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Abstract 

Female pubertal development is the process of physical changes from the child 

to adult female bodies. The nature of human adaptation creates huge inter and 

intra-population variation in female pubertal development in response to both 

heritable and environmental determinants.  

Age at menarche has been declining globally in response to urbanisation and 

industrialisation. In the USA and other developed countries age at pubertal onset, 

specifically age at thelarche, appears to be declining with the concurrent rise in 

overweight and obesity. 

Longitudinal cohort datasets from the UK were analysed to replicate these 

findings in the UK population from 1948-2005. These data show evidence for a 

continued downward secular trend in age at menarche, and show a downward 

secular trend in age at pubertal onset, in response to increased weight status. 

Over the period 1948-2005, age at menarche decreased by 0.30 years, and age at 

thelarche decreased by one year. The average interval between pubertal onset 

and age at menarche increased from 2.3 years to 2.7 years. More than half of the 

total decrease in age at thelarche took place between 1980 and 2001.  

Some of the variance in pubertal development, and specifically the large 

decrease in age at thelarche, may to be the result of increasing exposure to 

endocrine disrupting chemicals over the last 50-60 years. Lipophilic endocrine 

disruptors have the potential to accelerate pubertal development in overweight 

girls who have the capacity to store dangerous levels of these toxic substances in 

their high fat mass.  

The changes in timing and tempo of female pubertal development in the UK 

should be considered on a continuum of adaptive plasticity that is evident in the 

population variation of female pubertal development, rather than measuring 

recent changes as pathology.  

Earlier age at puberty has a number of implications for negative health 

outcomes, specifically increased risk of reproductive cancers. Moreover, the 

interaction between increased weight status and increased exposure to 

endocrine disruptors may exacerbate these negative effects. 
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Preface 

Introduction: 

This thesis considers the factors affecting age at female pubertal onset and the 

process of pubertal development. More specifically, the purpose of this thesis is 

to consider and explain changing age at puberty among girls in the UK over the 

last 60 years by examining whether there is a trend for earlier age at onset of 

breast development in response to both increased overweight and obesity, and 

increased exposures to endocrine disrupting chemicals that are capable of 

mimicking or blocking the actions of endogenous steroid hormones.  While 

focusing on the process of puberty of girls in the UK, this thesis also explores the 

evident variation in age at puberty among girls who grow up in different 

populations and ecologies around the globe, in order to build a picture of the 

degree of plasticity at the onset and during the process of female puberty. This 

thesis places the changing pubertal schedules of girls in the UK on a continuum 

of plasticity rather than seeing change as a pathology or deviation from a norm. 

Changing puberty schedules therefore reflect an evolved response to changing or 

uncertain ecological conditions. 

 

Aims 

The aims of the thesis are as follows: 

 

1) To understand changes in female pubertal development in the UK over 
the last 60 years and elucidate the possible factors responsible for that 
change.  

 

2) To consider changing age at puberty and pubertal milestones as an 
evolved response to shifting ecological and lifestyle conditions. 

 

The Hypotheses I will examine in this thesis are as follows: 

 

1. Given the increase in obesity in the UK in recent years, and an existing 
association between overweight and earlier age at menarche, age at 
menarche has continuously decreased in the UK between 1948 and 2005. 

 
Prediction: Data from longitudinal datasets will show a trend for earlier age at 
menarche across time in the UK. 
 

2. Given the increase in obesity and sedentary behaviours in the UK, which 
results in long periods of positive energy balance in childhood, age at 
pubertal onset continuously decreased in the UK from 1948-2005. 
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Prediction: Data from longitudinal datasets will show a trend for earlier pubertal 
onset across time in the UK. 
 

3. Decreasing age at thelarche is concomitant with increases in exposure to 
endocrine disrupting chemicals. 

 
Prediction: Exposure to endocrine disrupting chemicals explains some of the 
variance in age at thelarche that cannot be explained by increased weight status.  
 

Theoretical framework 

To address the aims of this thesis and to specifically test the hypotheses above 

requires a theoretical framework that provides parameters for understanding 

and examining changes in pubertal onset. Here I consider the timing of pubertal 

onset within the framework of Life History Theory (LHT) (See Box 1, p. 3-4). The 

unique traits that result from those trade-offs established by the apportionment 

of finite resources in line with LHT characterise the life course and reproductive 

strategy of a species (see Charnov, 1991 and Stearns 1992). One such trait is age 

at pubertal onset.  

 

In order to apportion energy to reproductive development and reproductive 

potential, energetic input into growth and maintenance must be reduced. 

Moreover, it must be reduced at a point when the energy trade-off would not 

negatively affect overall health or pose a risk of death. The timing of 

reproductive onset therefore balances the likelihood of current versus future (or 

potential) reproductive success given available resources (Charnov, 1991 and 

Stearns 1992). Moreover, this approach provides a clear framework within 

which to consider increased energy availability as the result of increased calorie 

intake and lower activity levels that now characterise girls of pubertal age. 

 

Thesis structure: 

In order to meet the overall aims and test the hypotheses set out above, the 

thesis is structured in two parts: Part I groups the physiological and 

environmental influences that determine the timing and process of female 

pubertal development in developed industrialised nations, and developing and 

subsistence economy populations; in order to introduce a normative biomedical 

model of puberty by which to measure change, and the response of that model to 

environmental shifts. Part I then considers to what degree that model is globally 

representative.  
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Part II: The changing process of female pubertal development 

and risks of the modern environment 

 

Chapter 4: The role of overweight and obesity on female pubertal 

development is a systematic review of literature on puberty and associations 

with overweight and obesity whereby a reproducible keyword search 

methodology is applied to search, appraise, and collate relevant literature. This 

methodology also specifies the sources and time frame of searchable literature.  

This particular type of literature search methodology was carried out in order to 

specifically address and collate evidence for a causal relationship between these 

factors.  

 

A vast majority of the literature concerning changing age at puberty considers 

overweight and obesity as an important factor in this change. By separating out 

this specific literature it is possible to collate the results of individual papers in 

order to determine whether there is strong evidence to support a causal 

relationship with pubertal acceleration. Moreover, by considering the individual 

methodologies within the review literature it is also possible to understand how 

or why this evidence may conflict with literature that point towards very 

different causal factors. A systematic review also provides a methodology for 

highlighting those aspects of investigation that require further analyses and may 

be answered by the application of my chosen methodology in the following 

chapters in order to meet my thesis aims. As such, this review focuses on human 

literature only, since no non-human analyses are carried out as part of this 

thesis. 

In this case the sample of literature from the search is too small for a traditional 

systematic review with a meta-analysis, and instead reproduces the steps of a 

systematic review by systematically detailing those relationships between 

overweight and obesity, and female pubertal development that were highlighted 

from reading the full texts, and detailing what these studies state about those 

relationships.  

 

Chapter 5: UK trends in age at menarche and age at pubertal onset 1948-

2001 describes the collection, content, cleaning, use, and analysis of four 

longitudinal datasets from the UK in order to find evidence for a change in age at 

pubertal development over the last 60 years. This Chapter outlines the history of 

the original studies from which these data were taken and provides a short 

discussion on the purpose and implications of using longitudinal studies to 

indicate trends over time. Chapter 5 presents results of these analyses and 
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Thelarche  

Onset of breast development. This is the first appearance of the breast bud accompanied by an 

increase in the area of the areola. 

 

Pubarche  

Onset of pubic hair growth. This is marked by the first appearance of sparse hair along the labia. 

 

Menarche 

First menstrual bleed. 

 

Pubertal onset 

The re-initiation of the GnRH pulse, which is quiescent during childhood, begins a process of 

neuroendocrine responses that cause the development of secondary sexual characteristics and 

the maturation of the ovaries and uterus. Here, I use the term specifically to refer to the first 

outward signs of pubertal development, either via thelarche, pubarche or menarche. 

 

GnRH Pulse 

The gonadotropin-releasing hormone (GnRH) pulse. Neuoroendocrine hormone pulse released 

from the anterior pituitary. GnRH is present during early childhood, quiescent during mid-

childhood, and is released at nighttime at pubertal onset in a pulse that increases in frequency to 

include daytime pulsing as pubertal development progresses. The maturation of the GnRH pulse 

therefore appears as on-off-on.  

 

Peak Height Velocity (PHV) 

Rhe point during growth where velocity is at its greatest. Typically precedes menarche for girls.  

 

Life History Theory (LHT) 

This is the theory behind the apportionment of finite energy within the environment to the 

processes of growth, maintenance, and reproduction; which determine the growth, development 

and reproductive schedules of an individual. Energy paucity and excess either produces or 

relieves trade-offs within these central processes, which in turn determine when an individual 

will invest in current versus future reproduction. In terms of pubertal development LHT 

apportions energy based on the balance between the necessity to begin maturation versus 

spending time learning, acquiring skills and growing larger, against the pressures of energy 

availability, which are variable across different ecologies. (Charnov, 1991; Stearns, 1992) 
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Puberty is meticulously orchestrated by both the endocrine and central nervous 

systems (CNS), which promote the development of secondary sexual 

characteristics and prepare the body for reproduction. Puberty involves a 

process of changes in neuroendocrine signals, metabolism, body composition, 

mass, size, and shape in both males and females, which is punctuated by genital 

growth and maturation. It also includes milestone events like the onset of breast 

development and menarche in girls, and first nocturnal emission and onset of 

facial hair growth for boys. It is these differences in maturation that establish the 

sexual dimorphism evident in adults.  

 

The well-known hallmarks of puberty like the growth spurt and distribution of 

fat to targeted areas of the body are driven by a battery of hormonal changes. 

These hormonal changes work both individually and in concert to determine the 

timing and tempo of the pubertal process. It is likely that the interactions 

between these hormones are as important, if not more so, as their individual 

targets (Rogol et al., 2002) since such a complex process requires a closely 

orchestrated sequence or stimuli and responses. 

 

For females, puberty involves the maturation of the uterus, vagina and ovaries 

and, externally, the development of breasts and pubic hair, as well as feminine 

traits like shapely hips and thighs (Tanner, 1989). These external traits not only 

ready the body for the physical demands of reproduction but signal fecundity to 

males (Cant, 1981; Gallup, 1982; Marlowe, 1998).  

 

Pubertal onset 

The onset of pubertal development is not fully understood. The event, or series 

of events, that prompt the maturation of the reproductive system have yet to be 

established. However, many of the mechanisms that drive change and growth 

during pubescence have been elucidated. Adolescence represents the period of 

quickest growth after infancy. Growth is slow during childhood until adolescence 
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when there is a quick spurt followed by increasingly slow growth until mature 

adult stature is reached (Boas, 1932). That quick spurt is known as peak height 

velocity (PHV), in which the individual has the greatest gain in height per unit of 

time (Tanner, 1962; 1978). Figure 1.1 shows the typical growth velocity of girls 

and boys from birth to age 18 years, with PHV occurring around age 12 in girls. 

For girls PHV tends to occur after the onset of breast development (Rogol et al, 

2002) and before first menstruation (Tanner, 1962).  

 

Figure 1.1 Typical growth velocity curve from Tanner, 1962. 

 

Pubertal onset is marked by the re-initiation of the gonadotropin-releasing 

hormone (GnRH) pulse from the hypothalamus, which is active in infancy but 

remains quiescent during early and mid-childhood. The brain may inhibit the 

GnRH pulse during early- and mid-childhood and be released from inhibition 

around puberty. GnRH stimulates the production of the gonadotropins 

luteinising hormone (LH) and follicle-stimulating hormone (FSH), which are also 

released as a pulse. LH and FSH then act on the gonad (Lipson, 2001). In girls 

they activate the production of steroids in the ovary, which results in oestrogen 

release. As well as growth and development to give girls feminine traits like 
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shapely hips and thighs, breasts and maturing external genitalia (Tanner, 1962; 

Lipson, 2001), the steroids produced in the ovary feed back to the pituitary and 

hypothalamus and monitor the production of gonadotropins (Jones and Lopez, 

2006)(See figure 1.2). 

 

 

Figure. 1.2 HPG axis adapted from Jameson, 2007 

 

During childhood the hypothalamus is extremely sensitive to oestrogens and 

androgens. Circulating steroid hormones therefore have a negative feedback 

effect on the hypothalamus, blocking production of GnRH. In concert with the 

release of inhibition on GnRH production, it is theorised that the hypothalamus 

behaves as a gonadostat and increases the set point for steroid sensitivity. As 

GnRH is produced and the resultant gonadotropins stimulate the maturation of 
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the ovary and steroid production, it takes an increasingly higher level of steroid 

hormones to inhibit the release of pulsatile GnRH (ibid).  

 

Oestradiol is also capable of performing a positive feedback effect on the 

pituitary. In later puberty, sometime before menarche, levels of oestradiol in the 

blood cause a surge in LH and FSH production. This surge is responsible for 

ovulation in adult women. The surge will not occur in early puberty even in the 

presence of high oestrogen levels, and may represent the maturation of the 

pituitary, which is now capable of storing and producing a critical level of 

gonadotropins to create a surge. When the surge is great enough it is responsible 

for first ovulation following menarche (Lipson, 2001; Jones and Lopez, 2006). 

The development of the positive feedback loop requires that the sensitivity of the 

negative feedback system has decreased enough to allow GnRH and 

gonadotrophin levels to increase rather than fall as oestradiol concentrations are 

rising (Apter, 1997:16).  

 

During early puberty, LH and FSH primarily pulse at night and increase in 

concentration in line with maturation (see figure 1.3). In late puberty and 

adulthood the gonadtrophins also pulse during the day and the diurnal pulsatile 

pattern disappears. Regular daytime LH pulses and amplification of night time 

pulses are closely related to the onset of breast development (Apter et al., 1993).   
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Figure. 1.3 Daily GnRH pulses across the pubertal period (from McCartney, 2010). 

 

Pubertal onset: re-initiation of the GnRH pulse 

While the role of the GnRH pulse is central to pubertal onset, there is uncertainty 

as to the stimulus that acts on the hypothalamus to re-initiate the pulse from an 

inactive state. It has been suggested that the signal is suppressed by the central 

nervous system (CNS) and a gradual desensitisation to the factor that blocks the 

signal allows for the switch (Conte et al., 1975). In fact, ultrasensitive 

immunofluorometric assays have detected LH and FSH in girls around 3 years 

prior to puberty, which suggests a gradual increase in activity of the 

hypothalamic-pituitary ovarian (HPO) axis during late childhood (Mitamura et 

al., 2000).  

 

There has long been investigation into a number of environmental factors that 

could be responsible for pubertal onset. These include: family size (Hulanicka, 

1989), climate (Zacharias and Wurtman, 1969; Papadimitriou, 2008), altitude 
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and light (Zacharias and Wurtman, 1969), pheromones (Joseph et al, 1977; Stern 

and McClintock, 1998), father absence/stepfather presence (Ellis and Garber, 

2000) psychosocial stress, (Draper and Harpending, 1982; Belsky et al., 1991; 

Hulanicka, 1999,2001; Ellis and Garber, 2000) parent-child distance (Steinberg, 

1988) endocrine disrupting chemicals (EDCs) (e.g. Colborn and Dumanoski, 

1996), and above all weight status (e.g . Reynolds, 1946; Frisch and Revelle, 

1970; 1971; Adair and Gordon-Larsen, 2001; Kaplowitz, 2001; Anderson et al., 

2003; Demerath et al., 2004).  

 

In the earlier literature that attempted to understand the factor responsible for 

the resumption of the GnRH pulse, two prevailing theories of GnRH initiation 

have been debated. The first from Frisch and Revelle (1970, 1971) (the Critical 

Weight Hypothesis) claimed that a body weight of 48kg must be achieved to 

signal that the female body is capable of beginning reproductive function. There 

was little evidence to support a threshold theory before it was posited, but as 

with much literature on the subject, it relied upon the importance of nutrition in 

the maintenance of reproductive function. The second theory, proposed by 

Ellison (1981: 337), relies on skeletal development to signal sufficient maturity 

for the onset of puberty in females. He states that if a critical weight must be 

attained at any growth rate, then variance in weight at menarche must be less 

than at a given interval before menarche. Ellison found that height decreased in 

variance before the menarcheal threshold (Ibid). Simmons and Greulich (1943) 

had previously stated that skeletal age is a strong determinant of menarche, and 

Ellison went further to highlight the importance of pelvic dimensions in the 

ability to deliver a baby through the birth canal, and a threshold argument does 

not suitably account for these conditions (Ellison, 1982). There is strong 

selection on the pelvis to be broad and flat, and there are associations between 

biiliac width and menarche (See Worthman, 1993). 

 

It is possible that both weight and skeletal growth determine age at puberty. As 

such, energetic reserves (activity levels and energy intake relative to size) have 

more recently been proffered as strong determinants of maturation (e.g. Rogol et 
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Figure. 1.4 Breast stages  from Tanner, 1969. 

 

In addition to these photographs, James Tanner described the female pubertal 

process as a series of events that take place at given intervals so that you can 

generally expect one to occur at a given point after the previous. Tanner and 

Whitehouse found that either breast development (thelarche) or pubic hair 

growth (pubarche) signalled the onset of female pubertal development, but that 

the two were more or less synchronous. They also determined that menarche 

was likely to occur at around breast stage 3, following PHV, and the pubertal 

process would finish at stage 5 (mean 15.33 years for breast development) 

(Marhsall and Tanner, 1969). The relevant literature is consistent in 
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care when in the Home, early childhood exposures to growth insults would have 

had a huge impact on their growth and maturation trajectory, which suggests 

that the Tanner scale may be inherently biased. Moreover, the Harpenden 

children acted as test cases for the nutritional content of school meals. The meals 

in the home were of course paid for by the state, and when budgets were 

overstretched one month, meal budgets had to be stretched equally to cope the 

next month (Howard, 2007). This could mean that the Harpenden children were 

occasionally subject to under-nutrition. However, the process of pubertal events 

as described for the Harpenden children remains the gold standard by which 

maturation is understood in both clinical and biological settings.  

 

The Pubertal Development Scale (PDS) is another widely used measure of 

puberty (PDS) (Petersen et al., 1988). The PDS is particularly useful as a non-

invasive method of assessing pubertal development when clinical examination 

may not be possible. The verbal-response questionnaire is completed in an 

interview situation and individuals respond to questions about body hair, 

growth of secondary sexual characteristics and, in the case of girls, age at 

menarche. The scale is also a measure of puberty in reference to peers where 

individuals answer questions on the extent of their development relative to 

friends and peers, for example, whether they are growing in height at the same 

rate as their friends (Petersen et al., 1988). While the PDS might be useful as a 

means to understand how children in a given environment are developing, it 

does not provide sufficient opportunity to understand how far along the process 

an individual sits since their responses are somewhat subjective. As an example, 

some children might find it hard to compare themselves to others or recognise 

what is more or less mature, or to know what constitutes a lot or a little of pubic 

hair development. Pubic hair growth may be moderate, but to an individual who 

has just begun pubarche it may seem much more significant. However, there is 

evidence of agreement between the PDS and Tanner stages (Bond et al., 2006), 

which suggests that they both remain useful and reliable sources of information 

about pubertal development.  
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Other tests of maturity involve touch, such as palpation of the breast, or even 

ultrasound of the internal reproductive organs. An accurate measure of pubertal 

onset is to measure the GnRH pulse, which indicates whether the GnRH pulse 

generator has reinitiated (Wu et al., 1996). Girls can self-report with photos or 

drawings from the Tanner Scale if invasive tests or responding to descriptions 

may make them uncomfortable, or is culturally unacceptable. It is clear therefore 

that researchers are able to monitor and recognise pubertal stages under a 

number of conditions.  

 

The secular trend in female pubertal development 

Research has highlighted the effect of food abundance and physical inactivity in 

the modern environment of developed nations on female pubertal development. 

Over the course of the last half-century, average age at menarche in the UK has 

fallen to around 12.9 (Rubin et al., 2009), and to 12.5 in the USA (Anderson et al., 

2005) (Table 1.1 lists recent comparable data for pubertal maturation from a 

number of other developed countries.); over that same period both countries 

have seen steep rises in rates of obesity. Moreover, those most vulnerable to 

overnutrition are maturing faster than even their peers. For example, mean age 

at menarche in Germany has been reported as 12.8, but the mean age among 

overweight girls is 12.5 compared with 12.9 in normal weight peers (Bau et al, 

2009). 
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change in the USA in the age at which clinicians determine puberty to be 

precocious in the absence of any underlying pathology or endocrine abnormality, 

which would be under 7 for white American females, and under age 6 for African 

American females who are known to develop relatively earlier (Parent et al., 

2003).  

 

Herman-Giddens et al. (1997) and Schubert et al. (2005) analysed cross-

sectional US data from 2104 girls attending specialist clinics and around 17,000 

girls in the National Health and Nutrition Examination Survey (NHANES) III data 

set, respectively. They found that overweight girls were more likely to begin 

pubertal development earlier than normal weight peers.  Further patterns of 

downward secular trends have since been demonstrated in other developed 

countries. Much of the literature on this issue similarly considers the concurrent 

rise in overweight and obesity among children to be a primary explanation for 

this developmental shift. Evidence from the USA and Denmark, as well as recent 

data from the UK, suggests that earlier pubertal onset is associated with 

measures of higher weight status from birth throughout childhood (Anderson et 

al., 2005; Aksglaede et al., 2008; Christensen et al., 2010a; 2010b).  

 

Given the relationship between body weight and fecundity it is a logical 

consideration that there may be a similar relationship between body weight and 

pubertal onset. Although, as previously stated, ovarian maturation is not the 

same as normal ovarian function (Freedman et al., 2003), there are likely to be 

similar mechanisms of energy allocation whereby the energetic requirements of 

pubertal maturation may be met at considerably younger ages if girls are heavier 

or fatter since they would incur fewer nutritional insults than more 

energetically-stressed girls who begin the process of maturation at a younger 

age. In an environment of prolonged positive energy balance the threshold that 

determines when an individual is capable of reproductive function may occur 

much earlier than in an environment with limited energy sources and a high 

energy expenditure. However, there is little evidence of the mechanisms 

involved in these processes. 
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overall minority. However, it seems now that this asynchrony is becoming 

increasingly commonplace among heavier girls. Indeed, in a study of girls in the 

USA Biro et al (2003; 2008) found that girls were developing either breasts or 

pubic hair significantly earlier than the other respective character. Moreover, 

they found that girls who were overweight were more likely to enter puberty via 

thelarche (ibid).  

 

Most recently, findings have been reported from the Avon Longitudinal Study of 

Parents and Children (ALSPAC) in the UK, that girls who are overweight at age 8 

are more likely to enter puberty via thelarche. The median age at thelarche 

among this cohort is 9.4 years (Christensen et al., 2010; 2011).  This median age 

is, significantly lower than the age of 11 that Tanner and colleagues reported as 

typical from their UK cohort from the 1950s. Christensen et al. (2010a; 2010b) 

also noted that, despite age at onset of breast development becoming earlier, a 

similar drop in age at menarche was absent. What these results indicate is that, 

in the UK, there is a lengthening of pre-menarcheal pubertal development, which 

is at odds with the Tanner-Marshall model of the pubertal process.   

 

However, techniques for examining onset of breast development are often visual 

or descriptive and, without physical palpation of apparent breast tissue, it is 

possible to mistake fat accumulation of overweight girls for the appearance of a 

breast bud (Biro et al., 2010). Despite this complication in identifying true breast 

tissue from fat tissue there is still considerable support for the role of overweight 

and obesity in accelerating pubertal onset (e.g. Biro et al., 2010; Christensen et 

al., 2010a; b) 

 

While overweight is a risk for early thelarche in girls, there is a particular risk for 

early age at pubertal onset via pubarche for girls born small for gestational age 

(SGA) who also experience weight gain in the form of catch-up growth during 

childhood (Ibanez and Zegher, 2006). Ibanez et al., (2006) even go so far as to 

say that the greatest risk factor for girls with a low birth weight followed by 

catch-up growth is precocious pubarche. Ibanez and colleagues have also 
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highlighted the particular risk of asynchronous development via pubarche to 

girls born SGA as a result of prenatal growth restraint, with significant catch-up 

growth and high adiposity in childhood (ibid). They associate the link between 

catch-up growth and early menarche with mechanisms of insulin resistance and 

hyperandrogenism (Ibanez and Zegher, 2006).  Girls born SGA are also at more 

at risk of central adiposity, which seems to be a particular risk factor for early 

maturation (Ibanez and Zegher, 2006; Ibanez et al., 2006).  

 

It seems that weight status, diet and energetic availability are universally 

understood to be strong predictors of the pubertal maturation schedule, and 

indeed capable of altering it. Ovarian function is so closely related to diet and 

nutrition that energy availability is a strong determinant of investment in 

reproduction. The mechanisms that signal energy availability are also closely 

linked to metabolic function.  

 

It is possible that nutrition may influence maturation schedules even before 

birth. Maternal nutrition may be imprinting on the foetus to determine 

development and reproductive maturation (Lipson, 2001). This may affect the 

foetal hypothalamus, possibly via epigenetic effects. Despite evidence for the 

effects of overweight and obesity in early and mid-childhood on maturation we 

still have limited knowledge of the mechanisms behind this relationship. Fat is an 

organ about which we still know relatively little (Pond, 1998), and the 

relationship of fat to reproductive onset and function is a complicated one that 

involves a number of neuroendocrine and other regulatory hormones. 

  

Beyond the obvious thermoregulatory and energy storage capacities of fat tissue 

(Pond, 1998; Cannon and Nedergaard, 2004), it has a number of other actions 

within the body. For example, it was only in 1994 that leptin was understood to 

be produced in adipose tissue (Zhang et al., 1994). Leptin is a neuroendocrine 

hormone that signals fat reserves to the brain in order to maintain energy 

availability for proper bodily functioning. Leptin is involved in numerous other 

processes besides appetite regulation, like promotion of growth in the ovary, 
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immune function, and inflammatory responses (Raynor and Trayhurn, 2001). 

The unifying role of leptin in these processes is energy allocation. Where energy 

is abundant leptin signals availability to all of these bodily systems where leptin 

receptors are numerous. When energy is scarce, the reduction in leptin signals to 

other systems to reduce output or to cease altogether (ibid). Leptin is therefore 

central in translating the signals of energy availability to body systems to 

maintain basic functions during times of scarcity.    

 

With regards to puberty, there are many leptin receptors in the hypothalamus 

that synthesize GnRH, and it has been found that those individuals deficient in 

leptin fail to initiate puberty (Ong et al, 1999). Given the role of leptin in 

indicating energetic reserve it is thought that it has a permissive role in puberty 

by signalling the presence, or indeed lack, of a favourable environment in which 

to initiate pubertal development (Cheung et al., 1997).  

 

There are other examples of interaction between growth hormones, appetite 

regulators and pubertal development in females. These metabolic hormones 

impact the HPO axis and signal how available energy will be apportioned 

between growth, maintenance and reproduction. IGF-1 stimulates LH-RH 

(luteinising hormone-releasing hormone) (Lipson, 2001). Insulin, IGF-1 and 

leptin levels all rise during puberty. IGF-1 and insulin are related to height 

velocity and concurrent rise in steroid levels at pubertal onset (Apter, 1997; 

Smith et al., 2007). Insulin, IGF-1 and leptin receptors have all been found in 

ovarian cells (Poretsky et al., 1999, Pirwany et al., 2001). Insulin is important in 

oocyte growth and follicular maturation. Moreover, reduced leptin and 

decreased insulin are associated with reproductive dysfunction (ibid).  

 

Insulin, leptin and IGF-1 are likely to serve as indicators of energy to the 

reproductive system (lipson, 2001). Insulin, leptin and IGF-1 receptors have all 

been found on ovarian cells. Insulin specifically is involved in the maturation of 

the oocyte and follicle. Moreover, increased insulin levels are known to decrease 

levels of sex hormone-binding globulin (SHBG), which binds to oestrogen; the 
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weight can be explained in a very straightforward evolutionary sense since girls 

will increase their total fertility by beginning to reproduce sooner, and have 

enough resources not to compromise to also continue to grow to their adult 

height during this time.  

 

Girls who are fecund earlier also seem to go through the stages of the pubertal 

transition quicker than later-maturing girls. Girls who are early maturers 

experience quicker transition between breast and pubic hair stage 2 and 

menarche (Apter and Vihko, 1985). The rapid sequence is likely related to high 

serum oestrogens (ibid). This might be evidence of a slightly faster reproductive 

schedule overall supported by favourable energetic conditions. 

 

Height growth 

Those girls who do mature earlier tend to lose out in final height. They have a 

shorter period of time before the growth plates of the long bones fuse at the end 

of puberty (He and Karlberg, 2001). Later-maturing girls spend longer in pre-

puberty and therefore gain more in height before the long bones finish growing, 

even though early-maturing girls are taller than peers at pubertal onset 

(Simmons and Greulich, 1943).  

 

Adoption and migration 

A change in environment does not just accelerate maturation; there is evidence 

to suggest it has an impact on the baseline levels of the hormones that control 

pubertal development. Girls who are adopted from India by Swedish families 

have steroid hormone levels above those of peers born and raised in Sweden to 

Swedish parents. It is thought that the body responds to this change and quickly 

invests in reproduction since a favourable environment will better support 

pubertal development and reproduction (Proos et al., 1991; 1993; Virdis et al., 

1998; Domine et al., 2006; Teilmann et al., 2006). This effect is pronounced 

depending on age at migration. For example, girls who move to London from 

Bangladesh after the age of sixteen have relatively low adult steroid hormone 
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An interesting genetic component of this paradigm may be an inherited 

propensity to both family breakdown and early development, however this 

suggestion is based on the possibility of a tentative link between an variant X-

linked androgen receptor inherited from the father, and increased likelihood of 

abandonment as well as earlier age at menarche in females (Alvergne et al., 

2008). But, it is highly unlikely that control of pubertal development is single 

gene-dependent, or would be able to so specifically determine behaviour. More 

plausible is the concept of Biological Context Sensitivity (Ellis et al., 2011), which 

argues that retaining selection for variation in response to stressful 

circumstances could account for variation in age at pubertal onset among girls in 

various environments considered to be psychosocially stressful.  

 

Risks of changing age at pubertal onset 

The reported changes in the process of pubertal maturation indicate a 

lengthening of the pre-menarcheal pubertal period, which is at odds with the 

Tanner-Whitehouse model of events. What do these changes mean for females? 

Could these changes represent risks for later life?  

 

It is difficult to know how a shift towards earlier pubertal onset will affect girls 

later in their adult lives. There are the obvious increased risks of reproductive 

cancers (Jasienska et al., 2000; Jasienska and Thune, 2001), and the possibility of 

co-morbidities, but there may also be a mismatch between physical and 

psychosocial development. Earlier puberty may increase reproductive success or 

represent the preferred strategy under conditions of psychosocial stress, but 

how does that resolve the obvious curtailment of the time available for learning 

and observing as well as acquiring adequate psychosocial competencies?  

 

Earlier maturation is associated with increased number of sexual partners, but 

also with risky behaviours like early sexual contact, teen pregnancy, alcohol and 

substance misuse and unpredictable environments (Gaudineau et al., 2010). All 

of these behaviours have the potential to impact health, but the increased 
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chances of pregnancy via risky behaviours as well as early fecundity leaves girls 

vulnerable to obstetric and neonatal complications such as greater change of 

miscarriage, greater risk of pregnancy complications and higher rates of 

neonatal death (Fraser et al., 1995). While this is not the case for all girls, it does 

highlight the possibility that earlier maturation has the potential to reduce 

reproductive success.  

 

If girls in developed nations, who have access to caloric excess, prefer sedentary 

play and activities and eat more processed foods, are undergoing puberty at an 

increasingly young age, what then does puberty look like in populations who are 

not exposed to obesity and high levels of reproductive hormones? Clinicians 

expect all girls to experience the same pubertal events, but do these events 

always follow the same pattern, at the same time under all ecological 

circumstances currently experienced by global populations? In order to 

understand the degree of variation among more disparate populations of 

humans, it is perhaps more beneficial to understand how lifestyle and 

environment may determine the onset and timing of those milestone events on 

which clinicians concentrate their understanding of normal. Perhaps then 

clinicians would be better able to recognise the degree to which evident changes 

in the pubertal schedules of girls from western developed nations may reflect 

expected human phenotypic variation as opposed to harmful pathology.  In the 

next Chapter then, I outline the process of puberty in urbanising populations as 

well as subsistence level populations of both foragers and agro-pastoralists in 

order to understand variation in female puberty in response to different modes 

of production and ecological circumstances.  
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Chapter Two: Ecological and life history variants as 

determinants of worldwide variation in female pubertal 

development 
 

 
Humans have an established schedule of life events that is unusual in 

comparison to the other great apes. Humans are born secondarily altricial as a 

consequence of locomotor constraints on female pelvic dimensions, which 

require a large percentage of brain growth to take place postnatally (Rosenberg 

and Trevathan, 1996).  Equally as a consequence of these constraints, humans 

have a relatively extended juvenile period over which to grow, learn, and acquire 

skills before they begin to reproduce (Bogin 1994, 1999). Our closest relatives, 

chimpanzees, are born precocial and mature quickly in order to start producing 

young (Rosenberg and Trevathan, 1996). This significant difference in both 

ontogeny and maturation represents an important development in our 

evolutionary history. It is this difference that allows humans to spend an 

extended period not only growing, maturing, and learning, but also 

understanding the complex rules of human society and interactions.   

 

Early maturation among females is unusual in human history since it deviates 

from a long-established life history strategy where individuals acquire social and 

cultural tools over an extended juvenile period. Such an extended period also 

provides the opportunity to practise care giving and help with siblings in 

preparation for future reproduction and parenting success (Worthman, 1993; 

Bogin, 1999). From an evolutionary perspective, the timing of puberty is the 

convergence of strategies evolved to minimise juvenile mortality and maximise 

reproductive success (ibid). In a modern industrialised environment with 

sanitised living conditions, antibiotics, and low selection from zoonotic disease, 

juvenile mortality is much reduced compared with our evolutionary past, 

resulting in an extended reproductive period. In the modern western 

environment and in contrast to most of human history, girls (unless from 

particularly poor backgrounds) are over-nourished and therefore capable of 

apportioning energy to reproductive function at a relatively early age. For many, 
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As energy availability fluctuates, human females are capable of adapting to 

changes in environment and resource availability. Human ovarian function is 

sensitive to seasonality in food production, which affects both available food 

energy input during the hunger season, and energetic output in the form of 

labour and production during planting and harvesting seasons (Ellison, 1993; 

Jasienska and Ellison, 1993). Short-term changes in ovarian function ensure that 

maintaining fecundity in stressful environments does not compromise overall 

condition. The flexibility to direct energy elsewhere when times are tough, but 

invest when prospects improve, is an example of the important phenotypic 

plasticity associated with reproduction in risky environments. Thus, it follows 

that it would benefit the individual to delay the onset of pubertal development 

when their overall condition is poor. However, the determinants of normal 

ovarian function and the limits of plasticity in ovarian function are not 

necessarily equal to those that determine pubertal onset (Parent et al., 2003), 

although there are likely to be some similar mechanisms.  

 

Responsiveness to the environment is reflected not only in the differences 

between individuals, but in variable population life history schedules that result 

from disparate ecologies. The timing of numerous life history variables like age 

at pubertal onset, age at first birth, inter-birth interval, and age at menarche, 

tend to vary between populations and indicate disease burden and energetic 

constraints, or lack thereof, as well as selection pressures (Lipson et al., 1993; 

Walker et al., 2006; Hochberg et al., 2011). Energetic constraint, i.e. immune 

compromise or malnutrition, will dictate pubertal onset and progression by 

producing trade-offs in energetic apportionment that increase input in growth 

and maintenance in times of energy paucity and reduce input into reproductive 

effort accordingly (Charnov, 1993; Stearns, 1992). 

 

Given that the timing of pubertal onset should optimise reproductive potential, a 

degree of environmental responsiveness is of great benefit to the fitness of the 

individual. As such, it is important to recognise that puberty is selected to 

demonstrate a degree of plasticity (Worthman, 1993) and that describing 
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Data suggests that menarche appears to be earlier where life expectancy is 

longer as a result of better lifetime nutrition (Thomas et al., 2001). Early-

maturing girls tend to have a fecundity advantage during all of their reproductive 

lives (Udry and Cliquet, 1982). However, paradoxically, girls who are in 

psychologically stressful or unfavourable environments where they are exposed 

to violence or instability (Belsky et al., 1991, Chisholm et al., 2005; Chilsholm and 

Coall, 2008), or insecure parental relationships (including father absence and 

partner or stepfather presence) (Draper and Harpending, 1982; Maestripieri et 

al., 2004) are also more likely to begin maturation faster than peers. Both of 

these effects contribute to the earlier age at maturation, and the lengthening of 

pre-menarcheal pubertal development, seen in developed nations, as well as the 

secular trend in age at maturation that was a response to improved living 

conditions with the advent of the industrial revolution in Europe and the West 

(Tanner et al., 1966). There is some concern that this change represents 

pathology (Christensen et al., 2010a, b), but it is also possible that it reflects a 

level of plasticity that has been a part of our evolutionary history and is only now 

evident in the phenotype. Examining the variation in maturation may provide 

more perspective on this. 

 

Developing nations and the effect of urbanisation 

Maturation is faster in developed countries (Bogin, 1999). Stearns and Koella 

(1986) note a reaction norm that girls who are undernourished will mature later 

at a lower height but there is no strict age or absolute height at menarche. 

However, there is variability in population means for age at menarche. Some of 

these population averages are changing as ecological conditions change. While 

the industrial revolution did not have equal impact for all populations, the effect 

of urbanisation is reaching increasing numbers of people in areas that were 

previously more isolated and used traditional modes of production. 

 

Table 1.1 (Chapter one) shows the average age at menarche in a number of 

developed nations. Table 2.1 similarly shows population averages for pubertal 
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onset and age at menarche in a number of developing countries. It is evident that 

age at menarche is earlier in developed nations when compared with these 

developing countries. For example, none of the developed nations noted in 

Chapter 1 exhibit an age at menarche above 13 years, whereas among 

developing nations this is fairly typical. 
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Table 2.1 Pubertal maturation in developing nations. *median 

Country Year Age at 

menarche 

Age at B2 Age at PH2 Source Country Year Age at 

menarche 

Age at B2 Age at PH2 Source 

Lithuania   10.02 11.20 Zukauskaite 

et al, 2005 

Senegal   10.10* 10.30* 

 

Jones et al., 

2009 

Chile 

(indigenous 

population) 

Cohort 1990-

1996 

12.56 

10.33* 

 Bustos et al., 

2009 

Sudan 2010 13.07   Aziem et al., 

2011 

Mexico 1998-1999 

 

12.00* 

 

  Torres-Mejia 

et al, 2005 

 

Zambia 

 

1993 

1993 

15.34 

14.53 

13.15  

11.47  

 Gillett-

Netting et al, 

2004  

South Africa 

(Soweto) 

 

  10.20* 10.50* 

 

Jones et al, 

2009  

Jamaica 

 

 

 12* 8.80* 9.90* Boyne et al, 

2010  

Ethiopia 2007 14.80*   Zegeye et al, 

2009  

Egypt (Cairo) 1997 13.00*   Torres-Mejia 

et al, 2005  

Kenya 

(urban) 

 12.50   Ogeng et al, 

2011  

Bangladesh 

(Matlab) 

2001 2001 15.10*  Bosch et al., 

2008 

Malawi 1965-1994 15.10*   Glynn et al, 

2010  

Iran 

 

2006 12.55 10.10 9.83 Rabbani et al, 

2010  

Nigeria 1999 13.00*   Goon et al, 

2010  

China (Rural 

Han) 

2005 

 

12.92 

 

  Song et al., 

2011 

Igbo women 2005 (age 14.30   Umeora, and India      
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Chronic stress and puberty 

Environmental or ecological shifts as illustrated above provide very tangible 

examples of the plasticity of the pubertal schedule and show us what puberty 

looks like under improved conditions as well as the detrimental impact of over-

nutrition. However, it is difficult to understand whether the evident plasticity of 

puberty is a significant feature of our evolutionary history. While many studies of 

female pubertal development concentrate on the role of the environment in 

determining life history strategy, studies of such development, have been mostly 

limited to populations in developed or developing countries, and there are few 

longitudinal studies of female puberty among subsistence-level groups.  Such 

data are immensely valuable since they provide a rare window into how human 

reproductive function responds to particular kinds of ecological stress reflecting 

conditions that are likely to have faced our human ancestors for much of our 

past.  The timing of pubertal milestones is a good measure of resources and 

strategy since most is invested in somatic capital rather than inherited wealth 

and resources (Hochberg et al., 2011). 

 

Subsistence-level populations give us the best understanding of how pre-

demographic transition populations would have developed and maximised their 

reproductive fitness (Gawlik and Hochberg, 2012). By understanding the 

pubertal process under varying ecological conditions, and particularly under 

conditions similar to those experienced in our evolutionary history, it is possible 

to elucidate the ways that the process of pubertal development is mediated by 

environment and subsistence strategies. Moreover, it will improve 

understanding of the ways that changes in environment and subsistence 

strategies may impact pubertal development in females, particularly in the light 

of modern phenotypic change.  

 

The slower maturation schedules that result from chronic food or immune 

stress, or seasonal stress provide girls with the opportunity to gain more in 

height and weight before investing their limited resources in pubertal onset, 
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they do not report one season as being harder than another, nor do they lose 

weight during the dry season (Ibid). 

Table 2.2 Pubertal maturation and life history strategies in forager and subsistence, societies. 

*median 

Population 

Age at 

menarche 

(mean) 

n= Subsistence Pattern Author 

 

Hadza  
16.5  Forager Marlowe, 2010 

Aeta 13.8  214 Forager Walker et al., 2006 

Agta 17.0  Forager Goodman et al., 

1985 

Hiwi 
12.6 

 
 Forager Walker et al., 2006 

Dobe !Kung  16.6  Forager Howell, 1979 

Pumé  13.0  Forager 
Kramer et al., 

2009 

Gainj and Asai 18.4 104 Hunter-gatherers 
Wood, 1980 in 

Walker et al., 2006 

Bundi 17.2  Forager 
Zemel and Jenkins, 

1989 

Dogon 16.7 588 Agriculturalists 
Strassmann, 

unpublished data 

Ache 14.0  Forager 
Hill and Hurtado, 

1996 

Batak 14.6 36 Mixed  Walker et al., 2006 

Tsimane 13.9 238 
 

Farming-foraging 
Walker et al., 2006 

Wichi 12.9  Mixed 
Walker et al., 2006 

 

Sereer  13-14 343 Agro-pastoralist 
Benefice et al., 

1999 

Kikuyu 15.9  Agro-pastoralist Worthman, 1987 
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In a study of 24 savannah Turkana women, mean retrospective age at menarche 

was similar to the Hadza at 16.5 (Gray, 1994). Adolescent Turkana girls are 

known to experience moderate chronic food stress, despite evidence of positive 

energy balance in childhood (Galvin and Little in Little and Leslie, 1999). 

Similarly, studies of 51 Dobe !Kung girls in the Kalahari  from 1963-1973  shows 

that menarcheal age fluctuated between 16 and 18 years of age, with an average 

around 16-17 (mean 16.6 years of age) (Howell, 1979).  

 

The Bundi, with an average age of first menses at around 18 years of age, were 

believed to represent the upper limits of known natural menarcheal variation 

when they were studied in the 1960s (Malcolm, 1966). However, there is more 

recent evidence that shows menarche in rural Bundi populations has reduced to 

17.2 years with a greater reliance on shop-bought foods containing higher fat 

and protein content compared with a traditional Bundi forager diet (Zemel and 

Jenkins, 1989).  

 

Other forager populations have shown a steady decline in age at puberty. Probit 

analysis of menarcheal age among the Caboclo, who live along the Amazon River 

in Para, Brazil have shown a downward secular trend of around 0.24 years per 

decade between those born in 1930 to the current population- (Silva and Padez, 

2006). This is likely due to some improvements to healthcare and better quality 

food, and access to state pensions, which benefit family units. Additionally, the 

Caboclo use some slash and burn agriculture, which is suited to low population 

density (Ibid).  

 

The Ache have also experienced a downward secular trend due to their altered 

ecological circumstances. The change in age at menarche seems to appear in girls 

after first contact in 1960. Average age at menarche was 15.3 years in the forest, 

and 14 years of age when the population later moved to live on reservations (Hill 

and Hurtado, 1996). In 1987, comments were made that the trend had not 
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an average age of 13.8 years (Walker et al., 2006). The Aeta are recognised to be 

in transition as the result of deforestation in their traditional home range, and 

evidence from a previous study of a closely related population, the Agta, found 

mean menarcheal age to be 17.0 years around 1980 (Goodman et al., 1985). This 

reduction in age at menarche may be the result of the adoption of subsistence 

methods other than traditional hunting and gathering, and the effect of 

urbanisation. As the Aeta transition from their traditional lifestyle to more 

settled groups as the result of deforestation and mining they may be forced to 

live on a different diet, or make use of crops that provide more food security than 

their traditional diet.  

 

What might a move away from hunting and gathering mean for female pubertal 

reproduction? Relative to a reliance on agriculture, foraging is protective against 

disease transmission and improves health. Although there was an increase in 

reproductive success with the demographic and agricultural transition, there is a 

decrease in health associated with the adoption of agriculture due to increased 

population density, increased workload, food crises, and contact with cattle 

(Froment, 2001).  Despite the risk of famine and poor crops, agriculture does 

generally provide greater food security overall. We should see earlier maturation 

in subsistence farmers because increased population density increases 

competition for food and resources and the likelihood of communicable disease 

(ibid). There is also evidence that total fertility is higher for intensive 

agriculturalists compared with all other subsistence ecologies (Bentley et al., 

1993), which indicates the potential for improved conditions that could also 

support earlier maturation. Indeed, the transition in subsistence methods 

experienced by the Aeta may be responsible for their relatively early age at 

menarche among foragers, as outlined above.  

 

Fast life histories: The savannah Pumé and the Hiwi 

Not all non-western populations mature later. Pumé and Hiwi girls both have 

very early age at menarche in the subsistence paradigm. The Hiwi live in small 

bands in Venezuela and Colombia, and subsist mostly on water mammals and 
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gathered fruits and roots (Hill et al., 2007). Average age at menarche for Hiwi 

girls is 12.6 (Walker et al., 2006). However, Hiwi have a very long period to first 

birth -- around 6.5-7 years compared with 2.6 years for the Pumé (Walker et al., 

2006; Hochberg et al., 2011).  

 

Savannah Pumé girls demonstrate very fast life histories, with average age at 

menarche comparable to Western Europe and North America at 12.96 (Kramer 

et al., 2009). No girl over the age of 14 is pre-menarcheal and there is only an 

average of 2.6 years between menarche and first birth despite such a young age 

at menarche. The Pumé are mobile foragers living between river systems. This 

lifestyle produces many energetic trade-offs as the result of high disease burden, 

immune costs and high mortality risk. It is suggested that Pumé foragers have 

evolved a system of early maturation in order to offset those costs associated 

with their risky environment (ibid). 

 

The similar savannah environment of Hiwi and Pumé foragers, and therefore 

nutritional constraints, as well as similar subsistence patterns suggest, that 

differences in their maturation schedule may be cultural rather than strictly 

biological (Kramer and Lancaster, 2010).  Since both populations have no access 

to contraception this might represent either a longer period of sub fecundity 

among the Hiwi, or underlying cultural norms that dictate an optimal timing for 

first births. Hunter-gatherers classically have a long period of subfecundity 

following a late menarche (Lancaster in Lancaster and Hamburg, 1986).  

 

Despite the risks associated with early age at first birth, i.e., higher percentage of 

spontaneous abortion, low birth weight etc. (Lancaster and Hamburg, 1986), and 

fistulas (Wall et al., 2004; Van Beekhuizen et al., 2006) there seems to be no 

fitness advantage to delaying first reproduction for savannah Pumé foragers, 

even though 14 year-old girls are significantly more likely to lose their first born 

child than 17 year-old girls (Kramer et al., 2009). Presumably this is mitigated by 

the extra opportunities to reproduce by beginning reproduction at 14 rather 
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than 17. The Pumé begin sexual contact soon after menarche, but this may not be 

the case for the Hiwi.  

 

 Most subsistence level populations, and certainly historic European populations 

where nutritional intake was lower than today, show a later relative age at 

menarche and pubertal onset.  Using a life history perspective, reproductive 

ecologists have generally agreed that energetic constraints involve trade-offs 

between growth, maintenance and reproduction leading to delayed reproductive 

development where resources are limited. How then is it possible for girls to 

reproduce earlier when they themselves are under energetic stress? 

 

High immune costs associated with poor environment and high childhood 

morbidity paradoxically predict earlier maturation for both Pumé and Hiwi girls. 

Despite the high burden on immunity, Pumé and Hiwi girls still invest their 

energy into early maturation. However, the Pumé are especially unique in that 

they are able, despite their young age and small size, to reproduce at such a 

young age, where the effort of early maturation does not produce a significant 

trade-off to delay first reproduction. This unique strategy may be explained by 

the availability of pooled energy budgets, which buffer reproductive capacity 

against immune insults (Kramer et al., 2009; Sharrock et al., 2009), as opposed to 

a bound-energy model, whereby the individual is bound by the provision of 

energy from their own metabolic budget.  

 

While Pumé girls have the majority of their height gains before menarche, they 

are only around 50% of their adult weight at 10. They also continue to grow after 

first birth (Kramer et al., 2009). Pooled energy budgets (the pooled contribution 

of energy from members of a group) continue to support an individual while she 

reaches her full height potential and continues to gain weight (ibid), which likely 

provides the extra energy necessary to produce a child when others would be 

under significantly greater growth constraints. Although Pumé girls are very 

likely to lose their first child, and even though their weight increases and risk of 

infant death reduces with time there are no fitness gains to delaying maturation 
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(Kramer et al., 2009). This is perhaps due to early maturers having short periods 

of sub fecundity, or simply because they have more years over which to 

reproduce to mitigate the effect of early child loss on lifetime fertility.  

 

The pooled energy budget may be one explanation for fast life histories in 

compromising environments. However, even though food is preferentially 

shared with young mothers (Kramer and Greaves, 2007), girls must be further 

buffered against food insecurity, somehow, since many other subsistence 

populations food share and they do not exhibit this very unique pattern of very 

early maturation and very early first birth. The Pumé represent an extreme in 

reproductive plasticity and much more work will be required to elucidate the 

factors that could provide greater energetic buffering to Pumé girls compared 

with similarly challenged populations.  

 

The Pumé might also stimulate a greater focus on the role of skeletal maturation 

on pubertal development. Ellison (1981) found that height, rather than a 

threshold weight was more associated with age at menarche. Ellison (1982) also 

highlighted the physiological importance of skeletal maturation at puberty since 

sufficient pelvic growth and dimensions are imperative for a woman to give birth 

without risk to herself or her baby. Kramer et al (2009) state that girls have 

gained most of their height, but not weight by age 10, which lends itself to the 

theory that their early skeletal development is associated with their fast life 

history strategy. Indeed, early-maturing girls in developed populations are often 

taller than their later-maturing peers when they begin puberty (He and Karlberg, 

2001). While pooled energy budgets might be the mechanism that supports early 

age at first birth for early-maturing Pumé foragers, the factors or context that 

elicit pre-adolescent height growth might be the key to understanding this 

unique, very fast life history. 
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Pubertal maturation and life history strategies in agricultural and 

pastoralist societies 

As outlined above, the introduction of agriculture is associated with greater food 

security, even accounting for periods of famine and crop failure. The effect of a 

crop from a reliable, regular harvest, or meat from a grazing herd, probably 

supplemented with other foods, is demonstrated in the relatively earlier age at 

puberty for girls who live in agro-pastoralist communities compared with 

forager bands (see table 2.2). The greater availability of food and the reduction in 

time spend gathering and picking foods compared with foragers contributes to 

fewer trade-offs in energy output, thereby supporting the energetic costs of 

pubertal onset at an earlier age.   

 

While pastoralism and agriculture are relatively more recent modes of 

production in human history compared with hunting and foraging, the 

physiological response of females to this change demonstrates the capacity of 

female reproductive system to respond to new ecological conditions. Moreover, 

it highlights that the degree of plasticity in female pubertal onset in response to 

newer environments, including urbanisation, may be operating within degrees of 

variation that have been exhibited during our history in response to historical 

ecological shifts.  

 

Age at menarche has been retrospectively studied among the Kipsigis, an agro-

pastoralist group of the Rift Valley region, Kenya.  Kipsigis herd cattle and grow 

maize and wheat as well as cultivate vegetables (Borgerhoff Mulder, 1989). Age 

at menarche was established by questioning women on the timing of their 

clitoridectomy ceremony, which follows in the first December after menarche. 

Other women in the community confirmed age at menarche, in relation to other 

notable events, to establish a firm chronology for each individual. Mean 

estimated menarcheal age was 14.9 (range 12-19) (ibid), which is much younger 

than other agro-pastoralist groups (see table 2.2). Age at menarche is based on 

mean age at clitoridectomy minus 0.5 years, under the assumption that any girl 
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may be responsible for accelerating pubertal development in urban, developed 

populations. 
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Chapter Three: Endocrine disrupting chemicals 

and accelerated pubertal development  
 

This chapter explores the effects of xenoestrogenic compounds and other 

endocrine disrupting chemicals (EDCs) on health outcomes, and, more 

specifically, their possible effects on female pubertal development. As discussed 

in Chapter one, there is evidence for a continued secular trend in age at 

menarche, but more significantly, evidence of acceleration in the age at pubertal 

onset, which may not be entirely explained by the concurrent trend for 

overweight and obesity among children. There is a building body of literature 

that suggests xenoestrogens and other synthetic compounds, which were 

introduced into our environment through industry in the mid-twentieth century, 

may contribute to accelerated pubertal onset by mimicking or blocking the 

actions of endogenous steroid hormones. Additionally, EDCs have been shown to 

affect weight status, which may exacerbate any effects overweight may already 

have on female pubertal development, and may also confound the effects of 

positive energy balance.  

Box 2 

 

Endocrine disrupting chemicals (EDCs) 

An endocrine disrupting substance is a compound, either natural or synthetic, which, through 

environmental or inappropriate developmental exposures, alters the hormonal and homeostatic 

systems that enable the organism to communicate with and respond to its environment 

(Diamanti-Kandarakis, 2009). 

 

 

Direct evidence of the influence of EDCs on human female reproductive 

maturation is, as yet, both limited and inconclusive. However, the increasing 

production and use of these anthropogenic compounds correlates with both the 

secular trend for earlier female maturation, and the trend for increased 
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industrial materials these animals had come into contact with were acting as 

endocrine disruptors capable of mimicking or blocking the effects of endogenous 

hormones.  

 

Figure 3.1 shows the chemical structure of some of the most ubiquitous EDCs. As 

is illustrated, common to all of these compounds is the benzene ring structure, 

which is also found in endogenous oestradiol.  

 

 
Fig. 3.1 EDC structures from www.sccwrp.org 

EDCs include xenoestrogens, which are synthetic compounds that have 

oestrogenic effects; obesogens, which can alter fat storage and metabolism; and 

phytoestrogens, which are natural plant oestrogens. EDCs are sometimes 

referred to as persistent organic pollutants (POPs) since their chemical 

structures are resistant to degradation and remain in the environment for very 

long periods. Although the chemical structure of EDCs is not identical to 

endogenous oestrogen they contain the benzene ring found in oestrogen, which 

allows many of these chemicals to interact with oestrogen receptors thereby 

stimulating or blocking their action (Colborn et al., 1996). Although EDCs may 









 76 

discovered was that these so-called weak oestrogens were found in extremely 

high levels in food packaging  (Brotons et al., 1995). In the light of work like that 

of Soto and Sonnenschein, Brotons et al. were convinced this required greater 

attention. Soon a team at Stanford found evidence of leaching of Bisphenol A BPA 

into distilled water from polycarbonate flasks after autoclaving (Krishnan et al., 

1993). This not only has ramifications for laboratory procedures, particularly 

relating to oestrogen-sensitive compounds, but also with regard to the effects of 

heating plastics in our everyday activities. More recently the effect of BPA 

leaching into plastics has been linked to babies bottles when they are heated 

during sterilisation (Aschberger et al., 2010).  

 

The implications of this finding were both startling and far-reaching. Gradually, 

more and more evidence came to light of the extensive effects of EDCs on human 

health outcomes. Table 3.1 (overleaf) describes the effects in humans of some of 

the most common EDCs found in environments across the globe. So many of 

them are found in everyday products like tins, plastics, cosmetics etc., and enter 

the body both through the diet and dermal application (Colborn et al., 1996). 

Much of the knowledge on EDCs is the result of severe contamination incidents 

localised to particular populations that suffered the burden of the lasting 

detrimental effects on health.  

 

For example, PCBs are thought to be the most stable of the xenoestrogenic 

compounds (Fein et al., 1984). One of the most widely-reported exposure 

incidents of PCBs was the exposure of a community in Taiwan to cooking oil 

containing thermally degraded PCBs. It contained dibenzofurans (entirely 

synthetic), which are even more toxic than PCB itself. The implications of the 

contamination were widespread among the affected community. Poor birth 

outcomes and life-long problems with bronchitis, eye-swellings and 

conjunctivitis occurred, as well as hyperpigmentation, chloroacne, reduced 

weight and height in babies born who were either in utero during the exposure, 

or conceived following the contamination (Rogan et al., 1988). 
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Table 3.1 Common endocrine disrupting compounds 

Chemical/Elem

ent 

Common use Target Effect Notes 

Diethylstilbestro

l (DES)  
Pregnancy aid

1
 Genital tract  Cancers of the uterus and vagina

1
  

Dichlorodipheny

ltrichloroethane 

(DDT) 

Organochlorine 

insecticide
2
  

Adipose 

tissue 

oestrogen 

agonist and 

an androgen 

antagonist  

Evidence of pregnancy loss and 

high pre-term birth may be 

confounded by poor local water 

quality
2
 

Dichlorodipheny

ldichloroethylen

e (DDE) 

Metabolite of 

DDT, often 

leached into 

riverine systems
3
 

Adipose 

tissue 

Oestrogen 

mimicker and 

blocker 

Extremely stable with a much 

longer half-life than its source
3, 15

 

Polychlorinated 

biphenyls 

(PCBs) 

 and 

dibenzofurans 

Oils , used in 

chlorinating and 

bleaching 

paper
12

 

Adipose 

tissue, breast, 

cranium 

Oestrogen 

mimicker and 

blocker 

Possibly capable of delaying 

breast development
3
  

Found to reduce head 

circumference in babies born to 

mothers who ate Lake Michigan 

fish contaminated with levels 

PCBs considered  normally 

dietary exposures
4
 

Poor birth outcomes, long-term 

problems with bronchitis, eye 

swellings and conjunctivitis, 

hyperpigmentation, chloroacne 

and reduced height and weight 

all associated with babies born 

who were either exposed in utero 

or conceived following parental 

exposure to debgraded PCBs
5
  

Considered the most stable 

persistent organic pollutant
6
 

Polybrominated 

biphenyl (PBB) 

including dioxins 

Flame 

retardant
13

 

Adipose 

tissue 

Competitive 

oestrogen 

inhibitor 

Associated with earlier menarche 

in girls exposed in utero and 

postnatally, particularly among 

those who were breastfed
7
 

Bisphenol A 

(BPA) 

Originally a 

synthetic 

oestrogen. Used 

as a plasticiser, 

polycarbonate 

plastics, epoxy 

resins to line 

cans
2
 

Endometrial 

endothelial 

cells 

Oestrogen 

blocker 

Responsible for increased cell 

proliferation and increased cell 

death in the endometrial 

endothelial cells
8
 

High concentrations associated 

with PCOS and obesity
8
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Phthalates Plasticiser found 

in toys, 

cosmetics, 

pharmaceuticals, 

medical tubing
2
 

Adipose 

tissue 

Oestrogen 

mimic/andro

gen 

antagonist 

Levels found in urine indicative 

of household exposure. They 

become harmful upon leaching 

contact or heating, which 

releases particles into the 

atmosphere
9,14

 

Atrazine Crop spray
10

 Breast/foetus  Inreases risk of breast cancer and 

the risk of pre-term birth
10

 

Zeranol Growth 

promoter for 

livestock
10

 

Breast  Increased risk of breast cancer
10

 

Parabens Cosmetics
11

   Direct contact with the breast 

and underarm area avoids 

metabolism and could therefore 

promote breast cancer
11

 

Lead Heavy metal    

Aluminium Metal, incredient 

in deodorant
11

 

  Direct contact with the breast 

and underarm area avoids 

metabolism and could therefore 

promote breast cancer
11

 

Phytoestrogens/

lignans/isoflavo

noids 

Naturally-

occurring plant 

oestrogens
5
 

  Foetal issues, skin conditions 

(hyperpigmentation)2 

1Bell et al., 2009; 2Patisaul and Adewale, 2009; 3Wolff et al., 2008; 4Fein et al., 1984; 5Rogan et al., 1988; 6Loganathan et al., 

1993; 7Blanck; 8Bredhult et al., 2009; 9Swan, 2008; 10McLachlan et al., 2006; 11Darbre, 2006; 12Schoeters et al. 2007; 13Roy 

et al., 2009; 14Autian, 1973; 15van Hove Holdrinet et al., 1977.  

 

PCBs were originally produced for use in electricity transformers since they 

were non-inflammable. As with many xenoestrogens that were produced for 

industry this became their lasting problem: persistence (Colborn et al., 1996). On 

a global scale PCB risk is greater than that of DDT since DDT burdens have 

reduced in humans thanks in large part to global policy on its use and risk 

(Loganathan et al., 1994)   

 

A decline in the use of organochlorines in riverine systems has seen their 

concentrations decrease significantly (Loganathan et al., 1994). Concentrations 

increase in coastal seas and closed water systems, with a highest rate in open 
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followed by larger fish, small sea mammals, larger sea mammals and eventually 

large land mammals and humans prey on the previous in turn. As each larger 

species consumes the smaller there is significant bioaccumulation of endocrine 

disruptors since eating many prey with a low level of contamination results in a 

larger burden in the predator species (Colborn et al., 1996). This kind of 

bioaccumulation is a simplified model, but results in human exposure to various 

chemicals.  

 

Other routes of contamination: crossing the placental barrier and 

breastfeeding 

It is now well documented that endocrine disruptors can be passed to infants 

through both the placental barrier and during breastfeeding (Dewailly et al., 

1989). Some of the effects seen in adulthood, like reproductive cancers, may be 

the result of exposures passed to infants this way. In one investigation in 

newborns, transplacental exposure to PCBs resulted in poorer Bayley scores 

relative to controls, in the form of reduced psychomotor scores (Gladen et al., 

1988). Bayley scores are a measure on the Bayley Scales of Infant Development 

that indicate motor, language and cognitive development of infants (Lowe et al., 

2012). This mechanism could have detrimental consequences for any number of 

developmental processes both in utero and during childhood (Gladen et al., 

1988). Other evidence includes phthalates found in amniotic fluid, which is 

evidence of passage across the placenta (Tsutsumi, 2005). Moreover,  PCBs and 

dioxins are capable of affecting trophoblasts and thereby placental development 

and function (Fowler et al., 2012).  

 

The timing of an endocrine insult in utero may determine its effect. Of particular 

importance are periods of organogenesis, where developing structures will be 

especially vulnerable; the same agent administered at a different stage may have 

an entirely different effect on the growing foetus or indeed later in life (Agency 

for toxic substance and disease registry, 1993). Additionally, duration and type 

of contaminant would alter the developmental response (Field et al., 1990; 

Sharara et al., 1998). There is no knowing what the effects are of an insult that 
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occurs at different points throughout gestation: first, whether they have 

immediate impacts on the developing foetus, and secondly on their potential to 

result in altered postnatal development or even adverse health outcomes in 

adulthood.  

 

The risk to newborns is contamination via breast milk. The lipophilic nature of 

EDC means that lactation is the greatest route of excretion of endocrine 

disruptors in women as fat stores are mobilised to provide for the nursing infant. 

They migrate to the breast and then become stored in the infant fat tissue after 

ingestion. In a Sudanese population, women were found to be excreting 

aflatoxins in breast milk that would be considered unsafe for human 

consumption if detected in animal milk (Coulter et al., 1984). Hepatic or other 

routes of excretion are so minimal that as a nursing infant stores these chemical 

residues of nursing they will have relative EDC levels far above that of the 

mother. The infant acts as a sink for the chemicals excreted by the mother and 

they are likely to keep those initial doses throughout their lifetime. The effect can 

only be diluted with growth as the relative concentration in the body decreases 

(Alstrup and Slorach, 1991). 

 

The initial dose of disruptors is not the same for all infants; it depends on a 

number of factors. Body fat is in equilibrium with blood fat, and so this would 

determine how much is mobilised to the breast (Samogyi and Beck, 1993). 

Additionally for the infant, the length of feed, time of day, and whether it is the 

beginning or the end of the feed can affect the concentration of EDCs in the milk 

(Slorach and Vaz, 1985). Individual compounds also behave differently to one 

another, and differently again as a mixture; their molecular weight, pH, binding 

properties and polarity will all affect their affinity for storage and persistence 

(Samogyi and Beck, 1993). This is important in considering ways of controlling 

infant exposure to xenoestrogens, and similarly continued contamination of 

mothers, since both mother and infant exposure is relative to nursing duration 

(Alstrup and Slorach, 1991). Indeed, levels of PCBs and DDE in the body decrease 

for a woman with previous breastfeeding, and time spent breastfeeding (Rogan 
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increased or inhibited by the presence of another (ibid). There is also some 

suggestion from studies that the type of adipose tissue would also have an effect 

on storage due to the number of fatty acids in the tissue (ibid). Some pesticides 

rapidly leave the blood and liver, and remain in adipose tissue (ibid).  

 

Some evidence suggests that xenoestrogens are inactive while stored in adipose 

tissue, although there is some break down into appropriate metabolites, so over 

time there will be effects from stored compounds (Sharara et al., 1998; Pelletier 

et al., 2003). The greatest effects from stored EDCs are during periods of fat 

mobilisation (Facemire, 2000) when there is the possibility of xenoestrogen 

action on target receptors in the body, and metabolism of some compounds, 

which may lead to further insulting actions. Of particular importance in this 

scenario is weight loss (Pelletier et al., 2003). These effects are described in both 

the mouse model (Bigsby et al., 1997), and in humans (Jandacek and Tso, 2001).  

 

Loss of adipose tissue stores may result in exposure of other tissues to 

xenobiotics, release into circulation, storage in other tissues, and reduced body 

burden by excretion. There is a degree of exchange between the blood and 

adipose tissue, brain and liver, with some of this leading to faecal excretion, 

other to storage, and some to mammary excretion in women (Jandacek and Tso, 

2001). Some metabolism to products with different electronic charges allows 

toxins in adipose tissue to move within the blood, bile and urine. Faecal excretion 

is the main route for unchanged EDCs and their metabolites, and urine is the 

route for more polar compounds. This typically occurs via biliary excretion. 

There is evidence for non-biliary excretion, which therefore diverts EDCs from 

the liver (Jandacek and Tso, 2001).   

 

This raises the concern that if mobilisation of fat stores results from a growth 

spurt, then girls could become vulnerable to bioavailability of stored EDCs 

during these periods. Around the time of the pre-adolescent growth spurt 

xenoestrogens could become available to target mechanisms associated with 

pubertal development or reproductive function. Bioavailability of EDCs during 
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peak height velocity (PHV) could therefore have the potential to affect age at 

pubertal onset and age at menarche. The degree to which this occurs would 

depend on concentrations of EDCs in the body, which is tied to weight status.  

 

Organochlorines were found in higher concentrations in obese sedentary 

individuals compared with athletes (Pelletier et al., 2003). Although 

concentration per gram of adipose tissue may be less, due to a dilution effect, 

higher weight individuals have greater stores of adipose tissue compared with 

lean individuals, so the overall concentration in obese individuals is higher. They 

also have higher plasma concentrations of organochlorines than athletes or lean 

sedentary individuals, which is thought to reflect adipose tissue burden, and 

therefore carry a much larger burden overall (ibid). Elimination also appears 

quicker in lean individuals, which is likely the effect of a lower percentage of 

adipose tissue in which EDCs can become stored long-term (Pelletier et al., 

2003). This suggests that those who are already large have greater potential for 

endocrine disruption during a growth spurt, not to mention that their ability to 

store fat may be partially influenced by obesogenic EDCs already in their 

systems, which may have other unknown endocrine effects, and may be absent in 

leaner individuals.  

 

The consequences of mobilisation of fat mass may concentrate xenoestrogens 

into remaining fat tissue as they may be attracted to the remaining mass. The 

likelihood of mobilised EDCs reaching targets largely relies on energy balance, 

since it is this which determines whether or not fat stores need to be created or 

mobilised, which will in turn increase or decrease the concentration of EDCs in 

adipose tissue. Weight loss may be a risk factor in obese individuals as this will 

concentrate fat stores of EDCs and also expose other parts of the body to their 

effects. Overall energy balance will be key to considering individual levels of risk 

from stored EDCs.  
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Low-dose response and nonmonotonicity 

While we have a lot of convincing evidence for the effects of EDCs at low levels it 

is not difficult to understand why the low dose effects of anthropogenic 

compounds were ignored, or simply not considered, when one considers classic 

toxicological thinking. Typical toxicological screening works on the assumption 

that response is relative to dose, and so cells are exposed to increasingly higher 

doses of a toxin in order to understand their response. It was simply not in the 

interests of toxicologists to understand the impact on corporal mechanisms from 

environmental chemicals at naturally meaningful levels; only to determine which 

doses result in death (Heindel and vom Saal, 2009; Patisaul and Adewale, 2009). 

When low dose effects were considered, high-dose single substance experiments 

were extrapolated to low levels, which is an inexact and flawed method that did 

not accurately measure relative effect.  

 

EDCs may have different actions at low doses compared with larger exposure, 

which is the case with some endogenous hormones (Vandenberg et al., 2012). 

This could be due to special properties that create effects at low doses that 

disappear at high doses, or some kind of feedback mechanism.  This is a non-

monotonic effect, and is seen with DDT, which is a potent neurotoxin at high 

levels, but interacts with androgens and oestrogens at low doses and therefore 

does not follow the classic linear monotonic effect of toxicity (Patisaul and 

Adewale, 2009) (see figure 3.2). Xenoestrogens may also be active at levels much 

lower than those usually tested in toxicology screens (EDEN, 2007), which 

highlights the importance of understanding their actions in all scenarios when 

effects at high dose cannot predict effects at low dose (Vandenberg et al., 2012). 
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Figure 3.2 Example of non-monotonicity from Myers and Hessler, 2007.  

 

This raises the issues of testing for unique mixture effects of xenoestrogens 

(Diamanti-Kandarakis, 2009; Muncke, 2009), as well as seeking information on 

exposure during sensitive life stages, which are since shown to be a risk period 

for the influence of EDCs on the development of various processes (Muncke, 

2009).  

 

Phytoestrogens and endocrine disruption 

The interest of some western populations in the so-called healthful behaviour of 

a soy-based diet may be cause for concern. This particular dietary choice is 

believed to reduce the risk of cardiovascular diseases, and reduce rates of 

cancers associated with reproductive hormones since soya products contain 

phytoestrogens, which may be protective against these conditions. Many foods 

and drinks naturally contain phytoestrogens, lignans and isoflavonoids (Patisaul 

and Adewale, 2009). However, with supplements and a soy-based diet, including 

infant formulas, people are ingesting levels well above what may be naturally 

tolerable, and above the traditional East Asian soy diets (ibid). Could this be a 

cause for concern regarding endocrine disruption? Can we be sure about the 

ways in which elevated levels of phytoestrogens interact with endogenous 

oestrogens? There are limited human-based studies that describe the effect of 

phytoestrogens on sexual development, but results indicate that premature 
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thelarche is more common in infants fed on soy-based formula compared with 

peers (Freni-Titulaer et al., 1986; Zung et al., 2008).   

Phytoestrogens may act in the same way as some other seemingly harmless 

plants like clover to deter animals from eating from them. Clover was shown to 

be a potent natural fertility inhibitor (Colborn et al., 1996).  The natural defences 

of the plant interfered with animal steroid hormone levels to such a degree that 

animal organisms were unable to reproduce. Therefore, the same effect could be 

seen in adults exposed to phytoestrogens, and even more worrying, could upset 

the natural reproductive development of children exposed to exogenous 

oestrogens via a diet seen to be beneficial to health. Further, soy-based genistein 

in infant formula is positively associated with adult obesity (Newbold et al., 

2009). This could be confounded by the high energy-density of formula (ibid), 

but it could also signal a greater picture of endocrine disruption from seemingly 

healthful compounds, since circulating levels of phytoestrogens are thousands of 

times higher than endogenous oestrogen levels in formula-fed infants fed on soy 

(Cederroth et al., 2012).  

 

There is inconclusive evidence surrounding the risks of phytoestrogens, i.e. 

isoflavins on growth and development, or indeed endocrine disruption. This 

could be lack of evidence or the lack of understanding of the ways isoflavins 

work with other EDCs and how their actions may be confounded by other 

endocrine insults (Cederroth et al., 2012).  

 

Xenoestrogens and pubertal development: a mismatch between strategy 

and environment 

Xenoestrogens present what is sometimes referred to as a mismatch between 

Stone Age genes and space age environments. There is a selective advantage to 

younger age at maturation in risky and uncertain environments (e.g. Ellis and 

Garber, 2000) but teen pregnancies are generally viewed as maladaptive and 

risky in much of the clinical literature particularly in girls  less than 15 years old 

(e.g. Super, 1986; Klein, 2005). While we may theoretically be able to produce 

more young more quickly through early maturation(Biro et al., 2009) EDCs 
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therefore be active in early breast development (McLachlan et al., 2006).  One 

study looked at the extremely high levels of premature thelarche in Puerto Rico 

and found that girls had very high serum levels of phthalates (Colon et al., 2000).  

Puerto Rico has the highest incidence of premature thelarche in the world, which 

has been attributed to high phthalate exposure from the agricultural industry 

(Ibid).  

 

A study of Chinese women working in a textile factory found that menarche 

occurred earlier, and there was a higher chance of short menstrual cycle length 

in response to DDT exposure (Ouyang et al,. 2005). DDT and PCB exposure may 

also lead to reduced fecundability in European Inuit women. The lowest age at 

menarche was found in Greenlanders in the study, but there was little effect in 

terms of cyclicity. So, exposure to certain EDCs may lead to earlier age at 

maturation, but effects of cycle regularity and length may be controlled by 

genetic or nutritional factors (Toft et al., 2008).  

 

Some endocrine disruptors may be a cause of intra-uterine growth retardation 

(IUGR), which results in changes to pubertal development in the affected 

individual in later life as a consequence of extensive catch-up growth (Schoeters 

et al., 2007). However, this interpretation of altered development does not 

account for endocrine-disrupting mechanisms other than those affecting intra-

uterine growth, which could be altering the timing and tempo of puberty. 

 

In an animal model, it was shown that BPA accelerated age at puberty in the 

female mouse. However, the rate at which this occurs may be relative to levels of 

endogenous oestrogens, which could alter sensitivity to chemical oestrogens 

(Howdshell et al., 1999).  BPA is also found in high levels in women suffering 

from PCOS Tsutsumi, 2005). This could be the result of androgen-related 

metabolism of BPA, since it is also higher in normal men. BPA may be either 

stimulating testosterone production, or testosterone could block BPA 

metabolism (ibid).   
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Estrogens are already present at negligible levels in young children well before 

pubertal development is triggered by release of the pulsatile GnRH signal. Given 

that endocrine disruptors act in parts per trillion, it is hardly surprising that they 

have the capacity to cause disruption to reproductive development by interfering 

with these sensitive steroid levels, and indeed defy the classic rules of toxicology. 

While the evidence for the role of EDCs in the recent acceleration of female 

pubertal development is not exhaustive, the suggestion of an adverse role on 

reproductive function might account for a degree of variation that cannot be 

explained by diet or genetic influence on maturation. 

 

Endocrine disrupting chemicals and the obesity epidemic 

As discussed above, there is an important relationship between EDCs and energy 

balance. In addition to the role adipose tissue plays in storing endocrine 

disruptors, some oestrogenic chemicals are found to increase the incidence of 

obesity.  Indeed, the rise in obesity prevalence matches that of the use of 

industrial chemicals (Colborn et al., 1996). Different synthetic oestrogen mimics 

result in a number of mechanisms that can increase adipogenesis. Any chemical 

or disruptor that inappropriately regulates adipogenesis and promotes obesity is 

known as an obesogen (Grun and Blumberg, 2007; 2009).  

 

Obesogens impact obesity via changes in gene expression, which are caused by 

epigenetic changes. More specifically endocrine disruptors affect a receptor 

called PPAR gamma, which in one state will allow cells to remain as fibroblasts (a 

type of stem cell), and in the other will push them towards becoming fat cells via 

the production of more preadipocytes (Grün and Blumberg, 2007). In children 

who are increasingly sedentary and over-nourished this could increase their 

ability to store fat, which children are consuming in higher levels. 

 

EDCs could also be altering metabolic actions and tempo, creating a new weight 

set point as a result of exposure during critical periods of development (Grün 
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Further research into the effects of xenoestrogens and other EDCs on female 

pubertal development and the relationship of those effects with obesogens will 

highlight specific risks for girls. This research will also direct clinicians and other 

healthcare professionals in the treatment and advice for girls who have been 

exposed to EDCs, or advise them on ways to decrease their risks of exposure.  

 

EDCs in relation to pubertal trends in the UK 

The potential for interaction between EDCs, weight status and pubertal 

maturation is overwhelming. As individuals in the UK get heavier, particularly 

children, then they are at higher risk of greater overall burden of lipophilic 

environmental pollutants than leaner peers. Everyday exposures may be 

contributing to earlier female maturation by: 1) interacting with the 

neuroendocrine mechanisms that control pubertal development, specifically 

disrupting or blocking the actions of oestrogens and androgens; and 2) 

accumulating in the adipose tissue of pre-adolescent girls and accelerating 

puberty, specifically age at thelarche. 

 

 Heavier girls may already have a tendency towards earlier maturation (as 

detailed in Chapter one), but as their growth accelerates at the beginning of 

puberty (Bogin, 1988) they are potentially encouraging the bioavailability of a 

cocktail of EDCs, which could further accelerate the process. EDCs may therefore 

account for a significant proportion of the variance in age at menarche and age at 

pubertal onset in the UK and elsewhere that weight status alone cannot.   

 

In Part I, I have discussed physiological and environmental influences that 

determine the timing and process of female pubertal development in a variety of 

ecological settings. This discussion provided a background to understanding and 

measuring the physiological changes associated with female puberty, as well as 

discussing evidence for a secular trend for accelerated female pubertal 

development in a number of western populations. Moreover, I outlined the 

variety in the female pubertal process that deviates from the western model of 
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normal tempo and progression through puberty, and discussed the limitation of 

this biomedical model to describe phenotypic plasticity in the process of puberty 

in a way that recognises a range of normal, rather than healthy versus 

pathological maturation. Finally, I outlined the novel influence of endocrine 

disrupting chemicals on the timing and tempo of female puberty and their 

potential role in the acceleration of pubertal onset. All of the physiological and 

environmental influences on female pubertal development discussed in Part I 

provide the context and possible drivers for a continued secular trend in female 

pubertal development in the UK, and also provide a framework for considering 

how the tempo and process of female pubertal development in the UK can be 

considered as an adaptive response to the environment.  

 

In Part II, I will analyse the influence of overweight and obesity on female 

pubertal development, as well as analyse longitudinal data from the UK to 

investigate evidence for acceleration in female pubertal onset over the last 60 

years and the factors responsible for that change.  
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Chapter Four: The effects of overweight and 

obesity on female pubertal maturation: a 

systematic review 

Abstract 

Background: Recent literature based on analyses of longitudinal data sets in the 

USA and Europe finds a continued secular trend in girls for younger age at 

menarche. Other authors argue that menarche has remained stable and it is the 

age at onset of puberty that has reduced in recent decades. There is also a 

concurrent trend towards higher rates of overweight and obesity among young 

girls as a result of increased sedentism and a diet high in fat and sugar. A number 

of recent publications propose that the decline in age at puberty and increasing 

weight of young girls are causally related such that the latter directly accelerates 

age at menarche. I therefore undertook a systematic review of literature to find 

evidence for this phenomenon. 

Objectives: Given the controversies surrounding age at maturation in females this 

review will: 1) collate current understanding of the effect(s) of overweight and 

obesity on female pubertal maturation; 2) understand how resulting changes in 

pubertal development may or may not deviate from a traditional Tanner model 

of maturation; 3) look for a continued secular trend in age at menarche; and 4) 

look for evidence of an earlier age at pubertal onset. 

Methodology: 57 articles were reviewed following two systematic literature 

searches. Keywords and MeSH search terms: body weights and measures 

(MeSH), adipose, adiposity, BMI (MeSH), body size (MeSH), body weight (MeSH), 

Obesity (MeSH), Overweight (MeSH), sexual development (MeSH), Sexual 

maturation, pubic hair, breast development, puberty (MeSH), menarche (MeSH), 

Adrenarche (MeSH), thelarche, gonadarche, child, infant, teen, adolescent. 

Databases: Medline/PubMed, Embase and the International Bibliography of the 

social sciences (IBSS). The search produced 6935 results, which were first de-

duplicated, then reviewed for relevance by title and abstract and finally by full 

text.  
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colleagues, and introduces bias when reporting only on girls who have begun 

development early, it does highlight concern among clinicians that they are 

seeing more girls developing earlier than the typical Tanner model.  

 

Dunger et al. (2005) also suggest a growing trend for earlier age at breast 

development in a review of various longitudinal and cross-sectional studies 

relating to the effect of obesity on growth and puberty. They suggest that 

menarche may not be advancing at the same rate as breast development, if at all. 

Conversely, an expert panel (Euling et al., 2008) agreed that data is sufficient to 

deem that there is an earlier onset of breast development as well as menarche, 

although unlike Dunger et al. (2005) whose data is from a variety of regions, 

Euling et al. focus on changes based on longitudinal data from the USA only. As 

Euling et al. (2008) suggest there is still uncertainty as to whether overweight is 

simply encouraging earlier development of particular pubertal markers, or 

whether it is accelerating the entire process, but uncertainty also remains over 

the degree to which age at menarche is accelerating outside of the USA, and 

whether this is the result of overweight and obesity. As such there is a sustained 

interest in the effects of weight status on maturation, particularly in light of 

recent increases in both childhood overweight and obesity, coupled with 

sedentary behaviours. 

 

objectives 

This systematic review will 1) collate current understanding of the effect(s) of 

overweight and obesity on female pubertal maturation; 2) understand how 

resulting changes in pubertal development may or may not deviate from a 

traditional Tanner model of maturation; 3) look for a continued secular trend in 

age at menarche; and 4) look for evidence of an earlier age at pubertal onset. 

 

Methodology 

A systematic review relies on predetermined search criteria formulated from 

search terms appropriate to the area of research. This method is described in 
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Khan et al. (2003). This particular methodology is not only rigorous, but the 

systematic nature of data collection makes is possible to collate information in 

both a clear and consistent manner.  

 

The systematic review was undertaken using topic-specific search terms. The 

search terms used were searched as both MeSH (medical search headings) terms 

where possible and as keywords. This method was employed to capture any 

studies that were relevant but may not have been included under MeSH, as these 

terms are assigned manually. The initial literature search was undertaken in 

December 2009 and a second round was undertakes in December 2010 to 

capture relevant studies from the intervening 12 months.  

 

Eligibility and rationale 

This systematic review was carried out in order to inform a larger analysis of 

pubertal trends in the UK, which will be detailed in the following Chapter of this 

thesis.  The datasets analysed within Chapter five are as recent as 2010, which 

set a period of time by which to limit the literature search in this chapter. 

Searches were also limited to human studies, in order to determine what is 

known specifically about the interaction of weight status and pubertal 

development in girls rather than models from animal studies broadened to 

humans in a theoretical capacity. Finally, studies were chosen that focused on 

pubertal development before age 18 in order to rule out studies that focused on 

pathologically late pubertal development.  

 

Information sources 

Publications were searched in Medline/PubMed, Embase and the International 

Bibliography of the social sciences (IBSS). 
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Search 

Table 4.1 (overleaf) contains a reproducible search method used in all of the 

databases for this review. The search uses MeSH terms and keywords combine 

with Boolean logic.  

 

Study selection 

Table 4.2 (page 97) outlines the exclusion criteria after the initial literature 

search. Primary exclusion criteria determine date and study subjects, and 

secondary exclusion criteria determine study type.  

 

Data items and collection process 

Data extraction variables are listed in table 4.2. I independently extracted this 

data from each paper where it was available. 
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Table 4.1. Database search method. 

Search Criteria 

 

Weight Status Pubertal Development Age 

 

Body weights and 

measures (MeSH) 

Adipose 

Adiposity 

BMI (MeSH) 

Body size (MeSH) 

Body weight (MeSH) 

Obesity (MeSH) 

Overweight (MeSH) 

 

Sexual development 

(MeSH) 

Sexual maturation 

Pubic hair 

Breast development 

Puberty (MeSH) 

Menarche (MeSH) 

Adrenarche (MeSH) 

Thelarche, 

Gonadarche 

 

Child 

Infant 

Teen 

Adolescent 

 

Combined with 

Boolean OR command 

Combined with 

Boolean OR command 

Combined with 

Boolean OR command 

Combined with Boolean AND command 

 

Bias 

Risk of bias was determined at the study level. Studies were checked for any 

funding criteria or sponsorship that would compromise the integrity of the 

reported results, or explain heterogeneity of results.  
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Synthesis of results 

No meta-analyses were carried out on these data. This systematic review 

contains a small number of studies with numerous study designs and outcome 

measures, which provides very little data for comparison. These data do not lend 

themselves to a rigorous statistical analysis. Instead, the data are presented as a 

discussion of the various factors that form the relationship between overweight 

and obesity, and female pubertal development. 
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Table 4.2. Systematic literature search and exclusion criteria. 

Search Terms Primary Exclusion 
Criteria 

Secondary Exclusion 
Criteria 

Data Extraction 
Variables 

Weight Status 

Body weights and 
measures (MeSH) 

Adipose 

Adiposity 

BMI (MeSH) 

Body size (MeSH) 

Body weight (MeSH) 

Obesity (MeSH) 

Oberweight (MeSH) 

 

Pubertal Development 

Sexual development 
(MeSH) 

Sexual maturation 

Pubic hair 

Breast development 

Puberty(MeSH) 

Menarche (MeSH) 

Adrenarche (MeSH) 

Thelarche 

Gonadarche 

 

Age 

Child 

Infant 

Teen 

Adolescent 

 

Published prior to 
1/1/2010 

 

Non-human 

 

Male 

 

Gestation studies 

 

Focus on post-18 years 
of age 

 

 

 

Case studies 

 

Clinical studies of 
biomedically defined 
precocious puberty 

 

Endocrine 
abnormalities 

 

Other chronic illness 

 

Conference abstracts 

 

Author 

 

Year 

 

Area of collection 

 

Time frame 

 

Number of 

Participants 

 

Age of participants 

 

Study name 

 

Study design 

 

Ethnicity 

 

Outcome measures 

 

Main findings 

 

Control measures 

 

Average age at 
menarche 
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Results 

Figure 4.1 summarises the literature search results and selection process.  

 

Figure 4.1. Summary study selection flow chart 

Publications excluded by 
relevance based on title and 

abstract = 5138 

Publications excluded based on 
relevance of secondary 
inclusion criteria = 28 

Publications excluded based on 
relevance of secondary 
inclusion criteria = 40 

Publications excluded based on 
title and abstract = 223 

Publications included for review 
= 39 

Publications after application of 
exclusion criteria and de-

duplication  =  5217 

Publications included for review 
= 18 

Second round of publications 
identified after exclusion criteria 

and de-duplication =  269 

Total number of publications 
reviewed= 57 
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What emerged from the literature search and subsequent readings are a number 

of themes that can be associated with the impact of overweight and obesity on 

pubertal maturation. These themes included: BMI/overweight and maturation, 

skeletal maturation, synchronicity of maturation (that is the process of 

simultaneous breast and pubic hair growth), body composition (body shape and 

fat patterning), metabolism, socioeconomic status (SES), ethnicity, and catch-up 

growth. 

 

There was a significant spread of age and cohort size across these studies 

ranging from group sizes of 96 (Lin-Su et al., 2002) to 10,759 children 

(Kaplowitz et al., 2001), and an age ranging from birth to eighteen years. The 

oldest data come from two longitudinal UK studies: The Medical Research 

Council National Survey of Health and Development (NSHD) beginning in 1946, 

and the Newcastle Thousand Families Study beginning in 1947 (Blell et al., 

2008), both of which are still collecting data.  
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Table 4.3. Reported age at menarche.  

Author(s) 

 
Place Years 

Average age at 

Menarche (yrs) 

 N. America   

Demerath et al (2004) USA 1929-46, 
1947-64, 
1965-83 

12.7 
12.8 
12.6 

Berkey et al (2000) USA 1930-1949 12.83 

Terry et al (2009) USA 1959-1963 White: 12.53 

African American: 12.70 

Puerto Rican: 12.14 

Anderson, et al. (2003) USA 1963-1970, 
1988-1994 

12.75 

12.54 

Freedman et al (2003) USA 1973-74, 
1992-94, 
1982-96. 

12.9 for white girls 

12.8 for black girls 

Biro et al (2003) USA 1986/87-
1996/97 

12.6 

Anderson and Must (2005) USA 1988-1994, 
1999-2002 

12.53 

12.34 

Lin-Su et al (2000) USA 1999-2000 Obese 11.87 overweight  
12.14, normal weight 12.20 

 S. America   

Martinez et al. (2010) Brazil 1982 12.44 

Torres Mejia et al (2005) Mexico 1998-99 12.0 

 

 Europe   

Morris et al (2010) UK  12.7 

dos Santos Silva et al (2002) England 1946-2002 13.1 

Blell et al (2008) England 1947-1997 12.94 

Okasha et al (2001) Scotland 1948-1968 Dropped from 13.2 to 12.5 

Rubin et al (2009) England 1991-
present 

Median: 12.93 

Christensen et al (2010b) England 1991-
present 

12.9 

Heger et al (2008) Sweden, 
Germany 

1950-1980. lean 14.3, normal 13.3, obese 
12.9. 
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Bau et al (2009) Germany 2006-2007 12.8 average. 
Obese/overweight- 12.5, 
normal- 12.9, underweight- 
13.7 

Koziel and Jankowska (2002) Poland 1996-1997 12.7 

Mandel et al (2004) Israel 1980 Obese 12.9, normal 13.3, lean 
13.5 

Rigon et al (2010) Italy  12.40 

Papadimitriou et al (2008) Greece 2008 Obese- 11.73, normal- 12.29, 
lean- 12.42 

Semiz et al (2009) Turkey  12.41 

 Africa   

Torres Mejia et al (2005) Egypt 1997 13.0 

Goon et al (2010) Nigeria  Mean: 13.02 

Median: 13.00 

 

Overweight and maturation 

Thirty-four studies focus on the effect of childhood weight status on maturation 

and found a negative correlation between weight or body mass index (BMI) and 

sexual maturation in girls, whether by menarcheal status or Tanner stage 

(Anderson et al., 2003; Anderson and Must 2005; Bau et al., 2009; Biro et al., 

2003; Blell et al., 2008; Christensen et al., 2010b; Davison et al., 2003; dos Santos 

Silva et al., 2002; Freedman et al., 2003; Frontini et al., 2003; He and Karlberg 

2001; Heger et al., 2008; Himes et al., 2004; Kaplowitz et al., 2001; Koziel and 

Jankowska 2002; Lassek and Gaulin 2007; Lee et al., 2007; Lin-Su et al., 2002; 

Mamun et al., 2009; Moayeri et al., 2006; Martinez et al., 2010; Morris et al., 

2010); Okasha et al., 2001; Papadimitriou et al., 2008; Ribeiro et al., 2006; Rigon 

et al., 2010; Rubin et al., 2009; Semiz et al., 2009; Sloboda et al., 2007; Tam et al., 

2006; Terry et al., 2009; Torres-Mejia et al., 2005; Wang 2002; Williams and 

Goulding, 2009). Of these studies thirteen were based in the USA, four in the UK, 

two in Germany and central Europe, two in Australia, one each in Greece, 

Sweden, Poland and Iran, and one comparing Mexico and Egypt. Five of the 

studies from the USA used data from the NHANES (National Health and Nutrition 

Examination Survey) II or III study (all five included NHANES III data), and two 

examined data from the Bogalusa heart study. Two UK studies examined the 

Avon Longitudinal Study of Parents and Children (ALSPAC).  
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A number of these studies found that higher weights at different stages of infancy 

and childhood were predictive of an earlier onset of puberty or more advanced 

stage of maturation during puberty at a given age relative to peers. These 

include: high birth weight (Blell et al., 2008), high weight in early childhood 

(Martinez et al., 2010), high BMI-Z score at age 3 (Lee et al., 2007), a higher BMI 

at age 5 (Mamun et al., 2009), one standard deviation away from the normal 

weight at age at 5-6 years (Freedman et al., 2003), a higher weight at age 7 

(Terry et al., 2009; Morris et al., 2010), higher weight age 8 (Tam et al., 2006; 

Sloboda et al., 2007), higher height weight and BMI age 8 (Rubin et al., 2009) 

higher weight age 9 (Blell et al., 2008) and high BMI recorded close to age at 

menarche (Rigon et al., 2010). Additionally, two studies found that early age at 

adiposity rebound (AR) is linked with an earlier age at menarche (Lee et al., 

2007; Williams and Goulding, 2008). Lee et al (2007) note specifically that a high 

rate of change between the ages of 3 and 6 is a predictor of early maturation. 

Salsberry et al., (2009) divided girls by ethnicity and found that earlier 

maturation was associated with higher BMI by age 3 in African American girls, 

and by age 6 in white girls.  

In contrast, some studies did not find a link between overweight and early 

maturation. Kaplowitz et al. (2001), for example, found that late maturers were 

just as likely to be overweight as early maturers. Another study of girls in Berlin 

found a negative correlation between BMI and age at onset of menarche, but did 

not see an acceleration in the age of menarche as would be expected in a 

population with a higher than 10% rate of obesity (Bau et al., 2009).  

 

In the Fels longitudinal study, Demerath et al (2004) found a significant increase 

in average BMI between the 1947-1964 and the 1965-1983 cohorts, although 

overweight as measured from BMI was not significantly greater in early-

maturing girls than later developers until after menarche in any cohort. The rate 

of increase in BMI was not accompanied in this study by a decrease in age at 

menarche. This indicates that early age at maturation and increasing weight may 

be independent phenomena (Demerath et al., 2004).  
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These results show some evidence that overweight may influence acceleration of 

age at maturation. But since this is not the case in all the papers in this review 

there are likely other factors interacting with weight and/or maturation. So 

although obesity may affect maturation, it may be through indirect mechanisms 

that are more subtle and sensitive. The papers that found associations with 

weight at given stages in childhood may be indicative of critical growth periods 

where there are mechanisms by which the body is able to evaluate the 

environment and adjust trajectories accordingly (Barker et al., 1989; Hales and 

Barker, 1992; Barker, 1997). In particular changes in body weight between ages 

5 and 9 could be associated with, or affect adrenarche and hormones associated 

with this stage of development, which would in turn have an effect on the onset 

of puberty and age at menarche (Dhom, 1973 in Campbell, 2006; Campbell, 

2006).   

 

In contrast to the results of Demerath et al., an earlier study of the Fels 

longitudinal data, which focused only on the initial cohort of individuals born 

between 1929 and 1946, found early-maturing girls were heavier and taller than 

late-maturing girls. They were heavier not only during and directly following 

puberty, but from the age of 7 1/2 (Reynolds, 1946). While both used menarche 

as a measure of maturation Reynolds findings were based on weight in 

kilograms, whereas Demerath et al., used BMI as a measure of relative weight, 

which might explain the discrepancy, and may also explain the degree of 

variation in results.  

 

The secular trend 

Between the 1930s and the new millennium, average age at menarche in the 

United States appears to have declined from 12.8 to 12.3 years (see table 4.3). 

Two large cohort studies from the USA demonstrate this trend. There was a 

small, and non-significant drop in the FELS longitudinal study of 1929-1983 

(Demerath and Li, 2004), but the NHANES III data showed a 2.5-month drop in 

age at menarche between 1963 and 1994 (Anderson et al., 2003), and a similar 

decrease by 2.3 months in the following ten years (Anderson and Must, 2005). 

Considering the changes from the 1960s onwards in the NHANES data it is likely 
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that most of the change in the FELS data is accounted for during the latter years, 

and is largely influenced by a changing diet and lifestyle among children. This is 

corroborated further by evidence that menarcheal age is slightly more robust 

between 1929 and into the 1960s. This trend is in accordance with the secular 

trend described by Tanner whereby age at menarche reduced some 4 months 

per decade from 1830 in response to favourable conditions (Tanner, 1962). 

 

Variation in age at menarche 

There is no strong evidence of a secular trend outside of the USA in these studies. 

However, there is evidence of a large degree of variation in age at menarche.  

 

Two large cohort studies from the UK describe average menarcheal ages that are 

slightly above the US averages. Blell et al. (2008) found an average menarcheal 

age of 12.94 years in The Newcastle Thousand Families Study (1947-present). 

Girls were followed from birth, and menarche occurred over the late 1950s into 

the early 1960s among the cohort. Dos Santos Silva et al. (2002) found that girls 

who were followed over the same period in The Medical Research Council 

National Survey of Health and Development (NSHD) (1946-present) reached 

menarche at an average of 13.1 years. Both exceed the average menarcheal age 

in the USA even from the 1930s and 1940s (Berkey et al., 2000). It is likely that 

age at menarche in the UK varied from that of the USA since even into the 1950s 

the UK was suffering the after effects of the Second World War. Moreover, the 

Newcastle Thousand Families Study was started because of concern over the 

extremely high infant mortality rate in the city, which reflected the relatively 

poor living conditions for families in the area (Pearce et al., 2009) and would 

therefore impact age at maturation.  

 

A study from Glasgow does show a drop of six months in the age of menarche 

among women from 1948-1968 (Okasha et al., 2001). Female students born 

between 1919 and 1952 were divided into quintiles [1919-1931, 1932-1936, 

1937-1942, 1943-1946 and 1947-1952] and there was an average 10-day per 
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secular trend. Studies that concentrate on one population over time will far 

better examine changes in maturation over time, and will be able to pinpoint 

aspects of their environment that could contribute to accelerated maturation in 

females. However, these studies do highlight the degree of variation in 

developmental age between different populations, which may reflect the varied 

ecological and lifestyle conditions around the world. 

 

Catch-up growth 

A low birth weight and BMI above 16.3 at age 8 years were associated with early 

menarche in a study of girls in western Australia who were tracked 

longitudinally from 10 weeks gestation until 13 years (Sloboda et al., 2007). 

Similarly, in a group of 14 year old Polish girls, those born SGA were more likely 

to experience menarche by age 14 compared with girls born normal, or above 

normal weight (Koziel and Jankowska, 2002). The same study also found that a 

higher BMI during childhood and at age 14 increased the likelihood of menarche 

prior to 14, which suggests the two factors may be related such that increased 

weight following SGA accelerated age at maturation.  A similar effect has been 

found after weight gain in very early childhood; girls with reduced birth weight 

and rapid weight gain before 2 years were younger at the point of the pubertal 

growth spurt and experienced earlier menarche than girls born AGA. This was 

independent of mid-childhood body composition (Karaolis-Danckert et al., 

2009). Terry et al. (2009) found a similar effect where weight gain following SGA 

occurred as early as 4 months. These studies add to an expanding body of 

literature that highlights the risk of early maturation for girls who experience 

pronounced catch-up growth. However, since the mechanisms for pubertal onset 

are much more related to hyperandrogenism in this group it does not necessarily 

represent the effect of overweight for girls born AGA.  

 

Menarche, overweight and ethnicity 

Ten studies looked at differences in maturation among different ethnic groups, 

but only two were based outside the USA. All eight studies from the USA 

highlight accelerated maturation in African-American girls (Adair and Gordon-

Larsen 2001; Anderson et al., 2003; Anderson and Must 2005; Britton et al. 2004; 
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Ethnicity, environment and pubertal maturation 

Not only is it important to recognise the effects of different environments on 

maturation, but also the impact a changing environment during childhood can 

have on maturation. 

 

Ethnicity is known to affect age at maturation in the migrant context. There is an 

extensive literature on the effect of accelerated maturation in girls who are 

adopted from one country and mature in another. For example Virdis et al. 

(1998) found that in girls adopted from developing countries to Italy that were 

referred for signs of precocious puberty, significant catch-up growth and all-

around improved conditions for physical and social development triggered 

pubertal processes earlier than is typical for Italian-born peers. Similarly, a 

Danish study found that girls and boys adopted from developing countries were 

10 to 20 times more likely to develop precocious puberty, and late adoption was 

a significant risk factor (Teilmann et al., 2006).  

 

Additionally, Nunez-de-la Mora et al. (2007) carried out a migrant study of 

Bangladeshis in the UK to show that moving to a country with significantly 

different conditions, like reduced exposure to pathogens during childhood, 

significantly increases adult steroid hormone levels in girls who were born 

elsewhere. The younger the Bangladeshi girls were when they moved to the UK, 

the earlier their age at menarche (Nunez-de-la Mora et al., 2007).  

 

Skeletal growth and development 

He and Karlberg (2001) considered the interaction between weight and height 

preceding puberty and found that early-maturing girls who had a higher BMI at 

age 8 tended to be taller preceding puberty but shorter following puberty 

compared with peers. He and Karlberg explain these findings as a trade-off 

whereby the oestrogen surges associated with puberty that occur younger in 

early maturers, cause epiphyseal fusion in the long bones sooner, resulting in 

reduced height growth. Moreover, girls who enter puberty younger tend to 
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proceed through puberty quicker than late-maturing peers (e.g. Apter and Vihko, 

1984). So, regardless of increased height relative to peers preceding puberty, the 

duration of height growth during puberty is shortened, reducing final stature.  

 

Ellison (1982) highlighted not only the higher degree to which skeletal height 

correlates with variance in menarcheal age compared with fatness, but also that 

natural selection has acted to synchronise menarche with pelvic maturation. This 

synchronisation ensures that, should pregnancy occur at or around the point of 

maturation, the individual has pelvic dimensions big enough for the safe passage 

of an infant through the birth canal during labour (ibid).  

 

The reduction in height of early-maturing girls compared with peers may 

compromise the obstetric process, but since fatness in early-maturing girls is 

associated with low SHBG and high free oestrogen it is likely that girls hip 

dimensions may mature as normal. It would be necessary to measure hip 

dimensions in early-maturing girls in order to fully understand this relationship.  

 

Synchronicity of maturation 

Although overweight and obesity seem likely to decrease age at puberty in girls, 

they have a much greater impact on the likelihood of asynchronous pubertal 

development, where breast and pubic hair development proceed separately 

(Schubert et al., 2005; Biro et al., 2003; Denzer et al., 2007; Britton et al., 2004 

and Christensen et al. 2010a). The effect may be greatest in some groups versus 

others: Schubert et al. (2005) found that non-white girls had a higher BMI when 

breast stage was more advanced. Where overweight girls present with 

asynchrony it is more likely to manifest as thelarche first (Biro et al., 2003; 

Britton et al., 2004; Denzer et al., 2007; Schubert et al., 2005). Three papers 

referring to this issue are from the USA, with one paper from Germany (Denzer 

et al., 2007) and another from the UK (Christensen et al., 2010a). The 

overwhelming argument from these papers is that there is a greater degree of 
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asynchrony in the development of secondary sexual characteristics among 

females who are overweight.  

 

If, as these five papers suggest, thelarche is beginning earlier in heavier girls, but 

there is little evidence for a great decline in age at menarche over the same 

period, the heaviest girls are at risk of an extended period of pre-menarcheal 

maturation. This extended maturational stage could have implications for both 

psychosocial development and for the incidence of adult-onset cancers, which 

are already closely linked to early developers (see Ellison 1998 and Golub, 

2008).  

 

Considering the evidence for an earlier onset of pubarche in girls born SGA who 

experience significant catch-up growth (discussed above), and the influence of 

overweight on early breast development in girls not born SGA, these results 

indicate that two separate mechanisms may be involved with the onset of 

asynchronous pubertal development in girls, and that they could be sensitive to 

both prenatal growth and overall childhood energy balance. This observation 

moves us away from the classic Tanner model of maturation. Further 

longitudinal studies of early breast development in AGA girls may elucidate 

those factors that may be interacting with weight status to cause this effect. 

 

Body composition 

Literature in the search also highlighted the possible role of patterned fat 

deposition and overall body composition on age at maturation, although there 

was little consensus on the location of extra fat deposits that are linked with 

early maturation. Polish girls age 8-15 from 1961-1972 who showed high central 

adiposity were more likely to mature early relative to peers (Koziel and Malina, 

2005), whereas gluteofemoral fat -fat which lies around the hips and thighs- is 

significantly associated with early maturation in American girls in a cross-

sectional analysis of the NHANES III dataset (Lassek and Gaulin, 2007). Lassek 

and Gaulin found that as long as body fat was situated around the hips instead of 
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on the extremities, girls were more prone to early maturation. These findings 

relate to normal weight girls as well as girls classed as overweight (Ibid).  

 

These findings may be explained by birth weight and weight gain during early 

childhood. Girls born SGA who experience catch-up growth during early 

childhood are at risk of high levels of visceral fat, which is typically associated 

with an android body shape (high central adiposity) (Ibanez et al., 2008a; 

2008b), even in the absence of obesity. Moreover, menarche tends to be 

advanced in girls born SGA (Ibanez and Zegher, 2006), which indicates the 

susceptibility of SGA girls with an android body shape to early maturation even 

in the absence of prolonged weight gain after the initial catch-up period. Girls 

born AGA who are therefore less likely to show an android fat distribution in 

favour of gynoid are at risk of early menarche as the result of total fat mass. 

Therefore, it is possible that the risk of early maturation may be differentially 

associated with catch-up growth following SGA, and total fat mass in the Polish 

and USA sample populations respectively.  

We already know that a gynoid body shape is protective against syndrome X and 

cardiovascular disease (CVD) in adulthood (Ibanez et al., 2000; 2008a; 2008b). 

Specifically, gynoid fat in relation to total fat mass is protective against CVD and 

metabolic co-morbidities (Wiklund et al., 2008; Manolopoulos et al., 2010) as the 

result of a protective lipid and glucose profile and the storage of fatty acids 

(Manolopoulos et al., 2010). But the risks for SGA girls with high visceral fat and 

an android body fat distribution in the absence of obesity highlight the 

possibility for a protective effect of gynoid body shape among girls born AGA 

who are not overweight.  

In order to understand definitively whether fat patterning plays a mechanistic 

role in determining age at maturation we would have to take a much broader 

look at differences in body shape across a greater number of populations, 

particularly since in addition to childhood growth and nutrition heritable 

characteristics play a significant role in determining body shape.  
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childhood. Both sets of girls may respond to high fat diets at specific points 

during childhood. A number of studies highlight particular periods during 

childhood that are significantly related to an earlier onset of puberty among 

females. These periods could represent critical growth windows, which are 

especially sensitive to diet and lifestyle for future maturational trajectories. 

Both of these pubertal pathways indicate a shift away from the typical Tanner 

model of puberty where the time between thelarche and pubarche is very short. 

A greater degree of asynchrony in thelarche and pubarche in the initial stages of 

puberty results in a prolonged period of pre-menarcheal pubertal development. 

It is unclear, however, whether this prolongs pubertal development overall. 

Asynchronous development also seems to be most significant in certain groups. 

For example, non-white, overweight girls are most at risk.  

 

While this review collates the known effects of overweight and obesity on female 

pubertal maturation, it does not elucidate the mechanisms behind these effects. 

The monitoring effect of leptin may play a permissive role in the onset of 

puberty, probably tracking long-, and short-term energy balance, but it is 

unlikely to be the only hormonal signal involved in this shift of maturational age. 

If, as it appears, heavier girls are at risk of earlier maturation, then 

understanding these mechanisms is vital. Younger age at puberty is linked with 

early sexual experience, a host of detrimental psychosocial conditions as well as 

elevated health risks in later life. By understanding fully what puts girls at risk of 

early maturation we can work to reduce these risks. This focus must be widened 

to understand longitudinally how these changes may affect girls on a global scale.
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associated with earlier maturation. Divorce rates in England and Wales showed a 

steady increase from 30,870 in 1950, peaking at 165,018 in 1993. That rate fell 

slightly through the remainder of the 1990s to 144,586 (ONS, 2011). 

 

Poverty 

Child poverty has been a governmental concern for a long time. In post-war 

Britain inequality rose with the vast change in industry. As semi- and unskilled 

labour forces diminished with the closure of many manufacturing hubs, 

coalmines, and traditional manufacturing industries, there were fewer 

opportunities for males with minimal qualifications. Girls growing up in 

households in the eighties may have been at greater risk of parental 

unemployment and financial hardship than the preceding generation. Those with 

more qualifications in skilled, technology-led jobs were seeing the benefits of the 

technological boom. International trade markets and a reliance on technology 

meant more inequality for wage earners (Dearden et al., 2003).  

 

In the 90s we saw the introduction of the national minimum wage, which may 

have minimised the impact in the decline of manual work and public sector work 

(Dearden et al., 2003).  Poverty in the 80s and onwards was nothing like the 

scale seen in post-war Britain, particularly in Newcastle, which was the focus of 

much concern since the number of deaths in infancy was considered very high in 

the area (Pearce et al., 2009).   

 

Housing 

The late nineteen forties and early nineteen fifties was a period when social 

housing was just beginning (Smith and Ferri, 2003). For example, in Newcastle 

there were a number of pre-fabricated houses built (Miller et al., 1960). It was 

fairly common to have no access to a bathroom in a family dwelling (Smith and 

Ferri, 2003). Over the latter part of the 20th century and into the 21st century 

these conditions have improved enormously. It is now incredibly rare for 

families to live in dwellings without indoor water facilities, or for children to 

grow up in overcrowded environments.  
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Children in the study were more likely to come from poorer homes than a 

contemporary population. That is, they often had poor amenities in the home. 

However, they were less likely to be obese than children currently born in the 

UK- this was one of the first cohorts to show an association between earlier 

adiposity and advanced maturation-, and more likely to live with both biological 

parents. Rates of divorce were much lower in 1958, which contributes to this 

common family scenario seen in the dataset (Power and Elliott, 2006).  

 

The cohort is not as ethnically diverse as a contemporary population in the UK, 

but is representative of the time. Immigrants who matched the birth criteria 

were recruited into the study throughout various data sweeps (Power and 

Elliott, 2006). 

 

The British Cohort Study 1970 (BCS70) 

Originally named the British Births Survey (BBS), The British Cohort Study 1970 

(BCS70) began following the success of the 1958 National Child Development 

Study. The study gathered nationwide birth information for 17,198 births (live 

and stillbirth) in the week 5th-11th April 1970 (The 1970 Birth Cohort, Institute 

of Child Health). When the cohort members were three years of age the study 

was moved to the Department of Child Health, Bristol. It was moved again at 16 

years to the International Centre for Child Studies. In 1991 the cohort was taken 

under the management of the Social Statistics Research Unit, and in 1998 by the 

Centre for Longitudinal studies, where it remains (Elliott and Shepherd, 2006). It 

is perhaps this peripatetic nature that could be responsible for the ever-

expanding focus of the study.  

 

A number of data sweeps took place to gather growth and development data, 

school examinations and arithmetic tests, economic and social data, and medical 

examination data. Full cohort sweeps took place at 5 years, 10 years, 16 years, 26 

years, 30 years and 34 years. Sub-sample data were gathered at 22 and 42 

months of age to cover the important developmental period up to 5 years of age. 
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Each successive sweep added children who now resided within the UK, but may 

have been born elsewhere, who were born in the target week 5th-11th April, 

1970. The focus widened across the sweeps from strictly medical-related data to 

include more social and economic factors describing lifestyle and education 

(ibid). Immigrants who were born in the target week and moved to Britain were 

traced through schools (Elliott and Shepherd 2006). Much like the BCS58, BCS70 

does not have nationally representative ethnic diversity of 1970. 

 

The data sweeps of interest in these analyses are the birth data and the three 

subsequent sweeps up to age 16, as well as data from the 22- and 42-month 

subsamples. Data at birth were collected from midwife questionnaires, and 

subsequently from clinical records (Elliott and Shepherd, 2006). In order to 

ensure that as many births as possible were recorded during the one specified 

week the British Medical Association had a meeting of all the Chief Medical 

Officers, the Directors-General of the Army Medical Service and the Medical 

Services Air Force were contacted respectively, as was the head of the Prison 

Medical Service. Awareness of the survey was raised to general practitioners and 

midwives through the professional services and industry journals. All but a few 

domiciliary births (home births) were recorded (The 1970 birth cohort, Institute 

of Child Health).     

 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

ALSPAC (also known as the Children of the 90s study) is a longitudinal birth 

cohort study based in the county of Avon, UK. The study aims to understand the 

effects of health and social factors on health, development and social outcomes 

throughout the life of the individual. Although the study may not be 100% 

nationally representative, the concentration of people around the study centre 

no doubt aided effective follow-up.  

 

ALSPAC began as a response to a WHO meeting in Moscow that pointed out the 

necessity for longitudinal studies that aim to understand modifiable health 

outcomes in children (Boyd et al., 2012). ALSPAC recruited around 14,000 
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missing or censored. However, survival analysis requires a specific beginning 

point in addition to the end point of interest. For many of the individuals in these 

analyses no date of birth was available. When these points are censored you 

cannot make a valid estimate of the outcome. Instead, mean and median ages at 

thelarche, puberche, and menarche were calculated from the available data from 

each dataset and a number of other statistical methodologies were used to 

analyse the predictors of age at pubertal onset and age at menarche.  

 

Independent samples T-tests were carried out to find a difference in the mean 

weights of girls who mature before the age of 13. Here a t-test specifically 

determines whether or not early-maturing girls are heavier over time than their 

later maturing peers. Those weights at ages found to influence this outcome 

were subsequently included in regression analyses.  

 

Simple correlations were investigated between early life factors and age at 

pubertal onset and menarche in order to determine whether there was a 

relationship between factors of lifestyle and growth in early life, and pubertal 

onset. Those factors that were correlated with pubertal onset were subsequently 

included in regression analyses. Multiple linear and logistic regressions were 

then carried out in order to understand the relationships between factors that 

are associated with pubertal onset and age at menarche, and also to determine 

which factors could best predict the outcome measures.  

 

In order to plot change in pubertal onset over time the results from each dataset 

were compared to determine change in mean and median ages at puberche, 

thelarche, and menarche. The strongest predictors of pubertal onset and age at 

menarche from each dataset were then compared to determine whether 

different influencing factors were acting to promote pubertal onset over time.  
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Table5.1. Harpenden cohort anthropometric descriptive statistics. 

 

 

 

 

 

Age Height (cm) 

Mean(S.E)/Median(Range) 

Weight (kg) 

Mean(S.E)/Median(Range) 

n= % Reached menarche (n) 

9 132.49(.59)/132.40(33.60) 28.45(.35)/28.60(21.00) 123  

10 138.24(.59)/138.40(31.80) 31.77(.40)/31.40(24.60) 122  

11 142.95(.63)/143.00(35.30) 35.43(.49)/35.40(29.30) 127  

12 149.10(.67)/149.10(38.90) 40.24(.59)/40.10(35.20) 122  

13 154.56(.60)/155.00(30.80) 45.70(.63)/45.60(36.50) 121 82.8 

14 158.52(.59)/158.20(27.40) 50.46(.74)/49.75(41.30) 107 /108 96.0 

15 160.14(.63)/160.20(27.60) 53.30(.89)/52.90(40.40) 84  

16 160.21(1.49)/162.05(74.10) 55.78(1.01)/54.30(34.40) 50/49 99.0 

17 161.26(1.02)/162.40(26.30) 56.99(1.34)/56.00(35.60) 40  

18 162.47(1.33)/161.50(26.80) 58.63(1.67)/59.30(34.20) 27  
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Table 5.2 Harpenden cohort menarcheal descriptive statistics. 

Pubertal milestone n= Mean(S.E)/Median(Range) 

Age at menarche 

(years) 
99 13.13(.11)/13.17(8.34) 

Age at thelarche 

(years) 
114 11.15(.11)/11.19(5.84) 

Age at pubarche 

(years) 
109 11.48(.18)/11.61(6.13) 
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Table 5.3. Stepwise multiple linear regression predicting age at menarche  

Variable Estimate (B and SE) 

Intercept 27.070, 2.254***  

Height age 11 (cm)  -.098, .016*** 

Adjusted R2=.39.  ***p<.001.  

 

 

Table 5.4.. Stepwise multiple linear regression predicting age at thelarche  

Variable Estimate (B and SE) 

Intercept 10.105, 2.307*** 

Height age 9 (cm) .221, .051*** 

Weight age 11 (kg) -.091, .030** 

Height age 11 (cm)  -.175, .050** 

Adjusted R2=.36. **p<.005, ***p<.001.  

 

Table 5.5. Stepwise multiple linear regression predicting age at pubarche  

Variable Estimate (B and SE) 

Intercept 17.126, 2.653*** 

Height age 9 (cm) .177, .062** 

Height age 11 (cm)  -.203, .055*** 

Adjusted R2=.17. **p<.005, ***p<.001.  

 

Multinomial logistic regression found no significant predictors of pubertal onset 

pathway (thelarche, pubarche or synchronous pubertal onset).  
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age when they entered the home (Tanner, personal communication via Nöel 

Cameron, 2009). While this might mean that children were of comparable size to 

their peers at puberty, we know now that catch-up growth can have considerable 

impact on the progression through puberty. Girls who experience a lot of catch-

up growth begin puberty via pubarche significantly more often than girls who 

are born at an appropriate weight for gestational age. Unfortunately, birth 

weight was not available for this dataset and very few girls were recorded at a 

consistent age before age 9 so it is impossible to understand how catch-up 

growth in infancy may have impacted on pubertal development in the 

Harpenden girls.  

 

The British Cohort Study 1958 (BCS58) 

Table 5.6 (overleaf) provides descriptive statistics of anthropometrics collected 

for girls in this sample. Figure 5.1 shows the distribution of age at menarche in 

the sample. Mean and median age at menarche were 12.72 (SE=.02) and 13.00 

(range =7, n=4429). Eighty-four percent of girls showed signs of breast 

development at age 11, and 83% of girls had signs of pubic hair growth age 11. 

Of the girls with data on breast development age 11, 72% were at B2, 20% at B3, 

and 7% were B4. For pubic hair development, 78% were at PH2, 14% were at 

PH3, and 8% were at PH4. At age 16 only 12 girls showed no sign of breast 

development and 17 had no sign of pubic hair development.  
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Figure 5.1 Distribution of discrete recalled age at menarche in the BCS58 
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Table 5.6. Descriptive statistics for BCS58 

 

Age Height (cm) 

Mean(S.E)/Median(Range) 

n= Weight (kg) 

Mean(S.E)/Median(Range) 

n= % Reached 

thelarche (n) 

% Reached 

pubarche (n) 

% Reached 

menarche (n) 

Birth 

 

  
3225(.22)/3231.8(3373.6) (g) 8143 

   

7 121.92(.07)/121.90(63.50) 6598 23.66(.05)/23.13(34.02) 5382    

11 144.73(.10)/144.80(76.20) 6194 37.19(.10)/35.83(69.40) 6165 83.7 (7450) 83.2 (7450)  

13       74.7 (1519) 

14       94.8 (2412) 

16 160.88(.09)/161.00(55.00) 5382 54.40(.12)/53.52(81.65) 5372 97.0 (5385) 94.4 (5208)  
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Weight status in childhood did not correlate with pubertal onset. However, 

independent samples t-tests found that girls who reach menarche before 13 

years of age are significantly heavier at both 7 years of age (t(2760.085)=13.45, 

p<.001) and 11 years of age (t(2802.399)=21.66, p<.001) than girls who reach 

menarche at age 13 and later. Age at menarche before age 13 is also associated 

with significantly greater weight gain between 7 and 11 years (15.91kg, versus 

12.12kg) (t(2507.219)=20.59, P<.001).  

 

Independent-samples t-tests found that menarche before age 13 was also 

associated with greater height at age 7 (t(3670)=10.69, p<.001) and 

11(t(3048.320)=20.26, p<.001) compared with girls who reached menarche 

after age 13. Type of father figure present age 7 and 16, and social class of father 

had no effect on age at menarche.  

 

Independent samples t-tests found no significant different in mean weight at age 

7 or 11 of girls who did and did not show evidence of breast development at age 

11. Additionally, there was no significant difference in mean weight at age 7 or 

11 of girls who did and did not have evidence of pubic hair growth at age 11. 

 

Independent one-way ANOVA found a significant linear relationship between 

breast stage at age 11 and age at menarche. Girls who are more developed age 11 

have a significantly earlier age at menarche, F(2,1)=886.082, p<.001 (See figure 

5.2). Additionally, the between-group interval in age at menarche decreases with 

higher breast stage age 11. The difference between girls at breast stages 2 and 3 

is 0.92 years, and the difference in age at menarche between girls at breast stage 

3 and 4 at 11 years is 0.60 years.  
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Figure 5.2. Mean age at menarche by breast stage at age 11 

 

A stepwise multiple linear regression found that height at age 7, height at age 11, 

birth weight and weight at age 11 were significant predictors of age at menarche. 

Table 5.7 shows relevant beta coefficients and significance values for the model. 

Adjusted R2=.24 

 

Table 5.7. Stepwise multiple linear regression predicting age at menarche  

Variable Estimate (B and SE) 

Intercept 16.297, .454***  

Weight age 11 (kg)  -.042, .003*** 

Height age 7 (M) 6.979, .534*** 

Height age 11 (M) -7.637, .481*** 

Birth weight (Ozs) .005, .001*** 

Adjusted R2=.24  ***p<.001.  
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Multinomial logistic regression found that weight age 11 height age 7 and height 

age 11 were significant predictors of breast development. Table 5.8 shows 

relevant parameter estimates and significance values for the model. R2=.28 (Cox 

& Snell), .36 (Nagelkerke). Model X2(8)= 1687.350, p<.001. 

 

Multinomial logistic regression found that weight age 7, weight age 11 height age 

7 and height age 11 were significant predictors of pubic hair development. Table 

5.9 shows relevant parameter estimates and significance values for the model. 

R2=.22, (Cox & Snell), .30 (Nagelkerke). Model X2(8)= 1278.027, p<.001. *** 

p<.001.  

Table 5.8. Multinomial logistic regression predicting breast development age 11 

 B (SE) Lower Odds Radio Upper 

2     

Intercept 

18.772 

(1.62)*** 

   

Weight age 

11 (kg) 

-.165 

(.01)*** 
.826 .847 .869 

Height age 7 

(M) 

25.130 

(2.10)*** 
1336626139.853 81964706004.259 5026246928781.451 

Height age 

11 (M) 

-28.404 

(1.70)*** 

1.657 4.618 1.287 

3     

Intercept 
7.120 

(1.59)*** 
   

Weight age 

11 (kg) 
-.041 (.01)*** .938 .960 .982 

Height age 7 

(M) 

11.562 

(2.04)*** 
1941.896 104991.724 5676545.348 

Height age 

11 (M) 

-12.064 

(1.62)*** 
2.414 5.763 .000 

Note: R2=.28 , (Cox & Snell), .36 (Nagelkerke). Model X2(8)= 1687.350, p<.001. *** p<.001. 95% CI 

for odds ratio.  
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Table 5.9. Multinomial logistic regression predicting pubic hair development age 11 

 B (SE) Lower Odds Radio Upper 

2     

Intercept 
21.172 

(1.56)*** 
   

Weight age 7 

(kg) 

.073 

(.03)*** 
1.024 1.076 1.130 

Weight age 

11 (kg) 

-.108 

(.01)*** 
.877 .898 .919 

Height age 7 

(M) 

23.055 

(2.03)*** 
191309216.081 10296008566.251 554117541056.057 

Height age 

11 (M) 

-30.217 

(1.68)*** 
7.534 2.782 2.040 

3     

Intercept 
7.958 

(1.67)*** 
   

Weight age 7 

(kg) 

.081 

(.03)*** 
1.030 1.084 1.142 

Weight age 

11 (kg) 

-.063 

(.01)*** 
.916 .939 .963 

Height age 7 

(M) 

9.050 

(2.13)*** 
131.076 8517.438 553472.552 

Height age 

11 (M) 

-11.885 

(1.73)*** 
2.346 6.893 .000 

Note: R2=.22 , (Cox & Snell), .30 (Nagelkerke). Model X2(8)= 1278.027, p<.001. *** p<.001. 95% CI 

for odds ratio. 

 

Discussion 
Mean age at menarche in this cohort is 12.72; however, age at menarche was 

collected as a discrete value, so it is more appropriate to consider the median age 

of 13. Age at menarche was also collected retrospectively at age 16, which does 

allow for some recall error (Koo and Rohan, 1997), but is not as great as the 

degree of error that results from adult recall many years after the event (Cooper, 
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2006). However, it does mean that the data are slightly right censored since 

some girls had no evidence of secondary sexual characteristics and were 

therefore unlikely to have reached menarche. Therefore, the true mean and 

median for age at menarche are likely to be slightly later.  

 

Birth weight, and greater height at age 7 and 11, as well as higher weight at age 

11 were all significant predictors of age at menarche (R2=24.3). Although weight 

at age 7 did not significantly contribute to the model, it is clear that girls who 

mature earlier are heavier and taller than their peers by age 11. However, those 

girls who reach menarche before age 13 are heavier than their later-maturing 

peers at both age 7 and 11, and experience greater mean weight gain between 

age 7 and 11. This suggests that girls reaching menarche earlier have a faster 

trajectory of growth between age 7 and 11. Moreover, this indicates that 

environmental tracking by the CNS from age 7 might influence the maturation of 

girls who reach menarche before age 13. Girls could be tracking the environment 

in order to best apportion available energy.  

 

Independent-samples t-tests did not find any association between height and 

weight, and the likelihood of pubertal onset by age 11. However, height and 

weight age 7 and 11 did significantly contribute to the stage of breast and pubic 

hair development by age 11. These factors accounted for around one third of the 

variance in stage of pubertal development, which suggests other factors are 

likely to have influenced pubertal onset. These factors may be genetic, or 

environmental influences.  

 

Social status and father figure at age 7 and age 11 were not significantly 

associated with pubertal development. However, there could be many other 

factors of the family environment, and other lifestyle and economic variables 

that impact overall circumstances, which were not measured for these girls, 

which could account for more of the variance in the mode. Moreover, in 1958 

fewer children grew up without their biological fathers compared to the current 

UK population. More families had two married parents who were both the 
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biological parents of the child. Fewer parents cohabited or divorced, and the 

family unit was more consistent across the population than we see today.  

 

Birth weight was not associated with pubertal stage at age 11, despite showing a 

significant association with age at menarche. This may indicate either periods of 

positive energy balance in later childhood, or perhaps a greater influence of 

weight status in later childhood than birth weight on pubertal onset compared 

with age at menarche. Moreover, this could reflect a degree of environmental 

tracking beyond the foetal period, which is considered a significant driver of 

growth trajectories (Barker et al., 1986, Hales and Barker, 2001). Critical periods 

of growth during childhood may contribute to pubertal trajectory by altering the 

growth set points of the individual relative to environmental quality, as is 

evident in migrant populations where girls move to environments with lower 

energetic and immune stress (Nunez de la Mora and Bentley, 2008). 

 

Marshall and Tanner (1969) stated that there was a mean interval of 2.3 years 

between age at thelarche and age at menarche. From these data it was not 

possible to calculate the interval, however this dataset does show that the 

between-group difference for age at menarche based on breast stage at age 11 

decreases with higher breast stage, which suggests that girls who mature earlier 

may reach menarche quicker.    

 

 

 

The British Cohort Study 1970 (BCS70) 

Tables 5.10 summarises anthropometric and measures for the cohort, and table 

5.11 shows mean age at menarche as well as the proportion of girls beginning 

puberty by age 10 (in 1980).  
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Mean and median age at menarche for the girls in this cohort, who were born in 

1970, was 12.55(SE.02), and 13.00 respectively. Birth weight was positively 

correlated with age at menarche (r=.04, p<.01). However, both weight at 10, and 

weight gain between 42 months and age 10 were negatively correlated with age 

at menarche (r=-.318, p<.001). No associations were found between age at 

menarche and weight in subsamples of girls at 22 months or 42 months 

respectively. Among 782 girls height at age 10 is significantly positively 

correlated with age at menarche (r=.178, p=<.001).  

 

An independent-samples t-test found that girls who reached menarche before 

age 13 had greater weight gain between age 42 months and 10 years compared 

with girls who reached menarche at 13 or later (t(341.794)= 5.096, p<.001). 

Girls who reached menarche earlier were also heavier (t(2582.119)=13.666, 

p<.001) and taller at age 10 (t(2731.876)= 13.210, p<.001). 
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Table 5.10. Cohort anthropometric descriptive statistics BCS70 

Age Height (cm) 

Mean(S.E)/Median(Range) 

n= Weight (kg) 

Mean(S.E)/Median(Range) 

n= % Reached 

menarche (n) 

Birth 

 

   

3211.90(6.10)/3232.00(5131.00) 

(g) 

 

 

22 

months 

82.45 (.05)/83.00(63.00) 1083 11.56 (.05)/11.57(12.42) 1097  

42 

months 

92.75(.62)/96.50(116.70) 1073 13.90(.13)/14.51(30.00) 1073  

10 138.38(.09)/138.40(46.20) 5753 32.76(.08)/31.80(28.00) 5633  

13     79.4 (2259) 

14     94.6 (3049) 

 

 

 

 

 

 

 

 



 156 

 

 

 

 

 

Table 5.11 Cohort menarcheal descriptive statisticsBCS70 

 

Evidence of puberty 

age 10  

 

N= (%) 
Weight (kg) 

Mean(S.E)/Median 

YES 1481 (26.4) 36.12 (.15)/35.40 

NO 4122 (73.6) 31.54(.08)/30.80 

  
Mean(S.E)/Median(Range) 

 

Age at menarche 3222 12.55(.02)/13.00(5.00) 
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Figure 5.3 shows the distribution of initial signs of pubertal development across 

those girls who had begun puberty by age 10. Eighty-eight percent of girls 

entered puberty by the thelarche pathway, 9% via pubarche and the remaining 

3% entered puberty with menarche or other as the initial sign.  

 

Figure 5.3. 

Distribution of pubertal onset by initial pubertal event 

 

Independent-samples t-tests found that girls who show evidence of pubertal 

development at age 10 had a significantly higher mean weight (M=36.12, SE=.15) 

than those who did not show any evidence of pubertal development at age 10 

(M=31.54, SE=.08), t(2309.850)=-26.57, p<.001). Girls were also taller at age 10 

(t(5718)= -24.100, p<.001), and heavier in early childhood at age 42 months 

(t(849)= -2.088, p<.05), and subsequently had greater mean weight gain 

between age 42 months and 10 years (t(807)--8.849, p<.001). 
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One-way ANOVA found no significant difference in age at menarche by ethnicity, 

father figure listed at age 5, or father figure listed at age 10. Ninety-one percent 

of girls age 5 lived with their natural father, and 85% of girls aged 10 lived with 

their natural father. Ninety-seven percent of the sample listed by ethnicity was 

white British.   

 

A multiple stepwise linear regression found that weight at age 10 and weight 

gain from 42 months (age 3.5 years) to age 10 were significant predictors of age 

at menarche. Adjusted R2=.11 (see table 5.12). Binary logistic regression found 

that height and weight age 10 were significant predictors of the likelihood of 

pubertal onset by age 10. R2=.138, (Cox & Snell), .201 (Nagelkerke). Model X2(5) 

=116.128, p<.001 (see table 5.13). 

Table 5.12 Stepwise multiple linear regression predicting age at menarche 

Variable Estimate (B and SE) 

Intercept 14.586, .356***  

Weight age 10 (kg) -.043, .016** 

Weight gain 3.5-9 years (kg) -.032, .015* 

Adjusted R2=.11 *p<,05, **p<.01, ***p<.001.  

 

 

Table 5.13. Binary logistic regression predicting evidence of puberty age 10 

Variable Estimate (B and SE) 

Intercept -11.682, 2.152***  

Weight age 10 (kg) .115, .020*** 

Height gain 10 years (cm) .060, .018** 

 

 Note: R2=.138 , (Cox & Snell), .201 (Nagelkerke). Model X2(5)=116.128, p<.001. **p<.01, *** 

p<.001. 
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Discussion 
Age at menarche is influenced by weight status at birth, in late childhood, and 

weight gain from early to late childhood. Heavier weight status at all of these 

stages is significantly associated with earlier age at menarche. Although girls 

who experience earlier age at menarche are heavier than peers and see greater 

gains in weight from early to late childhood, there is a positive correlation 

between height at age 10 and age at menarche; this relationship is likely the 

result of the additional growing years, and therefore delay, in epiphyseal fusion 

of girls who mature later. Indeed, girls who reach menarche before 13 years are 

taller at age 10, but of course girls who reach menarche later will gain that extra 

height over their early-maturing peers before they reach the milestone of 

menarche. The data are, however, right censored since some girls will not have 

reached menarche by age 16. Therefore, the true mean and median age at 

menarche is likely to be slightly later than is indicated by these results.  

 

Just as early age at menarche is associated with higher weight status in early and 

late childhood, pubertal onset is similarly significantly associated with these 

factors. However, birth weight has no significant effect on the likelihood of girls 

showing signs of pubertal development at age 10. These results indicate that 

while very early life factors may determine age at menarche, age at pubertal 

onset could be more sensitive to the post-natal environment and particularly to 

energetic status and increases in weight across childhood.  

 

When data were entered into a linear regression weight at age 10 and weight 

gain during mid-childhood to age 10 were the only significant predictors of age 

at menarche. This suggests that heavier girls are more likely to reach menarche 

sooner, and may also be evidence that adjustments in growth and maturation 

trajectory occur during childhood in response to positive energy balance, and 

may affect age at menarche. Similarly, a binary logistic regression found that only 

height and weight at age 10 were significant predictors of evidence of puberty at 

age 10. This may be indicative of a faster growth trajectory overall for girls who 
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mature earlier. This would also support evidence that girls who mature earlier 

are, on average, taller than their peers (He and Karlberg, 2001).  

 

Exact age at pubertal onset was not measured in this cohort. Although there was 

a significant difference in mean weight in early developers, only around one 

quarter of girls had any indication of pubertal maturation by age 10. This might 

mask any effects on pubertal pathway of those girls who did not begin puberty 

by age 10.  Additionally, since no pubertal scale was used to measure pubertal 

onset it is not known whether those girls who had begun puberty by age 10 were 

in the initial stage (e.g. B2 or PH2), or whether some of those (probably very 

few) were in more advanced stages of maturation. It also means we have no 

measure of how long it takes for girls to reach menarche after pubertal onset.  

 

Onset of pubertal development was carried out by clinical examination, which 

should reduce bias from either overestimation or underestimation of maturation 

from girls when they were aged 10. However, there is no indication that breasts 

were palpated. In overweight subjects there is a tendency to overestimate breast 

development where fat tissue may be mistaken for the breast bud (Lee et al., 

2006). However, fewer girls were overweight in 1980 - when pubertal onset was 

recorded in this cohort - compared with a contemporary sedentary population 

often in long periods of excessive positive energy balance.  

 

Father absence and stepfather presence is shown to accelerate female pubertal 

maturation, since it reflects unpredictability in both levels of stress and parental 

investment (Draper and Harpending, 1982; Ellis and Garber, 2000). There is no 

evidence in this cohort to support such a hypothesis. This might either reflect a 

sample bias in the number of girls in the study living with both natural parents, 

but is more likely to reflect the lower rates of divorce and separation in 1970 

Britain compared with the contemporary British population.  
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The strengths of these analyses are both the size of the cohort and the spread of 

the cohort from birth all across the UK, and large numbers of girls returning data 

across childhood for analyses across the data sweeps.  

 

 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

Table 5.14 and 5.15 give details of the cohort descriptive statistics (Christensen 

et al., 2010a; 2010b). Median age at menarche was 12.87. However, median age 

at menarche was latest for girls in the pubarche pathway (13.13), earliest for 

girls who entered puberty via the thelarche pathway (12.78), and intermediate 

for girls developing synchronously (12.84) (Christensen et al., 2010a; 2010b). 

 

Girls in the thelarche pathway spent 3.7 years in Tanner breast stages 2-3, which 

is longer than other girls. They spend 1.5 years in Tanner pubic hair stages 2-3. 

Girls in the pubarche pathway spent a shorter time in breast stages 2-3 (2.4 

years), and spent on average 3.3 years in pubic hair stages 2-3. Girls in the 

synchronous pathway spent 2.7 years in breast stages 2-3 and 2.2 years in pubic 

hair stages 2-3 (Christensen et al., 2010a; 2010b).  
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Table 5.14. Cohort  pubertal onset descriptive statistics  (ALSPAC)(Christensen et al., 2010a; 2010b). 

Initiation pathway  (%) Median age at menarche (95% CI) Median age at pubarche 

(95% CI) 

Median age at 

thelarche 

(95% CI) 

n= 

Thelarche  42.1 12.78 (12.7-12.9)   9.43 (9.4-9.5) 1482 

Pubarche 11.6 13.13 (13.0-13.3) 9.44 (9.28-9.59)  408 

Synchronous 46.3 12.84 (12.8-12.9)   1631 

Total 100 12.87 (10.8-12.9) 11.00 (10.9-11.0) 10.20 (10.1-10.2) 3938 

 

Table 5.15 Cohort descriptive statistics (ALSPAC) (Christensen et al., 2010a; 2010b) 

Variable % 

Normal weight age 

8 
74.7 

Overweight age 8 12.4 

Obese age 8 10.4 

Menarche by 14 62.7 
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Median age at pubertal onset was very young for both pubarche and thelarche 

pathway girls (9.4 years), compared with girls who developed synchronously 

(10.7 years).  Thelarche pathway and pubarche pathway girls showed signs of 

their respective other secondary sexual characteristic relatively later than the 

sample median. Pubarche girls showed signs of thelarche at 11.3 years (sample 

median 10.2), and thelarche girls showed signs of pubarche at 11.6 years. As 

such, girls who enter puberty via the synchronous pathway spend the shortest 

period of time in premenarcheal pubertal development (2.3 years), followed by 

girls in the thelarche pathway (3.5 years), and girls who enter puberty via 

pubarche spend longest in premenarcheal pubertal development (3.9 years) 

(Christensen et al., 2010a; 2010b).  

 

Being overweight or obese at age 8 was most associated with pubertal initiation 

via the thelarche pathway. Girls who were overweight or obese age 8 were more 

likely to begin puberty asynchronously than synchronously (Christensen et al., 

2010a; 2010b).  

 

Discussion 
As girls have become fatter over time it is thought that there is a concomitant 

exaggeration of breast development. As girls self-report development of 

secondary sexual characteristics it is possible that the estimate for thelarche in 

particular could be earlier than the true age. This cohort is more likely than the 

others to see a greater degree of fatness among girls due to changes in diet, 

attitudes to food and snacking, and lower energy output among children, 

compared with the other datasets. In this case, girls were not clinically assessed 

for Tanner stage so there is room for speculation that girls were under- or over-

estimating their pubertal stage. More significantly, a young girl who might be 

overweight and therefore have excess fat tissue on the chest area is unlikely to 

be able to distinguish that fat growth from glandular breast tissue. Therefore, 

girls might be more likely to positively identify the onset of breast development 

where this may in fact be lacking. This might explain some of the association 

between overweight, obesity, and thelarche. Girls were more likely to enter the 
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thelarche pathway if they were overweight. The thelarche pathway was also 

associated with an earlier age at menarche than pubarche or synchronous 

development.  

 

Age at menarche was later in girls who entered puberty through the pubarche 

pathway, and became successively earlier via the synchronous pathway and 

thelarche pathway respectively. Additionally, median entry into the thelarche 

pathway was associated with the earliest signs of pubertal onset among the 

cohort. Therefore, the most overweight girls began puberty earliest, were more 

likely to begin pubertal development via the thelarche pathway, and reached 

menarche at a younger age than their lighter weight peers, although girls in the 

pubarche pathway spent longest in pubertal development before reaching 

menarche.   

 

Age at pubarche for girls in the pubarche pathway was also comparable to 

thelarche in the thelarche pathway. It seems that asynchronous pubertal 

development is associated with earlier pubertal onset overall when compared 

with girls who develop relatively synchronously.  

 

It is possible that while overweight and obesity in childhood is associated with 

an earlier pubertal onset via asynchronous pubertal development, the later age 

at menarche evident for girls entering puberty via the pubarche pathway could 

have an independent explanation. Early pubarche is often associated with catch-

up growth. So, girls who are born lighter and who see significant catch-up 

growth in mid childhood are more likely to enter puberty via pubarche than girls 

born appropriate for gestational age (Neville and Walker, 2005). If this were the 

case it could be that growth in mid childhood rather than birth weight that has a 

greater influence on age at pubertal onset, but that birth weight lends a 

significant contribution to setting the trajectory for overall maturation, and 

therefore has a great influence on age at menarche than it may have on other 

aspects of maturation.  
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Additionally, weight and weight gain at different points in childhood may have 

differing effects on the HPO and nervous systems, which differentially mediate 

breast and pubic hair development (Christensen et al., 2010a; 2010b).  

 

The strengths of this cohort are the large size, longitudinal design, repeated 

measurements of pubertal maturation in the adolescent years, and the 

geographic location, which makes increases the likelihood of successful follow-

up.  

 

Evidence for secular trends in age at pubertal onset and age at menarche 

from 1948-2005: 

 

Results 

Tables 5.16-5.19 (overleaf) show mean comparative data from the 4 datasets 

included in these analyses.  

 

Results from the 4 datasets show evidence for a continued secular trend for 

younger age at menarche from 1948- 2005. Median age at menarche fell from 

13.17 in the Harpenden cohorts to 13.00 in both the BCS58 and the BCS70 

cohorts, to 12.87 in the ALSPAC cohort. That is a drop of 0.3 years over that 

period. Additionally, mean age at menarche showed a steady decline from 13.13 

in the Harpenden cohort, to 12.72 in the BCS58, and finally to 12.55 in the 

BCS1970.  These data highlights the drop in age at menarche of 0.17 years 

between the two British cohort studies, which is masked by the interval data 

collection when presented as a median.    

 

In addition to the evidence for a continued downward secular trend in age at 

menarche there is also evidence for a downward trend in age at pubertal onset. 

Median age at pubarche fell from 11.61 in the Harpenden cohort to 11.00 in the 
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ALSPAC cohort, which is a drop of 0.61 years from 1948-2005. Over that same 

period age at thelarche has fallen exactly 1 year from 11.19 in the Harpenden 

cohort to 10.19 in the ALSPAC cohort. From these analyses the interval from B2 

to menarche was 2 years for the Harpenden dataset (unable to confirm if the 

cases in this dataset directly match those measured in Marshall and Tanner, 

1969, where the interval is stated as 2.3 years), and 2.7 years in the ALSPAC 

cohort.  

Table 5.16. Comparative cohort mean height measures..   

 

 

 

Height (cm) 

 

 Harpenden 

 

BCS58 

 

BCS70 

 

ALSPAC 

 

42 months    92.75  

7  121.92   

9  132.49    

10  138.24  138.38  

11  142.95 144.73   

12  149.10    

13     

14     

15     

16  160.21 160.88   

*median
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Table 5.17. Comparative cohort mean weight measures..  

 

Age 

 

Weight (kg) 

 

 Harpenden 

 

BCS58 

 

BCS70 

 

ALSPAC 

 

Birth (g)  3225.00 3211.90  

42 months    13.90  

7  23.66   

9  28.45    

10  31.77  32.76  

11  35.43 37.19   

12  40.24    

16  45.70    

BMI age 10 (kg/m2) 16.62  17.10  

BMI age 11 (kg/m2) 17.35 17.75   

*median 

 

Table 5.18. Comparative cohort mean pubertal milestones..  

 Harpenden BCS58 BCS70 ALSPAC 

Age at thelarche (years) 11.15, 11.19*   
 

10.19* 

Age at pubarche (years) 11.48, 11.61*   
 

11.00* 

Age at menarche (years) 13.13, 13.17* 12.72, 13.00* 12.55, 13.00* 
 

12.87* 

Menarche by age 13 (%) 82 75 79  

Menarche by age 14 (%) 95 95 95  

*median 
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Table 5.29  Comparative cohort evidence of pubertal onset.  

 Harpenden BCS58 BCS70 ALSPAC 

Evidence of puberty age 8 (%)    12^, 5* 

Evidence of puberty age 9 (%)    34^, 18* 

Evidence of puberty age 10 (%)   26 58^, 40* 

Evidence of puberty age 11 (%)  84  86^, 71* 

Evidence of puberty age 16 (%)  97   

^thelarche, *pubarche 

 

There is evidence that a significant proportion of the downward trend in age at 

pubertal onset has taken place between 1980 and 2005 (see table 3.5.1). The 

BCS70 cohort data show that in 1980 26% of girls showed signs of pubertal 

development when they were aged 10. By 2001/2 40% of girls had reached 

pubarche by age 10 and 58% of girls had reached thelarche by age 10. The 

figures for thelarche alone demonstrate that the proportion of girls beginning 

puberty by age 10 more than doubled from 1980-2001/2. The true figure will be 

even higher when those girls who developed initially by the pubarche pathway 

are included with the proportion of girls developing by thelarche and 

synchronous pubertal development. The figures from age 9 in the ALSPAC cohort 

demonstrate that a higher proportion of girls (34%) had evidence of thelarche by 

age 9 compared with the proportion of girls who showed any sign of pubertal 

develop by age 10 in 1980 in the BCS70 cohort.   

 

In the Harpenden, BCS58 and BCS70 cohorts the same proportion of girls (95%) 

have entered puberty by the time they are 14 years of age. Therefore, the same 

proportions of girls in all 3 cohorts (5%) are late developers compared to the 

cohort means.  
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Conclusion 

Analyses of longitudinal cohort data from 1948-2005 found evidence of a 

continued downward secular trend in median age at menarche of 0.30 years 

from 13.17 to 12.87. Over the same period, age at pubarche fell by 0.61 years, 

and age at thelarche fell by one year from 11.19 to 10.19. As a result of the 

greater decline in age at thelarche compared with age at menarche, the interval 

between Tanner breast stage 2 and age at menarche fell from 2.00 years to 2.70 

years. More than half of the decrease in age at thelarche took place between 

1980 and 2001/2. Although higher weight status is associated with earlier 

pubertal onset and earlier age at menarche it does not predict all of the variance 

in pubertal timing. The downward trends for age at menarche and age at 

pubertal onset (specifically thelarche) may be exacerbated by exposure to 

endocrine disrupting chemicals, which could put early maturing girls at 

increased risk of negative health outcomes. 
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Chapter Six: plasticity of female pubertal 

development in response to multiple 

environmental pressures 

 

Early age at pubertal onset: the relationship between fat mass and EDC 

exposure 

The analyses in Chapter Five found that the proportion of girls who reached 

thelarche by age 10 in 2001/2 has more than doubled since 1980, and a higher 

proportion of girls who reached thelarche by age 9 in 2001/2 is higher than 

those reaching thelarche by age 10 in 1980. Given that the earliest mean age at 

thelarche in the ALSPAC cohort (9.43), recorded for girls who entered puberty 

via the thelarche pathway, was predicted by overweight at age 8, this suggests 

that increased weight status is a strong predictor of both earlier pubertal onset, 

and particularly a trend for earlier age at thelarche from 1980-2001/2. 

 

The results presented in Chapter Five suggest that while birth weight seems to 

interact with age at menarche - which could indicate a heritable or programmed 

growth trajectory in response to pre-natal cues - weight during early and later 

childhood is more associated with age at pubertal onset.  

 

The significant drop in age at thelarche from 1948-2005 supports the evidence 

presented by Christensen et al (2010a; 2010b) that the interval between age at 

breast stage 2 (B2) and age at menarche is increasing. This extension of the pre-

menarcheal period mirrors findings from the USA whereby girls who were 

overweight were more likely to begin puberty earlier than peers, and were more 

likely to begin puberty via the thelarche pathway compared with peers (Biro et 

al., 2003). However, what is unclear in the UK population is how this effect may 

be mediated by ethnicity. Schubert et al. (2005) found that non-white girls in the 

USA were more likely to have more breast development at a higher BMI than 

normal weight peers, whereas the ALSPAC population studied by Christensen et 
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is a plethora of data that suggests EDCs have the potential to interfere with 

endogenous hormones, particularly oestrogen (e.g. Colborn et al., 1996; Ouyang 

et al, 2005; Soto and Sonnenschein, 1983; 1984). The actions of EDCs on 

endogenous hormone levels present an interesting candidate mechanism for the 

acceleration in age at pubertal onset over the last 20 years.  

 

Exposure to endocrine disruptors represents a significant aspect of lifestyle that 

has not been measured in this thesis, but has altered exponentially over the 

period of 1948-2005 (Dold, 1996; Sharara et al. 1998; Schoeters et al., 2007; 

Diamanti-Kandarakis, 2009). While not exhaustive, there is some evidence of 

EDC exposure and accelerated thelarche, whereby women in Puerto Rico 

exposed to phthalates experienced earlier thelarche (Colon et al., 2000).  More 

broadly, EDCs have been linked to earlier puberty  (Dickerson and Gore, 2007; 

Golub et al., 2008). As such, the possible role of endocrine disruptors on pubertal 

development, and specifically thelarche, should be explored further.  

 

Although weight status at age 8 seems to predict falling age at thelarche this 

relationship may be exacerbated by endocrine disruptors, which are highly 

lipophilic and more likely to be found in higher concentrations in fatter 

individuals compared with leaner individuals who have had the same exposures 

(Colborn et al., 1996). I propose that a relationship between EDC exposure and 

high relative fat mass is associated with an early age at thelarche. Since EDC 

exposure was not controlled for in the analysis of the UK data, earlier thelarche 

could indicate the increasing prevalence of EDCs as well as overweight, but a 

relationship between the two factors may be a better explanation for the sharp 

acceleration in age at thelarche between 1980 and 2001. 

 

A relationship between EDC exposure and high relative fat mass that has the 

potential to influence age at thelarche is based on two notions: 1) In the 20 year 

period where we see the sharpest acceleration in thelarche we began regularly 

heating plastics and using food packaging that is vulnerable to chemical 

breakdown; and 2) EDCs are highly lipophilic, which means a greater amount of 











 180 

phenotypic plasticity that may not, as yet, be tested to its full capability, and is 

unlikely to have posed the same risks to health in pre-historical ecologies.   

 

This thesis has answered hypothesis 1 and found that there was a continued 

secular trend for earlier age at menarche, which fell by 0.3 years between 1948-

2005. This thesis also answered hypothesis 2 and found a significant decrease in 

age at pubertal onset of 1 year, which is associated with higher weight status 

preceding pubertal onset. This thesis could not answer hypothesis 3, but 

suggests a possible mechanism for the role of endocrine disrupting chemicals in 

accelerating pubertal onset.  

 

This thesis has addressed both original aims to understand the changes in female 

pubertal development over the last sixty years, and to consider those changes as 

an evolved response.   
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