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Abstract 

 

Title: Novel P-alkene and pincer-type POCOP ligands: synthesis, coordination 

chemistry, and reactivity 

This thesis describes the development of a range of polydentate phosphorus-

containing ligands relevant to catalysis. The focus is on developing a fundamental 

understanding of how changes to the substituents on a ligand impact on the 

environment at a coordinated metal centre. 

Chapter 2 reports the synthesis and coordination chemistry of the phosphine-alkene 

ligands N-R2P-7-aza-benzobicyclo[2.2.1]hept-2-ene, R = Ph (2-1) and iPr (2-2). The 

electronic properties of 2-1 and 2-2 are probed by a variety of methods, which reveals 

them to be electron deficient. The coordination chemistry of 2-1 to various transition 

metal fragments is then explored, exhibiting a range of coordination geometries 

including tetrahedral ([Ni(κ2-P,C-2-1)2] (2-6)), square based pyramidal ([RhCl(κ2-P,C-2-

1)2] (2-7)) and trigonal bipyramidal ([IrCl(κ2-P,C-2-1)2] (2-8)). 

Chapter 3 introduces the problem of slow reductive elimination in some palladium-

catalysed catalytic transformations along with methods of promoting this process, 

before describing the application of the electron deficient 2-1 in enhancing reductive 

elimination reactions. A detailed study of the formation of ethane by reductive 

elimination from a palladium dimethyl complex of phosphine-alkene ligand 2-1 has 

been undertaken. The mechanism of this process has been probed by a combination of 

experimental and computational studies and revealed that the mechanism proceeded 

via an associative mechanism through a 5-coordinate intermediate. 

Chapter 4 describes the synthesis and systematic study of the steric and electronic 

impact of a range of POCOP pincer ligands 1,3-{(tBu2PO)2C6H4} (4-1) and 1,3-

{(R2PO)2C14H20}, R = tBu (4-7), OiPr (4-8), NEt2 (4-9), morpholine (4-10) and pyrrole (4-

12). The coordination chemistry of these ligands is then appraised to probe the steric 

impact of the ligand crystallographically. Subsequently, the electronic impact of the 

ligands are assessed by 31P{1H} NMR and infrared spectroscopy of the corresponding 

phosphine selenide compounds and palladium carbonyl complexes. 

Chapter 5 reports exploratory reactions of a novel palladium hydride complex [PdH(κ3-

P,C,P-4-1)] (5-1). The insertion of C=C (ethylene) and C=O (acetone, CO2) bonds into 

the Pd-H bond of 5-1 is attempted, notably showing facile insertion of CO2 to form the 

metal formate complex [Pd(OC(H)O)(κ3-P,C,P-4-1)] (5-4). Complex 5-1 is shown to be 

a catalyst for palladium-catalysed alkene isomerisation and aldehyde hydrosilylation, 

but the activity in both reactions is low. 
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Chapter 1: General introduction 

Over the last 40 years the design of new ligands for late transition metals has become 

a significant area of research.1, 2 In particular, there is a push for ligands that give 

greater activity and/or selectivity in homogeneously-catalysed processes especially 

involving organic substrates.3 However, prediction of the effects of small changes to the 

ligand framework on the overall catalysed transformation remains difficult. Therefore, 

there is a need to synthesise new ligands with tuneable steric and electronic properties 

and to use them to develop better understanding of the mechanism of homogeneously-

catalysed processes, and thus to help predict structure-reactivity relationships. 

One important area where very notable achievements have been made in recent years 

is the design and application of new polydentate ligands in preference to monodentate 

ligands. This has been driven, in part, by the observations that polydentate ligands are 

less labile than their monodentate counterparts and generally form complexes that 

show longer catalytic lifetimes as a result. At a simplistic level, these two features are 

interlinked with the longer catalytic lifetimes exhibited by systems that incorporate 

polydentate ligands often attributed to their better retention within a metal’s 

coordination sphere as a result of the chelate effect.4 

Chapter 1 will introduce basic aspects of coordination and phosphorus chemistry 

relevant to the design and evaluation of new polydentate phosphorus-containing 

ligands which are presented in this thesis. 

 

1.1 Phosphorus-based ligands 

Phosphorus-containing ligands are ubiquitous in homogeneous catalysis due to their 

comparative ease of synthesis, something that makes their steric and electronic 

properties highly tuneable often in a systematic fashion.2 In order that the best ligand 

for a particular metal-mediated transformation can be chosen or, in order to understand 

the performance of a particular metal phosphine combination, the quantification of the 

steric and electronic properties is required and is detailed below.  

 

1.1.1 The bonding of phosphine ligands to metal centres 

Phosphine-metal bonding is generally regarded as comprising of two components. The 

phosphorus lone pair of electrons donates into an empty metal orbital of appropriate σ-

symmetry, which is also accompanied by an additional π-back-bonding component 

from a filled metal d orbital to the phosphine (Figure 1.1). The identity of the π-

accepting orbital on phosphorus was debated for some time, but is now generally 
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σ* 3d Pπ 

believed to be one of the doubly degenerate orbitals formed from the combination of a 

P-R σ* orbital and a P 3d orbital (Figure 1.2).5, 6 Orpen et al. showed 

crystallographically that there is a lengthening of the P-R bond upon a shortening of the 

M-P bond, consistent with back-donation into a P-R antibonding orbital in the 

coordination sphere of a metal.5 

 

   

Figure 1.1: σ-Bonding (left) and π-bonding (right) components of a phosphine binding to a 

metal. The π-accepting orbital on the phosphine is one of the doubly degenerate orbitals formed 

from the combination of a P-R σ* orbital and a P 3d orbital (Figure 1.2). 

 

 

 

Figure 1.2: Degenerate orbitals formed from the combination of a P-R σ* orbital and a P 3d 

orbital, modified from Orpen et al.
5
  

 

As would be expected, the extent of both σ-donation to and π-back-acceptance from 

the metal can be modified depending on the substituents on phosphorus. In general 

terms, the extent of back-donation increases with higher electronegativity of the 

substituents, due to a lowering of the energy of the phosphorus accepting orbital 

(Figure 1.3).7  

 

M P
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R

M P

P P+ P
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Figure 1.3: The P-R σ* orbital lowers in energy as the electronegativity of the R group 

increases, adapted from Dyer.
8
 

 

1.1.2  Quantifying the steric impact of phosphine ligands 

 

 

Figure 1.4: Determination of the Tolman cone angle for an unsymmetrical phosphine; the 

circles represent the van der Waals radii of the substituents, adapted from Dyer.
8, 9

 

 

The steric bulk of a phosphine is one of the key factors in determining the reactivity of 

metal-phosphine complexes as, at the most basic level, it determines the size and 

number of other species that can bind to the metal-phosphine fragment. Perhaps the 

most common method of quantifying the steric bulk of a phosphine is to measure the 

Tolman cone angle, θ.9, 10 Using empirical bond data and the van der Waals radii for 

the phosphorus substituents, a model for the phosphine binding to a metal can be built. 

If the phosphine is rotated about the nickel-phosphorus bond, a conical region in space 

P

C
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O

F
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is carved out, with the angle at the point of the cone being called the Tolman cone 

angle (Figure 1.4). Some representative Tolman cone angles are shown in Table 1.1 

and show a 95° variation in the cone angle between PH3 and PtBu3. 

 

PR3 Cone angle, θ / ° 

PH3 87 

PMe3 118 

PEt2 132 

PPh3 145 

PiPr3 160 

PtBu3 182 

P(OMe)3 107 

P(OEt)3 109 

Table 1.1: Representative Tolman cone angles.
9
 

 

 

Figure 1.5: Depiction of the percentage buried volume (%VBur) of a phosphine, PR3, with a fixed 

M–P bond distance of 2.00 Å and a sphere radius of 3.50 Å.
11

 

 

Whilst the Tolman cone angle works well for symmetrical and asymmetrical (using a 

weighted average angle, Figure 1.4) phosphines, it cannot easily be applied to 

bidentate phosphines.12 Hence, there has been continual development of new methods 

of measuring the steric bulk of a ligand. One recently developed approach to 

measuring steric bulk is to calculate the ‘percentage buried volume’ (%Vbur) of a ligand. 

The %Vbur concept was originally developed for N-heterocyclic carbene ligands, but 

has since been applied to mono- and bi-dentate phosphines (with some 

modification).11, 13 The percentage buried volume of a ligand is measured using 

crystallographic data and is defined as the percentage of the total volume of a sphere 

(radius 3.50 Å) occupied by a ligand with a fixed metal-ligand bond distance. Figure 1.5 

M

P

R RR

2.00Å
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gives a pictorial representation for a generic phosphine, PR3 and representative values 

of %Vbur for symmetrical phosphines calculated by Nolan et al. are given in Table 1.2.13 

The buried volume, %Vbur gives an easily calculable measure of the space occupied by 

an organometallic ligand in the first coordination sphere of the metal centre based on 

experimental data that can be used to help rationalise structure-activity relationships. 

The percent buried volume method shows good correlation with the Tolman cone angle 

with good positive correlation between the Tolman cone angles of various phosphines 

(PR3) and the %Vbur calculated for the [AuCl(PR3)] complexes of the same ligands, with 

one notable exception (Figure 1.6). The %Vbur value of triphenylphosphite was higher 

than predicted based upon the Tolman cone angle, thus it is suggested that the simple 

molecular model approach used to estimate the Tolman cone angle might 

underestimate the steric parameters of more flexible phosphite ligands.13 

 

PR3 Percentage buried volume (%Vbur) / % 

PMe3 22 

PEt3 28 

PnPr3 26 

PnBu3 26 

PPh3 30 

P(p-Tol)3 28 

PiPr3 32 

PCy3 32 

PtBu3 27 

P(C₆F₅)3 37 

P(o-Tol)3 41 

PMes3 48 

P(OPh)3 31 

Table 1.2: Representative percentage buried volume (%Vbur) values for phosphines, calculated 

for [AuCl(PR3)] complexes with a fixed Au–P bond distance of 2.00 Å.
13
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Figure 1.6: Correlation of the Tolman cone angle with the percent buried volume (%Vbur) 

calculated for [AuCl(PR3)] complexes with a fixed Au–P bond distance of 2.00 Å, modified from 

Nolan et al.
13

 

 

1.1.3 Quantifying the electronic impact of phosphine ligands 

As previously stated the bonding of a phosphine to metal has two components, σ- 

donation and π-back-donation. One method for determining the overall net electronic 

contribution of the phosphine (combination of σ- donation and π-back-donation effects) 

is through its coordination to a metal carbonyl fragment and subsequent measurement 

of the carbonyl stretching frequency by infrared (IR) spectroscopy.9, 14, 15 Initially, 

studies were undertaken using [Ni(CO)3(PR3)] complexes, to measure the so-called 

Tolman electronic parameter ν; representative values shown in Table 1.3. However, 

due to the high toxicity of the necessary [Ni(CO)4] precursor, the use of trans-

[RhCl(CO)(PR3)2] complexes has become more widespread, with an established 

correlation between values obtained using [RhCl(CO)] and [Ni(CO)3] metal fragments.16 

A further advantage of using the rhodium system is its utility in studying the electronic 

impact of bidentate ligands, by the formation of [RhCl(CO)(P^L)] complexes (where 

P^L is a bidentate phosphorus-containing ligand).17-19 For both the nickel and rhodium 

carbonyl complexes, a greater electron donation ability of the phosphine leads to an 

increase in back-bonding from a filled metal orbital into a carbonyl antibonding orbital, 

resulting in a weakening and consequently lowering of the carbonyl IR stretching 

frequency.7  
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PR3 ν / cm–1 

PF3 2111 

PCl3 2097 

P(OMe)3 2080 

P(OEt)3 2076 

PPh3 2069 

PMe3 2064 

PEt3 2062 

P(NMe2)3 2062 

PiPr3 2059 

PtBu3 2056 

Table 1.3: Stretching frequencies (A1 band, DCM solution) for [Ni(CO)3(PR3)] complexes.
9, 15

 

 

Both of the now well-established IR-based protocols involving the formation of nickel or 

rhodium carbonyl complexes provide a method for assessing the net electron donation 

by the phosphine to the metal, i.e. the sum of the σ-donor and π-acceptor 

contributions. However, it is desirable to have a complementary technique that only 

assesses one of these two contributions. In an attempt to accomplish this target Allen 

et al. demonstrated the use of an NMR spectroscopy-based technique involving 

phosphine selenide compounds (R3PSe) in order to “measure” the σ-donor strength of 

a particular phosphine.20, 21 Since 77Se has a nuclear spin of 1/2 and a natural 

abundance of 7.5%, the 31P NMR spectroscopic resonance for a phosphine selenide 

compound exhibits satellites resulting from a 1JSeP coupling. It has been demonstrated 

that the larger the |1JSeP| coupling constants, the greater the s-character of the 

phosphorus lone-pair on the parent phosphine. Therefore, poorly donating (poorly 

Lewis basic) phosphines exhibit 1JSeP coupling constant whose magnitude is greater 

than those for more electron rich (more basic) systems. Table 1.4 shows some 

representative values for the 1JSeP coupling constants for various phosphines, and 

demonstrates the large difference between the couplings for poorly basic F2HP (1046 

Hz) and the highly basic PMe3 (684 Hz), as expected. Moreover, the preparation of 

phosphine-selenides is generally straightforward, necessitating only reaction of the 

parent phosphine with elemental grey selenium in an appropriate solvent (e.g. CDCl3). 

Accordingly, the measurement of the |1JSeP| coupling for phosphine selenides is a 

simple and effective method of estimating the basicity of a phosphine. 
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PR3 |1JSeP| / Hz 

F2HP 1046 

P(OMe)3 963 

P(NMe2)3 805 

PPh3 736 

PMe3 684 

Table 1.4: Representative 
1
JSeP coupling constants.

22
 

 

1.2 Aminophosphine ligands, (R2N)xPR’
3–x 

The coordination chemistry of aminophosphines, (R2N)xPR’
3–x, is relatively poorly 

studied compared to that for phosphines and phosphites, (RO)xPR’
3–x.

23 A major 

advantage of aminophosphines when compared to phosphites, is that they can be very 

bulky as twice the steric bulk can be incorporated onto each heteroatom at phosphorus 

and they have more widely variable electronic properties.24 Aminophosphines can be 

considered both strongly and poorly donating ligands, depending on the nature of the 

amino substituent. To rationalise this electronic variation a more detailed description of 

the bonding of aminophosphines to metals is needed. Replacing carbon-based 

substituents of alkyl and aryl phosphines by more electronegative amino groups 

reduces the electron density at phosphorus by a σ-inductive effect. However, there is 

some multiple bond character to a P-N bond resulting from partial π-donation from the 

nitrogen lone pair into an empty phosphorus-based orbital of appropriate symmetry 

(Figure 1.7). Depending on the nature of the amino substituent, this π-donation 

outweighs the inductive effects and leads to an electron-rich phosphorus centre. 

Hence, aminophosphine ligands can even be highly electron donating. For example, 

the data presented in Table 1.3 indicate that P(NMe2)3 is highly electron donating, 

giving rise to a carbonyl stretching frequency of 2062 cm–1
 for its nickel carbonyl 

complex [Ni(CO)3(P(NMe2)3)], which is comparable to that determined for 

[Ni(CO)3(PMe3)] (2064 cm–1) containing the highly electron rich PMe3 ligand.9, 15  
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Figure 1.7: π-Donation of the nitrogen lone pair into an acceptor orbital on phosphorus in an 

aminophosphine.
6, 8

  

 

While there are many aminophosphines, which may be regarded as being strongly 

donating, the flexibility surrounding both the structure and the nature of the amino 

substituents R, means that it is possible to significantly alter the donor character of 

aminophosphines, to the extent that comparatively electron-poor aminophosphine 

systems may also be prepared. For example, pyrrolyl phosphines are a very electron 

poor class of ligand, something that arises as the lone pair on nitrogen can be 

delocalised into the 5-membered ring of the pyrrole substituent making it less available 

for π-donation to phosphorus (Figure 1.8). In addition, the nitrogen develops a partial 

positive charge next to the phosphorus atom, resulting in a large electronic induction 

effect though the P-N σ-bond. As the nitrogen lone pair is unavailable to donate to the 

phosphorus centre and due to the presence of an electron deficient nitrogen 

substituent, the phosphorus centre of pyrrolyl-phosphines is highly electron deficient 

and accordingly make these poorly donating ligands.25 

 

 

Figure 1.8: Delocalisation of the nitrogen lone pair onto the pyrrole ring. 
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1.3 Binding of alkene ligands to metal centres 

 

   

Figure 1.9: Dewar, Chatt, Duncanson model of an alkene binding to a metal centre, σ-donation 

(left) and π-back-bonding (right). 

 

An alkene group is formally a two electron donor, but also has the potential to act as a 

π-acid as best described by the Dewar, Chatt, Duncanson binding model (Figure 1.9).26 

The back-bonding lengthens the olefin carbon-carbon bond and, consequently, 

increases the ‘sp3’ character of the carbon atoms (pyramidalisation).7 The extent of 

back-bonding from the metal centre is dependent on both the identity of the metal and 

of the alkene. Weakly π-basic metal ions such as Pt(II) and Pd(II) exhibit little back-

bonding whereas strongly π-basic metals such as Pt(0) and Pd(0) exhibit more 

extensive back-bonding. There are many factors that impact on the extent of back-

bonding from a metal to an alkene. Firstly, an alkene with electron withdrawing 

substituents will be susceptible to more back-bonding from the metal as the LUMO is 

lower in energy. However, there are additional factors that impact on the extent of 

back-bonding, including steric effects, with large alkene substituents hindering alkene 

coordination (Figure 1.10). A final factor to consider is the ring strain experienced by 

the alkene-containing scaffold: highly strained scaffolds experience very large amounts 

of back-bonding from metal centres due to the reduction in ring strain caused by the 

pyramidalisation of the alkene carbon atoms (Figure 1.11).27 Thus, rigid and strained 

alkene ligands form strong metal alkene bonds and are highly π-accepting.  
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Figure 1.10: The relative stabilities of rhodium–diene complexes containing norbornadiene-

based ligands with different amount of steric bulk on alkene substituent.
27

 

 

 

Figure 1.11: The relative stabilities of rhodium–diene complexes containing diene ligands with 

different amounts of ring strain.
27
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1.4 Aims and objectives 

General thesis objectives: To prepare a range of polydentate phosphorus-containing 

ligands relevant to catalysis and to develop a fundamental understanding of how 

changes to the ligands’ structure and substituents impact on the coordination 

environment and behaviour of a bound metal centre. 

 

Chapter 2 

 Preparation of the potentially electron-deficient and bidentate phosphine-alkene 

ligands, N-R2P-7-aza-benzobicyclo[2.2.1]hept-2-ene, R = Ph (2-1) and iPr (2-2). 

 To probe the electronic properties of compounds 2-1 and 2-2 by the synthesis 

and subsequent analysis of their phosphine-selenide compounds and metal 

carbonyl complexes. 

 Exploration of the coordination chemistry of compound 2-1 with nickel-, 

rhodium- and iridium-containing fragments. 

 

Chapter 3 

 To explore the utility of phosphine-alkene compound 2-1 in facilitating the 

reductive elimination step in palladium-catalysed cross-coupling reactions, 

where slow reductive elimination is a known problem in some reactions. 

 Determination of the mechanism of ethane reductive elimination from dimethyl 

palladium metal fragments promoted by compound 2-1 by a combination of 

experimental and theoretical experiments. 

 Probe the utility of phosphine-alkene compound 2-1 in palladium-catalysed 

Suzuki and Negishi cross-coupling reactions. 

 Assessment of the utility of compound 2-1 to promote known difficult reductive 

elimination processes from Pd(II), e.g. chloromethane from a PdCl(Me) 

complex. 

 To synthesise, the less bulky and rigid P-alkene ligand N-PPh2-3-pyrroline (3-4) 

and to study its reactivity with the PdMe2 metal fragment. 

 

Chapter 4 

 Systematically study the synthesis and steric and electronic impact of a range 

of POCOP pincer ligands with different heteroatom substituents at phosphorus. 
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 To study the coordination chemistry of these ligands to a palladium chloride 

metal fragment and, subsequently, to probe the steric impact of the ligands by 

the percent buried volume (%Vbur) method from the obtained molecular 

structures. 

 Carry out an assessment of the electronic impact of the variously-substituted 

POCOP pincer ligands by two methods: i) measurement of the |1JSeP| coupling 

constants of the relevant phosphine-selenide compounds and ii) by infrared 

spectroscopic analysis of their palladium carbonyl complexes. 

 

Chapter 5 

 Undertake the synthesis and characterisation of the novel palladium hydride 

complex [PdH(κ3-P,C,P-4-1)] (5-1). 

 Gauge the reactivity of the palladium hydride bond of complex 5-1 through 

reactions with ethylene (insertion of C=C) and acetone and CO2 (C=O 

insertion). 

 To assess the ability of complex 5-1 to catalyse alkene isomerisation and the 

hydrosilylation of an aldehyde. 
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2 Synthesis and coordination chemistry of novel phosphine-

alkene ligands 

2.1 Introduction 

Bidentate ligands with differing donor moieties, often termed heteroditopic ligands, 

have been employed widely in homogeneous catalysis. The electronic and steric 

disparity between the two different donor sites (L1 vs L2, Figure 2.1) of such 

heteroditopic ligands can be used to provide control and selectivity in reactions 

occurring at the metal centre. For example, bidentate P^N ligands have brought 

notable benefits to a range of reactions including transfer hydrogenation,1 

hydroboration,2 olefin polymerisation,3 co-polymerisation,4, 5 and coupling reactions.6, 7 

The most dramatic enhancements are achieved on maximising the difference between 

the π-acidity/Lewis basicity at P and the degree of σ-donor character at N.8, 9  

 

 

Figure 2.1: Schematic representation of a generic heteroditopic ligand (left) and P-alkene 

ligand (right). 

 

2.1.1 P-alkene ligands 

Phosphine-alkene (P-alkene) ligands are a class of heteroditopic compounds that bind 

to a metal centre in a bidentate fashion through both a phosphine and an alkene moiety 

(Figure 2.1). These P-alkene frameworks provide a highly sterically and electronically 

unsymmetrical coordination environment between the two donor components by virtue 

of the differing binding modes of each fragment to metal centres. Whilst phosphine-

donor ligands are ubiquitous in catalysis due to their highly tuneable steric and 

electronic properties, alkenes have somewhat been ignored as ligands to control 

catalytic reactions. The limited use of alkenes here is sometimes attributed to the 

general notion that alkenes are both reactive and labile and so easily dissociate in the 

course of a catalytic cycle, thereby giving poor control over the environment at the 

metal.10 However, there are examples of chiral diene ligands that produce good 

asymmetric induction, by tightly controlling the environment of the metal centre (Figure 

2.2).10-12  

M
L1 L2

M
P
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Figure 2.2: Chiral diene ligands 2-I and 2-II give good enantioselectivities in metal-catalysed 

reactions.
11, 12

  

 

2.1.2 Synthesis and structure of P-alkene ligands 

Although examples of P-alkene ligands have been known for 35 years, they remain a 

relatively poorly studied class of ligand, whose unique steric and electronic properties 

have not been fully exploited to this date. There are a number of different strategies 

that have been employed to synthesise P-alkene ligands, which allow the identity and 

nature of the alkene-containing moiety to be varied, something that is critical in the 

design of strongly chelating ligands (to circumvent the perceived lability of the alkene-

containing unit). The following section details the structure of some key P-alkene 

frameworks and describes their synthesis. 

 

2.1.2.1 TROPP-type P-alkene ligands 

Among the types of P-alkene ligand that have been explored, one particular framework 

that has received considerable attention is that containing the dibenzocycloheptatrienyl 

phosphine (TROPP) (2-V) motif, which is synthesised by the reduction of the 

commercially available ketone 2-III to the corresponding alcohol followed by 

chlorination to give 2-IV; the phosphorus donor is introduced by substitution with HPPh2 

(Scheme 2.1).13 The dibenzocycloheptatrienyl moiety adopts a rigid boat conformation 

with an inversion barrier of ~120 kJ mol−1 and forms a stereochemically well-defined 

concave pocket, which is pre-organised for metal coordination, leading to strong 

alkene-metal bonding. In an extension to the work on TROPP ligands, chiral variants 

have been developed for use in asymmetric catalysis, something achieved by 

functionalising the alkene moiety; however, very little modification of the phosphorus 

donor component has been undertaken.14-16  
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Scheme 2.1: Dibenzocycloheptatrienyl phosphine ligand 2-V (TROPP), developed by 

Grützmacher and co-workers.
13

  

 

2.1.2.2 5H-dibenz[b,f]azepine-type P-alkene ligands 

In contrast to the TROPP-type ligands described above (Section 2.1.2.1) there has 

been significant variation of the phosphorus substituents in ligands containing the 

structurally similar 5H-dibenz[b,f]azepine moiety facilitated by the relative synthetic 

ease of formation of a P-N bond. The first example of this type of P-alkene ligand (2-VI) 

was synthesised from commercially available 5H-dibenz[b,f]azepine and a 

bromophosphole by Le Floch and co-workers in 2005 (Scheme 2.2).16 Since this initial 

report many P-chiral derivatives have been synthesised. Moreover, studies have 

shown that the alkene group can bind to a metal centre in a hemilabile manner (Figure 

2.3), thus indicating that the alkene group is not strongly bound to the metal.17-19 
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Scheme 2.2: Synthesis of ligand 2-VI, containing a 5H-dibenz[b,f]azepine moiety, developed by 

Le Floch and co-workers.
20

 

 

 

Figure 2.3: A 5H-dibenz[b,f]azepine-type P-alkene ligand behaving in a hemilabile manner, as 

reported by Dorta and co-workers.
18

 

 

2.1.2.3 Norbornene-type P-alkene ligands 

 

 

Figure 2.4: P-alkene ligand 2-VII based on norbornene moiety, developed by Hayashi and co-

workers.
21

 

 

In order to impose a high level of control at metal centres, ligands that bind strongly to 
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VII, containing a strained alkene group. The highly strained alkene containing moiety of 

2-VII experiences a very large amount of back-bonding from metal centres due to the 

reduction in ring strain caused by the pyramidalisation of the alkene carbon atoms 

(Section 1.3). The synthesis of the ligand 2-VII (Figure 2.4) from norbornene is non-

trivial, with multiple steps involving the separation of enantiomeric intermediates by 

chiral HPLC being required. As a result of this complex synthesis very little change in 

the functionality on the ligand has been reported or is indeed possible, something that 

has and continues to limit the utility of such systems.21 

 

2.1.2.4 Vinyl-type P-alkene ligands 

 

 

Scheme 2.3: Synthesis of ligand 2-VIII, containing an electron deficient alkene moiety, 

developed by Lei and co-workers.
22

 

 

Whilst the use of a strained alkene group has been used by Hayashi (Section 2.1.2.3) 

to achieve strong alkene metal coordination to impose good stereocontrol over a metal 

centre, an alternative approach to achieving strong alkene metal bonding has been 

used by Lei and co-workers. They synthesised ligand 2-VIII by the Wittig reaction 

shown in Scheme 2.3.22 Ligand 2-VIII contains an electron-deficient alkene group 

which promotes strong metal back-bonding when bound to a metal centre. 

 

2.1.3 Recent developments in the application of P-alkene ligands in 

catalysis 

Although examples of P-alkene ligands have been known for 35 years, the first 

reported use of a P-alkene metal scaffold in catalysis was not shown until 2004, when 

Grützmacher et al. achieved 86% ee for the hydrogenation of an imine using an iridium 

catalyst containing a TROPP-based P-alkene ligand (2-IX) (Scheme 2.4).14 At the 

same time as Grützmacher was developing chiral TROPP-based P-alkene ligands 

Hayashi et al. independently developed a different chiral P-alkene ligand (2-VII) based 
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on a norbornene framework. It was shown that Rh(I) complexes of ligand 2-VII 

mediated asymmetric 1,4-addition of arylboronic acid to maleimides with up to 93% ee 

(Scheme 2.5).21 However, the complex synthesis of ligand 2-VII precludes the tuning of 

the steric and electronic properties of the ligand to increase catalytic performance. 

 

 

Scheme 2.4: Iridium-catalysed hydrogenation of an imine utilising a TROPP-based P-alkene 

ligand (2-IX).
14

 

 

 

Scheme 2.5: Rhodium-catalysed asymmetric 1,4-addition of phenylboronic acid to a maleimide 

utilising a P-alkene ligand (2-VII).
21

 

 

Since the initial reports by Grützmacher and Hayashi of the use of P-alkene ligands in 

catalysis, a variety of different chiral and non-chiral bidentate phosphine-alkene ligands 

have been described and employed in a range of different transition metal-mediated 

catalytic reactions. Table 2.1 shows a selection of such ligands from 2004 to 2013 and 

indicates their applications in catalysis that have been developed. 
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Entry Ligand Catalysed reaction Author 

1  

 
 

Rhodium-catalysed 

hydroformylation 

Le Floch  

et al.20 

2  

 
 

Iridium-catalysed synthesis 

of allylic amines from allylic 

alcohols 

Carreira  

et al.17 

3 

 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds  

 

Iridium-catalysed allylic 

etherification 

 

Iridium-catalysed allylic 

thioetherification 

 

Iridium-catalysed allylic 

amination of allylic alcohols 

 

Iridium-catalysed allylic 

vinylation 

Dorta  

et al.18, 23 

 

 

 

Carreira  

et al.24 

 

Carreira 

 et al.25 

 

Carreira  

et al.26 

 

Carreira  

et al.27 

4  

 
 

Rhodium-catalysed 

intramolecular 

hydroacylation 

Carreira  

et al.19 
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5   

  
 

Rhodium-catalysed 

hydrogenation 

Grützmacher  

et al.14 

6  

 
 

Palladium-catalysed Suzuki-

Miyaura cross-coupling 

 

Palladium-catalysed 

allylation of amines 

Le Floch 

et al.16 

 

Le Floch 

et al.28 

7  

 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds  

 

Iridium-catalysed 

hydrogenation 

Grützmacher  

et al.15 

 

 

 

Grützmacher  

et al.15 

8  

 
 

Palladium-catalysed 

Methoxycarbonylation of 

terminal alkynes 

Oberhauser  

et al.29 

9  

 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds  

 

Palladium-catalysed allylic 

alkylation 

Hayashi  

et al.21, 30 

 

 

 

Hayashi  

et al.31 

10  

 

Rhodium-catalysed addition 

of organoboroxines to N-

sulfonyl imines 

 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds  

Hayashi  

et al.32 

 

 

Hayashi  

et al.33 

PPh2

O

P

PPh2

Ph

PPh2

Ph

PPh2

NPh

Ph
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11  

 
 

 

 

 

Palladium-catalysed 

Suzuki-Miyaura cross-

coupling 

 

Platinum-catalysed 

Hydroformylation 

Williams 

et al.34 

 

Williams 

et al.35 

12  

 
 

Palladium-catalysed 

Negishi cross-coupling 

Lei 

et al.22 

13  

 

Palladium-catalysed 

allylic alkylation 

 

 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds 

Boysen 

et al.36 

 

 

Boysen 

et al.36, 37 

14  

 
 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds 

Bolm 

et al.38 

15  

 
 

Rhodium-catalysed 1,4-

addition of phenylboronic 

acid to α,β-unsaturated 

carbonyl compounds 

Widhalm 

et al.39 

Table 2.1: Selected applications of P-alkene ligands in transition metal-mediated catalysis for 

the period 2004 to 2013. 

 

Following the work done to date (summarised in Table 2.1), it is clear that there is 

scope to significantly extend the role of P-alkene ligands in catalysis, through 

developing new ligand frameworks. This chapter details the development of a new rigid 

PPh2

O

O

PPh2

O

Ph

O OEt

O
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TrO

Re PPh2

CO
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P-alkene ligand for application in a variety of transition metal-catalysed 

transformations. 

 

2.2 Synthesis and coordination chemistry of N-R2P-7-aza-

benzobicyclo[2.2.1]hept-2-ene, R = Ph, iPr 

This PhD project sought to develop a new class of P-alkene ligand that would marry 

the norbonene-like alkene moiety of 2-VII (strong alkene-metal binding) with the ease 

of modifying the phosphorus donor moiety of aminophoshine-based ligand 2-VI, first 

developed by Le Floch (Figure 2.5).20, 21 Since the difference in the donor/acceptor 

properties of the two Lewis basic components of heteroditopic ligands are known to 

control their selectivity in catalysis, a study probing the characteristics of the 

phosphorus and alkene moieties was undertaken (Section 2.2.3). The new class of P-

alkene ligands was also coordinated to a variety of late transition metal fragments and 

the reactivity of subsequent complexes studied. 

 

  

 

 

Figure 2.5: Structure and design ideas for new P-alkene ligands described in this thesis.  

  

N

PR2

Ph

PPh2

+

N
PR2
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New P-alkene ligand framework 

presented in this work 

P-N bond 

linkage  

Rigid and strained 
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2.2.1 Key features of N-R2P-7-aza-benzobicyclo[2.2.1]hept-2-ene as a 

ligand 

The key features of the new family of P-alkene ligands introduced in Figure 2.5 (N-R2P-

7-aza-benzobicyclo[2.2.1]hept-2-ene) include: 

 A P-N linkage: 

o the ease of synthesis of P-N bonds should allow facile introduction of a 

range of different phosphorus moieties that will allow tuning of the steric 

and electronic properties of the ligand.  

 Alkene group located within a 5-membered ring as part of a rigid 7-aza-

norbornene structure: 

o encourages strong alkene-metal coordination due to a reduction in ring 

strain experienced upon alkene coordination to a metal (an increase in 

the sp3 character of the alkene carbon atoms as a result of Malkene 

retrodonation).  

 Bulky aromatic backbone: 

o adds steric bulk; 

o makes the synthesis more straight forward. 

 

This work builds on initial studies made previously in the Dyer group by Dr Lise Baiget 

(PDRA in the Dyer group 2007-2008), who prepared a number of P-alkene ligands 

based on the motif shown in Figure 2.5, where R = Ph (2-1), iPr (2-2), OEt, and probed 

their coordination to the PdCl2 fragment. Additionally she studied the reaction of N-

Ph2P-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-1) with [Rh(CO)2Cl], which is included 

here for completeness (Section 2.2.3.2).  

The work presented in this thesis gives an improved, higher-yielding synthesis for 2-1 

(R = Ph) and 2-2 (R = iPr), and explores the coordination chemistry of 2-1 and 2-2 with 

a range of transition metals.  
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2.2.2 Synthesis of diphenylphosphino- and diisopropylphosphino-

substituted P-alkene ligands (2-1 and 2-2) 

 

 

Scheme 2.6: Synthesis of 7-aza-benzobicyclo[2.2.1]hept-2-ene, developed by Lautens and 

Maison.
40, 41

 

 

 

Scheme 2.7: Synthesis of P-alkene ligands 2-1 and 2-2. 

 

The synthesis of 7-aza-benzobicyclo[2.2.1]hept-2-ene has been reported previously, 

and involves the [4 + 2] Diels-Alder cycloaddition of benzyne (generated in situ) and N-

BOC-pyrrole. Subsequent deprotection of the BOC-protected species results in the 

formation of the desired amine in good yield (Scheme 2.6).40, 41 The relative ease of the 

synthesis of 7-aza-benzobicyclo[2.2.1]hept-2-ene over 7-aza-norbornene was a major 

factor for the inclusion of the aromatic ring in the ligand design.42 

Ligand 2-1 was prepared in 69% yield from 7-aza-benzobicyclo[2.2.1]hept-2-ene, via 

the addition of chlorodiphenylphosphine in the presence of an amine base (Scheme 

2.7). Purification of 2-1 is achieved by recrystallisation from a hot hexane solution, 

resulting in its isolation as a pale orange solid.  

Compound 2-1 was characterised by multinuclear NMR spectroscopy and CHN 

analyses. A singlet resonance at δ 31P 41.6 ppm is exhibited by 31P{1H} NMR 

spectroscopy, typical of other diphenylaminophosphines such as P(NiPr2)Ph2 (δ 
31P 

36.7 ppm) and P(NEt2)Ph2 (δ 
31P 66.8 ppm).43 The alkene CH groups appear as a 

complex multiplet between 6.77 and 6.78 ppm in the 1H NMR spectrum due to coupling 

to both the bridgehead protons and the phosphorus atom, and as a doublet at 143.0 

H
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Yield = 60%
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ppm (3JPC = 4 Hz) by 13C{1H} NMR spectroscopy.  The barrier to inversion at nitrogen 

has been calculated computationally (B3LYP/6-31G*) (by Dr Mark A. Fox) to be very 

low, ~ 3 kcal mol–1, which should permit compound 2-1 to adopt the necessary 

conformation for κ2-P,C metal binding, i.e. with the phosphine unit lying above the 

alkene moiety.   

In an extension to this work, the ligand N-iPr2P-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-

2) has been prepared to include the more Lewis basic diisopropylphosphino group and 

was synthesised in an analogous fashion to that used to access 2-1 (Scheme 2.7). 

Compound 2-2 was isolated as a colourless oil in 28% yield following purification by 

vacuum distillation. Upon cooling to –20 °C, compound 2-2 solidifies into a white solid 

that does not melt upon warming to room temperature. Compound 2-2 was 

characterised by multinuclear NMR spectroscopy, exhibiting a singlet resonance at δ 

31P{1H} 62.7 ppm, with the alkene CH resonances being similar to those of 2-1 

according to 1H and 13C{1H} NMR spectroscopy, signifying that there is no 

communication between the two donor sites. 

Notably, it proved impossible to synthesise N-tBu2P-7-aza-benzobicyclo[2.2.1]hept-2-

ene using the nucleophilic substitution strategy described in Scheme 2.7; no reaction 

was observed between di-tert-butylchlorophosphine and 7-aza-

benzobicyclo[2.2.1]hept-2-ene in the presence of triethylamine, with unreacted di-tert-

butylchlorophosphine being recovered. Increasing the reaction temperature to 80 °C in 

DCE solvent did not lead to formation of the expected product, with starting materials 

again being recovered. We postulate that di-tert-butylchlorophosphine is too bulky to 

react with 7-aza-benzobicyclo[2.2.1]hept-2-ene.  
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2.2.3 Assessment of the electronic character of P-alkene ligands 2-1 and 

2-2 

2.2.3.1 Synthesis of phosphine selenides 2-1.Se and 2-2.Se 

 

 

Scheme 2.8: Synthesis of phosphine selenides 2-1.Se and 2-2.Se. 

 

Comparison of the magnitudes of the 1JSeP coupling constants of phosphine selenides 

is an established method for assessing the basicity of the lone pair on the parent 

phosphine (see Section 1.1.3).44, 45 With this in mind, the selenides 2-1.Se and 2-2.Se 

of phosphine-alkenes 2-1 and 2-2 were synthesised through reaction of the parental 

phosphine with elemental grey selenium with quantitative conversion (Scheme 2.8). 

The values of |1JSeP| for 2-1.Se and 2-2.Se of 792 Hz and 734 Hz, respectively, indicate 

that the P-donor components of 2-1 and 2-2 are both weakly basic when compared to 

trialkylphosphines, for example PMe3 (
1JSeP = 684 Hz), and akin to triarylphosphines for 

example PPh3 (
1JSeP = 736 Hz).46 The magnitude of the 1JSeP for 2-2.Se shows that the 

phosphorus donor moiety of 2-2 is more basic than 2-1, which is consistent with 

alkylphosphines being more electron rich than arylphosphines, nevertheless the P-

donor component of both 2-1 and 2-2 should be considered weakly basic. 

Since a comparison of the |1JSeP| values only assesses the electronic character of the 

lone pair on the phosphorus component of the P-alkene framework, a complementary 

technique was required in order to probe the cumulative electronic character of each 

half of the P-alkene ligands as a whole. To this end, two indirect approaches that use 

the spectroscopic study of metal-carbonyls are detailed.   
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2.2.3.2 Synthesis of a rhodium carbonyl complex of 2-1 

 

 

Scheme 2.9: Synthesis of [Rh(CO)(κ
2
-P,C-2-1)2]Cl (2-3). 

 

Chapter 1 introduced the use of rhodium carbonyl complexes, specifically 

[RhCl(CO)(P^L)] (where P^L is a bidentate ligand containing a phosphorus donor), to 

assess the electronic character of a bidentate ligand. Therefore, we attempted to 

synthesise the necessary complex [RhCl(CO)(κ2-P,C-2-1)]. However, addition of either 

one or two equivalents of P-alkene 2-1 (Rh:P = 1:1 or 1:2) to a chloroform solution of 

[RhCl(CO)2]2 resulted in the formation of [Rh(CO)(κ2-P,C-2-1)2]Cl (2-3). Complex 2-3 

was characterised by multinuclear NMR spectroscopy (δ 31P 91.4 ppm, 1JRhP = 89 Hz) 

and infrared spectroscopy; the infrared spectrum of 2-3 (deuterated chloroform 

solution) revealed a single band in the expected carbonyl region at 1993 cm–1. This 

gives 2-3 the highest carbonyl stretching frequency of all known 5-coordinate rhodium-

carbonyl complexes, (for example [Rh(CO)(dppm)2]BF4 (ν(CO) (Nujol) 1948 cm–1) and 

[Rh(CO)(dppp)]BF4 (ν(CO) (Nujol) 1930 cm–1)).47 As 2-3 exhibits a higher carbonyl 

stretching frequency than [Rh(CO)(dppm)2]BF4 and [Rh(CO)(dppp)2]BF4 we suggest 

that overall 2-1 is more electron withdrawing than the bidentate diphosphines dppm 

and dppp, something resulting from the coordination of the electron-accepting alkene 

moiety. To confirm the electron deficient nature of 2-1 an alternative method of 

assessing the electronic properties of the P-alkene ligands 2-1 and 2-2 was sought. 

 

2.2.3.3 Synthesis of chromium carbonyl complexes [Cr(CO)4(κ
2-P,C-2-1)] 

(2-4) and [Cr(CO)4(κ
2-P,C-2-2)] (2-5) 

The synthesis of chromium carbonyl complexes of the type [Cr(CO)4(κ
2-(L1^L2))] is an 

established method for estimating the electron-withdrawing/-donating ability of a 

bidentate ligand by infrared spectroscopic analysis of the metal carbonyl units. 

However, the results tend to be less definitive and more descriptive than in the use of 

rhodium carbonyl complexes as there are multiple carbonyl stretching bands and small 
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changes in geometry around the metal alter the stretching frequencies observed. For 

example, the diphosphine ligands presented in Table 2.2 all have a similar electronic 

character, but there is slight variation in the carbonyl stretching frequencies. 

 

Complex ν(CO) (toluene) / cm–1 

[Cr(CO)4(dppm)] 2012, 1922, 1903, 1891 

[Cr(CO)4(dppe)] 2020, 1929, 1917, 1897 

[Cr(CO)4(dppp)] 2015, 1935, 1907, 1890 

Table 2.2: Chromium carbonyl stretching frequencies for diphosphine chromium carbonyl 

complexes.
48

 

 

 

Scheme 2.10: Synthesis of [Cr(CO)4(κ
2
-P,C-2-1)] (2-4) and [Cr(CO)4(κ

2
-P,C-2-2)] (2-5). 

 

From the reaction of equimolar quantities of either 2-1 or 2-2 with [Cr(CO)6] in toluene 

at reflux for 24 h (Scheme 2.10), followed by subsequent precipitation, the complexes 

[Cr(CO)4(κ
2-P,C-2-1)] (2-4) and [Cr(CO)4(κ

2-P,C-2-2)] (2-5), respectively, were isolated 

in moderate yields. Complex 2-4 was characterised by multinuclear NMR spectroscopy 

and mass spectrometry (ASAP+). Its 31P{1H} NMR spectrum presented a singlet 

resonance at 131.7 ppm, with a coordination chemical shift (Δδ) of 90.1 ppm relative to 

2-1; 13C NMR spectroscopy showed a Δδ of –59.8 ppm for the alkene carbon atoms 

and that there were three metal-bound carbonyl environments, consistent with a 

[Cr(CO)4(L
1^L2)] system.49 Infrared spectroscopy was performed in the solid state 

(Nujol mull) and revealed four carbonyl stretching bands at 2017, 1952, 1915 and 1884 

cm−1, as expected for a 2-4, which has C2v symmetry. Overall, the carbonyl bands for 2-

4 are at higher frequency than those for [Cr(CO)4(dppe)] (ν(CO) (Nujol) 2001, 1907, 1883 

and, 1865 cm–1)50, which suggests that 2-1 is significantly more electron withdrawing 

than dppe, as would be expected. 
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Complex 2-5 was characterised by multinuclear NMR spectroscopy and CHN analyses, 

with 1H and 13C NMR spectroscopic data for the alkene-containing moiety closely 

resembling those of 2-4. The infrared spectrum of 2-5 (Nujol mull) revealed only three 

distinct carbonyl stretching bands at 1911(broad), 1921 and 2015 cm−1. As a result of 

these overlapping bands, it is difficult to draw any conclusions from the comparison of 

the carbonyl stretching frequencies of 2-4 and 2-5.  

 

2.2.3.3.1 X-Ray crystallographic study of [Cr(CO)4(κ
2-P,C-2-1)] (2-4) 

 

 

 

Figure 2.6: Molecular structure of [Cr(CO)4(κ
1
-P,C-2-1)] (2-4) with selected bond lengths (Å) 

and angles (°). X is the midpoint of C(12)=C(13), (thermal ellipsoids set at 50% level).  

 

Single crystals of complex 2-4 were grown by layering a concentrated DCM solution 

with methanol. Subsequent X-ray diffraction analysis shows that complex 2-4 presents 

a distorted octahedral structure about chromium, with the bite-angle of 2-1, measured 

by the P-Cr-X angle (where X is the midpoint of C(12)=C(13)), being 79.7(1)° (cf. ∠P-

Cr-P = 83.48(8)° in [Cr(CO)4(dppe)])51 (Figure 2.6). The chromium carbonyl bond 

distances (Cr-C) are identical for carbonyl groups located trans to the alkene (1.861(3) 

Å) and the phosphorus group (1.872(3) Å), surprisingly showing that there is little 

difference in the trans-influence between the two donor moieties of 2-1. In line with 

moderate metal→π*(C=C) retro-donation, the C(12)=C(13) alkene bond in 2-4 

(1.378(8) Å) is longer than the corresponding bond in an uncoordinated 7-aza-

benzobicyclo[2.2.1]hept-2-ene fragment in complex 2-10 (1.331(2) Å) (Figure 2.7). 

Cr-P 2.3150(9) C1-Cr-P 96.89(9) 

Cr-C1 1.861(3) C2-Cr-P 169.58(9) 

Cr-C2 1.872(3) C3-Cr-P 90.64(9) 

Cr-C3 1.891(3) C4-Cr-P 95.9(2) 

Cr-C4 1.919(6) C1-Cr-C2 93.5(1) 

O1-C1 1.150(3) C1-Cr-C3 88.7(1) 

O2-C2 1.144(3) C2-Cr-C3 89.1(1) 

O3-C3 1.147(3) C1-Cr-C4 81.0(2) 

O4-C4 1.151(7) C2-Cr-C4 86.3(2) 

Cr-C12 2.305(6) C3-Cr-C4 168.4(2) 

Cr-C13 2.297(6) P-Cr-X 79.7(1) 

C12-C13 1.378(8) 
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Unfortunately, despite repeated attempts, single crystals of 2-5 suitable for X-ray 

diffraction could not be grown to compare the solid state structure of 2-4 and 2-5.     

 

 

Figure 2.7: Comparison of the C–C alkene bond lengths in complexes 2-4 and 2-10 determined 

by single crystal X-ray diffraction. 

 

2.2.4 Synthesis of [Ni(κ2-P,C-2-1)2] (2-6) 

There are numerous organic reactions which are catalysed by Ni(0) complexes,52 

including cross-couplings,53, 54 hydrocyanation of alkenes,55 hydroamination of dienes56 

and the cabonylation of dienes.57 However, to the best of our knowledge there are no 

known nickel-catalysed processes involving P-alkene ligands. It was therefore of 

interest to synthesise a nickel(0) complex of ligand 2-1 and to test it as a homogeneous 

catalyst. Whilst there are no known nickel-catalysed transformations involving P-alkene 

ligands, Dorta et al. have recently shown that complex 2-X containing a P-alkene ligand 

forms a 18ve, Ni(0)L4 complex that can reversibly bind α,β-unsaturated carbonyl 

compounds, upon alkene dissociation (Scheme 2.11), a feature that could have 

applications in catalysis.58 

Given that the P-alkene ligand in complex 2-X (Scheme 2.11) showed hemilabile 

properties it was of interest to synthesise the analogous nickel(0) complex [Ni(κ2-P,C-2-

1)2] (2-6), to compare the reactivity between the two nickel(0) complexes. It was 

predicted that the alkene group of 2-1 would bind more strongly to a nickel(0) centre 

than that of the P-alkene ligand in 2-X, by virtue of the alkene group being located 

within a strained 5-membered ring, something that could lead to significantly different 

reactivity.  
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Scheme 2.11: P-alkene-containing nickel(0) complex 2-X, developed by Dorta and co-workers, 

can reversibly add α,β-unsaturated carbonyl compounds.
58

  

 

 

Scheme 2.12: Synthesis of [Ni(κ
2
-P,C-2-1)2] (2-6). 

 

Complex 2-6 was synthesised in moderate yield (61%) by treating two equivalents of 2-

1 with [Ni(COD)2] in DCM overnight (Scheme 2.12). Subsequent recrystallization 

afforded 2-6 as a bright yellow crystalline solid (MS-ASAP+ m/z 712). 31P{1H} NMR 

spectroscopy revealed a singlet resonance at 99.9 ppm (Δδ +58 ppm). As expected, 

each carbon nucleus of the alkene group of Ni-bound 2-1 is in a slightly different 

chemical environment in tetrahedral 2-6 (the tetrahedral geometry is confirmed by a 

single crystal X-ray diffraction study described later), leading to two resonances for the 

alkene group in both its 1H (3.91-3.92 and 3.95-3.99 ppm) and 13C{1H} (68.8 and 72.1 

ppm) NMR spectra, presenting a coupling pattern consistent with the ‘AB’ part of an 

‘ABX’ system. The 13C{1H} NMR spectrum of 2-6 shows that the alkene carbons have a 

significantly different chemical shift (68.9 and 72.1 ppm) compared to those of the free 

ligand (2-1) (143.0 ppm), something that has been attributed to a large π-back-bonding 

component for the alkene-nickel bond, consistent with a reduction of the double bond 

character (i.e. the alkene group is now significantly more ‘alkane like’). 
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2.2.4.1 X-Ray crystallographic study of [Ni(κ2-P,C-2-1)2] (2-6) 

  

Figure 2.8: Molecular structure of [Ni(κ
2
-P,C-2-1)2] (2-6) with selected bond lengths (Å) and 

angles (°). X is the midpoint of C(12)=(13), Y is the midpoint of C(2)=(3), (thermal ellipsoids set 

at 50% level).  

 

Single crystals of complex 2-6 suitable for X-ray diffraction were grown by slow 

diffusion of hexane into a concentrated toluene solution. The resulting molecular 

structure is shown in Figure 2.8 and confirms that ligand 2-1 is indeed bound in a 

bidentate κ2-P,C fashion. The nickel centre of 2-6 presents a distorted tetrahedral 

structure with a P1-Pd-P2 angle of 124.13(1)° and an angle between the two planes 

defined by the atoms P1-Pd-X and P2-Pd-Y of 90.91(3)°. The P1-Ni-X and P2-Ni-Y 

bite-angles of 2-1 are 85.13(2)° and 84.88(3)°, respectively, which are significantly 

larger than that of complex [Cr(CO)4(κ
1-P,C-2-1)] 2-4 (79.7(1) °). The mean Ni-P and 

Ni-C distances for 2-6 are 2.2071(5) and 2.0435(13), respectively, which are 

comparable with those determined for 2-XI (Figure 2.9) of 2.199(1) and 2.041(5).59 

 

 

Figure 2.9: [Ni(P-alkene)2] 2-XI complex developed by Bennett and co-workers.
59
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Ni-P1 2.2014(4) 

Ni-P2 2.2128(3) 

Ni-C2 2.059(1) 

Ni-C3 2.038(1) 

Ni-C12 2.042(1) 

Ni-C13 2.035(1) 

C2-C3 1.420(2) 

C12-C13 1.422(2) 

P1-Ni-P2 124.13(1) 

P1-Ni-X 85.13(2) 
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2.2.4.2 Stability and reactivity of [Ni(κ2-P,C-2-1)2] (2-6)  

 

 

Scheme 2.13: [Ni(κ
2
-P,C-2-1)2] (2-6), a remarkably stable and unreactive Ni(0) complex. 

 

Remarkably, complex 2-6 is stable in moist air and solution (under air in non-dried 

solvent) for several days, in contrast to Bennett’s [Ni(P-alkene)2] complex 2-XI, which is 

reported to be air-sensitive.59 Furthermore, complex 2-6 is highly thermally stable in the 

solid state and in solution, with the onset of decomposition of 2-6 being 190 °C in the 

solid state, while a C6D6 solution of complex 2-6 could be heated at 80 °C for 16 h with 

no decomposition detected by 31P{1H} NMR spectroscopya (Scheme 2.13). The stability 

of 2-6 is further exemplified by its lack of reaction with chlorinated solvents (e.g. d2-

DCM and CDCl3). In contrast, all other known [Ni(P-alkene)2] complexes are reported 

to react with such chlorinated solvents leading to decomposition.58, 59 Indeed, not only 

is complex 2-6 stable in d2-DCM for days, but it also doesn’t react with iodobenzene, 

even when heated to 80 °C for 16 h (Scheme 2.13). 

In order to probe the strength with which the alkene moieties of 2-1 are bound to the 

nickel centre an additional phosphine ligand was added to a solution of 2-6 in an 

attempt to displace the alkene groups. Specifically, the addition of two equivalents of 

triphenylphosphine to 2-6 did not lead to the displacement of the alkene groups, even 

after heating at 80 °C for 16 h, analysis by 31P{1H} NMR spectroscopy revealed only 

resonances for 2-6 and free PPh3. Together these observations suggest that the 

alkene moities are strongly bound in 2-6 and that 2-1 is not a hemilabile ligand with 

Ni(0).  

                                                
a
 With reference to an internal phosphorus-containing standard (PPh3) located within a sealed 

capillary 

N

Ph2
P

N
P
Ph2

Ni

i) C6D6, 80 oC, 16 h

ii) 2 equiv PPh3, C6D6, 80 oC, 16 h

iii) 10 equiv PhI, C6D6, 80 oC, 16 h

No reaction

i)

ii)

iii)

No decompositon

No reaction

2-6
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The high thermal and chemical stability of 2-6 can be related to the highly electron-

withdrawing nature of 2-1, which stabilises the electron rich nickel centre and the 

strong nickel-alkene bond keeps 2-6 coordinatively saturated. However, the high 

affinity of 2-1 for nickel(0) will limit its application as a homogeneous catalyst, hence a 

different metal centre with a lower affinity for alkenes or a different geometry is 

required. 

 

2.2.5 Coordination chemistry of 2-1 with rhodium and iridium metal 

fragments 

It was of interest to synthesise the group 9 complexes of ligand 2-1, namely [RhCl(κ2-

P,C-2-1)2] (2-7) and [IrCl(κ2-P,C-2-1)2] (2-8), as chloride abstraction would leave a free 

coordination site at a highly Lewis acidic metal centre. 

 

 

Scheme 2.14: Synthesis of [RhCl(κ
2
-P,C-2-1)2] (2-7). 

 

 

Scheme 2.15: Synthesis of [IrCl(κ
2
-P,C-2-1)2] (2-8). 

 

To this end, [RhCl(COD)]2 and [IrCl(COD)]2  were treated with four equivalents of 2-1, 

which resulted in the formation of the monomeric 5-coordinate complexes [RhCl(κ2-

P,C-2-1)2] (2-7) and [IrCl(κ2-P,C-2-1)2] (2-8) in good yield (Scheme 2.14 and Scheme 

2.15). Both complexes have been characterised by multinuclear NMR spectroscopy. 

N
PPh2

[Rh(COD)Cl]2

+

4
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CDCl3
RT

N

Ph2
P
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2-1

N PPh2

NPh2P
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PPh2

[Ir(COD)Cl]2
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1 h

DCM
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Complex 2-7 exhibits a single doublet resonance at δ 31P 90.9 ppm with a 1JRhP 

coupling of 103 Hz (Δδ +49.3 ppm), while 2-8 displays a singlet resonance at δ 31P 

61.2 ppm (Δδ +19.6 ppm). 

  

2.2.5.1 X-Ray crystallographic study of [RhCl(κ2-P,C-2-1)2] (2-7) 

Crystals of 2-7 suitable for single crystal X-ray diffraction were grown by layering a 

concentrated DCM solution with hexane. Complex 2-7 was subsequently found to have 

a distorted square-based pyramidal geometry about rhodium, with the chloride ligand 

occupying an axial site with a Rh-Cl bond distance of 2.4744(5) Å (Figure 2.10). This 

bond is significantly shorter than the equivalent bond distance in [RhCl(dppm)2], 

2.615(2) Å.60 The short Rh-Cl bond of complex 2-7 is believed to be due to the electron 

poor nature of the rhodium centre, resulting from the presence of the electron-

withdrawing alkene moiety, creating a strong ionic component to the Rh-Cl bond.  

  

Figure 2.10: Molecular structure of [RhCl(κ
2
-P,C-2-1)2], 2-7, with selected bond lengths (Å) and 

angles (°). X is the midpoint of C(2)=C(3). The molecular structure contains a molecule of DCM 

that is omitted for clarity, (thermal ellipsoids set at 50% level). 

 

2.2.5.2 X-Ray crystallographic study of [IrCl(κ2-P,C-2-1)2] (2-8) 

Unlike [RhCl(κ2-P,C-2-1)2] (2-7) the analogous iridium complex was found to have a 

distorted trigonal bipyramidal geometry about its metal centre with the phosphine 

Rh-Cl 2.4744(5) 

Rh-P 2.3133(4) 

Rh-C2 2.158(1) 

Rh-C3 2.161(1) 

C2-C3 1.426(2) 

P-Rh-Cl 94.89(1) 

P-Rh-P 170.22(2) 

P-Rh-X 80.20(3) 
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moieties occupying the axial sites with an Ir-P bond distance of 2.3128(9) Å (Figure 

2.11). There are examples of 5-coordinate iridium chloride complexes containing two 

bidentate ligands that adopt both a distorted trigonal bipyramidal and a distorted 

square-based pyramidal geometry (Figure 2.12).61, 62 We postulate that the distorted 

trigonal bipyramidal geometry is observed in 2-8 to avoid placing the highly trans-

influencing alkene moieties in a trans-orientation. 

 

 

Figure 2.11: Molecular structure of [IrCl(κ
2
-P,C-2-1)2], 2-8, with selected bond lengths (Å) and 

angles (°). X is the midpoint of C(2)=C(3), (thermal ellipsoids set at 50% level).  

 

 

Figure 2.12: Structurally characterised 5-coordinate iridium(III) and iridium(I) chloride 

complexes containing two bidentate ligands.
61, 62
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Rh-C2 2.145(3) 

Rh-C3 2.144(3) 

C2-C3 1.442(5) 

P-Rh-Cl 94.38(2) 

P-Rh-P 171.23(5) 
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2.3 Synthesis and coordination chemistry of a potentially tridentate P-

dialkene ligand, N-PPh-bis-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-9) 

Ligands that contain a phosphine and two alkene donors (P-dialkenes) are 

comparatively rare compared to P-alkene ligands. Yet, complexes bearing tridentate 

(κ3-P,C,C)P-dialkene ligands are known, based on flexible alkene-containing moieties 

including TROPP,63 and allyloxy-based systems (Figure 2.13).64  Hence, it was of 

interest to synthesise a P-dialkene compound based on the 7-aza-

benzobicyclo[2.2.1]hept-2-ene alkene moiety, to see if it could act as a tridentate 

ligand. It was anticipated that the alkene group of 7-aza-benzobicyclo[2.2.1]hept-2-ene 

would bind more strongly to a metal centre than known P-dialkene ligands due to its 

rigid structure, giving greater control over the environment at the metal centre. 

 

 

Figure 2.13: Known P-dialkene ligands.
63, 64

 

 

To this end, the compound N-PPh-bis-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-9) was 

prepared in good yield from 7-aza-benzobicyclo[2.2.1]hept-2-ene via the addition of 

dichlorophenylphosphine in the presence of an amine base (Scheme 2.16). Purification 

of 2-9 is achieved by recrystallisation from a hot hexane solution affording complex 2-9 

as a pale orange solid. The 31P{1H} NMR spectrum of 2-9 exhibits a singlet resonance 

at 56.9 ppm, consistent with known diaminophosphines, e.g. P(NiPr2)2Ph δ 
31P 59.2 

ppm.43 The 1H and 13C{1H} NMR spectra of 2-9 show two resonances for every proton 

and carbon atom in each 7-aza-benzobicyclo[2.2.1]hept-2-ene moiety, which is 

presumed to result from hindered rotation around the P-N bonds, which removes the 

mirror plane passing through the middle of the alkene group.  

  

Ph
P O

Ph
P

O
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Scheme 2.16: Synthesis of compound 2-9. 

 

Subsequently, compound 2-9 was coordinated to a chromium carbonyl fragment; this 

was done for two reasons. Firstly, its coordination was used to assess the preference 

of 2-9 to bind in a bidentate or tridentate manner. Secondly, the carbonyl stretching 

frequencies can be measured by infrared spectroscopy, which provides a means of 

assessing the electronic nature of the ligand.  

 

2.1.1. Coordination chemistry of N-PPh-bis-7-aza-

benzobicyclo[2.2.1]hept-2-ene (2-9) with a chromium carbonyl 

metal fragment 

 

 

Scheme 2.17: Synthesis of [Cr(CO)4(κ
2
-P,C-2-9)] (2-10). 

 

Heating a mixture of 2-9 and [Cr(CO)6] in toluene at reflux for 24 h (Scheme 2.17), 

followed by induced precipitation of the subsequent complex from a concentrated DCM 

solution by addition of methanol, afforded [Cr(CO)4(κ
2-P,C-2-9)] (2-10) in moderate 

yield (67%). Complex 2-10 was characterised by multinuclear NMR spectroscopy 

(31P{1H}: 156.9 ppm; ∆δ = +100.0 ppm). Analysis of the complex by 13C{1H} NMR 

spectroscopy revealed that only one of the two alkene groups of 2-9 was bound to the 

chromium centre, with resonances for the alkene groups of 2-9 being found at 83.6 and 
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141.9 ppm, ∆δ −60.6 and −2.3 ppm, respectively. It is proposed that the inflexible 

ligand 2-9 cannot adopt the correct geometry to adopt tridentate coordination and 

hence reacts with [Cr(CO)6] to give only κ
2-P,C coordination in 2-10.  

The only known example of a structurally characterised chromium tricarbonyl complex 

containing a tridentate ligand (with at least one of the donors being P), which forms two 

5-membered chelate rings is with the triphos ligand (Figure 2.14).65, b Triphos is a 

significantly more flexible ligand than 2-9 and thus can bind to the chromium centre in a 

fac orientation. 

 

 

Figure 2.14: The structure of previously reported [Cr(CO)3(κ
3
-P,P,P-triphos)].

65
  

 

The infrared spectrum of complex 2-10 displayed the expected four carbonyl stretching 

bands at 2016, 1952, 1919, 1890 cm–1, which are very similar to those of complex 2-4, 

[Cr(CO)4(κ
2-P,C-2-1)], (2017, 1952, 1915 and 1884 cm–1). This suggests that the metal-

bound P-alkene fragments in complexes 2-4 and 2-9 both have a comparable 

electronic character, as would be expected.  

  

                                                
b
 CSD search 29/11/13  
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P
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Ph2P CO
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2.3.1.1  X-Ray crystallographic study of [Cr(CO)4(κ
2-P,C-2-9)] (2-10) 

 

 

 Figure 2.15: Molecular structure of [Cr(CO)4(κ
2
-P,C-2-9)] (2-10) with selected bond lengths (Å) 

and angles (°). X is defined as the midpoint of C(12)=C(13), (thermal ellipsoids set at 50% 

level).  

 

Following growth of single crystals of complex 2-10 by layering a concentrated DCM 

solution with methanol, an X-ray crystallographic study was undertaken. Subsequently, 

the chromium centre of 2-10 was found to have a distorted octahedral geometry; all the 

bond distances and angles about chromium are similar to those determined for 2-4 

(Figure 2.15). The molecular structure confirms κ2-P,C coordination of 2-9 to chromium, 

consistent with the inferences made from solution-state NMR spectroscopy, with both 

the unbound alkene moiety and the P-bound Ph group pointing away from the 

chromium centre, presumably to minimise steric repulsion. The metal-bound and 

uncoordinated alkene groups have considerably different bond lengths (1.404(2) and 

1.331(2) Å, respectively), as expected, highlighting the impact of metal→π*(C=C) retro-

donation leading to bond lengthening.  

  

Cr-C1 1.855(1) C1-Cr-P 92.33(4) 

Cr-C2 1.882(1) C2-Cr-P 169.44(4) 

Cr-C3 1.883(1) C3-Cr-P 92.31(4) 

Cr-C4 1.889(1) C4-Cr-P 93.89(4) 

O1-C1 1.156(2) C1-Cr-C2 98.21(5) 

O1-C2 1.141(2) C1-Cr-C3 87.09(5) 

O1-C3 1.142(2) C2-Cr-C3 87.48(6) 

O1-C4 1.144(2) C1-Cr-C4 86.03(5) 

Cr-C12 2.276(1) C2-Cr-C4 87.64(5) 

Cr-C13 2.268(1) C3-Cr-C4 170.92(5) 

Cr-P 2.3076(3) P-Cr-X 78.05(3) 

C12-C13 1.404(2) 

  C22-C23 1.331(2) 
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2.4 Chapter 2 summary and conclusions 

Two novel phosphine-alkene ligands, 2-1 and 2-2, both based around a 7-aza-

benzobicyclo[2.2.1]hept-2-ene moiety, have been synthesised. The modular synthesis 

and the ease of making a P-N bond allows facile modification of the steric and 

electronic properties of the phosphine moiety. The structure of the ligand locates the 

alkene moiety in a constrained, rigid 5-membered ring, which encourages strong 

alkene metal binding in order to relieve ring strain.  

As proposed, the diphenylphosphino-substituted bidentate P-alkene ligand 2-1 is more 

electron-withdrawing than bidentate diphosphines such as dppe, based upon 

interpretation of infrared stretching frequencies of rhodium (2-3) and chromium (2-4) 

carbonyl complexes. Based upon consideration of the values of |1JSeP| for the 

corresponding phosphine selenides of 2-1 and 2-2, the basicity of the phosphine 

moiety of 2-1 is less than that of triphenylphosphine, something that also makes a 

significant contribution to the overall electron-withdrawing effect of the ligand. 

Moreover, ligand 2-2 is less electron-withdrawing than 2-1, with the basicity of the 

phosphine moiety being greater. 

The coordination chemistry of 2-1 to various transition metal fragments was 

accomplished. The electron-withdrawing properties of 2-1 are exemplified in the 

tetrahedral nickel(0) complex 2-6 which is remarkably stable, being resistant to the 

addition of iodobenzene, reaction with chlorinated solvents and phosphines such as 

PPh3. Rhodium(I) (2-7) and iridium(I) (2-8) complexes of 2-1 were synthesised in a 

facile manner from [MCl(COD)]2 (M = Rh, Ir) precursors and interestingly exhibited 

different coordination geometries about their metal centres, squared based pyramid 

and trigonal bipyramidal respectively, as determined by single crystal X-ray diffraction.   

To further probe the chemistry and coordination of phosphine-alkene ligands, the 

synthesis of a ligand with potentially one phosphine and two alkene donor sites was 

achieved (2-9). However, ligand 2-9 was shown to bind in a bidentate (P-alkene) 

fashion to a chromium carbonyl fragment, with the rigid structure of the backbone not 

allowing the adoption of the fac coordination geometry. 

Building on these preliminary coordination studies, the utility of ligand 2-1 in Pd-

mediated catalytic transformations will be looked at in chapter 3. We will attempt to 

exploit the proven electron-deficient nature of 2-1 to promote and develop fundamental 

understanding into the process of reductive elimination. 
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3 Phosphine-alkene ligands: promotion of reductive 

elimination from palladium(II) complexes 

3.1 Introduction  

The use of palladium complexes as catalysts for cross-coupling reactions is a large and 

important field of research, with the significance of palladium-catalysed cross-coupling 

reactions being recognised in 2010 by the award of the Nobel prize to Heck, Negishi 

and Suzuki for their development and study of ‘palladium-catalysed cross-couplings in 

organic synthesis’. The generally accepted mechanism for palladium-catalysed cross-

coupling reactions proceeds via three steps: (1) oxidative addition, (2) transmetallation 

and (3) reductive elimination. The process of reductive elimination is the final step in all 

cross-coupling catalytic cycles during which the metal centre reduces its oxidation state 

and coordination number by two units via formation of a new bond between two 

mutually cis ligands (Scheme 3.1). This reductive elimination reaction is the critical 

product-forming step in the catalytic cycle and, as a result, there have been several 

comprehensive theoretical and experimental studies on how the nature of the ancillary 

ligands impacts on this reductive elimination process; these studies are detailed in 

Section 3.1.1.  

The design of ligands that can accelerate reductive elimination is essential as slow 

reductive elimination has been shown to be problematic in some palladium-catalysed 

cross-coupling reactions, often leading to poorly selective processes; key examples 

presenting these problems are summarised in Section 3.1.2.  

 

 

Scheme 3.1: A schematic representation of reductive elimination and oxidative addition. 

 

The following sections of this thesis seek to identify some of the major elements that 

can be used to enhance the rate of reductive elimination in 4-coordinate square-planar 

complexes and will later describe the use of P-alkene ligands for this purpose. The 

discussion will involve the application of the three major proposed mechanisms (direct, 

dissociative and associative) of reductive elimination from d8 square planar complexes 

(Figure 3.1). As reductive elimination is a concerted process it is a prerequisite that the 

groups to be eliminated must lie in a cis-orientation. 
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Figure 3.1: Three proposed mechanisms of reductive elimination from d
8
 square planar 

complexes. 

 

3.1.1 Promotion of reductive elimination from 4-coordinate square-planar 

complexes 

There are many factors that can influence the rate of reductive elimination from 4-

coordinate square-planar complexes. The following discussion reveals a rather 

complex picture of reductive elimination, with a strong dependence on the number and 

nature of the ancillary ligands. 

 

3.1.1.1 The impact of the steric bulk of the ancillary ligands on the rates 

of reductive elimination in 4-coordinate square planar complexes 

Complexes that contain ancillary ligands with large steric bulk tend to undergo faster 

reductive elimination than complexes containing less bulky ancillary ligands.1 The 

origins of this effect are attributed to a relief of steric congestion upon forming a product 

with a coordination number two less than that of the starting complex.  

Along with varying the steric bulk of a bidentate ancillary ligand it is also possible to 

alter the rate of reductive elimination by using chelating ligands with different natural 

bite angles; a larger natural bite angle leading to higher rates of reductive elimination.c 

For example, Moloy and co-workers investigated the rate of reductive elimination of R–

CN from cis-[Pd(CN)(R)(κ2-P,P-diphosphine)] (R = CH2TMS) experimentally.2 They 

found that as the bite angle of the chelating diphosphine was increased, the rate of 

reductive elimination of R–CN increased significantly. This effect has been explained 

by the increase in bite angle of the diphosphine causing a contraction in the R–Pd–CN 
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angle, which facilitates orbital overlap between the two carbon atoms to be coupled, 

resulting in a decrease in the activation barrier for reductive elimination.3 

In contrast to the mechanisms discussed so far, square planar complexes possessing 

monodentate ligands offer different mechanistic pathways. The barrier to reductive 

elimination from a complex containing two bulky monodentate ancillary ligands can be 

lower than in an analogous complex containing a bidentate ancillary ligand of 

equivalent total steric bulk, as a dissociative pathway becomes the favoured reductive 

elimination route. As a consequence of the chelate effect a dissociative mechanism for 

reductive elimination from complexes containing bidentate ancillary ligands is unlikely 

and direct reductive elimination from a 4-coordinate species is more favoured. 

Reductive elimination through a dissociative pathway, by pre-dissociation of one the 

bound ligands to relieve steric congestion in the starting complex, often has a lower 

energy barrier than by direct reductive elimination from a 4-coordinate complex.4 For 

example, the activation barrier to the formation of ethane via reductive elimination from 

cis-[PdMe2(PPh3)2] by a dissociative pathway has been calculated computationally by 

Suresh and co-workers to be significantly lower (11 kcal mol–1) than through a direct 

reductive elimination pathway (26 kcal mol–1) (Scheme 3.2).5 Further evidence in 

support of a dissociative pathway for reductive elimination of ethane from cis-

[PdMe2(PPh3)2] is provided experimentally by the observation that the rate of ethane 

reductive elimination is significantly slower in the presence of additional PPh3 (one 

equivalent). This observation indicates that pre-dissociation of a PPh3 ligand from cis-

[PdMe2(PPh3)2] is an important step.6 

 

 

Scheme 3.2: Formation of ethane via reductive elimination of ethane from cis-[PdMe2(PPh3)2] 

by direct and dissociative mechanisms, modified from Suresh et al.
5
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3.1.1.2 The impact of the electronic properties of the ancillary ligands on 

the rates of reductive elimination in 4-coordinate square planar 

complexes 

 

 

Scheme 3.3: Alteration of the rate of formation of methane by reductive elimination from 

platinum methyl hydride complexes on changing the electronic properties of the ancillary 

ligands. 
1, 7

  

 

It is now well established that reductive elimination occurs faster from more electron-

poor metal centres than it does from electron-rich metal centres with similar steric 

properties. This results from a destabilisation of the higher oxidation state starting 

complex by the electron-withdrawing ligand. One example of where this effect has 

been verified is through the work of Halpern and co-workers, who have demonstrated 

that the formation of methane via reductive elimination from platinum methyl hydride 

complexes bearing substituted triarylphosphine ligands is faster when electron-

withdrawing groups are incorporated (Scheme 3.3).1, 7 With the rate of methane 

reductive elimination being approximately 20 times faster when the electron deficient 

P(C6H4Cl)3 ancillary ligand is used compared to P(C6H4OMe)3. Consequently, the 

electronic character of an ancillary ligand is a highly important factor to consider when 

designing a ligand to promote reductive elimination. 

 

3.1.1.3 The impact of the addition of an alkene co-ligand on the rates of 

reductive elimination in 4-coordinate square planar complexes 

In the field of metal-catalysed reactions, alkenes are often seen as reagents. However, 

there is a well-developed body of work that exemplifies the use of alkene-based 

additives to influence both the rate and selectivity of reactions, which has been 

summarised in a recent review.8 
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The rationale behind the use of alkene ligand additives to promote reductive elimination 

is that they are good π-acceptors which can influence the electron density experienced 

at the metal centre. The coordination of an electron-withdrawing alkene to a metal 

centre results in a reduction in the electron density at the metal centre (due to the high 

π-basicity of alkenes), enhancing the rate of reductive elimination (see Section 

3.1.1.2). It has been demonstrated by Álvarez and Espinet that the addition of an 

electron withdrawing alkene (e.g. maleic anhydride) to cis-[PdMe2(PPh3)2] results in a 

significant enhancement in the rate of reductive elimination of ethane, but, the addition 

of more electron rich alkenes (e.g. 1-hexene) has minimal effect on the rate.6  

 

 

Scheme 3.4: Formation of small amounts of cis-[PdMe2(PPh3)(alkene)] enhances the rate of 

reductive elimination of ethane from cis-[PdMe2(PPh3)2]. 

 

Álvarez and Espinet postulated that as a result of the equilibrium process described in 

Scheme 3.4, the formation of a small, but vital proportion of cis-[PdMe2(PPh3)(alkene)] 

occurs when the alkene is electron withdrawing. The barrier to reductive elimination of 

ethane from the resulting cis-[PdMe2(PPh3)(alkene)] complex is significantly lower than 

that from cis-[PdMe2(PPh3)2] due to the presence of the electron withdrawing alkene, 

which reduces the electron density at the metal centre.6 The greatest rates of reductive 

elimination are experienced when the alkene is more strongly bound to the metal 

centre as the concentration of cis-[PdMe2(PPh3)(alkene)] is increased.  

In an extension to the work described above, and in order to maximise the impact of a 

metal bound alkene group upon reductive elimination, there have been reports of 

bidentate P-alkene ligands being used in this type of process. These P-alkene ligands 

contain both phosphine and electron-deficient alkene metal-coordinating moieties, and 
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have led to dramatic improvements in selectivity in palladium catalysed reactions 

(detailed in Section 3.1.2).9-11 The chelating nature of the bidentate P-alkene ligand 

enforces a cis orientation (a prerequisite for reductive elimination) at the metal centre 

and results in a significantly higher concentration of a metal-alkene complex (Scheme 

3.5). 

 

 

Scheme 3.5: Increase in the effective concentration of alkene-bound complex upon utilising a 

bidentate P-alkene ligand. 
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3.1.1.3.1 The proposed associative mechanism of reductive elimination 

from 4-coordinate square planar complexes upon addition of 

alkenes 

 

Scheme 3.6: Two possible pathways for the decomposition of [NiEt2(bipy)] via reductive 

elimination, modified from Rovis et al.
8, 12, 13

 

 

In contrast to the mechanism described above (Section 3.1.1.3), it is also proposed that 

the addition of an alkene co-ligand can promote the process of reductive elimination by 

an associative mechanism. Yamamoto and co-workers reported that the complex 

[NiEt2(bipy)] (bipy = bipyridine) decomposes by a β-hydride/reductive elimination 

pathway to form a mixture of ethene and ethane (Scheme 3.6). However, upon addition 

of an electron deficient alkene the rate of decomposition is significantly enhanced, and 

butane is formed (Scheme 3.6). The displacement of bipyridine by a monodentate 

alkene (as depicted for a phosphine ligand in Scheme 3.4) is unlikely due to the chelate 
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effect. Thus, Yamamoto proposes an associative mechanism, in which the alkene 

binds to [NiEt2(bipy)] to form a square-based pyramidyl intermediate in which the 

barrier to reductive elimination of butane is significantly reduced compared to that from 

the square planer complex [NiEt2(bipy)].12, 13 

 

3.1.2 Using P-alkene ligands to promote reductive elimination in 

palladium-catalysed reactions 

A recently-developed approach to promoting the reductive elimination step in 

palladium-catalysed reactions where slow reductive elimination is problematic, is the 

use of phosphine-alkene ligands such as 3-I, containing an electron-deficient alkene 

moiety (Figure 3.2).10, 11 It is proposed that the π-acidic alkene fragment of 3-I 

accelerates reductive elimination by reducing the electron density at the metal centre. 

Two examples of palladium-catalysed reactions where P-alkene ligand 3-I has been 

shown to reduce the formation of by-products formed by pathways competitive to slow 

reductive elimination are presented in the following sections. 

 

 

Figure 3.2: P-alkene ligand 3-I, containing an electron-deficient alkene moiety, developed by 

Lei.
10
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3.1.2.1 Palladium-catalysed Csp-Csp cross-coupling 

 

 

Pd pre-catalyst Selectivity 

(heterocoupled products : homocoupled products) 

[PdCl2(PPh3)2] 69:31 

[Pd(dba)2]:3-I (1:1) 91:9 

Scheme 3.7: Mixture of P-alkene ligand 3-I and [Pd(dba)2] gives increased selectivity for the 

heterocoupled product during palladium-catalysed Csp-Csp cross-coupling compared to 

[PdCl2(PPh3)2]. 

 

During palladium-catalysed Csp-Csp cross-coupling reactions there is a significant 

problem with the formation of homocoupled by-products, resulting in poor yields of the 

desired heterocoupled product.14 For example, for the reaction presented in Scheme 

3.7 the selectivity for heterocoupled over homocoupled products is 69:31 when 

[PdCl2(PPh3)2] is used as the pre-catalyst; a proposed mechanism for this process is 

presented in Scheme 3.8. After formation of the intermediate 3-II by oxidative addition 

and transmetallation the desired heterocoupled product is formed by direct reductive 

elimination (path A). However, if this reductive elimination step is slow, then further 

transmetallation can occur with the alkynylmetal reagents in the reaction system 

forming undesired homocoupled side products (paths B and C). Thus, in order to 

improve the selectivity for path A, it is nessessary to speed up reductive elimination 

from intermediate 3-II. To this end, Lei and co-workers have shown that using the P-

alkene ligand 3-I they were able to increase the selectivity for heterocoupled to 

homocoupled products to 91:9 ([Pd(dba)2]:3-I (1:1)). 
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Scheme 3.8: Simplified mechanism of palladium-catalysed Csp-Csp cross-coupling reaction, 

adapted from Lei et al.
11
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3.1.2.2 Palladium-catalysed Negishi cross-coupling 

 

 

Scheme 3.9: Proposed mechanism for the formation of an undesired by-product formed by β-

hydride elimination/reductive elimination during the Negishi cross-coupling of ethyl 2-

iodobenzoate and diethylzinc. 

 

The problems of slow reductive elimination in palladium-catalysed cross-coupling 

reactions are especially evident for reactions involving alkyl reagents, where the 

presence of β-hydrogens can lead to the formation of undesired by-products by β-

hydride elimination (Scheme 3.9). For example, during the Negishi cross-coupling of 

ethyl 2-iodobenzoate and diethylzinc the selectivity for the desired cross-coupled 

product over the β-hydride elimination product when using [PdCl2(PPh3)2] as a pre-

catalyst is 39:61 (Scheme 3.10).10 When undertaking the coupling of alkyl reagents 

increased selectivity for the desired cross-coupled product will be seen upon increasing 

the rate of reductive elimination pathway with respect to the β-hydride 

elimination/reductive elimination pathway (Scheme 3.9). Accordingly, the use of P-

alkene ligand 3-I increases the selectivity to the cross-coupled product over the product 

from β-hydride elimination to 94:6. 
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Pd pre-catalyst Selectivity 

(cross-coupled product : β-hydride elimination product) 

[PdCl2(PPh3)2] 39:61 

[PdCl2(MeCN)2]:3-I (1:1) 94:6 

Scheme 3.10: Mixture of P-alkene ligand 3-I and [PdCl2(MeCN)2] gives increased selectivity for 

the cross-coupled product during palladium-catalysed Negishi cross-coupling compared to 

[PdCl2(PPh3)2] .
10

 

 

The above two examples (Sections 3.1.2.1 and 3.1.2.2) show that P-alkene ligands 

containing an electron-deficient alkene moiety have tangible benefits during palladium-

catalysed cross-coupling reactions. In order to exploit this beneficial effect, it was of 

interest to probe the use of the P-alkene ligand 2-1 introduced in chapter 2, which 

contains a strained and rigid alkene moiety, to see whether it could give 

similar/improved benefits in analogous palladium-catalysed reactions. The more rigid 

structure of 2-1, coupled with the preferential olefin coordination resulting from a relief 

of ring-strain, should offer increased control and hence increased selectivity in 

reactions where slow reductive elimination is problematic. Thus, firstly, a study of 

comparatively simple ethane reductive elimination from palladium(II) dimethyl 

complexes promoted by ligand 2-1 was undertaken in order to gain a greater 

understanding of its chemistry, before applying ligand 2-1 to more complex catalytic 

systems.   
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3.2 Using ligand 2-1 to promote reductive elimination of ethane from 

Pd(II) dimethyl complexes 

Compound 2-1 contains several key features in its design that would favour its 

bidentate (κ2-P,C) coordination, which should result in a promotion of reductive 

elimination in palladium-catalysed cross-coupling reactions. 

 

 

Figure 3.3: Ligand 2-1. 

 

Features of ligand 2-1 

 Ligand 2-1 contains a π-accepting alkene group and thus should be electron-

withdrawing in nature: 

o Strong metal to alkene back-bonding encouraged as the alkene moiety 

is located within a strained 5-membered ring.  

o The magnitude of the 1JSeP (792 Hz) coupling constant for the 

phosphine-selenide 2-1.Se shows that the phosphorus donor moiety of 

2-1 is weakly basic, which is consistent with an overall electron 

withdrawing nature of the entire ligand. 

 Ligand 2-1 is sterically bulky, therefore steric crowding will be relieved upon 

reductive elimination from a 4-coordinate square planar complex, thus favouring 

the lower oxidation state.  

 

The electron deficient and sterically-demanding nature of 2-1 makes it an ideal 

candidate as a ligand to promote the reductive elimination step in palladium-catalysed 

transformations where slow reductive elimination is problematic (Section 3.1.2). The 

use of a strained alkene within a P-alkene framework to achieve strong alkene back-

bonding and promote reductive elimination is in contrast with the use of an electron 

deficient alkene (3-I) by Lei and co-workers to achieve the same effect.10 Firstly, the 

ability of ligand 2-1 to promote the reductive elimination of two methyl groups to form 

ethane will be tested before 2-1 will be applied to potentially catalytic systems. 
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3.2.1 Coordination of P-alkene ligand 2-1 to a PdMe2 fragment 

 

 

Scheme 3.11: Reaction of 2-1 with one equivalent [PdMe2(tmeda)]. 

 

Treating a d8-toluene solution of [PdMe2(tmeda)] with one equivalent of ligand 2-1 

afforded cis-[PdMe2(κ
2-P,C-2-1)] (3-1) in 100% conversion (according to 31P{1H} NMR 

spectroscopy) (Scheme 3.11). Complex 3-1 exhibits a singlet resonance at 81.3 ppm 

by 31P{1H} NMR spectroscopy (Δδ +39.7 ppm), with the alkene carbons displaying a 

broad singlet resonance at 119.2 ppm (Δδ –23.8 ppm). The magnitudes of the 

coordination chemical shifts observed for both the phosphine and the alkene 

functionalities are indicative of bidentate coordination of 2-1. The anticipated two 

inequivalent methyl groups are indeed observed by 1H NMR spectroscopy, 0.97 (d, 

3JPH = 7.7 Hz) and 1.69 (d, 3JPH = 7.5 Hz), consistent with their cis orientation in 3-1.  

Complex 3-1 is thermally unstable in solution at room temperature and after 5 days 

evolves smoothly to afford half an equivalent of the palladium(0) complex [Pd(κ2-P,C-2-

1)2] (3-2) (δ 31P{1H} 82.2 ppm) and >0.9 equivalents of ethane (δ 1H 0.80 ppm) as the 

only products,d together with a quantity of elemental palladium precipitated from 
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solution (Scheme 3.11). Alternatively if the reaction temperature is increased to 80 °C 

then complex 3-1 fully eliminates ethane in <5 mins. In contrast, complete reductive 

elimination of ethane from [PdMe2(dppe)] requires heating at 80 °C for 20 days to 

eliminate ethane.15 This difference in the rate of reductive elimination from 3-1 

compared with that from [PdMe2(dppe)] is attributed to the palladium centre of 3-1 

being considerably more electron poor than that in [PdMe2(dppe)] due to the presence 

of the electron withdrawing ligand 2-1. 

It should be noted that during the thermolysis of 3-1 no methane was detected (δ 1H 

0.16 ppm), suggesting that 1,1-reductive elimination of ethane is the dominant process 

taking place, enhanced by electron withdrawing ligand 2-1. In contrast, methane is 

seen in significant amounts during the thermolysis of some palladium dimethyl 

complexes and is believed to form as a result of solvent C-H activation or α-elimination, 

followed by methane reductive elimination (Figure 3.4).16 For example, complete 

conversion of [PdMe2(dmpe)] requires thermolysis at 90 °C for one week and liberates 

a 3:1 mixture of methane and ethane.16 

 

 

Figure 3.4: Pathways for the thermal decomposition of dimethylpalladium species, adapted 

from van Koten et al.
16
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3.2.1.1 X-Ray crystallographic study of cis-[PdMe2(κ
2-P,C-2-1)] (3-1) 

 

 

Figure 3.5: Molecular structure of cis-[PdMe2(κ
2
-P,C-2-1)] (3-1) with selected bond lengths (Å) 

and angles (°). X is defined as the midpoint of C(2)=C(3), (thermal ellipsoids set at 50% level).  

 

Single crystals of complex 3-1 were grown by cooling a concentrated toluene solution, 

with the ensuing X-ray crystallographic study confirming the proposed structure of cis-

[PdMe2(κ
2-P,C-2-1)] (Figure 3.5). Complex 3-1 presents a distorted square planar 

structure about palladium; the angle between the two planes defined by the atoms 

P,Pd,X and C01,Pd,C02 is 0.57(1)°, while the P-Pd-X bite-angle of 2-1 in complex 3-1 

is 80.51(5)°, where X is the mid-point between C(2)=C(3).  

The molecular structure of [PdMe2(dppe)] is not known, hence a direct structural 

comparison with 3-1 cannot be made, something that precludes any comparison of 

geometric effects that could impact on the differences in rate of reductive elimination of 

the dppe complex with 3-1. The nearest analogues that have been structurally 

characterised are [PdMe2(tmeda)] and [PdMe2(dmpe)]. The angle between the two 

palladium bound methyl groups of 3-1 (85.9(1)°) is slightly smaller than that for either 

[PdMe2(tmeda)] (87.4(1)°) or [PdMe2(dmpe)] (88.8(2)°).16 The Pd–C bond distances for 

the two methyl ligands in 3-1 are identical, despite being located trans to the alkene 

(2.068(3) Å) and trans to a phosphine moieties (2.074(3) Å), suggesting there is little 

difference in the trans influence between these two donor moieties. The P–CH3 bond 

lengths of 3-1 are identical (within error) to those for [PdMe2(dmpe)] (mean = 2.087(4) 

Å), but slightly longer than those determined for [PdMe2(tmeda)] (mean = 2.028(4) Å).16  

Pd-C01 2.074(3) 

Pd-C02 2.068(3) 

Pd-C2 2.238(2) 

Pd-C3 2.266(2) 

Pd-P 2.2876(6) 

C2-C3 1.359(3) 

C01-Pd-C02 85.9(1) 

C01-Pd-P 173.06(9) 

C01-Pd-P 101.01(8) 

P-Pd-X 80.51(5) 
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In conclusion, it is proposed that reductive elimination is facilitated from complex 3-1 by 

the small angle between its two palladium-bound methyl groups, which is assumed to 

result from the tight coordination of P-alkene 2-1. A small angle between the two 

palladium-bound methyl groups facilitates orbital overlap between the two methyl 

carbon atoms to be coupled, resulting in a decrease in the activation barrier for 

reductive elimination (Section 3.1.1.1). 

 

3.2.2 Reaction of two equivalents of P-alkene ligand 2-1 with a PdMe2 

fragment 

 

 

Scheme 3-12: Synthesis of [Pd(κ
2
-P,C-2-1)2] (3-2). 

 

With a view to achieving the direct synthesis of the palladium(0) complex [Pd(κ2-P,C-2-

1)2] (3-2) the reaction of [PdMe2(tmeda)] with two equivalents of 2-1 was undertaken 

(Scheme 3.12). A detailed NMR-scale study of this reaction revealed that complete 

conversion to 3-2 was achieved in just 5 h (cf. 5 days when a Pd:2-1 ratio of 1:1 was 

used).  

Characterisation of 3-2 was achieved by multinuclear NMR spectroscopy, with complex 

3-2 exhibiting a singlet resonance at δ 31P 82.2 ppm (Δδ +40.6 ppm), consistent with a 

single phosphorus environment. Due to the pseudo-tetrahedral geometry of complex 3-

2 (confirmed by single crystal X-ray diffraction), there is no mirror plane running 

through the alkene bond and so each half of the two 2-1 ligands is in a different 

environment, exactly as is observed for [Ni(κ2-P,C-2-1)2] (2-6), Section 2.2.4. 
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3.2.2.1 X-Ray crystallographic study of [Pd(κ2-P,C-2-1)2] (3-2). 

 

 

Figure 3.6: Molecular structure of [Pd(κ
2
-P,C-2-1)2] (3-2), with selected bond lengths (Å) and 

angles (°). X is defined as the midpoint of C(4)=C(6) and Y as the midpoint of C(8)=C(12), 

(thermal ellipsoids set at 50% level).  

 

A single crystal X-ray diffraction study of complex 3-2 revealed a distorted tetrahedral 

structure about palladium (Figure 3.6). We postulate that 3-2 adopts a tetrahedral 

geometry to minimise steric interaction between the bulky 2-1 ligands. This contrasts 

with the only other example of a structurally characterised bis(P-alkene)palladium(0) 

complex, 3-III (Figure 3.7), reported by Lei and co-workers, which contains a much less 

bulky P-alkene ligand and adopts a geometry in which the palladium centre is in an 

intermediate geometry between that of a square-planar and a tetrahedral structure.17   

The C–C bond distances of the η2-coordinated alkene moieties in 3-2 are longer (mean 

= 1.404(3) Å) than that determined for dimethyl complex 3-1 (1.359(3) Å), which is 

consistent with increased Pd→π*(C=C) retro-donation from the more electron-rich 

Pd(0) centre. Compared to the analogous nickel(0) complex 2-6 (see Section 2.2.4), 

the phosphine and alkene groups of 3-2 exhibit longer bond distances to the metal 

centre, consistent with binding to a metal centre with a larger covalent radius (Ni: 1.24 

Å; Pd: 1.39 Å).18 The P1-Pd-X and P2-Pd-Y bite angles for ligand 2-1 in complex 3-2 

are 81.31(4)° and 81.31(3)°, respectively, showing a less than 1% difference in bite 

angle compared to those found for complex 3-1, suggestive that ligand 2-1 is quite rigid 

in its mode and geometry of coordination.  

Pd-P1 2.3440(4) 

Pd-P2 2.3341(4) 

Pd-C4 2.192(1) 

Pd-C6 2.209(2) 

Pd-C8 2.190(1) 

Pd-C12 2.191(2) 

C4-C6 1.401(2) 

C8-C12 1.406(2) 

P1-Pd-P2 126.97(1) 

P1-Pd-X 81.31(4) 

P2-Pd-Y 81.31(3) 
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Figure 3.7: Bis(P-Alkene)palladium(0) complex 3-III as described by Lei and co-workers.
17

 

 

3.2.3  Investigating the mechanism of ethane reductive elimination 

promoted by P-alkene ligand 2-1  

In Section 3.2.2 a discussion of the observations made following the addition of two 

equivalents of 2-1 to [PdMe2(tmeda)], which resulted in complete elimination of ethane 

in 5 h at RT with formation of the palladium(0) complex 3-2, was presented. The 

following section describes experiments and computational calculations carried out to 

determine the mechanism of this unusually facile process.   

 

3.2.3.1 Accelerated ethane reductive elimination from cis-[PdMe2(κ
2-P,C-2-

1)] (3-1) by the addition of PPh3 or propene 

The experiments in Section 3.2.3.1 were carried out by Andreas Phanopoulos (MChem 

student in the Dyer group 2010-2011).  

The addition of one equivalent of 2-1 to [PdMe2(tmeda)] resulted in complete 

elimination of ethane in 5 days at RT with formation of equimolar quantities of 3-2 and 

palladium metal (Section 3.2.1). It was found that it was possible to speed up this 

reaction significantly by the addition of small amounts of either PPh3 or propene. 
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Ph
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PPh2
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Ph
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Conditions i) Complete elimination of ethane / h 

No additive 120 

9 mol% PPh3 12 

4 mol% propene 36 

Scheme 3.13: The effect of the addition of sub-stoichiometric quantities of PPh3 or propene on 

the rate of reductive elimination of ethane from complex 3-1 at room temperature. 

 

The addition of sub-stoichiometric quantities of either PPh3 or propene to the reaction 

between one equivalent of 2-1 and [PdMe2(tmeda)] resulted in a significant 

enhancement in the rate of reductive elimination of ethane, with complete elimination of 

ethane achieved in 12 and 36 h, respectively (cf. 120 h in the absence of an additional 

L-donor ligand), Scheme 3.13. In the presence of an L-donor the formation of a 5-

coodinate intermediate is proposed (Figure 3.8), from which the barrier to ethane 

reductive elimination is lower than from complex 3-1 itself. 

 

 

Figure 3.8: Proposed 5-coodinate intermediate from which reductive elimination of ethane 

takes place. 

 

3.2.3.2 Attempts to trap the proposed 5-coordinate intermediate: variable 

temperature NMR studies 

Following the addition of two equivalents of 2-1 to [PdMe2(tmeda)] we have proposed  

the formation of a 5-coordinate intermediate, where 2-1 is acting as the donor L 

(through either its phosphine or alkene moieties), from which ethane reductive 

elimination takes place (Figure 3.8). In an attempt to identify or trap this proposed 5-

coordinate intermediate, a variable temperature NMR spectroscopic study of the 

reaction between 2-1 and cis-[PdMe2(κ
2-P,C-2-1)] (3-1) was performed.  

1/2 3-2   +  1/2 Pd(0)   +   C2H6[PdMe2(tmeda)]   +   2-1
d8-toluene

RT

i)

N

Ph2
P

Pd
Me

Me

L

L = PPh3, propene, P-/alkene donor component of 2-1
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The reagents were mixed at 0 °C immediately prior to loading the NMR tube into the 

spectrometer with the probe pre-cooled to +10 °C.e At +10 °C the 31P{1H} NMR 

spectrum presented two very broad (FWHM = 850 Hz) resonances, at 41.3 and 81.3 

ppm, which can be ascribed to 2-1 and 3-1, respectively. Upon cooling the solution to –

80 °C, these two very broad resonances were replaced by a comparatively sharp 

resonance (FWHM = 35 Hz) at 59.4 ppm, accompanied by a broad (FWHM = 9 Hz) 

singlet resonance at 0.15 ppm in the 1H NMR spectrum.f Together, the observation of a 

single phosphorus and a single methyl environment suggests that the new species 

formed at –80 °C could be cis-[PdMe2(κ
1-P-2-1)2] (Scheme 3.14). The presence of a 5-

coordinate species was not detected, which would show two resonances by 31P{1H} 

NMR spectroscopy. In order to help determine from which species ethane reductive 

elimination takes place a computational study on the reaction of 2-1 with cis-[PdMe2(κ
2-

P,C-2-1)] (3-1) was performed, and is detailed in the next section. 

 

 

Scheme 3.14: Proposed complex cis-[PdMe2(κ
1
-P-2-1)2] (right), to which were attributed the 

signals δ 
31

P{
1
H} 59.4 ppm and δ 

1
H 0.15 ppm observed by NMR spectroscopy at −80 °C. 

  

                                                
e
 The reaction mixture was kept cool (+10 °C) to minimise the formation of complex 3-2, which 

would complicate the spectra. 
f
 Slowly warming back to +20 °C resulted in the re-formation of the two very broad resonances 

at 41.3 and 81.3 ppm. 

N
Ph2P

N
PPh2

Pd
Me Me

N
PPh2

+

d2-DCM

-80 oC

N

Ph2
P

Pd
Me

Me

3-1

2-1

+ 10 oC



Chapter 3  

82 
 

3.2.3.3 Theoretical investigation of the interaction of P-alkene ligand 2-1 

with cis-[PdMe2(κ
2-P,C-2-1)] (3-1) 

Three possible pathways for the interaction of P-alkene 2-1 with dimethyl complex 3-1 

were investigated by a computational analysis (Scheme 3.15) and will be discussed in 

turn below. Computational studies were performed by Karinne Miqueu, Jean-Marc 

Sotiropoulos, and Laura Estevez (Université de Pau), and were performed in vacuo at 

the B3LYP/SDD+f(Pd), 631G** (other atoms) level of theory. 
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Scheme 3.15: Three possible pathways for the reductive elimination of ethane from 3-1 + 2-1, 

investigated by a computational analysis.  

 

 

Figure 3.9: Reaction profile for the three possible pathways for the reductive elimination of 

ethane from 3-1 + 2-1.TSX = transition state for reductive elimination of ethane in path X. 
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Path 1: No interaction between 2-1 and 3-1, ethane reductive elimination from 4-

coodinate complex 3-1. 

The activation barrier to the reductive elimination of ethane directly from 3-1 to form A 

is moderately large (∆G‡,3-1→A
 = 28.1 kcal mol–1), this activation barrier will be compared 

with that for two further pathways in which 2-1 and 3-1 interact.  

 

Path 2: Reductive elimination of ethane from cis-[PdMe2(κ
1-P-2-1)2] (B). 

VT NMR spectroscopic studies on the interaction of 2-1 and 3-1 (Section 3.2.3.2) 

suggested the presence of B at low temperature, hence it was of interest to study a 

pathway containing B.g The addition of a second equivalent of ligand 2-1 to complex 3-

1, to form complex B, cis-[PdMe2(κ
1-P-2-1)2], is a favourable process (∆Gr,3-1+2-1→B = 

−6.3 kcal mol–1). The barrier to ethane reductive elimination from B (∆G‡,B→3-2 = 28.0 

kcal mol–1) is almost identical to that from 3-1. However, if one considers that B is 

stabilised compared to 3-1 (∆Gr,3-1+2-1→B = –6.3 kcal mol–1), the activation barrier 

starting from 3-1 becomes, ∆G‡ = 21.7 kcal mol–1 (Figure 3.9). Thus a pathway that 

proceeds via B has a lower activation barrier for the overall process than the path that 

proceeds directly from 3-1 and hence represents a plausible mechanism for the facile 

reductive elimination of ethane in the presence of two equivalents of ligand 2-1.  

 

Path 3: Reductive elimination of ethane from a 5-coodinate palladium intermediate (C). 

It was calculated that the lowest energy 5-coordinate palladium intermediate, C, 

contained ligand 2-1 bound both in a mono- (through phosphorus) and a bi-dentate 

fashion in a distorted square-based pyramidal structure (Scheme 3.15 and Figure 

3.10). Complex C is stabilised by a similar amount as B with respect to 3-1 (∆Gr,3-1+2-

1→C = –5.2 kcal mol–1); it is assumed that the stabilisation occurs through donation of 

electron density from the phosphorus lone pair to the electron-poor palladium(II) centre 

relative to the presence of only a single P-donor-metal interaction in 3-1. The activation 

barrier for ethane reductive elimination from C is lower (∆G‡,C→3-2 = 22.3 kcal mol–1) 

than that from either 3-1 or B. Moreover, as C is stabilised compared to 3-1 (∆Gr,3-1+2-

1→C = –5.2 kcal mol–1), the activation barrier starting from 3-1 becomes ∆G‡ = 17.1 kcal 

mol–1. Thus, a pathway that proceeds via the 5-coordinate species C has the lowest 

activation barrier for the overall process (3-1 + 2-1 → 3-2) for all three pathways 

investigated (Figure 3.9). 

                                                
g
 B not necessarily present under reaction conditions (RT), as cooling during the VT NMR 
spectroscopic study may have favoured the formation of B.  
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Figure 3.10: Calculated structure of complex C, cis-[PdMe2(κ
1
-P-2-1)(κ

2
-P,C-2-1)].  

 

3.3 Stability and reactivity of complex [Pd(κ2-P,C-2-1)2] (3-2) 

 

 

Scheme 3.16: Reactivity of [Pd(κ
2
-P,C-2-1)2] (3-2). 

 

It is well established that palladium(0) has a lower affinity for alkenes than nickel(0), as 

it is a poorer π-donor, confirmed by the order of equilibrium constants M = Ni >> Pt > 

Pd in the reaction, M(PR3)3 + C2H4 ↔ M(C2H4)(PR3)2 + PR3.
19 Therefore, we expected 

[Pd(κ2-P,C-2-1)2], (3-2) to be generally more reactive than [Ni(κ2-P,C-2-1)2] (2-6), which 
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has been shown to be extremely stable (Section 2.2.4.2). Consequently, Section 3.3 

describes experiments performed to help assess the stability and reactivity of 3-2. 

In contrast to the predicted reactivity, complex 3-2 exhibits a remarkable tolerance 

towards air/moisture, being stable in air and (non-dried) organic solutions for several 

days. Additionally, a C6D6 solution of 3-2 can be heated at 80 °C under an N2 

atmosphere for 24 h with no decomposition detected by 31P{1H} NMR spectroscopyh 

(Scheme 3.16).  

As palladium has a lower affinity for alkenes than nickel one might expect that the 

alkene groups of 3-2 would be significantly easier to displace than in the nickel 

analogue 2-6. However, heating (80 °C, 16 h) a solution of complex 3-2 with two 

equivalents of triphenylphosphine did not lead to the displacement of the alkene 

groups, signifying that the alkene groups are strongly bound to the palladium centre 

(Scheme 3.16).  

The nickel analogue of 3-2 (2-6) was very stable and inert towards the oxidative 

addition of iodobenzene, showing no reaction with iodobenzene upon heating with 

excess iodobenzene at 80 °C for 16 h. Conversely, heating a solution of complex 3-2 

with 10 equivalents of iodobenzene at 60 °C for 2 mins resulted in the precipitation of 

palladium metal. Analysis of the remaining solution by 31P{1H} NMR spectroscopy 

revealed that all of complex 3-2 had been consumed and replaced by multiple 

phosphorus-containing species (Scheme 3.16). A control experiment showed that no 

reaction was observed between a solution of ligand 2-1 and iodobenzene upon heating 

at 60 °C for 15 minutes, suggesting that the iodobenzene was interacting with a 

palladium-containing species 3-2. The precipitation of palladium metal suggests that 

the initial oxidative addition product of iodobenzene to 3-2 is not stable. In contrast to 

the previous observations (Section 2.2.4.2) the higher reactivity of 3-2 compared to 2-6 

is thought to reflect the greater affinity of alkenes for nickel than for palladium.  

The reaction of P-alkene palladium(0) complexes with iodobenzene is a known 

transformation. Bennett et al. have demonstrated the oxidative addition of iodobenzene 

to palladium P-alkene complex 3-IV (Scheme 3.17), with the product subsequently 

undergoing rearrangement to 3-V.  

 

                                                
h
 With reference to an internal phosphorus-containing standard (PPh3) located within a sealed 
capillary 
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Scheme 3.17: Oxidative addition of iodobenzene to a (P-alkene)palladium(0) complex 3-IV and 

subsequent rearrangement, as reported by Bennett and co-workers.
20

 

 

3.3.1 Utilising P-alkene ligand 2-1 in palladium-catalysed reactions 

3.3.1.1 Suzuki-Miyaura cross-coupling 

There is precedent for P-alkene ligands forming highly active and stable catalysts in the 

Suzuki-Miyaura cross-coupling of arylbromides with phenylboronic acid. For example, 

Williams and co-workers observed that the P-alkene ligands 3-VI and 3-VII (Figure 

3.11), formed significantly more active and stable catalysts with palladium than their 

saturated analogues.9 With the increased activity of 3-VI and 3-VII  over their saturated 

analogues believed to be caused by a faster rate of transmetallation or the reductive 

elimination.9  

Encouraged by the reactivity of the conveniently-prepared and air-/moisture-stable 

complex 3-2 with iodobenzene (Section 3.3), we tested 3-2 as a catalyst in palladium-

mediated cross-coupling reactions. The Suzuki-Miyaura cross-coupling of unactivated 

aryl halides and phenyl boronic acid was chosen in the first instance (Scheme 3.18).i  

 

                                                
i
 This is purely a feasibility study and no effort was made to optimise the reaction conditions. 
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Figure 3.11: P-Alkene ligands developed by Williams et al. for use in Suzuki-Miyaura cross-

coupling reactions. 

 

Table 3.1 reports the yields of biphenyl producedj after 20 h at 80 °C for the Suzuki-

Miyaura cross-coupling of various aryl halides with phenyl boronic acid catalysed by 1 

mol% 3-2. The coupling of iodobenzene and phenyl boronic acid proceeded in good 

yield (entry 1), although slightly lower than with the more electron-rich Pd(0) source 

[Pd(PPh3)4] (entry 8). However, when a drop of mercury was added to the reaction 

mixture the yield of biphenyl dropped to <1% (entry 4). The addition of mercury is a 

qualitative test to verify if colloidal Pd(0) species are the active catalytic species.k A 

positive mercury drop test implies that colloidal Pd(0), which is presumed to arise from 

decomposition of complex 3-2, is the direct catalyst in the reaction. As the catalytically-

active species is formed by the breakdown of 3-2, then the electronic effects of 2-1 will 

have no impact on the reaction. 

 

 

Scheme 3.18: Suzuki-Miyaura cross-coupling of phenylboronic acid and aryl halides utilising 3-

2 as a pre-catalyst. 

 

                                                
j
 Determined by GC-FID, using nonane as an internal standard. 

k
 Colloidal Pd(0) reacts with Hg(0) forming an amalgam, thus quenching the palladium 

nanoparticles as they are released upon decomposition of the complex.  
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Entry Aryl halide Yield of biphenyl % 

1 PhI 84 

2 PhBr 33 

3 PhCl 3 

4 PhIa <1 

5 PhIb 0 

6 PhIc 0 

7 None 3 

8 PhId 98 

Conditions: aryl halide (0.5 mmol), phenylboronic acid (0.75 mmol), K2CO3 (1.0 mmol), 1 mol% 

3-2, toluene (5.0 cm
3
), 80 °C, 20 h. Percentage yield determined by GC based on biphenyl 

(internal standard of nonane used), and averaged over two runs. 

(a) 1 drop Hg added, (b) No 3-2 added, (c) No phenylboronic acid, (d) 3-2 replaced by 

Pd(PPh3)4 

Table 3.1: Yields of biphenyl found for the Suzuki-Miyaura cross-coupling of phenylboronic acid 

and aryl halides utilising 3-2 as a pre-catalyst. 

 

3.3.1.2 Negishi cross-coupling 

The catalytic performance of ligand 2-1 was also tested in the Negishi cross-coupling of 

ethyl 2-iodobenzoate and diethylzinc, under conditions identical to those used by Lei 

and Espinet for the same transformation (Scheme 3.19).10, 21 The aforementioned 

cross-coupling has been established as a good test for the ability of a ligand to promote 

reductive elimination over competing β-hydride elimination (Section 3.1.2.2).10 The 

addition of various pre-catalysts containing the P-alkene ligand 2-1 to the Negishi 

cross-coupling of ethyl 2-iodobenzoate and diethylzinc afforded products formed by β-

hydride elimination (3-VIII) and by cross-coupling (3-IX), with only traces (<1%) of other 

products detected (Table 2.2).l Best results utilising ligand 2-1 were obtained when 

[PdCl2(κ
1-P-2-1)] was used as the pre-catalyst (entry 3), giving greater selectivity and 

significantly higher activity than the use of a 1:1 mixture of [PdCl2(MeCN)2] and 2-1 

(entry 4). It is presumed that on using a 1:1 mixture of [PdCl2(MeCN)2] and 2-1 not 

enough time was left before the zinc reagent was added in order to form [PdCl2(κ
2-P,C-

2-1)] (2 minutes stirring). Pre-formed palladium(0) complex 3-2 proved a poor pre-

catalyst for this reaction giving the lowest conversion to products 3-VIII and 3-IX, with 

95% of the starting ethyl 2-iodobenzoate being left at the end of the reaction (entry 5); 

this is unsurprising due to 3-2 being highly stabilised by two electron deficient 2-1 

                                                
l
 Conversions were quantified by GC-FID analysis, and are the average of two runs. 
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ligands. In all reactions involving ligand 2-1, the fraction of 3-IX formed was poor, with 

3-VIII (β-hydride elimination product) dominating.   

 

 

Scheme 3.19: Impact of different ligands on Csp
3
-involved Negishi cross-coupling.  

 

Entry Pre-catalyst 
Conversion of 

ethyl 2-iodobenzoate / % 
3-VIII : 3-IX 

1 [Pd(PPh3)4] 100 43 : 57 m 

2 [PdCl2(PPh3)2] 100 94 : 6 n 

3 2-1 + [PdCl2(MeCN)2] 13 96 : 4 

4 [PdCl2(κ
1-P-2-1)] 100 86 : 14 

5 [Pd(κ1-P-2-1)2] (3-2) 5 98 : 2 

Conditions: ethyl-2-iodobenzoate (1.0 mmol), Et2Zn (2.5 mmol), 5 mol% pre-catalyst, THF (5.0 

cm
3
), RT, 2 h. Percentage conversion and selectivity determined by GC (internal standard of 

nonane used), and averaged over two runs. 

Table 3.2: Catalytic results for the Negishi cross-coupling of diethylzinc and ethyl 2-

iodobenzoate. 

 

3.4 Coordination chemistry of P-alkene 2-1 with a PdCl(Me) fragment 

Section 3.2 detailed that ligand 2-1 was able to promote the reductive elimination of 

ethane from palladium dimethyl complexes. Following this success, we next hoped to 

apply ligand 2-1 to some more difficult reductive elimination processes, e.g. alkyl halide 

reductive elimination. Due to significant M–Cl bond polarisation, the barrier to alkyl 

chloride reductive elimination is much greater than for alkyl-alkyl elimination. For 

example, the theoretical barriers to reductive elimination of ethane and chloromethane 

are reported by Suresh et al. to be approximately 20 kcal mol–1 higher in 

[PdCl(Me)(PR3)2] complexes than in equivalent [PdMe2(PR3)2] complexes.5 Whilst alkyl 

                                                
m
 3-VIII : 3-IX ratio of 43.8 : 56.2 reported by Lei
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chloride reductive elimination is known for 5- and 6-coordinate transition metal 

complexes, to the best of our knowledge there are no examples of methyl chloride 

reductive elimination from 4-coordinate palladium(II) complexes.22, 23  

 

 

Scheme 3.20: The reaction of one equivalent of ligand 2-1 with [PdCl(Me)(COD)] (this work) 

and a contrasting reaction utilising P-alkene ligand 3-X (by Oberhauser and co-workers
24

). 

 

The reaction between one equivalent of ligand 2-1 and [PdCl(Me)(COD)] resulted in the 

rapid formation of the palladium(0) complex 3-2, consistent with MeCl reductive 

elimination at room temperature. However, on closer analysis of the reaction products 

an equimolar amount of the methyl phosphonium chloride salt of 2-1, (3-3)Cl, is also 

obtained (δ 31P{1H} 38.1 ppm) along with unreacted [PdCl(Me)(COD)] (Scheme 3.20). 

The presence of (3-3)Cl was confirmed by ESI mass spectrometry, showing a peak at 

m/z = 342 for the cationic 3-3+ fragment. The methyl phosphonium chloride salt (3-3)Cl 

also exhibited a distinctive and characteristic doublet resonance at 2.82 ppm, 2JPH = 13 

Hz by 1H NMR spectroscopy, for the phosphorus-bonded methyl group. Notably, 

changing the stoichiometry of the reagents to three equivalents of 2-1 per 

[PdCl(Me)(COD)] afforded, rapidly and quantitatively, a 1:1:1 mixture of 3-2, (3-3)Cl 

and COD as the only products (Scheme 3.21).  

In contrast to the reactivity shown by P-alkene ligand 2-1 with [PdCl(Me)(COD)], P-

alkene ligand (3-X) was shown by Oberhauser et al. to form the stable complex 

[PdCl(Me)(κ2-P,C-(3-X))] (Scheme 3.20), i.e. methyl and chloride ligands are not 

eliminated from the metal centre.24 As both 2-1 and 3-X contain an R2N-PPh2 
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phosphine moiety (and hence a comparable Lewis basicity for the P-based donor) any 

difference in the reactivity between these two ligands with [PdCl(Me)(COD)] must be 

attributed to the nature of the alkene moiety. 

 

 

Scheme 3.21: Reaction between three equivalents of 2-1 and [PdCl(Me)(COD)]. 

 

3.4.1 Investigating the mechanism of the reaction between P-alkene 2-1 

and [PdCl(Me)(COD)] 

The reaction of three equivalents of 2-1 with [PdCl(Me)(COD)] led to the very rapid 

formation of complex 3-2 and phosphonium salt (3-3)Cl. Due to the high rate of 

reaction, no intermediates were detected by NMR spectroscopy on the way to the 

formation of 3-2 and (3-3)Cl. Therefore, in order to gain a greater understanding of the 

mechanism for the methyl and chloride ligand removal from the palladium centre a 

computational analysis of this system has been undertaken. The following calculations 

were performed by Karinne Miqueu, Jean-Marc Sotiropoulos, and Laura Estevez 

(Université de Pau), and were performed in vacuo at the B3LYP/SDD+f(Pd), 631G** 

(other atoms) level of theory. The following discussion relates to the complexes and 

reaction steps displayed in Scheme 3.22, it does not constitute a full analysis of all 

possible mechanisms, due to the large number of components involved and, hence, 

the number of reaction pathways achievable. We have suggested and then 

investigated plausible steps based on knowledge gained from studying the reaction of 

2-1 with [PdMe2(tmeda)] (Section 3.2.3) and on previous literature precedent.22  
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Scheme 3.22: Proposed mechanisms and reaction profile for the elimination of methyl and 

chloride ligands from [PdCl(Me)(COD)] investigated by computational analysis. TSX = transition 

state for the elimination of methyl and chloride ligands in path X. 
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Path 1: Reductive elimination of MeCl from a 4-coordinate complex 

It is reasonable to suggest that [PdCl(Me)(κ2-P,C-2-1)] (D) could be formed in solution 

by the displacement of COD by 2-1, but, the calculated barrier to reductive elimination 

of MeCl from D is very large, ΔG‡,D→A = +42.6 kcal mol–1, which is inconsistent with the 

high rate of reaction observed. Indeed, the barrier to MeCl reductive elimination from D 

is significantly larger than that calculated for the dimethyl analogue [PdMe2(κ
2-P,C-2-1)] 

3-1 (ΔG‡,3-1→A = +28.1 kcal mol–1), from which it is known that ethane reductive 

elimination takes significantly longer (5 days).  

 

Path 2: Reductive elimination of MeCl from a 5-coordinate complex 

It has been calculated that the formation of a 5-coordinate complex E by the addition of 

a second equivalent of 2-1 to D is favourable (∆Gr,D→E = −8.4 kcal mol−1). However, the 

barrier to the reductive elimination of MeCl from E is comparable to that from D, 

ΔG‡,E→3-2 = +40.0 kcal mol–1. Given the large barriers to reductive elimination of MeCl 

from D and E, we have discounted any proposed mechanism that involves direct 

reductive elimination of MeCl from a Pd(II)Cl(Me) complex. 

 

Path 3: SN2 attack of the phosphine group of P-alkene 2-1 on a palladium methyl 

group 

As the direct reductive elimination of MeCl is highly unlikely due the high energy 

barriers calculated, we propose the existence of an alternative reaction pathway that 

does not involve direct MeCl reductive elimination, namely, the SN2 attack of the 

phosphine moiety of 2-1 on a palladium methyl group. Whist the formation of a methyl 

phosphonium chloride salt by SN2 attack of a phosphine on a Pd(II)Cl(Me) complex is 

an unprecedented transformation, there is literature precedent for a similar 

transformation occurring with an octahedral rhodium complex. It was observed by Baird 

and co-workers that the reductive elimination of MeCl from [RhCl2(Me)(CO)(PPh3)2] (3-

XI) was significantly enhanced in the presence of excess PPh3 with the formation of the 

phosphonium salt, (MePPh3)Cl (Scheme 3.23); the rates of reaction were of a 

convenient magnitude such that the reaction could be readily probed by NMR 

spectroscopy. Consequently, Baird proposes that as the formation of the phosphonium 

salt occurred at a rate faster than that observed for the reaction of free MeCl with PPh3, 

then direct nucleophilic attack by the phosphine on the rhodium-bound methyl group 

was a plausible mechanism for Me-Cl elimination.22 

 



Chapter 3  

95 
 

 

 

Scheme 3.23: Mechanism proposed by Baird et al. for the elimination of methyl and chloride 

ligands from [RhCl2(Me)(CO)(PPh3)2], adapted from Baird and co-workers.
22

 

 

With this alternative mechanism in mind we propose a mechanism that involves SN2 

attack of the phosphine moiety of a third equivalent of 2-1 on the methyl carbon of 

complex E, with the remaining palladium complex as the leaving group (Scheme 3.22). 

The energy barrier for this nucleophilic attack pathway is much lower (ΔG‡,E→3-2+(3-3)Cl = 

+20.3 kcal mol–1) than direct reductive elimination of MeCl from D or E (~40 kcal mol–1). 

If one considers the additional stability of E over D, the reaction barrier for the removal 

of the methyl and chloride ligands from D drops to ΔG‡ = +11.9 kcal mol–1. A reaction 

barrier of ΔG‡ = +11.9 kcal mol–1 is consistent with the high rate of reaction observed. 

The attack of phosphine on a palladium-bound methyl group via an SN2 pathway is 

surprising given the electronegativities of the atoms involved (C = 2.55, P = 2.19), 

hence, the methyl group of E is presumably activated by the strongly electrophilic 

Pd(κ2-P,C-2-1) fragment. The calculated structure of the transition state for the attack 

of 2-1 on methyl group of E via an SN2 process is shown in Figure 3.12, the methyl 

group presents a trigonal planar structure about carbon, consistent with an SN2 

reaction.  
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Figure 3.12: Calculated transition state structure for SN2 attack of 2-1 on E. 

 

In summary, the reaction of three equivalents of P-alkene 2-1 with [PdCl(Me)(COD)] 

led to the very rapid formation to 3-2 and phosphonium salt (3-3)Cl, with no 

intermediates being detected by NMR spectroscopy. Computational calculations 

suggest that the methyl and chloride ligands were not removed from the metal centre 

by direct chloromethane reductive elimination (Scheme 3.22: path 1 + path 2) as the 

energy barriers are unfeasibly high. Instead, a pathway with a lower energy barrier 

involving the SN2 nucleophilic attack of 2-1 on a palladium-methyl group is proposed 

(path 3), with the palladium-methyl group activated by the strongly electrophilic Pd(κ2-

P,C-2-1) fragment. 

 

3.5 Synthesis and coordination chemistry of N-PPh2-3-pyrroline – a less 

rigid and bulky analogue of P-alkene 2-1 

The alkene group of ligand 2-1 was designed to bind very strongly to a metal centre by 

virtue of being located in a rigid and strained framework. However, the alkene group of 

2-1 was found to be very π-accepting and this was found to highly stabilise low 

oxidation state complexes of Pd(0) and Ni(0), limiting their reactivity. Hence there was 

a need for an analogue of 2-1 which is less π-accepting, that could form complexes 

with significantly different reactivity. 
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3.5.1 Synthesis of N-PPh2-3-pyrroline (3-4) 

This section details attempts to synthesise a less rigid and therefore less π-accepting 

analogue of 2-1, namely, N-PPh2-3-pyrroline (3-4). Compound 3-4 was chosen to 

mimic some of the features of the norbornene-based phosphine-alkene 2-1, namely to 

include an alkene located within a 5-membered ring and a diphenylaminophosphine 

moiety, but have a less rigid and bulky skeleton, which could potentially lower the 

binding strength of the alkene group. The lower affinity of the alkene moiety of 3-4 to a 

metal compared to 2-1 is a manifestation of 3-4 being less strained and thus there is a 

smaller reduction in ring strain upon the alkene binding to a metal. It was envisaged 

that mono-cyclic P-alkene 3-4 would form complexes with significantly different 

reactivity to those formed with 2-1. Consequently, this section of the thesis details the 

coordination chemistry of 3-4 to palladium and explores subsequently the reactivity of 

the ensuing complexes. 

Ligand 3-4 bears resemblance to ligand 3-XII, recently reported by Hayashi and co-

workers, a chiral ligand based on the N-PPh2-3-pyrroline backbone (Figure 3.13), which 

was synthesised in a relatively complex multi-step procedure. Bidentate coordination of 

3-XII to rhodium through the phosphine and alkene moieties was shown by X-ray 

diffraction studies,25, 26 something that suggests that 3-4 will also act as a bidentate 

ligand to late transition metals such as palladium. 

 

 

Figure 3.13: Ligand 3-XII, a chiral P-alkene N-PPh2-3-pyrroline-based ligand developed by 

Hayashi and co-workers.
25, 26

 

 

 

Scheme 3.24: Synthesis of N-PPh2-3-pyrroline (3-4). 

 

The ligand N-PPh2-3-pyrroline (3-4) was prepared in moderate yield (46%) from 3-

pyrroline via a straightforward nucleophilic substitution reaction with 

chlorodiphenylphosphine (Scheme 3.24) and was purified by vacuum distillation. The 
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colourless, viscous oil produced solidified into a white solid upon cooling to –20 °C, 

which did not melt upon warming to room temperature.o Compound 3-4 was 

characterised by multinuclear NMR spectroscopy and elemental analysis. 31P{1H} NMR 

spectroscopy exhibits a singlet resonance at +47.4 ppm, typical of other 

aminodiphenylphosphines.27 The alkene protons of the 3-pyrroline moiety appear as a 

broad singlet resonance at +5.38 ppm by 1H NMR spectroscopy, slightly shifted to 

lower frequency compared to 3-pyrroline (5.84 ppm).28 The magnitude of the 1JSe-P 

coupling constant of 776 Hz for 3-4.Se (synthesis in Scheme 3.25) confirms that the 

phosphorus donor moiety of 3-4 is weakly basic and is comparable to that of 2-1 (1JSe-P 

= 792 Hz).29 Thus, it is reasonable to suggest that any differences in the coordination 

chemistry of 2-1 and 3-4 can be ascribed to the differences in the rigidity and steric 

bulk of the alkene-containing moiety.   

 

 

Scheme 3.25: Synthesis of 3-4.Se. 

 

3.5.2 Synthesis of N-PPh2-pyrrolidine (3-5) 

The previously reported compound 3-5 was synthesised to probe the impact of the 

alkene moiety in 3-4 on its coordination chemistry compared to its saturated analogue, 

3-5. N-PPh2-pyrrolidine (3-5), was synthesised using an analogous method to that for 

the preparation of 3-4 from the parent pyrrolidine (Scheme 3.26), giving a slight 

improvement in yield over a similar literature procedure used to synthesise 3-5.30 

 

 

Scheme 3.26: Synthesis of N-PPh2-pyrrolidine (3-5). 
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The spectroscopic data for 3-5 are consistent with those reported previously in the 

literature, showing a single resonance at 47.4 ppm by 31P{1H} NMR spectroscopy.30 

Notably, the value of |1JSe-P| for 3-5.Se is 748 Hz,30 indicating in general terms that the 

inclusion of the alkene group in 3-4 makes the phosphorus moiety slightly less basic. It 

is proposed here that this difference in |1JSe-P| between 3-4.Se and 3-5.Se is not due to 

direct electronic interaction between the alkene and the P-centre, but rather it can be 

attributed to small changes in the geometry around the phosphorus centre as enforced 

by the alkene group of 3-4.Se. 

 

3.5.3 Exploring the coordination chemistry of monocyclic P-alkene 3-4 

with PdMe2 fragments 

In Section 3.2.2 it was reported that the addition of two equivalents of P-alkene 2-1 to 

[PdMe2(tmeda)] results in the reductive elimination of ethane and the formation of the 

homoleptic palladium(0) complex 3-2, a process that is complete in 5 h at RT. To 

explore the importance of the bicyclic nature of ligand 2-1 an analogous reaction was 

attempted using monocyclic 3-4. 

 

 

Scheme 3.27: Synthesis of [PdMe2(κ
1
-P-3-4)2] (3-6). 

 

The addition of 2 equivalents of 3-4 to [PdMe2(tmeda)] in C6D6 resulted in the rapid and 

quantitative conversion (via 31P{1H} NMR spectroscopy) to cis-[PdMe2(κ
1-P-3-4)2] (3-6). 

The cis orientation of the methyl groups is clear from the 1H NMR spectrum of 3-6, with 

the resonance of the methyl groups appearing as a doublet of doublets at 1.03 ppm, 

consistent with 2JPH coupling to two magnetically inequivalent phosphorus centres. The 

31P{1H} NMR spectrum of 3-6 shows a singlet resonance at 70.8 ppm (Δδ +23.4 ppm), 

consistent with a palladium-bound phosphorus moiety.  

To confirm the identity of 3-6 in the NMR-scale reaction above, compound 3-6 was also 

synthesised and isolated on a larger scale in 62% yield (Scheme 3.27) with 

characterisation accomplished by multinuclear NMR spectroscopy and elemental 
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analysis; spectroscopic data for 3-6 was consistent between the NMR-scale and the 

larger scale reaction. 

 

 

Scheme 3.28: The addition of one equivalent of 3-4 to [PdMe2(tmeda)]. 

 

Notably, the addition of just one equivalent of P-alkene 3-4 to [PdMe2(tmeda)] resulted 

in the formation of 3-6, leaving half an equivalent of unreacted [PdMe2(tmeda)] (visible 

by 1H NMR spectroscopy) (Scheme 3.28). The target complex, [PdMe2(κ
2-P,C-3-4)], 

analogous to 3-1, was not observed, emphasizing a lower tendency of 3-4 to bind in a 

bidentate fashion, something presumed to result from its greater flexibility. 

Alternatively, as 3-4 is significantly less bulky than 2-1, then there is less steric conflict 

between the ligands in a cis-(κ1-P)2 arrangement (Figure 3.14), making 3-6 a low 

energy conformation, unlike cis-[PdMe2(κ
1-P-2-1)2], which is likely to be destabilised by 

the bulky ligand 2-1. In contrast to Hayashi’s structurally similar P-alkene ligand (3-XII, 

Figure 3.13), no evidence of the coordination of the alkene group of 3-4 has been 
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obtained.p It is proposed that in 3-XII the bulky benzyl group at the 2-position forces the 

alkene group towards the metal centre. 

  

 

Figure 3.14: The steric repulsion between the cis-bound ligands is expected to be greater in the 

proposed complex cis-[PdMe2(κ
1
-P-2-1)2 than in 3-6. 

 

3.5.3.1 Ethane elimination from complex [PdMe2(κ
1-P-3-4)2] (3-6) 

Complex 3-6 is not stable in solution at room temperature for prolonged periods of 

time. On leaving a C6D6 solution of 3-6 at room temperature for 2 h, signals attributed 

to complex 3-6 disappear completely, accompanied by the precipitation of palladium 

metal (Scheme 3.29). Analysis of the remaining solution by 31P{1H} NMR spectroscopy 

revealed a new broad singlet resonance at 66.9 ppm (FWHM = 16 Hz) (cf. 3-6 δ 31P 

70.8 ppm). This new phosphorus-containing species has been identified as [Pd(κ1-P-3-

4)3] (3-7) by comparison of the 1H and 31P NMR spectra with those of an independently 

synthesised authentic sample of 3-7 (Scheme 3.30). Additionally, analysis of the 

remaining solution by 1H NMR spectroscopy showed that the resonance corresponding 

to the palladium-bound methyl groups of 3-6 (doublet of doublets at 1.03 ppm) had 

disappeared, something accompanied by the formation of ethane, which gives rise to a 

singlet at 0.80 ppm.31 Overall, very rapid ethane reductive elimination from complex 3-6 

occurs, with the formation of two Pd(0) products. 

 

Scheme 3.29: Reductive elimination of ethane from [PdMe2(κ
1
-P-3-4)2] (3-6). 
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Scheme 3.30: Synthesis of [Pd(κ
1
-P-3-4)3] (3-7). 

To the best of our knowledge, there are no reports of the formation of [Pd(PR3)3] 

derivatives directly from cis-[PdMe2(PR3)2] complexes.q However, there are numerous 

examples of [Pd(PR3)3] complexes themselves, for example, [Pd(PPh3)3], [Pd(PEt3)3] 

and [Pd(PtBu2H)3], which can be synthesised by a variety of different methods (Scheme 

3.31).32-34 

 

 

Scheme 3.31: Different methods used to synthesise [Pd(PR3)3] complexes.
32-34
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3.5.3.1.1 X-Ray crystallographic study of [Pd(κ1-P-3-4)3] (3-7) 

 

 

Figure 3.15: Molecular structure of [Pd(κ
1
-P-3-4)3] (3-7), with selected bond lengths (Å) and 

angles (°).Thermal ellipsoids set at 50% level. 

 

Single crystals of 3-7 suitable for X-ray diffraction were grown by slow diffusion of 

hexane into a concentrated toluene solution; the ensuing molecular structure is shown 

in Figure 3.15. The palladium centre of complex 3-7 presents a tetragonally distorted 

trigonal planar structure, with the angle between the P1PdP2 plane and P3 being 

164.04(3)°, which is similar to the distortion observed in [Pd(PPh3)3] (angle between 

equivalent atoms = 165.88(3)°).35 All the alkene groups of P-bound ligand 3-4 are 

pointing away from the palladium centre and thus show no interaction between the 

alkene group and the palladium centre. 

 

3.5.3.1.2 Investigating the mechanism of ethane reductive elimination from 

[PdMe2(κ
1-P-3-4)2] (3-6) 

To investigate the mechanism of reductive elimination from 3-6 giving rise to ethane, a 

deuterium labelling experiment was carried out. Equimolar amounts of complex 3-6 and 

its hexadeuterated dimethyl analogue, cis-[Pd(CD3)2(κ
1-P-3-4)2], were dissolved in 

C6D6. After 2h at RT, analysis of the resulting reaction mixture by 1H NMR 

spectroscopy showed two resonances in the 0-1.5 ppm region with the same 

integration, a singlet resonance at 0.80 ppm (ethane)31 and a septet resonance at 0.77 
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ppm (3JHD = 1.3 Hz) (CH3CD3);
36 these data are indicative of an ethane : CH3CD3 ratio 

of 1:2. The formation of CH3CD3 is evidence that ethane results from reductive 

elimination and that the process is intermolecular and involves two or more palladium 

centres and not from direct reductive elimination of ethane from either 3-6 or cis-

[Pd(CD3)2(κ
1-P-3-4)2], since this latter pathway would not produce CH3CD3.

15 In 

contrast, the analogous deuterium crossover experiment performed by Stille and co-

workers on cis-[PdMe2(PPh3)2] produced no CH3CD3,
r suggesting an intramolecular 

reductive elimination mechanism.15  

 

 

Scheme 3.32: Ethane reductive elimination by an intermolecular mechanism from a methyl-

bridged palladium dimer, adapted from Nakamura et al.
37

  

 

A definitive mechanism for ethane reductive elimination from 3-6 is hard to propose 

due to the intermolecular mechanism, which is a poorly studied transformation. 

However, there is some precedent for palladium methyl complexes to eliminate ethane 

via an intermolecular pathway.37 Nakamura and co-workers observed that the major 

product formed upon thermolysis of 3-XIII was ethane and not 1-butene, and that the 

ethane formed via a intermolecular mechanism (Scheme 3.32). They have postulated 

that ethane reductive elimination takes place from a palladium dimer with bridging 

methyl groups (3-XIV), formed by phosphine dissociation. This pathway was proposed 

based on the observation that thermolysis of an independently-synthesised authentic 

sample of 3-XIV gave a very similar distribution of products.37   
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Scheme 3.33: Proposed mechanism for the elimination of ethane from 3-6. 

 

Based upon the formation of CH3CD3 during the deuterium labelling experiment direct 

ethane reductive elimination from 3-6 can be discounted. We therefore propose an 

intermolecular mechanism for ethane reductive elimination from 3-6. Specifically, 

ethane elimination from F formed from the dissociation of one equivalent of phosphine 

ligand 3-4 from cis-[PdMe2(κ
1-P-3-4)2] (3-6) with subsequent dimerization (Scheme 

3.33). However, the reaction is complex and further ethane elimination steps must take 

place to form the required product distribution. We therefore suggest that the 

palladium-containing product of the reductive elimination step (G), can undergo further 

(undefined) rearrangements or dimerisation reactions to transform the remaining 

palladium-bound methyl groups into ethane. Significant further investigation is needed 

to elucidate the full mechanism due to the complex intermolecular transformation 

involving multiple metal centres. 
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3.5.4 Synthesis of [Pd(κ1-P-3-4)4] (3-8) 

 

 

Scheme 3.34: Synthesis of [Pd(κ
1
-P-3-4)4] (3-8). 

 

Complex 3-8, [Pd(κ1-P-3-4)4], was synthesised to confirm that the phosphorus-

containing product formed from the reductive elimination of ethane from 3-6 (reaction 

shown in Scheme 3.29) was the tris-substituted species 3-7 not its tetrakis analogue. 

Complex 3-8 was synthesised in 93% yield by heating a toluene solution of 

[PdMe2(tmeda)] in the presence of four equivalents of 3-4 for 30 minutes (Scheme 

3.34); the product was subsequently characterised by multinuclear NMR spectroscopic 

and CHN analyses. The tetrakis-phosphine complex 3-8 exhibits a very broad singlet 

resonance by 31P NMR spectroscopy at +53.1 (FWHM = 385 Hz) ppm, with 1H NMR 

spectroscopy confirming the equivalence of each of the four phosphine ligands 3-4. 

Further evidence that 3-8 exists as a true tetra-coordinate species and not a mixture of 

3-7 + 3-4 is given by solid-state 31P{1H} NMR spectroscopy of the material obtained 

from the reaction mixture upon removal of all volatile components, which shows a 

single resonance at 60.7 ppm and no trace of free phosphine.  

 

3.5.5 Coordination chemistry of P-alkene 3-4 and P-alkane 3-5 with 

PdCl(Me) fragment 

Previously we have shown that the reaction of three equivalents of P-alkene 2-1 with 

[PdCl(Me)(COD)] leads to the rapid formation of 3-2 and the methylphosphonium 

chloride salt of 2-1, (3-3)Cl, Section 3.4. Consequently, it was of interest to probe the 

potential for an analogous reaction with the significantly less rigid P-alkene 3-4.  
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Scheme 3.35: The contrasting reactions between three equivalents of P-alkene ligands 2-1 and 

3-4 with [PdCl(Me)(COD)].  

 

The addition of three equivalents of 3-4 to a CDCl3 solution of [PdCl(Me)(COD)] leads 

to the immediate formation of equimolar amounts of trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) 

and free 3-4 (by 31P{1H} NMR spectroscopic analysis), Scheme 3.35. The resulting 

mixture is stable at room temperature for 2 h, which contrasts with the analogous 

reaction of [PdCl(Me)(COD)] with 2-1, which rapidly forms 3-2 and phosphonium salt 

(3-3)Cl. Subsequent thermolysis (80 °C, 2 h) of the reaction mixture obtained from 

treating trans-[PdCl(Me)(κ1-P-3-4)2] with 3-4 led to a colour change from yellow to red 

and the formation of palladium metal. Analysis of the reaction mixture by 1H and 

31P{1H} NMR spectroscopy showed multiple (>10) phosphorus-containing products, 

none of which could be assigned to the methylphosphonium chloride salt of 3-4, which 

was predicted to give a characteristic doublet at approximately 3 ppm in the 1H NMR 

spectra, by analogy with the independently-synthesised phosphonium salt (3-11)I, 

Scheme 3.36. As expected, compound (3-11)I shows a distinctive doublet (2JPH = 13 

Hz) at 2.84 ppm for its phosphorus-bonded methyl group. It is clear that the rigid and 

bulky alkene moiety of 2-1 is key to its reactivity with the PdCl(Me) fragment by 

enforcing bidentate coordination. In Section 3.4.1 we proposed that the highly π-

accepting alkene moiety of ligand 2-1 activates the palladium-bound methyl group of a 

PdCl(Me) fragment towards nucleophilic attack. In contrast, 3-4 binds to a PdCl(Me) 

fragment in a monodentate fashion and thus the alkene moiety is unable to activate the 

palladium bound methyl group towards nucleophilic attack. 

3 +
fast

CDCl3
RT

[PdCl(Me)(COD)]2-1 3-2 +    (3-3)Cl +    COD

2 h
80 oC

stable for 2 h at RT

multiple phosphorus-containing products
 and palladium metal

3 +
fast

CDCl3
RT

[PdCl(Me)(COD)]3-4 trans-[PdCl(Me)(k1-P-3-4)2]

+ COD

3-9

cf.
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Scheme 3.36: The synthesis of the methylphosphonium iodide salt of 3-4, (3-11)I. 

 

 

Scheme 3.37: Synthesis of trans-[PdCl(Me)(κ
1
-P-3-4)2] (3-9) and trans-[PdCl(Me)(κ

1
-P-3-5)2] (3-

10). 

 

As the addition of three equivalents of 3-4 to [PdCl(Me)(COD)] led to the formation of 

trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) and free 3-4 it was of interest to synthesise an 

authentic sample of trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) along with its saturated analogue 

trans-[PdCl(Me)(κ1-P-3-5)2] (3-10) for comparison. The addition of two equivalents of 3-

4 or 3-5 to [PdCl(Me)(COD)] leads to the rapid formation of trans-[PdCl(Me)(κ1-P-3-4)2] 

(3-9) or trans-[PdCl(Me)(κ1-P-3-5)2] (3-10), respectively, in moderate yield (Scheme 

3.37). The trans orientation of both phosphorus-containing groups in 3-9 and 3-10 is 

evident from 1H NMR spectroscopy; the palladium-bound methyl group presents a 

triplet for both complexes (3-9: –0.19 (t, 3JPH = 6.2 Hz) and 3-10: –0.17 (t, 3JPH = 6.1 

Hz)).  

  

I

+
CDCl3
RT

MeI
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N PPh2 N PPh2

Me

3-4 (3-11)I

yield = 92%

RPPh2 [PdCl(Me)(COD)]+ Pd
Cl

Ph2RP Me

PRPh2

2 + COD
i)

N

N

R  =

R  =

i) d2-DCM, RT, 10 mins

i) CDCl3, RT, 10 mins3-9

3-10

yield = 65%
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3.5.5.1 X-Ray crystallographic study of trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) 

and trans-[PdCl(Me)(κ1-P-3-5)2] (3-10) 

 

 

 

Figure 3.16: Molecular structure of trans-[PdCl(Me)(κ
1
-P-3-4)2] (3-9), with selected bond lengths 

(Å) and angles (°).Thermal ellipsoids set at 50% level. The molecular structure contains a 

molecule of DCM which is omitted for clarity. One of the phenyl rings and the N-heterocycle on 

each phosphorus centre are in statistically mixed positions (not shown). 

 

 

Figure 3.17: Molecular structure of trans-[PdCl(Me)(κ
1
-P-3-5)2] (3-10), with selected bond 

lengths (Å) and angles (°),(thermal ellipsoids set at 50% level). 

 

Single crystals of 3-9 suitable for X-ray diffraction were grown by layering a 

concentrated DCM solution with hexane; the ensuing molecular structure is shown in 

Figure 3.16. The palladium centre of complex 3-9 presents a slightly distorted square 

PdCl 2.4355(6) 

PdP1 2.3199(6) 

PdP2 2.3199(6) 

PdC1 2.065(3) 

P1PdCl 90.88(2) 

P2PdCl 90.48(2) 

P1PdP2 178.63(2) 

C1PdCl 179.42(8) 

C1PdP1 89.69(8) 

C1PdP2 88.94(8) 

PdCl 2.4187(4) 

PdP1 2.3219(4) 

PdP2 2.3172(4) 

PdC1 2.099(2) 

P1PdCl 88.55(2) 

P2PdCl 89.58(2) 

P1PdP2 177.76(2) 

C1PdCl 177.47(5) 

C1PdP1 91.18(5) 

CPdP2 90.75(5) 
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planar structure, with a P1PdP2 angle of 178.63(2)°, with all the bond distances and 

angles about palladium being similar to those in previously-reported trans-

[PdCl(Me)(PPh3)2].
38 As expected, the alkene groups of P-bound ligand 3-4 are 

pointing away from the palladium centre and thus show no interaction between the 

alkene group and either the palladium centre or any other ancillary ligands.  

Single crystals of 3-10 suitable for X-ray diffraction were also grown, with the ensuing 

molecular structure shown in Figure 3.17. The molecular structure of 3-10 is very 

similar to 3-9, showing that the inclusion of an unsaturated ligand in 3-9 has minimal 

impact on the structure of the ensuing complex, compared to the saturated analogue in 

3-10.  
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3.6 Chapter 3 summary and conclusions 

Addition of one equivalent of the phosphine-alkene ligand 2-1 to [PdMe2(tmeda)] 

resulted in the formation of cis-[PdMe2(κ
2-P,C-2-1)] (3-1). Over a period of 5 days 

complex 3-1 evolves smoothly to afford half an equivalent of the palladium(0) complex 

[Pd(κ2-P,C-2-1)2] (3-2) and ethane as the only organic product, together with a quantity 

of elemental palladium. The reductive elimination of ethane from 3-1 is much faster 

than from the analogous dppe complex cis-[PdMe2(dppe)] by virtue of the palladium 

centre being significantly less electron rich; elimination is believed to occur directly from 

the 4-coordinate species. The addition of small amounts of either PPh3 or propene 

significantly speed up the reductive elimination of ethane from 3-1, via formation of a 5-

coordinate intermediate. In a similar fashion, when two equivalents of P-alkene ligand 

2-1 per [PdMe2(tmeda)] are used the reductive elimination of ethane is again fast, and 

is believed to proceed via a 5-coordinate intermediate [PdMe2(κ
2-P,C-2-1)(κ1-P-2-1)] 

(C). A mechanism that proceeds via cis-[PdMe2(κ
1-P-2-1)2] (B) cannot be fully 

discounted as it was observed at low temperature by NMR spectroscopy. However, the 

activation barrier for ethane reductive elimination has been calculated to be higher from 

B than from C. 

Phosphine-alkene ligand 2-1 gave poor performance in palladium-catalysed cross-

coupling reactions, as electron withdrawing ligand 2-1 stabilises Pd(0) species. This 

stabilisation is so effective that the Pd(0) complexes do not readily undergo oxidative 

addition. 

The reaction of three equivalents of P-alkene 2-1 with [PdCl(Me)(COD)] led to the very 

rapid formation to 3-2 and phosphonium salt (3-3)Cl. Computational studies suggest 

that the methyl and chloride ligands were not removed from the metal centre by direct 

chloromethane reductive elimination as the energy barrier was unfeasibly high. Instead, 

a pathway with a lower energy barrier involving the SN2 nucleophilic attack of 2-1 on a 

palladium-methyl group is proposed, with the palladium-methyl group activated by the 

strongly electrophilic Pd(κ2-P,C-2-1) fragment. 

Monocyclic P-alkene ligand 3-4 was designed to have a more flexible structure than 

that of the rigid phosphine-alkene ligand 2-1, with a view to weakening the strength of 

the alkene-metal interaction and, hence, potentially accessing complexes that were 

more labile than those of 2-1. However, notably, to date, no evidence was found to 

support the binding of the alkene moiety of 3-4 to a palladium centre. For example, 

while the complex cis-[PdMe2(κ
1-P-3-4)2] (3-6) undergoes facile reductive elimination of 

ethane at room temperature, there is subsequent preferential coordination of a third 

phosphine moiety to form [Pd(κ1-P-3-4)3] (3-7) and palladium metal. In contrast to 

ligand 2-1, the reaction of 3-4 with [PdCl(Me)(COD)] gave the formation of trans-
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[PdCl(Me)(κ1-P-3-4)2] (3-9) and did not remove the methyl and chloride ligands from the 

metal centre. 

 

3.7 Future work 

The alkene moiety of ligand 2-1 was designed to strongly bind to a metal centre and 

thus be highly π-accepting. However, the highly π-accepting nature of 2-1 led the 

formation of highly stabilised and thus unreactive metal complexes, e.g. [Ni(κ2-P,C-2-

1)2] (2-6) and [Pd(κ2-P,C-2-1)2] (3-2). Initial attempts to synthesise a less π-accepting 

analogue of 2-1, to potentially form complexes with greater reactivity by reducing the 

rigidity of the alkene moiety, led to the synthesis of ligand 3-4. Ligand 3-4 was found to 

bind in a monodentate only fashion (through P) to Pd(II) and Pd(0) metal fragments. 

We propose that it would be possible to make a less π-accepting analogue of the 

bidentate ligand 2-1 by increasing the steric bulk of the alkene substituents (Figure 

3.18). Increased steric bulk on the alkene moiety will hinder the bonding of the alkene 

moiety to a metal and thus be less π-accepting (Section 1.3). 

 

 

Figure 3.18: Proposed analogue of P-alkene ligand 2-1 with bulky alkene substituents to hinder 

alkene metal binding. 

 

N
PPh2

2-1

N
PPh2

R

R

R = bulky substuent
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4 Chapter 4: Synthesis and coordination chemistry of novel 

POCOP pincer ligands  

4.1 Introduction 

 

 

Figure 4.1: General representation of pincer complexes, adapted from Morales-Morales.
1
 

 

A pincer-type ligand comprises of one central donor atom E and two trans-positioned 

donor groups D, which bind to a metal centre using three adjacent co-planar sites 

(Figure 4.1). Pincer ligands can take many forms and can contain a variety of chemical 

motifs at the donor positions, which include phosphorus, nitrogen, and carbon among 

others (Figure 4.1).  

Complexes containing pincer ligands have found application in a diverse array of 

different areas. For example, pincer-based complexes have been used as chemical 

sensors,2 synthons for the construction of dendrimeric materials,3 and 

pharmaceutically-active complexes.4 However, the major application of pincer ligand-

containing complexes is as catalysts for a range of reactions (Section 4.1.3).  

In this regard metal complexes bearing pincer ligands have received unparalleled 

interest as homogeneous catalysts due to their high thermal stability, which allows 

reactions to be carried out at high temperatures, and is a manifestation of the 

tridentate, chelating coordination and often rigid structure.1, 5-7 Furthermore, pincer 

ligands are able to tightly control the coordination geometry of metals, thus providing a 

degree of selectively to reactions that take place on the metal centre. In addition, the 

ease and scope with which pincer ligands may be modified, provides excellent means 

of modulating/tuning the control imposed by pincer ligands at the metal. Some of the 

ways in which the structure of a pincer ligand can be modified to affect the reactions 

taking place at the coordinated metal centre are summarised in Figure 4.2. 

 

E

M DD

D = donor group e.g. OR, SR, SeR, NR2, PR2

E = central donor atom, e.g. C, N, P

M = metal centre
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Figure 4.2: A description of the potential features of pincer-type ligands bearing an aromatic 

backbone, adapted from Morales-Morales.
5
 

 

4.1.1 Pincer ligand nomenclature 

A commonly-used notation for the naming of pincer ligands and their complexes is to 

describe the ligand only by the potentially metal-binding atoms, in the form ABC, e.g. 

PCP (phosphorus-carbon-phosphorus). This terminology can be extended to include 

spacer atoms in the form ASBSC, e.g. POCOP, although if the spacer atom (S) is 

carbon it is usually excluded from the abbreviation (Figure 4.3). The abbreviation 

system described above (ASBSC) will be used throughout this report. 

 

 

Figure 4.3: Generic structure of and notation describing pincer ligands contained in this report. 

 

The highly tuneable structure of pincer ligands gives them broad utility as ligands in 

metal-catalysed reactions, due to their ability to fine-tune the environment of the metal 

centre to which they are attached. Due to the highly versatile structure many different 

syntheses have been developed. The next section details the methods that have been 

utilised to synthesise POCOP-type pincer ligands, which are the focus of this thesis. 

  

Y

M
Ln

PP

RR

- Anchoring site
- Remote electronic modulations

- Chirality
- Steric modulation

- Steric and electronic modulation 
  via donor groups
- Chirality

- Cavity for metal binding with 
  tuneable accessibility
- Sites for counter anions or 
  ancillary ligands

SS

PP M

SS

PP

Spacer S = C = PCP
Spacer S = O = POCOP

'metalation'
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4.1.2 Synthesis of POCOP ligands 

 

 

Scheme 4.1: Synthesis of the first POCOP ligand reported by Jensen et al.
8
 

 

The first POCOP ligand (4-I) to be reported was synthesised by Jensen et al. in 2000, 

25 years after the first PCP ligand, despite their synthesis being considerably more 

simple due to the relative synthetic ease of making a P-O compared to a P-C bond.8 To 

date, most POCOP ligands have been synthesised from 1,3-benzenediol (resorcinol) or 

derivatives thereof, via simple salt elimination with R2PCl precursors. For example, 

ligand 4-I was synthesised through the addition of two equivalents of ClPiPr2 to 

resorcinol in the presence of 4-dimethylaminopyridine (DMAP) to act as a base at RT 

(Scheme 4.1).8 A disadvantage of this technique is that if the R2PCl precursor is not 

commercially available, then additional steps are required for its prior preparation. 

Whilst the reaction between resorcinol and R2PCl precursors is by far the most 

common method of synthesising POCOP ligands there are a few other methods 

available, which are detailed below. 

  

O O

PiPr2 PiPr2

HO OH

+ 2  ClPiPr2
DMAP

THF
RT

4-I



Chapter 4 

118 
 

 

Scheme 4.2: Synthesis of a P-chiral POCOP pincer ligand via dichlorophosphinite 1,3-

{(Cl2PO)2C14H20} (4-6), reported by Bedford and Pringle.
9
 

 

A second general approach for the synthesis of POCOP ligands proceeds via a 

dichlorophosphinite precursor, 1,3-{(Cl2PO)2C14H20} (4-6), developed by Bedford and 

Pringle (Scheme 4.2).9 Although the use of precursor 4-6 is advantageous, since 

reaction with a vast range of alcohols and secondary amines is potentially possible, 

hence giving access to a host of diphosphite and diaminophosphinite POCOP ligands, 

it has yet to be fully exploited with only chiral diphosphite ligands having been 

developed to date. Importantly, compound 4-6 has tert-butyl groups at the 4- and 6-

positions of the aromatic ring, which have been shown to speed up the metallation (i.e. 

C–H activation) of electron deficient bis(phosphite) POCOP ligands to palladium, by 

preventing the ligand adopting a bridging coordination mode (Figure 4.4).9 

Nevertheless, the inclusion of these tert-butyl does have some disadvantages, as the 

resulting ligands are less atom-efficient and more expensive than the equivalent 

resorcinol-derived ligands. 

 

OHHO +  xs PCl3 OO

PCl2 PCl2

NEt3

16 h

-40 - RT oC

toluene

+ ClHNEt32

4-6

NEt3

16 h
-40 - RT oC

toluene
HO

HO

OO

P P

+ ClHNEt34

OO OO
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Figure 4.4: The steric bulk of the tert-butyl substituent on the aromatic ring limits rotation 

around the C–O and O–P bonds which disfavours the formation of insoluble polymeric species, 

caused by the ligand adopting a bridging mode (left). The formation of the required monomeric 

species is consequently favoured (right). 

 

 

Scheme 4.3: Metal-templated synthesis of a POCOP ligand, developed by Frech and co-

workers.
10

 

 

A third and final method for the synthesis of POCOP scaffolds, which has found very 

limited application as it is not general and not applicable to other metals and ligands, is 

a metal-templated route developed by Frech and co-workers. Specifically, a piperidinyl-

substituted ligand was prepared ‘on-metal’ by the addition of resorcinol to cis-

[PdCl2(P(pip)3)2], (Scheme 4.3) (pip = piperidine).10 Although limited in scope, the 

advantage of this metal-templated method is that the independent synthesis of air- and 

moisture-sensitive ligands is unnecessary.  

 

4.1.3 Application of POCOP pincer ligands in catalysis 

Since they were first reported in 2000, POCOP-type ligands have been used in 

transition metal-based catalysts for a diverse range of reactions, employing a variety of 

different metals.8, 11 A broad summary of catalytic transformations mediated by POCOP 

ligand-containing complexes is given in Table 4.1.  
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Entry Pre-catalyst Reaction catalysed Author 

Nickel-catalysed 

1 

 

Michael addition Zargarian 

et al.12 

2 

 

Hydroamination Zargarian 

 et al.13 

3 

 

Hydrosilylation Guan 

 et al.14 

4 

 

Cross-coupling of aryl 

iodides and aryl thiols 

Guan 

 et al.15 

5 

 

Reduction of carbon 

dioxide with a borane 

Guan 

et al.16-18 

6 

 
 

 

Hydroamination 

 

Alcoholysis 

Zargarian 

et al.19 

OO

Ni PP

N

OTf

OO

Ni PP

N

BPh4

OO

Ni PP

H

OO

Ni PPh2Ph2P

Cl

OO

Ni PP

H

OO

Ni PPh2Ph2P

OTf
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7 

 

Suzuki-Miyaura cross-

coupling 

Morales-Morales 

et al.20 

8 

 

Aldehyde 

cyanomethylation 

Guan  

et al.1, 21 

    

Palladium-catalysed 

9 

 

Heck cross-coupling Jensen 

et al.8 

10 

 

Suzuki-Miyaura cross-

coupling 

 

Allyl stannane 

carboxylation 

Bedford 

et al.11 

 

 

Wendt  

et al.22 

11 

 

Sulfonimine asymmetric 

allylation 

Szabó  

et al.23 

12 

 

Suzuki-Miyaura cross-

coupling 

Uozumi  

et al.24 

13 

 
 

Heck and Stille cross-

coupling 

Fukuzumi  

et al.25 

OO

Ni PPh2Ph2P

Cl

OO

Ni PP
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14 

 

Suzuki-Miyaura cross-

coupling 

Frech 

et al.10 

15 

 

Sulfonimine asymmetric 

allylation 

Klein Gebbink 

et al.26 

    

Platinum-catalysed 

16 

 

Hydroxylation Jensen 

 et al.27 

    

Rhodium-catalysed 

17 

 

Kumada-Tamao-Corriu 

cross-coupling 

Ozerov  

et al.28 

    

Iridium-catalysed 

18 

 

Alkene transfer 

dehydrogenation 

Brookhart  

et al.29 

19 

 
 

 

Ammonia borane 

dehydrogenation 

Goldberg 

 et al.30 

OO

Pd PPN

N N

N

Cl

OO

Pd PP

I

N

O

N

O

OO

Pt PP

Cl

OO

Rh PP

ClH

OO

Ir PP

ClH

X

X = H, Me, OMe, F

OO
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20 

 

Reduction of alkyl 

halides 

 

Hydrosilylation 

 

Carbon dioxide reduction 

 

Amide reduction  

Brookhart  

et al.31-34 

 

 

    

Iron-catalysed 

21 

 

Hydrosilylation Guan 

 et al.35 

 

Table 4.1: A summary of the application of POCOP ligands in transition metal-mediated 

catalysis since 2000. 

 

The reactivity of POCOP-type ligands can be fine-tuned by modifying the steric and 

electronic properties of the donor groups, which is of fundamental interest in catalyst 

design, in the quest to form catalysts that are more active and/or selective. However, 

the work summarised in Table 4.1 shows that, to date, there has been comparatively 

little modification of the phosphorus donor groups in known POCOP-containing 

catalysts, with aryl and alkyl phosphorus substituents being prevalent. Therefore, we 

set out to synthesise a range of new POCOP ligands containing phosphorus donors 

with varying steric and electronic demands, and to systematically study the impacts of 

changing the phosphorus substituent on a metal centre, which will be advantageous in 

helping to predict future structure reactivity relationships. 

 

4.2 Synthesis of [PdCl(κ3-P,C,P-4-1)] (4-2) 

The synthesis of a range of new POCOP ligands containing phosphorus donors with 

varying steric and electronic demands is reported later in this chapter. Firstly, the 

previously reported ligand 1,3-{(tBu2PO)2C6H4} (4-1) was synthesised to give a good 

model system against which the newly synthesised ligands could be compared. This 

particular 1,3-{(tBu2PO)2C6H4} (4-1) system was chosen as it is one of the most 

commonly used POCOP-type pincer ligands, having been complexed to a range of 

metals including Mo,36 Ru,37 Co,38 Rh,39 Ir,29 Ni,14 and Pd.22, 40  

 

OO

Ir PP

SH

B(C6F5)4
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OO

Fe PP
PMe3
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Scheme 4.4: Synthesis of compound 4-1 as described by Brookhart and co-workers.
29

 

 

Compound 4-1 was synthesised in an identical method to that described by Brookhart 

and co-workers, namely the diphosphorylation of resorcinol (1,3-benzenediol) with di-

tert-butylchlorophosphine using sodium hydride as a base and was isolated in 93% 

yield (Scheme 4.4).29 

 

 

Scheme 4.5: Synthesis of [PdCl(κ
3
-P,C,P-4-1)] (4-2). 

 

Subsequently, we prepared the novel pincer complex 4-2 by cyclopalladation of ligand 

4-1 at moderately high temperature (125 °C), using [PdCl2(MeCN)2] as the source of 

palladium (Scheme 4.5). The elevated temperature was necessary in order to facilitate 

C-H activation of the 2-position of 4-1, a process that was found to proceed with or 

without the presence of NEt3 as a base. The resulting complex 4-2 was obtained 

following recrystalisation (71% yield).s  

Complex 4-2 presents a singlet resonance at 192.2 ppm (∆δ = +39.1 ppm) by 31P{1H} 

NMR spectroscopy. The tert-butyl group appears as a virtual triplet resonance in the 1H 

NMR spectrum of 4-2, as the two phosphorus nuclei are equivalent and the coupling 

pattern can be ascribed to an AA’XX’ spin system; this type of non-first order coupling 

is also reported for the related iridium complex [IrCl(H)(κ3-P,C,P-4-1)].41 The palladium-

bound carbon of complex 4-2 displays a triplet resonance (2JPC = 2 Hz) at 129.9 (∆δ of 

+24 ppm), clearly demonstrating that 4-1 is bound to the palladium centre in a 

tridentate fashion. 

                                                
s
 At the time of initial synthesis complex 4-2 was a novel complex although an alternative, lower 

yielding synthesis (31%), has since been published by Koridze et al.
40

  

OO

PtBu2 PtBu2
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2.1 NaH, reflux 1 h
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ii)

Yield = 93%
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OO
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Cl
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72 h
125 oC

Yield = 71%

+ HCl

4-2

+ 2 MeCN

4-1



Chapter 4 

125 
 

4.2.1 X-Ray crystallographic study of [PdCl(κ3-P,C,P-4-1)] (4-2) 

The molecular structure of complex [PdCl(κ3-P,C,P-4-1)] (4-2) was determined by 

single-crystal X-ray diffraction (Figure 4.5), with suitable crystals grown by slow 

diffusion of hexane into a concentrated DCM solution of 4-2. The palladium atom is in a 

distorted square-planar geometry with a P(1)-Pd-P(2) bite angle of 160.14(2)°, which is 

smaller than that in the analogous nickel complex, [NiCl(κ3-P,C,P-4-1)], (164.18(3) °).14 

The Pd-Cl bond (2.3801(5) Å) is longer than that determined for trans-

[PdCl2(P(OH)tBu2)2] (2.3132(3) Å) due to the presence of the strongly trans-influencing 

C1 atom.42 Comparison of the molecular structure of 4-2 with that of trans-

[PdCl2(P(OH)tBu2)2] shows that the tether linking the two phosphines moieties distorts 

the square planar geometry, as 4-2 is not perfectly trans-spanning (Figure 4.6). 

 

 

Figure 4.5: Molecular structure of [PdCl(κ
3
-P,C,P-4-1)] (4-2) with selected bond lengths (Å) and 

angles (°), (thermal ellipsoids set at 50% level). 

 

 

Figure 4.6: Comparison of the bond lengths and angles about palladium in 4-2 with those of 

trans-[PdCl2(P(OH)
t
Bu2)2]. 

 

The molecular structure of 4-2 can be used to help quantify the steric bulk of the 

coordinated ligand 4-1. The steric and electronic properties of ligand 4-1, often 

qualitatively considered to be very bulky and electron rich, will later be quantified using 

a variety of methods (Sections 4.3.3.2 and 4.3.3.3), something that has not been done 

to this date. After quantification of the steric and electronic properties of 4-1 it will used 

OO

But
2P PtBu2Pd

Cl

Cl OHOH

But
2P PtBu2Pd

Cl 2.3132(3)

180.00(1) o

Å2.3801(5) Å

160.136(18) o

Pd-Cl 2.3801(5) 

Pd-P1 2.2986(5) 

Pd-P2 2.2952(5) 

Pd-C1 1.998(2) 

P1-Pd-P2 160.14(2) 

C1-Pd-Cl 179.84(6) 
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as a baseline comparison to the novel POCOP ligands described in the following 

sections. 

 

4.3 Synthesis of POCOP pincer compounds and the assessment of their 

electronic and steric properties 

Amongst the most commonly used POCOP pincer ligands used in coordination 

chemistry studies and catalysis are 1,3-{(R2PO)2C6H4}, where R is tBu, iPr and Ph.t The 

prevalence of systems bearing these particular substituents at phosphorus can be 

attributed to their facile and well-established synthesis from commercially available 

reagents.8, 11, 29 However, excluding chiral POCOP pincer ligands, there has been 

surprisingly little variation of the substituents at phosphorus, and certainly no 

systematic study of the preparation of pincer ligands with different steric and electronic 

properties. The study and quantification of how changes to the phosphorus 

substituents of POCOP ligands impacts on the steric and electronic properties of a 

metal centre is a vital consideration in the rational design of new ligands for catalytic 

applications. Although this thesis will not investigate any specific catalytic application of 

the newly synthesised POCOP ligands, it will explore in detail the synthetic strategies 

required to design new POCOP ligands and the subsequent quantification of their 

steric and electronic properties.  

The lack of research into phosphite-containing pincer ligands is exemplified by there 

being only one example of a non-chiral phosphite-containing pincer ligand known (4-II) 

(Figure 4.7).9, 23, 43-45 Phosphite-containing pincer ligands are generally regarded as less 

electron-rich donor ligands than the commonly used alkyl and aryl counterparts; the 

electronic character of a ligand plays an important role in the reactivity of the 

subsequent complex. Furthermore, phosphite-containing ligands differ from the 

commonly used alkyl and aryl phosphinite-containing ligands, as the steric bulk is 

located comparatively further away from the phosphorus centre, creating a ‘pocket’ 

close to the metal centre.  

 

 

                                                
t
 CSD search 21/11/13 showed that of the 122 known [M(1,3-(R2PO)2C6H3)] molecular 

structures reported, R = 
t
Bu (32 structures), 

i
Pr (34 structures), Ph (35 structures). 
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Figure 4.7: Known phosphite-containing pincer ligands.
9, 23, 43-45

 

 

Similarly, diaminophosphinite-containing pincer ligands have been very poorly studied, 

with only two known examples of diaminophosphinite-containing pincer complexes 

known (Figure 4.8).10, 24 Such diaminophosphinite pincer ligands would be expected to 

be comparatively electron rich due to donation from the nitrogen lone pair to 

phosphorus (Section 1.2), but have the possibility to be very bulky as two substituents 

are located at each heteroatom on phosphorus, a characteristic that has not been 

exploited to date.  

 

 

Figure 4.8: Known diaminophosphinite-containing pincer complexes.
39, 40 

 

4.3.1 Development of a new synthetic route to POCOP pincer ligands 

The known synthetic methods of producing POCOP ligands described in Section 4.1.2 

gives access to a wide range of POCOP ligands. However, we postulated that we 

could extend the methodology developed by Bedford and Pringle (via a 

dichlorophosphinite intermediate) to the synthesis of POCOP ligands that do not 

contain a tert-butyl-substituted aromatic ring, for when the inclusion of tert-butyl groups 
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on the backbone are unwanted/unnecessary. A retrosynthetic pathway for the 

synthesis of POCOP pincer ligands via 1,3-{(Cl2PO)2C6H4} 4-3 is shown in Scheme 4.6, 

an approach that should allow the facile and rapid synthesis of a range of phosphite 

and diaminophosphinite POCOP ligands using readily available alcohols and amines. 

 

 

Scheme 4.6: Retrosynthetic analysis of a generic POCOP pincer compound synthesised via 

1,3-{(Cl2PO)2C6H4}, (4-3). 

 

4.3.1.1 Synthesis of 1,3-{(Cl2PO)2C6H4} (4-3) 

There is one previous report of the synthesis of compound 1,3-{(Cl2PO)2C6H4} (4-3) 

from 1894, which involved heating resorcinol in excess trichlorophosphine at reflux for 

10 h, with 4-3 characterised by elemental analysis (but incorrect to modern 

standards).46 Thus, as a starting point for this investigation of an alternative building 

block for the synthesis of pincer ligands, variants on this previously-reported synthesis 

of 4-3 were explored.  

 

OO
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Scheme 4.7: Attempted synthesis of 1,3-{(Cl2PO)2C6H4} (4-3), with proposed assignment of 

31
P{

1
H} NMR spectroscopic resonances obtained from the crude reaction mixture. 

 

Attempts to synthesise compound 4-3 by the slow addition of triethylamine to a cooled 

mixture of resorcinol and excess PCl3 in toluene,u resulted in the formation of multiple 

phosphorus-containing products in solution (Scheme 4.7). Analysis of the reaction 

mixture by 31P{1H} NMR spectroscopy showed a major product (approx. 50% 

conversion by integration) giving rise to a resonance at 179.2 ppm, which is consistent 

with the formation of compound 4-3 by comparison of the 31P{1H} NMR spectroscopic 

data of the known and related compound (PhO)PCl2 (177.8 ppm).47 However, there 

were additional resonances in the 31P{1H} NMR spectrum at 178.8, 178.6, 158.3, and 

127.6 ppm, which are proposed to belong to two additional by-products 4-3’ and 4-3’’ 

each containing two different phosphorus environments (Scheme 4.7). Whilst the 

individual by-products were not separated and characterised, their identity can be 

surmised by comparison with data from the known compounds (PhO)2PCl (31P{1H} δ 

=156.8 ppm)47 and (PhO)3P (31P{1H} δ =128.6 ppm).48 This analysis suggests the 

formation of products containing (ArO)2PCl (4-3’) and (ArO)3P (4-3’’) linkages formed 

by multiple additions of resorcinol to each PCl3 centre.  

                                                
u
 An analogous method to that described by Bedford and Pringle for the synthesis of 4-6 
(Scheme 4.2).

9 
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Whereas the reaction of resorcinol with PCl3 led to the formation of multiple products, 

the analogous reaction of 4,6-di-tert-butylresorcinol with PCl3, as described by Bedford 

and Pringle (Scheme 4.2),9 led to the formation of only a single product, 4-6. It is 

therefore clear that the bulky tert-butyl groups on the aromatic ring prevent multiple 

substitutions of resorcinol on PCl3 due to steric reasons. Hence, an alternative 

synthesis of 4-3 that prevents multiple substitutions at the phosphorus centre was 

needed, detailed below. 

 

4.3.1.1.1 In situ synthesis of 1,3-{(Cl2PO)2C6H4} (4-3) via 1,3-

{((iPr2N)2PO)2C6H4} (4-4) 

Since the reaction of resorcinol with PCl3 led to the formation of multiple P-O linkages 

(Scheme 4.7), an alternative synthesis of 4-3 was needed. To this end a diamino-

protected analogue was synthesised (4-4). The two amino protecting groups can be 

removed by the addition of HCl to yield the desired compound 1,3-{(Cl2PO)2C6H4} 4-3. 

 

 

Scheme 4.8: Synthesis of 1,3-{((
i
Pr2N)2PO)2C6H4} (4-4) and subsequent conversion to 1,3-

{(Cl2PO)2C6H4} 4-3. 
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Thus, the diamino-protected species 1,3-{(iPr2N)2PO)2C6H4} (4-4) was isolated in good 

yield (94%) by the diphosphorylation of resorcinol with 

bis(diisopropylamino)chlorophosphine in the presence of triethylamine (Scheme 4.8). 

Characterisation of compound 4-4 was achieved by multinuclear NMR spectroscopy 

and CHN analysis. A single resonance at 119.4 ppm was observed by 31P{1H} NMR 

spectroscopy. By 1H NMR spectroscopy two resonances for each CH and CH3 group of 

the NiPr2 moiety (relative intensity 1:1) are observed, which arises due to steric 

crowding around the phosphorus centre preventing free rotation. Together these data 

are consistent with the formation of the target compound 4-4. 

 

4.3.1.1.2 Synthesis of 1,3-{(Cl2PO)2C6H4} (4-3) from 1,3-{((iPr2N)2PO)2C6H4} 

(4-4) 

It was proposed that the addition of HCl to 4-4 would result in the formation of the 

target compound 4-3. Indeed, the addition of eight equivalents of HCl (2M in Et2O) to 

an Et2O solution of 4-4 resulted in its quantitative conversion to 4-3 according to 

31P{1H} NMR spectroscopy, with no evidence for the formation of any oligomeric 

species (Scheme 4.8). Eight equivalents of HCl are required as the HNiPr2 leaving 

group displaced will also react with HCl to form a quaternary ammonium salt. The 

quaternary ammonium salt formed can subsequently be removed by simple filtration of 

the Et2O solution leaving a solution of compound 4-3. Notably, it was found that even 

using an excess of HCl (16 equivalents) did not lead to cleavage of the P-O bond. 

 

 

Scheme 4.9: Bimolecular rearrangement of 4-3 upon removal of solvent. 

 

It is noteworthy that it was not possible to isolate 4-3 in its pure form. All attempts to 

remove the solvent resulted in the formation of a significant amount (approx. 60% of all 

phosphorus-containing products by 31P NMR spectroscopy) of another phosphorus-

containing species. This product resulting from the evolution of 4-3 is believed to be the 

coupled species 4-3’ by analysis of the 31P{1H} NMR spectrum, which exhibited two 
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singlets at 157.7 and 178.0 ppm integral 1:2, consistent with the expected spectrum of 

4-3’ (Scheme 4.9). 

 

 

Scheme 4.10: The mechanism proposed by Nifantev and co-workers for the bimolecular 

rearrangement of PhOP(NEt2)2.
49

 

 

It has been reported by Nifantev et al. that the compound PhOP(NEt2)2 undergoes a 

bimolecular rearrangement upon prolonged standing in Et2O solution, to form an 

equilibrium mixture (Scheme 4.10). A mechanism has been proposed by Nifantev in 

which π-stacking interactions bring two molecules close together, which then allows an 

intermolecular rearrangement to take place.49  

With this in mind it is reasonable to suggest that compound 4-3 is rearranging by a 

similar mechanism to that proposed by Nifantev, but the reaction is not reversible since 

the PCl3 (Bp 75 °C)50 produced is removed along with the solvent under vacuum. In 

contrast, it is possible to remove the solvent from a solution of 4-6 without a 

bimolecular rearrangement occurring, as the bulky tert-butyl groups on the aromatic 

backbone of 4-6 disrupt the π-stacking interactions and prevent the close approach of 

two molecules. Consequently, all further reactions involving 4-3 must proceed via the 

generation and use of 4-3 in situ, without its prior isolation. 

 

4.3.1.2 Synthesis of 1,3-{((iPrO)2PO)2C6H4} (4-5) 

As a proof of concept for the utility of 4-3 as a reagent for the synthesis of POCOP 

ligands, the diisopropoxide derivative 1,3-{((OiPr)2PO)2C6H4} (4-5) was synthesised. 

Sequential addition of HCl followed by HOiPr/NEt3 to a diethyl ether solution of 4-4 

afforded the desired compound 4-5 in good yield (Scheme 4.11). 
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Scheme 4.11: Synthesis of 1,3-{((
i
PrO)2PO)2C6H4} (4-5). 

 

Whilst the formation of 1,3-{(Cl2PO)2C6H4} (4-3) in situ by the addition of HCl to 1,3-

{((iPr2N)2PO)2C6H4} (4-4) opens an important new synthetic route for the synthesis of 

POCOP ligands it does not offer any significant advantages over the methodology 

described by Bedford and Pringle (via 4-6).9 Consequently, we decided to develop a 

range of POCOP pincer ligands (described in the following sections) based around an 

aromatic core containing tert-butyl groups at the 4 and 6 positions using the 

methodology described by Bedford and Pringle (via 4-6).9 Furthermore, we believed 

that the benefits of enhanced rates of C-H activation caused by the inclusion of tert-

butyl groups on the aromatic core of POCOP ligands (Section 4.1.2) will be 

advantageous during the synthesis of electron deficient POCOP ligands. 

 

4.3.2 Synthesis of a range of novel POCOP pincer compounds 

Two synthetic approaches were identified that would give access to the desired ligand 

architecture, with a retrosynthetic analysis of the two pathways being shown in Scheme 

4.12. Path A will be used to synthesise phosphinite-containing lignads, while path B 

(via the dichlorophosphinite species 4-6) will be used to synthesise phosphite- and 

diaminophosphinite-containing POCOP ligands. This duel approach would allow us to 

synthesise a range of novel POCOP ligands in the most efficient manner. 

 

OO
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OO
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Scheme 4.12: Retrosynthetic analysis of the synthesis of a POCOP pincer compound 

containing tert-butyl group on the aromatic ring. 

 

4.3.2.1 Synthesis of 1,3-{(tBu2PO)2C14H20} (4-7) 

 

 

Scheme 4.13: Synthesis of compound 4-7 as described by Driess and Hartwig.
51

 

 

Initially, the known compound 1,3-{(tBu2PO)2C14H20} (4-7) was targeted in order to 

probe the effects of the tert-butyl-substituted aromatic backbone on the structure of 

subsequent metal complexes of this scaffold, compared to those of the previously 

synthesised ligand 4-1, which contains hydrogen atoms in the same positions. To this 

end, compound 4-7 was synthesised in good yield (88%) by the method described by 

Driess and Hartwig, namely the diphosphorylation of 4,6-di-tert-butylresorcinol with di-

tert-butylchlorophosphine using sodium hydride as a base (Scheme 4.13). The 

spectroscopic data obtained for the product were identical to those reported by Driess 

and Hartwig, with a singlet resonance at 145.6 ppm by 31P{1H} NMR spectroscopy.51 
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4.3.2.2 Synthesis of 1,3-{(R2PO)2C14H20}, R = OiPr (4-8), NEt2 (4-9), and 

morpholine (4-10) 

 

 

Scheme 4.14: Synthesis of compounds 4-8, 4-9 and 4-10. 

Ligand δ 31P{1H} (CDCl3) 

4-7 145.6a 

4-8 134.9a 

4-9 126.2b 

4-10 121.4b 

4-12 104.6b 

Table 4.2: 
31

P{
1
H} NMR spectroscopic data for compounds 4-7 to 4-10 and 4-12. (a) 283 MHz, 

(b) 243 MHz 

 

Next, three novel ligands of the form 1,3-{(R2PO)2C14H20} were synthesised by the 

addition of excess 2-propanol (4-8), diethylamine (4-9) and morpholine (4-10) to 4-6 

(Scheme 4.14). During the synthesis of compound 4-8 triethylamine was used as an 

external base to remove HCl, whereas during the synthesis of 4-9 and 4-10 excess of 

the amine was used as the base. A comparison of the 31P{1H} NMR spectroscopic data 

for the novel POCOP ligands is given in Table 4.2.  

Despite its simplicity it was found that this method (addition of excess amine to 4-6) of 

synthesising diaminophosphinite-contining pincer ligands from 4-6 was not applicable 

for all amines tested (including diisopropylamine and pyrrole), detailed below. 
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4.3.2.3 Attempted synthesis of 1,3-{(R2PO)2C14H20}, R = NiPr2 

While attempting to synthesise the extremely bulky POCOP ligand bearing 

diisopropylamino substituents at phosphorus, only one of the chloride groups on each 

phosphorus centre of 4-6 was substituted, which resulted in the formation of two 

diasteroisomers of 4-11 (Scheme 4.15). The replacement of only one chlorine per 

phosphorus centre to form 4-11 was confirmed by CHN analysis and integration of its 

1H NMR spectrum. The two diastereoisomers of 4-11 exhibit 31P NMR spectroscopic 

resonances at 164.8 and 165.0 ppm in a ratio of 1:0.8.v  

 

 

Scheme 4.15: Synthesis of compound 4-11.
 w

 

 

As stated, compound 4-11 was formed as two diastereoisomers, one of which has two 

enantiomers (Figure 4.9). We were not able to ascertain experimentally which 

diastereoisomer is the slightly more favoured (cf. the NMR spectroscopic data). 

However, we propose that the R,R and S,S enantiomers will have a lower steric 

repulsion between the two bulky diisopropylamine groups located on the two 

phosphorus moieties than that of the R,S diasteroisomer and, thus, will be slightly 

favoured.  

 

                                                
v
 By integration of the 

31
P NMR spectrum. 

w
 All efforts to separate the two diastereoisomers failed. 

OO

PCl2 PCl2

OO

PCl(NiPr)2 PCl(NiPr)2

16 h

-40 - RT oC

+ 2 ClHNEt3
Et2O

mixture of diastereoisomers

4-11

10 HNiPr2



Chapter 4 

137 
 

 

Figure 4.9: Diastereoisomers and enantiomers of 4-11. 

 

4.3.2.3.1 Further attempts to synthesise 1,3-{(R2PO)2C14H20}, R = NiPr2 

As the addition of excess diisopropylamine to 4-6 led to the substitution of only one 

chloride group per phosphorus centre, alternative syntheses of the tetra-substituted 

compound 1,3-{(R2PO)2C14H20}, where R = NiPr2, were attempted. However, all efforts 

to synthesise the tetra-substituted compound failed; these tests are detailed below and 

are summarised in Scheme 4.16. 

 Increasing the reaction temperature to 70 °C (changing solvent to toluene) for 3 

days again led to the formation of 4-11.  

 No reaction of 4-11 was seen with lithium diisopropylamide. 

 No reaction observed between bis(diisopropylamino)chlorophosphine and 4,6-

di-tert-butylresorcinol, with starting materials being recovered. 
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Scheme 4.16: Attempts to synthesise 1,3-{(R2PO)2C14H20}, R = N
i
Pr2. 

 

The lack of reaction between bis(diisopropylamino)chlorophosphine and 4,6-di-tert-

butylresorcinol contrasts with the facile reaction of resorcinol with 

bis(diisopropylamino)chlorophosphine (Scheme 4.8). The failure to form the tetra-

coordinated species is attributed to the steric repulsion between the tert-butyl groups 

located on the aromatic backbone and the bulky diisopropylamine groups. 

Consequently, incorporation of the tert-butyl groups on the aromatic backbone has 

reduced the amount of steric bulk that can be loaded onto each phosphorus centre, 

which precludes the synthesis of extremely bulky POCOP ligands. It is not just highly 

bulky amines that do not react completely with 4-6 to displace all four chloride groups, 

detailed below. 
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4.3.2.4 Synthesis of 1,3-{(R2PO)2C14H20}, R = pyrrole, (4-12) 

 

 

Scheme 4.17: Synthesis of compound 4-12. 

 

Compound 1,3-{(R2PO)2C14H20}, R = pyrrole (4-12) was targeted as N-pyrrolyl 

phosphines are known to be highly π-accepting, which could have significant impact on 

the chemistry of a coordinated metal centre.52
 However, it was also not possible to 

synthesise 4-12 by the addition of excess pyrrole to 4-6, with again only one chloride 

group being substituted on each phosphorus centre. This is seemingly due to pyrrole 

being too poor a nucleophile and not due to steric reasons (as was the case for 

diisopropylamine) as compound 4-12 was synthesised in good yield using an 

alternative strategy, namely by the addition of ClP(pyrrole)2 to 4,6-di-tert-

butylresorcinol, with the reaction being complete after stirring at RT for 1h (Scheme 

4.17).  

Now that a range of POCOP ligands have been synthesised, the quantification of their 

steric and electronic properties is needed, detailed in the next section. 

 

4.3.3 Quantification of the electronic and steric properties of POCOP 

ligands 4-1, 4-7 to 4-10, and 4-12 

The palladium complexes of the ligands described in Section 4.3.2. were prepared to 

probe the impact of changing the phosphine substituents on both the steric and 

electronic environment of a metal centre. Firstly, the quantification of the steric 

demands of the various ligands (L) was done by measuring the percentage buried 

volume (%VBur) of the ligand on a palladium chloride fragment [PdCl(κ3-P,C,P-L)].53, 54 

Secondly, abstraction of the chloride ligand of [PdCl(κ3-P,C,P-L)] under an atmosphere 

of CO was used to afford palladium carbonyl complexes, which will subsequently be 

OO

PR2 PR2

OHHO 1 h
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THF
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+ 2 ClHNEt3
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analysed by IR spectroscopy such that the differences in CO stretching frequencies 

can be used to quantify the electron density of the palladium centre.   

 

4.3.3.1 Synthesis of palladium chloride complexes [PdCl(κ3-P,C,P-L)], L = 

4-7 to 4-10, and 4-12 

 

 

Scheme 4.18: Synthesis of palladium complexes 4-13 to 4-17. 

 

Five new palladium chloride complexes of ligands 4-7 to 4-10 and 4-12 were 

synthesised by cyclopalladation at elevated temperature, using [PdCl2(MeCN)2] as the 

source of palladium (Scheme 4.18). In each case, triethylamine was used to scavenge 

the HCl produced during the reaction, in order to prevent cleavage of the P-N bond in 

the free ligand (reactions containing aminophosphine ligands 4-9, 4-10, and 4-12). The 

yields of the resulting palladium complexes were good (63-76%), except for cases 

involving the pyrrole-containing ligand (4-12), from which an unidentified oily brown by-

product formed in addition to 4-17, which reduced the yield of 4-17 dramatically to 28%. 

All five complexes (4-13 to 4-17) were characterised by CHN analysis and multinuclear 

NMR spectroscopy; the 31P{1H} NMR spectroscopic data are presented in Table 4.3. 
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Complex δ 31P{1H} (CDCl3) ∆δ 31P{1H} 

4-13 191.3a +45.7 

4-14 140.6a +5.7 

4-15 147.4b +21.2 

4-16 142.9b +21.5 

4-17 126.3a +21.7 

Table 4.3: 
31

P{
1
H} NMR spectroscopic data for complexes 4-13 to 4-17. (a) 283 MHz, (b) 243 

MHz 

 

4.3.3.1.1 X-Ray crystallographic study of complexes [PdCl(κ3-P,C,P-L)], L = 

4-7 to 4-10, and 4-12 

The structures of the pincer complexes 4-13 to 4-17 were unambiguously determined 

by X-ray diffraction analyses (Figure 4.10 and Table 4.4). In each case the complexes 

adopt a distorted square-planar geometry about the palladium centre. The P1-Pd-P2 

angles of the pincer complexes 4-13 to 4-17 are bent (157.92(2) ° – 162.36(5) °), with 

all falling within the range of angles measured for other previously-reported POCOP 

complexes.x The Pd-Cl bond distances vary in length from 2.3547(6) to 2.3830(6) Å, 

with longer bonds observed for the more electron–rich metal centres 4-13 and 4-15 

compared to those for electron-poor metal centres 4-14 and 4-17.  

 

  4-13 4-14 4-15 4-16 4-17 

Pd-Cl 2.3808(5) 2.3610(9) 2.3830(6) 2.367(1) 2.3547(6) 

Pd-P 2.2808(4) 2.2703(9) 2.2644(5) 2.257(1) 2.2460(6) 

Pd-P 2.2808(4) 2.2529(9) 2.2681(6) 2.280(1) 2.2403(6) 

Pd-C1 2.008(2) 1.997(4) 1.996(2) 1.987(5) 2.011(2) 

P-Pd-P 160.89(2) 162.17(3) 161.14(2) 162.36(5) 157.92(2) 

C1-Pd-Cl 180 177.3(1) 178.19(6) 176.3(1) 179.55(6) 

Table 4.4: Selected bond lengths (Å) and angles (°) of palladium complexes 4-13 to 4-17. 

                                                
x
 CSD search 6/12/13. 
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Figure 4.10: Molecular structures of complexes 4-13 to 4-17, (thermal ellipsoids set at 50% 

level). 
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4.3.3.2 Assessment of the steric properties of POCOP ligands 

We have used the percentage buried volume (%VBur) method (Section 1.1.2) to 

quantify the steric bulk of the pincer ligands 4-1, 4-7 to 4-10 and 4-12.53, 54 Here the 

experimentally-determined molecular structures of the palladium chloride complexes 4-

2 and 4-13 to 4-17 were used to generate the required Cartesian-coordinate file and 

the file was processed using SambVca© software.53 A representative example of the 

calculation is shown in Appendix 3. 

 

Complex Ligand (phosphorus substituent) %Vbur of POCOP ligand / % 

4-2 4-1 (tBu) 71 

4-13 4-7 (tBu) 72 

4-14 4-8 (OiPr) 64 

4-15 4-9 (NEt2) 70 

4-16 4-10 (morpholine) 67 

4-17 4-12 (pyrrole) 63 

Table 4.5: Percentage buried volume (%VBur) of the variously-substituted POCOP ligands in 

complexes 4-2 and 4-13 to 4-17. 

 

The ligands with the largest values of %VBur are the tert-butyl-phosphine-substituted 

systems 4-1 and 4-7, at 71 and 72%, respectively, and the diethylamino-substituted 

ligand 4-8 (70%) (Table 4.5). A relative ordering of the various pincer ligands in terms 

of their steric demands is presented in Figure 4.11. Comparing 4-1 with its PCP 

analogue (Table 4.6, entry 1) it is observed that changing the oxygen atom in the linker 

arm to carbon has no effect on the steric bulk of the ligand as might be expected. 

However, it is noticeable that the morpholine-substituted ligand 4-10 has a slightly 

smaller %VBur (67%) than the diethylamino-substituted ligand 4-9 (70%), illustrating that 

non-cyclic phosphine-substituents give the pincer ligand more steric bulk. 
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Figure 4.11: The relative ordering of the pincer ligands 4-7 to 4-10 and 4-12 according to their 

steric demands. 

Entry Complex %Vbur of pincer ligand / % 

1 

 

71 

2 

 

62 

3 

 

65 

4 

 

54 

Table 4.6: %VBur of various known pincer ligands, calculated by Roddick.
55
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4.3.3.3 Assessment of the electronic properties of POCOP ligands 

Two methods for assessing the electronic character of the POCOP pincer ligands 4-1, 

4-7 to 4-10, 4-12, were used. Firstly, the corresponding phosphine selenides were 

synthesised (Scheme 4.19) and the |1JSeP| coupling constants then measured (Table 

4.7). The pyrrole-substituted and phosphite-containing ligands 4-12 and 4-8 have the 

least basic phosphorous lone-pairs, with large magnitudes of the 1JSeP coupling 

constants for 4-12.Se and 4-8.Se of 993 and 965 Hz, respectively. The most basic 

phosphorus lone pairs are found for the tert-butyl-phosphine-substituted ligands 4-1 

and 4-7, as expected for phosphorus ligands containing two highly electron releasing 

substituents. However, the value of the |1JSeP| coupling constants is only a measure of 

the σ-donor ability of the phosphorus lone-pair, and a complementary technique is 

needed to assess the overall electronic character of the entire ligand.   

 

 

Scheme 4.19: Synthesis of phosphorus selenides 4-1.Se, 4-7.Se to 4-10.Se and 4-12.Se. 
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Ligand |1JSeP| coupling constant / Hz 

(phosphine-selenide) 

νCO (Pd–CO) / cm–1  

(palladium-carbonyl complex) 

4-1 797 (4-1.Se) 2119 (4-18) 

4-7 806 (4-7.Se) 2116 (4-19) 

4-8 965 (4-8.Se) 2145 (4-20) 

4-9 855 (4-9.Se) 2116 (4-21) 

4-10 881 (4-10.Se) 2136 (4-22) 

4-12 993 (4-12.Se) - 

Table 4.7: |
1
JSeP| coupling constants for phosphine selenides 4-1.Se, 4-7.Se to 4-10.Se, 4-12.Se 

and the carbonyl stretching frequency for palladium complexes 4-18 to 4-22. 

 

To assess and compare the electronic properties of the various synthesised POCOP 

pincer ligands, we turned to the cationic palladium carbonyl derivatives (Schemes 4.20 

and 4.21). Infrared analysis of carbonyl complexes is a common technique used to 

probe the electronic character of ligands, as it gives a good estimation of both σ-

donation and π-back-donation (Section 1.1.3). Whist nickel and rhodium carbonyl 

complexes are most commonly used as they readily form stable carbonyl complexes, a 

number of examples of using palladium carbonyl complexes to assess the electronic 

character of pincer ligands have been reported. Representative palladium-bound 

carbonyl stretching frequencies are given in Table 4.8.10, 56 The carbonyl ligand of 

palladium carbonyl complexes tend to be labile due to weak palladium to CO-back-

donation, which tends to preclude their isolation.57 The lability of palladium carbonyl 

ligands sometimes requires the infrared spectra to be collected under an atmosphere 

of CO to prevent dissociation of CO, although it was not the case with the complexes in 

this thesis.58  

The palladium carbonyl complexes 4-18 to 4-22 were prepared from the corresponding 

palladium chlorides by abstraction of the chloride ligand with AgBF4, followed by the 

addition of 1 atm of CO. In each case, this gave quantitative conversion, by 31P{1H} 

NMR spectroscopy, to the desired carbonyl complexes (Schemes 4.20 and 4.21). The 

palladium carbonyl complexes were characterised by multinuclear NMR and infrared 

spectroscopies. It is notable that the corresponding palladium carbonyl complex of the 

pyrrole-substituted ligand 4-12, 4-23 could not be prepared by this method, with rapid 

decomposition occurring instead, leading to precipitation of palladium metal upon 

addition of CO. This is possibly caused by the CO displacing the especially poorly 

donating N-pyrrolyl phosphine arm, and hence leading to decomposition. 
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Scheme 4.20: Synthesis of palladium carbonyl complex 4-17. 

 

 

Scheme 4.21: Synthesis of palladium carbonyl complexes 4-19 to 4-22. 

 

The carbonyl stretching frequencies determined for palladium complexes 4-18 to 4-22 

varied across a range of 29 cm–1, with 4-19/4-21 being the lowest (2116 cm–1) and 4-20 

the highest (2145 cm–1), Table 4.7. By examination of the palladium carbonyl stretching 

frequencies of complexes 4-18 and 4-19 (2119 and 2116 cm–1) it may be seen see 

that, as expected, the inclusion of tert-butyl groups on the aromatic backbone of the 

pincer ligand has no effect on the electronic character of the overall ligand, presumably 

due to its large distance from the metal centre. However, a much greater effect on the 

electronic properties is seen upon changing the linker arm atom from carbon to oxygen 

(Table 4.8, Entry 1, 2078 cm–1, cf. 4-18, 2119 cm–1), the electronegative oxygen next to 

the phosphorus centre making the POCOP ligand 4-1 less electron-rich than its PCP 

analogue.  
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Entry Complex ν(CO) / cm–1 

1 

 

207856 

2 

 

210610 

3 

 

213310 

Table 4.8: Known carbonyl stretching frequencies for cationic palladium pincer-type complexes. 

 

There is a rough positive correlation between the magnitudes of the 1JSeP coupling 

constants and the CO stretching frequencies of the species containing the same ligand, 

suggesting that the σ-donation ability of the phosphine-moiety is the dominating factor 

in determining the electronic properties of the entire ligand and hence that of the 

coordinated metal centre. Therefore, based on the very large 1JSeP coupling constant for 

the pyrrole-substituted species 4-12.Se (993 Hz), we propose that 4-12 is even more 

electron deficient than 4-8 and is the most electron deficient of the ligands in the range 

synthesised. 
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Figure 4.12: A plot of the |
1
JSeP| coupling constants for the relevant phosphine-selenides of the 

POCOP ligands described in this thesis against the %Vbur calculated from the palladium 

complexes of the same ligands. 

 

The steric and electron demands of the POCOP ligands synthesised in this chapter 

have now been assessed. Figure 4.12 clearly shows that the six POCOP ligand 

synthesised in this chapter exhibit a trend between their steric and electronic demands. 

The most electron rich ligands display the largest steric demand whereas the least 

electron rich ligands display the lowest steric demand. 
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4.4 Chapter 4 summary and conclusions 

The formation of 1,3-{(Cl2PO)2C6H4} (4-3) in situ by the addition of HCl to 1,3-

{((iPr2N)2PO)2C6H4} (4-4) opens an important new synthetic route for the synthesis of 

POCOP ligands containing phosphite and diaminophosphinite moieties. 

Four novel POCOP ligands have been synthesised giving significant variation in the 

steric and electronic properties over the commonly used ligand 4-1 by using 

heteroatom atom-substituted phosphorus atoms. The steric and electronic properties of 

the POCOP ligands (L) were quantified, with palladium chloride complexes ([PdCl(κ3-

P,C,P-L)]) synthesised in order to assess steric bulk of the ligands using the 

percentage buried volume (%Vbur) method. The electronic properties of the newly 

synthesised POCOP ligands were assessed by comparison of the |1JSeP| values for the 

corresponding phosphine selenides and by the carbonyl stretching frequencies of 

palladium carbonyl complexes [Pd(CO)(κ3-P,C,P-L)]BF4. 

Placing tert-butyl groups on the aromatic backbone of the POCOP ligand has little 

effect on the electronic and steric properties at the metal centre, as evident by the 

palladium carbonyl stretching frequencies of 4-18 and 4-19, plus the calculated %VBur 

of ligands 4-1 and 4-7 for their palladium chloride complexes (4-2 and 4-13). However, 

the presence of tert-butyl groups on the aromatic backbone does preclude the 

synthesis of ligands with extremely bulky substituents at phosphorus. 
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4.5 Future work 

Figure 4.12 showed that the POCOP ligands synthesised in this chapter exhibited a 

trend between their steric and electronic demands with the most bulky ligands being 

the most electron rich. Consequently it would be advantageous to synthesise POCOP 

ligands with alternate steric and electronic demands, proposed synthetic targets are 

displayed in Figure 4.13.   

 

 

Figure 4.13: Proposed POCOP ligands have different steric and electronic demands to those 

described in this thesis. 

 

It will be possible to test the palladium chloride complexes described in this thesis (4-2, 

4-7 to 4-12) as catalysts for a range of palladium-catalysed cross-coupling reactions, to 

investigate the impact of changing the steric and electronic impact of the ligand. Whilst 

the limitations of pincer complexes in Pd(0)/Pd(II) redox cross-coupling reactions are 

well known,7 where catalytically active Pd(0) nanoparticles are believed to be the active 

catalyst,y there are examples of electron rich pincer palladium complexes that are 

believed to catalyse cross-coupling reactions through a Pd(II)/Pd(IV) redox process.10 

This type of application would benefit significantly from the fine-tuning of the steric and 

electronic properties of the ligand.  

Finally, Table 4.1 demonstrated the wide catalytic utility of POCOP-type ligands, 

consequently the ligands 4-7 to 4-10 and 4-12 could be coordinated to an expanded 

array of metal fragments (e.g. NiX, where X = Cl, H, or OTf and IrX2 where X = Cl(H), 

H2 or (H)acetone), and tested in a range of metal-catalysed processes. 

                                                
y
If Pd(0) nanoparticles are the active catalyst then changing the steric and electronic properties 
of the pincer ligands to alter reactivity/selectivity is irrelevant. 
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5 Chapter 5: Exploratory reactions into a novel palladium 

hydride complex 

Chapter 5 reports some exploratory reactions into a novel palladium hydride complex 

bearing a pincer-type POCOP ligand to help gauge the reactivity of the palladium 

hydride bond and assess its application as a catalyst in a variety of reactions. 

5.1 Introduction 

Palladium hydride complexes are generally regarded as being highly reactive,1 but 

have been proposed as intermediates in a wide range of palladium-catalysed reactions. 

For example palladium-catalysed oxidations,2 carbonylation of ethylene,3 and in 

hydrodefluorination.4 

Despite their numerous applications, many soluble molecular palladium hydride 

complexes are unstable and cannot be isolated, only generated and characterised in 

situ.1 In contrast, palladium hydride complexes bearing ancillary pincer ligands are 

significantly more stable; something proposed to result by virtue of the rigid structure of 

the pincer ligand (Figure 5.1).5-7 Consequently, these isolable palladium hydride pincer 

complexes can be used as models for the study of fundamental reactions involving a 

Pd–H bond. Indeed, the insertion of unsaturated molecules into metal-hydride bonds is 

among the most important stoichiometric and catalytic reactions occurring at a metal 

centre.8 For instance, hydride migration to a coordinated alkene, also known as alkene 

insertion into an M–H bond, has been considered to be the key elementary step in the 

hydrogenation, hydroformylation and isomerisation of alkenes.  

 

 

Figure 5.1: Known pincer ligand-substituted palladium hydride complexes.
5-7

 

 

Consequently, the work described in this chapter sought to synthesise a palladium 

hydride complex bearing a POCOP-type ligand as, noticeably, there are no known 

palladium hydride complexes bearing this type of scaffold, despite the more facile 

synthesis of the phosphinite derivatives over their PCP analogues. Therefore, the novel 

palladium hydride complex [PdH(κ3-P,C,P-4-1)] (5-1) was synthesised and its reactivity 
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with small molecules of potential importance in catalysis (e.g. ethylene, acetone, 

carbon dioxide) probed, together with its use in certain catalytic applications (e.g. 

alkene isomerisation and hydrosilylation). It was reasoned that the more electron 

deficient palladium centre of 5-1 compared to 5-I z could lead to significantly different 

reactivity of the Pd–H bond. 

 

5.2 Synthesis of [PdH(κ3-P,C,P-4-1)] (5-1) 

 

 

Scheme 5.1: Synthesis of [PdH(κ
3
-P,C,P-4-1)] (5-1). 

 

With the target Pd hydride complex [PdH(κ3-P,C,P-4-1)] (5-1) in mind, it was envisaged 

that treatment of the palladium chloride complex [PdCl(κ3-P,C,P-4-1)] (4-2) with a 

source of hydride should permit access to the desired complex.2, 5 Indeed, this proved 

to be the case, with the addition of LiAlH4 to the palladium chloride complex 4-2 

affording 5-1 in 78% yield (Scheme 5.1); 5-1 was subsequently characterised by multi-

nuclear NMR spectroscopy and CHN analyses. Notably, the 1H NMR spectrum of 5-1 

in C6D6 revealed a characteristic triplet resonance at –2.49 ppm (2JPH = 18.5 Hz) for the 

palladium hydride. This chemical shift for the hydride ligand is typical for a late 

transition metal hydride such as those of palladium.9 Disappointingly, a related 

synthesis and characterisation of 5-1 has very recently been reported during the 

preparation of this thesis (Jan. 2014).10 

 

5.2.1 Reactivity of the palladium hydride complex [PdH(κ3-P,C,P-4-1)] (5-

1) 

To help gauge the reactivity of the palladium hydride bond of complex 5-1 the insertion 

of C=C (ethylene) and C=O (acetone and CO2) bonds were attempted. The insertion of 

C=C and C=O bonds into a palladium hydride bond both represent key steps in many 
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catalytic cycles.1, 11, 12 The ability of complex 5-1 to catalyse alkene isomerisation and 

the hydrosilylation of an aldehyde will be assessed later.  

  

5.2.1.1 Attempted reaction of ethylene with [PdH(κ3-P,C,P-4-1)] (5-1)  

There are examples of discrete palladium hydride complexes that react rapidly with 

ethylene at room temperature to form ethane complexes. For example, the addition of 

one equivalent of ethylene to [PdH(L^L)(MeOH)]BF4 (L^L = 1,2-(CH2P
tBu2)2C6H4) 

resulted in the immediate formation of [PdEt(L^L)(MeOH)]BF4.
12 The generally 

accepted mechanism of alkene insertion into a metal hydride bond is that initial 

coordination of the alkene to the metal centre occurs with a cis/pseudo-cis orientation. 

Subsequently, migratory insertion of the alkene into the metal hydride bond takes place 

in a concerted fashion via a cyclic transition state (Scheme 5.2).13 It is assumed that in 

the case of [PdH(L^L)(MeOH)]BF4 the labile methanol ligand dissociates from the metal 

centre to form a free coordination site for ethylene binding (Scheme 5.3).  

 

 

Scheme 5.2: The mechanism of alkene insertion into a metal hydride bond, adapted from 

Bercaw et al.
13
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Scheme 5.3: Proposed mechanism of alkene insertion into a palladium hydride bond of 

[PdH(L^L)(MeOH)]BF4 (L^L = 1,2-(CH2P
t
Bu2)2C6H4).

12
 

 

It might be anticipated that the ability to generate a free coordination site on the metal 

centre could render group 10 metal pincer ligand hydride complexes inert towards 

ethylene insertion, due to their strong multidentate coordination. However, it has 

recently been reported by Hu and co-workers that ethylene inserts rapidly into the 

nickel hydride bond of the d8 square planer complex 5-II to form the nickel alkyl 

complex 5-III (Scheme 5.4).14 Whilst a mechanism was not proposed by the authors, it 

would appear likely that the insertion takes places by one of two mechanisms: Either 

one of the amine arms dissociates from the metal centre to generate the required free 

coordination site (Scheme 5.4), or alternatively, the alkene could bind to the metal 

centre to form a 5-coordinate complex before migratory insertion into the Ni−H bond 

(Scheme 5.4) occurs. Consequently, it was of interest to assess the reactivity of 

ethylene with 5-1. 
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Scheme 5.4: The insertion of ethylene into the Ni-H bond of 5-II, developed from Hu et al. and 

the proposed mechanisms for this insertion process.
14

 

 

 

Scheme 5.5: The addition of ethylene to 5-1. 

 

With the reactivity of this nickel hydride pincer complex in mind, it was of interest to 

probe the reaction of the related Pd-H complex 5-1. However, the addition of ethylene 

to a solution of 5-1 led to no new products being detected by 1H and 31P{1H} NMR 

spectroscopies (Scheme 5.5), with just resonances for 5-1 and ethylene being 

observed. We propose that the phosphine moieties of 4-1 are too strongly bound to the 

palladium centre in 5-1 and thus are not able to dissociate from the metal to reveal a 

free coordination site for the ethylene to bind to. Similarly, a combination of geometric 
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constraints imposed by the comparatively rigid POCOP metal scaffold together with the 

electronic preference of the d8 palladium centre to retain a square planar geometry 

prevents complex 5-1 from expanding its coordination sphere to accommodate a bound 

ethylene in a five-coordinate structure. 

 

5.2.1.1.1 Synthesis of [PdMe(κ3-P,C,P-4-1)] (5-2) 

In Section 5.2.1.1 we observed that ethylene did not insert into the Pd–H bond of 5-1 to 

form the required palladium alkyl complex. We postulated that the phosphine moieties 

of 4-1 were too strongly bound to the palladium centre to generate the required free 

coordination site, coupled with an electronic preference for four-coordinate square 

planar coordination. However, there exists another possibility for the perceived lack of 

reaction observed between 5-1 and ethylene. If olefin insertion were to occur this would 

generate a highly trans-influencing ethyl ligand, which would be located trans to the 

strongly trans-influencing aryl group of the POCOP ligand, a highly disfavoured 

configuration. As a result of this unfavourable electronic competition in this trans 

orientation the insertion of ethylene into the Pd-H of 5-1 could be precluded. In order to 

probe this effect, attempts were made to directly prepare the model palladium methyl 

complex [PdMe(κ3-P,C,P-4-1)] (5-2).  

 

 

Scheme 5.6: Synthesis of [PdMe(κ
3
-P,C,P-4-1)] (5-2). 

 

Notably, treating the palladium chloride complex 4-2 with one equivalent of MeLi gave 

rise to the corresponding Pd-Me derivative [PdMe(κ3-P,C,P-4-1)] (5-2), which was 

isolated in moderate yield as a white solid after recrystallisation from Et2O (Scheme 

5.6). The 31P{1H} NMR spectra of complex 5-2 displays a singlet resonance at 193.1 

ppm and the palladium-bound methyl group is clearly evident in the 1H and 13C{1H} 

NMR spectra of 5-2, exhibiting triplet resonances at –0.02 ppm, 3JPH = 5.0 Hz and –

17.8 ppm, 2JPC = 10 Hz, respectively. Furthermore, the methyl complex 5-2 was found 
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to be thermally stable and resistant to air and moisture in the solid state and in solution 

for prolonged periods of time (weeks).  

 

5.2.1.1.2 X-Ray crystallographic study of [PdMe(κ3-P,C,P-4-1)] (5-2) 

To further confirm the identity of the methyl complex and to probe the comparative 

trans influences of the ligated alkyl and aryl moieties, single crystals of complex 5-2 

suitable for X-ray diffraction were grown by slow evaporation of Et2O. The ensuing 

molecular structure of 5-2 confirms the expected distorted square-planar geometry 

about the palladium centre (P1-Pd-P2 = 158.98(2)°) (Figure 5.2). As expected, the Pd–

CH3 bond is lengthened due to the high trans-influence of Csp2 atom (2.147(2) Å), when 

compared to the Pd–CH3 distance in trans-[PdCl(Me)(PPh3)2] (Pd-CH3 = 2.058(7) Å).15 

The presence of the highly trans-influencing methyl group leads to significant changes 

to the molecular structure of the Pd(II) POCOP fragment compared with [PdCl(κ3-

P,C,P-4-1)] (4-2), most notably, a significantly lengthened Pd-aryl bond (2.031(2) Å) 

compared to 1.998(2) Å in 4-2. Thus, the positioning of two highly trans-influencing 

groups (methyl and Csp2) in a trans orientation leads to substantial lengthening of the 

palladium carbon bonds, but it is a stable arrangement. Consequently, from these 

observations, the preference of the Pd-H complex of 5-1 to not offer a vacant 

coordination site for ethylene binding is believed to prevent ethylene insertion into the 

Pd-H bond of 5-1. 

 

 

Figure 5.2: Molecular structure of [PdMe(κ
3
-P,C,P-4-1)] (5-2), with selected bond lengths (Å) 

and angles (°), (thermal ellipsoids set at 50% level). 

 

Pd-C2 2.031(2) 
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5.2.1.2 Attempted reaction of acetone with [PdH(κ3-P,C,P-4-1)] (5-1)  

In line with the  yer group’s general interest in the activation of small molecules, it was 

of interest to test the reactivity of 5-1 with acetone, in order to explore the potential of 

these systems to mediate synthetically and commercially relevant ketone reduction. To 

this end, a solution of complex 5-1 was heated with ten equivalents of previously dried 

acetone at 60 °C for 1 h. This resulted in the formation of no new products (by 1H and 

31P NMR spectroscopy). However, subsequent heating of the reaction mixture at 80 °C 

for 4 days resulted in the formation of multiple unidentified products in solution as 

evidenced by 31P{1H} NMR spectroscopy, accompanied by the formation of a few pale 

yellow crystals (estimated <10% yield) (Scheme 5.7). A subsequent X-ray diffraction 

study of the pale yellow crystals was undertaken and showed that this material is an 

unusual dimeric Pd(0) complex [μ-(4-1)Pd]2 (5-3). 

 

 

Scheme 5.7: The reaction of acetone with hydride complex 5-1. 
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5.2.1.2.1 X-Ray crystallographic study of [μ-(4-1)Pd]2 (5-3) 

 

Figure 5.3: Molecular structure of [μ-(4-1)Pd]2 (5-3), with selected bond lengths (Å) and angles 

(°). C6D6 molecule omitted for clarity, (thermal ellipsoids set at 50% level). 

 

The molecular structure of 5-3 is presented in Figure 5.3, which includes a C6D6 

molecule (omitted for clarity). The two PdP2 fragments are nearly linear (P1-Pd-P2 = 

177.27(2)°) and adopt a near-parallel orientation with a distance of 4.020(3) Å between 

the aromatic rings. The mean Pd-P distance of 2.2645(8) Å is shorter than that in 4-2 

(2.2969(7) Å), the monomeric palladium(II) chloride complex of the same ligand.  

 

5.2.1.2.2  Proposed mechanism for the formation of [μ-(4-1)Pd]2 (5-3) 

The formation of pincer ligand-bridged palladium dimers comparable to 5-3 is known 

for other types of pincer ligands, specifically 1,3-{(tBu2PCH2)2C6H4} and 1,3-

{(iPr2PCH2)2C6H4}. However, with these two ligands the two resulting PdP2 fragments 

are orientated orthogonally (Figure 5.4), as opposed to a parallel arrangement as in 

complex 5-3.16, 17 Cámpora and co-workers have observed the formation of a dimeric 

palladium(0) complex 5-V from a palladium(II) hydride (5-IV) in methanol solution, 

which is similar in structure to complex 5-3 (Scheme 5.8).16 They propose a 

mechanism involving proton transfer from the alcohol solvent to the metal to generate a 

Pd(IV) intermediate, which subsequently undergoes reductive C-H coupling. 
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Figure 5.4: Molecular structure of 5-V, determined by Cámpora et al.
16

 

 

 

Scheme 5.8: Mechanism for formation of dimeric palladium(0) complex 5-V from a palladium(II) 

hydride 5-IV in methanol proposed by Cámpora et al.
16

 

 

The formation of the dimeric complex 5-3 from 5-1 could involve a mechanism similar 

to that proposed by Cámpora (protonation to a Pd(IV) intermediate), but the source of 

protons is less obvious as the solvent used was rigorously-dried C6D6, and hence could 
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originate from proton abstraction from acetone, thermal breakdown of 5-1 or, despite 

rigorous drying of both the C6D6 and the acetone, adventitious water. In summary 

complex 5-3 was serendipitously formed in low yield by a suspected acid-catalysed 

rearrangement of 5-1.  

It would be of interest to develop a larger scale synthesis of 5-3 and explore its 

reactivity. However, due to time constraints, exploring the reactivity of 5-3 was deemed 

to be outside the scope of this current project. 

 

5.2.1.3 Reversible insertion of carbon dioxide into palladium hydride 

bond of [PdH(κ3-P,C,P-4-1)] (5-1)  

The insertion of CO2 into a metal hydride bond has been proposed as an important 

step in the transition metal-catalysed reduction of CO2 to potentially useful products 

such as formic acid and methanol derivatives.18-21 Furthermore, Guan and co-workers 

have recently disclosed the reduction of CO2 using a nickel hydride pincer complex in 

the presence of a borane.21 Hence, it was of interest to explore the reactivity of 5-1 with 

CO2. 

 

 

Scheme 5.9: Reversible insertion of CO2 observed into the palladium hydride bond of [PdH(κ
3
-

P,C,P-4-1)] (5-1). 

 

Despite the pincer hydride complex 5-1 showing limited reactivityaa towards the C=O 

bond of acetone and the high thermodynamic stability of CO2, exposure of a solution of 

the palladium hydride complex 5-1 to 1 atm CO2 led to the rapid (<5 mins) and 

complete consumption of 5-1 (evidenced by 1H and 31P{1H} NMR spectroscopy) and 

the generation of the corresponding metal formate complex [Pd(OC(H)O)(κ3-P,C,P-4-

1)] (5-4) (Scheme 5.9). In situ analysis of complex 5-4 by 1H NMR spectroscopy 
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revealed a triplet resonance at 8.22 ppm, which was attributed to the proton of the 

metal formate group. The insertion of CO2 into the palladium hydride bond of 5-1 was 

found to be reversible, with exposure of 5-4 to vacuum (1 x 10−2 mbar) for 24 h 

resulting in complete reversion to 5-1.  

There are two proposed mechanisms for the direct insertion of CO2 into a metal hydride 

bond. Firstly, by pre-coordination of CO2 to the metal centre followed by hydride 

migration to CO2 (Route 1, Scheme 5.10).22 Secondly, via the direct addition of hydride 

to CO2 and the subsequent rotation of the formato ligand (Route 2, Scheme 5.10).22  

 

 

Scheme 5.10: Two proposed mechanisms of CO2 insertion into a metal hydride bond, adapted 

from Yoshizawa et al.
22

 

 

As there is no free coordination site on the palladium hydride complex 5-1, a 

mechanism for CO2 insertion that involves the pre-coordination of CO2 to the metal is 

unlikely (Route 1 Scheme 5.10; cf. attempted reaction of 5-1 with C2H4, Section 

5.2.1.1). Therefore, we propose that CO2 inserts into the Pd–H bond of 5-1 by the 

direct addition of hydride to CO2 and the subsequent rotation of the formato ligand, 

namely via a Route 2 type mechanism (see Scheme 5.10). Here, the two 
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electronegative oxygen groups of CO2 make the carbon atom sufficiently electrophilic 

that it is able to interact with the hydride ligand. In contrast, the carbonyl carbon centre 

of acetone is both less electrophilic and less sterically accessible, hence acetone is not 

able to insert by the same mechanism as CO2 into the Pd–H bond of 5-1 (Route 2, 

Scheme 5.10). This significant hydridic character of the Pd-H moiety of 5-1 is 

consistent with the location of the hydride trans to the strongly trans-influencing aryl 

component of the POCOP ligand. 

An alternative synthesis of 5-4 from 5-1 was achieved by the addition of formic acid, 

with complete conversion to 5-4 and H2 (detected by 1H NMR spectroscopy) being 

complete within 30 minutes (Scheme 5.11).  

 

 

Scheme 5.11: Synthesis of complex 5-4 via reaction of formic acid and 5-1. 

 

5.2.1.3.1 X-Ray crystallographic study of [Pd(OC(H)O)(κ3-P,C,P-4-1)] (5-4) 

Crystals of complex 5-4 suitable for X-ray diffraction were grown by slow cooling of a 

hot toluene solution. The ensuing molecular structure of 5-4 revealed a distorted 

square-planar geometry about the palladium centre with the O3 group of the palladium 

bound formate group being significantly distorted away from the plane defined by the 

atoms P1, P2, Pd and C2, something reflected in the C2-Pd-O3 angle of 169.57(6)°, 

compared to the equivalent C1-Pd-Cl angle of 179.84(6)° in complex 4-2 (Figure 5.5). 

The η1 coordination of the formate moiety is suggested by the long through-space Pd-

to-O4 distance of 3.293(2) Å and by the O3-C1-O4 angle, 128.6(2)°; the largest known 

O-C-O bite angle for an η2-bound transition metal formate group is 126.2(2)°.23  
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Figure 5.5: Molecular structure of [Pd(OC(H)O)(κ
3
-P,C,P-4-1)] (5-4) with selected bond lengths 

(Å) and angles (°),(thermal ellipsoids set at 50% level). 

 

5.2.1.3.2 Attempted further reactivity of complex 5-4 

 

 

Scheme 5.12: Attempted further reactivity of the complex [Pd(OC(H)O)(κ
3
-P,C,P-4-1)] (5-4). 

 

The insertion of CO2 into the Pd-H of 5-1 represents an important first step in the 

reduction of CO2. However, the creation of a catalytic cycle for the reduction of CO2 

catalysed by 5-1 requires the ability to regenerate complex 5-1 from 5-4. Consequently, 

the reaction of 5-4 with various mild reducing agents was attempted. Hydrogen is the 

ideal reducing agent for this application due to its relatively low cost and would give a 

highly atom efficient reaction. However, the exposure of 5-4 to 1 atm H2 did not result in 

any reaction (monitoring by 1H and 31P{1H} NMR spectroscopy), Scheme 5.12.  

OO
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2P PtBu2Pd

O

O

H

i)  1 atm H2, d8-toluene, 65 oC, 12 h

ii) 20 equiv iPr3SiH,  d8-toluene, 60 oC, 1 h

i)

ii)

No new products detected by
1H and 31P NMR spectroscopy

No new products detected by
1H and 31P NMR spectroscopy

5-4

Pd-O3 2.105(1) 

Pd-P1 2.2882(5) 

Pd-P2 2.3079(5) 

Pd-C2 1.984(2) 

O3-C1 1.262(2) 

C1-O4 1.218(3) 

P1-Pd-P2 160.28(2) 

C2-Pd-O3 169.57(6) 

O3-C1-O4 128.6(2) 
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In an alternative strategy, it was reasoned that since silicon has a high affinity for 

oxygen, then the reaction of 5-4 with a silane reagent could break the Pd-O bond to 

form a stong Si-O bond and regenerate complex 5-1. However, despite the high affinity 

of oxygen for silicon, reactions of complex 5-4 with even an excess of triisopropylsilane 

also showed no reaction (monitoring by 1H and 31P{1H} NMR spectroscopy), Scheme 

5.12.  

Together, these attempts to regenerate the hydride complex 5-1 from the CO2 inserted 

formate derivate 5-4 by comparatively mild chemical means were unsuccessful 

(addition of H2 or triisopropylsilane). This suggests that a stronger reducing agent 

and/or harsher conditions are needed to create a catalytic process for reducing CO2 

with 5-1. Due to time constraints, subjecting complex 5-4 to stronger reducing agents 

and/or harsher conditions is outside the scope of this chapter/thesis, where we are 

looking to probe the reactivity of 5-1. 

Next to further probe the reactivity of 5-1 the ability of 5-1 to catalyse alkene 

isomerisation and hydrosilylation has been assessed. 

 

5.2.1.4 Isomerisation of cis-stilbene catalysed by 5-1 

Despite the lack of reaction observed between palladium hydride 5-1 and ethylene the 

ability of 5-1 to catalyse the cis-to-trans isomerisation of cis-stilbene was assessed, 

since much higher concentrations of this liquid alkene would be achievable in solution 

(compared with gaseous ethylene, which has only moderate solubility), which could 

help to facilitate coordination of the alkene and hence, subsequent insertion into the 

Pd-H bond. This is important since alkene insertion into a Pd-H bond is a key step in 

alkene cis-to-trans isomerisation, which is believed to proceed via the mechanism 

shown in Scheme 5.13. 

 



Chapter 5 

170 
 

 

Scheme 5.13: Mechanism of alkene cis-to-trans isomerisation catalysed by a metal hydride 

complex, adapted from Crabtree.
24

 

 

 

Scheme 5.14: cis-to-trans Isomerisation of cis-stilbene catalysed by 5-VI formed in situ using 

the methodology developed by Lindhardt and Skrydstrup and co-workers.
11

  

 

Bulky palladium hydride complexes have been shown to be efficient catalysts for the 

isomerisation of alkenes. For example, a generated palladium hydride complex 5-VI 

formed in situ from a 1:2:2 mixture of Pd(dba)2, P(tBu)3 and isobutyryl chloride has been 

shown to catalyse the cis-to-trans isomerisation of cis-stilbene within 24 h at 50 °C 

(Scheme 5.14).11 It is reported that the long catalytic lifetime and increased stability of 

5-VI compared to that of other palladium hydride complexes may be explained by the 

large steric bulk of the two coordinating PtBu3 ligands, forcing them to be placed trans 

to each other in the square-planar structure of the Pd(II) complex, thus retarding 

decomposition via reductive elimination of HCl.25 
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Scheme 5.15: cis-to-trans Isomerisation of cis-stilbene catalysed by 5-1. 

 

It was proposed that complex 5-1 would be even more stable than 5-VI as the ligand 4-

1 fixes two bulky phosphine moieties in a trans geometry, which could lead to longer 

catalytic lifetimes and may afford enhanced olefin isomerization performance (if the 

olefin can be forced into the palladium’s coordination sphere). Indeed, somewhat 

surprisingly perhaps, the discrete hydride complex 5-1 does catalyse the cis-to-trans 

isomerisation of cis-stilbene, albeit at a significantly slower rate than achieved by 5-VI. 

For example, heating a deuterated benzene solution of cis-stilbene at 80 °C with 10 

mol% 5-1 for 48 h resulted in the conversion of just 26% of the cis-stilbene to new 

products (Scheme 5.15), after 7 days the conversion had increased to 68% with 60% of 

5-1 remaining intact (according to 1H NMR spectroscopic analysisbb). For note, a 

control experiment in the absence of palladium hydride 5-1, showed no conversion of 

cis-stilbene under the same reaction conditions.  

 

 

Scheme 5.16: Formation of the proposed active catalyst for cis-to-trans-isomerisation of cis-

stilbene  

 

It is believed that the activity of 5-1 is low because there is no easily assessable free 

site on the metal centre for the coordination of the alkene moiety prior to insertion into 

the palladium hydride bond, as the donor moieties of 5-1 are not labile. However, as 

there is a high concentration of cis-stilbene with respect to 5-1 and the relatively high 

temperatures at which the reaction was carried out we propose that there is limited 
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displacement of a phosphine donor moiety in 5-1 by cis-stilbene (Scheme 5.16), 

resulting in the catalysis observed. Alternatively, as 40% of 5-1 was destroyed after 7 

days it is possible that the catalytic activity observed is due to catalysis by 

decomposition products (e.g. palladium nanoparticles).cc By contrast PtBu3 ligands are 

significantly more labile and the active catalyst which promotes the cis-to-trans-

isomerisations when using 5-VI has been proposed to be 5-VII, carrying one phosphine 

ligand and a free site for the coordination of the alkene moiety prior to isomerization.11 

 

5.2.1.5 Hydrosilylation of benzaldehyde with phenylsilane catalysed by   

5-1 

 

 

Scheme 5.17: Hydrosilyation of benzaldehyde with phenyl silane catalysed by 5-1. 

 

The analogous nickel complex of 5-1, [NiH(κ3-P,C,P-4-1)], has been shown to be an 

active catalyst for hydrosilylation of aldehydes.26 With this in mind, it was decided to 

examine complex 5-1 as a hydrosilylation catalyst to investigate the effect of changing 

the metal centre to palladium. 

Complex 5-1 does indeed catalyse the hydrosilylation of benzaldehyde in the presence 

of phenylsilane, with 36% conversion to the hydrosilation products being achieved after 

2 h at 80 °C (10 mol% 5-1 loading), as confirmed by 1H NMR spectroscopy (Scheme 

5.17). After 2 h at 80 °C 80% of 5-1 had remained intact (by 1H NMR spectroscopydd), 

showing that 5-1 was quite robust.cc In the absence of the palladium hydride pre-

catalyst there was no consumption of benzaldehyde observed under the same 

conditions. 

                                                
cc
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Scheme 5.18: Hydrosilylation of benzaldehyde with phenyl silane catalysed by [NiH(κ
3
-P,C,P-4-

1)], reported by Guan and co-workers.
26

 

 

In contrast, the analogous nickel system, [NiH(κ3-P,C,P-4-1)], is considerably more 

active, resulting in 38% conversion of benzaldehyde being achieved after just 2 h at 

room temperature with only 0.2 mol% Ni loading (Scheme 5.18). We propose that the 

nickel analogue [NiH(κ3-P,C,P-4-1)] is more active than the palladium system [PdH(κ3-

P,C,P-4-1)] (5-1) presented in this work, as the soft phosphine donors of 4-1 are less 

strongly bound to the comparatively hard nickel centre. A more weakly bound and 

hence more labile phosphine moiety on nickel will give easier access to a free 

coordination site on the metal centre aiding carbonyl insertion into the metal hydride 

bond. Alternatively, the carbonyl insertion into the Ni-H bond of [NiH(κ3-P,C,P-4-1)] may 

be aided by the greater ability of Ni(II) to form complexes with a coordination number 

greater than four compared to palladium(II), allowing the insertion of an aldehyde into a 

M-H bond by pre-coordination of the carbonyl group (Scheme 5.19). 

 

 

Scheme 5.19: Proposed mechanism for insertion of an aldehyde into the Ni-H bond of [NiH(κ
3
-

P,C,P-4-1)] via pre-coordination of the aldehyde. 
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5.3 Chapter 5 summary and conclusions 

The synthesis of a novel stable palladium hydride complex [PdH(κ3-P,C,P-4-1)] (5-1) 

has been achieved by the treatment of [PdCl(κ3-P,C,P-4-1)] (4-2) with LiAlH4.
ee The 

palladium hydride complex 5-1 was found to be inert towards the insertion of ethylene. 

However, complex 5-1 was shown to be a (poor) catalyst for alkene isomerisation, with 

high catalyst loading and reaction temperatures giving low activity. Despite showing 

modest reactivity with C=C bonds complex 5-1 was shown to reversibly insert CO2 into 

the palladium hydride bond in a facile manner. Attempts to regenerate 5-1 from the 

CO2 inserted product (5-4) by the addition of mild reducing agents (to make this 

process catalytic) were unsuccessful, suggesting that a stronger reducing agent and/or 

harsher conditions are needed to create a catalytic process for the reduction of CO2.  

  

                                                
ee

As mentioned above, disappointingly, a related synthesis and characterisation of 5-1 has very 
recently been reported just prior to submission of this thesis (Jan. 2014) by Guan and co-

workers, Inorg. Chem. Front., 2014, 1, 71-82. 
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6 Chapter 6: Summary and outlook 

Chapter 2 introduced a new structural motif in the comparatively rare phosphine-

alkene-type heteroditopic ligand class, compound 2-1, based around a 7-aza-

benzobicyclo[2.2.1]hept-2-ene moiety. The structure of the alkene-containing moiety is 

key to its coordination chemistry as the alkene group is located in a constrained, rigid 

5-membered ring, which was introduced in order to encourage strong alkene-metal 

binding in order to relieve ring strain.  

Based upon interpretation of infrared stretching frequencies of rhodium [Rh(CO)(κ2-

P,C-2-1)2]Cl (2-3) and chromium carbonyl [Cr(CO)4(κ
2-P,C-2-1)] (2-4) complexes of 

ligand 2-1, this particular aza-phosphine-alkene can be considered significantly more 

electron-withdrawing than commonly used bidentate diphosphines such as dppe. The 

electron deficient nature of 2-1 is believed to stem from the presence of both the π-

accepting alkene moiety and the poorly basic phosphine donor. 

It was hoped that the electron-deficient ligand 2-1 would give significant benefits to 

palladium-catalysed cross-coupling reactions where slow reductive elimination was a 

problem. Such an effect had been shown previously for P-alkene ligands containing 

electron-deficient alkene groups, in the work of Lei et al (Section 3.1.2). 

Chapter 3 showed that disappointingly ligand 2-1 gave poor performance when applied 

to catalytic systems (Suzuki and Negishi palladium-catalysed cross-coupling reactions). 

It is believed that the electron-deficient ligand 2-1 stabilises Pd0 species to such an 

extent that the Pd0 complexes generated during the catalytic cycles associated with 

these transformations do not readily undergo oxidative addition.  

However, significant mechanistic understanding of reductive elimination-type 

processes was gained by applying 2-1 to simpler model systems. The addition of one 

equivalent of the phosphine-alkene ligand 2-1 to [PdMe2(tmeda)] resulted in the 

formation of cis-[PdMe2(κ
2-P,C-2-1)] (3-1). Subsequent reductive elimination of ethane 

from complex 3-1 is much faster than from the analogous dppe complex cis-

[PdMe2(dppe)] by virtue of the palladium centre being significantly less electron rich in 

the former.  

Importantly, the addition of small amounts of either PPh3 or propene significantly speed 

up the reductive elimination of ethane from 3-1, via formation of a 5-coordinate 

intermediate. In a similar fashion, when two equivalents of P-alkene ligand 2-1 per 

[PdMe2(tmeda)] are used the reductive elimination of ethane is again fast, something 

that is believed to proceed via a 5-coordinate intermediate [PdMe2(κ
2-P,C-2-1)(κ1-P-2-

1)] (C). This is the first evidence that an associative mechanism for reductive 
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elimination from palladium is plausible and thus must be considered alongside both the 

commonly discussed direct and dissociative mechanisms. 

Given the proven ability of phosphine-alkene compound 2-1 promote reductive 

elimination it was of interest to apply 2-1 to known difficult reductive elimination, e.g. 

chloromethane from PdCl(Me) fragments. Whilst the reaction of three equivalents of P-

alkene 2-1 with [PdCl(Me)(COD)] led to the very rapid formation of [Pd(κ2-P,C-2-1)2] (3-

2) and the methyl phosphonium chloride salt of 2-1, (3-3)Cl, computational studies 

suggest that the methyl and chloride ligands were not removed from the metal centre 

by direct chloromethane reductive elimination. Instead, a pathway involving the SN2 

nucleophilic attack of 2-1 on a palladium-methyl group is proposed, with the palladium-

methyl group activated by the strongly electrophilic Pd(κ2-P,C-2-1) fragment. This is the 

first example of the removal of methyl and chloride ligand from a palladium(II) species 

and thus constitutes an important new mechanistic pathway in pseudo reductive 

elimination reactions. 

In order to prepare a less electron-deficient phosphine-alkene ligand design the 

synthesis of the monocyclic P-alkene ligand N-PPh2-3-pyrroline (3-4) was undertaken. 

It was hoped that the more flexible structure of 3-4 compared to 2-1 would weaken the 

strength of the alkene-metal interaction and, hence, potentially give access to 

complexes that were more labile than those of compound 2-1. However, there was no 

evidence of any interaction of the alkene moiety of 3-4 with a palladium centre. 

Consequently, an alkene moiety with an intermediate metal affinity between 2-1 and 3-

4 is required to be used in the catalytic systems described above, a ligand that 

potentially fits this criteria is presented in Section 3.7.  

In contrast to the behaviour of ligand 2-1, the reaction of compound 3-4 with 

[PdCl(Me)(COD)] led to the formation of trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) and did not 

remove the methyl and chloride ligands from the metal centre, clearly signifying that it 

is the rigid structure of compound 2-1 that is key to its reactivity. 

Chapter 4 presented the formation of 1,3-{(Cl2PO)2C6H4} (4-3), which opens an 

important new synthetic route for the synthesis of POCOP ligands containing phosphite 

and diaminophosphinite moieties. This new synthetic route is similar to that described 

by Bedford and Pringle (Section 4.1.2), but is a superior route when the presence of 

bulky tert-butyl groups on aromatic backbone are undesirable, for example in the 

synthesis of ligands for use in aqueous catalysis. 

The reactivity of POCOP-type ligands can be fine-tuned by modifying the steric and 

electronic properties of the donor groups, which is of fundamental interest in catalyst 

design, in the quest to form catalysts that are more active and/or selective. However, to 

date, there has been comparatively little modification of the phosphorus donor groups 
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in known POCOP-containing catalysts (Section 4.1.3), with aryl and alkyl phosphorus 

substituents being prevalent.  

Chapter 4 presents four novel POCOP ligands with significant variation in their steric 

and electronic properties over commonly used POCOP ligands by using heteroatom 

atom-substituted phosphorus atoms. The steric and electronic properties of these new 

POCOP ligands have been quantified by a variety of methods and compared with 

those of the commonly used ligand1,3-{(tBu2PO)2C6H4} (4-1) demonstrating that all four 

novel POCOP ligands are both less electron rich and have less steric bulk, with a good 

correlation between the two parameters. 

It would be logical to apply these novel POCOP ligands to catalytic reactions that are 

known to be catalysed by POCOP complexes, e.g. nickel-catalysed hydroamination or 

iridium-catalysed alkene transfer dehydrogenation; to study the impact of the steric and 

electronic properties of the ligand on the reactivity of the catalyst. Unfortunately, time 

constrains precluded this investigation. 

Chapter 5 detailed the synthesis of a novel stable palladium hydride complex [PdH(κ3-

P,C,P-4-1)] (5-1). The palladium hydride complex 5-1 was found to be a poor catalyst 

for both alkene isomerisation and hydrosilylation of aldehydes. However, complex 5-1 

was shown to reversibly insert CO2 into the palladium hydride bond in a facile manner, 

a reaction that is an important first step in the reduction of the potentially economically 

and environmentally important C1 feedstock CO2. Initial attempts to regenerate 5-1 

from the CO2 inserted product [Pd(OC(H)O)(κ3-P,C,P-4-1)] (5-4) by the addition of mild 

reducing agents were unsuccessful, suggesting that a stronger reducing agent and/or 

harsher conditions are needed to create a catalytic process for the reduction of CO2.  
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7 Chapter 7: Experimental 

7.1 General considerations 

Laboratory coat, safety spectacles and gloves were worn at all times, and all 

experiments were conducted in an efficient fume-hood, following completion of 

appropriate COSHH assessments. Solvents were disposed of in the appropriate waste 

solvent container in line with the departmental health and safety policy; precious metal-

containing residues were collected and separated according to metal. 

All operations were conducted under an atmosphere of dry nitrogen using standard 

Schlenk and cannula techniques, or in a nitrogen-filled glove box (Saffron Scientific), 

under ambient laboratory lighting, unless stated otherwise. All NMR-scale reactions 

were conducted using NMR tubes fitted with  . Young’s tap valves. Bulk solvents were 

purified using an Innovative Technologies SPS facility and degassed prior to use. 1,2-

Dimethoxyethane (DME) was distilled from Na/benzophenone and degassed prior to 

use. NMR solvents (C6D6, d2-DCM d8-THF and d8-toluene) were dried over CaH2, 

distilled and degassed prior to use. CDCl3 was dried over P2O5, passed through a 

column of alumina, and degassed prior to use. 

Palladium, rhodium and iridium salts were used on loan from Johnson Matthey. C6D6, 

d2-DCM, d8-THF and d8-toluene were purchased from Goss Scientific. All other 

reagents were purchased from Sigma Aldrich or Alfa Aesar.  

Where appropriate, liquid reagents were dried, distilled, and deoxygenated prior to use, 

while gases were passed through a drying column (CaCO3/P2O5). 

Solution-phase NMR spectra were collected on a Varian Mercury 200, a Varian 

Mercury 400, a Bruker Avance 400, a Varian Inova 500, a Varian VNMRS-600, and a 

Varian VNMRS-700, at ambient probe temperatures (290 K) unless stated otherwise. 

Chemical shifts were referenced to residual protio impurities in the deuterated solvent 

(1H), 13C shift of the solvent (13C), or to external aqueous 85% H3PO4 (31P). Solvent 

proton shifts (ppm): CDCl3, 7.26 (s); C6D6, 7.15 (s); CD2Cl2 5.32 (t); (CD2)4O, 1.73 (s), 

3.58 (s); C7D8 2.08 (m). Solvent carbon shifts (ppm): CDCl3, 77.4 (t); C6D6, 128.6 (t); 

CD2Cl2, 54.0 (quin); (CD2)4O, 25.3 (quin), 67.2 (quin); C7D8 20.4 (m). Where necessary 

1H NMR and 13C NMR spectra were assigned with the aid of COSY, DEPT 135, HMBC 

and HSQC experiments. Chemical shifts are reported in ppm and coupling constants in 

Hz. 

Solid-state NMR spectra were collected by Dr D. Apperley or Mr F. Markwell of the 

EPSRC National Solid-state NMR Research Service (Durham University) on a Varian 

VNMRS instrument: chemical shifts were referenced to H3PO4 (
31P).  
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Mass spectra were recorded by the Durham University Mass Spectrometry Service; 

ESI: Waters TQD equipped with Acquity UPLC and an electrospray ion source, ASAP: 

Waters LCT Premier XE mass spectrometer equipped with an ASAP ionisation source, 

and are reported in (m/z). The isotope distributions for all parent ion peaks were 

verified via comparison with the theoretical isotope pattern.  

GC-FID analysis was performed on a PerkinElmer Clarus 400, fitted with a PONA (50 

m x 0.020 mm x 50 μm) column. Oven regime: hold 40 °C for 10 mins, ramp 10 °C per 

min to 320 °C, hold 320 °C for 20 mins. Carrier gas flow = 1 mL/min H2 flow. 1 μL 

injection with 1:100 split. 

Elemental analyses were performed by the Analytical Services Department of the 

Chemistry Department, Durham University or London Metropolitan University elemental 

analysis service. 

Infrared spectra were collected on a Perkin Elmer 1600 spectrophotometer using KBr 

discs or a solution cell with KBr windows.   

Melting points were obtained in sealed glass tubes under N2 using a Gallenkamp 

melting point apparatus and are uncorrected. 

Single crystal X-ray analysis was performed by the Durham University X-ray service by 

Dr A. Batsanov. 
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7.2 Chapter 2 experimental 

 

The following compounds were prepared according to literature procedures or slight 

modifications thereof: [RhCl(COD)]2,
1 [RhCl(CO)2]2,

1 [IrCl(COD)]2,
1 N-BOC-7-aza-

benzobicyclo[2.2.1]hept-2-ene,2 and 7-aza-benzobicyclo[2.2.1]hept-2-ene.3  

 

General procedure for the synthesis of phosphine selenide compounds 

An NMR tube fitted with a  . Young’s valve was charged with a small quantity of 

phosphine (20-50 mg), a slight excess of elemental grey Se and CDCl3 (0.7 cm3). The 

system was then heated at 50 °C for 16 h, giving quantitative conversion (according to 

31P{1H} NMR spectroscopy) to the required phosphine selenide. 
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Synthesis of N-PPh2-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-1) 

 

A solution of Ph2PCl (1.70 cm3, 2.09 g, 9.47 mmol) in CH2Cl2 (20 cm3) was added drop-

wise to a cooled solution (–30 °C) of 7-aza-benzobicyclo[2.2.1]hept-2-ene (1.316 g, 

9.19 mmol) and NEt3 (2.60 cm3, 1.89 g, 18.7 mmol) in CH2Cl2 (60 cm3). The reaction 

was subsequently stirred for 15 mins before being allowed to warm to RT overnight. All 

volatile components were removed in vacuo. Recrystallisation from hot hexane 

afforded compound 2-1 as an off-white solid (2.085 g, 69%). 

1H NMR (400 MHz, CDCl3) δ: 4.94 (2H, s, Hb), 6.60-6.62 (2H, m, Hd), 6.77-6.78 (2H, m, 

Ha), 6.79-6.81 (2H, m, He), 7.15-7.21 (10H, m, C6H5). 

13C{1H} NMR (100 MHz, CDCl3) δ: 68.1 (d, 
2JPC = 10 Hz, Cb), 118.7 (s, Cd), 122.8 (s, 

Ce), 126.9 (d, JPC = 7 Hz, o-/m-C6H5), 127.3 (s, p-C6H5), 131.2 (d, JPC = 20 Hz, o-/m-

C6H5), 138.2 (d, 1JPC = 11 Hz, ipso-C6H5), 143.0 (d, 3JPC = 4 Hz, Ca), 150.0 (d, 3JPC = 3 

Hz, Cc).  

31P{1H} NMR (162 MHz, CDCl3) δ: 41.6 (s). 

CHN: C22H18NP requires: C, 80.72; H, 5.54; N, 4.28%. Found: C, 80.42; H, 5.60; N, 

4.33%. 

 

2-1.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 50.8 (s, + satellites, 
1JSeP = 764 Hz). 
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Synthesis of N-PiPr2-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-2) 

 

A solution of iPr2PCl (2.70 cm3, 2.59 g, 17.0 mmol) in CH2Cl2 (20 cm3) was added drop-

wise to a cooled solution (–30 °C) of 7-aza-benzobicyclo[2.2.1]hept-2-ene (2.20 g, 15.4 

mmol) and NEt3 (2.40 cm3, 1.74 g, 17.2 mmol) in CH2Cl2 (80 cm3). The reaction was 

subsequently stirred for 15 mins before being allowed to warm to RT overnight. All 

volatile components were removed in vacuo and the resulting residue extracted into 

hexane (20 cm3). Twice distillation of the resulting oil (bp 120-130 °C at 1.5 x 10−1 

mbar) afforded the title compound as a colourless oil. Following cooling (–20 °C) the 

title compound was isolated as a white solid that did not melt upon warming to RT (1.12 

g, 28%). 

1H NMR (600 MHz, C6D6) δ: 0.90-0.96 (12H, m, CH(CH3)), 1.63 (2H, septet, 3JHH = 7.2 

Hz, CH(CH3)), 4.80-4.82 (2H, m, Hb), 6.66-6.69 (2H, m, Ha), 6.71-6.73 (2H, m, He), 

6.92-6.95 (2H, m, Hd). 

13C{1H} NMR (151 MHz, C6D6) δ: 19.0-19.4 (m, CH(CH3)), 26.1 (d, 1JPH = 15 Hz, 

CH(CH3)), 69.2-69.44 (m, Cb), 119.5-119.6 (m, Cd), 123.8-123.9 (m, Ce), 145.1-145.2 

(m, Ca), 153.0-153.1 (m, Cc). 

31P{1H} NMR (243 MHz, C6D6) δ:  62.7 (s). 

CHN: C16H22NP requires: C, 74.10; H, 8.55; N, 5.40%. Found: C, 73.97; H, 8.44; N, 

5.49%.  

 

2-2.Se 

31P{1H} NMR (81 MHz, CDCl3) δ: 82.6 (s, + satellites, 
1JSeP = 734 HZ). 
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Synthesis of [Rh(CO)(κ2-P,C-2-1)2]Cl (2-3) 

 

An NMR tube fitted with a  . Young’s valve was charged with 2-1 (110 mg, 3.4 mmol), 

[RhCl(CO)2]2 (33 mg, 0.084 mmol) and sealed. CDCl3 (0.70 cm3) was added and 

effervescence observed. Compound 2-3 was obtained quantitatively (according to 

31P{1H} NMR spectroscopy) as a single product.  

Complex 2-3 is also obtained when the reaction is undertaken using a Rh:2-1 ratio of 

1:1.  

1H NMR (500 MHz, CDCl3) δ: 3.98 (2H, bs, CHa/j), 4.98 (2H, s, CHb/i), 5.04 (2H, 2s, 

CHb/i), 5.51 (2H, bs, CHa/j), 7.01-7.10 (4H, m, CHe/f), 7.15-7.31 (8H, m, CHd/g, p-C6H5 & 

o/m-C6H5), 7.32-7.47 (12H, m, CHd/g, p-C6H5 & o/m-C6H5), 7.77-7.97 (4H, m, o/m-

C6H5). 

13C{1H} NMR (126 MHz, CDCl3) δ: 70.6-70.7 (m, Cb/i), 71.4-71.5 (m, Cb/i), 79.3 (d, 1JRhC 

= 9.0, Ca/j), 82.9 (d, 1JRhC = 10.0 Hz, Ca/j), 121.9 (s, Cd/g), 122.0 (s, Cd/g), 126.9-127.0 

(m, Ce/f), 128.3-128.9 (m, ipso-C6H5), 129.3-129.9 (m, o/m-C6H5), 130.2-130.6 (m, ipso-

C6H5), 131.0-131.2 (m, o/m-C6H5), 132.0-132.5 (m, p-C6H5), 142.6-142.7 (m, Cc/h), 

194.3 (dt, 1JRhC = 58.0, 2JPC = 11.0 Hz, CO). 

31P{1H} NMR (162 MHz, CDCl3) δ: 91.4 (d, 
1JRhP = 89 Hz). 

IR (KBr, CDCl3 solution) ν (cm
−1): 1993, C=O. 
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Synthesis of [Cr(CO)4(κ
2-P,C-2-1)] (2-4) 

 

A toluene (40 cm3) solution of [Cr(CO)6] (350 mg, 1.59 mmol) and 2-1 (393 mg, 1.20 

mmol) was heated at reflux for 24 h. The resulting yellow solution was cooled (0 °C) 

and filtered to remove excess [Cr(CO)6]. All volatile components were removed in 

vacuo to leave a yellow solid. The title compound was precipitated out of DCM (4 cm3) 

by the addition of methanol (15 cm3), subsequent isolation by filtration and drying in 

vacuo afforded analytically pure 2-4 (260 mg, 44%). 

Crystals suitable for X-ray diffraction were grown by layering a concentrated DCM 

solution of 2-4 with methanol. 

1H NMR (700 MHz, CDCl3) δ: 4.33 (2H, bs, Ha), 4.40 (2H, bs, Hb), 7.06 (2H, bs, He), 

7.24 (2H, bs, Hd), 7.33-7.41 (6H, m, m-C6H5 and p-C6H5), 7.77 (4H, bs, m-C6H5).  

13C{1H} NMR (176 MHz, CDCl3) δ: 70.6 (d, 
2JCP = 10 Hz, Cb), 83.2 (s, Ca), 121.6 (s, Cd), 

126.5 (s, Ce), 129.0 (d, 3JCP = 10 Hz, m-C6H5), 130.7 (d, 2JCP = 13 Hz, o-C6H5), 131.1 (s, 

p-C6H5), 135.2 (d, 1JCP = 39 Hz, Cipso), 145.6 (d, 3JCP = 11 Hz, Cc), 222.6 (d, 2JCP = 4 Hz, 

CO), 225.5 (d, 2JCP = 14 Hz, CO), 234.1 (d, 2JCP = 11 Hz, CO).  

31P{1H} NMR (283 MHz, CDCl3) δ: 131.7 (s).  

CHN: C26H18CrNO4P requires: C, 63.55; H, 3.69; N, 2.85 %. Found: C, 63.64; H, 3.80; 

N, 2.91%. 

MS (ASAP+): 491.0 (M)+, 463.0 (M – CO)+, 435.0 (M − 2CO)+, 407.1 (M − 3CO)+, 379.1 

(M − 4CO)+, 327.1 (2-1)+. 

IR (Nujol mull) ν (cm−1): 1884, 1915, 1952, 2017, C=O. 
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Synthesis of [Cr(CO)4(κ
2-P,C-2-2)] (2-5) 

 

A toluene (20 cm3) solution of [Cr(CO)6] (283 mg, 1.29 mmol) and 2-2 (250 mg, 0.96 

mmol) was heated at reflux for 24 h. The resulting yellow solution was cooled (0 °C) 

and filtered to remove excess [Cr(CO)6]. All volatile components were removed in 

vacuo to leave a yellow solid. The title compound was recrystallized from methanol to 

give a pale yellow solid (168 mg, 42%). 

1H NMR (700 MHz, CDCl3) δ: 1.21-1.32 (12H, m, CH(CH3)2), 2.10-2.18 (2H, m, 

CH(CH3)2), 4.23-4.27 (2H, m, Ha), 4.41-4.45 (2H, m, Hb), 7.02-7.12 (2H, m, He), 7.22-

7.27 (2H, m, Hd). 

13C{1H} NMR (176 MHz, CDCl3) δ: 17.9 (d, 2JPC = 5 Hz, CH(CH3)2), 18.6 (d, 2JPC = 2 

Hz, CH(CH3)2), 29.6 (d, 1JPH = 18 Hz, CH(CH3)2), 70.6 (d, 2JPC = 7 Hz, Cb), 82.3-82.5 

(bs, Ca), 121.3 (m, Cd), 126.4 (m, Ce), 145.5 (d, 3JPC = 9 Hz, Cc), 222.8 (d, 2JPC = 4 Hz, 

CO), 227.3 (d, 2JPC = 13 Hz, CO), 234.2 (d, 2JPC = 11 Hz, CO). 

31P{1H} NMR (283 MHz, CDCl3) δ: 150.5 (s).  

CHN: C20H22CrNO4P requires: C, 56.74; H, 5.24; N, 3.31 %. Found: C, 56.62; H, 5.35; 

N, 3.35%. 

IR (Nujol mull) ν (cm−1): 1911 (br), 1921, 2015, C=O. 
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Synthesis of [Ni(κ2-P,C-2-1)2] (2-6) 

 

A solution of [Ni(COD)2] (294 mg, 1.07 mmol), 2-1 (700 mg, 2.13 mmol) and DCM (10 

cm3) was stirred at RT for 16 h. All volatile components were removed in vacuo, the 

resulting solid was recrystallised by layering a concentrated DCM solution with hexane 

to give the title complex as a bright yellow solid (465 mg, 61 %).  

Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a 

concentrated toluene solution of 2-6. 

1H NMR (600 MHz, d2- CM) δ: 3.91-3.92 (2H, m, Ca/j), 3.95-3.99 (2H, m, Ca/j), 4.20 

(2H, bs, Cb/i), 4.69 (2H, bs, Cb/i), 6.96-7.03 (4H, m, Ce/f), 7.07-7.09 (2H, d, 3JHH = 6.6 

Hz), Cd/g), 7.09-7.13 (4H, m, m-C6H5 A), 7.20-7.23 (2H, d, 3JHH = 6.8 Hz, Cd/g), 7.26-

7.29 (2H, t, 3JHH, p-C6H5 A), 7.36-7.39 (4H, m, o-C6H5 A), 7.41-7.44 (6H, m, m-C6H5 & 

p-C6H5 B), 7.77-7.81 (4H, m, o-C6H5 B). 

13C{1H} NMR (151 MHz, d2- CM) δ: 68.8 (s, Ca/j), 71.3 (m, Cb/i), 72.1 (m, Ca/j), 73.6 (m, 

Cb/i), 120.4 (s, Cd/g), 120.5 (s, Cd/g), 125.5 (s, Ce/f), 125.6 (s, Ce/f), 128.8 (m, m-C6H5), 

128.9 (m, m-C6H5), 129.8 (s, p-C6H5), 130.5 (s, p-C6H5), 132.2 (m, o-C6H5), 133.4 (m, 

o-C6H5), 136.0 (m, ipso-C6H5), 137.2 (m, ipso-C6H5), 146.7 (m, Cc/h), 147.5 (m, Cc/h). 

31P{1H} NMR (243 MHz, d2- CM) δ: 99.6 (s). 

CHN: C44H36P2N2Ni requires: C, 74.08; H, 5.09; N, 3.93%. Found: C, 72.30; H, 5.06; N, 

3.70%.ff  

MS (ASAP+): 712 (M)+. 

  

                                                
ff
 Satisfactory elemental analyses were not obtained due to incomplete combustion. 
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Thermal stability of 2-6 

A solution of 2-6 (10 mg, 0.013 mmol) in C6D6 (0.7 cm3) was heated at 80 °C in an 

NMR tube fitted with a  . Young’s valve containing a glass capillary enclosing a PPh3 

standard. No decomposition had occurred after 16 h. 

 

Addition of PPh3 to 2-6 

Complex 2-6 (10 mg, 0.014 mmol), PPh3 (8 mg, 0.030 mmol) and C6D6 (0.7 cm3) were 

added to an NMR tube fitted with a  . Young’s valve and heated at 80 °C for 16 h. 

Analysis by 1H and 31P{1H} NMR spectroscopy showed that there was no reaction 

between 2-6 and PPh3. 

 

Addition of PhI to 2-6 

Complex 2-6 (10 mg, 0.014 mmol), PhI (16 μl, 28 mg, 0.14 mmol) and C6D6 (0.7 cm3) 

were added to an NMR tube fitted with a  . Young’s valve and heated at 80 °C for 2 h. 

Analysis by 1H and 31P{1H} NMR spectroscopy showed that there was no reaction 

between 2-6 and PhI. 
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Synthesis of [RhCl(κ2-P,C-2-1)2] (2-7) 

 

An NMR tube fitted with a  . Young’s valve was charged with 2-1 (100 mg, 0.305 

mmol), [RhCl(COD)]2 (38 mg, 0.076 mmol) and CDCl3 (0.7 cm3) after standing 

overnight at RT the title complex was obtained quantitatively (according to 31P{1H} NMR 

spectroscopy). Removal of all volatile components in vacuo generated the title complex 

in good yield (103 mg, 94%). 

Crystals suitable for X-ray diffraction were grown by layering a concentrated DCM 

solution of 2-7 with hexane. 

Complex 2-7 is also obtained when the reaction is realised with two equivalents of 

ligand for one equivalent of [RhCl(COD)]2; the remaining [RhCl(COD)]2 is observed by 

1H NMR spectroscopy. 

1H NMR (500 MHz, CDCl3) δ: 3.79 (2H, bs, CHa/j), 4.65 (2H, s, CHb/i), 4.80 (2H, bs, 

CHa/j), 4.91 (2H, s, CHb/i), 6.97-7.03 (2H, m, CHe/f), 7.04-7.09 (2H, m, CHe/f) 7.12-7.15 

(2H, m, CHd/g), 7.15-7.20 (6H, m, o-, p-C6H5 A), 7.22-7.26 (6H, m, o-, p-C6H5 B), 7.26-

7.29 (2H, m, CHd/g), 7.41-7.47 (4H, m, m-C6H5 A), 7.89-7.96 (4H, m, m-C6H5 B). 

13C{1H} NMR (126 MHz, CDCl3) δ: 70.5 (s, Cb/i), 72.1 (s, Cb/i), 74.9 (d, 2JPC = 8 Hz, Ca/j), 

77.4 (d, 2JPC = 10 Hz, Ca/j), 120.8 (2s, Cd/g), 120.9 (2s, Cd/g), 125.9 (2s, Ce/f), 126.3 (2s, 

Ce/f), 127.8-128.1 (m, o-C6H5 B), 128.8-129.0 (m, o-C6H5 A), 129.7-130.0 (m, m-C6H5 A), 

130.2-130.7 (m, p-C6H5 A & ipso-C6H5 & p-C6H5 B), 132.3-132.7 (m, m-C6H5 B & ipso-

C6H5), 144.5-144.7 (m, Cc/h), 146.5-146.6 (m, Cc/h). 

31P{1H} NMR (81 MHz, CDCl3) δ: 90.9 (d, 
1JPRh = 103 Hz). 

CHN: C44H36ClN2P2Rh.2C2H2Cl2 requires: C, 57.38; H, 4.19; N, 2.91%. Found: C, 

57.05; H, 4.28; N, 3.12%.gg  

  

                                                
gg

 DCM visible in molecular structure and 
1
H NMR spectrum. 
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Synthesis of [IrCl(κ2-P,C-2-1)2] (2-8)  

 

A DCM solution of 2-1 (400 mg, 1.22 mmol) was added drop-wise to a stirred solution 

of [IrCl(COD)]2 (202 mg, 0.301); the resulting mixture was stirred for 1 h at RT.  All 

volatile components were removed in vacuo to leave an off-white solid. The title 

complex was precipitated out of DCM (10 cm3) by the addition of hexane (20 cm3), 

subsequent isolation by filtration and drying in vacuo afforded analytically pure 2-8 (351 

mg, 66%). 

1H NMR (700 MHz, CDCl3) δ: 2.98 (2H, m, CHa/j), 3.76 (2H, m, CHa/j), 4.48 (2H, s, 

CHb/i), 4.80 (2H, s, CHb/i), 7.03-7.06 (2H, m, CHe/f), 7.11-7.14 (2H, m, CHe/f) 7.15-7.17 

(2H, m, CHd/g), 7.19-7.23 (6H, m, o-, p-C6H5 A), 7.26-7.29 (6H, m, o-, p-C6H5 B), 7.29-

7.31 (2H, m, CHd/g), 7.45-7.49 (4H, m, m-C6H5 A), 7.87-7.92 (4H, m, m-C6H5 B). 

13C{1H} NMR (176 MHz, CDCl3) δ: 53.2 (bs, Ca/j), 54.6 (bs, Ca/j), 69.8 (m, Cb/i), 72.0 (m, 

Cb/i), 120.4 (s, Cd/g), 120.5 (s, Cd/g), 125.9 (s, Ce/f), 126.2 (s, Ce/f), 127.8-128.1 (m, o-

C6H5 B), 128.7-128.8 (m, o-C6H5 A), 129.4 (d, 1JPC = 32 Hz, ipso-C6H5 A), 129.7-129.8 

(m, m-C6H5 A), 130.4-130.5 (m, p-C6H5 A), 130.7-130.8 (m, p-C6H5 B), 131.0 (d, 1JPC = 

28 Hz, ipso-C6H5 B), 132.1-132.3 (m, m-C6H5 B) 145.5-145.6 (m, Cc/h), 146.5-146.6 (m, 

Cc/h). 

31P{1H} NMR (283 MHz, CDCl3) δ: 61.2 (s). 

CHN: C44H36ClN2P2Ir requires: C, 59.89; H, 4.11; N, 3.17%. Found: C, 59.73; H, 4.04; 

N, 3.10%. 
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Synthesis of N-PPh-bis-7-aza-benzobicyclo[2.2.1]hept-2-ene (2-9) 

 

A solution of PhPCl2 (0.68 cm3, 0.90 g, 5.01 mmol) in CH2Cl2 (20 cm3) was added drop-

wise to a cooled solution (–30 °C) of 7-aza-benzobicyclo[2.2.1]hept-2-ene (1.44 g, 

10.06 mmol) and NEt3 (2.80 cm3, 2.03 g, 20.1 mmol) in CH2Cl2 (40 cm3). The reaction 

was subsequently stirred for 15 mins before being allowed to warm to RT and stirred 

for a further 4 h. All volatile components were removed in vacuo. Recrystallisation from 

hot hexane afforded the title compound as an off-white solid (1.45 g, 74%). 

1H NMR (600 MHz, CDCl3) δ: 4.96 (2H, bs, Hb/i), 5.01 (2H, bs, Hb/i), 6.69-6.71 (2H, m, 

Ha/j), 6.77-6.80 (2H, m, Ha/j), 6.83-6.88 (4H, m, Hd), 7.05-7.13 (4H, m, He), 7.27-7.36 

(5H, m, C6H5). 

13C{1H} NMR (151 MHz, CDCl3) δ: 67.6 (d, 2JPC = 8 Hz, Cb/i), 67.8 (d, 2JPC = 12 Hz, Cb/i), 

119.5 (s, Cd/g), 119.7 (s, Cd/g), 123.9 (s, Ce/f), 128.1 (d, JPC = 6 Hz, o-/m-C6H5), 128.3 (s, 

p-C6H5), 131.5 (d, JPC = 18 Hz, o-/m-C6H5), 139.6 (d, 1JPC = 7 Hz, ipso-C6H5), 144.0 (d, 

3JPC = 2 Hz, Ca/j), 144.4 (d, 3JPC = 3 Hz, Ca/j),151.7 (d, 3JPC = 4 Hz, Cc/h), 152.1 (d, 3JPC = 

4 Hz, Cc/h).  

31P{1H} NMR (243 MHz, CDCl3) δ: 56.9 (s). 

CHN: C26H21N2P requires: C, 79.58; H, 5.39; N, 7.14%. Found: C, 79.46; H, 5.36; N, 

7.23%. 

 

2-9.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 50.0 (s, + satellites, 
1JSeP = 791 HZ). 
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Synthesis of [Cr(CO)4(κ
2-P,C-2-9)] (2-10) 

 

A toluene (20 cm3) solution of [Cr(CO)6] (175 mg, 0.795 mmol) and 2-9 (235 mg, 0.599 

mmol) was heated at reflux for 24 h. The resulting yellow solution was cooled (0 °C) 

and filtered to remove excess [Cr(CO)6]. All volatile components were removed in 

vacuo to leave a yellow solid. The title complex was dissolved in a minimum amount of 

DCM and precipitated out by the addition of methanol (5 cm3), subsequent isolation by 

filtration and drying in vacuo afforded 2-10 as a yellow solid (157 mg, 67%). 

Crystals suitable for X-ray diffraction were grown by layering a concentrated DCM 

solution of 2-10 with methanol. 

1H NMR (700 MHz, CDCl3) δ: 4.17 (1H, s, Ha/j), 4.19 (1H, s, Hb/i), 4.32 (1H, s, Ha/j), 4.66 

(1H, s, Hb/i), 5.14 (1H, s, Hb’/i’), 5.30 (1H, s, Hb’/i’), 6.71(1H, s, Ha’/j’), 6.74(1H, s, Ha’/j’), 

6.45-7.35 (13H, m, aromatic CH). 

13C{1H} NMR (176 MHz, CDCl3) δ: 67.2 (s, Cb’/i’), 67.9 (d, 2JPC = 4 Hz, Cb’/i’), 69.3 (d, 2JPC 

= 15 Hz, Cb/i), 69.8 (d, 2JPC = 8 Hz, Cb/i), 83.0 (s, Ca/j), 83.6 (s, Ca/j), 119.9 (s), 120.0 (s), 

121.1 (s), 121.6 (s), 123.9 (s), 124.2 (s), 126.1 (d, J = 40 Hz), 128.0 (d, J = 8 Hz), 

130.3 (s), 130.4 (s), 133.3 (d, J = 30 Hz), 141.9 (d, 3JPC = 4 Hz, Ca’/’j), 144.62 (d, 3JPC = 

8 Hz, Ca’/j’), 145.2 (d, J = 9 Hz), 145.7 (d, J = 15 Hz), 148.0 (s), 150.7 (d, J = 4 Hz), 

222.5 (d, 2JPC = 6 Hz, CO), 224.9 (d, 2JPC = 12 Hz, CO), 226.4 (d, 2JPC = 15 Hz, CO), 

234.1(d, 2JPC = 15 Hz, CO). 

31P{1H} NMR (283 MHz, CDCl3) δ: 156.9 (s). 

CHN: C32H19CrN2O6P requires: C, 64.75; H, 3.80; N, 5.03%. Found: C, 65.63; H, 3.74; 

N, 5.14%.hh 

MS (ASAP+):  557 (M+H)+ 

IR (Nujol mull) ν (cm−1): 1890, 1919, 1952, 2016, C=O. 

                                                
hh

 Satisfactory elemental analysis was not obtained. 
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7.3 Chapter 3 experimental 

 

The following compounds were prepared according to literature procedures or slight 

modifications thereof: [PdCl2(MeCN)2],
1 [PdMe2(tmeda)],4 [Pd(CD3)2(tmeda)],4 

[PdCl(Me)(COD)],3 and 3-pyrroline.5  

 

General procedure for the synthesis of phoshine selenide compounds 

An NMR tube fitted with a  . Young’s valve was charged with a small quantity of 

phosphine (20-50 mg), a slight excess of elemental grey Se and CDCl3 (0.7 cm3). The 

system was then heated at 50 °C for 16 h, giving quantitative conversion (according to 

31P{1H} NMR spectroscopy) to the required phosphine selenide. 
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Synthesis of [PdMe2(κ
2-P,C-2-1)] (3-1) 

 

A solution of 2-1 (80 mg, 0.24 mmol) in toluene (5 cm3) was added drop-wise to a 

solution of [PdMe2(tmeda)] (62 mg, 0.24 mmol) in toluene (5 cm3). The mixture was 

allowed to stir for 5 mins at RT affording compound 3-1 quantitatively (according to 

31P{1H} NMR spectroscopy). All volatile components were removed in vacuo and the 

resultant solid washed with Et2O (4 cm3) to afford the title complex as a white solid (55 

mg, 49%). 

Crystals of 3-1 suitable for an X-ray diffraction study were grown by cooling (–30 °C) 

the concentrated toluene solution 

In a separate experiment, an NMR tube fitted with a  . Young’s valve was loaded with 

2-1 (13 mg, 0.12 mmol), [PdMe2(tmeda)] (10 mg, 0.12 mmol), d8-toluene (0.7 cm3), and 

a sealed capillary tube containing a solution of PPh3 as a standard. In less than 10 

minutes complete consumption of 2-1 was evident, something accompanied by a >99% 

conversion to 3-1 according to 31P{1H} NMR spectroscopic analysis. Once conversion 

to 3-2 was complete (5 days) >0.9 mole equivalents of ethane were present in solution 

according to integration (1H NMR spectroscopy). 

1H NMR (700 MHz, C6D6) δ: 0.97 (3H, d, 
3JPH = 7.7 Hz, CH3), 1.69 (3H, d, 3JPH = 7.5 Hz, 

CH3), 4.25 (2H, d, 3JHH = 2.9 Hz, CHb), 5.78 (2H, bs, CHa), 6.69-6.74 (4H, m, CHd and 

CHe), 7.01-7.04 (6H, m, o- and p-C6H5), 7.93-7.98 (4H, m, m-C6H5). 

13C{1H} NMR (176 MHz, C6D6) δ: 2.6 (d, 
2JPC = 8 Hz, CH3), 5.8 (d, 2JPC = 120 Hz, CH3), 

71.3 (d, 2JPC = 11 Hz, Cb), 119.2 (s, Ca), 121.4 (s, Cd), 125.6 (s, Ce), 128.4 (s, Cc), 

129.2 (d, 2JPC = 10 Hz, o-C6H5), 131.4 (d, 4JPC = 2 Hz, p-C6H5), 133.2 (d, 3JPC = 15 Hz, 

m-C6H5), 145.7 (d, 1JPC = 10 Hz,  ipso-C6H5). 

31P{1H} NMR (162 MHz, C6D6) δ: 81.3 (s). 

Despite repeated attempts, satisfactory elemental analyses for 3-1 could not be 

obtained since the complex degrades slowly, even in the solid state. 

  

NP

a
b c

d e

o-C6H5

m-C6H5

p-C6H5

Pd

Me

Me



Experimental 

196 
 

Synthesis of [Pd(κ2-P,C-2-1)2], (3-2) 

 

A solution of 2-1 (0.15 g, 0.46 mmol) in toluene (15 cm3) was added drop-wise to a 

solution of [PdMe2(tmeda)] (0.057 g, 0.23 mmol) in toluene (10 cm3). The mixture was 

allowed to stir for 18 h at RT, resulting in the quantitative formation of complex 3-2 

(according to 31P{1H} NMR spectroscopy). Removal of volatile components in vacuo 

and washing with Et2O (2 x 10 cm3) afforded 3-2 as a dark brown solid, (0.15 g, 87%). 

Crystals suitable for an X-ray diffraction study were grown by slow diffusion of hexane 

into a concentrated toluene solution of 3-2. 

In a separate experiment, an NMR tube fitted with a  . Young’s valve was loaded with 

2-1 (26 mg, 0.080 mmol), [PdMe2(tmeda)] (10 mg, 0.040 mmol) and d8-toluene (0.7 

cm3). The reaction was subsequently monitored by multinuclear NMR spectroscopy 

until complete formation of 3-2 was achieved (5 h). 

1H NMR (400 MHz, C6D6) δ: 4.21 (2H, bs, CHb/i), 4.70-4.74 (2H, m, CHa/j), 4.76 (2H, bs, 

CHb/i), 4.87-4.92 (2H, m, CHa/j), 6.89-6.95 (6H, m, CHd/g and CHe/f), 7.06-7.08 (2H, m, 

CHd/g), 7.08-7.19 (12H, m, o- and p-C6H5), 7.94-8.00 (4H, m, m-C6H5), 8.03-8.09 (4H, 

m, m-C6H5). 

13C{1H} NMR (126 MHz, C6D6) δ: 70.7 (m, Cb/i), 72.1 (m, Cb/i), 75.9 (m, Ca/j), 80.7 (m, 

Ca/j), 120.2, 120.4, 125.1 and 125.2 (s, Cd/g and Ce/f), 128.4 (m, o-C6H5), 129.8 (s, p-

C6H5), 130.0 (s, p-C6H5), 132.9 (m, m-C6H5), 133.2 (m, m-C6H5), 138.3 (m, ipso-C6H5), 

138.5 (m, ipso-C6H5); 147.3 (m, Cc/h), 148.4 (m, Cc/h). 

31P{1H} NMR (162 MHz, C6D6) δ: 82.2 (s). 

CHN: C44H36N2P2Pd requires: C, 69.43; H, 4.77; N, 3.68%. Found: C, 69.22; H, 4.65; N, 

3.71%. 
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Addition of sub-stoichiometric amount of PPh3 to 3-1 

An NMR tube fitted with a  . Young’s valve was loaded with 2-1 (16 mg, 0.049 mmol), 

[PdMe2(tmeda)] (12 mg, 0.047 mmol), PPh3 (1.1 mg, 0.0042 mmol), and d8-toluene (0.7 

cm3). The reaction was followed by 1H and 31P{1H} NMR spectroscopy until completion. 

 

Addition of sub-stoichiometric amount of propene to 3-1 

An NMR tube fitted with a  . Young’s valve was loaded with 2-1 (24 mg, 0.073 mmol), 

[PdMe2(tmeda)] (20 mg, 0.079 mmol), propene (0.11 mg, 0.0027 mmol) via a gas bulb, 

and d8-toluene (0.7 cm3). The reaction was followed by 1H and 31P{1H} NMR 

spectroscopy until completion. 

 

Variable temperature NMR spectroscopic study of the interaction of 2-1 

and 3-1 

d2-DCM (0.5 cm3) was added via vacuum transfer into an NMR tube fitted with a J. 

Young’s valve containing 3-1 (19 mg, 0.041 mmol) and 2-1 (13 mg, 0.040 mmol) at 

−196 °C. The NMR tube was warmed to 0 °C in an ice bath before loading into a NMR 

machine with the probe pre-cooled to +10 °C. 1H, 31P{1H} and, 31P NMR spectra were 

obtained at the following temperatures in the following order, +10, 0, –20, –40, –60, –

80, –60, –40, –20, 0 and +20°C 
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Thermal stability of 3-2 

A solution of 3-2 (10 mg, 0.013 mmol) in C6D6 (0.7 cm3) was heated at 80 °C in an 

NMR tube fitted with a  . Young’s valve containing a glass capillary enclosing a PPh3 

standard. No decomposition had occurred after 24 h. 

 

Addition of PPh3 to 3-2 

Complex 3-2 (10 mg, 0.013 mmol), PPh3 (7 mg, 0.027 mmol) and C6D6 (0.7 cm3) were 

added to an NMR tube fitted with a J. Young’s valve and heated at 80 °C for 16 h. 

Analysis by 1H and 31P{1H} NMR spectroscopy showed that there was no reaction 

between 3-2 and PPh3. 

 

Reaction of 3-2 with PhI 

Complex 3-2 (10 mg, 0.013 mmol), PhI  (15 μl, 27 mg, 0.13 mmol) and C6D6 (0.7 cm3) 

were added to an NMR tube fitted with a  . Young’s valve and heated at 60 °C for 2 

mins, which resulted in the precipitation of palladium metal from solution. Analysis of 

the remaining solution by 1H and 31P{1H} NMR spectroscopy showed the formation of 

multiple phosphorus-containing species, none of which could be assigned to a specific 

compound. 

Decreasing the reaction temperature to RT increased the time taken to achieve 100% 

consumption of 3-2 to 2 weeks. 
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General procedure for the Suzuki-Miyaura cross-coupling reactions of aryl 

halides with phenylboronic acid 

To an ampule fitted with a  . Young’s valve were placed the appropriate amounts of 

aryl halide (0.5 mmol), phenylboronic acid (91 mg, 0.75 mmol), nonane (89 μl, 46 mg, 

1.0 mmol), K2CO3 (138 mg, 1.0 mmol), and toluene (5 cm3). After stirring for 2 minutes, 

3-2 (19 mg, 0.025 mmol) was added from a stock solution in toluene. The mixture was 

stirred at 80 °C in a sealed system under a nitrogen atmosphere for 20 h. The residual 

mixture was diluted with H2O (5 cm3) and extracted with toluene (2 x 5 cm3). The 

combined organic fractions were filtered through Celite and dried (MgSO4). An aliquot 

of the solution was taken with a syringe and subjected to GC-FID analysis. Yields were 

calculated with respect to biphenyl product using nonane as an internal standard. 

Where mercury poisoning experiments were carried out, 1 drop of Hg was added to the 

system after 5 minutes stirring at RT.   

 

General procedure for the Negishi cross-coupling reaction of ethyl-2-

iodobenzoate with diethylzinc 

A small Schlenk was charged with the appropriate amounts of ethyl-2-iodobenzoate 

(164μl, 276mg, 1.0 mmol), nonane (89 μl, 46 mg, 1.0 mmol), and THF (1.5 cm3). After 

stirring for 2 minutes the pre-catalyst (0.050 mmol) was added. Following stirring for a 

further 2 minutes, Et2Zn (2.5 cm3, 1.0 M in hexane, 2.5 mmol) was added and the 

system stirred at RT for 2 h. The reaction was quenched with dilute HCl (2 cm3, 3 M), 

separated and then extracted by Et2O (3 x 2 cm3). The combined organic layers were 

filtered through Celite and dried (MgSO4). An aliquot was taken with a syringe and 

subjected to GC-FID analysis. 
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Reaction of [PdCl(Me)(COD)] with 2-1 (P:Pd = 3:1) affording 3-2 and [3-3]Cl 

To an NMR tube fitted with a J. Young’s valve containing 2-1 (35 mg, 0.107 mmol) and 

CDCl3 (0.8 cm3) was added [PdCl(Me)(COD)] (9 mg, 0.034 mmol). In under 5 minutes 

complete consumption of 2-1 was evident by 31P{1H} NMR spectroscopic analysis, with 

the appearance of two new signals in a 2:1 ratio at δ = 82.9 (3-2) and 38.1 ([3-3]Cl) 

ppm, respectively (by integration of the proton-coupled 31P NMR spectrum). By 

integration against a standard present in a sealed capillary tube, the conversion of 

ligand 2-1 to complex 3-2 was assessed to be 96% and to [3-3]Cl was 89%. 

Subsequently, all volatile components were removed in vacuo. Extraction of complex 3-

2 into toluene (3 × 1 cm3) afforded phosphonium salt [3-3]Cl as a pale yellow solid (10 

mg, 80%). 

 

Phosphonium salt [3-3]Cl 

 

1H NMR (400 MHz, CDCl3) δ: 2.82 (3H, d, 
2JPH = 13.0 Hz, PCH3), 5.52 (2H, m, CHb), 

6.92-6.94 (2H, m, CHd), 7.11 (2H, m, CHa), 7.23-7.25 (2H, m, CHe), 7.62-7.65 (4H, m, 

m-C6H5), 7.73-7.77 (2H, m, p-C6H5), 7.84-7.89 (4H, m, o-C6H5). 

31P{1H} NMR (162 MHz, CDCl3) δ: 38.1 (s). 

MS (ESI+): 342 (M–Cl)+. 
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Synthesis of phosphonium salt [3-3]I 

 

To verify the identity of [3-3]Cl, an authentic sample of the corresponding methyl 

phosphonium iodide salt [3-3]I was prepared by treating a CDCl3 (0.7 cm3) solution of 

2-1 (25 mg, 0.076 mmol) with MeI (5.0 μL, 0.080 mmol). Standing at RT for 12 h 

followed by removal of all volatile components in vacuo afforded [3-3]I, (31 mg, 87%). 

1H NMR (700 MHz, CDCl3) δ: 2.70 (3H, d, 2JPH = 13.0 Hz, PCH3), 5.49 (2H, m, CHb), 

6.87-6.90 (2H, m, CHd), 7.12 (2H, m, CHa), 7.24-7.26 (2H, m, CHe), 7.59-7.62 (4H, m, 

m-C6H5), 7.70-7.74 (2H, m, p-C6H5), 7.77-7.81 (4H, m, o-C6H5).
 

13C{1H} NMR (176 MHz, CDCl3) δ: 11.7 (d, 
2JCP = 59 Hz, PCH3), 67.7 (s, Cb), 119.9 (d, 

1JCP = 100 Hz, ipso-C6H5), 121.6 (s, Ce), 125.8 (s, Cd), 130.4 (d, 3JPC = 13 Hz, m-C6H5), 

132.6 (d, 2JPC = 11 Hz, o-C6H5), 135.4 (d, 4JPC = 3 Hz, p-C6H5), 143.7 (d, 3JPC = 6 Hz, 

Ca), 151.2 (d, 3JPC = 5 Hz, Cc). 

31P{1H} NMR (283 MHz, CDCl3) δ: 37.1 (s). 

MS (ESI+): 342 (M–I)+. 
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Synthesis of N-PPh2-3-pyrroline (3-4) 

 

A solution of Ph2PCl (13.8 cm3, 74.7 mmol) in DCM (30 cm3) was added drop-wise to a 

cooled (–30 °C) solution of 3-pyrroline (6.0 cm3, 79 mmol) and NEt3 (13.2 cm3, 94.7 

mmol) in DCM (70 cm3). The resulting mixture was stirred at –30 °C for 15 minutes 

before being left to warm to room temperature overnight. All volatile components were 

removed in vacuo and the resulting residue was extracted into hexane (60 cm3). After 

removal of solvent in vacuo, vacuum distillation yielded the title compound as a 

viscous, colourless oil (bp 116-122 °C at 0.15 mbar) in moderate yield (9.1 g, 46%). 

Following cooling (–20 °C) 3-4 was isolated as a white solid, which did not melt upon 

warming to RT. 

1H NMR (600 MHz, C6D6) δ: 2.89 (4H, d, 2JPH = 3.5 Hz, Cb), 5.38 (2H, bs, Ca), 7.04-

7.08 (2H, m, p-C6H5), 7.09-7.13 (4H, m, m-C6H5), 7.40-7.44 (4H, m, o-C6H5). 

13C{1H} NMR (151 MHz, C6D6) δ: 57.2 (d, 2JPC = 14 Hz, Cb), 127.8 (d, 3JPC = 5 Hz, Ca), 

128.6 (s, p-C6H5), 128.6 (d, 3JPC = 1 Hz, m-C6H5), 132.5 (d, 2JPC = 18 Hz, o-C6H5), 139.8 

(d, 1JPC = 13 Hz, ipso-C6H5). 

31P{1H} NMR (243 MHz, C6D6) δ: 47.4 (s). 

CHN: C16H16NP requires: C, 75.87; H, 6.37; N, 5.53%. Found: C, 75.96; H, 6.42; N, 

5.61%. 

 

3-4.Se 

31P{1H} NMR (162 MHz, C6D6) δ: 66.5 (s, + satellites, 
1JSeP = 776 HZ). 
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Synthesis of N-PPh2-pyrrolidine (3-5) 

 

A solution of Ph2PCl (16.2 cm3, 87.7 mmol) in DCM (30 cm3) was added drop-wise to a 

cooled (–30 °C) solution of pyrrolidine (7.6 cm3, 91 mmol) and NEt3 (16.0 cm3, 115 

mmol) in DCM (150 cm3). The resulting reaction mixture was stirred at –30 °C for 15 

minutes before warming to room temperature overnight. All volatile components were 

removed in vacuo. The title compound was extracted into hexane (80 cm3), the solvent 

was removed in vacuo. Vacuum distillation yielded the title compound as a viscous, 

colourless oil (bp. 115-120 °C at 0.15 mbar) in moderate yield (14.9 g, 66%). Following 

cooling (–20 °C) the title compound was isolated as a white solid, which did not melt 

upon warming to RT.  

1H NMR (600 MHz, C6D6) δ: 1.39-1.43 (4H, m, Ca), 2.94-2.98 (4H, m, Cb), 7.08-7.11 

(2H, m, p-C6H5), 7.13-7.17 (4H, m, m-C6H5), 7.45-7.49 (4H, m, o-C6H5).  

13C {1H} NMR (176 MHz, C6D6) δ: 26.5 (d, 
3JPC = 5 Hz, Ca), 49.9 (d, 2JPC = 13 Hz, Cb), 

128.4 (d, 3JPC = 6 Hz, m-C6H5), 128.5 (s, p-C6H5), 132.6 (d, 2JPC = 20 Hz, o-C6H5), 140.1 

(d, 1JPC = 14 Hz, ipso-C6H5). 

31P{1H} NMR (243 MHz, C6D6) δ: 47.4 (s). 

CHN: C16H18NP requires: C, 75.27; H, 7.11; N, 5.49%. Found: C, 75.12; H, 7.15; N, 

5.49%.  

Spectroscopic data are in good agreement with the literature.6 
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Synthesis of cis-[PdMe2(κ
1-P-3-4)2] (3-6) 

 

A Schlenk was loaded with [PdMe2(tmeda)] (100 mg, 0.40 mmol), 3-4 (200 mg, 0.79 

mmol) and DCM (5 cm3), the resulting colourless solution was then stirred for 5 

minutes. All volatile components were removed in vacuo, before the resulting solid was 

washed with hexane (3 x 4 cm3). The title complex was dried in vacuo and was isolated 

as a white solid (160 mg, 62%). 

1H NMR (600 MHz, C6D6) δ: 1.03 (6H, dd, 2JPH = 3.9 Hz, 2JPH = 6.5 Hz, PdCH3), 4.03-

4.07 (8H, m, Hb), 5.38 (4H, s, Ha), 6.95-7.00 (12H, m, m-C6H5 + p-C6H5), 7.38-7.42 (8H, 

m, o-C6H5). 

13C{1H} NMR (151 MHz, C6D6) δ: 9.7 (dd, 1JPC = 15 Hz, 1JPC = 109 Hz, PdCH3), 58.7 (t, 

2JPC = 4 Hz, Cb), 127.2 (t, 3JPC = 3 Hz, Ca), 127.8 (t, 3JPC = 4 Hz, m-C6H5), 129.1 (s, p-

C6H5), 133.2 (t, 2JPC = 7 Hz,  o-C6H5), 137.2-137.6 (m, ipso-C6H5). 

31P{1H} NMR (243 MHz, C6D6) δ: 70.8 (s). 

CHN: C34H38N2P2Pd requires: C, 63.50; H, 5.96; N, 4.36%. Found: C, 63.63; H, 5.84; N, 

4.48%. 
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Conversion of 3-6 into 3-7 in solution 

An NMR tube fitted with a  . Young’s valve was charged with 3-6 (40 mg, 0.062 mmol) 

and C6D6 (0.8 cm3). The reaction mixture was sonicited for 10 minutes. The reaction 

was then followed by 1H and 31P{1H} NMR spectroscopy until completion. 

 

Deuterium cross-over experiment 

An NMR tube fitted with a  . Young’s valve was charged with [PdMe2(tmeda)] (10 mg, 

0.040 mmol), [Pd(CD3)2(tmeda)] (10 mg, 0.039 mmol), 3-4 (40 mg, 0.158 mmol) and 

C6D6 (0.7 cm3). The reaction mixture was sonicated for 10 minutes, before all volatile 

compounds were removed in vacuo (>0.1 mbar, 24 h). The resulting mixture was 

redissolved in C6D6 (0.7 cm3). The reaction was followed by 1H and 31P{1H} NMR 

spectroscopy until completion. 
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Synthesis of [Pd(κ1-P-3-4)3] (3-7) 

 

A solution of [PdMe2(tmeda)] (200 mg, 0.791 mmol) in toluene (20 cm3) was added via 

cannula to a solution of 3-4 (601 mg, 2.27 mmol) in toluene (10 cm3). The resulting pale 

yellow solution was stirred at RT for 30 mins before being heated at 80 °C for 15 mins. 

The resulting orange solution was filtered to remove any insoluble material, before 

being washed with hexane (2 x 10 cm3). The title complex was isolated in moderate 

yield (452 mg, 62%). 

Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a 

concentrated toluene solution of 3-7. 

1H NMR (600 MHz, C6D6) δ: 3.92 (12H, s, Hb), 5.39 (6H, s, Ha), 7.05-7.08 (18H, m, m-

C6H5 + p-C6H5), 7.49-7.52 (12H, m, o-C6H5). 

13C{1H} NMR (151 MHz, C6D6) δ: 57.6 (s, Cb), 127.5-127.6 (m, Ca), 127.9-128.0 (m, m-

C6H5), 128.3-128.4 (m, p-C6H5), 132.3-132.6 (m, o-C6H5), 141.4-141.7 (m, ipso-C6H5). 

31P{1H} NMR (243 MHz, C6D6) δ: 66.9 (bs, FWHM = 16 Hz). 

CHN: C48H48N3P3Pd requires: C, 66.55; H, 5.59; N, 4.85%. Found: C, 66.32; H, 5.46; N, 

4.91%. 
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Synthesis of [Pd(κ1-P-3-4)4] (3-8) 

 

An NMR tube fitted with a  . Young’s valve was charged with [PdMe2(tmeda)] (20 mg, 

0.079 mmol), 3-4 (80 mg, 0.32 mmol) and C6D6 (0.8 cm3). The resulting colourless 

solution was sonicated for 10 minutes. Subsequent heating (80 °C) for 30 minutes 

resulted in the formation of a yellow solution containing the title complex. All volatile 

components were removed in vacuo leaving the title complex as an orange solid (82 

mg, 93%). 

1H NMR (600 MHz, C6D6) δ: 3.92-3.94 (16H, m, Hb), 5.40 (8H, s, Ha), 7.06-7.13 (24H, 

m, m-C6H5 + p-C6H5), 7.46-7.51 (16H, m, o-C6H5). 

13C{1H} NMR (151 MHz, C6D6) δ: 57.4 (d, 2JPC = 12 Hz, Cb), 127.7 (d, 3JPC = 5 Hz, Ca), 

128.2-128.3 (m, m-C6H5), 128.3-128.4 (m, p-C6H5), 132.5 (d, 2JPC = 19 Hz, o-C6H5), 

140.5-140.7 (m, ipso-C6H5). 

31P{1H} NMR (243 MHz, C6D6) δ: 53.1 (vbs, FWHM = 385 Hz). 

CHN: C64H64N4P4Pd requires: C, 68.66; H, 5.76; N, 5.00%. Found: C, 68.52; H, 5.68; N, 

4.85%. 

Solid-State 31P{1H} NMR (162 MHz) δ: 60.7 ppm (s). 
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Synthesis of trans-[PdCl(Me)(κ1-P-3-4)2] (3-9) 

 

An NMR tube fitted with a  . Young’s valve was charged with [PdCl(Me)(COD)] (20 mg, 

0.079 mmol), 3-4 (38 mg, 0.15 mmol) and CDCl3 (0.7 cm3), the resulting pale yellow 

solution was sonicated for 10 minutes. All volatile components were removed in vacuo 

and the resulting solid washed with pentane (3 x 1 cm3). The title compound was 

recrystallised by layering a concentrated DCM solution with hexane, yielding a pale 

yellow crystalline solid (34 mg, 65 %). 

Crystals of 3-9 suitable for X-ray diffraction were grown by layering a concentrated 

DCM solution with hexane. 

1H NMR (600 MHz, CDCl3) δ: −0.19 (3H, t, 3JPH = 6.2 Hz, PdCH3), 4.26-4.29 (8H, m, 

Hb), 5.78-5.80 (4H, m, Ha), 7.36-7.41 (12H, m, m-C6H5 + p-C6H5), 7.62-7.67 (8H, m, o-

C6H5). 

13C{1H} NMR (151 MHz, CDCl3) δ: 4.2 (t, 1JPC = 3 Hz, PdCH3), 58.6 (t, 2JPC = 4 Hz, Cb), 

127.0 (t, 3JPC = 3 Hz, Ca), 129.0 (t, 3JPC = 5 Hz, m-C6H5), 130.0 (s, p-C6H5) ,133.1 (t, 1JPC 

= 24 Hz, ipso-C6H5), 133.6 (t, 2JPC = 6 Hz, o-C6H5). 

31P{1H} NMR (243 MHz, CDCl3) δ: 69.4 (s). 

CHN: C33H35ClN2P2Pd requires: C, 59.74; H, 5.32; N, 4.22%. Found: C, 59.83; H, 5.25; 

N, 4.16%. 
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Synthesis of trans-[PdCl(Me)(κ1-P-3-5)2] (3-10)  

 

An NMR tube fitted with a  . Young’s valve was charged with [PdCl(Me)(COD)] (20 mg, 

0.079 mmol), 3-5 (39 mg, 0.15 mmol) and d2-DCM (0.7 cm3), the resulting pale yellow 

solution was sonicated for 10 minutes. All volatile components were removed in vacuo 

and the resulting solid washed with pentane (3 x 1 cm3). The title complex was 

recrystallised by layering a concentrated DCM solution with hexane, yielding a pale 

yellow solid (39 mg, 74 %).   

Crystals suitable for X-ray diffraction were grown by layering a concentrated DCM 

solution of 3-10 with hexane. 

1H NMR (700 MHz, CDCl3) δ: −0.17 (3H, t, 3JPH = 6.1 Hz, PdCH3), 1.80-1.83 (8H, m, 

Ha), 3.29-3.32 (8H, m, Hb), 7.34-7.38 (12H, m, m-C6H5 + p-C6H5), 7.61-7.65 (8H, m, o-

C6H5).  

13C{1H} NMR (176 MHz, CDCl3) δ: 3.5 (t, 1JPC = 3 Hz, PdCH3), 26.7 (t, 3JPC = 3 Hz, Ca), 

51.0 (t, 2JPC = 3 Hz, Cb), 127.8 (t, 3JPC = 5 Hz, m-C6H5), 129.8 (s, p-C6H5) ,133.3 (t, 1JPC = 

24 Hz,  ipso-C6H5), 133.4 (t, 2JPC = 7 Hz,  o-C6H5). 

31P{1H} NMR (162 MHz, CDCl3) δ: 65.8 (s). 

CHN: C33H39ClN2P2Pd requires: C, 59.38; H, 5.89; N, 4.20%. Found: C, 59.27; H, 5.80; 

N, 4.20%. 
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Reaction of [PdCl(Me)(COD)] with 3-4 (P:Pd = 3:1) affording 3-4 and 3-9 

An NMR tube fitted with a  . Young’s valve was charged with [PdCl(Me)(COD)] (20 mg, 

0.079 mmol), 3-4 (57 mg, 0.23 mmol) and CDCl3 (0.7 cm3). Analysis of the resulting 

pale yellow solution by multinuclear NMR spectroscopy showed the formation of 3-9 

and unreacted 3-4 in a 1:1 ratio. Heating the mixture at 80 °C for 2 h resulted in the 

formation of palladium metal and multiple unidentified products in solution, none of 

which was [3-11]Cl. 

 

Synthesis of (3-4)MeI ([3-11]I) 

 

To a solution of 3-4 (40 mg, 0.16 mmol) in CDCl3 (0.7 cm3) in an NMR tube fitted with a 

 . Young’s valve was added MeI (10 μl, 0.16 mmol). After shaking for 1 minute all 

volatile components were removed in vacuo to the leave the title compound as a brown 

oil in excellent yield (58 mg, 92%). 

1H NMR (600 MHz, CDCl3) δ: 2.84 (3H, d, 2JPH = 13 Hz, PdCH3), 4.12 (4H, d, 2JPH = 3.5 

Hz, Cb), 5.81 (2H, bs, Ca), 7.61-7.65 (4H, m, m-C6H5), 7.70-7.74 (2H, m, p-C6H5), 7.74-

7.79 (4H, m, o-C6H5). 

13C{1H} NMR (151 MHz, CDCl3) δ: 12.9 (d, 1JPC = 70 Hz, PdCH3), 56.4 (d, 2JPC = 5 Hz, 

Cb), 120.3 (d, 1JPC = 105 Hz, ipso-C6H5), 125.8 (d, 3JPC = 8 Hz, Ca), 130.4 (d, 3JPC = 13 

Hz, m-C6H5), 132.4 (d, 2JPC = 12 Hz, o-C6H5), 135.2 (d, 4JPC = 3 Hz, p-C6H5). 

31P{1H} NMR (243 MHz, CDCl3) δ: 43.2 (s). 

MS (ESI+): 268 (M−I)+. 
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7.4 Chapter 4 experimental 

 

The following compounds were prepared according to literature procedures or slight 

modifications thereof: 1,3-{(tBu2PO)2C6H4} (4-1),7 ClP(NiPr2)2,
8 [PdCl2(MeCN)2],

1 ClP(N-

pyrrole)2,
9 1,3-{(Cl2PO)2C14H20} (4-6),10 1,3-{(tBu2PO)2C14H20} (4-7).11 

 

1,3-{(R2PO)2C6H4} =        

 

1,3-{(R2PO)2C14H20}  =  

 

General procedure for the synthesis of phosphine selenide compounds 

An NMR tube fitted with a  . Young’s valve was charged with a small quantity of 

phosphine (20-50 mg), a slight excess of elemental grey Se and CDCl3 (0.7 cm3). The 

system was then heated at 50 °C for 16 h, giving quantitative conversion (according to 

31P{1H} NMR spectroscopy) to the required phosphine selenide. 

 

4-1.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 139.1 (s + satellites, 1JSeP = 797 Hz). 

 

4-7.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 131.3 (s + satellites, 1JSeP = 806 Hz). 
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Synthesis of [PdCl(κ3-P,C,P-4-1)] (4-2) 

 

[PdCl2(MeCN)2] (0.605 g, 2.332 mmol), 4-1 (1.020 g, 2.560 mmol) and 1,1,2,2-

tetrachloroethane (TCE) (60 cm3) were heated at 125 °C for 3 days with no observable 

colour change. Subsequently, volatile components were removed in vacuo to give a 

beige solid, which was washed with hexane (2 × 40 cm3). The resulting solid was 

recrystallized by layering a concentrated CHCl3 solution with hexane, yielding the title 

compound (0.89 g, 71%). 

Crystals suitable for X-ray diffraction were grown by layering a concentrated DCM 

solution of 4-2 with hexane.  

1H NMR (400 MHz, CDCl3) δ: 1.18 (36H, vt, J = 7.5 Hz, Hh), 6.47 (2H, d, 3JHH = 8.0 Hz, 

Ha/c), 6.88 (1H, t, 3JHH = 8.0 Hz, Hb).  

13C{1H} NMR (176 MHz, CDCl3) δ: 27.7 (vt, J = 15 Hz Ch), 39.6 (vt, J = 30 Hz, Cg), 

105.6 (vt, J = 41 Hz, Ca/c), 127.5 (s, Cb), 129.9 (t, 2JPC = 2 Hz, Ce), 167.1 (vt, J = 24 Hz, 

Cd/f).  

31P{1H} NMR (202 MHz, CDCl3) δ: 192.2 (s). 

CHN: C22H39P2O2ClPd requires C, 48.99; H, 7.29; N, 0.00%. Found: C, 49.02; H, 7.21; 

N, 0.00%.  

MS (ASAP+): 538 (M)+, 503 (M−Cl)+. 

After this compound was first synthesised as part of this thesis work an alternative 

route became available in the literature; the spectroscopic data for products from both 

methods are consistent.12  
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In situ synthesis of 1,3-{(Cl2PO)2C6H4} (4-3) 

  

To a cooled solution (–78°C) of 4-4 (0.500 g, 0.876 mmol) in Et2O (20 cm3) was added 

a solution of HCl (4.7 cm3, 2M in Et2O, 9.4 mmol) in Et2O (10 cm3), dropwise over a 

period of 1 hour. The reaction mixture was allowed to warm to RT overnight. 

31P{1H} NMR (162 MHz, Et2O, C6D6 capillary locktube) δ: 179.2 (s). 
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Synthesis of 1,3-{((iPr2N)2PO)2C6H4} (4-4) 

 

A solution of ClP(NiPr2)2 (1.714 g, 6.42 mmol) in Et2O (30 cm3) was added dropwise to 

a cooled solution (–40 °C) of resorcinol (0.345 g, 3.13 mmol), NEt3 (1.10 cm3, 0.799 g, 

7.89 mmol) and Et2O (60 cm3). The resulting mixture was stirred for an additional 15 

minutes then allowed to warm to RT overnight. A white solid was removed by filtration, 

and the residue washed with Et2O (2 x 20 cm3). The washings were combined and the 

solvent removed in vacuo. The product was extracted into hexane (40 cm3) and the 

volatile components removed under reduced pressure to leave the desired compounds 

as a white solid (1.68 g, 94 %). 

1H NMR (700 MHz, CDCl3) δ: 1.17 (24H, 3JHH = 6.7 Hz, Hh), 1.21 (24H, 3JHH = 7.0 Hz, 

Hh’), 3.58-3.66 (8H, m, Hg), 6.65 (2H, t, 3JHH = 8.2 Hz, Ha/c), 6.79-6.81 (1H, m, He), 7.06 

(1H, t, 3JHH = 8.2 Hz, Hb). 

13C{1H} NMR (176 MHz, CDCl3) δ: 23.9 (d, 3JPC = 4 Hz, Ch), 24.2 (d, 3JPC = 9 Hz, Ch’), 

44.82 (d, 2JPC = 12 Hz, Cg), 109.4 (t, 3JPC = 11 Hz, Ce), 111.1 (d, 3JPC = 12 Hz, Ca/c), 

128.8 (s, Hb), 156.8 (d, 2JPC = 10 Hz, Cd/f).   

31P{1H} NMR (161 MHz, CDCl3) δ: 119.4 (s). 

CHN: C30H60N4O2P2 requires C, 63.13; H, 10.60; N, 9.82%. Found: C, 62.96; H, 10.77; 

N, 9.73%. 
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Synthesis of 1,3-{((iPrO)2PO)2C6H4} (4-5) 

 

A solution of HCl (4.7 cm3, 2M in Et2O, 9.4 mmol) in Et2O (10 cm3) was added dropwise 

to a cooled solution (–78°C) of 4-4 (0.500 g, 0.876 mmol) in Et2O (20 cm3). The 

reaction mixture was allowed to warm to RT overnight. The subsequent mixture was 

diluted with Et2O (70 cm3) and cooled (–78 °C). NEt3 (1.30 cm3, 9.33 mmol) and iPrOH 

(0.27 cm3, 3.53 mmol) was added via syringe, the reaction mixture was allowed to 

reach RT over 4 h. A white solid was separated from solution by filtration, and the 

residue washed with Et2O (2 x 20 cm3). The volatile components were removed in 

vacuo, the product was extracted into hexane (20 cm3) and the solvent removed under 

reduced pressure to produce the title compound as a pale yellow oil (0.26 g, 73%).  

1H NMR (400 MHz, CDCl3) δ: 1.26 (24H, dd, 
3JHH = 6.4 Hz, 4JPH = 1.5 Hz, Hh), 4.54-4.63 

(4H, m, Hg) 6.75-6.84 (3H, m, Ha/c/e), 7.15 (1H, t, 3JHH = 8.3 Hz, Hb).  

13C{1H} NMR (101 MHz, CDCl3) δ: 24.5 (d, 
3JPC = 3 Hz, Ch), 67.0 (d, 2JPC = 10 Hz, Cg) 

112.0 (t, 3JPC = 9 Hz, Ce), 114.5 (d, 3JPC = 9 Hz, Ca/Cc), 129.7 (s, Cb), 153.9 (d, 2JPC = 7 

Hz, Cd/Cf). 

31P{1H} NMR (162 MHz, CDCl3) δ: 135.2 (s). 
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Synthesis of 1,3-{((iPrO)2PO)2C14H20} (4-8) 

  

A solution of iPrOH (3.3 cm3, 2.6 g, 43 mmol) in Et2O (50 cm3) was added dropwise to 

a cooled (–40 °C) solution of 4-6 (4.000 g, 9.43 mmol) and NEt3 (7.9 cm3, 5.7 g, 57 

mmol) in Et2O (150 cm3). The resulting mixture was stirred overnight at RT. All 

insoluble material was removed by filtration and all volatile components were removed 

in vacuo. Extraction in hexane (20 cm3) and subsequent removal of solvent resulted in 

the formation of the title compound as a pale yellow solid (3.52 g, 72%). 

1H NMR (700 MHz, CDCl3) δ: 1.29-1.33 (24H, m, Hj), 1.40 (18H, s, Hh), 4.62-4.68 (4H, 

m, Hi), 7.08 (1H, 3JPH = 2.0 Hz, He), 7.25 (1H, s, Hb).  

13C{1H} NMR (176 MHz, CDCl3) δ: 24.8 (d, 2JPC = 3 Hz, Cj), 24.9 (d, 2JPC = 3 Hz, Cj’), 

30.3 (s, Ch), 34.7 (s, Cg), 67.2 (d, 2JPC = 10 Hz, Ci), 110.6 (t, 3JPC = 19 Hz, Ce), 125.3 (s, 

Cb), 132.8 (s, Ca/c), 150.3 (d, 2JPC = 8 Hz, Cd/f). 

31P{1H} NMR (283 MHz, CDCl3) δ: 134.9 (s). 

CHN: C26H48O6P2 requires C, 60.22; H, 9.33; N, 0.00%. Found: C, 60.09; H, 9.43; N, 

0.00%. 

 

4-8.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 58.9 (s + satellites, 1JSeP = 965 Hz). 
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Synthesis of 1,3-{((Et2N)2PO)2C14H20} (4-9) 

 

A solution of HNEt2 (9.8 cm3, 6.9 g, 95 mmol) in Et2O (50 cm3) was added dropwise to 

a cooled (–40 °C) solution of 4-6 (4.000 g, 9.43 mmol) in Et2O (150 cm3). The resulting 

mixture was stirred overnight at RT. Subsequently, all insoluble material was removed 

by filtration and all volatile components were removed in vacuo. Extraction into hexane 

(20 cm3) and subsequent removal of solvent resulted in the formation of the title 

compound as a yellow oil that slowly solidified into a yellow solid (3.88 g, 72%).   

1H NMR (600 MHz, CDCl3) δ: 1.08 (24H, 3JHH = 7.3 Hz, Hj), 1.39 (18H, s, Hh), 3.15-3.24 

(16H, m, Hi), 6.86 (1H, 3JPH = 3.0 Hz, He), 7.16 (1H, s, Hb). 

13C{1H} NMR (151 MHz, CDCl3) δ: 14.7-14.9 (m, Cj), 30.3 (s, Ch), 34.6 (s, Cg), 39.5 (d, 

2JPC = 19 Hz, Ci), 108.2 (t, 3JPC = 23 Hz, Ce), 124.3 (s, Cb), 130.1 (d, 3JPC = 1 Hz, Ca/c), 

153.0 (d, 2JPC = 9 Hz, Cd/f). 

31P{1H} NMR (243 MHz, CDCl3) δ: 126.2 (s). 

CHN: C30H60N4O2P2 requires C, 63.13; H, 10.60; N, 9.82%. Found: C, 63.01; H, 10.49; 

N, 9.74%. 

 

4-9.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 71.1 (s + satellites, 1JSeP = 855 Hz). 
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Synthesis of 1,3-{((OH8C4N)2PO)2C14H20} (4-10) 

 

A solution of morpholine (8.2 cm3, 8.2 g, 94 mmol) in Et2O (50 cm3) was added 

dropwise to a cooled (–40 °C) solution of 4-6 (4.000 g, 9.43 mmol) in Et2O (150 cm3). 

The resulting mixture was stirred overnight at RT. Next, all insoluble material was 

removed by filtration and all volatile components were removed in vacuo. Washing the 

resulting solid with hexane (2 × 20 cm3) resulted in the isolation of the title compound 

as a white solid (2.24 g, 38%).   

1H NMR (600 MHz, CDCl3) δ: 1.38 (18H, s, Hh), 3.10-3.18 (16H, m, Hi), 3.64-3.69 (16H, 

m, Hj), 7.02 (1H, 3JPH = 2.8 Hz, He), 7.22 (1H, s, Hb). 

13C{1H} NMR (151 MHz, CDCl3) δ: 30.2 (s, Ch), 34.7 (s, Cg), 45.4-45.6 (m, Ci), 67.7-

68.1 (m, Cj), 107.5 (t, 3JPC = 21 Hz, Ce), 125.2 (s, Cb), 131.1 (d, 3JPC = 2 Hz, Ca/c), 152.2 

(d, 2JPC = 8 Hz, Cd/f). 

31P{1H} NMR (243 MHz, CDCl3) δ: 121.4 (s). 

CHN: C30H52N4O6P2 requires C, 57.49; H, 8.36; N, 8.94%. Found: C, 57.57; H, 8.44; N, 

9.07%. 

 

4-10.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 73.2 (s + satellites, 1JSeP = 881 Hz). 
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Synthesis of 1,3-{(((iPr2N)Cl)2PO)2C14H20} (4-11) 

 

A solution of HNiPr2 (4.0 cm3, 2.9 g, 29 mmol) in Et2O (20 cm3) was added drop-wise to 

a cooled (–40 °C) solution of 4-6 (2.000 g, 4.72 mmol) in Et2O (60 cm3). The resulting 

mixture was stirred overnight at RT. Then, all insoluble material was removed by 

filtration and all volatile components were removed in vacuo. Extraction into hexane (40 

cm3) and subsequent removal of solvent resulted in the formation of a pale yellow solid 

(2.025 g).  

Analysis by 1H and 31P NMR spectroscopy revealed the formation of the di-substituted 

species 4-11. 1H NMR spectroscopy indicated that two diastereoisomers had formed in 

a 1:0.8 (4-11a:4-11b) ratio. 

All efforts to separate the two isomers failed. 

CHN: C26H48Cl2N2O2P2 requires C, 56.42; H, 8.74; N, 5.06%. Found: C, 56.59; H, 8.66; 

N, 4.96%. 

Diastereoisomer 1 (4-11a): 

1H NMR (600 MHz, CDCl3) δ: 0.90 (12H, d, 3JHH = 6.9 Hz, Hj), 0.93 (12H, d, 3JHH = 6.8 

Hz, Hj’), 1.26 (18H, s, Hh), 3.44-3.63 (4H, m, Hi), 7.25 (1H, s, Hb), 7.62 (1H, t, 4JPH = 3.0 

Hz, He). 

31P{1H} NMR (243 MHz, CDCl3) δ: 164.8 (s). 

Diastereoisomer 2 (4-11b): 

1H NMR (600 MHz, CDCl3) δ: 0.88 (12H, d, 3JHH = 6.9 Hz, Hj), 0.92 (12H, d, 3JHH = 6.8 

Hz, Hj), 1.25 (18H, s, Hh), 3.44-3.63 (4H, m, Hi), 6.91 (1H, s, Hb), 7.74 (1H, t, 4JPH = 2.6 

Hz, He). 

31P{1H} NMR (243 MHz, CDCl3) δ: 165.0 (s). 
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Synthesis of 1,3-{((pyr)2PO)2C14H20} (4-12) 

 

A solution of 4,6-di-tert-butylresorcinol (3.440 g, 15.5 mmol) in THF (50 cm3) was 

added dropwise to a cooled (–40 °C) stirred solution of ClP(N-pyrrole)2 (6.14 g, 31 

mmol) and NEt3 (10 cm3, 6.5 g, 65 mmol); the reaction mixture was allowed to warm to 

RT and stirred for 1h. Subsequent removal of all volatile components in vacuo and 

recrystallization from hexane allowed the isolation of the title compound in good yield, 

(6.67 g, 79%). 

1H NMR (600 MHz, CDCl3) δ: 1.30 (18H, s, Hh), 6.20 (1H, 3JPH = 2.0 Hz, He), 6.38-6.40 

(8H, m, Hj), 7.06-7.09 (8H, m, Hi), 7.35 (1H, s, Hb). 

13C{1H} NMR (151 MHz, CDCl3) δ: 30.1 (s, Ch), 34.6 (s, Cg), 109.0 (t, 3JPC = 18 Hz, Ce), 

112.9 (d, 3JPC = 5 Hz, Cj), 121.7 (d, 2JPC = 16 Hz, Ci), 126.3 (s, Cb), 135.0 (d, 3JPC = 3 

Hz, Ca/c), 150.9 (d, 2JPC = 12 Hz, Cd/f). 

31P{1H} NMR (243 MHz, CDCl3) δ: 104.6 (s). 

CHN: C30H36N4O2P2 requires C, 65.92; H, 6.64; N, 10.25%. Found: C, 65.84; H, 6.73; 

N, 10.16%. 

  

4-12.Se 

31P{1H} NMR (162 MHz, CDCl3) δ: 50.8 (s + satellites, 1JSeP = 993 Hz). 
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General procedure for the synthesis of [PdCl(κ3-P,C,P-L)], L = 4-7 to 4-10, 

4-12 

A solution of each ligand (1.000 g) and an equimolar quantity of [PdCl2(MeCN)2] in 

DCE (20 cm3) is stirred for 15 mins before 1.5 equivalents of NEt3 are added and the 

system heated at 80 °C for 2 h. All volatile components are removed in vacuo and 

appropriate work-up performed, detailed below. 

 

Synthesis of [PdCl(κ3-P,C,P-4-7)] (4-13) 

 

Using the general procedure described above, with the following work-up: the resulting 

solid residue was recrystallized from hot (60 °C) hexane to give the title complex as a 

white solid (0.80 g, 63%).  

1H NMR (700 MHz, CDCl3) δ: 1.38 (18H, s, Hh), 1.47 (36H, vt, J = 7.5 Hz, Hj), 6.96 (1H, 

s, Hb). 

13C{1H} NMR (176 MHz, CDCl3) δ: 28.1 (vt, J = 4 Hz, Cj), 30.5 (s, Ch), 34.6 (s, Cg), 39.9 

(vt, J = 8 Hz, Ci), 123.1 (s, Cb), 127.2 (t, 3JPC = 6 Hz, Ce), 134.4 (s, Ca/c), 162.5 (vt, J = 6 

Hz, Cd/f). 

31P{1H} NMR (283 MHz, CDCl3) δ: 191.3 (s). 

CHN: C30H55ClO2P2Pd requires C, 55.30; H, 8.51; N, 0.00%. Found: C, 55.18; H, 8.65; 

N, 0.00%. 

MS (ASAP+): 652 (M)+, 617 (M−Cl)+. 
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Synthesis of [PdCl(κ3-P,C,P-4-8)] (4-14) 

 

Using the general procedure described above, with the following work-up: the resulting 

solid residue was recrystallized twice from hot (60 °C) hexane to give the title complex 

as a pale beige solid (0.76 g, 76%).  

1H NMR (700 MHz, CDCl3) δ: 1.34 (12H, d, 3JPC = 6.3 Hz, Hj), 1.45 (12H, d, 3JPC = 6.3 

Hz, Hj’), 1.35 (18H, s, Hh), 4.94-4.99 (4H, m, Hi), 7.11 (1H, s, Hb).  

13C{1H} NMR (176 MHz, CDCl3) δ: 24.1 (vt, J = 2 Hz, Cj), 24.3 (vt, J = 2 Hz, Cj’), 30.0 (s, 

Ch), 34.8 (s, Cg), 73.0 (m, Ci), 124.9 (s, Cb), 129.1 (t, 3JPC = 8 Hz, Ce), 131.8 (vt, J = 5 

Hz, Ca/c), 152.8 (vt, J = 10 Hz, Cd/f). 

31P{1H} NMR (283 MHz, CDCl3) δ: 140.6 (s). 

CHN: C26H47ClO6P2Pd requires C, 47.35; H, 7.18; N, 0.00%. Found: C, 47.37; H, 7.26; 

N, 0.00%. 

MS (ASAP+): 660 (M)+, 625 (M−Cl)+. 

  

OO

P PPd

Cl

O

O O

O

a

f

e

d

c

b

i

j

g

h



Experimental 

223 
 

Synthesis of [PdCl(κ3-P,C,P-4-9)] (4-15) 

 

Using the general procedure described above, with the following work-up: the resulting 

solid residue was recrystallized from hot (60 °C) hexane to give the title complex as a 

pale yellow solid (0.70 g, 70%).  

1H NMR (600 MHz, CDCl3) δ: 1.12 (24H, 3JHH = 7.3 Hz, Hj), 1.34 (18H, s, Hh), 3.20-3.36 

(16H, m, Hi), 7.02 (1H, s, Hb). 

13C{1H} NMR (151 MHz, CDCl3) δ: 14.2 (bs, Cj), 30.3 (s, Ch), 34.8 (s, Cg), 39.5 (vt, J = 6 

Hz, Ci), 123.7 (s, Cb), 127.4 (t, 3JPC = 8 Hz, Ce), 132.6 (vt, J = 4 Hz, Ca/c), 155.6 (vt, J = 

10 Hz, Cd/f). 

31P{1H} NMR (243 MHz, CDCl3) δ: 147.4 (s). 

CHN: C30H59ClN4O2P2Pd requires C, 50.63; H, 8.36; N, 7.87%. Found: C, 50.71; H, 

8.46; N, 7.84%. 

MS (ASAP+): 712 (M)+, 677 (M−Cl)+. 
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Synthesis of [PdCl(κ3-P,C,P-4-10)] (4-16) 

 

Using the general procedure described above, with the following work-up: the resulting 

solid residue was extracted into toluene (20 cm3), removal of the solvent and washing 

with Et2O (2 × 10 cm3) resulted in the isolation of the title complex as a white solid (0.72 

g, 72%).  

1H NMR (600 MHz, CDCl3) δ: 1.33 (18H, s, Hh), 3.28-3.36 (16H, m, Hi), 3.67-3.75 (16H, 

m, Hj), 7.07 (1H, s, Hb). 

13C{1H} NMR (151 MHz, CDCl3) δ: 30.2 (s, Ch), 34.9 (s, Cg), 45.5-45.6 (m, Ci), 67.2-

67.3 (m, Cj), 124.7 (s, Cb), 128.3 (t, 3JPC = 8 Hz, Ce), 131.8 (vt, J = 5 Hz, Ca/c), 155.5 (vt, 

J = 9 Hz, Cd/f). 

31P{1H} NMR (243 MHz, CDCl3) δ: 142.9 (s). 

CHN: C30H51ClN4O6P2Pd requires C, 46.94; H, 6.70; N, 7.30%. Found: C, 47.09; H, 

6.82; N, 7.15%. 

MS (ASAP+): 768 (M)+, 733 (M−Cl)+. 
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Synthesis of [PdCl(κ3-P,C,P-4-12)] (4-17) 

 

Using the general procedure described above, with the following work-up: the resulting 

solid residue was extracted into hexane (80 cm3), removal of the solvent and washing 

with very cold (–78 °C) hexane (2 × 10 cm3) resulted in the isolation of the title complex 

as a brown solid (0.35 g, 28%).  

1H NMR (700 MHz, CDCl3) δ: 1.33 (18H, s, Hh), 6.45-6.47 (8H, m, Hj), 7.23 (1H, s, Hb), 

7.27-7.30 (8H, m, Hi). 

13C{1H} NMR (176 MHz, CDCl3) δ: 30.2 (s, Ch), 35.1 (s, Cg), 115.5 (vt, J = 4 Hz, Cj), 

122.9 (vt, J = 5 Hz, Ci), 126.1 (s, Cb), 131.1 (t, 3JPC = 8 Hz, Ce), 133.3 (vt, J = 5 Hz, 

Ca/c), 155.7 (vt, J = 9 Hz, Cd/f). 

31P{1H} NMR (283 MHz, CDCl3) δ: 126.3 (s). 

CHN: C30H35ClN4O2P2Pd requires C, 52.41; H, 5.13; N, 8.15%. Found: C, 52.57; H, 

5.23; N, 8.25%. 

MS (ASAP+): 688 (M)+, 653 (M−Cl)+. 
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General procedure for the for the synthesis of [Pd(CO)(κ3-P,C,P-L)]BF4, L = 

4-1, 4-7 to 4-10 

AgBF4 (5 mg, 0.03 mmol) is added to a solution of an equimolar amount of each 

palladium chloride complex in d2-DCM (0.8 cm3), located in a NMR tube. The reaction 

mixture was stood for 15 mins with rigorous exclusion of light and occasional shaking. 

The solution was isolated by filtration through Celite into a NMR tube fitted with a J. 

Young’s valve, the NMR tube was then degassed by freeze-pump-thaw method and 

back-filled with CO (1 atm), yielding the carbonyl adduct. 

CO release from the palladium carbonyl complexes was observed under reduced 

pressure, hence elemental analysis was not obtained. 

 

Synthesis of [Pd(CO)(κ3-P,C,P-4-1)]BF4 (4-18) 

 

1H NMR (700 MHz, d2-DCM) δ: 1.41-1.45 (36H, m, Hh/j), 6.81 (2H, d, 3JHH = 8.2 Hz, 

Ha/c), 7.25 (1H, t, 3JHH = 8.2 Hz, Hb).  

13C{1H} NMR (176 MHz, d2-DCM) δ: 28.1 (vt, J = 3 Hz Ch/j), 41.5 (vt, J = 9 Hz, Cg/i), 

108.0 (vt, J = 7 Hz, Ca/c), 133.2 (s, Cb), 136.3 (t, 3JPC = 2 Hz, Ce), 168.6 (vt, J = 4 Hz, 

Cd/f), 183.0 (t, 3JPC = 11 Hz, CO).  

31P{1H} NMR (202 MHz, d2-DCM) δ: 213.7 (s). 

IR (KBr, d2-DCM solution): 2119 cm–1, C=O. 
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Synthesis of [Pd(CO)(κ3-P,C,P-4-7)]BF4 (4-19) 

 

1H NMR (700 MHz, d2-DCM) δ: 1.40 (18H, s, Hh), 1.45-1.48 (36H, Hj), 7.27 (1H, s, Hb). 

13C{1H} NMR (176 MHz, d2-DCM) δ: 28.4 (vt, J = 3 Hz, Cj), 30.5 (s, Ch), 35.4 (s, Cg), 

41.6 (vt, J = 9 Hz, Ci), 128.6 (s, Cb), 130.0 (t, 3JPC = 6 Hz, Ce), 141.5 (s, Ca/c), 164.0 (vt, 

J = 4 Hz, Cd/f), 183.4 (t, 3JPC = 12 Hz, CO). 

31P{1H} NMR (283 MHz, d2-DCM) δ: 212.5 (s). 

IR (KBr, d2-DCM solution): 2116 cm–1, C=O. 

 

Synthesis of [Pd(CO)(κ3-P,C,P-4-8)]BF4 (4-20) 

 

1H NMR (700 MHz, d2-DCM) δ: 1.37 (18H, s, Hh), 1.44-1.47 (12H, m, Hj), 4.90-4.95 

(4H, m, Hi), 7.38 (1H, s, Hb).  

13C{1H} NMR (176 MHz, d2-DCM) δ: 24.4 (vt, J = 2 Hz, Cj), 24.5 (vt, J = 2 Hz, Cj’),  30.1 

(s, Ch), 35.6 (s, Cg), 77.1 (m, Ci), 128.7 (s, Cb), 129.5 (s, Ca/c), 130.0 (bs, CO), 131.6 (t, 

3JPC = 9 Hz, Ce), 152.9 (vt, J = 10 Hz, Cd/f). 

31P{1H} NMR (283 MHz, d2-DCM) δ: 128.1 (s). 

IR (KBr, d2-DCM solution): 2145 cm–1, C=O. 
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Synthesis of [Pd(CO)(κ3-P,C,P-4-9)]BF4 (4-21) 

 

1H NMR (700 MHz, d2-DCM) δ: 1.16 (24H, 3JHH = 7.1 Hz, Hj), 1.36 (18H, s, Hh), 3.18-

3.29 (16H, m, Hi), 7.31 (1H, s, Hb). 

13C{1H} NMR (176 MHz, d2-DCM) δ: 14.3 (bs, Cj), 30.4 (s, Ch), 35.5 (s, Cg), 40.8 (vt, J = 

5 Hz, Ci), 129.3 (s, Cb), 130.4 (vt, J = 8 Hz, Ca/c), 138.2 (t, 3JPC = 4 Hz, Ce), 155.4 (vt, J 

= 9 Hz, Cd/f), 181.9 (t, 3JPC = 15 Hz, CO). 

31P{1H} NMR (283 MHz, d2-DCM) δ: 142.5 (s). 

IR (KBr, d2-DCM solution): 2116 cm–1, C=O. 

 

Synthesis of [Pd(CO)(κ3-P,C,P-4-10)]BF4 (4-22) 

 

1H NMR (400 MHz, d2-DCM) δ: 1.36 (18H, s, Hh), 3.20-3.33 (16H, m, Hi), 3.70-3.77 

(16H, m, Hj), 7.31 (1H, s, Hb). 

31P{1H} NMR (162 MHz, d2-DCM) δ: 140.0 (s). 

IR (KBr, d2-DCM solution): 2136 cm–1, C=O. 
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7.5 Chapter 5 experimental 

Synthesis of [PdH(κ3-P,C,P-4-1)] (5-1) 

 

To a cooled (−78 °C) suspension of 4-2 (0.500 g, 0.927 mmol) in Et2O (60 cm3) was 

added dropwise a solution of LiAlH4 (1.80 cm3, 1 M in Et2O, 1.80 mmol) in Et2O (20 

cm3). The reaction mixture was allowed to warm to RT overnight. Extraction into 

toluene (20 cm3) followed by hexane (30 cm3) and recrystallization from hexane 

resulted in the isolation of the title complex as a white solid (0.37 g, 78%). 

1H NMR (700 MHz, C6D6) δ: −2.49 (1H, t, 2JPH = 18.5 Hz, Pd-H) 1.28 (36H, vt, J = 7.5 

Hz, Hh), 6.87 (2H, dd, 3JHH = 7.9 Hz, 3JPH = 1.2 Hz, Ha/c), 7.01 (1H, t, 3JHH = 7.9 Hz, Hb). 

13C{1H} NMR (176 MHz, C6D6) δ: 28.3 (vt, J = 5 Hz, Ch), 38.2 (vt, J = 9 Hz, Cg), 105.3 

(vt, J = 7 Hz, Ca/c), 128.4 (s, Cb), 145.1 (t, 2JPC = 6 Hz, Ce), 166.8 (vt, J = 7 Hz, Cd/f). 

31P{1H} NMR (283 MHz, C6D6) δ: 213.5 (s). 

CHN: C22H40P2O2Pd requires C, 52.33; H, 7.98; N, 0.00%. Found: C, 52.33; H, 8.02; N, 

0.00%. 
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Attempted insertion of ethylene into Pd-H bond of 5-1 

To a solution of 5-1 (10 mg, 0.020 mmol) in d8-toluene (0.7 cm3) in an NMR tube fitted 

with a  . Young’s valve was added 1 equivalent of ethylene via a gas bulb. 

No new products were detected by 1H or 31P{1H} NMR spectroscopy. 

 

Synthesis of [PdMe(κ3-P,C,P-4-1)] (5-2) 

 

MeLi (0.60 cm3, 1.6M in Et2O, 0.96 mmol) was added dropwise to a cooled (–78 °C) 

solution of 4-2 (0.500 g, 0.927 mmol) in THF (20 cm3). The resulting mixture was stirred 

for 30 mins before being left to warm to RT and then stirred for 1 h. Extraction into 

toluene (20 cm3) and recrystallization from Et2O resulted in the isolation of 5-2 as a 

white solid (0.24 g, 50%). 

Subsequently, crystals of [PdMe(κ3-P,C,P-4-1)] (5-2) suitable for X-ray diffraction were 

grown by slow evaporation of Et2O. 

1H NMR (400 MHz, CDCl3) δ: –0.02 (3H, t, 3JPH = 5.0 Hz, PdCH3), 1.32 (36H, vt, J = 7.3 

Hz, Hh), 6.56 (2H, d, 3JHH = 8.0 Hz, Ha/c), 6.91 (1H, t, 3JHH = 8.0 Hz, Hb).  

13C{1H} NMR (100 MHz, CDCl3) δ: –17.8 (t, 2JPC = 10 Hz, PdCH3), 28.0 (vt, J = 4 Hz 

Ch), 39.4 (vt, J = 8 Hz, Cg), 104.4 (vt, J = 7 Hz, Ca/c), 126.7 (s, Cb), 143.1 (s, Ce), 165.9 

(vt, J = 7 Hz, Cd/f).  

31P{1H} NMR (162 MHz, CDCl3) δ: 193.1 (s). 

CHN: C23H42O2P2Pd requires C, 53.23; H, 8.16; N, 0.00%. Found: C, 53.38; H, 8.06; N, 

0.00%. 

  

OO

P PPd

CH3

a

f

e

d

c

b

g

h



Experimental 

231 
 

Addition of acetone to 5-1 

To a solution of 5-1 (10 mg, 0.020 mmol) in C6D6 (0.7 cm3) was added acetone (15 μl, 

12 mg, 0.20 mmol) in a NMR tube fitted with a  . Young’s valve. No reaction had taken 

place after 1 h heating at 60 °C. After 4 days heating at 80 °C, multiple unidentified 

phosphorus-containing compounds had formed in solution, and there were a few pale 

yellow crystals, which were subsequently isolated. 

The crystals were identified as [μ-(4-1)Pd]2.C6D6 (5-3) by single crystal X-ray diffraction 

analysis. 
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Synthesis of [Pd(OC(H)O)(κ3-P,C,P-4-1)] (5-4) by insertion of CO2 into Pd-H 

bond of 5-1 

 

An NMR tube fitted with a J. Young’s valve was charged with 5-1 (20 mg, 0.040 mmol) 

and d8-THF (0.7 cm3) to form a colourless solution. The NMR tube was then degassed 

by three freeze-pump-thaw cycles and back-filled with CO2 (1 atm). Within minutes a 

powdery white solid had precipitated from solution. Analysis by multinuclear NMR 

spectroscopy revealed all starting material had been consumed and that the title 

complex had formed in quantitative yield. Complex 5-4 was only sparing soluble in d8-

THF, d8-toluene and insoluble in C6D6. 

Crystals of 5-4 suitable for X-ray diffraction were grown by slow cooling of a hot toluene 

solution. 

The exposure of 5-4 to vacuum (1x10−2 mbar, 24h) resulted in the loss of CO2 and the 

formation of 5-1 in quantitative yield.ii  

1H NMR (400 MHz, d8-THF) δ: 1.40 (36H, vt, J = 7.5 Hz, Hh), 6.48 (2H, d, 3JHH = 7.9 Hz, 

Ha/c), 6.91 (1H, t, 3JHH = 7.9 Hz, Hb), 8.22 (1H, t, 4JPH = 1.6 Hz, Hi).  

13C{1H} NMR (100 MHz, d8-THF) δ: 27.7 (vt, J = 4 Hz, Ch), 40.2 (vt, J = 7 Hz, Cg), 106.5 

(vt, J = 7 Hz, Ca/c), 126.1 (s, Cb), 128.6 (s, Ce), 167.1(s, Ci), 168.4 (vt, J = 6 Hz, Cd/f). 

31P{1H} NMR (162 MHz, d8-THF) δ: 188.4 (s). 

 

Alternative synthesis of 5-4 

To a solution of 5-1 (10 mg, 0.020 mmol) in C6D6 (0.7 cm3) was added formic acid (8 μl, 

10 mg, 0.21 mmol). Quantitative conversion to 5-4 and H2 was achieved in less than 30 

minutes, as confirmed by a 1H and 31P{1H} NMR spectroscopy.  

1H NMR (400 MHz, C6D6) δ: 4.47 (s, H2). 

  

                                                
ii
 Due to CO2 loss under reduced pressure elemental analyses were not obtained. 
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Addition of hydrogen to 5-4 

An NMR tube fitted with a J. Young’s valve was charged with 5-1 (10 mg, 0.020 mmol) 

and d8-toluene (0.7 cm3). The tube was then degassed by three freeze-pump-thaw 

cycles and back-filled with CO2 (1 atm). The tube then frozen (77 K) and back-filled with 

H2 (1 atm).jj The system was heated to 65 °C for 12 h.  

No new products were detected by 1H or 31P{1H} NMR spectroscopy. 

 

Addition of triisopropylsilane to 5-4 

An NMR tube fitted with a J. Young’s valve was charged with 5-1 (10 mg, 0.020 mmol) 

and d8-toluene (0.7 cm3). Under a flow of CO2, triisopropylsilane (81 μl, 63 mg, 0.40 

mmol) was added via microsyringe. The system was heated to 60 °C for 1 h.  

No new products were detected by 1H or 31P{1H} NMR spectroscopy. 

  

                                                

jj Melting point CO2 is 195 K and thus is not lost during the addition of H2. 
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Isomerisation of cis-stilbene catalysed by 5-1 

An NMR tube fitted with a  . Young’s valve was charged with 5-1 (5 mg, 0.010 mmol), 

cis-stilbene (18 μl, 18 mg, 0.10 mmol), C6D6 (0.7 cm3). Toluene (10 μl, 8.7 mg, 0.094 

mmol) was used as an internal standard. Heating at 80 °C for 48 h resulted in 26% cis-

stilbene being consumed, according to 1H NMR spectroscopy. 

1H NMR (400 MHz, C6D6) δ: 6.45 (s, cis-stilbene alkene CH ). 

 

A control experiment under the same conditions, but with the omission of 5-1 resulted 

in no cis-stilbene being consumed over the same time period. 

 

Hydrosilylation of benzaldehyde with phenylsilane catalysed by 5-1 

An NMR tube fitted with a  . Young’s valve was charged with 5-1 (5 mg, 0.010 mmol), 

benzaldehyde (12 μl, 12 mg, 0.12 mmol), phenylsilane (33 μl, 29 mg, 0.27 mmol) and 

C6D6 (0.7 cm3). Toluene (10 μl, 8.7 mg, 0.094 mmol) was used as an internal standard. 

Heating at 80 °C for 2 h resulted in 36% benzaldehyde being consumed, according to 

1H NMR spectroscopy. 

1H NMR (400 MHz, C6D6) (hydrosilylation products) δ: 5.19 (s, OCH2Ph, 

PhSi(OCH2Ph)3), 4.72 (s), 4.58 (s), 4.47 (s), 4.21 (s, free, PhSiH3). 

 

A control experiment under the same conditions in which 5-1 was omitted resulted in 

no benzaldehyde being consumed over the same time period. 
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8 Appendix 

8.1 Appendix 1: List of compound numbers 

8.1.1 Chapter 2 
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8.1.2 Chapter 3  
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8.1.3 Chapter 4 
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8.2 Appendix 2: Crystallographic data 

Complex 2-4 2-6 2-7 

Empirical formula C26H18NO4PCr C44H36N2P2Ni C46H40Cl5N2P2Rh 

Formula weight 491.38 713.40 962.90 

Temperature/K 120 120 120 

Crystal system monoclinic triclinic monoclinic 

Space group P21/n P-1 C2/c 

a/Å 7.6622(3) 11.5708(8) 22.7492(11) 

b/Å 16.3488(6) 12.4653(8) 11.3028(5) 

c/Å 18.1159(8) 13.4651(10) 17.8360(9) 

α/° 90 69.835(8) 90 

β/° 94.071(13) 73.455(8) 111.466(8) 

γ/° 90 80.278(8) 90 

Volume/Å
3
 2263.61(12) 1742.2(2) 4268.0(4) 

Z 4 2 4 

ρcalc mg/mm
3
 1.442 1.360 1.499 

m/mm
-1

 0.610 0.684 0.824 

F(000) 1008.0 744.0 1960.0 

Crystal size/mm
3
 0.18 × 0.08 × 

0.06 

0.47 × 0.23 × 

0.14 
0.4 × 0.3 × 0.2 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 3.36 to 49.998 ° 3.32 to 69.96 ° 3.848 to 70.032 ° 

Index ranges -9 ≤ h ≤ 9 

 -19 ≤ k ≤ 19 

-21 ≤ l ≤ 21 

-18 ≤ h ≤ 18 

-19 ≤ k ≤ 19 

-20 ≤ l ≤ 20 

-36 ≤ h ≤ 36 

-17 ≤ k ≤ 18 

-27 ≤ l ≤ 28 

Reflections collected 23621 40256 53497 

Independent reflections 3985 

[Rint = 0.0668] 

14431 

[Rint = 0.0255] 

9171 

[Rint = 0.0462] 

Data/restraints/parameters 3985/97/302 14431/0/474 9171/0/260 

Goodness-of-fit on F
2
 0.932 1.042 1.069 

Final R indexes [I>=2σ (I)] R1 = 0.0384 

wR2 = 0.0802 

R1 = 0.0358 

wR2 = 0.0930 

R1 = 0.0374 

wR2 = 0.0902 

Final R indexes [all data] R1 = 0.0703 

wR2 = 0.0900 

R1 = 0.0463 

wR2 = 0.0991 

R1 = 0.0476 

wR2 = 0.0965 

Largest diff. peak/hole / e Å
-3

 0.42/-0.29 1.13/-0.33 1.43/-0.97 
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Complex 2-8 2-10 

Empirical formula C46H40Cl5IrN2P2 C30H21CrN2O4P 

Formula weight 1052.19 556.46 

Temperature/K 150 120.0 

Crystal system monoclinic triclinic 

Space group C2/c P-1 

a/Å 22.6894(16) 8.4949(4) 

b/Å 11.2587(8) 11.7134(6) 

c/Å 18.1243(17) 14.3091(7) 

α/° 90 71.765(11) 

β/° 111.890(11) 74.002(11) 

γ/° 90 70.784(10) 

Volume/Å
3
 4296.1(7) 1253.09(15) 

Z 4 2 

ρcalc mg/mm
3
 1.627 1.475 

m/mm
-1

 3.529 0.561 

F(000) 2088.0 572.0 

Crystal size/mm
3
 0.2 × 0.15 × 0.12 0.16 × 0.1 × 0.1 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 3.87 to 59.992° 3.054 to 70.042° 

Index ranges -24 ≤ h ≤ 31 

-15 ≤ k ≤ 11 

-25 ≤ l ≤ 25 

-13 ≤ h ≤ 13 

-18 ≤ k ≤ 18 

-22 ≤ l ≤ 22 

Reflections collected 18098 53269 

Independent reflections 6267 

[Rint = 0.0518] 

10464  

[Rint = 0.0420] 

Data/restraints/parameters 6267/0/282 10464/6/361 

Goodness-of-fit on F
2
 1.032 1.053 

Final R indexes [I>=2σ (I)] R1 = 0.0392 

wR2 = 0.0898 

R1 = 0.0395 

wR2 = 0.1049 

Final R indexes [all data] R1 = 0.0535 

wR2 = 0.0972 

R1 = 0.0480 

wR2 = 0.1110 

Largest diff. peak/hole / e Å
-3

 1.93/-1.88 1.00/-0.32 
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Complex 3-1 3-2 3-7 

Empirical formula C48H48N2P2Pd2 C44H36N2P2Pd C48H48N3P3Pd 

Formula weight 927.62 761.09 866.20 

Temperature/K 120 120 120 

Crystal system monoclinic triclinic monoclinic 

Space group P21/c P-1 P21/c 

a/Å 10.2185(3) 11.9327(3) 9.1707(5) 

b/Å 10.6113(4) 12.2787(3) 18.3478(8) 

c/Å 19.2717(7) 13.2937(3) 24.8596(10) 

α/° 90.00 70.0570(10) 90 

β/° 104.176(14) 74.1200(10) 97.990(7) 

γ/° 90.00 81.5170(10) 90 

Volume/Å
3
 2026.03(12) 1757.92(7) 4142.3(3) 

Z 2 2 4 

ρcalc mg/mm
3
 1.521 1.438 1.389 

m/mm
-1

 1.003 0.654 0.602 

F(000) 944.0 780.0 1792.0 

Crystal size/mm
3
 0.13 × 0.05 × 0.02 0.2 × 0.15 × 0.08 0.4 × 0.11 × 0.08 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 4.12 to 60 ° 3.36 to 69.98 ° 2.768 to 60.002° 

Index ranges -14 ≤ h ≤ 14 

-14 ≤ k ≤ 14 

-27 ≤ l ≤ 27 

-19 ≤ h ≤ 18 

-19 ≤ k ≤ 19 

-21 ≤ l ≤ 20 

-12 ≤ h ≤ 12 

-25 ≤ k ≤ 25 

-34 ≤ l ≤ 34 

Reflections collected 26057 40929 75101 

Independent reflections 5912  

[Rint = 0.0606] 

14631  

[Rint = 0.0394 

12078  

[Rint = 0.0595 

Data/restraints/parameters 5912/0/340 14631/0/466 12078/0/508 

Goodness-of-fit on F
2
 0.883 1.001 1.038 

Final R indexes [I>=2σ (I)] R1 = 0.0310 

wR2 = 0.0557 

R1 = 0.0355 

wR2 = 0.0838 

R1 = 0.0414 

wR2 = 0.0988 

Final R indexes [all data] R1 = 0.0545  

wR2 = 0.0607 

R1 = 0.0481 

wR2 = 0.0883 

R1 = 0.0606 

wR2 = 0.1109 

Largest diff. peak/hole / e Å
-3

 0.71/-0.54 1.75/-0.57 1.66/-0.77 
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Complex 3-9 3-10 

Empirical formula C34H36Cl3N2P2Pd C33H39ClN2P2Pd 

Formula weight 747.34 667.45 

Temperature/K 120 120 

Crystal system monoclinic monoclinic 

Space group P21/m P21/n 

a/Å 11.2333(5) 11.6096(6) 

b/Å 14.0327(7) 23.2868(13) 

c/Å 11.8483(5) 12.0414(6) 

α/° 90 90 

β/° 117.125(5) 113.002(6) 

γ/° 90 90 

Volume/Å
3
 1662.27(15) 2996.6(3) 

Z 2 4 

ρcalc mg/mm
3
 1.493 1.479 

m/mm
-1

 0.922 0.841 

F(000) 762.0 1376.0 

Crystal size/mm
3
 0.15 × 0.12 × 0.1 0.68 × 0.21 × 0.14 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 3.862 to 65.996° 3.498 to 69.948 ° 

Index ranges -17 ≤ h ≤ 17 

-21 ≤ k ≤ 21 

-18 ≤ l ≤ 18 

-18 ≤ h ≤ 18 

-36 ≤ k ≤ 36 

-19 ≤ l ≤ 19 

Reflections collected 35272 69135 

Independent reflections 6490  

[Rint = 0.0292] 

12767 

[Rint = 0.0368] 

Data/restraints/parameters 6490/60/213 12767/0/362 

Goodness-of-fit on F
2
 1.042 1.059 

Final R indexes [I>=2σ (I)] R1 = 0.0372 

wR2 = 0.0887 

R1 = 0.0377 

wR2 = 0.0919 

Final R indexes [all data] R1 = 0.0483 

wR2 = 0.0970 

R1 = 0.0502 

wR2 = 0.0986 

Largest diff. peak/hole / e Å
-3

 1.41/-0.71 2.20/-0.74 
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Complex 4-2 4-13 4-14 

Empirical formula C22H39ClO2P2Pd C30H55ClO2P2Pd C26H47O6P2ClPd 

Formula weight 539.32 651.53 659.43 

Temperature/K 120 120 120 

Crystal system triclinic monoclinic monoclinic 

Space group P-1 P2/c P21/n 

a/Å 8.2862(4) 11.4884(3) 9.0088(3) 

b/Å 12.0042(5) 11.6968(2) 38.5884(12) 

c/Å 13.3401(5) 13.2762(3) 9.0585(3) 

α/° 100.322(6) 90 90.00 

β/° 96.148(6) 111.603(3) 99.5630(10) 

γ/° 103.855(6) 90 90.00 

Volume/Å
3
 1251.75(11) 1658.71(8) 3105.29(17) 

Z 2 2 4 

ρcalc mg/mm
3
 1.431 1.304 1.410 

m/mm
-1

 0.991 0.760 6.878 

F(000) 560.0 688.0 1376.0 

Crystal size/mm
3
 

0.32 × 0.16 × 0.15 
0.433 × 0.3573 × 

0.1193 

0.104 × 0.097 × 

0.059 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.7107) 

CuKα  

(λ = 1.54178) 

2Θ range for data collection 3.58 to 60 ° 6.292 to 64.124 ° 6.88 to 140 ° 

Index ranges -11 ≤ h ≤ 11 

-16 ≤ k ≤ 16 

-18 ≤ l ≤ 18 

-16 ≤ h ≤ 16 

-16 ≤ k ≤ 17 

-19 ≤ l ≤ 19 

-9 ≤ h ≤ 10 

-44 ≤ k ≤ 46 

-9 ≤ l ≤ 10 

Reflections collected 22956 20882 20168 

Independent reflections 7291 

[Rint = 0.0299] 

5396  

[Rint = 0.0313] 

5743 

[Rint = 0.0325] 

Data/restraints/parameters 7291/0/277 5396/0/183 5743/6/340 

Goodness-of-fit on F
2
 1.086 1.075 1.141 

Final R indexes [I>=2σ (I)] R1 = 0.0315 

wR2 = 0.0801 

R1 = 0.0273 

wR2 = 0.0618 

R1 = 0.0378 

wR2 = 0.0850 

Final R indexes [all data] R1 = 0.0355 

wR2 = 0.0826 

R1 = 0.0344 

wR2 = 0.0668 

R1 = 0.0416 

wR2 = 0.0866 

Largest diff. peak/hole / e Å
-3

 1.43/-0.87 0.92/-0.81 2.11/-0.41 
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Complex 4-15 4-16 4-17 

Empirical formula C30H59ClN4O2P2Pd C30H51ClN4O6P2Pd C30H35ClN4O2P2Pd 

Formula weight 711.60 767.54 687.41 

Temperature/K 120.0 120.0 120.0 

Crystal system monoclinic orthorhombic monoclinic 

Space group P21/c Pca21 P21/n 

a/Å 17.4846(3) 23.9712(9) 12.1743(11) 

b/Å 9.52106(16) 8.7778(3) 19.3567(18) 

c/Å 21.8231(4) 32.7838(11) 13.8867(13) 

α/° 90 90 90 

β/° 97.2077(16) 90 108.458(10) 

γ/° 90 90 90 

Volume/Å
3
 3604.23(11) 6898.2(4) 3104.1(5) 

Z 4 8 4 

ρcalc mg/mm
3
 1.311 1.478 1.471 

m/mm
-1

 0.708 0.755 0.821 

F(000) 1504.0 3200.0 1408.0 

Crystal size/mm
3
 0.2667 × 0.2016 × 

0.0997 
0.42 × 0.09 × 0.08 0.25 × 0.22 × 0.16 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 5.98 to 64.02 ° 2.484 to 58.102 ° 3.74 to 62.998 ° 

Index ranges -25 ≤ h ≤ 23 

-13 ≤ k ≤ 14 

-32 ≤ l ≤ 29 

-32 ≤ h ≤ 32 

-11 ≤ k ≤ 11 

-44 ≤ l ≤ 44 

-17 ≤ h ≤ 17 

-28 ≤ k ≤ 28 

-20 ≤ l ≤ 20 

Reflections collected 45817 95159 56545 

Independent reflections 11597  

[Rint = 0.0518] 

18378  

[Rint = 0.0585] 

10329  

[Rint = 0.0534] 

Data/restraints/parameters 11597/46/410 18378/14/799 10329/0/373 

Goodness-of-fit on F
2
 1.038 1.036 1.036 

Final R indexes [I>=2σ (I)] R1 = 0.0407 

wR2 = 0.0780 

R1 = 0.0400 

wR2 = 0.0852 

R1 = 0.0372 

wR2 = 0.0847 

Final R indexes [all data] R1 = 0.0637 

wR2 = 0.0889 

R1 = 0.0515 

wR2 = 0.0913 

R1 = 0.0561 

wR2 = 0.0960 

Largest diff. peak/hole / e Å
-3

 0.52/-0.53 0.82/-0.50 1.40/-0.67 
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Complex 5-2 5-3 5-4 

Empirical formula C23H42O2P2Pd C24H42O2P2Pd C23H40O4P2Pd 

Formula weight 518.91 532.92 548.89 

Temperature/K 120 120.0 120 

Crystal system triclinic trigonal triclinic 

Space group P-1 R-3 P-1 

a/Å 8.3462(4) 40.257(5) 8.3363(3) 

b/Å 11.9438(5) 40.257(5) 11.9802(5) 

c/Å 13.4184(5) 8.5291(9) 13.5358(5) 

α/° 100.422(6) 90 100.647(7) 

β/° 95.926(6) 90 97.667(7) 

γ/° 103.725(6) 120 103.692(7) 

Volume/Å
3
 1262.94(9) 11971(3) 1268.39(8) 

Z 2 18 2 

ρcalc mg/mm
3
 1.365 1.331 1.437 

m/mm
-1

 0.877 0.834 0.883 

F(000) 544.0 5004.0 572.0 

Crystal size/mm
3
 0.33 × 0.24 × 0.06 0.37 × 0.14 × 0.08 0.18 × 0.15 × 0.06 

Radiation MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

MoKα  

(λ = 0.71073) 

2Θ range for data collection 3.12 to 59.98 ° 3.504 to 59.994 ° 3.12 to 59.98 ° 

Index ranges -11 ≤ h ≤ 11 

-16 ≤ k ≤ 16 

-18 ≤ l ≤ 18 

-55 ≤ h ≤ 56 

-56 ≤ k ≤ 56 

-11 ≤ l ≤ 11 

-11 ≤ h ≤ 11 

-16 ≤ k ≤ 16 

-19 ≤ l ≤ 19 

Reflections collected 23229 42310 23357 

Independent reflections 7366 

[Rint = 0.0420] 

7659  

[Rint = 0.0496] 

7388 

[Rint = 0.0315] 

Data/restraints/parameters 7366/15/290 7659/0/268 7388/0/295 

Goodness-of-fit on F
2
 1.089 1.082 1.036 

Final R indexes [I>=2σ (I)] R1 = 0.0312 

wR2 = 0.0789 

R1 = 0.0320, wR2 

= 0.0727 

R1 = 0.0269 

wR2 = 0.0636 

Final R indexes [all data] R1 = 0.0363 

wR2 = 0.0817 

R1 = 0.0517, 

wR2 = 0.0782 

R1 = 0.0331 

wR2 = 0.0663 

Largest diff. peak/hole / e Å
-3

 1.38/-0.68 0.75/-0.39 1.26/-0.57 
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8.3 Appendix 3: Example percent buried volume (%Vbur) calculation 

SambVca @ MoLNaC 

Results page 

Molecule from input : 

11srv017 (Complex 4-2) 

     Number of atoms             :   66 

     Atom that is coordinated    :    1 

     Atoms that define the axis  :    3 

     ID of these atoms           :    2   3   6 

 

     Radius of sphere (Å)     :    3.500 

     Distance from sphere (Å) :    0.000 

     Mesh step (Å)            :    0.050 

     H atoms omitted in the V_bur calculation 

 

Cartesian coordinates from input : 

H      -3.36807   1.95675   3.55204 

P      -2.24801  -0.02073   3.20768 

P      -4.14703   4.08645   3.19757 

O      -1.39654   0.22523   1.80707 

O      -3.38925   4.58608   1.81278 

C      -2.40605   2.39918   1.85775 

C      -1.56635   1.48108   1.23366 

C      -0.88354   1.76616   0.06079 

H      -0.32045   1.11681  -0.34477 

C      -1.04167   3.02712  -0.50666 

H      -0.57397   3.24054  -1.30651 

C      -1.87564   3.98341   0.07466 

H      -1.98673   4.84165  -0.31755 

C      -2.53995   3.63869   1.24792 

C      -3.28385  -1.48466   2.74159 

C      -4.17936  -0.98674   1.61369 

H      -3.62388  -0.68128   0.86711 

H      -4.76003  -1.71603   1.31169 

H      -4.73018  -0.24358   1.93772 

C      -4.13338  -1.91678   3.93248 

H      -4.55905  -1.12934   4.33169 
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H      -4.82368  -2.54379   3.63177 

H      -3.56366  -2.35398   4.59869 

C      -2.49614  -2.67932   2.22158 

H      -1.98590  -3.07987   2.95519 

H      -3.11483  -3.34415   1.85347 

H      -1.87947  -2.38343   1.51907 

C      -0.87461  -0.39132   4.39649 

C      -0.14412   0.93437   4.54814 

H      -0.75838   1.60787   4.90847 

H       0.61293   0.82251   5.15992 

H       0.18525   1.22806   3.67325 

C       0.12789  -1.40838   3.88841 

H       0.37393  -1.19141   2.96426 

H       0.92875  -1.38890   4.45352 

H      -0.27128  -2.30413   3.91822 

C      -1.44984  -0.79636   5.72892 

H      -1.78704  -1.71493   5.67060 

H      -0.75267  -0.74739   6.41587 

H      -2.18454  -0.19258   5.96482 

C      -5.92209   4.19277   2.67678 

C      -6.14931   2.92661   1.83014 

H      -5.95885   2.13299   2.37193 

H      -7.08076   2.89923   1.52685 

H      -5.55291   2.94162   1.05246 

C      -6.82919   4.13140   3.90902 

H      -6.79041   4.98556   4.38742 

H      -7.75213   3.95584   3.62789 

H      -6.52681   3.41185   4.50148 

C      -6.25285   5.42306   1.82496 

H      -5.62537   5.47878   1.07450 

H      -7.16747   5.34612   1.48148 

H      -6.17753   6.23030   2.37452 

C      -3.61714   5.39966   4.39922 

C      -4.04134   6.80884   4.00260 

H      -5.01361   6.89377   4.08542 

H      -3.60526   7.45972   4.59221 

H      -3.77567   6.98042   3.07443 

C      -2.08990   5.31330   4.41853 
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H      -1.74047   5.53316   3.52938 

H      -1.73472   5.94828   5.07437 

H      -1.81663   4.40492   4.66220 

C      -4.16286   5.05503   5.79049 

H      -4.02402   4.10114   5.97000 

H      -3.69235   5.58659   6.46642 

H      -5.12113   5.25825   5.82613 

 

Atoms and radius in the parameter file 

H 1.29 

C  1.99 

N 1.81 

O 1.78 

F 1.72 

Si 2.45 

P 2.11 

S 2.10 

Cl 2.05 

Br 2.16 

I  2.31 

 

Coordinates scaled to put the metal at the origin 

H       0.00000   0.00000   0.00000 

P       1.12006  -1.97748  -0.34436 

P      -0.77896   2.12970  -0.35447 

O       1.97153  -1.73152  -1.74496 

O      -0.02118   2.62933  -1.73926 

C       0.96202   0.44242  -1.69428 

C       1.80172  -0.47568  -2.31837 

C       2.48453  -0.19059  -3.49125 

H       3.04763  -0.83994  -3.89681 

C       2.32641   1.07037  -4.05870 

H       2.79410   1.28378  -4.85854 

C       1.49243   2.02666  -3.47738 

H       1.38135   2.88489  -3.86959 

C       0.82812   1.68194  -2.30412 

C       0.08422  -3.44142  -0.81045 

C      -0.81129  -2.94349  -1.93835 
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H      -0.25581  -2.63803  -2.68492 

H      -1.39196  -3.67278  -2.24035 

H      -1.36211  -2.20033  -1.61431 

C      -0.76531  -3.87354   0.38044 

H      -1.19098  -3.08610   0.77965 

H      -1.45561  -4.50055   0.07974 

H      -0.19559  -4.31073   1.04666 

C       0.87193  -4.63608  -1.33046 

H       1.38217  -5.03662  -0.59685 

H       0.25325  -5.30090  -1.69856 

H       1.48860  -4.34019  -2.03296 

C       2.49347  -2.34807   0.84446 

C       3.22395  -1.02239   0.99611 

H       2.60969  -0.34888   1.35643 

H       3.98100  -1.13424   1.60788 

H       3.55332  -0.72869   0.12121 

C       3.49596  -3.36514   0.33637 

H       3.74200  -3.14816  -0.58777 

H       4.29683  -3.34565   0.90149 

H       3.09680  -4.26088   0.36618 

C       1.91823  -2.75312   2.17689 

H       1.58103  -3.67168   2.11856 

H       2.61540  -2.70414   2.86384 

H       1.18353  -2.14933   2.41278 

C      -2.55402   2.23602  -0.87526 

C      -2.78124   0.96986  -1.72189 

H      -2.59078   0.17624  -1.18011 

H      -3.71269   0.94247  -2.02519 

H      -2.18484   0.98487  -2.49957 

C      -3.46112   2.17464   0.35698 

H      -3.42234   3.02880   0.83539 

H      -4.38406   1.99909   0.07585 

H      -3.15874   1.45510   0.94945 

C      -2.88478   3.46631  -1.72708 

H      -2.25730   3.52203  -2.47754 

H      -3.79940   3.38937  -2.07055 

H      -2.80946   4.27355  -1.17751 

C      -0.24906   3.44291   0.84718 
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C      -0.67327   4.85209   0.45056 

H      -1.64553   4.93702   0.53339 

H      -0.23719   5.50297   1.04017 

H      -0.40760   5.02367  -0.47760 

C       1.27817   3.35654   0.86649 

H       1.62760   3.57641  -0.02266 

H       1.63335   3.99153   1.52234 

H       1.55144   2.44816   1.11017 

C      -0.79479   3.09828   2.23845 

H      -0.65595   2.14439   2.41797 

H      -0.32428   3.62983   2.91439 

H      -1.75306   3.30150   2.27410 

XX      0.00000   0.00000   0.00000 

  

Results : Volumes in Å3 

   

       N of voxels examined :         1436277 

       Volume of voxel      :       0.125E-03 

 

    V Free   V Buried  V Total   V Exact 

    52.665   126.869   179.535   179.594 

 

  %V_Free    %V_Bur  % Tot/Ex 

  29.334     70.666    99.967 

 

   

The %V_Bur of your molecule is: 70.7 
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8.4 Appendix 4: Seminars attended 

Ligands with strongly donating character 

Yves Canac (Laboratoire de Chimie de Coordination, Toulouse)  

26th October 2010  

 

Following Function in Real Time: New NMR and Diffraction Methods for Studying 

Structure and Dynamics in Batteries and Fuel Cells  

Clare Grey (University of Cambridge) 

3rd November 2010 

 

Controlling Emissions from Cars - Chemistry, Successes, and Challenges 

Martyn Twigg (Johnson Matthey) 

10th November 2010 

 

Pincer-type Complexes of Divalent and Trivalent Ni: Redox Chemistry and 

Catalytic Reactivities 

Davit Zargarian (University of Montreal) 

26th November 2010  

 

Highly Reactive Nitrogen Heterocycles - Synthesis and Properties 

John Murphy (University of Strathclyde) 

18th January 2011 

 

Making light work of it – process analysis within petrochemicals 

Andrew Poole (BP) 

18th January 2011 

 

Local Structure and Dynamics in Functional Framework Materials 

Andrew Goodwin (University of Oxford) 

26th January 2011 
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Spectroelectrochemical Studies of CO2 Reducing Systems 

Franstisek Hartl (University of Reading) 

2nd February 2011 

 

Magnetism and Chemistry of Layered Transition Metal Oxychalcogenides and 

Pnictides 

Simon Clarke (University of Oxford) 

9th February 2011 

 

Green Chemistry and Supercritical Fluids 

Martyn Poliakoff (University of Nottingham) 

23rd February 2011  

 

Ambiphilic Metal Ligand Activation from Stoichiometric to Catalytic CH 

Activation 

Dai Davies (University of Leicester) 

25th May 2011 

 

The reactivity of divalent complexes of the heavier group 14 elements 

Robin Fulton (University of Sussex) 

30th June 2011 

 

Organoboron in synthetic methodology and chemical biology application in 

disrupting protein-RNA interactions 

Webster Santos (Virgina Tech) 

21st July 2011 

 

Chemoselective catalytic reduction of nitriles, pyridine and acyl chlorides 

Georgii Nikonov (Brock University) 

16th August 2011 

http://www.reading.ac.uk/chemistry/about/staff/f-hartl.aspx
http://www.chem.ox.ac.uk/researchguide/sjclarke.html
https://www.nottingham.ac.uk/Chemistry/People/martyn.poliakoff
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Molecular wires made from Fe(Cp*)(dppe) endgroups 

Frederic Paul (University of Rennes) 

19th October 2011 

 

Harvesting solar energy in photo-electrochemical cells 

Leone Spiccia (Monash University) 

9th November 2011 

 

Catalysis on the edge 

Bob Tooze (SASOL UK) 

23rd November 2011 

 

360 Degree chemistry – Using tubes in synthesis 

Ian Baxendale (University of Cambridge) 

29th November 2011 

 

Phosphine-borane-stabilised carbanions – bulky ligands of the future 

Keith Izod (Newcastle University) 

6th December 2011 

 

Metal-organo cooperative catalysis: Asymmetric hydrogenation with achiral 

metal catalysts 

Jainlaing Xiao (Liverpool University) 

7th December 2011 

 

Catalysts made from earth-abundant elements for making C-C and C-H bonds 

Xile Hu (Ecole Polytechnique Federale de Lausanne (EPFL)) 

17th January 2012 
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New copper-catalyzed reactions 

Matthew Gaunt (University of Cambridge) 

1st February 2012 

 

Functional Nanomaterials via living self-assembly 

Ian Manners (University of Bristol) 

21st February 2012 

 

Chiral metal compounds in catalysis and medicine 

Peter Scott (University of Warwick) 

28th February 2012 

 

The status of catalyst design: Case studies on C-N bond formation 

John Hartwig (University of California, Berkeley) 

14th May 2012 

 

Catalytic functionalization of aryl and alkyl C-H bonds 

John Hartwig (University of California, Berkeley) 

15th May 2012 

 

Making sense of copper-catalysed coupling 

John Hartwig (University of California, Berkeley) 

16th May 2012 

 

Catalytic activation of carbon dioxide for polymer synthesis 

Charlotte Williams (Imperial College London) 

7th November 2012 
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Organometallic chemistry in the solid-state 

Andrew Weller (University of Oxford) 

16th January 2013  

 

The physical chemistry of heterogeneous catalysis 

Ken Waugh (University of Manchester) 

5th March 2013  

 

A trio of challenges: reactivity, stereocontrol and region-control in asymmetric 

catalysis 

Matt Clarke (University of St Andrews) 

26th March 2013  

 

The Durham Lecture 2013 

Peter Seeberger (Free University Berlin) 

14th May 2013  

 

Designing Heterogeneous catalysts for sustainable chemistry 

Karen Wilson (Aston University) 

26th November 2013  
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8.5 Appendix 5: Conferences attended 

Northern Sustainable Chemistry (NORSC) 2010 

- University of York, 28th October 2010 

 

8th European Workshop on Phosphorus Chemistry 

- Poster presented  

- Westfälische Wilhems-Universität Münster, 28-29th March 2011 

 

RSC Main Group Chemistry Interest Group 2011 

- Poster presented 

- Burlington House, London, 15th July 2011 

 

Northern Sustainable Chemistry (NORSC) 2011 

- Poster presented 

- University of York, 25th October 2011 

 

9th European Workshop on Phosphorus Chemistry 

- Poster presented  

- Université de Rennes 1, 22-23rd March 2012 

 

RSC Main Group Chemistry Interest Group 2012 

- Poster presented 

- Burlington House, London, 21st September 2012 

 

RSC-ACG / SURCAT Dennis Dowden Commemoration: Catalysis - from 

fundamentals to application 

- Durham University, 3-4th April 2013 

 

10th European Workshop on Phosphorus Chemistry 

- Oral presentation 

- Universität Regensburg, 18-20th March 2013  


