
Durham E-Theses

Bio-inspired Dynamic Control Systems with Time

Delays

DERRICK, BENJAMIN,JOHN

How to cite:

DERRICK, BENJAMIN,JOHN (2014) Bio-inspired Dynamic Control Systems with Time Delays ,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/10593/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10593/
 http://etheses.dur.ac.uk/10593/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Bio-inspired Dynamic Control
Systems with Time Delays

Benjamin John Derrick

A Thesis submitted for the degree of

Doctor of Philosophy

School of Engineering and Computing Sciences

University of Durham

England

April 2014

Bio-inspired Dynamic Control

Systems with Time Delays

Benjamin John Derrick

Submitted for the degree of Doctor of Philosophy

2014

Abstract

The world around us exhibits a rich and ever changing environment of

startling, bewildering and fascinating complexity. Almost everything is

never as simple as it seems, but through the chaos we may catch fleet-

ing glimpses of the mechanisms within. Throughout the history of human

endeavour we have mimicked nature to harness it for our own ends. Our at-

tempts to develop truly autonomous and intelligent machines have however

struggled with the limitations of our human ability. This has encouraged

some to shirk this responsibility and instead model biological processes and

systems to do it for us.

This Thesis explores the introduction of continuous time delays into bio-

logically inspired dynamic control systems. We seek to exploit rich temporal

dynamics found in physical and biological systems for modelling complex or

adaptive behaviour through the artificial evolution of networks to control

robots. Throughout, arguments have been presented for the modelling of

delays not only to better represent key facets of physical and biological sys-

tems, but to increase the computational potential of such systems for the

synthesis of control.

The thorough investigation of the dynamics of small delayed networks

with a wide range of time delays has been undertaken, with a detailed mathe-

matical description of the fixed points of the system and possible oscillatory

1

modes developed to fully describe the behaviour of a single node. Explo-

ration of the behaviour for even small delayed networks illustrates the range

of complex behaviour possible and guides the development of interesting

solutions.

To further exploit the potential of the rich dynamics in such systems, a

novel approach to the 3D simulation of locomotory robots has been devel-

oped focussing on minimising the computational cost. To verify this simu-

lation tool a simple quadruped robot was developed and the motion of the

robot when undergoing a manually designed gait evaluated. The results dis-

played a high degree of agreement between the simulation and laser tracker

data, verifying the accuracy of the model developed.

A new model of a dynamic system which includes continuous time de-

lays has been introduced, and its utility demonstrated in the evolution of

networks for the solution of simple learning behaviours. A range of methods

has been developed for determining the time delays, including the novel con-

cept of representing the time delays as related to the distance between nodes

in a spatial representation of the network. The application of these tools

to a range of examples has been explored, from Gene Regulatory Networks

(GRNs) to robot control and neural networks. The performance of these

systems has been compared and contrasted with the efficacy of evolutionary

runs for the same task over the whole range of network and delay types.

It has been shown that delayed dynamic neural systems are at least as ca-

pable as traditional Continuous Time Recurrent Neural Networks (CTRNNs)

and show significant performance improvements in the control of robot gaits.

Experiments in adaptive behaviour, where there is not such a direct link

between the enhanced system dynamics and performance, showed no such

discernible improvement. Whilst we hypothesise that the ability of such de-

layed networks to generate switched pattern generating nodes may be useful

in Evolutionary Robotics (ER) this was not borne out here.

2

The spatial representation of delays was shown to be more efficient for

larger networks, however these techniques restricted the search to lower com-

plexity solutions or led to a significant falloff as the network structure be-

comes more complex. This would suggest that for anything other than a

simple genotype, the direct method for encoding delays is likely most appro-

priate. With proven benefits for robot locomotion and the open potential

for adaptive behaviour delayed dynamic systems for evolved control remain

an interesting and promising field in complex systems research.

3

Declaration

The work in this thesis is based on research carried out in the School of

Engineering and Computing Sciences at the University of Durham. No

part of this thesis has been submitted elsewhere for any other degree or

qualification and it is all my own work unless referenced to the contrary in

the text.

Copyright c©2014 by Benjamin J Derrick

“The copyright of this thesis rests with the author. No quotations from it

should be published without the author’s prior written consent and informa-

tion derived from it should be acknowledged”.

4

Acknowledgements

I would like to acknowledge my late principal supervisor Professor Valentin

Vitanov for his help, inspiration and constant support without which I would

have never started on this journey. He was a true gentleman and is sorely

missed. Many thanks are due to Professor Alan Purvis who kindly consented

to take up the reins after Val passed away under difficult circumstances. His

advice and encouragement were vital in the completion of this work.

In addition, there are several other people to whom I owe a debt of

gratitude for their help be it of a technical, grammatical or emotional nature.

Thanks go to Dr Richard McWilliam, Mr Joshua Cowling, my family for

their love and support and my wonderful wife Alexandra, for without her

none of this would have been possible.

5

Contents

Abstract 1

Declaration 4

Acknowledgements 5

List of Tables 11

List of Figures 12

Nomenclature 15

I Introduction 22

II Methods and Materials 33

II.1 Background 34

II.1.1 Adaption in Natural and Artificial Systems 36

II.1.2 Architectures for Control . 40

II.1.2.1 The Origins of Artificial Autonomous Systems . . . 40

II.1.2.2 Artificial Neural Networks 41

II.1.2.3 Recurrent Neural Networks 43

II.1.2.4 Gene Regulatory Networks 47

II.1.3 Dynamical Anaylsis . 51

II.1.4 Evolution of Adaptive Behaviour 54

II.1.4.1 Embodied Intelligence 55

6

II.1.4.2 The Reality Gap . 59

II.1.4.3 Evolved Learning . 62

II.1.5 Locomotory Robotics . 67

II.1.6 Conclusions . 69

II.2 Dynamics of Small Delayed Dynamic Networks 72

II.2.1 Synaptic Time Delays . 73

II.2.2 A Single Neuron System . 76

II.2.3 Beyond a Single Node . 97

II.2.4 Discretising a Delayed Continuous System 97

II.2.5 Conclusions . 101

II.3 Minimalistic Simulation of a Quadruped Robot 102

II.3.1 Single Leg System . 104

II.3.2 Rigid Body Dynamics . 106

II.3.3 Modelling the Robot . 109

II.3.4 Forces on the Body . 112

II.3.4.1 Ground Reaction . 112

II.3.4.2 Collision . 113

II.3.4.3 Friction . 116

II.3.5 Bringing it all together . 117

II.3.6 Servo Torques and Body Inversion 118

II.3.7 Solution Procedure . 121

II.3.8 Realism and Computational Efficiency 123

II.3.9 Simulation Results . 124

II.3.10 Extensions . 132

II.3.11 Conclusion . 133

II.4 Model Verification using Real Robots 134

II.4.1 Design of a Simple Quadruped 135

II.4.1.1 Mechanical Design 136

II.4.1.2 Electromechanical Systems 138

7

II.4.1.3 Assembly . 139

II.4.2 Modelling Wheeled Robots 142

II.4.2.1 Geometrical Motion of a Two-wheeled Robot 143

II.4.2.2 Simulation of Distance Sensors 145

II.4.3 Common Code for Simulation and Verification 149

II.4.4 Real Time Control Architecture 153

II.4.5 Conclusions . 155

II.5 Evolving Adaptive Behaviour with Time Delays 157

II.5.1 Evolutionary Architecture 158

II.5.2 T-Junction Task . 159

II.5.3 Sensitivity Analysis . 165

II.5.4 Conclusions . 175

II.6 Methods for Determining Time Delays 177

II.6.1 Directly Encoded . 178

II.6.2 Spatial Representation of Network Delays 179

II.6.2.1 Assigned Network Geometry 184

II.6.2.2 Position Encoded . 187

II.6.2.3 Pattern Encoded . 188

II.6.3 Efficiency of Different Encoding Methods 194

II.6.4 Comparing the Efficacy of Different Encoding Methods . . . 198

II.6.5 Conclusions . 199

III Results and Analysis 201

III.1 Introduction 202

III.1.1 Hypotheses Under Test . 204

III.1.2 Selection of an Appropriate Statistical Test 205

III.1.3 Limitations . 205

III.2 Adaptive Behaviour 207

III.2.1 T-Test Task . 207

8

III.2.1.1 Hypothesis . 207

III.2.1.2 Experimental Design 208

III.2.1.3 Results . 208

III.2.2 Single Food Chemotaxis . 212

III.2.2.1 Hypothesis . 212

III.2.2.2 Experimental Design 212

III.2.2.3 Results . 214

III.3 Robot Locomotion 220

III.3.1 Single Leg Walker . 221

III.3.1.1 Hypothesis . 221

III.3.1.2 Experimental Design 221

III.3.1.3 Results . 224

III.3.2 Quadruped Walking . 234

III.3.2.1 Hypothesis . 234

III.3.2.2 Results . 236

III.4 Conclusions 243

IV Summary & Conclusions 246

V Appendices 256

V.A Numerical Integration 257

V.A.1 Euler Method . 257

V.A.2 Verlet Integration . 258

V.A.3 Fourth Order Runge-Kutta Method 258

V.B Recap of Selected Vector and Matrix Mathematics 260

V.B.1 Skew-symmetric Matrices 260

V.B.2 Vector Dot Product . 260

V.B.3 Vector Cross Product . 261

9

V.C General Rotations and Translations 262

V.D Mass and Inertia of a Uniform Body 265

Bibliography 275

Vita 291

10

List of Tables

II.3.1 Simulation Constants . 127

II.5.1 Genome Statistical Characteristics 165

III.2.1 Maximum Normalised Fitness in Each Run 209

III.2.2 Ranked Results . 209

III.2.3 Maximum Normalised Fitness in Each Run 214

III.2.4 Ranked Results . 215

III.3.1 Maximum Final Generation Normalised Fitness 225

III.3.2 Ranked Results . 225

III.3.3 Maximum Normalised Fitness in Each Run 237

III.3.4 Ranked Results . 237

11

List of Figures

II.1.1 Subsumption Architecture, from [18] 41

II.1.2 A CTRNN node . 43

II.1.3 Two coupled delayed neurons [96] 53

II.1.4 How learning affects evolution, reproduced from [49] . . . 62

II.2.1 Time Delay Dynamics in a Random Network 76

II.2.2 A Single Neuron System 76

II.2.3 Global stability for a single CTRNN node 79

II.2.4 CDRNN Stability . 80

II.2.5 Profiles of varying time delay 82

II.2.5 Profiles of varying time delay (continued) 83

II.2.6 Amplitude of Oscillations 85

II.2.7 Oscillation Zones for Different Thresholds 86

II.2.8 Input stability for a single CDRNN node 88

II.2.8 Input stability for a single CDRNN node (continued) . . . 89

II.2.9 Input stability cross-sections 91

II.2.9 Input stability cross-sections (continued) 92

II.2.10 Recursive Oscillation Surface 94

II.2.11 Bifurcation Plot . 95

II.2.12 Switched Oscillations . 98

II.2.13 Discretely Modelling a Continuous Delay 100

II.3.1 Real Robot for Verification of Simulation Results 104

II.3.2 Diagram of a Single Leg 105

II.3.3 Model of the Quadruped Robot 110

II.3.4 Orientation of Feet Coordinate Systems 111

12

II.3.5 Collision of Two Bodies 114

II.3.6 Penalty Friction Model 117

II.3.7 Checking Leg Servo Torques 119

II.3.8 Gait Leg Angles . 125

II.3.9 Overlay of Simulation and Laser Tracker Data 128

II.3.10 Simulated Servo Torques During the Simulation 130

II.4.1 CAD Model of the Quadruped Robot 137

II.4.2 Cut Out Templates for CAD Model 137

II.4.3 Schematic of Quadruped Robot 140

II.4.4 Assembly Steps . 141

II.4.5 Real Wheeled Robots . 143

II.4.6 Two Wheeled Differential Drive 144

II.4.7 Sensor Distance Geometry 146

II.4.8 Infra-Red (IR) Sensor Calibration 148

II.4.9 Common Code Pipeline Schematic 150

II.4.10 A Common Code Approach 152

II.4.11 Real Time Control Architecture 154

II.5.1 T-Junction Task & Network 160

II.5.2 Normalised fitness history; pop. 1000, 400 gen. 163

II.5.3 Evolved Network . 166

II.5.4 Effect of scaling synapse delays on trajectories 168

II.5.4 Effect of scaling synapse delays on trajectories (cont.) . . 169

II.5.5 Sensitivity to evolved parameters 172

II.5.5 Sensitivity to evolved parameters (continued) 173

II.5.6 The effect of adding synapse delays to a CTRNN 174

II.6.1 Primitive Network Geometries 181

II.6.2 Proportion of Valid Configurations 182

II.6.3 Initial Network Geometries 185

II.6.4 Possible 3d Arrangements 186

II.6.5 Dual Genome Architecture 190

II.6.6 Hill Climbing Nodes over CPPN Surface 191

13

II.6.7 Finding the Gradient Direction Vector 193

II.6.8 Encoding Efficiency for Different Methods 195

III.2.1 Chemotaxis Sample Result 217

III.2.1 Chemotaxis Sample Result (continued) 218

III.3.1 Single Leg Walking Model 222

III.3.2 Single Leg Task Sample Result 229

III.3.2 Single Leg Task Sample Result (continued) 230

III.3.3 Single Leg Task Genome Analysis 231

III.3.3 Single Leg Task Genome Analysis (continued) 232

III.3.4 Quadruped Walking Example Trajectory 240

III.3.4 Quadruped Walking Example Trajectory (continued) . . . 241

V.C.1 Euler’s Theorem . 263

V.D.1 Rectangular Prism, reproduced from [48] 265

14

Nomenclature

α gradient variable in S1, page 213

α heading angle, page 145

α significance level, page 205

α,β,γ single leg driving angles, page 105

αl, βl,γl joint angles for leg l, page 235

αr sensor absolute angle, page 147

αs sensor relative body angle, page 147

R̄j average ranking of group j, page 208

R̄j average ranking of group j, page 214

R̄j average ranking of group j, page 237

x̄(I, w, θ) approximation for fixed point in stability region, page 93

β gradient variable in S2, page 213

β recurrent connection weight, page 53

γ right hand side of the acceleration equation, page 107

τ diagonal time constant matrix, page 44

θ threshold vector, page 44

χ 3D rotation, page 263

χ2 chi-squared distribution, page 205

∆t time step, page 100

ǫ coefficient of restitution, page 114

ηc maximum distance between objects in static contact, page 113

15

Γ density, page 121

Γ fundamental synaptic time delay, page 188

n̂ surface normal vector, page 112

κ neuron time constant, page 53

λ anti-‘popping’ factor, page 113

A rotational transformation matrix, page 118

a example vector of length 3, page 260

a0 contact attachment point vector, page 117

b example vector, page 260

b wall end point, page 147

c wall end point, page 147

d sensor position vector, page 147

e sensor ray/wall intersection, page 147

FA applied force vector, page 107

Fn normal force vector, page 116

Fs virtual spring force vector, page 117

Ffr friction force vector, page 116

G 3× 4 matrix that depends on the Euler parameters, page 109

Iext external input vector, page 44

Iint total internal input vector, page 44

J′ inertia matrix in the body frame, page 107

k unit vector in z-direction of ground plane, page 115

L angular momentum vector, page 114

M mass matrix, page 107

n′ applied torque vector in the body frame, page 107

p 2D position vector of robot, page 147

p Euler parameter vector, page 109

p current point position vector, page 117

16

p linear momentum vector, page 114

r vector to centroid of body, page 107

rP position vector of point P in the ground fixed reference frame,

page 262

s′P position vector of point P in the body reference frame, page 262

s′f body frame foot position vector, page 111

W connection weight matrix, page 44

y output vector, page 44

O order of, page 99

R set of real numbers, page 100

Z set of natural numbers, page 100

lb(w, θ) left boundary of cusp, page 87

rb(w, θ) right boundary of cusp, page 87

µ coefficient of friction, page 116

µk coefficient of kinetic friction, page 116

µs coefficient of static friction, page 116

ω rotational speed, page 109

ω′ body rotational speed vector, page 107

Φr constraint matrix, page 107

Φπ′ constraint matrix, page 107

σ(x) standard sigmoid function σ(x) = 1/(1 + e−x), page 46

τ self-recurrent connection time delay, page 77

τi time delay, page 73

τs synapse time delay, page 53

τij continuous delay between neurons i and j, page 74

τij delay parameter, page 46

θ node bias, page 77

θj population media for the jth group, page 211

17

an stable value reached for oscillation n ∈ Z, page 93

aij weight of connection between neuron i and j, page 53

c abbreviation of trigonometric cosine function, page 111

c number of connections, page 181

cf scent contribution from food f , page 213

D scent diffusion radius, page 213

d distance of interpenetration, page 112

df distance of food f from the sensor, page 213

df statistical degrees of freedom, page 205

dt simulation time step, page 112

dx movement in x per timestep, page 126

F food items remaining in the environment, page 213

F force applied to body, page 109

F vector valued smooth continuous function, page 73

f fitness value, page 161

f intermediate variable in sensor calculation, page 147

f(t) smooth differentiable function, page 100

Fn normal force, page 116

fp penalty force, page 112

Ffr friction force, page 116

fmax maximum fitness, page 224

g acceleration due to gravity, page 112

h initial height, page 223

h sensor intersection fraction, page 147

h step size, page 99

H0 null hypothesis, page 208

H1 alternative hypothesis, page 208

I impulse, page 115

18

I(t) current into neuron, page 44

I(t) node external input, page 77

If impulse for foot f , page 115

Ii(t) external dynamical input function to neuron i, page 46

Ii(t) external input to neuron i, page 74

J ′ element of inertia matrix in body frame, page 109

k number of independent samples, page 205

kd damping coefficient, page 112

kf virtual spring coefficient, page 117

ki integral constant, page 113

ks spring coefficient, page 112

KW result of Krustal-Wallis test, page 205

L angular momentum, page 114

l left motor speed, page 145

l limb length, page 126

li length of limb i, page 105

lij length of connection between node i and node j, page 181

m mass, page 108

m multiplier value, page 161

ml left motor speed, page 161

mr right motor speed, page 161

N number of neurons in the system, page 46

N number of nodes in the system, page 50

N total number of data, page 208

N total number of data, page 214

N total number of data, page 237

n number of steps in a gait, page 126

n′ torque in body frame, page 109

19

nc number of contact points, page 115

nc number of food items consumed, page 214

Nr number of regulatory (output) nodes in the system, page 50

Ns number of structural (hidden) nodes in the system, page 50

o1 output from motor neuron 1, page 161

o2 output from motor neuron 2, page 161

oi output space response of motor neurons, page 74

ol,1,ol,2 the two motor neurons for leg l, page 235

p penalty value, page 161

r intermediate variable in the manual design of a gait, page 126

r position of centroid of body, page 109

r reward value, page 161

r right motor speed, page 145

Rj rank of group j, page 208

Rj rank of group j, page 214

Rj rank of group j, page 237

RT interpolation error, page 100

s abbreviation of trigonometric sine function, page 111

s sensor reading, either SL or SR, page 213

S(v) sigmoidal mapping, page 44

S1 preprocessed sensor input, related to scent concentration, page 213

S2 preprocessed sensor input, related to distance from food source,

page 213

sd distance of sensor from offset origin, page 147

SL left food scent sensor input, page 213

so sensor longitudinal offset, page 147

SR right food scent sensor input, page 213

sr sensor distance, page 147

20

T maximum duration of simulation, page 214

T maximum run length, page 162

T node time constant, page 77

t current duration of run, page 162

t simulation time, page 214

tc collision time, page 113

Ti neuron time constant, page 46

Ti time constant of each neuron, page 74

v sensor direction indicator, page 147

V (t) membrane potential, page 44

w weight of self-recurrent connection, page 77

wr half inter-wheel distance, page 145

wij weight matrix element connection neurons i and j, page 46

x,y,z orthogonal Cartesian coordinate system, page 105

x(t) response of node at time t, page 77

x∗ fixed point of x, page 78

xi total input to neuron i, page 46

xj(t) output of neuron x, page 53

yi(t) output of neuron i, page 46

yi(t) output of neuron i, page 74

z height of body off ground, page 126

z z score, used to denote a variable transformed into standard

form, i.e. with mean zero and standard deviation one, page 211

21

Part I

Introduction

22

Introduction

We live in a complex and ever changing environment. Despite decades of

intensive research, and promising initial progress, robots have only just be-

gun to influence our every day lives. These devices carry out some of the

simplest of our chores, with reasonable efficacy given a suitable structured

environment, but do not live up to the enticing visions of intelligent and eru-

dite robotic servants carrying out our every whim greatly anticipated across

science fiction and popular culture. Why are these currently out of reach,

and what can be done to develop useful robot controllers which are robust

and flexible enough to function in our dynamic surroundings?

In the search for the machines, automatons and intelligent systems of the

future, there is compelling evidence that human design may not be the best

way. As systems have become more complex, the manual effort required to

control them becomes drastically increased or indeed impossible, as decades

of research have yet to yield technologies that allow robots to operate in the

majority of human environments whilst being useful and attaining worth.

Aside from science fiction, robots have only just started to influence our

lives as toys and low level domestic aids, but we have not yet built anything

approaching our aspirations for this technology.

This limitation is not because of any deep mystery, but simply

due to to the limitations of us poor humans in understanding

complex systems [. . .] an evolutionary approach allows emula-

tion without comprehension [46, p.3]

There is a tendency for researchers in Artificial Intelligence (AI) to see

human behaviour as the desired outcome from their efforts. Even Brooks et

al, who argued for a regression in design aim to focus on insect level crea-

tures and to build up from there, quickly targeted the replication of human

behaviour. This all, in some way, assumes that simulated human behaviour

23

is the goal of artificial intelligence, whereas the focus of this review is in the

technology that will enable us to develop useful intelligent robots for use in

the real world. Whether they have human-like behaviour or not is really

neither here-nor-there. From the beginning of the move away from Good

Old Fashioned Artificial Intelligence (GOFAI), Subsumption Architectures

have demonstrated that systems do not have to be highly sophisticated to

demonstrate intelligent behaviour, and that:

Intelligence is in the eye of the observer [22, p.16]

We need to find the “juice of life” as proposed by Brooks [25, p.10],

when he suggested that we may be missing something in the development

of artificial creatures, as their biological counterparts are much more robust

and learn much more quickly. Exciting developments in ER have produced

a suite of richly dynamic evolved controllers, but the question remains as to

whether these techniques are a way forward towards the intelligent, adaptive,

autonomous systems of the future.

It has been argued that for the evolution of adaptive behaviour we must

simply be able to harness and exploit the behaviour of dynamic systems

across an appropriate range of time scales [45]. In the formulation of the

CTRNN model so popular in ER, the dynamics of information propagation

along synaptic connections is omitted. Whereas, in the related study of

GRNs the contribution to the dynamics of such delays are widely accepted

as important and are often included in the reconstruction and analysis of

biological systems. By altering the governing equations of these systems,

we transform them into Delay Differential Equations (DDEs) from Ordinary

Differential Equations (ODEs) and enable the possibility of chaotic and os-

cillatory behaviour even for a single node. Through the introduction of even

a single delay, due to the need to specify a continuous distribution of initial

conditions, any network may be considered as an infinite dimensional sys-

tem. This not only complicates any analysis or application of such systems

24

but also increases the richness of the dynamics that they may express and

may be harnessed for our purposes.

Through the introduction of increased information processing and stor-

age in the modification of synaptic connections, we hypothesise that simpler

networks may be capable of behaviour previously impossible. In addition

to this, the ability for a single node or small network to behave as pattern

generators may facilitate the development of gaits for legged robots and

interesting solutions for adaptive behaviour.

Research Questions

How does adding connection time delays into CTRNNs affect the dynamics

of the system, and how can these additional parameters be governed by an

Evolutionary Algorithm (EA)? With a focus on an application to the control

of robotic systems, can this modified architecture be harnessed to measur-

ably increase the ability of an Artificial Neural Network (ANN) to perform

common tasks in ER (specifically adaptive behaviour and legged robot loco-

motion)? The potential fitness of a particular solution is arbitrarily defined

based on the design of the experiment and so reference should be made to

classical studies in ER and comparison drawn from unmodified solutions.

The Allure of Complex Systems

If I may be permitted, I would take a moment to address the motivation for

the study of complex systems. They are difficult, and perhaps unsurprisingly

complex, to comprehend, use, harness of otherwise investigate. They are

non-linear, stochastic and indeterministic and are typically very difficult to

analyse and synthesise. Despite this such systems are all around us and

affect almost everything which we do and experience.

They require a whole new multi-disciplinary tool-kit from biology, mathe-

25

matics, computer-science, engineering, non-linear dynamics and chaos; merg-

ing together in an attempt to explore some of the most complex and funda-

mental aspects of life, the universe and everything. Nothing is simple or as

it seems, but from that inherits a richness and elegance which is fascinating.

Contributions and Thesis Structure

This Thesis is structured as to divide it into a number of Parts. The na-

ture of this infrastructure project supports a ‘methods and materials’ ap-

proach where the development work is presented grouped together and is

then brought together to test and analyse the results; Part II and Part III

respectively. Against the outline structure of the Thesis presented below the

outline, role and key contributions of each element is stated.

26

Part I Introduction

The virtue of including time delays into dynamic networks for the

purposes of developing adaptive behaviour has not hitherto been con-

sidered. Whilst delay systems are common in problems of classical

control theory and biology, they have not yet been introduced into

ER, nor have their dynamics considered as contributing usefully to

the system beyond the simple preconditioning of sensor data within

feed-forward discrete ANNs [34, 16].

Through the more detailed modelling of synaptic links it is hypoth-

esised that the information processing capability for a network of a

given size is increased, suggesting the possibility of evolved solutions

with reduced complexity over that previously possible. Beyond this,

this simple modification to the standard model permits the sustained

evolution of pattern generation by even a single self-recurrent node.

This alone would warrant investigation and application of such sys-

tems to the evolution of gaits and complex behaviour.

Part II Methods and Materials

This Part presents the development of several pieces of complemen-

tary research which are collectively required in order to support the

investigation of research questions defined in Part I.

Chapter II.1 Background

This Thesis covers a wide range of interrelated topics which are in-

troduced in this Chapter, highlighting the opportunities for novel

investigation and preparing the background to the rest of the

Thesis. Topics covered include adaption in natural and artificial

systems, Artificial Neural Networks, Gene Regulatory Networks,

dynamical analysis of complex systems and the evolution of adap-

tive behaviour.

27

Chapter II.2 Dynamics of Small Delayed Dynamic Networks

The inclusion of time delays within a continuous recurrent neural

network architecture enhances an already rich set of dynamics

and improves the capabilities of the system.

In this research a thorough evaluation and determination of the

additional dynamics developed by small delay systems is pre-

sented for a modified Hopfield type recurrent dynamic neural

network. Previous works have considered solely the non-delayed

form of CTRNN, or the stability and mathematical characteri-

sation for systems of DDEs modelling neural or gene regulatory

networks, rather than the extra dynamic capabilities of interest

in the context of ER.

This Chapter explores this difference in an intuitive, mathemat-

ical and numerical manner, comprehensively evaluating the dy-

namical differences made by the inclusion of delays, and high-

lights potential applications. Specifically, it is shown how even a

single delayed node can oscillate in a governable manner and that

complex switched oscillatory behaviour could be easily evolved.

This evidence bolsters the case for investigating applications to

robot locomotion in Chapter III.3 and justifies the development

of the simulation tools and demonstration quadruped robot un-

dertaken in Chapters II.3 and II.4 respectively.

Chapter II.3 Minimalistic Simulation of a Quadruped Robot

The research questions mandate study of application of dynamic

neural networks with time delays to robot locomotion. Chapter

II.1 introduces a variety of related literature and presents the ad-

vantages and disadvantages of a simulation based approach for

the evaluation of a Genetic Algorithm (GA). Principal amongst

the disadvantages is the computational effort required, and early

28

on in the field of ER, Jakobi [60] developed minimal simulations

which captured the ‘base set’ of the environment which affected

the behaviour of evolved individuals. Sympathetic with this view,

this Chapter develops a computationally efficient Three-Dimensional

(3D) simulation environment for evaluating the gait of quadruped

robots. Results of trials were compared with laser tracker record-

ings of the demonstration quadruped, developed in Chapter II.4,

with the simulation replicating the gait with a high degree of ac-

curacy both with respect to the distance travelled and key char-

acteristics of the motion. The validated simulation is used in the

experimentation of Chapter III.3.

Chapter II.4 Model Verification using Real Robots

In ER evolved solutions are embodied in real or virtual systems,

and it is in the interaction of morphology, control and environ-

ment that behaviour is emergent. Whilst the computational

rigours of EAs often renders evolution in virtual environments

more feasible than in hardware, it is necessary to capture the

essence of the real system for successful evolution. This Chapter

describes the modelling of real wheeled robots used in Chapters

II.5 and III.2 and the development of a quadruped robot for the

purpose of validating the simulation described in Chapter II.3.

Chapter II.5 Evolving Adaptive Behaviour with Time Delays

This Chapter demonstrates the successful evolution of simple

adaptive behaviour in a well studied biologically inspired task for

a two wheeled Khepera robot, using the model detailed in Section

II.4.2. Evolved solutions are analysed for their sensitivity and re-

liance on time delays for achieving high fitness. For the purposes

of comparison a traditional neural network model without delays

was evolved for the same task and its performance analysed as a

29

range of delays were added to the system. Delays are shown to

be highly significant for the maintenance of high fitness evolved

behaviour and those systems evolved with delays are proven to be

much more robust to changes which may render them more suit-

able for application in extreme environments. This T-junction

task is then reused in Chapter III.2 for the investigation of the

encoding methods developed in Chapter II.6.

Chapter II.6 Methods for Determining Time Delays

To evolve systems with delays they must be encoded within the

genome of each individual in the simulation population. Beyond

the simple direct encoding of these values, this Chapter intro-

duces the concept of spatial representation of the network and

the geometrical determination of the delays in the system. A

range of methods are developed and analysed for the efficiency of

the encoding and restrictions placed on the possible set of values

delays may take.

A number of novel approaches for the encoding of delays within

evolutionary algorithms have been proposed, with the core con-

cept of spatial representation of network structures and geometri-

cal determination of connection delays. The relative advantages

and disadvantages are presented along with the relative suitabil-

ity of each for a range of scenarios.

Part III Results and Analysis

In this Part the contributions of Part II are brought together and

tested in an attempt to answer the research questions of Part I.

Chapter III.1 Introduction

To support the resolution of the hypotheses presented throughout

and answer the research questions above, this Part presents the

30

results of evolving systems with and without delays determined

by each method presented in Chapter II.6. The results of multi-

ple runs are statistically processed to develop an understanding of

the underlying distribution of achievable fitness for each method

for a range of common examples in the field, split between adap-

tive behaviour and robot locomotion. Beyond simply considering

fitness, the data are investigated for the impact of methods on

the optimal structure of solutions.

To evaluate the merits or otherwise of the ideas presented in this

Thesis, each of the delay determination techniques were applied

to a wide ranging set of commonly studied tasks within the ER

domain and statistically appropriate conclusions drawn from the

results of repeated runs.

Chapter III.2 Adaptive Behaviour

Much of the work in ER has focussed on wheeled robots as ani-

mats to explore the emergence of adaptive behaviour (see Chapter

II.1). This Chapter extends the T-junction test of Chapter II.5 to

compare the various encoding methods of Chapter II.6 and also

includes a example of chemotaxis.

Chapter III.3 Robot Locomotion

Another significant area of endeavour in this field is that of legged

locomotion, as evidenced by the literature survey in Chapter II.1.

ER studies have previously included both adaptive behaviour and

legged locomotion in the same body of research, and thus the sim-

ulation environment and quadruped model developed in Chapters

II.3 and II.4 are applied to the task of developing an effective

quadruped gait. Initially however, the same leg model is applied

to a single leg (as per Section II.3.1) as a fundamental building

block.

31

Chapter III.4 Conclusions

This Chapter summarises the conclusions of the experiments car-

ried out earlier in this Part, in Chapter III.2 and Chapter III.3.

Through the novel introduction of connection time delays into Re-

current Neural Networks (RNNs) a small network was shown to

be able to efficiently govern a single leg walking analogue which

was previously impossible at this scale without an external in-

put to the network. However, experiments in adaptive behaviour

were unable to demonstrate any measurable increase in capability

following the introduction of delays. Whilst all of the delay en-

coding methods proposed in Chapter II.6 were capable of evolv-

ing solutions for all of the experiments reported, there was no

demonstrable benefit to the additional complexity and there was

evidence that the evolutionary search was artificially constrained

to lower complexity solutions for spatial representation methods.

Part IV Summary & Conclusions

This Part presents the conclusions drawn from the results and analy-

sis developed throughout the Thesis, supporting or contradicting the

hypotheses presented. Avenues for future exploration and the contri-

butions of this research are also considered.

Part V Appendices

32

Part II

Methods and Materials

33

Chapter II.1

Background

Inspired by nature, we seek to evolve systems that develop emergent intelli-

gence and adaptive behaviour. This requires a control architecture with the

potential to develop this kind of behaviour and which is capable of being

evolved artificially. Lipson [74] draws careful attention to the subtle dis-

tinction between optimisation and synthesis. Synthesis is inherently open

ended and there is little or no knowledge of what components are required to

reach an optimal solution, whereas optimisation revolves around the careful

tuning of parameters to achieve optimality in a known system. The search

space may be vast, but the process is intrinsically limited by an exhaustive

search.

This distinction can clearly divide the field of ER, as much of the earlier

work on the subject involved the selection of parameters for fixed ANNs,

which is optimisation. More recent work has tended to focus on the more

open-ended automatic definition of ANNs, which is synthesis, and it is

most likely that through synthesis of complex systems useful results may

be achieved. In work inspired by Sims [100, 99] interesting locomotor robot

morphologies were successfully evolved using an L-system representation,

specifying joints and their independent oscillatory properties. Initially, very

simple evolutionary methods and architectures were evolved for very spe-

34

cific tasks. Evolutionary search is just that, a search process, which will

ruthlessly exploit any and all factors within the system to achieve a high

‘fitness’ as described, for the most part, by simple mathematical functions.

Without care, this can lead to evolved systems highly reliant on the spe-

cific circumstances of their evolution, and so it becomes necessary to instil

generality into these systems. This generality may be attempted through

careful consideration of the evolutionary process, and through learning and

plasticity in the evolved controllers so that they have:

. . . the ability to carry out a certain task in different environ-

mental conditions or the ability to carry out different tasks.

Such systems will probably require more internal complexity that

the simple non general systems which we described. [83, p.215]

The evolutionary methods used vary greatly from study to study. The

simplest form is the one described above, where each individual of a gen-

eration is evaluated alone with respect to some ‘fitness function’, however

there are many other methods designed to improve on or avoid certain pit-

falls in specific circumstances. Not least among these is the definition of the

fitness function, for without this there is no guidance for the evolutionary

process. Traditionally these functions have been hand crafted by individual

researchers based upon experience and not a little trial and error to achieve

good results. For simple problems this is generally not a problem, but for

more complex tasks the ‘bootstrapping problem’ is encountered. This is

where the complexity of the task is such that any randomly generated ini-

tial population of individuals will attain uniformly negligible fitness and

thus the evolutionary process will tend to random genetic drift. A com-

mon approach to the solution of this issue is in the incremental increase

in the complexity of the evolutionary run from an initially simple problem

for which an evolved solution may be found, tending towards the final form

35

required. This incremental evolution may be achieved through altering vari-

ously the fitness function, the environment, the robot morphology or control

structure. However, the requisite manual decomposition in the majority of

early work in this area imposes a priori constraints upon the final solution

and may lead to overly complex or non-optimal solutions. For further de-

tails please see later sections of this Chapter, or Nolfi and Floreano [83] for

a comprehensive introduction.

Much of the work thus far takes the form of a proof of concept, rather

than the development of useful systems that could not be arrived at though

other means. Almost two decades ago, Brooks stated that, “To compete

with hand coding techniques it will be necessary to automatically evolve

programs that are one to two orders of magnitude more complex than those

previously reported in any domain”[24, p.3]. For the largest part, this holds

true today, but significant progress has been made, and ER remains an

exciting area of research.

This Thesis covers and develops a wide range of different, but related,

areas of research. To establish the background to the work presented later,

we must review a large body of literature which is separated into discrete

Sections. Whilst a great deal of this material is generally applicable across

the entirety of the Thesis there are some cases of direct read-across; Section

II.1.3 applies almost entirely to Chapter II.2, Section II.1.4 largely informs

Chapter II.5 and Section III.2, whereas Section II.1.5 applies to Chapter II.3

and Section III.3.

II.1.1 Adaption in Natural and Artificial Systems

The field of ER can be said to be based on the work of Holland [51], where

he discussed the development of artificial adaptive systems. Initially highly

specialised, the field has now broadened significantly with a wide body of

research generated over the last two decades. ER aims to generate artificially

36

adaptive systems through the application of biologically inspired methods

of evolution, breeding and selection; mimicking both the methods used and

system structure from nature. Initially, search heuristics such as GAs were

used to evolve computer programs, using LISP like languages. More recently,

ER work has focussed on neural networks, particularly dynamically rich

CTRNNs, as highly flexible noise tolerant control architectures. This kind

of approach is necessary for its ability to generate solutions independent of

the human architect of the evolutionary process, and has great potential

for the control of highly complex or intelligent systems that may be very

difficult, highly costly or simply impossible to design manually.

The more we can understand of a system from the mechanical

perspective, the less likely we are to attribute agency, person-

hood [sic], conciousness to it - which is why the ER approach

that can produce comprehensible behaviour from incomprehen-

sible mechanisms offers possibilities that the conventional design

lacks. [46, p.10]

ER looks for emergent behaviour from the interaction of evolved control

architectures with the environment, and is both a tool for the generation

of control systems and for the study of cognitive processes, as artificial sys-

tems may be minutely dissected and analysed to build understanding of

cognition and intelligence at the most fundamental level. The process starts

with an initial population of ‘individuals’, representing particular instances

of proposed architectures, which are then evaluated and the ‘fittest’ indi-

viduals pass on their genetic material. Over a phylogenetic time scale the

process aims to find a near optimum solution. The concept is that the so-

lution arrived at is entirely independent of the human designer, although a

priori knowledge of a solution is almost inevitably embedded through the

design and evaluation of the fitness function and parameters governing the

evolutionary process.

37

Unfortunately the Law of Unintended Consequences holds significant

sway in this field, and makes the task of the researcher that much more

difficult because of it. In trying to govern and steer a complex evolutionary

search with a formulaic fitness function and typically an approximation of

embodiment for the system, the algorithm’s exploitation of the search space

will often lead to unexpected consequences. The design of the fitness func-

tion must therefore demand considerable thought and reflection in its design

and implementation.

These methods are powerfully adaptive, and systems may develop the

ability to learn or maintain internal states, but thus far have been limited

to relatively simple problems (compared to those which naturally evolved

biological systems, such as ourselves, encounter on a daily basis). In the

anticipated resolution of these issues, ER is attractive because “. . . artificial

evolution can develop mechanisms that go beyond reactive behaviour when

this is necessary without being explicitly told to do so” [83, p.151].

Competitive co-evolution has demonstrated the ability to evolve con-

trollers for more complex tasks due to the automatic task incrementation

(without input from the designer of the experiment) as co-evolved individ-

uals interact [83]. These methods however can suffer from the Red Queen

Effect, named after a Lewis Carrol’s fictional character who was always run-

ning forwards, but never made any progress as the landscape moved with

her. In this context it refers to the progress of one species being negated

by improvements in the other, leading to potential evolutionary stagnation

and random genetic drift. Despite this, co-evolutionary methods have been

shown to produce interesting results, and has significant benefits as a form

of intrinsically incremental evolution [37]. However, this kind of approach

is limited by the potential to structure the required problems in this form.

Whilst early work in GAs used simple direct encodings (See [83] for exam-

ples in ER), as techniques became more sophisticated real valued parameters

38

and variable length genotypes were introduced. Specialised algorithms were

developed such as Genetic Programming (GP) [65], Cellular Encoding (CE)

[42, 43] and Species Adaption Genetic Algorithm (SAGA) [45].

More recently, Stanley developed an algorithm called NeuroEvolution

of Augmenting Topologies (NEAT) [107, 108, 104]. This open-ended evo-

lutionary architecture evolves neural networks, beginning with a minimal

genotype of solely input and output nodes arranged in a perceptron-like

feed-forward network defined by the experimenter, where the complexity of

the network topology may increase by inserting new neurons into existing

connections or adding new connections in the network. It has been shown

that for simple control tasks the NEAT algorithm is often more efficacious

than other methods [107, 112].

An extension to this, called Hyper-NEAT [106], was developed for the

evolution of very large scale neural networks using Compositional Pattern

Producing Network (CPPN) [105]. These networks were proposed as a novel

abstraction of a developmental encoding, mapping the phenotype without lo-

cal interactions. They are essentially standard ANNs, where the activation

function for each node can be non-linear (e.g. sigmoid), trigonometric or

gaussian. By developing networks with, for example, two inputs, the evalua-

tion of the CPPN over a continuous range generates a deterministic pattern

which can be sampled at any resolution. Initially, they were used in genetic

art where the pattern network is evolved to produce repeated and struc-

tural motifs often attributed to conventional developmental abstractions.1

By representing the connections in a neural network as a four dimensional

hyper-cube (four inputs of x1,x2,y1,y2), the weight of each connection was

encoded in the pattern. This approach was applied to a number of examples

and has the advantage in that the developmental encoding is independent

of the resolution of the network and can be sampled to generate very large

1See Picbreeder.org and EndlessForms.com

39

network which, crucially, perform the same task as might have been evolved

for a simpler case (smaller resolution). It is thought that this procedure may

exploit the geometric regularities of the task domain.

II.1.2 Architectures for Control

In seeking to develop autonomous systems we must adopt a system of repre-

sentation which encapsulates an appropriate range of dynamics with a degree

of complexity sufficient to enable the desired behaviour without rendering

synthesis intractable. Over the last few decades of Artificial Intelligence

research a wide variety of architectures for autonomous systems have been

introduced with many still occupying capability niches. For more specialised

tasks, there may be a whole range of highly tailored options, but the search

is still on for general solution capable of emergent autonomous and adaptive

behaviour.

II.1.2.1 The Origins of Artificial Autonomous Systems

In the late 1980s, Brooks et al. pioneered a new approach to artificial

intelligence, proposing a robust form of incrementally layered control system

denoted the Subsumption Architecture. This approach advocated the design

of independent layers of control, starting with base behaviours and adding

complexity, with each system fighting for control of the robot, as shown in

Figure II.1.1.

In their research, these control system layers were formed from a network

of Finite State Machines (FSMs) connected together. Each module is a FSM

which can hold Lisp data structures. Messages from modules may inhibit

those of lower level control layers and thus gain control of the robot.

Brooks’ [21] coordination of these parallel and distributed behaviours

through activation levels roughly mirrors the biological hormonal control of

40

Figure II.1.1: Subsumption Architecture, from [18]

behaviour as described by Kravitz [67]. This architecture is interesting in

its departure from GOFAI, and in the view that complex behaviour may

emerge from the rich interaction of simple systems and dynamic environ-

ments. Whilst robust real robots were developed [23, 19], control systems

for mobile robots are highly complex to design, and it becomes inherently

more complex faster than the numbers of layers or modules in the architec-

ture [57, 29].

There have been a wide variety of approaches explored for the develop-

ment of autonomous control systems and it is beyond the scope of this review

to cover them in more detail here. However, for the traditional design of

cognitive architectures “it seems likely that the limits of feasibility for real

robots doing useful things are currently being reached” [47, p.3].

II.1.2.2 Artificial Neural Networks

ANNs are a computational tool based upon a simplified neuron model of the

brain. Nodes are connected to a selection of other nodes, and the output of

any node is a function of its inputs. They have been proven to be universal

approximators, in that an ANNs of sufficient nodes can approximate any

arbitrary function, be it highly complex or non-linear [54], and that “a given

41

continuous mapping on a compact set can be approximately realized by

three-layer feedforward neural networks with any precision” [38]. They are

therefore tremendously powerful and usefully do not require large amounts

of computation to determine the outputs.

However, as these networks can approximate anything, the difficult part

is getting them to approximate the function that you require - particularly

if you don’t know what this is. The determination of the correct series of

weights, thresholds and other parameters required for a given network is

complex and may lead to very high dimensional solution spaces that would

be impossible to characterise through an exhaustive search. GAs, simulated

annealing and Monte Carlo methods, among others, have been employed

as efficient search algorithms in these very large solution spaces. The vast

majority of the literature in ERs has focussed on GAs, but many methods

are potentially viable and simply serve as a way to find an approximation

to the global optimum.

One reason for the popularity of ANNs in ER and Artificial Life is their

inspiration taken from nature in which they clearly are capable of developing

highly intelligent and adaptive behaviour typified by humanity.

. . . animals are endowed with nervous systems whose dynamics

are such that, when coupled with the dynamics of their bodies

and environments, these animals can engage in the patterns of

behaviour necessary for their survival.[15, p.91]

Indeed, “There is little doubt that the brain uses active configurations

of neurons to represent the properties of perceived entities and events.” [8,

p.582] as powerful, noise tolerant control systems with proven evolvability

[47], ANNs are the architecture of choice for the study of ER. In biology,

estimates place the computational speed of neurons to be very slow, at

around 1 KHz but they appear to be highly connected. In small creatures

42

R C V

I(t)
S(v)

(a) Circuit Analogue

I(t) S(v)

(b) Neuron

Schematic

Figure II.1.2: A CTRNN node

individual neurons are connected to tens of percent of the total neurons in

the body. In mammals, motor neurons are connected to around 5,000 other

neurons, and some neurons in humans are connected to as many as 90,000

other neurons [22].

II.1.2.3 Recurrent Neural Networks

There are many types of ANN and they have been used in an incredibly

wide range of areas, from pattern recognition and financial modelling to

control. The first experiments in ER used simple feedforward networks, with

later work focussing on more complex neuron models with richer dynamics

capable of more interesting behaviour. CTRNNs have been shown to be

able to approximate any dynamic system [38]. In particular they have been

shown to exhibit useful properties, such as acting as oscillators [29], which

is particularly useful in the evolution of gaits for walking robots and many

other applications. Indeed, “Dynamic recurrent real-time networks form an

extremely general class of control systems” [29, p.83].

The CTRNN model was created by Hopfield and Tank [53]. It is born

out of an Resistor - Capacitor (RC) circuit analogue to a biological neuron,

43

aiming to retain the key dynamics but arrive at a simple model. The circuit

analogue of a single neuron is shown in Figure II.1.2 where I(t) is the current

into neuron which is proportional to the average spiking frequency of the

afferent neurons. V (t) is the membrane potential, and the output of the

node is S(v) = 1/(1 + e−v). This maps the membrane potential of the

differential equations to the output space. The derivation is as follows:

I(t) =
V

R
+ C

dV

dt
(II.1.1)

dV
dt = − V

RC
+

I(t)

C
(II.1.2)

let τ = RC (II.1.3)

∴
dV
dt = −V

τ
+

I(t)

C
(II.1.4)

let y ≡ V (II.1.5)

τ ẏ = −y +RI(t) (II.1.6)

But I(t) = Iint(t) + Iext(t) (II.1.7)

Iint ∝
N
∑

j

(wijσ(yj − θj)) (II.1.8)

Where σ(x) =
1

1 + e−x
(II.1.9)

τiẏi = −yi +
N
∑

j

(wijσ(yj − θj)) + Iext (II.1.10)

For the whole network, in vector format:

τ ẏ = −y +
N
∑

j

(Wσ(y − θ)) + Iext (II.1.11)

Where:

• τ is a diagonal matrix of N ×N .

• W is a matrix of size N ×N .

• y, θ, Iext are external vectors of size N .

44

The specific form of neural architecture is vitality important to the per-

formance and evolvability of the control system. This is covered in far greater

detail in the rest of the review, but there is no doubt that “. . . circuit archi-

tecture does significantly constrain the maximal achievable fitness . . . ”[12,

p.21]. This area of research is known as Artificial neuroethology which is the

study of the relationship between artificial control network processes and

behaviour [27].

Whilst initial experiments produced promising results, using highly sim-

plified neuron models to evolve basic obstacle avoidance and goal seeking

behaviour, Cliff et al. [29] argue that neuron models should be of a higher

complexity than those used in a lot of the earlier literature on the evolution

of ANN controllers, because:

. . . in using simplified models, we may be actually making life

harder for ourselves as scientists; because the tasks we try to

make our models perform may, but their very nature, require

greater complexity than is possible without using clever ‘trick’

techniques, or large and unwieldy modular assemblies of simple

networks. [29, p.40]

The authors point out that most models in the literature have limited dy-

namics and feedback, despite the fact that these feature are almost certainly

what is required for most of the more interesting and challenging problems,

as can be seen in how biological neural networks “exhibit rich dynamical

behaviour and exploit feed-back connections to great effect” [29, p.40]. An

extended form of genetic algorithm called SAGA was used in their research,

which allowed the dimensionality of the parameter space to be under evo-

lutionary control. The dynamics and structure of the neuron model used

was of sufficient complexity that it was not necessary to alter the weights

of connections; all weights and delays were fixed at unity. An innovative

45

encoding structure was used to allow variable length genotypes and arbi-

trary network structures without the defined layers of recurrent networks;

care in crossover and mutation is essential to generate valid progeny in this

method [47]. Controllers developed using this technique were shown to be

fairly specifically tailored to the amount of internal noise present which is to

be expected; more interestingly however, fitness decreased when evaluated

with zero noise. This suggests that the networks were using the internal

noise to avoid the effects of unproductive attractors [29].

Some work on including time delays within a neural architecture have

been undertaken, but are limited in nature. Duro et al. used higher order

synapses including trainable delays within a back propagation algorithm to

pre-condition IR sensor data for a mobile robot controlled by a feedforward

ANN [34, 16]. They argue that this approach allows the creation of virtual

sensors where sensor data was temporally correlated to obtain a more useful

representation of the work. The authors also applied their technique to Echo

CardioGram (ECG) beat classification [33]. Pearlmutter addresses the issue

of synapse delays in the context of back propagation training, but does

not apply them [85]. Similarly, Lang and Waibel use a Time Delay Neural

Network in word recognition [71].

Cohen et al. present the closest extension to a standard RNN to that

which is developed in this Thesis, called the Time Delay Recurrent Neural

Network (TDRNN). They claim that the inclusion of the delay may have

advantages such as increased capacity resulting from the higher degree of

freedom, reducing the network size and storing information without hidden

neurons. Their model is of the form:

xi =
N
∑

j=1

wijyj(t− τij) (II.1.12)

Tiẏi = −yi + σ(xi) + Ii (II.1.13)

Where Ii(t) is an external dynamical input function to neuron i, σ(x)

46

is the standard sigmoid function, yi(t) is the output of neuron i, Ti is the

neuron time constant, wij is the weight matrix element connection neurons i

and j, xi represents the total input to neuron i, N is the number of neurons

in the system, and τij is the new delay parameter. They demonstrate the

training of small networks for oscillations and pattern tracing.

II.1.2.4 Gene Regulatory Networks

Biological organisms without neural networks are still capable of sophisti-

cated adaptive behaviour governed by regulatory networks comprising genes,

proteins and small molecules [9]. Single celled Eukaryotic organisms exhibit

fundamental behaviours such as motility and taxis; E.coli is the best known

model organism for unicellular chemotaxis. The modelling and analysis of

biological GRNs continues to be a very active area of research.

GRNs are interesting in that their behaviours range across a very wide

range of timescales. Very fast protein interactions from ms to minutes, regu-

latory interactions between Deoxyribonucleic Acid (DNA) and Ribonucleic

Acid (RNA) (where gene expression proteins are produced and degraded

with a half life of minutes to days) from tens of minutes to days and epige-

netic modifications from days to weeks to years.

Natural regulatory networks are often very complicated, such

that for even the simplest functions many components are in-

volved and entangled with each other.[9, p.3]

A wide variety of techniques have been adopted for the synthesis, anal-

ysis and re-construction of GRNs from time series data, including coupled

Ordinary Differential Equations (ODEs), Boolean networks, continuous net-

works, stochastic gene networks and higher order neural networks.

Beal et al. developed a biocompiler in which modelled GRNs are used

to compile algorithms into genetic code which can be implanted in biolog-

47

ical entities [9]. In their approach each regulatory element is a functional

unit consisting of a promoter, one or more genes, and a terminator. The

gene is regulated, positively or negatively, by upstream elements whose con-

centration serves as the input signal. The promoter produces proteins as

output that can serve as transcriptional regulatory factors inputs for down-

stream regulatory elements. The behaviour of each regulatory element is

described by a multi-input sigmoidal transfer curve. The work here focusses

on using the somewhat digital nature of sigmoid outputs to create “hybrid

analog/digital circuits”.

GRNs can be modelled as ODEs, but it is difficult to know what the

initial conditions should be [93]. Biological systems have built-in regula-

tion mechanisms which make them robust to changes in their parameters.

Many Transcription Factors (TFs) form dimers or higher-order oligomers,

so that their binding to DNA is sigmoidally dependent on their concentra-

tion. Purely Boolean representations have lower predictive power than their

continuous counterparts (reviewed in [101]). GRNs have also been mod-

elled as ‘classical’ or ‘first order’ neural networks [89, 117]. In the neural

network approach, the genes form the nodes of the network. The connec-

tions between the nodes have weights, which relate to the magnitude of

the effect that a gene at one end of the connection exerts on the gene at

the other end. Weights can be zero (no interaction), positive (stimulation

of gene expression), or negative (repression). The effects are assumed to

be additive so that transcription levels are continuously valued. This ap-

proach ignores the fact that there is often significant synergism - defined

as deviation from additive behaviour - in the effect of multiple TFs on the

expression of a single gene. Thus, the classical ANN approach cannot be

used to describe the ubiquitous ‘AND’ interaction, in which individual tran-

scription factors have no effect, but their combination does. In an attempt

to avoid the limitations associated with the Boolean and first order neural

48

network approaches, Yuh et al. used a combination of digital and analogue

representations to model the regulation of the sea urchin embryo Endo16

gene [126, 127] . Genes are modelled as so-called Sigma-Pi units which were

introduced as nodes in ‘higher-order’ neural networks by Rumelhart et al.

[92], in order to circumvent linear separability constraints associated with

first-order neural networks.

In a higher order network, a combination of inputs into the same node

may generate an output that is different from their simple sum. Boolean

functions and logic gates can be expressed in the Sigma-Pi formalism, but the

input to and output of a Sigma-Pi function is not restricted to Boolean values

[44]. Like logic gates, Sigma-Pi units are combinatorial, and consequently

complex units may sometimes be decomposed into a set of simpler modules.

Central to the approach advocated by Yuh et al. is, as in electronic design,

a circuit diagram, which describes the connectivity and overall organisation

of the network. The attraction is not only that the interactions between TFs

are visualised in a simple, modular way, but also that the circuit diagram

can be used as a basis for simulation models. However, the authors did not

describe the precise relationship between TF binding, gene expression, and

combinatorial or sequential logic, nor have the assumptions on which the

relationship is based been made explicit.

Geard andWiles developed a Dynamic Recurrent Gene Network (DGRN)

and evaluated its ability to control developmental trajectories of cells dur-

ing embryogenesis [39]. They hypothesise that the simple model possesses

a sufficiently flexible range of dynamic behaviours to enable it to generate

complex developmental trajectories. The DGRN follows a more abstract ap-

proach than other models [62, 102], focussing on insight to high-level prop-

erties. They model a network of N nodes, with activation states between

0 (inactive) and 1 (active), updated synchronously at time steps represent-

ing duration of cell divisions. Ns structural nodes (hidden), Nr regulatory

49

(output) nodes and single input node. σ(x) is standard sigmoid function.

ai(t+ 1) = σ(wiI(t) +

Nr
∑

j=1

wijaj(t)− θi) (II.1.14)

Fitness was measured as the error in node activations, a ≥ 0.5 ≡ Active

and a ≤ 0.5 ≡ Inactive. This relied on a priori knowledge of the correct

target pattern for the cell lineage tree of C. elegans. In the results presented

the patterns were randomly generated or biologically inspired. The hidden

structure of internal units was varied along with the size of the target pat-

terns and their efficacy compared; see [62, 122] for analysis of the dynamics

of such networks.

Knabe et al. adopted a continuous model, similar to higher order re-

current neural networks [64], when evolving GRNs to replicate behaviour of

biological clocks given a periodic external stimulus. The stimuli had noise

and blackouts added and their approach used shifted sigmoidal activation

functions where the genome is represented as a binary string. Outputs were

measured as to their proximity to a desired periodic output function with

the aim of developing GRNs which are robust to changes in the environmen-

tal stimuli. Some solutions evolved which could function without external

stimuli.

Li et al. focused on the model-free reconstruction of Time-Delayed

Gene Regulatory Networks (TdGRN) from temporal gene expression data

i.e. pairwise overlaps of expression levels shifted in time relative to each

other [72]. They applied their approach to yeast cell cycling and human

HeLa cell cycling. “Many important biological processes (e.g., cellular dif-

ferentiation during development, ageing, disease aetiology etc.) are very

unlikely controlled by a single gene instead by the underlying complex reg-

ulatory interactions between thousands of genes within a four-dimension

space.” [72, p.1]. The time-delayed gene regulation pattern in organisms is

a common phenomenon [98, 124], so it can be conceived that multiple-time

50

delayed gene regulations are the norm and the single-time delayed ones are

the exception. The exact time-delayed mechanism(s) remain to be verified

experimentally however their data fitting approach matched the biological

evidence as well as generating a number of new hypotheses.

GRNs for Robot Control

Robotic applications of GRN control are fairly limited and this is certainly

a developing field. Despite the fact that biological neurons react on a faster

timescale than genes this is no barrier in the computer modelling of such

systems and as such present a viable architecture for control. Kumar de-

veloped a simple reactive obstacle avoidance controller for two different

robots, the Pioneer 2DX and Active Media’s Amigobot [69]. Similarly, Bent-

ley demonstrated GRN controlled obstacle avoidance in a hexapod walking

robot, where the GRN was not responsible for the gait but simply the nav-

igation [17] and Zahadat et al. evolved a modular snake robot controller

in a reactive task [128]. The work on obstacle avoidance behaviour was

extended by Trefzer et al. in considering a range of different environments

with a simulated and real E-Puck robot [113].

II.1.3 Dynamical Anaylsis

Further to the development and application of the models introduced in Sec-

tion II.1.2, there has been a considerable effort involving the mathematical

analysis and treatment of dynamics of such systems. It is fundamental that

we understand these dynamics and how they may contribute to, and be best

harnessed in, the development of autonomous systems.

There has been considerable, highly mathematical, treatment of RNN

systems of a more general type than that used in ER (for example, see [55]).

However, Beer was the first to consider the comprehensive analysis of sin-

51

gle and dual neuron CTRNN circuits [10]. Considering first autonomous

circuits without time variant inputs, for a single neuron with and without

self-connection he established the equilibrium surface and bifurcation set of

the dynamics and then considered the phase portraits and bifurcation sets

of a similar two neuron case. As networks increase beyond this complexity it

is difficult or impossible to examine directly, but he proposed the decomposi-

tion of larger systems for the purpose of analysis as a combination of simple

systems may be comprehensibly understood. In his later works, he further

explored the local bifurcation manifolds and larger systems in an effort to

develop a more general theory of dynamic neural circuits [11]. Through

application of these results appropriate ranges of connection weights and

thresholds can be selected for the richest dynamics.

This neurodynamical approach was applied to the analysis of the dynam-

ics of brain-body-environment interaction for a hexapod walking robot [12].

By considering a single limb of the robot, it was possible to mathematically

describe the fitness space structure of the system [13, 14]. The limitation of

the problem for study to three dimensions allows powerful visualisation and

analysis of the fitness space without resorting to indirect inferences using

many concepts from [110]. This analysis “demonstrates some of the rich

and subtle ways in which a neural and a mechanical system can interact”

[13]. All work was carried out in simulation in networks without noise; the

effect that noise would have on the controllers evolved and the analysis of

the fitness space and dynamics remains to be seen. Indeed, the authors state

that “It would be interesting to see how the picture developed here changes

as we incrementally add more realistic dynamics to the body model” [13].

Others have further examined the dynamics of specific evolved agents

to explore the mechanics of learning behaviour in a simple food discrimina-

tion task [86]. By strobing the dynamics of the system they were able to

reconstruct finite state machines embedded within the neural network and

52

Figure II.1.3: Two coupled delayed neurons [96]

analyse their results.

Whilst the dynamics of Hopfield type neural networks with delays have

been considered from a mathematical point of view - for existence, unique-

ness and global stability of the equilibrium point have been undertaken [129]

- this is done without any consideration of the dynamic behaviour or appli-

cations, let alone use in ER.

Shayer and Campbell considered the dynamics of two coupled Hopfield

type neurons with variable delays but without thresholds or external input

to the nodes as shown in Figure II.1.3 and Equation II.1.15 below [96]. The

system was described by;

ẋj(t) = −κxj(t) + β tanh(xj(t− τs)) (II.1.15)

For the two neuron system they consider in Figure II.1.3, this becomes;

ẋ1(t) = −κx1(t) + β tanh(x1(t− τs)) + a12 tanh(x2(t− τ2)) (II.1.16)

ẋ2(t) = −κx2(t) + β tanh(x2(t− τs)) + a21 tanh(x1(t− τ1)) (II.1.17)

Their analysis is interesting, but does not consider any external input to

the network, has no threshold and uses the hyperbolic tangent as opposed

to the sigmoid function for node activations.2 They attempt to describe the

largest subset of a five-dimensional parameter space in β,κ, γ (a function of

the weights), τs and τ .

2The two are almost identical, but tanh tends asympotically to -1 or +1, whereas the

sigmoid function is bound between 0 and +1.

53

The study of GRNs with time delays is more advanced with considerable

mathematical theory on their stability [28, 84, 118]. Wang et al. [119]

undertook a complex mathematical analysis of stability in delayed GRNs,

modelled continuously by differential equations. They state that:3

It has been recognized that the slow processes of transcription,

translation, and translocation or the finite switching speed of am-

plifiers will inevitably cause time delays, which should be taken

into account in the biological systems or artificial genetic net-

works in order to have more accurate models [77]. It has been

shown [82], by mathematically modelling recent data, that the

observed oscillatory expression and activity of three proteins is

most likely to be driven by transcriptional delays, and delays can

have significant impact both on the dynamical behavior [sic] of

models and on numerical parameter prediction. [119, p.154]

When the gene network is viewed as a dynamical system, external control (or

intervention) can be applied to make the controlled network achieve desired

behaviours such as the stability of the gene expression level regardless of

the parameter variation within a certain range. Time delays are frequently

encountered in not only the biological networks but also many other practi-

cal engineering systems, such as communication, electronics, hydraulic, and

chemical systems. It is now well known that time delay is one of the main

causes of instability and poor performance of a control system [78].

II.1.4 Evolution of Adaptive Behaviour

By coupling the control representations introduced in Section II.1.2 and

the methods for Artificial Evolution described in Section II.1.1 it is possi-

3References within the quote have been modified to be correct within the content of

this Thesis.

54

ble to explore the synthesis of autonomous systems capable of learning and

adaptive behaviour. This interest may be driven by the desire to better

understand the underlying mechanisms of the biological world, or to investi-

gate the emergence of intelligence in artificial systems and robotics control.

The latter is the field of Evolutionary Robotics which approaches the same

subject with more of an engineering approach than that of the biologist [45].

II.1.4.1 Embodied Intelligence

Mobile robots are intrinsically embodied in a challenging, dynamic environ-

ment and there is a rich, deep relationship between the control system and

the morphology of the robot, presenting both challenges and opportunities

for evolutionary robotics. In fact, “behaviour is best viewed as a property

of a complete brain-body-environment system [. . .], and cannot be properly

assigned to any individual component of this coupled system” [12, p.8].

There is a significant body of evidence for the embodiment of artificial

intelligence and the effect that the morphology and structure of the ‘body’

has on the control system. Brooks [20] argues vehemently that grounding of

robots is essential for the development of higher level behaviours, in contrast

to the view of traditional artificial intelligence symbolic representation based

research. Mobile robots live in the real world, extracting data from sensors

and influencing their environment with their effectors. In this way the form

of the robot and the arrangement and structure of its sensors and effectors

are of fundamental importance, and will have a most significant impact

on the form, function, evolvability and capability of any evolved controller.

Varela [115] states that:

By using the term embodied we mean to highlight two points:

first, that cognition depends upon the kinds of experience that

come from having a body with various sensorimotor capacities,

and second, that these individual sensorimotor capacities are

55

themselves embedded in a more encompassing biological, psy-

chological and cultural context. By using the term action we

mean to emphasize once again that sensory and motor processes,

perception and action, are fundamentally inseparable in lived

cognition. Indeed, the two are not merely contingently linked in

individuals they have also evolved together. [115, p.172-173]

As reported by Brooks [24], as much as 50% of the human brain ap-

pears to be dedicated to perception. This is perhaps unsurprising, as it is

through our sensing of the environment that we are able to make decisions,

gain understanding and act to influence that environment. So, whilst is it

apparent that robots must have sensors to be able to probe the environment

to gain any degree of autonomy or usefulness, it not so clear as to which

sensors and in what arrangements. Sensors may be classified as proximal or

distal, interoceptors or exteroceptors and their specification has an immense

impact on the form, efficacy and evolvability of controllers.

Cliff et al. argue that vision is essential for interesting robots, but that

with high resolution / high bandwidth devices there are tremendous issues

in the genotypical encoding and simulation, and so most investigations thus

far have used very low resolution visual devices (mostly photoreceptors).

This is biologically justified and ties in with the sensory apparatus of many

insect species. Experiments reported by Cliff et al. illustrated that once

individuals learnt to use the visual sensors, the other sensory inputs fell into

disuse and were reallocated as further visual processing units which resulted

in a reduced neural structure [29].

By choosing the right sensors, animals can often get by with very little

neurological processing, just enough to extract the required information for

the task at hand. The building of complex world models does not appear

to be neurologically supported in biological systems, contrasting with large

bodies of work with traditional artificial intelligence [22]. Wehner [120] illus-

56

trates a number of examples focusing on natural vision systems. Particularly

relevant is the Skylight Compass that bees use to localise themselves based

on the linear polarisation of light from the sun. The analytical solution to

this is complex, three-dimensional and requires significant optical knowledge,

but:

Are we really to assume that the insect’s brain comes programmed

with the ability to perform such three-dimensional constructions

in the sky, let alone to acquire, by either evolutionary or individ-

ual experience, the underlying knowledge about skylight optics?

I doubt it . . . [120]

The biological solution is much simpler than a physicist’s approach, and

instead uses matched neural filters consisting of an array of polarization sen-

sitive photoreceptors whose direction is matched to the polarization pattern

in the sky, requiring a simple biological analysis to generate the required

information. This ‘compass’ measures relative rather than absolute intensi-

ties making it robust against intensity fluctuations due to outside influences.

Thus evolution is shown to exploit ‘tricks’ to generate simple, but specific

solutions to problems in an entirely different manner that a human designer

would approach the problem. Wehner [120] concludes by saying;

The systems are not perfect, but they work sufficiently well not

to be pared down by natural selection. When there is no need

for a more perfect solution, why bother with it? This is certainly

the elegant way of solving a problem - and the brain depends on

elegance to compensate for its small size and short lifetime [120,

p.530]

Wehner [121] provides evidence from experiments on bees that contra-

dict previous suggestions that bees practised map based navigation. The

57

experiments showed that the insects clearly followed skylight compass based

headings and used natural optometry to navigate in combination with land-

mark recognition. When approaching a goal the bees aim to minimise dif-

ferences between their current retinal patterns and learned patterns. Whilst

this takes place on at least partially processed representations, there is no

evidence to suggest integration into a complex map form.

However, an artificial agent does not necessarily need to integrate

different senses into a coherent picture, since many successful

predators in the (natural) animal kingdom do not do this either.

A snake, for example, employs them sequentially . . . [90, p.357]

Harvey et al. [47] argue that in order to develop more sophisticated

navigational competences than blind meanderings, an increased reliance on

distal sensors, particularly vision, is necessary. The fusion of visual infor-

mation into neural networks for high resolution images leads to networks of

great complexity and size outside the current scope and feasibility of ER

research, but:

That many animals, particularly insects, successfully occupy their

ecological niches using low-resolution low-bandwidth vision as a

primary source of exteroception information indicates that such

an approach (as opposed to high resolution and bandwidth) is

worth exploring within an evolutionary robotics context, in the

first instance at least [47, p.6]

Alongside exteroceptors to sense the external world, “Truely autonomous

robots will require interoceptors to monitor significant internal states such

as power level and degree of wear or damage” [29]. The implementation

and representation of sensors and effectors within the evolutionary process

is vital for the success of evolved agents in reality, and their adaptive capa-

bilities.

58

II.1.4.2 The Reality Gap4

Transferring controllers from simulation to physical robots is a major chal-

lenge. The use of simulations was criticised by Brooks [24], warning of the

danger that controllers evolved purely in simulation are highly likely to fail

due to the complexities of real life. More recent work by Jakobi [60] shows

how, through the appropriate introduction of noise into simulations, success-

ful robust controllers which behave in the real world as they did in simulation

may be obtained. It is recognised however that it is probably far easier to

construct accurate simulations of the simple Khepera robots used than for

many others. Simulations were spatially continuous and two dimensional,

using empirical information, thus contrasting with the view of Brooks that

any model must be 3D to accurately simulated interactions in the real world.

A distributed GA was used to avoid issues of premature convergence. Exper-

iments were carried out with no noise, observed noise and twice the observed

noise to quantify its effect. In the course of this research there was never a

binary negative correlation between observed and expected robot behaviour.

The conclusions presented indicate an inverse relationship between the level

of noise included in the simulation and that observed on the real robot. How

did the noise affect convergence time for the evolutionary runs? Whilst it is

intuitive to realise that the evolutionary process will take advantage of the

zero-noise case, it is less obvious that the same occurs for the double-noise

case. This may result in significantly poorer evolved individuals when trans-

ferred from simulation to reality, and so it is crucial to include the correct

amount of noise. Whilst the authors report concern over the increasing level

of complexity of interaction dynamics for more complex systems, they con-

clude that simulations may still be useful within this area. An alternative

approach is to evolve the robots in real time on board hardware, following

the philosophy of Brooks that the world is its own best model. However, it

4A term coined by Jakobi [60]

59

must be considered that in both cases it is necessary for the environment to

be fairly specific for the successful evolution of fit robotic controllers. The

generalisation of these controllers so that they may work well in different

environments has yet to be satisfactorily addressed.

Clearly, the main challenge for the simulation approach to evo-

lutionary robotics is to invent a general theoretical basis and

methodology on which fast-running simulators can be easily and

cheaply built that guarantee the transference of evolved behav-

iors [sic] from simulation to reality. [59, p.326]

Further to the work reported in [60], Jakobi [59] proposes a base set

of robot-environment interactions that must be included in simulations to

successfully transfer the evolved results into reality. The Radical Noise-

Envelope Hypothesis is proposed whereby simulations should include the

base-set of interactions, and every implementation aspect of the simulation

should be randomly varied so that controllers who rely on them are unreli-

able, so that “. . . enough variation must be included to ensure that evolving

controllers cannot, in practice, be reliably fit unless they are base set ex-

clusive” [59, p.332]. Also, from trial to trial, the base-set aspects should

be varied to induce controller robustness to these factors which is essential

to enable the controller to soak up the differences between simulation and

reality. However:

There is a real danger, if we are overzealous in our lust for com-

putational expediency, that we may effectively exclude so many

real-world features from the simulation that what is left is insuf-

ficient for successful behavior [sic]. [59, p.334]

Jakobi successfully generated minimal simulations, which had little ob-

vious connection to the physical problem, and produced robust, reliable

60

individuals which successfully crossed the ‘reality gap’. The computational

abstraction and simplifications meant that in one instance 3 years of simu-

lated time was processed in 12 hours on a single computer. The exponential

increase in computational power over the years would no doubt have made

this comparison even more startling. Jakobi demonstrated the power of

such minimal schemes to develop ‘complex’ behaviours, whilst through care-

ful design of simulations following three simple principles successful transfer

across the reality gap may be assured. To conclude, Jakobi noted that:

The point is that whether a minimal simulation is easy to con-

struct and runs fast depends not on the complexity of the behav-

ior [sic]we want to evolve when using it, nor on the complexity

of the robot that it simulates, but only on the complexity of the

base set of robot-environment interactions necessary to underlie

the behavior [sic]. Provided these are simple enough, then the

behavior [sic] or the robot (or both) can be arbitrarily complex.

[59, p.365]

Lund et al. [75] argue that the time scale required to obtain scientifically

valid (repeated) results with the physical embodiment of the evolutionary

process is infeasible. Their approach is to develop controllers in simulation,

tailored for phenotypic plasticity to soak up differences, and then complete

the process through on-line evolution. The accurate definition of simula-

tions may also be time consuming because of the need to sample of all

possible sensor readings for non-trivial environments and morphologies. The

researchers reported that a sample based look-up table simulation took three

times longer. However, the sampling of the environment using the physical

robot assists in building up a physically realistic simulation and reduces the

transition between simulation and real life.

61

Figure II.1.4: How learning affects evolution, reproduced from [49]

II.1.4.3 Evolved Learning

According to Baldwin [4], learning accelerates evolution because sub-optimal

individuals can reproduce by acquiring during life necessary features for

survival, so learning affects evolution, despite the fact that learning is not

genetically expressed in the population. Hinton et al. [49] developed a

highly simplified computer model to show how learning might help and guide

evolution. They found that learning tends to smooth the fitness landscape

to make evolution more efficient by allowing near fit individuals to learn,

gaining fitness, during their lifetime as shown in Figure II.1.4.

Continuous real-valued artificial neural networks with time delays and

unrestricted topologies are very powerful for the evolution of control systems,

but they generally have a high degree of design complexity compared to the

‘optimum’ solution to previously studied problems [58].

Yamauchi and Beer [123] eschewed the sharp division of sequential and

learning behaviours in autonomous agents and attempted to evolve dynamic

neural networks to generate this behaviour without the aid of an external

learning algorithm (e.g. modifying network weights within the life time of an

agent). They applied this approach to landmark recognition, 1-D navigation

62

and sequence learning using CTRNNs.

They successfully evolved a simple eight node CTRNN for the landmark

recognition on a mobile robot, whilst a simple behaviour based control sys-

tem circled the landmark to be recognised. However, an integrated network

for the solution of the 1-D navigation task was unsuccessful, and so an in-

cremental modular network was evolved, with three sub-networks evolved

for specific decomposed tasks. The classifier sub-network had a specific in-

put neuron for a reinforcement signal, which was received for 50 time steps

on the successful completion of the task. This approach was successful, but

relied on the decomposition of the control network, and little attempt to jus-

tify this was made. Again, in the sequential learning task, the same problem

was encountered, that an integrated network could not be evolved to solve

the task, but an incremental approach was successful. This approach to RL

differs significantly from the traditional approaches [111]. They concluded

that the limitations of such a structure were not in the networks, but the

time required for GA search of scaled problems, but provided no justification

for the failure of the integrated approach.

Tuci et al. [114] further the work of Yamauchi and Beer by attempt-

ing to evolve an integrated CTRNN for the one-dimensional learning task,

and investigate the failure of integrated networks in [123]. They argue that

CTRNNs should be able to simulate this form of learning, calling on the work

of Funahashi and Nakamura [38], and suggest that the nature of the con-

straints imposed in Yamauchi and Beer’s model prevented their successful

evolution. In contrast to their work, there was no dedicated reinforcement

sensor input nor explicit reinforcement signal, thus bringing the problem

closer to that of biology - what they term the ‘ecological approach’. The 1-

D model used by Yamauchi and Beer is replaced by a 2-D mobile robot task

of the same structure, and a controller was evolved for a Khepera miniature

robot. The robot was allowed to exploit richer sensory-motor capabilities

63

that the original model, and the landmark was visible throughout the whole

arena in contrast. Therefore, whilst the search space was significantly larger

(a 13 neuron CTRNN), the task was potentially easier to solve. Evolution

took place in a deliberately noisy simulation, and the fitness was determined

by the robot’s success at the task, with penalties for collisions or incorrect

moves. This evaluation function is incremental, designed to allow the agent

to recover from mistakes, unlike the binary approach of Yamauchi and Beer.

Despite differences to the experiment that were intended to make it easier to

solve, it was unsuccessful. The experiment was modified to bias the relative

weighting of the scores achieved in each environment, to encourage the robot

to utilise the light source which the initial populations failed to do. This

modification generated a majority of highly fit individuals that would learn

from their mistakes and quickly adapt their behaviour to find the goal.

. . . if an organism is not able to recognise a cue and distinguish

it from other environmental stimuli, it will be unable to form an

association between the cue and an environmental state. [114,

p.217]

Therefore, by biasing the environment so that it was advantageous for

even non-learning robots (i.e. those capable of a reactive phototaxis strat-

egy), agents evolved to ‘pay attention to’ the learning cue before it had

any significance as such. Interestingly, in contrast to Yamauchi and Beer’s

model [123], there was no dedicated reinforcement signal, instead they “re-

quire that agents must evolve their own conditions of reinforcement, relying

on existing sensors” [114, p.207].

Despite differences between the models used in [114] and [123], both

investigations initially failed to evolve controllers to perform an associative

learning task. By biasing the test placements, Tuci et al. ensured that the

robots evolved to take account of a light source before then associating it

with the navigation task, resulting in successfully evolved learning.

64

Bullinaria [26] used the evolution of learning agents to explore the ef-

fect of life time learning on protection periods. Learning was implemented

through gradient weight updates of a simple multi-layer perception ANN.

Within humans and other animal species there are “critical periods for learn-

ing, and outside that period the learning is more difficult” [26, p.391]. Whilst

this research focuses on the Artificial Life approach of using evolved systems

to study the natural world, the results suggest that parental protection and

life time learning may be an important factor in the evolution of complex

learning agents.

Learning is also crucial for humans, and for other species for

which relatively complex behaviors [sic] are required, since en-

coding all the necessary skills genetically is likely to be difficult,

and even if that were evolutionarily possible, adaptation would

still be needed to cope with their rapid growth processes and the

changing and unpredictable nature of their environment. [26,

p.390]

When considering learning in ANNs, it is worth noting that: “This is no

short-cut recipe, but requires that the internal complexity of the ‘brain’ (of

an organism or a machine) be dependent on the history of interactions with

its world; the more the complexity that is required, the longer the history

that is needed to mould it” [47, p.5]. So, for more complex controllers it may

be necessary to study their behaviour and ontology for protracted periods to

fully realise their potential. This has the potential for a significant impact on

the required evolutionary strategy, not least on the amount of computation.

Maniadakis et al. [79] used CTRNNs to investigate cognitive processes

involved in meta-rules, i.e. rules for rules. These potentially provide a basis

for higher level evolved behavioural selection which is highly contextual in its

nature. Bottleneck and fully connected CTRNNs were used, the former to

separate the upper and lower parts of the network, segregating information

65

processing into two different levels. Their architecture was designed to model

some the basic characteristics of cortical organisation:

In the mammalian brain, it is well known that the reward infor-

mation is projecting [. . .] to the prefrontal cortex, which is a

module with higher level cognitive responsibilities, while other

somatosensory modalities are directly connected to lower level

motor modules such as primary motor cortex. [79, p.63]

In this case, the behavioural task was based on the Wisconsin Card

Sorting (WCS) test, but implemented on a mobile robot (using a Khepera

simulator) considering “both meta-level cognition and sensorimotor coupling

as inseparable parts of a complex behavioural problem” [79, p.64]. The sim-

ulated robot has to decide to turn left or right at a T-junction based on a

light cue. If the robot makes the wrong decision it is punished, and from

time to time (unknown to the robot) the experimenter switches the punish-

ment rule. The neural state of the controller was not reset, and thus was

continuous across trials. Incremental evolution was successfully applied to

a population of CTRNN controllers using a Genetic Algorithm. Specifically,

the number of switch phases was increased across segments of the evolu-

tionary run. The bottleneck CTRNN was shown to be significantly more

successful at generating successful controllers (8 out of 10 runs, compared

to 3 out of 10 runs for the fully connected model). Neurons at the higher

level were shown to develop a two-state activation level determining which

of the evolved behaviours to follow. Indeed:

It is important to note that the development of rule-correlated

dynamical states has been observed in the CTRNN of all success-

ful evolutionary runs, implying that attractor dynamics might be

an important general mechanism for manipulating rules in con-

tinuous time systems. [79, p.70]

66

For a more complex three phase switching task, significantly larger pop-

ulations were required and even then, only three out of ten bottleneck evo-

lutionary runs were successful. For this form of meta-cognitive behaviour it

appears that the bottleneck topology is far more suited that the standard

fully connected model, possibly providing evidence for the higher cognitive

roles of the pre-frontal lobe in humans. Previous studies by the authors

examined positive rewards, which were found to give similar results in the

self-organisation of attractor dynamics.

II.1.5 Locomotory Robotics

Other than adaptive behaviour, there is one highly popular domain for ER:

the development of controller for legged robots. This is because legged

robots may be able to traverse rugged and otherwise impassible terrain, yet

hand designing optimal gaits is challenging and time-consuming [125].

Beer and Gallagher evolved standard CTRNNs for both wheel robot

chemotaxis and hexapod locomotion [15]. Their locomotion model is effec-

tively one dimensional with legs simply adopting an up or down stance. The

robot was only allowed to move when statically stable, but no other dynami-

cal considerations were implemented. Whilst the individual neurons are not

capable of oscillatory behaviour, they successfully evolved gaits with and

without sensory feedback, thus in effect producing Central Pattern Gener-

ator (CPG). They claim that CPGs have a disadvantage in that they are

incapable of taking advantage of sensory information when it available so

are less flexible. Chapter II.2 illustrates how the approach advocated in this

Thesis allows for single neurons to not only behave as pattern generators

but also receive and process external stimuli.

Seys and Beer adopted the highly simplified model of hexapod locomo-

tion of [15] and control it with a CTRNN without sensory feedback for

the investigation of symmetry and genotype reuse in the evolution of gaits

67

[94, 95]. Later, a range of models were evaluated and numerically analysed

[12].

In his Thesis, Ghigliazza investigated a wide range of neuromechanical

models for insect locomotion, including neural networks and CPGs, with a

fairly minimal leg model [40, 41]. Along with Kukillaya et al. simplified

mathematical models were used to analyse the non-linear dynamics of the

systems in an effort to find the underlying mechanisms of biological insect

locomotion [68]. This is assimilated within the excellent review of Holmes

et al. which covers a wide range of simplified models and techniques [52].

In investigating open-ended evolution of morphology and control of lo-

comotory organisms Lipson developed controllers for a variety of forms [74].

A mix of simulation and embodied evolution was employed, and results ob-

tained for quadrupeds, hexapods (the robot actually had nine legs, but only

six could contact the ground at any one time) and bipeds. Influenced by the

pioneering work of Sims [100, 99] evolved solutions were rapid prototyped

and evaluated.

MacLeod et al. developed an incremental growth approach to generating

modular neural networks and morphologies [76]. The process started with

a basic ‘mudskipper’ with one active Degree of Freedom (DOF) legs and

developed into a quadruped robot with vision. All work was carried out in

a simulation environment and the neuron model was a ‘Spike Accumulation

and Delta-Modulation’ form.

Quadruped robots controlled by CTRNNs in a 3D virtual environment

were used by Auerbach and Bongard in their investigation as to how mor-

phology and training order affected the learning of multiple behaviours [3].

The robots had grippers and were controlled by 11 motor neurons with the

simulation and network updated every 0.0005s.

Clune et al. evolved gaits for a quadruped robot using HyperNEAT

and the ODE [30]. The networks consisted of three 2D 5x4 Cartesian grids

68

forming an input, hidden and output layer with 800 non-recurrent links.

Inputs to the network included joint angles, touch sensors, and a modified

driving sine wave which allowed for periodic behaviours. Similarly, Yosinski

et al. used the same techniques but in hardware on a quadruped robot [125].

II.1.6 Conclusions

This Chapter has covered a wide range of interrelated areas of research from

computer science, biology and even aspects of psychology in an effort to

place the results of this Thesis in context and establish the areas of novelty

covered within.

Any foray into Evolutionary Robotics must apply some form of Genetic

Algorithm stemming from the pioneering work of Holland [51]. A range of

algorithms specialised for a variety of purposes have been introduced but

perhaps focussing on the recent development of the NEAT methodology of

Stanley [104]. The complexification approach by which a minimal genotype

develops has been shown to be highly efficient, and in combination with the

HyperNEAT algorithm [106] for evolved pattern producing networks [105],

is highly suited to the work presented herein.

Since the birth of ER as a field of research, Artificial Neural Networks

have been employed as the representation of choice [83]. Significant atten-

tion has been focussed on the CTRNN, developed by Hopfield as an analogue

to a biological neuron [53], as it is capable of emergent adaptive behaviour

beyond that of the discrete model. More recent interest has been lavished

upon Gene Regulatory Networks (GRNs) which are thought to be at the

core of most biological systems. Indeed in simple systems, such as unicel-

lular Eukaryotes, they are wholly responsible for the adaptive behaviour

exhibited. Whilst they can be modelled using a variety of techniques we

have concentrated on the Ordinary Differential Equation (ODE) approach,

which in some cases explicitly uses higher order continuous neural network

69

models. GRN dynamics are governed over a wide range of dynamics and

are typically slower in acting than neurons. Temporal dynamics are there-

fore highly important in capturing their behaviour, and delayed systems of

the form advocated in this Thesis are common. Despite this, robotic ap-

plications of delayed neural networks have thus far been limited to the pre-

conditioning of sensor data and the majority of work limited to traditional

back-propagation training and functional approximation.

Dynamical analysis of these systems is well established with research

being both purely mathematical and within the context of ER as a tool to aid

understanding and guide the development of interesting solutions. Analysis

of delayed systems is limited to their stability and does not consider the

characterisation of oscillatory behaviours. This allows even single delayed

nodes with a recurrent connection to behave as Central Pattern Generators

(CPGs) which would otherwise require larger systems of CTRNN neurons.

There are essentially two distinct advantages hypothesised for the inclu-

sion of time delays in these systems. The delay enhances the information

processing and storage capability of the synapses in the network allowing

for smaller systems to develop complex behaviours. In addition, the in-

creased richness of the dynamics may be harnessed for the easy development

and inclusion of pattern generating components within networks which may

present advantages across a wide range of potential applications.

Some fundamental aspects of ER have been reviewed, namely the use of

minimal cognitive models, the reality gap from simulation to hardware and

the evolution of learning in autonomous systems. Time and again biological

examples illustrate how even very small neural systems can solve complex

problems with elegant simplicity e.g. the skylight compass [120]. It is in

this manner that we hope to study and develop incredibly small neurological

circuits capable of interesting behaviour. However interesting it may be to

use these techniques for the understanding of cognition, our focus is that of

70

the engineer in implementing them for the development of real autonomous

systems. This required the transfer of systems most often developed virtually

into hardware with the difficulties that this presents. A brief survey of

the literature involved in the evolution of learning and adaptive behaviour

is presented to place the contents of this Thesis in context and illustrate

commonly studied examples in the field. Finally, the common application of

ER techniques to the development of gaits for legged robots was introduced

and relevant works presented.

This presents an opportunity to explore the fascinating dynamics of delay

systems with an ER perspective and apply the increased capability of such

systems to the evolution of gaits and adaptive behaviour which is the subject

of the remainder of this Thesis.

71

Chapter II.2

Dynamics of Small Delayed

Dynamic Networks

This Chapter investigates the dynamics of small time-delay networks and

compares them to that of the CTRNN model, which is a close relation.

Without an in-depth understanding of the changes brought about by in-

troducing a simple model of transport delays in network connections, it is

impossible to both apply such systems to greatest effect or properly anal-

yse results of any investigation and so answer the research questions posed

in Part I. The analysis presented here is both analytical and numerical, as

such systems are highly complex in their nature and entirely analytical in-

vestigation may be impossible. For a single node of a time-delay network

the behaviour has been exhaustively investigated and analysed, building a

greater understanding of such systems and how they can be used together

in more complex networks. The differences in behaviour that have been in-

troduced are exploited in latter parts of the Thesis, notably in inspiring the

application of delayed networks to robot locomotion in Chapter III.3 and

the development of supporting material in Chapters II.3 and II.4. That said,

the conclusions of this Chapter are used throughout Part III in analysing

the results of every experiment.

72

II.2.1 Synaptic Time Delays

The increased dynamic complexity of the Hopfield-type neuron model [53],

as used in CTRNNs, may be exploited by artificial evolution to develop

controllers capable of going beyond reactive behaviour [45]. In biological

systems, however, neural signals take time to propagate along synapses,

providing another aspect of neuronal dynamics not modelled by standard

CTRNNs, but a simple modification to this neural model may include these

dynamics.

Incorporation of synaptic time delays is inspired by those inherent in

biological networks which vary over a range of several orders of magnitude

and play a significant role in their behaviour [31]. These additional time dy-

namics may therefore provide extended behavioural possibilities as the delay

parameter increases the effective dimensionality of the system [70]. However,

the additional evolutionary parameters required will potentially render the

evolution of systems more complex and computationally expensive.

RNNs with signal propagation delays along synapses are a subset of

DDE, shown in Equations II.2.1 and II.2.2 [70].

Ẋ = F (t,X(t), X(t− τi)) (II.2.1)

X = (x1(t), x2(t), . . . , xn(t))
T (II.2.2)

Where τi > 0, i = 1, 2, . . . , are lag times or delay times and F is a vector

valued smooth continuous function. The delays may be constant, discrete,

distributed, state-dependent or time-dependent. The trajectory of this Equa-

tion is dependent not only on the current value of x(t), but on values at

earlier times, x(t′), t′ ∈ (−τ, 0). The time-dependent solution of the system

must have a defined solution profile (initial function) for an interval set by

the longest time delay. This requires a set of infinite (but continuous) initial

conditions for −τ < t < 0, hence DDEs are effectively infinite dimensional

systems even with only a single delay [70].

73

The model introduced here combines the delay modelling of the Time

Delay Recurrent Neural Network (TDRNN), as used by Pearlmutter [85],

with the form of the much studied CTRNN. Here it shall be referred to as

a Continuous Delayed Recurrent Neural Network (CDRNN). The output of

the network is given by a system of ODEs shown in Equation II.2.3. The

new parameter τij represents the continuous delay between neurons i and j.

Tiẏi(t) = −yi(t) +
N
∑

j=1

wijσ(yj(t− τij) + θj) + Ii(t) (II.2.3)

Where Ii(t) is an external input to neuron i, σ(x) is the neural response

function, defined by σ(xi) = 1/(1+exp−xi), yi(t) is the output of neuron i, Ti

is a time constant of each neuron, wij is the weight of the connection between

neurons i and j and N represents the number of neurons in the system. Both

τij and Ti are measured in seconds. The motor neuron activities are mapped

into the output space by oi = σ(yi + θi).

For a non-linear dynamic system without delay at least three dimensions

are required for chaos to manifest, whereas even a single DDE can exhibit

both chaotic and hyperchaotic behaviour even for small delays. There is a

great deal of literature on the analysis of DDE systems typically approached

from a classical control point of view or in terms of signal processing [33].

Shayer et al. considered the dynamics of a small neural network of Hopfield

type with variable delays, but without thresholds or external input to the

nodes [96]. Around a decade ago, researchers utilised discrete Mult-Layer

Perceptron (MLP) networks with delays in robotics, but with a focus on

sensing and purely reactive behaviour [34, 16]. The synaptic delays in dis-

crete networks were used as an alternative to continuous recurrent forms,

and were used to improve the precision of object recognition using IR sen-

sors. They suggest that, “There is no reason why the explicit management

of time performed by delay based networks should not be combined with

recurrences or any other structure that allows the cognition mechanism to

74

obtain different perspectives of the information present in the environment”

[16]. In this Chapter, the previous work is extended with a view to en-

hancing the learning and temporally adaptive behaviour of behaviour based

robotics utlising delayed recurrent neural networks.

We can be confident that these CDRNN networks are capable of solutions

to problems demonstrated by CTRNNs, as the evolutionary mechanism may

reduce the time delays to zero and so model a standard CTRNN. However,

it is true that the additional parameters may render the evolutionary pro-

cess more difficult. When the inputs are time variant, as in any real system,

the synaptic delays may considerably alter the outputs of the system. An

example of this is shown in Figure II.2.1, where the outputs of three differ-

ent neuron models (ANN, CTRNN and CDRNN) for a randomly generated

neural network are shown for a step input halfway through the simulation.

The network consisted of 3 input nodes, 3 hidden nodes and a single output

node; all of the network parameters were randomly generated but are consis-

tent between neuron implementations where applicable. Thus, the CTRNN

implementation is identical to the CDRNN without the addition of the time

delays, so any differences in network output are solely due to the synaptic

delays. The CDRNN behaves very differently to the CTRNN despite their

fundamental similarities, with an output profile which is typically more com-

plex than that of its close relative, but converges to the same steady state.

Whilst this neuron model is continuous and governed by a system of

differential equations, for implementation on any digital system (be it for

simulation or real-time control) these equations must be numerically inte-

grated. This requires the evaluation of Equation II.2.3 and that the outputs

of each node be stored and delayed by a period determined by the time delay

of each synapse which is covered in detail in Section II.2.4.

75

0 1000 2000 3000 4000 5000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

O
u
tp

u
t

Network Inputs

ANN

CTNRN

CDRNN

Figure II.2.1: Time Delay Dynamics in a Random Network

Figure II.2.2: A Single Neuron System

II.2.2 A Single Neuron System

Specifically, we are interested in an extension of the standard CTRNN [47]

by the inclusion of time-delays, as shown in Equation II.2.3. The natural

starting point for any dynamic analysis of the behaviour of such a system

is to consider a single node of a network as shown in Figure II.2.2. This

is because it is the fundamental building block of which these systems are

formed. The behaviour of even small systems of equations can be incredibly

complex and well beyond a symbolic analysis even without the consideration

of time-invariant inputs to the network. The governing equation for a single

node is therefore a single non-linear DDE of the form:

ẋ(t) =
1

T
(−x(t) + wσ(x(t− τ) + θ) + I(t)) (II.2.4)

76

Were we to consider a two node system the governing DDEs would be:

ẋ1(t) =
1

T1
(−x1(t) + w11σ(x1(t− τ11) + θ1) + w21σ(x2(t− τ21) + θ2) + I1(t))

(II.2.5)

ẋ2(t) =
1

T2
(−x2(t) + w22σ(x2(t− τ22) + θ1) + w12σ(x1(t− τ12) + θ2) + I2(t))

(II.2.6)

This system of equations is said to be of advanced type DDE, but should

any of the time delays tend to zero then it becomes a neutral type DDE.

The governing equation for a single node is given in Equation II.2.4.

However, the same qualitative behaviour is exhibited by the system when

the ratio r = τ
T is constant, although the response is temporally scaled

by T. Thus if the node had T = 1.0 and τ = 0.1, the response would be

identical to a node with T = 10.0 and τ = 1.0, just 10 times slower. This

holds so long as the integration step is sufficiently small to accurately model

the dynamics and discretisation of the synaptic delay. Therefore, for the

purposes of investigating a single node, we may take the node time constant

T as unity, on the understanding that the behaviour may be temporally

scaled, but it is qualitatively identical as long as the ratio r = τ
T is constant.

This assumption holds for all of the following analysis in this Chapter. The

equation then becomes:

ẋ(t) = −x(t) + wσ(x(t− τ) + θ) + I(t) (II.2.7)

A number of works (e.g. [11]) have analysed such a system without the

inclusion of the time-delays and much of the behaviour observed is the same

as the time-derivatives vanish as t → ∞. They provide a starting point

for this analysis, but the effects of including delays into the system can

significantly alter its behaviour.

The fixed points (x∗) of a standard CTRNN node given by Equation II.1.11

are found when ẋ(t) = 0, so we can evaluate the expression shown in Equa-

tion II.2.8 with a range of self weight and threshold values; the results are

77

shown in Figure II.2.3 a-e. Figure II.2.3 f shows the results of evaluating

Equation II.2.8 when I = 0 for a range of weights. This shall become useful

in validating the stability behaviour of the CDRNN node considered later.

I = x∗ − wσ(x∗ + θ) (II.2.8)

This will hold for non-oscillatory CDRNN systems which in the limit behave

as per their CTRNN counterparts. However, as we will address later, it is

possible for a single CDRNN node to behave in an oscillatory or even a

chaotic manner which may violate this analysis. For this analysis to hold,

as t→∞ then x(t) = x(t− τ).

A single node undergoing a normal decay to a fixed point in the absence

of an external input will approach the weight of the self connection. In this

case, without an external input, there remain only three variables which

define the behaviour of the node: the weight, threshold and time delay,

shown in Equation II.2.9.

ẋ(t) = −x(t) + wσ(x(t− τ) + θ) (II.2.9)

Figure II.2.4 shows the results of an investigation into the behaviour of a

single node under these conditions, for the three different threshold values

used in Figure II.2.3. For each configuration of weight and time delay pa-

rameter Equation II.2.9 was evaluated for 20000 steps with an integration

timestep of 0.01s with an initial condition of 10.0. This was long enough

for the ultimate state of the system to evolve (to reach a steady state or to

explore the full range of values of the oscillation). The delay value was small

enough to smoothly represent the delays. As demonstrated in this Chapter,

the evolution of the system dynamics is independent of the initial condition

so long as it is not the fixed point of the system. It is worth noting that

the period evaluated was sufficient to ensure an independence to the initial

conditions. The maximum and minimum values of the output over the next

78

−20 −10 0 10 20 30 40
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -16.0

θ is -10.0

θ is 0.0

θ is 10.0

(a)

−20 −15 −10 −5 0 5 10 15 20 25
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -4.0

θ is -10.0

θ is 0.0

θ is 10.0

(b)

−20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is 0.0

θ is -10.0

θ is 0.0

θ is 10.0

(c)

−25 −20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is 4.0

θ is -10.0

θ is 0.0

θ is 10.0

(d)

−25 −20 −15 −10 −5 0 5 10
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is 16.0

θ is -10.0

θ is 0.0

θ is 10.0

(e)

−15 −10 −5 0 5 10 15
w

−10

−5

0

5

10

15

20

x
∗

θ is -10.0

θ is 0.0

θ is 10.0

(f)

Figure II.2.3: Global stability for a single CTRNN node

79

Figure II.2.4: CDRNN Stability

two thousand timesteps are plotted. Any separation of the two surfaces de-

notes those conditions which lead to long term oscillatory behaviour. The

stability plot for threshold of -10.0 is not included because it simply follows

the curve shown in Figure II.2.3f. This is because the threshold so biases

the output of the sigmoid function that wσ(x(t − τ) + θ) → 0 as θ → −∞,

causing the output to decay to zero. The opposite is true when θ → ∞, as

wσ(x(t − τ) + θ) → w and the output will therefore approach the value of

the self weight. When τ = 0 in Figure II.2.4 a-b, the curves in (w, x∗) follow

the stability curves shown in Figure II.2.3f. Where these plots differ from

the stability analysis of the CTRNN is in the oscillations which occur when

the weight of the self connection is strongly negative and there is a positive

time delay. The onset of oscillation is earlier as the threshold increases. As

τ increases and w decreases, beyond the threshold values indicating the on-

set of oscillation, the amplitude of the oscillations increases to a maximum.

The oscillations are limited between zero and the (negative) value of the self

weight.

Output trajectories for a self weight of -16.0 and a zero threshold elu-

cidate the evolution of oscillatory behaviour with increasing delay in the

80

self-recurrent connection, shown in Figure II.2.5. Where the ‘Non-Delayed’

trace shows the performance of the equivalent CTRNN, ‘Delayed Random’

shows the behaviour where the initial conditions for the delay were con-

tinuously random, and ‘Delayed’ shows the profile when the delay initial

conditions are constant.

In Figure II.2.5a the output rapidly converges to a stable point, whereas

in Figure II.2.5b the output undergoes a highly damped oscillation before

converging on the same value. The output of the system is dependent upon

both the current value and a past value of the output. In this case, the

lag in the output means that the system is injected with a positive input

for longer, causing the self connection term to be much larger than the

non-delayed system. The strong negative weight causes a rapid drop in

the output and by the time that this drop propagates through the delayed

connection, the output has overshot the stable point. The system responds

to this overshoot in the same way leading to a periodic oscillation. Whilst the

initial conditions are still injected into the system (whilst the simulation time

is less than the delay), the output will approach the value of the self weight.

In Figure II.2.5b the connection delay is less than the rise time to this value

and so damps the output. As the time delay increases (See Figure II.2.5 c-d)

an un-damped periodic oscillation is set up. Whilst in Figure II.2.5c this

appears quasi-sinusoidal, Figure II.2.5 d clearly demonstrates the approach

to a stable value for the duration of the propagation delay, imitating a

quasi-square wave form. The peak values between which the fully evolved

oscillation (the time delay allows a stable value to be reached) varies may

be determined by numerically inspecting the governing equations (for this

analysis the threshold is taken to be zero). Consider the equation below and

an approximation to its numerical integration.

ẋ(t) = −x(t) + wσ(x(t− τ) + θ) (II.2.10)

x(t+∆t) ≈ x(t) + ∆t ẋ(t) (II.2.11)

81

0 5000 10000 15000 20000
Timestep

−2

0

2

4

6

8

10

x

w=-16.0, θ =0.0, τ =0.01

Non-Delayed

Delayed Random

Delayed

(a)

0 5000 10000 15000 20000
Timestep

−10

−5

0

5

10

x

w=-16.0, θ =0.0, τ =1.05125

Non-Delayed

Delayed Random

Delayed

(b)

Figure II.2.5: Profiles of varying time delay

82

0 5000 10000 15000 20000
Timestep

−15

−10

−5

0

5

10

x

w=-16.0, θ =0.0, τ =4.175

Non-Delayed

Delayed Random

Delayed

(c)

0 5000 10000 15000 20000
Timestep

−15

−10

−5

0

5

10

x

w=-16.0, θ =0.0, τ =25.0

Non-Delayed

Delayed Random

Delayed

(d)

Figure II.2.5: Profiles of varying time delay (continued)

83

If the initial condition, x(0), is positive enough to saturate the sigmoid, then:

x(t+∆t) ≈ x(0) + ∆t(−x(0) + wσ(−x(0))) (II.2.12)

as σ(−x(0)) ≈ 1 (II.2.13)

x → w (II.2.14)

If the initial condition x(0) or the output value, x(t), is negative enough to

saturate the sigmoid, then:

x(t+∆t) ≈ x(t) + ∆t(−x(t) + wσ(−x(t))) (II.2.15)

as σ(x(t)) ≈ 0 (II.2.16)

x → 0 (II.2.17)

But when the output is zero:

x(t+∆t) ≈ ∆t(wσ(0)) (II.2.18)

as σ(0) =
1

2
(II.2.19)

x → w

2
(II.2.20)

Whereupon the output will then tend back to zero and the cyclic process will

repeat itself indefinitely. Should the initial conditions be zero, the dynamics

simply skip to the last step, as it were. If the initial condition is close

to the fixed point of the network the oscillations may take some time to

establish but eventually will. The only initial condition which would result

in no oscillation is the fixed point itself, as the system remains stable and

has no dynamic response. Excluding this case, as long as the weight is

sufficiently negative and the delay is long enough the system will always

oscillate between zero and half the weight value. This long term behaviour

of the system is very robust to changing initial conditions and previous

delay states and initial deviations are damped out over the first oscillation

or so (as shown in Figure II.2.5). However, this is something of a special

case. With the inclusion of the threshold and input terms into the equation

84

−16 −14 −12 −10 −8 −6 −4 −2 0
w

−0.4

−0.2

0.0

0.2

0.4

A
m

p
li
tu

d
e

of
O

sc
il
la

ti
on

s

θ =-5.0

τ=0.10

τ=0.50

τ=1.00

τ=2.50

τ=5.00

τ=10.00

τ=25.00

−16 −14 −12 −10 −8 −6 −4 −2 0
w

0

1

2

3

4

5

6

7

8

A
m

p
li
tu

d
e

of
O

sc
il
la

ti
on

s

θ =0.0

τ=0.10

τ=0.50

τ=1.00

τ=2.50

τ=5.00

τ=10.00

τ=25.00

−16 −14 −12 −10 −8 −6 −4 −2 0
w

0

5

10

15

A
m

p
li
tu

d
e

of
O

sc
il
la

ti
on

s

θ =5.0

τ=0.10

τ=0.50

τ=1.00

τ=2.50

τ=5.00

τ=10.00

τ=25.00

−16 −14 −12 −10 −8 −6 −4 −2 0
w

0

5

10

15

A
m

p
li
tu

d
e

of
O

sc
il
la

ti
on

s

θ =10.0

τ=0.10

τ=0.50

τ=1.00

τ=2.50

τ=5.00

τ=10.00

τ=25.00

Figure II.2.6: Amplitude of Oscillations

the behaviour changes, as is discussed in detail later. If the threshold is

positive, it biases the response of the system when the output is zero, as

the bias will tend to saturate the sigmoid and cause the output to tend to

the weight value, as opposed to half this. This can be seen in Figure II.2.4b

as the oscillations vary between zero and -16.0 at their peak. Figure II.2.6

shows the amplitude of the resulting oscillations for a range of weight, time

delays and threshold values. The output of Equation II.2.9 was evaluated

for 100,000 time steps and the maximum and minimum values of the output

recorded for the last 50,000 timesteps and the amplitude calculated as the

difference between them.

85

5 10 15 20 25
τ

−16

−14

−12

−10

−8

−6

−4

−2

0

w

θ =0.0

0

2

4

6

8

10

12

14

16

5 10 15 20 25
τ

−16

−14

−12

−10

−8

−6

−4

−2

0

w

θ =10.0

0

2

4

6

8

10

12

14

16

Figure II.2.7: Oscillation Zones for Different Thresholds

Looking at this differently, we can plot the amplitude of the oscillations

against weight and delay to determine the boundary of the oscillatory zone,

shown in Figure II.2.7. Figure II.2.8 shows the global stability analysis of

Figure II.2.3, but for a CDRNN node with a range of time delays for a

threshold (θ) of zero. As with the previous analysis the maximum and min-

imum points of the output trajectory for a period after it has settled down

into its long term behaviour are recorded and plotted. Where the maximum

and minimum values are not the same (i.e. an oscillation is present) the

data is coloured differently. For non-oscillatory modes this is the long way

around to finding x∗ where ẋ∗ = 0 rather than directly from the equation.

86

However, this method allows the visualisation of oscillatory modes directly

with a constant input to the node. Each sub-figure illustrates the results for

a different self-weight. The zero delay lines exactly reproduce the zero bias

curves shown in Figure II.2.3. When the self weight is zero the fixed point

x∗ is simply the input to the node and is therefore omitted here. Specifi-

cally Figure II.2.8d reproduces the fold in the stability curve. The unstable

portion of this curve cannot be visualised by this technique as only the long

term stable points are recorded, but by repeating the simulations with ini-

tial conditions of both +16.0 and -16.0 we may illustrate the dynamics from

both ends of the curve, with some points showing the vertical drop (or rise)

to the next stable surface. The folds in the equilibrium surface form the

bifurcation set of Equation II.2.7.

The derivation of the cusp bifurcation set hold for a CDRNN as per

the CTRNN analysis undertaken by Beer [10]. The cusp is defined by the

simultaneous zeros of f(y, w, θ, I) and ḟ(y, w, θ), and can be solved to find;

I = ±2sech−1

(

2√
w

)

− wσ

(

±2sech−1

(

2√
w

))

− θ (II.2.21)

This can be simplified for w ≥ 4 to;

lb(w, θ) ≡ 2ln

(√
w +
√
w − 4

2

)

− w +
√

w(w − 4)

2
− θ (II.2.22)

rb(w, θ) ≡ −2ln
(√

w +
√
w − 4

2

)

− w −
√

w(w − 4)

2
− θ (II.2.23)

The dynamics of a single CDRNN node with constant input and strong

negative self-weight, shown in Figure II.2.8d, goes through three distinct

phases shown in Equation II.2.24, the boundaries of which are described by

Beer [10].

(x∗ → I)
←−−−−−−−−−−−
I ≪ −

(w

2
+ θ
)

x+ → I

x− → I + w

−−−−−−−−−−−→
I ≫ −

(w

2
+ θ
)

(x∗ → I+w)

(II.2.24)

87

(a)

(b)

Figure II.2.8: Input stability for a single CDRNN node

88

(c)

(d)

Figure II.2.8: Input stability for a single CDRNN node (continued)

89

Where x∗ is the stable fixed point of the system, and x+ and x− are the

positive and negative extents of the oscillations.

This can be seen most clearly graphically by taking sections through

Figure II.2.8 for values of constant delay, as shown in Figure II.2.9 for a range

of self-weights. Figure II.2.9a shows the bounded evolution of oscillation,

where the limits are as described in Equation II.2.24, illustrated by the

plotting of lines of I and I + w. As the weight decreases the region of

oscillation diminishes and reduces in amplitude as shown in Figure II.2.9b.

Along with the reducing size of the oscillatory zone, the delay required for

the oscillations to reach the boundary values of I and I +w increases, until

even very long delays fail to achieve this (Figure II.2.9c). By the time that

the self-weight increases to -2.0, no discernible oscillation is present for the

delay values evaluated. Note however that some minute oscillation was seen,

illustrated by the change in colour of the lines through what is usually the

oscillatory region. If there were no difference, the fixed point line x∗ would

continue throughout as shown in Figure II.2.3. As with Figure II.2.3, the

effect of altering the threshold value simply shifts the curves an equal amount

along the input scale, i.e. the same behaviour is seen with (I = 0, θ = 0) as

at (I = −10, θ = 10).

The boundaries of the oscillatory region in I are observed at the intersec-

tion of the three definite regions of a CTRNN node stability surface. Either

side of the effect of the sigmoid the stability function x̄(I, w, θ) is I and

I + w. In the middle an approximate expression can be derived for when

x+ θ ≈ 0, at the point Î = −
(

w
2 + θ

)

. If this is the case, then σ(x+ θ) can

be replaced by its Taylor expansion [10].

σ(x+ θ) ≈ x+ θ

4
+

1

2
(II.2.25)

Which can be substituted into Equation II.2.8 to obtain an approximation

90

−20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -16.0 with θ of 0

τ =25.0

τ =5.0

τ =2.5

τ =1.0

x∗

I

I+w

(a)

−20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -8.0 with θ of 0

τ =25.0

τ =5.0

τ =2.5

τ =1.0

x∗

I

I+w

(b)

Figure II.2.9: Input stability cross-sections

91

−20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -4.0 with θ of 0

τ =25.0

τ =5.0

τ =2.5

τ =1.0

x∗

I

I+w

(c)

−20 −15 −10 −5 0 5 10 15 20
I

−20

−15

−10

−5

0

5

10

15

20

x
∗

Self weight is -2.0 with θ of 0

τ =25.0

τ =5.0

τ =2.5

τ =1.0

x∗

I

I+w

(d)

Figure II.2.9: Input stability cross-sections (continued)

92

for a CTRNN node.

x̄(I, w, θ) ≈ 4

4− w

(

I − Î
)

− θ (II.2.26)

The intersection of these three straight lines are at I = −θ − 2 and I =

−θ − w + 2.

We have described the limit values of the oscillation, between I and I+w,

but this is the limit of the behaviour. As can be seen in Figure II.2.9 as τ

and w reduce from the values required to reach the boundaries, the size of

the zone reduces both in I and x∗. There are two effects superimposing to

generate the complex 3D surfaces seen in Figure II.2.8.

Consider the behaviour of a single node which has been at zero for a

period greater than the delay τ . Assuming that for each oscillation the

delay is long enough for the output to reach a stable value and all the while

the delayed input is injecting the previous stable state into the node, we can

write a non-linear recursive sequence for the bounds of the oscillation.

an = wσ(an−1 + θ) + I (II.2.27)

Where an is the stable value reached for oscillation n ∈ Z.

This non-linear recursive equation is impossible to solve generally. How-

ever, for oscillations that take place within the central region of the stability

curve we can approximate the sigmoid function by terms in its Taylor series.

Thus we can rewrite Equation II.2.27 as follows:

an ≈ w

(

an−1 + θ

4
+

1

2

)

+ I (II.2.28)

Ignoring the input term, it is then possible to arrive at a particular closed

form solution of the above:

an ≈
(θ + 2)4−nw(wn − 4n)

w − 4
(II.2.29)

Where n ∈ Z and |w| < 4. Figure II.2.10 shows the results of evaluat-

ing Equation II.2.27 for the first 50 oscillations for a range of weights with

93

Figure II.2.10: Recursive Oscillation Surface

94

−16 −14 −12 −10 −8 −6 −4 −2 0
an

−16

−14

−12

−10

−8

−6

−4

−2

0
w

θ =-10.0

θ =-5.0

θ =0.0

θ =5.0

θ =10.0

Figure II.2.11: Bifurcation Plot

zero threshold and input. Divergence of the two surfaces demonstrates the

presence of oscillation. When a stable oscillation is present the bounded

dynamics asymptotically approach a value symmetrically offset from the

equivalent fixed point of an identical CTRNN. These curves exactly corre-

spond to the damping witnessed in Figure II.2.5 and are bounded between

I and I+W as before. As the weight increases, the oscillations reduce until

the dynamics are stable at the fixed point, as in Figure II.2.3. If we consider

the limits of the behaviour as n→∞, a bifurcation is observed (see Figure

II.2.11) at a critical value of weight which marks the transition from stable to

95

oscillatory behaviour. Whilst it appears that the negative threshold curves

shown never reach the bifurcation point, they do indeed but at much lower

values of self weight (around -400 and -60,000 for θ = −5.0 and θ = −10.0
respectively). As in ER we are typically interested in weights within the

bounds −16 ≤ w ≤ 16 [10] they are not applicable but they follow the same

qualitative behaviour. Without a delay value long enough this change in

behaviour of the system cannot happen.

Secondly, from one periodic oscillation to another the recurrent input

through the self connection is invariant for the duration of the time delay.

The system then behaves as per a simple first order response only compli-

cated by the action of the sigmoid function which non-linearly affects the

output. If the time delay is not sufficient for the output to reach the next

stable value (as previously discussed) before the delayed injection of the time

variant response just undertaken by the output, then the amplitude of the

oscillation is reduced. If the delay is too short, then the oscillation will be

damped out completely as seen in Figure II.2.5b.

The combination of these two mechanisms fully defines the region of

oscillation and the asymptotic values of any particular solution of the recur-

sive equation define the long term values of the oscillations. In this way the

full range of dynamic behaviour for a single CDRNN node has been charac-

terised and explained. Through the simple inclusion of a continuous delay

on a self-recurrent connection a single node may generate long term oscilla-

tory behaviour in the manner of a pattern generator. A central hypothesis

to this Thesis is that in this way the CTRNN model can be simply extended

to generate complex behaviour and further dynamic complexity which may

be exploited by evolution of which the traditional model is not capable [15].

Indeed, it is encouraging that oscillations have been observed in even very

small cultured biological neural networks [97], supporting the bio-inspired

approach adopted throughout this Thesis.

96

II.2.3 Beyond a Single Node

The effect of combining nodes to form a larger network on the dynamics is

highly complex, and difficult to consider analytically. Certainly beyond a

three degree of freedom system visualising analysis becomes difficult. Beer

considers in detail the dynamics of larger systems with respect to bifurca-

tions and stability [10]. For the most part this analysis and decomposition

approach to the consideration of larger systems holds true as the bifurca-

tion for positive weights (w > 4) is not affected by the oscillations. Without

considering this subject in too great a detail, there are some general con-

clusions we can draw as to the difference between Beer’s analysis and that

which would hold true for the delay systems considered here. Beer discusses

hysteresis in non-autonomous circuits where the neuron is driven across the

folds in the saddle-node bifurcation. For a delayed system this could occur

when an autonomous oscillatory node is taken as the input and so can be

achieved without a time-variant input to the system. Secondly, if an au-

tonomous oscillatory node (in effect a pattern generator) takes input from

another node in the system, this input can suppress or express the pattern

depending on its value, an illustrative example is shown in Figure II.2.12.

This happens in the same manner as an external input would, where in the

case of the single node system I = wσ(x(t − τ)). This would enable a net-

work to switch pattern expression on and off at will which one could imagine

being highly useful in the emergence of complex adaptive behaviour.

II.2.4 Discretising a Delayed Continuous System

The non-linear systems in which we are interested are continuous, but any

study which includes time variant inputs must be numerical. There are

a wide array of numerical methods for integrating differential equations,

but when the dynamic systems modelling neural networks are embodied in

97

0 100 200 300 400 500 600
Time / s

−30

−20

−10

0

10

20

x
,
I

w=-16.0, τ =10.0

x

I

Figure II.2.12: Switched Oscillations

98

computer simulations our choice becomes very limited. Appendix V.A intro-

duces two simple methods starting with the most basic of all, the Newton-

Euler method, which has simplicity as its main virtue. However it is used

exclusively in the majority of literature in ER, particularly that on CTRNNs.

Whilst the error associated with this first order method, O(h), is larger than
that of more sophisticated methods (the order of accuracy for a fourth-order

Runge-Kutta method is O(h4)), maintaining a small step size h≪ 1 for ac-

curate physical simulations and delay modelling reduces the significance of

this. To capture small variations in time delay and accurately approximate

the continuous system a smaller time step than is usual for ER must be em-

ployed, although an optimal choice of time step for studying DDEs is often

between 0.001s and 0.05s [70].

Specifically we are interested in numerically evaluating Equation II.2.3

and governing its parameters using evolutionary methods. Beyond the nu-

merical integration of the system of first order non-linear differential equa-

tions, we must be able to model the continuously delayed outputs governed

by the synapse delay times τ . The investigations above evaluate only de-

lay values which are exact multiples of the integration step, but for evolved

systems this is not the case. The outputs of the continuous system are ap-

proximated at intervals of ∆t. For a time delay of τ seconds, we must store

the values of each output for τ/∆t time steps. However, we must consider

that τ ∈ R and so can take values that are not multiples of ∆t. As we can

only store output values at each time step and there is a limited amount of

memory to record previous output states, an approach was adopted where

each synapse delay was represented as a First-In-First-Out (FIFO) store.

Outputs at each time step are appended to each list and the first entry re-

moved to maintain a store of constant length. The store is initially created

with a length of τ/∆t rounded up to the nearest integer and populated with

the initial value for the node outputs (usually zero). When the delayed out-

99

Figure II.2.13: Discretely Modelling a Continuous Delay

put of a synapse is sought the value is linearly interpolated between proximal

outputs in the queue, as shown in Figure II.2.13.

The estimate of the nodes output at t− τ is therefore:

f(t− τ) = x(t0) + (x(t1)− x(t0))
τ(mod ∆t)

∆t
(II.2.30)

The error between the true continuous output and the linear interpola-

tion, RT = f(t)− x(t), is bounded as shown in Equation II.2.31.

|RT | ≤
(t1 − t0)

2

8
max

t0≤t≤t1
|f ′′(t)| (II.2.31)

It is eminently possible to adopt a higher order polynomial interpolation in

an effort to reduce the error. However, it has been found that this approach

produces a minimal improvement at best, and can lead to unrealistic spikes

in the output. The crucial parameter in determining the accuracy of the

numerical approximation is the effect of the time step size on the Newton-

Euler integration. When considering this, alongside the fairly significant

increase in computational effort required, the simple linear interpolation

method has been adopted throughout this research.

100

II.2.5 Conclusions

In this Chapter an argument has been set forth for increasing the complexity

of continuous dynamic neuron models to incorporate synaptic time delays.

This is because they are thought to be important in contributing to the

dynamics of natural neural systems and they are not included in the neuron

models used in ER. Such dynamic systems are classified as a subset of Delay

Differential Equations, which are effectively infinite dimensional systems

even with only a single delay. A new extension to the standard CTRNN

neuron model has been presented incorporating a continuous delay on each

incoming synapse.

Through dynamic analysis the dynamic differences between comparable

networks have been illustrated with and without delays, emphasising the

potential increase in complex dynamic behaviour which may be exploited by

artificial evolution for adaptive behaviour. Other studies of similar delayed

dynamic equations have been reviewed and a stability analysis for a single

neuron system has been undertaken.

The full range of dynamics of which such systems are capable have been

comprehensively evaluated and explained, with particular reference to the

oscillatory modes present in the gamut of possible behaviours. The bound-

aries of the oscillatory zone have been numerically explored, the conditions

required to bring this about commented upon with how this understanding

can be used to guide our search for interesting solutions in ER.

101

Chapter II.3

Minimalistic Simulation of a

Quadruped Robot

Studies in ER often couple the investigations of adaptive behaviour and lo-

comotory gaits for legged robots [15], and they are two of the most common

applications for continuous recurrent networks. Early research tended to

focus on simple hexapod insect-like architectures which are highly stable

platforms, with later developments considering more dynamic structures.

Chapter II.2 explored the dynamics of small systems of DDEs and high-

lighted the enhanced oscillatory behaviours present over the commonly used

CTRNN model. It is natural therefore to suppose that these delayed net-

works may provide a benefit in the development of evolved gaits, and to

explore their application in legged robotics. The aim of this Chapter is to

develop the simulation tools to be able to evaluate later experiments where

delayed networks are used to control the gait of a quadruped robot in Section

III.3.2.

The design, simulation and analysis of legged robots for the development

and analysis of gaits is well established. The tools for this tend to be either

One-Dimensional (1D) simple approximations or fully featured dynamic sim-

ulation environments which carry a high computational overhead [52]. The

102

first are by nature somewhat limited and whilst providing useful tools for

appreciating dynamic gaits do not address the crucial issues of 3D stability.

Full simulation environments, of which there are many, provide a fully fea-

tured 3D dynamic analysis but likely have a degree of extraneous overhead

inflating their computational cost. Additionally, integration of these third

party software packages into home-grown code for research or development

places significant limitations on the researcher.

Evolutionary methods are characterised by the need for a large number

of trials over successive generations as an optimal solution is sought. Our

requirements of any simulation must therefore not only be for a realistic

portrayal, but also for computational efficiency. This central tenet of ER

was first formalised by the work of Jakobi [59, 60] in his work with two-

dimensional models of wheel robot locomotion.

There are a number of mature simulation packages used in such research.

However, the inclusion of delayed and pattern networks (see Chapters II.5

and II.6) require a highly tailored evolutionary architecture which has been

developed in Python. To accelerate this code for the investigation of long evo-

lutionary runs, the packages are translated using PyPy into C-executables.

This provides a massive speed-up, but does limit the ability to integrate

external software. Hence the need to develop a simple system which can ac-

curately and efficiently evaluate the performance of evolved gait controllers.

This prevented the use of traditional simulation packages and lead to the

development of the minimalistic dynamic simulation presented herein.

We should however be absolutely clear as to the role of the simulation

developed. There is little novelty in the mathematical formulation of the

system. Indeed this is quite intentional as the focus from the start has been

on simplicity. What is novel is the minimalistic treatment in the develop-

ment of the simulation, in line with the approach of Jakobi, to generate a

computationally efficient way of evaluating evolved gaits. There is however a

103

Figure II.3.1: Real Robot for Verification of Simulation Results

danger that oversimplification could lead to unstable or unrealistic dynamics

that cannot reliably simulate the quadruped gait.

II.3.1 Single Leg System

Initially, we shall consider the geometry and control of a single leg which

may later be used in a modular manner to model a whole range of robotic

organisms (such as that shown in Figure II.3.1 which was developed to verify

the simulation developed herein). We shall model a sprawled leg geometry,

common to all manner of insects and reptiles, which is the most primitive of

postures. The alteration of these expressions to represent a more traditional

upright stance is simple and may be used to easily simulate a range of

mammalian forms.

The leg shown in Figure II.3.2 consists of two rigid bodies fixed in the

104

(a) Top View (b) Side View

Figure II.3.2: Diagram of a Single Leg

main body reference frame by a spherical joint constrained to rotate around

the z-axis and the x-axis only. A revolute join between the two limbs allows

relative rotation only in the local x-axis for the bodies. This approximates

a mechanically realisable form of tetrapod limb [91]. Realistic limits of

−π
4 ≤ α ≤ π

4 , −π
2 ≤ β ≤ π

2 and 0 ≤ γ ≤ π are set on the range of motion of

the leg. In this coordinate system, relative to the hip joint, the coordinates

of the foot are (assuming absolute limb movement):

x = sin(α) (l1 cos(β) + l2 cos(γ − β)) (II.3.1)

y = cos(α) (l1 cos(β) + l2 cos(γ − β)) (II.3.2)

z = l1 sin(β)− l2 sin(γ − β) (II.3.3)

This can be assembled into a system which is a 3D analogue of a 1D

peg-leg walker or Chaplygin sled [52], where the leg is attached to a solid

body constrained to move along an axis. This is similar to the ‘rail roach’

approach of Ghigliazza [40, 41] which was a first step towards a hexapod

model and used single limb telescopic legs, rather than the three-axis leg

considered here.

A natural extension of the single leg system is to move towards a more re-

alistic consideration of quadruped, or hexapod, legged robots. This requires

a thorough treatment of the physical dynamics, as we can no longer make the

105

simplifying assumption of a symmetrical gait and furthermore require that

the robot body is not used as a support whilst all legs are simultaneously

out of contact with the ground.

Furthermore we have assumed absolute limb movement in the formu-

lation of the above Equations for foot position. Real robot limbs tend to

suffer to a greater or lesser extent from backlash, where there is some play

in the joints due to the motors or flexibility of the limbs. This means that

strictly the above assumption is rendered invalid. However, whilst there are

techniques such as compliance methods which can be used to model these,

the additional complexity of simulation required itself invalidates the funda-

mental maxims of our approach to a minimalistic simulation. In our desire

to maintain a simple single step solution to the body forces and torques at

each time step it is undesirable to include such iterative techniques. Some of

the play in joints may be approximated roughly in the design of the ground

spring constants and simulation damping discussion in the next Section.

II.3.2 Rigid Body Dynamics

The kinematics and dynamics of rigid body systems have been well studied,

and may be simulated using a variety of formulations. Classically Newton-

Euler constrained Equations of Motion (EOM) [48] are used or more recently

Screw Theory [5, 36] has been used heavily in rigid body / robotic simula-

tion. The Newton-Euler approach to maintaining a hierarchical system of

reference frames may be used, or formulated in Denavit-Hartenberg (DH)

Parameters for the links of a spatial kinematic chain [87].

Dynamic analysis using the Newton-Euler EOM requires the solution to

the following set of second-order non-linear differential equations, presented

in Equation II.3.4 in matrix form. (Many of the formalisms presented herein

make use of certain vector and matrix identities which are presented for

completeness in Appendix V.B. Conventions and expressions for the general

106

representation and transformation of 3D translations and rotations using

Euler Parameters are given in Appendix V.C):

M 0 ΦT
r

0 J′ ΦT
π

Φr Φπ′ 0

r̈

ω̇′

λ

=

FA

n′A − ω̃′J′ω′

γ

(II.3.4)

Where M is the mass matrix, J′ is the inertia matrix in the body frame,

Φr and Φπ′ are constraint matrices, FA is the applied force vector, n′ is the

applied torque vector in the body frame, ω′ is the body rotational speed

vector and γ is the right hand side of the acceleration equation.

For a still minimalistic treatment of a quadruped robot, as shown in

Figure II.3.3, these matrices must be assembled for nine bodies, resulting in

a matrix of size 126x126 which must be solved. This system is not trivial to

solve and has been the focus of a good deal of dedicated analysis software,

such as ADAMS, which has been used frequently in the simulation and

analysis of legged locomotion, for example by Ho et al. [50]. The aim here

however is to derive a simplified and computationally minimalistic analysis

without having to rewrite a full dynamics engine. In this way the model

can be written in almost any programming language to suit almost any

platform to meet the needs of any researcher. The aim of this is to enable

the easy integration and modification of the algorithm to maximise ease

of investigation and experimentation, without the need of integrating third-

party software. The development of this scheme is presented in as a complete

a manner as possible to facilitate its use.

Rather than approach the problem as having nine bodies, we shall make

a simplifying assumption that the limbs of the robot are massless. This is

clearly not accurate, but the body of the robot must necessarily contain the

significant majority of the robot e.g. batteries and on board computation. In

insects as in many robots, the masses of the legs are very small (Soygunder

and Ali created a robot where the leg masses are around one percent of

107

the total body mass [103], and in the cockroach Blaberus discoidalis the

ratio is around 5% [66]). The mass and inertial contributions of the legs are

often ignored for simplicity [52]. Also, the robot is assumed to be physically

symmetrical around the (x,z) plane and the (y,z) planes when adopting a

neutral stance. Whilst different leg extensions move the Centre of Mass

(Centre of Mass (COM)) of the leg, the overall impact on the location of the

body COM is likely small. The inertial effect of leg movement relative to

the body will be small given their low mass and low maximum speed.

Here on, we shall follow the classical Newton-Euler approach for a num-

ber of reasons. Assumptions have been in order to simplify the simulation

of the leg model in the previous Section and we do not wish to introduce fur-

ther complexity. As we do not wish to consider the contribution of the legs

to the dynamics beyond providing impulses at the point of contact, there

is no need to consider the kinematic chain of each limb; simple trigonome-

try within the body reference frame, as in the previous section, is perfectly

adequate. The classical approach therefore reduces the complexity of the

mathematical assembly of the system which is a key concern in the drive

behind its selection.

By making this assumption we can model the system as a single body

without constraints and simulate the leg dynamics and ground reactions by

application of external forces and torques to the body. For a single body

system which is unconstrained the EOM reduce to a system of six equations

only:

mr̈ = F (II.3.5)

J′ω̇′ = n′ − ω̃′J′ω′ (II.3.6)

Where F and n are the forces and torques applied to the system by the legs

of the robot and their contact with the ground.

As ω′ cannot be integrated directly, we must make use of the relationship

108

to the Euler parameters:

ṗ = −1

2
GT ω̇′ (II.3.7)

The mass and inertial characteristics of a uniform body are given in Ap-

pendix V.D. Using the EOM in the form shown in Equations II.3.5 and II.3.6

we can easily rearrange these expressions to find r̈ and ω̇′ directly in a form

suitable for numerical integration:

r̈ =
1

m
F (II.3.8)

ω̇′ = J′−1
(

n′ − ω̃′J′ω′
)

(II.3.9)

For completeness we shall write these fully using the inversion of a diagonal

matrix as given in (V.D.6):

r̈x

r̈y

r̈z

=
1

m

Fx

Fy

Fz

(II.3.10)

ω̇′
x

ω̇′
y

ω̇′
z

=

J ′−1
xx

(

n′
x − ωyωz(J

′
zz − J ′

yy)
)

J ′−1
yy

(

n′
y − ωxωz(J

′
xx − J ′

zz)
)

J ′−1
zz

(

n′
z − ωxωy(J

′
yy − J ′

xx)
)

(II.3.11)

II.3.3 Modelling the Robot

We shall now define the model of the walking robot, as shown in Figure II.3.3,

which is similar to that of Ho et al. [50], but with 3 DOF per leg. The robot

is modelled as a single body with mass m acting vertically downwards in

the ground coordinate system from its centroid. There are four spherical

joints, four revolute joints and four feet to consider as nodes in the system.

Simulating the limbs of the robot as rigid bodies connecting these nodes, and

the body as a flat plane between the four cylindrical joints, it is sufficient

109

Figure II.3.3: Model of the Quadruped Robot

to consider these nodes solely when it comes to calculating floor collisions

and reaction forces. In fact, within the leg angle limits it is not possible for

the knee joint in each leg to contact the ground plane without either the

hip or the foot penetrating the floor, unless the robot is inverted. There are

therefore eight conditional vertical reaction forces which may apply to the

body depending on which of these nodes are in contact with the ground.

The leg model is the same as Section II.3.1, and we can use Equations II.3.1,

II.3.2 and II.3.3. Including the offsets to the origin of the body reference

frame, where the coordinates for each foot f are s′f =
[

x′f , y
′
f , z

′
f

]T
for

f ∈ [1, 2, 3, 4], in accordance with the arrangement set out in Figure II.3.4,

110

Figure II.3.4: Orientation of Feet Coordinate Systems

then:

s′1

s′2

s′3

s′4

=

a
2 + s(α1) (l1c(β1) + l2c(γ1 − β1))

b
2 + c(α1) (l1c(β1) + l2c(γ1 − β1))

l1s(β1)− l2s(γ1 − β1)

−a
2 + s(α2) (l1c(β2) + l2c(γ2 − β2))

b
2 + c(α2) (l1c(β2) + l2c(γ2 − β2))

l1s(β2)− l2s(γ2 − β2)

−a
2 + s(−α3) (l1c(β3) + l2c(γ3 − β3))

− b
2 − c(α3) (l1c(β3) + l2c(γ3 − β3))

l1s(β3)− l2s(γ3 − β3)

a
2 + s(−α4) (l1c(β4) + l2c(γ4 − β4))

− b
2 − c(α4) (l1c(β4) + l2c(γ4 − β4))

l1s(β4)− l2s(γ4 − β4)

(II.3.12)

Where the abbreviations c = cos and s = sin are used for brevity.

We must also calculate the velocities of each foot relative to the body

fixed reference frame (ṡf
′), which can then be related to the ground reference

frame (ṡf). These are easiest found numerically by calculating the differences

between the values at the previous and current time steps:

ṡf
′ ≈

s′tf − s′t−dt
f

dt
(II.3.13)

111

II.3.4 Forces on the Body

To cover all cases, we must not only consider the forces on the feet of each

leg and the centroid of the body, but also the hip nodes (numbered 9, 10,

11 and 12 on Figure II.3.3), as they may contact the ground ahead of the

corresponding foot. Nodes which are not in contact with the ground shall

not be subject to any forces, only a constant body force due to acceleration

by gravity (g ≈ −9.81ms−1) will apply.

II.3.4.1 Ground Reaction

When a body is resting on the ground and subject to gravity it will expe-

rience a vertical reaction force in the ground frame (R = mg). The body

contact points will experience reaction forces, and for static equilibrium the

sum of forces and moments must be zero (
∑

F = 0 and
∑

N =
∑

s×F = 0).

This forms a set of six equations which can be solved for up to six unknowns.

However, for many common scenarios the configuration of reaction forces is

indeterminate [81] and must be found through a numerical scheme or Linear

Complementary Problem (LCP) which is computationally expensive.

Most often in a numerical simulation with a constant timestep collisions

will not take place at exact multiples of ∆t and so the simulation will over-

shoot slightly. The smaller the time constant the less this will be, but a

traditional method of dealing with this is to introduce a penalty force based

upon the degree of interpenetration [116]. The ground is considered as a

combined spring-damper system and the penalty force determined as fol-

lows:

fp = ksdn̂− kd(ṙ.n̂)n̂ (II.3.14)

Where ks is the spring coefficient, kd is the damping coefficient, d is the

112

distance of interpenetration, ṙ is the velocity of the point and n̂ is the nor-

mal vector of the penetrated surface. This requires a large spring coefficient,

the determination of which has been called a ‘black art’ [81], which can lead

to instability and is often only suitable for a particular simulation scenario.

A refined version of this model incorporates an integral term over the period

of contact to eliminate any steady state error (i.e. the constant interpen-

etration for the ‘spring’ to balance the body) [32]. A factor λ is used to

prevent any unwanted ‘popping’(a term denoting where in a single timestep

an object penetrates the ground sufficiently that the restitution forces cause

it to ‘pop’ out of the ground) and is usually in the range 0.8 < λ < 0.9:

fp = max

(

ksdn̂− kd(ṙ.n̂)n̂+ kiI

nc
, 0

)

(II.3.15)

I =
∑

tc

λd (II.3.16)

Here, ki is the integral constant.

An alternative approach is to perpetuate static contact by a series of

chained micro-collisions [81]. This is modelled by artificially increasing the

coefficient of restitution up to a maximum value in the impulse calculation

introduced in Section II.3.4.2 when a collision is designated a micro-collision.

The test condition is if:

−ṙz <
√

(2gηc) (II.3.17)

Where ηc is the maximum distance between objects said to be in static

contact.

In our case, application of the penalty based method has been found to

lead to the most stable results.

II.3.4.2 Collision

There are many approaches used to simulate the collision of objects, and

there exists a vast body of literature within both traditional mechanics and

113

Figure II.3.5: Collision of Two Bodies

computer science [6]. The two main approaches applicable here can be

considered to fall under constraints [48] or impulse based mechanics. The

object of much of the simplification undertaken herein is to remove the need

to solve constraint equations and so we shall focus upon the significantly

simpler impulse approach [81], using the form of equations developed by

Vella [116].

Upon the instant of contact, the body will undergo a rapid deceleration

and corresponding change in momentum resulting in an impulse. We require

that the foot comes to a vertical rest in one time step (∆t), so that it does

not pass through the ground plane, so:

I = mṙ = F∆t (II.3.18)

F =
mṙ

∆t
(II.3.19)

More complex however is the treatment of angular momentum L which is

defined for an object with fixed mass rotating about a fixed symmetrical

axis as L = Jω, whereas, for a particle about an origin L = r × p, where

r is the position vector of the particle and p is its linear momentum.

These can be combined to calculate the total impulse including the changes

in both linear and angular momentum [116]. For two bodies colliding, as

shown in Figure II.3.5, the magnitude of the impulse I is:

−(1 + ǫ)ṙAB.n

M−1
A +M−1

B +
[(

J−1
A (sA×n)

)

×sA+
(

J−1
B (sB×n)

)

×sB
]

.n
(II.3.20)

Where M is the mass of the body, I its moment of inertia, ǫ the coefficient

114

of restitution and ṙAB the relative velocity between the bodies at the contact

point. This can be simplified for our case, as we know that we are coming

solely in contact with the ground which is flat in the (x,y)-plane. As the

mass of the ground and its inertia can be considered to be infinite and the

normal vector is simply vertical in the ground plane this becomes:

I =
−(1 + ǫ)ṙf .k

m−1 + [(J−1(sf × k))× sf] .k
(II.3.21)

Where ṙf is the velocity of the foot, sf is the position of the foot, m is the

mass of the body, J is its moment of inertia and k is the unit vector in the

z-direction of the ground plane. This impulse magnitude can be transformed

into a force using Equations II.3.28 and II.3.29 and applied in the EOM. All

of these quantities are required in the ground plane, and therefore require

the transformation of both the foot velocity and body moment of inertia

into the global frame using Equations V.C.4 and V.D.7.

The impulse expression, given in Equation II.3.21, is valid for a single

point of contact. If there are multiple contact points, one cannot simply

repeat the calculation for each, as it does not take into account the support

of the other contact points and would be akin to simulating a universal joint

at the COM rather than a rigid body. The impulse must therefore be applied

at the average point of contact, but calculated for each point separately to

account for their relative speeds and facilitate the evaluation of leg friction

forces. We therefore define the following expression to be evaluated for each

contact point, where the number of such points is nc.

If =
−(1 + ǫ)ṙf .k

nc (m−1 + [(J−1(sc × k))× sc] .k)
(II.3.22)

Where:

sc =
1

nc

nc
∑

i

si = A

(

1

nc

nc
∑

i

s′i

)

(II.3.23)

This formulation of the expressions allows for a simple one-step solution

which fits neatly into the simulator, but is only valid for planar surfaces.

115

This however is in-line with the initial assumptions made. Our initial focus

is in the developments of gaits for simple robots in simple environments

to evaluate the efficacy of a range of neuron models and techniques for

encoding delays. Further to this work, should the results in this Thesis

warrant continued investigation, a more sophisticated environment may well

be advisable for the inclusion of complex terrain geometry.

II.3.4.3 Friction

When a foot is in contact with the ground and attempts to slide across the

ground plane a frictional force is experienced. In this way the feet of the

robot gain traction and (with an appropriate gait) move the body of the

robot forwards. The most popular, and simplest, model is Coulombs Law

of Friction governed by the equation:

Ffr ≤ µFn (II.3.24)

Where Fn is the normal force, µ is the coefficient of friction and Ffr is

the force of friction parallel to the surface opposing the direction of applied

force. In vector form this can be written:

Ffr = −µ|Fn|
ṙx,y

|ṙx,y|
(II.3.25)

Where the contact point is moving ṙx,y in the (x,y) plane. The friction

force will balance any applied force up until it exceeds µsFn (where µs is

the static coefficient of friction), whereupon it is limited to µkFn (where

µk is the kinetic coefficient of friction). µk is most often less than µs and

values vary widely depending on the configuration of materials used [80].

This may be incorporated into simulation, which already uses penalty based

ground reactions, by employing a virtual spring approach [116], as shown in

Figure II.3.6. When the point makes contact with the ground, this point is

stored and a virtual spring between this point (a0) and the current position

116

Figure II.3.6: Penalty Friction Model

of the point (p) applies a restorative force limited to µsFn. If this limit is

reached the friction enters a dynamic mode and is constant (µkFn) in the

direction of the spring.

Fs = kf (p− a0) (II.3.26)

Ffr =

Fs if |Fs| ≤ µs |Fn|
µk |Fn| p−a0

|p−a0|
else if |p− a0| 6= 0

0 else

(II.3.27)

Where kf is the virtual spring coefficient and Fs is the virtual spring force

vector.

II.3.5 Bringing it all together

There exist a set of f 3D force vectors, assembled from each of the possible

ground contact points (namely the foot and hip of each of the four legs of

the robot). The overall force applied to the body modelling the robot is a

linear summation of these terms. The torque vector applied to the body can

then be calculated from these forces and our knowledge of their application

points in the body reference frame.

F =
[

0 0 mg
]T

+
∑

f

Ff (II.3.28)

Where:

Ff =

[

Ffr.i Ffr.j
1
∆tI + fp

]T
ifzf ≤ 0

[

0 0 0
]T

else
(II.3.29)

117

The overall torque applied to the body is the sum of all foot forces in the

body frame multiplied by the appropriate moment arms.

n′ =
∑

f

n′
f =

∑

f

(

s′f × F′
f

)

=
∑

f

(

AT sf ×ATFf

)

(II.3.30)

The system under consideration is highly non-linear, energy dissipative and

discontinuous; therefore it is impossible to solve explicitly and we must seek

a numerical approximation to the solution. Our structuring of the system of

equations has very deliberately eliminated the need for complex treatment

such as elimination and factorisation techniques. Instead we can simply

integrate Equations II.3.10 and II.3.11 using one of the many methods for

numerically integrating ordinary differential equations [2].

II.3.6 Servo Torques and Body Inversion

Whilst we have assumed that limb movements are absolute, we are ulti-

mately interested in real robots and so it is useful to be able to check gaits

to see if they are realisable. Standard servos receive an absolute angular

demand as a Pulse Width Modulation (PWM)) signal which makes them

ideal for robotics applications. They have a maximum speed at which they

will rotate angularly (quoted in s/60◦ with no-load) and a maximum torque

(usually given in kgcm). These values vary greatly depending on the mate-

rials and quality of construction, with currently available servos developing

torques varying from around 0.1Nm to 10Nm and speeds from 0.1s/60◦ to

0.3s/60◦. The demand rotational speed is easily found by inspecting the

specific gait algorithm under investigation, and the torque at the hip joint

required to react the forces at the foot can be found as follows. Due to

our simplifying assumption of a single body for the robot, we do not have

a rotation matrix for each limb requiring that we must fall back on more

traditional trigonometry and vector algebra to calculate the torques at each

of the required joints. Consider the first leg made up of nodes 1,5 and 9.

118

(a) Leg Servo Torques

(b) Limb Coordinate Systems

Figure II.3.7: Checking Leg Servo Torques

119

This can be actuated using three servos, one providing a torque around the

z’-axis at node 9 giving rise to the leg angle α. The second servo must also

act at node 9 normal to the plane of the leg driving β. Finally, a servo

acts at the knee, node 5, once again normal to the leg plane to drive γ.

These three torques are denoted n′
α, n

′
β and n′

γ respectively and are shown

in Figure II.3.7.

The magnitude of the joint torque is equal to the magnitude of the

component of the moment interaction between the two links in the rotational

direction [35]. By using a Free Body Diagram approach we may arrive at

the following identities for the joint torques [73, 7] using the nomenclature

indicated in Figure II.3.7.

n′
α

n′
β

n′
γ

=

(z′ × s′hf)
T

(x′
h × s′hf)

T

(x′
k × s′kf)

T

F′
f (II.3.31)

This leaves us to find x′
h = x′

k which can be found as it is the unit normal

vector to the two limbs, thus:

x′
h = x′

k =
s′hk × s′kf

|s′hk × s′kf |
. (II.3.32)

In this way, the torque which is required of the servos to develop the mo-

tion witnessed in the simulation may be found. As with checking for robot

inversion, our key focus is on our ability to realise such systems in the real

world and to minimise the cost of simulation.

The aim of developing this model is to enable the search for stable gaits,

and is not concerned with self-righting (although the simulation environment

could certainly be used as such if desired). Especially considered in an ER

context, we wish to end a trial simulation as soon as we are sure that the

gait is not valid. To this end it is useful to be able to determine if the robot

has inverted, i.e. the vertical component of the body normal vector z′ in

the ground frame going below zero. So as not to unfairly dismiss potentially

acrobatic gaits, we can check for zz < 0 when any contact is detected.

120

It is worth noting the constraint on the Euler parameters that pTp = 1

and how this holds true when the simulation relies on a numerical integration

scheme with error. This constraint can be visualised as a 4D unit sphere,

where p must lie on the surface. When the EOM are integrated numeri-

cally the new p will move along a tangent away from the surface violating

the constraint. To correct for this, we can scale the new p to ensure the

constraint holds by recognising that pTp = p2. Equation II.3.33 shows the

scaling relationship which will always ensure the constraint is satisfied and

that the relationship between e0,. . . ,e3 remains the same:

p =
p

√

pTp
(II.3.33)

Clearly the fact that the numerical integration has not rotated the body

around the surface of the pTp sphere means that an error has been intro-

duced, but this is a necessary evil of such a scheme and in most scenarios

this error is very small. In fact pTp can be a good metric to observe during

the simulation, as if it approaches pTp ≈ 1.1 very high rotational speeds

must render the development of a worthwhile gait highly unlikely.

II.3.7 Solution Procedure

We can now bring all of this work together and define a step-by-step proce-

dure to solve these equations many times over for the duration of the desired

simulation.

1. Define the physical constants affecting the simulation, µ, ǫ, δt, g, ks,

kd, kp, ki, and λ.

2. Define the geometry of the body l1, l2, a, b, c and Γ as per Figures

II.3.2 and V.D.1.

3. Initialise mass m and inertial matrix J using Equations V.D.1, V.D.2,

V.D.3, V.D.4 and V.D.5.

121

4. Set initial configuration of legs (α, β, γ), and body orientation (p =

[1, 0, 0, 0]T , ω̇′ = 0). Also set the initial position, velocity and acceler-

ation of the robot.

5. For all timesteps in simulation:

(a) Calculate driving angles (α, β, γ) based on the desired gait and

their derivatives (δα, δβ, δγ) for each leg.

(b) Calculate leg positions and velocities using Equations II.3.12 and

II.3.13.

(c) Calculate A from p = [e0, e]
T using Equation V.C.8, G from

Equation V.C.11, Ȧ with Equation V.C.3 and J−1 using Equation

V.D.7.

(d) Determine which nodes (if any) are in contact with the ground

using the conditions given in Equation II.3.28 and average their

positions to find sc and update the integral term of Equation

II.3.16. If this marks the start of a contact phase, store the

anchor point a0.

(e) For each contact point:

i. Transform the foot position rf and velocity ṙf into the global

frame using Equations V.C.1 and V.C.4.

ii. If ṙfz < 0, calculate the impulse using Equation II.3.22.

iii. Find the friction force using Equation II.3.27.

iv. Calculate the penalty forces, as per Equation II.3.16.

(f) Sum individual node forces to obtain the total body force F using

Equations II.3.28 and II.3.29.

(g) From the individual forces, calculate the torque on the body (n′)

using Equation II.3.30.

122

(h) If required, calculate the servo demand torques using Equations

II.3.31 and II.3.32.

(i) Solve the EOM, Equations II.3.10 and II.3.11, in terms of r̈ and

ω̇′.

(j) Integrate ω̇′ to ω′. Transform ω′ into ṗ using Equation II.3.7.

(k) Numerically integrate r̈ and ṗ to find the updated position and

orientation of the body. In our case we shall use the standard

Fourth Order Runge-Kutta method.

(l) Normalise the Euler parameter to ensure that pTp = 1 despite

errors in numerical integration using Equation II.3.33.

(m) Increase simulation time by ∆t and proceed to the next timestep.

II.3.8 Realism and Computational Efficiency

The formulation and assembly of these algorithms make significant simpli-

fying assumptions about the geometry of the robot, but the equations of

motion are solved directly. It is only in the treatment of ground reactions

and friction where we have to rely on approximations. These nevertheless

provide a simple, computationally minimalistic approach which still realis-

tically models static and dynamic friction. It also finds appropriate ground

reactions in a single step without resorting to an LCP method. In this way

we aim to strike a balance between the ‘is right’ view of traditional physical

simulation and the ‘looks right’ approach of games simulation. The major-

ity of numerical physical simulations incorrectly model impacts with a low

coefficient of restitution.

It is somewhat difficult to compare the computational efficiency of differ-

ent simulation engines given the incredible variety of simulation approaches,

integration methods, object representations, constraints and platforms avail-

able. Comparing like with like is practically impossible and all we can

123

reasonably do is make some judgements about the degree of computation

undertaken during a simulation and the accuracy with which it does it. How-

ever, any code which is optimised for a single purpose, without any of the

extraneous considerations which more general purpose environments must

have, should be faster. Specifically, the algorithms described herein have a

significantly reduced set of ODEs to solve, which have easily determined so-

lutions. There is not need to solve LCP problems for constraints and ground

reactions. Because the kinematics of the limbs are determined geometrically

and their speeds are found numerically, we are solving a one body problem

instead of a nine body problem. However, without extensive comparison no

real conclusions can be made. What we can be sure of however is that by

following the long established protocol within ER for designing minimalistic

simulations which simply capture the essential behaviour under investiga-

tion, that a simulation environment has been developed which is fit for the

purpose of evolving quadruped locomotory gaits.

II.3.9 Simulation Results

To test the minimalistic simulation presented here a (1,3,4,2)1 crawling tetra-

pod gait was designed with leg angles as shown in Figure II.3.8, a duty cycle

of 0.75 and implemented in the simulation environment. For each swing

phase the leg angle α is designed to achieve a constant linear motion in the

x-direction, with the corresponding β and γ joint angles altering to maintain

a constant body height and y-axis foot contact point.

To achieve a constant forward speed, the distance moved along the x-

axis by all feet in contact with the ground (dx) per time step should be the

same throughout the gait. Through trigonometric analysis we can derive an

expression for the leg angle at the next time step, shown in Equation II.3.34

below. For these expressions an assumption of equal leg lengths (l1 ≡ l2 ≡ l)

1Using the leg labelling nomenclature given in Figure II.3.3

124

0.0 0.2 0.4 0.6 0.8 1.0
Progress

−

π
4

0

+π
4

+π
2

+3π
4

+π

A
n
gl

e

Leg 1

0.0 0.2 0.4 0.6 0.8 1.0
Progress

−

π
4

0

+π
4

+π
2

+3π
4

+π

A
n
gl

e

Leg 2

0.0 0.2 0.4 0.6 0.8 1.0
Progress

−

π
4

0

+π
4

+π
2

+3π
4

+π

A
n
gl

e

Leg 3

0.0 0.2 0.4 0.6 0.8 1.0
Progress

−

π
4

0

+π
4

+π
2

+3π
4

+π

A
n
gl

e

Leg 4

α

β

γ

Figure II.3.8: Gait Leg Angles

125

significantly simplifies both the derivation and the results to an extent which

renders them solvable.

αt+1 = atan

(

tanα− dx

r

)

(II.3.34)

Where, for initial leg angles α0, β0 and γ0, r is as per Equation II.3.39 and

a gait evaluated for n steps we can then find dx as below:

dx =
2l sinα0(cosβ0 + cos(γ0 − β0))

n− 1
(II.3.35)

Our aim is to eliminate any foot slippage and ensure a constant body

height throughout the gait, and therefore the leg angles β and γ must al-

ter throughout each swing phase to ensure that the foot y-axis and z-axis

position remains constant. If the following expressions are true:

2lr + r2 + z2 6=0 (II.3.36)

r2 + z2 6=0 (II.3.37)

l
(

z
√

(r2+z2)(4l2−r2−z)2+2lr2+2lz2+r3+rz2
)

6=0 (II.3.38)

Where:

r =
l cosα0 (cosβ0 + cos(γ0 − β0))

cosα
(II.3.39)

z = l (sinβ0 − sin(γ0 − β0)) (II.3.40)

Then:

β = 2atan

(

√

(r2 + z2)(4l2 − r2 − z2) + 2lz

2lr + r2 + z2

)

(II.3.41)

γ = 2atan

(

√

(r2 + z2)(4l2 − r2 − z2)

r2 + z2

)

(II.3.42)

Figure II.3.8 graphically presents the evaluation of these expressions for the

four legs with α0 = π
4 , β0 = π

9 and γ0 = 4π
6 . For the return phase, the leg

is raised and swung back to α0 in a sinusoidal profile. This walking gait is

statically stable as supporting tripods contain the centroid of the body in

126

Symbol Value Symbol Value Symbol Value

µ 0.6 kd 5.0 l1 0.100 m

ǫ 0.1 ki 100.0 l2 0.125 m

δt 0.0001s kf 10000.0 a 0.20 m

g −9.81 ms−2 λ 0.6 b 0.10 m

ks 10000.0 γ 250.0 kgm3 c 0.10 m

Table II.3.1: Simulation Constants

all steps, and the results presented are for a step time of 3.0s. These results

incorporate a half second settling time, waiting for the feet of the robot to in-

terpenetrate the ground under the action of gravity and stably establish the

correct reaction forces before the gait commences. The simulation constants

were set as shown in Table II.3.1 and it was run for 15 seconds. The penalty

spring constant ks was set to allow the body to penetrate the ground under

1mm when all four legs support the static body (k = ncmg
s). The values for

µ and ǫ are realistic, with ki and λ manually designed to quickly eliminate

any steady state error whilst avoiding ‘popping’. The penalty friction spring

constant kf was set high to ensure that the foot could not move very far

without transitioning between the static and dynamic behaviour. The exact

distance is not unique and is dependent on the reaction experienced by the

foot in question.

A quadruped robot was built to match the parameters of the simulation

given in Table II.3.1 in order to allow physical verification of both the gait

and the accuracy of the simulation developed; a photograph of the robot is

shown in Figure II.3.1. The design and assembly of the robot is described

in detail in Chapter II.4.1. Clearly, the legs of the robot form a considerable

part of the mass of the robot, as the servo motors are mounted on the

axis of each joint in the common manner. Whilst the structure appears

somewhat massive, the foam cored plastic construction meant that the mass

127

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

x / m

−0.2

−0.1

0.0

0.1

0.2

y
/

m t=0.0s t=7.5s t=15.0s

Simulation Result

Tracker Data

Figure II.3.9: Top View of Simulation Result Overlayed with Real Data

From Laser Tracker

was minimal with the majority of the leg weight contributed directly from

the motors. The hip servo (α and β) motors are mounted at each of the four

corners of robot and contribute equally to the mass, location of the COM

and inertia of the body. As their mass and inertial properties are almost

invariant with respect to the angle of the legs (due to the very small moment

arm around the joint centres), they may be considered for all intents and

purposes to form part of the body and not the legs. The knee (γ) motor is

of the 9g servo variety and thus the motors in the legs form around 7% off

the mass of the robot without batteries.

The robot used low cost motors, eight standard servos (for α and β leg

angles) and four micro servos (for γ leg angles) throughout and was con-

trolled by an Arduino2 based microcontroller. Power was supplied from a

7.2V 1800mAh Nickel-Cadmium (Ni-Cd) battery through a Battery Elim-

ination Circuit (BEC) which supplied constant 6V to the servos with a

limited current draw of 5A. The microcontroller was slaved to a personal

computer over a Universal Serial Bus (USB) to serial link and the gait used

in the simulation replicated. The movement of the robot was recorded us-

ing a state-of-the-art Leica LTD 500 laser tracker following a 1.5” spherical

2www.arduino.cc.

128

reflector, which can be seen in Figure II.3.1, with a high degree of accuracy.

This robot has only one purpose, which is to support the validation of

the simulation and attest to the comparability of results obtained virtually

with what one might expect should the gait be implemented in hardware.

It is not intended that evolved gaits are trialled on the real robot, but that

the simulation is used solely to verify their performance. The results of

evolutionary optimisation of such gaits are presented in Chapter III.1.

The overhead trajectory can be seen in Figure II.3.9 and shows how

the gait moves the body of the robot forwards in a straight line with an

excellent degree of agreement between the simulated and real results. The

simulation result shows a slight undulatory profile which is matched, and

exaggerated, by the real trajectory. There are a number of contributory

factors to this deviation. First, the reflector was positioned around 100mm

above the plane of the hip nodes and any tilting will increase any observed y-

axis deviations in the robot’s path. Secondly, the low-cost servos used were

imperfect and operating near the limit of their capability and finally the not-

insignificant mechanical play present in the leg linkages added some sprawl

to the robot’s stance. Despite this the key features of the gait are reproduced

in both data sets and, most importantly, the predicted distance travelled is

accurate to within a few centimetres. This is acceptable for our purposes as

the simulated gait very closely resembles the real robot motion, and so the

simulator can be used to predict distances travelled for the measurement of

fitness. Whilst it is beneficial for a high degree of accuracy between the two,

in reality all that is required is that a better controller travels proportionally

further and thus achieves a higher fitness proportional to its superiority..

This gait has a Froude number (u
2

gh , where u is the characteristic speed, g

is the acceleration due to gravity, and h is the standing height of the hip)

of approximately 8.2 × 10−3 [1]. For the duration of the simulation the

torque at each hip is shown in Figure II.3.10. Each torque point shown is

129

0 2 4 6 8 10 12 14
Time / s

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

T
or

q
u
e

/
N

m
Hip 9

nα

nβ

nγ

0 2 4 6 8 10 12 14
Time / s

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

T
or

q
u
e

/
N

m

Hip 10

nα

nβ

nγ

0 2 4 6 8 10 12 14
Time / s

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

T
or

q
u
e

/
N

m

Hip 11

nα

nβ

nγ

0 2 4 6 8 10 12 14
Time / s

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

T
or

q
u
e

/
N

m

Hip 12

nα

nβ

nγ

Figure II.3.10: Simulated Servo Torques During the Simulation

130

an average taken over a period of 0.1s. As the limbs are considered to be

massless, there is no torque required to move them, explaining the 0.75s long

gaps in the torque curves (leg raise, swing and then lower). The β leg angle

requires the highest torque across all legs as it is responsible for keeping

the robot off the ground. The sloped nature of the β torque profile during

stance phases clearly show how the COM shifts relative to each planted foot

due to the constant speed gait. As more weight is reacted by feet closer

to the COM the required torque is greater. One can recognise staggered

similar patterns in the torque curves as the gait progresses, with the torque

required limited to under 0.3Nm, which is easily realisable using common

model servos. The gait presented here is somewhat conservative and for

a more dynamic version, moving towards trotting or galloping gaits, the

torque requirements are likely to be significantly increased for transitory

impacts.

Due to the simplicity of the robot developed, there is no telemetry to

validate the prediction of leg torques provided by the simulation. Whilst they

appear to take the appropriate qualitative form, with the shifting centre of

mass seen clearly in the torque plot, it is impossible to gauge their accuracy.

For one thing, as the real robot’s limbs have a mass which forms a significant

proportion of the whole, the torque required for limbs not in contact with

the ground will be non-zero. However, we can state that as the gait was

successfully achieved that the torque requirements must be less than the

maximum torque which the servos can provide. This is limited to 3.7 kgcm

(0.37 Nm) at 6V which is the maximum safe voltage for the motors. This is

also only every so slightly greater than the peak torque observed during the

simulated gait for the β leg angles, with α and γ requiring significantly less.

Whilst we cannot strongly claim that the physical results presented com-

pletely validate the simulation, at the very least we can state that the sim-

ulation correctly represents the modelling of friction and stability. The key

131

focus of this work was to develop a tool for the evaluation of evolved gaits.

We can see how the simulation was extremely accurate in the estimation of

the distance travelled by the real robot. Alongside this, we are most inter-

ested in the stability of the robot during its gait. This is more significant as

the number of redundant limbs reduces. Beer and Gallagher adopted a 2D

simulator for a hexapod walker, which simply considered the robot having

a fixed location when incorrectly supported, but a 6 legged robot is signif-

icantly more stable than a quadruped. With fewer, and longer, legs the

chances of recovering from a significant instability are small, emphasising

the need for such analysis.

II.3.10 Extensions

Possibly the most natural and simplest of extensions to this simulation model

is to move to a different leg posture or a hexapod robot, which requires only

the trivial extension of the appropriate feet coordinates in Equation II.3.12

to the new body geometry. The hexapod legged robot is very common in

studies of ground locomotion as it is more stable than that of its quadruped

cousins and simpler to design. The additional computational expense is

minimal and the algorithm remains the same. Moving to a different geo-

metrical arrangement of limbs would require only some reworking of the

trigonometric identities governing the body frame position of the feet.

The robot described here is modelled as entirely rigid. To increase real-

ism and add useful damping for more energetic gaits, it may be desirable to

add highly damped torsion springs at each servo to ‘soak up’ some of the

impact forces. This would average them over an increased period of time,

decreasing the contact forces and giving the servos an easier time whilst

modelling the play present in most mechanical linkages. Whilst this model

allows for the checking of the torques required of the servos at each joint,

it would be useful to set a limit after which the servos cannot operate, but

132

identification and simulation of the appropriate failure model is complex.

Limitation of the servo speed is however simpler, as we can limit the move-

ment to a maximum speed and thus only meeting a fraction of the demand,

should this exceed what the servo is capable of.

One of the key measures of an optimal gait is its stability. Kim et al.

proposed a metric for the analysis of gait stability by analysing the centroid

of polygons formed by the feet in contact with the ground [63]. This could be

used as part of a fitness function which balances gait speed with its stability.

II.3.11 Conclusion

In this Chapter a physically accurate and appropriate, computationally min-

imalistic model has been developed for the simulation of initially a single leg

and then further to a 3D quadruped robot with full dynamics. Expressions

have been derived for simultaneous multi-point collision impulse responses

and servo torques required to implement the simulated motion. Sample re-

sults have been presented attesting to the validity of the models developed.

Methods for checking a gait’s validity and the torque requirements placed

upon the virtual servos are presented for the twofold reasons of facilitating

the realisation of such systems and reducing the computational requirements

of the simulation. A somewhat pedestrian, statically stable walking gait

has been developed to illustrate the application of the quadruped model

to realistic locomotion. A physical quadruped robot was created to verify

the simulation results and the trajectory of its gait was measured using a

laser tracker. A very high degree of agreement was observed between the

simulation and measured results with the trajectory exhibiting very similar

features, testifying as to the veracity and utility of the simulation developed.

133

Chapter II.4

Model Verification using

Real Robots

The investigations presented within this Thesis are carried out largely in

simulation. This is for a number of reasons: first the dynamics of complex

non-linear systems can only really be studied numerically as no exact so-

lutions exist. Especially when we consider networks modelling biological

neurons or gene expressions, we are forced into a computational approach.

The added benefit of this is the powerful way that we can explore all as-

pects of the behaviour with a ‘perfect’ set of instruments. Secondly, when

we introduce these networks into to an evolutionary framework we must con-

sider the requirement for evaluating typically large populations over many

generations. Whilst it is possible to apply artificial evolution to systems

evaluated in hardware this typically requires a significant amount of time,

presents challenges in maintaining functionality of real robots over extended

durations and applies practical constraints on the possible population size

and number of generations. For these reasons, typically the evaluation cycle

takes place under simulation. However, we must never lose track of the fact

that we are dealing here (largely) with embodied systems. To that end we

must consider two factors. First, the simulations we design must accurately

134

model all relevant aspects of the task in the real world (the ‘base set’ in

the language of Jakobi [60, 59]) and secondly, the results we attain must be

transferable to the embodied system for which they were developed. This

means that we must not only capture the key dynamics of real systems and

use this data to validate our simulations, but also design real time control

systems capable of implementing the controllers from the simulations. It is

only in the application of this cyclic feedback loop of software / hardware

validation that we can ensure the utility and accuracy of our results.

The guiding research questions presented in Part I propose the applica-

tion of the techniques developed throughout Part II to commonly studied

tasks in ER. As discussed previously, research in ER often considers both the

evolution of adaptive behaviour and robot locomotion and occasionally in

the same work. The objective of this Thesis is to investigate the application

and efficacy of adding transport delays into RNN connections. Without con-

sidering both adaptive behaviour and robot locomotion, hence both wheeled

and legged robots, we would be unable to evaluate the efficacy of such as

scheme across the gamut of ER research. In this way the work in this Chap-

ter underpins all of the experiments in Part III. Specifically, Section II.4.1

below supports the development of the minimalistic quadruped simulation

in Chapter II.3 and the experiment undertaken in Section III.3.2, whilst Sec-

tion II.4.2 develops the Two-Dimensional (2D) wheeled robot models used

in Chapters II.5 and III.2.

II.4.1 Design of a Simple Quadruped

Chapter II.3 develops a computationally minimal 3D dynamic simulation

for a legged robot for use in Section III.3.2. In order to determine the accu-

racy and realism of this model it is necessary to verify its results physically.

To that end, this Section describes the design and fabrication of a simple

quadruped robot for the explicit intent of comparing the predictions of the

135

simulation tool with physically observed results.

Legged robots have been investigated for some decades and the purpose

of this activity is not attempting to match the state-of-the-art in the me-

chanical design of locomotory systems (e.g. passive walkers, Robot Cheetah),

but rather to provide a simple tool for the investigation of gaits which can

easily be included in any study. To this end, the design philosophy for all

aspects of the robot, from mechanical to control, is based around low-cost,

easily obtainable and open-source products. In this way, anyone can easily

recreate these results or use them in a different way, without the barrier of

high capital expense as is the case with many commercial legged robot kits.

Also, for scenarios where multiple robots are required (for swarm systems

or evolution in hardware) minimising the total cost of each individual is of

great value. Other researchers have also designed open-source robots for

these reasons, for example the Quadratot1 [125], but the design developed

here was cheaper and simpler still.

The scope for this design was therefore to meet the requirements of the

simulated gait only and not to exceed them. This leads us to chose the

simplest possible combination of materials and parts capable of achieving

this.

II.4.1.1 Mechanical Design

A simple construction of foam cored plastic was chosen as it combined light

weight, rigidity and sufficient strength to cope with the stresses of the sim-

ulated gait. An I-beam cross section was adopted throughout the design

with reinforcing braces to ensure a rigid structure. The practicalities of me-

chanical design over the idealised structure modelled in Chapter II.3 (See

Figure II.3.3) require some relaxation of the assumptions made. The most

significant of which is that the hip joint requires some offset between the

1See, creativemachines.cornell.edu/evolved-quadruped-gaits/.

136

Figure II.4.1: CAD Model of the Quadruped Robot

Figure II.4.2: Cut Out Templates for CAD Model

137

z′ and x′h axes shown in Figure II.3.4. This causes a slight difference in

the foot trajectory than that described in Equations II.3.1, II.3.2 and II.3.3.

However, the offset is small and the potential differences in feet position

and joint torques are negligible (if anything, the n′
β torque would be slightly

smaller than predicted as the moment arm is reduced) and outweighed by

the desire for simplicity in the modelling process. However, the realistic

angle limits specified in Section II.3.1 are feasible.

The mechanical design for the robot is shown in Figure II.4.1 and was

designed to be formed from flat sheets of the foam cored material without

too much curvature. The structure was designed to match the dimensions

of the model skeleton shown in Figure II.3.3 with the dimensions for body

size and limb length matching those of the simulation parameters in Table

II.3.1. A simple template was generated for each unique part which were

typically repeated multiple times, shown in Figure II.4.2.

II.4.1.2 Electromechanical Systems

To actuate the limbs of the robot, we require a method for developing ro-

tational motion. This is most commonly achieved through the use of servo

motors. They use DC electric motors in combination with a geared control

system in order to provide a limited range of rotational motion. Typically

the desired angle is expressed using a PWM signal or digital interface. A

servo is specified with the maximum torque it is capable of expressing a

speed of response. Most hobby servos are limited to a 180◦ of motion and

are capable of a wide range of speeds and torques. They can range from a

couple of pounds to hundreds per servo.

The simulation predicts that the peak torques experienced during the

gait for each leg angle will be |n′
α| ≤ 0.05 Nm, |n′

β| ≤ 0.3 Nm and |n′
γ | ≤ 0.1

Nm. To meet this requirement, the robot was designed to use standard

servos for both axes of the hip joints and micro servos for the knee joint.

138

The maximum torque of each servo (just) exceeds the simulated peak values.

Whilst a slightly higher margin would be useful in more practical scenarios,

if these servos are capable of powering the gait, we can be sure that the

simulation results are accurate (or at least providing an overestimate).

In order to ensure accessibility, an open-source Arduino2 based controller

(DFRobot Romeo V1) was used as an on-board controller. It was ideal

for this application as servo control is extremely simple and it is easily

employed as an autonomous controller or can be slaved to another device

with communication over a wired/wireless serial link.

Figure II.4.3 shows a schematic diagram of the quadruped robot, illus-

trating the connection of the 12 servos required to drive all four sets of α, β

and γ leg angles. Power is supplied by a 7.2V 1800mAh Nickel/Cadmium

battery which was regulated using a BEC. This transformed the battery volt-

age to a regulated 6V with a operational current limit of 3A and maximum

of 5A. This corresponds to the maximum voltage of the servos, thus generat-

ing the maximum possible torque allowed, only limited by the current draw

from the BEC. The Arduino board was powered from the 6V servo power

supply.

II.4.1.3 Assembly

Figure II.4.4 shows key steps during the assembly of the robot. First, the

templates shown in Figure II.4.2 were traced onto the foam cored composite

and cut out. They can then be glued together in sequence, incorporating the

servos at the correct moment. Each limb was mounted off servo horns and

arranged so that the servos effected motion in line with the feet coordinate

systems shown in Figure II.3.4.

The robot was initially suspended under a gantry for testing. This en-

abled the calibration of leg angles from the installed servo zero positions.

2www.arduino.cc

139

Servo Wire

Battery Power

(7.2V DC)

Regulated Power

(5V DC)

KEY

Serial RX/TX

USB to Computer

1 4

2 3

BEC

Ni-cd SC 1800mAh 7.2V

Figure II.4.3: Schematic of Quadruped Robot

140

Figure II.4.4: Assembly Steps

141

The measured offsets were built into the control software embedded on the

Arduino board. Once the designed gait had been satisfactorily tested, the

robot could then be lowered to the ground and evaluated under gravity. A

platform was created for mounting a 1.5” spherical tracking reflector on top

of the robot above its centroid. This enabled accurate tracking of its move-

ments using a Leica LTD 500 laser tracker, the results of which can be seen

in Chapter II.3 for the designed gait.

II.4.2 Modelling Wheeled Robots

The recent research focus on legged robots not withstanding, the vast ma-

jority of mobile robots for research, industry or the home are wheeled. They

tend to only have two wheels, with four (or more) wheeled robots being

more generally applicable for outdoors or difficult terrains. There are a

number of reasons for this, but mostly this is due to simplicity of design

and control. Having two wheels (and some other sliding point or non-driven

pivoting wheel) allows a robot to have a zero radius turning circle with pre-

cise (assuming appropriate wheel encoders), accurate and easily predicable

motion.

As mentioned, this approach is only usually suitable for (relatively)

smooth surfaces which usually limits their applications to indoor environ-

ments. Exceptions to this certainly exist, the counterweight balanced Seg-

way personal transport for one, but most robots used in general research

have two wheels. There exists a phylogeny of research robots of this form,

multiple generations of robots developed by K-Team of EPFL in Switzerland,

and others.

Figure II.4.5 presents photographs of two of the wheeled robots within

the School of Engineering and Computing Sciences, namely the Khepera III

robot by K-Team of EPFL, Switzerland and the DFRobot HCR Platform.

They are very similar in terms of their form factor, varying only in terms

142

(a) K-Team Khepera III (b) DFRobot HCR Platform

Figure II.4.5: Real Wheeled Robots

of scale and the sophistication of on-board systems, with: two DC motors,

wheel encoders, a battery, on-board control system and a range of sensors

distributed around the robot.

The requirements to model the motion and environmental interactions

of these robots in simulation has been previously discussed. We could em-

ploy a real-time evolution in hardware scheme, but the constraints to any

investigations applied render the discovery of non-trivial solutions unlikely.

To this end then, we must be able to accurately simulate their behaviour in

a physically plausible manner, but with the minimum computational cost

possible to reduce the duration of extended evolutionary runs.

II.4.2.1 Geometrical Motion of a Two-wheeled Robot

The modelling of two wheeled robots typically presents a significantly de-

creased challenge as we can often represent them purely in two dimensions,

ignoring three dimensional issues, thus simplifying the computational re-

quirements of any simulation. By assuming the wheels of the robot do not

slip (except in some instances where we may model collision with walls by

slippage) and ignoring inertial effects we can simply consider the path de-

scribed by the robot as a geometrical relationship determined by the relative

143

Figure II.4.6: Two Wheeled Differential Drive

driving motions of each wheel.

Jakobi [59, 60] adopted a lookup table approach for a minimal simulation

of two-wheeled robots. However, this was limited to the corridor environ-

ment for the task under investigation, and not generally applicable to general

motion in an arbitrary environment.

Figure II.4.6 shows a simple geometrical approach to two wheeled robot

motion. Here, the trajectory between time steps is approximated as a

straight line segment, with the angular deviation in the robot’s heading

derived from the differential drive of the left and right hand motors.

The Khephera robot takes a motor set speed in the range of -43,000

to 43,000 (numerical values which relate to the internal encoders), which

can be converted to millimetres per second by dividing by 144.010. In this

way, neural activations (0 to 1) can be directly converted into the distance

144

travelled by each wheel contact point during a time step.

Following the conventions shown in Figure II.4.6 the following identities

can be easily derived:

xt+1 = xt +
l + r

2
dt sinα (II.4.1)

yt+1 = yt +
l + r

2
dt cosα (II.4.2)

dα = atan

(

dt(l − r)

wr

)

(II.4.3)

These expressions are extremely simple and carry a very low computational

cost, especially if pre-calculated lookup tables are employed to approximate

trigonometric functions, and do not present a noticeable increase in compu-

tational complexity over the work of Jakobi [59, 60].

Typically we seek to penalise robots who contact the walls in simulation.

Often we may wish to allow them to continue driving in contact with a wall,

whilst suffering a cumulative fitness penalty. This can be simply modelled by

allowing motion away from or parallel to the wall and reducing the movement

per time step by a factor to represent the friction of the walls on the robot.

This approach ignores the turning moment that the contact will apply, but

as this would necessitate the modelling of the frictional contact and slippage

of the wheels in a much more thorough manner it may be disadvantageous

to do so.

II.4.2.2 Simulation of Distance Sensors

Figure II.4.7 shows a two dimensional representation of a two-wheeled robot,

with a position p = [px, py]
T and heading α. We can extend a ray from the

location of a sensor d at an angle αs to that of the robot heading. This ray

angle intersects the longitudinal axis of the robot (αs = 0) at point a which

is offset from p by so along the longitudinal axis. The sensor location is a

known distance sd from a along the ray which allows for irregular shaped

robots and sensor arrays. We then assume that the ray intersects a wall

145

Figure II.4.7: Sensor Distance Geometry

146

in the environment, defined by its end nodes b and c, at e. The sensor

distance which we wish to find is then given by sr, and can be found using

the expressions presented below.

αr = α+ αs (II.4.4)

ax = px − so sinα (II.4.5)

ay = py − so cosα (II.4.6)

dx = ax + sd sinα (II.4.7)

dy = ay + sd sinα (II.4.8)

f =
dx − ax
dy − ay

(II.4.9)

If (cx − bx) − f(cy − by) 6= 0, which checks that the lines do intersect at

some point (i.e. not parallel):

h =
(ax − bx) + f(by − ay)

(cx − bx)− f(cy − by)
(II.4.10)

If h > 0 and h < 1, which tests for whether the point intersection lies

between the end points of the wall:

v =
(by − ay) + h(cy − by)

dy − ay
(II.4.11)

If v > 0, which checks if the intersection point is in the positive direction

d− a and not in the reverse direction a− d:

e = b+ h(c− b) (II.4.12)

sr = |e− d| (II.4.13)

sr =
√

(ex − dx)2 + (ey − dy)2 (II.4.14)

The expressions derived above will give a distance directly. However, we

must also consider a reverse mapping from the true distance to a modelled

sensor output for inclusion within the simulation. The robots shown in

Figure II.4.5 are equipped with IR proximity sensors and Ultrasonic dis-

tance sensors for environmental feedback. We must therefore characterise

147

Figure II.4.8: IR Sensor Calibration

the sensors on the real robot to ensure the accuracy of the simulation and

ensuring the applicability of evolved controllers. A Khephera III robot was

programmed to record a large number of sensor samples at a range of dis-

tances to determine the response curve and the uncertainty associated across

the range of the sensor (around 80mm). These curves are shown in Figure

II.4.8 for three different materials commonly encountered in research test

environments. Using lookup tables with simple linear interpolation we can

easily model this non-linear mapping, with measured levels of random noise

added for realism3 [60, 59].

3In fact, Jakobi demonstrated how CTRNNs use the noise in the system to develop

better solutions.

148

II.4.3 Common Code for Simulation and Verification

As shall be discussed in Chapters II.5 and II.6, the evolutionary frame-

work used in the investigations presented throughout this Thesis is coded

in the Python programming language.4 This may seem a self-contradictory

approach for implementing simulations which by their very nature require

many runs and typically are focussed on maximum run speed and minimal

computational complexity. Putting this aside for a moment, there are some

advantages in using Python. The language is very high level, interpretive,

platform independent and open source with a vast array of community main-

tained highly efficient modules for almost anything. This enables us to run

the same code used in simulation to control robots in real time on embedded

hardware or over wireless or serial links. Not having to compile code and

access to powerful plotting libraries allows for accelerated development and

prototyping of programs. However, this comes at the expense of slower run

time performance compared to compiled languages due to the Just-In-Time

(JIT) compiler.

This would seem to render Python unsuitable for ER and related dis-

ciplines, but it is possible to accelerate Python code so that it approaches

the speed of native C. The PyPy5 is an implementation of Python 2.7.1

in Python itself. It uses a restricted subset of the language (RPy) with a

limited support for Python modules. With these compromises, PyPy can

translate and compile Python into a variety of target platform independent

languages, e.g. C and Java. This is not only true for the translated Python

JIT complier, but also for specific standalone programs. The degree to

which any program can be accelerated is highly variable, but the geometric

average of all benchmarks run by the project is 5.7x faster than CPython.6

4http://python.org.
5http://pypy.org.
6http://speed.pypy.org - Accessed on 30th November 2012.

149

Master

Code

make

(m4)

Python

Code

PyPy

Code
PyPy

PyPy

Executable

Figure II.4.9: Common Code Pipeline Schematic

This capability allows a combined approach between the ease of development,

visualisation and analysis of a high level interpretive language with the accel-

erated performance required for long, computationally intensive simulation

runs, shown schematically in Figure II.4.9. The key to this approach is the

maintenance of a Master code library which is independent of the target,

be it Python or PyPy. The restrictions placed on PyPy require the Master

code to include implementation specific code snippets which are selectively

removed when Make (using m4, which is used to remove all lines in a file

which are marked with a specific tag) is run to generate the target Python

and PyPy code. This means that simulation code cannot have embedded

plotting, but rather prints results to a file for later analysis in traditional

manner. As long as the analysis script does not contain any removal tags

it will remain unchanged during the translation and can be run in parallel

with the simulation, for example analysing the results of each generation as

it is completed as well as generating summary plots. The makefile used for

this process is shown in Listing II.4.1 for completeness.

The makefile identifies all Python files under the Master folder, up to

two levels deep, as sources. It then copies all these files to target directories

for the Python and PyPy specific translations, using the m4 rules shown

in Listings II.4.2 and II.4.3 to remove incompatible tagged code lines after

which each file is then made executable. After which, the PyPy code can

be compiled using the PyPy translation script which produces the final ex-

ecutable program. Once simulation results have been collected, it is then

150

Listing II.4.1: Makefile Code

SOURCES = $ (wi ldcard Master /∗ . py) $ (wi ldcard Master /∗/∗ . py)

$ (wi ldcard Master /∗/∗/∗ . py)

PYPYTARGETS = $ (subst Master , PyPy , $ (SOURCES))

PYTHONTARGETS = $ (subst Master , Python , $ (SOURCES))

a l l : copy $ (PYTHONTARGETS) $ (PYPYTARGETS)

copy :

@mkdir −p PyPy/

@mkdir −p Python/

@sudo cp −r Master /∗ PyPy/

@sudo cp −r Master /∗ Python/

@sudo f i nd . −type d −exec chmod 775 {} \ ;

@sudo f i nd . −type f −exec chmod 664 {} \ ;

@sudo f i nd . −type d −exec chown Username : Username {} \ ;

@sudo f i nd . −type f −exec chown Username : Username {} \ ;

$ (PYTHONTARGETS) : copy

cat m4 python $@ > /tmp/out && sudo mv /tmp/out $@

m4 −P $@ > /tmp/ trans && sudo mv /tmp/ trans $@

$ (PYPYTARGETS) : copy

cat m4 pypy $@ > /tmp/out && sudo mv /tmp/out $@

m4 −P $@ > /tmp/ trans && sudo mv /tmp/ trans $@

Listing II.4.2: m4 Python Rules

m4 changequote (¬ ,¬)m4 dnl

m4 def ine (Python , $1)m4 dnl

m4 def ine (PyPy ,¬m4 dnl¬)m4 dnl

151

Listing II.4.3: m4 PyPy Rules

m4 changequote (¬ ,¬)m4 dnl

m4 def ine (PyPy , $1)m4 dnl

m4 def ine (Python ,¬m4 dnl¬)m4 dnl

Python PyPy

Test Code

Compiled

Program

Results Data

Network Data

Python PyPy

Visualisation

Code

Python PyPy

Analysis

Code

Evolutionary

Framework

Python PyPy Python PyPy

Plotting

Libraries

Figure II.4.10: A Common Code Approach

152

simple to import evolved networks into Python code, referencing the core

modules of the evolutionary framework, to visualise, interrogate and exper-

iment with results using the exact same code as drove the simulation itself.

This is one of the key advantages of this approach, being that we can have

a great deal of confidence that the behaviour of simulations or network eval-

uations will be identical between Python and PyPy versions of the software.

Figure II.4.10 shows a general example of how this common code approach

is used in the investigations presented in this Thesis.

II.4.4 Real Time Control Architecture

The overarching philosophy utilised throughout employs open-source, plat-

form independent approaches, showcased in Section II.4.3. In line with this,

we wish to control a range of robots using the same core modules for network

evaluation as used throughout the simulation and analysis of evolved solu-

tions. A common communications protocol is therefore required to allow a

common control approach across multiple platforms (with different sensors,

motors, control systems, etc.). Figure II.4.11 shows a schematic of the real

time control architecture employed throughout the work presented in this

Thesis. Here, a host PC uses the Python version of the evolutionary frame-

work (see Section II.4.3) to evaluate the evolved network solutions, based on

real time inputs. A call/response serial communications protocol allows the

control program to control the robots and request any sensor data available

for input into the network under evaluation. This can be achieved using

both wired and wireless systems depending on the particular use case for

the robot, but crucially the messages transmitted are to be independent of

the transport medium. This additional layer in the control of the robot, as

compared to an entirely embedded control system, includes a lag term which

could potentially affect the behaviour of the system. However, this is small

and can easily be modelled for inclusion into the simulations if required.

153

Arduino Based

HCR PlatformKhepera III

Embedded Linux

Quadruped

Arduino Based

Communications I/O - Serial Parsing Module

Main Program Loop

Set Motors Module Set Motors Module

Get Sensors Module Get Sensors Module Set Servos Module

Host PC

Linux / Mac / Windows

Evolutionary

Framework

Control Network

Evaluation

Communications I/O

Serial Parsing Module

Wired / Wireless - USB to Serial Link / Bluetooth Serial Link

Figure II.4.11: Real Time Control Architecture

154

The heterogeneous nature of the robots means that there can only be so

much common code between the slave programs embedded on each. As the

control system may be very different, varying from embedded Linux running

C, Python or any other suitable language, to Arduino systems using their

own language based on Processing.

II.4.5 Conclusions

In this Chapter, we have discussed the importance of closing the loop be-

tween evolving controllers in simulation and the evaluation of said controllers

on real robots. By allowing our knowledge of the real robot to inform the

design of the simulation we render the development of controllers capable of

working in the real world, which after all is the focus of ER.

The design, manufacture and assembly of a quadruped robot for the sole

purpose of verifying the simulation developed in Chapter II.3 is presented.

The robot used low cost servos, an open source Arduino controller and simple

foam cored construction to minimise costs and the barrier for a third party

to recreate all or part of the related work presented.

Along with the quadruped robot used in Chapter II.3, the examples pre-

sented in Chapters II.5 and III.1 use a range of two wheeled robots. Simple

two-dimensional models for simulating robot motion and sensor readings

are presented alongside real data used to calibrate the non-linear IR sensor

mapping.

It is important to have confidence in the equivalence of behaviour for code

running across different platforms and devices. A common code approach

has been developed where a master copy of the evolutionary framework and

test code is compiled into pure CPython and PyPy accelerated executa-

bles for extended runs. This harnesses the power and rapid prototyping of

Python with speed of execution comparable with a non-interpretative pro-

gramming language, giving the researcher the best of both worlds. In this

155

way, the same code is used in the development, analysis and verification of

evolved solutions.

This approach is carried right through to the real time control of robots

using evolved networks using a host / slave approach. The host PC runs

the CPython framework and governs the behaviour of a range of robots us-

ing a common two-way platform and medium independent communications

protocol.

In this way, we can guarantee the compatibility and equivalence of net-

work behaviour through development, analysis and real time evaluation of

robots. This fundamentally sound basis not only serves to support the va-

lidity of later results presented but also to accelerate the development and

testing of examples in practice.

156

Chapter II.5

Evolving Adaptive Behaviour

with Time Delays

For the neuroevolution of robotic controllers capable of learning and adap-

tive behaviour it has been argued that we must simply allow artificial evo-

lution to exploit dynamic neural behaviour over a range of time scales.

CTRNNs go a long way towards increasing the complexity of network dy-

namics sufficiently to enable the emergence of this type of desired behaviour

as discussed in Chapter II.1. In biology, however, the time for a neural sig-

nal to propagate through the brain or delayed regulatory effects in GRNs

is thought to be vital in contributing to the dynamics of the system. In

this Chapter the extended neuron model developed in Chapter II.2 is used

to simply model these delays and applied for the first time, to the author’s

knowledge, to a robotic learning task. The evolved networks are then anal-

ysed to prove the necessity of synaptic time delays for the correct behaviour

of these systems. By demonstrating the practical impact of the behaviour

differences discovered in Chapter II.2 in the context of an adaptive behaviour

ER task, this Chapter goes some way to answering the research questions

introduced in Part I and supporting the experimentation of Part III; indeed

the T-task task used here is expanded upon in Section III.2.1

157

II.5.1 Evolutionary Architecture

To demonstrate the application of the extended neuron model developed in

Chapter II.2 to adaptive behaviour, it is necessary to select an evolutionary

architecture in which to develop examples. Stanley developed a novel open

ended evolutionary framework where minimal genotypes evolve through com-

plexification in a method called NEAT [104]. It has been demonstrated to

be more efficient than traditional methods and has great potential for the

discovery of complex solutions whilst spending the majority of the evolu-

tionary process in low-dimensional search, building the foundations of good

solutions. This process of complexification is biologically plausible, for there

is good evidence that throughout the evolution of the brain small numbers

of neurons were repeatedly added to the existing structures [76].

A Python implementation of the NEAT Methodology of Stanley and

Miikkulainen, written by Brian Greer,1 was modified for the purposes of

demonstrating the application of the CDRNN model. The default imple-

mentation of the NEAT method in pyNEAT is to use a simple discrete

neuron model of the form yi = σ(
∑N

i=1wijyj), where σ = 1/(1 + exp−x).

This was modified to incorporate the neuron model introduced earlier. The

neuronal time constants (Ti) are initialised with a common value and with a

given probability perturbed during mutation operations, as are the weights

of synaptic connections.

This Python implementation allows for a powerful degree of interactivity

in development and greatly accelerates prototyping of simulations, but its

interpretative nature renders it unsuitable for direct application to highly

computationally intensive evolutionary runs. PyPy2 was used to translate

and compile finished simulations into C executables which approach the

1pyNEAT Version 0.0.2, http://code.google.com/p/pyneat/, released under GNU Gen-

eral Public License, version 2.
2PyPy, http://pypy.org/.

158

execution speed of native C code, thus rendering the whole exercise feasible.

In this way long runs which would take weeks execute in days.

II.5.2 T-Junction Task

The example chosen to demonstrate this system is that of a T-Junction test,

a task well studied in ER [59]. It is this fact which makes it so suitable

as it establishes the capability of the system under study, before moving

on to novel, and more challenging, problems. It is simple, but requires be-

haviour beyond that of the simply reactive and necessitates a good solution

to develop a behavioural switch by associating a light activation with a di-

rectional choice at a T-Junction. A cartoon of the task is shown in Figure

II.5.1a.

The robot chosen for use in these simulations was modelled on the Khep-

era III research robot by K-Team of Switzerland, as these robots have been

used a great deal in ER literature and were used for this task by Jakobi

[59]. The real robots are available for experimentation and generation of ac-

curate sensorimotor simulations for the evolutionary run, and the results of

the computer simulations may then be tested in the real world (see Chapter

II.4). The Khepera robot has two wheels and a variety of IR and Ultrasound

(US) sensors around its quasi-cylindrical form. A top view schematic of the

robot, illustrating a minimal genotype for the NEAT methodology, is shown

in Figure II.5.1b.

The robot is placed at the end of a corridor with a randomised starting

angle (−π
6 ≤ α ≤ −π

6) and x-offset from the corridor centreline (−50mm ≤
xoffset ≤ 50mm). The T-junction geometry may be seen in Figure II.5.4b

and consisted of a straight corridor centreline of length 1000mm intersecting

another corridor centreline of length 1000mm perpendicularly at its centre-

point. The walls lie 125mm either side of these centrelines forming a corridor

250mm across. The sensor inputs are calculated at each time step by tracing

159

(a) Cartoon of T-Junction Task

PROX IR 7

PROX IR 6

PROX IR 5PROX IR 4

PROX IR 3

PROX IR 2

NOT USED IR 9

�

����

AMB IR 1 AMB IR 8

2

3

4

5 6

7

8

9

10 11

(b) Khepera III Top View

Figure II.5.1: T-Junction Task & Network

160

a ray cast from each sensor to the closest intersecting wall, looking up the

appropriate sensor response from measured physical data, with the addition

of a physically plausible level of random noise (±2.5%). These values were

scaled between zero and one, where one would correspond to the maximum

possible sensor reading, and input to the network. The outputs of each

node were evaluated using an Euler numerical integration of the governing

differential equations. The motor outputs (ml,mr) were calculated from the

two output neurons (o1, o2) using the following equations:

ml = o1(1− o2) (II.5.1)

mr = o1o2 (II.5.2)

As neuron outputs have a possible range of zero to one, the first motor

output governs the speed and the second turns the robot. The calculated

motor demands were scaled to between zero and the maximum motor speed.

Once the robot has successfully navigated along the corridor to a specific

point a light is illuminated on one side of the robot. This is simulated by

exciting the appropriate ambient light IR sensor with a measured high or

low value. The robot then approaches a T-junction at which it should turn

in the direction indicated by the light. If it reaches a goal area at the end

of the corridor, it is rewarded with a significant boost to its fitness. The

overall fitness function used in these experiments is dependent upon the

robots horizontal and vertical positions (in mm), the direction the robot

turns, and whether it reaches the goal area:

f =

m× abs(x) + y + r : if turned correctly

−abs(x) + y + r : otherwise
(II.5.3)

Where r is calculated as follows should the robot reach the goal area. If it

161

does not, the reward is zero:

r = rmax ∗
(T − t)

T
(II.5.4)

rmax =

5000.0 p = 0

2500.0 p 6= 0
(II.5.5)

The robot is permitted to contact the walls of the environment, but a

penalty term p = 5 is subtracted from its total fitness for each timestep that

it does so. Therefore a p value of zero indicates a clear run and corresponds

to a larger fitness bonus on reaching the goal. The goal area, shown filled

in Figure II.5.4b, prevented the end of the corridor being reached. Thus,

the maximum fitness attainable by a robot for each trial was 8500.0 and the

lowest was limited to 0.0. the fitness function has been deliberately designed

so that it is impossible to achieve a perfect score given a finite movement

speed and to show a clear decrease in fitness should the robot take longer to

reach the goal, or if it touches the walls of the environment. In this way there

was an evolutionary pressure to develop more efficacious controllers whilst

ensuring that initial generations could still perform sufficiently to avoid the

Bootstrap Problem.

The evolutionary run was initiated with a minimal genotype of nine

input nodes (one bias node with a constant value of 1.0 and eight IR sensors

as shown in Figure II.5.1b) and two output nodes which control the robot

motors as previously described. The seeded default network parameters (τi

= 1.0, wij = 0.0,θ = 0.0, and Tij = 1.0) were varied randomly to generate

an initial population of unique configurations. Each individual evaluation

consisted of four trials: two of each possible configurations of lights and

goal zones. Each trial started with unique randomly generated positions

and headings for the robot to instil generality of behaviour in the evolved

solutions. The evolutionary simulation ran for 400 generations, the fitness

history of which is shown in Figure II.5.2.

A common issue across ER is the trade-off between the detail of an

162

Figure II.5.2: Normalised fitness history; 1000 individuals, 400 generations.

experiment, be it the degree of realism, number of trials, size of popula-

tion, number of generations and many more parameters besides, and the

computational cost to enable feasible experimentation. Typically, this bal-

ance is achieved through the experience of the designer and trial and error.

Sensitivity analysis can be complex and computationally onerous given the

number of parameters which intimately affect the evolutionary process. The

four trials per individual evaluation aimed to minimise the computational

cost (doubling the trials doubles the execution time) and yet still expose the

evolved controllers to variability in the environment to establish generality in

the manner of Jakobi [59]. As demonstrated in Section II.5.3, the solutions

evolved with four trials per evaluation were found to perform reliably when

tested with much higher levels of repetition (100), validating this aspect of

the experimental design.

The population went through several stages of capability before arriving

at an optimal solution. Initially, the robots would successfully navigate to

163

one goal whilst sliding along the wall most of the time, resulting in a low

fitness (≈ generation 25). By generation 50 the individuals were using the

light stimulus to turn appropriately, but unreliably and with a considerable

number of collisions. Through successive generations the behaviour was

tuned to maintain a constant distance from the walls, turn according to the

stimulus, and reach the correct goal the majority of the times. However

it was only in the final generations of the run that an optimal behaviour

evolved capable of navigating the corridor at maximum speed and reaching

the goals, without any wall collisions.

The NEAT parameters ensured an exploratory search, thus a proportion

of the individuals in each generation achieved zero fitness by repeated wall

collisions. This lead to a relatively low, but stable, average population

fitness throughout the run. The best evolved network of the final generation

is shown in Figure II.5.3, with trajectories for 100 runs of 4 trials shown in

Figure II.5.4b. The input nodes are arranged at the bottom of the figure and

the four output nodes are arranged at the top. Some additional recurrent

synapses and a hidden node have been added through the complexification

process inherent in the NEAT method.

In Figure II.5.3 the time constant of each neuron is proportional to the

size of the network node (a small node indicates a small, fast nodal time

constant), and the weight of each synaptic connection is indicated by the

thickness of the connection (overlapping synapses are shown separated and

curved for clarity). A red line indicates a negative (inhibitory) connection

and a black line shows a positive (excitatory) connection. The gradient of

each connection (dark to light) indicates the direction of signal propagation

and each dot indicates one ‘store’ in the synapse queue; thus a synapse with

five stores would take 5 time steps for the signal to propagate through it.

The full genome for the individual is too long to display here (12 neurons

and 35 synapses), but the statistical characteristics of the synaptic time

164

µ σ Max Min

Synaptic Time Delays (τ) 1.779 2.293 6.432 0.200

Node Time Constants (T) 0.466 0.444 1.891 0.030

Table II.5.1: Genome Statistical Characteristics

delays and node time constants are given in Table II.5.1. The range of

values seen attests to the high degree of variation present in the parameters

characterising the evolved ‘fit’ solution.

For both parameters the minimum possible value was τmin = 0.05s and

Tmin = 0.2s which were enforced as the smallest possible values for the

appropriate modelling of the time delay and dynamic response given the

integration time step.

The evolutionary process has been shown to successfully solve the task

and, whilst it was possible for the genetic operators to almost zero the

temporal parameters, they did not and the best solutions contained consid-

erable delays. The important question however is whether the evolutionary

architecture achieved this despite the delays, or were they useful in the devel-

opment of fit solutions. Furthermore what sensitivity is there to the evolved

set of delay values for fit behaviours to be maintained?

II.5.3 Sensitivity Analysis

In order to evaluate the degree to which the system has evolved a depen-

dence on the specific configuration of time delays, it is possible investigate

the effect of changing them on behaviour and fitness. First, the time delay

associated with each synapse in the network was scaled by a range of fac-

tors and the network performance evaluated. Each run consisting of four

trials was repeated one hundred times with random starting position and

sensor noise to smooth out stochastic effects. This degree of repetition was

165

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x / [1]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y
/
[1
]

Figure II.5.3: Evolved Network

166

chosen as a result of repeated runs to establish a practicable and reliable

number. This is to a degree arbitrary and is not determined as a result of

formal sensitivity analysis. However, this represents a practical computa-

tional limit and as can be seen in Figure II.5.4 the range of possible starting

headings is well explored. Figure II.5.4a and II.5.4b demonstrate how even

with this variability in starting condition reliable results are achieved and

stochastic effects are eliminated. The random nature of the results shown

in Figure II.5.4c and Figure II.5.4d are solely the result of scaling the time

delays. That said, further work may benefit from more formal consideration

of sensitivity of these (and other) results to the number of repetitions.

The effect of scaling the synaptic delays on the resulting trajectories is

shown in Figure II.5.4. A scale value of zero equates to a CTRNN version of

the network; all other parameters of the network other than the time delays

are kept constant throughout all of the trials. The fitness values shown are

for one trial and consequently have a maximum value of 34,000 (four runs

of 8500).

As the time delays are increased the behaviour of the robots quickly

become somewhat erratic. Turns are over-accentuated leading to a decreased

fitness. The left turn behaviour also begins to fail in a noticeable proportion

of the results, with the robot reflecting off the environment boundaries and

ending up in the incorrect goal area, whilst the right hand turn remains

unaffected (Figure II.5.4c). When the delay scaling gets larger complex

rebounding trajectories are present for all trials and a large number of runs

fail to reach any goal and reach the end of the evaluation time fairly evenly

distributed around the environment (Figure II.5.4d). Extreme values of

scaling, six times onwards, result in very few trials even reaching the T-

junction and a total breakdown in any form of desirable behaviour.

Like with the example given in Figure II.2.1, the increased delays lead

to larger transitory responses which cause a significant alteration to the tra-

167

−800 −600 −400 −200 0 200 400 600 800

x / [mm]

−200

0

200

400

600

800

1000

1200
y
/
[m

m
]

(a) None

−800 −600 −400 −200 0 200 400 600 800

x / [mm]

−200

0

200

400

600

800

1000

1200

y
/
[m

m
]

(b) Evolved delays

Figure II.5.4: The effect of scaling synapse time delays on trajectories

168

−800 −600 −400 −200 0 200 400 600 800

x / [mm]

−200

0

200

400

600

800

1000

1200

y
/
[m

m
]

(c) Twice

−800 −600 −400 −200 0 200 400 600 800

x / [mm]

−200

0

200

400

600

800

1000

1200

y
/
[m

m
]

(d) Four times

Figure II.5.4: The effect of scaling synapse time delays on trajectories (con-

tinued)

169

jectory. Extended delays in information propagation through the network -

above those evolved for optimal behaviour that is - result in the robot being

unable to effect obstacle avoidance and collide into a wall. The motor out-

puts then are typically observed to overreact, leading to a cycle of collisions

and reflections with very poor fitness. What is more interesting is when the

delays are removed and a decrease in fitness is observed. As we might intu-

itively anticipate, the left hand turn is made too early, causing collision with

the corner as in Figure II.5.4a, but equally a collision with the far wall of

the environment typically follows. The effect on the behaviour is not simply

to accelerate responses, otherwise we should expect the robot to successfully

avoid the far wall, but instead shows that the effect of time delays on even

incredibly simple systems is anything but trivial and presents a fascinating

opportunity for future analysis.

Figure II.5.5a presents box plots of the fitness spread for a range of scales,

with a line plot through the median fitness values for the 100 runs of four

trials. By examining the limits of the boxes, we can attain a feeling for the

variability of the data. Network performance remains perfect for the evolved

values, but drops off either side of the unity scale factor. Whilst the fitness

function is non-smooth due to the reward and contact penalty mechanism,

the fall off is fairly smooth as robots start to contact the walls more and

more until they are incapable of achieving the goal areas. It is only past a

scale factor of six that no trial reaches the correct goal zone.

It is also instructive to perturb synaptic delays in a non-uniform man-

ner. Figure II.5.5b shows the results of a similar trial to that previously

discussed, but rather than being scaled, the value of each synaptic time

delay was shifted by a uniformly distributed random number. If Γ is the

perturbation factor, then the uniformly random perturbation Tp around the

evolved value is in the range −Γ ≤ Tp ≤ Γ. The maximum fitness is un-

surprisingly obtained when the synaptic time delays are left unaltered. As

170

the magnitude of the deviations from the evolved set increase, the fitness

rapidly falls with a significant proportion of individuals incapable of reach-

ing the goal area. On the whole, the effect on the behaviour is much more

destructive than the scaling analysis with even very small perturbations re-

sulting in chaotic collisions and individuals not even reaching the T-junction

(qualitatively similar to Figure II.5.4c). Whilst the median of the popula-

tion has a fairly linear gradient, the box plots show how for Γ ≥ 0.4 the

majority of individuals fail to achieve the maximum fitness. At this point

the interquartile range varies across almost the whole range of possible fit-

ness values, demonstrating the high degree of variability present. The ability

for some individuals to maintain maximum fitness despite extreme values of

perturbation is likely due to the random nature of the changes which may

be small or otherwise affect an unimportant aspect of the network dynamics

and fail to reduce the fitness of the individual.

The dependence on, and robustness to changes in, the synaptic delays

in achieving a good fitness is similar to that of node time constants (τi) and

the connection weights (wij) shown in Figure II.5.5d and II.5.5c respectively.

The weights are slightly more sensitive to changes, which is hardly surprising,

but this demonstrates that synaptic time delays are equally as necessary for

the correct behaviour of the evolved system as the existing parameters of the

CTRNN model. Further to this, we may also consider how adding delays to

a CTRNN evolved for the same task would impact its behaviour. A CTRNN

network was evolved within an identical experimental set up and achieved a

fairly optimal fitness. Whilst there is no existing configuration of delays to

modify, Figure II.5.6 shows the effect of randomly assigning delay values to

synapses in the network from a normal distribution. Here the x-axis is both

the mean and the standard deviation squared which defines the probability

distribution from which the values are taken. Even for very small added

delays of around 0.1 (only two time steps of the simulation) the fitness fall

171

0 2 4 6 8 10
Synaptic τ Scaling Factor

−5000

0

5000

10000

15000

20000

25000

30000

35000
F
it
n
es
s

(a) Uniformly scaling synapse time delays

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude of Synaptic τ Perturbations

−5000

0

5000

10000

15000

20000

25000

30000

35000

F
it
n
es
s

(b) Random perturbations of synapse time delays

Figure II.5.5: Sensitivity to evolved parameters

172

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude of Synaptic Weights Perturbations

−5000

0

5000

10000

15000

20000

25000

30000

35000
F
it
n
es
s

(c) Random perturbations of synapse weights

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude of Node τ Perturbations

−5000

0

5000

10000

15000

20000

25000

30000

35000

F
it
n
es
s

(d) Random perturbations of node time constant

Figure II.5.5: Sensitivity to evolved parameters (continued)

173

0.0 0.5 1.0 1.5 2.0
µ, σ2 of φ(τ)

−5000

0

5000

10000

15000

20000

25000

30000

35000
F
it
n
es
s

Figure II.5.6: The effect of adding synapse delays to a CTRNN

off is severe. The tolerance of the CTRNN network chosen to the inclusion

of delays is very small, and has a much greater effect on the behaviour than

the removal of delays had on the evolved CDRNN.

Whilst the analysis presented here is for a single specimen of both

CDRNN and CTRNN networks evolved for the same task, it gives an ap-

preciation for the sensitivity of these networks to changes in their evolved

parameters. We cannot claim that these results are generally applicable,

since they are particular to the task chosen and the networks analysed, but

they demonstrate the reliance of a CDRNN on synapse delays for correct

behaviour and the intolerance of a system evolved without delays to their

inclusion. Even where a delayed network cannot be shown to present an

advantage in attaining fitness, there may be situations in extreme environ-

ments where the tolerance to unintended propagation delays alone would

warrant their use.

174

II.5.4 Conclusions

Problems in ER where learning and adaptive behaviour are sought often

defy solution by discrete neural networks, but require the continuous dy-

namics expressed over a range of time scales by models such as the much

studied CTRNN. Here, an extension to the RNN model, the CDRNN, has

been applied for first time to a problem in robotic control. The addition

of synaptic time delays is hypothesised to facilitate and potentially expand

the capability of evolved continuous neural systems to develop adaptive and

learning behaviour requiring some degree of memory. The propagation delay

along neural pathways, whilst modelled in tremendous detail by computa-

tional neuroscientists, had yet to be used in ER. These additional temporal

dynamics are thought to be important in biology and their inclusion may

benefit the search for evolved intelligence. The impact of these delays upon

the dynamic behaviour of a randomly generated network demonstrated their

potential alteration of the dynamics. As it has been argued that sufficiently

rich dynamics over a wide range of timescales is crucial to develop learning

behaviour [45], the inclusion of these additional network dynamics presents,

at the very least, an interesting prospect.

To illustrate the application of CDRNNs to robotics a controller was

evolved for a simulated Khepera III robot to solve the T-junction task fre-

quently studied within this domain. This task requires the integration of

reactive obstacle avoidance with associative memory such that the robot may

make a turn in the correct direction indicated by a light on approach to the

T-junction. The successful evolution of this behaviour proved the capability

of such networks and the resultant controller was analysed to determine the

role of the synaptic delays in the governing dynamics. The evolved solu-

tions reported are favourably comparable with the work of Jakobi [59], on

which this experiment was modelled. Whilst the fitness functions and scale

of the domain were different and thus direct comparison and benchmarking

175

is impossible, qualitatively similar behaviour was observed to known near

optimal solutions. Sensitivity analysis of the evolved parameters demon-

strated the reliance of the evolved systems on the presence of the delays at

their specific values. A large number of trials over a wide range of pertur-

bations to the network parameters show how the robustness with respect

to changes in the evolved time delays was similar to that of the node time

constants and connection weights. The importance of the time delays in the

evolved solutions validates their presence and leads us to seek problems in

ER unsolvable by any other means, and carry out such trials on real robots.

These may shed new light on the mechanics and emergence of learning and

adaptive behaviour in both natural and artificial systems.

176

Chapter II.6

Methods for Determining

Time Delays

The preceding material developed in this Part of the Thesis has included the

effect of introducing time delays into dynamic ANN and the evolution of such

systems to solve a well studied example in adaptive behaviour, presented in

Chapters II.2 and II.5 respectively. These experiments simply encoded the

connection delays directly as additional defining parameters of the network,

as discussed in Section II.6.1 below. However, one of the key research ques-

tions presented in Part I was how might we best encode connection delays

beyond this simple approach. There are two sides to this question, namely

the efficiency and efficacy of the representation. By adopting certain mech-

anisms it may be possible to minimise the increase in dimensionality of the

system and so render it more feasibly solved. Note however that this is a

complex issue as the characteristics of high dimensional solution spaces can

be very difficult to establish, but broadly speaking a higher dimensional sys-

tem is harder to search over and takes more computational effort. Equally,

by intelligently designing the genotype to phenotype mapping of networks

it may be possible to constrain feasible values to regions of high fitness in

the solution space and achieve potentially more optimal solutions. In this

177

Chapter a range of methods are proposed to relate the connection delays to a

spatial representation of the network which impacts both encoding efficiency

and the range of possible delay values in a variety of ways. In accordance

with the research questions of Part I these methods are then applied in Part

III to a number of commonly studied ER tasks. This is to evaluate their

success at efficiently and effectively encoding delays and how these methods

might affect the range of possible solutions.

II.6.1 Directly Encoded

In wishing to explore how synaptic time delays effect and, we hope, enhance

the performance of neural networks we must place their values under evolu-

tionary control. The simplest way of doing this is to incorporate them into

the evolutionary algorithm as additional parameters of the network in the

same manner as the time constants and connection weights. Each synapse

in the network is therefore assigned a delay value. As the size of the net-

work increases the number of connections can tend to become very large,

depending on the degree of connectivity in the network. This increases the

dimensionality of the search process and may render the discovery of high

fitness solutions more difficult. However, it is worth noting that this conclu-

sion is not as easily reached as one may initially think. The structure of high

dimensional fitness spaces is extremely complex, and it may well be that a

higher dimensional space, despite being larger to search, is structured in

such a way as to make finding high fitness solutions easier. Equally, it may

be that only through the expansion of the network dynamics by adding fur-

ther parameters that the network is capable of developing optimal solutions

within a reasonable time frame.

During the evolutionary process, after each generation, the position of

nodes in the network is subject to the same real-valued probabilistic muta-

tion as the rest of the parameters (e.g. time constants, synapse weights, etc.).

178

The gaussian distribution of the mutation strength balances fine tuning of

delay values whilst allowing for low probability high strength mutations to

explore different regions of the fitness space.

II.6.2 Spatial Representation of Network Delays

In his Thesis, Harvey suggested that, “learning ability in some system is a

behavioural level description of that system. And that the only implication

for the ‘working parts’ of a system able to learn is that components operating

on differing timescales are necessary. . . ” [45, p.62].

In the case of CTRNNs, there are additional variables which determine

the dynamics of the network, including the time-constant and bias terms

[15]. In biology, the time taken for a signal to propagate between neurons is

dependent on their spatial distribution and hence the geometric topology of

the network as well as the nature of the connectivity between neurons. It is

proposed to link the time-dynamics of nodes to the length of the connection

between them, and to place the geometric definition of the network under

evolutionary control. From a biological perspective there is great value in

considering the geometric and structural definition of neural circuity [88].

Just as information in a map is held by such spatial properties

as physical distance, the physical structure of cortex encodes in-

formation. With geometric principles of information processing

the information is held in the three-dimensional pattern of neu-

ral connectivity. As constructive factors play a central role in

building this physical structure, they also shape the representa-

tional properties of cortex. Building neural circuits with directed

growth thereby builds the brain’s representational properties.

These spatial properties of representation are largely lost in the

traditional connectionist network because of the way the con-

179

nectionist neuron integrates information, typically summing its

input and sending a (perhaps graded) output if some threshold

is exceeded. This makes the entire cell the basic computational

unit. In contrast, biological neurons are thought to segregate

into subregions that function as autonomous processors.

In determining delays by considering the spatial configuration of nodes in

the network, we limit their possible values. In this way, the solution space

for the network is reduced. This could aid the evolutionary search as a

reduced search space is typically easier to explore, but could equally prevent

the location of high fitness combinations outside the geometric limitations

of the network. Consider a simple fully connected three node network in

which the connections between the nodes must form a triangle. If the edges

of the triangle are a,b and c and we consider all possible shapes the Triangle

Inequality Theorem states that:

a+ b ≥ c (II.6.1)

Where a ≤ b ≤ c.

If the edge lengths were normalised such that (a, b) ∈ [0, 1], and c = 1,

then a + b = 1 is the isoline of triangle validity. Thus, half of the possible

length values for a and b from 0 to 1 are no longer valid, representing a

corresponding 50% reduction in the delay variable space.

Taking this analysis further, it can be demonstrated that as the size of

the network increases, the proportion of the space in which valid network

length configurations lie becomes very small. Figure II.6.1 presents a series

of simple polygonal networks with n nodes.

For a fully connected (but not self-recurrent) system of n nodes there

are c connections. Where:

c = n+
n

2
(n− 3) (II.6.2)

180

Figure II.6.1: Primitive Network Geometries

As previously discussed, for a 3 node system this is simply determined. A

two node system can have any range of connection lengths in the range of

zero to infinity, but for more complex shapes the distribution of connection

lengths which lead to valid geometry becomes difficult to determine. There

are then c equations which be satisfied for the shape to be valid of the form:

√

(xi − xj)2 + (yi − yj)2 − lij = 0 (II.6.3)

For each of the c connections where the start node i, end node j with

positions (x, y) and length lij . We would like to explore all possible unique

configurations and not similar shapes. For this reason we shall consider

possible lengths for lij ∈ [0, 1], but require that at least one connection has

a unity length.

These networks represent a non-linear system of equations which is com-

plex or impossible to solve directly as they are overdetermined with more

equations than variables, leading us to a numerical approach. Our object is

to determine some of the properties of the c dimensional space in which a

point represents a unique set of connection lengths, specifically as to whether

181

3 4 5
Number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro
p
or
ti
on

of
va
li
d
sh
ap

es

Figure II.6.2: Proportion of Valid Configurations

182

this can be assembled into a network where the spatial constraints are main-

tained. A study was conceived whereby the system of equations was eval-

uated using a non-linear numerical method,1 for each point of a uniformly

spaced c dimensional grid. This method required an initial guess from which

the algorithm proceeds. In this case, the starting point was taken to be a

regular polygon formed with sides of unity length. The results of each point

were then evaluated to determine if that configuration of lengths could be

assembled into a valid spatial arrangement satisfying the error. The number

of successful solutions was divided by the total number to obtain an estimate

for the proportion of the volume in which valid arrangements existed. Even

for a small number of nodes, as the number of connections increases signif-

icantly, even a very coarse grid becomes computationally infeasible both in

terms of duration and memory usage. The acceptable error in connection

lengths for solutions assembled by the numerical solver was taken to be equal

to half the interval of the grid. Results of sensitivity analysis indicate that

this typically over estimates the number of valid solutions and that as the

density of the grid increases, the result descends to the true value.

The results of this investigation are shown in Graph II.6.2, for arrange-

ments of 3, 4 and 5 nodes with a sample grid of size 200, 15 and 5 receptively.

This involved the solution of 12697539 (119401, 3861089 and 8717049 respec-

tively) instances of the equations. Such is the nature of the increase in solu-

tions required (as the number of possible configurations, without removing

similar configurations, is lc where l is the size of the grid) that going beyond

this level is very difficult and tedious for little gain. It is also worth consid-

ering that these results are for fully connected regular networks which are

considerably denser and more constrained than the majority of networks

under evolutionary design. It is impossible, however, to characterise the

performance of real networks under this analysis, given the open ended and

1The Python module scipy.optimize.fsolve was used, see www.scipy.org.

183

stochastic nature of the evolutionary process which is capable of generating

highly complex and irregular network configurations. Whilst this is true, we

can certainly apply the general trend of the data shown in Graph II.6.2 to

evolved networks. As the size and connectedness of the network increases,

the possible configuration of connection lengths and correspondingly time

delays are increasingly constrained until only a very small portion of the

possible search space be explored.

This presents a very interesting line of enquiry. The proposed methods

for determining synapse time delays from spatial properties of the network

placed under evolutionary control is (albeit loosely) biologically inspired. For

realistic sized networks, the distribution of time delays has been shown to

be significantly constrained. For the case of the pentagonal network shown

in Figure II.6.1 only around 2% of the possible range of synapse time delays

may be represented. We have seen in the sensitivity analysis of Chapter

II.5 how the values of delays are crucial to the behaviour of evolved systems.

We might therefore assume that this spatial representation of delays encoded

into the position of the network nodes might severely restrict the evolution of

desirable behaviour. Equally, or perhaps more, interesting is the case where

they do not. Should there be a neutral or positive effect by expressing delays

in this manner this must influence our conclusions as to how the delays

effect the behaviour, how easy good configurations are to find, whether the

biologically inspired methods are in some way restricting the search to high

fitness regions, and whether this form of encoding may be shown to be more

efficient. These questions will be discussed in Chapter III.1 in the context

of the results of the examples presented.

II.6.2.1 Assigned Network Geometry

Both of the methods described below represent ways of placing the position

of nodes in a network under evolutionary control. This however requires that

184

OUTPUT PLANE

INPUT PLANE

(a)

INPUT RING

OUTPUT RING

(b)

Figure II.6.3: Initial Network Geometries

the network is assigned spatial properties prior to the subsequent modifica-

tion. Typically when networks are drawn they are presented for maximum

clarity in their illustration of network connectivity and structure. The anal-

ysis of Section II.6.2 shows us how crucial the distribution of nodes is to the

range of possible delay values which can be represented in this configuration.

Care should therefore be taken to ensure that the initial layout with which

a network is assigned is appropriate to the task and does not over constrain

possible solutions. It is worth noting that no dimensions are considered here,

it being simply the arrangement of the nodes and the relative modification

of their position by the methods described which determine the delays in

the network. For convenience, we shall describe nodal positions in a Carte-

sian coordinate system (x,y,z) where the initial arrangement of nodes lies

between zero and unity on an arbitrary scale.2

Figure II.6.3 shows a range of possible network layouts. Often networks

are shown as having a Feed-Forward structure, with the possibility of recur-

rent synapses naturally, with different stages of the network arranged in the

2N.b. The nodes are not constrained to remain within the bounds of 0 ≤ (x, y,) ≤ 1

as the methods described later may move them outside of these to lengthen connections

and increase delays.

185

(a) (b) (c)

Figure II.6.4: Possible 3d Arrangements

general direction of information flow as shown in Figure II.6.3a. Here, nodes

which act as inputs to the network are arranged equidistantly along an input

plane (y=0) with the outputs of the network arranged at the other end of

the space (y=1), forming an arrangement of nodes n where xn, yn ∈ [0, 1].

Any hidden nodes would then be located on a intermediate plane between

the two (y=0.5). With a non-recurrent minimal genotype and synapses

only between input and output nodes, the connections are of broadly equal

length. This approach is generally suited to the majority of scenarios, es-

pecially those where there is a definite structure to the network i.e. in an

obstacle avoidance scenarios where proximity sensor input is processed by

the network to generate motor outputs.

Alternatively, one may consider a scenario where input and output nodes

are arranged on concentric rings of differing radii (r=1.0 and r=0.5) focussed

on a point in the centre of network space (x,y = 0.5,0.5), shown in Figure

II.6.3b. In contrast to the first proposal, this arrangement of nodes appears

more suited to networks without such a clear structural definition. Consider

a locomotion task, where all nodes in the network directly control effectors

but also can receive sensor inputs. Assigning geometry in such a formal

186

layered structure as above is tenuous and a more mixed arrangement, but

with underlying order, may be more suited.

Both of the structures proposed are two dimensional simplifications of

the three dimensional shapes found in biological circuitry. This assumption

is made for simplicity; however, if it can be shown that by limiting ourselves

to 2d structures, we over constrain the possible configurations of delays, it

may be worth considering three-dimensional structures of the type shown in

Figure II.6.4.

II.6.2.2 Position Encoded

Previously we have discussed the possible justification and advantages of de-

termining the dynamics of a network through its spatial properties, and how

this may constrain the focus of any optimisation algorithm. In this Section,

the simplest method for allowing an evolutionary algorithm to modify the

geometry of a network is presented.

In this methodology, the minimal genotype must be assigned initial ge-

ometry as previously discussed. As the NEAT complexification process pro-

ceeds, additional hidden nodes may be added to the network structure. This

happens through the splitting of an existing synaptic connection and, in the

standard NEAT method, has the effect of adding a non-linearity (in the

form of the node’s sigmoidal activation function) into the dynamics of the

network. In this proposed modification to the standard scheme, the new

node is placed at the average of the split synapses’ input and output nodal

original positions. These nodal original positions are persistent through mul-

tiple generations and both the modification by the CPPN, and the updating

of synaptic time delays, must take place prior to each simulated run.

Each node in the network is now assigned two additional parameters,

namely (x,y)-coordinates in two dimensional Cartesian space as described

in Section II.6.2.1, which are mutated during the course of the evolution-

187

ary process in the same manner as in the directly encoded method. The

distribution of possible mutations is pre-determined to provide appropriate

displacements given the assigned geometry of the network.

The absolute distance between nodes varies between all of the nodes in

the network, most of all when a new node is added which halves the particu-

lar synaptic lengths. As the spatial distribution of the nodes is arbitrary, the

synaptic time constant must therefore be set in relation to an initial starting

delay common to all connections which becomes a fixed parameter of the

simulation. This original value is then modified by the relative change in

the length of each synapse depending on the modification of nodal position,

thus:

τij = Γ

√

(xin − xjn)
2 + (yin − yjn)

2

(xio − xjo)
2 + (yio − yjo)

2
(II.6.4)

Where τij , is the synaptic time delay between nodes i and j, Γ is the

fundamental synaptic time delay common to all connections, the coordinated

of node i and j are (x, y), n indicates new node positions and o indicates

the original starting positions of the nodes.

In this way, the spatial representation of the nodes in the network and

therefore the length of synapse time delays is placed under evolutionary con-

trol. The configuration of nodal positions restricts the proportion of possible

values that the delays may take, based upon the complexity and structure

of the network. Whether or not this affects the ability of the evolutionary

algorithm to attain high fitness solutions is discussed in Chapter III.1.

Beyond the linear determination of delay values it would be simple to

consider a non-linear mapping to allow small changes in connection length

to make significant influences of the value of delay.

II.6.2.3 Pattern Encoded

In his comprehensive work on the evolution of biological brains, Striedter

describes the structure of typical mammalian brains, and how most brain

188

regions exhibit structural regularities [109]. Typically seen are laminar re-

gions, where densely connected laminations of neurons run parallel to each

other, with sparse interconnections allowing the distribution of ‘processed’

information outside of the densely connected channels (often linking stimuli

to effectors) [109]. Laminae are thought to be easy to evolve and important

structurally in the neural processing of information, and thus it would be

of interest to develop a system capable of generating comparable structures

under evolutionary control and if this would result in better evolved solu-

tions. Striedter illustrated a simple model of laminae development through

neuron growth over two perpendicular independent linear gradients [109].

Stanley et al. have developed an interesting method for the artificial evo-

lution of large scale artificial neural networks using CPPN [106], introduced

in Chapter II.1. CPPNs are different from ANNs, but may be evolved in the

same way through their HyperNEAT method. NEAT has also been used to

evolve both two and three-dimensional patterns.3

The proposed concept is to bring these ideas together and place a two-

(or three-) dimensional pattern under evolutionary control and use it to mod-

ify the geometric representation of a recurrent neural network. Whilst we

hypothesise that delayed dynamic networks have the potential to develop

interesting solutions with their extended dynamics over traditional dynamic

neuron models, the additional parameters increase the search space, poten-

tially rendering good solutions harder to find.

In order to place this geometric representation under evolutionary con-

trol, the nodal positions of the evolved CDRNN are to be modified by a

co-evolved CPPN. This means that each individual in the population effec-

tively consists of two genomes; one for the neural network and the other for

the pattern network. The pattern network is then evaluated to modify the

neural network as discussed later. This is shown graphically in Figure II.6.5.

3See http://picbreeder.org/ and http://endlessforms.com/.

189

Figure II.6.5: Dual Genome Architecture

190

Figure II.6.6: Hill Climbing Nodes over CPPN Surface

Whilst this too increases the complexity, and thus the difficulty, of the evo-

lutionary process, the CPPN search space is independent of complexity of

the CDRNN and for larger problems will present a more efficient encoding

of the additional evolutionary parameters.

A CPPN evolved in parallel with a particular CDRNN generates a pat-

tern when sampled over the input space of (x, y)-coordinates (for the 2D

case considered initially). CPPNs are capable of generating both simple

and complex patterns which are continuous in the range of possible inputs,

where (x, y) ∈ ℜ2. The two-dimensional intensity pattern may be considered

as a three-dimensional surface, over which it is proposed that the network

nodes hill climb for a number of iterations as shown in Figure II.6.6. In

this way the CPPN may alter the position and thus the time constants of

the synaptic connections, so the CPPN genotype indirectly encodes the ad-

ditional evolutionary parameters of the CDRNN with respect to the more

traditional CTRNN form. Patterns may cause clustering or dispersement

of neighbouring neurons which typically process related information, and

thus create fast or slow connections between them. It may therefore be pos-

sible to create structures analogous to ocular dominance columns seen in

mammalian visual cortices, and other common neurological features.

191

The aim of this whole procedure is to place the synaptic time constants

under indirect evolutionary control which may significantly alter the time

delays, in order provide network dynamics with a wide range of time scales

to encourage and enable learning and adaption. This requires that the de-

fault synaptic time delay (Γ) is set to an intermediate value at which fit

solutions are capable of being generated, but that the evolutionary process

can alter the value either way to effect significant changes in the dynamics of

the system. As the changes to the time delays are proportional to the change

in synaptic length, a larger Γ will provide more noticeable alteration in the

dynamics of the network, but at the expense of embedding a large delay in

the system which may render fit solutions difficult to generate. One side ef-

fect of this methodology may be the requirement for smaller time steps than

would be required for the stable integration of traditional CTRNNs, thus

imposing greater computational demands during the evolutionary process.

The Python implementation of the NEAT Methodology introduced in

Chapter II.5 was modified for the purposes of demonstrating the ideas pro-

posed. A key concept in the proposed model is to simultaneously evolve

both a neural network and a CPPN using the NEAT method. To this end,

each organism created maintained two network instances which were iden-

tified as a neural network or pattern network. As they existed within the

same organism, fitness attributed to the organism was effectively applied

to the combination of the pattern and the neural network. More complex

forms of fitness sharing may be an interesting avenue for future research.

Each CPPN node maintained a type which determined the form of the acti-

vation function applied, as a wide variety of activation functions is central

to the CPPN-NEAT method. As each node is created, it is randomly as-

signed an activation function from the finite set of possibilities. Possible

functions were: linear, sigmoid, sin, cos, tanh and gaussian. The CPPN

minimal genotype had x,y, and bias input nodes, and three hidden nodes

192

Figure II.6.7: Finding the Gradient Direction Vector

each initialised with a tanh(x), sin(10x) and gaussian activation function

respectively. This was in an attempt to generate a wide variety of patterns

across the population throughout the initial generations, without having to

wait for the evolutionary process to develop mature and complex networks.

Initial patterns may range from simple one dimensional gradients to highly

complex repeating functions.

At the start of each generation, nodes of the delayed network are assigned

initial positions as described previously in Section II.6.2.2. For a set number

of iterations the nodes hill climb, selecting the direction which gave the

greatest improvement in the value of the CPPN. Around each node, the

CPPN was sampled at a set number of detector points on a circle of a set

diameter as shown in Figure II.6.7. In the results reported here, there were

18 detectors at 20◦ intervals, on a radius of 0.01. If the maximum value of

the detectors is greater than the current position of the node, then the node

is moved toward that detector by a given amount.

In order to allow a wider range of modification to the nodes, the position

that each node moves is not constant, but rather is related to the gradient

of the CPPN. At the start of the process the CPPN is sampled over the

193

distribution of nodes in a grid to approximately determine the maximum

and minimum values of the CPPN in this region. The distance moved by

each node in the direction of the maximal detector unit vector is equal to the

difference in the value of the CPPN between the detector position and its

current value, divided by the overall range of CPPN values. Thus a node on

a greater gradient will move further, allowing a greater range of movement of

the nodes in the network over multiple iterations. The gradient is normalised

as the range of values for different CPPNs may vary over several orders of

magnitude and it is the pattern which is of interest, and not the absolute

values. In this way, the node climbs towards any local maxima, altering the

layout of the neural network.

The configuration of initial nodal positioning is key to the development

of good solutions. The work presented herein has only thus far considered

a simple planar distribution of nodes, but would do well to consider other

arrangements. It is natural, and biologically justified, to consider the ap-

plication of this method to three-dimensional instead of planar geometries,

and this is a very simple extension of the algorithms presented. The evolved

CPPN should have an additional input node, such that f = CPPN(x, y, z)

with a Cartesian coordinate system (for cylindrical or spherical domains a

polar-coordinate system may be more suitable). The simulated detectors

would then be distributed on a spherical surface, with the remainder of the

algorithm little changed. This would be of great interest as the number

of possible configurations is greatly increased and the evolutionary process

may take advantage of the additional complexity of network structures made

possible by the extension into 3D.

II.6.3 Efficiency of Different Encoding Methods

We have discussed how each of the different methods for encoding synaptic

time delays into an evolutionary algorithm may constrain the range of values

194

3 4 5 6 7 8 9 10
Number of nodes

0

20

40

60

80

100

N
u
m
b
er

of
ex
tr
a
d
el
ay

p
ar
am

et
er
s

Direct

Position

Pattern

Figure II.6.8: Encoding Efficiency for Different Methods

195

these delays can take. Also, we have considered how, by increasing the di-

mensionality of the search space by adding further parameters which define

the network, we may be rendering the process of evolutionary optimisation

more difficult. Care is traditionally taken in ER to minimise the structure of

networks, and to exploit any symmetry or repetition in morphology or con-

trol architectures, to reduce the number of parameters under evolutionary

control to a base set required for the emergence of the desired behaviour.

Three different methods of determining delays have been proposed, and

we must therefore predict the increase in search space dimensionality for

each. The relationship between this increase and the complexity of find-

ing fit solutions is extremely complex and impossible to fully define as it is

highly subjective as to the form of the networks, the nature of the task and

the design of the fitness function. It would also require the comprehensive

evaluation of extremely high dimensional spaces which is not only compu-

tationally unachievable, but impossible given the nature of the real valued

open ended evolutionary algorithm used throughout this research. Never-

theless, it is an indicator of complexity and therefore may be used to make

tentative judgements regarding the efficiency of each method in encoding

the additional delay parameters.

Given the open ended nature of the NEAT algorithm used, and the

resulting variable length genotypes of evolved solutions we must make some

assumptions in order to quantify this relationship. This is necessary as each

method may variably rely on the number of neurons or synapses in a network

which is highly variable given the initial minimal genotype and probabilistic

complexification of the evolutionary process. Here, we shall consider fully

connected and self recurrent regular polygonal networks of the form shown

in Figure II.6.1, but with the additional synapses. If the number of neurons

in the network is n, then the number of synapses c is simply n2.

When the time delays are directly encoded (see Section II.6.1) there

196

is one addition parameter for each synapse. By contrast in the position

method (see Section II.6.2.2) the n2 delay variables are uniquely determined

by controlling 2n parameters i.e. (x,y)-coordinates for each of the n neurons.

Whilst modifying positions of the nodes using a pattern uses only the param-

eters required to define the CPPN to determine the delays, thus rendering

it independent of the size of the network. For the pattern network there is

one weight parameter per connection and one variable activation function

per node, making a total of (n+ c) parameters. For the research presented

throughout this Thesis, a minimal genotype was devised for the CPPN which

incorporated a range of different activation functions and hidden nodes to

allow the generation of interesting patterns even during early generations.

This genotype had 7 nodes and 12 synapses, which is therefore fully defined

by 19 evolutionary parameters. This may increase of course as the CPPN is

subject to the same open ended evolutionary process as the other network

and may therefore increase in complexity throughout the process, requiring

additional parameters. Figure II.6.8 shows these relationships evaluated for

a range of network sizes commonly seen in ER investigations. As can be

seen, the direct method follows the n2 relationship and quickly requires the

most evolutionary parameters of any method. The position encoding has a

defined linear relationship, with the pattern encoding remaining constant,

independent of the size of the network. For small networks the position en-

coding requires the fewest additional parameters, but when n = 10, it over

takes the pattern method. As n increase, the number of parameters for the

direct encoding method rapidly explodes. Given the underlying assumption

that a large number of additional parameters is typically harder to optimize

than a smaller number it can be seen that the two spatial representations

proposed can provide a significant advantage over the direct method.

Other factors governing the computational performance of different meth-

ods are the amount of memory and the computational effort required for

197

each. Again, specific meaningful values depend greatly on the probabilis-

tic nature of the evolutionary algorithm and are hard to obtain. However,

both the direct and position encoding methods require roughly the same

amount of memory. The position encoding requires a greater degree of

post-processing than the direct in the nature of calculating the deviation of

connection lengths from the initial assigned positions and therefore requires

slightly more computational effort. The pattern encoding technique requires

significantly more memory and computational effort not only for the storing,

evaluation and evolution of the co-evolved CPPN, but also in the modifica-

tion algorithm described in Section II.6.2.3. Evaluating the CPPN in a grid

to normalise the pattern and hill climbing the nodes of the network across

it requires a significant effort. This can cause an evolutionary run using this

technique to perform noticeably slower than the others presented here.

As to whether the spatial representations are in fact more efficacious

than the direct method of encoding delays, this can only be determined

through experimentation. By evaluating a range of tasks with each of the

methods presented we can then judge as to the relative merits of each as

a trade-off between the constraints imposed on the range of possible values

and the performance each method can achieve.

II.6.4 Comparing the Efficacy of Different Encod-

ing Methods

To evaluate, analyse and make meaningful conclusions regarding the inclu-

sion of time delay dynamics in continuous recurrent neural networks and

the relative merits, or otherwise, of the different methods of determining

these delays within an evolutionary algorithm, we must be able to evaluate

each possible configuration under a range of scenarios. In common with

the approach taken to the simulation modelling of Section II.4.3 we must

198

ensure similarity and compatibility of simulations that we may be justified

in comparing their results.

The Python implementation of NEAT used, and heavily modified, through-

out this work was configured to allow determination of the neuron model

and the delay method through the configuration file loaded at runtime by

the algorithm. The appropriate mutations were then applied during the

reproductive process depending on which configuration was used. In all

other respects the code responsible for the behaviour of the system under

investigation were identical. Differences in performance must therefore be

due to the effects of the different delay methods and the non-deterministic

stochastic nature of the evolutionary process. Where feasible, multiple runs

may be undertaken to estimate of the variability of results due to the ini-

tial sampling of the search space and successive probabilistic mutations and

reproductions that are at the core of the evolutionary algorithm.

II.6.5 Conclusions

To be able to investigate the effect of adding time delays to synaptic connec-

tions within neural networks, we must develop methods by which they can

be controlled by the evolutionary algorithm. The simplest and most obvious

method is to encode the connection delays directly as further parameters de-

scribing the dynamics of the network. However, this fails to take advantage

of potentially interesting solutions suggested by a spatial representation of

the network. By applying this biomimetic approach we can constrain the

configuration of possible delay values and reduce the dimensionality of the

search space. This may render the optimisation process less complex than

if the delays were encoded directly, but has the potential to exclude high

fitness delay combinations due to the geometric constraints enforced.

Two methods for determining the spatial representation of the network

have been proposed which essentially deform the network with respect to

199

an initially assigned geometry, and thus modify delay values in a manner

proportional to the changes in synaptic length. This is achieved by either

mutating the position of nodes in the network directly, or by modifying

the geometry with a co-evolved pattern network in a bioinspired manner.

Both of these techniques have potential advantages and disadvantages with

respect to their computational efficiency and the reduction in dimensionality

of the search space compared to the direct method.

The evolutionary algorithm used throughout this work has been config-

ured to allow the side-by-side comparison of all possible configurations of

neuron model and delay evaluation technique. This will allow, after the ex-

amination and analysis of repeated trials of multiple experiments, to reach

a quantifiable conclusion as to the potential advantages or disadvantages of

including delays in these systems for each of a range of possible fields of

applications and the efficacy of each method for calculating the delays.

200

Part III

Results and Analysis

201

Chapter III.1

Introduction

Previously, non-linear dynamic networks with time delays have been intro-

duced and proposed as architectures for evolved adaptive behaviour. Our

hypothesis is that the richer dynamics introduced by the delays into the be-

haviour of the system may enhance their performance. In order to accept, or

reject, this hypothesis this Part presents results for a variety of tests largely

inspired by nature and the scientific study of animal behaviour.

In Part II of this Thesis the concept of including simply modelled trans-

port delays in the connections of CTRNNs was analysed and then imple-

mented. Chapter II.2 exposed the increased dynamic capabilities of net-

works modified in this manner and elucidated the special circumstances un-

der which even a single node can oscillate with no external input. Through

Chapters II.3 and II.4 the tools prerequisite to an exploration of the re-

search questions, defined in Part I, have been developed and include a novel

approach to computationally minimal simulation of a quadruped robot and

physically derived 2D wheeled robot models. Driven by the research ques-

tion to find ways of harnessing time-delayed networks in EAs, Chapter II.6

explores a variety of ways to encode network delays in an evolvable genotype;

taking inspiration from biological systems and the spatial properties of neu-

ral networks. This Part applies each of the encoding methods developed to a

202

range of commonly studied tasks and compares the results to the behaviour

of an unmodified CTRNN in accordance with the research question.

Continuous systems modelled on higher order neural networks have demon-

strated a wide range of adaptive behaviour. Specifically, results for simulated

chemotaxis and T-test (see Chapter II.5) have been well documented but

demonstrate such core aspects of adaptive behaviour that their inclusion is

still warranted.

The results presented herein are validated insofar as it is possible through

the statistical treatment of data from repeated runs of each configuration.

For simulations of an extended or computationally intensive nature a high

number of repeated runs may be infeasible given the time constraints of

this research. The level of confidence for each set of data is presented and

discussed in the context of the validity of conclusions as to the benefits (or

otherwise) of including delays in these systems.

From the data it has been possible to draw a number of conclusions

regarding the inclusion of time delays in dynamic neural systems and the

variety of methods which have been developed to determine them. The

results show that delayed dynamic neural systems are at least as capable

as traditional CTRNNs in the experiments below. The increased dynamic

response of such systems enables the evolution of very small pattern gener-

ating circuits at a level not previously possible. This allowed a three neuron

circuit to near optimally control the gait of a single gait. Further dynam-

ics inherent in these systems made qualitative improvements to behaviour

in other experiments which were not captured within the fitness functions

used. However, in the adaptive behaviour tasks investigated no such im-

provement was seen. This could be simply that the tasks did not require

such complexity for optimal solution, and it is in the development of such a

task that presents the best immediate avenue of future research.

203

III.1.1 Hypotheses Under Test

Specifically, there are two hypotheses that we wish to test through statistical

analysis of experimental results. First, that by including delays it is possible

for dynamic networks to express behaviour previously unattainable for the

solution of problems in adaptive behaviour and legged locomotion. Aside

from examples in the development of gaits where the increased dynamics

of the system may directly map to an increased ability to perform in a

task, it is difficult to demonstrate increased fitness for a network of delayed

type versus an already optimal known solution. Where possible the fitness

function may be designed to highlight such differences, but typically delayed

dynamics may often result in a retarded response to stimuli and thus effect

a small reduction in fitness (depending on the fitness function). CTRNNs

have proven to be highly capable control structures, and finding an example

of adaptive behaviour which defies solution by non-delayed systems but is

solvable with delays is difficult and requires a great deal of trial and error.

Secondly, that including delays increases the degree of information pro-

cessing in the network connections. By enabling information storage that

would have otherwise required the introduction of further network nodes,

smaller networks than previously possible may be capable of achieving the

same behaviour. This is much easier to test as it is still possible to discrimi-

nate in terms of the network structure between results with statistically sim-

ilar fitness profiles. Where difficulty lies is in the correct design of minimal

genotype, so that the initial structure is not already capable of performing

optimally.

Beyond this, we wish to evaluate the performance of each of the meth-

ods for determining time delays developed in Chapter II.6. We anticipate

that for simple tasks a position encoding may present some advantages, but

that for more complex structures this representation may limit the possible

configuration of delays, preventing optimal results from being reached.

204

III.1.2 Selection of an Appropriate Statistical Test

Since there are four independent groups, a test for k independent samples is

called for. The fitness values for each group are continuous and on an ordered

scale and so the assumptions for the Krustal-Wallis test are satisfied. As

the number of groups is greater than 3, the sampling distribution is well

approximated by χ2 with df = k − 1 for a given significance level; α = 0.05

was chosen in this case. The hypothesis is rejected if the calculated value

of KW is so large that the probability associated with its occurrence when

H0 is true is equal to or less than α = 0.05, corresponding to KW ≥ 7.82.

We can test the significance of individual pairs of differences by using the

following inequality:

|R̄u − R̄v| ≥ za/k(k−1)

√

N(N + 1)

12

(

1

nu
+

1

nv

)

(III.1.1)

If this is true, then we can reject the hypothesis that the distributions to

which each sample belongs have the same median value, H0 : θu = θv, and

conclude that θu 6= θv. The value of za/k(k−1) is the abscissa value from

the unit normal distribution, above which lies a/k(k − 1) percent of the

distribution.

III.1.3 Limitations

The statistical test selected above was chosen for its ability to efficiently

discriminate even with low numbers of samples. Given the overriding objec-

tive defined by the research question, to evaluate the effect of introducing

time-delays into CTRNNs, there is an inevitable compromise in the division

of computational effort. By exploring the application of delayed systems

to a variety of commonly studied tasks in ER the number of experimental

repetitions, even for specifically designed computationally minimal simula-

tions, must be limited. Because of this, and due to the finite time allowable

205

for experimentation following the developmental work described in Part II,

the number of runs achieved in this Part is low. Whilst application of the

Krustal-Wallis test elucidates sufficient statistical confidence to support the

conclusions drawn from the work in this Thesis, the limitations of restricted

repetitions must be appreciated. To build upon the foundations developed

in this Thesis in the future further repetition of the experiments in this Part

may be justified to provide a stronger evidential basis.

206

Chapter III.2

Adaptive Behaviour

Much of the work in ER has been focussed on the synthesis and analy-

sis of adaptive behaviour from fundamental building blocks, be they code

segments or neurons comprising an ANN. Typically, studies have been con-

cerned with the replication of some of the most basic intelligent behaviours

observed in the natural world, e.g. taxis and navigation. Elaborations on

these experiments seek combinations or active switching of these modes to

solve more complex tasks which approach usefulness in real world appli-

cations. In seeking to apply and test time delays in dynamic ANNs, in

accordance with the research questions in Part I, these basic adaptive be-

haviours reported in Chapter II.1 provide a suitable starting point. In this

way, this Chapter uses the models developed in Section II.4.2, including the

work of Chapter II.5, in applying the methods of Chapter II.6.

III.2.1 T-Test Task

III.2.1.1 Hypothesis

The T-test task, inspired by the experiments of Jakobi [59], is introduced

in detail in Chapter II.5 to demonstrate the evolution of explicitly encoded

delays. Maze experiments such as this have formed the backbone of a con-

207

siderable body of work in both AI and the behavioural analysis of biological

systems. As such it provides a useful link between the disciplines and, as a

very commonly studied task with a range of known solutions, is an excellent

candidate for inclusion here, as directed by the research questions of Part I.

A two-wheel robot modelled on the Khepera III (see Chapter II.4) is

placed inside a T-shaped maze and must attempt to reach a goal indicated

by a light stimulus presented at a certain point in the corridor. The fitness

function scores individuals on how far they travel in the right direction and

rewards them for avoiding contact with the walls and reaching the goal area

in the shortest possible time.

Formally H0, the null hypothesis is that including delays in the network

does not increase the fitness in the T-test task. The alternative hypothesis

H1 is therefore that including delays increases the fitness.

III.2.1.2 Experimental Design

The experimental design is exactly as per Chapter II.5. Indeed, the results

presented in detail there form a subset of the results presented herein for

the range of time delay methods.

III.2.1.3 Results

The maximum fitness achieved throughout three evolutionary runs is pre-

sented in Table III.2.1 for each of the different delay types described in

Chapter II.6. Each run consisted of 400 generations with an initial popula-

tion of 1000 individuals.

These 12 data are then ranked from lowest to highest to obtain the

ranks shown in Table III.2.2. These ranks are summed for the four groups

to obtain R1 = 30, R2 = 10, R3 = 17 and R4 = 21. Also given in the table

are the average ranks for each group, 10.0, 3.3, 5.7 and 7.0 respectively.

Now with these data, we may compute the value of simple form of KW

208

Run
Delay Type

None (x,y) Pattern Direct

1 0.895702 0.827208 0.826459 0.895708

2 0.900830 0.825344 0.892837 0.740463

3 0.896826 0.759038 0.880125 0.900126

Table III.2.1: Maximum Normalised Fitness in Each Run

Delay Type

None (x,y) Pattern Direct

8 5 4 9

12 3 7 1

10 2 6 11

Rj 30 10 17 21

R̄j 10.0 3.3 5.7 7.0

Table III.2.2: Ranked Results

209

as there are no tied values:

KW =

12

N(N + 1)

k
∑

j=1

njR̄
2
j

− 3(N + 1) (III.2.1)

KW =

12

12(12 + 1)
[3(10.0)2 + 3(3.3)2 + 3(5.7)2 + 3(7.0)2]

− 3(12 + 1)

(III.2.2)

KW = 44.36− 39 (III.2.3)

= 5.36 (III.2.4)

Since the observed value of KW (5.36) does not exceed 7.82 its probability

of occurring under H0 is greater than α, and so the hypothesis that delays

do not improve the performance in this case is accepted.

Further to this conclusion, we wish to make a comparison between the

various methods for determining the delays. If we take the differences be-

tween the average rankings R̄j for each of the six possible comparisons, we

have:

|R̄1 − R̄2| = |10.0− 3.3| = 6.7 (III.2.5)

|R̄1 − R̄3| = |10.0− 5.7| = 4.3 (III.2.6)

|R̄1 − R̄4| = |10.0− 7.0| = 3.0 (III.2.7)

|R̄2 − R̄3| = |3.3− 5.7| = 2.3 (III.2.8)

|R̄2 − R̄4| = |3.3− 7.0| = 3.7 (III.2.9)

|R̄3 − R̄4| = |5.7− 7.0| = 1.3 (III.2.10)

Here, za/k(k−1) = z0.05/4(4−1) = z0.0375 ≈ 1.78. The critical difference in

210

average rank is therefore given by:

za/k(k−1)

√

N(N + 1)

12

(

1

nu
+

1

nv

)

= 1.78

√

12(12 + 1)

12

(

1

3
+

1

3

)

(III.2.11)

= 1.78
√
8.67 (III.2.12)

= 5.24 (III.2.13)

We can therefore conclude that the only populations which are statistically

different for the given significance level of α = 0.05 are the non-delayed

and position modified, although a greater number of samples may provide

further evidence that all populations are statistically similar.

Whilst considering the structures prerequisite in the evolved networks for

their ability to solve the problem optimally, it is instructive to consider the

genetic make-up of the populations and how it relates to their fitness. For

each of the different delay methods the maximum fitness achieved over the

course of each evolutionary run for each genome configuration (number of

neurons and synapses) was averaged over all of the runs and analysed. This

showed that a high fitness may be maintained for a significant number of

additional links in the network, but added neurons cause a substantial falloff.

Most significantly, all methods achieved their maximum fitness with a larger

structure than the minimal genotype of the initial population. The average

size of the optimal network was around 12 neurons and 20-30 synapses.

In summary, all of the methods achieved near optimal fitness and there

was negligible difference in the efficacy of each method shown by the accep-

tance of the null hypothesis. The task has proven to be so easily solved

that no method has an advantage and the size of the fittest networks is

common to all. Delay methods demonstrated a lesser tolerance to larger

network structures which may be due to the increased number of parame-

ters encoded, but this did not hamper the search. More complex tasks must

be sought to clarify the hypotheses stated previously.

211

III.2.2 Single Food Chemotaxis

III.2.2.1 Hypothesis

Chemotaxis is one of the most basic adaptive behaviours exhibited by or-

ganisms from unicellular Eukaryotes to E.Coli and beyond, as reported in

Chapter II.1. It therefore serves as a useful benchmark in ER and Artificial

Life (AL) and so supports the directive provided by the research questions

of Part I. A simulated organism is provided with sensors to sample a diffused

scent, produced by a number of items of food in the environment. The gov-

erning network may then control effectors (motors, thrusters or swimming

appendages) to guide the organism to consume the food. With such a ba-

sic experiment for which optimal CTRNN solutions have been well proven,

the goal is to define a similar baseline capability of delayed systems and to

determine whether any improvements may be detected. The fitness of the

individual is based on how quickly it can consume the available food, with

a faster individual achieving a higher fitness.

Formally H0, the null hypothesis is that including delays in the network

does not increase the fitness for the Chemotaxis task. The alternative hy-

pothesis H1 is therefore that including delays increases the fitness.

III.2.2.2 Experimental Design

This experiment is modelled broadly on the work of Joachimzak and Wróbel

in the evolution of GRNs for real time control of foraging behaviours [61].

The animat is modelled as a simulated Khepera III robot as per Section

II.4.2, but with only two sensors and a bias input. In line with the desire

to begin the evolutionary process with the simplest network possible, the

networks were presented with two preprocessed sensor inputs S1 and S2

212

which represent the direction and distance of food sources (as per [61]).

S1 =
1

1 + e−α(SR−SL)
(III.2.14)

S2 =
2

1 + e−β(SR+SL)
− 1 (III.2.15)

The sensors were arranged at angles of ±π/4 on the body of the robot,

α = 10.0 and β = 1.0 were used to control the response of the functions.

The robot was randomly positioned within 200mm of the edges of an

environment 1000mm × 1000mm, with Nf = 10 food items randomly posi-

tioned. No walls enclosed the environment and the robot was free to leave

the boundaries but would not encounter any food. The scent perceived by

the sensors SL and SR was proportional to the distance of the sensor from

the food source as shown below:

s =
∑

F

cf (III.2.16)

cf =

(1− df/D)2 if d ≤ D;

0 else.
(III.2.17)

Where s is the sensor reading (SL or SR), cf is the scent contribution from

food f , df is the distance of food f from the sensor, F is the number of food

items remaining in the environment and D = 500mm is the scent diffusion

radius. The resulting scent gradient for a sample initial food distribution can

be seen in Figure III.2.1a. When the robot reaches a food item (the distance

to the food is equal to the radius of the robot (65.81mm)), the food is

removed from the environment and no longer contributes towards the sensor

calculations and the energy of the robot is incremented. An interesting

extension to this work would be to introduce a dynamic element into the

simulation environment. This could take the form of food expiring and

regenerating at intervals or a variety of other modes by which an additional

level of complexity could be added.

The fitness of the robot is governed by the proportion of the available

213

Run
Delay Type

None (x,y) Pattern Direct

1 0.759583 0.658542 0.670833 0.672292

2 0.734687 0.653958 0.681354 0.667604

3 0.730208 0.645729 0.681979 0.652812

Table III.2.3: Maximum Normalised Fitness in Each Run

food consumed and the time this took, so that concise directed behaviour

had an evolutionary advantage over inefficient random walks which would

eventually cover the whole area. Thus:

f =
nc(1− 1

2 t)

NfT
(III.2.18)

Where nc is the number of food items consumed, t is the simulation time

and T is the maximum simulation duration. In this way the maximum

theoretical fitness per run was unity but the finite speed of the robot infers

a practical limit of ≈ 0.7.

III.2.2.3 Results

The maximum fitness achieved throughout three evolutionary runs is pre-

sented in Table III.2.3 for each of the different delay types described in

Chapter II.6. Each run consisted of 200 generations with an initial popula-

tion of 1000 individuals and eight trials per individual per generation.

These 12 data are then ranked from lowest to highest to obtain the

ranks shown in Table III.2.4. These ranks are summed for the four groups

to obtain R1 = 33, R2 = 8, R3 = 23 and R4 = 14. Also given in the table

are the average ranks for each group, 11.00, 2.67, 7.67 and 4.67 respectively.

Now with these data, we may compute the value of KW simply as there

214

Delay Type

None (x,y) Pattern Direct

12 4 6 7

11 3 8 5

10 1 9 2

Rj 33 8 23 14

R̄j 11.00 2.67 7.67 4.67

Table III.2.4: Ranked Results

are no tied values:

KW =

12

N(N + 1)

k
∑

j=1

njR̄
2
j

− 3(N + 1) (III.2.19)

KW =

12

12(12 + 1)
[3(11.0)2 + 3(2.67)2 + 3(7.67)2 + 3(4.67)2]

− 3(12 + 1)

(III.2.20)

KW = 48.15− 39 (III.2.21)

= 9.15 (III.2.22)

Since the observed value of KW (9.15) exceeds 7.82, its probability of oc-

curring under H0 is less than α the performance of delayed and non-delayed

systems is statistically different. In this case, the performance suffers a slight

drop when delays are added to the system.

Further to this conclusion, we wish to make a comparison between the

various methods for determining the delays. If we take the differences be-

tween the average rankings R̄j for each of the six possible comparisons, we

215

have:

|R̄1 − R̄2| = |11.0− 2.67| = 8.33 (III.2.23)

|R̄1 − R̄3| = |11.0− 7.67| = 3.33 (III.2.24)

|R̄1 − R̄4| = |11.0− 4.67| = 6.33 (III.2.25)

|R̄2 − R̄3| = |2.67− 7.67| = 5.00 (III.2.26)

|R̄2 − R̄4| = |2.67− 4.67| = 2.00 (III.2.27)

|R̄3 − R̄4| = |7.67− 4.67| = 3.00 (III.2.28)

Here, the critical difference in average rank is the same as for Section III.2.1.3

(5.24) and we can therefore conclude that the no delay results are statistically

different from the position and direct encoding for the given significance level

of α = 0.05. The pattern method however could not be distinguished at this

confidence level.

Despite the slight difference in fitness, all methods were capable of achiev-

ing near optimal behaviour in the task. Figure III.2.1 shows results for the

final generation of one pattern modified run. The robot starts at the green

point and adopts a locally undulatory but globally direct path to the near-

est high concentration of scent (Figure III.2.1a). After the majority of high

density food items have been consumed the robot is still sensitive enough

to locate the last remaining targets and complete the task in just over 16s.

The constant changing of direction is a typical evolved solution which can

be seen across all runs and methods. It allows the robot to better ‘sniff out’

the direction of highest scent gradient.

The sensor and motor time histories are presented in Figure III.2.1b. S1

can be seen to almost oscillate as the robot constantly changes direction back

and forth its macro path. The distance measure S2 always rises, indicating

a reduction in distance between the robot and the food, until the food is

consumed and the robot experiences a step change in the input. The motors

were running at full speed throughout the test.

216

0 200 400 600 800 1000
x / [mm]

0

200

400

600

800

1000
y
/
[m

m
]

Robot Trajectory

G 200 P 1000 Generation 200, Run 7

(a) Chemotaxis: Sampled Trajectory

(b) Chemotaxis: Sample Sensor and Motor Time History

Figure III.2.1: Chemotaxis Sample Result

217

0.0 0.5 1.0 1.5
x / [1]

−0.5

0.0

0.5

1.0

1.5

y
/
[1
]

Network 197

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

2.0

(c) Chemotaxis: Sampled Pattern Modified

0.2 0.4 0.6 0.8 1.0 1.2
x / [1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y
/
[1
]

(d) Chemotaxis: Sample Evolved Network

Figure III.2.1: Chemotaxis Sample Result (continued)

218

The evolved network which accomplishes this behaviour is shown in Fig-

ure III.2.1d, along with the pattern which modified its geometrical represen-

tation in Figure III.2.1c. The pattern is a simple 2D gradient which slightly

compresses,the structure reducing the delays. Interconnections not present

within the minimal genotype have been added through the course of the

evolutionary process but there are no self-recurrent links.

The structure of the fitness function means that no robot can achieve

a fitness of greater than 0.5 without collecting all the food items before

the end of the simulation. The small decrease in fitness observed for delay

methods likely corresponds to a reduction in overall speed throughout the

tasks, due to slower information propagation through the network. This

does not affect the ability of the network to solve the problem well, but does

prevent the same levels of fitness being reached. Speed is often a convenient

measure of fitness, but there are few occasions where it is vital. Particularly

for more complex tasks, we might be pleased to sacrifice speed of response

for an enhanced capability of control.

Analysis of the fitness distribution of evolved network structures as in

Section III.2.1.3 showed a trend exhibited across all methods with a narrow

plateau of high fitness solutions with a broadly linear relationship between

the number of neurons and synapses (unsurprising given the nature of net-

work structures). In contrast to the other examples given in this Chapter,

no pronounced falloff was visible for larger structures. Most interestingly

however is the fact that the no delay and direct methods both explored

a larger genotype space. This illustrates that, whilst the position methods

were capable of generating good solutions, the constraints of the geometrical

representation have curtailed exploration of more complex solutions. This

is not a problem for this simple task, but in a more complex scenario that is

unsolvable until the minimal genotype has been somewhat elaborated, this

may present a significant issue.

219

Chapter III.3

Robot Locomotion

As described in Section III.3 and Chapter II.1, legged robot locomotion has

been one of the core avenues of ER research for many years, and continues

to be so to this day. Robot gaits that are robust in complex and dynamic

environments are hard to design manually and so, given the potential ad-

vantages for legged machines ability to cross difficult terrain, it is a great

area of interest for the ER community. The research questions defined in

Part I therefore compel us to consider robot locomotion alongside adaptive

behaviour; indeed there is a substantial basis for this in the literature (see

Chapter II.1). Therefore this Chapter presents the results of experiments

into the application of delayed systems to walking robots, first considering

a single leg and then an assembly of these limbs to form a more complex

quadruped. The development of the tools to evaluate evolved gaits is un-

dertaken in Chapter II.3 and, as per the overarching research questions, the

various delay encoding techniques developed in Chapter II.6 are trialled for

each experiment.

220

III.3.1 Single Leg Walker

III.3.1.1 Hypothesis

Chapter II.2 explores how even single node delayed systems can oscillate

without external input to the network, in the manner of CPGs. We hypoth-

esise that by adding delays and enhancing their behavioural dynamics, such

delayed systems are better at generating oscillatory gaits for controlling a

legged robot’s locomotion. In the first instance we wish to explore a very

simple system, a single leg, which should be easy to solve in comparison

to the significantly more complex task of governing a quadruped gait. In

addition, such a small initial governing network allows investigation into the

hypothesis of Chapter II.2, that by adding connection delays CDRNNs may

be smaller than previously possible to achieve the same functionality. Put

simply, a higher fitness controller will move the body further in a given time

period.

Stating this formally, H0, the null hypothesis is that including delays

in the network does not increase the fitness (ability to walk) of a single leg

controller. The alternative hypothesis, H1, is therefore that including delays

increases the fitness.

III.3.1.2 Experimental Design

The approach to modelling a single leg with a sprawled posture as laid out

in Section II.3.1 is used. This could be assembled into a system which is

a 3D analogue of a 1D peg-leg walker or Chaplygin sled [52], where the

leg is attached to a solid body constrained to move along an axis. This is

similar to the ‘rail roach’ approach of Ghigliazza [40, 41] which was a first

step towards a hexapod model and used single limb telescopic legs, rather

than the three-axis leg considered here. A cartoon of the scheme is given in

Figure III.3.1.

221

Figure III.3.1: Single Leg Walking Model

In this coordinate system, relative to the hip joint, the coordinates of

the foot are:

x = sin(α) (l1 cos(β) + l2 cos(γ − β)) (III.3.1)

y = cos(α) (l1 cos(β) + l2 cos(γ − β)) (III.3.2)

z = l1 sin(β)− l2 sin(γ − β) (III.3.3)

Realistic limits are set on the range of motion of the leg as follows:

−π

4
≤ α ≤ π

4
(III.3.4)

−π

4
≤ β ≤ π

4
(III.3.5)

0 ≤ γ ≤ 3

4
π (III.3.6)

A highly simplified model would consider a single leg attached to a mass-

less body constrained to move solely on the y-plane. The leg is attached at

a certain distance above the ground, and the body will rest on the ground

unless the leg lifts it upwards. When in this elevated phase of the gait, the

foot is assumed to be fixed in its x-position and is allowed to slide along the

ground plane in the y-direction, as any frictional forces would be reacted

by the y-plane body constraint. In this way, the leg can raise the body

off the ground, swing through an angle, moving the body forwards in the

x-direction, and then rest the body on the ground whilst the leg resets its

position. This massless model ignores dynamic friction and inertial effects,

222

but is illustrative of real world behaviour.

A three node fully connected network where each node directly controls

the α, β or γ leg angle directly is the smallest network capable of controlling

all degrees of freedom in the model and thus is used as the minimal genotype

for the evolutionary runs. Single neuron outputs were mapped to leg angles

as follows:

α =
π

4
(−1 + 2o1) (III.3.7)

β =
π

4
(−1 + 2o2) (III.3.8)

γ =
3π

4
o3 (III.3.9)

Motors or other actuators controlling each degree of freedom in the leg

system have a finite response speed to any given demand. If the output

of the network changes faster than this, the leg actuation will lag behind.

Speed of response is typically quoted under no-load conditions and will often

slow considerably under load, depending on the specifics of the actuators.

This is simply modelled by limiting the speed of movement to a maximum of

60◦/s (or π/3 radians/s). This prevents the evolution of infeasible systems

which oscillate as quickly as possible with an infinitesimal amplitude. In

combination with the equations above, these expressions completely define

the mapping from node output to foot movement. In the simulation, the leg

lengths (l1 and l2) were both 0.1m, and the initial height (h) was 0.05m.

The fitness of each controller is simply the distance that body is moved

in the simulation time. For the evolutionary mechanism we must define a

maximum achievable fitness from which the error for each individual is cal-

culated at the end of each generation. In this case, the maximum achievable

fitness can be calculated using trigonometry and expressed in a simplified

form as below:

fmax =
2Tπ

√

(l1 + l2)2 − h2 sin(π/4)

s
(III.3.10)

223

Where T is the simulation duration, l1 and l2 are the limb lengths, h is the

body height and s is the speed limit in radians per second. This maximum

value is used to normalise the fitness scores achieved. It should be noted

that this score is an absolute maximum, based on the geometry of the leg

and the maximum speed of movement. It does not take into account the

need to decelerate and reverse direction at the end of each swing and various

other factors which cause the maximum fitness of any realisable gait to fall

somewhat below this theoretical value. Results presented are in terms of

this normalised fitness unless otherwise stated.

III.3.1.3 Results

The maximum fitness achieved in the final generation of five evolutionary

runs is presented in Table III.3.1 for each of the different delay types de-

scribed in Chapter II.6. Each run consisted of 200 generations with an

initial population of 1000 individuals. The task under investigation is en-

tirely deterministic, in the way that with no noise added to the system and

constant starting conditions across all simulations the results for a particu-

lar network configuration are exactly repeatable, and therefore only a single

trial run per individual per generation is required. This determinism was

also manifest in a rapid rise from initially poor fitness scores to a stable

maximum fitness over the first 50-100 generations, depending on the run.

This trait was observed across all of the runs. What follows is a statistical

analysis of this data with further discussion and analysis of detail regarding

the structure of evolved solutions and their behaviour.

These 20 data are then ranked from lowest to highest, with tied values

bearing the average rank of the group, to obtain the ranks shown in Table

III.3.2. These ranks are summed for the four groups to obtain R1 = 15,

R2 = 67, R3 = 52 and R4 = 76, as shown in Table III.3.2. Also given

in the table are the average ranks for each group, 3.0, 13.4, 10.4 and 15.2

224

Run
Delay Type

None (x,y) Pattern Direct

1 0.016667 0.120365 0.119130 0.120616

2 0.016667 0.120795 0.116318 0.119786

3 0.016667 0.108460 0.118181 0.116552

4 0.016667 0.119414 0.117337 0.119648

5 0.016667 0.112427 0.112341 0.119240

Table III.3.1: Maximum Final Generation Normalised Fitness

Delay Type

None (x,y) Pattern Direct

3 18 13 19

3 20 9 17

3 6 12 10

3 15 11 16

3 8 7 14

Rj 15 67 52 76

R̄j 3.0 13.4 10.4 15.2

Table III.3.2: Ranked Results

respectively.

Now with these data, we may compute the value of KW (taking into

account the single group of tied values for the non-delayed group):

KW =

12

N(N + 1)

∑k
j=1 njR̄

2
j

− 3(N + 1)

1−
[
∑g

i=1(t
3
i − ti)

]

(N3 −N)

(III.3.11)

225

KW =

12

20(20 + 1)
[5(3.0)2 + 5(13.4)2 + 5(10.4)2 + 5(15.2)2]

− 3(20 + 1)

1−
[

(53 − 5)
]

(203 − 20)
(III.3.12)

KW =
75.39− 63

0.98
(III.3.13)

= 12.58 (III.3.14)

Since the observed value of KW (12.58) exceeds 7.82, its probability of

occurring under H0 is less than α and so the hypothesis that delays do not

improve the performance in this case is rejected.

Further to this result, we wish to make a comparison between the various

methods for determining the delays. If we take the differences between the

average rankings R̄j for each of the six possible comparisons, we have:

|R̄1 − R̄2| = |3.0− 13.4| = 10.4 (III.3.15)

|R̄1 − R̄3| = |3.0− 10.4| = 7.4 (III.3.16)

|R̄1 − R̄4| = |3.0− 15.2| = 12.2 (III.3.17)

|R̄2 − R̄3| = |13.4− 10.4| = 3.0 (III.3.18)

|R̄2 − R̄4| = |13.4− 15.2| = 1.8 (III.3.19)

|R̄3 − R̄4| = |10.4− 15.2| = 4.8 (III.3.20)

Here, za/k(k−1) = z0.05/4(4−1) = z0.0375 ≈ 1.78. The critical difference in

average rank is therefore given by:

za/k(k−1)

√

N(N + 1)

12

(

1

nu
+

1

nv

)

= 1.78

√

20(20 + 1)

12

(

1

5
+

1

5

)

(III.3.21)

= 1.78
√
14 (III.3.22)

= 6.66 (III.3.23)

We can therefore conclude that all the delayed systems achieve a signifi-

cantly higher fitness score compared to the non-delayed, but that no differ-

226

ence can be detected within the different methods for determining delays for

the given significance level of α = 0.05.

Figure III.3.2 presents a sample result from one of the five runs where

the time delays are directly controlled by the evolutionary process. These

results are typical of high fitness individuals and serve to illustrate the kind

of solution reached. Figure III.3.2a shows how the individual accrued fitness

over the duration of the simulation through repeated cycles where the foot

was in contact with the ground and moved the body forwards at a fairly

constant speed. Periodic plateaus are readily apparent where the foot lifted

off the ground as it returned to begin the cycle again. The network which

governed this behaviour is shown in Figure III.3.2b. Positive weights are

shown in black and negative weights in red, with the gradient indicating the

direction of information flow and the thickness corresponding to the strength

of the connection. The three principle nodes governing the control of the leg

angles are at each point of the triangle, with the size of the node proportional

to its time constant. Each information store along each synapse is marked

with a grey point with the total per synapse corresponding to the number of

timesteps by which the propagating information was delayed. Key features

to observe are additional intermediate node and synapses added during the

course of evolution, most notably the self-recurrent synapse which typically

generates much of the oscillatory behaviour.

The output of the neurons is shown in Figure III.3.2c. It can be seen

that the trajectory is initially undulatory, as the initial conditions stored

in each synapse propagate through and affect the dynamics, but quickly

approaches a stable orbit. This effects the movement of the foot shown in

Figure III.3.2d where an oscillatory cycle exists, raising and lowering the

foot into and out of contact with the ground, propelling it forwards.

This behaviour is observed in all of the delayed systems. The non-delayed

systems, by contrast, are unable to oscillate within the limitations of this

227

experiment, even with the addition of recurrent synapses and additional

genetic elements as evident in the successful (delayed) systems. This limited

their fitness to a single ground stroke, moving the body forwards to the

limit of the leg’s range of movement. The result of this is a very defined,

but low, maximum fitness which was easy to achieve and which is evident

in the lack of variability between trials of the non-delayed system. Whilst

CTRNNs are well known for their ability to oscillate, this showcases the

enhanced ability for small delayed networks to demonstrate this behaviour

in a manner controllable and exploitable by an evolutionary process.

Analysis of the genome structure for evolved solutions, as per Section

III.2.1.3, was undertaken and the results presented in Figure III.3.3. With

this information we can make some judgements as to the suitability of the

minimal genotype selected for this experiment. Common features to all

of the surfaces plotted are the linear relationship between the number of

neurons and the number of synapses. This was to be expected for a number

of reasons. The minimal genotype was fully connected and so an increase

in synapses beyond self-recurrent connections required the addition of more

neurons. Also, the inclusion of further nodes in the network necessarily split

existing synapses into two, further increasing their number.

The results of this analysis for the non-delayed networks shown in Figure

III.3.3a is telling, as there is a very defined maximum fitness and this is

achievable over a wide range of genome configurations. Even large numbers

of additional neurons and synapses were capable of reaching this peak. In

contrast to this, the picture is very different when we consider the case where

the delays are encoded by controlling the position of nodes in the network

directly, see Figure III.3.3b. Here, peak fitness is achieved with networks

only slightly larger than the minimal genotype with a marked falloff to a

minimal fitness plateau for larger networks. The peak is observed within 3-5

neurons and 6-20 synapses.

228

(a) Fitness Time History

(b) Best Evolved Network

Figure III.3.2: Single Leg Task Sample Result

229

(c) Neuron Outputs

(d) Foot Movement

Figure III.3.2: Single Leg Task Sample Result (continued)

230

(a) None

(b) Position

Figure III.3.3: Single Leg Task Genome Analysis

231

(c) Pattern

(d) Direct

Figure III.3.3: Single Leg Task Genome Analysis (continued)

232

When the position of the network nodes, and therefore the delays, was

encoded using a pattern network, as in Figure III.3.3c, the fitness peak was

enlarged and biased slightly in favour of increased number of synapses. In

the above case, the minimal genotype of 3 neurons and 6 synapses had near

optimal performance with only a slight increase due to further complexity,

but this is more marked here. The minimal structure only achieved around

80% of the average population maximum, with the peak observed at around 5

neurons and 20 synapses. Whilst smaller, there is still an appreciable plateau

of minimal fitness which was explored during evolution but in which no

good solutions were found. The surface shows considerably more noise than

the other cases because this visualisation ignores the effect of the pattern

network which completes each individual’s genome.

Figure III.3.3d shows the case where the delays were encoded directly,

independent of the spatial configuration of the network. There is no such

marked fitness drop-off as the size of the network increases. Whilst the

optimum is still around 6 neurons and 20 synapses, good solutions were

found when the network was double this size with only a small degradation

in fitness.

From this, it is clear that the spatial encoding of the delays in the network

causes a marked fall in the ability of evolution to find fit solutions for larger

networks. It seems clear that this is due to the constraints applied by such a

representation, as it becomes complex or impossible to find configurations of

node positions which generate good behaviour. This could be considered in

both a positive and negative light, in that in the comparison of performance

between both spatial methods and the direct encoding there was no clear

difference in performance. It is possible that the biologically inspired spatial

constraint is helping to limit the search to within an optimal area (the

peak fitness structure was roughly the same, independent of the method for

finding the delays). However, whilst this may be true it is likely that for more

233

complex tasks which may require more complex networks to solve them this

manner of representation may prevent high fitness solutions being found.

As discussed in Chapter II.6, the extension of the spatial representation

into 3D increases the number of possible delay configurations and thus aids

evolutionary searches for larger networks.

What is clear however, is that the evolutionary process has been ob-

served to correctly explore solutions of increased complexity which exceed

that of the peak fitnesses observed. We can therefore be optimistic that

the parameters of the evolutionary search correctly matched that of the ex-

perimental design and that at no point was the process constrained from

reaching regions of higher fitness.

III.3.2 Quadruped Walking

III.3.2.1 Hypothesis

As stated in Section II.3.1, a natural extension of the single leg system

considered in Section III.3.1 is to assemble multiple legs together to simply

model a wide range of biological legged creatures. The bulk of Chapter II.3 is

concerned with the development of a computationally minimal environment

suitable for the evaluation of evolved gaits within a GA. Quadrupeds have

been widely studied in ER, including recent work on the application of

HyperNEAT by Clune et al. [30], see Section II.1.5. This makes them

highly relevant for inclusion here when considering the overarching research

question of Part I to apply delayed systems to commonly studied tasks in

ER for benchmarking and comparison.

For the evolution of a stable gait it is necessary to coordinate the move-

ment of all limbs of the robot, so that it moves and remains either statically

or dynamically stable. A manually designed gait was evaluated in Chapter

II.3 and it has been hypothesised that a CDRNN system would provide a

234

performance enhancement over a simpler CTRNN model. Similarly to the

single leg experiment above, the fitness of an individual is simply the dis-

tance that the body is propelled in a given time. A better controller will

move the robot further.

Therefore, the null hypothesis H0 is that including delays in the network

does not increase the fitness (ability to walk) of a quadruped robot controller.

The alternative hypothesis H1 is that including delays does increase the

fitness.

Experimental Design

The simulated robot was identical to that developed in Section II.4.1 and

used in Chapter II.3 and similarly the success (fitness) of the robot was

determined by the straight line distance travelled from the origin in the

ground plane over the duration of the simulation (f =
√

x2 + y2). The

robot was initially given a neutral stance of α = 0.0, β = π/8 and γ = π/2

so that it was stably supported on all four legs with the body raised off the

ground. The leg motors had a maximum speed limit of π radians per second

and each leg was controlled by two motor neurons. One controls the swing

of the leg (α) and the other controls whether the leg is raised or lowered

(β and γ). For the four legs of the robot there are therefore eight motor

neurons. This is a slight simplification over the single leg experiment, but it

reduces the size of the network structure. The desired motor angles at each

stage were determined as below:

αl =
π

4
(−1 + 2ol,1) (III.3.24)

βl =
π

4
(−1 + 2ol,2) (III.3.25)

γl =
π

8
(4 + 3ol,2) (III.3.26)

Where αl, βl and γl are the joint angles for leg l, and ol,1 and ol,2 are the

two motor neurons for leg l. If the desired change in leg angles per time

235

step exceeds the speed limit of the motors, then the angles are moved at

maximum speed.

As the experiment in Section III.3.1 proved that systems without delays

could not demonstrate the required oscillatory behaviour this experiment

was designed to avoid a trivial replication of this result. Along with a con-

stant bias node, there is one other input to the network which is a square

wave varying from -1 to +1 with a period of four seconds. This enabled

systems without delay to use the driving oscillations and shifted the focus

to how leg oscillations could best be coordinated in time to generate a stable

gait.

The simulation and leg movements (interpolated between motor neuron

outputs) were updated every 0.0002s with network updates synchronously

every 0.01s. Should the robot become inverted the simulation is ended. The

maximum fitness of the robot was taken to be the same as for the single leg

case as defined in Equation III.3.10, with the fitness of each individual simply

being the Cartesian distance from the origin at the end of the simulation.

III.3.2.2 Results

The maximum fitness achieved throughout three evolutionary runs is pre-

sented in Table III.3.3 for each of the different delay types described in

Chapter II.6. Each run consisted of 50 generations with an initial popula-

tion of 100 individuals and one trial per individual per generation as the

simulation is deterministic. As the system was provided with an oscilla-

tory input, the scope of the evolutionary search is really optimisation rather

than synthesis and so should be solvable using smaller populations over fewer

generations than in the other tasks. Even with the attempt at performance

optimisation through simulation development in Chapter II.3 this is still the

most computationally expensive simulation reported in this Thesis.

These 12 data are then ranked from lowest to highest to obtain the

236

Run
Delay Type

None (x,y) Pattern Direct

1 0.488852 0.516227 0.516227 0.576120

2 0.576191 0.561164 0.596107 0.597205

3 0.510423 0.651434 1.838552 0.423061

Table III.3.3: Maximum Normalised Fitness in Each Run

Delay Type

None (x,y) Pattern Direct

2 4 4 7

8 6 9 10

3 11 12 1

Rj 13 21 25 18

R̄j 4.33 7.00 8.33 6.00

Table III.3.4: Ranked Results

ranks shown in Table III.3.4. These ranks are summed for the four groups

to obtain R1 = 13, R2 = 21, R3 = 25 and R4 = 18. Also given in the table

are the average ranks for each group, 4.33, 7.00, 8.33 and 6.00 respectively.

Now with these data, we may compute the value of KW simply as there

are no tied values:

KW =

12

N(N + 1)

k
∑

j=1

njR̄
2
j

− 3(N + 1) (III.3.27)

KW =

12

12(12 + 1)
[3(4.33)2 + 3(7.00)2 + 3(8.33)2 + 3(6.00)2]

− 3(12 + 1)

(III.3.28)

237

KW = 40.97− 39 (III.3.29)

= 1.97 (III.3.30)

Since the observed value of KW (1.97) does not exceed 7.82 its probability

of occurring under H0 is greater than α, and so the hypothesis that delays

do not improve the performance in this case is accepted.

Further to this conclusion, we wish to make a comparison between the

various methods for determining the delays. If we take the differences be-

tween the average rankings R̄j for each of the six possible comparisons, we

have:

|R̄1 − R̄2| = |4.33− 7.00| = 2.67 (III.3.31)

|R̄1 − R̄3| = |4.33− 8.33| = 4.00 (III.3.32)

|R̄1 − R̄4| = |4.33− 6.00| = 1.67 (III.3.33)

|R̄2 − R̄3| = |7.00− 8.33| = 1.33 (III.3.34)

|R̄2 − R̄4| = |7.00− 6.00| = 1.00 (III.3.35)

|R̄3 − R̄4| = |8.33− 6.00| = 2.33 (III.3.36)

Here, the critical difference in average rank is the same as for Section III.2.1.3

(5.24) and we can therefore conclude that none of the encoding methods are

statistically different for the given significance level of α = 0.05.

No method for encoding time delays is demonstrably better than a stan-

dard CTRNN model by the measure of the simple fitness measure employed

in this experiment. Even with the relatively small population and number

of generations all runs successfully generated some form of locomotion.

Given that the maximum fitness of unity would require instantaneous

transition from maximum speed one way to maximum speed the other with

totally splayed legs the fitnesses observed were very high. There were three

distinct strategies adopted across all runs which were qualitatively more or

less successful despite achieving comparable fitness scores.

238

Figure III.3.4 shows an example result of a final generation solution

from a directly encoded delay network. Figure III.3.4a and Figure III.3.4b

show the top and side views respectively of the simulated trajectory. An

exaggerated zig-zag pattern can be seen as the robot moves forwards with a

relatively flat body throughout. The predicted torques are shown in Figure

III.3.4c which are in-line with those developed during the manually designed

gain in Chapter II.3 with occasional transitory loads of up to 0.8 Nm. This

gait uses all four legs to propel the robot fairly straightly in the positive x-

direction. As can be seen from the torque diagram the network has scheduled

leg oscillations to form a stable (1,4,3,2) quadruped crawling gait which was

the goal of the exercise.

Systems without delays did not appear capable of scheduling four leg

oscillations but instead relied on a tripod gait to move the body forwards.

This was successful in the manner that it generated statistically similar

fitness scores to the sample result shown but are less suited to real world

environments.

A third notable strategy was demonstrated in the final run of the pattern

encoded delay network which achieved a fitness significantly above that of

the theoretical maximum. This violation is not too significant as the jus-

tification of the maximum fitness calculation was predicated on the robot

moving forwards. This gait scuttled crab-wise which combined both the β

and γ leg angles to enable swifter leg movement, and therefore a greater

maximum fitness, than the α leg angle based calculation. Whilst the fitness

achieved in this manner was high the gait was not robust.

Both delayed and non-delayed dynamic systems have been shown to be

able to generate a locomotory gait satisfactorily with network inputs as

described above. Whilst there was no statistically significant difference be-

tween their fitness scores in a more qualitative manner the delayed systems

were shown to be capable of a more realistic quadruped gait. Whilst mea-

239

−0.2 0.0 0.2 0.4 0.6 0.8

x / m

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

y
/
m

t=0.00s

t=5.00s

t=10.00s

(a) Top View

−0.2 0.0 0.2 0.4 0.6 0.8

x / m

−0.2

−0.1

0.0

0.1

0.2

0.3

z
/
m

t=0.00s
t=5.00s t=10.00s

(b) Side View

Figure III.3.4: Quadruped Walking Example Trajectory

240

0 2 4 6 8 10
Time / s

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
or
q
u
e
/
N
m

Hip 9

nα

nβ

nγ

0 2 4 6 8 10
Time / s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
or
q
u
e
/
N
m

Hip 10

nα

nβ

nγ

0 2 4 6 8 10
Time / s

−0.1

0.0

0.1

0.2

0.3

T
or
q
u
e
/
N
m

Hip 11

nα

nβ

nγ

0 2 4 6 8 10
Time / s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
or
q
u
e
/
N
m

Hip 12

nα

nβ

nγ

G 50 P 100 Generation 50 Fitness = 0.633689

(c) Leg Torques

Figure III.3.4: Quadruped Walking Example Trajectory (continued)

241

sures such as the average height and flatness of the body, the contact time

for all legs and the degree of leg movement could be included in a more

elaborate fitness measure designed to reward those behaviours we see the

be better in some qualitative manner. This is not trivial however and even

if a more complex fitness function avoids the ‘bootstrapping problem’ the

results may well be otherwise than desired, and so often simplest is best.

That said it would be interesting to further explore this experiment without

an oscillatory input and with some form of incremental evolution for a larger

population over a greater number of generations.

242

Chapter III.4

Conclusions

In this Part experiments across a wide range of commonly studied tasks in

ER were reported with the aim of proving if time delays enhanced perfor-

mance, if smaller solution were possible and how the spatial encoding of

delays compared to direct encoding. What emerged was a mixed picture,

which will briefly be summarised here.

Investigation into the evolution of gaits for a simple single leg system

without sensor input demonstrated a massive boost in fitness when delays

were allowed into the system. Without them, a CTRNN network of that size

simply was not able to develop the oscillations required to drive the gait.

Extending this work to the 3D simulation of quadruped gaits, as de-

veloped in Chapter II.3, all network types were capable of developing loco-

motion with a square-wave oscillatory input the network to avoid a trivial

replication of the single leg results. Whilst this was true, it was only the

delayed systems that demonstrated the ability to schedule a quadruped gait

effectively with all non-delayed solutions relying on tripod gaits.

Given the combined results of the single leg and quadruped walking

experiments it seems that delayed dynamic systems are well suited to the

control task with the facility to distribute responses in time to coordinate

effector movement and to generate self-generating oscillatory network ele-

243

ments from a single node. There are many and varied potential avenues of

exploration available which are beyond the scope of this Thesis, but could

be fascinating subjects of future study.

Other examples in adaptive behaviour have been less positive. Delays

have either had no effect, or slightly decreased the achievable maximum

fitness of the system (without seriously harming the ability to solve the

problem). This may largely be put down to the choice of fitness measures,

but it exemplifies that there is a cost associated with the increase in com-

plexity which may be unjustified if there is no clear benefit as there was to

the single leg system.

What is required, and what has thus far eluded discovery, is a sufficiently

complex, but still solvable, task where the delays may present an advantage.

Without this we can simply conclude that delays have been shown to make

a significant improvement to legged locomotion applications, and may be

confidently applied to other domains which require the same characteristic.

Allowing for much simpler systems to solve these problems is a significant

advantage, but this has not yet been proven in the search for intelligent

adaptive behaviour.

The conclusions that can be drawn as to the efficacy of the different

methods for determining delays are less clear. Certainly the spatial encoding

of delays did not cause a drop in fitness over the direct method. In one case

(the chemotaxis example) the pattern encoding method was the only delay

case which was indistinguishable from the non-delay case at that significance

level (α = 0.05). However, these techniques clearly restricted the search

to lower complexity solutions or led to a significant falloff as the network

structure became more complex. This would suggest that for anything other

than a simple genotype, the direct method for encoding delays is likely most

appropriate.

Ultimately, it has been demonstrated that delayed dynamic neural sys-

244

tems are at least as capable as traditional CTRNNs for the range of experi-

ments reported here. The additional gamut of dynamic behaviour available

upon the introduction of delays, as explored in Chapter II.2, directly en-

abled a significant boost in fitness for the three-node single leg walker. By

adapting the synaptic delays to coordinate limb movement delayed systems

enabled a more sophisticated gait to evolve than was seen in systems with-

out delays. In these cases there is a direct link between additional dynamics

introduced and a reasonable hypothesis for improved performance. In the

experiments in adaptive behaviour, where there is not such a direct link, no

such discernible improvement was witnessed. Whilst we hypothesise that

the ability of such delayed networks to generate pattern generating nodes

which may be switched on or off and combined in an enormous variety of

ways may be useful in ER this was not borne out by the experiments under-

taken here. Whether the experiments simply did not require such structures

for success or the fitness functions did not reward or encourage such solu-

tions is a matter for future study. With the success in locomotion tasks

and the open potential for experiments in adaptive behaviour delayed dy-

namic systems for evolved control remain an interesting and promising field

in complex systems research.

245

Part IV

Summary & Conclusions

246

Summary & Conclusions

This Thesis proposes the inclusion of connection time delays within the

modelling of recurrent dynamic networks in the search for intelligent control

architectures. The effect this has on the dynamics of the systems has been

comprehensively determined, and a scheme for introducing them into an GA

developed. A range of methods for determining the time delays are proposed

and their efficacy in developing fit solutions across a range of typical ER tasks

evaluated. In this Chapter the various conclusions contained in this Thesis

are brought together and the achievements and weak points are presented

alongside potential topics for future investigation.

In Chapter II.2 it was shown how adding connection transport delays to

RNNs enables single neuron oscillation without external input, in the man-

ner of a CPG, and smaller circuits to express complex switched oscillatory

behaviour than previously possible. This behaviour is fundamentally differ-

ent from the traditional CTRNN model and the enhanced capability could

be harnessed to generate behaviour and control architectures previously im-

possible.

The research questions in Part I encourage the application of these sys-

tems to ER tasks in adaptive behaviour and legged robot locomotion. To

support investigation of the latter a novel computationally efficient, min-

imalistic approach to a dynamic simulation environment was successfully

developed and validated using a real robot.

To obtain realistic and realisable results in ER it is essential ‘close the

loop’ between hardware and software, as it is through the interaction of an

embodied controller with the environment that behaviour is emergent. In

Chapter II.4 a simple, low cost quadruped robot was developed to validate

the simulation from Chapter II.3 and 2D wheeled robot models, using hard-

ware derived parameters, were developed to support the experiments from

247

Chapters II.5 and III.2. A common code architecture was developed to guar-

antee compliance and equivalence between the PyPy accelerated software for

genetic optimisation and real-time Python control.

Time delayed RNNs were applied for the first time, to the author’s knowl-

edge, to a robotic control task in Chapter II.5 commonly studied in the field

of ER in accordance with the research questions. Evolved controllers suc-

cessfully solved the T-junction task and it was shown through sensitivity

analysis that the solution was highly dependent on the configuration of de-

lays and that removing the delays in the system reduced its ability to solve

the task.

To study CDRNNs within the context of ER it is necessary to encode

the delay values within a genome and subsequently map it to a phenotype.

The experiments in Chapter II.5 adopted a simple method by which the real

valued delays are encoded in the genome directly. However, the research

question asks how else we might encode these delays and what effect this

might have on the efficiency or capability of evolved solutions. In Chapter

II.6 a range of methods are presented based upon the novel, biologically

inspired concept of spatial representation of the network and determina-

tion of delays based upon connection lengths. Such methods were shown

to be potentially more efficient (requiring fewer additional parameters than

the direct method) but equally might constrain the complexity of possible

solutions. These hypotheses were tested throughout Part III through ap-

plication of each method to a range of commonly studied tasks in adaptive

behaviour and robot locomotion and comparison to the behaviour of unmod-

ified CTRNNs.

The enhanced dynamic behaviour discovered in Chapter II.2 demonstra-

bly enabled a three neuron network without external input to establish an

efficient single leg tetrapod gait which was impossible without delays. Spa-

tial encoding methods resulted in a marked fitness falloff as the number of

248

neurons and synapses increased which may prevent high fitness solutions be-

ing developed for more complex tasks. When extended to a quadruped gait,

using the simulation of Chapter II.3, there no quantitative fitness difference

between the delayed and non-delayed systems. However, only the delayed

systems were observed to correctly schedule the leg oscillations to form a

stable quadruped crawling gait with the others relying on simple tripod gaits

to move the body forwards.

Within the experiments reported on adaptive behaviour in Chapter III.2

there was no supporting evidence that time delays enhanced performance

or allowed for smaller solutions than previously possible. Whilst there was

no metabolic cost with evaluating larger networks and thus no evolutionary

pressure to generate the smallest possible solutions, analysis of the evolved

genomes typically demonstrated an increase in fitness once the initial min-

imal genotype was elaborated. Therefore it should have been possible to

validate the hypothesis should the data have supported it.

Thus we have shown that adding time delays into CTRNNs increases

their dynamic capability which may be harnessed to achieve behaviour pre-

viously not possible, particularly when applied to legged robot locomotion.

This Thesis has considered a number of methods by which the delays can be

governed by an EA but for the majority of cases a simple direct encoding

is likely most suitable as no restriction is placed on the possible configura-

tion of delays. Whilst legged robot control applications were demonstrably

well suited to this control architecture, no such observation was made with

reference to commonly studied tasks in adaptive behaviour. Whilst the dy-

namic capabilities of the enhanced networks are clear, and one can certainly

anticipate their utility in building complex and powerful neural circuits, the

experiments chosen did not require such features for optimal solutions to be

found.

249

Achievements

For the first time synaptic time delays have been introduced into the CTRNN

model which has been the mainstream neural network model of choice in ER

for decades. Time delays have previously only been used in recurrent neural

network models for the preconditioning of sensor data. In contrast to this,

here they are advocated for the improved development of adaptive behaviour

and legged robot gaits. It was hypothesised that the increased dynamics of

the system may enable behaviours previously unattainable or less complex

solutions for established problems.

The dynamics of the modified form of CTRNN, the CDRNN, was inves-

tigated using a single self-recurrent node. Previous studies of DDE systems

have tended to focus on the stability rather than the dynamics which is the fo-

cus of this research. It is the dynamic responses which are different from the

established model and may be harnessed for increased performance. Even a

single delayed node has been shown to be capable of acting as a pattern gen-

erator, which is not possible in the equivalent CTRNN. This capability may

greatly enhance larger systems, as such pattern features may be expressed

or suppressed at any point in the network without explicit stimuli, and in

much smaller systems than previously possible.

With clear potential benefits to the evolutionary search for legged robot

gaits a minimalistic 3D simulation was developed in the spirit of Jakobi

for the computationally efficient evaluation of evolved behaviour. As the

number of limbs on a robot decreases so does the inherent stability of the

design. For a quadruped it is necessary to consider 3D dynamic stability in

evaluating gaits, whereas early work in hexapod locomotion was typically

1D in nature. Modern robotics simulations typically interface with mature

physics engines, such as Open Dynamics Engine (ODE), but this can place

significant constraints on the researcher. In the case of this research the

EA used was written in Python and accelerated using PyPy, which requires

250

pure Python modules and cannot integrate with standard rigid body simu-

lation packages. A simulation was designed which simplified the assembly

of the robot into a single body to which forces are applied from legs driven

by trigonometric relationships. Impulse based simulation techniques were

applied to allow single step solution in parallel with the neural network eval-

uation. Simulation results for a manually designed gait were compared to

a physical robot developed for the purpose of the simulation validation and

a high degree of accuracy was observed. Crucially, the predicted distance

travelled was almost identical between simulation and reality which is the

main method by which evolved solutions are evaluated.

A number of novel methods for encoding time delays into the genome

for artificial evolution were developed. Most significantly, methods of spatial

representation of the network where the time delays are determined by the

geometrical length of the connections between nodes were developed. A co-

evolved CPPN was harnessed to place a gradient pattern under evolutionary

control which in turn modified the position of network nodes through a hill

climbing algorithm. These methods of representation were analysed and are

expected to be more efficient than direct delay encoding for larger networks,

but also significantly restrict the configuration of delays achievable.

Using these methods time delay networks were applied to a a range of

tasks commonly studied in ER, from adaptive behaviour to legged robot

locomotion. The pattern generating ability of delayed nodes enabled good

solutions for single leg systems where it was not possible before. No fitness

difference between methods was discernible, demonstrating that for small

networks the restriction of values that delays could take had no effect. How-

ever, it is equally true that for such a small network the efficiency gains for

position encoding are small, and pattern encoding is likely worse.

251

Weak Points

The overarching issue with respect to the evolutionary search for adaptive

and intelligent behaviour is its failure to achieve good results to realistic

problems, despite initial promising progress with simplified models [45]. This

issue is thus far common to all concepts proposed in the search for true AI.

This is perhaps one of the most complex and devoutly sought topics of

research in all of human endeavour and it is perhaps not surprising that

there are a myriad of complex issues. Briefly then, those most applicable to

this research must be discussed and then more specific weaknesses presented

in context.

Evolutionary methods are, for all their strengths, subject to a number

of constraints. Chiefly among these is the computational cost of simulating

large populations over a substantial number of generations. Biological evo-

lution had the luxury of very large populations and an awfully long time

(unless one considers micro-systems of bacteria which may evolve on much

more rapid time scales e.g. in the human gut). The computational capacity

at our disposal has increased dramatically since the early days of ER, but

still falls well short of that we might anticipate will be required to investigate

truly complex systems.

Central to evolutionary methods is the requirement to rank individuals

in the population based upon some measure of their ‘fitness’. The majority

of experiments in ER use an explicit fitness function represented mathe-

matically and based on quantifiable measures in the system. This causes

difficulties not only when it is difficult to characterise success in this man-

ner, but also when perceptibly simple fitness measures lead to undesirable

solutions through the Law of Unintended Consequences. This can make it

extremely difficult, and a subject of significant trial and error, to arrive at a

fitness function which behaves as the human experimenter desires. Often a

task may appear too complex for early generations, resulting in a uniformly

252

poor score and the evolutionary search downgrading to a random sampling

(the Bootstrap Problem). From the beginning a number of proposals have

been made to resolve this such as competitive co-evolution or supervised

evolution. These present their own problems in the way that tasks must

be restructured to fit the framework, or in the practical population and

generation limits for human supervised evolution.

More specifically, the failure to prove the hypothesis suggesting that

delays may increase performance and reduce network sizes for adaptive be-

haviour tasks may be said to be a failure to find the right task to investi-

gate. Whilst the tasks were selected to establish the performance of delay

enhanced networks within the context of established ER literature a more

complex or tailored task would be more likely to highlight any performance

gains. There is an inherent difficulty in finding the limits of complexity which

can reasonably be solved using current computational techniques. Even ‘in-

telligent’ search algorithms such as GAs require a significant number of

parameters which greatly effect the search, i.e. how broad it is or how long

it should run for. Whilst there is evidence that the search spaces of GAs

are not as vast as one might expect, it is still a complex problem. However,

with that said complex time delay systems are prevalent in the natural and

engineered worlds. The challenge is therefore to find examples with suffi-

cient complexity and advantages for a time delayed system but which are

still solvable.

Further Work

Should it be warranted, there are a number of avenues for future consid-

eration as extensions to the research presented in this Thesis. It has been

shown that for simple problems in the field of adaptive behaviour CDRNNs

have thus far failed to demonstrate any improvement in capability. Whilst

the extended dynamics are clear, the true validation of this work would

253

be to design an experiment where these dynamics are desirable. In Chap-

ter II.2 a simple example of how a small CDRNN system could behave as

a self-switched pattern generator was used as an illustration of the com-

plex behaviour possible. Unsurprisingly the main avenue for further work is

therefore in the application of the techniques developed to more adventurous

examples.

The spatial representation of network delays described here uses a linear

model to relate changes in connection length to the delay values. As men-

tioned in Chapter II.6 a simple extension would be to consider a range of

non-linear mappings which would allow for the exploration of a wider range

of delay values or allow for finer tuning.

The analysis of possible configurations for 2D spatial representations

highlighted the constraints the encoding imposed. Chapter II.6 also pro-

posed the extension of the network geometry into 3D in order to allow for

a greater range of connection configurations. This would add a correspond-

ing increase in evolutionary parameters, but would potentially be worth in-

vestigating given the evidence presented above that position encoding may

slightly hamper the evolution of optimal solutions whilst not rendering them

impossible.

Real robots have been used throughout this Thesis as inspiration and

for validation of the methods proposed. Given the promising results for the

application of CDRNN systems to robot gaits, a fascinating line of enquiry

might be application to evolution in hardware of real legged robots. In the

opposite direction the techniques established for deriving dynamic systems

with substantial delays could as well be applied to the modelling of biological

systems such as complex eukaryotes.

254

Summary

In this Thesis the concept of including connection delays into RNN mod-

els for enhanced adaptive behaviour and robot gaits has been explored. A

simple modification to the standard CTRNN enables a complex suite of

dynamic behaviour which may be harnessed in our search for intelligent sys-

tems. These dynamics have been shown to be efficacious in the evolution of

gaits but, despite potentially useful mechanisms clearly available, no percep-

tible advantage for experiments in adaptive behaviour was detected in the

examples used.

Of the various methods proposed for encoding network time delays the

spatial representation method was shown to be more efficient for larger net-

works, but tended to restrict the range of possible solutions and could thus

impair fitness. For anything other than a simple genotype a direct represen-

tation of time delays in the system is the most viable.

The majority of techniques or advances in science and AI present select

advantages to tailored cases. The work presented in this Thesis suggests

the potential for useful application to real world systems of robot gaits but

failed to demonstrate tangible improvements to the evolution of adaptive

behaviour. In replicating previous works to establish a proven record of

performance, we have seemed to eliminate the necessary complexity which

might vindicate these methods. The much used form of the CTRNN has

been very popular for its power and flexibility and it would require some-

thing further by way of experimentation to capture the broader dynamics

introduced in this work. These extended dynamics are clear and one can

easily construct toy circuits which might be generated and assembled by

evolutionary methods to solve complex behavioural problems. The ultimate

summary of this Thesis must therefore be one of promise, as yet largely un-

fulfilled, but presenting a fascinating facet of complex systems research for

future exploration.

255

Part V

Appendices

256

Appendix V.A

Numerical Integration

At the core of investigating dynamic systems is the numerical integration

of differential equations. There are a vast array of methods for acheiving

this, with a whole range of benefits nad disadvantages. Some are tailored for

specific purposes, but the majority of Evolutionary Robotics literature uses

the simplest methods of all. In this Appendix two methods are outlined for

completeness. They are somewhat crude and inaccurate for anything other

than very small timesteps. However, the simplicity of their implementation

is a boon to those applications where we are considering mixed systems of

asynchronous updating dynamic networks and physical simulations.

V.A.1 Euler Method

This is the simplest possible approximation to the solution of a first order

differential equation, but it can be used for any order ordinary differential

equations.

ḟ ≈ f t+∆t − f t

∆t
(V.A.1)

f t+∆t = f t +∆tḟ (V.A.2)

257

Here, accuracy is sacrificed for simplicity and is largely determined by the

step size.

V.A.2 Verlet Integration

The Verlet integration method uses the first three terms of the Taylor ex-

pansion to obtain an approximation to the integral. This method is valuable

to us, as it is more accurate than the Euler method but still only requires

knowledge of the differentials at the current time step.

f(t+∆t) ≈ f(t) + ∆tf ′(t) +
1

2
∆t2f ′′(t) (V.A.3)

A variant of this procedure is known as Velocity Verlet integration which

manipulates the above expression to remove the requirement for knowledge

of the first derivative term.

f(t+∆t) ≈ 2f(t)− f(t−∆t) +
1

2
∆t2f ′′(t) (V.A.4)

This expression is undefined at t = 0, so the standard Verlet integration

method is used for the first step only.

V.A.3 Fourth Order Runge-Kutta Method

Whilst the majority of ER literature relies on the Euler method for inte-

grating dynamic neural network systems the standard numerical integration

scheme for phyiscal simulations is the Fourth Order Runge-Kutta (RK4)

method which uses the weighted average of derivatives at invervals during

each timestep. The scheme has local truncation error on the order of O(h5)
and total accumulated error is on the order O(h4).

If ẏ = f(t, y) and y(t0) = y0 then for successive timesteps (of interval

h) from the initial time t0 and corresponding initial condition y0 the next

value of y is given by:

258

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) (V.A.5)

tn+1 = tn + h (V.A.6)

For n ∈ N, where:

k1 = f(tn, yn), (V.A.7)

k2 = f(tn +
1

2
h, yn +

h

2
k1), (V.A.8)

k3 = f(tn +
1

2
h, yn +

h

2
k2), (V.A.9)

k4 = f(tn + h, yn + hk3), (V.A.10)

259

Appendix V.B

Recap of Selected Vector and

Matrix Mathematics

V.B.1 Skew-symmetric Matrices

A skew-symmetric matrix is defined as follows. If a = [ax, ay, az]
T , then:

ã =

0 −az ay

az 0 −ax
−ay ax 0

(V.B.1)

From this we can see that ãT = −ã.

V.B.2 Vector Dot Product

The dot product (.)of two vectors is defined as follows:

a.b =
n
∑

i=1

aibi = |a||b| cos θ (V.B.2)

Where θ is the angle between the two vectors.

260

V.B.3 Vector Cross Product

The cross product (×) of two vectors may be calculated in a number of ways,

but most suitable for our needs is by using a skew matrix (See (V.B.1)).

a× b =

0 −az ay

az 0 −ax
−ay ax 0

bx

by

bz

(V.B.3)

261

Appendix V.C

General Rotations and

Translations

To solve the EOM for three-dimensional dynamic simulation we must be

able to relate the coordinates of the feet of the robot from the body fixed

reference frame (x′, y′, z′) to the ground fixed reference frame (x, y, z). If

the vector s′P locates a point P in the x′, y′, z′ frame, then in x, y, z this

vector is As′P. When the body origin is at coordinates r in x, y, z. The

transformed vector is:

rP = r+As′P (V.C.1)

Similarly, if the body coordinate system is rotating as well as translating,

then the velocity of a point P which is stationary in the x, y, z frame is given

by:

ṙP = ṙ+ Ȧs′P (V.C.2)

Where:

Ȧ = ω̃A = Aω̃′ (V.C.3)

If the point P is moving with velocity ṡ′P this vector may simply be trans-

formed into the global frame and superposed with the velocity found in

262

Figure V.C.1: Euler’s Theorem

Equation V.C.2, to get:

ṙP = ṙ+ Ȧs′P +Aṡ′P (V.C.4)

The rotation matrix A is best represented through the use of Euler parame-

ters. Euler’s Theorem states that any rotation in 3D between two coincident

orthogonal coordinate systems may be defined by a single rotation (χ, pos-

itive counter clockwise) about an axis (defined by unit vector u), shown in

Figure V.C.1. Then:

e0 = cos
χ

2
(V.C.5)

e =

e1

e2

e3

= u sin
χ

2
(V.C.6)

p = [e0, e1, e2, e3]
T (V.C.7)

These must obey the Euler Parameter normalization constraint where pTp =

e20 + e21 + e22 + e23 = 1. The rotation matrix is then given by:

A = 2

e20 + e21 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e20 + e22 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e20 + e23 − 1
2

(V.C.8)

263

The inverse of the rotation matrix is simply it’s transpose, so:

A−1 = AT (V.C.9)

This allows us to easily transform vectors between the body reference frame

and the ground reference frame. Inspection of the EOM reveals that the

forces must be applied in the ground frame and the torques applied in the

body frame. This requires us to be able to perform the inverse transform of

that given in Equation V.C.1. Given a known vector s and using Equation

V.C.9, we can calculate s:

s′ = AT s (V.C.10)

We will know the coordinates of the feet in the body reference frame directly

in order to apply the sliding and reaction forces, but it would be easy to

calculate them from a global position with the location and orientation of

the body reference frame.

An additional matrix G is required to find ṗ and are made up of the

Euler Parameters which is intimately related to the rotational matrix A.

G =

−e1 e0 e3 −e2
−e2 −e3 e0 e1

−e3 e2 −e1 e0

(V.C.11)

264

Appendix V.D

Mass and Inertia of a

Uniform Body

The mass and inertial characteristics of a uniform body, of the type illus-

trated in Figure V.D.1, with mass density Γ are:

m = Γabc (V.D.1)

Jx′x′ =
1

12
m(b2 + c2) (V.D.2)

Jy′y′ =
1

12
m(a2 + c2) (V.D.3)

Jz′z′ =
1

12
m(a2 + b2) (V.D.4)

Figure V.D.1: Rectangular Prism, reproduced from [48]

265

Using the following formations:

J′ =

Jx′x′ 0 0

0 Jy′y′ 0

0 0 Jz′z′

(V.D.5)

As J′ is diagonal, finding its inverse is considerably simplified as we can use

the identity:

diag(a1, a2, ..., an)
−1 = diag(a−1

1 , a−1
2 , ..., a−1

n) (V.D.6)

To transform this into the global frame, we simply calculate:

J−1 = AJ′−1AT (V.D.7)

266

Glossary

1D

One-Dimensional. 102, 105, 221, 250

2D

Two-Dimensional. 135, 202, 219, 247, 254

3D

Three-Dimensional. 29, 103, 105, 107, 117, 133, 135, 194, 221, 243,

250, 254, 263

a priori

knowledge that is known independently of experience. 37, 50

AI

Artificial Intelligence. 23, 208, 252, 255

AL

Artificial Life. 212

animat

a contraction of anima-materials; an artificial animal including physi-

cal robots and virtual simulations. 31, 212

267

ANN

a mathematical model or computational model that tries to simulate

the structure and/or functional aspects of biological neural networks.

25, 27, 34, 39, 41–43, 46, 65, 75, 177, 189, 207

autonomy

the capacity of a system to make a decision about its actions without

the involvement of another system or operator. 56

BEC

Battery Elimination Circuit. 128, 139

biomimetic

mimicking biology. 199

CDRNN

Continuous Delayed Recurrent Neural Network. 74, 75, 78, 80, 86–89,

96, 158, 174, 175, 189, 191, 221, 234, 248, 250, 253, 254

CE

Cellular Encoding. 39

chemotaxis

The ability to move in an orientation with respect to a source of a

chemical. 31, 47, 67, 203, 244

COM

Centre of Mass. 108, 115, 128, 131

CPG

Central Pattern Generator. 67, 68, 70, 221, 247

268

CPPN

Compositional Pattern Producing Network. 39, 187, 189, 191–194,

197, 198, 251

CTRNN

Continuous Time Recurrent Neural Network. 2, 12, 24, 25, 28, 37, 43,

52, 63–70, 72–81, 87, 90, 93, 95, 96, 99, 101, 102, 148, 157, 167, 171,

174, 175, 179, 191, 192, 202–205, 212, 228, 235, 243, 245, 247–250, 255

DDE

Delay Differential Equation. 24, 28, 73, 74, 76, 77, 99, 102, 250

DGRN

Dynamic Recurrent Gene Network. 49

DH

Denavit-Hartenberg. 106

DNA

Deoxyribonucleic Acid. 47, 48

DOF

Degree of Freedom. 68, 109

EA

Evolutionary Algorithm. 25, 29, 202, 249, 250

ECG

Echo CardioGram. 46

embryogenesis

the formation and development of an embryo. 49

269

EOM

Equations of Motion. 106, 108, 109, 115, 121, 123, 264

epigenetic

A term referring to the non-genetic causes of a phenotype. 47

ER

Evolutionary Robotics. 2, 25, 27–29, 31, 34, 36–38, 42, 43, 51, 53, 58,

67, 69–71, 96, 99, 101–103, 120, 135, 149, 155, 157, 159, 162, 175, 176,

178, 205, 207, 212, 220, 234, 243, 245, 247, 248, 250–253, 258

eukaryote

an organism whose cells contain a nucleus and other structures (or-

ganelles) enclosed within membranes. 254

exteroceptor

any receptor that responds to stimuli outside the body. 56, 58

FIFO

First-In-First-Out. 99

FSM

Finite State Machine. 40

GA

a search heuristic that is based on biological evolution. 28, 37, 38, 42,

59, 63, 234, 247, 253

genotype

the genetic composition of an organism. 39, 67, 69

270

GOFAI

Good Old Fashioned Artificial Intelligence. 24, 41

GP

Genetic Programming. 39

GRN

a collection of DNA segments in a cell which interact with each other.

2, 24, 47, 48, 50, 51, 54, 69, 70, 157, 212

HyperNEAT

A method for evolving CPPNs based on the NEAT technique.. 68, 69,

189, 234

interoceptor

any receptor that responds to stimuli inside the body. 56, 58

IR

Infra-Red. 13, 46, 74, 147, 148, 155, 159, 161, 162

JIT

Just-In-Time. 149

LCP

Linear Complementary Problem. 112, 123, 124

MLP

Mult-Layer Perceptron. 74

morphology

the form, structure and configuration of an organism. 36, 55, 68

271

NEAT

NeuroEvolution of Augmenting Topologies. 39, 69, 158, 159, 164, 187,

189, 192, 196, 199

neuroethology

the evolutionary and comparative approach to the study of animal

behavior and its underlying mechanistic control by the nervous system.

45

Ni-Cd

Nickel-Cadmium. 128

ODE

Open Dynamics Engine. 250

ODE

Ordinary Differential Equation. 24, 47, 48, 68, 74, 124

photoreceptor

a specialized neuron able to detect, and react to light. 56, 57

phototaxis

The movement of an organism either towards or away from a source

of light. 64

phylogenetic

of or relating to the evolutionary development of organisms. 37

plasticity

the changing of neurons, the organization of their networks, and their

function via new experiences. 35, 61

272

PWM

Pulse Width Modulation. 118, 138

RC

Resistor - Capacitor. 43

RNA

Ribonucleic Acid. 47

RNN

Recurrent Neural Network. 32, 46, 51, 73, 135, 175, 247, 248, 255

SAGA

Species Adaption Genetic Algorithm. 39

sensorimotor

of or pertaining to both sensory and motor activity. 55, 66, 159

somatosensory

of or pertaining to the perception of sensory stimuli produced by the

skin or internal organs. 66

Subsumption Architecture

a reactive robot architecture heavily associated with behavior-based

robotics. 40

TdGRN

Time-Delayed Gene Regulatory Networks. 50

TDRNN

Time Delay Recurrent Neural Network. 46, 74

273

TF

Transcription Factor. 48, 49

US

Ultrasound. 159

USB

Universal Serial Bus. 128

WCS

Wisconsin Card Sorting. 66

274

Bibliography

[1] R.McN. Alexander. The gaits of bipedal and quadrupedal animals.

The International Journal of Robotics Research, 3(2):49–59, 1984.

[2] K.E. Atkinson. An Introduction to Numerical Analysis. John Wiley

& Sons, 2nd edition, 1989. ISBN 978-0-471-50023-0.

[3] J. Auerbach and J.C. Bongard. How robot morphology and training

order affect the learning of multiple behaviors. In Evolutionary Com-

putation, 2009. CEC ’09. IEEE Congress on, pages 39–46, 2009.

[4] J.M. Baldwin. A new factor in evolution. The American Naturalist,

30(354):441–451, 1896.

[5] R.S. Ball. The theory of screws: A study in the dynamics of a rigid

body. Mathematische Annalen, 9:541–553, 1876.

[6] D. Baraff. Analytical methods for dynamic simulation of non-

penetrating rigid bodies. In James J. Thomas, editor, SIGGRAPH,

pages 223–232. ACM, 1989.

[7] J.P. Barreto, A. Trigo, P. Menezes, J. Dias, and A.T. De Almeida.

FED-the free body diagram method. kinematic and dynamic modeling

of a six leg robot. In Advanced Motion Control, 1998. AMC ’98-

Coimbra., 1998 5th International Workshop on, pages 423 –428, June

1998.

275

[8] L.W. Barsalou. Perceptual symbol systems. Behavioral and Brain

Sciences, 22:577–609, 1999.

[9] J. Beal, T. Lu, and R. Weiss. Automatic compilation from high-level

biologically-oriented programming language to genetic regulatory net-

works. PLoS ONE, 6(8):e22490, 08 2011.

[10] R.D. Beer. On the dynamics of small continuous-time recurrent neural

networks. Adaptive Behavior, 3(4):469–509, 1995.

[11] R.D. Beer. Parameter space structure of continuous-time recurrent

neural networks. Neural Computation, 18(12):3009–3051, 2006.

[12] R.D. Beer. Progress in Motor Control V: A Multidisciplinary Per-

spective, chapter Beyond Control: The Dynamics of Brain-Body-

Environment Interaction in Motor Systems, pages 7–24. Springer,

2009.

[13] R.D. Beer. Fitness space structure of a neuromechanical system. Adap-

tive Behavior, 2010. (not yet published).

[14] R.D. Beer. The Horizons for Evolutionary Robotics, chapter Dynam-

ical analysis of evolved agents: A primer. The MIT Press, 2010. (in

press).

[15] R.D. Beer and J.C. Gallagher. Evolving dynamical neural networks

for adaptive behavior. Adaptive Behavior, 1(1), 1992.

[16] F. Bellas, J.A. Becerra, J. Santos Reyes, and R.J. Duro. Applying

synaptic delays for virtual sensing and actuation in mobile robots. In

IJCNN (6), pages 144–152, 2000.

[17] P.J. Bentley. Adaptive fractal gene regulatory networks for robot con-

trol. In J. Miller, editor, Workshop on Regeneration and Learning in

276

Developmental Systems, Genetic and Evolutionary Computation Con-

ference (GECCO 2004), volume 154, pages 477+, January 2004.

[18] R.A. Brooks. A robust layered control system for a mobile robot.

A. I. Memo 864 864, Massachusetts Institute of Technology Artificial

Intelligence Laboratory, September 1985.

[19] R.A. Brooks. Challenges for complete creature architectures. In In,

pages 434–443. MIT Press, 1990.

[20] R.A. Brooks. Elephants don’t play chess. Robotics and Autonomous

Systems, 6:3–15, 1990.

[21] R.A. Brooks. Integrated systems based on behaviors. Stanford Uni-

versity, 2:46–50, 1991.

[22] R.A. Brooks. Intelligence without reason. In Ray Myopoulos, John;

Reiter, editor, Proceedings of the 12th International Joint Conference

on Artificial Intelligence, pages 569–595, Sydney, Australia, August

1991. Morgan Kaufmann.

[23] R.A. Brooks. Intelligence without representation. Artificial Intelli-

gence, 47:139–159, 1991.

[24] R.A. Brooks. Artificial life and real robots. In Proceedings of the First

European Conference on Artificial Life, pages 3–10. MIT Press, 1992.

[25] R.A. Brooks. From earwigs to humans. Robotics and Autonomous

Systems, 20:291–304, 1996.

[26] J.A. Bullinaria. Lifetime learning as a factor in life history evolution.

Artificial Life, 15(4):389–409, 2009.

[27] H.J. Cheil and R.D. Beer. Encyclopedia of Neuroscience, chapter Com-

putational neuroethology, pages 23–28. Elsevier, 2008.

277

[28] L. Chen and K. Aihara. Stability of genetic regulatory networks with

time delay. Circuits and Systems I: Fundamental Theory and Applica-

tions, IEEE Transactions on, 49(5):602 –608, may 2002.

[29] D. Cliff, P. Husbands, and I. Harvey. Explorations in evolutionary

robotics. Adaptive Behavior, 2(1):73–110, June 1993.

[30] J. Clune, B.E. Beckmann, C. Ofria, and R.T. Pennock. Evolving

coordinated quadruped gaits with the hyperneat generative encoding.

In Proceedings of the Eleventh conference on Congress on Evolutionary

Computation, CEC’09, pages 2764–2771, Piscataway, NJ, USA, 2009.

IEEE Press.

[31] B. Cohen, D. Saad, and E. Marom. Efficient training of recurrent

neural network with time delays. Neural Networks, 10(1):51 – 59,

1997.

[32] E. Drumwright. A fast and stable penalty method for rigid body sim-

ulation. IEEE Transactions on Visualization and Computer Graphics,

14(1):231–240, January 2008.

[33] R.J. Duro and J. Santos. ECG beat classification with synaptic delay

based artificial neural networks. In José Mira, Roberto Moreno-Dı́az,

and Joan Cabestany, editors, Biological and Artificial Computation:

From Neuroscience to Technology, volume 1240 of Lecture Notes in

Computer Science, pages 962–970. Springer Berlin / Heidelberg, 1997.

10.1007/BFb0032556.

[34] R.J. Duro, J. Santos Reyes, J.A. Becerra, F. Bellas, and J. Luis Crespo.

Using higher order synapses and nodes to improve sensing capabilities

of mobile robots. In ESANN, pages 81–88, 2000.

[35] M.S. Erden and K. Leblebicioglu. Torque distribution in a six-legged

robot. Robotics, IEEE Transactions on, 23(1):179 –186, feb. 2007.

278

[36] R. Featherstone. Rigid Body Dynamics Algorithms. Kluwer interna-

tional series in engineering and computer science: Robotics. Springer

London, Limited, 2008.

[37] D. Floreano. Evolutionary robotics in behavior engineering and arti-

ficial life. In Evolutionary Robotics: From Intelligent Robots to Artifi-

cial Life. Applied AI Systems, 1998. Evolutionary Robotics Symposium.

AAI Books, 1998.

[38] K. Funahashi and Y. Nakamura. Approximation of dynamical sys-

tems by continuous time recurrent neural networks. Neural Networks,

6(6):801 – 806, 1993.

[39] N.L. Geard and J. Wiles. A gene network model for developing cell

lineages. Artificial Life, 11(3):249–268, 2005.

[40] R.M. Ghigliazza. Neuromechanical models for insect locomotion. PhD

thesis, Princeton, 2004.

[41] R.M. Ghigliazza and P. Holmes. Towards a neuromechanical model

for insect locomotion: hybrid dynamical systems. Regular and Chaotic

Dynamics, 10(2):193–225, 2005.

[42] F. Gruau. Automatic definition of modular neural networks. Adapt.

Behav., 3:151–183, September 1994.

[43] F. Gruau. Neural Network Synthesis using Cellular Encoding and the

Genetic Algorithm. PhD thesis, Centre d’étude nucléaire de Grenoble

and at l’Ecole Normale Supérieure de Lyon, France, 1994.

[44] K. Gurney. An Introduction to Neural Networks. Taylor & Francis,

Inc., Bristol, PA, USA, 1997.

279

[45] I. Harvey. The Artificial Evolution of Adaptive Behaviour. PhD thesis,

The University of Sussex, April 1995. Originally submitted, September

1993.

[46] I. Harvey. Evolving robot consciousness: The easy problems and the

rest. In J.H. Fetzer, editor, Evolving Consciousness, pages 205–219.

Advances in Consciousness Research Series, John Benjamins, Amster-

dam, 2002. ISBN 90 272 5154 1.

[47] I. Harvey, P. Husbands, and D. Cliff. Issues in evolutionary robotics.

Cognitive Science Research Paper CSRP 219, The University of Sussex,

School of Cognitive and Computing Sciences, 1993.

[48] E. J. Haug. Computer aided kinematics and dynamics of mechanical

systems. Vol. 1: basic methods. Allyn & Bacon, Inc., Needham Heights,

MA, USA, 1989.

[49] G.E. Hinton and S.J. Nowlan. How learning can guide evolution. Com-

plex Systems, 1:495–502, 1987.

[50] T. Ho, S. Choi, and S. Lee. Development of a biomimetic quadruped

robot. Journal of Bionic Engineering, 4(4):193 – 199, 2007.

[51] J.H. Holland. Adaptation in Natural and Artificial Systems. University

of Michigan Press, 1975.

[52] P. Holmes, R.J. Full, D. Koditschek, and J. Guckenheimer. The dy-

namics of legged locomotion: Models, analyses, and challenges. SIAM

Review, 48(2):207–304, 2006.

[53] J.J. Hopfield and D.W. Tank. Computing with neural circuits: a

model. Science, 233(4764):625–633, 1986.

280

[54] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359 –

366, 1989.

[55] S. Hu and J. Wang. Global stability of a class of continuous-time re-

current neural networks. Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions on, 49(9):1334–1347, 2002.

[56] J.D. Hunter. Matplotlib: A 2d graphics environment. Computing In

Science & Engineering, 9(3):90–95, 2007.

[57] P. Husbands and I. Harvey. Evolution versus design: Controlling au-

tonomous robots. In Intergrating Perception, Planning and Action:

Proceedings of 3rd Annual Conference on Artificial Intelligence, Sim-

ulation and Planning, pages 139–146. IEEE Press, 1992.

[58] P. Husbands, I. Harvey, and D. Cliff. Analysing recurrent dynamical

networks evolved for robot control. Cognitive Science Research Paper

CSRP 265, School of Cognitive and Computing Sciences, University

of Sussex, 1993.

[59] N. Jakobi. Evolutionary robotics and the radical envelope-of-noise

hypothesis. Adapt. Behav., 6(2):325–368, 1997.

[60] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The

use of simulation in evolutionary robotics. In Advances in Artificial

Life: Proc. 3rd European Conference on Artificial Life, pages 704–720.

Springer-Verlag, 1995.

[61] M. Joachimczak and B. Wróbel. Evolving gene regulatory networks for

real time control of foraging behaviours. In Harold Fellermann, Mark

Dörr, Martin M. Hanczyc, Lone L. Laursen, Sarah Maurer, Daniel

Merkle, Pierre-Alain Monnard, Kasper Stoy, and Steen Rasmussen,

281

editors, Artificial Life XII: Proceedings of the Twelfth International

Conference on the Simulation and Synthesis of Living Systems, pages

348–355, Cambridge, MA, August 2010. MIT Press.

[62] S.A. Kauffman. The Origins of Order: Self-Organization and Selection

in Evolution. Oxford University Press, USA, 1 edition, June 1993.

[63] B. Kim. Centroid-based analysis of quadruped-robot walking balance.

In Advanced Robotics, 2009. ICAR 2009. International Conference on,

pages 1 –6, june 2009.

[64] J.F. Knabe, C.L. Nehaniv, M.J. Schilstra, and T. Quick. Evolving

biological clocks using genetic regulatory networks. In In Proceedings

of the Artificial Life 10 Conference (Alife X. MIT Press, 2006.

[65] J.R. Koza. Evolution of subsumption using genetic programming. In

Proceedings of the first European Conference on Artificial Life, pages

110–119. The MIT Press, 1993.

[66] R. Kram, B. Wong, and R.J. Full. Three-dimensional kinematics and

limb kinetic energy of running cockroaches. J Exp Biol, 200(13):1919–

1929, July 1997.

[67] E.A. Kravitz. Hormonal Control of Behavior: Amines and the Biasing

of Behavioral Output in Lobsters. Science, 241:1775–1781, September

1988.

[68] R. Kukillaya, J. Proctor, and P. Holmes. Neuromechanical models

for insect locomotion: Stability, maneuverability, and proprioceptive

feedback. Chaos: An Interdisciplinary Journal of Nonlinear Science,

19(2):026107, 2009.

282

[69] S. Kumar. A developmental genetics-inspired approach to robot con-

trol. In Genetic and Evolutionary Computation Conference, pages

304–309, 2005.

[70] M. Lakshmanan and D.V. Senthilkumar. Dynamics of Nonlinear

Time-Delay Systems. Springer Series in Synergetics. Springer, 2011.

[71] K.J. Lang, A.H. Waibel, and G.E. Hinton. A time-delay neural net-

work architecture for isolated word recognition. Neural Netw., 3(1):23–

43, January 1990.

[72] X. Li, S. Rao, W. Jiang, C. Li, Y. Xiao, Z. Guo, Q. Zhang, L. Wang,

L. Du, J. Li, L. Li, T. Zhang, and Q. Wang. Discovery of time-delayed

gene regulatory networks based on temporal gene expression profiling.

BMC Bioinformatics, 7(1):26+, 2006.

[73] B.S. Lin and S. Song. Dynamic modeling, stability, and energy effi-

ciency of a quadrupedal walking machine. Journal of Robotic Systems,

18(11):657–670, 2001.

[74] H. Lipson. Biomimetics: Biologically Inspired Technologies, chapter

Evolutionary Robotics and Open-Ended Design Automation, pages

129–155. Taylor & Francis, November 2005.

[75] O. Lund, H.H.and Miglino. Evolving and breeding robots. In Proceed-

ings of the First European Workshop on Evolutionary Robotics, pages

192–210, London, UK, 1998. Springer-Verlag.

[76] C. Macleod, G. Maxwell, and S. Muthuraman. Incremental growth

in modular neural networks. Engineering Applications of Artificial

Intelligence, 22(4-5):660–666, June 2009.

283

[77] J.M. Mahaffy and C.V. Pao. Models of genetic control by repression

with time delays and spatial effects. Journal of Mathematical Biology,

20:39–57, 1984.

[78] M. Malek-Zavarei and M. Jamshidi. Time-Delay Systems: Analysis,

Optimization and Applications. Elsevier Science Inc., New York, NY,

USA, 1987.

[79] M. Maniadakis and J. Tani. Acquiring Rules for Rules: Neuro-

Dynamical Systems Account for Meta-Cognition. Adaptive Behavior,

17(1):58–80, 2009.

[80] J.L. Meriam and L.G. Kraige. Engineering Mechanics: Statics. Wiley

and Sons, 2002. ISBN 0-471-40646-5.

[81] B.V. Mirtich. Impulse-based dynamic simulation of rigid body systems.

PhD thesis, University of California, Berkeley, 1996. AAI9723116.

[82] N.A.M. Monk. Oscillatory expression of hes1, p53, and nf -κb driven

by transcriptional time delays. Current Biology, 13(16):1409 – 1413,

2003.

[83] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, In-

telligence, and Technology of Self-Organizing Machines (Intelligent

Robotics and Autonomous Agents). The MIT Press, March 2004.

[84] W. Pan, Z. Wang, H. Gao, Y. Li, and M. Du. On multistability

of delayed genetic regulatory networks with multivariable regulation

functions. Mathematical Biosciences, 228(1):100 – 109, 2010.

[85] B.A. Pearlmutter. Dynamic recurrent neural networks. Technical Re-

port v. 90-196, Carnegie Mellon University, Computer Science Depart-

ment, 1990.

284

[86] P. Phattanasri, H.J. Chiel, and R.D. Beer. The dynamics of associative

learning in evolved model circuits. Adaptive Behavior, 15(4):377–396,

2007.

[87] A.S. Potts and J.J. da Cruz. Mobile Robots - Current Trends, chapter

A Kinematical and Dynamical Analysis of a Quadruped Robot, pages

239–262. InTech, 2011.

[88] S.R. Quartz and T.J. Sejnowski. The neural basis of cognitive devel-

opment: A constructivist manifesto. Behavioral and Brain Sciences,

20(04):537–556, 1997.

[89] J. Reinitz, E. Mjolsness, and D.H. Sharp. Model for cooperative con-

trol of positional information in drosophila by bicoid and maternal

hunchback. Journal of Experimental Zoology, 271(1):47–56, 1995.

[90] A. Riegler. Natural or internal selection? the case of canalization in

complex evolutionary systems. Artif. Life, 14(3):345–362, 2008.

[91] R.E. Ritzmann, R.D. Quinn, and M.S. Fischer. Convergent evolution

and locomotion through complex terrain by insects, vertebrates and

robots. Arthropod Structure & Development, 33(3):361 – 379, 2004.

[92] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing,

volume 1. MIT Press, 1986.

[93] M.J. Schilstra and H. Bolouri. Modelling the regulation of gene expres-

sion in genetic regulatory networks. Technical report, Biocomputation

group, University of Hertfordshire., 2002.

[94] C.W. Seys and R.D. Beer. Effect of encoding on the evolvability

of an embodied neural network. In Genetic and Evolutionary Com-

putation Conference (GECCO2006) Workshop Program: Complexity

285

through Development and Self-Organizing Representations (CODES-

OAR), Seattle, WA, USA, 8-12 July 2006. ACM Press.

[95] C.W. Seys and R.D. Beer. Advances in Artificial Life, volume

4648/2007 of Lecture Notes in Computer Science, chapter Genotype

Reuse More Important than Genotype Size in Evolvability of Embod-

ied Neural Networks, pages 915–924. Springer Berlin / Heidelberg,

2007.

[96] L.P. Shayer and S.A. Campbell. Stability, bifurcation, and multista-

bility in a system of two coupled neurons with multiple time delays.

SIAM Journal on Applied Mathematics, 61(2):pp. 673–700, 2000.

[97] M. Shein Idelson, E. Ben-Jacob, and Y. Hanein. Innate synchronous

oscillations in freely-organized small neuronal circuits. PLoS ONE,

5(12):e14443, 12 2010.

[98] A. Silvescu and V. Honavar. Temporal boolean network models of

genetic networks and their inference from gene expression time series.

Complex Systems, 13:2001, 2001.

[99] K. Sims. Evolving 3d morphology and behavior by competition. Artif.

Life, 1(4):353–372, 1994.

[100] K. Sims. Evolving virtual creatures. In SIGGRAPH ’94: Proceedings

of the 21st annual conference on Computer graphics and interactive

techniques, pages 15–22, New York, NY, USA, 1994. ACM.

[101] P. Smolen, D.A. Baxter, and J.H. Byrne. Modeling transcriptional con-

trol in gene networks - methods, recent results, and future directions.

Bulletin of Mathematical Biology, 62:247–292, 2000.

286

[102] R. Somogyi and C. Sniegoski. Modeling the complexity of genetic

networks: Understanding multigenic and pleiotropic regulation. Com-

plexity, 1:45–63, 1996.

[103] S. Soyguder and H. Alli. Kinematic and dynamic analysis of a hexapod

walking-running-bounding gaits robot and control actions. Computers

& Electrical Engineering, 38(2):444 – 458, 2011.

[104] K.O. Stanley. Efficient Evolution of Neural Networks Through Com-

plexification. PhD thesis, Department of Computer Sciences, The Uni-

versity of Texas at Austin, 2004.

[105] K.O. Stanley. Compositional pattern producing networks: A novel

abstraction of development. Genetic Programming and Evolvable Ma-

chines, 8(2):131–162, June 2007.

[106] K.O. Stanley, D.B. D’Ambrosio, and J. Gauci. A hypercube-based

indirect encoding for evolving large-scale neural networks. Artificial

Life, 15(2):185–212, April 2009.

[107] K.O. Stanley and R. Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10(2):99–127,

2002.

[108] K.O. Stanley and R. Miikkulainen. A taxonomy for artificial embryo-

geny. Artificial Life, 9(2):93–130, 2003.

[109] G.F. Striedter. Principles of Brain Evolution. Sinauer Associates, 1

edition, October 2004.

[110] S.H. Strogatz. Nonlinear Dynamics And Chaos: With Applications To

Physics, Biology, Chemistry, And Engineering (Studies in nonlinear-

ity). Studies in nonlinearity. Perseus Books Group, 1 edition, January

1994.

287

[111] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT Press, 1998.

[112] M. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and

temporal difference methods for reinforcement learning. In Proceedings

of the Genetic and Evolutionary Computation Conference, pages 1321–

28, July 2006.

[113] M.A. Trefzer, T. Kuyucu, J.F. Miller, and A.M. Tyrrell. Evolution and

analysis of a robot controller based on a gene regulatory network. In

Proceedings of the 9th international conference on Evolvable systems:

from biology to hardware, ICES’10, pages 61–72, Berlin, Heidelberg,

2010. Springer-Verlag.

[114] E. Tuci, M. Quinn, and I. Harvey. An Evolutionary Ecological Ap-

proach to the Study of Learning Behavior Using a Robot-Based Model.

Adaptive Behavior, 10(3-4):201–221, 2002.

[115] F.J. Varela, E.T. Thompson, and E. Rosch. The Embodied Mind. The

MIT Press, 1991.

[116] C. Vella. Gravitas: An extensible physics engine framework using

object-oriented and design pattern-driven software architecture princi-

ples. Masters in information technology, University of Malta, Msida,

2008.

[117] J. Vohradsky. Neural network model of gene expression. The FASEB

Journal, 15(3):846–854, 2001.

[118] Y. Wang, Z. Wang, and J. Liang. On robust stability of stochastic

genetic regulatory networks with time delays: A delay fractioning ap-

proach. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 40(3):729 –740, june 2010.

288

[119] Z. Wang, H. Gao, J. Cao, and X. Liu. On delayed genetic regula-

tory networks with polytopic uncertainties: Robust stability analysis.

NanoBioscience, IEEE Transactions on, 7(2):154 –163, june 2008.

[120] R. Wehner. Matched filters: neural models of the external world.

Journal of Comparative Physiology A: Neuroethology, Sensory, Neural,

and Behavioral Physiology, Volume 161(4):511–531, July 1987.

[121] R. Wehner and R. Menzel. Do insects have cognitive maps? Annual

Review of Neuroscience, 13:403–414, 1990.

[122] A. Wuensche. Genomic regulation modeled as a network with basins

of attraction. In Proc. Pac. Symp. Biocomput., pages 89–102. World

Scientic Publishing, 1998.

[123] B. Yamauchi and R.D. Beer. Integrating reactive, sequential, and

learning behavior using dynamical neural networks. In SAB94: Pro-

ceedings of the third international conference on Simulation of adaptive

behavior : from animals to animats 3, pages 382–391, Cambridge, MA,

USA, 1994. MIT Press.

[124] C. Yeang and T. Jaakkola. Time series analysis of gene expression and

location data. In Bioinformatics and Bioengineering, 2003. Proceed-

ings. Third IEEE Symposium on, pages 305 – 312, march 2003.

[125] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J.C. Zagal, and H. Lipson.

Evolving robot gaits in hardware: the hyperneat generative encoding

vs. parameter optimization. In Proceedings of the 20th European Con-

ference on Artificial Life, August 2011.

[126] C.H. Yuh, H. Bolouri, and E.H. Davidson. Genomic cis-regulatory

logic: Experimental and computational analysis of a sea urchin gene.

Science, 279(5358):1896–1902, 1998.

289

[127] C.H. Yuh, H. Bolouri, and E.H. Davidson. Cis-regulatory logic in the

endo16 gene: switching from a specification to a differentiation mode

of control. Development, 128:617–629, 2001.

[128] P. Zahadat, T. Schmickl, and K. Crailsheim. Evolving reactive con-

troller for a modular robot: Benefits of the property of state-switching

in fractal gene regulatory networks. In Tom Ziemke, Christian Balke-

nius, and John Hallam, editors, From Animals to Animats 12, volume

7426 of Lecture Notes in Computer Science, pages 209–218. Springer

Berlin Heidelberg, 2012.

[129] F.Y. Zhang and H.F. Huo. Global stability of hopfield neural networks

under dynamical thresholds with distributed delays. Discrete Dynam-

ics in Nature and Society, 2006:Article ID 27941, 11 pages, 2006.

290

Vita

Benjamin John Derrick was born in Southampton, Hampshire on March the

2nd, 1986 to Simon and Fiona Derrick. He went to King Edward VI School

in Southampton and partook in the Royal Academy of Engineering Year in

Industry scheme with a placement at Flight Refuelling Ltd in Wimborne,

part of Cobham PLC. He graduated with a First Class Honours degree in

Mechanical Engineering in 2009 from the University of Durham and was

awarded a studentship for postgraduate work.

This Thesis was typeset with LATEX2e by the author. Graphics were

generated with Inkscape, or the Python module matplotlib [56].

291

	Abstract
	Declaration
	Acknowledgements
	List of Tables
	List of Figures
	Nomenclature
	I Introduction
	II Methods and Materials
	Background
	Adaption in Natural and Artificial Systems
	Architectures for Control
	The Origins of Artificial Autonomous Systems
	Artificial Neural Networks
	Recurrent Neural Networks
	Gene Regulatory Networks

	Dynamical Anaylsis
	Evolution of Adaptive Behaviour
	Embodied Intelligence
	The Reality Gap
	Evolved Learning

	Locomotory Robotics
	Conclusions

	Dynamics of Small Delayed Dynamic Networks
	Synaptic Time Delays
	A Single Neuron System
	Beyond a Single Node
	Discretising a Delayed Continuous System
	Conclusions

	Minimalistic Dynamic Simulation of a Quadruped Robot
	Single Leg System
	Rigid Body Dynamics
	Modelling the Robot
	Forces on the Body
	Ground Reaction
	Collision
	Friction

	Bringing it all together
	Servo Torques and Body Inversion
	Solution Procedure
	Realism and Computational Efficiency
	Simulation Results
	Extensions
	Conclusion

	Model Verification using Real Robots
	Design of a Simple Quadruped
	Mechanical Design
	Electromechanical Systems
	Assembly

	Modelling Wheeled Robots
	Geometrical Motion of a Two-wheeled Robot
	Simulation of Distance Sensors

	Common Code for Simulation and Verification
	Real Time Control Architecture
	Conclusions

	Evolving Adaptive Behaviour with Time Delays
	Evolutionary Architecture
	T-Junction Task
	Sensitivity Analysis
	Conclusions

	Methods for Determining Time Delays
	Directly Encoded
	Spatial Representation of Network Delays
	Assigned Network Geometry
	Position Encoded
	Pattern Encoded

	Efficiency of Different Encoding Methods
	Comparing the Efficacy of Different Encoding Methods
	Conclusions

	III Results and Analysis
	Introduction
	Hypotheses Under Test
	Selection of an Appropriate Statistical Test
	Limitations

	Adaptive Behaviour
	T-Test Task
	Hypothesis
	Experimental Design
	Results

	Single Food Chemotaxis
	Hypothesis
	Experimental Design
	Results

	Robot Locomotion
	Single Leg Walker
	Hypothesis
	Experimental Design
	Results

	Quadruped Walking
	Hypothesis
	Results

	Conclusions

	IV Summary & Conclusions
	V Appendices
	Numerical Integration
	Euler Method
	Verlet Integration
	Fourth Order Runge-Kutta Method

	Recap of Selected Vector and Matrix Mathematics
	Skew-symmetric Matrices
	Vector Dot Product
	Vector Cross Product

	General Rotations and Translations
	Mass and Inertia of a Uniform Body
	Bibliography
	Vita

