz, CDCl3) 1.20 – 1.35 (5H, m, CH3(CH2)2), 1.36 

– 1.65 (5H, m, HN-CH(CH2)6), 2.15 (2H, t, J 8.0 Hz, CH3CH2), 2.95 (1H, dd, J 12.0 and 16.0 

Hz, CH2-Ar), 3.10 (1H, dd, J 8.0 and 16.0 Hz, CH2-Ar), 3.80 (1H, m, NH-CH(CH2)6), 4.55 

(1H, q, J 12.0 Hz, Hα), 5.7 (1H, s, NH), 6.44 (1H, br s, NH), 7.25 (5H, m, Ar) 

 

Synthesis of (70) 



 

 

 General procedure 1a was carried out on 250 mg of the Boc-protected peptide (74) (0.94 

mmol, 1 eq.) with butyryl chloride (150 mg, 1.41 mmol, 1.5 eq.). The crude product was 

purified by prep TLC using a solvent system of 3:1, DCM:MeOH. H (400 MHz, CDCl3) 

0.70 – 0.90 (4H, m, CH3(CH2)2), 1.47 – 1.75 (12H, m, HN-CH(CH2)6), 2.22 (2H, t, J 8.0 Hz, 

CH3CH2), 2.40 (1H, t, J 8.0 Hz, CH3CH2), 3.00 (1H, dd, J 8.0 and 12.0 Hz, CH2-Ar), 3.10 

(1H, dd, J 4.0 and 8.0 Hz, CH2-Ar), 3.85 (1H, br s, NH-CH(CH2)6), 4.70 (1H, q, J 8.0 Hz, 

Hα), 6.1 (1H, s, NH), 6.84 (1H, br s, NH), 7.30 (5H, m, Ar); m/z  (ESI) 353.3 (M
+
 + Na), 

683.6 (2M
+ 

+ Na); C 

 

Synthesis of (75) 

 

General procedure 2a was carried out on the Boc-protected peptide (Boc-Ala-OH) (500 mg, 

2.64 mmol, 1.0 eq.). The crude product was then purified by column chromatography 

(solvent system of 3:1, hexane:ethyl acetate), leaving the product as a pale yellow solid (568 

mg, 2.00 mmol, 76 %). [α]D
26 

= -70.5 (c 1.0 in CHCl3); H (400 MHz, CDCl3) 1.33 (3H, d, J 

8.0 Hz, CH3), 1.37 – 1.65 (12H, m, HN-CH(CH2)6), 1.45 (9H, s, tBu), 1.85 – 1.93 (2H, m, 2 x 

CH), 3.95 (1H, m, NH-CH(CH2)6), 4.05 (1H, m, Hα), 4.95 (1H, br s, NH), 6.05 (1H, br s, 

NH); m/z  (ESI) 307.4 (M
+
 + Na), 591.6 (2M

+ 
+ Na) Accurate mass: 307.2004 m/z = 

[M+Na]
+
 

 

Synthesis of (76) 



 

 

 

General procedure 2a was carried out on the Boc-protected peptide (Boc-Val-OH) (500 mg, 

2.30 mmol, 1.0 eq.). The crude product was then purified by column chromatography 

(solvent system of 3:1, hexane:ethyl acetate), leaving the product as a pale yellow solid (430 

mg, 1.38 mmol, 60 %). [α]D
26 

= -18.9 (c 1.0 in CHCl3); H (400 MHz, CDCl3) 0.90 (3H, d, J 

4.0 Hz, CH3), 0.95 (3H, d, J 4.0 Hz, CH3), 1.45 (9H, s, tBu), 2.10 (1H, m, CH2CHCH2), 3.77 

(1H, dd, J 8.0 and 4.0 Hz, Hα), 3.95 (1H, m, CH2CHCH2), 5.05 (1H, br s, NH), 5.75 (1H, br 

s, NH); m/z  (ESI) 335.4 (M
+
 + Na), 647.7 (2M

+ 
+ Na) Accurate mass: 335.2315 m/z = 

[M+Na]
+ 

 

Synthesis of (77) 

 

General procedure 3a was carried out on 1.00 g of the Boc-protected peptide (Boc-Phe-OH) 

(3.77 mmol, 1.0 eq). The crude product was purified by column chromatography using a 

solvent system of 3:1, hexane:ethyl acetate. To afford the product as a pale yellow solid (3.00 

mmol, 80%) [α]D
26 

= -13.2 (c 1.0 in CHCl3); H (400 MHz, CDCl3) 1.45 (9H, s, tBu), 1.10 - 

1.75 (10H, m, HN-CH(CH2)5), 1.75 – 1.85 (2H, m, 2 x CH), 2.95 (1H, dd, 16.0 and 24.0 Hz, 

CH2-Ar), 3.15 (1H, dd, J 12.0 and 24.0 Hz, CH2-Ar), 3.70 (1H, br s, NH-CH(CH2)6), 4.20 

(1H, q, Hα), 5.10 (1H, br s, NH), 5.45 (1H, br s, NH), 7.25 (5H, m, Ar); m/z  (ESI) 369.3 (M
+
 

+ Na), 715.5 (2M
+ 

+ Na); Accurate mass: 369.2173 m/z 



 

 

 

Synthesis of (69) 

 

General procedure 1a was carried out on the Boc-protected peptide (75) (140 mg, 0.5 mmol, 

1.0 eq.) with octanoyl chloride. The crude product was purified by prep TLC on silica gel. To 

afford the product as a pale yellow solid (19 %) H (400 MHz, CDCl3) 0.85 (8H, m, 

CH3(CH2)6), 1.45 – 1.60 (12H, m, HN-CH(CH2)6), 1.85 – 1.93 (2H, m, 2 x CH), 3.90 (1H, m, 

NH-CH(CH2)6), 4.50 (1H, m, Hα), 4.95 (1H, br s, NH), 6.65 (1H, br s, NH) 

 

Synthesis of (70) 

 

General procedure 1a was carried out on 140 mg of the Boc-protected peptide (75) (0.5 

mmol, 1.0 eq.) with butyryl chloride (0.08 mL, 0.75 mmol, 1.5 eq.) and Et3N (0.21 mL, 1.5 

mmol, 3 eq.). The crude product was a pale yellow solid which was purified by prep TLC on 

silica gel to afford the product (18%) H (400 MHz, CDCl3) 0.90 (7H, m, CH3(CH2)2), 1.55 – 

1.70 (12H, m, HN-CH(CH2)6), 2.37 (3H, t, J 8.0 Hz, CH3), 3.90 (1H, m, NH-CH(CH2)6), 4.40 

(1H, q, J 8.0 Hz, Hα), 6.05 (1H, br s, NH); m/z  (ESI) 255.4 (M
+
 + H), 277.3  (M

+
 + Na), 

531.5 (2M
+ 

+ Na);  

 

Synthesis of (71) 



 

 

 

General procedure 1a was carried out on 120 mg of the Boc-protected peptide (76) (0.38 

mmol, 1.0 eq.) with octanoyl chloride (0.09 g, 0.58 mmol, 1.5 eq.) and Et3N (0.12 g, 1.15 

mmol, 3 eq.). The crude product was a pale yellow solid, which was then purified by prep 

TLC on silica gel to give apale yello produc (14%). H (400 MHz, CDCl3) 0.80 – 0.90 (6H, 

m, 2 x CH3), 1.20 – 1.35 (15H, m, CH3(CH2)6), 1.45 – 1.7 (12H, m, HN-CH(CH2)6), 2.30 

(1H, m, CH2CHCH2), 3.90 (1H, br s, Hα), 4.25 (1H, m, CH2CHCH2), 7.23 (1H, br s, NH), 

7.70 (1H, br s, NH); m/z  (ESI) 361.4 (M
+
 + Na), 699.7 (2M

+ 
+ Na); 

 



 

 

Synthesis of (72) 

 

General procedure 1a was carried out on 120 mg of the Boc-protected peptide (76) (0.38 

mmol, 1.0 eq.) with butyryl chloride (0.06 g, 0.58 mmol, 1.5 eq.). to give the crude product as 

a pale yellow solid, which was then purified by prep TLC on silica gel to afford the product 

as a pale yellow solid (11%) H (400 MHz, CDCl3) 0.90 – 1.0 (7H, m, CH3(CH2)6), 1.4 – 1.7 

(12H, m, HN-CH(CH2)6), 1.8 – 2.0 (3H, m, CH3), 2.15 – 2.35 (3H, m, CH3), 3.90 (1H, br s, 

Hα), 4.25 (1H, dt, J 8.0 and 24.0 Hz CH2CHCH2), 6.55 (1H, br s, NH), 6.8 (1H, br s, NH); 

m/z  (ESI) 305.4 (M
+
 + Na), 587.6 (2M

+ 
+ Na) 

 

Synthesis of (73) 

 

General procedure 3a was carried out on (0.95 mmol, 1 e.q.) 77 to afford 73 as a white solid, 

which was the purified by prep TLC on silica gel to afford the product (21 %). H (400 MHz, 

CDCl3) 0.08 – 0.09 (7H, m, CH3(CH2)6), 1.20 - 1.35 (18H, m, HN-CH(CH2)5, CH3(CH2)6), 

2.15 (2H, t, J 8.0 Hz CH3(CH2)6), 2.35 (1H, t, J 8 Hz, CH3(CH2)6), 2.95 (1H, dd, 12.0 and 

16.0 Hz, CH2-Ar), 3.05 (1H, dd, J 8.0 and 16.0 Hz, CH2-Ar), 3.60 (1H, br s, NH-CH(CH2)6), 

4.55 (1H, q, J 12.0 Hz, Hα), 5.60 (1H, br s, NH), 6.45 (1H, br s, NH), 7.25 (5H, m, Ar); m/z  

(ESI) 373.4 (M
+
 + Na), 767.7 (2M

+ 
+ Na); 

 



 

 

Synthesis of (74) 

 

General procedure 3a was carried out on (0.95 mmol, 1 e.q.) 77 to afford 74 as a white solid, 

which was the purified by prep TLC on silica gel to afford the product (21 %). H (400 MHz, 

CDCl3) 0.07 – 0.09 (7H, m, CH3(CH2)2), 1.10 - 1.70 (10H, m, HN-CH(CH2)5), 2.85 (1H, dd, 

8.0 and 12.0 Hz, CH2-Ar), 3.05 (1H, dd, J 4.0 and 8.0 Hz, CH2-Ar), 3.60 (1H, br s, NH-

CH(CH2)6), 4.50 (1H, m, Hα), 5.40 (1H, br s, NH), 6.2 (1H, br s, NH), 7.20 (5H, m, Ar); m/z  

(ESI) 339.4 (M
+
 + Na), 655.6 (2M

+ 
+ Na);  

Accurate mass: 339.2 (M
+
 + Na) 



 

 

7.5 Assay 

7.5.1 Maintenance of Cell Lines
3
 

 

Promastigote: MYNC/BZ/62/M379 Leishmania mexicana (M379) procyclic promastigote 

parasites were cultured in sterile filtered Sigma-Aldrich
®
 Schneider’s Drosophilia medium 

(+) L-glutamine containing 15% Biosera heat inactivated (1h at 65
o
C) Foetal Bovine Serum 

(HIFBS), 1% GIBCO
TM

 Penicillin and Streptomycin (P/S) (Promastigote medium) at pH 7.0, 

26
o
C. Subcultures were seeded with two drops of procyclic promastigote parasite culture in 5 

ml in a 50 ml flask and incubated at 26
o
C.  

 

Amastigote: M379 amastigotes were cultured in sterile filtered Sigma-Aldrich
®

 Schneider’s 

Drosophilia medium (+) L-glutamine containing 20% Biosera HIFBS, 1% GIBCO
TM

 P/S 

(Amastigote medium) at pH 5.5, 32
o
C. Subcultures were seeded with two drops of healthy 

culture in 5 ml in a 50 ml flask and incubated at 32
o
C. 

 

Macrophage: RAW 264.3 mouse leukemic macrophages were cultured in sterile GIBCO
TM

 

Dulbecco’s Modified Eagle Medium (+) glutamine (DMEM) containing 10% HIFBS, 1% P/S 

(Macrophage medium) at 37
o
C with 5% CO2. Cultures were maintained in 50 ml flasks with 

vented caps. In order to facilitate subculture the medium was removed from  50-100% 

confluent cell cultures which were then exposed for 3 min to 1ml of a 1:10 GIBCO
TM

 0.5% 

Trypsin-EDTA 10X in phosphate buffered saline (PBS) solution at 37
o
C in with 5% CO2 in a 

vented cap flask. The cells were then disturbed by shaking and 5 ml macrophage medium 

added to the flask. Subcultures were then seeded with 1ml of this culture in 5 ml of the 

macrophage medium in a 50 ml vented cap flask and incubated at 37
o
C with 5% CO2. 

 



 

 

Cell Culture from Frozen Stock: Promastigote cell cultures were continually brought up 

from frozen stocks stored at -180
o
C. Cells were stored as 1 ml samples at 1 x 10

5
 cells/ml 

with 10% dimethyl sulphoxide (DMSO) in the appropriate medium. Promastigote frozen 

stocks were defrosted and added to 5 ml of the described promastigote medium. This was 

incubated at 26
o
C for 24 h. In order to wash the cells of DMSO, the culture was centrifuged 

in a 15 ml falcon tube for 5 min at 3000rpm in a BOECO U-320R centrifuge. The media was 

then removed and the pellet re-suspended into fresh promastigote medium (5 ml). The culture 

was then treated as described in the Promastigote section described above.  

 

7.5.2 Background and Analytical Procedures for Biological Screening
3
 

 

AMP and Amphotericin-B Stock Solutions: Stock solutions of RP-HPLC Purified TA (13), 

RP-HPLC Purified TB (9), AmB (2) and FAM-TB (10) were prepared at 25 mM in DMSO. 

The stocks were then stored at -20
o
C between uses. Before each use each stock was 

thoroughly defrosted and the peptide re-suspended using a Stuart Vortex mixer.  

 

Cell Counting and Concentration (Procedure 1): Cell line culture concentrations were 

measured using a Neubauer improved bright-line haemocytometer. The required cell/ml 

concentration was calculated and the estimated amount of cell culture re-suspended in the 

appropriate fresh medium. This culture was then recounted to verify that the correct cell 

concentration was achieved. 

Alamar Blue® Procedure 1 (Amastigote and Macrophage) (Procedure 2): The Invitrogen 

Alamar Blue® protocol 
67

 was followed for amastigote and macrophage cell cultures in order 

to monitor cell viability and proliferation. Cells were incubated at the appropriate conditions 

for each cell type for 4 h with 10 μl per 100 μl of cell culture. Fluorescence was detected 



 

 

using an excitation wavelength of 540 nm in a BioTek FLx800 plate reader in conjunction 

with the Gen5 Reader Control Program.  

 

Alamar Blue Procedure 2 (Promastigote) (Procedure 3): The Invitrogen Alamar Blue
®

 

protocol was insufficient to provide useful cell viability and proliferation results for the 

promastigote cultures. As such a procedure was developed as follows: Two Sarstedt 96 well 

plates were set up with wells containing 100 μl of promastigote cell culture at the  following 

concentrations: 1.0 x 10
7
 cells/ ml, 5.0 x 10

6
 cells/ ml, 2.5 x 10

6
 cells/ ml, 6.25 x 10

5
 cells/ ml, 

3.13 x 10
5
 cells/ ml, 1.63 x 10

5
 cells/ ml, 8.18 x 10

4 
cells/ml, 4.09 x 10

4
 cells/ml, 2.05 x 10

4
 

cells/ml, 1.02 x 10
4
 cells/ml, 5.01 x 10

3
 cells/ml. The above concentration series was 

achieved by serial dilution of the 1.0 x 10
7
 cells/ ml concentration into wells containing fresh 

promastigote medium. In each plate the concentration series and a control well containing 

only promastigote medium were set up in triplicate. 10 μl of Alamar Blue
®

 was then added to 

each well and the plates sealed with parafilm. One plate was then left to incubate at 26
o
C and 

the other at 37
o
C. Fluorescence was measured at 4 h and at 24 h using an excitation 

wavelength of 540 nm in a BioTek FLx800 plate reader in conjunction with the Gen5 Reader 

Control Program. The most effective protocol was that conducted at 26
o
C for 24 h. Thus the 

promastigote Alamar Blue
®
 protocol was conducted with 10 μl of Alamar Blue

®
 per 100 μl of 

cell culture. The plate was then sealed with parafilm and incubated at 26
o
C for 24 h. 

Fluorescence was then measured as above.  

 

 

Cytotoxicity Screening 

Macrophage Cytotoxicity Screen: Macrophage cell culture concentration was made up to 1 

x 10
5
 cells/ ml following Background Procedure 1. 200μl of this culture was added to the 



 

 

starting wells of each row of a Starstedt 96 well plate. In the next 5 wells of each row 100 μl 

of culture was added. 4μl of the Pure TA (13) stock solution, Pure TB (9) stock solution, 

AmB (2) stock solution and DMSO were each added individually to three of the starting 

wells to give nine wells containing 500μM drugs solutions in cell culture and three negative 

control cell culture wells (DMSO). Each starting well was then thoroughly mixed using a 

pipette and serially diluted by progressively transferring and mixing 100 μl of cell culture 

containing the drug compound into the subsequent well to give wells containing the 

following drug concentrations: 500 μM, 250 μM, 125 μM, 62.5 μM, 31.25μM. Positive 

control wells of only macrophage media and only macrophage cell culture were also set up in 

triplicate. The plates were then left to incubate at 37
o
C with 5% CO2 for 72 h. Background 

Procedure 2 was then followed in order to correlate macrophage viability and proliferation 

to drug concentration. This plate was prepared in triplicate with separate macrophage 

cultures.  

 

Promastigote Cytotoxicity Screen: Promastigote cell culture concentration was made up to 

1 x 10
5
 cells/ ml following Background Procedure 1. 4 μl of the Pure TA (13) stock 

solution, TB (9) stock solution, AmB (2) stock solution and DMSO were each added 

individually to 1 ml samples of this cell culture to give promastigote culture stock solutions 

containing 100 μM of each drug and a negative control cell culture stock solution (DMSO). 

200 μl of each stock solution was added individually to three starting wells of a Starstedt 96 

well plate to give 12 wells containing 200 μl of promastigote culture. 100 μl of the 1 x 10
5
 

cells/ ml culture without any drug compound was added to the next 5 wells of each row. Each 

starting well was then thoroughly mixed using a pipette and serially diluted by progressively 

transferring and mixing 100 μl of cell culture containing the drug compound into the 

subsequent well to give wells containing the following drug concentrations: 100 μM, 50 μM, 



 

 

25 μM, 12.5 μM, 6.25 μM, 3.125 μM. Positive control wells of only promastigote media and 

only promastigote cell culture were also set up in triplicate. The plate was then sealed with 

parafilm and left to incubate at 26
o
C for 24 h. Background Procedure 3 was then followed 

in order to correlate promastigote viability and proliferation to drug concentration. The plate 

was prepared in triplicate with separate promastigote cultures.  

 

Amastigote Cytotoxicity Screen: Amastigote cell culture concentration was made up to 1 x 

10
5
 cells/ ml following Background Procedure 1. 4μl of the Pure TA (13) stock solution, 

TB (9) stock solution, AmB (2) stock solution and DMSO were each added individually to 1 

ml samples of this cell culture to give amastigote culture stock solutions containing 100 μM 

of each drug and a negative control amastigote culture stock solution (DMSO). 200 μl of each 

stock solution was added individually to three starting wells of a Sarstedt 96 well plate to 

give 12 wells containing 200 μl of amastigote culture. 100 μl of the 1 x 10
5
 cells/ ml culture 

without any drug compound was added to the next 5 wells of each row. Each starting well 

was then thoroughly mixed using a pipette and serially diluted by progressively transferring 

and mixing 100 μl of cell culture containing the drug compound into the subsequent well to 

give wells containing the following drug concentrations: 100 μM, 50 μM, 25 μM, 12.5 μM, 

6.25 μM, 3.125 μM. Positive control wells of only amastigote media and only amastigote cell 

culture were also set up in triplicate. The plate was then sealed with parafilm and left to 

incubate at 32
o
C for 72 h. Background Procedure 2 was then followed, ensuring that the 

plate was re-sealed with parafilm prior to incubation, in order to correlate promastigote 

viability and proliferation to drug concentration. The plate was prepared in triplicate with 

separate amastigote cultures. 

 

 



 

 

7.5.3 Fluorescent peptide Screening
3
 

 

Non-infected macrophage plate set up: Sterile cover slips were placed into two wells in 

two Sarstedt 24 well plates. Macrophage cell culture concentration was made up to 1 x 10
5
 

cells/ ml following Background Procedure 1 and 500 μl of this culture was added to each of 

the four wells. Plates were then incubated at 37
o
C, 5% CO2 for 24 h to allow the macrophage 

to adhere to the cover slips and achieve 50-100% confluence. The plates were then ready to 

be used in the visualisation procedure. 

 

Infected macrophage plate set up: Sterile cover slips were placed into two wells in two 

Sarstedt 24 well plates. Macrophage cell culture concentration was made up to 1 x 10
5
 cells/ 

ml following Background Procedure 1 and 500 μl of this culture was added to each of the 

four wells. Plates were then incubated at 37
o
C, 5% CO2 for 24 h to allow the macrophage to 

attach to the cover slips and achieve 50-100% confluence. After 24 h the media was removed 

from each of the wells and replaced with 500 μl of 1 x 10
6
 cells/ml amastigotes in 

macrophage medium to allow for 1:10 macrophage to amastigote. The amastigote culture was 

prepared by counting and adjusting an amastigote culture in amastigote medium following 

Background Procedure 1, the culture was then centrifuged at 3000 rpm for 5 min. The 

amastigote medium was then removed and the amastigote pellet re-suspended in the same 

amount of macrophage medium. The amastigote culture was then recounted to ensure correct 

cell concentration. The Sarstedt 24 well plates were then incubated for 24 h at 37
o
C, 5% CO2 

to allow for amastigote infection. After 24 h the amastigote culture was removed from each 

of the wells and replaced with 500 μl of macrophage medium. The plates were then incubated 

at 37
o
C, 5% CO2 for 24 h. The plates were then ready to be used in the visualisation 

procedure. 



 

 

 

7.5.4 Visualisation of Fluorescent Peptides’ Localisation in Infected and Non-infected 

Macrophage
3
: The plates described above were used throughout this procedure. Following 

the final 24 h incubation all plates had the media present removed and replaced with 500 μl 

37
o
C HIFBS free DMEM. All plates were then incubated at 37

o
C with 5% CO2 for 30 min in 

order to starve the cells. The media was then removed from all wells and replaced with 500 μl 

of 37
o
C HIFBS free DMEM in the plates labelled HOT and 500 μl of 0

o
C HIFBS free 

DMEM in the plates labelled COLD. All plates were then sealed with parafilm and incubated 

at 37
o
C for 15 min. The media was then removed from all wells and the plates treated as 

follows: 500 μl of 37
o
C 50 μM FAM-TB in HIFBS free DMEM was added to each well. The 

50 μM FAM-TB solutions were prepared using the 4 μl of 25 mM stock solution to 1 ml of 

HIFBS free DMEM. Each plate was then re-sealed with parafilm and incubated at 37
o
C for 1 

h. The media was then removed from all wells. Each well was washed with 1ml of 0
o
C 

HIFBS free DMEM thee times, with the final wash removed. The cells in each well were then 

fixed using 500 μl of 0
o
C 3.7% formaldehyde in macrophage medium and left 10 min at 

room temperature. The formaldehyde solution was prepared using 37% formaldehyde in 

MeOH at 1:10 with macrophage medium. The formaldehyde solution was then removed and 

each well washed three times with 1 ml of 0
o
C PBS. The final wash of PBS was removed 

from each well and replaced with 500 μl of 2.86 μM 4’,6-diamidino-2-phenylindole (DAPI) 

in PBS and left at room temperature for 10 min. The DAPI solution was prepared using a 

14.3 mM stock solution of DAPI at 1:5000 with PBS. The DAPI solution was then removed 

from each well and replaced with 500 μl of PBS and the wells examined using an Olympus 

1X71 fluorescence microscope at 40X in conjunction with OpenLab 4.0.1. 

   



 

 

Given ease of cell culture, AMPs have most commonly been screened against insect stage, 

promastigote Leishmania. However, in order to fully assess the efficacy of any compound it 

must be assayed against pathogenic, mammalian stage amastigotes. Therefore to facilitate 

comparative analyses of the anti-leishmanial action of selected, synthesized temporins it was 

chosen to utilise Leishmania mexiciana, were axenic culture of both lifecycle stages is long 

established. 

The Alamar Blue viability assay has previously been validated for microtitre plate-based 

analyses of promastigote L. major; and L. donovani, L. tropica and L. mexicana 

promastigotes and amastigotes. In addition it has been utilised for screening L. amazonensis, 

L. braziliensis and L. chagasi promastigotes.[22] However, to facilitate comparison of the 

efficacy of the synthesized AMPs against both promastigote and amastigote axenic L. 

mexicana, the Alamar Blue assay was optimized to allow both lifecycle stages to be screened 

under equivalent conditions. To this end, and in light of previous studies, serial dilutions 

(starting at 4x10
4
 cells/well) of both lifecycle stages were incubated for 24 hours in 96-well 

plates at appropriate temperatures before the addition of Alamar Blue at 10% v/v for either 4 

or 24 hours and the subsequent assessment of cell viability by fluorescent readout. The data 

clearly show that that a direct correlation of parasite numbers with readout was apparent in 

the case of both lifecycle stages incubated for 4 hours after the addition of Alamar Blue (r
2 

= 

0.999 for both promastigotes and amastigotes). However, deviation from this linear 

relationship was apparent at higher cell concentrations after 24 hours incubation with the 

indicator, particularly with respect to the promastigotes with the correlation breaking down at 

more than 5x10
3 

cells/well. A similar pattern has previously been noted with other 

Leishmania spp. To ensure a direct correlation between readout and cell number in the AMP 

screen of both lifecycle stages of L. mexicana, a starting concentration of 4x10
5
/ml

 
(4x10

4 

cells/well), followed by incubation with Alamar Blue for 4 hours, was employed in all 



 

 

subsequent experiments.  

Leishmania culture 

Leishmania mexicana (MNYC/BZ/62/M379) parasites were maintained at 26°C in 

Schneider’s Drosophila media (Sigma Aldrich) supplemented with heat inactivated foetal 

bovine sera (15% for promastigotes and 20% for amastigotes; Biosera). Promastigotes were 

transformed into axenic amastigotes by a pH and temperature shift as previously described. 

Cells were counted using a Neubauer Improved Haemocytometer. 

 

Cytotoxicity assay  

Cytotoxicity analyses were performed in 96-well plates (Nunc) using Alamar Blue 

(Invitrogen) with some modifications to the published protocol. [17] 

Briefly, following optimization of the assay system, 100 µl of both promastigote and 

amastigote L. mexicana at 4x10
5
ml

-1
 were incubated with compounds in triplicate 

(amphotericin B was used as a positive control, and untreated parasites as a negative control) 

for 24 hours before incubation with Alamar Blue (Invitrogen) for 4 hours prior to assessing 

cell viability using a fluorescent plate reader (Biotek; 560EX nm/600EM nm). The 

experiments described above were carried out on a minimum of two separate occasions to 

ensure a robust data set was collected.   
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