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Abstract

Emulation and calibration

with smoothed system and simulator data

This thesis is concerned with structuring the statistical model with which we relate phys-
ical systems and computer simulators. The novelty of the work lies in the fact that we
relate them via imagined smoothed versions of themselves, reflecting the belief that they
are similar on large scales but discrepant when in comes to small scale details. Our cen-
tral, paradigmatic example involves relating the planet’s climate to a climate simulator.
Here the simulator is suspected to be incapable of faithfully reproducing changes in the
system as time or certain physical parameters are changed by a small amount, but is still
considered informative for the changes in the system over long time scales and large pa-

rameter changes.
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Chapter 1

Introduction

Deterministic computer models, which will be referred to as simulators, now play a key
role in almost every scientific field in exploring the implications of theories for physical
systems that are too complex to handle ourselves. The application that motivates this
thesis is the simulation of the Earth’s climate or, more precisely, the statistical analysis of
simulated data and those observed in the real world.

While there is a significant body of literature on the analysis and emulation of com-
puter simulators, with notable contributions from Kennedy and O’Hagan [25]] and Santner
[49]] for example, there is less work that has focused on simulators with high-dimensional
or time series outputs. Higdon et al. [21]], Bayarri et al. [3] and Rougier [48] are among
those who have taken on this challenge, and their work informs ours by inspiring di-
mension reduction strategies relying on basis representations, and computation strategies
relying on the decomposition of otherwise intractable calculations. It is the simulation of
the planet’s climate that necessitates our own contributions to the field by presenting us
with huge arrays of outputs and a context for understanding the importance of inferences
arising from the analysis.

A central theme to our work is the decomposition of the simulator and system signals
into climate and weather components. This partition serves two purposes: firstly, it allows
us to model the belief that the simulator may reproduce long-term, low-resolution vari-
ability but not high-resolution variability; secondly, the relative smoothness of the climate
component means that there are fewer effective degrees of freedom in which it can vary.

By focusing only on the dominant degrees of freedom we will be able to render otherwise

1



1.1. Introduction to the field 2

unmanageably large data sets intelligible and pliable.
This chapter continues with a discussion of issues and objects relevant to the statistical

modelling of physical and synthetic systems, and to the content of the thesis.

1.1 Introduction to the field

1.1.1 Data, models and knowledge

We approach this project as Bayesians and anti-realists, and it is in the light of these
philosophies that we understand and prioritize the tasks ahead. There is a huge amount
of material available, such as [5], introducing Bayesian statistics and exploring its deeper
implications, but the central notion to the subjective Bayesian paradigm we will adopt
is that statistical models are quantitative representations of reasoning processes: they are
descriptions and extrapolations of inherently subjective mental constructs rather than ob-
jective physical ones.

The Bayesian perspective complements an anti-realist view of science, a rejection
of the existence of universal truths and unobservable entities. From this point of view
scientific theory loses some of the prestige it might otherwise have claimed, but is still
vitally important. Its role is now to summarise, organize and structure our experiences of
various phenomena. Scientific theory becomes our scientific heritage, the culmination of
vast numbers of experiments condensed neatly and elegantly into convenient structures.

While we deny the ultimate truth of our scientific and statistical assumptions, in order
to reason coherently from one belief to another we act as though they were true. For
example, we act as though there is a polynomial curve underlying a series of data because
we are forced to make a decision or inference from those data and the curve makes the
inference practical. Statistical likelihood serves as a measure of the curve’s empirical
adequacy to preserve certain information within a data set and a prior may be understood
as encoding information from outside the data set. Adopting the curve as truth means
adopting the parameters that define it too. We say that they exist because otherwise we
could not proceed in our reasoning process, and we say that there is a correct parameter
in so far as there is a most successful decision or inference.

‘Success’ or ‘surprise’ can be given a mathematical definition in terms of a scoring
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function or loss function, but it is also important to consider ‘effort’. Our scepticism cush-
ions us from the shocks and revelations that can follow from taking statistical models too
literally, and cautions us from investing disproportionate effort in the hunt for parameters
that are only tentatively attributed physical significance. The effort involved in an analysis
can be hard to talk about. Considerable effort may need to be invested to compensate for
inefficient coding, mathematical naivety or a lack of hardware, for example. Whatever the
cause, it is worth taking seriously because it is certain to influence our work. Our analyses
are likely to involve linear algebra on large matrices, multiple passes over the data and
searches through high-dimensional spaces, all of which can be computationally burden-
some. The avoidance of excessive computational effort is sometimes equated with the
adoption of the principle of parsimony. However, we do not take the view that parsimony
is somehow natural: that the laws governing the universe, or describing our statistical
models are required to be profoundly elegant. We see the laws as our creations and ele-
gance as a matter of taste. In the work that follows, there are frequently occasions when
we must strike a compromise between adopting a model that is easily interpretable and
one that is computationally practical. Ideally we will develop models that achieve both,
but when that is not possible we make our compromise on a case by case basis rather than
letting the principle of parsimony make the decision for us.

Expert knowledge, communicated through parameter values and model choices, and
encoded in prior specifications, is the lens through which data is seen and so deserves
significant attention in any statistical exercise. In the work that follows we will be partic-
ularly interested in parameterisations that focus our attention on quantities we will eventu-
ally learn about and those that might help us structure our thoughts in a natural way. These
ideas are especially relevant when specifying notions of correlation and smoothness.

Sometimes it is natural to question or re-evaluate our understanding of the data. We
can try to model this by building hierarchies of models but we also recognize the need for
diagnostics that provide an opportunity for model criticism. Therefore, the identification

of informative diagnostics will also be an important part of the methodologies we develop.
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1.1.2 Climate and weather

An important notion in our work with simulators is the decomposition of a signal into
climate and weather components. This decomposition could be justified on the basis
that there are certain features in the data from the system that we hope or believe can
be reproduced by a simulator, and others that cannot. In particular we believe that cli-
mate simulators, despite not being able to follow weather patterns for more than a few
days, can mimic the larger, slower trends in climatological variables. Alternatively, the
decomposition could be made on the grounds that we are only interested in the signal
at well-spaced intervals, or in its convolution with a smooth function, in which case the
correlation between very closely-spaced points could be regarded as irrelevant.

We will therefore frequently introduce statistical models by restating the notional de-

composition,

(1) = c(t) ® w(t), (1.1)

where the notation y(f) is used to describe a physically meaningful scalar function of
time, 7. The components of (I.1)), ¢ and w, represent the climate and weather quantities
respectively, and the & symbol is used to express the addition of independent quantities.
Of course, additional notation will be required as we progress through the thesis; this
is introduced as needed and may be found in the notational glossary in appendix [Al A
glossary of acronyms and abbreviations is also included in appendix [A.2] while appendix
[D] gives brief descriptions of the probability density functions referenced in the course of
our research.

We will also explore the consequences of similarly decomposing y(¢) seen as a func-
tion of a vector of physical variables x that contribute to the system, such as diffusion
coefficients and coupling strengths. We will find that doing so provides an interesting

way to structure our beliefs for the differences between systems and their simulators.
y(t, x) = c(t, x) ® w(t, x).

We treat the climate and weather variables as constructs that we are free to define. In
chapter [2] we discuss routes to making suitable definitions and the identification of the

variables given those definitions.
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While we employ the climate/weather terminology, we also maintain a certain degree
of abstraction from the climatological application so that our ideas might be applicable
to the simulation of other systems. It is not uncommon for scientists to consider their
simulators, for biological, social, geophysical, mechanical or cosmological processes for
example, to be reliable on larger spatial and temporal scales but not on smaller scales. As
such, a collection of statistical tools for relating large-scale trends in simulator and system

data is likely to be useful to the wider scientific community.

1.1.3 Emulation

The concept of emulation will appear often in this thesis. It refers to the statistical mod-
elling of a quantity that is, in principle, computable but not evaluated, most often because
we lack the resources to make the necessary calculations. The randomness of the mod-
elled quantity arises solely from our ignorance of it and not from an intrinsic stochasticity
in its behaviour. The output of a complex simulator and the conclusions of an MCMC

algorithm are two examples of quantities we might usefully emulate.

1.1.4 Calibration

Calibration, as a concept, is easiest to understand when we have a simulator that is capable
of exactly reproducing the mechanisms of the physical system of interest. In this case,
to calibrate the simulator is to find the inputs that lead to a simulation which reproduces
the observed system output. The equality of the system and simulator outputs defines
for us an equivalence for the inputs. So, to calibrate the simulator is to infer the set
of parameters, or hidden state variables, of the systems which could have produced the
phenomena we experience.

When we assert that the parameter dependence of the system and simulator are differ-
ent, we need to be more careful about what we mean by calibration. It is no longer the
search for inputs that leads to the simulator reproducing the system behaviour. We will
think of calibration as the search for the parameters that would reproduce the observed
system output if we could perturb and evolve the system through time as though it were

another simulator.
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In chapter 3| we will discuss our preferred model structure for relating a system and its
simulator or simulators. It is only in the context of this structure that we can really make
sense of what we are doing when we calibrate. A key aspect of our model is that it admits
a spatial analogy for describing the system/simulator relationship. The analogy allows
for a parallel interpretation of the model; one in which the parameters index locations in
an imaginary space. The distances between two random quantities in that space encode
the similarity between them. In this context, calibration is a more like the positioning or

arrangement of our beliefs relative to each other.

1.1.5 Climate simulation

We now take a look at the sort of models we will use later on to guide our work and test

our ideas. The section also provides some context to climate simulation.

1.1.5.1 General Circulation Models

Twenty-three General Circulation Models (GCM) from research institutes around the
world formed a significant proportion of the evidence used to inform the Intergovern-
mental Panel on Climate Change’s (IPCC) fourth assessment report. Given the report’s
implications for global development policy, the models have a great deal of influence on
our future. It is currently possible to browse the code of models from the Institut Pierre
Simon Laplace, the Max Planck Institute and NASA’s Goddard Institute for Space Stud-
ies, but the majority are not publicly available. Simulated data from a small selection
of standard experiments are also accessible for many of the models. A common feature
of all the GCMs is the computational power they require. Even on the fastest comput-
ers, simulations are generally too slow for a standard exploration of the input space that
would serve to calibrate or validate the models. Considerable thought is clearly needed to
develop an intelligent strategy, or range of strategies, for exploration.

Our closest experience with a GCM is with FAMOUS, a variant on the UK Met Of-
fice’s HadCM3, which contributed to the findings of the IPCC’s Third, Fourth and Fifth
Assessment Reports. FAMOUS is a low-resolution ocean-atmosphere GCM whose out-
put was processed and provided to us by members of the RAPID RAPIT research program

working at Durham University. Their goal was to explore the behaviour of the AMOC,
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a powerful ocean current driven by heat and salinity gradients and wind stresses, across
a large perturbed physics ensemble of simulations. The climatological relevance of the
AMOC lies in the belief that it is responsible for bringing heat at a rate of approximately
1.27 + 0.15 10'W to northern Europe[[13]. A flavour of the data produced by FAMOUS
is given by a small sample of time series plotted in figure The time series run over
a period of about 150000 simulator days, approximately 400 simulator years, and quan-
tify the AMOC in Sverdrups. A flux of one Sverdrup is equivalent to one million cubic
metres of water passing through a surface every second. Calculation of the AMOC is not
straightforward; it is computed as the sum of three sub-fluxes whose definitions are also
quite involved, so we will defer further unwrapping of the quantity and focus instead on
its behaviour. On first inspection the variation in the time series of flux strengths produced
by FAMOUS is dominated by the differences between groups of simulations that were run
under different forcing scenarios. There are eight scenarios in which the amount of CO2
released into the simulated world differed significantly. In the dataset made available to
us, three physical parameters are also varied; two continuously and one that takes one of
three levels. The dataset provides an additional challenge by being ragged or incomplete,

a feature due to many simulations crashing.

1.1.5.2 Earth system Models of Intermediate Complexity

This category of simulator is not defined precisely, but is often used to refer to those run
on desktops and small clusters rather than supercomputers. Typically they will exclude
certain physical processes like the biosphere and discretise the solution domain into large
compartments in order to avoid the computational demands of the GCMs. While it is
possible to access the source code for several EMICs (GENIE and PUMA for example),
they tend to be specialised research tools rather than robust, user-friendly public products.
Compiling, executing and postprocessing stages are time-consuming and fragile. So while
experimenting with these models is possible, because our interest is primarily in statistical
methodology rather than the Earth system itself, we will not present any examples using
EMICs. Instead we will concentrate on synthetic examples produced by statistical models
and random number generators until we reach chapter 5] in which we will jump straight

to FAMOUS.
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Figure 1.1: A selection of postprocessed time series from FAMOUS.
1.2 Chapter summary

In this chapter we have introduced the key concepts and objects necessary to describe
the goal of this thesis: to emulate jointly the smooth part of a climate simulator and the
smooth part of a function describing the real world’s climate; and to calibrate the latter.
The calibration process will involve using the emulator to estimate observed system
values conditional on specific input parameters and comparing the estimates with the
observations. Prediction of the system is the natural destination of this work but it is
not a topic that we will be able to cover within the scope of the thesis. In principle, our
emulators will be capable of providing estimates for system values that are not observed,
and these values may be allocated probabilities or plausibilities in the same way as input
parameters. This statement is not intended to play down the technical and conceptual
difficulties of prediction, rather we wish to acknowledge that it is a very important issue
that, although not addressed directly here, is anticipated as a natural continuation of our

work.
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Our first task is to provide mathematical descriptions for the climate and weather
terms and to explore how those descriptions relate to each other, to our understanding of
the system, and to methods for inference. In chapter 2] we investigate two complementary
routes to the linear smoothing methodology that will allow us to make appropriate vari-
ance specifications for climate and weather. We also present a procedure for smoothing
large arrays of data and an examination of the inferability of smoothness parameters.

In chapter [3| we formulate a model structure for expressing beliefs for the expected
degree and type of correspondence between a system and its simulator, commenting on the
implications for emulation and calibration procedures. The model we arrive at supports
a integrated interpretation of output, input and discrepancy parameters, and provides a
context for understanding the climate not as a type of average or transformation of weather
but as a device to link theory and reality.

In chapter [ we present novel modelling techniques developed in order to process
data from a real climate model. These techniques rely on the smoothness of the climate
term, allowing it to be well approximated with a moderate number of basis functions,
and on the roughness of the weather term, allowing many of its values to be considered
uncorrelated. Such features make for a light-weight model that may be quickly and ef-
ficiently manipulated, which is crucial for the assimilation of large data sets and for the
numerical investigation of the model’s fitted parameters. The most significant product of
our work in this area is a construct we call the Cholesky emulator. The key innovation
behind the Cholesky emulator is an algorithm for thinning out a set of candidate basis
functions, coupled with an intuitive interpretation of those basis functions, which helps
us to identify correlations as being either important as expressions of belief, or negligi-
ble when weighed against the computational demands they introduce. The algorithm is
essentially a modification of the standard Cholesky algorithm for matrix decomposition,
thus inheriting some of speed and stability properties that have made this latter algorithm
such an asset to statisticians and applied mathematicians. Chapter [4] also contains our
proposed strategy for using a fitted emulator to infer plausible system parameters from
system observations. While deliberation of the role of the simulator in this inference is
dealt with in chapter |3, here we consider the practicality of such inferences in regard to

their tractability and comprehensibility, concluding that the parallel, yet distinct, notions
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of ‘likelihood’ and ‘plausibility’ can help us identify parameters at least deserving further
investigation, in spite of our reluctance to designate parameters with the labels ‘true’ or
‘false’.

In chapter[5|we demonstrate the calculations involved in the application of our emula-
tion and calibration methodology to the FAMOUS data. The chapter serves as an oppor-
tunity to prove the value of the previous chapter’s modelling techniques and to examine
how the type of simulator discrepancy described in chapter [3| determines the precision of
the inferences we can reasonably make for the system’s parameters.

Finally, in chapter[6|we comment on the issues raised during the course of our research

and on avenues of investigation that could not be explored properly here.



Chapter 2

Smoothing

In a wide range of contexts, scientists and statisticians seek to make inferences for smooth
trends from noisy data. The trend may represent a physically meaningful process, believed
to be part of the mechanism that generated the data, or it may be a device for parsimo-
niously describing the data. Either way, in order to make such inferences we need to be
able to describe quantitatively what we mean by smooth. In this chapter we will investi-
gate two classes of description and discuss their merits in the context of the simulation of
physical systems.

Smoothing is particularly relevant to climate modelling because of the belief that,
despite not being able to reproduce observed high-frequency weather patterns, climate
simulators may still be informative for slower, large-scale climatological trends. To test
this belief we will need to extract the smooth trends from the real world climate data and
from files of simulated data so that we can compare them. In this way, the smooth plays
another role, by constructing metrics between data sets.

Before we progress any further, we need to pin down exactly what we mean by the

smooth of a set of points. Given the model

Y1) = c(t) ® w(d),

where all ¢, c(¢), w(t) and y(7) are scalars; we define the smooth to be our expectation
of the function c(¢) given t. Most frequently we will adjust our expectation by a linear
combination of observed data values, in which case we will use the Bayes linear formula

(2.1). A full description of Bayes linear methodology is given in [[17]; we choose to adopt

11



Chapter 2. Smoothing 12

it here for the geometric clarity of meaning it can provide and for its intrinsic reluctance
to commit to probability density functions as statements of belief, which accords with our
general scepticism regarding the literal interpretation of physical or statistical models.

Using T and T’ to denote column vectors of observation times we write

E,m) (c(1) = B (c(1) + Cov (c(?) , ¢(T)) (Var (c(T)) + Var (w(T)))"' ((T) — E ((T))),
2.1)

Cov (c(t), c(t)) = k.(t,1), Cov (w(r), w(t")) = k,(t,1), 2.2)

where the output, climate and weather functions produce column vectors from column

vector arguments

Y(T) = ([T11), y([TL), - ... ¥(TIn)',
(T) = (¢([T1y), ([T, - - ., c([TIn)),

w(T) = w((T1), w([Th), ..., w([TIx))".

The smooth is thus also a function with the same domain as y(¢), c(t) and w(z). It is not
the true function c(#), so we can talk about different smooths of the same series arising
from different covariance specifications and about the residual variance for c(f) given its

smooth. The adjusted variance for a particular set of values c(T”) is calculated as

Varyr, (c(T”)) =Var (¢(T"))
— Cov (¢(T), ¢(T)) (Var (¢(T)) + Var (w(T)))"'Cov (¢(T) , c(T)).

(2.3)
For the time being, the subscripted expectation and variance quantities are understood
only in the Bayes linear context: as simple estimates based on a linear geometry for belief
quantities. As we progress however, especially in chapter 4] we will find it useful to
employ likelihoods and full probabilistic specifications. When this happens we will need
to start using conditional expectations and variances, which we write with the usual bar
notation as E (- | -) and Var (- | -). Under this statistical paradigm many of the Bayes linear

quantities may be reinterpreted as descriptions of Normal approximations.
In the following subsections we will essentially look at ways to define the covariance
functions in (2.2) that determine the elements of the variance matrices in (2.I) and so

determine the value of the smooth.



2.1. Basis functions and roughness penalties 13

2.1 Basis functions and roughness penalties

Our treatment of basis functions and penalties is informed primarily by the work of Ram-
say and Silverman [43] under the title of functional data analysis (FDA). Their work is
appealing because they endeavour to define smoothness in terms of quantities with phys-
ical relevance. The standard example when introducing penalty approaches is for the
inference of the location of a flexible bar that is distorted by attractive forces originat-
ing from certain points. Here, the bar is our smoother and the points are observed data
quantities. They argue that the smoothest, most natural position of the bar is the one that
minimises an expression for the elastic energy within it. More generally though they call
such a quantity to be minimised a roughness penalty.

The first steps to thinking about smoothness under the FDA paradigm are to define a
linear differential operator (LDO), L, that approximately describes a conserved quantity

for the climate system so that

M
o C(t)
Le) = )t ~ 0,
m=0

and then to model c¢(¢) as the sum of a finite set of known basis functions, collected into

the column vector ¢(#), with weights given by the column vector of coefficients 3,

p
c(t) = B o(0) = ) IBUPO; (24)
i=0

The functions 7,,(¢), which may be constant, fulfil the role of covariance parameters and
the parameter M encodes the highest penalized derivative. For now we consider only the
calculation of smooths conditional on the values of 7,,(¢) being known.

So here we are defining smoothness from two directions that will result in soft and
hard constraints on the space of functions we consider smooth. The finite basis means
that climate trends must exist inside the space spanned by the basis functions, and within
that space we intend to favour functions that almost satisfy the linear differential operator.
To do this we let the operator define a penalty as the norm formed by integrating the
square of Lc(t) over a period, Q, of time. The linearity of L means that it acts on each of

the basis functions separately, and the penalty may be computed as a quadratic form in
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the basis coefficients:

llell; = f (Le(t))dt, 2.5)
Q , )
= f [LZ[B]i[qb(t)]i) dt, (2.6)
el o
)4
= > IBIIB; fg (LIGO)LISD) ) @7
i,j=0
= (B1:[81,[P];. (2.8)

)

<

where the integrals have been arranged as a matrix P satisfying

[Pl = f (LIpM])(LIp(N)]j)dr.
Q

The FDA smooth ¢(¢) is then defined as the function whose coefficients, gathered into the
vector 3, minimise the function L»(B), which is a weighted sum of the roughness penalty

and a squared distance from a set of observations y(T):

LB = B"PB+ ((T) — ¢ D' ((T) — p). (2.9)

The matrix of constants D has been introduced here to measure the distance between the
observations and the smooth, and the rows of the matrix ¢ are comprised of transposed

basis function vectors at the observation times:

[$);. = ¢(IT1)".

The minimiser of (2.9), which is found by differentiating £,,(8) and solving for zero, is

given by
B =[P +4'D¢] "D y(T), 2.10)

or, equivalently,
By = (APY'¢" (1P ¢" + D] y(T). (2.11)

The { symbol in (2.11)) denotes the Moore-Penrose generalised inverse, which we will
expand upon shortly. We identify (2.11) with the linearly adjusted expectation Ey (c(T))

that would have arisen from the linear Bayes belief specification:

Y(T) = «(T) @ w(T) = ¢ & w(T),
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where 8 and w have prior moments:

E@) =0, Ew(T)) =0, (2.12)

Var (8) = 0% x (AP)", Var (w(T)) = o x D, (2.13)

and o2 is any non-zero constant. The adjusted variance for S resulting from these specifi-

cations is
Vary (8) = 0> x [AP + ¢'D'g] .

While the differential operator defines a quantity believed to be small, exactly how
small, absolutely and relative to the cost of deviating from observations, is determined by
the two constants o and A respectively. Since o> does not appear in (2.11)), the adjusted
expectation for § is invariant to o2, but not to A. Thus, A is the relevant variance quan-
tity to study when the smooth is required simply as a summary of the data, but thought
and meaning needs to be to attributed to o in order to render the smooth a quantifi-
ably approximate estimate of climate. Eliciting a specification for A may be difficult on
physical grounds and, in practice, is often made by choosing a value based on trial and
error and visual inspection of the resulting smooths, or on a cross-validation criterion.
In section 4.1.1} in which we introduce a full probabilistic model for the ¢ and w terms,
we will revisit the quantities A and o> and demonstrate how they can be estimated with
likelihood-based methods.

The term (AP)" in (2.T1)) and (2.13)) denotes the generalised inverse of AP. Itis required
because of the possibility that certain linear combinations of coefficients could correspond
to functions within the null space of L. These combinations do not contribute to the
roughness penalty; they are a priori unconstrained, with the effect that P possesses zero
eigenvalues in certain directions. As long as ¢" D™'¢ does not also have zero eigenvalues
in these directions, the equivalent adjusted expectation and variance still exist. If $’ D' ¢
does have zero eigenvalues for these directions then there are some linear combinations
of B which are constrained neither by the penalty nor the observations; their equivalent
prior and adjusted variances are effectively infinite.

These penalty methods are useful to us because with them we can define the climate

c(t) as the component of a function y(f) almost within the null space of a differential
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operator, the excursion from the null space being measured by the penalty. The weather

is then the residual variation of y(7) that is not described by c().

Example 2.1.1 (Smoothing FAMOUS simulations with an LDO). Here we demonstrate
smoothing a time series of a simulated ocean flux from the FAMOUS climate model.
Calling the simulator output y(¢#) and suppressing its dependence on input parameters
while we consider just one run, we choose to represent it as the sum of a smooth part, c(#),
that we think of as the climate trend and a rough part, w(z), that we think of as the weather
trend. We then specify that c(z) exists within the space spanned by 50 b-splines, basis
functions that consist of piecewise polynomials joined at equally-spaced knots across a

specified interval, and employ a penalty on c(¢)’s first derivative:

50
(1) = c(t) ® w(t), oty = Y IBl1));.

=1
We set D = I, the identity, so that the deviation of each observation from c(#) contributes
independently to the cost function £,(5). To produce the smooths in figure we do
not need to specify o> and we choose two values of A based on inspection of the curves
they produce.

The quantity we are smoothing here is an ocean flux. We assume, for the purposes of
the example, that work is required to slow down or speed up the flux but that if left alone
it will remain constant, hence the choice of the first derivative as the linear differential
operator L. The most important large-scale implication of this choice is that beyond the
range of the data, the smooths in figure level out to a weighted average of the
observed values. If we choose the second derivative, as we do to produce figure
the smooths continue beyond the data range on linearly increasing or decreasing paths.
Within the data range the smooths generally appear to fulfil our expectations, following

the long- and medium-term trends while ignoring very high-frequency variation.

2.2 Stationary fields and autocovariance functions

Inducing smoothness through a differential operator may feel like a circuitous route to

take, especially if we lack intuition for an appropriate quantity to penalise. Instead we
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(a) Penalised first derivative.

0.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

(b) Penalised second derivative.

Figure 2.1: Output of the MOC from one simulation with the climate model FAMOUS.
The y axis describes the MOC flux and the ¢ axis describes time, but both variables have
been normalised, removing their units. Overlaid are two smooths arising from a set of
b-spline basis functions, with a penalty on the curve’s first derivative (subfigure
and a penalty on the curve’s second derivative (subfigure 2.1(b)). The smoother curves
correspond to a A penalty multiplier that is ten times greater than that for the rougher

curves.
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may prefer to directly specify correlations or covariances between c(#) at different times.

To do so we define the covariance function
k(s, 1) = Cov(c(s), c(t)).

However, the covariance function cannot take arbitrary form. It must lead to coherent
belief specifications; specifically, it must produce covariance matrices for sets of values
of the climate trend that are positive definite. The greatest part of the literature for co-
variance functions focuses on the case in which the expectation for ¢(¢) is constant over
the time domain, possibly after trends have been removed as a preprocessing step, and
the covariance between values of the function at different times is a function only of their
separation. In this case we call our beliefs for c(¢) weakly stationary, and the covari-
ance function, which now takes the separation between points as its only argument, an

autocovariance function. So we define k(-) with one argument as
k(ls — 1) = k(s, 1) = Cov (c(s) , c(1)).

In the work to come, it will also be convenient to describe matrices of covariance function
values. In anticipation of this, we lay out the notation we will use to describe how a
covariance function can take two matrix arguments and produce a matrix of values: if we

have two matrices of p-dimensional coordinates,
X € M(n, p), X' € M(m, p),

and k is an autocovariance function for a field over p dimensions, then we write the matrix

of covariances between the rows of X and X’ as
k(X,X') € M(n, m), [k(X, X)]ij = k(Xi., X,

where X;. and X/, are p-dimensional coordinate vectors.
The centrepiece to the theory regarding weakly stationary fields is Bochner’s theorem
(54, p. 24], which states that a complex-valued function on R? is a coherent autocovari-

ance function if and only if it is the Fourier transform of a positive finite measure on

RP,

k(x) = f exp(iw’ x)F(dw),
SRD
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where F(dw) is that positive finite measure. If F' admits a Lebesgue measurable density,
we denote it f(w) and refer to it as the field’s spectral density. When f(w) exists we can

write
k(x) = f exp(ia)Tx)f(w) dw, (2.14)
‘){D

flw) =

P L k(x) exp(-iw’ x) dx. (2.15)

Decomposing the exponential into real and imaginary parts, we can see that in one di-
mension, spectral densities that are real and symmetric about the origin result in real
autocovariance functions, because the imaginary contributions to integral (2.14) cancel
out.

Bochner’s theorem means that we can think of a function like ¢(#) as an infinite
weighted sum of sinusoidal basis functions, the infinitesimal variance for each of their
coeflicients being given by the spectral density. This is apparent upon looking at c(#)’s
inverse Fourier transform as an unknown function. Reducing our scope to one dimension

we write
c(t) = f ¢(w) exp(iwt)dw, (2.16)
R

C(w) = %r L c(t) exp(—iwt)dt. (2.17)

Integral (2.16) is analogous to the sum of basis functions in (2.4) and ¢(w) is analogous

to the vector of unknown basis coefficients. For a mean zero field we have

E(@(w)) = 21_71 L E (c(?)) exp(—iwt)dt = 0,

and,

Cov (é(w) , &w)) = 7 L c(s) exp(—iws)ds L c(t) exp(iw't)dt (2.18)

= L f f k(s — t)exp(—iw(s — 1)) exp(i(w’ — w)t)dsdt (2.19)
2n)?* Jx Jn

= i f f(w)exp(i(w’ — w)t)dt (2.20)
271' R

=0(w — ) f(w). (2.21)

The delta function in (2.21)) implies that each of the frequency components of c(¢) is
uncorrelated to all others while their variances are given by the function f, the field’s

spectral density.
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Consequently, we can use the notion of the stationary field to define smoothness in
terms of the similarity of separated evaluations of c(¢) or in terms of a distribution of
frequencies that characterise it. In fact, Bochner’s theorem also leads to a third way
of interpreting the smoothness of a stationary field, which becomes apparent upon the

realisation that complex exponentials are eigenfunctions of the differential operator:

dexp(iwt)
ot

= iwexp(iwt).

The equations below, described in [44] but given in full here, show that a roughness
penalty comprised of a sum of M squared derivatives weighted by the constants ; can be

computed as a particular norm of a curve’s spectral density:

O/ o/
||c(t>||P—Z§J S () 2 @22)
J

= Z e f (8t1 o f ¢(w) exp(zwt)dw) (3} 21 f ¢(w") exp(—iw'tH)dw’ )dt

M
- Z{ f 1 2 (f &w)(iw)’ exp(iwt)dw) (f W) (=i’ eXP(—ia)'t)dw’)dt
j=0 R (2 ) %

B Z f (27r)2 f f H(w)E (W) (ww) explilw — ))dwdw'dt

Jj=0
g,f (27)? f f H(w)E(w)(ww'Y exp(i(w — w)1dtdwdw’

¢ 1 f f HW)HW ) (ww' ) §(w — w)dwdw'
'2m ®

< 1

Mi T“:Mﬁ

Il
(=)

J

_ 1O,
- L |c(a))|2[§;§,wzf)dw (2.23)
- f e g(@)do, (2.24)
R

where

1 < .
gw) = [ﬂ D, éjwzf) : (2.25)
j=0

The first and last expressions (2.22)) and (2.24) are, like (2.16)), viewed as being analogous

to the finite basis case: specifically, as being analogous to (2.5]) and (2.8)) of the previous

section. Both expressions say that the roughness penalty is computable as a quadratic
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form in the basis coeflicients. Previously, we made the connection between the penalty
matrix P and the inverse prior variance for the basis coefficients. Here, the function g(w)
acts like an infinite-dimensional diagonal matrix and we make the same connection be-
tween g(w) and the reciprocal of the spectral density f(w). The equivalence between
smooths from the penalty and the Bayesian perspectives has been established by Kim-
meldorf and Wahba [26] amongst others, and may be further demonstrated using calculus
of variations. The technique enables us to show that a function ¢ consisting of a sum of
autocovariance kernels centred on data points, which is the smooth that results from the

autocovariance approach, is a stationary point of the penalised loss function:

f Ldr,
R

] dj 2 N
=Yg (d—;) +02 Y 5= 1)) - ).
=0 i=1

In the lines below we present a heuristic argument in support of this claim, omitting

where

technical issues regarding the behaviour of ¢ as its argument tends to the extremes of
the domain. The result comes from inserting the loss function into the Euler-Lagrange
formula for the functional derivative, which is given by

9
Z(— Y0 ( 5*2)) 0, (2.26)

j=0

where ¢V is short-hand for the jth derivative of ¢ with respect to its argument. We now
introduce the ansatz that the smooth is a sum of kernel functions with spectral density,

f(w), inversely proportional to g(w),
N

&) = Y (Bl — 1) = BTK(T, 1),
i=1

With ¢ taking this form, the part of (2.26]) concerning the roughness penalty becomes,

N oo .dj P © dre N o dj d!
> 2 %U)Z@(@) =2 2V g (2.27)
i=1 j=0 n=0 i=1 j=0

N o ) dlné\.

= Z} Z(_l)%W (2.28)

i=1 j=0

N )

222( i ey Bk - (2.29)
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Then, expressing the kernel as the inverse Fourier transform of its spectral density we

have
N . [e9) . d2_1 )
Z;[ﬁ]i Z(; 21657 f% f(w) exp(ie(r — 1;)) dw. (2.30)
i= Jj=
The differential operators act only on the exponential term so that (2.30)) becomes
N 00
Bl Y 2(-1y¢; f (i) f(w) explie(t - 1)) dw (2.31)
i=1 =0 R

N 00
:Z[[ﬂ,. f Zszjwzjf(w)eXp(iw(t—t,-))dw. (2.32)
i=1 R 20

Now, because we use the spectral density f(w) = 1/g(w), a whole sum of terms cancel

out, meaning that (2.31) is equal to

N o o -1
D 1Bl f {Z 2{,-w2f](izgjw2f} expie(t - 1)) dw,
i=1 R =0 2n =0

leaving the exponential, which integrates to leave a sum of Dirac delta functions. This is

the key to satisfying the Euler-Lagrange equation,

AR N
zf Z[ﬂ]iz— exp(iw(t — 1;)) dw = 22[5]1‘5@ —1;).
R0 4 i=1

Reintroducing the part of the Euler Lagrange equation that includes the data, we have
N

N N
23 (Bl - 1) +2072 Y 6t - 1) (Z[B] k(1)) - y(t)) = 0. (2.33)
i=1 i=1

J=1

Integrating (2.33) with respect to ¢ leaves us with
N
Bl + ) (1Bl k(= 1)) = y(t)) = 0,
=1
which means that the coefficients satisfy
B = (T, T) + 1) ' y(T),

and the values of smooth ¢ take the same form as the Bayes linear adjusted expectation
derived from a zero prior expectation for the climate and weather, from climate covari-
ances specified by the function k, and weather terms treated as white noise deviates with

variance o2:

c(t) = k(t, T)(K(T, T) + Io*)"'y(T)

= Cov (c() , Y(T)) Var (y(T) ™' ((T) = E ((T))).
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In section [2.1| we showed that a curve within a finite-dimensional space spanned by a
set of basis functions, which minimises a particular type of physically informed penalty,
could also be arrived at as the linear Bayes adjusted expectation given certain prior belief
specifications. Here we have, informally, made the case for the equivalent result in which
the space of functions is the infinite-dimensional space of smooth functions. The device
that allows us to make the connection between the linear Bayes solution and the penalty-
based solution is the spectral density. In doing so, it shows itself to be a key conceptual
and mathematical instrument for understanding the behaviour of a field.

Tracing the argument backwards (from an autocovariance k, to its spectral density f,
to the spectral density’s reciprocal g in (2.25)), to the norm in (2.22)), we see that we can
derive a penalty from an autocovariance function, with the implication that we can re-
verse engineer a conserved quantity, interpretable as a physical law or theory, that would
produce the sort of behaviour the autocovariance describes. The precise form of the rela-
tionship between the autocovariance and the penalty identifies the particular link between
penalties consisting of sums of squares of derivatives and weakly stationary fields. One
notable aspect of the link is that the tail behaviour of the spectral density is determined by
the highest power of w in the sum (2.25)) with a non-zero coefficient, which corresponds to
the highest derivative that is penalised in (2.22). This provides insight for how the penal-
isation of higher derivatives makes for smoother smooths. In the next section we will see
that the insight can made more explicit by associating the parameter M in (2.25)) with the
parameter m in (2.43)), which we use to parameterise the Matérn autocovariance function.
Among the benefits of the association is the way it suggests how we can understand the

penalisation of non-integer derivatives.

2.2.1 The Matérn autocovariance function

There are a significant number of autocovariances in popular use, but one that is con-
sistently recommended in the relevant literature, by Stein [54] in particular, is known as

the Matérn autocovariance. The common form is derived by taking a non-standardised
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Students #-distribution centred on zero, denoted rs;, as the field’s spectral density:

1 vV,
kya(t;u,v) = > T0) (t/uw)" K, (t/u), (2.34)
kyar(t;u,v) = f Jua(w) explivt)dw, (2.35)
R

' 3 V2v  T(v+1/2)u ) 2172
Fuawsu,v) = X o)V (1+ ™) : (2.36)

_ _Tv+1/2)u ) 2\v-1/2
mswiu,v) = TovE (1 + wlu ) , (2.37)
E(w) =0, (2.38)
Var (w) = u™22v-2)"", (2.39)

where %, is a modified Bessel function of the third kind. Note from (2.36) that the spec-
tral density fy is the r-distribution 75, with 2v degrees of freedom scaled by V2vu so
that the covariance function tends to one as 7 is taken to zero, making it an autocorrela-
tion function. Specifying a small value for v makes for a spectral density with flat tails,
describing a spiky field in which high frequency terms are to be expected. The parameter
u, meanwhile, is a more straightforward scaling parameter, which we will refer to as a
correlation length. Two other important autocovariance functions can be shown to arise
from particular cases of the Matérn function: when v = 1/2 the autocovariance decays
exponentially, resulting in (2.40), and the spectral density takes the form of a Cauchy dis-
tribution; as v tends to infinity, while u*(v + 1/2) is held fixed, the spectral density tends
towards a normal distribution and the autocovariance tends towards what is known as the

squared exponential autocovariance (2.41):

kyar(t;u, 1/2) = kiop(t; u) = exp(=t/u), (2.40)
t2

Tim Kya(t: 1, v) = ks(t: s = 4u(v + 1 /)% = exp( 7 ) (2.41)
SE

For intermediate values such that m = (v — 1/2) € N, the Matérn autocovariance takes
the form of a polynomial multiplied by an exponential. This observation is useful because
these special cases are around an order of magnitude faster to compute than the general
case. Specific expressions for them are derivable from from an identity for the modified

Bessel function found in the Wolfram functions library[59]],

Fons1/2(2) = \/; exp(=2) Z (‘Tn: J;)' J for m e N°, (2.42)
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Plugging (2.42) directly into (2.34)) results in

kMa[(t; u,m+ 1/2) — 2‘/_11—‘(’:1 " 1/2)(t/u)m+1/2 \/7€XP( I/Lt) Z (m + ]) ( t/u)_j,

then, collecting powers of 2¢/u outside of the sum leads to

1
ot + 1/2) = 5 e Ot \[ exp(— z/a)Z om ”) ety

We then move these powers inside the sum,

1
ualtsm +1/2) = 5o pom o \[ exp(— t/u)z (2[/ .

and collect powers of 2 and r,

1
Kot 0, m + 1/2) = mee p(- t/u)Z ( /)",

For non-negative integer m the Gamma function also takes a special form, which allows

for some cancellations,

4m
kngar(ts ,m +1/2) = ——— \F<2 o 4m exp(~t/u )Z (2t/ ",

so that we are left with the following expression for the Matérn function,

kMat(t; u,m+ 1/2) =

(211:); exp(—t/u) Z ﬁ(%/u)m 7 formeN’. (243
: j=0 7°

The Matérn autocovariance functions for 3/2 and 5/2, for example, are thus,

knmar(t;u,3/2) = exp(=t/u)(1 + t/u),

kya(t;u,5/2) = lexp( t/u)3 + 3t/u + (t/u)?).

We can also use (2.25) to uncover the derivative penalty equivalent to the Matérn
autocovariance. We do so by expanding the reciprocal of its spectral density using the
binomial theorem,

1 = (m+ 1 N
g( ) _ o (Lt +w )v+1/2 — ( . )u—Z(m+1—J)w2/’
f(w) ; J
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and matching powers of w to the term g(w) in (2.25)). This reveals the coefficients of the

equivalent penalty expression to be,

1 .
£ o 2m (m i ) 21D (2.44)
j

From (2.44)), we can see that another consequence of m = v — 1/2 € N? is that the series
of implicitly penalised derivatives terminates after finitely many terms.

For our purposes it also proves useful to be able to describe curves with non-zero
dominant frequencies because we anticipate needing to smooth objects such as popula-
tions and climatological variables, whose medium term oscillations are one of their most

interesting features. This can be achieved with the application of the following theorem.

Theorem 2.2.1. If k(¢) is an autocovariance function then k(t) cos(wot), for real wy, is

also an autocovariance function.

Proof. For an autocovariance function k(¢) with spectral density f(w),

k() = f f(w)exp(iwt)dw,
R

we can construct another one, k,,(?), by taking a spectral density composed of a shifted

version of f(w) and its reflection about zero:
1 1 .
ke, () = f (Ef(w —wy) + Ef(a) + wo)) exp(iwt)dw,
R
1
:5 exp(iwot) f f(w — wo) exp(i(w — wy))dw
R
1
+ > exp(—iwot) f f(w + wp) exp(i(w + wo)dw,
R

:%(exp(iwot) + exp(—iwot))k(1),

= cos(wpt)k(1).
|

In particular, the autocovariance function corresponding to a pair of t-distributions
centred on wy and —wy is just the standard Matérn autocovariance multiplied by cos(wyt).
More generally, we can make real autocovariance functions by taking the real part of any
probability distribution’s characteristic function. The act of taking the real part is equiva-

lent to the reflection of the spectral density. The spectral representation also allows us to
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use metrics for measuring distances between distributions to measure distances between
weakly stationary processes.

A decomposition of a field’s spectral density represents another natural way to think
about climate and weather. We can describe the spectral density as a mixture of distribu-
tions and associate one mixture component, or set of components, with climate and the

remainder as weather.

Example 2.2.2 (Smoothing noisy Van der Pol observations with an autocovariance func-
tion). The point of this example is to demonstrate smoothing with a Matérn autocovari-
ance function, and also to introduce the role a simulator can play in informing a smooth.
In example we approached the task of inferring a climate signal with the belief that
its first derivative was small. In this example we imagine that we are given more informa-
tion; we are told that the climate behaves like a certain simple dynamical system. We will
look at the Van der Pol oscillator, but intend for our findings to be more broadly applicable
to systems with stable solutions that we can simulate easily.

We imagine that we receive observations of y(¢), over an interval of 20 time units, that

we consider decomposable as

y(t) = c(t) ® w(d),

and we are told that the function c(¢) approximately satisfies the Van der Pol equation with

known parameter x = 2 so that
&) — x(1 = @)e) + @) = 0.

To calculate the smooth, which is our expectation for c(¢) given a set of observations
of y(7), we suggest three different autocovariance specifications. The first is a standard
Matérn function with correlation length u = 2 and spikiness parameter v = 2. The choice
of parameters here reflects the notion that the climate is relatively smooth with a correla-
tion length that is smaller than, but of the same order as, the interval of observations.
Next, we try to exploit insight for the system derived from theoretical consideration
of the system equation. Following a re-parameterisation to spherical coordinates for dis-
placement and velocity; for x > 0, the Van der Pol oscillator can be shown through
theoretical means, namely the Hartman-Grobman theorem and Liénard’s theorem, to ex-

hibit a repelling critical point at its origin and a limit cycle around it with a frequency of
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approximately one. In an attempt to take these findings into account, we specify the sec-
ond autocovariance as a standard Matérn function, with a longer correlation length u = 6,
multiplied by cos(#). We will refer to this product as the resonant Matérn function.
Beyond the existence of the critical point and the cycle, analysis of the Van der Pol
equation yields little further information for the behaviour of the system’s solutions. Our
response is to simulate a long trajectory of the Van der Pol system, using the R [42]
package of numerical solvers deSolve [52]. From the simulation of N, = 1000 equally
spaced trajectory values over the interval [0, 40rr] we calculate the following estimates for

the autocovariances,
1 Ni—j N,
k(ty—t) = — t;) — ¢lle(tiy ;) — €], h C = ).
(1o~ 1) Nt;[d ) = &lle(ti ) - & where ¢ ;c( )

Note how dividing by N, rather than N, — ¢; stabilises and biases our estimates of correla-
tions at great separations towards zero. This choice is recommended by Jenkins [23]] on
the grounds of reducing mean squared error. We then employ a simple linear interpolator
to turn the estimates into a function, which we refer to as the empirical autocovariance
function.

To test the autocovariances we use the numerical solver to generate a set of points
from an approximate solution of the Van der Pol equation. We then select a subset of
those points and add iid normal deviates with standard deviation 0.6 to each one. Figure
@ shows these observations, the smooths and the pointwise standard deviations around
them calculated according to (2.1)) and (2.3).

We see that the first autocovariance function is reasonably successful within the data
range but rapidly becomes uninformative beyond it. The second one shows a greater
ability to extrapolate, but only for a short time. The theory-informed estimate of the
resonant frequency is not precise enough for the smooth to stay in phase with the system
trajectory for very long. Also, higher frequencies in the system output produce a shape,
a sawtooth-type oscillation rather than a clean sinusoid, that the resonant Matérn cannot
anticipate. The third subfigure in[2.2| provides the most noticeable conclusion to be taken
from the all the plots. The autocovariance function informed by the simulation produces
a smooth and variance that clearly capture the true system values, both within and beyond

the range of observations, better than the other two.
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(a) Standard Matérn autocovariance.

(b) Resonant Matérn autocovariance.

(c) Empirical autocovariance.

Figure 2.2: Noisy observations from the Van der Pol system overlaid with the smooths
arising from a range of autocovariance functions (solid lines) and the clean Van der Pol
trajectory (dashed lines). The shaded regions mark out intervals with width two times the

pointwise standard deviation for ¢, centred on its expectation.
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One may ask why we do not choose to use the simulator in an MCMC scheme; repeat-
edly reinitialising the simulator and treating the simulations, weighted by their proximity
to the observations, as an approximate population of climate values. Our answer is that
such a procedure is slow even for a very simple system. Furthermore, given that one of
our principal assumptions is that the system that provides us with data is only approxi-
mately described by the system that can be simulated, the time and effort required by the
MCMC scheme is unlikely to be rewarded with usable information.

This example suggests to us that the smoothness parameters of an autocovariance
function, as well as relating to small or penalised derivatives as described in section
may be seen as describing the attractor of a dynamical system. This is another way in
which they may be endowed with physical or mechanistic relevance as well as having
relevance as statements of belief for a curve’s similarity over time. The example also
demonstrates that, even for structurally simple systems, theoretical insight may not be
able to lead us very far in terms of quantitatively informing smoothing methods.

The autocovariance function we derive from the long simulated Van der Pol trajectory
leads to a highly satisfactory smooth and adjusted variance. Interestingly, the standard
time series estimates we use to build the function include a biasing factor that shrinks the
covariance estimates for large lags to zero. We note that this bias may be construed as a
prior on the autocovariance that steers us away from concluding that high correlations at
large lags are appropriate. The prior’s sentiment is consistent with uncertainties arising
from doubts for the simulator/system correspondence, which we will consider properly in
chapter 3]

We leave the example with the view that if we were presented with a data set from
another complex simulator or physical system whose governing equations were hidden or
intractable, we ought to ask whether they almost behave like a simpler system. We would
then investigate the simpler system numerically, as we have done with the Van der Pol
system, and use our findings to infer an appropriate covariance function with which to

smooth the data.
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2.3 Smoothing over many dimensions

In the preceding sections we focused on smoothing functions with one variable, namely
time. Now we broaden our attention to multiple dimensions with the intention of smooth-
ing a simulator’s output over both its output space and the space of its input parameters x.

As before, we choose to think of the output as a sum of independent parts,
y(t, x) = c(t, x) @ w(t, x),

and aim to make inferences for the function c(¢, x). The equation for calculating the
linearly adjusted expectation for c(t, x), (2.1, does not change in the higher-dimensional
setting, but the range of possible covariance functions becomes broader. We also associate
the higher-dimensional setting with a significant increase in the size of the data set of
observations. This is the case when we start to look at climate models that either produce
full spatio-temporal grids of output or that are evaluated on complete grids over their input
space.

For now, we will concentrate on the case in which we define covariances across mul-
tiple dimensions as the product of covariances in each one so that, in two dimensions for

example,

Cov (c(t',x) , c(t”,x")) = ket(t', 1" ken(X', X7), (2.45)

Cov(w(t', x") , w(t”,x")) = ky(t', 1" Yy (X', X7). (2.46)

Note that there is an obvious over-parameterisation if we allow both factors of the products
in (2.45) and (2.46)) to vary by a scalar multiplier. How best to deal with this will depend
on the form of the factors and for now will not be an issue since we treat the covariance
functions as known.

A ramification of the factorisable variance structure is that it can only ascribe different
expected modes of variation in the directions of the inputs. It cannot, for example, de-
scribe a prior variance for a surface that is expected to exhibit ridges that are not aligned
to the coordinate axes.

Computationally, application of the factorisable structure to data that form a full grid-
ded design, leads to major savings when computing a smooth, as it enables us to perform

operations mostly on the factors of the covariance matrices involved rather than their



2.3. Smoothing over many dimensions 32

products. To show why this is the case we now walk through a two-dimensional example.
Our progress relies heavily on the vec (-) notation that unfolds a matrix of numbers, such

as a full grid of simulated data Y whose entry in the ith row and jth column is

(Y], = y(), x),

into a column vector,

T
vee () = (Y1, YT, ... IV,,) (2.47)

N

by concatenating its columns, where the object [Y]. ; represents the jth column of Y. This
re-shaping of the matrix can also be understood as the creation of a single index, labelled

h in (2.49)), that runs through all the rows and columns of Y:

[vec (Y)]is(j-1v, = [Y1is i=1,...,N.j=1,....N,, (2.48)

[vec (Y1 = [Ylon-1)%N,+1, (h=1)\N.+1> h=1,...,N/N,, (2.49)

where % and \ are the standard mod and integer division operators, which are comple-

mentary in the sense that,
x=x\y) Xy + x%y fory # 0.

Example 2.3.1. We would, for example, index the entries of a matrix Y with the sub-
scripts i; and i, while indexing the entries of the vector vec (Y) with the subscript i. In

the case of Y being a 2 X 2 matrix we have

(Y],
Y Y Y
Y- (YTi,i [Ylo ’ vee (Y) = (Y] -
[Yl1 (Yoo (Y]
(Yl

where

I 1 1
2 2 1
31 2
4 2 2
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We denote the number of simulations performed as N,, and the number of observations
in each simulated time series as ,, so that Y and vec (Y) are N, XN, and N;N, X 1 matrices
respectively. We can then express the prior variance for the outputs as a sum of Kronecker

products of matrices,
Var (vec(Y)) =V =A+B, (2.50)
where
A=(A®A), B = (B;®B,),
so that

[A,]i[A];; = Cov (C(lj, x;) , c(ty, Xi')) ,
[B,]i»[B:];; = Cov (W(tj’ xi), w(ty, Xi')) .

The linear adjustment for values of the climate function requires the inversion of the
matrix Var (vec (Y)) which, if performed directly, will become extremely demanding as its
size increases. However, the efficiency of the inversion calculation can be vastly improved
when we utilise certain algebraic tricks. In the next few paragraphs we walk through our
recommended inversion procedure.

The first property of the problem that we can exploit is the smoothness of ¢, which may
render A almost or exactly rank deficient. For example, if the climate term is specified as
a sum of multivariate basis functions derived from products of M, basis functions of time

and M, basis functions of the simulator’s input parameter, we may write

M, M, M, M,
c(tj, x;) = Z Z[ﬂ]k,l[(bz]j,k[‘px]i,l = Z Z[ﬁ]k,z[¢z(fj)]k[¢x(xi)]1-
=1 =1 =1 =1

And if we specify that the covariance matrix for the basis coefficients is factorisable so

that

Cov ([ﬂ]i,j , [B]i’,j’) = [Vilii[Valjys

where V, and V, are positive definite M, X M, and M, x M, matrices respectively, we can

write

Al = ¢zvl¢zT7 Ax = ¢xvx¢§
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From here we compute the QR decompositions of ¢, and ¢, :

é, = QRy, ¢, =QR,,.

Most implementations of the QR decomposition also allow us to easily compute Q; and
., the orthogonal completions of Q, and Q,. These two sets of matrices define a partition

of the space of linear combinations of data quantities into subspaces inside and outside

the span of the columns of A, as well as orthonormal coordinate systems for each one.

If we also compute the Cholesky decompositions of V, and V,, we can write
A= QR,RyRvR,Q/, Ac = Q.R, Ry Rv.R; Q;,
from which we take the products of the triangular matrices and call them
R, =RyR}, R, =Ry R},
so that,
A, =QR/RQ;. A= QRR.Q.

This reparameterisation of the matrices is equivalent to redefining the basis functions so
that the matrices formed by their values at the grid points consist of orthonormal columns.
Equivalent expressions can be derived when A, and A, are derived directly using an au-
tocovariance function. In this case we can either calculate or approximate their eigen-
decompositions. Eigenvectors corresponding to zero, or machine-zero, eigenvalues are
identified with the columns of Q; and Q¢, while the remaining eigenvectors are identified
with Q, and Q,.
Defining

Q=Q2Q., R=R/®R,,

for convenience, we now partition B and V into components that describe variance within

and outside the column space of A,
V =QR’RQ’ +B (2.51)

= QR'RQ" + QQ"BQQ’ + Q°QBQQ” (2.52)
= QR+ R TQ'BQR HRQ” + Q“Q"BQ°Q. (2.53)
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To be clear, the left-hand term in line describes the variance of vec (Y) in the
column space of A and the right-hand term describes the variance orthogonal to it.

As long as the two terms of the sum (2.53)) do not share zero eigenvalue eigenvectors,
which is guaranteed by V being positive definite, we can compute the inverse of V as the
sum of the generalised inverses of the summands. In practice, B, the weather variance
matrix, is more often than not full rank, meaning that V is full rank too. The generalised
inverse of the second term in (2.53)) is easy to compute since the generalised inverse of a

Kronecker product is the Kronecker product of generalised inverses:
(QQBQQ"  QQB.QQ) = (QQBQQ) @ (Q:QB.QQ)")
= (Q/Q'B'Q/Q" ®Q:Q\B,'Q:Q:")

The first term of (2.53)) is not a straightforward Kronecker product because its middle
factor is a sum of Kronecker products. We can handle the problem, however, by invoking

theorem [B.0.10] which tells us that the eigenvectors of
I+R7Q'BQR™ (2.54)
are the same as those of
R7Q'BQR™. (2.55)

We now call upon theorem which tells us that the eigenvectors and eigenvalues of
a Kronecker product are given by the Kronecker products of the eigenvectors and eigen-

values of its factors. The theorem allows us to write (2.55)) as

R;"Q/B.QR'®R.;"Q'B,Q,R;") = U4 Ul ® U, A, U,
= (U, U, ® 1)U @ UT).

Together, theorems [B.0.10] and [B.0.12] show us how the generalised inverse of (2.54) can
be derived via the eigen-structure of the factors of (2.535):

I+R7Q'BQR™ = (I, ®I,) + (U, ® U)(1, ® 1,)(U” @ UT), (2.56)
= (U, @U)Iy, @Iy, + 4, 1)U ® UD), (2.57)
= (U, @ U)AU! @ UL). (2.58)
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Expression (2.58)) is easy to invert because inversion of the outer two factors only requires
that we invert their factors, and inversion of the central term only requires that we invert
the N,N, scalars on its diagonal.

Putting together our results, we produce an expression for the inverse of V:

V—l :QR—IUA—IUTR—TQT + QCQCTB_IQCQCT, (259)
=(QR;'U,® Q.R;'UH)A ' (U'R; Q! ® U'R;"Q") (2.60)
+(Q/Q"B;'QIQ" ® QQ B 'QQYN). (2.61)

We note that Rougier[48]] has also produced work capitalising on the special features
of the variance expressions occurring here in order to construct emulators efficiently. In
that paper, matrix multiplication is facilitated by the Kronecker factorisation properties
of certain matrices, and the low rank of A is used in the application of the Sherbury-
Morrison-Woodbury inversion formula Rougier does not, however, use our eigen
structure argument, namely (2.38)), to reduce the cost of the inversion even further. The
result is that, given that the weather matrices are structured so that they are easy to invert,
the most demanding operation of Rougier’s construction scales with the cube of the rank
of A, or the total number of multivariate basis functions. With our construction it scales
with the cube of the highest rank of A’s factors, or the size of the largest of the univariate
bases that are tensored to make the full multivariate basis. In one dimension these are the
same, in two dimensions the difference is already substantial, and in higher dimensions
the difference is likely to be great enough for there to be no real competition between the
two methods.

We also note that although many of the expressions in this section make use of the vec-
tor vec (Y), in practice we keep its elements in matrix form, and never actually construct
the Kronecker products. When we are required to pre-multiply the vector by a Kronecker

product we pre- and post-multiply the matrix by the factors of the multiplier,
(B] ® B])vec (Y) = vec (BIYB,), (2.62)

and when the expressions require us to pre-multiply the vector by a diagonal matrix we

entrywise multiply by another matrix, which is constructed by folding up the diagonal
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matrix’s diagonal elements in an action that reverses the vec (-) operation:

Avec(Y)=vec(DoY), (2.63)

[A]i,i = [D](ifl)%Nerl,(ifl)\NXJrl- (264)

If the set of points at which we want to calculate the adjusted expectation of c(x,?)
also lies on an axis-aligned grid, then the covariance between the values of c(x, f) here
and the observations vec (Y) is also factorisable. This means that we can carry on using
identities [2.62]and [2.63|to compute the adjustment for the grid of smooth values.

Exploitation of the structure of V can also be used to efficiently calculate its determi-
nant, which will be helpful in evaluating probability densities. Specifically, we can write

the determinant as any one of:

VI=IAl IR PR xIQ/B,Q,/*Q B,Q, N,
= |Al XIAzI%IAxly’ x|QtTBtQt|Nx—Mx|Q§BXQX|N,—Mr,

2M, 2M M, M, T Ne-M T Ni—-M,
= |A] X[Rg, 7R, [TV V[T x|Q; B,Q,| Q. B.Q, "™,

where

M. M,

A= ] [t +1).

i=1 j=1

All these tricks for factorisable matrices can be generalised up into higher dimensions
and allow us to perform calculations that would quickly fill the RAM of a desktop com-
puter if we simply built the full variance matrices. Using the index d to identify particular
dimensions, we redefine Y to be a D-dimensional array with extents N,. So, to clarify,
Y is constructed by tensoring a grid of N; points in the first dimension with a grid of
N, points in the second dimension, producing an array that is tensored with a grid of N;
points in the third dimension and so on until the Dth dimension. From this definition, we

define the generalisation of the vec (-) operator as,

[vec ()i = [Yli\, ig.i (2.65)

~~~~~ lds--sID?
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where the correspondence between the indices is given by

ii =({—=1%N,; +1, (2.66)

ig == D\Ny...Ng-1))%Ny + 1, (2.67)
ip=0—D\N\Ny...Np_; + 1, (2.68)

i=ii+...+ 0 —1DN ...Nyoy +...+(p—1)N;...Np_;. (2.69)

As in the two-dimensional context, the vec (-) operator still produces a one-dimensional
array or vector from its argument. Indices (2.66)-(2.69) are also used to describe the Kro-

necker product of D matrices:

D D
ApR...0A,0...0A,] = [(X) Ad] = H[Ad](id,jd), (2.70)
d=1

d=1 ij
where the A, are matrices of size N; X N; and the order of the product is important. The
indices we use here are consistent with the indexing convention in R, so that the leftmost
index cycles fastest. Having defined the higher-dimensional Kronecker product, we can

generalise (2.61)) in order to compute the variance for a D-dimensional grid of data,

o[eon)[oom)

D D D
= [@ QdRZsz) A ((X) U/R.Q; ) + [@ Q,Q;B.Q,Q; ] ,
d=1 d=1 d=1

and its inverse,

D D D
V= (@ QdR;Ud] A~ (@ Ungqz] + [@ QdQﬁBngdQﬁ)-
d=1 d=1 d=1

Just as in the two-dimensional setting, although we use the expanded Kronecker notation
to derive the result for the inverse, construction of the resulting matrices is avoided by
performing calculations on their components. Specifically, we follow rules analogous
to (2.62) and relating to the multiplication of higher-dimensional arrays. In fact

(2.62) and (2.63)) are arguably easier to understand when we see them as special cases of

the generalised identities.
The generalisation of (2.62) requires that we extend the notion of matrix multiplica-

tion beyond just left and right matrix multiplication; we imagine that we can multiply the
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array Y from as many directions as it has dimensions. In fact, we define an operator that
does just that: M (-) takes a D-dimensional array Y and a set of D matrices B, and returns

another D-dimensional array with elements

Pre-multiplication of vec (Y) by a Kronecker product is equivalent to sequentially tensor

multiplying Y by the product’s factors along each of its extents,

D
(@ Bd) vec (Y) = vec (M (B.....Bp.Y)).
d=1

The generalisation of (2.63) is more straightforward as it is more obvious how the
relevant operations scale up with the dimension. Just as in the two-dimensional case, all
we need to do is fold up the diagonal of the multiplying matrix into a D-dimensional array

by reversing the vec (-) operator, and entrywise multiply it with Y

Avec(Y)=vec(DoY),

So in practice, we store factorisable matrices in terms of their factors, and diagonal
matrices as arrays of the same size as Y. Multiplication of arrays takes place over one
index at a time or by performing entrywise multiplication. At this point, it is not the
inversion of large variance matrices that limits the scale of our computation, nor is it their
construction and storage, rather it is the manipulation of arrays like Y of size [/, N.

For sophisticated simulators of physical systems with grid-based solvers, we antici-
pate being faced with complete four-dimensional grids of outputs. Large complex simu-
lators tend to have a great number of variable parameters and are slow to run, meaning
that although we may have access to large ensembles of simulations it is likely to be too
expensive to produce full grids of simulator data across the input space. The full-gridded
structure may become relevant again if we consider a small number of forcing scenarios

for the system, under which all simulations are repeated.

Example 2.3.2 (Smoothing over time and input dimensions). Let us consider a simulator

that takes in one input x € [—1, 1] and returns a time series of data points at equal intervals
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also over [—1, 1]. We specify the variance structure of the output in the way described in

(2.50), and choose Matérn autocovariance functions of the form
k(25 01, v, ) = T kpgar(t's 1, v) cos(wt’),

equipped with the parameters given in table 2.1} to define particular covariance values.

Figure shows the N, = 13 interpolated series of N, = 31 points drawn from a

o u v ow
kex 1 05 3 0
ket 1 02 3 O
Kyx 1 002 1 O

ky, 05 0.02 1 30

Table 2.1: Variance parameters for components of example [2.3.2]'s simulated data.

multivariate normal distribution with a variance matrix determined by the autocovariance
functions. Overlaid are the individually smoothed series, that is to say each smooth is
an adjusted expectation given only the data from the corresponding time series. Figure
shows the data again and the joint smooth, which is the expectation for ¢ given
all the series simultaneously. In both plots we can see how the expectation for c(x, ) is
being informed by the observations y(x, t). The surface being traced out by the individual

smooths is not too dissimilar to the surface of the joint smooth. The difference between

the individual and joint smooths becomes clearer in figures [2.4(a)| and [2.4(b); these are

projections of the three-dimensional plots, which also include shaded regions around the
expectations with height equal to four times the pointwise standard deviation for c(x, t).
We can see that the precision of the smooths is considerably degraded when we ignore
their correlations across the input space. These more subtle differences have the potential
to be magnified when we progress to calibration, as we will see in the continuation of this

example in(3.1.2
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(a) Individual smooths.

(b) Joint smooths.

Figure 2.3: Subfigure shows a plot of the individually smoothed simulated time
series from example 2.3.2] Subfigure 2.3(b)| shows a plot of the joint smooths at the
input coordinates corresponding to observed simulations as well as others at which the
join smooths are not defined. The spiky lines are interpolations of the simulated series

themselves y(x;, ).
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Figure 2.4: Projections of the individual and joint smooths of the simulated data, corre-

sponding to figures [2.3(a) and [2.3(b), with shaded regions indicating plus and minus two

standard deviations for each estimate of c(x;, 7).
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2.4 Inference for smoothness parameters

The identification of appropriate smoothness parameters, such as the weighting parameter
A in the roughness penalty context or the correlation length parameter « in the autocovari-
ance context, has a reputation for being difficult. A priori specification of these parameters
is hard because the implications for the type of smooth that results from them are often
unclear. Furthermore, learning about them from data has the potential to become highly
demanding in terms of computation since evaluation of the likelihoods involved tends to
require the inversion of large matrices, and is something we will need to repeat many
times. Even when we can manage the computation, we may also find that the likelihoods
we employ are particularly sensitive, perhaps inappropriately so, to certain data points,
normally those that are very close together. Such difficulties are enough for Ramsay and
Silverman [43]] to suggest picking smoothness parameters by eye, and developing interac-
tive elicitation tools. Nevertheless, we would like to pursue the inference of smoothness
parameters from data primarily because we are interested in identifying interesting sim-
ulator input parameters on the basis of whether the smoothness of the resulting output is
similar to that of the relevant physical system.

With regard to computational demand, the matrix inversion bottlenecks may be ame-
liorated if the matrices involved are characterised by certain structures that can be ex-
ploited by specialised algorithms. In particular, if the covariance matrix is defined using a
covariance function with compact support, as advocated by Kaufman in [24], and we can
arrange the non-zero entries around the main diagonal, we can use the Thomas algorithm
for block tridiagonal matrices, which we describe in appendix [B.1] Another special case
occurs when the time points corresponding to the rows of the variance matrix are equally
spaced and the covariance function is stationary; in this case the matrix is a symmetric
Toeplitz matrix, which may be solved for using the Levinson-Durbin algorithm. This
algorithm is also described in appendix

Additionally we ought to ask ourselves whether evaluating the likelihood very many
times with only slightly different covariance parameters is really worthwhile. Evaluating
the likelihood insufficiently many times will contribute numerical approximation error to
our optimisation or integration calculations, but is this error really significant? We ought

to acknowledge that synthetic examples are likely to be misleading in helping us answer
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this question, because when we have created an example in which the covariance values
really do exist, and could be used to make predictions for further data, then it does make
sense to invest in precise estimates. When the data come from a physical system, whose
values only approximately fit the moments described by a stationary field, then moderate
numerical error is likely to be dwarfed by the error arising from model misspecification.
If we specify a prior and likelihood function in order to produce a posterior density
over the covariance parameters, an understandable reaction is to attempt to maximise it.
We can use off-the-shelf optimisation routines to locate modes and approximate the Hes-
sian there as a measure of the precision of the estimate the mode represents. Informally,
in practice, we have found this type of optimisation to be problematic. Without adequate
customisation, the routines are prone to instability and the erroneous identification of op-
tima, diagnosable from the indefiniteness of the Hessian there. Even with the necessary
fine-tuning, the usefulness of the mode as an indicator of the location of the most interest-
ing parameters is questionable since it does not take into account the location of the bulk
of the ‘good’ parameters, just the single ‘best’ one. Mackay [29] provides an interesting
discussion of this point, illustrating it with a calculation based on a multivariate normal
distribution, and points out that a mode typically becomes even less representative of a
distribution as its dimension increases. We agree that, for uni-modal distributions, better
descriptions of the posterior are its mean and variance as they do take into account the
location of the posterior’s mass rather than its height. We then need to estimate these
statistics via numerical integration, which is normally an unattractive prospect since it
usually involves a very high number of density evaluations. To render the integrations
tractable we turn to adaptive Gaussian quadrature, a technique expounded by Naylor and
Smith in [33] to cut down the number of evaluations by utilising knowledge of the in-
tegrand’s functional form. The Gaussian quadrature method is thus particularly efficient
when a prior, whose form is well known, is the dominant force in the posterior. The sim-
ple extension of the work in [33] to higher dimensions via the tensoring of quadrature
grids again leads to impractically high number evaluations. This problem is reduced with
the introduction of sparse grid methodology which involves building high-dimensional
grids as sums of tensor products only of subsets of grid points in each dimension. We

can utilise sparse grids for our integration here with the help of Jelmer Ympa’s R package
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SparseGrid [62]].

Vihola’s [57] Robust Adaptive MCMC algorithm has also proven to be an extremely
useful tool for estimating integrals over posterior densities. This Metropolis-Hastings
algorithm tunes its proposal step size by targeting an acceptance rate, bypassing the esti-
mation of the posterior’s variance or roughness, which are quantities that might otherwise
be used to inform the proposal. This algorithm has been prepared for use in R by Andreas

Scheidegger [S0].

Example 2.4.1 (Looking at the identifiability of Matérn autocovariance parameters). In
this example we briefly examine the type of likelihood surface across the space of covari-
ance parameters that we can expect to see upon the observation of a time series.

In figure [2.5] we have plotted two sets of N, = 100 synthetic training data we will
use to estimate the covariance parameters. The two interpolating curves here are almost
indistinguishable: the first shows the interpolation of points drawn from a multivariate
normal distribution whose covariance matrix was specified using the Matérn function
with 02 = 1, u = 0.5, v = 2.5; the second shows the interpolation of those points with the

addition of a very small error term consisting of iid N (0, 0.032) deviates.

15

1.0

0.5

0.0

-1.0

Figure 2.5: Plots of the synthetic training data. The dashed green line shows the interpo-
lation of the points arising from the Matérn covariance, while the solid black line shows

the superposition of these points with a small white noise contribution.

The point we wish to highlight here is that with the addition of even a very small white
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noise error term the inferability of the covariance parameters u# and v is significantly de-
graded. In particular, the likelihood is often only very weakly informative for an upper
bound on the spikiness or differentiability parameter v. Figures show con-
tour plots of the likelihood of the training data, conditional on o2 = 1, for the cases that
do and do not include the white noise terms. The plots were produced using complete
two-dimensional grids on which multivariate normal likelihoods were calculated with the
help of the Levinson-Durbin algorithm.

An implication of the reduced precision, signified by the looser contours in figures

12.6(c)| and [2.6(d)} is that the Matérn autocovariance function’s ability to discern between

fields with different degrees of differentiability is mostly wasted in a model that includes
a white noise error term. Thus we ought to lose little by using the powered exponential
covariance function instead, or by considering only one of the special cases of the Matérn
autocovariance, described in (2.43]), whose computation is considerably cheaper. We also
see that the log scale is the natural setting for the numerical exploration of the likelihood.

This is particularly noticeable in the way the bent contours of figure are straightened
in figure [2.6(d)

2.4.1 Integrating over smooths

In this section we look at more complicated ways to arrive at a smooth for a time series.
In doing so we move closer to the model structure of chapter [3] while developing our
understanding for the potential ambiguity between climate and weather, and for some of
the numerical techniques described in section 2.4

We have seen, in example how observations from a time series are informative
for covariance parameters without identifying them exactly. We will shortly look at how
the residual uncertainty for the covariance parameters translates into uncertainty for the
climate term, but before doing so we consider the significance of covariance parameter
uncertainty in terms of the ideas it implies.

When we loosen our precise specification of the covariance parameters, the ques-
tion of the dependence between those describing climate and those describing weather
is raised. If we parameterise the covariance functions for ¢(¢) and w(r) identically, and

specify identical priors for them as well, the climate and weather trends may exchange
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Figure 2.6: Here we show contour plots of the likelihood for the clean and noisy time
series of example [2.4.1) over a range of values for the Matérn function’s correlation length
variable, u, and its spikiness parameter, v. In the right-hand plots, the likelihood domain
is transformed to the log scale. The red crosses mark the location of the true covariance
parameters used to generate the training data, while the red circles mark the locations
of the posterior means that the likelihoods would produce in conjunction with improper

uniform priors over their respective domains.
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places, leading to symmetry in the posterior, which corresponds to both confounding in
our estimates and to redundancy in calculations involving the posterior. These problems
are alleviated when we break the symmetry between the components by allocating them
distinct priors, which constitute a mathematical formulation for our understanding of the
distinction between climate and weather. It may be argued that the natural destination
of the argument for asymmetry is to model the climate and weather terms relative to one
another, that is, to model the covariance parameters jointly with scaling factors so that, if

we specify covariances for climate and weather as
Cov (c(t) , (1)) = ookma(lt = 7'l ue, ve), Cov(w(e) , w(t)) = oy keIt = 7'l v,0),

for example, then we should induce priors for the weather parameters via priors on the

climate covariance parameters and for the scaling parameters vy, y,, y3 such that

2 _ 2 _ —
g, =70, Uy = Y2lc, Vyw = Y3Vc.

Allocating beta prior distributions to the scaling factors would therefore be one choice for
formulating the notion that weather exhibits smaller, rougher variation than climate.

By defining climate and weather relative to each other, or more precisely by includ-
ing parameters that scale them both simultaneously, we may equate climates on differ-
ent scales, allowing us, for example, to entertain the idea that time might be effectively
running fast or slow in the simulator. This is an intriguing possibility and would be ap-
propriate if the high- and low-frequency components of the output quantity represented
subsystems for which the input and output quantities have the same meaning.

The relative prior specification is also likely to be an appropriate modelling choice if
we were to produce robust software packages of smoothing functions. For we ought to
anticipate that users of the software would have data that exhibits multiscale behaviour,
because they are seeking smoothing tools, but we would not be able to anticipate the
scales of their input and output variables. Thus the relative size and roughness of the
climate and weather terms are predictable whereas their absolute size and roughness are
not, this feature may be captured naturally in the relative model.

The relative definitions of climate and weather are less appropriate when, for instance,
the rate at which time passes has absolute relevance that extends beyond the observed

system, which is the case when we have timed forcings like solar events and greenhouse
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gas emissions scenarios. The relative model would also be inappropriate if the weather
type variation is actually attributable to numerical error and has no appreciable relevance
to physical processes involved with climate, like the passage of time.

The climatological simulations we will eventually smooth and emulate in chapter [5]
do involve precisely timed emissions scenarios and much of the high-frequency variation
is suspected to be produced by non-physical numerical error. So with the benefit of this
foresight, in the following example we will allocate independent priors to the covariance
parameters for climate and weather.

When the covariance parameters are considered unknown, we define the marginal
smooth of the data as the expectation for the climate signal over the covariance parameters

for ¢(¥) and w(¢), which we collect in the set denoted 6,

JE(c@) | y@), 0) r(y0)|6)m(6)d6

2.71
[ 7((2) | O)m(6)do @70

E(c(@) | y(®) =

Example 2.4.2 (Integrating out covariance parameters). In this example we observe how
covariance parameter uncertainty is manifested in our estimates for a climate trend given
observations of a climate-plus-weather system.

Firstly, we write down the model for the output quantity y,
y(1) = () @ w(d),
and specify Matérn autocovariance functions for climate and weather,

kc(l) = O-szat(t; Ue, Vc)a

kw(t) = O_ikMat(t; Uy, Vw)-

We also specify ‘true’ values for the covariance parameters,

6, =0=1, 6, =02 =0.5, (2.72)
6; = u. = 0.2, 6, = u,, = 0.02, (2.73)
s =v, =2, s = v, = 2. (2.74)

With these values we define variances for zero mean multivariate normal distributions,

which we use to simulate climate and weather values at 200 equally spaced points in the
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interval [—1, 1]. The sums of the first 100 of these are used as the observed data on which
the covariance parameters are conditioned.

We then pretend to doubt the true parameters, and model 0'5, O'a,, u, and u,, as inde-
pendent random variables. These quantities are measurable in the units of the output or
the input, making them easier to comprehend than the parameters v. and v,,, which we
hold fixed. We use gamma distributions for all our priors, parameterising them in terms
of their mean, which we set at the true values (2.72)-(2.74), and their standard deviation
as a fraction of the mean. This latter statistic is equal to the shape parameter of a gamma
distribution raised to the power minus two.

To explore the posterior for the covariance parameters given the observations, we
make use of Scheidegger’s RAM code. In fact, to improve the mixing of the algorithm
we parameterise it in terms of variables #’, whose elements are a priori unit-normally
distributed. We do this by using the transformation resulting from the application of an
untransformed variables’ prior cumulative distribution functions (CDF) and the inverse

CDF of the unit normal, denoted F, and F 1_vl respectively,
[0']; = F;:zl (Frqan (6)) -

The algorithm’s random walk now jumps around in an unconstrained space in which all
variables are on an equal scale with respect to changes in the prior density. Trace plots
of the walk provide no evidence that the algorithm is malfunctioning but are otherwise
unenlightening and so are not presented here.

From each member of the posterior sample of covariance parameters we calculate the
linear estimate for ¢(¢) using the standard formula (2.1)); these are values of the expectation
appearing in integral (2.71)). In figure 2.7 we show how these samples of smooths vary
as the covariance parameter priors become more diffuse while maintaining their mean
at the true parameter values. The diffuseness property is quantified by the fraction of
the prior standard deviation and the prior mean, and is equal for each of the covariance
parameters. We also add to the plots curves corresponding to two standard deviations,
again conditional on the sampled values of the covariance parameters, for c(¢) above and
below its expectation:

1/2
2

E (c(r) | y(0),6) + hVar (c() | y(2), 67) i=1,...,Ny,h=-2,0,2, (2.75)
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where i indexes the N;; samples from the posterior produced by the RAM algorithm.
From figure[2.7] we can see that, in this example, the expectation for the climate shows
itself to be highly robust to uncertainty in the covariance parameters. This is mainly be-
cause the Matérn autocovariances all describe spaces of smooths that simply regress to the
mean in a fairly uniform way. Of all the values of the smooths, those at the turning points
are least robust. At these points the curve can follow a wiggle or smooth it over depending
on the time scale parameter u.. The standard deviation beyond the range of observations
also exhibits considerable sensitivity, to the extent that the intervals between the curves
marking two standard deviations for the climate mean vary by about fifty percent of the

values calculated using the true parameters.

2.4.1.1 Simulator smooth

This type of smooth is really the focus of the next chapter but we present it here pre-
emptively alongside the previous type of smooth, namely (2.71)). In sections [2.1] and
we used roughness penalties and autocovariance functions to describe whole spaces of
functions, but we now imagine a function, or a simulator, that describes a set of functions

indexed by an input coordinate x:
y(t, x) = c(t, x) + w(z, x).

Our smooth, which is an expectation or integral over functions is now parameterised as
an expectation or integral over the input coordinate,
[ et, )m(y(t, x*) | c(t, x))m(x)dx

[ 7t x) | c(t, ))m(x)dx

In practice, it is unusual to think that the simulator is actually simulating just the climate.

E (c(t,x) | y(t,x)) =

Perhaps we are only able to approximate solutions to the simulator’s equations for the
climate, the climate trend we are interested in being obscured by artefacts of numerical
approximation procedures or by weather mechanisms that are intentional components of
the simulator code. In either case we can treat the simulator output as being only partially
informative for the simulator climate surface, in which case c(¢, x) remains a random

variable and must be integrated out in order to produce the simulator smooth:
[ [ et 0)m(y(t, x*) | et, x))m(c(t, x) | x)m(x) de(t, x) dx

E (c(t,x") | y(t, x)) =
(e, x7) | y(#, x7)) ff”(y(t’ x*) | e(t, x))m(c(t, x) | x)m(x) de(t, x) dx

(2.76)
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Figure 2.7: In this figure we plot quantities (2.73) with solid semi-transparent black lines.
The left-hand side of each plot represents the interval on which we observe y(¢) at equally
spaced intervals. These observations are marked with red dots. The green curve represents
the true but unobserved climate trend. The extensions of both y(¢) and c(¢) into the interval
without observations are drawn with dashed lines. The solid pale blue line shows the

marginal smooth as described by (2.71).
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Example [3.1.2]in the next chapter illustrates the calculation of the simulator smooth. We
can see expressions and in parallel when we interpret the covariance pa-
rameters as describing penalties, and their specific values as corresponding to variants of
physical laws. The key difference between the expressions is the way climate is effectively
implicitly integrated out of the quantities in (2.71)).

By noticing this parallel we can appreciate our inference for covariance parameters as

signifying a first step towards calibrating a simulator for time series data.

2.5 Chapter summary

In this chapter we discussed the ideas behind particular choices for the covariance struc-
ture that defines a smooth, and some practical findings on how to perform the calculations
they necessitate. Our first aim was to relate our smooth of some data to the physical or
mechanistic properties of the system involved. By using FDA methodology we found that
we could produce, up to a multiplicative constant, a covariance structure that describes a
space of functions that almost satisfy a linear differential operator. Consequently, if we
can elicit such an operator pertaining to a conserved quantity in the subsystem that deter-
mines the trend, c(7), underlying the data, y(¢), we can incorporate this information into
our estimate of ¢(¢). We also traced the link backwards, from a variance specification used
to estimate a smooth, to a pseudo-physical quantity that has a stationary point at that esti-
mate. Expression (2.44)) gives such a quantity for a Matérn autocovariance function, but
more generally, we used the link to identify the correspondence between autocovariances
and penalties consisting of sums of squares of derivatives.

We also approached two computational issues for smoothing. Firstly, we saw that
large arrays of data need not pose an insurmountable obstacle if we can apply a factoris-
able covariance structure to the data to be smoothed. In the next section, we looked at
making inferences for smoothness parameters from data. The examples there showed that
reliable inference is likely to be computationally demanding but that we can reduce the

demand by utilising efficient inversion and integration algorithms.



Chapter 3

Relating systems and simulators

In the previous chapter we wrote about smoothing without taking great care to distinguish
between real and simulated data. In this chapter we develop our intuition for reconciling
the system and the simulator conceptually, and work towards a framework for relating
them mathematically.

The emulator is the name given to a statistical model used to describe a distribution
for a function’s output. The function in question now is the simulator. Crucially the distri-
bution encompasses outputs that have not been observed, making the emulator more than
just a look-up table for previous simulations. Although they are just the evaluations of a
deterministic function, the outputs are treated as random quantities because their calcula-
tion often incurs considerable cost and is therefore not performed. A substantial literature
and research community has grown around the field of emulation as the capability, am-
bition and accessibility of complex simulators have increased. Notable examples of the
application of emulators include [9], [4] and [21], which have been motivated by the oil,
automotive and military industries respectively.

It is interesting to consider how this meta-modelling conflicts in principle with the
sort of scepticism that would have us discard notions of our models being true or untrue.
For in the emulation scenario there certainly are parameters that exist. There is a data-
generating mechanism that can, in theory, be read precisely line by line, and we can know
for certain that our emulator is structurally incorrect. It is also clear that our uncertainty
for the simulator output is not really a product of intrinsic variability but of our own

unwillingness or inability to pin down a value for it.

54



3.1. Relating a system and its simulator 55

While emulators may be known principally for their role in reducing computation,
they are also devices for structuring our thoughts concerning the relationship between
physical systems and their simulators. Discussion and exposition of the conceptual role
of the emulator is given in [15] and [16], and we will contribute to this discussion in

section

3.1 Relating a system and its simulator

Our focus here is the issue of simulator discrepancy. Our aim is to establish a statistical
model, or range of models, with which we feel comfortable as expressions of our be-
liefs regarding the difference between the outputs of a physical system and those of its
simulator.

We start by defining the simulator y;,(-) as a function mapping a vector of inputs
&= (t,x) € Q xQ, = Q to areal scalar output. If, in practice, our simulator takes a
vector of input parameters and returns a vector of outputs in the form of a time series, we
can think of y;,(-) as the wrapper function that runs the simulator and returns only one
value corresponding to a specific time. In this way, the extra level of detail involved in
differentiating output coordinates and input parameters is suppressed so that we can focus
on simulator discrepancy.

When the system is the planet, and the inputs represent physical constants, there is
no sense in which it is a function that can be evaluated; it is more like a set of random
variables waiting to be realised. But we find it useful to think of it as a function, and to
think of the values the function takes as hypothetical alternatives to what truly occurs.
In order to make sense of the relationship between the system and the simulator we then
locate them in a common space, extending their input vector to include a new component,
v € Q,, that could be thought of as an additional parameter in the simulator, or more gen-
erally as a new dimension in which the separation of two objects can be used to structure

the dissimilarity between them. So we write

¥ (Qex Q) - R,



3.1. Relating a system and its simulator 56

ysys(é:) = y(f’ V*) for .f S Qg,
ysim(é‘:) = y(fa 9) for f € Qg.

The interpretation is that €, is a parameter space and €, a discrepancy space, a notional
continuum of simulators somewhere in which lies the system. The function y, taking
arguments in the product space, reproduces the system or simulator functions at specific
values of v, namely v* and 7. We refer to the system variable we would go outside and
measure at time 7 as y;,(£*) = y,,(f, x*) and the vector x™ as the physical parameters in
the real world we would measure if we could perform a complementary experiment to
investigate them directly.

In our application of this discrepancy framework, the system climate function ful-
fils the role of Goldstein’s reified model [16]: an estimator that exhausts our theoretical
knowledge regarding the system output and from which further discrepancies, which we
understand here as weather, are uncorrelated to every other modelled object.

If the system behaved as a collection of discrete interacting nodes and v were a mea-
sure of aggregation of the nodes, then v* would represent the level of aggregation in the
real world while ¥ would represent the, probably higher, aggregation necessary for the
simulator to run in reasonable time. In this scenario v is a parameter whose significance
we can rationalise on a mechanistic level, but we also intend for v to describe simulator
discrepancies whose roles are not traced back to specific mathematical contributions to
the determination of y; these might be considered vague or external discrepancies. In
this way the domain €, can serve to separate systems or simulators on reasoned, or par-
tially reasoned, grounds, or just on the basis of our reluctance to identify them with each
other. Understanding the simulator discrepancy from the system in terms of a distance
and treating the distance as unknown also allows us to combine calibration and validation
procedures into a search through the extended parameter space.

A common choice for modelling covariances or correlations in such a product space,
which we have already seen in section is to take the product of covariances in each

subspace,

Cov (yal€,V) , ya@',v") = ke(&', &)k, (v, v, (3.1

where k¢(-,-) and k, (-, -) are positive definite functions on the products of each space with
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themselves. The consequence of taking a covariance function of this form is that for fixed
v* and ¥ the covariance between the system value y(£*,v*) and an arbitrary simulation
value y(&’, V) is, as a function of &, proportional to the covariance between that simulation

value and simulation y(¢*, V),

Cov (¥ @) » yan(€)) = Cov (alE, V") » ya(€s 9) = ke, (0", D),
Cov (ystm(é:*) s ysim(fl)) = Cov ()’Q(f*» 9) ) yQ(é‘»:,’ i\})) = k,f(f*, g/)kv(f}’ i\))

The same sort of result arises when we adopt a model that describes the system output as

a sum of the simulator output and an additive simulator discrepancy eg;,,:

ysys(g*) = yszm(‘f*) @ €sim-

Assuming eg;, is also independent from any other simulator value, the same covariances

are proportional because they are equal,

Cov (ysys(é:*) s ysim(é:’)) = Cov (ystm(f*) ® egim » ysim(é:/)) = Cov (yszm(é:*) s ysim(f,)) .

The significance of these proportionality results lies in the implication that y;,(£%),
the value returned by the simulator with the ‘true’ inputs, separates y,,(£*) from all the

other simulations, which we write as

I.ysys(é:*) I {yszm(‘f,)}J |ysim(§*)’ (32)

in the sense that y;,,(£*) is Bayes linear sufficient for all the possible simulator outputs for

adjusting our beliefs about the system output. That is, for all &,

Ey e (Yors(€") = Eygierstvanen (3s€9) (3.3)

This assertion is formalized and proven in theorem [3.1.1] while further explanation and

discussion of these definitions can be found in [17]].

Theorem 3.1.1. For vector random variables B and D, with finite positive definite vari-
ance matrices, the subset of the first n elements of D, denoted D, is Bayes linear sufficient
for all of D if and only if the rows of the covariance matrix Cov (B, D) lie within the

space spanned by the first n rows of Var (D).
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Proof. When the covariance is spanned by the first rows of the data variance matrix we

can extract Cov (B, D) from Var (D) with the matrix (A, 0):
Cov(B, D) = (A 0) Var (D).

Here, A~'Cov (B, D) is the matrix formed by taking the first n rows of Var (D), but the
ability to rearrange the elements of D means that there is no loss of generality. Then, so

long as Var (D) is invertible,
E(B) + Cov (B, D) Var(D)"' [D - E(D)] =E (B) + (A 0) (D —E(D)],

=E(B) + A[D, —-E(Dy)],

showing that only the elements of D; contribute to the adjustment. Going in the opposite

direction, if D, is sufficient for D we must have
Ep, (B) = Ep,up, (B), (3.4)

for all possible realisations of D,. Using the shorthand

Vll V12

Cov (B, (1)T,D2T)T):(c11 cu), Var (D], D})") = Ve v
21 22

and defining
A=Cp Vi,

and by using theorem [B.0.TT|for the inverse of a block-partitioned matrix, the expressions

in (3.4) for the adjusted expectation for B are written

Ep, (B) =A[D; —E(D))], (3.5)
Ep,up, (B) =(AVy; — C12V5, V21)(Vi1 = Viu V5 Vo) ' [D) — E(D))] (3.6)
+(Ci2 = AV2))(Vay = Vou Vi Vi) ' [Dy = E(Dy)]. 3.7

The middle factor in line (3.7)) is the adjusted precision for D, given D;; it cannot be zero

given our assumptions for D, meaning that the left-hand factor must be zero and

Ci,=AV)p.
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Since we also have C;; = AV, by definition, we can write

(Cn Clz):A(Vu VIZ)’

which shows that Cov (B, D) must be a linear combination of the first n rows of Var (D).

O

The same phenomenon is apparent if we consider a stationary process in one dimen-
sion with an exponentially decaying autocovariance function. The consequence here is
that observations of the process at points on either side of a third point are Bayes linear
sufficient for all values of the field that are further away, for adjusting the expectation of
the third point. It is easiest to see the proportionality condition here when we look at only

observations lying to one side of the location of interest, which we label x:

forxo <X <xX<...,
Cov (y(xo) , ¥(x7)) oc exp(—alxo — x;|) = exp(—alxy — x1|) exp(—alx; — xil),

=Cov (y(xo) , y(x1)) Cov (y(x1) , y(x;)).

Consequently,

Ly(xo) L {y(x)si = 2,...}] [ y(x1).

The two-sided result comes from realising that the covariance vector in the adjustment
formulae is a linear combination of the two rows of the variance matrix corresponding to
the nearest observations.

In summary, we must learn to associate factorisable variance structures with linear
sufficiency properties. In particular, adopting a model of the form (3.1]) for the relationship
between the system and the simulator means adopting the belief that a single simulation,
vsim(€¥), 1s linearly sufficient for all other simulations. Such a model may be criticised
on the grounds that, in practice, we would be uncomfortable with the idea that a single
simulation could render all others redundant, at least for the purpose of constructing linear
estimates. While x* is unknown this ought not to be a problem that confronts us because
the single sufficient simulation cannot be identified. This is likely to be the case when we
want to calibrate climate simulators that require the specification of a large array of initial

conditions corresponding to historical data that is not available. The potential sufficiency
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may become a problem however, if x* represents a physical quantity that could become
known through other means. Our model would then suggest that if we pin down the value
we would only need to run the simulator once to learn everything we can about the system.

Another implication of the factorisable structure is that the system and simulator out-
puts are equally closely correlated everywhere in the €2 parameter space. We can see
this assumption being questioned, for example, if the stability of a simulator’s solution
method depends on its inputs.

A simple way to compromise the factorisation property, removing the sufficiency phe-

nomenon, is to decompose the function yq into components,

Y&, v) = c(€,v) + w(E,v).

If we deem the components independent of each other we have

Cov (Vo€ + Ysin(@)) = ket €MV, D) + kel . EDhn (', 0), (3.8)
Cov (ystm(‘f*) ’ ysim(‘f,)) = kcf(é:*’ fl)kcv(ﬁa 9) + kwf(‘f*’ g,)kwv(‘/}a 9) (39)

Unless,

ke (V5,0)  ky (VD
ka(@,9) k(9. 9)

(3.10)

the covariances (3.8)) and (3.9) are not proportional functions of &. If we use this model
to represent processes corresponding to climate and weather and we judge that the sys-
tem and simulator weather components are not as strongly correlated as the system and
simulator climate components, so that (3.10) does not hold, then there ceases to be one
simulation that is Bayes linear sufficient for all the rest. Now the value of finding x* is
altered in that it would no longer serve to unlock all the information for the system that
the simulator can provide, and our attention shifts from specific values of the simulator

output to its variation over the input space.

Example 3.1.2 (Calibration from a smooth trend). This example provides a context in
which to explore some of the ideas raised in the preceding sections; it continues directly
from example There, we looked at the linearly adjusted expectation and variance

for a function c(z, x) over the product of input and time spaces. Now we will extend the
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space by taking its product with the discrepancy variable v. Across this space we define

the covariance functions,

Cov (e, x' V'), c(t”,x" V) = ket , Ve (X', X ke V', V),
Cov (w(t', X', V'), wt”, x" V") = ky(t', 1)k (X, XNk, V', V7).
Since, for now, we are considering the case in which there is only one simulator and

one system, the covariance contributions from separations in v space amount to single

numbers, which we denote p. and p,,. The other notation and parameter values carry over

from example [2.3.2] so that
Pec = kCV(V*’ f/)a Pw = kwv(V*’ 9) (311)
[ax]i = kcx(-xv [X]i;)a [bx]i = kwx(x, [X]i,-)a (312)
[Ax]i,j = cx([X]i,-’ [X]]), [Bx]i,j = wx([X]i,-» [X]]), (313)
[A]ij = ke(tis 1)), [B/1i,j = kui(ti, 1)). (3.14)

The simulator values and covariance parameters for the input and time directions are the
same as before, and we specify p. = 0.95, p,, = 0.5 in expression of the notion that the
system and simulator climate functions are strongly correlated while their high-frequency
weather functions are less strongly correlated.

We can now write the joint variance of the simulated data Y, and the covariance be-

tween the system observations y,, (T, x*) and the simulations as

Var (vec (Y)) = (A, ® A,) + (B, ® B,), (3.15)
Cov (yyys(T, x%) , vec (Y)) = pA, ®a, +p,B, @b, (3.16)
Next, we take the pragmatic step of discretising the set of admissible inputs into one

hundred equally spaced points over the interval [—1, 1]. From the unweighted points we

sample an x*, and from this input value, the moments (3.15)) and (3.16)), and the matrix

of simulator values Y, we calculate a conditional mean and variance for y,, (T, x*). The
value of (T, x*) is produced by sampling from the multivariate normal distribution
with these moments. We then partition the synthetic system data into past and future
components Y, (T, x*) = (y45(Tp, x*), ysy5s(T¢, X)), and treat only the past component as

having been observed.
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We proceed to make the same calculations for the moments at the other 99 points of
the discretised input space, and from each of these we calculate the multivariate normal

density at y,,(T,, x*),
ﬂMVN(ysys(Tp,X*) | X = X*,Y7pcapw)’ i=1,...,100. (317)

Again, the efficiencies afforded by the factorisable structure described in section [2.3|
prove valuable for manipulating arrays so as to calculate means, variances and likeli-
hoods quickly. The results of the calculation of are partially illustrated in figure
3.1} where we plot the normalised densities, which are equivalent to the posterior prob-
abilities for x* if we were to specify equal prior probabilities for each of the 100 points
in the discretised space. The subfigure in the middle of the bottom row shows the ‘true’
posterior in the sense that it is calculated using the covariance parameters used to simulate
the system and simulator data. The other subfigures are calculated using the wrong p. and
Py values so that we may also observe the effect of incorrectly anticipating the similarity
between the system and the simulator.

The right-most six plots all feature inverted (downwards) spikes at the input values
for the simulator training data. These reflect the fact that none of the weather signals
from the performed simulations matches up with the weather signal of the system data.
Although we can see here that the likelihood is generally quite evenly spread over the x
domain or heaped up at the negative end, these spikes have the potential to mislead the
numerical optimisation or integration routines that will guide us when such plots are not
practical, such as when the input dimension increases for example. The spikiness problem
is avoided if we either calibrate on the basis of the climate signal alone, pretending p,, is
zero, or if we smooth the likelihood as a post-processing step. The implication is that
even if our simulator is deemed capable of reproducing the weather signal that is local
both in the time and input directions, it may not be a good idea to take that capability into
account when we are calibrating it, because the extra information may trick or stall our
inferential calculations. Additionally, if our objective is to make statements about the first
few posterior moments of x* then these spikes are likely to have only a minor influence.

It is also interesting to investigate the extent to which p. and p,, are inferable parame-
ters here, because this inference could serve as a validation procedure for the simulator. In

table we present the normalised sums of the likelihoods (3.17/)), over the one hundred
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Figure 3.1: Interpolations of the posterior for x* calculated under a selection of choices

for the strength of correlation between the system and the simulator. The vertical dashed

lines indicate the input values for the simulator time series, while the vertical solid line

shows the location of the true x* value. The solid black curves interpolating the posterior

values are plotted only as visual aids. Subfigure [3.1(h)| contains the plot produced using

the true values for (o., p,,).
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candidate input locations, corresponding to the plots in figure The precise form of
the normalisation for calculating the table’s entries is given by (3.18)). Again, we iden-
tify these quantities with the posterior probabilities that would arise from discretising the
space of possible (o., p,,) parameters and allocating them equal prior probabilities. The
larger figures in the bottom row of the table indicate that identification of p, is possible,
although the same statement cannot be made for p,,. In fact the table suggests a higher

likelihood of p,, being zero than its true value.

lei)? ﬂ(ysys,p | Xj = X", Y,Pc,Pw)
S o TR Ty | X0 = 3, Y, pes o)

TV sys(Tp, X) 1 Y, pes pw) = (3.18)

ow=0 p,=05 p, =095
pe=0 0.007 0.005 0.004
pe.=0.5 0.031 0.023 0.016
p. =095 0417 0.291 0.206

Table 3.1: The normalised sums of likelihoods for each (p., p,,) combination in the same

configuration as the plots of figure

We now compare the likelihood calculations of figure with those arising from the

consideration of just one simulated time series at a time. The densities

ﬂ'(ysys(Tpa X*) | [X]i,~ = X*’ [Y]i,-,Pc,Pw)

are plotted in figure [3.2] with the correct specification of p. and p,, along with a range of
incorrect specifications, in the same configuration as figure The calculation of these
densities is still much faster than those that account for all the simulations, despite our
algebraic tricks for efficiently calculating the moments of multiple time series. The great
danger of inferring the location of x* with these likelihoods is illustrated most clearly by
the subfigures in on and above the main diagonal. In these cases p,, is large so we
expect that there is an input value at which the simulator weather signal mostly coincides
with the system weather. When this signal is not found and all the simulations available
are in the tail of the likelihood , the least bad simulation accumulates the majority of the

likelihood, giving the impression that x* has been identified when really it has not.
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Figure 3.2: The likelihood for the system time series calculated by smoothing each sim-
ulated time series individually. The solid black interpolating lines are solely to guide the
eye, since the likelihood is defined only at the input coordinates at which the simulator
was run. The solid vertical line marks the location of x*. Subfigure [3.2(h)| contains the

plot produced using the true (o., p,,) values.
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In table [3.2] we present the normalised sums of likelihoods equivalent to (3.1)), for the
case in which we smooth one simulation at a time and restrict our attention to only the
simulations in the training set. These are the values

211:31 n(ysys,p | X = X", ysim([X]i,-)’pc’pw)
ch pr Z,li)? ﬂ(ysys | X = X%, ysim([X]i,~)a Pe» pw)

ﬁ'(ysys(Tp’X*) 'Y, 0c,00) = (3.19)

ow=0 p,=05 p, =095
pe=0 0.039 0.009 0.000
pe.=0.5 0.109 0.020 0.000
p. =095 0.738 0.086 0.000

Table 3.2: The approximate normalised sums of likelihoods, calculated using (3.19)), cor-

responding to the plots of figure [3.2]

As might be anticipated, since we consider only a small subset of all possible simu-
lations, none of which show weather behaviour matching the system weather, we gather
almost no evidence to support the possibility that p,, could be non-zero. Although incor-
rect, these figures serve to steer us away from the right-most posteriors of figure [3.2] that
would erroneously identify x*.

The conclusions we have made here mostly conform to common sense. Our inferences
for p. and p,, are strongly dependent on whether we use the emulator to structure the
information available from the simulations. Misjudging the fidelity of the simulator to the
system can lead to misidentification of x*; this is a problem that is greatly exacerbated
when we restrict our attention to a small subset of the simulator domain, namely the
locations of observed simulations.

In the last calculation before leaving the example we compute what we referred to
earlier, in section @, as the simulator smooth. To do this, we calculate the joint
expectation, variance and covariance for the system output and system climate given the

simulated series conditional on the true values for (o, p,,) and x; = x* fori = 1,..., 100,

E (cyys(T. x7) | Y) =Cov (cys(T, x7) , vec (Y)) Var (vec (Y))™' vec (Y), (3.20)

E (1ys(T, x7) | Y) =CoV (yys(T, x*) , vec (Y)) Var (vec (Y))™' vec (Y), (3.21)
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Var (csys(T, x| Y) = Var (Csys(T’ X*))

— CoV (cys(T, x) , vec (Y)) Var (vee (Y)) ™ Cov (cys(T, x) , vec (Y))T :
(3.22)
Var (yyo(T, ) | Y) = Var (,(T, x°))
— CoV (yys(T, x) , vec () Var (vee (Y)) ™ Cov (yy(T, x%) , vec (Y))T ,
(3.23)

CoV (CaalT, 57 5 Yys(T, ) | Y) = Cov (T, X, yy(T, 7))

— Cov (cy(T, x") , vee (Y)) Var (vec (Y)) ™ Cov (y,,(T, x) , vec (Y))T . (3.24)

where the quantities appearing in the expressions above are constructed with the basic

quantities (3.11)-(3.14),

Var (€, (T, 7)) = kex(x", XA,

Var (Y, (T, X)) = ke, XA, + kyu (¥, x)B,,

Cov (cys(T, x%) , vec (Y)) = pA, ®ay,

CoV (Yoo (T, ) , vee (V) = p A, ®ay +p,B, @by,
COV (Cpys(T, X7 , Yuyo(T, 1)) = a2, XA,

Var (vec (Y)) = (A, ® A,)) + (B, ®B)).

Now, with (3.20)-(3.24) we calculate expectations for c,y,(T, x*) given the observed sys-

tem output values y,,(T, x*),

E (cyo(T.x7) | Y) +

-1

CoV (Cyys(T, 5%, Yys(T,x%) | Y) Var (ygy (T, 5 | Y) (3T, X7) = E (ys(T, x) | Y))
(3.25)
The simulator smooth is then approximated as the average of the 100 conditional expec-
tations ((3.25)) for which a different point in the discretised input space is identified with
x*. The weights for the average are given by (3.17). In figure [3.3] we plot the simulator
smooth as well as the summands from which it is calculated, and the smooth of the sys-

tem data without any information from the simulations at all. The two smooths are very
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similar within the range of the observed system data but significantly different beyond it.
This observation reminds us that the simulator smooth is not really a tool for interpola-
tion, because the same system data we use to calibrate the simulator renders the simulated
past climates all but redundant for informing the smooth there. But, by identifying likely
values for x*, the corresponding values of y,,,(T¢, x*) are highly informative for the future

system values while the past system values alone are not.

-1.0 -0.5 0.0 0.5 1.0

time

Figure 3.3: The jagged solid black line in this plot interpolates the observed system data
that are used in our calibration calculations; the dashed black interpolates the system data
that was held back. The red dashed line shows the expectation for the system climate given
only the observed system values and no simulated data; the green dashed line shows the
expectation for the system climate given the observed system values and all the simulated
data. The green dashed line is computed as an average whose summands are plotted as
the smooth black lines; the opacity of these lines is proportional to their weight in that

average.
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3.2 Chapter summary

We wish to argue that focusing attention on the smooth climate term is a good idea for

three reasons:

1. Firstly, on a practical level, it allows us to form an intelligible image of the simu-
lator’s output surface, and to navigate it, without getting caught up on small local

features.

2. Secondly, it represents the, usually appropriate, admission that the simulator is sig-

nificantly discrepant from the system on the scale of high-frequency variation.

3. Thirdly, it allows us to rationalise the exploration of the simulator’s variation across

its input space rather than concentrating on its value at a single sufficient input.

The first two reasons reflect our inability to find the correct input and the simulator’s
inability to reproduce the observed data. But when the largest modes of variation are also
the smoothest and we prioritise them to the extent that rough modes are considered noise,
our algorithms are less likely to stall, obsessing over local optima in the likelihood, and
the same is true of us as scientists.

These considerations are relevant to ABC methods, on which much interesting re-
search, such as [11] and [45], is currently focused. These methods derive likelihood
functions from a selection of summary statistics, and in doing so discard much of the
information from the observed data. Their application is most often justified by the first
argument: on the infeasibility of utilising the full likelihood. But we suspect that in most
cases the second argument also plays a significant role. For example, Wood’s recent work
on synthetic likelihood [60], applied to the Ricker model for population dynamics, is in-
troduced as a way to negotiate a pathologically rough likelihood surface, but when a real
data set is introduced, numerical approximations of the likelihood derived from filtering
techniques appear to be very low, suggesting that the model is not fit to explain single
time-step changes. However, by fitting it to ‘dynamically important’ summary statistics
Wood presumes and, to an extent, illustrates that the Ricker model may account for certain

longer-term features in the data.
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Although example does not utilise the concept fully, we are keen to recommend
structuring the simulator’s mismatch to the system with the pseudo-spatial coordinate
v. We find the common alternative, structuring it via one or more additive discrepancy
terms, to be comparatively confusing. Specifically, it is sometimes hard to think about
the orthogonality properties of an additive discrepancy term, which are determined by its
location in the model. To work out the appropriate location we must ask ourselves whether
the simulator or system values are informative for the discrepancy between them. If the
simulator returns an unusually high temperature, for example, would we presume that it
is overestimating the system value and that the discrepancy is likely to be negative, or do

we put all our trust in the simulator output? Is it more appropriate to specify

YVsim = Ysys @€,

or

Vsys = Vsim D € ?

Equivalently, if we measure an unusually high temperature outside would we assume the
simulator will produce a lower value, or that it will anticipate the heatwave? We suspect
that in most cases we will find ourselves sympathising with both answers, which we can
model by introducing an intermediate object yg, in a similar way to our introduction of

the climate:

Ysim = YR D@ Esim> Ysys = YR @ Esys-

By hypothesising the existence of an additional object we are over-parameterising insofar
as its value is unknowable unless we can meaningfully identify it with something, from
outside our statistical analysis, of which we have prior knowledge. If it can be identified
with an upgraded version of the simulator or with a familiar theoretical device, like the
climate, for example, then we can see value in assuming its existence.

By specifying variances for yg, €, and €, we indirectly specify the variances of
the simulator and the system, and their correlation. We feel this would be an unhelpful
modelling choice however, if our intuition for the system and simulator is more highly

developed than that for the intermediate object yg. In our opinion it will most often
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be easier to work from the other direction, and to specify the variances and correlation
directly. A spatial field is the natural tool for this. By defining the discrepancy space €,
we also prepare the ground for the generalisation in which we analyse the outputs from
a collection of different simulators, which occupy different positions in the discrepancy

space.



Chapter 4

Emulation and calibration

As we head towards the application of our ideas for emulation and calibration to real
data, we will see that there are several obstacles that need to be overcome. In this chapter
we develop a range of methods for constructing, fitting, and calibrating with emulators
that circumvent these obstacles. The methods are informed by our work with smoothing
techniques, and are suited to the large data sets and high-dimensional input spaces that
frequently characterise the analysis of complex physical systems.

The FAMOUS data, introduced in section|[I.1.5.1]and to be analysed in chapter[3] raise
two significant challenges for the grid-based approach. Firstly, many of the simulations
terminated prematurely due to crashes of the distributed system on which they were run.
This means that the resulting grids have a significant number of missing values. Secondly,
when considering an input space of even moderately high dimension, the number of grid
points on a full design quickly grow unmanageably large. We anticipate such problems
being the norm rather than the exception for the majority of practical applications and
so we are motivated to seek ways to escape the grid structure while retaining, or even
improving, computational tractability.

We start by introducing two conjugate models for Bayesian linear regression that
represent key mechanisms within our emulation procedures: the normal inverse gamma
(NIG) model and the normal inverse Wishart (NIW) model. The NIG model is a well-
known device that we will use for fitting what we will call the Nystrom emulators or
approximate basis emulators. A full description of these emulators is the subject of sec-

tion The NIW model, the natural multivariate extension of the NIG model, is less

72
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well studied and is relied upon in our other emulation scheme, which we will describe in

section

4.1 Conjugate linear models

We now zoom out from the context of computer simulators to review some results from
Bayesian linear modelling that will help us to fit our emulators and calibrate with them.
Results for the normal inverse gamma construction are informed predominantly by O’Hagan
and Foster[35, chap. 11], while those for the normal inverse Wishart are extensions that
we have derived in order to accommodate multivariate simulator outputs. In particular,
we have in mind the case in which the components of the output relate to coefficients for
smooth basis functions of time, but the model is also applicable to scalar outputs of one
variable arising from alternative forcing scenarios, or to outputs with different physical

interpretations.

4.1.1 The NIG equipped linear model

We write the linear model with a scalar output variable, y; a p-dimensional column vector
input variable, x, which includes a constant intercept component; a p vector of coefficients

[3; and scalar error term € as
y=x'B+e.

We then use a bold Y and € to denote the concatenation of n observations and error terms,
forming column vectors. The input vectors are transposed and stacked up as rows of the

n X p matrix X so that

Y=X8+e€

A common way to arrive at the NIG model is to consider an infinite mixture of normal

models weighted according to an inverse gamma distribution,
Blo? ~N(m, V) elo” ~ N(0,0°D) o ~ Inv-Gamma (a, d) .

It follows from this specification that the the conditional distribution for o given g is

also inverse gamma while the marginal for S follows a multivariate z-distribution, the
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parameterisation of which is defined in appendix along with those of the other

distributions referenced in this work,
B ~t;(m,aV), o°|8 ~ Inv-Gamma (a +B-mVIB-m)d+ p) .

Given training data {X, Y}, the adjusted NIG parameters can be shown to be:

v = (V' +X'D'X) (4.1)

m' =V (V'm+X'D'Y), (4.2)

a =a+(Y-Xm'(D+XVX") (Y - Xm), (4.3)
d"=d+n, (4.4)

and with some fiddly but basic algebra, alternative expressions for a* can be derived:

ad=a+m'Vm+Y'D'Y -m7T(V)'m", “4.5)

a =a+(Y-Xm)' (D +XVX')(Y - Xm"). (4.6)

Expression (4.6)), in particular, proves to be useful for establishing a relationship with the
GCV criterion, commonly used in the smoothing literature, further on in this subsection.

We should note that the expression for the posterior mean m* involves neither a nor
d, meaning that it is the same mean we would calculate with a model for which ¢ is
assumed known. The marginal posterior for a single new output y(x’), given x’, is a -
distribution #;-(x’"m*, a*(1 + ¥’"V*x’)). More generally, the joint density for a vector of

outputs is given by

a’”’T((d + n)/2) T Tl —(d+n)/2
Y|X) = Y-X D + XVX Y-X
mYIX) = XTI, (a+ (Y = Xm)" (D + XVX") (Y - Xm)) :
4.7
x ¥11/2 ¢, po\—d* ]2
1 I(d/2)IV|'~(a") 4.8)

:ﬂ-n/ZlDll/Z T(d/2) V|2 a2

An alternative formulation of a* and m* shows their relation to the classical estimates for

o? and 3, which we denote with accents:

m’ = (I -A)m + AB,

a=a+@n-p)+m-p" (V+ (XTD‘1X)‘1)_1 (m - pB),
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where

(n-p)&* =Y -XB'D (Y -Xp),
B=X"D'X)'X"D'Y,
A=V'+X'D'X)"'X"D'X.

Additionally, the posterior estimates implied by the NIG model for the expectation and
variance for (3, given a set of training data, also coincide with the Bayes Linear estimates
for them in [17, p. 266]. This result allows us to formally divorce the estimates from
the normal and inverse gamma distributions that are used to construct them here, and so
ought to lend the estimates conceptual and practical robustness to data that are not well
described by these distributions.

O’Hagan and Forster note that settinga = d = 0 and V™' = 0 leads to the Jeffreys prior
n(B,0?) o« P2 It also follows from the model, that the prior for the scalar quantity

@.9) is given by an F-distribution,

%(Y —Xm)" (D + XVX") (Y - Xm) (4.9)
_ T2 Ty\-1 _

_dY -Xm)'(o (D+)iVX N(Y Xm)’ @.10)

n aog

Xa/n

N , 4.11
i 4.11)
~F(n,d). 4.12)

This result is useful for informing diagnostics as we will discuss later on in section 4.4.5]

4.1.1.1 The NIG model and smoothing parameter selection

We take a brief detour now to establish a point of contact between the type of quantities
we are constructing with the NIG model, and those that feature in the mainstream smooth-
ing literature. The parameter o in the NIG linear model serves to scale the variance of 3
and e simultaneously. However, we are frequently interested in the size of their variances
relative to each other. This is the case when we want to treat the smooth climate compo-
nent as arising from the regressors and the rough weather part as arising from the error

term. To accommodate this we can introduce a further parameter A such that,

V=aV. (4.13)
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The matrix V' here is a fixed variance matrix and the scalar A plays the role of a roughness
penalty, a dimensionless variable that we can adjust in order to scale V' up or down.
Conditional on A4 we have the NIG model once again, meaning that we can numerically
maximise the likelihood (4.8]) with respect to A, possibly constrained by a prior, to produce
an estimate for A. Since A possesses no obvious conjugacy relations, there is no advantage
to equipping it with a particular prior.

It is interesting to note the relationship between the marginal likelihood for Y, as
a function of A, and the generalised cross-validation criterion, whose minimisation is
commonly used as a method for choosing a smoothness parameter for smoothing spline

problems:

SSE

(4.14)

The matrix S, here is a smoother matrix and SSE is a sum of squared errors. Denoting
the NIG posterior parameters that are produced for a specific fixed value of A using a
subscript, we can translate these objects into the notation of the NIG model. We equate
the classical fitted smooth, Y 1, with the posterior mean (.2) arising from a zero prior

mean,
Y, =Xm, = XV5(V'0+X'D'Y) = S,Y, (4.15)
so that the implied smoothing matrix, which is essentially defined by its role in (4.15)), is
S, =XV X'D™.
The sum of squares term in (4.14)) is the obvious quantity
SSE = (Y - Y)'(Y - Yo,
so that we can write,

GCV(A) = & ~(Y — Xm))(Y - Xm). (4.16)

(Tr(1-XVX'D))

Ramsay and Silverman point out that it is instructive to view this quantity as a product:

_n (Y-Y)'(Y-Y))
GCV(A) = TTa=S,) X TTad=S,) , 4.17)
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where the right-hand factor is reminiscent of the unbiased estimate of the error variance
from a classical linear regression problem, and the left-hand factor is seen as a multiplica-
tive discount that rewards smoother smooths.

When we take the NIG posterior resulting from the prior that specifies m = 0 and

a = d = 0, and raise it to the power —2/n, we produce an expression comparable to
(@.17),

a(YX) ™" oI - XVIXTD [T (Y = Xm)" (X - XV:X'D ) 'D(Y - Xm3), (4.18)

= 1= S ™" x (Y = Y" X =8$)™'D(Y - Y, (4.19)

which we also view as a product. As mentioned in section [2.1] it is necessary to be more

careful when one or more linear combinations of the coefficients are unconstrained by the

penalty, which results in zero eigenvalues for V~'. In this case, we employ the pseudo-

determinant and the Moore-Penrose generalised inverse to redefine (4.19)) as,
A(YIX) ™" o [ = S x (Y = Y A= S)'D(Y - Y).

The comparison of (@.14)) and (4.19) is of interest because the GCV criterion has been

criticised by authors such as Gu[18] for producing curves that are judged to be under-
smoothed. One of Gu’s recommendations is to multiply S, in (4.17) by a scalar slightly
larger than one to compensate for this. We find that the criterion derived from the NIG
likelihood encourages more smoothing and results in a more clearly defined minimum
than the GCV. Although we currently cannot prove these properties always hold, and
our investigations of the criteria rely on numerical explorations, we can begin to see the
reason for the NIG likelihood’s greater preference for smoothness by noting that the left-

hand terms of (4.14)) and (#.19)), which we view as punishments for a smooth’s wiggliness

or over-fitting, satisfy the inequality

I_ —l/n> n
T=S47" = sy

due to theorem|B.0.21] We argue that the likelihood-based criterion is better than the GCV
criterion for choosing a smooth since it leads us to the type of inference we would like to

make, specifically a smoother curve, in a principled way that feels conceptually cleaner

than an ad hoc modification to the GCV formula. In example 4.1.1] we will also see the
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extent to which the optimising value of the likelihood-based criterion is better identified

than that for the GCV.

Example 4.1.1. [Roughness inference for the FAMOUS data and the NIG model.] We
now return to the FAMOUS time series we looked at in example[2.1.Tjwhen we introduced
penalty-based smoothing. We equate the matrix of basis values ¢ from that example with
the matrix X from the description of the NIG model. As we did before, we set D = I to
be the identity matrix and define the unscaled precision, or inverse variance (V')™! = P,
using either first or second squared derivative penalties. We then approach the data from
the spline/penalty smoothing perspective and from the perspective of the NIG Bayesian
linear model with a prior such thatm =0 anda =d = 0.

The penalty approach yields a minimal loss solution for the coefficients,
Bi=[®+XX| XY = VXY, (4.20)
which coincides with the NIG posterior mean,
E@B|Y,1)=m)=VXY. (4.21)
But the NIG model also provides us with a variance for the coefficients,

*

Var(B1Y,A) =

" 4.22
Y (4.22)

Despite the coincidence of (4.20) and (#.21)), the smooths we calculate from the dif-
ferent perspectives are different because we condition them on the minimising values of

different criteria:

1og(GCV()) = log(n) — 2log(Tr (I - Sy)) + log((Y = XB.)" (Y - XB.)), (4.23)
for the smoothing spline approach and
2 1 .
—=log(n(Y | X, A)) = — — log(II - XV:X"|,) (4.24)
n n
+log((Y — Xm)(I - XV:X")"(Y — Xmy)), (4.25)
for the NIG approach.
In figure[d. T we present plots of the GCV and log-likelihood criteria, (4.23) and (4.25),
as log(1) is varied along the x-axes. For both first and second derivative penalties, the log-

likelihood criterion produces a more definitive minimum at a larger value of the penalty

multiplier A.
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In figure 4.2f we look at the smooths resulting from the optimal values for A as iden-
tified by the different criteria. We see that when we penalise the first derivative, the
smooths are almost indistinguishable until we reach the end of the range of observations.
The difference between them is more noticeable when we penalise the second derivative.
In subfigure it is clear that the smooth from the NIG model is smoother than that
minimising the GCV. This is particularly evident from the way the latter is bent steeply
downwards at the right edge of the data range; extrapolating the smooth like this is un-
likely to be considered appropriate.

We partially illustrate the NIG posterior variance (4.22)) with grey shaded regions,
and note that the pointwise credible intervals that the regions demarcate are very con-
servative with regard to extrapolation. This feature is due to the climate trend’s lower
derivatives being completely un-penalised. For the climate in figure for example,
our prior variance specification says that the curvature of the climate trend is small, pre-
cisely how small being determined by A, but that its gradient and value can be of any size.
Consequently, the credible interval for the climate beyond the range of observations is
determined by the degree to which we allow the climate to bend at the end of the range of
observations. This sort of variance specification can be seen in opposition to that which
we remarked upon in example In that example we used a Matérn function, which
implicitly penalized all derivatives, to derive the covariances of the climate trend, and saw

that the resulting smooths all decayed back to the global mean.

4.1.2 The NIW equipped linear model

The results presented here for the normal inverse Wishart linear model are our own ex-
trapolations of those for the normal inverse gamma case. In the multivariate setting, Y
becomes an n X g matrix of observations consisting of n g-dimensional output vectors
stacked up row by row; similarly, E is a matrix, of the same size as Y, made by stacking
g-dimensional error terms. As before, the input variable x is a p vector and X is ann X p
matrix of different input vectors stacked up. The model coefficients are now kept in the

p X g matrix B. Combining these objects we write the model as

Y =XB+E. (4.26)
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Figure 4.1: Plots of the log GCV and transformed log likelihood from the NIG model
up to an additive constant. The dashed vertical lines mark the locations of the curves’

minimal values.
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Figure 4.2: The points here show a simulated AMOC time series from FAMOUS. The
solid black lines show the adjusted means for ¢ from the NIG model with A set to minimise
the negative log-likelihood (@.19). The dashed lines show the penalty-derived smooths
given values of A that minimise the GCV criterion. The shading marks out a region two

standard deviations from the mean for ¢ according to the NIG model.
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We can imagine, for instance, that the g outputs correspond to simulator outputs for dif-
ferent times and that the vector x contains the simulator’s input variables along with an
intercept term.

The implication of the model is that each of the g elements of a single output vector
is produced by a univariate linear model whose coefficients are stored in the gth column
of B. We introduce covariances between the linear models via covariances between the
coefficients as defined by the g X ¢ matrix H, which we consider random. This variable is
analogous to the variable o from the NIG prior. The p X p matrix V, which encodes the
covariances between coefficients corresponding to different inputs, is considered known.

The resulting covariance matrix for B can be written as
Var(vec(B)H)=H®YV,

where, again, we employ the vec (-) notation that reads a matrix into a vector; or, consid-

ering elements individually, we write it as

Cov (Bl » [BlH) = [H];[V1i.

In order to achieve conjugacy we will also need
Var (vec(E) H) = H® D,
Cov ([E]i, j [E]k,llH) = [H];;[D]ix,

meaning that the error terms of the ¢ sub models are similarly correlated. The result is

that the variance of Y conditional on H can be factorised as a Kronecker product:
Var (vec (Y)) = H® (X' VX + D). (4.27)

Theorem[B.0.4Jand an assumption of normally distributed error terms allows us to contract
sums of squares expressions into traces of products of matrices, with the effect that we

can write the likelihood for (8, H) given Y as
(Y | X, 8 H) =(27) "% H e D|exp [—%Vec (Y -XB)" HeD) 'vec (Y - X,B)] ,
(4.28)
= (2m) "2 =2 D|™? exp [—%Tr (H-1 (Y-XB)'D (Y - Xﬂ))] .

(4.29)
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Now, the normal inverse Wishart distribution for (8, H) with fixed parameters M, V, ¥

and v is given by

1
(B, H) = kppn[H|0+ 74+ D2 exp [—ETr (H'((B-M) V' (B-M) +¥))

. (4.30)

This prior implies that the marginal distribution for H is an inverse Wishart distribution. It
also implies that the elements of 8 given H are distributed according to a multivariate nor-
mal so that the NIW prior can be derived as a mixture of multivariate normal distributions.
The normalising constant in (4.30) can be found by integrating out # and comparing it to
the inverse Wishart density function, a calculation presented in appendix [C.2.1] to reveal:

)"
)PV [42T (v[2)274/2"

krgr) =
We also note that the Jeffreys prior for the NIW distribution is given by
(B, H) « |H|—(p+q+l)/2’
which results from the limit of taking V™' towards to the zero matrix, along with v and .

Theorem 4.1.2 (The conjugate parameter updates for the NIW model). Given that (8, H)
is distributed as a NIW variable with parameters {M,V,¥Y, v} and that the conditional
distribution of Y given {X, B, H} is the multivariate normal whose density is given by

#@.29)), the posterior for (B, H) given {X, Y} is also NIW with parameters

Vo= (V' +X'D7'X) 431)
M =V (V'M+X'DY), (4.32)
¥ =W+ (Y- XM) (D +XVXT) (Y- XM), (4.33)

V'=v+n. (4.34)

Corollary 4.1.3 (The marginal density for Y). The marginal probability density function
for'Y given X, given the assumptions described in theorem is

L0712 (vie> e
L,(v/2) [VIe/2 [P p/2

n(Y | X) = n"?|D|9? (4.35)

Proof. The proofs for results i.1.2)and [4.1.3] are included as appendices in[C.T]and [C.2.2]

respectively. O
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Expression (4.35) is the multivariate version of (4.8)); it is the marginal likelihood we
would use to re-weight a prior for a single x* given y(x*). When we look at it as a function
of x*, which is a single column vector of p input quantities, the only terms we need to

consider are the two determinants
m(x*) | x*) oc [VF[72 -0+ D2 (4.36)

since these are the only ones that contain x*. Expanding (4.36)), and remembering that
y(x¥) is a g-dimensional column vector and that D is a square matrix of size N, X N,, so a

scalar, leads to

ﬂ,(y(x*) | X*) 0C|V_1 + X*D—lx*Tl—q/Z

x|V + ()’(X*)T - x*TM)T (D + )c*TVx*)_1 (y(x*)T _ x*TM) |~0m/2

which we can re-express in terms of quadratic forms rather than determinants using theo-

rem

(y(x*)T _ x*TM) ! (y(x*)T B x*TM)T —(r+1)/2

ay(x*) | x*) o D+ xTVx) 72| 1 + DT TVe

(4.37)

Function (.37) is the same as that arrived at by Plessis and van der Merwe [40] and
Brown [6]] in their work on the Bayesian calibration of multivariate linear models. It is an
interesting function, resembling a multivariate ¢-distribution in x* but with the inclusion

of the factor
D + xTVx*,

which serves to flatten out the likelihood when x* grows large in directions where the
variance for the coeflicients, V, lends it leverage. As long as V is positive definite, when
x* gets very large in any direction, the right-hand factor of (4.37) tends to a constant,
leaving the tail behaviour to the left-hand term. This also resembles a multivariate -
distribution, but centred on the origin. By referring to the convergence properties of the
multivariate #-density, we see that the integral of our likelihood will only converge when
q > p. As a consequence, when we have more output quantities to calibrate against than

input quantities to calibrate, the likelihood leads to a proper posterior for a vague, uniform
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prior on x*. Note that this is not the case otherwise, and that, in particular, the posterior
resulting from the NIG likelihood, (4.33), and an improper uniform prior for x* diverges.
Our studies of function have not produced further results of interest, however, so
we continue now without discussing the properties of such posterior densities.

The conjugacy of the prior allows us to update the NIW model extremely quickly.
Equally quick are downdates, derived from the inversion of equations (#.31)-(4.34)), and
formulated explicitly in appendix [C.3] A downdate refers to the adjustment of the model’s
parameter distribution upon the removal, or un-learning, of training data. The concept is
useful for the calculation of leave-one-out diagnostics when we come to checking the
model’s fit, as we do in section[5.1.3]

The model is appropriate for a reasonably small selection of outputs, to keep down
the cost of frequent matrix inversions, which are all thought to depend on the inputs to a
similar degree and in different ways. We make this recommendation on the basis that the
nature of the variation of each linear combination of the outputs across the input space
is a priori identical after scaling. The model would therefore be inappropriate if certain
linear combinations of the output corresponded to weather-like terms that are expected to
vary rapidly over the input space, and others to climate-like trends that are expected to

vary more gradually over the input space.

4.2 The NIW emulator

Having introduced the NIW linear model, in this section we describe how we can employ
it for the purposes of emulation of time series data. With the resulting NIW emulator
we treat coefficients for basis functions in time, rather than the simulator output values
at specific times, as the emulator’s response variable. Since the coeflicients are not ob-
servable, we rely on a Gibbs sampling procedure to simulate coefficient values that can
be conditioned on. By employing fewer basis functions than simulator observations we
reduce the size of the matrices we would otherwise need to manipulate, and by repeatedly
simulating basis coefficients conditional on simulator outputs we effectively integrate out
the missing data from crashed simulations.

The inverse Wishart component of the NIW model provides a formal mechanism for



4.2. The NIW emulator 86

us to learn about the covariance properties of the climate signal via the covariances be-
tween the basis coefficients. Accordingly, the Gibbs sampler also includes a sampling
step from an inverse Wishart distribution for the variance matrix H.

The precise role of the NIW model in our emulator is most easily illustrated by de-
scribing the imagined generative mechanism for a set of N, simulator outputs. We suppose
that variance matrix H is a member of the population described by the inverse Wishart dis-

tribution
H~IW, (P), (4.38)

and that given H, the elements of the N, X g matrix of basis coeflicients, B, are drawn

from a multivariate normal distribution according to
vec(B) | H~ N(E(vec (), HR®K), (4.39)

where the fixed matrix K encodes correlations of coefficients between series and H en-
codes correlations within them. The basis coefficients are then multiplied by a ¢ X N,
matrix of basis function values to produce an N, X N, matrix of values for the climate

trend,
C=p9¢", (4.40)
where the ith row of C contains the climate trend underlying the ith simulation,
[C]i,j = C([T]j, [X1;.). (4.41)

To the climate trends, independent multivariate normal vectors of weather values are

added to produce the N, X N; matrix of observable quantities Y,
vec(Y) | C ~ N(vec(O),K,1). (4.42)

In the final step of the generative mechanism we imagine that the full grid structure of
observations is corrupted when a set of elements of Y is deleted. To keep track of which
values still remain, it is useful to introduce the sets /; for i = 1,..., N,, which contain
the column numbers of un-deleted output values for each simulation, or, equivalently, for

each row of Y.
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In the following two subsections we expand on the process of fitting the NIW emulator
to a ragged array of data and calibrating with it, while in the complementary examples

4.2.1 and 4.2.2] we walk through these processes with synthetic data sets in order to

further demonstrate and clarify features of the calculations involved.

4.2.1 Fitting the NIW emulator

Algorithm[I]serves to describe concisely our Gibbs fitting procedure. It consists of N, + 1
update operations: N, for the individual coefficient vectors and one for the matrix H.

In describing these operations we use the subscript notation whereby [f];. denotes the
ith row of the matrix B and [B];. denotes the version of B with the ith row removed. We
also mix positive and negative subscripts so that [K]; _; is the vector formed by taking the
ith row of K and deleting its ith column.

In lines [ and [5] of algorithm [I] we adjust the moments of the basis coefficients for a
particular simulated climate given the current estimates for all the others. Lines [6] and
serve to customise the full basis matrix and weather variance matrix, which are the same

as those in expressions (4.40) and (4.42) respectively, according to the particular values

of simulation j that are available. The customised matrices are then used in [§] and [9] to
induce moments for the normal distribution of simulator output values. In lines|10{and
we adjust the coefficient moments again, this time by the simulator output values.

In lines [12] and [14] we simulate coefficient vectors and the matrix H, and use them to
redefine the state of the system, overwriting their previous values. Finally, in lines[I5]and
we update a running mean of the sampler’s coefficient values from the post-burn-in
iterations. The running mean, which encodes our estimate for the joint smooths, is the

algorithm’s output.
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Algorithm 1 NIW Gibbs sampler
1: Initiate 8 — E(B), H < E(H)

2: fori=1,...,N;do

3: for j=1,...,N,.do

4 us — E(1B1;.) + K1, K17, _ (18], — E(IB1-,.)
5: % « (K], — K] [KIZ}_ K] ) xH

6: (Z — [¢]1(j),-

7: K, — K]0

8: fy — P

0: s, — 656 +K,

10: Hp — g+ Zph T — )

1: IS D I Y )

12: Simulate [B];. ~ N (5. Z5)

13: end for

14:  Simulate H ~ IW,y, (¥ + (8 - E(B)"K™'(8 - E(8)))
15: if i > Ny, then

16: B — ((i = Npurn)B + B)/ (i = Npurn + 1)

17: end if

18: end for

19: return 3.

Example 4.2.1 (A synthetic example of fitting the NIW emulator). In this lightweight
example we adopt the model for emulating a simulator’s output described in lines (4.38)-
(#.42). Our input variable is one-dimensional, predominantly in order to produce easily
interpretable plots, and the N, = 23 simulation input coordinates are spaced equally along

the interval [—1, 1]. The fixed matrix K is derived from a Matérn autocovariance function,
(Kli; = kpar(lxi = xjl,u = 0.3,v = 2). (4.43)

To create the climate basis we select p = 27 equally spaced points over the time interval
[-1, 1]. These points mark the centres of Matérn autocovariance functions that we use as
basis functions, the span of the basis functions then defines the space of possible climate

trends.
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We derive a prior mean, E (H), for the variance matrix H by inverting the variance
matrix, defined by the same Matérn autocovariance function (4.43)), for the basis centre
points. The reasoning behind this choice will become clearer in section 4.4 where we ex-
pand on our understanding of basis function approximations to autocovariances. We then
generate a true value for H by sampling from an inverse Wishart distribution with mean
E (H) and v = 60 degrees of freedom. Conditional on H, the coefficients are multivariate

normal with moments
E(B) =0, Cov (IBl:. . [B1;. | H) = [K]; /H.

We then specify the variance of the multivariate normal weather signals using another

Matérn autocovariance function so that

E([Wl;;) = B(w(t;,[X1;)) = 0, Cov(IWl;, [Wl) = MulKuly, — (4.44)

(K,] = 0.42kMa,(|tj -11,0.05,1). (4.45)

The complete grid of simulator outputs, which is not observed, consists of N, = 23 sim-
ulations of N, = 100 equally spaced output values. This grid is corrupted by deleting ele-
ments in the ith row of Y after a particular simulation termination time. For this example,
we generated the termination times by multiplying samples from the binomial distribution
B.nom (n = 5, p = 0.7) by twenty. The burn-in period for the algorithm, which we choose
by eye, consists of Ny, = 1000 sweeps through all of the N, + 1 parameter updates.

In figure we plot the synthetic training data as well as the unobserved climate
trends generated by the model. In figure we show the expectations of the climate
trends inferred from considering only one simulation at a time; we will refer to these as the
individual smooths. For the calculation of these smooths we have also treated H as fixed
at its prior mean. This is because the conjugate mechanism for learning about H relies on
our ability to condition on observed coefficient values. Without such observations or the
Gibbs sampler’s simulations of them, learning about H requires a numerical integration
procedure that is unacceptably costly given that the individual smooths are intended to be
a quick and crude alternative to the joint smooths.

Figure 4.4(b)| shows the climate trends that result from the average of the basis coefi-
cient values over the post burn-in Gibbs sampler iterations. These constitute our estimates

for the joint smooths given the ragged array of observations.
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Even without quantitative assessment, it is clear from the plots that the joint smooths
provide a better approximation of the climate trends. Firstly, the structured relationship
between the trends is clearly visible in the way the curves in figure [4.4(b)| are more closely
aligned with each other that those in figure This sharing of information between
the simulations is most noticeable towards the end of the time domain when most of the
simulations have crashed. This is evident in the way most of the curves in figure
decay smoothly back to zero, while those of figure 4.4(b)|, using information from the
simulations that did not crash, maintain flatter trajectories above zero.

In regard to the degree and type of smoothing, the individual smooths appear to be
over-smoothed in the sense that changes in direction of the climate expectation tend to
be sharper in figure The appearance of sharper turns requires that the preference
for smoothness described by E (H) is, to an extent, counteracted. This is possible with
the Gibbs emulator: firstly, because information from all the simulations is combined to
resist the prior for smoothness; and secondly, because the definition of smoothness, as

described by H, may be modified by the inverse Wishart component of the model.

Unfortunately, even on the scale of our toy example, the Gibbs sampler is not par-
ticularly quick in human time, and we suspect its application to significantly larger data
sets would lead to unsatisfactory waiting times. We identify three reasons for the al-
gorithm’s slow progress. Firstly, mixing is slowed by the strong correlations between
climate series. The usual response to this problem would be to alter the sampler to update
multiple coefficient vectors at once; to do so however would eventually lead to greater
computational costs from handling and simulating larger arrays of numbers. Secondly,
the sampler spends a considerable amount of time recomputing quantities that are almost
the same from one iteration to the next. With this comment we refer to the sampler’s
cyclic update schedule, which visits coefficients mostly pinned down by long series of
observations just as frequently as those with very few observations, whose posterior vari-
ance is large. Thirdly, our looped coding in R is not particularly efficient. This is an
implementation issue rather than a methodological one, but it is still a consideration for
our work.

Of these three issues, we find the second particularly interesting. For not only do

we anticipate having to deal with coefficient vectors with differing posterior variance,
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Figure 4.3: Interpolations of the synthetic data used to test the Gibbs algorithm are plotted
here with dashed lines; the unobserved climate trends are plotted with solid lines. Two
pairs of observed output and unobserved climate trend have been picked out arbitrarily and

coloured red and green to better illustrate the nature and size of the weather component.
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(b) Smooths from the Gibbs sampler.

Figure 4.4: Subfigure shows the individual smooths of example 4.2.1]s synthetic

data, these are the expectations for each c(x;, #) given only y(x;, ;) for j = I;. Subfigure

[.4(b)| shows the climate trends calculated by averaging over the post burn-in iterations of

the Gibbs sampler that targets the joint smooth.
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we also look ahead to the calibration stage in which coefficient vectors corresponding to
simulations with inputs close to x* will have greater influence on our calibration inferences
than those that are far away. In an effort to recognise the role of the variable variance, we
can choose to modify the Gibbs sampler, randomising the order of the updates and setting

visitation probabilities, which we collect together and denote @, according to

[a]; o< Var([ﬂ]i,~ | [B]-i., H, y([T], [X]i,~)) , (4.46)

or to recognise the differing importance of each simulation to the calibration procedure
we may choose to set the visitation probabilities according to an estimate of the posterior

for x*, which we write as
[a]; < 7o ([X];,). (4.47)

We may also choose to invest in the calculation of weights that are less ad hoc, with the-
oretical optimality properties in terms of either the sampler’s convergence speed or the
asymptotic variance of the estimates it produces. Interesting work informing these calcu-
lations has been produced by Levine[28]. However, in preliminary experiments following
on from example 4.2.2] we detect almost no advantage to using the modified visitation
probabilities (4.46)) and (.47). We suspect that this fact may be related to the very small
number of simulations here. When there are a large number of simulations and the vast
majority are mostly left out of the algorithm’s visitation schedule this finding may be
reversed, but for now we refrain from engaging in a thorough investigation of visitation

probabilities.

4.2.2 Calibration with the NIW emulator

Our strategy for inferring the value of an input, x*, given an observation of the corre-
sponding output, y* = y(x*), involves discretising the input space to a finite set of N,
points whose coordinates we store in the N,- X p matrix P. The values of the climate basis
coeflicients at these coordinates, conditional on H and the coefficients of the simulated
climates, are normally distributed, and we create the N,- X ¢ matrix, ', to store their val-
ues. This means that the likelihood, which we would use to adjust a prior over the set of

possible x* values given B, is calculated using a multivariate normal density.
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Since the climate basis coefficients for the simulated series are unknown, the like-
lihood we calculate in practice is formed by taking an average over the Gibbs sampler
iterations. So our calibration calculation requires that we insert algorithm [2] as a subrou-
tine immediately after line (15|of algorithm and alter the final line to return / along with
B.

To describe algorithm 2] we also need to introduce some additional notation. Firstly,
we need to define matrices G and J whose elements encode variances and covariances for

basis coefficients at different points in the input space, in the same way the matrix K does,
[G],;H= Var([ﬂ,]i; | H), (J];;H = Cov ([B,]i,- , Bl H)
Secondly, we define

Tvn (Ys i, )

to be the value of the multivariate normal density function, with mean u and variance X,

at y.

Algorithm 2 NIW Gibbs sampler calibration subroutine
1: fork=1,...,N- do

2 pp —E@B)+[JK'(B-EPB)
3: 2 — ([Glix — [J]k,-K_l[J]IZ.) x H

4: My q),uﬁ*

500 I« %" +K,

6: [l]k — ﬂMVN(y*;,uy*» Z:y")
7: end for

8: l_<_ ((l - Nburn)l_'l' l)/(l - Nburn + 1)

Example 4.2.2 (A synthetic example of calibrating with the NIW emulator). In the fol-
lowing experiment, which continues directly from example 4.2.1) we choose to specify
the matrix, P, of candidate x* coordinates to coincide with the matrix, X, of simulation co-
ordinates. This is partly for convenience, since it simplifies the calculations of algorithm
2] and partly so that the posterior inferences from the Gibbs procedure may be compared

more easily to those in which the simulations are considered individually.
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So we choose one of the N, inputs to be the true system input parameter. To its
corresponding true coefficient vector, 8*, we add a new simulated weather term that is
independent of all other quantities, with the implication that the system and simulator
climate functions are the same whereas their weather functions are independent. The
result is a new signal, y*, that we treat as a time series of system observations. Note that
we are not incorporating a simulator discrepancy term for the climate signal here in order
not to distract from the basic mechanisms of the calibration calculation.

Figure shows the curve that interpolates the approximate posterior values for x*,
resulting from the specification of equal prior probabilities on the N, input coordinates and
likelihood calculated with the Gibbs sampler algorithm. Figure meanwhile shows
the equivalent posterior for the case in which a likelihood for y* is calculated simply by
considering simulations individually and not allowing the matrix H to vary from its prior
mean.

To be explicit, these individual likelihoods are computed by setting the prior variance
matrix for the basis coefficients to the prior mean value of the inverse Wishart distribution
used in the Gibbs calculation. Conditional on this matrix, the moments for the coefficients
of an individual simulated climate are adjusted only by the corresponding simulator out-
puts. The mean and variance for the coefficients then define a multivariate normal density,
in the same manner as in lines of algorithm 2, which is used as a likelihood for the
location of x*.

As with example [3.1.2] our conclusions regarding the adequacy of the calibration re-
sulting from the individual and joint smoothing procedures are mixed. The likelihood
calculations in which the series are considered individually can be performed extremely
quickly; they are effectively instant in comparison to the joint calculation. In this example,
however, there is clearly structure in the posterior that is degraded when we consider the
smooths individually. The sharp valley in figure for example, arguably represents
an inappropriate inference that could steer our attention from an input worthy of further in-
vestigation. The broader characteristics, specifically, the posterior mean and variance are
well approximated by the likelihood based on the individual smooths however. This no-
tion is demonstrated when we smooth the likelihood arising from the individual smooths

to produce a curve not dissimilar to the likelihood calculated using the joint smooth.
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(a) Posterior from the individual smooths.
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(b) Posterior from the Gibbs sampler.

Figure 4.5: In subfigure we plot the posterior for x* arising from equal prior proba-
bility masses on the simulation inputs and the likelihoods of the system time series given
the individual smooths of the simulator data. Also plotted here, with a dashed line, is a
smooth of this posterior. In subfigure we plot the posterior arising from the same

prior and the likelihood calculated using the Gibbs sampler.
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4.2.3 Concluding notes on the NIW emulator

The NIW emulator represents an intermediate step in our development of a suitable em-
ulator for simulated and system time series. It is not a model we will advance further in
this thesis, mainly because of the Gibbs sampler’s computational demands, but it does
serve to highlight several important concepts that influence the rest of our work. It shows
us how basis functions help us to deal with large quantities of missing data as well as
large quantities of observed data, and how parameterising a curve by its basis function
coeflicients can lead to a convenient method for inferring covariance parameters. It shows
us how we can use a Gibbs sampling argument to formalise the process of returning to
time series and re-smoothing them with different covariance parameters. And it shows us

that we might be able to prioritise these return visits in the light of system data.

4.3 Nystrom-basis emulators

In this section we look at a significantly different approach to modelling the simulator
and the system. With these models we can also deal with ragged arrays of training data,
but the primary motivation for the work here is the computational cost usually associated
with modelling in high dimensions. With the models that we will introduce, we leave the

grid structure characterising examples [2.3.2f and |3.1.2| behind. In doing so we can save

on computation by drastically cutting down on the size of the arrays we need to handle.
We find, however, that a consequence of leaving the grid structure is that we will have
to abandon the inverse Wishart mechanism for learning about variances and the algebraic
shortcuts that rely on the factorisation of certain variance matrices.

We start in section[4.3.1| by introducing the idea of an optimal, and therefore minimal,
basis for a random field. The optimality of the basis arises from the way it focuses on both
a specific part of the input space, as defined by a prior for x*, and on a specific part of a
space of functions, as defined by a covariance function for the simulator output. The name
‘Nystrom-basis emulator’ is inherited from the ‘Nystrom method’ for approximating the
solution to the eigenfunction problem to which the optimality condition relates. We move
on to describe the conventional method for the estimation of such a basis, and then further,

to describe a novel iterative estimation strategy that gathers the basis’s degrees of freedom
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to the region of the input space defined by an estimate of the posterior for x*. This focusing
technique is inspired by the weighted re-visiting strategy we saw in sectiond.2.1] Finally,
in section [4.4] we develop a particularly parsimonious linear model tailored to the input
locations of the available simulations and the covariance function of the simulator output.

We will find, as we did in section |3} that by explicitly including the time variable ¢ or,
more precisely, by distinguishing it from the input parameter x we introduce notational
clutter that obscures the mathematical structure of the expressions justifying and explain-
ing our basis approximations. For this reason, in the following sections, we will often
think about simulators and systems with a scalar output, and single vector input formed
by concatenating the input variables with the output index, time. This combined input

vector is denoted
=, x"),

while the matrix formed by stacking such vectors as rows is denoted =. We will, however,
sometimes need to unfold & back into (z, x) to make certain expressions required in chapter

5| more explicit.

4.3.1 Approximately optimal basis functions

Despite initial enthusiasm for the FDA approach, we have found it very difficult to an-
ticipate the consequences of a choice of basis, and a penalty or variance specification for
each component, for the covariance function to which they lead. This is unsatisfactory
because our intuition for the covariance function is, more often than not, more highly de-
veloped than that for its components. It is, for example, easier to specify confidently the
mean, variance and approximate correlation decay length for a field than the expected size
of the linear, quadratic and cubic components in its expansion. It seems almost perverse
to create another inverse problem whereby we attempt to construct pseudo-mechanistic
rules, in the form of roughness penalties, that result in the smoothness properties we want
to encourage as part of our prior specifications. So when data are not plentiful, and our
priors are important to our posterior inferences, we reject the bottom-up approach to con-
structing the emulator from a set of basis functions unless there is a significant theoretical

underpinning to a particular penalised or conserved quantity. Still, the basis expansion of
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a field is vital for taking control of the size of the inference calculations. Our preferred
strategy is a top-down approach whereby approximate basis functions are constructed
from precisely specified covariance functions.

Whether our strategy is top-down or bottom-up, the construction of a basis for a space
of functions of many variables has the potential to lead to an overwhelmingly large num-
ber of terms. The problem tends to arise from the tensoring of low-dimensional objects,
either grids or basis functions for example, to create higher-dimensional ones. When we
do this, the resulting objects are equivalent to rectangular grids. As the dimension of the
grid increases, the objects near the corners tend to become less important while the pro-
portion of grid points near the corners grows. Understanding of this rather vague assertion

can be furnished by examining the following examples.

4.3.2 Corners of high-dimensional cubes
4.3.2.1 Corners of probability distributions

In this first example, which is particularly relevant when thinking about the placement of
nodes for the approximation of integrals, we look at the distribution of mass described
by a probability density function as it is generalized to increasingly high dimensional
settings.

Consider a hypercube, denoted C, symmetric about each axis, and containing 0.95
of the mass of a unit multivariate normal distribution. We then introduce the sphere, S,
bounded by the hypercube, pressed up against its faces. We can calculate the volume, V,

and probability mass, M, inside the cube and the sphere as

V(C) = 2r)°, M(C) = 0.95,

(y/r)?

V(S) = LD/2+1)

M(S) = P(xp, < 1),

where P(y3, < r?) refers to the chi-squared cumulative distribution function with D de-
grees of freedom and r is calculated using the inverse cumulative distribution function of

a unit normal variable,

r=®710.975).
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Plots |4.6(a) and 4.6(b)| show the quantities

M(S)

WO © (4.48)
and

V(S)

m, (4.49)

which describe the probability mass and the volume within the hypersphere as a fraction
of that contained within the hypercube. It is clear here that the proportion of the volume
within the sphere, away from the corners, decreases rapidly as the dimension increases,
much faster than the rate at which its relative mass decreases. The result is that in high
dimensions the corners of the cube take up more space and constitute more of the mass,
but the relative density in the corners decreases. It is in this sense that the corners become
more of a burden and less important. The notion is illustrated in figure which plots

the log ratio of the average density within the sphere and within the cube as measured by

[M(S)/V(S)] .

| m©)vc (50)

4.3.2.2 Corners of arrays of basis functions

In this example we demonstrate how the same high-dimensional phenomenon described
in section is relevant to discrete sets, namely sets of basis functions, as well as
continuous sets of real numbers. Here the analogue of the probability density that gives
higher weight to points near the centre of the distribution is a covariance specification that
attributes more variance to smoother basis functions. The analogue of a region’s volume
is the cardinality of a set of basis functions and the analogue of its mass is the variance
attributable to that set.
Let us consider variable selection for a multiple linear regression problem using the
model
y=pe@) e =) [BligE)iee. 4.51)
icQ
We define & = (&1,&,...,Ep)T € RP to be a D-dimensional input quantity, whose com-
ponents are each independently identically distributed according to the density, over one

dimension, 7(-).
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Figure 4.6: In subfigures 4.6(a) 4.6(b)|and 4.6(c) we present plots of the quantities (4.48)),
#@-49) and (@.50)) respectively as the dimension of the input domain increases.
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To construct the multivariate regressors ¢(£), we start by considering an ordered set of
one-dimensional regressor functions, for which a natural candidate is the set of the first
N+1 polynomials {Py, Py, ..., Py} that are orthonormal with respect to z(-). This property

means that for a scalar input, ¢,

L POP(t)n(t) di = 5,

so that for the univariate regression problem in which we have zero expectations for all
the regression coefficients, the variation in the output quantity, y, attributable to regressor
J is equal to the variance of the jth coefficient and is uncorrelated to that attributable to
any other regressor.

The independence of the components of the input quantity £ means that these prop-
erties are inherited by the multiple regression model that employs as regressors products
of the univariate regressor functions. The expectations for regression coefficients and the

summands of (4.51)) are then given by

E(Bl) =0 fori e Q, (4.52)

(O = PP ... Piy(ép), (4.53)
Var (IBL{$(©)];) = Var (1)) (4.54)

Cov (IBLLA©;  [B11¢));) =0 for i # j (4.55)

where the expectations implicit to the variance expressions are over both the values of the
regressor coeflicients and the input quantity, and where the un-subscripted indices i and
Jj label coeflicients, multivariate regressors and their one-dimensional components via the
ordered vectors of the sub-indices (iy,...,ip) and (ji,..., jp).

The full tensored set of N regressors from each of the D dimensions, which we call C,

for cube, may be written as

C = {Pi|(é‘:l)Pi2(§2)---PiD(é‘:D) | i],iz,...,iD > O, max(il,iz,...,iD) < N}

The set S, for simplex, includes interactions only up to a combined order of N and can be

written as

S:{Pil(éjl)Piz(é:Z)n-PiD(gD)|ilai2’~--’iDZOa i1+i2+...+iDSN}.
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Now suppose that the variance specification for the regressor coefficients and the error

term is,
Var (8;) = pi-1 e, Var (¢) = o2,

where p is a constant strictly between zero and one. The specification means that higher
order polynomial trends, which we may understand as being rougher, contribute less to
the function y. It follows that the set sizes, denoted V() for volume, and the sums of

variances for y attributable to the included regressors, denoted M(-) for mass, are given by

1-pM\’
V() = (1+N)”, M(C):( - ) , (4.56)
_(N+D _(k+D-1)
V(S)—( 5 ) M(S)—;( b % (4.57)

Expressions (4.56), for the full set of regressors, are derived simply from raising the grid

length and the formula for a geometric series to the power of D. Expressions are

derived by noticing that there are (k;zz ;1) combinations of D indices that sum to k, and
from the identity
ZN:(k+D— 1) _ (N+D)
“\ D-1 D
For the sake of example we set p = 0.5, N = 6 and show, in figure 4.7(a)} the values of
M(S)
. 4.58
M©C) (4.58)
as the dimension of the objects increases, and in figure 4.7(b)| we show
V(S)
. 4.59
VO (4.59)

the cardinality of S over that of C. Then, in figure |4.7(c)| we illustrate the ratio of these

two quantities by plotting

0 [M] . (4.60)

g
M(C)/V(C)
The point that we make here is that by retaining only lower-order interaction terms we

discard most of the full set’s regressor functions while, because of the variance specifica-

tion, preserving a disproportionately large amount of the field’s variance. Figure 4.7(c)
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Figure 4.7: In subfigures 4.7 (a)l [4.7(b)|and [4.7(c) we present plots of the quantities (@.58)),

#.59) and @.60)), respectively, as the dimension of the input domain increases.
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demonstrates how this point becomes more important as the dimension of the regression
increases, by plotting quantity (4.60), which is interpretable as a logged fraction of vari-
ance densities for the two sets.

Shaving off the corners of fully tensored objects thus has the potential to save a large
number of degrees of freedom, and a large amount of computational demand. It is the
secret to the success of sparse grid methods for numerical integration and their ability
to mitigate the curse of dimensionality. A comprehensive introduction to sparse grids is
given in [8] while a paper with more of an emphasis on their application to integrating
over likelihoods is available in [20].

For simulators like FAMOUS, producing an ensemble of around one thousand simu-
lations requires several weeks, and this is after a potentially longer wait for the computing
resources to become available. Because of this computational cost, and due to simulations
crashing, we are unlikely to be able to produce full grids of simulator data. Similarly, ex-
ploratory emulation with a basis of more than one thousand members, which results from
tensoring four-member univariate bases from five dimensions for example, is likely to
render emulation calculations slow. The emulator still ought to be orders of magnitude
faster than the simulator, but it may become frustratingly time consuming as we refit it
thousands of times under different covariance specifications, and without full grids of
simulated data we cannot speed the calculations up with the methods we derived in sec-
tion 2.3] We therefore commit our further research to emulation techniques that avoid
dependencies on tensored designs and tensored bases.

Both examples of grids in this subsection are relevant to us because our interest lies
in a function that is localised in a space of functions, because the climate is believed to be
smooth, and then we are interested only in its values in certain regions of the input space,
because often much of a simulator’s input space leads to implausible or non-physical

outputs.

4.3.2.3 An optimal basis

We continue our progress towards the proposal of a basis that recognises the relative re-
dundancies in fully tensored objects by stating and proving an optimality result. The

result is phrased as a theorem and a proof, which defers several mathematical details
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whose complete exposition would necessitate the introduction of a significant amount of
additional theory. The theorem is essentially a version of the Karhunen-Loeve theorem,
whose implications reach from the classical work of Karl Pearson [37] on principal com-
ponent analysis, to the contemporary work of Xiu[61] on polynomial chaos (PC). This
latter field is especially interesting to us since it has been driven mostly by the desire of
the applied mathematics community to propagate input uncertainty through simulators
for physical systems. In this context a PC expansion is used to provide a basis for an ap-
proximation to a simulator’s output given a particular distribution for the input variable.
A more detailed discussion of the relationship between PC and methods more familiar to
statisticians is provided in [34], but we note that while the orthogonal polynomial bases
of the PC method are employed with stability, convenience and efficiency in mind, they
are not derived from optimality arguments and covariance specifications for the simulator
output, and they do not scale naturally to high-dimensional fields unless we are careful to
select only certain tensored polynomials as discussed in section[4.3.2.2]

Before launching into the theorem we ought to provide a little mathematical back-
ground to the objects and deferred details the theorem involves. Firstly, we need to define
what we mean by an integral with respect to a real function with domain Q: we adopt the
squared-bracket notation,

fH LHD[f] = L L L[ dare.

éeQ
to denote the integral of a functional £ with respect to function f over a set of functions
labelled H. We thus think of the functional integral as an integration over an infinite-
dimensional vector space. Secondly, we need to talk about the set of functions we in-
tegrate and optimise over in the theorem: we rely on the theory for reproducing kernel
Hilbert spaces, specifically the Riesz representation theorem, to associate an autocovari-
ance function, k(-, -), with a unique space of functions H. This space contains functions f

that are smooth in the sense that

&) = fg KELENFE") A" VfeH,

with the implication that the functions’ values coincide with their local averages as defined
by the kernel. For a more formal introduction to reproducing kernel Hilbert spaces we

recommend consulting [S8].
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Let us imagine that we will be given the values of climate function c(&, V) at all &
and a single 7, and that we will then be asked to make a prediction for c(¢*, V), given &,
using a finite number of basis functions and an error term. We now consider the problem
of choosing the basis functions and the error variance before either of these events, and
respond to it with theorem4.3.1

We find that our understanding of the imagined problem is facilitated by considering
the metaphorical situation in which we will be shown a complete image of an object
and asked to sketch a copy of it. The image will then be withdrawn and we will be
required to describe the object by referring to our sketch. The prior for the function input
and the covariance function for its output correspond to clues for the type of object we
will be shown: a machine, an animal or a landscape, for example. The choice of basis
corresponds to the selection of tools we can use for the sketch such as a pencil, paintbrush,
or ruler. The basis coefficient moments relate to how often, and in which combinations,
we will need to use our tools. And the regression model’s independent error terms relate
to the loss of accuracy we anticipate that our sketch will result in. This problem is one
step removed from the emulation problem because in practice we will not be given the
simulator climate function, corresponding to the complete image, to learn from; we will
only be shown distorted glimpses of it via observations of the output, which has been

contaminated with the weather signal.

Theorem 4.3.1. The first N eigenfunctions of the operator T,

TLAE) = f ke ()€Y 0, “61)

represent an optimal finite basis for linear regression, in the sense of minimising over

choices of basis whose members are in H, the expected squared loss,

L=E((c@ -p9&)), (4.62)

where ¢(£) is a column vector of basis function values at &; rg is the prior distribution for
the input value, &, at which we must make a prediction; k.(-,-) is the kernel that defines
our covariance specification for the zero mean field c(-); B is a vector of coefficients
independent of & and c(¢*); and the expectation in (4.62) is taken over both a finite
vector space, C, for possible values of &, and the reproducing kernel Hilbert space H

defined by the kernel k., for possible values of c(-).
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Proof. By differentiating inside the expectation and solving for zero we can derive the
regression coeflicients, for known regressors and a specific instantiation of ¢, minimizing

the expected loss. These are:

-1
B=E(¢©0@") E@©)c@) = ( f HOVE) 7€) d&) ( f HOEIme (©) df),
(4.63)

which are analogues of the classical least squares estimates with sums over observed
values replaced by expectations, which we write as integrals weighted by the prior distri-

bution. Given these coefficients, the loss to be minimised is

L= fH fg (@) = 2cB" 9(&) + BT pEP(E)" B) me-(£) d€ [Del, 4.64)

_ f fg (&) () dé Dc] - f i ( fg ¢(§)¢(§)Tﬂ§*(§)d§)ﬁ Dlc]. (465
H H

The first term does not depend on the regressors, so we concentrate on the second term

and seek to maximise

= f B ( fg ¢(§)¢(§)Tﬂ§*(§)d§)3D[c],
H

which represents an expression for the variation in c attributable to the regressors. At this

point we introduce the eigenfunctions u; satisfying

fg kel &, e (i€ 0 = Auui(©), (4.66)
fg U (&Y () dE = 6, 4.67)
=24 =2...20. (4.68)

The non-negativity and summability of the eigenvalues, which we take as given, follows
via Mercer’s theorem, as long as we restrict k. to be a continuous symmetric non-negative
definite kernel, and 7;- to be a distribution with moments of all orders. The continuity re-
quirement prevents us specifying ¢ as a white-noise process for example. We also claim
that any basis function in H can be described by a linear combination of the eigenfunc-

tions, and we do so while imposing an orthonormality condition such that

[ = ) duu(&), (4.69)
k=0

> dudy = 1. (4.70)
k=0
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Asa consequence,

( fg $E)PE) 7 (&) d§) =1

which serves to simplify our calculations by reducing J and 3 to

J = f/?TBD[c]
H

and

B = fQ PE)c(E)me(§) dé,

So, trading the matrix notation for explicit sums, we can write

7= [ #po
N 00
f Z( f c(f)Zd,kuk@)ng © df) ( fQ &) ) dyu(€)me (£ dE | D]
=0

Taking the functional integral inside the sums, we see that it can be replaced by the kernel

function,
N o
J = fgfgz Z (f c(©)c(E)D [C]) diur (&) ((f)d«fz dyu)(Eme (€) A€,
i=0 k=0
N
= f f D0 k€ E ) E)me(£) dé Z (& )me- (&) dE .
=0 #=0 =

We then use the eigenfunction property {.66] which removes explicit reference to the

kernel,

Z dixd; (L keg(€,ENur(E)me (€) df) u(ENme- (&) d€’,
1=0

M- M-
i

/1 ,didiu (& (€ )me-(€7) A,

L
and orthonormality property 4.67| which removes explicit reference to the eigenfunctions,

N o o
Z Z Z Adindli (f (& u(ENme(€7) dE )

i 0 [

Il
(=]
=~

Il

i 0 l
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The Kronecker delta serves to collapse one of the sums to leave equation (4.71)), which is
a weighted sum of eigenvalues. The weights must sum to one due to (4.70), from which
we deduce that J is maximised when the maximum possible weight, consistent with the

orthogonality condition, is allocated to the largest eigenvalues,

J Avdidiy, 4.71)

Mg

0

IA

1= 2D

&
T

(4.72)

k

Il
(=]

The maximal weighting, achieving upper bound (.72), requires that dy = d;x. As a
consequence, all the weight in the eigenfunction expansions of the basis functions, (4.69),

is concentrated on individual eigenfunctions. O

Corollary 4.3.2. In the context of theorem the minimum expected squared loss

achievable with a basis of N elements is
L=02-> 1, (4.73)

where o2 = k(£, ).

The corollary follows from putting the optimal value for fH B"BD [y] back into ([#.65).

4.3.2.4 The approximate eigenfunction basis

Zhu [63] gives an analytic expression for the eigenfunctions of the squared exponential
kernel and a Gaussian prior probability density, but in general such results seem to be very
rare. Fortunately, numerical approximation of the eigenfunctions, known as Nystrom’s
method, is a viable alternative. Nystrom’s method involves approximating an integral with
respect to a continuous probability measure by a sum over finitely many points, which we

refer to as nodes. We can use it to approximate the solution to the eigenfunction problem:
N
ul(é) = ) = fk(‘f, n) mg(n) u(n)dn ~ Z k(&, [N];.) w; u(IN];.). (4.74)

Notice that we have altered the notation for the integrated variable from ¢ in (4.61)) to
n in (4.74). This is to make way for notation to describe basis approximation nodes.

We store the N p-dimensional node coordinates N;, i = 1,..., N as the rows of the N X p
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matrix N. By evaluating (4.74)) at the nodes we produce an approximate finite-dimensional

eigenvector problem,
N
Au([N];,) = Z k(IN1;., [N];.) w; u([N];.),
j=1
which we associate with the exact finite-dimensional (right) eigenvector problem,
UA = KWU, U'wu =1, (4.75)

where [K];; = k([N];.,[N];.) are elements of the variance matrix for the climate values
at the basis nodes; [W];; = d; jw; are the elements of a diagonal matrix containing the
integration weights; U is the matrix whose jth column contains the jth eigenvector of
KW; and A is the diagonal matrix containing the eigenvalues of KW.

Given K and W, we solve numerically to produce U whose i, jth element we
equate with the value of the jth eigenfunction of 7" at node i, and A whose jth diagonal
element we equate with the jth eigenvalue of T. Feeding the normalised right-eigenvector
solutions to back into (4.74) we see that our eigenfunction approximations are

linear combinations of covariance kernels centred on the nodes,
N
@) ~ [AL,), > k(& IN;) Wy (Ul
=1

and that our approximate eigenvalues are the eigenvalues of KW.
With the Nystrom method we are free to specify any valid covariance function; there
is no longer an advantage to specifying one that is factorisable, as there was in examples

2.3.2)and [3.1.2] We may, for example, employ radial isotropic kernels which allow for

correlation lengths that are not aligned to the input axes.

In regard to computation, we note that it is in fact preferable to work with the sym-
metrised version of the eigen-decomposition as it can be computed more quickly. The
symmetrised problem has the same eigenvalues as the original, and eigenvectors for each
are easily derivable from the other via the multiplication of a diagonal matrix. These re-
lationships are clear upon noticing that the defining equation for the eigenvectors of the

symmetrised problem,

W!I2KW!'20 = UA, (4.76)
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can be rearranged to reveal the equation for the asymmetric version,

KWW~™120) = (W 2D)A,
KWU = UA,

so that,
U=wW1'20, and A =A.

As for computing the Nystrom approximation in practice, a sparse Gaussian quadra-
ture rule whose weighting function corresponds to the prior for & would appear to be a
natural choice for the approximation in (4.74). However, the rule’s weight matrix may
lead to negative eigenvalues, corresponding to negative variances for basis coeflicients,
to which an appropriate response is not obvious. Sobol sequences or other quasi-random
space-filling designs represent valuable alternatives, and can be modified to reflect a range
of priors if we transform sequences based on the unit uniform distribution with the quan-

tile function of those priors.

4.3.2.5 Applying the approximate eigenfunction basis

Firstly, we need to confirm exactly what our finite basis approximate model is targeting.
For the ‘full’ or ‘target’ model, we define the physical quantity of interest to be the sum

of independent, weakly stationary climate and weather components,
Y&, v) = (&, v) & w(E,v), 4.77)
and assume that the prior mean values have been removed so that,
E(c(&,v)) =0, E (w(,v)) =0. (4.78)

We then specify covariances between the component values using autocovariance func-

tions that are factorisable as follows:

Cov (c(&',V"), c(&",V")) =kee (€, E ke, (V V), (4.79)
Cov(w(@',x',v'), wt”,x",v")) =k (t', 1" Yhyu (X', X' Vb (V' , V7). (4.80)

Our intention here is not to enforce factorisability on the autocovariance function for the

climate over the £ space in order to produce a more flexible model, one whose covariance
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parameters can be more comprehensively tuned according to the time and input depen-
dencies that we observe in the simulated data. The factorisability of the contribution to
from separations in the discrepancy space is imposed in anticipation of the fact that,
for the time being, we do not plan on observing many different simulators spread over the
discrepancy space. Therefore, the added flexibility afforded by discarding this particu-
lar factorisability property will not be utilised and would only serve to complicate the
model. The full factorisability of the weather’s autocovariance is also specified to reduce
the model’s complexity, but also by the experience, discussed in section that the
weather terms of climate simulators are particularly sensitive to the input parameters. So
we specify the factorisability primarily in anticipation of setting the input and discrepancy

contributions to the Kronecker delta function:
kwx(x,a X”) = 6x’,x", kwv(v’, V”) = 6v’,v"- (48 1)

Now, we cite theorem [4.3.1] to motivate the adoption of a basis for describing the
climate over the & space. We define ¢(£) to be an N-dimensional column vector containing

the values of the first N eigenfunctions of 7', where

Thal(€) = fQ ko€ &) 7o (&) u(€”) dE”
'3

and
me(E7) = m(t)m e (x7). (4.832)

The functions 7,+(-) and 7,(-) in (4.82) refer to the prior distribution for the true system
input parameters, and to a distribution that serves to identify the period during which we
are most interested in emulating the simulator and system output.

From here we define a linear regression model whose true coefficient values, described
by #.63), would minimise the expected squared prediction error, in the sense given by
#.62)), given complete knowledge of a particular climate function c(¢, v) over a subspace

formed by holding v fixed. We write the approximation as

Y& v) = &&,v) @ w(E,v), (4.83)

&€ v) = B0 ¢(&) @ ec(€, V), (4.84)
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We specify that basis coefficients relating to different basis functions are uncorrelated and
have variances equal to the eigenvalues of the operator 7. The coefficients relating to the
same basis function, but for different subspaces corresponding to different discrepancy

space coordinates, have correlations determined by k., so that

E([B0W]) =0, Cov ([ﬂ(V')]i , [,B(V")]j) = ;0 jke,(V', V).

Meanwhile, every climate error term, denoted e, in (4.84), is modelled as independent
to all other quantities with variance corresponding to the residual expected loss (4.73).
With the introduction of the climate error term we are effectively replacing variation not
captured by the eigen-basis with white noise, spreading the discarded eigenvalues or vari-

ances evenly over the spectral domain:

N
E (ec(é:’ V)) = Oa Cov (ec(f/’ V/) ’ ec(é:”’ V”)) = [0-5 - Z /l]] 65’,5‘”6\/’,\/”-

J=1

Finally, the weather terms are modelled faithfully to the full model:
E (w(z, x,v)) = 0, Cov (w(t', X', V'), w(t”, x" V")) = k(' 17)6 0 0 Ovr .

We can then use the Bayes linear formulae to adjust our expectation for the coeffi-
cients given observations of y. We can also model uncertainty for the variance of y by
introducing a single multiplicative constant to both k. and k,,, which is inherited by the
linear model’s coeflicient and the residual variances, and employing the NIG machinery.

Now, since we only have access to numerically approximated eigenfunctions, our
basis is already naturally limited to the size of the matrix K in (.73)), which is determined
by the number of nodes employed in the approximation. Further truncation will lead to
a decrease in computational demand when it comes to fitting the linear model, since on
each adjustment of the basis coefficients we are required to invert the coefficients’ variance
matrix. The other effect of the truncation is to smooth out the likelihood for observations,
which can help to stabilise our calibration calculations as we saw in example [3.1.2]

We see the eigenfunction approximation as generating a set of regressors, whose or-
thogonality reduces the regression calculations’ redundancy and potential for instability,

and the eigenvalue approximations as providing a variable ranking and selection criterion.
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In this way the eigen-basis approximation fulfils a role similar to a variable selection pro-
cedure, but is based on the prior covariance specification for y and &* rather than the
likelihood of observed data.

It is also useful to look at the linear model that retains all the approximate eigenfunc-
tion regressors but linearly transforms them back to the regressors that are the autoco-
variance functions centred on each node. This is the case because it turns out to be a
more natural parameterisation for understanding the related approximation in section §.4]

Under the reparameterisation, the model is described using the coefficient vector 3, where

YEv) B0 AU Whee(N, €) @ e.(£,v) @ w(E, v), (4.85)
YE V) P0) kee(N, ) @ e (€,v) @ W(E, V). (4.86)

The variance matrix for the £ is then given by,

Var (B(v)) =WUA™'Var (B(v)) A"'U'W,
~WIPOATT W,
—W!PWIRK W W2,
=K.
A particularly nice property of formulation (4.86) is that it draws attention to the node
locations, and implicitly to the distance of every other point from them. At the node

locations the first two moments of the basis approximation match those of the full model,

which can be seen by writing
Var (B(v)k(N,N)) = KK'K = K,

and further away from the node locations the approximation become less good. In section
4.4l we will construct an approximation, similar to the Nystrom-basis model, while hold-
ing the idea that we are expanding around the node locations as an integral part of our

reasoning, rather than as a peripheral or coincidental feature.

4.3.2.6 The importance-weighted eigenfunction approximation

We are not limited to standard quadrature designs or random sequences however; appro-

priately weighted, we can choose from a much wider class of node designs for the sum
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in (4.74). This is where a great strength of the method is revealed. We can, for example,
create a basis from an MCMC sample. In this way we can craft bases to strangely shaped
regions of interest. In particular, we can tailor the basis to an approximation of the poste-
rior for & given simulated and system data. We will call the tailored basis an importance
basis after the importance sampling procedure, which we now review.

Importance sampling is a technique for generating an approximate sample from a
target distribution using a weighted sub-sample of another sample drawn from an approx-
imating distribution. It is especially useful when it is easy to sample from the approx-
imating distribution but difficult, or impossible, to sample from the target distribution.
The second reason the technique is useful, and the reason that helps us now, is that the
approximating distribution may be positioned not to match the target distribution but to
produce samples at parameter values that are important to the posterior quantities we seek
to estimate. Importance sampling is known as a variance reduction technique because a
Monte Carlo estimate that samples important parameter values only rarely will tend to
exhibit jumps upon those rare occasions. As an example, in [12], Gamerman advocates
the use of fat-tailed importance distributions because estimates of moments from random
samples are particularly sensitive to the extreme values that are sampled only rarely under
light-tailed distributions.

An importance sample from a target distribution with density = is produced by draw-
ing a random or pseudorandom sample of nodes N; from an importance density and com-

puting normalised importance weights W,

nj~ Timp, (487)
@) (4.88)
ﬂlmp(nj), '

M (4.89)
2jwj

where the normalising constants of neither density are required since we normalise them
away with line (4.89). The nodes and weights can then be used to approximate the target

distribution by a multinomial distribution or to approximate integrals over it according to
a(x) ~ M.nom ([N];: %), (4.90)

f h(Om(x)dx ~ " Wih(IN],.). (4.91)
J
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In our case we can use an estimate for the posterior distribution for £&* as an importance
distribution to simulate nodes for approximation (4.74). We would then calculate the
weights in that expression by dividing the prior at the node locations by the importance
density there, and normalising them.

As an example of the effects achievable with the importance weighting technique,
figure shows a plot of the first six of twenty basis functions arising from a unit
normal input prior 7r; a Matérn function for the autocovariance k; and unweighted nodes
at twenty equally spaced quantiles of 7. The functions are scaled relative to each other by
the square roots of their eigenvalues. This plot is compared to figure in which we
present a plot of the first six basis function computed using an importance distribution that
differs from the prior. Specifically, we place the nodes at twenty equally spaced quantiles
of a unit normal centred on minus one. The variance of the resulting field grows towards
the centre of the plot’s ¢ axis, the approximate location of the bulk of N (0, 1)’s mass,
but the potential for high-frequency variation is concentrated towards the left since this
is where the nodes are located. This basis would be appropriate for modelling values of
a function whose inputs are a priori believed to be distributed according to N (0, 1) but
whose high frequency behaviour we know, or suspect, to be more important in the region

of N (-1, 1)’s greatest density.

4.4 The Cholesky-basis emulator

As in section [4.3.2.5| our aim is still to derive a linear model that is suitable for learning
about an unknown smooth climate function whose second moments are described by a
known autocovariance function.

The theoretical motivation behind the eigenfunction basis is the idea that we can model
a maximal amount of variation with a finite number of basis functions and so minimise
the cost of our calculations in terms of this number. Although we can truncate the ap-
proximate eigenfunction basis, each member still relies on all of a large number of nodes,
which each contribute to the cost of a basis function evaluation. Empirically we find that
we can thin out virtually redundant nodes in a convenient fashion by Cholesky decom-

posing the variance matrix for the climate values at the node locations. This leads our
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(a) Unweighted Nystrom -basis.

(b) Weighted Nystrom -basis.

Figure 4.8: Weighted and unweighted Nystrom-bases. For the unweighted basis the nodes
are positioned at quantiles of the unit normal distribution and the weights for the Nystrom
approximation are all equal. For the weighted basis the nodes are positioned at quantiles
of a normal importance density with unit variance and mean —1; the weights for this
Nystrom approximation are proportional to the mean zero unit normal density over the

importance density.
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investigation towards to an approximation whose modification of the full model structure
is understood in terms of retained nodes rather than retained eigenfunctions. We refer to
a basis produced using a node thinning procedure and no eigenfunction truncation as a
Cholesky-basis.

With pivoting enabled, the Cholesky decomposition of a variance matrix K sorts the
rows and columns, which correspond to individual nodes, according to the variance of the
field at the node locations given observations at all preceding nodes. And from the main
diagonal of the Cholesky factor we can read off the square roots of these variances.

To better understand the relationship between the basis node locations and the Cholesky
pivot we need to take a closer look at what the Cholesky decomposition algorithm actually
does when we summon it from a library of numerical algebra functions. A pseudo-code
breakdown of the standard Cholesky algorithm is presented in appendix The
breakdown allows us to see that the Cholesky pivoting subroutine can be understood as
effectively guiding a stepwise search that, at each iteration, selects the variable with great-
est variance given the values of all previously selected variables. We call this greatest
variance the maximal variance, and its corresponding variable the maximal variable; the
maximal variance can be understood as approximating the variance for all the unselected
variables that is resolved upon linear adjustment from the maximal variable. It is in this
sense that the Cholesky thinning procedure for the node locations selects locations that
are representative for the discarded candidate locations.

It can also be shown that the first N components of the Cholesky pivot, the ordered
vector of indices for the selected variables, identify the N X N submatrix of K with the
greatest determinant. Another feature worth noting is that the computational costs of
standard implementations of both the Cholesky decomposition and the symmetric eigen-
decomposition increase with the cube of the number of rows of K, but that the Cholesky
decomposition is around ten times faster.

We now ask ourselves whether we can write an algorithm that is more specifically
relevant to the calibration problem; one that identifies a suitable set of nodes for approx-
imations like (4.74). The answer lies in altering the criterion that is used to pivot or
re-order the rows and columns. Maximisation of our proposed criterion may be phrased

as identifying the climate observations that are best placed to channel information from
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the simulated series to the system series. The best climate variables then define basis func-
tions for our emulator in the form of autocovariance functions centred on the variables, as
made explicit in the alternate parameterisation of the eigen-basis (4.86). To quantify a cli-
mate variable’s informativeness for the system climate we consider a statistic, a function

of &, that takes the form of an integral of Bayes linear resolved variances,

Q¢ v) = f 7z (€)Cov (¢, V") , c(,v)) Var (c(€,v)™" d€, (4.92)

the function .- being the prior for ¢*, as in (4.82)). Our maximisation of the criterion be-
gins with the assumption that the available simulations mark the best places for potential
basis nodes, we use them to define a set of candidate basis nodes and store them in the
matrix =. The domain of the criterion thus shrinks to a finite set of points whose values

we store in a vector Q,
[Ql: = Q([E];.. D) = f (€)Cov (c(€",v") , c([E];.. D)) Var (c([E];.. 9)™ d&". (4.93)

We then need to approximate integral (4.93) by a finite sum, which can be thought of
as a Monte Carlo estimate or quadrature approximation whose nodes are referred to as

integration nodes and are stored in the matrix P:
2 _
[Ql: ~ D w;Cov (e(IP);,v") , e([El;,, D)) Var (c(IE],, )" (4.94)
J

We find it helpful to think of the nodes of the integration grid as atoms of a discrete
distribution for &*.
The new algorithm, which we describe in Algorithm [3 behaves just like the algorithm

for Cholesky decomposition, with the exception that it takes two matrix arguments,
C =Cov(cP,v"), c(E, D)) and K = Var (¢(E, V)),

and one vector argument, w, consisting of the integration weights. The algorithm in-
cludes a stopping rule, which in the standard Cholesky algorithm alerts us to numerical
indefiniteness of the matrix to be decomposed. Here, we use the stopping rule to tell us
when further inducing variables are unable to produce a Q value, an expected variance
resolution for c¢(£*, v*), greater than a certain threshold value. If the stopping rule is not

activated, the algorithm returns: R, an upper-right triangular square root of K; p, a pivot
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vector which orders the inducing variables according to their potential to resolve variance
for c(£7,v"); and €, a vector of values giving the maximum criterion value from each loop
of the algorithm.

The algorithm serves as a thinning procedure when we submit to it a set of candidate
nodes in the matrix =, and we choose to retain the N nodes indexed by the pivot vector
up to the point at which the stopping rule is activated. Additionally, the principal N X N

submatrix of R provides the Cholesky factor for the variance matrix at these nodes.
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Algorithm 3 Modified Cholesky decomposition with pivoting
Input C, K, w

Initialise R — 0,0 — 1 :n,e < 0
for j=1,...,ndo
procedure PIvOTING SUBROUTINE
if j > 1 then
[Qlj-1 <0 > Skip previously selected variables.
end if
fori=j,...,ndo
[Ql: — w'[CT?/[K];; > Bvaluate pivoting criterion.
end for
if max; [[Q];] < € then

Escape For-loop and terminate algorithm

end if

€; < max; [[Q];] > Identify maximal criterion value.
q < arg max [[Q]:] > Identify maximal variable.

Kl S Z[K].,q > Re-order variables.

[K];. s [K],.
[C]l; s [Cl,
[R],; S [R],
0; S 0y
end procedure
[R];; < IKI;; > Update Cholesky factor.
[R]; G+ < [Klj+1)m [R];}
[Cl.j+1ym — [Clr1ym — [C]-,j[K]j,(jH):n[K];;
(K] 1ymGatyn < K] Geiymetyn — [K](j+l):n,j[K]j,(jH):n[K];}-
end for

return R, o, €.

We find contemporary research from the machine learning community mirroring our
ideas here in the work of Quifionero-Candela and Rasmussen. In [41], they describe a

range of methods for the approximation of Gaussian processes based on the premise that
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conditional on a certain set of field values, which they call inducing variables, all or most
of the remaining values are mutually independent. The coefficients of the basis functions
that we use to define our linear model emulator play the same role as inducing variables,
so we can see the Cholesky node-selection algorithm as also being a method for selecting
inducing climate variables.

Approximate analogues to our modified Cholesky algorithm have also been proposed
in the machine learning literature, where such forward-selection strategies are referred to
as greedy algorithms and models constructed with inducing variables may also be called
vector machines. Lawrence et al.[27], for example, describe the sequential construction
of a Cholesky factor using a greedy algorithm that pivots candidate variables according
to an entropy score. As far as we are aware, however, there is no peer-reviewed work in
which vector machine-type Bayesian models are constructed in anticipation of a calibra-
tion problem of this sort.

The inducing variable methods encourage a change of perspective from basis-oriented
modelling strategies; the inducing variables themselves represent an appealing way of
re-interpreting the finite basis approximation to the full rank random field in terms of
landmark or reference climate values, which we feel are, in many ways, easier to relate to
than basis function coefficients. As such we frequently switch between the basis function
and inducing variable interpretations as and when it is convenient.

We use the Cholesky-basis to construct another linear regression model for approx-
imating values of the field described by the full model of (4.77)-(@.81). This time the
column vector of basis functions, ¢(£), is composed of climate covariance functions cen-
tred on the basis node locations. For a single, fixed v, the covariances between the basis
coeflicients are recognisable from the alternate parameterisation of the eigen-basis linear
model (4.86); they are derived from the matrix K = k.s(N,N), which describes the prior
variance matrix for the inducing climate variables in the full model. For different discrep-
ancy coordinates we shrink the correlations using k., just like we did with the eigen-basis

model:

YEv) = BW) (&) ® ec€,v) ® WE, V), [¢(©)]i = ke(IN];.. £, (4.95)

E([B0)]) =0, Cov (IB0/)); .+ [BO)),) = (K™ T ke V). (4.96)
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A major difference of the Cholesky-basis model, inspired by the inducing variable inter-
pretation of the approximation, is that we specify the variance of the climate error term
e., not as homogeneous over its domain, but as the residual variance of the full field given

the values of the selected inducing variables:

E(ec&v) =0,  Var(eé,v)) = keeé,€) = kee(€, Nokee(N, N kee(NL €), . (4.97)

Finally, the weather term of the Cholesky-basis model is also specified as it is in the full

model:
E (W(t5 X, V)) = 09 COV (W(t/9 -x/9 V/) ’ W(t”’ xlla V”)) = kwt(t,5 t/,)éx’,x”év’,v”-

Note that the variance of the linear model’s error term, e.(¢), decreases to zero at the
basis node locations. This feature allows us to explicitly associate the model’s regression

coeflicients with values of the approximate climate at these locations,

(&) ~ BT &) ® e (), (4.98)
¢(N) ~ KB. (4.99)

Given expression (#.99), we can see that specifying the coefficients’ variance as K™
means that the climate covariances between the node locations induced by the Cholesky-
basis linear model matches those induced by the autocovariance function of the full model.

As with the eigen-basis model, the computational savings introduced by this linear
model come from modelling certain climate residual terms, e., as uncorrelated to each
other. The loss of structure the linear model approximation brings about ought to be
small if the basis functions account for most of y’s variation, so that the residuals are
small. To be explicit, the savings arise from not computing the full residual variances and
from not inverting them. The inversion of the approximate variance for values of ¢ now
requires one inversion for the variance matrix for the node locations as well as a series of
others on the scale of the sets of e.(¢) whose correlations are preserved.

In the extreme case, we can model all the residuals as mutually independent,
Cov (e.(&',V), e(&",v")) = 0. (4.100)

Quifionero-Candela refers to this type of specification as a FITC (Fully Independent
Training Conditional) approximation to the full covariance specification. The approxi-

mation is said to possess a global Markov property, meaning that all pairs of subsets of
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variables are conditionally independent given the inducing variables. Equivalently, the
inducing variables can be said to separate the field in the sense of (3.2)). Alternatively, we
can treat particular sets of residuals as independent but preserve the correlations within
them. This is referred to by Quifionero-Candela as the PITC (Partially Independent Train-
ing Conditional) approximation; it represents a more sophisticated approximation strat-
egy than simply modelling all the residuals as independent. In our application of the
Cholesky-basis approximation to real time series data in chapter [5] and to synthetic time
series data in section for example, we choose to retain the correlations within each
series but ignore the correlations between series. In this case, the climate residuals have

the following covariance structure,
Cov (e (t',x',V'), e(t”, X', V")) =Cov . (c(t', X',V , e, x',V')),
=kee (', x'), (17, X))
— ket (1, X' ), N) ke N, N) ke (N, (27, X)),

so that the variance of values of the approximate climate term over time, at a single input

and discrepancy coordinate is given by
Cov (&', x',v'), ¢(t”,x',v")) (4.101)
= Cf((lj, x/)9 N)Var (ﬁ(\/)) kC;f(Na (t”’ x/))
+ kcf((t/’ -x/)a (lﬂ, xl)) - kCE((t/’ -x/)a N)ka(N5 N)_lkaf(N’ (t,” X’)),
= C:f((t,’ x,), N)(Var (ﬁ(vl)) - kcf(N’ N)_l )kcf(Na (t’,’ x,))
+ ke (', X)), (7, X')). (4.102)
Notice that before we have assimilated any data Var (8(v")) = k.¢(N, N)~!, and the approx-
imation’s covariance between time points for an individual simulation is faithful to the
full model. As Var (8(v)) is reduced to zero via the adjustment from data, the variance of
the climate trend approaches that which would have resulted from direct observation of
the climate trend at the basis node locations. Crucially, the covariances within the series

are maintained. This is not the case for the covariances between simulations, which we

insist are induced solely through the inducing variables, with the effect that

COV (ec(t/’ xl’ V/) ) ec(t"9 x“’ V’/)) = 6x’,x”6v’,v”COVc(N,v’) (C(t/’ x/9 V/) ) C(t/” x”’ VH)) ’

(4.103)
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where we have used Cov.,) (c(', x",V") , c(t”, x”,v")) to denote the adjusted or residual
covariance between c(¢', x’,v") and c(¢”, x””,v"") given ¢(N, v") according to the full model.

We can view the Cholesky-basis approximation from a number of angles, correspond-
ing to opportunities for different approximations that have similar or equivalent conse-
quences. From one angle we can see the approximation as enforcing sparsity on the
matrix describing the residual variance of climate values conditional on the inducing vari-
ables. In this way the approximation can be called a sparse approximation. Alternatively,
we can look at the approximation as an approximate factorisation of a joint probability

distribution, along the lines of:
m(c(N,v), ¢(E,v)) = n(c(N, )r(c(E, v)Ic(N, v)) = 7(c(N, v)) l—[ m(c([El;» VIe(N, ).

This is the way Tresp[S3] arrives at a related approximation method, which he calls the
Bayesian Committee Machine.

Because we ignore the residual correlations, the approximate field effectively becomes
rougher further away from the nodes. Typically we would view this is as a degradation
of the full model, but we note that we could also embrace it as a way to introduce non-
stationarity into the model. The field described by the approximation is smoother in
regions of the space filled more densely with nodes. This is not a feature we will have

time to develop however.

4.4.1 An extended synthetic example: analysing the effects of the ba-

sis approximations

We now re-examine examples [2.3.2] and |3.1.2] in order to investigate the accuracy of the

eigen- and Cholesky-basis approximations of a model whose moments are specified by
autocovariance functions. In those first examples, the output quantity y was described as

a sum of climate and weather terms,

y(t, x,v) = c(t, x,v) ®w(t, x,v), (4.104)
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for which we defined autocovariance functions as products of Matérn autocovariances in

each direction,

Cov (c(t', X', V), c(t”,x" V")) = ke (', ke (X, Xk, (V,V7), (4.105)

Cov (w(',x',v"), wt”,x",v")) = k(1,1 Yy (X, X )k V', V7). (4.106)

We then simulated a grid of simulator data consisting of NV, = 13 simulations of time series
of length N; = 51. In this extended example we modify slightly by setting the
autocovariance factors for the weather term relating to the input and discrepancy spaces
from Matérn functions to Kronecker delta functions. The effect of this is to render the
weather signals from different simulations or system instantiations independent.

Our approximations to the full model, whose distinguishing features we recapitulate
in the following list, all describe the climate as a sum of basis functions plus a climate

‘error’ term e,:
Y(t, x) = ¢(t, x) @ w(t, x) = ¢(t, x)B ® e. ® w(t, x).

1. The eigen-basis approximation, with a uniform prior for x* and a uniform distribu-

tion over the time variable, uses approximate eigenfunctions of the operator 7',

1l
TIfI,x') = f f ket £ ke (X, X7) f(27, x7) dt” dx”,
-1 J-1

to define its basis functions. It compensates for climate variation not captured in

the basis by adding a homogeneous white noise-type climate error term.

To implement the current example’s eigen-basis approximation we generate a Sobol
sample of 663 points over [—1, 1]?, which constitute the equally weighted nodes for
the Nystrom approximation of the eigenfunctions and eigenvalues. The first N of
these are retained to define the basis and the linear model as explained in section

4.3.2.31

2. The Cholesky-basis approximations use climate autocovariance functions centred
on specific node locations as their basis functions. Specifically, we generate the
Cholesky-basis by Cholesky decomposing the variance matrix for c(&, V) at the
N; X N,(= 51 x 13 = 663) grid of simulation coordinates with algorithm (3| and by

retaining the pivot’s first N entries. The climate autocovariance functions centred
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on the locations indexed by the retained pivot entries constitute the Cholesky-basis
functions. We then consider the two variants of the Cholesky-basis model which

treat the climate error terms in different ways:

(a) The FITC Cholesky-basis approximation, like the eigen-basis approximation,
compensates for variation that is not captured by the basis with independent
climate error terms. The variance of these terms is not homogeneous however,
but varies according to the residual climate variation that is not resolved upon

the full adjustment by the inducing climate variables.

(b) The PITC Cholesky-basis approximation models the error terms even more
closely by allocating them the same heterogeneous variance specification as
the FITC approximation while also incorporating covariance between sets of

them corresponding to the individual time series.

Our examination of the approximations, and their relation to the full model, consists
of three parts: firstly, in section 4.4.1.T| we examine the moments for the simulator cli-
mate and simulator output values induced by the full and approximate models before any
simulations have been observed; secondly, in section 4.4.1.2) we look at the moments
for the system climate and system output induced by the full and approximate models
following adjustment by the simulator data; and thirdly, in section 4.4.1.3] we study the

likelihood for x* given an observation of a time series of system values.

4.4.1.1 The prior moments for the simulator climate and weather

We compare the moments arising from the basis approximations to those of the full model
with a statistic normally used to measure the Kullback-Leibler divergence (KLD) be-
tween two normal distributions. When the approximating and target normal distributions,
denoted A and N*, are parameterised with mean and variance (71, %) and (u*, £*) respec-

tively, then the KLD of A from N* is written as:

Dx (NN = % (Tr (ﬁ-lz*) + (- -p) -k - 1og(|§||)) . (4.107)

The KLD statistic may be interpreted as an expected benefit or advantage to employing

a notionally true distribution rather than an approximation of it, or as a measure of infor-
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mation loss, but we use it now primarily as a convenient way to measure the difference
between the first two moments induced by our approximating and full models.

In figure[d.9(a)| we plot the KLD statistics produced by comparing the prior means and
full covariances for the simulator climate and simulator output quantities on the N, X N,
grid of simulation coordinates. The plots show that the eigen-basis emulator is less di-
vergent from the full model than the FITC variant of the Cholesky-basis emulator. The
implication here is that the heterogeneous error variance in the latter model is less impor-
tant than the optimal choice of basis functions in the former. The KLD statistics for the
PITC variant of the Cholesky-basis emulator show that retaining some of the correlations
between the climate error terms outweighs both of these features, and renders the PITC
approximation a significantly better approximation to the full model.

Figure shows how the differences between the approximations are diminished
when we view them in the context of contributing to the specification of the outputs’
moments. This occurs because the variance for the independent weather terms, which
we add to the approximate climate variances, serves to dwarf the differences between the

climate approximations for all but very crude approximations.

4.4.1.2 The adjusted moments for the climate and output

For the second round of tests we look at the same KLD statistics for the approximating
and full models as in section f.4.1.1] but now the moments we compare with
are those arising from the models whose coeflicients have been adjusted by the simulator
data.

Figured.10Jappears to convey the same message as figure[4.9] It is difficult to interpret
the significance of actual values of the KLD statistics, however, so in figure #.12] we plot
the interpolating surfaces of the differences between the full emulator’s adjusted expecta-
tion and those of the approximate basis emulators. Context for the shape and size of these
surfaces is provided by figure .11 which shows the adjusted expectation for the climate
surface as calculated with the full model. We can see that with only 27 basis functions,
all the approximate models lead to mean surfaces that are almost indistinguishable from

the full model.
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(b) KLD statistics for the simulator output prior to adjustment.

Figure 4.9: KLD statistics quantifying the divergence of the approximate models, with
varying basis sizes, from the full model. The eigen-basis model is plotted in red, the

Cholesky FITC model in green, and the Cholesky PITC model in blue.
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(b) KLD statistics for the system output after adjustment.

Figure 4.10: KLD statistics quantifying the divergence of the adjusted approximate mod-
els, with varying basis sizes, from the adjusted full model. The eigen-basis model is

plotted in red, the Cholesky FITC model in green, and the Cholesky PITC model in blue.
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Figure 4.11: The interpolated adjusted expected values for the climate trend as calculated

using the full emulator.
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(a) Eigen-basis, 7 basis func- (b) Cholesky-basis (FITC), 7 (c) Cholesky-basis (PITC), 7

tions. basis functions. basis functions.

(d) Eigen-basis, 17 basis func- () Cholesky-basis (FITC), 17 (f) Cholesky-basis (PITC), 17

tions. basis functions. basis functions.

(g) Eigen-basis, 27 basis func- (h) Cholesky-basis (FITC), 27 (i) Cholesky-basis (PITC), 27

tions. basis functions. basis functions.

Figure 4.12: Plots of the difference between the surface of adjusted expected values for

the climate as calculated with the full model and with the basis approximations.
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4.4.1.3 The likelihood for the system input

Finally, we consider the approximations in terms of the calibration results to which they
lead. To do so we first discretise the input space to a set of 100 equally spaced points. We
then simulate a time series of system output values using multivariate normal distribution
with moments informed by the full model, and a value for x* chosen from amongst the
points of the discretised space.

Our approach is to look at the normalised likelihoods given the simulated system
output at the 100 candidate input points as if they constituted a posterior probability dis-
tribution for x*. We then compute a version of the KL.D statistic for discrete distributions:
specifically, the KLLD of an approximating discrete probability distribution Q from a target

distribution P is given by

P (xi))

Dii(PIQ) = ) P(xi)log ( o)

Figure @.13] shows KLD statistics suggesting that the eigen-basis emulator may be
slightly better than the Cholesky FITC emulator in approximating the full model, but that
the Cholesky PITC is superior to both. It also shows that the differences between the
approximations become very small as their bases reach around 30 members.

But again, despite the reassurance that the approximations really do get better as the
number of basis functions increases, the KLD statistics are not very enlightening for the
quality of the approximations. So in figure we plot the normalised likelihoods aris-
ing from the approximations with bases of increasing size alongside that from the full
emulator. We see that the shapes of the approximate likelihoods quickly converge on that
of the true likelihood. It also appears that, in this particular instantiation of the synthetic
example, the eigen-basis approximation better identifies x* than the full model. It ought
to be stressed that this is an anomaly and that, by definition, the full model, which was

used to simulate the data, is expected to attribute a higher log-likelihood to x*.

4.4.2 Making inferences for x*

To make inferences for x* is the aim of what we have, until now, referred to rather in-

formally as our calibration procedure. In this section, as well as the next, we explain
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Figure 4.13: Plots showing the Kullback-Leibler divergences of the posterior distributions
for x*, calculated using the approximate models, from the posterior calculated using the
full model. As in the other plots in this section, the statistics corresponding to the eigen-
basis model are plotted in red, the Cholesky FITC model in green, and the Cholesky PITC
model in blue. Subfigure[d.13(b)|provides a higher resolution examination of the statistics

for the smaller bases.
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Figure 4.14: Normalised likelihoods, interpreted as posterior distributions, for x*. The
black line interpolates the probabilities arising from the full model, the red line interpo-
lates those from the eigen-basis model, the green line interpolates those from the Cholesky
FITC model, and the blue line interpolates those from the Cholesky PITC model. The red

vertical lines mark the location of the true values of x*.
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precisely the form of the inferences we intend to make and the calculations that they
involve.

Focusing on the PITC Cholesky-basis model, and using the shorthand notation
P* = kcv(V*’ 9),

to denote the correlation brought about by separations in the discrepancy space, we can
write the expectation for the system climate trend in terms of the adjusted basis coeffi-

cients for the simulator climate:
E (&&,v") =p ) EBD)),

where, notationally, ¥ is not interpreted as much as an argument of the expected system
climate as an index for the simulator climate coefficients.
Following the approximation’s climate error variance specification, as described in

(&.103)), the covariance between climate values within a series is given by,

Cov (&7, x',v") , &, ', ) =p"¢(t’, X')" (Var (B(D)) — kee(N,N)™)g(1”, x')

+ kc.f((t’ -x/)a (t” xl))kCV(V*a V*)v
while the covariance for climate values belonging to different series is,
Cov (&', X', V'), &, x" V") =p"2¢(t’, x') Var (B(D)) p(t”, x").

These quantities, with the addition of variance terms attributable to the weather, induce

the following expectations and variances for the system output,

E (y(t, x*,v")) = E(¢(t, x*,v")), (4.108)

Cov (y(t, x",v"), y(t', x",v")) =Cov (&(t, x*, V"), &', x",v"))

+ Cov (w(t, x",v*) , w(t', x",v")). (4.109)

Now, as we begin to consider tackling real data, rather than synthetic data simulated in
a known and controlled way, we face the important decision of whether or not to associate
statistics (4.108) and (4.109) with a probability distribution, which would allow us to

construct a likelihood for the system inputs given a set of system outputs. This likelihood
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may then inform simulator diagnostics and contribute to a posterior distribution for x*,
given that we are also prepared to assign x* with a prior distribution.

One property of a potential posterior distribution for x*, written -y here, that we find
particularly interesting is the @ X 100% highest posterior density credible set (HPDCS),
which we will assume always exists for the type of posteriors we will construct. An

HPDCS is an @ x 100% posterior credible set for which there exists an 4 such that,

fﬂx*lY(x) 1(x € Quppcs) dx = a, and Qpupps = {x | mey(x) > hj,

where 1(-) is the indicator function taking value one when its argument is a true propo-
sition and zero otherwise. The significance of the HPDCS lies in the fact that it is often
understood as being the smallest of all & X 100% posterior credible sets when we quantify

size with,

Q| = f 1(x € Q) dx, (4.110)

which can be seen as generalising the length of a one-dimensional credible interval. We
imagine locating the HPDCS by lowering a horizontal plane over the posterior surface
and stopping once a of the posterior mass is accounted for by the parameter values at
which the density rises above the plane.

The HPDCS is a natural description of the posterior when our prior for x* is uniform,
but when it is not, the size of the region as described by (.110) is questionable. We argue
that it is more natural to concentrate on the & X 100% credible set, which is smallest with
respect to the prior density for x*, because we are particularly interested in the proportion
of the inputs that we had once thought plausible that are discredited by the data. We define

the size of a set Q with respect to a distribution 7 to be,

Q| = fﬂ(x) 1(x € Q)dx. (4.111)

The credible set that is smallest with respect to the prior for x* is the highest likelihood
credible set (HLCS); a justification for this claim is presented in appendix

In practice we consider two methods for approximating (4.111)) and other integrals
over the input space. The first, and the simpler of the two requires that we generate a

large pseudo-random or quasi-random sample from the prior. We evaluate the likelihood
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for each sample member and normalise the likelihoods so that they sum to one. We then
sort the normalised likelihoods into decreasing order and select the first few such that their
sum exceeds @. The proportion of samples corresponding to the selected likelihoods is

our estimate of the HLCS’s size:

1 &
L N Z 1(x € Qpics),
=1

where the sum is over the N members of the prior sample. The prior density does not
feature explicitly in these calculations since it exerts its influence via the distribution of
the prior sample members.

The second, more sophisticated, method utilises the sparse grid methodology we men-
tioned in our discussion of the redundancy in full-grid designs in high dimensions and in
section [2.4.T] as part of our discussion on integrating over covariance parameters. The
sparse grid integration schemes provide us with arrays of integration node locations and

integration weights for making approximations of the form,

N
fﬂ,-mp(x)f(x) dx ~ Z w;f(x)). 4.112)
=1

The function 7;,, in (@.112)) plays the role of an importance density and characterises
the integration scheme. To approximate an integral that does not explicitly include the
importance density as a factor, we simply include its reciprocal in the function that is
evaluated at the integration nodes,
N
ff(x) dx = fﬂlmp( ) ——— S dx = ij&.
tmp( X) = ﬂimp(xj)

Thus, we approximate the normalising constant ¢ for the posterior as

al TT. *(y* | X')ﬂg*(x‘)
c= fﬂy*(y* |x)7T§*(x)dX ~ ij y J j ’

=y ﬂimp(xj)

and we think of the values r;, in the context of approximating integrals, as playing a role
analogous to posterior probability masses,

_ Wjﬂ'y*(y* | Xj)ﬂ'é:*(Xj)
Cﬂimp(xj)

There are two features that recommend the use of Gaussian quadrature schemes: one

is that by aiming the importance density at the posterior for x* we focus our emulator
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evaluations on inputs in the parts of the input space that are most interesting; the other
is that by choosing an importance density that is almost proportional to the posterior, the
approximation can be shown to be almost exact.

As with the random prior sample, to approximate ||, . here we sort the integration
nodes into decreasing order with respect to their likelihoods and select the first few such
the r; values sum to more than «. The size of the HLCS is then a sum over this set of

selected nodes,

S me(x))
T Z Wj————— I(X € QHLCS)-

ﬂ-imp(xj)

1Qnics
=1

Next, we look at a way to summarise more information from the posterior for x* in a
natural fashion. The summary we adopt is motivated by the affinity of Gaussian quadra-
ture with the estimation of moments. Specifically, we approximate the first few moments
of the posterior with the quadrature scheme and, to make sense of them, associate them
with an Gram-Charlier A (GCA) series, which we interpret as a sketch of the posterior
density. The series is not guaranteed to constitute a valid probability density function
because it can take negative values, but we can still use it to produce approximate plots,
approximate integrals and approximate MCMC algorithms so long as we perturb the neg-
ative densities to a small positive value. The particular form of GCA series we concentrate
on acts like a functional expansion of the posterior density about a Gaussian with the pos-
terior’s first two moments.

For example, the GCA series approximation for a one-dimensional posterior 7 with

mean and variance u and o is

1 e N -
T = e (—%) [1 + > [91H, (XU“)).

The H, functions here are the normalised probabilists’ Hermite polynomials. Calculating

the series’ parameters requires that we first estimate the posterior mean and variance,
then use these to estimate the coefficients ©#. The reason for introducing the Hermite

polynomials is that their orthonormality properties imply,

f rx [ () de~ o1
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so that the series parameters are particularly straightforward to compute:

N
U~ Z rix;, (4.113)
j=1
N
o2 ~ Z ri(x; — w), (4.114)
j=1
N X —u
[~ > erk( = ) 4.115)

=1
The GCA series approximation arising from estimates (@.113))-(.113) ought to paint an
accurate picture of r(x | y) when it is almost normal, and small values of S produce only
minor corrections for its shape.

In D dimensions we parameterise the GCA series approximation of a posterior dis-
tribution with mean vector y and variance matrix X in terms of its principal component

scores,

D 2 D
n(x|y>z(2n)-D/2|2|‘”2(ﬂexp(—%))[l+Z D Waim | | Hilla) |,
d=1

d=1 k=3 3 ig=k

u=A""0"(x - p,

where A and U are the D X D matrices of eigenvalues and eigenvectors of X. This
normalised parameterisation is also the key to iteratively improving the accuracy of the
quadrature estimates more generally, because once we have (potentially crude) estimates
for the mean and variance of 7 we may recompute the set of quadrature node locations
by transforming the grid whose importance density is a unit multivariate normal density
from the space of the principal component scores, u, back up into the input space of x.
Before we move on we reiterate that references to the ‘integration nodes’ in this sec-
tion, and those that follow, refer to the arrays described above: either the random sample
from the prior or the sparse grid. They are distinct from the basis nodes, which are the
locations of the inducing variables and the centres of the Cholesky-basis functions. Addi-
tionally, the integration node with the greatest posterior density value will be referred to

as the MAP estimate for x*, and denoted xj, , .
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4.4.3 Calibrating the covariance parameters

In the examples to come, we will choose a correlation function for the climate of the form
keelé,€) = exp |- - &)L (€ - &),

because it is extremely quick to compute and allows us to describe correlation lengths,
which accommodate ridges in the climate surface that are not aligned to the input axes.
The matrix L here is an upper triangular matrix which fulfils a role analogous to the pa-
rameter /s in (2.41) for the squared exponential autocovariance function in one dimen-
sion. This parameterisation of the correlation lengths ensures that the product L™'L~7
is PSD, and that consequently the covariance matrices derived from the the correlation
function are PSD too. We may also choose to modify the parameterisation slightly by
insisting that the diagonal elements of L are strictly positive, with the effect that the pa-
rameterisation becomes a bijection onto the set of PSD matrices.

The pursuit of inferences for covariance parameters has motivated a great deal of in-
teresting research, and the construction of clever algorithms. We can, like Browne [7]]
for example, construct an RWM algorithm that jumps from one proposal to another using
a Wishart distribution whose mean is the current state of the chain, thus staying within
the set of PSD matrices. We can try to reparameterise the correlation length matrix like
Pinheiro and Bates[39] in an attempt to find opportunities to exploit our intuition or prior
knowledge for the field, if we have any. We can also try to steer our algorithm around
the set of PSD matrices by computing the gradient of the likelihood with respect to the
correlation length matrix, as recommended by MacKay[30]. We find the random walk is
aimless and slow, and that the reparameterisation and the differentiation calculations can
be fiddly and prone to human error. The mathematical and computational efforts required
to overcome these difficulties, by themselves, would not represent sufficient reasons to
abandon an investment in sophisticated algorithms, but they are compounded by the sus-
picion that formal searches for L are likely to represent misplaced effort since the system
is not a Gaussian process with the specified autocovariance function. Furthermore, we
will only be able to use an approximation to the full Gaussian process anyway. Our pri-
ority is to move away from potentially inappropriate initial estimates without introducing

excessive complication or opportunities for errors in our calculations. So our preferred
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way forward is to strive to make likelihood evaluations for the emulator as fast as possi-
ble and to use a robust, brute-force Nelder-Mead optimiser on a posterior arising from an

informative prior that protects against over-fitting.

4.4.4 Emulator validation

As our first diagnostic, we ought to assess the adequacy of the numerical approximation to
the integral that defines the pivoting criterion in the modified Cholesky algorithm[3] To do
this, we run the algorithm on the variance matrix for the climate values at the integration
nodes. We should see the elements of pivoting criterion vector drop to small values well
before the last of the integration nodes is selected. If this occurs there is some redundancy
in the integration grid; if not, we have a sign that the integration nodes are positioned too
sparsely and have left parts of the input space unaccounted for.

Next, we suggest inspecting leave-one-out diagnostics for simulations with reference
to their marginal input coordinates and to their proximity to the basis nodes. The basis
nodes are the conduits between which simulations can share information with each other.
This will be complementary information if the emulator is well-suited to the data in ques-
tion, or contradictory information if the emulator is significantly misspecified. Thus sim-
ulations close to many nodes ought be most useful for diagnosing a poorly fitting emulator
and we suggest they are prioritised in checking procedures. We measure the proximity of
a set of input values to the nodes with the trace of the variance resolved upon adjustment

by the inducing variables:
Tr (k(£, N)Var (B) k(N, &)) . (4.116)

The scalar quantity (4.9) from section d.1.1] measured against the f-distribution that de-

scribes its prior, is a natural test statistic for the leave-one-out diagnostics.

4.4.5 Simulator validation

Although the fit of the emulator is important to us, the question of primary importance
to the scientists and stakeholders involved is whether they ought to pay attention to the

simulator, and whether it is sufficiently authoritative to inform predictions and policies.
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It may be that we are particularly reluctant to use the language of probability when
making explicit statements about x* to these stakeholders. We may feel uncomfortable
talking about the HLCS of section 4.4.2] for example, when our prior does not represent
beliefs we would wish to be held to. The approach used in the history matching exercises
[9] and [56], by members of the department at Durham University, is characterised by
caution. Their methods involve the use of thresholds to partition the input space into the
‘ruled-out set’ (ROS) and the ‘not ruled-out yet set’ (NROYS). We label these sets Qgps
and Qygroys respectively. The thresholds used tend to be based on probabilistic bounds
provided by results such as Gauss’ inequality and Chebyshev’s inequality, described in

appendix [D.2.2)and [D.2.3] which ought to be more forgiving to discrepancies than likeli-

hoods based on the normal distribution.

The history matching strategy is emphatically not a fully Bayesian analysis, as it does
not result in probabilistic statements for the location of x*. The set of points not ruled
out could be empty. We would then reject the idea that there is a best input and a best
simulation without entertaining an alternative hypothesis. Another feature of the threshold
strategy is that it focuses our attention on a point-wise plausibility measure, not on the
plausibility of x* being in a particular region.

The proportion of the set of a priori plausible inputs within the NROYS is a quantity
with which we may communicate the degree to which a calibration exercise has identified
plausible input values. For the approximation of the size of the NROYS we consider the
same two methods described in section #.4.2] With the first, we simply generate a large
sample from the prior, count the number of sample members that pass the plausibility test
and divide by the sample size.

The second method requires that we evaluate the discrepancy statistic at the integration

nodes of a quadrature scheme and perform the following sum,

1(x; € Q (X5
Ourorsle, = 3 wym & unons v () (4.117)

; / ﬂ'imp(xj)

We note that quantification of the NROYS in this way, measures its size with respect to the
prior distribution for x*. Being able to compare the history matching statistic to
the likelihood-based calculations of section 4.4.2]is part of our motivation for preferring

the HLCS to the HPDCS.
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Typically the test criterion takes the form of a normalised squared discrepancy along

the lines of

dros(x) = (v = By (y(x)))" Vary ((x)™" (v = Ey (y(x))), (4.118)

and the threshold is set with reference to an approximating distribution. For example, if
we are willing to liken the imagined variability of (4.118) to a chi-squared distribution,
we may choose to employ a three-sigma type rule and deem criterion values over g +
3 \/Z to signify implausibility, where ¢ is the dimension of the vector y(x*). Because
plausibility is not conserved in the way probability mass is, the NROYS is indicative
simultaneously of the degree of uncertainty reduction for x* given the model and for the
validity of the model. The latter information is normalised away in the calculation of the

posterior credible sets.

4.5 Chapter summary

In this chapter we have reviewed the NIG model and NIW models, which we can use to
learn about the smoothness of the climate as well as its values. Furthermore, we have
incorporated it into a Gibbs sampler algorithm that serves to reduce the dimension of
the regression, and accommodate missing data. Still, the method is too demanding to be
satisfactory and so prompts a move to more radical approximations.

Our next model, the importance-weighted eigen-basis emulator, represents a highly
efficient and adaptive emulation tool. It addresses the problem of regressor selection in a
way that utilises our intuition for the structure of the simulator output and the location of
the most relevant parts of the input space. Computationally, the linear model arising from
the eigen-basis approximation allows us to quickly assimilate data sets larger than those
we could handle with the full covariance function. The optimality result, theorem [4.3.1]
helps us to understand the importance of the eigen-basis, whose members we can view as
harmonics, of increasing frequency and decreasing size, on an elastic membrane.

The Cholesky-basis approximation allows us to understand the eigen-basis approxi-
mation from another angle. The importance of the eigen-property is diminished and the
basis nodes of the Nystrom approximation, that were previously understood just as a set

quadrature points, are reinterpreted as a set of indices for benchmark climate quantities
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that are representative of all the simulator outputs. The nodes of both approximations
may be compared to the particle swarms that feature in particle filtering and population
Monte Carlo methods. There the nodes, or more precisely the kernel functions centred
on the nodes, provide a flexible and convenient way to parameterise distributions; here
the kernels also define a distribution, for x*, but do so from inside the likelihood for the
system inputs.

The development of the PITC variant of the Cholesky emulator represents the culmi-
nation of our work in this chapter, it is the emulator in which we have most confidence
with regard to its genuine usefulness to statisticians and modellers. We value it for its
parsimonious use of approximation nodes; its interpretability in terms of inducing vari-
ables or benchmark values, which we find easier to think about than eigenfunctions of
a particular operator; and its sophisticated treatment of the climate variance not accom-
modated by its basis functions, which renders its approximation to full models, specified
using autocovariance functions, more accurate. As such, it is the emulator that we will
focus on when we demonstrate the applicability of our methods to real data in the next

chapter.



Chapter 5

Analysis of the FAMOUS data

In this penultimate chapter we apply the methods discussed in the previous chapters to a
subset of simulations from FAMOUS, the climate simulator introduced in section[I.1.5.1]
The chapter consists of two main sections that deal with the emulation of FAMOUS and
its calibration given a series of synthetic system data.

The subset of the FAMOUS data we concentrate on here consists of 99 series of vary-
ing length, all computed under the same emissions scenario in which carbon dioxide levels
increase exponentially for thirty simulator years before decreasing at the same rate back
to their initial values.

We preprocess the data by linearly transforming all variables, inputs and outputs, to lie
in the interval [—1, 1] such that the most extreme values in the data set are mapped to the
faces of the resulting hypercube. We do this primarily so that the emulator’s correlation
lengths are interpretable as proportions of the ranges for the input parameters that are
considered a priori plausible.

Preliminary visual inspection of the series suggests that the effect of increasing the
emissions is to reduce the AMOC flux, and the effect of decreasing them again is to allow
the flux to return to approximately the value at which it began. This behaviour is visible,
as a dip in the output over the first 60000 simulator days, in plot of section (1.1.5.1},
and which depict the fitted emulator and which we will discuss in detail in
section[5.1.4] The flux’s return is characterised by an over-adjustment, which sees it rise
about as far above its initial value as it dipped below, and by increased high- and medium-

frequency variation. Ignoring this nonstationarity in the high-frequency behaviour leads
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to discrepancy statistics far exceeding their anticipated bounds. To be precise, it proves
impossible to produce diagnostic plots equivalent to[5.5(b)|in which discrepancies for both
the longer and shorter series lie mostly within the guidelines informed by the chi-squared
distribution, which we discuss shortly.

Our response is to allow for a step change in the weather covariance parameters at
the time the emissions begin to decrease, which coincides approximately with the flux’s
minimum values. We refer to times before and after the step change as past and future;
defining sets €, , and €, ¢ as those containing these time points respectively, and adopting
the subscripts p and f to label the covariance parameters during these periods.

We are unable to include real system data in this example as the simulated emissions
scenario is fictional. Even if it were not, relating the simulator’s flux to the flux measured
by an array of buoys, the primary source of such data, would represent another statistical
challenge that would only obscure the emulation and calibration methods we intend to
demonstrate. Instead, we gather a time series of ‘fake’ system data, denoted y*, simply
by removing one simulation from the 99 before we begin the analysis. Later, in section
this fake data is modified in order to mimic the effect of discrepancy between the

simulator and the system.

5.1 Emulating FAMOUS

Throughout this chapter we focus exclusively on emulating and calibrating FAMOUS
using the PITC variant of the Cholesky-basis model described in section We make
this decision because, as discussed in sections {4.2] and [{4.3] respectively, application of
the NIW model is only really practical for small data sets because of its computation-
intensive fitting procedure; and the eigen-basis model and FITC Cholesky-basis model
produce inferior approximations to specified autocovariance functions because of their
crude treatment of approximation residuals, while also, in the case of the eigen-basis
model, incurring higher computational costs.

The simulator’s input parameter consists of three scalar quantities: a solar constant,
which parameterises the energy entering the atmosphere from the sun; a diffusion coef-

ficient, which affects the diffusive mixing of layers of water; and a cloud entrainment
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coeflicient, which affects cloud formation and growth. We label them x;, x;, and x, and

order them as elements of the vector

T
X = (-xs7 Xd» -xe)'

5.1.1 Defining the covariance structure for the full emulator

We construct the full model for the flux as a sum of climate and weather terms,
(&, x,v) = c(t, x,v) ® w(t, x, V),

and relate the system and simulator fluxes by considering them as special cases of the

same function,

ysys(t, X) = y(t, X, V*), ysim(t, X) = y(t9 X, i\})

The high-frequency variation of the FAMOUS data is very sensitive, a diagnosis we make
on the basis of replicate inputs submitted to CPDN in anticipation of crashes. They reveal
that calculations that ought to have been identical produced substantially different outputs.
This is thought to have resulted from the simulations being farmed out to machines work-
ing at different precision or from corruptions to files as they were transferred between
machines. With this in mind, we specify the weather trend as completely uncorrelated
between input coordinates and between points in the discrepancy space. Additionally, we
specify that the autocovariance function for the climate trend factorises into components

as follows,

Cov (c(t,x" V'), ¢, x" V") = kex (£, X), @, X" ke (V, V"), 5.1

Cov(w(t', X', V'), w(t”", X" V")) = 02 ky(t' )80 Oy . (5.2)

We choose a squared exponential autocovariance function, which is very fast to compute,
to describe the climate trend because we need to evaluate it very often when calibrating
its parameters. For the weather autocovariance function we choose a Matérn function
with the intention of achieving greater precision in our specification of the high frequency
weather signal. Since we model the weather as uncorrelated between series and as pos-

sessing the same variance specification across the input space, the Matérn covariances
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only need to be computed once for a full series and stored for reference. While we con-
sider just one simulator and one system, parameters for k.,, the covariance function over
the discrepancy space, are hopelessly confounded with v*. For this reason we combine
their roles in the parameter p*. Explicitly, the functions appearing in (5.1)) and (5.2) are
given by

keal (¢, ), (7, x)) = o exp [~ =V LTLT & - &),

kev(D,v7) = o7,

T pkma ([t = 1715 Ups Vi) fort',1" € Q,,,

2 kgt = 1Lty ) for #,1” € Qy;

TvwpTwrkma(|t” = 17; ,/(M%Vp + ufvf)/Z, vy) fort € Q1" €y,
TropTwrkptar(lt =11 (U2, + ufvf)/2,vw) fort € Q. ;1" € Q).

where the weather covariance across the transition between past and future periods is

ki (2, 1) =

informed by the nonstationary Matérn model whose validity as a covariance function is

proven in [33]].

5.1.2 Preliminary parameter estimation

Our initial specifications of the covariance parameter values for the full model, based on

our intuition for the simulator and labelled with the subscript (init), are:

02 0 0 O
0 15 0 O
L(init) = ’

0O 0 15 O

0O 0 0 15
O c(inity = 1, v, = 0.4,
O wp(init)y = 0.02, Oy f(init) = 0.05,
Usp(ininy = 0.02, Uy f(inir) = 0.05.

The implication of the value of L, here is that climate values on opposing sides of the

simulator input domain are weakly, but not insignificantly, correlated. The smaller entry
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in the first column means that the climate values separated by a time period equivalent to
a quarter of the total period considered have practically negligible correlation. The other
covariance parameters are used to describe a weather component approximately 0.05 of
the size of the climate variation with temporal autocorrelation such that values of the

weather separated by one simulator time step have a correlation of about 0.5.

5.1.2.1 Constructing the basis for the approximate emulator

Given the covariance parameters, construction of the Cholesky-basis consists in selecting
the nodes that define the locations of the inducing climate variables. To do so, we use
algorithm [3] equipped with an integration grid produced from a uniform Sobol sequence
over [—1, 1]* and equal integration weights.

The full set of 13740 simulator data points is not too large to handle with the algo-
rithm, but the calculation does begin to slow down noticeably as the matrices involved
grow to contain more than 10007 elements. We respond by partitioning the data arbi-
trarily into subsets of 600, and then thin each set using the modified Cholesky pivoting
algorithm with a cut-off threshold of 1 x 107*. This leaves a set of 1249 nodes to which
the thinning procedure is applied again to leave 194 nodes.

To illustrate the process, we present in figure [5.1]the maximum values of the pivoting
criterion at each iteration of the algorithm. In tests with slightly perturbed covariance
parameters, the thinning procedure consistently returns sets of 50 to 300 nodes with the
majority of the thinning taking place in the time direction. The result of the thinning can

be appreciated from figures [5.2(a)] and [5.2(b), which show pairs plots of the candidate

node locations and the subset of node locations that are retained in order to define the

Cholesky-basis functions.

5.1.3 Adjusting the approximate emulator
5.1.3.1 Adjusting the covariance parameters

The PITC Cholesky-emulator inherits parameters, and the smoothness properties they
imply, from the full model. Adjusting them here involves repeatedly fitting different

Cholesky-basis emulators derived from different covariance parameter choices for the
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pivoting criterion

.

I I I I I I I
0 200 400 600 800 1000 1200

0.000 0.001 0.002 0.003 0.004 0.005 0.006

iteration

Figure 5.1: The maximum values of the pivoting criterion for the modified Cholesky
algorithm at each iteration. The dashed horizontal line marks the criterion cut-off value

and the vertical line marks the point at which the cut-off occurs.

full model. To calculate likelihood values for a particular set of covariance parameters we
associate the moments implied by the corresponding Cholesky-basis emulator with a mul-
tivariate normal distribution, and to moderate the likelihood we allocate L”L a Wishart
prior and the variables o, o, 0s, Uy, and u,,; gamma priors while holding the weather

spikiness parameter, v,,, fixed:

L'L ~ Wi (¥ = L], L) (5.3)

0%, ~ Gamma (g, = 0.1,¢, = 2), (5.4)
oy ~ Gamma (g, = 0.01,¢9, =0.2), (5.5
o ~ Gamma (g, = 0.01,¢, = 0.2), (5.6)
iy, ~ Gamma (¢; = 0.01,¢g, = 0.2), (5.7)
u,r ~ Gamma (g, = 0.01,g, = 0.2). (5.8)

Note that in the priors (5.4)-(5.8) we have parameterised the Gamma distributions by
their fifth and ninety-fifth percentiles, denoted ¢; and g,, rather than the standard shape

and scale statistics, to better communicate the prior information that they encode.
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Figure 5.2: Pairs plots of the candidate inducing climate variables, and those that
are selected to form the Cholesky basis,
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To determine the parameter values at which to evaluate the posterior and to guide us
towards optimal values for them, we hand over a function returning the log-posterior to
R’s Nelder-Mead optimiser. The optimisation is slow, taking minutes or hours depending
on number of basis members used, but it is stable and converges on a solution without
identifying any numerical problems. The MAP estimates for the model with the initial

node locations are:

0.35 098 -0.08 -0.62
0 252 -0.65 -0.16

L(MAP) = B
0 0 238 -0.60
0 0 0 125
Tomary = 025, v = 0.4,
T wpuar) = 0.051, o wfar) = 0.090,
pary = 0.02, yfap) = 0.043.

The optimised covariance parameters lead to an emulator that more strongly resists fit-

ting large climate trends insofar as ag( map) 18 considerably smaller than o The off-

2
clinit)*
diagonal elements of the optimised parameter L,;4p do not seem particularly large, call-
ing into question whether allowing their values to vary from zero, which significantly
increases the dimensionality of the optimisation problem, is really worthwhile.

The correlation length in the direction of the entrainment coefficient is decreased,
which leads to a marginal posterior that is slightly less smooth and more tightly con-
centrated on the true value than that arising from the initial specification of covariance
parameters. The correlation lengths in the solar constant, diffusion coefficient and time
directions are all increased, which has the effect of producing more gradually changing
climates, as well as removing a secondary mode in the marginal for the diffusion coeffi-
cient and flattening a large spike in the marginal for the solar constant. In figure [5.8] we
have included plots of the posterior arising from the initial covariance parameter specifi-
cation in order to demonstrate these features.

Repeating the node selection procedure with the adjusted covariance parameters re-

sults in a decrease in the number of nodes from 194 to 84. So in this case, the cost of
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optimising the covariance parameters is partially recouped by suggesting that the num-
ber of basis functions consistent with the initial covariance specification was excessively
high.

In table we have included the calibration inferences resulting from the emulator
with the initial specification of the covariance parameters to show the difference in the
sizes of the NROYS and HLCS brought about by the optimisation. More important than
the sizes, however, is the greater degree of confidence we have in the NROYS and HLCS
arising from the better fitting model. Note that all further calculations, including the
other numerical experiments described in table and all further plots, unless explicitly

labelled to the contrary, make use of the optimised covariance parameters.

5.1.4 Fitting the emulator

We now fit the emulator derived from the optimised covariance parameters by running
through the set of simulator output time series, sequentially adjusting the expectation and
the variance for the emulator’s coefficients with the Bayes linear formulae. With this
sequential approach, each adjustment involves the construction and inversion of a matrix
no larger than the maximum of the length of a particular time series and the number of
emulator basis functions. This is the key to making the calculations for the adjustment
of the climate function, as well as the likelihood calculations required for the covariance
parameter adjustment, tractable. Figures show the emulator’s expectation of
c(1,(0,0, x,)) given the FAMOUS simulations. It appears from the plots that time and the
entrainment input variable account for the greatest part of the variation in the simulated

data.

5.1.5 Emulator validation

The first diagnostic we examine is a simple histogram of the emulator’s fitted residuals,
shown in figure[5.4] Overlaid is the density function for the zero mean normal distribution
with standard deviation equal to the standard deviation of the fitted residuals. The corre-
spondence between the histogram and the curve does not suggest that a normal marginal

for the weather terms is grossly inappropriate. It may be understood as suggesting that a
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Entrain. coef.

(b) ()
Figure 5.3: Plots of FAMOUS outputs for one forcing scenario overlaid with the adjusted
expectation for c(t, (0, 0, x.)) as calculated with the Cholesky-basis. Time, the inputs, and
the output variables were standardised over the full data set, including all scenarios, as a
preprocessing step. On the floor of the plot are projections of the basis nodes locations.

The series corresponding to the largest LOO discrepancy statistic is highlighted in red.
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distribution with slightly higher kurtosis than the normal distribution is more appropriate,

but this not a possibility we pursue.

Density

[ T T T 1
-0.4 -0.2 0.0 0.2 0.4

w.fitted

Figure 5.4: A histogram of the differences between the simulator outputs and the expec-

tation for ¢ given the simulator outputs.

Now we turn to examination of the emulator’s leave-one-out (LOO) diagnostics. These
are produced by running through the simulations, unlearning about them individually us-
ing the inverted-update, or downdate, equations and comparing their values to the down-
dated estimates for them. In figure we take a look at the discrepancy statistics,

1

IT)| (Y; - Ey, (y(Ti» [X]i,-)))TvarYf,- ()’(Ti, [X]i,-))_] ([Y]:. — Ey, ()’(Ti, [X]i,-))),

dloo(Yi) =

where |T;| is the length of the observed simulator time series with input [X],.. The discrep-
ancy for each series is plotted against the series length, and on top of this we have added
lines corresponding to the fifth and ninety-fifth percentiles of the scaled chi-squared vari-
ables y?/n whose degree of freedom parameter is equal to the simulation length. Under
the assumption that the emulator coefficients and the weather terms are well described by
normal distributions with the specified moments, we would expect 0.9 of the LOO statis-
tics to lie within these bounds. We also include in subfigure the equivalent plot

from the unoptimised Cholesky-basis emulator in order to illustrate the improved model
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fit to which we have referred in the previous subsections.

The largest discrepancy statistic, marked with a 1 in figures and[5.6] and plotted
in red in figure [5.3] is particularly extreme. It appears to arise from a post-bounce-back
oscillation that is too rough to be accommodated by the climate trend and too large to
be accommodated by the weather trend. Fortunately, exploratory re-calculations show
that the discrepant series’ inclusion or removal from the training data makes negligible
difference to our inferences.

Clear trends in the LOO discrepancy statistics are not apparent in figure[5.6]as we vary
either the solar constant, the diffusion coefficient or the entrainment coeflicient. Figure
[5.6(d)] is constructed to alert us to the emulator fitting badly to simulations due to the
location of its nodes. We would expect the discrepancies to be slightly larger for series
that are more tightly constrained by their proximity to the basis functions and slightly
smaller away from the nodes, where variation not captured by the basis is compensated
for by an error term that is uncorrelated across the input space. These features are not
clearly evident in the plot, neither does any other trend suggest that the locations of the
series, relative to the locations of the basis functions, are related to the quality of the

emulator’s fit.

5.2 Calibrating FAMOUS

In our calibration analyses we strive to produce statistics that are concise and intuitively
understandable. For this reason we focus our attention on plots, and on membership, of
the HLCS and NROY'S, and find they produce plenty of information for discussion. In the
following sections, we use the term ‘experiment’ to refer to the examples, or numerical
experiments, in which we specify different emulator structures of different values for the
simulator discrepancy. Note also that we do not explicitly address observation or measure-
ment error here on the understanding that the variance it introduces may be incorporated,
as a nugget term for instance, into the system weather variance.

The prior for x* that we employ here is uniform over [—1, 1]>. This choice has the
effect of removing the distinction between the HLCS and HPDCS discussed in section

4.4.2] While this uniform distribution is not explicitly recognised as a prior in the history
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(a) Unoptimised emulator.
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Figure 5.5: Plots of the LOO discrepancy statistics from the emulators derived from the

initial (5.5(a)) and optimised covariance parameters against the lengths of the cor-
responding FAMOUS time series. The plots also feature dashed lines, marking the fifth

and ninety-fifth percentiles for scaled y>-variables, indicating the anticipated range of the

discrepancy statistics given that the simulations are normally distributed. The greatest

nine discrepancies, which are different for the optimised and unoptimised emulators, are

plotted with the corresponding numerals.
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Figure 5.6: Plots of the emulator LOO discrepancy statistics for the FAMOUS time series

against the simulator inputs in subfigures and against the node proximity
statistics, (4.116), in[5.6(d)l The greatest nine discrepancies are plotted with the corre-

sponding numerals so that they can be identified in all of the plots.
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matching context, it plays a role similar to one when we use it to generate points at which
to evaluate the implausibility measure, whose values inform the size and shape of the
NROYS. The likelihoods that we use to calculate posterior densities are calculated using
the multivariate normal density described by the emulator’s moments.

The NROYS inclusion criterion we use is the discrepancy statistic

dros (x) = (" = By ()(T", 0))" Vary ()(T*, x))™' (v = By ((T", x))).

The statistic is compared to the chi-squared distribution with |T*| = 200 degrees of free-
dom. We set the implausibility threshold at the ninety-fifth percentile of this distribution,
and so informally refer to the NROYS as a 95%-NROYS, despite the set’s disassociation
from explicit probability statements. Note that although we prefix both NROYS and the
HLCS sets with 95%, the meanings of the percentages are not comparable. The 95% of
the NROYS can be understood as a significance or a probability concerning the antici-
pated value of the quantity y(T", x*), while the 95% of the HLCS describes a posterior
probability concerning the location of x*.

We also append to the prior sample the true input parameters for the simulation that
plays the role of the fake system data. The inclusion of this extra sample member allows

us to say whether or not the NROYS and HLCS contain the true input value.

5.2.1 Simulator calibration with no simulator discrepancy

In this section we present the results of our calibration procedure for the model in which p*
is equal to one, and the fake system data, y* = y(T", x¥), takes the values of an unmodified
FAMOUS simulation.

Figure shows a pairs-plot which was made by generating a sample of 50000
input parameters from a uniform Sobol sequence over [—1,1]* and shading them to a
degree proportional to the posterior density for x*. We will refer to such plots as depth
plots; they give an impression of the two-dimensional posterior marginal distributions for
the components of x*. Figure |5.7(b), meanwhile, shows approximate one-dimensional
marginals produced by binning the sample and summing the posterior densities within
each bin. The plots indicate that the emulator is successfully picking up on the effects of

each of the input parameters and attributing high posterior density to the true input value
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for the fake system data.

For interest, we include in the equivalent figure produced using the unoptimised
emulator. While the location of the entrainment parameter is still well identified here, the
inferences for the other parameters are markedly different from those of the optimised
emulator. Specifically, the rougher nature of the unoptimised emulator’s response sur-
face appears to over-fit to the training data, with the effect that the fake system data is
identified with particular training series more than the average of training series in a par-
ticular region of the input space. An especially serious result of this effect is the apparent
misidentification of the solar constant.

In figure [5.9) we present a depth plot in the same format as but here the opacity
of the plotted points takes only two values: 0.01 if the input parameter falls below the
implausibility threshold and zero if it exceeds it. The role of this plot is to provide an
impression of the NROYS. The true parameter vector does belong to the NROY'S and the
HLCS, which is indicative of the emulation and calibration procedures being effective.
The NROYS and HLCS are complementary here, in the sense that the significance of the
credible region is contingent on the plausibility of the system data having been produced,
or explained, by the emulator at all. A very small credible region could be produced,
for example, by an emulator that fits very badly to the system data for all values of x™.
When this is the case and we use a likelihood function whose tails decay very quickly, the
posterior mass quickly accumulates at the least bad fit. This is how a small HLCS could
be interpreted either as a sign of success, insofar as the calibration leads to inferences of
high precision, or as a sign of failure, insofar as the emulator bears little relevance to the
simulator. For our calibration of the FAMOUS inputs, the large NROY'S reassures us that
the posterior density is not undermined by a badly fitting emulator and our identification
of the approximate location of x* is defensible.

The NROYS for this example rules out only approximately 35% of the input space. In
comparison to other history matching exercises, such as Vernon’s [56] for a cosmological
simulator, this figure may not seem particularly impressive. Our comparatively large
NROYS is a result of the climate variation attributable to the input parameters being small
relative to the size of the weather terms.

Both the NROYS and HLCS appear to consist of simply connected sets, which is an
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Figure 5.7: Plots illustrating the posterior marginal densities for x* for the experiment in
which there is no simulator discrepancy, so that the simulator climate at x* is the same as
the system climate. Red crosses in subfigure mark the two-dimensional projection
of true input value, while red vertical lines in subfigure mark its one-dimensional

projections.
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Figure 5.8: Plots illustrating the posterior marginal densities for x* for the experiment
in which there is no simulator discrepancy as calculated with the unoptimised Cholesky-

basis emulator. Red crosses and lines mark the projected values of the true input value.
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Figure 5.9: A depth plot of the NROYS for the experiment without simulator discrepancy.

The red crosses show the projections for the true value of x*.
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observation that cannot be verified using our pointwise evaluations of the discrepancy or
likelihood, but is strongly supported by the plots in figures and Furthermore,
the marginal posterior densities in figure also appear to be uni-modal and otherwise
well-behaved.

Next, we test the practicality and usefulness of the GCA series approximation tech-
nique, described in section4.4.2] for summarising the emulator’s posterior density for x*.
We start by generating a sparse grid integration scheme of 8031 nodes, based on a uniform
importance density, which we use to estimate the posterior mean and variance, denoted u
and X respectively. With these estimates we define the transformed vector variable, whose

x dependence we emphasise in (5.9) but take as implicit in the subsequent expressions,
u(x) = AP0 (x - p). (5.9)
We then estimate the ten coefficients for the GCA series’ third order correction terms by

[Bliyinis = Z rilH; ([u(x)])Hy, ([u(x) ) Hi ([u(x;)13) fori; +ir +i3 = 3,

J
where r; are the posterior integration weights whose calculation is described in section

4.4.2 and use them to define the GCA density approximation:

o e 1 s
a(x" 1y, X,Y) = (2n) 3/2|2| 1/2 exp (_EMTM) (1 + Z [Bli, in.is l_[ H; ([ula)].
d=1

i1+ir+i3=3
The GCA series approximation with polynomial correction terms up to Nth order

serves to condense our description of a D-dimensional posterior to a set of
(N + D) 1
D
numbers. So here our approximation is derived from 19 estimated parameters. We con-
trast this to the set of 50000 input coordinates and likelihoods from the Sobol sample,
which we would otherwise store as a record of our calibration calculation, and which we
would use to approximate properties of the posterior for x*. In this experiment, point-
wise evaluation of the approximate density is also approximately 500 times faster than
evaluating the likelihood for x* using the emulator. The speed of the approximate den-

sity function is attributable to the vectorisation possible in implementing the GCA series

approximation’s calculations, and to its avoidance of any matrix inversions.
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While the Cholesky-basis emulator has been constructed to be fast and efficient, and
evaluation of the likelihood over the large Sobol sample takes only around a minute, pro-
ducing estimates with the GCA series approximation is effectively instantaneous. We are
aware that the GCA series approximation represents another layer to an already high stack
of approximations (we have a non-parametric second-order stationary field emulating the
simulator, which is approximated by a finite-basis linear model), but while the speed and
storage benefits of the GCA approximation are so great and the posterior is well-behaved,
so that the approximation is good, the GCA series remains a valuable tool. To corroborate
the quality of the approximation, in figure we present plots of its one-dimensional

marginals, which we compare to those from the Sobol sample calculation in figure
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Figure 5.10: The marginal posterior densities for x* according to the GCA series expan-

sion with third order correction terms.

With the last experiment we perform in this section we compare our calibration calcu-
lations to one in which the time series structure of the FAMOUS data is ignored. Specif-
ically, we construct scalar-output emulators for the tenth, one hundredth and two hun-
dredth time steps corresponding to standardised times —0.96, —0.6 and —0.24. These
variables approximately relate to the initial or baseline fluxes, to their lowest values and
to the strength they return to when the emissions are reduced. Mathematically, the emula-
tors are simply independent linear regression models in the input variables. The standard
deviation of the models’ iid error terms is set at 0.05 while the prior variance for the
regression coefficients is the four by four identity matrix. This model for the flux is ex-

tremely simple, making it easy to code and fast to execute. If the input dependencies of
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the time points are characterised by strong, unaligned linearities then we would expect the
scalar emulators to pin down x* fairly well. These provisos are not met by the FAMOUS
data however. The first of our findings from the experiment, referred to in table [5.1] as
the ‘scalar emulators experiment’, is that the NROYS resulting from the joint discrep-
ancy measure includes the true input value but excludes only 2% of the candidates. The
second is that the HLCS excludes the true input along with 0.38 of the candidates. We
judge the three linear emulators to be deficient insofar as they cannot capture a significant
amount of the variation in the data, and the information that they do capture, in this case,

is misleading.
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Figure 5.11: Approximate posterior marginals for the components of x* as calculated with

three scalar-output emulators.

5.2.2 Simulator calibration with simulator discrepancy

We now simulate system observations to calibrate to by altering our fake system time
series in a way that mimics simulator discrepancy. Specifically, we treat the MAP estimate
E(c(t, Xyyaps V) | y*,Y,X) from the previous experiment as if it were an observation of
c(t, x*, D), and simulate c(t, x*,v*) conditioned on it using (5.10). To this doubly fake
climate data we add a weather term sampled from the zero mean multivariate normal

distribution (5.11)),

c(t, x",v") ~ N(p"B (£, c(xy4p). 9) . (1 = p K, ), (5.10)

w(t, x",v") ~N(0,K,). (5.11)
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We repeat the experiment three times, with p* equal to 0.99, 0.95 and 0.9, each time using

the same seed in our simulations from (5.10) and (5.11)) so that the system weather terms

are identical and the system climate terms are equivalent to different weighted averages
of E(c(t, Xyaps 1Y, X) and the same sample from N (0, K,). These artificial system
time series are plotted in figure [5.12] demonstrating the degree and type of simulator

discrepancy implied by the model. As ¥ and v* move further apart and p* decreases, the
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Figure 5.12: The fake system data, which is a FAMOUS simulation removed from the
training set, is plotted here as the rough black line; the map estimate E(c(x}“u Ap)s 1s f/)
is visible as the smooth black line beneath it. The three fake system time series with

decreasing p* are described by the three green lines.

simulator data becomes less informative for the climate data and the calibration inference
becomes less precise. With figures [5.13}{5.15 we show the approximate rate at which

precision is lost. We see that as p* falls from 1 to 0.9 the depth plots quickly become
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more homogeneous and that the one-dimensional marginals become smoother and flatter.
As a quantitative description of the loss of precision, we see, as presented in table that
the NROYS quickly grows to include all of the input space while the HLCS approximately
doubles in size to fill 54% of it.

5.2.3 Simulator validation

Now we investigate the extent to which we are able to infer the parameter p* from the
simulator data and the fake system observations. Our approach is the same as in previous
experiments, only this time we generate a four-dimensional Sobol sample of candidate
parameters and scale the last coordinate to the interval Q, = [0.5,1], the implication
being that we consider scenarios in which the climates in the system and simulator range
from being weakly, to completely correlated. The fake system data we calibrate with
here is same as that used in the previous section to investigate the inferability of x* when

p* = 0.95. Figures[5.16(a)| and [5.16(b)| show the approximate marginal densities for the

parameters.

To appreciate the effect on our inferences for x* brought about by treating p* as un-
known, we may compare figure and the first three subfigures in[5.16(b)] When we
allow p* to vary, the one-dimensional posterior marginals are smoother, the depth plots
more homogeneous, and the NROYS and HLCS are larger than our first experiment, in
which p* was fixed at one. In this respect, allowing p* to vary from one leads to effects
similar to those caused by fixing it at a lower value.

The final subfigure in shows how the emulator correctly steers us away from
the highest values of p*, at which the emulator cannot produce a mean and variance com-
patible with the system data, and from the lowest values, at which the likelihoods are
shrunk by the factor in the multivariate normal density comprising the determinant of the
variance for y*. The implausibility statistic for determining the NROY S, on the other hand,
has no equivalent term for penalising large variances, so while it rules out the highest p*
values, it provides no basis for refuting low values.

To render the NROYS and HLCS calculated from the prior sample in the higher-
dimensional setting comparable to the sets calculated in the previous sections we need to

define the marginal NROYS and HLCS. The marginal NROYS for x* is the set of all input
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Figure 5.13: Plots illustrating the posterior marginal densities for x* for the experiment in

which p* = 0.99. The red crosses and lines show the projections for the true value of x*.
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Figure 5.14: Plots illustrating the posterior marginal densities for x* for the experiment in

which p* = 0.95. The red crosses and lines show the projections for the true value of x*.
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Figure 5.15: Plots illustrating the posterior marginal densities for x* for the experiment in

which p* = 0.9. The red crosses and lines show the projections for the true value of x*.
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parameters such that the emulator’s estimate under at least one discrepancy specification
in the support of the prior satisfies the implausibility condition. This means defining an

implausibility function dj,,,, taking both x and p arguments,

dlmp(-x»p) = (y* _H(X,P))TZ(X,P)_I(V* _,U(x’P)),

where

ux,p) =EQx) | x,p=p".X,Y),

X(x,p) = Var (y(x) | x,p = p*, X, Y),
so, mathematically, our definition reads,
Qnroys ={x | dp € Q,, dipp(x,p) < h}.

As in the other experiments we set the implausibility threshold % at the ninety-fifth per-
centile of the chi-squared distribution with 200 degrees of freedom. To approximate the
size of the NROYS we start by binning the four-dimensional prior sample, using a three-
dimensional equally spaced grid over the input space to define the bin intervals. A bin is
designated as ‘not yet ruled-out’ if the implausibility discrepancy statistic of at least one
sample member that falls within the bin also falls below the implausibility threshold.

To define the HLCS we first need to define the marginal likelihood for x = x*,
Ty (X) = fn(y* [x=x",v=v.Y,X)r(v =v" | x = x")dv.

The a%-HLCS is then the posterior credible set of input parameters that includes every
point at which the marginal likelihood is greater than some value 4, and no points at
which the marginal likelihood is lower. For our example, approximating the size of the
HLCS requires that we sum the normalised likelihoods for the parameters in each bin. We
now treat the bins in the same way as we did the prior sample members in the previous
HLCS calculations: we order the bins according to the sum of the likelihoods of their
members and select the bins with the highest marginal likelihoods such that their posterior
mass exceeds 0.95. Again the proposal mechanism compensates for the prior density that
is omitted from these calculations. The marginal NROYS and HLCS are the objects
described in the rows of table qualified with ‘(Unknown p*)’, while the figures in

brackets describe the corresponding higher-dimensional sets.
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Figure 5.16: Plots illustrating the posterior marginal densities for x* and p* for the exper-
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The marginal NROYS for x* includes the whole input space; indeed, we ought to
have anticipated that the marginal NROYS would not be a useful statistic for this experi-
ment. Because of the way we have defined it, the statistic is effectively determined by the
NROYS for the lowest permitted value of p*. At p* = 0.5 the discrepancy between the
simulator and the system is great enough to diminish the relevance of the simulations to
the extent that we cannot infer from them if any inputs are incompatible with the system

data.

5.3 Chapter summary

This test of the Cholesky-basis emulator has been highly encouraging. The calculations
involved were mostly fast and easy to code, and our diagnostics and plots have proven to
be intelligible and informative. The emulator has been able to detect and utilise systematic
variation in the simulator output attributable to all the input parameters, variation which
is extremely difficult to discern from casual inspection of the simulated time series.

Not being able to run more simulations or to access system data has been frustrat-
ing. These limitations meant we were not able to test methods for designing simulation
ensembles or for treating simulator discrepancy to a completely satisfactory degree. An
opportunity to investigate a genuine instance of simulator discrepancy would only pro-
vide anecdotal evidence for the suitability of our treatment of it but, by the nature of this
important yet vague concept, anecdotal evidence would still be very valuable.

Conversely, of course, we needed to know the true inputs for the system data in order
to tell whether our inferences had been successful. In this respect, using synthetic system
data was crucial. Similarly, it is useful to see that the discrepancy parameter p* appears
to be inferable given perfect knowledge of, or belief in, the nature of the discrepancy
variance structure. Such an observation provides informal, yet important, evidence for
the claim that p* may still be a meaningful statistic when the appropriate discrepancy
structure is less obvious.

We summarise our conclusions for the chapter’s calibration experiments in table
It shows that we successfully identified sets containing the true parameter values in every

experiment with the Cholesky-basis emulator. Optimisation of the covariance parame-
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ters proved to substantially improve the emulator’s fit to the simulated data and led to a
decrease in the size of the NROYS, thus constituting a more secure and precise history
match.

While the NROY'S and HLCS from the unoptimised emulator still contained the true
input parameter, suggesting a level of robustness to covariance parameter misspecifica-
tion, the observed improvement in the diagnostic plots and the stable behaviour of the
optimising algorithm have persuaded us that optimising the emulator’s covariance param-
eters is a good idea. The Nelder-Mead optimisation is slow relative to the other calcula-
tions required for this chapter, but the time it takes is still short if we measure it against the
time required to perform the FAMOUS simulations, or to code and test more advanced
optimisation algorithms.

Our final remarks concern the results presented in the last row of which relate
to the experiment in which we attempted to infer the value of p*. Interestingly, the ap-
proximate posterior marginal density in does peak distinctly over the true value
for p* while the information in the marginals for the components of x* is mostly retained.
The particular point of interest here comes from contrasting this result with authoritative
voices, of Goldstein[[14] and Robert[46] for example, that advise us to exercise extreme
caution, guided by careful deliberation, when treating a model’s discrepancy or tolerance
parameters as inferable quantities alongside the inputs x*.

The key feature of our particular problem that makes inference for the discrepancy
parameter p* possible and appropriate is the high-dimensionality of the time series data.
It means that we are provided with 200 correlated observations of the discrepancy rather
than just one, as would be the case when simulating univariate quantities. Furthermore,
the high-dimensionality of the data allows us to distinguish between different modes, or
directions, of variation; we can identify the weather signal, for example, by its high fre-
quency, and the variation attributable to the input parameters is constrained by the smooth-
ness of the climate surface over the input space to only a small number of directions. The
remaining directions of variation are thus directly attributable to the discrepancy. Such

untangling of the signal is impossible with a univariate output.



Experiment 1(x* € Qnrovs)  1Qnrovslr,. 1(X" € Qures)  1Qu1cslr,
Scalar emulators (p* = 1) 1 0.98 0 0.68
Unoptimised Cholesky emulator (p* = 1) 1 0.93 1 0.18
Cholesky emulator (p* = 1) 1 0.67 1 0.26
Cholesky emulator (p* = 0.99) 1 0.86 1 0.35
Cholesky emulator (p* = 0.95) 1 0.98 1 0.51
Cholesky emulator (p* = 0.90) 1 1 1 0.54
Cholesky emulator (Unknown p*) 1(1) 1(0.99) 1(1) 0.68(0.61)

Table 5.1: A summary of the chapter’s calibration experiments. The logical entries indicate whether the true input parameters for the fake

system data were in the 95%-NROY'S or 95%-HLCS. The decimal entries give the sizes of these sets relative to the prior sample of candidates.

For the last row the figures in brackets refer to the sets in four dimensions while those outside the brackets refer to the marginal sets.
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Chapter 6

Closing discussion

6.1 Issues addressed

In this thesis we have presented a developed exposition of the roles of covariance param-
eters and the dual interpretations of smoothing: firstly, as referring to a physical mecha-
nism which obeys, or almost obeys, a law expressed as a linear differential operator; and
secondly, as referring to an inherently subjective specification of the similarity between
values of a field at separated locations. These interpretations arise naturally when we
build our model starting from the specification of penalties or covariances respectively.

Having looked at the ways in which a covariance specification describes and defines
the shape of functions, we moved on to study the way it also leads to implications for
the significance of a best simulator input and output. Specifically, we identified how the
factorisability of a covariance function implies the potential for the separability of beliefs.
At this stage we proposed a novel model structure for the discrepancy between systems
and simulators that sits comfortably beside the calibration procedures for a simulator’s
input.

Our work in section [2.3|identified how a model with a factorisable variance structure
can be used to assimilate large grids of data in an efficient manner. The technique over-
came the problem of inverting huge matrices, but did not remove them from the calcula-
tions, which were generally unwieldy in the sort of semi-exploratory environment, namely
R, in which we would like to perform further analysis. In section 4.3.2| we sketched out

how the problem of dealing with these large arrays would become exponentially more

180
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serious as the dimensions involved accumulated, and how we would eventually need to
look for ways to compromise grid-based methods.

With the first emulator of chapter E], the NIW emulator, we introduced a smaller,
hidden grid of variables corresponding to basis function coefficients rather than system
values. We then tackled the inference for the grid values by dealing only with subsets
of them at a time, and by using a Gibbs sampling argument to rationalise the process.
Retaining a full set of basis functions for each series allowed us to use the inverse Wishart
distribution to collect information regarding the smoothness of the time series. The fitting
procedure for this emulator proved to be demanding, although it did bring our attention
to the fact that we could emulate the series with a view to calibration by readjusting the
emulator in particular parts of the input space identified as being relevant to the system’s
input parameters.

The evolution of our modelling strategy continued with the development of the Nystrom
emulators. Again, our approach consisted in describing large, ragged arrays of data using
a finite set of basis functions, but this time we chose to focus on constructing a basis for
the emulator that would reduce redundancy in our calibration calculations, rather than
focusing on the emulator fitting procedure.

Our extended example with the FAMOUS data in chapter [5 represents a proof of
concept for the Cholesky basis emulator. The example was rich in detail, which provided

many points for discussion. Among the most notable of these were the following findings:

e the calibration procedure using three simple univariate emulators, essentially ignor-

ing the time series structure, revealed almost no information for x*;

e the Cholesky emulator appears to be robust against relatively uninformed covari-
ance parameter estimates but can be improved significantly if they are tuned to

better fit the data;

e the NROYS grows more quickly than the HLCS as the simulator discrepancy is
increased, in this way the NROY'S loses information more quickly as the simulator

diverges from the system;

e the size of the simulator discrepancy or, equivalently, the separation between the

system and the simulator in the discrepancy space is potentially inferable when we
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calibrate to time series data.

6.2 Issues raised

Many of the practical challenges of emulation and calibration that we have faced have
resulted from trying to model too many degrees of freedom and from trying to assimilate
too many data simultaneously. We have recognised that the redundancy of high-frequency
degrees of freedom is a consequence of the smoothness of a field or function, but we have
struggled to estimate appropriate levels of smoothness from data. In sections [2.4.1] and
4.4.3] we sought to make inferences for smoothness parameters; both cases were char-
acterised by high computational demand and conclusions of ambiguous value. These
are unsatisfactory findings and motivate renewed research into methods for estimating a
field’s spectral or wavelet composition. We would be particularly interested in wavelets
in multiple dimensions, and in establishing relationships between wavelet methods and
the penalty and covariance function smoothing methods discussed in chapter With
multiscale methods we would also hope to describe a continuum of signals between cli-
mate and weather, and to formulate a more direct relationship between a smooth and the
covariance parameters that define it.

Another issue we have identified but not explored adequately is the question of whether
and when it is a good idea to smooth a likelihood or posterior density. It would be inter-
esting, for example, to investigate further the relationship between the smoothness of the
climate signal and the smoothness of the posterior for x*. In example 4.2.2] we identified
an instance in which we could share information between data by smoothing their likeli-
hoods, and in section 4.4.2] we proposed that a particular basis expansion could provide a
convenient vehicle for posterior summary statistics.

Smoothing the likelihood or posterior is much easier than smoothing the output quan-
tities when the output is high-dimensional and so could save us a considerable amount
of work in our analysis. Anticipating the smoothness of the likelihood, however, is prob-
lematic. Specifying covariance properties for the output may be informed by our intuition
for the system and simulator mechanics, but specifying covariance parameters for the

likelihood would require intuition for the informativeness of the data, something that we
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imagine to be very difficult.

Orthogonal density expansions are useful because they allow extremely quick and
stable calculations to be made for properties of the distribution. For example, if the ex-
pansion basis consists of well-studied, mathematically neat functions, such as enveloped
orthogonal polynomials, then many integrals may be computed analytically. No emulator
is likely to be fast enough to render the numerical integration of the posterior fast enough
to compete with this. One interesting issue here is the selection of an appropriate expan-
sion. Gram-Charlier and Edgeworth series expand around a central distribution, which is
modified by a series of correction factors. They allow us to borrow from the library of
results for orthogonal polynomials only if the central distribution belongs to one of a set
of well-studied special cases. We would like to have had more time to further investigate
strategies for choosing expansions, and to assess their robustness to target distributions
that differ significantly from the expansion’s central distribution. Of course, density esti-
mation with basis functions is already a well-established field, with notable contributions
being made by Silverman [S1]] and Gu [[19]], and thorough research of the available litera-
ture would form a considerable part of our investigations.

We would also like to develop a formal mathematical argument in support of the idea
that a smoother likelihood leads to faster or more stable calibration calculations. In [47]]
Roberts derives a relationship between a measure of roughness of the log of a posterior
density and the speed at which an RWM algorithm explores it, the significance lying in the
fact that the log posterior for a system’s parameters inherits roughness properties directly
from those of the climate term. This result represents a tantalizing connection that we

might be able to seize upon in such a supporting argument.

6.3 Issues sidelined

A large amount of work has not made it into the thesis. In this last section we identify
a selection of issues that are relevant to the simulation of physical systems but do not
directly contribute to, or follow from, our main arguments or results.

The design of simulations is a topic we certainly could have pursued further. In par-

ticular, we have learnt how sparse grid integration designs are ideally suited to efficiently
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investigating functions with high-dimensional domains. Zhu’s [63] result showing that the
eigenfunctions of the squared exponential/normal operator take a form very close to those
of Hermite functions leads us, via the work of Dette [[10], towards d-optimal designs cor-
responding to classical Gauss-Hermite quadrature rules. These rules can then be adapted
to the high-dimensional context with the sparse grid methodology. From these quadrature
rules we can follow trails of research to results for sequences of nested rules[36], which
may constitute structured batches or ensembles of designs. The construction of algorith-
mic adaptive design strategies and tests for their appropriateness will require a great deal
of work. It would be interesting to explore this area further though, and in doing so better
understand how our sequential basis selection algorithms could be informed by existing
adaptive methods.

In the course of our research we have also investigated intelligent random walk metropo-
lis algorithms inspired by RAM,[57], MALA [47/] and stochastic Newton [31] algorithms.
We can implement these on the posterior density surface defined by the emulator because
it is often comprised of relatively simple functions. The complexity introduced by these
guided algorithms, although interesting to explore, has not shown itself to result in impres-
sive results in our informal experiments. The greater, and more easily exploited, benefit
of the emulator’s simplicity is its speed, which allows for a large number of evaluations
and the use of simpler algorithms.

Our investigation of derivative-informed random walks and particle methods led us
to consider whether we could hope to incorporate particle filters or Kalman filters into
our own work with climate simulators. This is an exciting prospect, as with the extended
Kalman filter we can start to break into the black box of the simulator code. We can also
use filtering methods to calibrate and simulate simultaneously rather than sequentially.
To approach these issues we experimented with structurally simple dynamic models such
as the Lorenz 96 model and the Ricker model, and found that such filtering methods
are highly effective on synthetic examples in which the model is correctly specified, but
can perform very badly when the time step mechanism of the simulator and the system
are discrepant. The cost of filtering is the reconstruction of the simulator code and the
constant interruption of its execution. So despite being enthusiastic, we are also cautious

about the application of filtering methods to climate modelling, because we suspect that
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their benefits will be wasted when the discrepancy is overestimated and that they will be
particularly vulnerable to instability when we underestimate it.

We would also like to investigate the validity and the implications of this work’s foun-
dational practical assumption: that a system may be decomposed into approximately un-
correlated or independent subsystems on different scales, namely climate and weather.
This would require the development of tests for system separability and the proposal of
plausible alternatives for the system’s dependencies. We see that confirmation of the
assumption has implications beyond our emulation and calibration methods: if the sim-
ulator’s weather is approximately independent of its climate and significantly discrepant
from the system’s weather, how much benefit is there to simulating the weather at all?
Can the weather subsystem be replaced with something simpler, like a small forcing that
perturbs the climate? Such perturbations, referred to as stochastic parameterisations, are
already often included in simulators to compensate for unmodellable processes, but we
could also justify their inclusion on the grounds of computational convenience or on the
grounds that the physical mechanisms associated with the weather are poorly understood.

In a similar vein, we can also see a simulator discrepancy as a type of stochastic pa-
rameterisation that embodies the cumulative effect of multiple doubts and uncertainties
rather than their individual effects. The question of whether these cumulative and con-
tributing uncertainties are consistent with each other is just as important as whether the
cumulative and contributing physical processes are.

Following the parallel even further, it is not unusual for modellers to reinterpret a
physically-motivated simulator parameter as a tuning parameter, whose value serves to
compensate for a perceived deficiency in the simulator. A well-known example of this is
the eddy viscosity parameter for an ocean simulator, which may be increased by orders
of magnitude in order to compensate for the simulator’s under-resolved numerical solver.
Similarly, it is not unusual for statisticians to reinterpret a subset of a simulator’s output
quantities as being unrelated to the physical process they may once have been associated
with. We make this point in reference to the selection process for summary statistics for
synthetic likelihood and ABC-type methods in which many of the system and simulator
outputs are not required to be consistent, so high discrepancies are effectively tolerated,

because those outputs are discarded in the analysis.
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In both instances only certain quantities are endowed with meaning. The others are
understood as artefacts or instruments of parameterisations that compensate for missing
physics or missing uncertainties, but which are not readily understood as identifiable,
measurable physical processes or reasoning processes themselves. Having recognised
these similarities, a holistic treatment of the physical and epistemological parameterisa-
tions, and of the input and output discrepancies, appears to be a goal we should be setting
ourselves.

These considerations raise some important questions about the way in which we are
using scientific theory: are we free to stand by some implications of a theory while ig-
noring or denying others? To what extent does this undermine the implications that we
do stand by? To what extent are we obliged to justify a simulator’s shortcomings, or a
theory’s shortcomings? And to what extent does model fit constitute such a justification?

We anticipate that answering these questions will require discussion and collaboration
with other statisticians and scientists, as well as a keen intuition for the behaviour of the
particular system we are analysing. To better appreciate the behaviour of physical systems
evolving through time and the asymmetries between input- and output-type quantities we
ought to invest in the study of dynamical systems. This means committing to research
combining sophisticated mathematical treatment of complex models, and carefully con-
sidered epistemological deliberation at every step. Dynamical systems, specifically non-
linear dynamical systems, are fascinating because of the richness of the behaviour they
exhibit and because of the epistemological limits on the inferences they allow for. A
greater understanding of nonlinear dynamics and how their effects might be, at least par-
tially, catered for in statistical analyses represent appealing directions for our own further

research.
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Notation

A.1 Mathematical notation

In the following tables we present a glossary of notation organised approximately accord-

ing to the objects’ mathematical classes.

A.1.1 Indexing and labelling

We use squared brackets followed by subscripted indices to refer to elements within a
rectangular array. When such arrays are inappropriate or inconvenient we use subscripted
indices without squared brackets to refer to objects in an ordered list of similar objects.
Negative values are used to denote the removal of certain subarrays, or sublists, from a

full array or list, while a dot is used to make it clear when no subarrays are removed.

Symbol Description Introduced in section

[Aliir..ip  The element of the array A in the position 2.1
labelled by the i;th member of the first index
(the i1th row), the i,th member of the second
index ((the i>th column)), and so on until the

Dth index.
A, The ith array in a list of arrays. 2.1

187
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A.1.2 Array and matrix operations

Symbol Description Introduced in section
AT The transpose of the matrix A.
AT The transpose of the inverse of A.
AT The Moore-Penrose generalised inverse of the
matrix A.
® The Kronecker product operator.
X Shorthand for the Kronecker product of all the

elements of its argument.

® An operator denoting the addition of

independent quantities.

Tr(-) The trace operator.

|A] The determinant of the matrix A.

|Al+ The pseudo-determinant of the matrix A.
vec (+) The vec operator.

o The Hadamard or entrywise multiplication

operator for arrays.

5 gpHEE B BE Bes

M) A tensor multiplication operator.

A.1.3 Deltas and indicators

Symbol Description Introduced in section
Oy The Kronecker delta function. 4.2
5(x) The Dirac delta function.
1() The indicator function. 4.4.7

A.1.4 Variables and values



A.1. Mathematical notation

189

Symbol Description Introduced in section

X A column vector of input parameters.

x* The input parameter giving rise to the system B.1
values.

X A matrix of simulator inputs formed by
stacking transposed input vectors as rows.

t A scalar time quantity. [L12

T A vector of times.
A concatenation of the time variable and input
parameter into a single column vector.

= A matrix of output coordinates formed by
stacking transposed & vectors as rows.

v A discrepancy parameter. B.1]

V" The discrepancy parameter locating the B.1]
system function.

1% The discrepancy parameter locating the B.1]
simulator function.

c The smooth climate component of the output. [L12]

c(&) The scalar value of the climate component at 12
é.

c(B) The vector of the climate values 1.2
corresponding to the inputs in the rows of X.

C A matrix of climate values.

w The rough weather component of the output. 1.2

w(é) The scalar value of the weather component at [L12
£

w(E) The vector of the weather values 1.2
corresponding to the inputs in the rows of X.

W A matrix of weather values. 4.2

y(é) A physically significant output quantity. [L12

y(&) A scalar value of the output quantity at &.

Y An array of simulator output values.

Vsys(€) Alternate notation for y(&, v¥). 3.1
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Symbol Description Introduced in section

Vsim(&) Alternate notation for y(&, D). B.1]

z A measurement of a physically significant
output quantity.

B A column vector of basis function coefficients. 2.1]

B A matrix of basis function coefficients. 2.1

T; A coefficient function for a derivative 2.1
contributing to a linear differential operator.

;i A weight for a squared derivative contributing 2.2
to a roughness penalty.

? An array of coeflicients for a density 447
expansion.

C A vector of inducing climate variables. 44

N A matrix of basis node locations.

P A matrix of integration node locations. 4.4

K A variance matrix.

L An upper triangular correlation length matrix. 443

N An upper limit for a sum’s index (defined

locally).

A.1.5 Covariance parameters and constructs

Symbol Description Introduced in section
k(-, ") A covariance function. 2.2
k() An autocovariance function. 2.2
o? A scalar variance parameter.
u A scalar correlation length. 2.2
v A spikiness of differentiability parameter. 2.2
w An oscillation frequency parameter. 2.2
A An eigenvalue, or a roughness penalty 2.1

multiplier depending on context.



A.1. Mathematical notation

191

Symbol Description Introduced in section
0 A vector of covariance function parameters 2.4
defined for convenience.
f A spectral density.
H A reproducing kernel Hilbert space. 4.3.2.3i
[...D[f] A functional integral.
¢i(+) An invidual basis function value. 2.1
o) A column vector basis function values. 2.1
¢ A matrix of basis function values whose rows 2.1]

correspond to individual function inputs, and
whose columns correspond to individual basis

members.

A.1.6 Bayes Linear constructs

Symbol Description Introduced in section

E, (x) The Bayes linear adjusted expectation of x
given z.

Var, (x) The Bayes linear adjusted variance of x given
2.

Cov,(x, y) The Bayes linear adjusted covariance between
x and y given z.

[x L y]|z  The statement: x is separated from y by z. B.1

A.1.7 Miscellaneous

Symbol Description Introduced in section
n A probability density function. 221
o A correlation. B.1
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Symbol Description Introduced in section
A vector of mixing or visitation probabilities. 4.2
A linear differential operator. 2.1
i A derivative penalty coefficient. 2.1]
) An array of approximate density coefficients. 447
A loss function. 2.1
Q A vector space. B.1]
% The mod operator.
\ The integer division operator.

A.2 Abbreviations

Abbreviation Meaning

AMOC Atlantic Meridional Overturning Circulation.
AR AutoRegression.

CDF Cumulative Distribution Function.

CPDN Climate Prediction Dot Net.

dof Degrees of freedom.

EMIC Earth System Models of Intermediate Complexity.
FAMOUS FAst Met Office/UK universities Simulator.
FDA Functional Data Analysis.

GCA Gram-Charlier A (series).

GCM General Circulation Model.

GCV Generalised Cross-Validation.

HadCM3 Hadley Centre Coupled Model (version 3).
HLCS Highest Likelihood Credible Set.

HPDCS Highest Posterior Density Credible Set.

iid Independent and identically distributed.
IPCC Intergovernmental Panel on Climate Change.
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Abbreviation Meaning
KLD Kullback-Leibler Divergence.
LDO Linear Differential Operator.
LOO Leave-One-Out.
MALA Mean Adjusted Langevin Approximation.
MAP Maximum A Posteriori.
MCMC Markov Chain Monte Carlo.
NIG Normal Inverse-Gamma.
NIW Normal Inverse-Wishart.
NROYS Not Ruled Out Yet Set.
PC Polynomial Chaos.
PD Positive Definite.
PDF Probability Density Function.
PMF Probability Mass Function.
PSD Positive Semi-Definite.
RAM Robust Adaptive Metropolis.
ROS Ruled Out Set.
RWM Random Walk Metropolis.
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Linear algebra

For matrices A, B, C, D, U and V, when conformity allows:

Theorem B.0.1 (Trace of a Kronecker product).
TrA®B) =Tr(A) Tr(B).

Theorem B.0.2 (Determinant of a Kronecker product). For square A and B with n and g

rows respectively,
|A ® B| = |Al"|BI".
Theorem B.0.3 (Vec of a matrix product).
vec (ABC) = (C" @ A)vec(B).
Theorem B.0.4 (An identity for Kronecker products defining quadratic forms).
vec (D)" (CA ® B")vec (D) = Tr (AD"BDC).
Theorem B.0.5 (An identity for matrix multiplication of Kronecker products).
A®B)C®D)=AC®BD.
Theorem B.0.6 (The Sherman-Morrison-Woodbury inverse).
A+UBV)'=A"'-A"'UB +vA~'U)'vA~L.

194
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Theorem B.0.7 (Matrix determinant lemma).
A +UBV| = |B™' + VA"'U| |B| |A|
Theorem B.0.8 (The trace of a matrix product).

tr(AB) = Y [A o B"];.

i,j

Theorem B.0.9 (Vec of a Hadamard product).

Where d is a diagonal matrix whose diagonal entries are the elements of the kth column

of D, and D o B is the Hadamard product of D and B with elements
[D o B]; ; = [D]; /[B]; ;.

Theorem B.0.10 (Eigenstructure of the sum of a matrix and the identity). If the matrix A

has an eigenvector u with eigenvalue A,
Au = Au,

then the matrix (A +cl), where c is an arbitrary constant, has a corresponding eigenvector,

which is also u, with eigenvalue A + c:
A+chu=Au+cu=(1+cu.

Theorem B.0.11 (The Hotelling inverse). The Hotelling inverse for a partitioned matrix

[22]]. For non singular A and D,

-1
(A-UD'v)! ~A"'UD - vA~'U)!

-D'vA - UD'V)! (D -vA~'lU)!

AU
V D

Theorem B.0.12 (Eigenstructure of a Kronecker product). Let A € R™" have eigenvalues

A, i = 1,...,n, and corresponding right eigenvectors, xi, ..., x,; and let B € R™™ have
eigenvalues u;, j = 1,...,m, with eigenvectors z, ..., 2. Then the Kronecker product,
A®B,

has right eigenvectors x; ® z; corresponding to eigenvalues A;u;.
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Theorem B.0.13 (Eigenstructure of a Kronecker sum). Let A and B be defined as in
Theorem Then the Kronecker sum,

AeB=A®I,) +{,®B),
has right eigenvectors x; ® z; corresponding to eigenvalues A; + ;.

Theorem B.0.14 (Derivative of a determinant). [3§//

alY| L, 0Y
— =Y|Tr(Y —].
Ox ¥l r( 8x)

Theorem B.0.15 (Derivative of a log determinant).

log|Y] Y
dlog]| l:Tr( d )

y ' —
ox ox

Theorem B.0.16 (Derivative of an inverse).

oy ! oY
=-Y'—y"
ox ox

Theorem B.0.17 (Derivative of a trace of an inverse).

-1
OTHAX'B) __ ipayryr
0X

Theorem B.0.18 (Matrix chain rule).

o) _ .o (ag(m)T o
0X;; oU | ox;;

Definition B.0.19 (Entrywise norms).

1/p

IAll, =

D ALl
LJ

We get the Frobenius norm when p = 2 and the max norm as p — co.

Definition B.0.20 (Schatten norms). Use the singular values of a matrix.

1A, = [Z af’)l/p.

When p = 2 we get the Frobenius norm again. When p = 1 we get the trace norm. As

p — oo we get the spectral norm; the largest singular value.
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Theorem B.0.21 (Trace determinant inequality). For an n X n positive definite matrix A,

Tr(A)\"
p )

ws(

which arises from the ‘arithmetic-mean geometric-mean inequality’ applied to the eigen-

values of A.

Definition B.0.22 (The Cholesky decomposition). The Cholesky decomposition of a pos-

itive definite matrix K returns an upper right triangular matrix R such that
K =R'R.

R is not unique, any subset of its rows can be multiplied by minus one to give an al-
ternative factorization. Uniqueness can be achieved by appending to the definition the
requirement that the diagonal entries of R are positive.

The Cholesky decomposition of a block matrix is

K Kp R, 0 |[R; Ry

K; Ky R;ﬂ R§2 0 Ry

where

RI R =K, (B.1)

RI,R» = Ky - Koy K[ K. (B.2)

If K is the variance matrix for the vector quantity (y;,y,) we can identify expressions
(B.1) and (B.2)) as the marginal variance for y, and the adjusted variance for y, given
yi1- In this light, algorithms for computing the Cholesky decomposition can be seen as
sequential variance adjustments for quantities whose prior variance is given by K.

The following pseudo-code for a Cholesky decomposition algorithm is based on that
given by Bastos in [2]. The algorithm includes a pivoting subroutine which serves to
reorder the rows and columns of the matrix R according to a criterion Q. At each iteration
of the algorithm’s for-loop the standard criterion brings the largest diagonal element of
the part of the matrix yet to be decomposed to the front of the queue. The resulting re-

ordering of the rows is encoded in the pivot vector p. On iteration j of the for-loop, the
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pivoting criterion for the Cholesky algorithm is

[K];; fori>(j—1),
(O] =

0 otherwise.

Algorithm 4 Cholesky decomposition with pivoting
Initialise R — 0,0« 1:n

for j=1,...,ndo
procedure PIvOTING SUBROUTINE
if max [[Q];] < € then
Escape For-loop and terminate algorithm
end if
q < arg max [[Q];]
K], S [Kl,
[K];. S [K].
[R].; & [R],
lo]; S o]y
end procedure
[R];; « IKI;;
[R];+1yn < [Klj+1)n/ [R];;-
(Kl Dmiaym < [KlGanyme1ym — [R]z(j_,.l):n[R]j,(jH):n-
end for

return R, o.

Theorem B.0.23 (Determinant of a block tridiagonal matrix). The determinant of the

block tridiagonal matrix,

C, A, B,
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is given by the product of determinants:

M| = [ 1A,
k=1

where

A=Ay,

Ak :Ak _Bk—lA];_llck—l k= 2, R (N

B.1 The Thomas algorithm for solving a block tridiago-
nal matrix

The Thomas algorithm for the inversion of a block tridiagonal matrix requires forward
and backward passes over the submatrices. Crucially, inversions and multiplications only
take place on the scale of these submatrices and the A matrices from the determinant

calculation may be reused. Using the same notation as Theorem [B.0.23]

A] B] 0 X d1

Cl A2 B2 X dz
Cn—l An—l Bn—l

0 Coi A J\x, d,

We define intermediate quantities, d;, to keep track of the forward sweep,
d, = Aj'dy,
d=A;'(d-Cld,) fori=2.....n.

And calculate the solution from a backward sweep through them,

’
X, =d,

x;=d - A'B'x;,; fori=n-1,...,1.

Significant simplification is possible when the covariance matrix relates to a regularly

spaced stationary time series, in which case,

A=A, B;=C! =B.
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B.2 The Levinson algorithm for the inversion of a sym-

metric Toeplitz matrix

The precise form of the algorithm here is a slightly simplified version of that in the PhD
thesis of Tom Bickstrom [1]]. The result for the determinant is attributable to Musicus
[32]], who uses alternative notation in his report.

A symmetric Toeplitz matrix Ky may be parameterized by the vector k that forms its

first row like so,

ko koo ky

ke ki kya
Ky =

ki ks

ky kyo .. ke ki

Given an N-vector y and the relationship,
Kx =y,

we go about calculating x via a set of intermediate vector variables called forward vectors
f € R and two sets of scalars €, and &,. The first vector, which is also a scalar, is set

to
1
=L
ki’

while the next N — 1 are calculated recursively. Soforn =2,..., N,

n—

1
_ n-1)
€ = Z kn+1—jfi' >
=1

J=

£ = (F"",0) — €,(0,b"Y),

1
[
where b, the nth backward vector, is the same as £’ but with the components in reverse
order; and the notation fﬁ.") means the jth component of the nth forward vector.

Having computed the intermediate vectors we use another recursion, building up to

the calculation of x via the vectors X" € R” which satisfy,

KnX(n) = (yl,yz, ce ayn)T-
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We start with,

m_N
ki’

X

nowforn=2,...,N

n—

1
-1

En = Z kn+1—jX§'n ),

J=1

x® = x",0) + (y, — ,)b™.

The solution we are after is ") = x.

As an added bonus, the determinant of K can also be calculated from the ¢, values

from the first recursion:

N
K| =k l_[(l — eV,
j=2

We note that our implementation of the algorithm in R only begins to beat the generic

solve function for matrices larger than 500 x 500, and is slower than the Cholesky decom-

position until the matrix size nears 900 x 900. Implementation in a lower level language

ought to significantly improve this performance.
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Deriving properties of the NIW model

C.1 The posterior parameters of the NIW model

Formulating the posterior parameters for the NIW involves the same sort of simple algebra
used to derive the posterior parameters for the multivariate normal distribution and the
NIG model, but we walk through the calculation here for completeness.

We start with the likelihood for the observations Y,
1
S 1X,8,H) = Qn)™"" [H| "D exp [—ETr (H' (Y -XB) D™ (Y - Xﬁ))] :
and the NIW prior,

m(B, H) oc [H|~"+P+*D/2 exp [—%Tr (H' ((B-M)" V' (8-M)+¥))| (C.1)

These two objects are then multiplied to give a function in (8, H) proportional to the

posterior,

]T(ﬂ’ H|X,Y) |H|—(v+n+p+q+1)/2

X exp —%Tr H' (Y-XB)' D' (Y-XB)+(B-MW)' V' (B-M) +¥)||. (C2)
Q

Multiplication of the determinant terms is straightforward; we need to invest more effort,

however, in unwrapping the object in (C.2) that we have denoted Q, which encodes the

202
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posterior’s dependency on B. Firstly, we expand the quadratic forms in Q,

Q=p'X'D'XB+B'V'B,
-BX'D'Y +Y'D'XB+ BV M+ MV,

+Y'D'Y+B Vg4,

and reform them in terms of the new quantities,

Vi =(V'1+X'D'X)!, (C.3)

M =V (V'M+X'D'Y), (C.4)

Y= -M(V)'M +Y' DY+ 8V Ig+ P, (C.5)
V' =v+n, (C.6)

resulting in,
Q=B-M)'(V)'B-M)-MV)' M +Y'D'Y+BVIg+P,
=B - M) (V) '(B-M") + P

Q is now expressed as a single quadratic form in 8 plus a constant matrix, allowing us
to write the posterior, (C.2), in the same form as (C.I). Consequently, we can identify it

with another NIW model whose parameters have been replaced with the starred updates

of (C.3)-(C.6):

7B, H | X, Y) oc[H[ " +P+*D/2 exp [—%Tr (H™ (8 - M) (V) ' (B-M") + \1'))] .

C.2 The normalising constants for the NIW model

C.2.1 The normalising constant for (83, H)

We start with the expression for the NIW density up to a multiplicative constant kg m),

1
(B, H) = kg [H 70+ D/2 exp [—ETr (H' ((B-M) V' (B-M)+¥))|. (CT)
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and proceed to integrate out the parameters (8, H) so as to find the value of k,gu) for

which the integral is equal to one. We begin by integrating out 3,
1
fﬂ'(ﬂ, H) dﬂ = kn(ﬂ,H) fexp |:§TI' (H_1 (B — M)T V—l (B — M))] dﬂ,
1
X |H|_(V+P+q+1)/2 exp |:§Tr (H—I\P>:| ) (CS)

By using theorem [B.0.4] in reverse to render the integral in (C.8) an exponential of a
negative quadratic form, the solution of the integral is apparent from comparing it with a

multivariate normal density:

f exp [—% (vec (B—M)" (H® V)'vec (B - M))] dvec (B) = 2n)""*H® V],
RPr4

- (2ﬂ)pq/2|H|p/2|V|q/2.
(C.9)

When we substitute (C.9) into (C.8) we get some cancellation in the powers of [H|, leav-

ing,
f 7(B, H) dB =k, 2772 [HIP2 V|72 x [H|"*P+7D/2 expy [%Tr (H-l\ll)] ,
=nppn) (270)P42 V|92 ¢ [H|CH94 D72 exp [%Tr (H-I\P)] :
Next we need to integrate out H,
f f (B, H) dB dH =kpp.p1)(270)" "2V "% f IH|"H D2 exp BTr (Hl‘l’)] dH,

(C.10)

which we do by comparing the integral on the far-right of (C.10) to the density for an

inverse-Wishart variable,
1
f H|~*++D/2 exp [——Tr (H‘“I’)] dH = 27T, (v/2)|¥| ™. (C.11)
M*(q.9) 2
Substituting (C.1T)) into (C.10) finally results in the expression,
ffﬂ(ﬁ, H) dB dH = kg (270)P 2 [V|72 X 27T (v/2)[¥| "2,

which we equate to one so that kg g is revealed to be,

)"
Q)P |V [42T (v [2)274/2"

kxgm) =
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C.2.2 The normalising constant for 7(Y | X)

To find the normalised marginal density for Y we consider the mixture of multivariate

normal distributions 7(Y | X, 8, H) with mixing weights m(8, H):

(Y | X) = ffﬂ'(Y | X, 8, H)n(B, H)dB dH. (C.12)

We have already computed the product in the integrand of (C.12)) in section[C.Twhen we
computed the posterior NIW parameters given {X, Y}. This observation allows us to write

the integral using the ratio of the prior and posterior NIW normalising constants,

(Y | X) =kngm) f f P2 e
1
X exp [—ETr (H™ ((B-M) (V) '(B-M") + \1'))] dBdH,
= 2m) " DI knipkiy g pix.y)-

Cancellation between the NIW normalising constants then results in the expression

L, /2) V92 |2

Y | X) = "2 D[7? .
Y |X)=n ID| Fq(V/z) [V|a/2 || /2

C.3 The downdate equations for the NIW model

The NIW downdate equations are used to unlearn about certain data so we can assess
how well the model anticipates them, rather than how well it accommodates them, which
may be checked by studying the fitted residuals. The downdate equations allow for LOO
diagnostics to be computed more quickly than if we were to repeatedly recompute the
posterior model parameters using datasets with certain elements left out.

Having adjusted the prior NIW parameters from {V, M, ¥, v} to {V*, M*, ¥*, v*} by the
assimilation of input and output quantities {X, Y}, we can derive the posterior parameters
that would have resulted from the observation of just {[X]_;.,[Y]-;.} by simply inverting
the set of update equations (C.3)-(C.6). The downdated posterior for (8, H),

7T(B, H | [X]—i,-’ [Y]),
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is also an NIW distribution with parameters, which we label with a bracketed superscript,

VO = (v - XD, (€.13)
M = V((V)'M - [XI/D'[Y],.). (C.14)
-1

Yo = — (1Y), - [X],,M“”)T (D + X1, VIXI]) - (1Y), - [X].MT), (C.15)

VD =y — 1, (C.16)



Appendix D

Probability distributions

D.1 A select glossary of distributions

D.1.1 Multivariate Student t-distribution

Notation t;(m,aV)

Mean m

Mode m

Variance aV/(d—-2) d>?2

PDF

a’®I((d + p)/2)

fx|m,V,a,d) = \V[127r/2T(d/2)

D.1.2 Gamma distribution

Notation Gamma («,3)

Mean %
Mode “T_l
Variance [%
PDF
r@ x* ! exp(=Bx).

207

[a +x-m)’V'!x-m)

]—(d+p)/2
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D.1.3 Inverse gamma distribution

Notation Inv-Gamma (e, 3)

Mean % a>1

Mode %

Variance #Zw_z) a>2
PDF

a

I'(@)

x~* Texp(=B/x).

D.1.4 Log-normal distribution

Notation InN (i, o)
Mean exp(u + 0?/2)
Median  exp(u)

Mode exp(u — %)

Variance (exp(c?) — 1) exp(2u + 02)

PDF

n(x) =

1 exp (_ (Inx — ;1)2)
2o 202 '

The log of variable with a log-normal distribution is normally distributed:

Z~Nuoch)eX= exp(Z) ~ lnN(,u,O'Z).

D.1.5 Wishart distribution

Notation W, (V)

Mean 1% 4

Mode v—qg-1DY¥Y

Variance Var (Hi j) = n([‘l’]izj + [W1:[¥1;)

PDF

1
[¥[7/227412T(v/2)

aH|WY,v) =

1
[H]""4""? exp [—ETr(‘I"lH)] :
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D.1.6 Inverse Wishart distribution
Notation IW, (¥)

Mean V_\;'_ - v>q+1
Mode wan
PDF
7(HP,v) = ﬂmr(”qm/z exp [—lTr(H‘l‘I’)] )
24127 (v/2) 2

D.1.7 Central F distribution

Notation F(d;,d»)

Mean djiZ d, >?2
di-2 dp
Mode o hi d >?2
. 2d3(d\+dr-2)
Variance ) d2 > 4
PDF
(dpc)"l dZZ
7T(X|d1 > d2) =

xB(d,/2,d,/2)

D.2 Miscellaneous

Theorem D.2.1. If € is a random variable with mean u and variance %, the expected value

of a quadratic form in € is given by
E(e" A€) = Tr(AX) + u” Ap.
If € is normally distributed the quadratic form’s variance is
Var(e’ A€) = 2Tr(AZAY) + 4u’ AXAu.

Theorem D.2.2 (Gauss Inequality). For a random variable X admitting a unimodal Lebesgue

density with mode v such that E [(X —~ v)z] =17

3—:; forall r> \4/3t,

Pr(( X —v|>r) <

1—@ forall r< V4/3t.
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Note that there is no requirement for the density to be symmetric nor for it to have finite

higher moments.

Theorem D.2.3 (Chebyshev inequality). For a random variable X with mean u and vari-

ance 0'2,

P(X —pl > ko) < k2.
Equivalently,

P(—ko <X -pu<ko)>1-k>.

D.2.1 Minimal credible sets

The following argument represents a sketch of the proof that the HLCS of a posterior
distribution for a variable x is minimal with respect to its prior distribution. We will
write m(x) as the prior for x, /(x) as the likelihood of some unspecified data given x, c as
the normalising constant f% I(x)m(x)dx, and & as the lower bound on the likelihood that
defines the HLCS.

We start by supposing € is an HLCS and €’ is any other credible set with respect to
the posterior. We then define from these three further sets: I = QN Q', A = QN Q° and
A =Q°NQ.

It can be shown that the sets satisfy both
Q=IUA and Q' =1UA" (D.1)
As a consequence, the equality of the integrals that define the credible sets,

o= f cl(x)m(x)dx = f cl(x)m(x) dx,
Q o)

implies the equality of the integrals,

f cl(x)m(x)dx = f cl(x)m(x) dx.

A A
Since A C Q and A" € Q, the value of /(x) in the set A is greater than & while the value of

[(x) in A” is not greater than A. This allows us to write the inequality

h f m(x)dx < f I(X)m(x)dx = f I(x)r(x)dx < h f m(x)dx,
A A A A
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which means that

f m(x)dx < f m(x) dx.
A A

And because the sets satisfy we can also say that

f a(x)dx < m(x)dx.
Q o

This result represents the statement that Q, the HLPS, is smaller with respect to the prior

than other different sets.
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