
Durham E-Theses

Type Oriented Parallel Programming

BROWN, NICHOLAS,EDWARD

How to cite:

BROWN, NICHOLAS,EDWARD (2010) Type Oriented Parallel Programming, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/106/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/106/
 http://etheses.dur.ac.uk/106/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Type Oriented Parallel
Programming

Nicholas Brown

A Thesis presented for the degree of

Doctor of Philosophy

Software Engineering Group

School of Engineering and Computing Sciences

University of Durham

England

January 2010

Dedicated to
My Parents

Type Oriented Parallel Programming

Nick Brown

Submitted for the degree of Doctor of Philosophy

January 2010

Abstract

Context Parallel computing is an important field within the sciences. With the

emergence of multi, and soon many, core CPUs this is moving more and more into

the domain of general computing. HPC programmers want performance, but at the

moment this comes at a cost; parallel languages are either efficient or conceptually

simple, but not both.

Aim To develop and evaluate a novel programming paradigm which will address

the problem of parallel programming and allow for languages which are both con-

ceptually simple and efficient.

Method A type-based approach, which allows the programmer to control all as-

pects of parallelism by the use and combination of types has been developed. As

a vehicle to present and analyze this new paradigm a parallel language, Mesham,

and associated compilation tools have also been created. By using types to express

parallelism the programmer can exercise efficient, flexible control in a high level ab-

stract model yet with a sufficiently rich amount of information in the source code

upon which the compiler can perform static analysis and optimization.

Results A number of case studies have been implemented in Mesham. Official

benchmarks have been performed which demonstrate the paradigm allows one to

write code which is comparable, in terms of performance, with existing high perfor-

mance solutions. Sections of the parallel simulation package, Gadget-2, have been

ported into Mesham, where substantial code simplifications have been made.

Conclusions The results obtained indicate that the type-based approach does sat-

isfy the aim of the research described in this thesis. By using this new paradigm the

programmer has been able to write parallel code which is both simple and efficient.

Declaration

The work in this thesis is based on research carried out at the Department of Com-

puter Science, the University of Durham, England. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

Copyright c© 2010 by Nick Brown.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iv

Acknowledgements

I would like to express my thanks to both Dr Yifeng Chen and Professor Malcolm

Munro for supervising me during my PhD. Their advice, guidance and encourage-

ment over the past few years has been invaluable and without their help this thesis

would simply not exist.

I am also grateful to all the members of the Computer Science department who

have made me feel at home during my studies.

I would like to thank my parents for their support and patience over the past few

years as well as my girlfriend, Hayley, for all she has done for me.

v

Contents

Abstract iii

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 Topic Overview . 1

1.2 Criteria for Success . 3

1.3 Thesis overview . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Parallel Computation and Models . 6

2.2.1 Communication . 6

2.2.2 Computation . 9

2.2.3 Problem Classification . 10

2.2.4 Summary . 11

2.3 Parallel Paradigms and Languages . 12

2.3.1 Sequential Languages . 14

2.3.2 Paradigms . 15

2.3.3 Languages and Libraries . 17

2.3.4 Summary . 27

2.4 Theories of Programming Languages 29

2.4.1 Syntax . 30

vi

Contents vii

2.4.2 Semantics . 31

2.4.3 Calculi for Languages . 39

2.4.4 Types . 41

2.4.5 Program Analysis . 46

2.4.6 Summary . 49

2.5 Popular Parallel Codes . 49

2.5.1 Gadget-2 . 50

2.5.2 Fast Fourier Transformation 52

2.5.3 NAS Parallel Benchmarks . 53

2.5.4 Mandelbrot Set . 54

2.5.5 Summary . 54

2.6 Conclusions . 55

3 Language Definition 57

3.1 Introduction . 57

3.1.1 Language Definition . 57

3.2 Types . 58

3.2.1 Concept . 58

3.2.2 Language Support . 60

3.3 Type Library . 65

3.3.1 Allocation . 65

3.3.2 Element Types . 67

3.3.3 Attributes . 69

3.3.4 Collections . 72

3.3.5 Primitive Communication . 74

3.3.6 Communication Mode . 80

3.3.7 Partition . 87

3.3.8 Distribution . 90

3.3.9 Composition . 92

3.4 Core Language . 94

3.4.1 General . 94

3.4.2 Declaration . 94

January 18, 2010

Contents viii

3.4.3 Statements . 95

3.4.4 Functions . 101

3.4.5 Supported Operators . 101

3.5 Conclusion . 102

4 Implementation 103

4.1 Introduction . 103

4.2 Literature Review . 103

4.2.1 Flexibo . 103

4.2.2 C Programming . 105

4.2.3 Compiler Creation . 106

4.3 Overview . 107

4.4 Preprocessor . 109

4.5 Translator . 109

4.5.1 Reflection Representation Example 112

4.6 Runtime Library . 114

4.7 Code Translation Example . 115

4.8 Conclusion . 119

5 Case Studies - Performance 120

5.1 Introduction . 120

5.2 Mandelbrot . 121

5.3 NAS-IS Benchmark . 126

5.4 Fast Fourier Transformation . 131

5.4.1 FFT code in Mesham . 131

5.4.2 The generated FFT code . 133

5.4.3 Performance . 134

5.5 Conclusions . 136

6 Case Studies - Gadget-2 138

6.1 Introduction . 138

6.2 Extension Types . 138

January 18, 2010

Contents ix

6.3 Porting I/O . 143

6.4 Domain Decomposition . 144

6.5 Communicating Particles . 153

6.6 Conclusions . 154

7 Evaluation 155

7.1 Introduction . 155

7.2 Results . 155

7.2.1 Performance . 156

7.2.2 Programability . 158

7.3 Skillicorn’s criteria . 160

7.3.1 Ease of Programming . 161

7.3.2 Software Development Methodology 161

7.3.3 Architecturally Independent 162

7.3.4 Easy to Understand . 162

7.3.5 Guaranteed Performance . 163

7.3.6 Cost Measures . 163

7.3.7 Summary . 164

7.4 Other Languages . 165

7.4.1 High Performance Fortran . 165

7.4.2 Co-Array Fortran . 166

7.4.3 ZPL . 166

7.4.4 NESL . 167

7.4.5 Titanium . 167

7.4.6 Message Passing Interface . 168

7.4.7 Bulk Synchronous Parallelism 170

7.4.8 Cilk . 171

7.4.9 Summary . 171

7.5 Conclusions . 172

8 Conclusions and Further Work 174

8.1 Introduction . 174

January 18, 2010

Contents x

8.2 Contributions . 175

8.3 Criteria for Success . 178

8.4 Further Work . 180

References 184

A Additional Language Specification 192

A.1 Pre Processor . 192

A.2 Function Library . 193

A.2.1 Maths . 193

A.2.2 Input/Output . 199

A.2.3 Parallelism . 202

A.2.4 Bits . 203

A.2.5 String . 204

A.2.6 System . 207

B Matrix Multiplication Code Examples 211

B.1 MPI . 211

B.2 BSP . 214

B.3 Cilk . 216

B.4 High Performance Fortran . 217

B.5 Co Array Fortran . 218

B.6 ZPL . 218

B.7 NESL . 220

B.8 Titanium . 220

C Case Study Codes 222

C.1 Mandlebrot C-MPI Code . 222

C.2 Mesham NAS-IS benchmark Code . 226

C.3 FFT uneven data distribution generated C-MPI 241

C.4 Gadget-2 C code PH key finding . 243

C.5 Gadget-2 C code BHTree building . 247

January 18, 2010

Contents xi

D Tabular Performance Data 250

D.1 Mandelbrot . 250

D.2 NAS-IS Class B . 251

D.3 NAS-IS Class C . 251

D.4 NAS-IS Total Mop/s . 252

D.5 NAS-IS Mop/s per Process . 252

D.6 FFT on 128MB Data . 253

D.7 FFT on 2GB Data . 254

January 18, 2010

List of Figures

2.1 Parallel Random Access Machine . 7

2.2 Message Passing Communication Model 9

2.3 Performance vs Number of Processors 11

2.4 Polymorphic types taken from [Cardelli1985] 44

2.5 Example fractal produced by Mandelbrot Set 55

3.1 Type Combination Illustration . 59

3.2 Horizontal Partitioning of data . 88

3.3 Vertical Partitioning of data . 89

3.4 Even distribution of 10 blocks over 4 processes 90

4.1 Overview of Compilation Process . 108

4.2 Overview of Translator . 109

4.3 Interaction of translator core and libraries 111

4.4 Dynamic linking of type classes . 112

4.5 Abstract Syntax Tree of Code Listing 4.1 113

4.6 Reflection System Representation of Code Listing 4.1 114

5.1 Mandelbrot performance test . 122

5.2 NAS-IS benchmark, Class B . 127

5.3 NAS-IS benchmark, Class C . 128

5.4 NAS-IS benchmark total Mop/s . 129

5.5 NAS-IS benchmark Mop/s per process 130

5.6 Performance of FFT on 128MB Data 135

5.7 Performance of FFT on 2GB Data FFT 137

xii

List of Figures xiii

6.1 Sample 2D and 3D Peano Hilbert Curves taken from [Springel2006] . 145

6.2 BHTree Example taken from [Springel2006] 147

January 18, 2010

List of Tables

2.1 Overview of Parallel Languages Considered 27

2.2 Parallel Languages considered wrt evaluation criteria 28

3.1 Meta Characters used in Chapter 3 58

3.2 Mesham’s element types . 67

3.3 Element type communication in assignment 68

3.4 Array type communication in assignment 72

3.5 Partition type communication in assignment 89

3.6 Error strings supported by Mesham 97

3.7 Operators supported by Mesham . 102

6.1 Particle element type members . 139

7.1 Mesham considered wrt Skillicorn’s criteria 164

7.2 Overview of Parallel Languages Considered 172

7.3 All Languages considered wrt evaluation criteria 173

D.1 Mandelbrot Timing Results . 250

D.2 NAS-IS Class B Timing Results . 251

D.3 NAS-IS Class C Timing Results . 251

D.4 NAS-IS Total Mop/s . 252

D.5 NAS-IS Mop/s per Process . 252

D.6 FFT on 128MB Data . 253

D.7 FFT on 2GB Data . 254

xiv

Chapter 1

Introduction

1.1 Topic Overview

The concept of splitting a problem up, solving these parts in parallel and then

combining the individual answers to form a solution has been a popular one for

many years. Parallel computing has traditionally been in the domain of the few

experts, who have the knowledge and experience to write these highly complex

parallel applications. There has been much research directed at this field with most

of the attention being aimed at improving the tools and support for parallelism. One

area which has not seen a great deal of improvement, although considerable research

has been done, is in the actual languages used to create these parallel codes. The

difficulty of programming has been the main challenge to parallel computing over

the past several decades.

With the emergence of multi, and soon many, core CPUs the field of parallel

computing is moving towards the more general, non-expert, programmer. If par-

allel computing is to continue taking advantage of these new desktop technologies

then parallel programming must become more accessible to the non-expert parallel

programmer. Existing parallel languages tend to support either simplicity or effi-

ciency (performance), but not both. These objectives, which have been in conflict

to this point, must become complementary within a parallel language if the field is

to continue to grow and succeed in the wider context.

Those existing parallel languages built for simplicity often rely heavily on implicit

1

1.1. Topic Overview 2

parallelism. The programmer may have some control over the parallel aspects of

their code, but much of the complexity is taken away, and the compiler will make

key decisions regarding parallel issues. This very high level approach, and lack of

direction in the source code, makes it difficult for the compiler to optimise and

results in inefficient parallelism. Not only this, the programmer is often in a much

better position to make certain decisions, but the loss in expressiveness means that

this is not possible. A prime example of this is in some implicit parallel languages

where variables can either be allocated to a single processor or all processors but

nothing in between.

Within the High Performance Computing (HPC) field the pursuit for perfor-

mance is one of the main objectives and to achieve such currently parallel program-

mers are commonly writing highly complex codes. For this reason, regardless of

newer, simpler languages one of the most popular choices is to use a low-level se-

quential language combined with a library of parallel functions where all parallelism

is explicit. The result is that these programs are difficult to develop, test, debug and

modify even to the few experts. Taking this, low level, approach it is often difficult

to get the “big picture” of the system as a whole and the programmer can get stuck

with specific decisions they made at the start of development which in hindsight

may not be the most effective.

To address the issues of simplicity and efficiency this thesis proposes a tradeoff

between explicit and implicit parallelism. Type-based parallelization addresses the

issue by providing the option to the end programmers to choose between explicit and

implicit parallelism. The approach is to design new types governing parallelization.

A programmer may choose to use these types, which imposes additional information

that can guide the compiler to generate the required parallelization code, or may

choose not to use them in which case some default choices will be made. In short

these types for parallelization are issued by the programmer to instruct the compiler

to perform the expected actions in static analysis and code generation.

Type-based parallelization is different from more traditional procedural calls to

parallel libraries or keyword based languages. Programmer-imposed information

about parallelization only appears in types at variable declaration and type coercions

January 18, 2010

1.2. Criteria for Success 3

in expressions and assignments. For example, the assignment between variables may

yield local assignment, communications or a combination of them, all depending on

the declared or temporarily coerced types in expressions. The compiler helps the

programmer to generate those non-interesting but tricky parts of the parallel code.

1.2 Criteria for Success

The 5 criteria for evaluating the success of the research described in this thesis are

detailed in this section.

1. Support code which is simple yet expressive

This criterion specifies that parallel code should be conceptually simple to

write yet still allow for advanced programmers to enjoy a high degree of control

over parallel decisions.

2. Provide for flexible parallel programming

Parallel programmers often wish to get their code working and then fine tune

for performance. With many existing languages changing parallel details later

down the line can be very time consuming and as such programmers can be

stuck with initial, ill informed, decisions.

3. Be general and none application specific

There are a wide variety of parallel applications currently being used. As such

it is important to develop an approach which is general and can be applied to

not only existing problems but future ones too.

4. Exhibit a high degree of performance

Performance is one of the primary concerns within parallel computing. Any

proposed approach must be, at least, as efficient as existing high performance

language solutions to stand a chance of adoption.

5. Must be implementable

Arguably there is little point of a paradigm or language if it can not be imple-

mented on a computer. From the specification it must be possible to produce

translation tools which work in a timely fashion.

January 18, 2010

1.3. Thesis overview 4

These criteria will be revisited and discussed in the final chapter of this thesis.

1.3 Thesis overview

The remainder of this thesis is as follows.

Chapter 2 surveys the current situation and literature relevant to this project.

An overview of the parallel communication and computation models is considered

along with an evaluation of existing parallel language solutions. A number of existing

parallel codes are surveyed to ascertain how these applications are currently devel-

oped and benchmarks used to evaluate the performance of parallel tools. Finally

the theories of programming languages are considered because in order to develop

a paradigm and associated language it is important to have a background in this

field.

Chapter 3 provides an informal definition of the type-based approach and pro-

gramming language, Mesham, as a whole. Mesham is developed to act as a vehicle,

presenting and evaluating the new type paradigm. The purpose of this definition

is to give the reader a flavour of the approach itself and how it is used within the

domain of parallel programming.

Chapter 4 is concerned with the implementation of the type-based approach

and Mesham. In this chapter an overview of the compilation process is provided

to give the reader an insight into how efficient target code is generated from the

programmer’s source code. A number of potential difficulties, and their solutions,

found when implementing the compiler are discussed before finally a concrete ex-

ample of how simple Mesham source code is translated into efficient target code is

given.

Chapter 5 overviews a number of case studies implemented in the language.

This chapter is specifically aimed towards performance, although some programma-

bility aspects of the code are also considered. A number of experiments performed

on Durham University’s Hamilton Cluster are presented to assess how the approach

performs in relation to existing high performance language solutions.

January 18, 2010

1.3. Thesis overview 5

Chapter 6 presents the port of aspects of the parallel cosmological simulation

package, Gadget-2, into Mesham. Extensions to the type library, used to support

this work, are specified. In this chapter the issue of programmability is looked at

in detail with consideration made towards whether or not the type-based approach

has simplified the whole process of parallel programming.

Chapter 7 evaluates the case studies and experiments of chapters five and six.

The question of whether the type based approach allows for conceptually simple

and high performance parallel programming is considered. Mesham is then evalu-

ated with respect to a number of parallel language criteria developed in Chapter

2. Finally, in order to ascertain where Mesham lies in relation the other parallel

languages, a comparison with those languages detailed in Chapter 2 is performed.

Chapter 8 contains the conclusions of this thesis and summaries the research

carried out. Further work growing out of this research is considered, which could

develop the state of the art.

January 18, 2010

Chapter 2

Literature Review

2.1 Introduction

In researching for this project there are four broad, distinct, categories which must be

considered. These are Parallel Computation and Models, Parallel Paradigms

and Languages, Theories of Programming Languages and Common Paral-

lel Codes. These are reviewed, in detail, in this chapter to identify the foundations

required for the project and the strong and weak points of these fields.

2.2 Parallel Computation and Models

2.2.1 Communication

Key to parallel computing is the idea of communication. There are two general

communication models, shared memory and message passing. It is important to

consider both these models because of the different advantages and disadvantages

which each exhibits.

Shared Memory

In the shared memory model, each process shares the same memory and therefore the

same data. In this model communication is implicit. When programming using this

model care must be taken to avoid memory conflicts. There are a number of different

6

2.2. Parallel Computation and Models 7

sub models, such as Parallel Random Access Machine (PRAM) [Fortune1978] whose

simplicity to understand has lead to its popularity. Figure 2.1 illustrates how a

PRAM would look, with each processor sharing the same memory and by extension

the program to execute. However, a pure PRAM machine is impossible to create in

reality with a large number of processors due to hardware constraints, so variations

to this model are required in practice.

Figure 2.1: Parallel Random Access Machine

“Bulk Synchronous Parallelism (BSP) is a parallel programming model that ab-

stracts from low-level program structures in favour of supersteps. A superstep con-

sists of a set of independent local computations, followed by a global communication

phase and a barrier synchronisation.” [Skillicorn1999] One of the major advantages

to BSP is the fact that the runtime can easily be deduced. The cost of a superstep

is the sum of the cost of the longest running local computation, the cost of global

communication between the processors and the cost of the barrier synchronisation at

the end of the superstep. It is considered that this model is a very convenient view of

synchronisation. However, barrier synchronisation does have an associated cost due

to the global synchronisation, “the performance of barriers on distributed-memory

machines is predictable, although not good.” [Hill1999] On the other hand, as [Skil-

licorn1999] notes, this performance hit might be the case, however with BSP there is

January 18, 2010

2.2. Parallel Computation and Models 8

no worry of deadlock or livelock and therefore no need for detection tools and their

additional associated cost. The benefit of BSP is that it imposes a clearly struc-

tured communication model upon the programmer, however extra work is required

to perform the more complex operations, such as scattering of data.

Another model following the shared memory model is Logic of Global Synchrony

(LOGS) [Chen2004]. LOGS consists of a number of behaviours - an initial state, a

final state and a sequence of intermediate states. The intermediate global states are

made explicit, although the mechanics of communication and synchronisation are

abstracted away. The paper [Chen2004] is an interesting description of this model,

although it is quite theoretical. A number of different properties of the model are

proven in the paper, such as healthiness, soundness and completeness. In the form

described by [Chen2004] it is accessible to specify example parallel problems and

prove facets about them.

The study of the shared memory model is relevant due to the convenience and

simplicity aspects. However, the major disadvantage of this communication model

is that, due to each process sharing the same memory, performance quickly drops as

the number of processors is increased. This model is therefore not scalable in terms

of performance.

Message Passing

“Message passing is a paradigm used widely on certain classes of parallel machines,

especially those with distributed memory.” [MPI1995] In this model, processors are

very distinct from each other, with the only connection being that messages can

be passed between them. Unlike the shared memory model, in message passing

communication is explicit. Figure 2.2 illustrates a typical message passing parallel

system setup, with each processor equipped with its own services such as memory

and IO. Additionally, each processor has a separate copy of the program to execute,

which has the advantage of being able to tailor it to specific processors for efficiency

reasons. A major benefit of this model is that processors can be added or removed

on the fly, which is especially important in large, complex parallel systems.

There are two major advantages to message passing, these are efficiency and

January 18, 2010

2.2. Parallel Computation and Models 9

Figure 2.2: Message Passing Communication Model

scalability however it is difficult to write non-elementary message passing programs,

especially when these need to be programmed using add on language libraries.

2.2.2 Computation

It is important to understand what is known as Flynn’s taxonomy, a classification

of computer architectures proposed in the 1960s. This taxonomy gives rise to the

concept of Single Program Multiple Data (SPMD) and Multiple Program Multiple

Data (MPMD). In SPMD, each process executes the same program with its own

data, whereas in MPMD each process executes its own program and its own data.

It is important to match the appropriate computation model to the problem being

solved. Different parallel languages support programming in one or both of these

forms. The benefit of SPMD is that only one set of code need be written for all

processors, although this can be bloated and lacks support for optimising specific

parts for specific architectures. The benefit of MPMD is that it is possible to tailor

the code to run efficiently on each processor and keeps the code each processor will

execute relevant to that CPU only, however writing code for each processor in a

large system is not practical.

Many common parallel languages allow the programmer to write code which

will mix these classifications. For instance in many languages the programmer can

gain access to the processor’s ID number and can write branch statements, where

required, in order to issue instructions to specific processors.

January 18, 2010

2.2. Parallel Computation and Models 10

Additionally, a parallel program can be written from a data or task parallel

point of view. In task parallelism the program is divided up into tasks, each of

which is sent to a unique processor to solve at the same time. Commonly, task

parallelism can be thought of when processors execute distinct threads, or processes,

and at the time of writing it is the popular way in which operating systems will

take advantage of multicore processors. In data parallelism each processor will

execute the same instructions, but work on different data sets. For instance, with

matrix multiplication, one processor may work on one section of the matrices whilst

other processors work on other sections, solving the problem in parallel. The actual

problem type depends on which form of parallelism is to be employed, however as a

generalisation task parallelism is often easier to perform but less effective than data

parallelism, which often requires an intimate knowledge of the data and explicit

parallel programming.

2.2.3 Problem Classification

When considering both the advantages of and how to parallelise a problem, it is

important to appreciate how the problem should be decomposed across multiple

processors. There are two extremes of problem classification -embarrassingly parallel

problems and tightly coupled problems. Embarrassingly parallel problems are those

which require very little or no work to separate them into a parallel form and often

there will exist no dependenciess or communication between the processors. There

are numerous examples of embarrassingly parallel problems, many of which exist in

the graphics world which is the reason why the employment of many core GPUs

has become a popular performance boosting choice. The other extreme is that of

tightly coupled problems, where it can be very difficult to parallelise the problem

and, if achieved, will result in many dependencies between processors. In reality

most problems sit somewhere between these two extremes.

There is a common misconception that “throwing” processors at a problem will

automatically increase performance regardless of the number of processors or the

problem type. This is simply not true because compared with computation, commu-

nication is a very expensive operation. There is an optimum number of processors,

January 18, 2010

2.2. Parallel Computation and Models 11

Figure 2.3: Performance vs Number of Processors

after which the cost of communication outweighs the saving in computation made by

adding an extra processor and the performance drops. Figure 2.3 illustrates a per-

formance vs processors graph for a typical problem. As the number of processors are

increased, firstly performance improves, however, after reaching an optimum point

performance will then drop off. In theory a truly embarrassingly parallel problem

(with no communication between processors) will not be subject to this rule, and it

will be more and more apparent as the problem type approaches that of a tightly

coupled problem. The problem type, although a major consideration, is not the only

factor at play in shaping the performance curve - other issues include the types of

processors, connection latency, bandwidth and workload of the parallel cluster will

cause variations to this common bell curve.

2.2.4 Summary

From the literature and their contents reviewed in this section, it is clear that par-

allel computing is a key field in the sciences, with many applications from climate

January 18, 2010

2.3. Parallel Paradigms and Languages 12

prediction to drug discovery and engineering design. There have been numerous ways

developed in which the programmer can view a parallel system and write parallel

codes. It is important to appreciate the disadvantages of some models. For instance

both shared memory and message passing communication models have major dis-

advantages associated with them. It is possible to either write conceptually simple

programs or codes which elicit high performance and scalability, but not both. This

is a major problem in parallel programming at the moment, the majority of devel-

opers choose performance and scalability over simplicity and as such communication

aspects of parallel codes can be very complex and difficult to maintain.

2.3 Parallel Paradigms and Languages

In this section a number of different, existing, parallel paradigms and language

solutions will be considered. Each of these will be analysed and a code example

of matrix multiplication will be demonstrated in each, to give the reader a flavour

of each language. As mentioned the aim of this project is to create a parallel

programming language. There are many existing parallel languages with different

applications, advantages and disadvantages. The study of these languages is very

important, as not only do they give ideas as to what is required from such languages,

but also ideas what is wrong with such languages so those mistakes can be avoided.

Skillicorn’s paper [Skillicorn1998] begins by detailing the problem with parallel

computing, then considers six criteria which are important in a parallel model or

language. After this, different models and associated languages are considered with

reference to the initial criteria defined. This paper is considered a good in depth

review, albeit possibly slightly out of date. This survey acts to give a good indi-

cation of the models and aspects underlying the field. Found to be particularly

interesting was the six evaluation criteria Skillicorn has arrived at. These were the

ease of programming, software development methodology, independence of target

architecture, easy to understand, guaranteed performance and the existence of costs

which can be inferred from the program. The first four of these relate to the need

to use the parallel model as a target for software development, whereas the last two

January 18, 2010

2.3. Parallel Paradigms and Languages 13

address the need to execute the code on real parallel machines ensuring predictable

performance.

Ease of programming is exactly that - how easy it is to write code in the model

or language. Skillicorn considers that “a great deal of the actual arrangement of the

executing computation ought to be implicit and capable of being inferred from its

static description, rather than having to be stated explicitly.” Due to the high level of

complexity associated with parallel computing, providing an abstract programming

model is considered essential in this context. Software development methodology

is the existence of formal development tools which can be used to prove program

properties. In [Skillicorn1998] it is argued that the complexity associated with par-

allel machines means that the largely popular approach of testing and debugging

is not suitable in the long run. Instead a process which involves building software

which is correct by construction is required. The third criteria, independence of tar-

get architecture, is an obvious requirement. Parallel machines come in all different

shapes and sizes, with the programmer unable to write and test their code on all

possible targets. Instead the model must allow for code to be written which can be

easily moved from one machine to another without any redevelopment or non-trivial

modifications.

The fourth criteria laid down is that of ease to understand, where a model must

be both easy to understand and to teach. As Skillicorn notes, “If parallel program-

ming models are able to hide the complexities and offer an easy interface they have a

greater chance of being accepted and used.” The fifth criteria is that of guaranteed

performance. As already discussed in parallel computing performance a major con-

sideration, this requirement states that a model must guarantee performance over a

variety of parallel architectures from its design. The sixth and final requirement is

that cost measures can easily be ascertained. In parallel programming, like its se-

quential counterpart, it is essential to be able to determine whether one algorithm is

“better” than another. Cost measures exist for a model if it is possible to determine

the cost of a program from its text, minimum computer properties (e.g. the number

of processors) and the size of the input. Skillicorn goes on to argue that the models

must provide predictable costs and that compilers should not perform optimisation

January 18, 2010

2.3. Parallel Paradigms and Languages 14

of the code due to loosing this transparency.

Although it is appreciated that the criteria are somewhat subjective to the author

of the paper, these six act as a good starting point for the design of the language

model. One of the very interesting issues raised was, that in order to allow for

the programmer to feel like they are in control, the compilation process should

be transparent. By Skillicorn’s own admission, these six criteria are somewhat

contradictory however they do provide an insight into what a parallel programmer

requires from a language.

An interesting aspect of [Skillicorn1998] is that in the conclusion the author

states that although each model and associated language has its benefits, there are

downsides of each and there is no ideal language. Existing abstract models tend to

satisfy the software development criteria and the more concrete ones the performance

criteria; from this it is obvious that a model with a happy medium is required. The

author states that they believe that there will be a model created which satisfies

the six criteria and this will lead to greater use of parallel computation. It is this

model and associate programming language which is the aim of the project. The

fact that Skillicorn overviews numerous languages and models is helpful as it builds

up knowledge of what languages are currently available and the form that they

take. However as mentioned [Skillicorn1998] is, as it originates from 1998, slightly

out of date. In addition to this, as the author considers a wide variety of models

and languages, the analysis of individual languages can be quite narrow and often

confined to the six criteria considered. Within the last nine years, a number of new

languages have appeared, many of which will be considered in this chapter.

2.3.1 Sequential Languages

An initial question is whether parallel languages are essential or not. There are a

number of existing compilers which will automatically parallelise sequential code.

In the paper [Lou2005], a computational physicist, with considerable technical ex-

perience, took a number of popular parallel benchmark codes written in Fortran 77.

He then removed all the code for distributed memory, source level optimisations and

none portable features, after which modifying it such to take advantage of Fortran

January 18, 2010

2.3. Parallel Paradigms and Languages 15

90’s language features. Just two factors were considered in the experiment - code

size and execution time.

The code size reduction was dramatic, ranging from a 4 to 11 times reduction in

size. The paper estimates that on average about 2 times reduction was due to the

removal of explicit parallelism. This newly re-factored code was then timed. The

new code was, at best, 2 times slower and for one benchmark performed 6 times

slower than the original. In the conclusions the authors of [Lou2005] state that

“At the cost of a relatively modest performance penalty at run-time, HPC software

written in FORTRAN 77 can be improved through perfective maintenance.” Whilst

this is true it is thought that the “relatively modest performance penalty” of be-

tween 2 and 6 times slower would be too great for many parallel programmers to

adopt this approach. Maximising performance is hugely important to many of these

programmers, so whilst this approach is simple it does lack on the performance side.

Additionally, the programmer must rely on the compiler for decisions about impor-

tant parallel aspects such as computation distribution and communication. This

loss in expressiveness is a great disadvantage because many parallel programmers

wish for a great deal of control over their code.

2.3.2 Paradigms

LOGS

The LOGS [Chen2004] model has been used as a basis for a parallel language, with

a translation tool written [Zhou2005] to convert it into C code using BSP. The

LOGS code has introduced into it a number of additional commands. The first

one is an early transition, which is a 1-step command that may change the state

before the synchronisation point but will maintain a state between the intermediate

and final state. Most data parallelism-based computations use early transitions.

Secondly, late transitions keeps a state up to the synchronisation point, but may

have a different final state from the intermediate state. Late transitions are more

aimed towards task parallelism. In addition to this, the after command has been

introduced which stands for the final state of a program variable, and a before

January 18, 2010

2.3. Parallel Paradigms and Languages 16

command which represents the initial state of a program variable. The concrete

language also allows for parallel composition and par loops, which is the parallel

equivalent of sequential composition and a sequential for loop respectively.

The result of [Zhou2005] is a convenient parallel programming language. A major

downside though is that the language is not finished and, although it demonstrates

the concepts well, it is not usable by the end programmer. In addition having each

variable automatically shared, following the shared memory model, does have its

problems as it is often the case that only a small subset of variables are required

for communication. Due to the fact that the language has not been finished, there

are a number of programming annoyances. In this context the paper [Zhou2005]

is considered a very useful resource, as not only does it explain the language in

detail, but it also explains the translation process associated with it. However,

unfortunately the paper does not detail some of the more advanced issues such as

array access, which would have been useful.

Skeleton Functions

Skeleton functions attempt to overcome the limitation of parallel functional lan-

guages such as NESL [Blelloch1995]. Numerous skeletons are provided, each is a

higher order (functional) form aimed at accomplishing a specific task. The parallel

programmer can use and combine these skeletons to form the building blocks of

an application, and in order to maintain portability, transformations are provided

between the skeletons.

The paper [Aldinuccia2000] explains that parallel systems can be created by the

combination of basic skeletons. These skeletons include ones for modelling embar-

rassingly parallel problems, computations structured by stages (known as pipes) and

common data computation patterns such as map, reduce and scan. Each skeleton

will take, as a parameter, the computation to model. For instance, the pipe skeleton

will take, as a parameter, the stages which might be sequential portions of code or

other skeletons. A considerable amount of research has been carried out in this topic

and, whilst it has not reached mainstream popularity, there has been some success.

However these skeletons still have strong roots in functional programming and, as

January 18, 2010

2.3. Parallel Paradigms and Languages 17

such, the abstract nature of the model limits programmer expressiveness and places

reliance on compiler optimisation.

2.3.3 Languages and Libraries

MPI

The Message Passing Interface (MPI) [MPI1995] is a standard which provides for

message passing communication. Before MPI, there were many different message

passing standards. This standard, written in 1994, aimed to compose the best

features of each and become the defacto. The interface takes the form of a library,

aimed to be accessible from at least Fortran, C and C++ and bindings exist for

many other languages. There are many different implementations of this standard,

aimed at different architectures.

There is much literature on the subject available. Because the standard is aimed,

not only at computer scientists, but scientists as a whole, the literature varies greatly

from some very detailed to some only providing a general overview. The MPI

standard [MPI1995] is the official document detailing the standard. Apart from

the description of this standard, some examples are included to illustrate some of

the more complex ideas. This resource is a very useful one and, if followed when

writting parallel programs, will guarantee that the result will be compatible with all

MPI conforming implementations. However, being a standard the document is not

always particularly useful as a learning tool, and does not detail implementation

in as much detail as required for specific programming. A number of important

concepts are also just listed, rather than fully explained and some points require

better illustration.

In order to understand and learn MPI a number of other resources have been em-

ployed. [Gropp1999] takes the reader from basic MPI to advanced topics. Included,

there are numerous code examples illustrating the power and use of different as-

pects of the MPI standard. One downside to this resource is that even though some

of the MPI functionality is covered in great detail, there is a proportion which is

hastily covered or not mentioned at all, as if the author did not deem it impor-

January 18, 2010

2.3. Parallel Paradigms and Languages 18

tant. [Gropp1999] also does not mention about the efficiency of different MPI calls,

whereas the standard does offer some idea towards optimisation (although in the

most case this is very much implementation specific.)

As mentioned above, the MPI standard has numerous implementations. There

are architecturally independent implementations such as MPICH and OpenMPI, and

vendor MPI versions such as SunMPI for specific classes of machine. As mentioned

in [Foster1997] vendor MPI often provides for a more efficient implementation due to

some functionality being implemented in hardware. However, from experimentation

it has been discovered that the vendor can leave out certain functionality which is

not considered to be important, meaning that it can be difficult to deduce exactly

what version of the standard is implemented. The paper [MPI1995-2] details the

MPICH implementation. This paper provides useful information on how to use

the implementation and what is supported. The paper also details the efficiency

of this implementation. MPICH is one of the more popular MPI implementation,

OpenMPI is also commonly used.

Combining C with MPI is a very popular option, code listing B.1 implements

matrix multiplication using this combination. From the code it is clear that this

form of parallel coding is difficult and even a simple example requires a relatively

large amount of code. As [Gropp2005] notes, MPI became popular because, at

the time, it allowed users to get simple parallel codes up and running quickly in a

language that they were familiar with. However, as parallel programs have become

more complex so has the difficulty in using this option. This resource also details

the latency involved in the MPI library, although it is implementation specific. Also

shown is a comparison between compiler optimised C MPI code and hand optimised

code - there is considerable difference, with the hand coded optimisations being

much more efficient. One reason for this performance gap is that, as the parallel

system is described in such a low level, there is not rich enough detail to get a high

level view of the code. As [Gropp2005] notes, MPI is the wrong model due to the

lack of abstractions making parallel programming a difficult task. Interestingly, the

author mentions that the aim of a language should not be to make easy programs

easier to write, instead it should be to make it possible to create difficult programs.

January 18, 2010

2.3. Parallel Paradigms and Languages 19

Additionally C is the most common language to use with MPI; the result being that

it is very easy for the programmer to get lost in the small details of their code and

loose track of the parallel program as a whole.

BSPLib

“BSPlib is a small communications library for Bulk Synchronous Parallel (BSP)

programming which consists of only 20 basic operations.” [Hill1998-2] This pop-

ular library implements the BSP shared memory model, which has already been

reviewed, and is commonly used in conjunction with languages such as C for creat-

ing parallel programs. [Hill1998-2] is a paper written about the library, detailing it

and explaining, using examples, how to write BSP programs. [Skillicorn1999] pro-

vides answers to a number of possible questions about the BSP model. This paper

is both interesting and useful, and does address some important concerns that could

be raised such as performance aspects. Interestingly, a Fast Fourier Transformation

(FFT) example has been created to demonstrate the power of the library.

The code in listing B.2 demonstrates how one would implement a very simple

matrix multiplication in BSP. For readability the matrix filling function has been

omitted. In this code process 0 will fill the two matrices with data, each process will

register, via bsp push reg, that arrays matrixa, matrixb and matrixanswer are to be

globally visible. The BSP bsp sync() call is then made to synchronise all processes.

The call bsp get will instruct each process to copy the filled matrices from process

0 into their own arrays, communication is performed to achieve this on the second

sync call on line 34. In order to sum each process’s copy of the matrix the (extended)

BSP collective communications call bsp fold is called. The last sync call on line 48

will perform the communication required for the fold, with the resulting multiplied

matrix located in each process’s copy of array result. This code demonstrates a

number of downsides of BSP. Data which is globally visible must be allocated to

all processes - in some cases this will result in wasted memory. For instance, in

this example, if the result of the matrix multiplication was just required on one

processor then memory would be wasted allocating array result to all processes.

The programmer is also stuck writing code SPMD style, quite often this is not the

January 18, 2010

2.3. Parallel Paradigms and Languages 20

most convenient form. BSP does provide, as an extension, some limited collective

communication commands such as fold. By the author’s own admission these are

based upon the MPI collective calls. However the BSP collective communication

library is far more limited than MPI, for instance fold will only operate on one data

element.

It has already been mentioned that a major issue with BSP, and by extension

BSPLib is that of performance. Code written using BSP just does not compete with

code written using, for instance, MPI. Although the shared memory model is greatly

simpler than the message passing one, when combined with a language such as C

the programmer is still stuck in a low-level form of abstraction. Often with parallel

computing the programmer needs to take a high-level view of what is happening,

having to consider low level issues such as pointers really does stop this. As such,

being shared memory does make it somewhat easier to code, however this simplicity

is really not enough to warrent such a drop in performance.

Cilk

“Cilk is a multithreaded language for parallel programming that generalises the

semantics of C by introducing linguistic constructs for parallel control.” [Frigo1998]

This extension to C provides the programmer with simple constructs which they

can use to create a parallel program. The Cilk extension works from two angles,

firstly during compilation the C is analysed statically and calls to the Cilk parallel

library are added into the C postsource which is generated (ready for compilation

by a normal C compiler.) Secondly, during runtime C code will call the Cilk parallel

library which will actually support the parallelism. As [Frigo1998] mentions, Cilk’s

parallelism is limited to Symmetric Multiprocessors (SMP). “An SMP architecture

is simply one where two or more identical processors connect to one another through

a shared memory” [Jones2007]. SMPs are scalable to a point however for complex

scientific problems, whose solutions are often found by parallel computing, which

require many processes possibly distributed over a number of locations this model is

completely unworkable. Due to this limitation, there are generally far more processes

than processors which have to be queued up.

January 18, 2010

2.3. Parallel Paradigms and Languages 21

The code in listing B.3 illustrates how one would program parallel matrix mul-

tiplication using this language. The code looks like C code at first glance, with two

extra keywords cilk spawn and cilk sync. The first, cilk spawn, instructs the special

compiler to place the function following the keyword in a queue for parallel execu-

tion whilst the code continues. The second keyword, cilk sync, will pause program

execution until all spawned (parallel) functions have concluded executing.

The paper [Frigo1998] focuses consideration on task parallelism rather than data

parallelism which is interesting as many parallel languages are targeted towards

data parallelism. Process scheduling is a key aspect of Cilk and one which the team

have explained in detail in this paper. Cilk follows a “work first principle” where

the scheduling overheads produced by the computation are reduced. The notion of

critical path length is introduced which is the total execution time on an infinite

number of processes and corresponds to the sum of the largest thread execution time

along any path. By using this metric the programmer can estimate the runtime of

their code.

The scheduling algorithm assumes parallel slackness, where there many more

processes than processors. This algorithm maintains a queue on each processor,

which holds a list of processes to execute. As the processor works through the list,

if a queue becomes empty, then it can “steal” a process from another processor.

This scheduling algorithm has a number of considerations attached to it, which the

authors discuss their solutions for. Interestingly, the author mentions that there is a

tradeoff between portability and efficiency. A problem with this approach, which is

evident, is that the scheduler assumes that there is parallel slackness. If this property

were not present then efficiency would be lost. The paper mentions that slackness

is commonplace and the evaluation covers a number of different Cilk examples with

full details as to their different timing results.

The evaluation in [Frigo1998] concludes that the assumptions made are appro-

priate. However, out of the twelve example programs considered, there were no

hardcore scientific parallel programs considered apart from FFT although no details

are supplied about the complexity of this program. The paper is considered an in-

teresting, relevant resource. However, only a small section of the implementation is

January 18, 2010

2.3. Parallel Paradigms and Languages 22

mentioned and it is not clear what other bottlenecks exist. It should be noted that

Cilk is designed for a vastly different architecture than the target of this project

and so the assumptions and decisions made are most likely not applicable. In the

absence of detailed information about the test programs used during evaluation, the

results should be viewed with some degree of uncertainty. However, from this it

is obvious that SMPs with many cores are a real future for desktop machines and

when the time approaches when many processors are placed upon a chip, then the

programmer will need to write parallel programs due to the shortcomings of the cur-

rent threading algorithms. It is not believed that any such parallel languages, Cilk

included, provide an adequate model at the present for this. Relating to this point,

in the not too distant future, parallel computing will most probably stop being the

within the exclusive domain of high performance computing and move much more

into the general computing field.

High Performance Fortran

High Performance Fortran (HPF) [HPF1997] is an extension of Fortran 90, with

constructs supporting parallel programming. The approach adopted by HPF is to

require the programmer to specify data partitioning and allocation, and then have

the compiler automatically infer how to distribute computation accordingly. Lastly

the compiler will insert communication, as required, to support the parallelism. This

implicit model does have its disadvantages, with the programmer having to rely on

the compiler’s “best guess”. Additionally, due to the vast amount of work done by

the compiler, often HPF programs are not transparent. The HPF programmer does

not have this option of optimising their code, and must rely on the HPF compiler’s

default solution.

Much work has been done in designing, creating and supporting HPF [Richard-

son1996], with much literature available on the subject. HPF was the result of

a massive standardisation process, although considered ultimately unsuccessful by

many, some of the better known HPF projects include parallel programs on the

Earth Simulator [Yanagawa2004].

The code in listing B.4 illustrates a parallel matrix multiplication example writ-

January 18, 2010

2.3. Parallel Paradigms and Languages 23

ten in HPF. As can be seen from this example the programmer is determining

parallel aspects of the code such as the number of processors, distribution of data

and alignment of data via PROCESSORS, DISTRIBUTE and ALIGN keywords

respectively, with the compiler taking care of the rest. An interesting aspect of

HPF is that all parallel details are provided as comments, so that the program is

also perfectly acceptable to a normal Fortran compiler. It is considered that having

these, two views of the same program is a very useful attribute because it allows for

the code to be easily run serially or in parallel as required.

Co-Array Fortran

Co-array Fortran (CAF) [Numrich1998] is an extension to Fortran 95 for explicit par-

allel computing. CAF provides extensions to add an optional co-dimension which,

when attached to normal objects, makes them co-objects. These co-dimensions allow

the programmer to represent indices across processors and hence allow communi-

cation, circular braces () represent on a local processor, whilst square braces [] are

non-local. The declaration real :: x(n)[*] will declare an array x of size n and locate

this on all processes.

In this language the program is written SPMD style, with the programmer re-

sponsible for distributing computation. The programmer has more control over

parallelism in CAF than in HPF and they can explicitly control data partitioning,

computation and synchronization. However all communication in CAF is one sided

and, as this is dealt with exclusively by the compiler, often messages between pro-

cesses are short resulting in extra communication overhead. Additionally, there is

limited expressiveness as only local or global data is supported. The computational

explicitness means that index management by the programmer is required for arrays,

which is made even more problematic when data does not divide evenly.

A major drawback of CAF is that, although it does provide some level of expres-

siveness, the programmer is limited in what they can control. Often the programmer

can be in a better position than the compiler to correctly and efficiently decide upon

communication, by abstracting this away from the programmer will mean that in

some cases performance is sacrificed. Although the programmer is abstracted away

January 18, 2010

2.3. Parallel Paradigms and Languages 24

from the low level details of communication still they must consider details such

as index management, which forces them to work low level rather than allowing

for a high level view of the parallel computation. Because the programmer must

write code in SPMD style, not only does this affect the programmability, it also

limits compiler optimisation (specifically dependence analysis is difficult) because

this model is asynchronous.

The code of listing B.5 is an example of matrix multiplication using CAF. The

programmer declares the arrays a,b and c to be co-arrays. As work is done in the

code with these arrays then communication is inferred, as required, by the compiler.

ZPL

ZPL [Chamberlain1998], a parallel array programming language, takes advantage of

the fact that common HPC applications often involve working with arrays of data

with communication in ZPL being inferred by the compiler. In array programming,

in order to combine two arrays A and B into C, the statement C:=A + B performs

the same job as looping through each element as is required in mainstream languages.

As [Deitz2003] shows, array programming and abstracting the programmer away

from parallel details does work well in some problem cases. However by tying the

language to array programming and making parallel details (such as problem de-

composition and communication) implicit, ZPL is not sufficient for use in solving

many parallel problems neither in terms of simplicity or efficiency.

Listing B.6 shows example code for matrix multiplication written in ZPL. In the

section config var the programmer is simply setting up the parallel environment.

ZPL has as a fundamental concept the notion of regions. Regions are index sets and

rectangular in nature, the regions being declared in listing B.6 are two dimensional.

Regions are used both for parallel arrays and to provide indices for array references

within the language. For instance, in the var section of the code the programmer is

using these regions to declare the parallel arrays A, B, C, Aflood and Bflood. The

procedure Summa is where the actual work is done, with the programmer using the

parallel arrays. There are some strange operators, such as ≫ which is the flood

operator, replicating a slice of an array’s values. Array programming can be seen

January 18, 2010

2.3. Parallel Paradigms and Languages 25

at work in the statement C += (Aflood * Bflood) which will multiply array Aflood

with array Bflood and add the values to array C.

From viewing the code in listing B.6 it is obvious that, although the program

is not particularly complex, a variety of new concepts must be learnt before the

programmer can take advantage of ZPL. Additionally these concepts are hardcoded

into the language, making it difficult to modify or remove them at a later date.

Once the programmer has learnt these new ideas then writing code in ZPL is not

particularly difficult, but there is quite an initial barrier to entry.

NESL

NESL [Blelloch1995] is a functional parallel programming language developed at

Carnegie Mellon with the main ideas being nested data parallelism and the provi-

sion of a language-based performance model. In nested data-parallel languages [Blel-

loch1990] any function can be applied over a set of values, including parallel func-

tions. For example, the summation of each row of a matrix could itself execute in

parallel using a tree sum. Nested data parallelism is useful especially in order to

implement nested loops and divide and conquer algorithms in parallel. Nested data

parallelism is an interesting concept and applicable to many problem domains.

Language-based performance models allow the programmer to formally compute

the work and depth of the algorithms developed in the language on parallel machines.

Work is (simply) defined as the running time over one processor, whilst depth is

(again simply) defined as the running time over unlimited processors. Due to the

abstract, functional, nature of the language, NESL does allow the programmer to

easily find these attributes of their code. Being a functional language means that

the programmer writes code by specifying what, and not how, when it comes to

problem solving. This means that the programming language is very abstract from

the specific considerations of parallel programming and the actual hardware that

their code will be executing on. Using this approach, there is much emphasis placed

upon the compiler to infer the “best guess” when it comes to dealing with parallel

communication and computation. As the programmer has no way to control these

aspects, not only does it cause a problem with efficiency in some cases, it also means

January 18, 2010

2.3. Parallel Paradigms and Languages 26

that dealing with the parallel attributes of code written in NESL is opaque. Whilst

it is possible to find the work and depth of a particular algorithm, it is not possible to

determine the running time using this abstract model without knowing the intricate

details of the compiler.

The problem described with NESL is applicable to all functional parallel pro-

gramming languages. As the problem of parallel programming has become more

and more exposed by the computing community in recent years, many have touted

functional programming as being the answer. However, the abstract nature of the

functional model means that this is not the “magical” solution some believe that it

might be, not at least until large improvements in compiler technology are made to

support the programming paradigm.

The matrix multiplication code example (listing B.7) illustrates how NESL is

used to solve parallel problems. As can be seen from this code, the programmer is

very abstract from what is actually happening which, as already discussed, makes

optimisation very difficult. The programmer is entirely dependant on the efficient

implementation of language defined functions sum and transpose.

Titanium

Titanium [Hilfinger2005] is an explicitly parallel version of Java. The advantages

to the programmer are that this language is safe, portable and it is very possible

to build complex data structures using the OO abstraction. Similarly with CAF,

there is a global address space (shared memory) and synchronisation constructs are

supported (although the compiler will ensure that synchronisation does not cause

deadlock.) Another shared feature with CAF is that the programmer is stuck writing

code in SPMD style. Additionally, object orientation can impose a hidden cost and

is not transparent.

In the paper [Baker2006], Shafi discusses the performance of porting Gadget-2

into Java. He notes that originally, the Java version was around 3 times slower

than the C version. One major slow point was in the communication of objects. In

serialising (converting to a byte array) and deserialising (restoring to an object) for

communication Java imposes some overhead which had a major impact. To solve

January 18, 2010

2.3. Parallel Paradigms and Languages 27

this objects had to be replaced by primitives when dealing with communication.

Another issue was maintaining memory locality, the Java Virtual Machine (JVM)

does not recognise the importance in HPC for related data to be located together,

with objects being located in different places of memory. The Java programmer has

no control over this and as such Shafi had to replace object arrays with primitive

arrays in sensitive parts of the code. Of course there are some differences between

Titanium and Java, but Titanium is based upon Java and as such suffers from the

same OO overhead issues. From reading the optimisations performed in [Baker2006],

one has to wonder if the resulting Java code really is much simpler and more abstract

than the C code it was based upon.

Code listing B.8 provides an example of a simple parallel application in Titanium.

The arrays in this example are Titanium arrays, supporting parallelism. Titanium

arrays are indexed via points such as (1, ij[1]) on line 3.

2.3.4 Summary

Imperative Functional Library Extension OO

Message Passing - - MPI -

Shared Memory HPF,CAF,ZPL,Cilk NESL BSPLib Titanium

Table 2.1: Overview of Parallel Languages Considered

There are many existing parallel programming languages, following many differ-

ent programming paradigms and communication models, some of which have been

considered in this section. It is appreciated that there are many other parallel

languages such as UPC, OpenMP and PVM which for brevity have not been consid-

ered in this section. Table 2.1 provides an overview to which programming paradigm

and communication model each language belongs. However, for all these different

languages, none ideally suit parallel programming. Generally, those which try to

simplify parallel programming often impose abstractions which work well only in

specific cases and those designed for efficiency require the programmer to consider

low level details making programming difficult and error prone. The most common

form of parallel programming (C with MPI) is, as mentioned, the completely wrong

January 18, 2010

2.3. Parallel Paradigms and Languages 28

model. It is too low level and does not provide the necessary abstractions, because

the programmer can very easily get lost in the mechanics of communication. By

referring back to [Skillicorn1998], it is possible to evaluate existing languages with

respect to the six criteria considered in this paper.

HPF CAF ZPL NESL Titanium MPI BSP CILK

Easy to Program Y Y Y N Y N N Y

Software Dev Methodology N N N Y N N N N

Architecture Independent Y Y Y Y Y N N N

Easy to Understand Y Y Y N Y N N Y

Guaranteed Performance N N N N Y Y Y N

Cost Measures N N N N N N Y N

Table 2.2: Parallel Languages considered wrt evaluation criteria

Table 2.2 provides an overview of this evaluation, although whether a parallel lan-

guage or library meets a criteria is contentious in some cases. The paper [Gropp2005]

considers whether or not MPI is easy to program or understand; in this case Gropp

makes note of the fact that the lack of abstractions do make parallel programming

using this a difficult task. Although based upon a somewhat easier communication

model than MPI, BSP is still most commonly used from a low-level sequential lan-

guage such as C. The statements of Gropp [Gropp2005] are true for this model too

- the lack of abstractions imposed by the choice of language when using BSP make

parallel programming difficult. Although Cilk is based upon C, as [Frigo1998] intro-

duces, code written in this language is sequential C code with only two additional,

simple, keywords. Because of this fact the Cilk programmer need not consider in

depth about parallel issues, indeed experience with threading will be sufficient, and

as such it is easy to write parallel code in this language. For functional languages,

such as NESL, the two criteria of “easy to program” and “easy to understand” are

addressed by Hinsen; “Functional programming is very different from traditional

programming and thus requires a lot of learning and unlearning.” [Hinsen2009]

Commonly using the MPI and BSP standards with or basing a language around

C causes another problem, namely that of architectural independence. As Hook

January 18, 2010

2.4. Theories of Programming Languages 29

makes note of in his book “ANSI C and C++ are probably the most unportable

languages that were still intended to be portable.” [Hook2005] Using C it is far too

easy for the programmer to write unportable code, without realising it, thus limiting

their MPI, BSP or Cilk application to a specific architecture. The other languages,

because of their higher-level nature, are all architecturally independent due to the

compiler handling much of the lower-level, and in some case parallel, details.

Considering Skillicorn’s 5th criteria, guaranteed performance, the report [Luecke1997]

concludes that HPF is not practical when is comes to performance for many com-

mon codes. A major contributing factor to this is the use of implicit parallelism,

as [Mozafari2008] makes note, ZPL also greatly makes use of implicit parallelism

and as such the compiler is responsible for many important parallel decisions with

only a limited amount of information to work from. Both these languages suffer

as a result of this decision and as such neither meets the guaranteed performance

criteria. In terms of Co-Array Fortran, whilst is does afford the programmer more

control over parallelism, the compiler is still responsible for a number of important

parallel decisions such as communication, without direction from the programmer

it is often difficult for a machine to optimise this aspect. Dotsenko, one of the CAF

developers at Rice University, makes note “without compile-time optimization of

communication, including vectorization and aggregation, we have not yet realized

our vision of supporting portable high-performance applications written in a natural

style” [Dotsenko2004].

As one can see, no specific language meets all Skillicorn’s criteria in table 2.2.

There have been many technical advances in the field of high performance comput-

ing, however, the programming languages used have lagged behind.

2.4 Theories of Programming Languages

The study of the theories of programming languages is an important one within

the context of this project. The theoretical background to programming language

design is a large, complicated field which ties together a number of different aspects

of Computer Science. Within this section, the theories which are related to the

January 18, 2010

2.4. Theories of Programming Languages 30

creation of a parallel language are studied along with the literature which introduces

them.

[Wirth1974] provides an interesting introduction to the area of programming

language design. Although this reference is quite dated, it mentions numerous use-

ful facets. A main trend in the paper is that simplicity is important, not necessarily

in reducing the number of features but instead keeping the language simple to under-

stand, which it suggests abstraction is useful for. Also mentioned is that a language

should not imply any unexpected features, and that it should be transparent to the

programmer. The author then notes that language design really is closely related

to compiler creation, “a successful language must grow out of clear ideas of design

goals and of simultaneous attempts to define it in terms of abstract structures, and

implement it on a computer.” [Wirth1974] This is interesting, as it states that in

order to create a successful language, a combination of different methodologies are

required, from theoretical to practical. Specifically from this paper it should be

noted that in order to create a useful language then it is required to know how

this is to be used, an efficient reliable compiler is required, as much analysis during

compile time (static analysis) should be performed and a complete simple sketch of

the language should be created before work on the compiler. When considering a

language’s simplicity this is not the lack of features but instead transparency, clarity

of purpose and integrity of concepts.

It is thought that [Wirth1974] is a useful introduction to language design. Even

though this paper is old and some of the examples are slightly out of date, it is

easy to see that much of the advice given by the author is timeless and applies to

all languages. Even though [Wirth1974] was aimed at sequential language develop-

ers, there is no reason why the advice can not be transferred to parallel language

designers albeit with possibly more requirements.

2.4.1 Syntax

“Syntax is the way words are put together in a language to form phrases, clauses,

or sentences.” [Sil1999] The study of syntax is key to programming languages due

to the specification of syntax acting as a basis for language description and tool

January 18, 2010

2.4. Theories of Programming Languages 31

development. It is the norm to specify syntax in terms of a context free grammar.

These grammars are powerful enough to specify many of the languages that are in

use today.

Commonly used to specify a grammar is Backus-Naur Form (BNF). The book

[Reynolds1989] has a short introduction to this using it as a basis for introducing

more complex concepts. When studying the theoretical aspects of programming

languages, it is often inconvenient to have to worry about all the small syntactic

details. Therefore, often an abstract syntax is used, which captures all the impor-

tant syntactic elements but allows the designer freedom from small details such as

parenthesis. [Reynolds1989] covers the topic of syntax, BNF and abstract grammars

sufficiently for use theoretically. This resource also mentions that, as good as syn-

tactic descriptions are, often they can either be meaningless or ambiguous, thus

requiring a better way of describing a language.

It should be noted that there are a number of tools available which will take a

grammar and generate a lexer and parser for it, acting as a good starting point for

a compiler. The compiling book [Aho2006] details, amongst other aspects, this step

of compiler creation. This resource is very useful and, although these tools will not

directly affect the project, it is important to have a good understanding of what is

currently available and how they are used. As [Wirth1974] notes, it is important to

consider the syntax of a language, because a complicated syntax will often produce

a difficult language for a programmer to use.

2.4.2 Semantics

“Semantics refers to the aspects of meaning that are expressed in a language, code, or

other form of representation.” [Wang2007] The study of semantics is key to program-

ming language design, as not only do they act as a specification for a language but

also as a basis for tool development, they allow for certain facets about a language

to be proven and even assist in presentation of the language. There are a number

of different semantic models, each with their own advantages, disadvantages and

researchers. An important part of this survey was not only to comprehend these

different models, but also to understand how the theory is applied in a practical

January 18, 2010

2.4. Theories of Programming Languages 32

way, which is after all of the most relevance in the context of the project.

Axiomatic Semantics

This model of semantics was first introduced by Hoare in 1969 by the paper [Hoare1969].

Hoare was the first person to model these semantics directly to programming lan-

guages, although Floyd first considered this topic in [Floyd1967] referencing to a

simple flowchart. Axiomatic semantics is most useful in proving program properties

and is still popular to this day.

The whole idea of axiomatic semantics is that a program (Q), or portion of a

program has a pre(P) and post(R) condition. This implies that, if the pre condition is

true before execution then the post condition will be true after execution has finished.

It is written commonly as P Q R. Program properties can be proven by providing

a number of axioms to use as a basis for inference. [Hoare1969] has a good example

of a formal proof although in order to prove even a simple lemma, twelve steps are

required, which begs the question whether or not this is practically suitable for a

large program. [Floyd1967] also has a number of different proofs mentioned in the

context of the flowchart language. An interesting remark by Hoare in [Hoare1969] is

where he states that currently (in 1969) programmers tested their code by running

it using different inputs and then modifying it if the desired result is not obtained.

Hoare goes on to explain why this is a bad idea and how proving properties will

outweigh the cost of testing by this method. However, this method of testing is

still very common today and only a small number of programmers actually provide

formal proofs for their programs in a small number of cases. It is interesting that,

although the benefits of this proof approach to testing is obvious, it is still not as

widely used as Hoare foresaw. Skillicorn in [Skillicorn1998] makes note that, as part

of his second criteria (software development methodology), parallel programs should

be correct by construction. He goes on to say that the familiar process of testing and

then debugging is not suited to parallel computing, which echos comments made by

Hoare some 30 years previous.

In comparing the two papers, [Hoare1969] is considered to be more relevant to

this project due to the fact that it actually references to a programming language

January 18, 2010

2.4. Theories of Programming Languages 33

instead of a pseudo language described by a flow chart and small fragments of AL-

GOL as in [Floyd1967]. However, [Floyd1967] does go into detail about program

proving and explains in details different axioms and provides examples as to how

these are used. [Hoare1969] does mention some commonly used iterative program-

ming axioms, such as the axiom of assignment, and a number of general rules within

the context of iterative programming.

In addition to the papers mentioned above, the book [Winskel1993] has a chapter

on the topic, bringing together all the different aspects. Unlike Hoare and Floyd,

the book considers the semantics in the context of a specific state, which is more

realistic to real world languages. This book also mentions proofs in detail and has

numerous examples. It is considered that [Winskel1993] is a powerful resource within

this context and brings together a number of concepts mentioned in [Hoare1969]

and [Floyd1967].

[Winskel1993] also mentions that axiomatic semantics only guarantees partial

correctness. Partial correctness is where, if the program terminates then the result

is the correct one, however it does not guarantee that there is always termination.

Total correctness not only guarantees the correct result, but it also guarantees ter-

mination. Total correctness was introduced by Dijkstra in [Dijkstra1975]. In this

paper, Dijkstra introduces the idea of a guard, which must be true before execution

and satisfies total correctness. The paper goes on to provide a number of examples

with respect to common program constructs and also mentions the weakest precon-

dition, which is the weakest condition which satisfied total correctness. The weakest

precondition is known as a “predicate transformer” because it associates a precon-

dition to any postcondition and the semantics of a specific program or portion is

known sufficiently well when one knows the predicate transformer. Many people

cite [Dijkstra1975] as providing a theoretical basis for today’s imperative sequential

languages. This resource is very helpful and it can be seen why, although only a

small imperative language is considered.

When considering these resources, as already mentioned, it is considered that

[Hoare1969] is more applicable to “modern” programming languages than [Floyd1967].

[Dijkstra1975] is a useful paper and ties together many of the concepts discussed in

January 18, 2010

2.4. Theories of Programming Languages 34

the other two. This paper also applies the semantics to real examples and defines

many core programming constructs such as the alternative and repetitive constructs.

It is believed that [Hoare1969] and [Dijkstra1975] do complement each other well

and will both be considered. Concretely, when initially considering the form that

the language source code will take, Dijkstra’s guarded command language (albeit

with some additions) detailed in [Dijkstra1975] has been used extensively. This has

allowed for a concise description of the source language and also as a basis from

which these semantic ideas can be applied.

Operational Semantics

“Operational Semantics involves giving a precise description of the behaviour of a

program or a system, namely, how it may execute or operate” [Prasad2003] This

semantic model is practically based, with the underlying idea being that at each

point a program has a particular state and as execution progresses the state will

change. This state corresponds to the state of the compiler, and so operational

semantics is useful as a basis for tool development as it provides an unambiguous

language reference. There are a number of different literature resources which have

been used to study this model, each has its own positive and negative attributes.

[Prasad2003] introduces, like much of the literature, Structured Operational Se-

mantics. Description of semantics occurs at different levels of abstraction, which is

useful for different forms of work on the language and, at some abstraction allows

for small details to be ignored and at other levels using the same semantic model

allow for these details to be very much considered. The model adheres to the com-

positionality principal, which says that if the meaning of a set of components can

be deduced then so can the phrase they combine to form. Syntax directed inference

rules are the standard way of presenting the semantics, with many proof techniques

being based on induction of these trees. This model has two broad flavours of ab-

straction. Firstly, big step semantics which provide a complete execution overview

and secondly small step semantics which provide justifications for each step of com-

putation. In order to provide a flexible model, many designers use a mixture of

these two abstraction flavours.

January 18, 2010

2.4. Theories of Programming Languages 35

Simply, operational semantics are expressed with respect to an environment func-

tion which maps variables to values. Big step semantics, as mentioned above specify

the normal form (the result of computation) without any specific information as to

how it is achieved. Small step semantics specify not only this normal form but also

how this can be achieved. Each step in small step semantics reduces a phrase, until

it is no longer reducible (normal form.) A part of a deducable phrase which can be

reduced further is called a redex. There are a number of different reduction strate-

gies available, [Prasad2003] provides as an example for a language with boolean

expressions, compositional evaluation (which evaluates all parts), left sequential

evaluation (which first evaluates the left part and only carries on if required) and

parallel evaluation (which evaluates parts in parallel.)

When considering a complete language there are numerous program constructs

which need to be addressed. A state needs to be provided which relates to the current

state of execution (this is simple for a simple language, but when complexities such as

scope and procedures are added then the state becomes a more complicated function)

and other program constructs such as expressions, numerals, boolean values and

commands (which can be seen as mapping one state into another.)

As mentioned above, there are many different literature resources on this sub-

ject. A resource that has been relied on heavily is [Prasad2003] which acts as a good

reference and provides plenty of examples although many of the related foundation

terms which are used are not explained in detail. [Winskel1993] also has a chapter on

operational semantics, although it is more concise than [Prasad2003] it does intro-

duce many of the important concepts. [Reynolds1989] supplies a sound introduction

to this topic, although at a first read the concepts are theoretically based and require

some work to understand. There are two major issues with [Reynolds1989], firstly

the author does not differentiate between the different flavours to achieve levels of

abstraction, which the other two resources do and secondly the examples rely heav-

ily on language functions already developed using different semantic models, which

means that it is very difficult to simply reread a chapter without re familiarisation

with the preceding chapters. Out of the three resources mentioned, [Prasad2003] is

considered to be the most useful as it describes a complete language with many ex-

January 18, 2010

2.4. Theories of Programming Languages 36

amples considering issues such as scope, parameters and I/O. At this point it should

be noted that, due to the length of inference rules, often operational semantics is

not ideal for presentation purposes, which can be seen from the examples provided

in the literature.

Denotational Semantics

“Denotational semantics is a technique for defining the meaning of programming lan-

guages pinoeered by Christopher Strachey and provided with a mathematical foun-

dation by Dana Scott.” [Tennent1976] This model of semantics allows for the descrip-

tion of a language to be at a more abstract level than its operational counterpart,

where the denotation of an expression is a partial function on states. [Tennent1976]

defines a semantic interpretation function as a mapping between the syntactic con-

struct of the source language into its abstract meaning within the framework of

a mathematical model. This interpretation function is the basis for denotational

semantics.

After deciding upon the syntax of a language, in order to start specifying deno-

tational semantics, appropriate interpretion functions should be given. For example,

a common expression function maps a state to a number and a common command

function maps a state to a state. Depending on the language in question, a state is a

function which maps each variable into a value (e.g. an integer.) In denotational se-

mantics, the symbols [[and]] are used to encapsulate syntactic elements to separate

them. For example if a state σ:S = Var → N, then for any variable name, σ [[name]]

is equal to the contents of name. In order to change a state, σ[[r/name]] represents

the new state, where that value of name is now r. In addition, state transition func-

tions are specified, which result in the state after execution of a certain command.

A complicating factor is the idea of nontermination. If one wishes to consider non-

termination within the context of denotational semantics, then as [Reynolds1989]

explains, the symbol ⊥ is used to denote this and is mapped into a state, thus a

state S is now represented by S⊥

As [Tennent1976] explains, a problem with denotational semantics was that quite

often it is natural to model a language using higher order functions, however these

January 18, 2010

2.4. Theories of Programming Languages 37

cause problems mathematically due to the fact that they allow general recursive

definitions and the fact that this allows self application. [Reynolds1989] also shows

that this is a problem in relation to the while command as if it is defined with

reference to itself, then the semantics is not syntax directed because the meaning

of the phrase is not in terms of exclusively its constituents. Scott has solved this

problem by characterising a class of data types, called domains. The idea behind

domain theory is that a sequence of better and better approximations in a domain

should converge to a limit in the domain. A domain also consists of a bottom, ⊥

which denotes undetermined information which is an approximation of all elements

in the domain and a top ⊤ which represents overdetermined information which all

other elements in the domain are approximates of. An example of a domain is

⊥ ⊑ 1 ⊑ ⊑ i ⊑ ⊤ Building on from domains, is the least fixed point theorem,

stated by [Reynolds1989] that if D is a domain and f a continuous function from

D → D then if f(x) = x and f(y) = y, then x ⊑ y. In this context, Yd is the

function which maps continuous functions from D to D, into their least fixed points.

From this mathematics one can then define recursive definitions, including the while

command.

When considering the difference between the operational and denotational mod-

els, [Tennent1976] mentions that, because nothing is specified about how the func-

tions are computed or represented in denotational semantics. A description using

this model simply requires the implementation to compute the correct result. How-

ever, the operational model formalises the language implementation methods so their

correctness can be verified. It can therefore be viewed that denotational semantics

is more theoretically based around a language than operational semantics. For pre-

sentation reasons, denotational semantics can often be preferable over operational

due to the more succinct nature of them. However, because denotational semantics

does not maintain a notion of state (and this has to be passed to the functions each

time) presenting semantics in this way can sometimes be different to the way that

the definition of the source language has followed with respect to the compilation

tool.

Denotational semantics is very extendable and using the basic building blocks

January 18, 2010

2.4. Theories of Programming Languages 38

considered it is possible to describe complicated languages. An example of this is

both in [Tennent1976] and [Reynolds1989]. [Tennent1976] takes the simple seman-

tics explained and complicates it with the notion of stores, control structures and

procedure calls. Although these subjects make the semantics more complicated, it

is clear what they mean and how they have progressed from the simple concepts

initially discussed. [Reynolds1989] is more complicated on the other hand and, al-

though it covers more detail, the semantics explained takes some work to understand.

However [Reynolds1989] covers much more detail than [Tennent1976], discussing

amongst other things, proofs, arrays, errors and non termination. [Winskel1993]

also has a chapter about denotational semantics. Although this chapter is very sim-

ilar to the other resources, it presents the material with different a emphasis. Unlike

the other two resources, the book does not provide extensive example use of deno-

tational semantics and just limits the consideration to simple imperative languages.

Whereas this approach helps initially, it does not provide the detailed information

which would be required when semantically modelling the source language.

Algebraic Semantics

Algebraic Semantics is a semantics based upon abstract algebras, being primarily

geared towards the formalisation of Abstract Data Types the data and language

constructs are provided algebraic specifications. As [Slonneger1994] explains, a type

is a sort, a sort being composed of a signature and set of equations (or axioms.)

A signature of a specification is a pair, ≪Sorts, Operations≫, where sorts repre-

sents the sorts and operations the functionality. Using this notion complex system

representation can be constructed following sets, their operations and signatures.

However, representing these semantics via sets is conceptually difficult and a

much better way has been developed using a modular approach. In this approach,

the semantic specification is provided using a structured framework, and allows for

complex modular descriptions to be constructed from a number of much simpler

primitive modules. These specifications allow for certain properties to be proven

and also act as a good starting point for tool development. However, one minor

problem is that due to length of each module’s definition and description, in order

January 18, 2010

2.4. Theories of Programming Languages 39

to present a complex system then a large amount of space is required.

The most useful resource found to use within this context was [Slonneger1994].

The chapter of this book firstly introduces the concepts, illustrates these with the

mathematical background and then provides numerous examples to help under-

standing, as well as using this semantics to define a complete language. However,

this resource does not really cover proofs of program properties using this semantics

which is an important aspect.

2.4.3 Calculi for Languages

There are two calculi considered in this section which form the basic building blocks

of language design formalisation.

Lambda Calculus

“Lambda calculus is a formal system designed to investigate function definition,

function application, and recursion.” [Zhu2005] This calculus is used to define se-

mantic abstractions, used in type systems and forms the basis of functional program-

ming languages. This notation allows one to focus on the definition of the function

and also allows functions to be first class values, meaning that, for example, they can

be passed freely to other functions and assigned to variables. This calculus binds a

variable into the body of the function, for example λx.e binds x into the body of e.

Variables which appear in the body and not in the binder are called free variables.

In order to simplify a lambda expression, beta reductions are used, as [Pierce1997]

states, the beta reduction rule is (λx.M) N → [N/x]M, which more informally states

that an expression can be reduced by replacing a redex with the result of replacing,

in the above formalisation, x with N. An expression with no redexes is said to be in

its normal form. It is quite possible that there will be a number of different ways to

apply reduction to a lambda expression however by the Church-Rosser theorem all

reductions on an expression that terminate will produce the same result.

In contrast to reduction, there is also the concept of alpha conversion which

allows one to rename bound variables as long as the target name is not an existing

free variable. As [Pierce1997] formalises, λx.M = λ.([y/x]M) if y is not a free

January 18, 2010

2.4. Theories of Programming Languages 40

variable. The last elementary concept to consider is substitution, where for example

[M/x] N denotes the substitution of M for x in N. [Pierce1997] like many texts

on this material contain substitution rules. As mentioned, lambda calculus is a

powerful abstraction mechanism and functions can provide functions as the result

of their computation. In lambda calculus the transformation of a function requiring

multiple arguments into a function requiring a single argument is called currying. In

this case, the arguments are applied to a function returning the resulting function.

An example is provided in [Meunier1997] where the function mult :: Int → Int →

Int, mult 2 6 will result in 12. However to represent this, mult 2 will result in the

curried function (mult 2) and then this will be applied to 6 in the form ((mult 2)6).

[Pierce1997] mentions a number of applications of lambda. For instance, both

true and false can be represented by λt.λf.t for true and λt.λf.f for false. From

these simple boolean representations, expressions such as conditionals and logical

expression can be constructed. There also exists a concept known as Church Numer-

als which allow one to encode integers, for instance C0 = λz.λs.z and C1 = λz.λs.s

z From church numerals a number of functions can be defined such as arithmetic.

Lastly, recursion in lambda calculus can occur however one can not name lambda

expression due to their anonymity. In order to get past this, we can rewrite the

function so that it takes itself as an argument.

Until this point in the literature review only untyped calculus has been consid-

ered. This can be extended to typed lambda calculus where, for instance λx:Int.e

bound variables are given types. This typed lambda calculus allows us, amongst

other things, to consider type systems within the context of the calculus.

There are many texts dealing with lambda calculus. [Pierce1997] is considered

an excellent resource, and it demonstrates in detail the beta reductions for functions

such as addition for church numerals. [Reynolds1989] also provides a detailed chap-

ter and, in addition to the calculi a link with denotational semantics to interpret

applications as the application of functions to arguments is provided. Both these

texts provide a useful resource, although it is believed that [Pierce1997] gives more

detail to the basic concepts and so helps more as an introductory text.

January 18, 2010

2.4. Theories of Programming Languages 41

Pi Calculus

Pi calculus is an extension of lambda calculus. Pi calculus is a process calculi which

describes concurrent behaviour. This was first described in [Milner1993] by Milner

in 1993. In this calculus, each expression represents a process which runs in parallel

with other processes. Channels exists which allow for processes to exchange messages

which is the only thing observable about a process’s behaviour. A process can read

a variable, write a variable, create a fresh (private) channel, compose itself from two

sub-processes, replicate itself and also become inert (do nothing.)

Using the simple concepts defined above, complicated parallel systems can be

defined. The lambda calculus expression introduced above can be expressed in pi

calculus. As [Pierce1997] notes, true (b) = !b(t,f).t̄ ≺≻ and false (b) = !b(t,f).f̄

≺≻ This calculus is useful for formalising concurrent systems and, in the context of

the parallel language, can be used to describe parallelism to an extent. [Pierce1997]

considers this calculus, although not in particularly great detail and more applica-

tion examples would be useful. [Milner1993] provides much more information and

background to the calculi with some specific application examples. It is believed

that, if this calculus is to be used then [Milner1993] will provide a good basis to

work from.

2.4.4 Types

The idea of associating types with program variables and expressions is an important

one. Not only does this aid the compilation of a language (as it is explicit what

each atom represents), it also allows more easily for program errors to be detected.

For example, if a variable has been typed to be an integer and the programmer

attempts to assign a character to it, then this can be an indication of an error

which can be easily picked up by the compiler. [Cardelli1997] is a useful literature

resource introducing the field, the context within which it sits and also some practical

examples of type systems.

It should be noted that a type system does not necessarily require that a pro-

grammer explicitly gives type information. For example, via type inference, the

January 18, 2010

2.4. Theories of Programming Languages 42

expression x:=33 will provide enough information to the compiler that x should be

an integer. As [Cardelli1997] notes, a language is explicitly typed if types are part

of the syntax and implicitly typed otherwise. As mentioned previously, the idea

behind a type system is to prevent program errors. A trapped error is one which,

when detected forces execution to cease, whereas an untrapped one goes unnoticed.

A safe language does not have the possibility of untrapped errors within it, which

is an important property of many languages (especially a parallel language, where

time really is money!) Untyped languages can enforce safety by extensive runtime

checking, however this has a significant performance hit and type checkers of typed

languages can often produce more efficient results, with much of the analysis being

carried out during compile time (known as static analysis.) A program passing the

type checker is known as well typed.

When designing a type system it is important to consider exactly what this

system will provide. [Cardelli1997] suggests three basic properties that all systems

should provide. Firstly, type systems should be decidedly verifiable meaning that

there should exist an algorithm to ensure that a program adheres to its type rules.

Secondly a type system should be transparent, where a programmer should easily

be able to predict if the typechecker will fail and if so easily discover why. Thirdly,

a type system should be enforceable where type declarations should be statically

checked as much as possible and then dynamically checked if required.

A good place to start when considering a specific type system for a language is to

formalise the system and prove facets such as the system is sound. As [Cardelli1997]

mentions, to formalise a type system we first of all describe its syntax. Next the

scope rules of the language need to be defined which associate identifiers to their

binding locations. After these two initial stages, the type rules of the language can

be defined. Notationally, V:T means that term V has a type T. Associated with

this is also an environment, which stores the types of free variables in the program

segment. The type rules of a language follow an inference based proof and define

the truth of certain judgements based upon smaller component judgements. For

example, if E:Int and P:Int, then E+P:Int. It is the collection of these rules which

form the type system. This type system can then be used as a basis for a number of

January 18, 2010

2.4. Theories of Programming Languages 43

other typing functions, one example being that of a type checker. From type rules,

a number of derivations can be deduced. These derivations mean that, from a few

relatively simple rules complication compositions can be modelled.

As mentioned previously, there are numerous implicitly typed languages avail-

able, where the programmer does not specify the type. In this case, in order to be

a typed language type inference is required. Type inference results in a type, after

applying a number of inference rules to the program being analysed. The inference

rules are based from the typing rules. For example, if there is a type rule saying

that 1:Int, then if an expression a:=1 were encountered, via inference a:Int. Type

inference can be very complicated, especially if there is no type information pro-

vided by the programmer in the source language what so ever. There are a number

of languages which require some information about type, but also allow for much

of the information to be implicit. This information is enough to allow the inference

system to correctly deduce types, yet gives the programmer freedom from having to

explicitly type everything.

[Reynolds1989] provides an extensive number of example type rules for a partic-

ular language and then use these to prove a particular type judgement. Mentioned

is the fact that whether or not a language is explicitly or implicitly typed often

depends on the complexity of the language itself. There is also a notion of subtypes,

which allows for a type to be based upon a more simple one, thus allowing for im-

plicit type coercion. The subtype notation is ≤. For example, A ≤ B means that A

is a subtype of B, or a more concrete example Integer ≤ Real. Both [Reynolds1989]

and [Cardelli1997] explain in detail how to intergrate subtypes into the type rules.

[Cardelli1985] is another literature resource which has been considered when

surveying types. This paper re enforces many of the notions raised by [Cardelli1997]

although there is a large portion considering polymorphic types. “Polymorphic types

may be defined as types whose operations are applicable to operands of more than

one type.” [Cardelli1985] This is contrasted to monomorphic types, which limit to

at most one type. There are two general forms of polymorphism introduced by this

paper, universal and ad-hoc. Within both these categories there are two subcat-

egories. Figure 2.4 provides an overview to these polymorphic classifications. In

January 18, 2010

2.4. Theories of Programming Languages 44

Figure 2.4: Polymorphic types taken from [Cardelli1985]

parametric polymorphism, the purest form, the explicit or implicit type determines

the type of argument for all functions. The other form in this category is inclusion

polymorphism, where an object belongs to many different classes (which is an ex-

ample of subtyping.) Within ad-hoc polymorphism, overloading is where a different

type denotes a different function and the context decides the function, which can

be seen as syntactic sugar. The other form of polymorphism within this category is

coercion, which converts the type of an argument into the type expected. Another

interesting section is where the author notes that a type is simply a set of elements

or values. The universe, U, is the set of everything, with ideals being a subset of U

which obey properties associated with the type system. Therefore a type system is

simply a collection of these ideals, and the notion of a value having a type is simply

membership of that type set.

Within [Cardelli1985] a type expression sublanguage is used to define the set of

types. Using this sublanguage, a toy example language known as “fun”, a typed λ

language to model polymorphism, is used as an example basis. Within this example

language, it is noted that lambda calculus is not sufficient to model polymorphism,

and universal quantification is required, an example provided by [Cardelli1985] is

∀[a], fun(x : a) = x for the identity function. Existential quantification is used for

January 18, 2010

2.4. Theories of Programming Languages 45

data abstraction, for example ∃a.∃b.a x b denotes the set of all ordered pairs.

[Cardelli1997] is a useful, in depth review of typing. This resource is considered

very informative and the examples provided are helpful to illustrate the concepts

being explained. However, these examples are not considered within the whole

evolution of a language, as [Reynolds1989] does and so it is difficult to see from

[Cardelli1997] how this typing formalisation fits in with other theoretical concepts.

However, on the other hand [Cardelli1997] does not get lost in the detail relevant

to other theoretical concepts. [Cardelli1985] is another informative resource which

delves into more detail as to the considerations behind a typing system and provides

many useful examples of using lambda calculus to define the system. However,

[Cardelli1985] considers in great detail Object Oriented notions and, due to the form

of source language, these are not relevant to this project although are interesting

in general. When formalising the type system of the source language then it is

believed that [Cardelli1997] will be most useful as reference material, although the

way [Cardelli1985] describes types as sets and values of a certain type being set

membership is helpful to represent these notions.

Plugable Types

Plugable Types [Bracha2004] allow the language designer to separate the language

from the type system - the (dynamic) type system is kept separate from the language

itself and has no affect on the run time semantics. Using this approach the designer

can use zero, one or many type systems in combination with their language. As

[Bracha2004] argues, mandatory type systems (as in the majority of mainstream

languages) can be considered harmful, as they limit the expressiveness of a language

and can make systems brittle when programmers rely on them to be sound and

complete. It can be seen, if the type system is taken out of the language itself

and provided as a plug-in, how this can result in a much simpler “core” language.

Although being completely dynamic will limit the amount of analysis which can

be performed during compilation, there is certainly merit in this proposal even if

modifications are required to suit it to the domain of parallel computing.

January 18, 2010

2.4. Theories of Programming Languages 46

2.4.5 Program Analysis

The process of program analysis is used to detect errors in a program. The aim

of analysis is to prevent forbidden errors, which are defined as untrapped errors

and a number of trapped errors. A program is well behaved if it does not cause

any forbidden errors to occur. A language for which all its legal programs are well

behaved is known as strongly checked. In order to achieve the detection of errors,

there are two techniques possible, dynamic and static analysis.

Dynamic Analysis

Dynamic analysis is the detection of forbidden errors during program execution.

An advantage to this method is that as the program is running, all the program

attributes are known and a correct analysis check can be made from these. However,

a major downside of dynamic analysis is that it is computationally expensive, which

is key within the context of high performance computing. An example of this cost

is easily seen in languages such as Java. Java performs numerous runtime checking

tasks, such as array bounds checking, conversely many C implementations do not.

The result is that Java has a performance hit, even when combined with advanced

compiler technology, which C does not incur. However forbidden program errors in

Java are less likely and far less significant than in the approach adopted by many C

implementations.

It should be concluded that dynamic analysis is a useful tool if used only when

there is no possibility to perform the analysis during compile time. Within the

context of high performance computing, a forbidden program error can lead to

disastrous results such as a large waste of resource or the incorrect result and as

such are not to be allowed.

Static Analysis

Static analysis is the detection of forbidden errors during program compilation. The

major advantage of this is that, because it only needs to be done once (during pro-

gram compilation), then there will be no reduction in efficiency. However, during

January 18, 2010

2.4. Theories of Programming Languages 47

compilation only a subset of the program state is known and so absolutely correct

analysis is often not possible or would be too resource and time consuming. This

has meant two things, firstly a static analyser must keep track of what it has not

been able to check to mark it for dynamic analysis and secondly a number of anal-

ysis techniques have been developed to help out with this problem of incomplete

information.

One important technique is Abstract Interpretation. “Abstract interpretation

theory formalizes the conservative approximation of the semantics of hardware

or software computer systems.” [Cousot2002] This theory was first introduced in

[Cousot1975] which states that the reason for this interpretation is that fact that

during compile time type verifications are usually incomplete. A program is eval-

uated using abstract values, instead of concrete ones. [Cousot1975] introduces an

abstraction function which maps concrete values to abstract ones. The converse,

a concretisation function is also provided which maps abstract values to concrete

ones. The paper considers a number of interesting abstractions. In order to use

abstract interpretation within the context of loops a problem of termination arises,

which is solved via widening. The symbol for this widening is ∇̄. The different

forms of abstract values are explained via examples, which is very useful to promote

understanding.

[Cousot1975] also considers the idea of an abstract context. “An abstract con-

text is a set of pairs, (i,v) which express that the identifier i has the abstract value v

at some program point.” [Cousot1975] This not only represents a history of abstract

values to being stored, but it also allows one to work with these concepts theoreti-

cally. ̺ is defined as the set of abstract contexts. These concepts introduced form

the basis of abstract interpretation. A common example of abstract interpretation

is within the context of mathematical expressions. For instance, a concrete value

expression might be 5 - 2, instead of caring about the actual operands the analyser

might only care about the sign of the operand. Therefore, applying an abstraction

function would result in + - +. If the analyser wished to avoid negative resulting

numbers, then it would be sufficient to detect errors if, for instance the abstract

expression was - - +. However, if the expression was + - + then an error would

January 18, 2010

2.4. Theories of Programming Languages 48

not be detected without further information. This example illustrates the tradeoff

involved with abstract interpretation, for efficiency of analysis detail is lost.

Due to this loss of detail, it is quite possible that often the analyser will result in

a state where it is undecidable whether or not an error will occur. As [Cousot2005]

considers, there is a concept known as false alarms, where, due to the approximations

made during abstraction, the analyser believes there to be a problem whereas in

reality the concrete values do not cause an error. In this case it is important to

minimise the number of false alarms and, if one does occur, it should not result in

the failure of compilation - at worse some dynamic analysis code should be added.

There have been numerous papers and published details about abstract interpre-

tation. It is considered that [Cousot1975] which first considers this concept provides

a useful introduction and illustrates the power that this technique affords. The ex-

amples in this paper help describe the concepts and their application practically. A

more theoretical paper is [Cousot1977] which applies this interpretation to a wider

variety of issues such as correctness and termination. The paper [Cousot1977] is

useful as it takes the whole approach further. [Cousot2005] is an introduction to

abstract interpretation and is easy to understand, with illustrative examples. Al-

though this third resource [Cousot2005] does simplify the concepts a great deal, it

is believed that simplification is carried too far in some respects and some impor-

tant issues are lost. It can therefore be concluded that each of the three literature

resources considered here have a place and when combined they provide a good

knowledge foundation to the interpretation.

Another powerful technique used, which is mentioned in [Cousot1975], is range

analysis. In range analysis instead of a specific value being stored during analysis,

which is often not achievable, only the range of possible values are stored. Quite

often this range is represented by the smallest possible value and the largest possible

value. Range analysis for integers was first considered in the paper [Wagner2000]

which attempted to use the analysis to detect buffer overruns in C. Range analysis

is an example of abstract interpretation, where, instead of the concrete value being

stored, an abstract value (the possible range) is instead recorded. Range analysis is

used in the LOGS translator [Zhou2005] to perform static analysis. An example of

January 18, 2010

2.5. Popular Parallel Codes 49

the application of range analysis is in detecting array bounds errors, where, if the

range value of the index variable is within the size of the array then an error will not

occur. Likewise, if only one range value (i.e. the highest possible value) is outside

the bounds then dynamic analysis only needs to be carried out for that case thus

saving on dynamic analysis.

When considering the literature available for range analysis, [Zhou2005] is a very

useful example of how range analysis is conducted and the source code described in

this paper offers a practical description. [Cousot1975] is a useful overview, although it

uses range analysis to describe other concepts, and the examples provide illustrations

as to the power of this method.

Static analysis also allows for certain optimisations to be made during compila-

tion time. Depending on the values of variables, quite often items such as control and

iterative structures can be simplified, as well as the value of an expression computed.

It is believed that the rich parallel information available in the source language shall

help with static analysis and thus optimisation, producing target code which is very

efficient.

2.4.6 Summary

From the concepts considered in this section it is clear that the theory of program-

ming language design is a complicated, extensive field. Due to the shear volume of

the field, it is important not to get lost in this theory and ensure that the concepts

do directly relate to this project. Many of the concepts discussed will be used as

tools to present, define and act as a basis for tool development. In the context of

this field, it is not expected that any innovation will occur, as the concepts will be

used in order to innovate in the field of parallel computing.

2.5 Popular Parallel Codes

In order to properly identify what must be supported by a parallel language it is

important to consider existing parallel applications. There are a great number of

parallel code examples to solve “toy” problems. The book [Pacheco1996], provides

January 18, 2010

2.5. Popular Parallel Codes 50

numerous code examples which are very useful to look through in order to under-

stand exactly how programmers are currently writing parallel code and what is

required from a language.

In this section, three applications and one benchmark will be considered which

highlight the advantages of parallel computing. The codes are not only important

for discussion within their own right, but they will also be targets of porting into

the source language.

2.5.1 Gadget-2

The first package to consider is Gadget-2. “GADGET is a freely available code

for cosmological N-body/SPH simulations on massively parallel computers with dis-

tributed memory. GADGET uses an explicit communication model that is imple-

mented with the standardised MPI communication interface. The code can be run

on essentially all supercomputer systems presently in use, including clusters of work-

stations or individual PCs.” [Springel2005] This scientific application is around fifty

thousand lines of C code using the MPI library. The fact that it has taken over ten

years to create this many lines just shows how difficult parallel programming is at

the moment.

Gadget-2 is detailed in [Springel2006]. This literature resource follows the evo-

lution of Gadget-2, from initial design decisions to the current incarnation. There

are evaluations and design decisions included about different algorithms and the

concepts behind them. These slides are very technical with respect to the physics

in places, however, do help to understand the actual code, for instance covered is

the Peano-Hilbert curve, which is used for domain decomposition. There are many

different types of simulations which are all controlled with a parameter file.

An especially interesting section of [Springel2006] details a simulation which ran

on 512 CPUs, required one Terabyte of RAM and took 350 hours of processing time

(28 days). If this simulation had been carried out on a sequential machine, the

results would have taken over 38 years to produce. These figures not only show

the great advantage to parallelism, but also demonstrate that Gadget-2 and MPI

are serious resources, designed for serious work. This resource concludes with the

January 18, 2010

2.5. Popular Parallel Codes 51

evaluation of programming in C, C++ or Fortran, all of which MPI supports. It is

concluded from this that C is most suitable for development.

As part of the Gadget-2 presentation, the scalability and limitations of Gadget-

2 are mentioned. This is a very relevant section due to some of the conclusions

mentioned here affect all parallel, or MPI based programs. In all, Gadget-2 performs

well in terms of scalability for large problems, but not so well for small ones. The

author details that parallelism is hampered by parallel overhead, communication

costs, work imbalance wait times and the existence of serial code. It is suggested

that weak scaling (where as the number of CPUs is increased, so is the problem size)

is preferable to strong scaling (where the problem size remains fixed regardless.)

The paper [Springel2006] is considered very informative. However, this ninety

four page document does cover a lot of different aspects relating to Gadget-2, with

each individual topic only reviewed in a high-level manner. Also, as the resource

was designed for presentation, most likely there is some explanation and further

detail associated with many of the points. In order to get an understanding of how

Gadget-2 works (for porting), then it will be important to study the actual code,

which [Springel2006] does not provide information for.

As mentioned, apart from Gadget-2 providing useful solutions to some parallel

problems, it would also act as a good showcase application for the parallel language

being created. If the parallel segments of Gadget-2 can be rewritten, more succinctly,

in the language then it will help maintenance and development of the code by

scientists. [Baker2006] details a port of Gadget-2 to Java. The aim of this project

has been to illustrate that Java is able to support high performance computing.

The paper initially reproduces much of the information in [Springel2006], albeit

in less detail. In order to successfully port Gadget-2, seventeen thousand lines of

C code were reproduced in Java, with MPI calls being replaced by MPJ Express

[Carpenter2000], which is a Java messaging system based on MPI. The project group

concluded that the Java version was slower by a factor of 2-3, although this was in

part due to the immaturity of support libraries such as MPJ Express. [Baker2006] is

very interesting, although not directly related to this project it does show that the

porting of Gadget-2 is possible and gives some indication as to the work required.

January 18, 2010

2.5. Popular Parallel Codes 52

Unfortunately, the work is not yet complete and thus the authors have not released

their source code.

A major issue of Gadget-2 is that each substantial simulation requires parts of

the package to be recoded. Although written to make this as simple as possible,

departments still need expert parallel programmers well versed in C to carry out

this work.

2.5.2 Fast Fourier Transformation

“The Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform (DFT) and its inverse. FFTs are of great importance to a wide

variety of applications, from digital signal processing to solving partial differential

equations to algorithms for quickly multiplying large integers.” [Lavoie1996] Apart

from being a very commonly used scientific and engineering algorithm, it can also

act as a benchmark program. Most parallel languages especially BSPlib, Cilk and

MPI in the scope of this thesis, have been used to implement FFT and measure its

efficiency. To this end, FFT is an important algorithm and as a “real” scientific

problem it is a good starting place to indicate what the language needs to support.

Due to the frequency upon which FFT calculations occur, there has been much

investigation in this area. The Fastest Fourier Transformation in the West library

(FFTW) is “a comprehensive collection of fast C routines for computing the dis-

crete Fourier transform (DFT) in one or more dimensions, of both real and complex

data, and of arbitrary input size.” [Frigo1999]. A useful resource detailing FFTW

is [Frigo1998-2]. This paper details the ideas behind FFTW, a brief overview, per-

formance analysis and then conclusions. FFTW comprises of a number of different

steps. In order to accomplish computation, the transformation is computed via a

number of different small sections of code. These small sections, termed codelets, are

highly optimised and compose together to form a complete solution. The codelets

have been generated via a specially designed compiler and each one is designed for a

specific purpose. In order to determine which codelets to use, the problem, which is

described in a specific way by the programmer is passed to the planner. The planner

then produces a plan which uses a dynamic programming algorithm to determine

January 18, 2010

2.5. Popular Parallel Codes 53

the fastest combination of codelets. At this point, the plan is then fed into the

executor, which actually calls the required codelets and performs the computation,

after this stage the result of the FFT is provided. As concluded in [Frigo1998-2]

computer architectures are nowadays so complex that manually optimising software

is almost impossible, therefore the FFTW approach produces a high performance

implementation available to almost all FFT problems. The performance results sec-

tion is somewhat sparse, with a diagram detailing evaluation against eleven other

FFT algorithms but without much description or detailed analysis. However, what

the resource does identify is that only the planner and executor need to be con-

sidered as the codelets have been precompiled into C. [Frigo1999] provides detailed

information as to the codelet compiler, whereas this is interesting to read, it is not

considered relevant to the project, but does illustrate that the source language will

require some form of native interface, to call existing C code.

FFTW, in addition to the sequential implementation, has two parallel imple-

mentions using MPI and Cilk. The MPI version is the mature parallel code and

implements sections of a parallel planner and executor, with other sections using

the sequential C code. The Cilk version is much simpler and in an experimental

stage. It is considered that the Cilk code is more suited to use to gain an under-

standing of how FFTW works due to the fact that it is much simpler than the MPI

version.

2.5.3 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a collection of benchmarks written by

NASA’s Advanced Supercomputing division (NAS) in order to evaluate parallel

supercomputers. The latest version of these, NPB 3, contains 11 distinct benchmarks

for which specifications and implementations exist in a variety of languages.

Amongst these benchmarks, the Integer Sort (IS) is the most interesting one in

terms of this project. A relatively simple benchmark, both mathematically and pro-

gramatically, this code will sort integers using a parallel version of bucket sort. The

resource [Baily1994] details the specification of this example, formalising the sorting

method, initial number generator (generating the same input data for each run so

January 18, 2010

2.5. Popular Parallel Codes 54

they are directly comparable) and the verification methods to ensure correct sorting

has been completed. The specification lists five classes of benchmark data, class S

with sixty five thousand numbers, class W with approximately one million numbers,

class A with approximately eight million numbers, class B with approximately thirty

three million numbers and lastly class C with approximately one hundred and thirty

four million numbers. It is the intention that the specific class of experiment can be

tailored to the parallel machine, or that multiple classes can be run.

Along with the specification produced by NAS, there is also a freely available,

official NASA implementation written in C using MPI. It is this code which NASA

suggests using for comparing parallel supercomputers. For this project, it will be

possible to use the code to act as a control and benchmark C-MPI, which will be

directly comparable with versions written in other languages as long as they run on

the same parallel machine. NASA also maintains a database of benchmark results for

different machines. Using this, by taking the timings produced by NASA’s existing

C code it will be possible to get a general idea of how other languages perform by

comparing the timings.

2.5.4 Mandelbrot Set

The Mandelbrot Set is a set of points in the complex plane, the boundary of which

forms a fractal. Computing the mandelbrot set is embarrassingly parallel, each point

can be calculated irrespective of any other point and as such it makes for a very

simple, elegant programming example. Many existing parallel languages have an

implementation of this problem in order to illustrate basic language concepts, with

all computations collected on a single processor and an image such as that in figure

2.5 is produced.

2.5.5 Summary

There are a wide variety of existing parallel codes in daily use. Many of these

are aimed at the scientific community to perform very specific jobs. There is of-

ten not the expertise in other fields to take advantage of parallel computing. A

January 18, 2010

2.6. Conclusions 55

Figure 2.5: Example fractal produced by Mandelbrot Set

parallel program which is 50,000 lines is generally considered to be very large by

many programmers whereas that sort of size is normal in sequential codes. Looking

at these efficient programs it is often evident that the programmer has done some

low level optimisations, for example using pointers, which may achieve some perfor-

mance increase in the short term but make for a much more difficult to maintain

application.

2.6 Conclusions

From reviewing the literature, there is a clear indication that current parallel pro-

gramming languages and models are not sufficient for modern uses and applications.

With the advent of multi core, and soon many core, processors, parallel program-

ming will continue to move from being in the domain of the few experts to that of

general computing and programming. This shift has started to force the industry to

consider these issues, which until now have been considered too difficult to address.

The language design principals and theories which have been considered give a clear

message that languages which seem syntactically distinct can often be viewed and

categorised into a few models.

January 18, 2010

2.6. Conclusions 56

Programmers wish to write code which is simple and efficient; in parallel pro-

gramming these aims are, at the moment contradictory. This is a huge problem,

acting as a barrier to many who wish to take advantage of parallelism. By consider-

ing these principals and ideas it should be possible to identify ways in which these

can be built upon to solve the problem of parallel programming.

January 18, 2010

Chapter 3

Language Definition

3.1 Introduction

In order to solve the problem identified in Chapter 2 the concept of types have been

investigated. The innovation made has been a novel approach to how types are used

and their interaction within programming languages. For purposes of illustrating

and evaluating the proposed approach a language, Mesham, has been created and

is used as vehicle to this end.

In this chapter the novel concept of types will firstly be explained and then,

by providing a high level definition of Mesham, the reader will see how these can

be used practically to solve the issues already identified. As for defining Mesham,

this chapter will detail the type library and core language itself. Further language

specification, specifically the preprocessor and function library, can be found in

Appendix A.

3.1.1 Language Definition

In order to explain many of the syntactic aspects of Mesham, meta characters will

be used. These are detailed in table 3.1 and will be used throughout this chapter.

Each language construct and type will be explained in three parts, firstly the syntax,

then the semantics and lastly example(s) of use. Where program keywords, variables

or types are used within the thesis text these shall be emphasised. In designing

the language and type based paradigm an important consideration has been the

57

3.2. Types 58

programability, by using examples the reader will be able to see how convenient it

is to write code in this way.

Characters Description

{} Optional

{}∗ Zero or more

{}+ One or more

name A variable name

... Continuation

Table 3.1: Meta Characters used in Chapter 3

3.2 Types

3.2.1 Concept

The concept of a type will be familiar to many programmers. A large subset of

languages follow the syntax Type Variablename, such as int a or float b, to allow

the programmer to declare a variable. Such a statement affects both the compiler

and runtime semantics - the compiler can perform analysis and optimisation (such

as type checking) and at runtime the variable has a specific size and format. Con-

sidering these sorts of languages, it can be thought of that the programmer provides

information, to the compiler, via the type. However, there is only so much that

one single type can reveal, and so languages often include numerous keywords in

order to allow for the programmer to specify additional information. Taking C as

an example, in order to declare a variable m to be a character in read only memory

the programmer writes const char m, where char is a type and const an inbuilt

language keyword. In order to extend the language, and allow for extra variable

attributes (such as where a variable is located in the parallel programming context)

then new keywords and statements would need to be introduced, which bloats the

language.

The approach adopted by Mesham is to allow the programmer to encode all

January 18, 2010

3.2. Types 59

variable information, via the type system, by combining different types together to

form a supertype. In the language, const char m becomes var m: Char :: const[],

where var m declares the variable, the operator : specifies the type and the operator

:: combines two types together. In this case, a supertype is formed by combining

the type Char with the type const. It should be noted that some type coercions,

such as Int :: Char are meaningless and so rules exist within each type to govern

which combinations are allowed.

Type precedence is from right to left - in the example Char :: const[], it can

be thought of that the read only attributes of const override the default read/write

attributes of Char. For instance the supertype (type chain) created by A::B::C::D::E

is shown in figure 3.1, where type E is at the head of the type chain.

Figure 3.1: Type Combination Illustration

Using this approach many different attributes can be associated with a variable,

the fact that types are loosely coupled means that the language designers can easily

add attributes (types), and by only changing the type of a variable the semantics

can change considerably. Another advantage is that the rich information provided

by the programmer allows many optimisations to be performed during compilation

that using a lower level language might not be obvious to the compiler.

On a more technical note, the type system implements a number of services.

These are called by the core of the compiler and if the specific type does not honour

that service, then the call is passed onto the next in the type chain - until all are

exhausted. For instance, using the types A::B::C::D::E, if service Q1 was called,

then type E would be asked first, if it did not honour the service, Q1 would be

passed to type D - if that type did not honour it then it would be passed to type C

and so forth.

January 18, 2010

3.2. Types 60

3.2.2 Language Support

In order to support this innovative use of types, there are a number of keywords and

operators built into the core language of Mesham. These allow the programmer the

flexibility to use, combine and refer to types as needed.

A Type

A type can follow a number of different syntactic forms. The abstract syntax of a

type is detailed in listing 3.1. Where elementtype is defined later in this chapter,

varname represents a variable name and type :: type represents type combination

to coerce into a new supertype.

type = elementtype

| compoundtype

| type : : type

| varname

Listing 3.1: Abstract syntax of type

Compound types are dealt with later in this chapter, to give the reader a feeling at

this point they are comprised of a number of different categories.which are detailed

in listing 3.2

compoundtype = a t t r i b u t e

| a l l o c a t i o n

| c o l l e c t i o n

| p r im i t i v e communication

| communication mode

| p a r t i t i o n

| d i s t r i b u t i o n

| composit ion

| extended types

Listing 3.2: Compound type categories

January 18, 2010

3.2. Types 61

Declarations

Syntax

var name{:type};

Where type, as explained, is an elementtype, a compoundtype, variable name or

type :: type. The operator : sets the type and :: is type combination (coercion).

Semantics

This will declare a variable to be a specific type. Type combination is subject to

a number of semantic rules. If no type information is given, then the type will be

found via inference where possible.

Examples

1 var i : In t : : a l l o c a t e d [mu l t ip l e []] ;

Here the variable i is declared to be integer, allocated to all processes. There are

three types included in this declaration, the element type Int and the compound

types allocated and multiple. The type multiple is provided as an argument to the

allocation type allocated, which is then combined with the Int type.

1 var m: S t r ing ;

In this example, variable m is declared to be of type String. For programmer

convenience, by default, the language will automatically assume to combine this

with allocated[multiple] if such allocation type is missing.

Statements

Syntax

name:type;

Semantics

January 18, 2010

3.2. Types 62

Will modify the type of an already declared variable via the : operator. Note, allo-

cation information may not be changed.

Examples

1 var i : In t : : a l l o c a t e d [mu l t ip l e []] ;

2 i :=23;

3 i : i : : const [] ;

Here the variable i is declared to be integer, allocated to all processes and its value

is set to 23. Later on in the code the type is modified to set it also to be constant

(so from this point on the programmer may not change the variable’s value.) In this

third line i:i :: const[]; sets the type of i to be that of i combined with the const type.

Important Rule - Changing the type will not have any runtime code generation

in itself, although the modified semantics will affect how the variable behaves from

that point on.

Expressions

Syntax

name{::type}

Semantics

When used as an expression, a variable’s type can be coerced with additional types

just for that expression.

Example

1 var i : In t : : a l l o c a t e d [mu l t ip l e []] ;

2 (i : : channel [1 , 2]) :=82;

3 i :=12;

January 18, 2010

3.2. Types 63

This code will declare i to be integer, allocated on all processes. On line 2 i ::

channel[1,2] will combine the channel type (primitive communication) just for that

assignment and then on line 3 the assignment happens as a normal integer. This is

because on line 2 we have not set the type of i, just modified it for that assignment.

currentype

Syntax

currentype varname

Semantics

Will return the current type of the variable.

Example

1 var i : In t ;

2 var q : cur rentype i ;

Will declare q to be an integer of the same type as i.

declaredtype

Syntax

declaredtype varname

Semantics

Will return the declared type of the variable.

Example

1 var i : In t ;

2 i : i : : const [] ;

3 i : d ec l a r ed type i ;

January 18, 2010

3.2. Types 64

Here in line 2 the programmer adds the constant type to the variable, however the

type is then reverted back to the declared type (integer) in line 3.

Type Variables

Syntax

typevar name{::=type};

name::=type;

Note how ::= is used rather than :=

typevar is the type equivalent of a new program variable declared using the keyword

var

Semantics

Type variables allow the programmer to assign types and type combinations to vari-

ables for use as normal program variables. These exist only in compilation and are

not present in the runtime semantics.

Examples

1 typevar m: := Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var f :m;

3 typevar q : := dec la r ed type f ;

4 q : :=m;

In the above code example, the type variable m has the type value Int :: allo-

cated[multiple[]] assigned to it. On line 2, the new (program) variable is created

using this new type variable. In line 3, the type variable q is declared and has the

value of the declared type of program variable f. Lastly in line 4, type variable q

changes its value to become that of type variable m. Although type variables can

be thought of as the programmer creating new types, they can also be used like

program variables in cases such as equality tests and assignment.

January 18, 2010

3.3. Type Library 65

3.3 Type Library

In the Mesham approach there is a very clear distinction between the core language

and the library of types. By moving all the complexity of the language into the

types, the result is a simple, elegant language.

3.3.1 Allocation

There are a number of types which the programmer can use to specify how and

where a variable is located within the memory of different processes. Just this task

alone adds many keywords to existing parallel languages which, using the proposed

type approach, is avoided.

Allocated

Syntax

allocated[{type}];

Semantics

This type sets the memory allocation of a variable, which may not be modified once

set.

Example

1 var i : In t : : a l l o c a t e d [] ;

In this example the variable i is an integer. Although the allocated type is provided,

no addition information is given and as such Mesham allocates it to each processor.

Multiple

Syntax

multiple[{type}];

January 18, 2010

3.3. Type Library 66

Semantics

Included in allocated will (with no arguments) set the specific variable to have mem-

ory allocated to all processes within current scope.

Example

1 var i : In t : : a l l o c a t e d [mu l t ip l e []] ;

In this example the variable i is an integer, allocated to all processes.

Commgroup

Syntax

commgroup[process list]

Semantics

Specified within the multiple type, will limit memory allocation (and variable com-

munication) to the processes within the list given in this type’s arguments.

Example

1 var i : In t : : a l l o c a t e d [mu l t ip l e [commgroup [1 , 2]]] ;

In this example there are a number of processes, but only 1 and 2 have variable i

allocated to them.

Single

Syntax

single[{type}]

single[on[{process}]]

Semantics

Will allocate a variable to a specific process. Most commonly combined with the

January 18, 2010

3.3. Type Library 67

on type which specifies the process to allocated to, but not required if this can be

inferred. Additionally the programmer will place a distribution type within single

if dealing with distributed arrays.

Example

1 var i : In t : : a l l o c a t e d [s i n g l e [on [1]]] ;

In this example variable i is declared as an integer and allocated on process 1.

3.3.2 Element Types

An element type is a primitive type given to a variable. Mesham supports a number

of element types, these are detailed in table 3.2.

Type Description

Int Integer

Float Floating point number

Double Double precision number

Bool True or false value

Char A character

String A string of characters

File A file handle

Long A long (64 bit) integer

Table 3.2: Mesham’s element types

Communication in Assignment

When a variable is assigned to another, depending on where each variable is allo-

cated to, there may be communication required to achieve this assignment. Table

3.3 details the communication rules in the assignment assigned variable := assigning

variable. If the communication is issued from MPMD programming style then this

January 18, 2010

3.3. Type Library 68

will be one sided. The default communication listed here is guaranteed to be safe,

which may result in a small performance hit.

Assigned Variable Assigning Variable Semantics

multiple[] multiple[] local assignment

single[on[i]] multiple[] local assignment on process i only

multiple[] single[on[i]] MPI broadcast from process i

single[on[i]] single[on[i]] local assignment on process i

single[on[i]] single[on[j]] sent from j and received by i (i 6= j)

Table 3.3: Element type communication in assignment

Example

1 var a : Int ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] ;

3 var p ;

4 par p from 0 to 3

5 {

6 i f (p==2) b:=p ;

7 a:=b ;

8 } ;

This code will result in a onesided broadcast (due to being written MPMD style in

par loop) where process 2 will broadcast its value of b to all other processes who will

write it into a. As already noted, in absence of allocation information the default

of allocating to all processes is used. In this example the variable a can be assumed

to additionally have the type allocated[multiple].

January 18, 2010

3.3. Type Library 69

3.3.3 Attributes

Const

Syntax

const[]

Semantics

Enforces the read only property of a variable.

Example

1 var a : Int ;

2 a :=34;

3 a : (a : : const []) ;

4 a :=33;

The code in the above example will produce an error. Whilst the first assignment

(a:=34) is legal, on the subsequent line the programmer has modified the type of a

to be that of a combined with the type const. The second assignment is attempting

the modify a now read only variable and will fail.

Tempmem

Syntax

tempmem[]

Semantics

Used to inform the compiler that the programmer is happy that a call (usually

communication) will use temporary memory. Some calls can not function without

this and will give an error, others will work more efficiently with temporary mem-

ory but can operate without at a performance cost. This type is provided because

often memory is at a premium, with applications running towards at their limit.

It is therefore useful for the programmer to indicate whether or not using extra,

January 18, 2010

3.3. Type Library 70

temporary, memory is allowed.

Share

Syntax

share[name]

Semantics

This type allows the programmer to have two variables sharing the same memory

(the variable that the share type is applied to uses the memory of that specified as

arguments to the type.) This is very useful in HPC applications as often processes

are running at the limit of their resources. The type will share memory with that of

the variable name in the above syntax. In order to keep this type safe, the sharee

must be smaller than or of equal size to the memory chunk, this is error checked.

Example

1 var a : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var c : Int : : a l l o c a t e d [mu l t ip l e [] : : share [a]] ;

3 var e : array [Int , 1 0] : : a l l o c a t e d [s i n g l e [on [1]]] ;

4 var u : array [Char , 1 2] : : a l l o c a t e d [s i n g l e [on [1]] : : share [e]] ;

In the example above, the variables a and c will share the same memory. The

variables e and u will also share the same memory. There is some potential concern

that this might result in an error - as the size of u array is 12, and size of e array

is only 10. If the two arrays have different types then this size will be checked

dynamically - as an int in C is usually 32 bit and a char usually only 8 then most

likely this sharing of data would work in this case.

Extern

Syntax

extern[{location}]

Semantics

January 18, 2010

3.3. Type Library 71

Provided as additional allocation type information, this tells the compiler NOT to

allocate memory for the variable as this has been already done externally. The lo-

cation argument is optional and just tells the compiler where the variable is to be

found (e.g. a C header file) if required.

Directref

Syntax

directref[]

Semantics

This tells the compiler that the programmer might use this variable outside of the

language (e.g. Via embedded C code) and not to perform certain optimisations

which might not allow for this.

Example

1 var pid : Int : : a l l o c a t e d [mu l t ip l e []] : : d i r e c t r e f [] ;

2 ccode [” pid=(in t) getp id () ; ” , ”” , ”#inc lude <sys / types . h>” , ”#

inc lude <un is td . h>”] ;

3 p r i n t [”My Process ID i s ” , pid , ”\n”] ;

The code example above illustrates how the Mesham programmer can easily include

native C code in their program, using normal program variables. First the variable

pid is declared to be an integer, allocated to all processes and that it will be refer-

enced directly by native C. The ccode function then allows the programmer to code

directly in C and uses the POSIX function getpid to obtain the process ID of the

current program, which is cast as an integer and stored directly in variable pid. The

last line, once again Mesham code, will display this process ID.

January 18, 2010

3.3. Type Library 72

3.3.4 Collections

Array

Syntax

array[type,d1,d2,...,dn]

Semantics

An array, where type is the element type, followed by the dimensions. The pro-

grammer can provide any number of dimensions to create an n dimension array.

Default is row major allocation (although this can be overridden via types.) In or-

der to access an element of an array, the programmer can either use the traditional

name[index] syntax or, alternatively name#index which is preferred by the thesis

author.

Communication of Assignment

When an array variable is assigned to another, depending on where each variable

is allocated to, there may be communication to achieve this assignment. Table 3.4

details the communication rules for this assignment assigned variable := assigning

variable. As with the element types, default communication of arrays is safe.

Example

Assigned Variable Assigning Variable Semantics

multiple[] multiple[] memory copy

single[on[i]] multiple[] memory on process i only

multiple[] single[on[i]] MPI broadcast from process i

single[on[i]] single[on[i]] local memory copy on process i

single[on[i]] single[on[j]] sent from j and received by i (i 6= j)

Table 3.4: Array type communication in assignment

January 18, 2010

3.3. Type Library 73

1 var a : array [Str ing , 2] : : a l l o c a t e d [mu l t ip l e []] ;

2 (a#0):=” Hel lo ” ;

3 (a#1):=”World” ;

4 p r i n t [(a#0) , ” ” , (a#1) , ”\n”] ;

This example will declare variable a to be an array of 2 Strings. Then the first

location in the array will be set to “Hello” and the second location set to “World”.

Lastly the code will display on stdio both these array string locations followed by

newline.

Row and Col Types

Syntax

row[]

col[]

Semantics

In combination with the array, the programmer can specify whether allocation is

row or column major. This allocation information is provided in the allocation type.

Example

1 var a : array [Int , 1 0 , 2 0] : : a l l o c a t e d [c o l [] : : mu l t ip l e []] ;

2 ((a#1)#2) :=23;

3 (((a : : row []) #1)#2) :=23;

Where the array is column major allocation, but the programmer has overridden

this (just for the assignment) in line 3. If one array of allocation copies to another

array of different allocation then transposition will be performed automatically in

order to preserve indexes.

January 18, 2010

3.3. Type Library 74

Spaceshape

Syntax

spaceshape[type,min1,max1,min2,max2,...,mind,maxd]

Semantics

This is an abstraction for storing data. Often the HPC programmer is dealing with

data in a number of dimensions, this type allows for storing the data at specific

points (and retrieve it) in a d dimensional space. The spaceshape type is an imple-

mentation of a sparse matrix, which are commonly used in the HPC domain.

Example

1 var a : spaceshape [Str ing , 1 , 3 , 0 , 5 , 2 , 5] ;

2 (((a#2)#3.4)#4.23) :=” h e l l o ! ” ;

3 p r i n t [(((a#2)#3.4)#4.23) , ”\n”] ;

3.3.5 Primitive Communication

Primitive communication types ensure that all, safe, forms of communication sup-

ported by MPI can also be represented in Mesham. However, unlike the shared

variable approach adopted elsewhere, when using primitive communication the pro-

grammer is responsible for ensuring communications complete and match up.

Channel

Syntax

channel[a,b]

Where a and b are both distinct processes which the channel will connect.

Semantics

The channel type will specify that a variable is a channel from process a (sender)

January 18, 2010

3.3. Type Library 75

to process b (receiver.) Normally this will result in synchronous communication,

although if the async type is used then asynchronous communication is selected

instead. Note that channel is unidirectional, where process a sends and b receives,

NOT the otherway around.

Example

1 var x : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var p ;

3 par p from 0 to 2

4 {

5 (x : : channel [0 , 2]) :=193;

6 var h e l l o :=(x : : channel [0 , 2]) ;

7 } ;

In this case, x is a channel between processes 0 and 2. In the par loop process 0

sends the value 193 to process 2. Then the variable hello is declared and process 2

will receive this value.

Pipe

pipe[a,b]

Identical to channel, except it is bidirectional rather than unidirectional

Onesided

onesided[a,b]

Very similar to channel, but will perform onesided communication rather than p2p.

This form of communication is less efficient than p2p, but there are no issues such

as deadlock to consider.

January 18, 2010

3.3. Type Library 76

Reduce

Syntax

reduce[root,operation]

Semantics

All processes in the group will combine their values together at the root process and

then the operation will be performed on them. Numerous operations are supported,

such as sum, min, max and multiply.

Example

1 var t : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var x : Int : : a l l o c a t e d [mu l t ip l e []] ;

3 var p ;

4 par p from 0 to 3

5 {

6 x : (x : : reduce [1 , ”max”] ;

7 x:=p ;

8 t :=x ;

9 } ;

In this example, x is to be reduced, with the root as process 1 and the operation

will be to find the maximum number. In the first assignment x:=p all processes will

combine their values of p and the maximum will be placed into process 1’s x. In the

second assignment t:=x processes will combine their values of x and the maximum

will be placed into process 1’s t.

Broadcast

Syntax

broadcast[root]

Semantics

January 18, 2010

3.3. Type Library 77

This type will broadcast a variable amongst the processes, with the root (source)

being that where the proess ID equals the root argument of the type. The variable

concerned must either be allocated to all or a group of processes (in the later case

communication will be limited to that group.)

Example

1 var a : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var p ;

3 par p from 0 to 3

4 {

5 (a : : b roadcast [2]) :=23;

6 } ;

In this example process 2 (the root) will broadcast the value 23 amongst the pro-

cesses, each process receiving this value and placing it into their copy of a.

Gather

Syntax

gather[elements,root]

Semantics

Gather a number of elements (equal to elements) from each process and send these

to the root process.

Example

1 var x : array [Int , 1 2] : : a l l o c a t e d [s i n g l e [on [2]]] ;

2 var r : array [Int , 3] : : a l l o c a t e d [mu l t ip l e []] ;

3 var p ;

4 par p from 0 to 3

5 {

January 18, 2010

3.3. Type Library 78

6 (x : : gather [3 , 2]) := r ;

7 } ;

In this example, the variable x is allocated on the root process (2) only. Whereas r

is allocated on all processes. In the assignment all three elements of r are gathered

from each process and sent to the root process (2) and then placed into variable x

in the order defined by the source’s PID.

Scatter

Syntax

scatter[elements,root]

Semantics

Will send a number of elements (equal to elements) from the root process to all

other processes.

Example

1 var x : array [Int , 3] : : a l l o c a t e d [mu l t ip l e []] ;

2 var r : array [Int , 1 2] : : a l l o c a t e d [mu l t ip l e []] ;

3 var p ;

4 par p from 0 to 3

5 {

6 x : (x : : s c a t t e r [3 , 1]) ;

7 x:= r ;

8 } ;

In this example, three elements of array r, on process 1, are scattered to each other

process and placed in their copy of x.

January 18, 2010

3.3. Type Library 79

Alltoall

Syntax

alltoall[elementsoneach]

Semantics

Will cause each process to send some elements (the number being equal to ele-

mentsoneach) to every other process in the group.

Example

1 var x : array [Int , 1 2] : : a l l o c a t e d [mu l t ip l e []] ;

2 var r : array [Int , 3] : : a l l o c a t e d [mu l t ip l e []] ;

3 var p ;

4 par p from 0 to 3

5 {

6 (x : a l l t o a l l [3]) := r ;

7 } ;

In this example each process sends every other process three elements (the elements

in its r.) Therefore each process ends up with twelve elements in x, the location of

each is based on the source process’s PID.

Allreduce

Syntax

allreduce[operation]

Semantics

Similar to the reduce type, but the reduction will be performed on each process and

the result is also available to all.

Example

January 18, 2010

3.3. Type Library 80

1 var x : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var p ;

3 par p from 0 to 3

4 {

5 (x : : a l l r e d u c e [”min”]) :=p ;

6 } ;

In this case all processes will perform the reduction on p and all processes will have

the minimum value of p placed into their copy of x.

3.3.6 Communication Mode

By default, communication in Mesham is blocking (i.e. will not continue until a send

or receive has completed.) Standard sends will complete either when the message

has been sent to the target processor or when it has been copied into a buffer, on the

source machine, ready for sending. In most situations the standard send is the most

efficient, however in some specialist situations more performance can be gained by

overriding this.

By providing these communication mode types illustrates a powerful aspect of

type based parallelism. The programmer can use the default communication method

initially and then, to fine tune their code, simply add extra types to experiment with

the performance of these different communication options.

Asynchronous

Syntax

async[]

Semantics

This type will specify that the communication to be carried out should be done

so asynchronously. Asynchronous communication is often very useful and, if used

correctly, can increase the efficiency of some applications (although care must be

taken.) There are a number of different ways that the results of asynchronous com-

January 18, 2010

3.3. Type Library 81

munication can be accepted, when the asynchronous operation is honoured then the

data is placed into the variable, however when exactly the operation will be hon-

oured is non-deterministic. Care must be taken if using dirty values which is where

a variable has not yet been synchronised and for some short time has potentially

different unstable values on each process.

The sync keyword allows the programmer to either synchronise ALL or a specific

variable’s asynchronous communication. The programmer must ensure that all asyn-

chronous communications have been honoured before the process exits, otherwise

behaviour is undefined.

Example

1 var a : Int : : a l l o c a t e d [mu l t ip l e []] : : channel [0 , 1] : : async [] ;

2 var p ;

3 par p from 0 to 2

4 {

5 a :=89;

6 var q :=20;

7 q:=a ;

8 sync q ;

9 } ;

In this example, a is declared to be an integer, allocated to all processes, and to

act as an asynchronous channel between processes 0 and 1. In the par loop, the

assignment a:=89 is applicable on process 0 only, resulting in an asynchronous send.

Each process executes the assignment and declaration var q:=20 but only process

1 will execute the last assignment q:=a, resulting in an asynchronous receive. Each

process then synchronises all the communications relating to variable q.

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : async [] ;

3 var c : Int : : a l l o c a t e d [s i n g l e [on [3]]] : : async [] ;

January 18, 2010

3.3. Type Library 82

4 a:=b ;

5 c :=a ;

6 b:=c ;

7 sync ;

This example demonstrates the use of the async type in terms of default shared vari-

able style communication. In the assignment a:=b, processor 2 will issue an asyn-

chronous send and processor 1 will issue a synchronous (standard) receive, which

will block until data is received from processor 2. The second assignment, c:=a,

processor 3 will issue an asynchronous receive and processor 1 a synchronous send,

where processor 1 will block until processor 3 receives the data as variable a still uses,

default, synchronous communication. In the last assignment, b:=c, both processors

(3 and 2) will issue asynchronous communication calls (send and receive respec-

tively.) The last line of the program will force each process to wait and complete all

asynchronous communications.

blocking

Syntax

blocking[]

Semantics

Will force P2P communication to be blocking, which is the default setting

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : b l ock ing [] ;

3 a:=b ;

The P2P communication (send on process 2 and receive on process 1) resulting from

assignment a:=b will force program flow to wait until it has completed. The blocking

type has been omitted from the that of variable a, but is used by default.

January 18, 2010

3.3. Type Library 83

nonblocking

Syntax

nonblocking[]

Semantics

This type will force P2P communication to be non-blocking. In this mode commu-

nication (send or receive) can be thought of as having two distinct states - start and

finish. The nonblocking type will start communication and allows program execu-

tion to continue between these two states, whilst blocking (standard) mode requires

the finish state has been reached before continuing. The sync keyword can be used

to force the program to wait until finish state has been reached.

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] : : nonblocking [] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] ;

3 a:=b ;

4 sync a ;

In the P2P communication resulting from assignment a:=b, process 1 will issue a

non-blocking receive whilst process 2 will issue a blocking send. All non-blocking

communication with respect to variable a is completed by the keyword sync a.

standard

Syntax

standard[]

Semantics

This type will force P2P sends to follow the standard form of reaching the finish

state either when the message has been delivered or it has been copied into a buffer

on the sender. This is the default applied if further type information is not present.

January 18, 2010

3.3. Type Library 84

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] : : nonblocking [] : : s tandard

[] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : s tandard [] ;

3 a:=b ;

In the P2P communication resulting from assignment a:=b, process 1 will issue a

non-blocking standard receive whilst process 2 will issue a blocking standard send.

buffered

Syntax

buffered[{buffersize}]

Semantics

This type will ensure that P2P Send will reach the finish state (i.e. complete) when

the message is copied into a buffer of size buffersize bytes. At some later point

the message will be sent to the target process. If buffersize is not provided then a

default is used.

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : b u f f e r ed [5 0 0] ;

3 var c : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : b u f f e r ed [5 0 0] : :

nonblocking [] ;

4 a:=b ;

5 a:=c ;

The P2P communication resulting from assignment a:=b, process 2 will issue a

(blocking) buffered send (buffer size 500 bytes), which will complete once the mes-

January 18, 2010

3.3. Type Library 85

sage has been copied into this buffer. The assignment a:=c, process 1 will issue

another send this time also buffered but nonblocking where program flow will con-

tinue between the start and finish state of communication. The finish state will be

reached once the value of variable c has been copied into a buffer held on process 2.

ready

Syntax

ready[]

Semantics

The ready type will force P2P Send to start only if a matching receive has been

posted by the target processor. When used in conjunction with the nonblocking

type, communication start will wait until a matching receive is posted. This type

acts as a form of handshaking and can improve performance in some uses.

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : ready [] ;

3 var c : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : ready [] : : nonblocking [] ;

4 a:=b ;

5 a:=c ;

The send of assignment a:=b will only begin once the receive from process 1 has

been issued. With the statement a:=c the send, even though it is non-blocking, will

only start once a matching receive has been issued too.

synchronous

Syntax

synchronous[]

Semantics

January 18, 2010

3.3. Type Library 86

By using this type, the send of P2P communication will only reach the finish state

once the message has been received by the target processor.

Example

1 var a : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : synchronous [] : : b l ock ing

[] ;

3 var c : Int : : a l l o c a t e d [s i n g l e [on [2]]] : : synchronous [] : :

nonblocking [] ;

4 a:=b ;

5 a:=c ;

The send of assignment a:=b (and program execution on process 2) will only com-

plete once process 1 has received the value of b. The send involved with the second

assignment is synchronous nonblocking where program execution can continue be-

tween the start and finish state, the finish state only reached once process 1 has

received the message (value of c.) Incidentally, as already mentioned, the blocking

type of variable b would have been chosen by default if omitted (as in previous

examples.)

1 var a : Int : : a l l o c a t e d [s i n g l e [on [0]] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [1]] ;

3 a:=b ;

4 a :=(b : : synchronous []) ;

The code example above demonstrates the programmer’s ability to change the com-

munication send mode just for a specific assignment. In the first assignment, process

1 issues a blocking standard send, however in the second assignment the communi-

cation mode type synchronous is coerced with the type of b to provide a blocking

synchronous send just for this assignment only.

January 18, 2010

3.3. Type Library 87

3.3.7 Partition

Often in data parallel HPC applications the programmer wishes to split up data in

some way, shape or form. This is often a difficult task, as the programmer must

consider issues such as synchronisation and uneven distributions. Mesham provides

types to allow for the partitioning and distribution of data, the programmer needs

just to specify the correct type and then behind the scenes the compiler will deal

with all the complexity via the type system. It has been found that this approach

works well, not just because it simplifies the program, but also because some of the

(reusable) codes associated with parallelization types are designed beforehand by

expert system programmers. These types tend to be better optimized by experts

than the codes written directly by the end programmers.

When the programmer partitions data, the compiler splits it up into blocks

(an internal type of the compiler.) The location of these blocks depends on the

distribution type used - it is possible for all the blocks to be located on one process,

on a few or on all and if there are more blocks than processes they can always

“wrap around.” The whole idea is that the programmer can refer to separate blocks

without needing to worry about exactly where they are located, this means that it’s

very easy to change the distribution method to something more efficient later down

the line if required.

The programmer can think of two types of partitioning - partitioning for distri-

bution and partitioning for viewing. The partition type located inside the allocated

type is the partition for distribution (and also the default view of the data.) How-

ever, if the programmer wishes to change the way they are viewing the blocks of

data, then a different partition type can be coerced. This will modify the view of

the data, but NOT the underlying way that the data is allocated and distributed

amongst the processes. Of course, it is important to avoid an ambiguous combina-

tion of partition types. In order to access a certain block of a partition, simply use

array access # or [] i.e. (a#3) will access the 3rd block of variable a.

In the code var a:array[Int,10,20] :: allocated[A[m] :: single[D[]]];, the variable

a is declared to be a 2d array size 10 by 20, using partition type A and splitting

the data into m blocks. These blocks are distributed amongst the processes via

January 18, 2010

3.3. Type Library 88

distribution method D.

In the code fragment a:(a::B[]), the partition type B is coerced with the type of

variable a, and the view of the data changes from that of A to B.

Horizontal

Syntax

horizontal[blocks]

Where blocks is number of blocks to partition into.

Semantics

This type will split up data horizontally into a number of blocks. If the split is

uneven then the extra data will be distributed amongst the blocks in the most ef-

ficient way in order to keep the blocks a similar size. The figure 3.2 illustrates the

horizontal partitioning of an array into three blocks.

Figure 3.2: Horizontal Partitioning of data

Communication

There are a number of different default communication rules associated with the

horizontal partition, based on the assignment assigned variable:=assigning variable

which are detailed in table 3.5. As in the last row of table 3.5, if the two partitions

are the same type then a simple copy is performed. However, if they are different

then an error will be generated as Mesham disallows differently typed partitions to

be assigned to each other.

January 18, 2010

3.3. Type Library 89

Assigned Variable Assigning Variable Semantics

single partition Gather

partition single Scatter

partition partition Local Copy

Table 3.5: Partition type communication in assignment

Horizontal blocks also support .high and .low, which will return the top and bottom

bounds of the block

Vertical

Same as horizontal, but will partition vertically rather than horizontally. Figure 3.3

illustrates partitioning an array vertically into 4 blocks.

Figure 3.3: Vertical Partitioning of data

Arraymapped

Syntax

arraymapped[blocks,indexesperprocess,indexes]

Semantics

Given an index list (integer array), this type will move each element of a block to

January 18, 2010

3.3. Type Library 90

its new position based on this list. Moving between blocks, and any communication

required, is automatically dealt with.

3.3.8 Distribution

Evendist

Syntax

evendist[]

Semantics

Will distribute data blocks evenly amongst the processes. If there are too few pro-

cesses then the blocks will wrap around, if there are too few blocks then not all

processes will receive a block. Figure 3.4 illustrates even distribution of 10 blocks of

data over 4 processes.

Figure 3.4: Even distribution of 10 blocks over 4 processes

January 18, 2010

3.3. Type Library 91

Example

1 var a : array [Int , 1 6 , 1 6] : : a l l o c a t e d [row [] : : h o r i z on ta l [4] : :

s i n g l e [evend i s t []]] ;

2 var b : array [Int , 1 6 , 1 6] : : a l l o c a t e d [row [] : : v e r t i c a l [4] : :

s i n g l e [evend i s t []]] ;

3 var e : array [Int , 1 6 , 1 6] : : a l l o c a t e d [row [] : : s i n g l e [on [1]]] ;

4 var p ;

5 par p from 0 to 3

6 {

7 var q :=(((b#p)#2)#3) ;

8 var r :=(((a#p)#2)#3) ;

9 var s := ((((b : : h o r i z on ta l [])#p)#2)#3) ;

10 } ;

11 a:=e ;

In this example (which involves 4 processors) there are three arrays declared,

a, b and e. Array a is horizontally partitioned into 4 blocks, evenly distributed

amongst the processors, whilst b is vertically partitioned into 4 blocks and also

evenly distributed amongst the processors. Array e is located on processor 1 only.

All arrays are allocated row major. In the par loop, variables q, r and s are declared

and assigned to be values at specific points in a processor’s block. Because b is

partitioned vertically and a horizontally, variable q is the value at b’s block memory

location 11, whilst r is the value at a’s block memory location 35. On line 9, variable

s is the value at b’s block memory location 50 because, just for this expression, the

programmer has used the horizontal type to take a horizontal view of the distributed

array. It should be noted that in line 9, it is just the view of data that is changed,

the underlying data allocation is not modified. In line 11 the assignment a:=e, as

per table 3.5, results in a scatter.

January 18, 2010

3.3. Type Library 92

3.3.9 Composition

Record

Syntax

record[name1, type1,name2,type2,.....,named,typed]

Semantics

The record type allows the programmer to combine d attributes into one, new type.

There can be any number of names and types inside the record type. A record type

is very similar to a typedef structure in C. To access the member of a record use the

dot, .

Example

1 var complex : r ecord [” r ” , Float , ” i ” , Float] ;

2 var person : record [”name” , Str ing , ”age ” , Int , ” gender ” ,Char] ;

3 var a : array [complex , 1 0] ;

4 (a#1) . i :=22 .3 ;

5 var b : complex ;

6 var me : person ;

7 me . name:=” n ick ” ;

In the above example, complex (a complex number) is a record with two float ele-

ments, i and r. The variable b is defined as a complex number and a as an array of

these numbers. The variable me is of type person.

Reference Record

Syntax

referencerecord[name1, type1,name2,type2,.....,named,typed]

Semantics

The record type may NOT refer to itself (or other records) where as reference records

January 18, 2010

3.3. Type Library 93

support this, allowing the programmer to create data structures such as linked lists

and trees. There are some added complexities of reference records, such as commu-

nicating them (all links and linking nodes will be communicated with the record)

and freeing the data (garbage collection.) This results in a slight performance hit

and is the reason why the record concept has been split into two types.

Example

1 var node : r e f e r e n c e r e c o r d [”prev” , node , ”data ” , Int , ” next” , node] ;

2 var head : node ;

3 head := nu l l ;

4 var i ;

5 for i from 0 to 9

6 {

7 var newnode : node ;

8 newnode . data := i ;

9 newnode . next :=head ;

10 i f (head != nu l l) head . prev :=newnode ;

11 head :=newnode ;

12 } ;

13

14 while (head != nu l l)

15 {

16 p r i n t [head . data , ”\n”] ;

17 head :=head . next ;

18 } ;

In this code example a doubly linked list is created, and then its contents read node

by node.

January 18, 2010

3.4. Core Language 94

3.4 Core Language

3.4.1 General

Sequentially, the core language looks similar to an imperative language such as C.

Each program statement is joined via sequential composition ; or parallel compo-

sition ‖. In order to call functions (either user defined or language predefined) the

programmer should use the syntax fnname[args].

3.4.2 Declaration

Syntax

var name{:=value};

Semantics

Will define the variable in the current environment and assign a value to it if provided

Examples

1 var a ;

2 var b :=23;

In this example variable a is defined, but no value associated. Variable b is defined

to be the value 23 and, by type inference, has type Int.

Assignment

Syntax

lvalue:=rvalue; (where rvalue is a variable or value, lvalue is a variable)

Semantics

rvalue is assigned to lvalue

January 18, 2010

3.4. Core Language 95

Examples

1 var a ;

2 var b :=99;

3 a:=” h e l l o ” ;

In this example variable a is defined, but no value associated initially. As the

program progresses the string “hello” is assigned to a and by type inference the

type of this variable becomes String. Variable b is defined to be the value 99 and,

by type inference, has type Int.

3.4.3 Statements

Body

Syntax

body = statement | (body ; body)

Semantics

A variety of Mesham’s statements include with them a code body.

Conditional

Syntax

if (condition)

then-body;

{ else

else-body;}

Semantics

If the condition is true then execute the then-body, otherwise execute the else-body

(if it exists.)

January 18, 2010

3.4. Core Language 96

Loops

Syntax

while (condition)

while-body;

for i from a to b

for-body;

Semantics

These will loop whilst the condition holds. The for loop can be thought of as

syntactic sugar for a while loop, incrementing the variable after each pass.

Break

Syntax

break;

Semantics

Will “break” out of the directly enclosing loop.

Try

Syntax

try

try-body;

catch (error string)

error handing code;

Semantics

Will execute the code in the try-body and handle any errors. This is very important

in parallel computing as it allows the programmer to easily deal with any commu-

nication errors that may occur.

January 18, 2010

3.4. Core Language 97

String Description

“” All errors

“Array Bounds” Accessing an array outside its bounds

“Divide by zero” Divide by zero error

“Memory Out” Memory allocation failure

“root” Illegal root process in communication

“rank” Illegal rank in communication

“buffer” Illegal buffer in communication

“count” Count wrong in communication

“type” Communication type error

“comm” Communication communicator error

“truncate” Truncation error in communication

“Group” Illegal group in communication

“op” Illegal operation for communication

“arg” Arguments used for communication incorrect

Table 3.6: Error strings supported by Mesham

Error Strings

Table 3.6 lists all the error strings built into Mesham. The programmer can specify

additional error strings simply by throwing them.

Throw

Syntax

throw error string;

Semantics

Will throw the error string, and either cause termination of the program or, if caught

by a try catch block, will be dealt with.

January 18, 2010

3.4. Core Language 98

Example

1 try

2 {

3 throw ”an e r r o r ”

4 } catch ”an e r r o r ” {

5 p r i n t [”Error occurred !\n”] ;

6 } ;

In this example, a programmer defined error (an error) is thrown and caught.

Parallel Composition

Syntax

a-body ‖ b-body

Semantics

The parallel equivalent of sequential composition, code blocks a-body and b-body will

execute at the same time on different processors.

Example

1 var j :=23 | | (var q :=9; p r i n t [q , ”\n”])

One process will declare j to be 23, whilst the other will declare q to be 9 and

display it.

Par Loop

Syntax

par p from a to b

par-body;

January 18, 2010

3.4. Core Language 99

Semantics

The parallel equivalent of the for loop, each “iteration” will execute concurrently on

different processes. This allows the programmer to write code MPMD style, with

the limitation that bounds a and b must be known during compilation. All (variable

sharing) communication in a par loop is performed using one sided communication,

whereas variable sharing SPMD style is performed using synchronous communica-

tion for performance reasons. A par loop over n processors is a more convenient

way of writing out the body n times using parallel composition.

Example

1 var p ;

2 par p from 0 to 10

3 {

4 p r i n t [” Hel lo from proces s ” ,p , ”\n”] ;

5 } ;

The code fragment will spawn 11 processes (0 to 10 inclusive) and each will display

a message.

Process Selection

Syntax

proc n

proc-body;

where n is a variable or value

Semantics

This will limit execution of a block to a certain process

Example

January 18, 2010

3.4. Core Language 100

1 proc 0

2 {

3 p r i n t [” Hel lo from 0\n”] ;

4 } ;

5

6 proc 1

7 {

8 p r i n t [” h e l l o from 1\n”] ;

9 } ;

The code example will run on two processes, the first will display the message Hello

from 0, whilst the second will output the message hello from 1.

Synchronisation

Syntax

sync {name};

Semantics

Will synchronise processes where they are needed. For instance, if using the asyn-

chronous communication type, the programmer can synchronise with a variable

name and the keyword will ensure all communications of that variable are up to

date. One sided communication (variable sharing MPMD style in a par loop) is also

linked into this keyword and it will ensure all communication is completed. With-

out a variable will synchronise all outstanding variables that need synchronising. If

a process has no variables that need syncing then it will ignore this keyword and

continue.

Skip

Syntax

skip;

January 18, 2010

3.4. Core Language 101

Semantics

Does nothing

3.4.4 Functions

Function

Syntax

function returntype name[arguments]

function-body;

Semantics

In a function all arguments are pass by reference (even constants). If the type of

argument is a type chain (requires ::) then it should be declared in the body

Example

1 funct i on Int add [var a : Int , var b : Int]

2 {

3 return a + b ;

4 } ;

This function takes two integers and will return their sum.

The main function

Returns void, and like C, it can have either 0 arguments or 2. If present, the first

argument is number of command line interface parameters passed in, 2nd argument

is a String array containing these. Location 0 of the String array is the program

name.

3.4.5 Supported Operators

Mesham supports a variety of operators, these are detailed in table 3.7.

January 18, 2010

3.5. Conclusion 102

Operator Description

+ Addition

- Subtraction

* Multiplication

% Division

≪ Bit shift to left

≫ Bit shift to right

== Test for equality

!= Test for inverse equality

= Test of equality on strings

≺ Test lvalue is smaller than rvalue

≻ Test lvalue is greater than rvalue

≤ Test lvalue is smaller or equal to rvalue

≥ Test lvalue is greater or equal to rvalue

‖ Logical OR

&& Logical AND

Table 3.7: Operators supported by Mesham

3.5 Conclusion

As has been seen, Mesham is a language which utilises the type system to provide

the expressiveness required when dealing with parallel programming. Other parallel

languages require some mechanism for parallelism but whether this is provided for

via keywords, functions or implicitly each has major downsides. By moving the

complexity out into the type system, not only does this make the programmer’s

job easier (once they have learnt the new paradigm) but it also makes the language

simpler to design and implement. The core language of Mesham is actually very

simple, and by using the type-based approach it means that modifying the parallel

aspects is simple to do by adding, removing or editing loosely coupled types only.

January 18, 2010

Chapter 4

Implementation

4.1 Introduction

“A successful language must grow out of clear ideas of design goals and of simulta-

neous attempts to define it in terms of abstract structures, and implement it on a

computer.” [Wirth1974] For all the language definition provided in Chapter 3, if it

is not possible to implement then Mesham is of little use. This chapter provides an

overview of the implementation, not only of the compiler itself but also important

choices made about the target code.

4.2 Literature Review

In order to implement a compiler and produce highly efficient target code a number

of existing literature resources have been employed to act as a solid foundation to

the process. These are detailed in this section.

4.2.1 Flexibo

“Flexibo is an executable object-oriented specification language designed for open-

source software development with different levels of trust in a decentralised pro-

gramming environment.” [Chen2004-2] Flexibo is an interpreted language designed,

amongst other things, to be used to write translation tools. The type system of

Flexibo is dynamic, allowing user defined types to be created during runtime, which

103

4.2. Literature Review 104

provides the programmer with a degree of power and flexability. In order to form

the basis of a compilation tool, Flexibo provides a reflection system. “Reflection

provides a way to examine and manipulate the runtime environment programmati-

cally. This has several benefits, such as being able to discover types, methods, and

properties at runtime; being able to access and manipulate attributes at runtime;

and being able to invoke new methods at runtime.” [Harrison2003] Within the con-

text of Flexibo, each program construct can be viewed as an object of a particular

reflection class and new reflection classes and thus source language constructs can

be defined by the programmer. Flexibo is important with respect to this project, as

it will be the language used for the creation of the translation tool.

The reflection system of Flexibo provides for a compilation tool quite different

from existing tools. Instead of defining the language syntactically and then using a

lexer and parser to work on the syntax, the source language of a Flexibo compiler

has completely flat syntax and the translation is carried out from the semantics. An

advantage to this approach is that if a language mechanism is to be added, modified

or deleted, then substantial changes are not required to a lexer and parser. Taking

this approach to compiling does not mean that there are no restrictions to syntax

combination, as the compiler maintains a state it is quite easy to deduce what has

come previously and using concepts such as a labelled transition system [Prasad2003]

it is possible to create a graph of allowed syntactic combinations.

The translator described in [Zhou2005] has been written in Flexibo. This trans-

lator introduces a number of comfortable language mechanisms, such as types and

LOGS specific constructs. The translator is far from being a polished finished prod-

uct, however it demonstrates well the translation techniques used and, as it was

written by the developers of Flexibo, it also illustrates what the language is capable

of and how. As mentioned previously, the translator of [Zhou2005] uses abstract

interpretation and range analysis, it is interesting to view how this is implemented.

It has been decided to start from scratch with this project, however, the existing

LOGS translator acts as a good illustration to both what is required process wise

by the compiler and what can be done better.

Another translator [Brown2006] has been written in Flexibo, in this case to trans-

January 18, 2010

4.2. Literature Review 105

late an imperative subset of Flexibo into efficient C code. The translator is much

larger than the one in [Zhou2005] and translates a larger source language, although

it is no where near as well written or illustrative of good analysis techniques. From

these two translators, it can be concluded that Flexibo is certainly up to the job of

providing a complex compilation tool. From the short-comings of [Brown2006] it can

be seen that good software engineering techniques are important when constructing

a compilation tool, due to the complexity and size of the tool to be produced.

[Chen2004-2] is a relevant paper describing the language. However, this paper

is aimed at describing the innovative aspects of the language and does not provide a

great amount of detail towards actually writting Flexibo code. Because of the new,

experimental nature of the language there are no manuals or particularly detailed

examples apart from the two translators. [Zhou2005] and [Brown2006] will be used

extensively, as will the source code of Flexibo, as a reference to programming the

language. This task is made harder due to the fact that Flexibo does not provide

particularly useful error messages, so as noted a good software engineering process

is essential.

4.2.2 C Programming

As mentioned previously, due to efficiency, writting programs using a combination

of C with a parallel programming library (such as MPI) is common. Due to this

efficiency and the maturity of MPI, it has been decided that this combination will

be used as the target language for the compiler. On this note it will be important

to be able to write efficient, safe C code and thus gaining a high understanding of

C and MPI is critical. There are a number of resources available for use to this end.

In order to learn C a book [Kernighan1989] has been used. This book, written

in part by the creator of C, is considered a core text and is hugely useful not just as

a guide but also as reference material. The downside to [Kernighan1989] is that it is

somewhat out of date, it covers C89 but not later versions of the standard. Having

said that combined with other reference material it is considered an invaluable re-

source. A web based resource has been found at [Leslie2005] which not only provides

the usual general information but also has a quick reference, with examples, to the

January 18, 2010

4.2. Literature Review 106

POSIX standard C functions also. A downside to [Leslie2005] is that it is still very

much in production and there are parts which are unfinished nor does it cover the

standard in as much detail as [Kernighan1989]. In addition, being a quick reference

guide, it does not go into the amount of detail sometimes required. Lastly, the C

FAQ [cFAQ] provides many answers to common problems and is useful as both a

knowledge base and debugging guide.

In order to learn how to use the Message Passing Interface [MPI1995] practically

the book, [Gropp1999], is considered a core text. This resource provides the reader

with basic, intermediate and advanced details about MPI 1. Associated with this

book are number of web based exercises which can be used to help both with practical

knowledge about MPI and also assist in learning C. As noted in Section 2.5, the

examples of [Pacheco1996] are also a very useful resource, both to use as a base for

practising C programming and MPI function usage.

4.2.3 Compiler Creation

In Section 2.4 a number of theoretical concepts and their literature have been con-

sidered and discussed. However, in order for this project to be a success, it shall be

important to use these practically to achieve an efficient, reliable compilation tool.

As previously noted, [Aho2006] provides an in depth introduction to the topic of

compiler construction and is considered by many as a core text in this area. One

downside of [Aho2006], in reference to this project, is that it considers the more tra-

ditional compiler approach rather than the reflection approach adopted here. Having

said that, there is considerable cross over and as such the text is still very relevant.

A useful resource is [Zhou2005]. This paper details the existing LOGS compila-

tion tool and notes what techniques were used for analysis. The LOGS translator

demonstrates the practical use of abstract interpretation and range analysis, which

is considered both interesting the useful to use as an example. Due to the fact that

the tool described was written in Flexibo, like the tool for this project, the literature

is directly relevant and the tool might even provide some reusable functionality.

Another book [Terry1986] has also been used. This book is a practically oriented

introduction to the topic and uses Pascal [Jensen1991] to illustrate the techniques

January 18, 2010

4.3. Overview 107

discussed. This book is very much syntax oriented, with little information about

other translation phases such as static analysis. The book also considers in detail

assemblers, which is not relevant to this project. With that in mind however there

are some useful introductory segments which consider the compilation as a whole.

For instance, the book introduces the term of bootstrapping, where a source language

is translated into a target language, which is then used as the source language for

another translator and so on. This bootstrapping follows the process which will

be implemented by this project. It can be concluded that the book provides for a

useful introduction, however many of the topics considered are either too simple or

not relevant with regard to this project. In addition, the large amount of concrete

Pascal source code used to illustrate points and at the end of each chapter requires

expertise in both programming and Pascal, it would have been better if the author

had used pseudo code instead.

4.3 Overview

In the domain of parallel computing, in construction of the compiler there have been

a number of important requirements.

• Simple to compile

• Executable simple to run

• Portable

• Run on multi-core machines

The core translator produces ANSI standard C99 C code which uses the Message

Passing Interface (MPI) version 2 for communication. On the target machine, an

implementation of MPI, such as OpenMPI, MPICH or a vendor specific MPI is

required and as long as they implement MPI-2 they will be compatible with the

generated code. The language runtime library must also be available, which contains

language functionality support. Figure 4.1 details an overview of this process.

January 18, 2010

4.3. Overview 108

Figure 4.1: Overview of Compilation Process

The resulting executable can be thought of as any normal executable, and can be

run like any other executable with the program automatically spawning the number

of processors required. Additionally, the executable can also be run via the MPI

daemon, and may be instigated via a process file or queue submission program

which is common practice for execution on a cluster. It should be noted that, as

long as the MPI implementation supports multi-core, then the code can be executed

properly on any multi core machine with the processes wrapping around the cores

(for instance 2 processes on 2 cores is 1 process on each, 6 processes on 2 cores is

3 processes on each.) This adds additional flexability to the language without any

recoding being required for different architectures; although the programmer might

experiment with different types to improve efficiency this will not affect correctness.

The translator itself, as detailed in figure 4.2 is contained within a number of

different phases. Firstly, the Mesham code goes through a preprocessor, written in

Java, which will do a number of actions such as adding scoping information and

honouring preprocessor directives. When this is completed the code is then sent to

the translation server - from the design of Flexibo, the language the translator is

written in, the actual translation is performed by a server listening using TCP/IP.

This server can be on the local machine, or a remote one, depending on the network

configuration. Once translation has completed, the generated C code is sent back to

January 18, 2010

4.4. Preprocessor 109

Figure 4.2: Overview of Translator

the client via TCP/IP and from there can be compiled. The most important benefit

of this approach is flexibility Mesham code can be compiled and executed via the

command line or a web based interface, with scope for further support.

4.4 Preprocessor

The preprocessor acts to turn Mesham source code into a slightly modified form

understandable by the Flexibo reflection system. Written in Java, this stage of

compilation performs a number of important jobs such as adding scope information,

honouring preprocessor directives (to include other source code files) and turning

some shortened, more convenient syntax into its complete form. The preprocessor

has been designed to be lightweight, efficient and simple to modify. Internally,

pattern matching is used to find specific syntactic atoms and apply rules to them.

4.5 Translator

The actual translator is written in a language called Flexibo. After passing through

the preprocessor, the code is then fed into the Flexibo translation system. Flexibo

is an executable object-oriented specification language that supports open-source

January 18, 2010

4.5. Translator 110

software development in a decentralised multi-user environment with different levels

of trust. Critically, with its reflection system, it is designed to be used to prototype

and rapidly develop compilers. By creating subclasses of Flexibo’s reflection classes

the programmer is able to add their own specific functionality, with the language

taking care of activities such as lexing and parsing. For instance the class SemBi-

naryCondition is used by Flexibo to represent conditional statements, by creating a

subclass it is possible to add specific methods which made up the translation system.

In designing the compiler there was the aim of creating a flexible system, which

could handle major changes to the language design. To this end the translator was

split into three distinct parts - the core, the type library and the function library.

The core, containing support for language statements (Section 3.4) and naturally

tightly coupled, has been designed to contain minimal code. The complexity of the

language and majority of support for parallelism is contained within the type library.

The only interaction these two systems have is via a number of service calls, to and

from the core to the library. Each type is similarly linked to other types via these

same service calls. The major advantage of this approach is that adding, removing

and modifying the majority of the language (the types) is very simple, and there is

no worry of side effect. It was found that this was of great advantage in creating

the compiler. The function library contains language defined functions, such as

mathematical support and IO, similar to the type library, these functions honour

specific services called from the translator core. This process can be seen in figure

4.3, which illustrates the concept. As can be seen the type and function libraries

communicate, if required, via the translator core which will marshall messages.

In designing the type library as explained in Section 3.3 additional implementa-

tion issues than simply using an OO approach were found. As already explained,

a variable’s type is many individual types connected together, the concept is when

a service is passed to the supertype if the first type in the chain does not honour

it, then this is passed to the next type, if this does not honour it then it is passed

to the next and so on. If no types in the supertype honour the service then at the

end of the chain a set of defaults for each service are provided. Services are hon-

oured via methods, for instance the service generateAssignment is honoured by a

January 18, 2010

4.5. Translator 111

Figure 4.3: Interaction of translator core and libraries

method called generateAssignment which takes two arguments. Initially this looked

like a traditional OO class hierarchy, with types forming subclasses, however as the

Mesham programmer is allowed to combine types in many different ways this re-

quires a much more dynamic approach. Rather than coding into the translator all

the different possible type combinations (via class hierarchies) which would be error

prone and tiresome, it was decided to allow these classes to “connect” to each other

dynamically. To facilitate this, each type is a subclass of the coretype class. When

a new type is combined the last type in the chain’s coretype maintains a reference

to this next type. The coretype honours all service calls and passes them into the

next type, the assumption being that if the type honours a specific service call then

this method will have been overridden and as such coretype’s method will never be

reached. The last type in the chain’s coretype has as its next type default, which

for each service call provides a default action called if this has not been honoured

by any of the types in the supertype chain. This approach has the added benefit of

flexibility, it is very easy to modify the loosely coupled types and even change the

underlying service calls.

Figure 4.4 illustrates this concept with an example type chain array[] :: allo-

cated[multiple[]]. Here the start point is allocated, whose superclass coretype makes

reference to the next type in the chain, array. As the array type is the last in the

chain, its superclass simply points to the default type class. As an added compli-

cation, the multiple type is provided as an argument to the allocated type, in this

instance the allocated type will reference this directly as an argument.

January 18, 2010

4.5. Translator 112

Figure 4.4: Dynamic linking of type classes

4.5.1 Reflection Representation Example

To some people the concept of reflection and how this relates to traditional compilers

can be somewhat confusing. To this end a simple example is provided demonstrating

a traditional abstract syntax tree and the reflection concept used by the Mesham

Compiler. Code listing 4.1 is used as the Mesham source program in this example.

1 var j ;

2 var i ;

3 for i from 0 to 10

4 {

5 j := j + i ;

6 } ;

7 p r i n t [j] ;

Listing 4.1: Reflection Example

Figure 4.5 illustrates the abstract syntax tree of the source code. In this tree

terminals are either variables or constants with the compiler traversing the tree

during its work. Source code manipulated into this form is a very common practice

and Gnu’s Bison is a popular tool to produce such a representation.

Figure 4.6 illustrates this same source code when processed by Flexibo’s reflec-

tion system. It can be seen that, although these two representations do share some

similarities, in many ways they are very different. The Flexibo class SeqComp is

January 18, 2010

4.5. Translator 113

Figure 4.5: Abstract Syntax Tree of Code Listing 4.1

generated whenever sequential composition is encountered, this class has two vari-

ables a and b. Variable a points to the reflection system representation of the code

before the ; symbol and b to the code after this point. It can be seen from the

diagram that this object can often point to other instances of the same object. An

instance of the class PubStaticVariable is created for each distinct variable in the

code, a member of this class name allows the programmer to reference the name of

the variable. The benefit of this approach is that, as each variable is represented by

one object throughout the code, keeping track of attributes such as the variable’s

value is relatively simple. As discussed in Section A.2.2, the print statement of

Mesham is a function. This is dealt with initially by the class SemMethodInvoke

which will point to the print class in the external function library.

An example of how this reflection representation might be used is with the

method generateCode. For each class in figure 4.6 a subclass has been created with

the method generateCode. This method is called on the first instance of SeqComp,

which will call the same method on variables a and b. When this method reaches

VarInit the class will not only pass this onto PubStaticVariable, which will output

January 18, 2010

4.6. Runtime Library 114

the variable name, but it will also output the other C code required to declare the

variable. By following this example it can be seen how each class will encounter a

call to this method, which can be implemented in a specific manner to satisfy that

program construct.

Figure 4.6: Reflection System Representation of Code Listing 4.1

4.6 Runtime Library

An important aspect of the design is that C code generated by the Mesham translator

is linked with a language runtime library (RTL) which contains support for much of

January 18, 2010

4.7. Code Translation Example 115

the language functionality. The first reason for this approach is for portability, all

architecture specific (non-portable) code is contained within the library and as such

a version exists for each target machine class (such as Linux, Windows, Solaris.) This

means that the translator need only generate a single C program, which can then

be sent to many very different machines for compilation and execution. Extensions,

such as for Gadget-2, are by their very nature platform specific and require third

party libraries such as HDF5, allowing for switches in the makefile has meant that

these can easily be included or not as required by the end user.

Secondly using a runtime library cuts down on compilation time and code size,

as the RTL contains commonly used functions which would otherwise need to be

contained in the generated code.

The runtime library can either be included as a shared (dynamic) or static library.

Using the shared approach, at runtime the executable will find the RTL on the

machine and use its functions, advantages of this are that a change in the library

need not require the entire code to be recompiled and the executable is smaller,

the disadvantage is that each end user must have a version of this library compiled

on their machine (such as a DLL file on Windows.) Statically linking to the RTL

actually places a copy of the library inside the executable increasing its size and

requiring entire recompilation after each modification of the library. However the

main advantage of this is that the end user need not have a compiled version of the

RTL on their machine. Using the shared linking approach has been found to be

preferable, although configuration options are provided so this can be changed in

the Mesham compiler.

4.7 Code Translation Example

The simple code in listing 4.2, similar to an example in Chapter 3, involves two

processes. The first process (0) holds variable a, and as the program progresses will

receive a number from process 1 and store it in this variable. Process 1, as well as

holding variable a also holds variable b, the process will write the value of 23 into

b (line 6) and then both copy this into its own a and also send the value to process

January 18, 2010

4.7. Code Translation Example 116

0 (line 9.) Both processes will also display a message on stdio.

1 var a : Int : : a l l o c a t e d [mu l t ip l e []] ;

2 var b : Int : : a l l o c a t e d [s i n g l e [on [1]]] ;

3 var p ;

4 par p from 0 to 1

5 {

6 i f (p==1) b :=23;

7 p r i n t [” Hel lo from proces s ” ,p , ”\n”] ;

8 } ;

9 a:=b ;

Listing 4.2: Mesham Code Example

The C code of listing 4.3 is that generated by the translator when the Mesham

source code of listing 4.2 is used. The first five lines are generated in order to allow

for tracking of the source code. Lines 7,8 and 9 include header files as required, in

this example the only header files needed are mpi.h for communication with MPI,

mesham.h for the runtime library (required during program start up) and C’s stdio.h

header for I/O. Lines 11 to 13 define some commonly used program constants, with

lines 15 and 16 providing storage for global information (a process’s id number, the

number of processes, number of arguments passed to the program and the arguments

themselves.)

The generated code is structured MPMD style, such that each process has its

own section of code (although sequential functions will be SPMD to reduce code

length.) Although this can increase compile time, under experimentation it was

found to be the best option due to allowing for a great deal of optimisation for each

process to be performed. The two functions MESHprocessor0 and MESHprocessor1

represent the code body for process 0 and 1 respectively. It can be seen that, as is

required by the Mesham source, the integer b exists on process 1 but not 0, as does

the assignment b=23. Outside of the Mesham par loop, from the generated code

the reader can see how the a:=b assignment and associated communication is dealt

with. On process 1, in order to achieve the assignment, the code a=b is first issued

(line 9.) To send this value to other processes, as per the semantics of the relevant

January 18, 2010

4.7. Code Translation Example 117

types, the compiler chooses to use a broadcast (via MPI Bcast), which can be seen

on lines 25 and 40 respectively. All the complexity of the communication (having to

specify the data type, size, root, communication group and ensure communications

complete) is taken care of by the compiler. As the reader can see, the Mesham

programmer does not need to know or care exactly what communication method is

used, as long as the result is achieved.

Lines 43 to 50 set up the processes’ MPMD code as function pointers, with

the main (program entry) function starting at line 52 performing tasks such as

initialising MPI, the Mesham runtime library, setting up error handlers firstly and

then passing execution to these functions. Before program termination execution

returns to the main function which will shutdown MPI and return an integer as

the C99 standard requires. The last three lines, 70 to 72 provide information about

the generated code. This metadata is available to other tools and has been used to

create automatic tool chain compilers.

1 //Compiled on 30/3/2009 at 15:54:58 wi th Mesham V0.50 be ta

2 // Syn tac t i c Check − OK

3 //Type Check − OK

4 // S t a t i c Optimise and Check − OK

5 //Number o f Processes − 2 wi th 0 Synchronisat ion Points

6

7 #include ”mpi . h”

8 #include <mesham. h>

9 #include <s td i o . h>

10

11 #define nu l l NULL

12 #define f a l s e 0

13 #define true 1

14

15 int myrank , numberofprocesses , MESHargc ;

16 char ∗∗ MESHargv ;

17 void MESHprocessor0 ()

18 {

January 18, 2010

4.7. Code Translation Example 118

19 int a ;

20 int p ;

21 {

22 p=0;

23 p r i n t f (” Hel lo from proces s %d\n” ,p) ;

24 }

25 MPI Bcast(&a , 1 ,MPI INT , 1 ,MPICOMMWORLD) ;

26 }

27 void MESHprocessor1 ()

28 {

29 int a ;

30 int b ;

31 int p ;

32 {

33 p=1;

34 {

35 b=23;

36 }

37 p r i n t f (” Hel lo from proces s %d\n” ,p) ;

38 }

39 a=b ;

40 MPI Bcast(&a , 1 ,MPI INT , 1 ,MPICOMMWORLD) ;

41 }

42

43 typedef void (∗MESHProcess) () ;

44 MESHProcess MESHprocesses [2] ;

45

46 void MESHinit ()

47 {

48 MESHprocesses [0] = &MESHprocessor0 ;

49 MESHprocesses [1] = &MESHprocessor1 ;

50 }

51

January 18, 2010

4.8. Conclusion 119

52 int main (int argc , char ∗ argv [])

53 {

54 MPI Init(&argc ,&argv) ;

55 MESH Init (500 ,200) ;

56 MESHargc=argc ;

57 MESHargv=argv ;

58 MPI Comm rank(MPICOMM WORLD, &myrank) ;

59 MPI Comm size (MPI COMM WORLD,& numberofprocesses) ;

60 i f (MESHcheckstartup (2 , numberofprocesses , argc , argv)==1)

61 {

62 MESHinit () ;

63 MESHsetUpCommErrHandler (MPICOMMWORLD) ;

64 MESHprocesses [myrank] () ;

65 }

66 MPI Final ize () ;

67 return 0 ;

68 }

69

70 //Compi lat ion time was 0 minutes and 0 seconds

71 //mpicc −o output output . c −lmesham

72 //mpirun −np 2 ./ output

Listing 4.3: Generated C Example

4.8 Conclusion

The implementation of the concept of type-based parallelism and the Mesham lan-

guage has required much work, resulting in a compiler. The compiler is correct in

terms of that it will generate “correct” program code from correct Mesham source.

The compiler is also complete in terms of it supporting all aspects of the Mesham

language. However, at this stage it is still unclear how efficient the compiler is, most

importantly efficiency in terms of the end (executable) result.

January 18, 2010

Chapter 5

Case Studies - Performance

5.1 Introduction

To evaluate the type-based approach of Mesham a number of case study examples

have been performed. These experiments have involved writing specific code in Me-

sham and testing both performance and programability. In order to assess whether

or not the type-based approach is useful a number of important questions need

answering. These are whether or not Mesham can produce code with competing ef-

ficiency, whether type-based code is actually simpler than existing parallel language

solutions and if programmers can write a variety of parallel codes in Mesham with

varying complexity. It is the aim of both this and the next chapter to present the

experiments and results which will address these questions.

The current chapter details a number of smaller experiments and looks at both

the timing results and programmability of these. In order to test the performance

of the codes, each was run on Durham University’s Hamilton Cluster. The cluster

typically comprises of machines with two dual core 2.2GHz Opteron Processors and

8GB of memory, connected by Myrinet, a high-speed communication protocol. For

experimentation the Portland Group Compiler combined with OpenMPI (an imple-

mentation of the MPI standard) was used to compile both the Mesham generated

C code and the control C code. All timing was measured using the machine wall

clock time during execution and the results shown have been averaged over at least

three separate runs. Tabular versions of the performance results shown graphically

120

5.2. Mandelbrot 121

in this section are included in Appendix D.

5.2 Mandelbrot

As introduced in Section 2.5.4, the Mandelbrot set calculation is a popular parallel

example used in numerous texts. Due to its embarrassingly parallel nature, it forms

not only a popular, but also a simple, problem which generates visual results.

The Mesham source code of listing 5.1 is the mandelbrot example in its entirety.

In line one the programmer defines variable pnum to be the number of processors, the

way the code has been written changing this variable is all that is required to modify

the number of processors. Lines 2 to 5 define attributes such as image size, quality

and magnification. In line 6 the programmer defines pixel to be a new record type,

containing the red, green and blue components of a pixel. In line 7 a two dimensional

array of pixels is defined, allocated row major and horizontally partitioned into pnum

blocks, each of which is evenly distributed amongst the processors. The evendist type

will deal with any additional complexities, such as having to allocate blocks amongst

an uneven distribution of data in the case of the image not dividing amongst the

processors evenly. Line 8 defines variable s to be a two dimensional array of pixels

allocated only on processor 0, at the end of execution the completed image will be

held in this array.

Line 11 of the code starts a par loop, an iteration of this will execute on all

(pnum) processors. In this loop, the element mydata#p is often used, this accesses

the pth block of partitioned array mydata, i.e. the block of data allocated to the

current process. The elements (mydata#p.low) and (mydata#p.high) found on line

14 will return the start and end index of the process p’s block respectively. The

majority of the par loop is concerned with simply computing the Mandelbrot set

and will not be considered here, it should be noted that this is a prime example of

data parallelism, the code sent to each process in the par loop is identical, with each

processor working on different data elements.

After each processor has finished working on their data, line 62 is where commu-

nication will occur. The statement s:=mydata will copy the values held in variable

January 18, 2010

5.2. Mandelbrot 122

Figure 5.1: Mandelbrot performance test

mydata to that of array s. Because mydata is distributed amongst the processes

and s is allocated on process 0 only, this will result in communication between all

processes and process 0. The statement proc 0 on line 63 will force the following

block only to execute on process 0, which acts to write all the data in array s into

a picture file for viewing.

Performance tests have been conducted against a similar parallel Mandelbrot

program written in C-MPI. A snapshot of these results are shown in figure 5.1. The

results obtained when running on 1, 2, 4 and 8 processors were identical between

Mesham and C and hence were not shown in order to illustrate the small perfor-

mance increase in the Mesham program once the number of processors becomes

non-trivial. Due to the embarrassingly parallel nature of this example, the perfor-

mance advantages of using Mesham only really start to stand out as the program

January 18, 2010

5.2. Mandelbrot 123

runs on a large number of processors.

The reason for the small performance increase is that in Mesham parallelism is

expressed in a much more high level manner via types. As the compiler knows the

number of processors during compilation it can use this high level type information

to make decisions statically which otherwise would need to be made dynamically

adding additional overhead. For instance, in this example some additional overhead

is required in the C-MPI Mandelbrot code to allow the programmer to run the

code on any number of processors by simply changing one variable in the program

code. In Mesham this is dealt with during compilation and as such this overhead is

avoided.

Code listing C.1 is the C with MPI control code used to evaluate against. As

can be seen, even for a very simple example the C code is none trivial.

1 var pnum:=4; // number o f proce s se s to run t h i s on

2 var hxres :=1000;

3 var hyres :=1000;

4 var magnify :=1;

5 var itermax :=1000;

6 var p i x e l : r ecord [” r ” , Int , ”g” , Int , ”b” , Int] ;

7 var mydata : array [p ixe l , hxres , hyres] : : a l l o c a t e d [row [] : :

h o r i z on ta l [pnum] : : s i n g l e [evend i s t []]] ;

8 var s : array [p ixe l , hxres , hyres] : : a l l o c a t e d [s i n g l e [on [0]]] ;

9

10 var p ;

11 par p from 0 to pnum − 1

12 {

13 var hy ;

14 for hy from (mydata#p) . low to (mydata#p) . high

15 {

16 var hx ;

17 for hx from 1 to hxres

18 {

19 var cx := ((((hx % hxres) − 0 . 5) % magnify) ∗ 3) − 0 . 7 ;

January 18, 2010

5.2. Mandelbrot 124

20 var cy := ((((hy + (mydata#p) . s t a r t) % hyres) − 0 . 5) %

magnify) ∗ 3 ;

21 var x : Double ;

22 x :=0;

23 var y : Double ;

24 y :=0;

25 var i t e r a t i o n ;

26 var t s :=0;

27 for i t e r a t i o n from 1 to itermax

28 {

29 var xx :=((x ∗ x) − (y ∗ y)) + cx ;

30 y:= ((2 ∗ x) ∗ y) + cy ;

31 x:=xx ;

32 i f (((x ∗ x) + (y ∗ y)) > 100)

33 {

34 t s := i t e r a t i o n ;

35 i t e r a t i o n :=999999;

36 } ;

37 } ;

38 var red :=0;

39 var green :=0;

40 var blue :=0;

41 i f (i t e r a t i o n > 999998)

42 {

43 blue :=(t s ∗ 10) + 100;

44 red :=(t s ∗ 3) + 50 ;

45 green :=(t s ∗ 3)+ 50 ;

46 i f (t s > 25)

47 {

48 blue :=0;

49 red :=(t s ∗ 10) ;

50 green :=(t s ∗ 5) ;

51 } ;

January 18, 2010

5.2. Mandelbrot 125

52 i f (b lue > 255) blue :=255;

53 i f (red > 255) red :=255;

54 i f (green > 255) green :=255;

55 } ;

56 (((mydata#p)#hy)#hx) . r := red ;

57 (((mydata#p)#hy)#hx) . g:= green ;

58 (((mydata#p)#hy)#hx) . b:= blue ;

59 } ;

60 } ;

61 } ;

62 s :=mydata ;

63 proc 0

64 {

65 var fname :=” p i c tu r e .ppm” ;

66 var f i l := op e n f i l e [fname , ”w”] ; // open f i l e

67 // generate p i c t u r e f i l e header

68 w r i t e t o f i l e [f i l , ”P6\\n# CREATOR: LOGS Program\\n”] ;

69 w r i t e t o f i l e [f i l , 1 0 0 0] ;

70 w r i t e t o f i l e [f i l , ” ”] ;

71 w r i t e t o f i l e [f i l , 1 0 0 0] ;

72 w r i t e t o f i l e [f i l , ”\\n255\\n”] ;

73 // now wr i t e data i n t o the f i l e

74 var j ;

75 for j from 0 to hyres − 1

76 {

77 var i ;

78 for i from 0 to hxres − 1

79 {

80 var f :=((s#j)#i) . r ;

81 w r i t e c h a r t o f i l e [f i l , f] ;

82 f :=((s#j)#i) . g ;

83 w r i t e c h a r t o f i l e [f i l , f] ;

84 f :=((s#j)#i) . b ;

January 18, 2010

5.3. NAS-IS Benchmark 126

85 w r i t e c h a r t o f i l e [f i l , f] ;

86 } ;

87 } ;

88 c l o s e f i l e [f i l] ;

89 } ;

Listing 5.1: Mesham Mandelbrot Code

5.3 NAS-IS Benchmark

The NAS Parallel Benchmarks (NPB), which were reviewed in Section 2.5.3, act as

an objective, official, evaluation of Mesham. A version of Integer Sort (IS) has been

written in Mesham, and then fine tuned for performance via testing and modifying

the code.

The code in listing C.2 details the Mesham IS implementation, which not only

completes the integer sort as per the NPB specification [Baily1994], but also honours

the specification’s verification and number generation rules too. Using abstractions

such as data structures, implemented using the referencerecord type (line 6), helped

to simplify the process of writing the 380 lines of code. It is appreciated however

that having existing code to understand did help with the implementation of this

benchmark. NASA’s official C code [Saphir1996] is over 1000 lines long and deals

heavily with low level details such as pointers and sharing the same block of memory

in order to maximise performance. The Mesham code does not require the program-

mer to worry about these low level details, instead the extra information provided by

the programmer’s use of types allows the compiler to perform these optimisations.

The first benchmark to be done was using class B (33 million numbers.) NASA’s

version was compared directly against the one written in Mesham, the results of

which can be seen in figure 5.2. From this graph it can be seen that, up until 32

processors, the performance of both benchmarks is comparable, although the NAS

code is slightly faster on one processor whilst the Mesham code is slightly faster on

4 and 8 processors. However, after the optimum number of processors (around 22)

the worsening runtimes start to diverge, with the Mesham code approximately 12%

January 18, 2010

5.3. NAS-IS Benchmark 127

Figure 5.2: NAS-IS benchmark, Class B

faster when using 64 processors and 8% faster on 128 processors. This difference

is due to extra information provided to the Mesham compiler, and its ability to

optimise knowing, amongst other things, the number of processors which has been

set statically in the code.

One such reason in this case for this competing, and in some cases superior

efficiency, is that as discussed in Section 4.7, the Mesham compiler will generate code

for each processor and as such can tailor a processor’s code specifically. When writing

parallel code in a language such as C-MPI it would often be far too inconvenient to

write code for each processor. Instead the programmer will often write their parallel

code following a general SPMD style which will mean that firstly processors will all

receive pretty much the same code, although not all of it is relevent, and secondly it

can be more difficult for the programmer to statically set specific values to specific

January 18, 2010

5.3. NAS-IS Benchmark 128

processors. The Mesham approach is to take all of the type information and, with

this high level description, tailor each processor’s code as much as possible to firstly

try and complete as many operations during compilation and secondly ensure each

processor’s code is completely relevant to it.

Figure 5.3: NAS-IS benchmark, Class C

Figure 5.3 details the results of the IS benchmark when using class C (134 million

numbers.) Again, the performance is comparable, although there is some instability

in the NAS benchmark (which was rerun to ensure the absence of anomalies) over 8

and 16 processors whilst the Mesham code produces a smooth curve. It is interesting

that, unlike with class B, after the optimum number of processors the performance

decrease between 32 and 64 processors is only very slight for both implementations.

As with class B, after the optimum point Mesham’s performance is more favourable

than NASA’s, with Mesham IS around 17% faster than NAS-IS on 128 processors.

January 18, 2010

5.3. NAS-IS Benchmark 129

Figure 5.4: NAS-IS benchmark total Mop/s

Figure 5.4 illustrates the total Million Operations per Second (Mop/s) against

number of processes in the parallel system. Interestingly Mesham class B, NAS

class B and Mesham class C all seem very similar up until the optimum number of

processors. It can be deduced that for class C over 8 and 16 processors the Mesham

code obtains higher Mop/s than its C counterpart. Interestingly after the optimum

point each class of experiment curves seem very similar, with class C maintaining

a higher Mop/s rate rather than class B. In figure 5.5, showing Mop/s per process,

it can be seen that initially both classes start at around the same figure (45 Mop/s

per process), as the number of processors is increased Mesham class B, NAS class

B and Mesham class C all seem very similar up until the optimum point. After this

point class C exhibits considerably more Mop/s per process than class B which is

to be expected as the processors are better utilised.

January 18, 2010

5.3. NAS-IS Benchmark 130

Figure 5.5: NAS-IS benchmark Mop/s per process

One very intersting observation from figures 5.2 and 5.3, is that for 128 and 64

processors, class C (134 million numbers) is faster than class B (33 million numbers),

by around 39% with 128 processors. Hence by adding extra data, it has actually

made the benchmark run faster on these number of processors, which is very counter

intuitive. One explanation for this might be found when comparing the computation

saving against the communication cost of adding an extra processor. For class B,

due to the smaller data size, adding an extra processor will have a far smaller

computation saving than it will for class C, hence performance decrease after the

optimum point will be more severe the smaller the data size. Considering the fact

that a large majority of computation cost lies in setting up the link, synchronising

the processors and sending the message header, actually sending on average four

times the data in this case probably does not have a huge performance hit with

January 18, 2010

5.4. Fast Fourier Transformation 131

large numbers of processors - the fact that each processor has computationally four

times the amount of data to solve will be more important. This is supported by that

fact that class C, on average, performs worse compared with class B with a small

number of processors and as the number of processors is increased the performance

gap decreases. The reason for this could be that for a small number of processors the

extra data is important compared with the overhead, however when dealing with a

large number of processors the overhead will be much greater with the same amount

of data and as such the data size will be of far less relavence.

5.4 Fast Fourier Transformation

“Parallelised 2D Fast Fourier Transformation (FFT) MPI code is much more com-

plicated than the sequential code. For example, array transposition is simple on

one processor but more sophisticated if the array is partitioned and distributed

over multiple processors. Direct MPI programming requires the end programmer

to handle every detail of FFT’s parallelization including writing the appropriate

communication commands, synchronisations, and correct index expressions that de-

limit the range of every partitioned array slice. A small change of how the array is

partitioned or distributed may result in code rewriting. Type-based parallelization,

however, can relieve the end programmer from writing details of parallelization if

the details can be derived from the type information.” [Brown2008]

5.4.1 FFT code in Mesham

The Mesham code for FFT is shown in listing 5.2.

1 var complex : r ecord [r , Float , i , Float] ;

2 var n :=512;

3 var p :=5;

4 var k ;

5

6 var S : array [complex , n , n] : : a l l o c a t e d [row [] : : s i n g l e [0]] ;

7 var A : array [complex , n , n] : : a l l o c a t e d [row [] : : h o r i z on ta l [p] : :

January 18, 2010

5.4. Fast Fourier Transformation 132

s i n g l e [evend i s t []]] ;

8 var B : array [complex , n , n] : : a l l o c a t e d [c o l [] : : h o r i z on ta l [p] : :

s i n g l e [evend i s t []]] ;

9 var C : array [complex , n , n] : : a l l o c a t e d [row [] : : h o r i z on ta l [p] : :

s i n g l e [evend i s t []]] : : share [B] ;

10 var i : In t : : a l l o c a t e d [mu l t ip l e []] ;

11

12 var s i n s : array [complex , n / 2] : : a l l o c a t e d [row [] : : mu l t ip l e []] ;

13 ComputeSin [s i n s] ;

14

15 proc 0 { r e a d f i l e [S , ” image . dat ”] } ;

16 A:=S ;

17 par k from 0 to p−1

18 for i from A#k . low to A#k . high FFT[A#k#i , s i n s] ;

19 B:=A;

20 par k from 0 to p−1

21 for i from C#k . low to C#k . high FFT[C#k#i , s i n s] ;

22 S:=C;

23 proc 0 { w r i t e f i l e [S , ” image . dat”] } ;

Listing 5.2: FFT code in Mesham as from [Brown2008]

The code first declares the record type for complex numbers, the size n of the

input array, the number p of processes and the process ID index variable k. Array

S is allocated row major on process 0, containing the source data. Row-major

array A is partitioned p times horizontally and evenly distributed to all processes

by broadcasting, storing the source data after initial broadcasting. Array B is

similar to A but declared to be column-major. Assignment from A to B essentially

transposes A and shuffles the blocks of array A across processes. This allows each

process to perform linear FFT on the other dimension locally. Array C is row-major

but partitioned horizontally and shared with B for allocation. The type share[B]

provides a different typing view on the same data. Performing row-wise FFT on

C is the same as performing column-wise FFT on B. The multiple variable i is

January 18, 2010

5.4. Fast Fourier Transformation 133

used as a loop index on every process. The array sins stores the pre-calculated

constant sinusoid parameters needed in FFT for both dimensions, the function call

ComputeSin initialises this sins array. Process 0 first reads data from a file into

the source array and the assignment A:=S dynamically distributes this source data.

Every process k performs FFT on every row of the k -th slice of A. The .low and .high

in the example provide the lower and upper bounds of a block, and are calculable

in compile time. The assignment B:=A performs the entire parallel transposition

with multiple asynchronous communications and an ending synchronization. FFT

is performed again on the transposed array C on every process. The result array C

is gathered into the source array, which is then written back into the file. Sequential

functions ComputeSin and FFT are omitted due to a lack of space.

5.4.2 The generated FFT code

The types in the Mesham code have provided enough information for the compiler

to determine statically the size and location of each block during the compilation

process, resulting in more optimisation performed during compilation and hence

increased efficiency. Listing C.3 shows part of the generated code (for data trans-

position), which is not intended for human reading.

The code rearranges the process’s data such that the data sent to each processes

is continuous (and convenient for message passing). It then computes the index and

displacements of each processes data before the data is ready to be sent. In order to

increase efficiency the process will send out a chunk of data to every other process

asynchronously, so that it does not need to wait for other processes. The last part

of the transposition code deals with receiving data from each other process, again

for efficiency reasons this is done asynchronously, with the process registering the

receive requests and then allowing them to complete in any order. Asynchronously

moving data in this way comparatively performs much better than synchronous

communication as the number of processes is increased.

Very commonly in HPC the programmer, due to a lack of knowledge or wishing

to keep the code simple, will take shortcuts and pick an easier yet less efficient

communication function. By abstracting the physical communication away from

January 18, 2010

5.4. Fast Fourier Transformation 134

the programmer, system programmers who are good at optimization can select the

most efficient form of communication to be automatically generated by the compiler.

In the conventional approach of writing high performance code, changing details

(for instance the form of communication) would require major recoding. However,

following the type-based approach this change is all handled automatically by the

partition types and requires no recoding, resulting in a more maintainable code. It

can be seen that the approach of adding type information into the declared type

results in a much simpler, easier-to-maintain and efficient program which is commu-

nication and computationally safe. As Mesham relieves the programmer from many

of the low-level parallelization details, it enables programmers to obtain complex,

more optimized code which is normally difficult to achieve.

5.4.3 Performance

Two groups of experiments of different problem sizes have been carried out on the

Hamilton cluster of Durham University. In the first group of experiments, different

numbers of processes with problem size of 128MB (4096 by 4096) were tested on the

Mesham FFT code in listing 5.2, the Fastest Fourier Transformation in the West

(FFTW [Frigo1998-2]) library version two and the C-MPI FFT book example of

Pacheco [Pacheco1996]. Figure 5.6 shows the speedup results of testing the three

different FFT programs on 128MB data.

As explained in Section 2.5.2, FFTW chooses a sub-algorithm according to the

problem size and the number of processors. Mesham contains the end programmer’s

code that provides enough high-level information and the carefully pre-optimized

communication code designed by system programmers and generated by the com-

piler. In the textbook code, both computation and communication parts are hand-

written and “optimized up to the convenience of the end programmer”.

Initially FFTW is more efficient than the other two codes on one process due

to its algorithm selection. With more than one process, the Mesham code is faster

than FFTW, and this trend continues as the number of processes grows. Eventually,

under the problem size, the importance of efficient communication (as detailed in

Section 5.4.2) outweighs efficient computation – making Mesham more efficient than

January 18, 2010

5.4. Fast Fourier Transformation 135

Figure 5.6: Performance of FFT on 128MB Data

FFTW and the textbook code.

When run on 10 and 20 processes the FFTW speedups drop and the Pacheco

code has no results. The simplistic Pacheco textbook code only works with pro-

cess numbers 1,2,4,8,... and cannot utilise an arbitrary number of processors. In

FFTW, the library dynamically computes the data size on each process. When the

partition is uneven each process must inform, via communication, the root process

of its size for the initial Scatter and the last Gather. The speedup spikes reveal

some instability in the FFTW library’s implementation for an uneven distribution

of data. Uneven distribution of data is automatically handled by the Mesham com-

piler, specifically the partition and distribution types as detailed in Section 3.3,

yielding a more smooth curve of performance.

As explained in Section 5.4.2, one reason for this increased performance is the

January 18, 2010

5.5. Conclusions 136

choice of communication guided by the high level type information. Knowing im-

portant aspects, such as the size of data, number of blocks and where each block

should belong means that the compiler can do much of the calculation work during

compilation rather than it being done dynamically. Additionally, any issues raised

during compilation (such as an uneven distribution of data) can be dealt at that

point, for instance by issuing specialist algorithms, rather than relying on general

less efficient solutions. As also mentioned due to the high level nature of Mesham,

the programmer is completely abstracted away from the mechanics of communica-

tion. In this case, a significant performance gain was found by the partition types

generating specialised transposition communication code. This specialised code al-

lows for the communications to be carried out asynchronously which, although more

efficient is also more complex to write and depends upon knowing numerous code at-

tributes. It is not practical for either the FFTW or Pacheco implementer to consider

this level of complexity in their handwritten code, which would limit the number of

processors and size of data anyway. Because this is all carried out during Mesham’s

compilation, there is no such limitation nore does the programmer experience any

increased complexity.

The performance result on 128MB data is re enforced by a larger data set with

2GB image (16384 by 16384) (see Figure 5.7). With more data, communication

bandwidth and computation outweigh communication latency and other overheads.

Note that the textbook code cannot handle the declaration of such large arrays and

are hence not tested.

For 2GB data on one process (sequentially), the FFTW code (which selects dif-

ferent algorithm) is about twice as fast as the Mesham code, but when the number of

processes grows, the Mesham code then demonstrates a convincing lead in speedups.

5.5 Conclusions

As has been seen throughout this chapter, a variety of programs have been written

in Mesham. This has been to assess firstly performance and secondly programma-

bility. It has been seen that by using the type-based approach, performance during

January 18, 2010

5.5. Conclusions 137

Figure 5.7: Performance of FFT on 2GB Data FFT

benchmarking is comparable to existing codes and languages. It can also be seen

that by writing code in this type-based manner has simplified the programming

task and allows the coder to concentrate on the more high-level aspects. Each of

the applications considered here are very different from each other, demonstrating

that the language and proposed type approach can be applied successfully to many

different scenarios.

January 18, 2010

Chapter 6

Case Studies - Gadget-2

6.1 Introduction

The parallel cosmological simulation package, Gadget-2, was introduced in Section

2.5.1. In order to evaluate factors, such as the simplicity and flexibility, of this type

based approach, aspects of Gadget-2 were ported into Mesham. By looking at a

complex application, it can be seen that this proposed type-based approach is not

just limited to parallel computing. Some of the simplifications obtained via types

in Gadget-2 have been on sequential aspects of the code.

6.2 Extension Types

The design of the type system means that it is very simple to add additional types

and functionality to Mesham. An example of such extensions are those added to the

language in order to support the porting of the physics simulation package Gadget-

2. These types are used to greatly simplify the ported Gadget-2 code and illustrate

nicely how having these types available greatly simplifies the programmer’s job.

Particle

Syntax

Particle

138

6.2. Extension Types 139

Semantics

This type represents a particle (element) type. A number of attributes are possessed

by a particle, these are listed in table 6.1.

Member Dimensions Type

id 1 Int

type 1 Int

position 3 Double

velocity 3 Double

gravityaccceleration 3 Double

mass 1 Double

potential 1 Double

oldacc 1 Double

gravitycost 1 Double

tiend 1 Int

tibegin 1 Int

Table 6.1: Particle element type members

Example

1 var a : P a r t i c l e ;

2 a . id :=0;

3 (a . p o s i t i o n#0) :=4 . 3 ;

4 (a . p o s i t i o n#1) :=1 . 3 ;

5 (a . p o s i t i o n#2) :=9 . 3 ;

Will create particle a, set the particle’s id to be 0 and specify a position.

January 18, 2010

6.2. Extension Types 140

Gadget Parameter File

Syntax

gadgetparamfile[filename]

Semantics

This type will open a gadget parameter file and allow the programmer to read (and

write) to it, automatically formatting the IO, abstracting these low level details

from the programmer. The parameter file follows a very specific format, which this

type guarantees to maintain. There are many attributes of this type, which can be

accessed via dot (.).

Example

1 var a : gadgetparamf i l e [” galaxy . param”] ;

2 var outd :=a . OutputDir ;

3 p r i n t [outd , ”\n”] ;

4 var b : gadgetparamf i l e [”newgalaxy . param”] ;

5 b . OutputDir:=outd ;

In this example the code reads the attribute outputdir from galaxy.param, displays

it and then opens another parameter file newgalaxy.param, creating the file if it

does not already exist, and writes this attribute data in. As can be seen from the

example, the Mesham programmer need not worry about the physical aspects such

as file writing and closing.

Snapshot

Syntax

snapshot[filename]

Semantics

Gadget-2 uses snapshot files to record both the current state of the simulation and

January 18, 2010

6.2. Extension Types 141

also to start from an initial state. There are a number of different parts of the file,

including the header (with information about the snapshot) and then all the data

about each particle, split up into different blocks which must be carefully formatted.

This complexity is all taken care of via the snapshot type, the programmer is ab-

stracted away from the low-level details and can read or write an array of particles

and also access the header attributes from a high level.

Example

1 var u : snapshot [s] : : a l l o c a t e d [s i n g l e [on [0]]] ;

2 var a : array [Pa r t i c l e , NumPart] : : a l l o c a t e d [mu l t ip l e []] ;

3 u . numbero fpar t i c l e s := to tpa r t s ;

4 u . ma s s o f p a r t i c l e s := ma s s o f p a r t i c l e s ;

5 u . t o t a l numbe r o f p a r t i c l e s := to tpa r t s ;

6 u . time := Al l . Time ;

7 u . r e d s h i f t :=0;

8 u . f i l e s :=1;

9 u . boxs i z e := Al l . BoxSize ;

10 u . omega0:= Al l . Omega0 ;

11 u . omegalambda:= Al l .OmegaLambda ;

12 u . hubble:= Al l . Hubble ;

13 u . entropy :=0;

14

15 u:=a ;

Taken directly from the Gadget-2 Mesham code, this code will write a snapshot file

allocated on process 0, setting the header attributes and then the assignment u:=a

actually copies the particle data into the snapshot file.

Snapshot2

Syntax

snapshot2[filename]

January 18, 2010

6.2. Extension Types 142

Semantics

Identical to snapshot, except the file is in a different format which some users of

Gadget-2 prefer.

Example

1 var a : snapshot [” format1 ”] ;

2 var b : snapshot2 [” format2”] ;

3 b:=a ;

The example converts a snapshot file of format1 to format2 (snapshot format to

snapshot 2 format.) Incidentally, in Gadget-2 a file conversion tool (which does not

exist) would be a complex undertaking as it must reformat the data. Using the

type-based approach the Mesham programmer need not worry about these details

and can easily achieve the end result.

Snapshot HDF5

Syntax

snapshotHDF5[filename]

Semantics

Identical to snapshot, except the data is written (and read) in HDF5 format.

PHCurve

Syntax

PHcurve[name]

Semantics

This will automatically construct a PH curve from a spaceshape, name, ordering

each member by its Peano Hilbert key. Apart from accessing elements on the curve

January 18, 2010

6.3. Porting I/O 143

(via #), there is a .totalcells attribute which returns the total number of Peano

Hilbert keys available (by default this is 220 for each dimension, so 60 bit for 3 di-

mensions.) For each member there are the attributes .key (to get the Peano Hilbert

key) and .orderadded to return the order the member was added to the curve.

Example

assuming s is a shapespace, with items in it

1 var peano : PHCurve [s] ;

2 var k ey s i z e :=peano . t o t a l c e l l s ;

3 var itemonekey :=(peano#0) . key ;

4 var itemoneorderadd :=(peano#0) . orderadded ;

5 var itemone :=(peano#0) ;

In this example the variable peano is a Peano Hilbert curve acting on the shape space

s. The variable keysize is equal to the number of PH keys available, itemonekey is

the PH key of the first element on the curve with itemoneorderadd the order in

which this element was added to the curve and itemone set to the data held at this

point on the curve.

6.3 Porting I/O

I/O is a major part of Gadget-2, with the simulation package starting from a con-

figuration file and setting up its galaxy from a file known as the Initial Condition.

Periodically, the simulation will write out its data to a file for backup or analysis.

This is further complicated by the fact that Gadget-2 may use one of three formats

for the data files. Gadget-2 contains around 2500 lines of code dedicated to these

tasks, whereas by using the extension types of Mesham the total count is 153 lines.

1 var u : snapshotHDF [” galaxy . param”] : : a l l o c a t e d [s i n g l e [on [0]]] ;

2

3 u . numbero fpar t i c l e s := to tpa r t s ;

4 u . ma s s o f p a r t i c l e s := ma s s o f p a r t i c l e s ;

5 u . t o t a l numbe r o f p a r t i c l e s := to tpa r t s ;

January 18, 2010

6.4. Domain Decomposition 144

6 u . time := Al l . Time ;

7 u . r e d s h i f t :=0;

8 u . f i l e s :=1;

9 u . boxs i z e := Al l . BoxSize ;

10 u . omega0:= Al l . Omega0 ;

11 u . omegalambda:= Al l .OmegaLambda ;

12 u . hubble:= Al l . Hubble ;

13 u . entropy :=0;

14

15 u:=P;

16 p r i n t [”Done with wr i t ing snapshot f i l e ” , s , ”\n”] ;

Listing 6.1: Creating a snapshot in Mesham

Code listing 6.1 contains the entire code required to create a snapshot of the current

state of the simulation. In line 1, the snapshotHDF type is used to signify that

variable u represents a snapshot file in HDF5 format, combined with the allocation

type this is located on processor 0 only. Lines 3 to 11 write current simulation

information to attributes of variable u and hence the snapshot file. In Line 13 the

data in variable P, which is a representation of each particle in the simulation, is

collected on processor 0 and written into the snapshot file. As can be seen, the code

is simple and concise, if the programmer wished to change an aspect such as the

format of snapshot file then this can be easily achieved. From this code it can be

seen that the type-based approach is not just limited to parallel programming, from

the mainly sequential IO aspects of Gadget-2 it has been used to simplify the code.

6.4 Domain Decomposition

The simulation performed by Gadget goes in steps. In each step particles are simu-

lated to collide with each other, after this the code must calculate which, following

the action, now belong on each processor and exchange these particles amongst the

processors. In order to identify the location of particles in 3D space, a space filling

curve known as the Peano Hilbert curve is used. The assumption is made that each

January 18, 2010

6.4. Domain Decomposition 145

particle will sit somewhere along this curve and the order along the curve, or Peano

key as it is known, of each particle can be used to make sense of its location. Figure

6.1 illustrates example 2D and 3D Peano Hilbert curves. Mathematically, a 3D PH

curve is used in Gadget-2. Gadget-2 dedicates around 400 lines to computing, or-

dering and finding Peano keys for each particle. By using the type based approach

of Mesham, this has been abstracted away into types.

Figure 6.1: Sample 2D and 3D Peano Hilbert Curves taken from [Springel2006]

1 var space : SpaceShape [Pa r t i c l e , (min#0) , (max#0) , (min#1) , (max#1) , (

min#2) , (max#2)] : : a l l o c a t e d [mu l t ip l e []] ;

2 var i ;

3 for i from 0 to NumPart − 1

4 {

5 var x :=((P#i) . p o s i t i o n)#0;

6 var y :=((P#i) . p o s i t i o n)#1;

7 var z :=((P#i) . p o s i t i o n)#2;

8 (((space#x)#y)#z) :=P#i ;

9 } ;

10

11 var peano : PHCurve [space] : : a l l o c a t e d [mu l t ip l e []] ;

12 for i from 0 to NumPart − 1

13 {

14 var pkey :=(peano#i) . key ;

15 var t h e p a r t i c l e :=(peano#i) ;

16 p r i n t [”The ” , i , ” th p a r t i c l e on the curve has PH key ” ,

January 18, 2010

6.4. Domain Decomposition 146

pkey , ” and has ID ” , t h e p a r t i c l e . id , ”\n”] ;

17 } ;

Listing 6.2: Peano Hilbert Curves in Mesham

Code listing 6.2 details an example use of how Peano Hilbert curves are created

and then used in the Mesham Gadget-2 port. Firstly a space shape is created using

the SpaceShape type. This is an abstract collection type, a more complex cousin of

the array, which allows the programmer to store data at specific abstract locations

- in this case particles in 3D space (as described by min#d max#d where d is

the dimension.) The loop of lines 3 to 9 places particles in the array P into the

spaceshape, space. Once this has been completed, the variable peano is defined

with the PHCurve type, which informs the compiler that this is a Peano Hilbert

curve. Passing the variable space to the PHCurve type signifies that the curve will

be created in respect of that spaceshape. The loop in lines 12 - 17 will loop through

each element on the curve (in curve order), retrieving each’s Peano Hilbert key and

the particle data.

By abstracting away all the concrete details such as key caching, reordering and

curve mathematics, the programmer is free to concentrate on their actual code.

Comparing this with code listing C.4, which is a small part of Gadget-2’s Peano

Hilbert key finding function, one can see that the C programmer has had to deal

with all the nitty gritty details. Even the mathematical details of the PH curve must

be considered and are entered into the arrays. From reading the C code, it is actually

very difficult to figure out what is happening, operators such as bit shift just add

further confusion and it is easy to get bogged down in these details and for bugs to

appear rather than take a high level view of the whole parallel picture. The number

of dimensions is also hard coded into this code, whereas the Mesham programmer

can have any number of dimensions (which is decided by the spaceshape provided

as an argument.)

The next important aspect of domain decomposition is to create the Barnes Hut

tree. Where d is the number of dimensions, one can think of this as a tree where at

each node is a square split into 2 * d sections. The children of this node are these

January 18, 2010

6.4. Domain Decomposition 147

sections, which are again split into 2 * d sections which are their children and on

it goes. The result is a large rectangle (or space in this case) at the root, and then

as progress is made down the tree the area of interest becomes smaller and smaller

until the desired resolution is reached. The tree need not go as deep in all areas - if a

section has no data in it then it can stop there, whereas if there are many particles,

in Gadget’s case, the code will keep going until a threshold number is reached. Of

most use here is that it affords an overview of the space and allows for individual

particles to be placed into each area and then very easily these can be assigned to

specific processors with a good load balancing.

Figure 6.2: BHTree Example taken from [Springel2006]

Figure 6.2 shows an example of how this process will progress. The shape is first

split (in blue) into 2 * d sections (4). As can be seen, each section has a particle

and as such is added as a child of the root. However, the lower two sections have

no further particles and as such work stops on them. The top two sections split

into 4 segments, both have three subsections with particles and as such are added

as children (the empty subsections are not added to the tree.) As the algorithm

progresses sections with multiple particles are further partitioned and added to the

tree until each node in the tree contains only one particle. In this simple example,

the resolution threshold is one particle - in reality this would be too time consuming

January 18, 2010

6.4. Domain Decomposition 148

to work through and as already explained Gadget-2 selects a higher number for this.

Concretely, each child of the BH tree has a number of attributes associated

with it which are required when analysing and working on the tree. In Mesham,

the programmer can use the referencerecord type to define records and link them

together in a tree manner to form this tree. By using this abstraction it allows

the programmer to easily work with these nodes, not worry about details such as

memory usage and node attributes can be added, removed or modified with little

worry.

1 var BHTree : r e f e r e n c e r e c o r d [” ch i l d r en ” , array [BHTree , 8] , ” s i z e ” ,

Long , ” count ” , Int , ” s ta r tkey ” ,Long , ” p s t a r t ”] ;

2 var BHChildren : r e f e r e n c e r e c o r d [”next” , BHChildren , ” s i z e ” , Long , ”

count ” , Int , ” s ta r tkey ” ,Long , ” p s t a r t ” , Int] ;

3 var ch i l d r o o t : BHChildren : : a l l o c a t e d [] ;

4

5 funct i on void buildBHtree [var space , var t o t p a r t i c l e s , var

g lob root]

6 {

7

8 var root : BHTree : : a l l o c a t e d [mu l t ip l e []] ;

9 root . count := t o t p a r t i c l e s ;

10 root . s i z e :=peano . t o t a l c e l l s ;

11 root . p s t a r t :=0;

12 root . s ta r tkey :=0;

13 BHtreeCons [space , root , 0 , peano] ;

14

15 }

16

17 funct i on void BHtreeCons [var space , var root , var s tar tk , var

peano]

18 {

19 root : BHTree : : a l l o c a t e d [mu l t ip l e []] ;

20 s t a r tk : Long : : a l l o c a t e d [mu l t ip l e []] ;

21 space : SpaceShape [P a r t i c l e] : : a l l o c a t e d [mu l t ip l e []] ;

January 18, 2010

6.4. Domain Decomposition 149

22 peano : PHCurve [space] : : a l l o c a t e d [mu l t ip l e []] ;

23 i f (root . s i z e > 7)

24 {

25 var i ;

26 for i from 0 to 7

27 {

28 var daughter : BHTree : : a l l o c a t e d [mu l t ip l e []] ;

29 daughter . s i z e :=(root . s i z e) % 8 ;

30 daughter . s ta r tkey := s ta r tk + (i ∗ (daughter . s i z e)

) ;

31 daughter . p s t a r t := root . p s t a r t ;

32 ((root . ch i l d r en)#i) :=daughter ;

33 } ;

34

35 var j ;

36 for j from (root . p s t a r t) to ((root . p s t a r t) + (root . count

)) − 1

37 {

38 var bin :=((peano#j) . key − s t a r tk) % ((root . s i z e)

% 8) ;

39 var thenode :=(root . ch i l d r en)#bin ;

40 i f (thenode . count == 0) thenode . p s t a r t := j ;

41 thenode . count := thenode . count + 1 ;

42 } ;

43

44 for j from 0 to 7

45 {

46 var thenode :=(root . ch i l d r en)#j ;

47 i f (thenode . count > (60000 % (20 ∗ p r oc e s s e s [] ∗

p r oc e s s e s [])))

48 {

49 BHtreeCons [space , thenode , thenode .

s tar tkey , peano] ;

January 18, 2010

6.4. Domain Decomposition 150

50 } else {

51 var newchi ld : BHChildren : : a l l o c a t e d [

mu l t ip l e []] ;

52 newchi ld . p s t a r t := thenode . p s t a r t ;

53 newchi ld . s i z e := thenode . s i z e ;

54 newchi ld . count := thenode . count ;

55 newchi ld . s ta r tkey := thenode . s ta r tkey ;

56 newchi ld . next := ch i l d r o o t ;

57 ch i l d r o o t := newchi ld ;

58 } ;

59 } ;

60 } ;

61 } ;

Listing 6.3: Building the BHTree in Mesham

The Mesham code of listing 6.3 contains a sample of that used to build the BH

Tree. The aim of the code is two fold, firstly to build the tree and secondly, for

performance reasons, to link each of the end nodes together in a linked list to avoid

traversing the tree every time. Lines 1 and 2 define the BHTree and BHChildren

reference records respectively, instances of BHTree are used to build the tree, whilst

instances of BHChildren to create the end node linked list. On line 3, the variable

childroot is the head of the end node linked list, and will be referred to later in the

code. As the domain decomposition progresses, the function buildBHtree is called

where in this listing some irrelevant code has been omitted. Lines 8 to 12 create the

root node of the BHTree, count is set to be the total number of particles and size is

set to be the maximum number of particles possible (the total number of PH keys

available.) The recursive function BHtreeCons is then called with this node.

The function BHtreeCons takes a node, will split it up into 2 * d subnodes (8 in

3D space), assign particles to each of these subnodes via their PH key and if required

will then call itself on each subnode to further divide them. Lines 25 to 33 create

the daughter nodes, will set the size of each so they all share the same number of

possible PH keys and then will specify the PH key each will start from (node 0 will

January 18, 2010

6.4. Domain Decomposition 151

start from PH key 0, node 1 from node 0 startkey + node 0 size etc....) Lastly each

daughter node is linked in as a child of the node. Lines 36 to 42 will start off from

the node’s first particle number root.pstart and will go through each of its particles

to determine which daughter node it belongs to. On line 38 the programmer is

accessing the PH key of each particle, making this relative to the node and then

dividing it by the number of daughters (8) in order to determine which daughter

node the particle belongs to. This daughter node’s information is then updated

in lines 40 and 41 to reflect this. Once all daughter nodes have been populated,

the code loops through them individually on lines 44 to 60. On line 47 the code

determines the BH tree node resolution threshold number is 60000 / (20 * processes

* processes), if the daughter contains more particles than this then the function is

recalled on that node to further split it. If there are less than the threshold number

of particles, then the daughter is an end node, a node of type BHChildren is created

and populated in lines 51 to 55, and in lines 56 and 57 this is added to the head of

the end node linked list.

Comparing this with listing C.5, which is part of the native Gadget-2 code for

building the BH tree, one can see that the Mesham code is a lot more abstract.

The C code is constructed such that the programmer is simply accessing elements

of an array, TopNodes, which is not only less obvious but also specifies a limit

to the number of nodes depending on the array size; unlike the Mesham version

which by the very nature of a tree can keep growing whilst memory allows. Another

disadvantage of this approach is that memory is allocated in the C version regardless

whether it is used or not. As can be seen, there are many globals being accessed

by this C function which, due to the possibility of complicated side effects, is often

considered bad programming style. Unlike in the Mesham code, the C code does not

create a linked list of end nodes - instead Gadget-2 maintains a list of array indexes.

Generally speaking, as a technique this is not only more complex to understand and

maintain, but it is also fragile due to if an element of the array is entered or removed

then the indexes must be updated. Gadget-2 does avoid this by not allowing the

array to change, but this is a bug prone area where future updates by third parties

could very easily cause unforeseen problems.

January 18, 2010

6.4. Domain Decomposition 152

1 funct i on void communicateChildren []

2 {

3 var c o l l e c t e d : array [BHChildren , p r o c e s s e s []] : : a l l o c a t e d

[mu l t ip l e []] ;

4 var i ;

5 for i from 0 to p r oc e s s e s [] − 1

6 {

7 (c o l l e c t e d#i) :=(ch i l d r o o t : : b roadcast [i]) ;

8 i f (i > 0) l inknodes [c o l l e c t e d #0, c o l l e c t e d#i] ;

9 } ;

10 ch i l d r o o t :=(c o l l e c t e d #0) ;

11 } ;

12 funct i on void l i nknodes [var a , var b]

13 {

14 a : BHChildren : : a l l o c a t e d [mu l t ip l e []] ;

15 b : BHChildren : : a l l o c a t e d [mu l t ip l e []] ;

16 var tempa : BHChildren : : a l l o c a t e d [mu l t ip l e []] ;

17 tempa:=a ;

18 while ((tempa . next) != nu l l)

19 {

20 tempa:=tempa . next ;

21 } ;

22 tempa . next :=b ;

23 } ;

Listing 6.4: Communicating the BH Tree

Once the BH trees have been built, every processor must send every other processor

its part of the tree containing information about process’s particles. It is important

that each processor has the same information, so that they can all correctly identify

which particles need sending to and receiving from other processes. Listing 6.4

illustrates the Mesham code required to broadcast the tree to each other processor

and link these nodes up. The function communicateChildren is called, in the loop

of lines 5 to 9, each process will in turn broadcast their linked list of tree end

January 18, 2010

6.5. Communicating Particles 153

nodes to every other processor. The referencerecord type of variable childroot has

been written such that in communication, each reference to other variables will be

analysed, packaged up into the communication and sent along with the original data.

On the receiving side the data will be unpackaged and references reissued. This

abstraction allows the programmer to send an entire linked list data structure with

only one line of code, saving them from worrying about the low level, complex, details

of the operation which requires some expertise to complete in a timely manner.

After each process’s end nodes have been received they are added onto the end of

the collected end node linked list via the function linknodes. In order to achieve the

same result, the Gadget-2 C code uses an MPI Gather to transmit and receive all

the arrays of data, which has a number of disadvantages. Not only does the size of

data from each process need to be known prior to this operation but also adding

or removing tree attributes is very difficult with considerable side effect - in the

Mesham code all this is dealt with automatically allowing the programmer to take

a much more high level view of the parallelism.

6.5 Communicating Particles

Once each process has agreed on which particles need to go where, an efficient

method of exchange is required. In order to achieve this, an arraymapped array is

used in the Mesham port of Gadget-2. As can be seen from the code in listing 6.5

variable a is defined to be an array of Particles, size numparts, allocated to processes

via a mappedarray and shares its memory space with variable P. The arraymapped

type will split the array into processes blocks, each process’s block is of size totalsizes

(an integer array) and the variable allsize, also an integer array, actually maps each

element in the array to a specific block. For instance the value 3 at location 120 in

array allsize will inform the type that element number 120 in the array belongs to

process 3. These blocks are then evenly distributed amongst the processes with the

evendist type. The assignment of line 2 a:=P is where the actual communication is

completed.

1 var a : array [Pa r t i c l e , numparts] : : a l l o c a t e d [arraymapped [

January 18, 2010

6.6. Conclusions 154

proce s s e s , t o t a l s i z e s , a l l s i z e] : : s i n g l e [evend i s t []]] : : share

[P] ;

2 a:=P;

Listing 6.5: Exchanging particles in Mesham’s Gadget-2

Compared with the Gadget-2’s C code, the Mesham code is very simple. In Gadget-

2 each process will loop through sending specific particle data to every other process

via synchronous MPI sends. Each other process must match these sends with a

receive and the programmer must ensure that this is written correctly as to avoid

deadlock. Additionally, only a specific buffer space is allowed in Gadget-2, so that

this communication may need to be completed in multiple cycles. Using the Mesham

types, the programmer has been abstracted away from all this detail - in reality the

same buffer checks and matching sends and receives are also being issued by the

type’s code generation, but the programmer need not worry about this nor about

the actual form of communication which has been decided during compile time.

6.6 Conclusions

As has been seen throughout this chapter, Gadget-2 is a complex application. Even

in porting the sections detailed here has taken considerable time and requires an

in-depth understanding of the application. It can be seen that the Mesham code

is at a higher, more simple, level than the original C. This new code is also more

flexible as it is relatively simple to experiment with new concepts and ideas simply

by changing the type of variables.

January 18, 2010

Chapter 7

Evaluation

7.1 Introduction

It is important to answer the question of whether or not the type-based approach

and associated Mesham language are a success. Of all the languages reviewed in

Section 2.3, those which are simple are not efficient and the efficient ones are complex

to use. The real question is does the type-based approach solve this problem?

Another key consideration is exactly where the language lies in comparison with

other parallel programming solutions. In this chapter, using the results of the case

studies described in Chapters 5 and 6, the type-based approach will be evaluated

and compared with other solutions to assess its viability.

In Chapter 1 it was mentioned that existing parallel languages exhibit a tradeoff

between simplicity and efficiency. In evaluating the type-based approach the concept

of programability is considered, this is not just simplicity but all the other factors,

such as flexibility, which contribute to making the programmer’s job as easy as

possible.

7.2 Results

In Chapters 5 and 6 a number of different case studies, which have been written

using Mesham were described. These studies range from the very simple Mandlebrot

example to the complex port of key aspects of Gadget-2. As has already been

155

7.2. Results 156

discussed, two main objectives must be met - does Mesham allow for the programmer

to write (relatively) simple and also efficient code?

7.2.1 Performance

Of all the timing experiments carried out, code written in Mesham performs com-

paratively or better than existing language solutions. This is due to the extra type

information provided by the programmer to assist in static analysis and optimisation

of the Mesham compiler. The code generated by the Mesham compiler for specific

types can be tuned for performance without having to modify any of the source

code. This tuning happens during development of the type library and additional

types could easily be added to the language, without side effect, to further enhance

performance.

It can be seen that the type-based approach of Mesham provides for a smoother

performance curve. For instance during FFT experimentation in Section 5.4, when

run over an uneven number of processors, the FFTW code experienced severe slow-

downs whereas the Mesham code did not. The reason for this smoother curve is

that the relevant types determined implicitly, during compilation, an alternative

form of communication was required to maintain levels of efficiency. Performance

transparency is an important factor for parallel programmers by providing types

which allow for a smooth performance curve, regardless of data decomposition and

is a major benefit of Mesham. By providing this higher-level of abstraction, Mesham

facilitates these sorts of optimisations whereas lower-level parallel languages require

time consuming end programmer optimisations to achieve the same results.

From all the timing experiments performed it can be seen that after the optimum

number of processors has been reached the performance of the Mesham code drops

far less severely than that of the control code. This is most obvious with 128MB

FFT in figure 5.6 but can also be seen in the NAS IS benchmarks of Section 5.3. This

result re-enforces the fact that code written in Mesham is more optimal communi-

cation wise than in the currently popular used, lower level, C-MPI. The reason for

the optimised communication is that the compiler has a rich source of information,

provided by the programmer, to perform analysis and optimisation upon.

January 18, 2010

7.2. Results 157

A popular choice amongst current parallel programmers is to use language fea-

tures such as low-level pointers to their advantage. This approach is most obvious

in NASA’s IS benchmark code where the programmer manipulates pointers to save

both execution time and memory space. Apart from the obvious programmability

penalties to this approach it can provide a useful performance increase. The high

level approach adopted by Mesham does not allow for this unsafe practice or pro-

grammer optimisation at this low level. Instead the compiler, and specifically type

library, of Mesham will use the information provided by the programmer to perform

these sorts of optimisations as much as possible. However it is appreciated that well

programmed C code using these pointer optimisations written by experienced pro-

grammers will often have a performance advantage when it comes to computation.

This sentiment is reflected in the timing results, specifically for NAS-IS. Initially

(up to 4 processes) computation is the most important factor and as such NASA’s

C code performs better. However as the number of processors is increased there is

a shift towards the importance of communication outweighing that of computation

and as such the Mesham code performs more favourably.

Scalability is another important aspect of parallel computing. It is important

for a language to promote code writing which is scalable - both in the number of

processes and size of the input. Skillicorn [Skillicorn1998] quotes that “ Scalable ar-

chitectures are not powerful and powerful architectures are not scalable.” However,

by allowing the programmer to write code in a high-level shared memory abstract

model provides a mechanism which is scalable and transforming this (via all the

program information) into lower-level message passing supports performance. Un-

like many other languages, if written correctly, Mesham code with the type library

should automatically deal with an increase in the number of processors and/or the

input size without having to modify the code. An example of this at work can be

seen in all the case studies conducted. The existing C code has in all cases had

to be written carefully to handle a dynamic number of processors and input size,

or carefully modified in the case of Mandlebrot. When writing the Mesham code,

no specific scalability issues needed addressing due to the compiler handling these

issues automatically.

January 18, 2010

7.2. Results 158

7.2.2 Programability

Current parallel languages are, quite rightly, seen as difficult to work with, maintain

and can often by their very nature allow for the programming of unsafe parallel code.

By abstracting away from all the low-level details it has been an aim to provide the

programmer with a flexible, simple to use language which can promote increased use

of these parallel resources. Programability is very much a subjective area, although

there are some general conclusions which can be drawn from the case studies already

reviewed.

The first issue to consider with programability is number of lines. This measure

is certainly not an exact indicator, it is possible in some languages to write very

short programs which are highly complex. However, in all the case studies reviewed

the Mesham code is considerably shorter than the control code. The Gadget-2 case

study is the most revealing of these, where the Mesham I/O code is 16 times shorter

and the domain decomposition 3 times shorter than its C counterpart. The reason

for the dramatic reduction in code size is that the programmer is just concerned

about the high level parallel details with, mainly abstractions provided by, the type

library dealing the lower level mundane ones. This abstraction makes the code easier

to write, understand and, most importantly with Gadget-2, maintain.

Section 2.3.1 introduced the concept of using an automatic parallelising compiler

to allow for the programmer to write sequential code and then have it run in parallel.

The paper [Lou2005] introduced an experiment whereby four existing benchmarks

were stripped of all the parallel details and the number of lines and execution time of

this resulting code was compared. This process resulted in between a 4 and 11 times

reduction in code size with performance hit of the new code being between 2 to 6

times slower depending on the benchmark. In all case studies considered the Mesham

code is shorter than the existing C code, taking Gadget-2 as an example there is a

code size reduction of between 3 to 16 times. However the major benefit of Mesham

over the approach described in [Lou2005] is with respect to performance. As has

been shown, the performance of code written in Mesham is certainly comparable

to existing parallel codes, which is not the case in the experiments detailed by

[Lou2005].

January 18, 2010

7.2. Results 159

Parallel codes written in Mesham are generally more flexible and maintainable

than those written in other languages. For instance changing key program attributes,

such as communication form, only requires a simple change in type. Many other

current parallel languages would require far more work to achieve the same result,

often with the programmer having to consider issues of side effects. The reason

flexibility is important is because often parallel programmers wish to fine tune their

working code. Mesham’s type-based approach allows for programs to be written us-

ing default options and then the programmer can added additional types to improve

on performance. Existing languages, especially the lower level ones, simply do not

provide for this and often key attributes must be considered and “hard coded” into

the program from the outset which, in retrospect, are not always the best choice.

By abstracting away from the more mundane lower-level details does very much

enhance software development and help avoid issues such as program bugs. With

other parallel languages, especially those such as C-MPI, subtle errors can cause

problems in communication and computation. These issues are all abstracted away

from the Mesham programmer. Types can be thought of as building blocks which

the programmer can rely on to write their code. Although not formally proved

correct, the type library has been extensively tested and use of these types does

make programming easier as the coder need only be concerned with the correctness

of their specific code. However this does highlight a problem with the current

language. Although types are very easy to add to the language, such as Gadget-2

extension types, they must be added at the language level to the compiler rather

than created by end programmers. Allowing end programmers to create and use

their own program types within their code is an interesting idea and certainly a

candidate for further exploration when the type-based concept has been developed

further. It is thought that allowing for types to be created within programmer’s

code could bring programability benefits similar to the OO paradigm.

A major issue with some of the existing languages used for parallelism is safety.

In some languages it is all too easy to encouter parallel issues such as deadlock if

the code is not carefully constructed. Mesham provides for a number of language

defaults which are “guaranteed” to be safe. When using these inbuilt features the

January 18, 2010

7.3. Skillicorn’s criteria 160

programmer will not encounter common problems such as race conditions, deadlock

or livelock. This is an important feature of the language - many parallel programmers

are not formally trained in computer science and those coming from a sequential

background often find it difficult to understand and deal with these extra potential

problems. Having said that, by enforcing safety the programmer’s expressiveness

can be somewhat limited and there are additional performance hits. To this end

the language does provide types which override the default behaviour giving the

programmer more control (and performance) yet the cost of these is that they are

not guaranteed to be safe. A common example is that of communication where the

default behaviour, which is often sufficient, will have a minor performance hit if com-

munication is used dynamically (MPMD style in a par loop.) This can be overridden

by communication primitive types, which may improve performance when used dy-

namically, but the responsibility rests on the programmer to ensure for safety when

using these.

The programming approach encouraged by Mesham is for the programmer to

write code which is portable amongst architectures. In other languages it is often

difficult to write portable code, especially when communication must be considered,

with many pitfalls facing programmers. By design the type-based approach and

Mesham are architecturely unspecific, disallowing the programmer to write non-

portable code. In reality factors such as the code generated by the Mesham compiler,

the communications library used and target architecture are unimportant and can

be hidden from the end programmer, thus simplifying the entire process.

7.3 Skillicorn’s criteria

Chapter 2 introduced a number of parallel programming language evaluation cri-

teria chosen by Skillicorn in his paper [Skillicorn1998]. These six are the ease of

programming, existence of method for development, independence of target archi-

tecture, simplicity and abstractness, guaranteed performance and the existence of

costs which can be inferred from the program. As was seen in Section 2.3.4, none of

the existing languages met all these objectives.

January 18, 2010

7.3. Skillicorn’s criteria 161

7.3.1 Ease of Programming

The first of Skillicorn’s criteria, ease of programming, is essential to any language.

This criteria is a subjective one and has been a major aim of the type-based approach

and Mesham. From the results of experimentation, with the different types provided

to the programmer, it can be seen that Mesham is comparatively easy to program.

Compared with other languages code written in Mesham is shorter, easy to modify

without side effects and automatic default options mean that it can be written

without an in-depth knowledge of the language. In his paper Skillicorn argues

that a model which is easy to program should hide decomposition of the program

into parallel threads, abstract away mapping these threads onto processors, keep

communication away from the programmer and conceal synchronisation.

However, it should be noted that the languages which do take away this control

from the programmer often rely heavily on static analysis and optimisation which

does not always produce optimum results. To this end the approach of Mesham,

providing a number of simple defaults which the programmer may rely on but also

supply mechanisms so that the more advanced programmer may override them, is

considered very important. The Mesham language meets all of these concealment

requirements, but also allows the programmer greater control via the type system

to override the imposed defaults. As performance is key in parallel computing, it is

considered that this is an important evolution of Skillicorn’s first criteria.

7.3.2 Software Development Methodology

For this criteria it is argued that a firm semantic foundation is required onto which

transformation techniques can be built. Skillicorn notes that, due to the complexity,

the methodology of testing via execution and then debugging, rather than proving

correctness, does not extend to portable parallel programming. Instead it should be

possible to build software which is correct by construction. Unfortunately, at the

moment, it is not as easy to prove correctness as it might be using an alternative, well

theorised language. Although, semantically, the imperative model is well known, we

do not have the appropriate mathematical tools to model the type-based approach

January 18, 2010

7.3. Skillicorn’s criteria 162

making it difficult to theorise about Mesham programs.

Traditionally types are modelled via operational semantics, however the way

types are used in Mesham follow more of a denotational approach but still require

operational semantics. This mix of semantic models is not ideal and as such currently

it is difficult to theorise about and prove language and model properties. Developing

such a semantic model is quite a task and as such is considered further work, as is

formally proving properties such as correctness of the types. Having said that, it

is made very easy for the programmer to improve their code via informally testing

and debugging, although this does not meet Skillicorn’s second requirement.

7.3.3 Architecturally Independent

In [Skillicorn1998] it is argued that code should be able to run from one parallel

computer to another without any change. The type-based approach allows Mesham

to be sufficiently abstract such that the programmer implicitly writes architecturally

independent code. It is inevitable that performance between parallel machines will

vary, to this end Mesham allows the programmer to trivially experiment with differ-

ent types in order to pick the best combination. On an implementation view point,

as already explained, the Mesham compiler will generate C code conforming to the

C99 standard and uses the MPI-2 standard for communication. All non-portable

functions of the language implementation are contained within a runtime library,

which exist for each class of machine and is linked into the C99 code during compi-

lation. Therefore, to run any Mesham code on a parallel machine all that is required

is a C99 conforming compiler, implementation of MPI-2 standard and version of the

Mesham runtime library.

7.3.4 Easy to Understand

Easy to understand is another criteria specified in [Skillicorn1998]. Not only should

the model be understandable, it should also be easy to teach. Skillicorn argues

that if parallel programming models are able to hide the complexities associated

with parallel computing and provide an easy to use interface then they have greater

January 18, 2010

7.3. Skillicorn’s criteria 163

chance of being accepted. From the specification in Chapter 3 and the studies

in Chapters 5 and 6 it can be seen that the type-based approach is a simple one

once explained fully. Of course it would require educating programmers to this new

programming paradigm but it can be seen from the case studies that this fairly

simple task will result in easier to understand code. In designing Mesham it was

decided to centre this type approach around an imperative language, which is what

the majority of parallel programmers are familiar with and use at the moment, thus

making the transition easier.

7.3.5 Guaranteed Performance

Skillicorn argues that providing guaranteed performance is of great importance and

as such it is the fifth criteria to be considered. It is stated that a model should

have guaranteed performance over a variety of parallel architectures but this does

not mean that the code must run as fast as possible - instead a balance between

programmability and performance must be met. In the paper Skillicorn mentions

that one of the most powerful architectures is distributed memory MPMD and, as

in Section 4.7, this is the model the Mesham compiler’s generated code follows.

By providing well documented types the Mesham programmer knows exactly what

they are getting performance wise. Additional types can be written and optimised

by experts to produce the best performance possible over a variety of architectures

and uses. An example of guaranteed performance is in the FFT case study, where

over an uneven number of processors the FFTW code experiences a large drop in

performance whereas the Mesham code is unaffected.

7.3.6 Cost Measures

Providing a model which is transparent enough for the programmer to be able to

easily determine the performance is a must. It is essential for the programmer to

be able to determine if algorithm A is “better” than algorithm B. Skillicorn issues

a word of caution when dealing with this criteria however, cost measures are not a

licence to remove all abstraction from the model. Instead the model should provide

January 18, 2010

7.3. Skillicorn’s criteria 164

just enough information to the programmer such that it is possible to determine its

cost from the text, minimum computer properties (such as number of processors)

and information about the size of the input. He goes on to say that models must

provide predicable costs and that compilers should not optimise programs. In reality

compiler optimisation is essential - it would be impossible to have a simple abstract

language without static optimisation to produce good performance. Instead it is

considered more important that any compiler optimisation performed should be

predictable and transparent. In designing Mesham and the type library transparency

has been a major goal - the programmer knows exactly what they are getting when

they use a language construct or type. As has been seen in Chapters 5 and 6, this

transparency means that it is relatively simple to construct highly efficient codes

because the costs of such are obvious.

7.3.7 Summary

Mesham

Easy to Program Y

Software Dev Methodology N

Architecture Independent Y

Easy to Understand Y

Guaranteed Performance Y

Cost Measures Y

Table 7.1: Mesham considered wrt Skillicorn’s criteria

Table 7.1 summarises how Mesham and the type based approach fits in with the

six parallel model evaluation criteria laid down in [Skillicorn1998]. It can be seen

that all are met except Software Development Methodology. The reason for this is

that Skillicorn calls for formal methods to prove properties such as correctness. As a

language design field the mathematical foundations really are not up to the job, as of

yet, for supporting these activities. Even in his paper he states that these calculation

approaches are “goals rather than practices in the medium term”. However from

the simplicity at the core of the type based approach, it is considered that the model

January 18, 2010

7.4. Other Languages 165

will lend itself to this once the calculation concept has matured somewhat to more

mainstream languages.

7.4 Other Languages

In Chapter 2 a number of existing parallel languages were reviewed and considered.

An important question of this chapter is to ascertain where abouts Mesham sits

in relation to these existing solutions, and whether or not the type-based approach

provides for advantages over these other languages.

The main concern in this thesis is the development of a type-based approach for

parallel programming, and this has been encapsulated in the language Mesham. In

the comparison below references to Mesham are also references to the type-based

approach.

7.4.1 High Performance Fortran

As reviewed in Section 2.3.3, HPF is a popular language for parallel work. Like HPF,

the Mesham programmer can specify data partitioning and allocation but they can

also control the communication and computation distribution aspects of their code if

they so wish. On this level, much of the data partitioning, allocation and communi-

cation can be specified by the Mesham programmer but can equally be omitted and

reliance placed upon language defaults. However, in HPF the programmer is limited

to specifying the first 2 of these attributes and has no control over the third. As

already mentioned, in designing the type-based approach, much emphasis has been

placed upon transparency so that the Mesham programmer knows exactly what they

are getting with their code. For HPF, with many important parallelization details

left to the compiler, transparency is not a feature.

Another difference between the languages is that the, limited, parallel expres-

siveness of HPF is done via keywords whereas in Mesham types are used. Using the

keyword mechanism very much tightly couples these into the language and makes fu-

ture modifications difficult. By abstracting many of the parallelization details into

a loosely coupled type library, Mesham avoids these disadvantages. In summary,

January 18, 2010

7.4. Other Languages 166

HPF and Mesham are very different languages. Mesham allows the programmer a

varied degree of control from the default options aimed at novices to high levels of

control if needed by experts, whilst maintaining transparency. The HPF program-

mer is very much stuck with having to define certain parameters and then must rely

on the non-transparent compiler transformations to determine, probably the most

important parallel factors, communication and computation distribution implicitly.

One factor HPF and Mesham do have in common is that if all parallel information

is removed, then the program simply becomes a sequential one.

7.4.2 Co-Array Fortran

As already discussed the CAF programmer specifying explicitly data partitioning,

computation and synchronisation has a greater degree of control over parallelism

than the HPF programmer. However the CAF programmer has only one-sided

communication which is often inefficient. In Mesham dynamic communication is,

by default, one sided but this can be overridden by the programmer if required.

Mesham also allows for a varied choice when allocating data amongst processes or

groups there of, whilst in CAF the programmer may only define data to be local or

global. The CAF programmer must also concern themselves with certain low-level

issues such as index management, which can become a real difficulty when dealing

with uneven distribution of data. Via the type system these details are all handled

automatically in Mesham, providing simpler and more flexible code.

7.4.3 ZPL

The array programming language, ZPL, takes advantage of the fact that many

parallel applications involve working with arrays of data. In array programming,

the statement C:=A + B will combine arrays A and B into C, thus cutting down

on mundane programming work. In the type-based approach, the type system is

flexible enough to provide for features, such as array programming, within the system

itself. For instance, Mesham’s array type supports array programming in this form

even though this is not part of the core language specifically. By maintaining a

January 18, 2010

7.4. Other Languages 167

clear distinction between the type system and the core language, it has been found

that adding these additional features is simply a matter of modifying the specific

type, without having to worry about language-wide side effects which can get very

complicated using traditional approaches. The ZPL programmer has no control over

communication, as already mentioned the Mesham programmer can take control of

this if they so wish or rely on transparent defaults.

7.4.4 NESL

In Section 2.3.3 it was mentioned that functional parallel languages, due to their

abstract nature, hide most of the parallel details from the programmer. The source

programmer does not have explicit control over various parallelization options such

as the choice of communication method and synchronization. That means good

performance is guaranteed only when the default options with optimization are just

right for the problem. Mesham provides a much more concrete model with which

the programmer can control some or all aspects of parallelism if they so wish. The

lack of transparency provided by NESL means that although the work and depth

of an algorithm can be easily deduced from the functional source code, this often

does not relate to runtime. When writing code in Mesham the programmer can gain

a feel for how their code will perform and which algorithms are best suited from

language documentation and of course some experimentation.

It is a belief of many that programming in functional languages is hard. Whilst

this might not always be completely true, in conceiving this many programmers

stay away from these languages due to the initial steep learning curve. In evaluating

Mesham it has been shown from the case studies that writing code is relatively

simple, as long as the programmer understands the underlying type-based paradigm

adopted.

7.4.5 Titanium

A major advantage to Titanium is that being based on Java, an OO language,

the programmer can abstract away parallel details via objects. There are some

January 18, 2010

7.4. Other Languages 168

similarities between the use of types in this thesis and objects, as already mentioned

an idea for further work would be to allow for the Mesham programmer to implement

their own types in program code. However there is a cost associated with this, OO

can impose hidden overhead which is not transparent as mentioned in Section 2.3.3.

The type-based approach of Mesham avoids these hidden overheads, there is

no expensive serialisation or deserialisation in communicating data and the way

types are implemented, specifically referencerecords means that they are careful to

maintain memory locality whereever possible. Of course if the type-based approach

were extended to allow types to be created dynamically in program text then some

additional overhead might be encountered, but in implementing this feature the

language designers would need to be careful to maintain transparency and, as much

as possible, performance.

Other similarities between Titanium and Mesham is that both languages enforce

safety (by default with Mesham), they are portable and it is easy to build complex

data structures in both (via the record type in Mesham.) Already mentioned, the

Titanium programmer is stuck writing code SPMD style which is somewhat limiting

in many cases. Mesham is flexible enough to allow the programmer to use SPMD,

MPMD or a mixture of both depending on which works best for the problem to be

solved.

7.4.6 Message Passing Interface

Due to its popularity and performance, implementations of the MPI standard using

C have been reviewed in detail in comparison with Mesham code during the case

studies. It has been mentioned that this choice is low level, with the programmer

responsible for all options of parallelization. Being a sequential language, writing

code this style also requires the programmer to think in a sequential manner and

means that it can be difficult for them to consider the “big” parallel picture. Addi-

tionally, code written using MPI is often not flexible unless written very carefully.

When written by experts parallel codes using this option can perform very well, but

even the best do make mistakes; in porting Gadget-2 into Mesham minor bugs were

found in how the original C code handles HDF5 I/O.

January 18, 2010

7.4. Other Languages 169

The differences between MPI and Mesham are vast. The programming model

adopted by Mesham is much more abstract, allowing the programmer to easily take

a high-level view of their code whilst giving them high-level ways of control the

aspects of parallelism they wish to. Additionally, when used with its default options

(specifically communication) the Mesham language guarantees safety, which MPI

does not. Using MPI it is all too easy to write unportable code, especially when

used from C because of the ability to write code which is subtly not according to

the standard but still allowed on a specific architecture and compiler. In Mesham

portability is designed into the language.

However, there are some enviable qualities of MPI, namely the performance and

expressiveness it can provide for. In designing Mesham and the type library these

have been important qualities to incorporate. Firstly, in order to achieve perfor-

mance the Mesham compiler will translate source code into C using MPI, applying

as much optimisation as possible. This approach should provide the best of both

worlds, a high level simple to use language which translates to as efficient as possi-

ble target code. As shown in the performance section of case studies this approach

does work well generally although the MPI programmer could apply further, time

consuming, optimisations on their code over and above what a compiler can provide

for.

As for expressiveness it has been an aim in designing the type library, specifi-

cally the primitive communication types which the programmer can use to override

default communication, to provide the Mesham coder with all the communication

methods which the MPI standard also supports. This is an important factor, some

parallel programmers really do find these options useful and as such should be avail-

able to advanced users. Via the design of the type library if additional forms of

communication were required in the future then it would be a trivial task to supply

them.

Functions provided by an implementation of MPI can offer a high degree of flex-

ibility in their use, especially when combined with specific languages. For instance,

the MPI library implementers might never have envisaged sending a specific form of

data but this can be done by providing the memory address and specifying the type

January 18, 2010

7.4. Other Languages 170

to be MPI BYTE. Whereas the type library which has been designed into Mesham

is somewhat more limiting. The reason for these limits is to provide for safety and

compiler optimisation, but some existing programmers might very well prefer the

more flexible library design.

7.4.7 Bulk Synchronous Parallelism

Like MPI, BSP is a standard which has been implemented in library form and used

in conjunction with different languages. One of the more popular combinations has

been BSPLib with C. In providing the programmer with a shared memory model

this choice is at a higher level, and somewhat easier to use, than MPI. Additionally,

being shared memory, communication is much simpler with fewer options. Me-

sham provides the programmer with a shared memory view, but allows for far more

expresivity via the type system if they so wish. Additionally, when using an im-

plementation such as BSPLib, the programmer must still consider low-level details

such as pointers which is avoided in Mesham.

The last point to consider is that of performance, “the performance of barriers

on distributed-memory machines is predictable, although not good.” [Hill1999] This

might be one of the reasons why other solutions, such as MPI, have become more

popular. In using the rich program information provided by the programmer, it

has already been shown that Mesham can compete performance-wise with solutions

such as MPI and as such is deduced to outperform BSP.

Standards such as MPI and BSP do have an important advantage though. Im-

plementations of these standards can be used from many different languages. For

instance, MPI bindings exist for C, C++, Fortran and Java as well as many oth-

ers, so the programmer can pick their favourite language and then use the bolt on

parallelism. At the moment the type-based approach is limited to the imperative

Mesham language which the programmer would be forced to use. As has already

been considered, the type library and actual language are distinct, so it would be

relatively simple to attach the type library to another language which provides basic

type support. This is an area for further consideration.

January 18, 2010

7.4. Other Languages 171

7.4.8 Cilk

Cilk and Mesham differ fundamentally, whereas Mesham is based around data par-

allelism, Cilk is based around task parallelism. Although task parallelism is an

important issue, often threads can be handled on an operating system level with a

reasonable level of success. The major selling point of Cilk is that it places emphasis

on efficient scheduling of these tasks by using extra information the programmer has

provided. Cilk limits itself to SMPs, connected to the same shared memory and as

such is not scalable like other parallel solutions considered. In doing this means that

communication need not be considered, with only simple language mechanisms in

place to synchronise tasks.

Task-based parallelism is only useful up to a point, there becomes a limit to

the number of tasks which a program can be split into. Data parallelism, based

upon each processor solving the same task on different parts of the data, is often

far more relevant in the scientific domain which parallel computing is popular with.

Having said that, data parallelism is more difficult to achieve, inevitably requiring

a data parallel language to be more complex than task-based one - hence only two

additional keywords in Cilk compared with the novel type approach developed for

Mesham. By the design of the language, a Mesham programmer can execute their

code transparently on SMPs, over a cluster of machines or on a mixture of both

which is unavailable to those using Cilk.

7.4.9 Summary

As can be seen in this section of all the existing language solutions in current use

Mesham is unique and exhibits certain advantages over the rest. Providing the

programmer with certain transparent parallel defaults which can be easily overridden

promotes both ease of programming and expressiveness. Of all the other languages

considered, those which abstract away some parallel details are not transparent

and often suffer from a lack of efficiency in their implementations. Those parallel

languages which have built in explicit control often do this via keywords which are

hard coded into the language and difficult to modify if needed.

January 18, 2010

7.5. Conclusions 172

Sequential languages using specifications such as MPI might produce an efficient

result, but are often difficult to program and the results hard to maintain. By taking

a high-level view of parallelism the Mesham programmer can write simple code yet

with all the extra information provided to the compiler often much optimisation can

be performed to match performance with these existing solutions.

A weakness exposed in Mesham is that, for the programmer to use the type-based

approach to its full advantage, these types must exist within the library. Whilst

every effort has been made to produce a set of general, flexible types it is inevitable

that there will be some requirements for additional types. The language in its current

form would require these types to be added to the compiler, which is relatively

simple but not appealing to many programmers. As already mentioned, a major

improvement to this approach, and Mesham, would be to allow end programmers

to create types dynamically - although careful consideration must be given to any

side affects of this. Table 7.2 illustrates how Mesham ties in with the other existing

languages that have been considered.

Imperative Functional Library Extension OO Type Based

Message Passing - - MPI - -

Shared Memory HPF,CAF,ZPL,Cilk NESL BSPLib Titanium Mesham

Table 7.2: Overview of Parallel Languages Considered

7.5 Conclusions

In this chapter the type-based approach has been evaluated and is found to per-

form well and solve the problem of programability. These objectives which have

been considered contradictory up to this point are both very important if parallel

programming is to grow and succeed. Out of the six criteria defined by Skillicorn,

Mesham is shown to honour five of these (which is impressive), with only one criteria

being a basis for further work and improvement.

In order to give the reader some indication of where Mesham sits in relation to

other solutions, the language has been compared and contrasted against existing

January 18, 2010

7.5. Conclusions 173

ones. It has been shown that Mesham, and the type-based approach, do provide

some unique properties which exhibit certain advantages over other languages which

are currently in use.

Table 7.3 summarises all the languages considered with respect to Skillicorn’s

evaluation criteria. It can be seen that, in comparison with the other languages,

Mesham meets the most objectives. In second place is Titanium which meet four

of six criteria. Third place goes to ZPL, HPF and CAF which satisfy three. NESL

is in fourth place, meeting two objectives, BSP and Cilk are in fifth place and MPI

is in last place only meeting 1 criteria. The irony of table 7.3 is that, although

meeting the least of Skillicorn’s criteria, MPI is still by far the most popular parallel

programming choice.

HPF CAF ZPL NESL Titanium MPI BSP CILK Mesham

Easy to Program Y Y Y N Y N N Y Y

Software Dev Methodology N N N Y N N N N N

Architecture Independent Y Y Y Y Y N N N Y

Easy to Understand Y Y Y N Y N N Y Y

Guaranteed Performance N N N N Y Y Y N Y

Cost Measures N N N N N N Y N Y

Table 7.3: All Languages considered wrt evaluation criteria

January 18, 2010

Chapter 8

Conclusions and Further Work

8.1 Introduction

This thesis has aimed at addressing the parallel programming language problem. As

introduced in Chapter 1, an area which has not seen a great deal of improvement,

although considerable research has been done, is in the development of languages

used to create parallel codes. The difficulty of programming has been the main

challenge to parallel computing over the past several decades. As discussed, up to

this point, none of the existing parallel languages are sufficient for the task in hand -

they are either conceptually simple or efficient, but none exhibit both these qualities.

If the use of parallelism is to move from the domain of the few experts towards the

more general computing user, opened up by recent developments in CPU and GPU

technology, then this problem must be solved.

This thesis first identifies the principals employed within parallel programming

and the existing tools currently used. Secondly, through surveying current parallel

languages, it has been determined that none of these solve the problem of allowing

a programmer to write conceptually simple yet highly efficient parallel programs.

The third, and most important contribution of the thesis, has been the introduction

of the type-based approach and the associated programming language, Mesham,

to act as a vehicle for this. The thesis then describes the implementation of the

Mesham compiler and some associated issues with actually creating this type-based

approach. Finally this type-based approach, including Mesham, has been evaluated

174

8.2. Contributions 175

by implementing a number of case studies and considering important parallel issues

such as efficiency and simplicity.

8.2 Contributions

The principles and tools employed within parallel computing and programming lan-

guage design are the first thing that this thesis identifies. From the outset it was

considered that in order to design a parallel programming language one first needs

to become a parallel programmer and build expertise in this area. The popular

technologies employed in parallel computing and how they are used was an impor-

tant starting point. Also considering specific parallel algorithms and applications

such as that of the FFT and Gadget-2 which are both commonly used has helped

identify the complexity of these existing programs and the attributes which are of

most importance.

When considering the existing parallel languages available to the programmers it

was seen that none actually meet the requirement of being conceptually simple yet

highly efficient and expressive. Each parallel language was subject to a number of

tradeoffs, with the language designers often taking decisions away from programmers

in the name of simplicity. An example of this was in Co-Array Fortan, described

in Section 2.3.3, where the programmer had no say over the actual form of com-

munication. When looking at Skillicorn’s six parallel language criteria introduced

in Section 2.3, it could be seen that no existing language met all of these. This

has been a long standing problem in the parallel computing field, there is no ideal

language. Performance is more often than not the most important factor in parallel

computing, which is why parallel programmers have chosen languages such as C

linked with a communications library over simpler less efficient ones such as High

Performance Fortran.

The major contribution (Chapter 3) of the thesis has been that of introducing

the type-based approach itself. By following this new programming paradigm the

complexity of parallel programming has been taken out of the core language and put

into a loosely coupled type library. The programmer can use and combine these types

January 18, 2010

8.2. Contributions 176

to control all aspects of parallelism, as well as defaults built into specific types in case

information is missing. An example of these defaults is that of communication. Built

into element types such as Int is default forms of communication which guarantee

safety, but the programmer can override these with primitive communication types

to obtain, for instance, an increase in performance. However defining this type-

based approach was not enough, in order to present and test it, a language had to

be created which could act as a vehicle for the concept. This language, Mesham, has

been designed as an imperative language with access to a loosely coupled type and

function library. Minimal constructs are incorporated in the language to support

the type-based approach.

This type-based approach supports simplicity because as long as the types are

well documented, as in Section 3.3, the programmer knows exactly what they are

getting. It is also possible for the programmer to rely initially on some simple

types and then experiment using more complex ones without having to rewrite large

portions of their code. A prime example of this is again with communication, as

mentioned to change the form of communication in Mesham simply requires changing

the type, whereas with languages such as C often a large amount of work would be

needed. This high level view as imposed by the type system also simplifies things

a great deal, such as with the FFT case study in Section 5.4 where an uneven

distribution of data is automatically dealt with in an efficient manner. From a

language and compiler design point of view, importantly, this type-based approach is

flexible. It is possible for instance to add, remove and modify types without worrying

about language wide side effects which are often present in other paradigms.

This thesis describes the implementation of the Mesham compiler and the type-

based concept. Although quite a minor consideration there were issues which the

approach raised on an implementation level requiring addressing. One such issue

was that of how to dynamically link the compiler’s type objects together during

translation. As the programmer is free to combine types together in many differ-

ent ways the traditional OO approach of class hierarchies was not sufficient and an

alternative method needed to be found as explained in Section 4.5. The implemen-

tation issues were not just limited to the compilation phase however, it was also

January 18, 2010

8.2. Contributions 177

important to consider the target code and how to provide for a language which was

both portable and efficient. It has been demonstrated that the concept of allowing

the programmer to write code in one communication model (shared memory) and

then translating it into another model (message passing) does work well, combining

the advantages of both models into a single language. The approach that followed,

of generating only C99 conforming code which linked with an implementation of the

MPI standard and a language runtime library containing all the platform specific

code worked well.

Finally, the type-based approach and associated language were evaluated by im-

plementing a number of varied case studies in Mesham. The two main considerations

were that of simplicity and efficiency. Due to the programmer providing much high-

level information with which the compiler can use to perform static analysis and

optimisation performance was demonstrated to be comparable, and in some cases

better, than existing code. The most important performance case study was that

of NASA’s Parallel Benchmark (NPB) suite and specifically the Integer Sort (IS)

specification. From the timing results in Section 5.3 it can be seen that, overall,

the type-based approach and Mesham provide the programmer with as good perfor-

mance as existing high performance language solutions. A common feature of the

performance tests has been that in existing code certain “hacks” are used to improve

performance computationally. When the number of processors becomes significant,

often 4 or more, then the importance of efficient communication becomes increas-

ingly important and as such Mesham starts to compare with or outperform existing

high performance languages. This communication efficiency continues even past the

optimum number of processors, generally with code written in Mesham suffering

from less of a performance drop.

In order to evaluate simplicity of the type-based approach, this thesis included

case studies with varying degrees of complexity. The most important case study in

terms of programability was that of Gadget-2. Chapter 6 describes the process of

porting aspects of Gadget-2 into Mesham and the extra types which were added to

the language to facilitate this. As demonstrated by this thesis, the ported parallel

and I/O code is much simpler than the existing C code with a dramatic reduction

January 18, 2010

8.3. Criteria for Success 178

in size. As can be seen by the codes in Chapter 6, being able to take this high

level parallel view and abstract away the low level complexity does make a huge

difference. These programability improvements are not just limited to Gadget-2, all

the case studies considered are simpler in Mesham than their original form.

8.3 Criteria for Success

In Chapter 1 a number of criteria were specified as being the criteria for success.

Whether or not the research has addressed these is considered in this section.

“Support code which is simple yet expressive: This criterion specifies

that parallel code should be conceptually simple to write yet still allow

for advanced programmers to enjoy a high degree of control over parallel

decisions.”

As detailed in Chapter 3, the type-based approach allows for the programmer to

omit much type information if they so wish and rely on in built defaults which, in

most situations, will be acceptable. To the more advanced programmer additional

types can be specified which afford a greater degree of control. A prime example

of this is with communication where the element types of Section 3.3.2 provide for

default communication which is guaranteed to be safe but might have a slight per-

formance hit. More control, and performance in some cases, can be obtained by

combining these element types with a primitive communication types detailed in

Section 3.3.5. This demonstrates that the first criterion for success has been met.

“Provide for flexible parallel programming: Parallel programmers

often wish to get their code working and then fine tune for performance.

With many existing languages changing parallel details later down the

line can be very time consuming and as such programmers can be stuck

with initial, ill informed, decisions.”

This second criterion has been met. In Chapter 3 it was discussed how the

programmer can modify the type of a variable throughout program code, either

permanently or for only an expression. It was also demonstrated that, in order to

January 18, 2010

8.3. Criteria for Success 179

change many parallel options, all required is a simple change in type. For instance

in Section 3.3.7 the notion of horizontal and vertical partitioning was introduced.

It is very possible to initially partition an array one way, say horizontally, and then

once the code works satisfactorily experiment with other types such as partitioning

vertically. As the type library deals with all the low level complexity of this opera-

tion, such as associated communication and index management all that is required

from the end programmer is the change in type. Comparing this with a language

such as C, considerable modifications would be needed to be made to the source

code to achieve the same result.

“Be general and non-application specific: There are a wide variety

of parallel applications currently being used. As such it is important

to develop an approach which is general and can be applied to not only

existing problems but future ones too.”

A variety of wide ranging case studies have been developed in Chapters 5 and 6.

In designing the approach and type library of Mesham it was a key consideration to

keep these types as general as possible. Having said that, as detailed in Section 6.2,

a number of types did have to be added to the language to support the porting of

Gadget-2. Whilst it was a simple task to add these it is not practical to expect the

end programmer to modify the language and compiler that they are using. To this

end the type-based approach is general and applicable to many problem domains,

but it could be made more general by allowing the programmer to specify their own

types in source code as suggested in Section 7.2.2. To this end the third criterion

has been met to a degree, but some further work and development of this approach

would improve the applicability.

“Exhibit a high degree of performance: Performance is the main

concern within parallel computing. Any proposed approach must be, at

least, as efficient as existing high performance language solutions to

stand a chance of adoption.”

As demonstrated in Chapter 5 the type-based approach, and Mesham, performed

January 18, 2010

8.4. Further Work 180

comparatively against existing high performance parallel programming languages.

A general theme of the performance graphs was that the computational aspects were

often faster in the existing C code, with the parallel aspects faster in Mesham. One

of the main reasons for the computational difference was due to the nature of C

allowing the programmer to carefully optimise their code using low-level concepts

such as pointers. This was especially apparent in the NAS-IS benchmark considered

in Section 5.3. Therefore it can be concluded that the type-based approach does

exhibit a high degree of performance and when run on a none negligible number of

processors (4+) will compare with or even beat existing languages. There is some

work to be done on the programming language, Mesham, and compiler to improve

the computational efficiency.

“Must be implementable: Arguably there is little point of a paradigm

or language if it can not be implemented on a computer. From the

specification it must be possible to produce translation tools which work

in a timely fashion.”

Chapter 4 summarised the implementation of the Mesham language. Not only

was the compiler discussed, but additional concerns such as the form of generated

code to maximise performance, scalability and portability were also addressed. From

this chapter it can be seen that, from the language definition in Chapter 3 and

Appendix A, a compiler writer can quite easily implement the type-based approach

and supporting language. Therefore it is concluded that this final criterion for

success has been met.

8.4 Further Work

This thesis has introduced the type-based approach and demonstrated that using

the concept is a realistic possibility with a number of potential advantages. Having

said this, there are still a number of important avenues which warrent further work

and exploration.

January 18, 2010

8.4. Further Work 181

1. Develop a mathematical, semantic, definition of this type-based approach.

When considering the semantics of the approach, using current techniques, it would

exhibit attributes both of denotational and operational semantics as introduced in

Section 2.4.2. It is the feeling of the author that the semantic definition of this

type-based approach would be quite similar, although with some differences, to

that of OO if such existed. The creation of such mathematical tools would allow

for a precise definition of this approach and support proving important language

properties such as correctness. This could be the starting point for Skillicorn’s

second criteria of software development methodology as introduced in Section 2.3.

For this criteria he argues that parallel software should be correct by construction

rather than extensive testing and debugging as is currently the norm. Having a

strong mathematical foundation and specific proven properties of the approach is

key if criteria is to be realised.

2. Allow programmers to define their own types. Evident in Chapter 6, to

support the implementation of Gadget-2, a number of new types were added to the

language. Whilst it would have been possible without these extension types, albeit

it making the process a lot more difficult, adding them was a simple task for the

language designer. However, the average programmer can not be expected to do

this and as such a mechanism by which these types could be defined in the source

code would be of benefit to the approach. Considering for the minute a language

such as Java which has an extensive object based API, if the programmer were stuck

just with the objects in this API and could not create their own then it would feel

far more restrictive. Although type-based and OO approaches are different, it is a

similar point of importance. Having said that, if this extension were to be persued,

then the research would have to address how to incorporate this in an efficient

manner. Additionally allowing the end programmer to create their own types in the

source code may allow for more fine tuning of performance, providing specific types

for this, over and above what the language supplies at the moment.

3. The idea of expanding the type-based approach to other languages is cer-

tainly one worth persuing. In this thesis the type-based approach has, mainly, been

considered in conjunction with parallel programming. However there is nothing to

January 18, 2010

8.4. Further Work 182

say that this can not work in sequential programming too. An example of this can

be seen where the I/O sections of Gadget-2, which are sequential, were ported as

described in Section 6.3 into Mesham. The result of this was that the type-based

code was simplified over the existing C code, which demonstrates that the approach

works not only in parallel computing but also more generally. One prime area where

this might be extended to, is that of GUIs which present a number of attributes and

often result in time consuming large code. A modification of this further work con-

cept is to retrofit existing languages with the type-based approach. For instance,

many parallel programmers are comfortable using C, it may be of benefit to them

to provide for these higher level constructs within an existing language that they

trust and are happy with.

4. Investigate the provision of multiple type libraries for a single language.

Taking the idea of plugable types as reviewed in Section 2.4.4 as a starting point,

it would be possible to have a simple core language with which a number of type

libraries are provided. By selecting a specific type library the programmer could

dramatically change the language that they are using. A concrete example of this can

be found by considering Mesham, the current type library could be thought of as the

parallel library. There could also exist a sequential library which uses the high level of

type information to generate well optimised sequential target code. A third library,

the embedded library, could also exist which uses the source code type information to

produce code aimed at embedded devices. By selecting the appropriate type library,

the programmer could easily achieve very different results without modifying their

code. However there is a downside, by allowing the type library to be changed in this

manner would result in specific libraries being incompatible with specific language

source codes. More difficultly, some type libraries might seem to work with specific

source codes but the semantics of the code could be very different which might not

be obvious to the end programmer.

5. Investigate the optimum number of processors for a specific problem and input

size. For all the case studies in Chapter 5, after the optimum point a severe drop in

performance was experienced. Interestingly for the NAS-IS benchmark in Section 5.3

after this optimum point increasing the input size actually improved performance as

January 18, 2010

8.4. Further Work 183

can be seen in figures 5.2 and 5.3. Many existing parallel programmers believe that

simply “throwing” processors at a problem will make it run faster, which has been

shown to be completely untrue. It is clear that some further research should be done

into this behaviour in order to develop some tools such that parallel programmers

can predict the optimum point. The concept that a parallel language could analyse

source code and determine the optimum number of processors is a worthwhile aim,

although it would require considerable further work to achieve.

January 18, 2010

References

[Aho2006] A.V.Aho, R.Sethi and J.D.Ullman (2006), Compilers: Principles, Tech-

niques, and Tools, Prentice Hall, 0-321-49169-6

[Aldinuccia2000] M.Aldinuccia and M.Daneluttob (2000), Skeleton based parallel

programming: functional and parallel semantics in a single shot, Computer

Languages, Systems and Structures, Volume 33, Issue 3-4, Pages 179-192

[Baily1994] D.Baily, E.Barscz, J.Barton, D.Browning, R.Carter, L.Dagum,

R.Fatoohi, S.Fineberg et al (1994), The NAS Parallel Benchmarks, NAS Tech-

nical Report RNR-94-007

[Baker2006] M.Baker, B.Carpenter and A.Shafi (2006), MPJ Express Meets Gadget

Towards a Java Code for Cosmological Simulations, In Proceedings of the 13th

European PVM/MPI Users’ Group Meeting (EuroPVM/MPI 2006), Septem-

ber 17-20, 2006

[Blelloch1990] G.E.Blelloch (1990), Vector Models for Data-Parallel Computing,

MIT Press, 1990, 0-262-02313-X

[Blelloch1995] G.E.Blelloch (1995), NESL: A Nested Data-Parallel Language,

Carnegie Mellon University, Technical Report: CS-93-129

[Bracha2004] G.Bracha (2004), Pluggable Type Systems, In OOPSLA Workshop on

Revival of Dynamic Languages, 2004

[Brown2006] N.E.Brown (2006), Flexibo to C Translator, MSc Thesis Durham Uni-

versity

184

References 185

[Brown2008] N.E.Brown and Y.Chen (2008), Type-Based Parallelization And Code

Generation for MPI, Technical Report of Durham University

[Cardelli1985] L.Cardelli and P.Wegner (1985), On Understanding Types, Data Ab-

straction and Polymorphism, Communications of the ACM, Volume 17, Issue

4, Pages 471-523

[Cardelli1997] L.Cardelli (1997) Type Systems, The Computer Science and Engineer-

ing Handbook 1997, Chapter 103, Pages 2208-2236, CRC Press, 0-8493-2909-4

[Carpenter2000] B.Carpenter, V.Getov, G.Judd, A.Skjellum and G.Fox (2000),

MPJ: MPI-like message passing for Java, Concurrency: Practice and Experi-

ence, Volume 12, Number 11

[cFAQ] comp.lang.c Users, C Frequently Asked Questions, http://www.c-faq.com/,

(Last accessed October 2009)

[Chamberlain1998] B.L.Chamberlain, S.Choi, E.C.Lewis, C.Lin, L.Snyder, and

W.D.Weathersby (1998), The case for high level parallel programming in ZPL,

IEEE Computational Science and Engineering, Volume 5, Issue 3, Pages 76-86

[Chen2004] Y.Chen and J.W.Sanders (2004), Logic of Global Synchrony, ACM

Transactions on Programming Languages and Systems, Volume 26, Issue 2,

Pages 221-262

[Chen2004-2] Y.Chen (2004) A Languange of Flexible Objects, Technical Report

Department of Computer Science, Leicester University

[Cousot1975] P.Cousot and R.Cousot (1975), Static Verification of Dynamic Type

Properties of Variables, Laboratoire IMAG, Universite Scientifique et Medicale

de Grenoble, Research Report R.R. 25

[Cousot1977] P.Cousot and R.Cousot (1977), Abstract interpretation: a unified lat-

tice model for static analysis of programs by construction or approximation of

fixpoints, Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, Pages 238252

January 18, 2010

References 186

[Cousot2002] P.Cousot (2002), Abstract Interpretation: Theory and Practice, Lec-

ture Notes in Computer Science, Volume 2318/2002, Pages 3-4

[Cousot2005] P.Cousot (2005) Abstract Interpretation in a Nutshell,

http://www.di.ens.fr/ cousot/AI/IntroAbsInt.html, (Last accessed Octo-

ber 2009)

[Deitz2003] S.J.Deitz, B.L.Chamberlain, S.Choi, and L.Snyder (2003), The design

and implementation of a parallel array operator for the arbitrary remapping of

data, ACM Conference on Principles and Practice of Parallel Programming,

Pages 155-166

[Dijkstra1975] E.Dijkstra (1975), Guarded Commands, Nondeterminacy and Formal

Derivation of Programs, Communications of the ACM, Volume 18, Issue 8,

Pages 453-457

[Dotsenko2004] Y. Dotsenko, C. Coarfa and J. Mellor-Crummey (2004), A Multi-

Platform Co-Array Fortran Compiler, Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, IEEE Com-

puter Society, pages 29 - 40

[Floyd1967] R.Floyd (1967) Assigning Meanings to Programs, Symposium on Ap-

plied Mathematics, Volume 19, Pages 19-31

[Fortune1978] S.Fortune and J.Wyllie (1978), Parallism in Random Access Ma-

chines, Tenth Annual ACM Symposium on Theory of Computing, Pages 114-

118

[Foster1997] I.Foster, J.Geisler, C.Kesselmanz and S.Tuecke (1997), Managing Mul-

tiple Communication Methods in High-Performance Networked Computing

Systems, Journal of Parallel and Distributed Computing, Volume 40, Pages

35-48

[Frigo1998] M.Frigo, C.Leiserson and K.Randall (1998), The Implementation of the

Cilk-5 Multithreaded Language, ACM SIGPLAN Conference on Programming

Language Design and Implementation, Volume 33, Issue 5, Pages 212-223

January 18, 2010

References 187

[Frigo1998-2] M.Frigo and S.G.Johnson (1998), FFTW: An adaptive software ar-

chitecture for the FFT, IEEE Conference on Acoustics, Speech, and Signal

Processing, Volume 3, Pages 1381-1384

[Frigo1999] M.Frigo (1999), A Fast Fourier Transform Compiler, ACM SIGPLAN

Conference on Programming Language Design and Implementation, Volume

34, Issue 5, Pages 169-180

[Gropp1999] W.Gropp, E.Lusk and A.Skjellum (1999), Using MPI - 2nd Edition,

MIT Press, 0-262-57132-3

[Gropp2005] W.Gropp (2005), How to Replace MPI as the Programming Model of

the Future, Frontiers of Extreme Computing 2005/Zettaflops Workshop, Santa

Cruz, CA October 23-27

[Gusciora1995] G.Gusciora, R.Leibensperger and B.Barney (1995), MPI Matrix

Multiply, http://www.hku.hk/cc/home/facilities/sp2.htm, (Last accessed Oc-

tober 2009)

[Harrison2003] N.Harrison, Understanding Reflection,

http://www.ondotnet.com/pub/a/dotnet/2003/10/06/reflectionpt1.html,

(Last accessed October 2009)

[Hill1999] J.Hill and D.B.Skillicorn (1999), Practical Barrier Synchronisation, 6th

EuroMicro Workshop on Parallel and Distributed Processing, Pages 438-444

[Hill1998-2] J.Hill, B.McColl, D.Stefanescu, M.Goudreau, K.Lang, S.Rao, T.Suel,

T.Tsantilas and R.Bisseling (1999), BSPlib: The BSP programming library,

Parallel Computing, Volume 24, Issue 14, Pages 1947-1980

[Hilfinger2005] P.Hilfinger, D.Bonachea, K.Datta, D.Gay, S.Graham, B.Liblit,

G.Pike, J.Su and K.Yelick (2005), Titanium Language Reference Manual,

Technical Report U.C. Berkeley, CSD-01-1163

[Hinsen2009] K. Hinsen (2009), The Promises of Functional Programming, Com-

puting in Science and Engineering, July/August 2009, Pages 86 90

January 18, 2010

References 188

[Hoare1969] C.A.R.Hoare (1969) An Axiomatic Basis for Computer Programming,

Communications of the ACM, Volume 12, Issue 10, Pages 576-580

[Hook2005] B. Hook (2005), Write Portable Code: A Guide to Developing Software

for Multiple Platforms, No Starch Press, 978-1593270568

[HPF1997] High Performance Fortran Forum (1997), High Performance Fortran

Language Specification, Technical Report of Rice University, CRPC-TR92225

[Jensen1991] K.Jensen and N.Wirth (1991), PASCAL - User Manual and Report,

Springer-Verlag, 0-387-97649-3

[Jones2007] T. Jones, Linux and Symmetric Multiprocessing,

http://www.ibm.com/developerworks/library/l-linux-smp/, (Last accessed

October 2009)

[Kernighan1989] B.Kernighan and D.Ritchie (1989), The C Programming Language,

Prentice Hall Software Series, 0-13-110362-8

[Lavoie1996] P. Lavoie (1996), A high-speed CMOS implementation of the Winograd

Fourier transformalgorithm, IEEE Transactions on Signal Processing, Volume

44, Issue 8, Pages 2121 - 2126

[Leslie2005] M.Leslie, C Programming Reference, http://www.space.unibe.ch/,

(Last accessed October 2009)

[Luo2002] Y.Luo (2002), Parallel and Distributed Computing,

http://www.cs.gsu.edu/ cscyip/csc4310/, (Last accessed October 2009)

[Lou2005] E.Lou, M.Vanter and L.Votta (2005), Can Software Engineering Solve

the HPCS Problem?, Second International Workshop on Software Engineering

for High Performance Computing System Applications, Pages 27-31

[Luecke1997] G. Luecke and J. Coyle (1997), High Performance Fortran Versus

Explicit Message Passing On The ISB SP-2, Technical Report Iowa State

University

January 18, 2010

References 189

[Meunier1997] J.A.Meunier (1997), Function Currying in Scheme, Technical Report

University of Connecticut

[Milner1993] R.Milner (1993), The polyadic pi-calculus: a tutorial, Technical Report

University of Edinburgh, ECS-LFCS-91-180

[Mozafari2008] B. Mozafari, A. Agarwal, N. Laptev and N. Gayam ZPL - Par-

allel Programming Language http://www.nikolaylaptev.com/master/classes/,

(Last accessed October 2009)

[MPI1995] Message Passing Interface Forum (1995), A Message-Passing Interface

Standard, Message Passing Interface Forum, Technical Report University of

Tennessee, UT-CS-94-230

[MPI1995-2] Message Passing Interface Forum (1995), A High-Performance,

Portable Implementation of the MPI Message Passing Interface Standard,

Message Passing Interface Forum, Parallel Computing, Volume 22, Issue 6,

Pages 789 - 828

[Numrich1998] R.W.Numrich and J.K.Reid (1998), Co-Array Fortran for parallel

programming, ACM SIGPLAN Fortran Forum, Volume 17, Issue 2, Pages 1-

31

[Numrich2003] R.W.Numrich (2003), Co-Array Fortran What is it? Why should you

put it on BlueGene/L?, https://asc.llnl.gov/computing resources/bluegenel,

(Last accessed October 2009)

[Pacheco1996] P.S.Pacheco (1996), Parallel programming with MPI, Morgan Kauf-

mann Publishers Inc, 1-55860-339-5

[Pierce1997] B.Pierce (1997), Foundational Calculi for Programming Languages,

The Computer Science and Engineering Handbook 1997, Pages 2190-2207

[Prasad2003] S.Prasad and S.Arun-Kumar (2003), An Introduction to Operational

Semantics, Compiler Design Handbook: Optimizations and Machine Code,

Chapter 22

January 18, 2010

References 190

[Reynolds1989] J.C.Reynolds (1989), Theories of Programming Languages, The

Press Syndicate of the University of Cambridge, 0-521-59414-6

[Richardson1996] H.Richardson (1996), High Performance Fortran: history,

overview and current developments, Technical Note of Thinking Machines Cor-

poration, TMC-261

[Saphir1996] W.Saphir, R.van der Wijngaart, A.Woo and M.Yarrow (1996), New

Implementations and Results for the NAS Parallel Benchmarks 2, 8th SIAM

Conference on Parallel Processing for Scientific Computing, March 14-17, 1997

[Sil1999] SIL International, What is syntax?, http://www.sil.org/lingualinks/literacy/,

(Last accessed October 2009)

[Skillicorn1998] D.B.Skillicorn (1998), Models and Languages for Parallel Compu-

tation, ACM Computing Surveys, Volume 30, Issue 2, Pages 123-169

[Skillicorn1999] D.B.Skillicorn, J.Hill and W.F.McColl (1999), Questions and an-

swers about BSP, Scientific Programming, Volume 6, Issue 3, Pages 249-274

[Slonneger1994] K.Slonneger and B.L.Kurtz (1994), Formal Syntax and Semantics

of Programming Languages: A Laboratory Based Approach, Addison Wesley,

0-201-65697-3

[Springel2005] V.Springel, Gadget, http://www.mpa-garching.mpg.de/gadget/,

(Last accessed October 2009)

[Springel2006] V.Springel (2006), Summer school on cosmological numerical simu-

lations 3rd week MONDAY, Helmholtz School of Astrophysics

[Steele2008] M.Steele (2008), A Tale of Two Algorithms: Multithreading Matrix

Multiplication, www.cilk.com (Last accessed October 2009)

[Tennent1976] R.D.Tennent (1976), The Denotational Semantics of Programming

Languages, Communications of the ACM, Volume 19, Issue 8, Pages 437-453

[Terry1986] P.D.Terry (1986), Programming language translation : a practical ap-

proach, Addison-Wesley, 0-201-18040-5

January 18, 2010

References 191

[Wagner2000] D.Wagner, J.S.Foster, E.A.Brewer and A.Aiken (2000), A First Step

towards Automated Detection of Buffer Overrun Vulnerabilities, Network and

Distributed System Security Symposium, Pages 3-17

[Wang2007] Y.Wang, W.Wang, C.Huang (2007), Enhanced Semantic Question An-

swering System for e-Learning Environment, Advanced Information Network-

ing and Applications Workshops, Volume 2, Issue 21-23 May 2007 Pages 1023-

1028

[Wikipedia] Wikipedia, Wikipedia, http://www.wikipedia.org, (Last accessed Octo-

ber 2009)

[Winskel1993] G.Winskel (1993), The Formal Semantics of Programming Lan-

guages, Foundations Of Computing Series, 0-262-23169-7

[Wirth1974] N.Wirth (1974), On the Design of Programming Languages, IFIP

Congress 1974, Pages 386-393

[Yanagawa2004] T.Yanagawa and K.Suehiro (2004), Software system of the earth

simulator, Parallel Computing, Volume 30, Issue 12, Pages 1315-1327

[Yelick2002] K.Yelick (2002) Global Address Space Languages,

http://titanium.cs.berkeley.edu/, (Last accessed October 2009)

[Zhou2005] J.Zhou and Y.Chen (2005), Generating C code from LOGS specifica-

tions, 2nd International Colloquium on Theoretical Aspects of Computing,

Volume 3722/2005, Pages 195-210

[Zhu2005] Y. Zhu, X. Li, Y. Gong and Z. Wang (2005), PN-based Formal Modeling

and Verification for ASIP Architecture, Lecture Notes in Computer Science,

Volume 3605/2005, Pages 203-209

January 18, 2010

Appendix A

Additional Language Specification

A.1 Pre Processor

%combine

Syntax

%combine [sourcefile]

Semantics

Will read in the Mesham source file specified and will automatically put it all into

the program at the point combine was in the source, before the source code of the

original file.

Example

1 %combine a . mesh

2 %combine b . mesh

After preprocessing the file will look like the contents of a.mesh, followed by b.mesh

and then the code in the file. Mesham will look in the current directory for the files,

but extra directories can be specified by arguments to the preprocessor.

192

A.2. Function Library 193

%use

Syntax

%use [sourcefile]

Semantics

The sourcefile is read, its global variables and functions can be referenced however

the contents of that file is NOT compiled. Instead the linker will link against that

(compiled) source file in the final stages. This not only speeds up compilation, it

also means that different program modules can be written and modified without

having to recompile the whole program.

A.2 Function Library

As detailed in Chapter 3, the programmer can create their own functions within

source code. In addition the Mesham language comes with a number of common

functions in built. The language’s function library is split into six sections, these

are Maths, Input/Output, Parallelism, Bits, String and System. This section

shall provide an informal definition of the language’s in built functions.

A.2.1 Maths

cos

This cos[n] function will find the cosine of the value or variable n passed to it.

Pass

A double or float to find cosine of

Returns

A double representing the cosine

Example

January 18, 2010

A.2. Function Library 194

1 var a:= cos [1 0] ;

2 var y ;

3 y:= cos [a] ;

floor

This floor[n] function will find the largest integer less than or equal to n.

Pass

A double or float to find floor of

Returns

A double representing the floor

Example

1 var a:= f l o o r [1 0 . 5] ;

2 var y ;

3 y:= f l o o r [a] ;

getprime

This getprime[n] function will find the nth prime number.

Pass

An integer

Returns

An integer representing the prime

Example

1 var a:=getpr ime [1 0] ;

January 18, 2010

A.2. Function Library 195

2 var y ;

3 y:=getpr ime [a] ;

log

This log[n] function will find the logarithmic value of n.

Pass

An integer

Returns

A double representing the logarithmic value

Example

1 var a:= log [1 0] ;

2 var y ;

3 y:= log [a] ;

mod

This mod[n,x] function will divide n by x and return the remainder.

Pass

Two integers

Returns

An integer representing the remainder

Example

1 var a:=mod [7 , 2] ;

2 var y ;

3 y:=mod [a , a] ;

January 18, 2010

A.2. Function Library 196

neg

This neg[n] function will return the result of negating n.

Pass

An integer to negate

Returns

An integer representing the negated result

Example

1 var a:=neg [1 5] ;

2 var y ;

3 y:=neg [a] ;

negsin

This negsin[n] function will return the result of negating the sine of n.

Pass

A double or float to find the sine value of and then negate

Returns

An double representing the result

Example

1 var a:= negs in [1 5] ;

2 var y ;

3 y:= negs in [a] ;

January 18, 2010

A.2. Function Library 197

pi

This pi[] function will return PI. Note: The number of significant figures of PI is

implementation specific.

Pass

None

Returns

A double representing PI

Example

1 var a:= pi [] ;

pow

This pow[n,x] function will return n to the power of x.

Pass

Two integers

Returns

An integer representing the result

Example

1 var a:=pow [2 , 8] ;

randomnumber

This randomnumber[n,x] function will return a random number between n and x.

Note: A whole number will be returned UNLESS you pass the bounds of 0,1 and in

this case a decimal number is found.

January 18, 2010

A.2. Function Library 198

Pass

Two integers defining the bounds of the random number

Returns

A double representing the random number

Example

1 var a:=randomnumber [1 0 , 2 0] ;

2 var b:=randomnumber [0 , 1]

In this case, a is a whole number between 10 and 20, whereas b is a decimal number

sqr

This sqr[n] function will return the result of squaring n.

Pass

An integer to square

Returns

An integer representing the squared result

Example

1 var a:= sqr [1 0] ;

sqrt

This sqrt[n] function will return the result of square rooting n.

Pass

An integer to find square root of

Returns

January 18, 2010

A.2. Function Library 199

A double which is the square root

Example

1 var a:= sq r t [8] ;

A.2.2 Input/Output

closefile

This closefile[n] function will close the file represented by handle n.

Pass

A file handle of type File

Returns

Nothing

Example

1 var f := op e n f i l e [” myf i l e . txt ” , ” r ”] ;

2 c l o s e f i l e [f] ;

input

This input[n] function will ask the user for input via stdin, the result being placed

into n.

Pass

A variable for the input to be written into, of type String

Returns

Nothing

January 18, 2010

A.2. Function Library 200

Example

1 var f : S t r ing ;

2 input [f] ;

3 p r i n t [f , ”\n”] ;

openfile

This openfile[n,a] function will open the file of name n with mode of a.

Pass

The name of the file to open type String and mode type String

Returns

A file handle of type File

Example

1 var f := op e n f i l e [” myf i l e . txt ” , ” r ”] ;

2 c l o s e f i l e [f] ;

print

This print[n] function will display n to stdout. The programmer can pass any num-

ber of values or variables split by ,

Pass

A variable to display

Returns

Nothing

Example

January 18, 2010

A.2. Function Library 201

1 var f :=” h e l l o ” ;

2 var a :=23;

3 p r i n t [f , ” ” , a , ” 22\n”] ;

readchar

This readchar[n] function will read a character from a file with handle n. The file

handle maintains its position in the file, so after a call to read char the position

pointer will be incremented.

Pass

The file handle to read character from

Returns

A character from the file type Char

Example

1 var a:= op e n f i l e [” h e l l o . txt ” , ” r ”] ;

2 var u:= readchar [a] ;

3 c l o s e f i l e [a] ;

readline

This readline[n] function will read a line from a file with handle n. The file handle

maintains its position in the file, so after a call to readline the position pointer will

be incremented.

Pass

The file handle to read the line from

Returns

A line of the file type String

January 18, 2010

A.2. Function Library 202

Example

1 var a:= op e n f i l e [” h e l l o . txt ” , ” r ”] ;

2 var u:= r e ad l i n e [a] ;

3 c l o s e f i l e [a] ;

writetofile

This writetofile[n,a] function will write the values of a to the file denoted by handle n.

Pass

The file handle to write to (type File) and also the value (any time) to write into

file

Returns

Nothing

Example

1 var a:= op e n f i l e [” h e l l o . txt ” , ” r ”] ;

2 w r i t e t o f i l e [a , ” h e l l o − t e s t ”] ;

3 var q :=19;

4 w r i t e t o f i l e [a , q] ;

5 c l o s e f i l e [a] ;

A.2.3 Parallelism

pid

This pid[] function will return the current processes’ ID number.

Pass

January 18, 2010

A.2. Function Library 203

Nothing

Returns

An integer representing the current process ID

Example

1 var a:=pid [] ;

processes

This processes[] function will return the number of processes

Pass

Nothing

Returns

An integer representing the number of processes

Example

1 var a:= p r oc e s s e s [] ;

A.2.4 Bits

bitreverse

This bitreverse[d,n] function will bit reverse the data held in d up to the number of

elements n.

Pass

Data to bit reverse and an integer to of the number of elements held

Returns

Nothing

January 18, 2010

A.2. Function Library 204

A.2.5 String

charat

This charat[s,n] function will return the character at position n of the string s.

Pass

A string and integer

Returns

A character

Example

1 var a:=” h e l l o ” ;

2 var c := charat [a , 2] ;

lowercase

This lowercase[s] function will return the lower case result of string or character s.

Pass

A string or character

Returns

A string or character

Example

1 var a:=”HeLlO” ;

2 var c := lower cas e [a] ;

January 18, 2010

A.2. Function Library 205

strlen

This strlen[s] function will return the length of string s.

Pass

A string

Returns

An integer

Example

1 var a:=” h e l l o ” ;

2 var c := s t r l e n [a] ;

substring

This substring[s,n,x] function will return the string at the position between n and x

of s.

Pass

A string and two integer

Returns

A string which is a subset of the string passed into it

Example

1 var a:=” h e l l o ” ;

2 var c := sub s t r i n g [a , 2 , 4] ;

toint

This toint[s] function will convert the string s into an integer.

January 18, 2010

A.2. Function Library 206

Pass

A string

Returns

An integer

Example

1 var a:=”234” ;

2 var c := to in t [a] ;

tostring

This tostring[n] function will convert the variable or value n into a string.

Pass

An element type (i.e. Integer, Float, Char, Double)

Returns

A string

Example

1 var a :=234;

2 var c := t o s t r i n g [a] ;

uppercase

This uppercase[s] function will return the upper case result of string or character s.

Pass

A string or character

Returns

A string or character

January 18, 2010

A.2. Function Library 207

Example

1 var a:=”HeLlO” ;

2 var c := uppercase [a] ;

A.2.6 System

ccode

This ccode[code,library,headers] function will embed the native C code represented

by a for execution. No error checking is performed on Ccode, use at own risk!

Pass

A string representing the C code (can be over multiple lines), optional library to

link to, optional headers to link to. Strings must be delimited.

Returns

Nothing

Example

1 ccode [” i n t a=23; a++;”] ;

2 ccode [” char ∗ data=malloc (s i z e o f (char) ∗ 10) ;

3 s p r i n t f (data ,\” h e l l o %d\” ,21) ;

4 ” , ”” , ”<s t d l i b . h>”] ;

Note in the second ccode, how quotation marks ” inside of the code require delim-

iting.

collectgarbage

This collectgarbage[] function will collect any garbaged data. This is commonly used

with string handing, where often the strings are dereferenced and so it is important

January 18, 2010

A.2. Function Library 208

to maintain a list of them to avoid memory leaks. It should be noted that this is

often performed automatically and as such calling this function manually by the

programmer is really not all that important.

Pass

Nothing

Returns

Nothing

displayepoch

This displayepoch[] function will display the number of seconds and milliseconds

since the epoch (1st January 1970).

Pass

Nothing

Returns

Nothing

displaytime

This displaytime[] function will display the timing results recorded by the function

recordtime[] along with the process ID. This is very useful for debugging or perfor-

mance testing.

Pass

Nothing

Returns

Nothing

recordtime

This recordtime[] function record the current execution time upon reaching that

point. This is useful for debugging or performance testing, the time records can be

January 18, 2010

A.2. Function Library 209

displayed via displaytime[].

Pass

Nothing

Returns

Nothing

exit

This exit[] function will cease program execution and return to the operating sys-

tem. From an implementation point of view, this will return EXIT SUCCESS.

Pass

Nothing

Returns

Nothing

oscli

This oscli[a] function will pass the command line interface (e.g. Unix or MS DOS)

command to the operating system for execution.

Pass

A string representing the command

Returns

Nothing

Example

1 var a : S t r ing ;

2 input [a] ;

3 o s c l i [a] ;

January 18, 2010

A.2. Function Library 210

The above program is a simple interface, allowing the user to input a command and

then passing this to the OS for execution.

quicksortascending

The quicksortascending function will perform quicksort on an array or list of refer-

ence records to order them in an ascending manner. For arrays, pass in the array

and it will simply do the quicksort with reference to the data. For reference records,

pass in the head (1st record), the comparator field and the linking field.

Pass

For an array, just the array. For a reference record, the first record, the comparator

field and the linking field.

Returns

Nothing (the function modified the array/record passed in.)

Example

1 qu i ck sor tas cend ing [head , ” s ta r tkey ” , ”next”] ;

This is an exert of Gadget-2 Mesham domain decomposition. It will quicksort the

list (starting with node head), via the startkey, and linking each node using its next

member.

quicksortdescending

Same as Quicksortascending except it will order the data descending rather than

ascending.

January 18, 2010

Appendix B

Matrix Multiplication Code

Examples

B.1 MPI

1 #include ”mpi . h”

2 #include <s td i o . h>

3 #define NRA 62 /∗ number o f rows in matrix A ∗/

4 #define NCA 15 /∗ number o f columns in matrix A

∗/

5 #define NCB 7 /∗ number o f columns in matrix B

∗/

6 #define MASTER 0 /∗ t a s k i d o f f i r s t t a s k ∗/

7 #define FROMMASTER 1 /∗ s e t t i n g a message type ∗/

8 #define FROMWORKER 2 /∗ s e t t i n g a message type ∗/

9

10 int main (argc , argv)

11 int argc ;

12 char ∗argv [] ;

13 {

14 int numtasks , task id , numworkers , source , dest , mtype , rows ,

averow , extra , o f f s e t , i , j , k , r c ;

15 double a [NRA] [NCA] , /∗ matrix A to be mu l t i p l i e d ∗/

211

B.1. MPI 212

16 b [NCA] [NCB] , /∗ matrix B to be mu l t i p l i e d ∗/

17 c [NRA] [NCB] ; /∗ r e s u l t matrix C ∗/

18 MPI Status s t a tu s ;

19 MPI Init (&argc ,&argv) ;

20 MPI Comm size (MPI COMM WORLD,&numtasks) ;

21 MPI Comm rank(MPI COMM WORLD,& task id) ;

22 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ master task

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

23 i f (ta sk id == MASTER)

24 {

25 for (i =0; i<NRA; i++)

26 for (j =0; j<NCA; j++)

27 a [i] [j]= i+j ;

28 for (i =0; i<NCA; i++)

29 for (j =0; j<NCB; j++)

30 b [i] [j]= i ∗ j ;

31 /∗ send matrix data to the worker t a s k s ∗/

32 averow = NRA/numworkers ;

33 extra = NRA%numworkers ;

34 o f f s e t = 0 ;

35 mtype = FROMMASTER;

36 for (des t =1; dest<=numworkers ; des t++)

37 {

38 rows = (dest <= extra) ? averow+1 : averow ;

39 MPI Send(& o f f s e t , 1 , MPI INT , dest , mtype ,

MPICOMMWORLD) ;

40 MPI Send(&rows , 1 , MPI INT , dest , mtype , MPICOMMWORLD

) ;

41 MPI Send(&a [o f f s e t] [0] , rows∗NCA, MPI DOUBLE, dest ,

mtype ,MPICOMMWORLD) ;

42 MPI Send(&b , NCA∗NCB, MPI DOUBLE, dest , mtype ,

MPICOMMWORLD) ;

43 o f f s e t = o f f s e t + rows ;

January 18, 2010

B.1. MPI 213

44 }

45 /∗ wai t f o r r e s u l t s from a l l worker t a s k s ∗/

46 mtype = FROMWORKER;

47 for (i =1; i<=numworkers ; i++)

48 {

49 source = i ;

50 MPI Recv(& o f f s e t , 1 , MPI INT , source , mtype ,

MPI COMMWORLD, &s ta tu s) ;

51 MPI Recv(&rows , 1 , MPI INT , source , mtype ,

MPI COMMWORLD, &s ta tu s) ;

52 MPI Recv(&c [o f f s e t] [0] , rows∗NCB, MPI DOUBLE, source ,

mtype , MPICOMM WORLD, &s ta tu s) ;

53 }

54 }

55 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ worker t a s k

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

56 i f (ta sk id > MASTER)

57 {

58 mtype = FROMMASTER;

59 MPI Recv(& o f f s e t , 1 , MPI INT , MASTER, mtype ,

MPI COMM WORLD, &s ta tu s) ;

60 MPI Recv(&rows , 1 , MPI INT , MASTER, mtype , MPICOMM WORLD,

&s ta tu s) ;

61 MPI Recv(&a , rows∗NCA, MPI DOUBLE, MASTER, mtype ,

MPI COMM WORLD, &s ta tu s) ;

62 MPI Recv(&b , NCA∗NCB, MPI DOUBLE, MASTER, mtype ,

MPI COMM WORLD, &s ta tu s) ;

63

64 for (k=0; k<NCB; k++)

65 for (i =0; i<rows ; i++)

66 {

67 c [i] [k] = 0 . 0 ;

68 for (j =0; j<NCA; j++)

January 18, 2010

B.2. BSP 214

69 c [i] [k] = c [i] [k] + a [i] [j] ∗ b [j] [k] ;

70 }

71 mtype = FROMWORKER;

72 MPI Send(& o f f s e t , 1 , MPI INT , MASTER, mtype ,

MPICOMMWORLD) ;

73 MPI Send(&rows , 1 , MPI INT , MASTER, mtype , MPICOMMWORLD)

;

74 MPI Send(&c , rows∗NCB, MPI DOUBLE, MASTER, mtype ,

MPICOMMWORLD) ;

75 }

76 MPI Final ize () ;

77 }

Listing B.1: Matrix Multiplication example in C with MPI from [Gusciora1995]

B.2 BSP

1 #include ”bsp . h”

2 #include <s td i o . h>

3 #include <s t d l i b . h>

4

5 #define matr ixas i z e 3

6 #define matr ixb s i z e 3

7

8

9

10 void add i t i on (int ∗ res , int ∗ l e f t , int ∗ r i gh t , int ∗nbytes)

11 {

12 ∗ r e s = 0 ;

13 ∗ r e s = ∗ l e f t + ∗ r i gh t ;

14 }

15

16 int main (void) {

January 18, 2010

B.2. BSP 215

17 bsp beg in (bsp nprocs ()) ;

18 int mypid=bsp p id () ;

19 int numprocs=bsp nprocs () ;

20

21 int ∗ matrixa=malloc (s izeof (int) ∗ matr ixas i z e ∗ matr ixas i z e) ;

22 int ∗ matrixb=malloc (s izeof (int) ∗ matr ixb s i z e ∗ matr ixb s i z e) ;

23 int ∗ matrixanswer=malloc (s izeof (int) ∗ matr ixas i z e ∗

matr ixb s i z e) ;

24

25 i f (mypid==0) { f i l l a (&matrixa) ; f i l l b (&matrixb) ;}

26

27 bsp push reg (matrixa , s izeof (int) ∗ matr ixas i z e ∗ matr ixas i z e) ;

28 bsp push reg (matrixb , s izeof (int) ∗ matr ixb s i z e ∗ matr ixb s i z e) ;

29 bsp push reg (matrixanswer , s izeof (int) ∗ matr ixas i z e ∗

matr ixb s i z e) ;

30 bsp sync () ;

31

32 bsp get (0 , matrixa , 0 , matrixa , s izeof (int) ∗ matr ixas i z e ∗

matr ixas i z e) ;

33 bsp get (0 , matrixb , 0 , matrixb , s izeof (int) ∗ matr ixb s i z e ∗

matr ixb s i z e) ;

34 bsp sync () ;

35

36 int ∗ r e s u l t=malloc (s izeof (int) ∗ matr ixas i z e ∗ matr ixb s i z e) ;

37 int i ;

38 for (i =0; i<matr ixas i z e ; i++)

39 {

40 int j ;

41 for (j =0; j<matr ixb s i z e ; j++)

42 {

43 matrixanswer [(i ∗ matr ixas i z e) + j] = matrixa [(i ∗

matr ixas i z e) + mypid] ∗ matrixb [(mypid ∗matr ixb s i z e)

+ j] ;

January 18, 2010

B.3. Cilk 216

44 b sp f o l d (add it ion ,&matrixanswer [i ∗ matr ixas i z e + j] ,&

r e s u l t [i ∗ matr ixas i z e + j] , s izeof (int)) ;

45 }

46 }

47

48 bsp sync () ;

49 bsp end () ;

50 return 0 ;

51 }

Listing B.2: Matrix Multiplication example in C with BSP

B.3 Cilk

1 void matr ix mu l t ip ly 5 (matr ix t A, matr ix t B, matr ix t C,

2 int i0 , int i1 , int j0 , int j1 , int k0 , int k1)

3 {

4 int d i = i1 − i 0 ;

5 int dj = j1 − j 0 ;

6 int dk = k1 − k0 ;

7 i f (d i >= dj && di >= dk && di >= THRESHOLD) {

8 int mi = i0 + di / 2 ;

9 c i lk spawn matr ix mu l t ip ly 5 (A, B, C, i0 , mi , j0 , j1 , k0 ,

k1) ;

10 matr ix mu l t ip ly 5 (A, B, C, mi , i1 , j0 , j1 , k0 , k1) ;

11 c i l k s y n c ;

12 } else i f (dj >= dk && dj >= THRESHOLD) {

13 int mj = j0 + dj / 2 ;

14 c i lk spawn matr ix mu l t ip ly 5 (A, B, C, i0 , i1 , j0 , mj , k0 , k1) ;

15 matr ix mu l t ip ly 5 (A, B, C, i0 , i1 , mj , j1 , k0 , k1) ;

16 c i l k s y n c ;

17 } else i f (dk >= THRESHOLD) {

18 int mk = k0 + dk / 2 ;

January 18, 2010

B.4. High Performance Fortran 217

19 // N.B. I t ’ s not s a f e to use a spawn here . Fun e x e r c i s e : t r y

pu t t i n g

20 // i t in and then running Ci l k sc reen to d e t e c t the r e s u l t i n g

race .

21 matr ix mu l t ip ly 5 (A, B, C, i0 , i1 , j0 , j1 , k0 , mk) ;

22 matr ix mu l t ip ly 5 (A, B, C, i0 , i1 , j0 , j1 , mk, k1) ;

23 } else {

24 // The problem i s now smal l enough t ha t we can j u s t do t h i n g s

s e r i a l l y .

25 for (int i = i 0 ; i < i 1 ; ++i) {

26 for (int j = j0 ; j < j 1 ; ++j) {

27 for (int k = k0 ; k < k1 ; ++k)

28 C[i] [j] += A[i] [k] ∗ B[k] [j] ;

29 }

30 }

31 }

32 }

Listing B.3: Matrix Multiplication example in Cilk from [Steele2008]

B.4 High Performance Fortran

1 PROGRAM ABmult

2 IMPLICIT NONE

3 INTEGER, PARAMETER : : N = 100

4 INTEGER, DIMENSION (N,N) : : A, B, C

5 INTEGER : : i , j

6

7 !HPF$ PROCESSORS square (2 ,2)

8 !HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO square : : C

9

10 !HPF$ ALIGN A(i ,∗) WITH C(i , j)

11 ! r e p l i c a t e cop i e s o f row A(i , ∗)

January 18, 2010

B.5. Co Array Fortran 218

12 ! onto p r oc e s s o r s which compute C(i , j)

13

14 !HPF$ ALIGN B(∗ , j) WITH C(i , j)

15 ! r e p l i c a t e cop i e s o f column B(∗ , j))

16 ! onto p r oc e s s o r s which compute C(i , j)

17 A = 1

18 B = 2

19 C = 0

20 DO i = 1 , N

21 DO j = 1 , N

22 ! Al l the work i s l o c a l due to ALIGNs

23 C(i , j) = DOT PRODUCT(A(i , :) , B(: , j))

24 END DO

25 END DO

26 WRITE(∗ ,∗) C

27 END

Listing B.4: Matrix Multiplication example in HPF from [Luo2002]

B.5 Co Array Fortran

1 r ea l , dimension (n , n) [p , ∗] : : a , b , c

2

3 do k=1,n

4 do q=1,p

5 c (i , j) = c (i , j) + a (i , k) [myP, q]∗ b(k , j) [q ,myQ]

6 enddo

7 enddo

Listing B.5: Matrix Multiplication example in CAF from [Numrich2003]

B.6 ZPL

January 18, 2010

B.6. ZPL 219

1 program Summa;

2

3 con f i g var

4 d e f a u l t s i z e : i n t e g e r = 4 ;

5 n : i n t e g e r = 4 ;

6 i t e r s : i n t e g e r = 1 ;

7

8 r eg ion

9 RA = [1 . .m, 1 . . n] ;

10 RB = [1 . . n , 1 . . p] ;

11 RC = [1 . .m, 1 . . p] ;

12 FCol = [1 . .m, ∗] ;

13 FRow = [∗ , 1 . . p] ;

14

15 var

16 A : [RA] double ;

17 B : [RB] double ;

18 C : [RC] double ;

19 Aflood : [FCol] double ;

20 Bf lood : [FRow] double ;

21

22 procedure Summa() ;

23 var

24 i : i n t e g e r ;

25 i t : i n t e g e r ;

26 [RC] begin

27

28 for i t := 1 to i t e r s do

29 C := 0 . 0 ; −− zero C

30 for i := 1 to n do

31 [FCol] Aflood := >>[, i] A; −− f l o od A co l

32 [FRow] Bf lood := >>[i ,] B; −− f l o od B row

January 18, 2010

B.7. NESL 220

33 C += (Aflood ∗ Bflood) ; −− mult ip ly

34 end ;

35 end ;

36

37 i f (verbose) then

38 wr i t e l n (”C i s :\n” ,C) ;

39 end ;

40 end ;

Listing B.6: Matrix Multiplication example in ZPL from [Chamberlain1998]

B.7 NESL

1 funct i on matr ix mu l t ip ly (A,B) =

2 {{sum({x∗y : x in rowA ; y in columnB})

3 : columnB in t ran spose (B)}

4 : rowA in A} $

5

6 A = [[1 . , . 5] , [. 5 , 1 .]] ;

7 B = [[1 . , 1 . 5] , [1 . 5 , 1 .]] ;

8 matr ix mu l t ip ly (A,B) ;

Listing B.7: Matrix Multiplication example in NESL from [Blelloch1995]

B.8 Titanium

1 pub l i c stat ic void matMul(double [2 d] a ,

2 double [2 d] b ,

3 double [2 d] c) {

4 fo r each (i j in c . domain ()) {

5 double [1 d] aRowi = a . s l i c e (1 , i j [1]) ;

6 double [1 d] bColj = b . s l i c e (2 , i j [2]) ;

7 f o r each (k in aRowi . domain ()) {

January 18, 2010

B.8. Titanium 221

8 c [i j] += aRowi [k] ∗ bColj [k] ;

9 }

10 }

11 }

Listing B.8: Matrix Multiplication example in Titanium from [Yelick2002]

January 18, 2010

Appendix C

Case Study Codes

C.1 Mandlebrot C-MPI Code

1 #include <s td i o . h>

2 #include <s t d l i b . h>

3 #include ”mpi . h”

4

5 #define hxres 10000

6 #define hyres 10000

7 #define i termax 1000

8 #define magnify 1

9 void computehystartendpoints (int , int ∗ , int ∗) ;

10 int main (int argc , char ∗ argv [])

11 {

12 MPI Init(&argc ,&argv) ;

13 int myrank , p r o c e s s e s ;

14 MPI Comm size (MPI COMM WORLD,& proc e s s e s) ;

15 MPI Comm rank(MPI COMM WORLD,&myrank) ;

16 int hy , hx , hystar t , hyend ;

17 int ∗ s t a r t p o i n t s=malloc (s izeof (int) ∗ p r oc e s s e s) ;

18 int ∗ endpoints=malloc (s izeof (int) ∗ p r oc e s s e s) ;

19 computehystartendpoints (p roce s s e s , s t a r tp o in t s , endpoints)

;

222

C.1. Mandlebrot C-MPI Code 223

20 hys tar t=s t a r t p o i n t s [myrank] ;

21 hyend=endpoints [myrank] ;

22 int ∗ mydata=malloc (s izeof (int) ∗ (hxres + 1) ∗ ((hyend

− hys tar t) + 1) ∗ 3) ;

23

24 for (hy=hys tar t ; hy<=hyend ; hy++)

25 {

26 for (hx=1;hx<=hxres ; hx++)

27 {

28 int blue , red , green ;

29 blue =0;

30 red =0;

31 green =0;

32 double cx = (((f loat) hx) /((f loat) hxres)

−0.5) /magnify ∗3.0 −0.7 ;

33 double cy = (((f loat) hy) /((f loat) hyres)

−0.5) /magnify ∗3 . 0 ;

34 double x , y ;

35 x = 0 . 0 ; y = 0 . 0 ;

36 int tempit ;

37 int i t e r a t i o n ;

38 for (i t e r a t i o n =1; i t e r a t i o n <i termax ;

i t e r a t i o n++)

39 {

40 double xx = x∗x−y∗y+cx ;

41 y = 2.0∗ x∗y+cy ;

42 x = xx ;

43 i f (x∗x+y∗y>100.0) { tempit=

i t e r a t i o n ; i t e r a t i o n =

999999;}

44 }

45 i f (i t e r a t i o n > 999998)

46 {

January 18, 2010

C.1. Mandlebrot C-MPI Code 224

47 blue=(tempit ∗ 10) + 100;

48 red=(tempit ∗ 3) + 50 ;

49 green=(tempit ∗ 3)+ 50 ;

50 i f (tempit > 25)

51 {

52 blue =0;

53 red=(tempit ∗ 10) ;

54 green=(tempit ∗ 5) ;

55 }

56 i f (b lue > 255) blue =255;

57 i f (red > 255) red =255;

58 i f (green > 255) green =255;

59 }

60 mydata [(((hy − hys tar t) ∗ hxres) + hx)

∗ 3] = red ;

61 mydata [(((hy −hys tar t) ∗ hxres) + hx) ∗

3 + 1] = green ;

62 mydata [(((hy −hys tar t) ∗ hxres) + hx) ∗

3 + 2] = blue ;

63 }

64 }

65

66 int ∗ co l l e c t e dda ta ;

67 i f (myrank==0)

68 {

69 co l l e c t e dda t a=malloc (s izeof (int) ∗ hxres ∗ hyres

∗ 3) ;

70 }

71 int ∗ r e c v s i z e=malloc (s izeof (int) ∗ p r oc e s s e s) ;

72 int ∗ d isp lacements=malloc (s izeof (int) ∗ p r oc e s s e s) ;

73 int i ;

74 for (i =0; i<p r oc e s s e s ; i++)

75 {

January 18, 2010

C.1. Mandlebrot C-MPI Code 225

76 r e c v s i z e [i]= hxres ∗ (endpoints [i]− s t a r t p o i n t s [i

]) ∗ 3 ;

77 i f (i==0)

78 d isp lacements [i]=0;

79 else

80 d isp lacements [i]= d isp lacements [i −1] +

r e c v s i z e [i − 1] ;

81 }

82 MPI Gatherv (mydata , hxres ∗ (hyend − hys tar t) ∗ 3 ,

MPI INT , co l l e c t edda ta , r e cv s i z e , d i sp lacements ,

MPI INT , 0 , MPICOMMWORLD) ;

83 f r e e (mydata) ;

84 i f (myrank==0)

85 {

86 FILE ∗ o p e n f i l e ;

87 o p e n f i l e=fopen (” p i c tu r e .ppm\0” , ”w”) ;

88 f p r i n t f (op en f i l e , ”P6\n# CREATOR: mandel program\

n”) ;

89 f p r i n t f (op en f i l e , ”%d %d\n255\n” , hxres , hyres) ;

90 int hx , hy , eachp ;

91 for (hy=0;hy<hyres ; hy++)

92 {

93 for (hx=0;hx<hxres ; hx++)

94 {

95 fputc ((char) c o l l e c t e dda ta [((hy∗

hxres) + hx) ∗ 3] , o p e n f i l e) ;

96 fputc ((char) c o l l e c t e dda ta [((hy∗

hxres) + hx) ∗ 3 + 1] ,

o p e n f i l e) ;

97 fputc ((char) c o l l e c t e dda ta [((hy∗

hxres) + hx) ∗ 3 + 2] ,

o p e n f i l e) ;

98 }

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 226

99 }

100 f c l o s e (o p e n f i l e) ;

101 f r e e (co l l e c t edda t a) ;

102 }

103 MPI Final ize () ;

104 return 0 ;

105 }

106

107 void computehystartendpoints (int s i z e , int ∗ s t a r tp o in t s , int ∗

endpoints)

108 {

109 int i nd iv idua lhy=hyres / s i z e ;

110 int uneven=0;

111 i f (ind iv idua lhy ∗ s i z e != hyres) uneven=hyres −

i nd iv idua lhy ∗ s i z e ;

112 int i ;

113 for (i =0; i<s i z e ; i++)

114 {

115 i f (i==0)

116 s t a r t p o i n t s [i]=0;

117 else

118 s t a r t p o i n t s [i]= endpoints [i −1]+1;

119 int unevend i s t r i bu t e r=0;

120 i f (uneven > 0) { unevend i s t r i bu t e r=1; uneven−−;}

121 endpoints [i]= s t a r t p o i n t s [i] + ind iv idua lhy − 1 +

unevend i s t r i bu t e r ;

122 }

123 }

Listing C.1: Mandlebrot C with MPI code

C.2 Mesham NAS-IS benchmark Code

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 227

1 %combine c . mesh

2

3 /∗ NUMBER OF PROCESSORS ∗/

4 var p r o c e s s o r s :=128;

5

6 var bucket : r e f e r e n c e r e c o r d [” keys tar t ” , Int , ”keyend” , Int , ” next” ,

bucket , ” s i z e ” , Int , ” g l o b a l s i z e ” , Int , ” id ” , Int] ;

7 var numbuckets : Int ;

8 var t o t a l k ey s : Int ;

9 var numkeys : Int ;

10 var maxkey : Int ;

11 var totnumbuckets : Int ;

12 var maxiterat ion :=10;

13

14 funct i on void main []

15 {

16 numbuckets :=1 << numbucketslog2 ;

17 to t a l k ey s :=1 << t o t a l k ey s l o g 2 ;

18 maxkey:=1 << maxkeylog2 ;

19 numkeys:= to ta l k ey s % p roc e s s o r s ;

20 totnumbuckets :=numbuckets + t e s t a r r a y s i z e ;

21

22 var t e s t i nd exa r r ay : array [Int , t e s t a r r a y s i z e] : : a l l o c a t e d

[mu l t ip l e []] ;

23 var te s t r ankar ray : array [Int , t e s t a r r a y s i z e] : : a l l o c a t e d [

mu l t ip l e []] ;

24

25 f i l lT e s tA r r ay [t e s t indexar ray , t e s t r ankar ray] ;

26 var numbers : array [Int , numkeys] : : a l l o c a t e d [mu l t ip l e []] ;

27

28 var one : Long ;

29 var two : Long ;

30 var th r ee : Long ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 228

31 var f ou r : Double ;

32 var f i v e : Double ;

33 one :=pid [] ;

34 two:= p roc e s s o r s ;

35 th r ee :=4 ∗ t o t a l k ey s ;

36 f ou r :=314159265.00 ;

37 f i v e :=1220703125.00 ;

38 var theseed := f i nd s e ed [one , two , three , four , f i v e] ;

39 c r ea t e s eq [theseed , f i v e , numbers] ;

40 var indexbuckets : array [bucket , totnumbuckets] : :

a l l o c a t e d [mu l t ip l e []] ;

41 var head : bucket : : a l l o c a t e d [mu l t ip l e []] ;

42 in i tBucket s [head , indexbuckets] ;

43

44 var tempbuf fer : array [Int , maxkey] : : a l l o c a t e d [mu l t ip l e

[]] ;

45 var bu ck e t s i z e s : array [Int , totnumbuckets] : : a l l o c a t ed [

mu l t ip l e []] ;

46 var g l ob a l b u ck e t s i z e s : array [Int , totnumbuckets] : :

a l l o c a t e d [mu l t ip l e []] ;

47 var k e y c o l l e c t i o n : array [Int , numkeys] : : a l l o c a t e d [

mu l t ip l e []] ;

48 var p ;

49 par p from 0 to p r oc e s s o r s − 1

50 {

51

52 rank [numbers , t e s t indexar ray , tes trankarray , 1 , head

, indexbuckets , tempbuffer , bucket s i z e s ,

g l oba lbu ck e t s i z e s , k e y c o l l e c t i o n] ; // f r e e

i t e r a t i o n to se tup

53 i f (p==0) recordt ime [] ;

54 var i ;

55 for i from 1 to maxiterat ion

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 229

56 {

57 rank [numbers , t e s t indexar ray ,

tes trankarray , i , head , indexbuckets ,

tempbuffer , bucket s i z e s ,

g l oba lbu ck e t s i z e s , k e y c o l l e c t i o n] ;

58 } ;

59 i f (p==0)

60 {

61 recordt ime [] ;

62 d i sp lay t ime [] ;

63 } ;

64 } ;

65 } ;

66 funct i on void rank [var numbers , var te s t indexar ray , var

tes trankarray , var i t e r a t i o n , var head , var indexbuckets , var

tempbuffer , var bucket s i z e s , var g l oba lbu ck e t s i z e s , var

k e y c o l l e c t i o n]

67 {

68 numbers : array [Int , numkeys] : : a l l o c a t e d [mu l t ip l e []] ;

69 t e s t i nd exa r r ay : array [Int , t e s t a r r a y s i z e] : : a l l o c a t ed [

mu l t ip l e []] ;

70 te s t r ankar ray : array [Int , t e s t a r r a y s i z e] : : a l l o c a t e d [

mu l t ip l e []] ;

71 i t e r a t i o n : Int : : a l l o c a t e d [mu l t ip l e []] ;

72 indexbuckets : array [bucket , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

73 head : bucket : : a l l o c a t e d [mu l t ip l e []] ;

74

75 tempbuf fer : array [Int , maxkey] : : a l l o c a t e d [mu l t ip l e []] ;

76 bu ck e t s i z e s : array [Int , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

77 g l ob a l b u ck e t s i z e s : array [Int , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 230

78 k ey c o l l e c t i o n : array [Int , numkeys] : : a l l o c a t e d [mu l t ip l e

[]] ;

79 var p:=pid [] ;

80 i f (p==0)

81 {

82 (numbers#i t e r a t i o n) := i t e r a t i o n ;

83 (numbers#(i t e r a t i o n + maxiterat ion)) :=maxkey −

i t e r a t i o n ;

84 } ;

85 in s e r tTes tAr ray [indexbuckets , numbers , t e s t indexar ray ,

t e s t r ankar ray] ;

86

87 var bu ck e t i n t e r va l :=maxkeylog2 − numbucketslog2 ;

// compute a nice i n t e r v a l , which i s the key range in

each bucke t

88 var i ;

89 for i from 0 to numkeys − 1

90 {

91 var thenum :=(numbers#i) ;

92 var bucketnum:=thenum >> bucke t i n t e r va l ;

93 ((indexbuckets#bucketnum) . s i z e) := ((indexbuckets

#bucketnum) . s i z e) + 1 ;

94 } ;

95 ((indexbuckets#0) . keys tar t) :=0;

96 ((indexbuckets#0) . keyend) :=0;

97 for i from 1 to numbuckets − 1

98 {

99 ((indexbuckets#i) . key s tar t) :=((indexbuckets#(i −

1)) . key s tar t) + ((indexbuckets#(i − 1)) . s i z e

) ;

100 ((indexbuckets#i) . keyend) :=((indexbuckets#i) .

key s tar t) ;

101 } ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 231

102

103 for i from 0 to numkeys − 1

104 {

105 var thenum :=(numbers#i) ;

106 var bucketnum:=thenum >> bucke t i n t e r va l ;

107 (k e y c o l l e c t i o n #((indexbuckets#bucketnum) . keyend)

) :=thenum ;

108 ((indexbuckets#bucketnum) . keyend) :=((

indexbuckets#bucketnum) . keyend) + 1 ;

109 } ;

110

111 computeGlobalBucketSizes [indexbuckets , bucket s i z e s ,

g l o b a l b u ck e t s i z e s] ;

112

113 var bucketsumglobal :=0;

114 var p r o c e s s o r :=0;

115 var p roce s so rbucket s : array [Int , p r o c e s s o r s + 1] : :

a l l o c a t e d [mu l t ip l e []] ;

116

117 (p roce s so rbucket s #0) :=0;

118 for i from 0 to numbuckets − 1

119 {

120 bucketsumglobal:=bucketsumglobal + ((

indexbuckets#i) . g l o b a l s i z e) ;

121 i f (bucketsumglobal >= ((p r oc e s s o r + 1) ∗

numkeys))

122 {

123 p r oc e s s o r := p r oc e s s o r + 1 ;

124 (p roce s so rbucket s#p roc e s s o r) :=(i + 1) ;

125 } ;

126 } ;

127 (p roce s so rbucket s#p roc e s s o r s) :=numbuckets ;

128

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 232

129

130 var c o l l e c t e d s i z e : array [Int , p r o c e s s o r s] : : a l l o c a t e d [

mu l t ip l e []] ;

131 var commdsp : array [Int , p r o c e s s o r s] : : a l l o c a t e d [mu l t ip l e

[]] ;

132 var senddsp : array [Int , p r o c e s s o r s] : : a l l o c a t e d [mu l t ip l e

[]] ;

133 var s end s i z e : array [Int , p r o c e s s o r s] : : a l l o c a t e d [mu l t ip l e

[]] ;

134 (senddsp#0) :=0;

135 var p r ev s i z e :=0;

136 var j ;

137 for j from 0 to p r oc e s s o r s − 1

138 {

139 i f (j > 0) (senddsp#j) :=(senddsp#(j − 1)) + (

s end s i z e#(j − 1)) ;

140 var f i r s t b u c k e t :=(p roce s so rbucket s#j) ;

141 var ptr :=0;

142 var qq ;

143 for qq from f i r s t b u c k e t to (p roce s so rbucket s#(j

+ 1)) − 1

144 {

145 var thehead :=(indexbuckets#qq) ;

146 ptr := ptr + thehead . s i z e ;

147 thehead . s i z e :=0;

148 i f (j < pid []) p r ev s i z e := p r ev s i z e + (

indexbuckets#qq) . g l o b a l s i z e ;

149 } ;

150 (s end s i z e#j) := ptr − 1 ;

151 } ;

152 (c o l l e c t e d s i z e : : a l l t o a l l [1]) := s end s i z e ;

153

154 var t o t c o l s i z e :=0;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 233

155 (commdsp#0) :=0;

156 for j from 0 to p r oc e s s o r s − 1

157 {

158 i f (j > 0) (commdsp#j) :=(commdsp#(j − 1)) + (

c o l l e c t e d s i z e #(j − 1)) ;

159 t o t c o l s i z e :=(c o l l e c t e d s i z e#j) + t o t c o l s i z e ;

160 } ;

161

162 var c o l l e c t e d : array [Int , t o t c o l s i z e] : : a l l o c a t e d [

mu l t ip l e []] ;

163 (c o l l e c t e d : : a l l t o a l l [s end s i z e , c o l l e c t e d s i z e , senddsp ,

commdsp]) := k ey c o l l e c t i o n ;

164

165 var myfirstbucketnum:=(proce s sorbucket s#pid []) ;

166 var mylastbucketnum :=(proce s sorbucket s#(pid [] + 1)) − 1 ;

167 var myf i r s tbucket :=(indexbuckets#myfirstbucketnum) ;

168 var mylastbucket :=(indexbuckets#mylastbucketnum) ;

169

170 var minkeyval :=((myf i r s tbucket) . id) << bucke t i n t e r va l ;

171 var maxkeyval := ((((mylastbucket) . id) + 1) <<

bucke t i n t e r va l) ;

172 maxkeyval:=maxkeyval − 1 ;

173

174 for i from minkeyval to maxkeyval (tempbuf fer#i) :=0;

// c l e a r the work array , so can en te r popu la t i on in

in a min

175 var runn ings i z e :=0;

176 for i from 0 to p r oc e s s o r s − 1

177 {

178 var r e c v s i z e :=(c o l l e c t e d s i z e#i) ;

179 var j ;

180 for j from runn ings i z e to (runn ings i z e + (

r e c v s i z e − 1))

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 234

181 {

182 var thenum :=(c o l l e c t e d#j) ;

183 (tempbuf fer#thenum) :=(tempbuf fer#thenum)

+ 1 ; // s e t popu la t i on o f keys

184 } ;

185 runn ings i z e := runn ings i z e + r e c v s i z e ;

186 } ;

187

188 (tempbuf fer#minkeyval) :=(tempbuf fer#minkeyval) +

p r ev s i z e ;

189 for i from minkeyval to maxkeyval − 1

190 {

191 (tempbuf fer#(i + 1)) := (tempbuf fer#(i + 1)) + (

tempbuf fer#i) ;

192 } ;

193

194 pV[indexbuckets , minkeyval , maxkeyval , tempbuffer ,

t e s t indexar ray , tes trankarray , i t e r a t i o n] ;

195 } ;

196

197 funct i on void i n s e r tTes tAr ray [var indexbuckets , var numbers , var

te s t indexar ray , var te s t r ankar ray]

198 {

199 indexbuckets : array [bucket , numbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

200 numbers : array [Int , numkeys] : : a l l o c a t e d [mu l t ip l e []] ;

201 t e s t i nd exa r r ay : array [Int , t e s t a r r a y s i z e] : : a l l o c a t e d [

mu l t ip l e []] ;

202 te s t r ankar ray : array [Int , t e s t a r r a y s i z e] : : a l l o c a t ed [

mu l t ip l e []] ;

203 var i ;

204 for i from 0 to t e s t a r r a y s i z e − 1

205 {

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 235

206 i f (((t e s t i nd exa r r ay#i) % numkeys) == pid [])

207 {

208 var i e :=mod [(t e s t i nd exa r r ay#i) , numkeys

] ;

209 (indexbuckets#(numbuckets + i)) . s i z e :=(

numbers#i e) ;

210 } ;

211 } ;

212 } ;

213

214 funct i on void computeGlobalBucketSizes [var indexbuckets , var

bucket s i z e s , var g l o b a l b u ck e t s i z e s]

215 {

216 indexbuckets : array [bucket , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

217 bu ck e t s i z e s : array [Int , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

218 g l ob a l b u ck e t s i z e s : array [Int , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

219 var i ;

220 for i from 0 to totnumbuckets − 1

221 {

222 (bu ck e t s i z e s#i) :=(indexbuckets#i) . s i z e ;

223 } ;

224 (g l o b a l b u ck e t s i z e s : : a l l r e d u c e [”sum”]) := bucke t s i z e s ;

225 for i from 0 to totnumbuckets − 1

226 {

227 (indexbuckets#i) . g l o b a l s i z e :=(g l ob a l b u ck e t s i z e s#

i) ;

228 } ;

229 } ;

230

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 236

231 funct i on void c r ea t e s eq [var seed : Double , var a : Double , var

numbers]

232 {

233 numbers : array [Int , numkeys] : : a l l o c a t e d [mu l t ip l e []] ;

234 var x : Double ;

235 var k:=maxkey % 4 ;

236 var i ;

237 for i from 0 to numkeys − 1

238 {

239 x:= rand lc [seed , a] ;

240 x:= x + rand lc [seed , a] ;

241 x:= x + rand lc [seed , a] ;

242 x:= x + rand lc [seed , a] ;

243 (numbers#i) :=k ∗ x ;

244 } ;

245 } ;

246

247 funct i on Double f i nd s e ed [var kn : Long , var np : Long , var nn : Long ,

var s : Double , var a : Double]

248 {

249 var nq:=nn % np ;

250 var mq:=0;

251 while (nq > 1)

252 {

253 mq := mq + 1 ;

254 nq:=nq % 2 ;

255 } ;

256

257 var t1 : Double ;

258 t1 :=a ;

259 var t2 : Double ;

260 var t3 : Double ;

261 var i ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 237

262 for i from 1 to mq

263 {

264 t2 := rand lc [t1 , t1] ;

265 } ;

266 var an : Double ;

267 an:= t1 ;

268 var kk : Long ;

269 kk:=kn ;

270 t1 := s ;

271 t2 :=an ;

272 var ik : Long ;

273 for i from 1 to 100

274 {

275 ik :=kk % 2 ;

276 i f ((2 ∗ i k) != kk) t3 := rand lc [t1 , t2] ;

277 i f (ik == 0) break ;

278 t3 := rand lc [t2 , t2] ;

279 kk:= ik ;

280 } ;

281 return t1 ;

282 } ;

283

284 funct i on Double rand lc [var x : Double , var a : Double]

285 {

286 var r23 : Double ;

287 var t23 : Double ;

288 var r46 : Double ;

289 var t46 : Double ;

290 var ks : Int ;

291 r23 :=1 . 0 ;

292 t23 :=1 . 0 ;

293 r46 :=1 . 0 ;

294 t46 :=1 . 0 ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 238

295 var i ;

296 for i from 1 to 23

297 {

298 r23 :=0.5 ∗ r23 ;

299 t23 :=2.0 ∗ t23 ;

300 } ;

301

302 for i from 1 to 46

303 {

304 r46 :=0.5 ∗ r46 ;

305 t46 :=2.0 ∗ t46 ;

306 } ;

307

308 ks :=1;

309

310 var t1 : Double ;

311 var t2 : Double ;

312 var t3 : Double ;

313 var t4 : Double ;

314

315 var a1 : Double ;

316 var a2 : Double ;

317 var j : In t ;

318 t1 := r23 ∗ a ;

319 j := t1 ;

320 a1:= j ;

321 a2:=a − t23 ∗ a1 ;

322

323 var x1 : Double ;

324 var x2 : Double ;

325 var z : Double ;

326

327 t1 := r23 ∗ x ;

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 239

328 j := t1 ;

329 x1:= j ;

330 x2:=x − t23 ∗ x1 ;

331 t1 :=a1 ∗ x2 ;

332 t1 := t1 + a2 ∗ x1 ;

333 j := r23 ∗ t1 ;

334 t2 := j ;

335 z := t1 − t23 ∗ t2 ;

336 t3 := t23 ∗ z ;

337 t3 := t3 + a2 ∗ x2 ;

338 j := r46 ∗ t3 ;

339 t4 := j ;

340 x:= t3 − t46 ∗ t4 ;

341 return r46 ∗ x ;

342 } ;

343

344 funct i on void pV[var indexbuckets , var minkeyval , var maxkeyval ,

var tempbuffer , var t e s t indexar ray , var tes trankarray , var

i t e r a t i o n]

345 {

346 indexbuckets : array [bucket , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

347 minkeyval : In t : : a l l o c a t e d [mu l t ip l e []] ;

348 maxkeyval : In t : : a l l o c a t e d [mu l t ip l e []] ;

349 i t e r a t i o n : Int : : a l l o c a t e d [mu l t ip l e []] ;

350 tempbuf fer : array [Int , maxkey] : : a l l o c a t e d [mu l t ip l e []] ;

351 t e s t i nd exa r r ay : array [Int , t e s t a r r a y s i z e] : : a l l o c a t e d [

mu l t ip l e []] ;

352 te s t r ankar ray : array [Int , t e s t a r r a y s i z e] : : a l l o c a t ed [

mu l t ip l e []] ;

353 var i ;

354 for i from 0 to t e s t a r r a y s i z e − 1

355 {

January 18, 2010

C.2. Mesham NAS-IS benchmark Code 240

356 var me:=pid [] ;

357 var k :=(indexbuckets#(numbuckets + i)) .

g l o b a l s i z e ;

358 i f (minkeyval <= k && k <= maxkeyval)

359 {

360 c la s sPVtes t [i , k , tempbuffer , tes trankarray

, i t e r a t i o n] ;

361 } ;

362 } ;

363 } ;

364

365 funct i on void i n i tBucket s [var head , var indexbuckets]

366 {

367 indexbuckets : array [bucket , totnumbuckets] : : a l l o c a t e d [

mu l t ip l e []] ;

368 head : bucket : : a l l o c a t e d [mu l t ip l e []] ;

369 head := nu l l ;

370 var i ;

371 for i from 0 to totnumbuckets − 1

372 {

373 var newhead : bucket : : a l l o c a t e d [mu l t ip l e []] ;

374 newhead . next :=head ;

375 newhead . keys tar t :=0;

376 newhead . keyend :=0;

377 newhead . id :=(totnumbuckets − 1) − i ;

378 newhead . s i z e :=0;

379 newhead . g l o b a l s i z e :=0;

380 head :=newhead ;

381 (indexbuckets#(totnumbuckets − 1) − i) :=head ;

382 } ;

383 } ;

Listing C.2: Mesham NAS-IS benchmark code

January 18, 2010

C.3. FFT uneven data distribution generated C-MPI 241

C.3 FFT uneven data distribution generated C-

MPI

1 {

2 complex ∗ MESHtempvar ;

3 int MESHblockstoprocesses []={0 , 1 , 2 , 3 , 4} ;

4 int MESHblockatoprocesses []={103 ,103 ,102 ,102 ,102} ;

5 int MESHblockbtoprocesses []={512 ,512 ,512 ,512 ,512} ;

6 int MESHblocks izetoprocesses []={52736 ,52736 ,52224 ,52224 ,52224} ;

7 int MESHblockd is tr ibut iontoprocesses

[5] [5]={{103 ,103 ,102 ,102 ,102} ,

8 {103 ,103 ,102 ,102 ,102} ,{103 ,103 ,102 ,102 ,102} ,{103 ,103 ,102 ,102 ,102} ,

9 {103 ,103 ,102 ,102 ,102}} ;

10 int MESHblocknum ;

11 for (MESHblocknum=0;MESHblocknum<5;MESHblocknum++) {

12 i f (myrank==MESHblockstoprocesses [MESHblocknum]) {

13 MESHtempvar=(complex ∗) mal loc (s izeof (complex) ∗

14 MESHblocks izetoprocesses [MESHblocknum]) ;

15 int MESHi,MESHj,MESHd;

16 for (MESHj=0;MESHj<MESHblockbtoprocesses [MESHblocknum] ; MESHj++){

17 for (MESHd=0;MESHd<MESHblockatoprocesses [MESHblocknum] ;MESHd++){

18 MESHtempvar [(MESHj ∗ MESHblockatoprocesses [MESHblocknum]) +

19 MESHd]=A[(MESHd ∗ MESHblockbtoprocesses [MESHblocknum]) + MESHj

] ; } }

20 int MESHelementcount [5] ;

21 int MESHloopvar ;

22 for (MESHloopvar=0;MESHloopvar<5;MESHloopvar++)

23 {MESHelementcount [MESHloopvar]=(MESHblockatoprocesses [

MESHblocknum] ∗

24 MESHblockd is tr ibut iontoprocesses [MESHblocknum] [MESHloopvar])

∗2;}

25 int MESHelementdisplacement [5] ;

January 18, 2010

C.3. FFT uneven data distribution generated C-MPI 242

26 for (MESHloopvar=0;MESHloopvar<5;MESHloopvar++)

27 { i f (MESHloopvar==0){

28 MESHelementdisplacement [MESHloopvar]=0;

29 } else {

30 MESHelementdisplacement [MESHloopvar]=MESHelementdisplacement [

MESHloopvar

31 − 1] + (MESHelementcount [MESHloopvar − 1] /2) ;}}

32 int MESHsendcounter ;

33 for (MESHsendcounter=0;MESHsendcounter<5;MESHsendcounter++){

34 MPI Request MESHreq ;

35 MPI Isend(&MESHtempvar [MESHelementdisplacement [MESHsendcounter

]] , MESHelementcount [MESHsendcounter] ,MPI FLOAT,

MESHsendcounter , 23 ,MPI COMM WORLD,&MESHreq) ;

36 }}}

37 for (MESHblocknum=0;MESHblocknum<5;MESHblocknum++) {

38 i f (myrank==MESHblockstoprocesses [MESHblocknum]) {

39 int MESHstartpt=0;

40 complex ∗ MESHtempvar2=(complex ∗) mal loc (s izeof (complex) ∗

41 MESHblocks izetoprocesses [MESHblocknum]) ;

42 int MESHrecvcounter ; MPI Request MESHrequestl ist [5] ;

43 for (MESHrecvcounter=0;MESHrecvcounter <5;MESHrecvcounter++){

44 MPI Irecv(&MESHtempvar2 [MESHstartpt] , (MESHblockatoprocesses [

myrank]

45 ∗MESHblockd is tr ibut iontoprocesses [myrank] [MESHrecvcounter])

46 ∗2 ,MPI FLOAT, MESHrecvcounter , 23 ,MPI COMM WORLD,&MESHrequestl ist [

MESHrecvcounter]) ;

47 MESHstartpt=MESHstartpt+(MESHblockatoprocesses [myrank]

48 ∗MESHblockd is tr ibut iontoprocesses [myrank] [MESHrecvcounter]) ;

49 }MPI Waitall (5 , MESHrequestl ist ,MPI STATUSES IGNORE) ;

50 int MESHi,MESHd,MESHj ;

51 int MESHoffset=0;

52 int MESHmc;

53 int MESHcurrenta [5] ;

January 18, 2010

C.4. Gadget-2 C code PH key finding 243

54 for (MESHmc=0;MESHmc < 5 ;MESHmc++) {

55 i f (MESHmc==0) {

56 MESHcurrenta [0]=0 ;

57 } else {

58 MESHcurrenta [MESHmc]=MESHcurrenta [MESHmc − 1] +

59 MESHblockd is tr ibut iontoprocesses [MESHblocknum] [MESHmc − 1] ;

60 }}

61 for (MESHi=0;MESHi<5;MESHi++) {

62 int MESHthissize=(MESHblockatoprocesses [MESHblocknum] ∗

63 MESHblockd is tr ibut iontoprocesses [MESHblocknum] [MESHi]) ;

64 for (MESHd=0;MESHd<MESHblockatoprocesses [MESHblocknum] ;MESHd++)

{

65 for

66 (MESHj=0;MESHj<MESHblockd is tr ibut iontoprocesses [MESHblocknum] [

MESHi] ; MESHj++)

67 {

68 B[(MESHj + MESHcurrenta [MESHi]) + (MESHd ∗

69 MESHblockbtoprocesses [MESHblocknum])]=MESHtempvar2 [((MESHd ∗

70 MESHblockd is tr ibut iontoprocesses [MESHblocknum] [MESHi]) + MESHj)

+

71 MESHoffset] ; }}

72 MESHoffset=MESHoffset + MESHthissize ;}

73 f r e e (MESHtempvar2) ;}}

74 }

Listing C.3: Part of generated C-MPI Code with uneven data distribution

C.4 Gadget-2 C code PH key finding

1 t a t i c int quadrants [2 4] [2] [2] [2] = {

2 /∗ ro t x =0, ro ty=0−3 ∗/

3 {{{0 , 7} , {1 , 6}} , {{3 , 4} , {2 , 5}}} ,

4 {{{7 , 4} , {6 , 5}} , {{0 , 3} , {1 , 2}}} ,

January 18, 2010

C.4. Gadget-2 C code PH key finding 244

5 {{{4 , 3} , {5 , 2}} , {{7 , 0} , {6 , 1}}} ,

6 {{{3 , 0} , {2 , 1}} , {{4 , 7} , {5 , 6}}} ,

7 /∗ ro t x =1, ro ty=0−3 ∗/

8 {{{1 , 0} , {6 , 7}} , {{2 , 3} , {5 , 4}}} ,

9 {{{0 , 3} , {7 , 4}} , {{1 , 2} , {6 , 5}}} ,

10 {{{3 , 2} , {4 , 5}} , {{0 , 1} , {7 , 6}}} ,

11 {{{2 , 1} , {5 , 6}} , {{3 , 0} , {4 , 7}}} ,

12 /∗ ro t x =2, ro ty=0−3 ∗/

13 {{{6 , 1} , {7 , 0}} , {{5 , 2} , {4 , 3}}} ,

14 {{{1 , 2} , {0 , 3}} , {{6 , 5} , {7 , 4}}} ,

15 {{{2 , 5} , {3 , 4}} , {{1 , 6} , {0 , 7}}} ,

16 {{{5 , 6} , {4 , 7}} , {{2 , 1} , {3 , 0}}} ,

17 /∗ ro t x =3, ro ty=0−3 ∗/

18 {{{7 , 6} , {0 , 1}} , {{4 , 5} , {3 , 2}}} ,

19 {{{6 , 5} , {1 , 2}} , {{7 , 4} , {0 , 3}}} ,

20 {{{5 , 4} , {2 , 3}} , {{6 , 7} , {1 , 0}}} ,

21 {{{4 , 7} , {3 , 0}} , {{5 , 6} , {2 , 1}}} ,

22 /∗ ro t x =4, ro ty=0−3 ∗/

23 {{{6 , 7} , {5 , 4}} , {{1 , 0} , {2 , 3}}} ,

24 {{{7 , 0} , {4 , 3}} , {{6 , 1} , {5 , 2}}} ,

25 {{{0 , 1} , {3 , 2}} , {{7 , 6} , {4 , 5}}} ,

26 {{{1 , 6} , {2 , 5}} , {{0 , 7} , {3 , 4}}} ,

27 /∗ ro t x =5, ro ty=0−3 ∗/

28 {{{2 , 3} , {1 , 0}} , {{5 , 4} , {6 , 7}}} ,

29 {{{3 , 4} , {0 , 7}} , {{2 , 5} , {1 , 6}}} ,

30 {{{4 , 5} , {7 , 6}} , {{3 , 2} , {0 , 1}}} ,

31 {{{5 , 2} , {6 , 1}} , {{4 , 3} , {7 , 0}}}

32 } ;

33

34

35 stat ic int rotxmap table [2 4] = { 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,

36 12 , 13 , 14 , 15 , 0 , 1 , 2 , 3 , 17 , 18 , 19 , 16 , 23 , 20 , 21 , 22

37 } ;

January 18, 2010

C.4. Gadget-2 C code PH key finding 245

38

39 stat ic int rotymap table [2 4] = { 1 , 2 , 3 , 0 , 16 , 17 , 18 , 19 ,

40 11 , 8 , 9 , 10 , 22 , 23 , 20 , 21 , 14 , 15 , 12 , 13 , 4 , 5 , 6 , 7

41 } ;

42

43 stat ic int r o t x t ab l e [8] = { 3 , 0 , 0 , 2 , 2 , 0 , 0 , 1 } ;

44 stat ic int r o t y t ab l e [8] = { 0 , 1 , 1 , 2 , 2 , 3 , 3 , 0 } ;

45

46 stat ic int s e n s e t ab l e [8] = { −1, −1, −1, +1, +1, −1, −1, −1 } ;

47

48 stat ic int f l a g qu ad r an t s i n v e r s e = 1 ;

49 stat ic char quadran t s inver s e x [2 4] [8] ;

50 stat ic char quadran t s inver s e y [2 4] [8] ;

51 stat ic char quad r an t s i n v e r s e z [2 4] [8] ;

52

53

54 /∗ ! This func t i on computes a Peano−H i l b e r t key f o r an i n t e g e r

t r i p l e t (x , y , z) ,

55 ∗ with x , y , z in the range between 0 and 2ˆ b i t s −1.

56 ∗/

57 peanokey p eano h i l b e r t k ey (int x , int y , int z , int b i t s)

58 {

59 int i , quad , b itx , b ity , b i t z ;

60 int mask , r o tat i on , rotx , roty , s en s e ;

61 peanokey key ;

62

63

64 mask = 1 << (b i t s − 1) ;

65 key = 0 ;

66 r o ta t i on = 0 ;

67 s en s e = 1 ;

68

69

January 18, 2010

C.4. Gadget-2 C code PH key finding 246

70 for (i = 0 ; i < b i t s ; i++, mask >>= 1)

71 {

72 b i tx = (x & mask) ? 1 : 0 ;

73 b i ty = (y & mask) ? 1 : 0 ;

74 b i t z = (z & mask) ? 1 : 0 ;

75

76 quad = quadrants [r o t a t i on] [b i tx] [b i ty] [b i t z] ;

77

78 key <<= 3 ;

79 key += (sen se == 1) ? (quad) : (7 − quad) ;

80

81 rotx = r o t x t ab l e [quad] ;

82 roty = r o t y t ab l e [quad] ;

83 s en s e ∗= s en s e t ab l e [quad] ;

84

85 while (rotx > 0)

86 {

87 r o ta t i on = rotxmap table [r o t a t i on] ;

88 rotx−−;

89 }

90

91 while (roty > 0)

92 {

93 r o ta t i on = rotymap table [r o t a t i on] ;

94 roty−−;

95 }

96 }

97

98 return key ;

99 }

Listing C.4: Part of Gadget-2 peano hilbert key finding

January 18, 2010

C.5. Gadget-2 C code BHTree building 247

C.5 Gadget-2 C code BHTree building

1 void d oma i n t op s p l i t l o c a l (int node , peanokey s tar tkey)

2 {

3 int i , p , sub , bin ;

4

5 i f (TopNodes [node] . S i z e >= 8)

6 {

7 TopNodes [node] . Daughter = NTopnodes ;

8

9 for (i = 0 ; i < 8 ; i++)

10 {

11 i f (NTopnodes < MAXTOPNODES)

12 {

13 sub = TopNodes [node] . Daughter + i ;

14 TopNodes [sub] . S i z e = TopNodes [node] . S i z e / 8 ;

15 TopNodes [sub] . Count = 0 ;

16 TopNodes [sub] . Daughter = −1;

17 TopNodes [sub] . StartKey = star tkey + i ∗ TopNodes [

sub] . S i z e ;

18 TopNodes [sub] . Pstar t = TopNodes [node] . Pstar t ;

19

20 NTopnodes++;

21 }

22 else

23 {

24 p r i n t f (” task=%d : We are out o f Topnodes .

I n c r ea s i n g the constant MAXTOPNODES might help

.\n” ,

25 ThisTask) ;

26 f f l u s h (s tdout) ;

27 endrun (13213) ;

28 }

January 18, 2010

C.5. Gadget-2 C code BHTree building 248

29 }

30

31 for (p = TopNodes [node] . Pstar t ; p < TopNodes [node] . Pstar t +

TopNodes [node] . Count ; p++)

32 {

33 bin = (KeySorted [p] − s ta r tkey) / (TopNodes [node] . S i z e

/ 8) ;

34

35 i f (bin < 0 | | bin > 7)

36 {

37 p r i n t f (” task=%d : something odd has happened here .

bin=%d\n” , ThisTask , bin) ;

38 f f l u s h (s tdout) ;

39 endrun (13123123) ;

40 }

41

42 sub = TopNodes [node] . Daughter + bin ;

43

44 i f (TopNodes [sub] . Count == 0)

45 TopNodes [sub] . Pstar t = p ;

46

47 TopNodes [sub] . Count++;

48 }

49

50 for (i = 0 ; i < 8 ; i++)

51 {

52 sub = TopNodes [node] . Daughter + i ;

53 i f (TopNodes [sub] . Count > All . TotNumPart / (

TOPNODEFACTOR ∗ NTask ∗ NTask))

54 d oma i n t op s p l i t l o c a l (sub , TopNodes [sub] . StartKey) ;

55 }

56 }

57 }

January 18, 2010

C.5. Gadget-2 C code BHTree building 249

Listing C.5: Part of Gadget-2 building BHTree

January 18, 2010

Appendix D

Tabular Performance Data

D.1 Mandelbrot

Processors Mesham (secs) C-MPI (secs)

10 41.89 41.76

16 29.09 29.30

20 23.62 23.59

32 14.62 15.25

64 7.82 8.06

Table D.1: Mandelbrot Timing Results

250

D.2. NAS-IS Class B 251

D.2 NAS-IS Class B

Processors Mesham (secs) NAS (secs)

1 8.18 6.49

2 4.29 3.64

4 2.51 2.79

8 1.79 2.21

16 1.55 1.50

32 7.8 8.79

64 31.85 37.18

128 89.64 97.07

Table D.2: NAS-IS Class B Timing Results

D.3 NAS-IS Class C

Processors Mesham (secs) NAS (secs)

1 33.38 26.58

2 19.7 16.96

4 12.72 8.76

8 8.82 15.41

16 6.39 16.23

32 13.73 14.36

64 15.04 17.48

128 51.4 62.39

Table D.3: NAS-IS Class C Timing Results

January 18, 2010

D.4. NAS-IS Total Mop/s 252

D.4 NAS-IS Total Mop/s

Processors Mesham-B NAS-B Mesham-C NAS-C

1 41.04 51.68 40.21 50.5

2 78.15 92.18 68.13 79.12

4 133.51 120.41 105.54 153.16

8 187.11 151.83 152.12 87.08

16 216.02 224.19 210.04 82.7

32 43.04 38.19 97.78 93.44

64 10.53 9.03 89.24 76.8

128 3.74 3.46 26.11 21.51

Table D.4: NAS-IS Total Mop/s

D.5 NAS-IS Mop/s per Process

Processors Mesham-B NAS-B Mesham-C NAS-C

1 41.04 51.68 40.21 50.5

2 39.08 46.09 34.07 39.56

4 33.38 30.1 26.39 38.29

8 23.39 18.98 19.01 10.88

16 13.5 14.01 13.13 5.17

32 1.34 1.19 3.06 2.92

64 0.16 0.14 1.39 1.2

128 0.03 0.03 0.2 0.17

Table D.5: NAS-IS Mop/s per Process

January 18, 2010

D.6. FFT on 128MB Data 253

D.6 FFT on 128MB Data

Processors Mesham FFTW Pacheco

1 4.94 4.13 6.59

2 2.28 3.68 4.44

4 1.67 1.97 3.03

8 1.05 1.25 2.76

10 0.94 1.57 -

16 0.86 1.05 3.67

20 0.8 4.19 -

32 0.91 3.49 4.04

64 1.28 4.41 5.82

Table D.6: FFT on 128MB Data

January 18, 2010

D.7. FFT on 2GB Data 254

D.7 FFT on 2GB Data

Processors Mesham FFTW

2 158.95 81.4

4 126.34 42.08

8 23.2 23.15

10 21.05 43.57

16 16.24 17.68

20 14.12 18.17

32 12.01 13.07

64 9.87 10.06

Table D.7: FFT on 2GB Data

January 18, 2010

