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Abstract

This thesis discusses branes in string theory and M-theory. In chapter 1, we present

background materials. In chapters 2 and 3, we discuss an application of a D3/D7 model

in the framework of gauge/gravity duality, which uses the results of a gravity theory

calculation to obtain informations about the corresponding gauge theory. Gauge/gravity

duality is usually studied in a non-compact space. This thesis, however, focuses on the

duality in a compact space. In chapter 2, we study a strongly coupled gauge theory in

a compact space. We find that a homogeneous ground state is unstable at a sufficiently

large isospin chemical potential. We then construct a new ground state which corresponds

to a scalar meson condensate charged under a global SO(4) symmetry. In chapter 3, we

discuss an on-going work. We study a strongly-coupled gauge theory living in a compact

space with a generic value of quark mass at zero temperature in the presence of an external

magnetic field. We are investigating the phase diagram of the external magnetic field and

quark mass.

In chapter 4 and 5, we move to M-theory. In chapter 4, we construct a complete

non-linear theory of a supersymmetric single M5-brane with a 3+3 splitting. The M5-

brane lives in a general background of M-theory. The idea of our construction is to get

equations of motion that agree with that obtained from the superembedding approach.

In chapter 5, we consider a model which attempts to describe a theory on multiple M5-

branes. Using this model, we construct self-dual string solutions which describes M2/M5

branes intersection. These solutions are supported by magnetic monopoles. For self-dual

strings with large number of M2 and M5-branes, we obtain the required radius-distance

relationship and energy.
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Chapter 1

Introduction

This thesis explores aspects of recent developments in string theory and M-theory, which

are important theories of high energy physics. In particular, we focus on objects which

are called branes. These objects are important in the development of non-perturbative

aspects of string theory and M-theory.

In particle physics, the Standard Model has been very successful; its predictions about

behaviours and interactions of subatomic particles are experimentally confirmed. Despite

its successes, this model is far from being complete. For example, it does not incorporate

the gravitational interaction, which, at a very high energy scale, should be combined with

the other three already incorporated interactions — electromagnetic, weak, and strong.

In order to describe all these interactions, one needs to combine quantum mechanics

with general relativity. String theory is the best candidate which achieves this. In this

theory, the quantisation of a one-dimensional object, called a string, naturally gives rise to

gravity. String theory also contains objects called D-branes, which are infinitely extended

hypersurfaces. Theories on D-branes are gauge field theories, which shares some properties

with the Standard Model.

Within the framework of the Standard Model, there is a theory called Quantum Chro-

modynamics (QCD) which describes the interaction between quarks and gluons. The

study of this theory at strong coupling is important but difficult. A modern develop-

ment of D-branes leads to a conjecture called AdS/CFT correspondence which states that

a gravity theory is equivalent to a gauge theory. By studying the dual weakly-coupled

gravity theories, it is possible to use AdS/CFT correspondence to explain some cousins of

a strongly-coupled QCD. These cousins, however, are originally quite different from the

real QCD. Generalisations of AdS/CFT correspondence can be done in many ways, and

1



1.1. Bosonic string theory 2

the purposes are mainly to get as close to the real QCD as possible. We are particularly

interested in the extension in which the QCD-like theory contains quarks. Furthermore, a

finite-size effect is important in some phenomena, so we study the extension which explains

also a finite-size system. The first part of this thesis concerns an application of AdS/CFT

correspondence.

Another important development of string theory gives rises to M-theory, which can be

thought of as more fundamental than string theory; in certain limits, string theory can be

obtained from M-theory. In M-theory, there are also brane-like objects, which are called

M-branes. These objects are still not fully understood, and there are still much to be

done. The second part of this thesis is aimed to construct theories on M-branes.

Below, we review some basic backgrounds of string theory and M-theory. The rest of

this chapter is mostly based on the books [9–12] and review articles [6, 13–16]

1.1 Bosonic string theory

String theory is a theory of a quantum string whose classical dynamics are described by a

worldsheet in a D-dimensional spacetime. The theory is characterised by a string length

ls and a dimensionless coupling constant gs. The string has the tension which is given by

T =
1

2πα′
, where α′ = l2s . (1.1)

Let XM with M = 0, 1, 2, . . . , D − 1 be spacetime coordinates, and let (τ, σ) be the

string worldsheet coordinates. It is convenient to denote (τ, σ) collectively as (σα), where

α = 0, 1 with σ0 ≡ τ, σ1 ≡ σ. The embedding of the string worldsheet in the spacetime is

described by a bosonic embedding function XM (τ, σ). The action of the string is given by

the Nambu-Goto action:

S = −T
∫
dτdσ

√
−det

(
gMN (X)

∂XM

∂σα
∂XN

∂σβ

)
, (1.2)

where gMN (X), whose signature is given by diag(−1, 1, 1, . . . , 1), is the metric of the

spacetime.

The presence of a square root in the Nambu-Goto action will make the quantisation

difficult. An alternative action called the Polyakov action is classically equivalent to the

Nambu-Goto action. The Polyakov action does not contain a square root, but it introduces

an auxiliary field hαβ(τ, σ) which is called a worldsheet metric. The Polyakov action is
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given by

S = −1

2
T

∫
dτdσ

√
−hhαβgMN (X)∂αX

M∂βX
N , (1.3)

where

h = dethαβ, hαβ = (h−1)αβ. (1.4)

Let us consider the string in a flat spacetime, whose metric is given by gMN = ηMN =

diag(−1, 1, 1, . . . , 1). The action can be simplified with the help of symmetries. We focus

on the reparameterisation symmetry:

σα → σ′α(σ), hαβ(σ) =
∂σ′γ

∂σα
∂σ′δ

∂σβ
hγδ(σ

′), XM (σ) = XM (σ′), (1.5)

and the Weyl symmetry:

hαβ → eϕ(τ,σ)hαβ. (1.6)

These symmetries leave the Polyakov action invariant. They are enough to fix the com-

ponents of hαβ so that the Polyakov action reduces to

S =
T

2

∫
dτdσ

(
∂XM

∂τ

∂XM

∂τ
− ∂XM

∂σ

∂XM

∂σ

)
. (1.7)

The vanishing of the variation of this action with respect to XM gives the equation of

motion (
∂2

∂τ2
− ∂2

∂σ2

)
XM = 0, (1.8)

as well as the vanishing of the boundary term:∫
dτ

(
∂XM

∂σ
δXM |σ=π −

∂XM

∂σ
δXM |σ=0

)
= 0, (1.9)

where we have taken σ to be in the range σ ∈ [0, π]. There are also other conditions which

are needed to be satisfied. They are

∂XM

∂τ

∂XM

∂σ
= 0,

1

2

∂XM

∂τ

∂XM

∂τ
+

1

2

∂XM

∂σ

∂XM

∂σ
= 0. (1.10)

These conditions can be thought of as the equations of motion of hαβ. Although we have

fixed hαβ, its equations of motion are not trivially satisfied.

Let us now discuss a classical string solution. To make the boundary term vanish, a

string can be either closed or open. String worldsheets are illustrated in the figure 1.1. For

a closed string, the embedding function is periodic in σ : XM (τ, σ) = XM (τ, σ + π). For an

open string, there are two types of endpoints that solve the boundary conditions. The first

type is the Neumann boundary condition (∂XM/∂σ)|0,π = 0 where the string endpoints

are free to move. The second type is the Dirichlet boundary condition δXM |0,π = 0 where
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x0

x1

x2

σ

τ τ

σ

Figure 1.1: A closed string worldsheet (left) and an open string worldsheet (right) in an

X0 −X1 −X2 slice of a spacetime.

the string endpoints are fixed. Open strings are in fact related to objects called D-branes.

We postpone the discussion of open strings until we discuss D-branes.

For a closed string, the solution to the equations of motion is given in terms of a

right-mover XM
R and a left-mover XM

L . That is

XM (τ, σ) = XM
R (τ − σ) +XM

L (τ + σ), (1.11)

where

XM
R =

1

2
xM + α′pM (τ − σ) + i

√
α′

2

∑
n 6=0

1

n
αMn e

−2in(τ−σ), (1.12)

XM
L =

1

2
xM + α′pM (τ + σ) + i

√
α′

2

∑
n 6=0

1

n
α̃Mn e

−2in(τ+σ). (1.13)

Note that this classical solution contains informations of the centre-of-mass position, total

string momentum, and superpositions of oscillation modes.

Let us now mention some key steps to quantise a closed string. The Poisson brakets

are computed classically. Then, they are promoted to commutators. The commutators of

the oscillation modes are given by

[αMm , α
N
n ] = [α̃Mm , α̃

N
n ] = mηMNδm+n,0, [αMm , α̃

N
n ] = 0. (1.14)

Defining

αN†n = αN−n, α̃N†n = α̃N−n, n > 0, (1.15)

we have

[αMm , α
N†
n ] = [α̃Mm , α̃

N†
n ] = mηMNδm,n, m, n > 0. (1.16)
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These commutation relations look like those of quantum harmonic oscillators. States can

then be created by repeatedly acting on the vacuum state |0〉 with creation operators

αN†n , α̃N†n . Note however that when M = N = 0, this gives

[α0
m, α

0†
m ] = [α̃0

m, α̃
0†
m ] = −m. (1.17)

These commutation relations are problematic because, for example, the state

α0†
m |0〉 (1.18)

has a negative norm. Negative norm states are unphysical. A result of a further analysis

states that in order to eliminate all the unphysical states, the number of spacetime dimen-

sions should be fixed to D = 26. Furthermore, it states that the ground state is given by

a vacuum state |0〉 which is an eigenstate of a mass squared operatorM2 = −pMpM with

an eigenvalue −4/α′. Therefore, the vacuum state describes a tachyon. States in the next

level can be written as

ζM̂N̂α
M̂†
1 α̃N̂†1 |0〉, (1.19)

where M̂, N̂ = 2, 3, . . . , 25. They are eigenstates of the mass squared operator with an

eigenvalue M2 = 0. The traceless symmetric part of ζM̂N̂ corresponds to a graviton. The

antisymmetric part corresponds a field called B-field. Finally, the trace part corresponds

to a dilaton. Note that an exponential of the vacuum expectation value of the dilaton field

is identified with the string coupling constant gs. Therefore, the string coupling constant

is actually not a free parameter.

Higher excited states of the closed string spectrum are massive. For example, a state

αM̂†2 α̃N̂†2 |0〉 has M2 = 4/α′. In the main chapters of this thesis, these massive states are

not relevant to us. If the closed string theory has an energy E � 1/
√
α′, then the massive

states can be discarded. This is because the energy E � 1/
√
α′ is not enough to excite

the massive states, whose masses are of order 1/
√
α′.

The presence of the tachyon in the closed string spectrum poses a problem. It makes

the theory unstable. Furthermore, this spectrum lacks fermions. It turns out that both of

these problems can be solved by including the supersymmetry into the string theory.

1.2 Supersymmetrising strings

In order to supersymmetrise a string, it is natural to extend the string worldsheet coor-

dinates to include fermionic coordinates. The approach which utilises this idea is called
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the Ramond-Neveu-Schwarz (RNS) formalism [17,18]. In this approach, the worldsheet is

now a superspace which contains the usual bosonic coordinates (σα) as well as fermionic

coordinates

θa =

θ−
θ+


a

. (1.20)

Here, θ is an example of a spinor. In this chapter, we use the indices a, b, c, . . . to represent

components of spinors. A generic spin-1/2 fermion in a d-dimensional Lorentzian space

(meaning, the space whose metric is of the signature diag(−1, 1, . . . , 1)) is given by a

Dirac spinor, which has 2bd/2c complex components. Note that a worldsheet is a two-

dimensional Lorentzian space, therefore a Dirac spinor on a worldsheet has two complex

components. Sometimes it is possible to impose conditions which restrict the components

of the spinor. There is a Majorana condition, which requires all the components of a

spinor to be real. Also, there is a Weyl condition, which splits a Dirac spinor in an even

dimensional Lorentzian space into two Weyl spinors. Hence, a Weyl spinor has 2bd/2c−1

complex components. At the moment, a Majorana condition is of relevant to us. The

spinor θ is taken to be a Majorana spinor. This means that θ− and θ+ are real. Note also

that the components of θa are Grassmannian. This means that they anticommute with

each other:

{θa, θb} = 0. (1.21)

Also θaθa = 0 (no summation on a). When describing a fermion, one needs gamma

matrices γαab which satisfy

{γα, γβ}ab = 2ηαβδab, (1.22)

where ηαβ = diag(−1, 1). In this case, the gamma matrices are taken to be

γ0 =

0 −1

1 0

 , γ1 =

0 1

1 0

 . (1.23)

A conjugate of θ is given by θ̄ = iθTγ0. Note that, in fact, in two dimensions, both a

Majorana and a Weyl condition can together be imposed. The spinor θ is Majorana. So

each of its components: θ−, θ+ is a Majorana-Weyl spinor. Note also that in an even

dimensional Lorentzian space, it is always possible to define a chirality operator whose

eigenspinors are Weyl spinors. For our case, although θ− and θ+ are Majorana-Weyl

spinors, only the Weyl property is of relevance to the discussion of the chirality. A chirality

operator is given by

γ0γ1 =

−1 0

0 1

 . (1.24)
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Each of the Weyl spinors is an eigenspinor of γ0γ1 in the sense that

γ0γ1

θ−
0

 = −

θ−
0

 , γ0γ1

 0

θ+

 = +

 0

θ+

 . (1.25)

Therefore, θ− is said to have a negative chirality, while θ+ is said to have a positive

chirality. This discussion extends to higher even dimensions; it is always possible to

construct a chirality operator, and each Weyl spinor either has a negative chirality or a

positive chirality.

An embedding function, now being a function of the superspace, is called a superfield

YM (σα, θ). It can be Taylor-expanded in fermionic coordinates. This gives

YM (σα, θ) = XM (σα) + θ̄ψM (σα) +
1

2
θ̄θBM (σα). (1.26)

Note that due to the anticommutation relation, the series terminates at θ̄θ. The fields

XM (σα) and BM (σα) are bosonic, while the field ψM (σα) is fermionic. One can construct

an action which is invariant under a supersymmetry transformation

δθa = εa, δσα = θ̄γαε, (1.27)

under which the component fields transform as

δXM = ε̄ψM , δψM = γα∂αX
M ε+BM ε, δBM = ε̄γα∂αψ

M . (1.28)

Such an action can be written as

S = −T
2

∫
dτdσ

(
∂αX

M∂αXM + ψ̄Mγα∂αψM −BMBM
)
. (1.29)

This is the action which is used to analyse a supersymmetric string (also known as super-

string) in a flat spacetime. Note that the equation of motion for BM of this action is given

by BM = 0. So only the fields XM (σα) and ψM (σα) are relevant for our discussions.

To quantise a closed superstring, we follow the steps which are similar to the quan-

tisation of a bosonic string. The boundary condition for XM is exactly the same as its

bosonic string counterpart. As for ψM , there are two possible choices of the boundary

condition. The first choice is the Ramond, or R, boundary condition which requires ψM

to be periodic in σ. The second choice is the Neveu-Schwarz, or NS, boundary condition

which requires ψM to be antiperiodic in σ. Each of the left-mover and the right-mover can

either be R or NS separately. When the two movers are combined, there are 4 possible

cases: R-R, R-NS, NS-R, and NS-NS. Recall that in the case of a closed bosonic string,

bosonic creation operators αN†n , α̃N†n are used to construct states. In the case of a closed
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superstring, in addition to the bosonic creation operators, there are also fermionic creation

operators. Together these operators are used to construct states.

The quantisation of a superstring requires the number of spacetime dimensions to be

D = 10. The spectrum of a closed string originally contains tachyons. However, by using

the GSO projection [19], the tachyons along with some other states are excluded from the

spectrum. On each mover, the NS sector originally contains both bosons and fermions.

The fermions are projected out by the GSO projection. For the R sector, every state is

fermionic. Since these fermions live in the even dimensioal spacetime, each of them can

have either a positive or a negative chirality. After the GSO projection, all of the states

of the R sector have the same chirality.

When the left-mover and the right-mover are combined, states in the NS-NS and the

R-R sectors are bosonic while states in the R-NS and the NS-R are fermionic. There are

two possibilities of combining the movers. R sector states from different movers can have

either the opposite chirality or the same chirality. By this chirality consideration, there

are two types of the string theory. They are respectively named as type IIA and type IIB.

The massless spectrum of type IIA contains states coming from NS-NS, NS-R, R-NS and

R-R sector as follows. The NS-NS sector contains a dilaton (a scalar), an antisymmetric

2-form gauge field, and a traceless symmetric rank-two tensor (a graviton). Each of the

NS-R and R-NS sectors contains a gravitino (a spin-3/2 field) and a dilatino (a spin-1/2

field). The gravitinos in the different sectors have opposite chiralities. The R-R sector

contains a 1-form gauge field and a 3-form gauge field. For type IIB, the NS-NS sector

is the same as that of type IIA. However, the other sectors are different. The NS-R and

R-NS sectors contain the same contents as their counterparts from type IIA, but the type

IIB NS-R gravitino has the same chirality as the type IIB R-NS gravitino. In the R-R

sector, the states are a 0-form gauge field, a 2-form gauge field and a 4-form gauge field.

The 4-form gauge field has a self-dual field strength.

Let us make a small pause to explain how these massless fields look like. We have

already explained how the fields from the NS-NS sector look like. So let us consider

fields from the other sectors. A spin-1/2 field is represented by a spinor. A spin-3/2 field

contains both a spinor index and a spacetime index. As for an n-form gauge field, it is

represented by a differential n-form:

C(n) =
1

n!
C

(n)
M1M2···Mn

dXM1 ∧ dXM2 ∧ · · · ∧ dXMn . (1.30)
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Its (n+ 1)-form field strength is given by

F (n+1) = dC(n). (1.31)

The dual of the (n + 1)-form field strength is a (D − n − 1)-form which is given by

∗(F (n+1)), where ∗ is a Hodge dual. The 4-form gauge field from the massless R-R sector

has a self-dual field strength. Explicitly, its field strength satisfies

∗
(
F (5) − 1

2
C(2) ∧ dB +

1

2
B ∧ F (3)

)
= F (5) − 1

2
C(2) ∧ dB +

1

2
B ∧ F (3). (1.32)

The massless spectrum of the closed string contains an equal number of bosonic and

fermionic on-shell degrees of freedom. The equality suggests that the massless spectrum

is obtained from a theory with spacetime supersymmetry. Since it is supersymmetric and

contains a graviton, this theory is called a supergravity (SUGRA) theory. To study this

theory, one constructs an action which is invariant under transformations. In particular,

consider a local supersymmetry transformation on a gravitino ΨM . In a usual supersym-

metry theory, an infinitesimal spinor ε of a supersymmetry transformation is coordinate

independent. However, in a supergravity theory, the spinor ε becomes coordinate depen-

dent. A typical form of a local supersymmetry transformation on a gravitino is given by

δΨM ∼ ∂M ε+ · · · . The massless spectrum of a closed superstring contains two gravitinos;

therefore there are two ε. A supersymmetric theory containing two ε is called N = 2. So

the massless spectrum of a closed string gives an N = 2 supergravity theory. The name of

the supergravity theory is related to the name of the associated superstring theory; type

IIA and type IIB superstring theories give type IIA and type IIB supergravity theories.

It is indeed possible to construct type IIA and type IIB supergravity theories (see, for

example, a standard textbook [10]).

It can be shown, by counting states, that the number of bosonic degrees of freedom

and the number of fermionic degrees of freedom in the closed string spectrum matches

at each energy level. This suggests that the superstring theory has spacetime supersym-

metry. An approach called the Green-Schwarz (GS) formalism [20] makes the spacetime

supersymmetry manifest at the action level. This approach naturally supersymmetrises

the Nambu-Goto action. A bosonic string worldsheet (τ, σ) is embedded into a target

superspace (XM ,Θ1,Θ2). This means that the spacetime coordinates are extended to

include fermionic coordinates Θ1,Θ2.

In this approach, the number of spacetime dimensions and the number of ε are not

specified a priori. Consistency conditions at classical level determine possible values of
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D and N . We are particularly interested in the case of D = 10,N = 2. Furthermore,

let us consider a flat bosonic spacetime. In this case, the bosonic spacetime coordinates

XM transform as a vector in SO(1, 9). So they give 8 on-shell bosonic degrees of freedom.

However, the fermionic spacetime coordinates contain 16 on-shell degrees of freedom. This

is because each of Θ1 and Θ2 is described by a Majorana-Weyl spinor. A Dirac spinor in

ten dimensions has 2b10/2c = 32 complex components. As discussed previously, Majorana

and Weyl conditions reduce the number of components down to 16 real components. One

also needs an on-shell condition which further reduces the number of components down to 8

real components. Therefore, the fermionic coordinates (Θ1,Θ2) have 16 fermionic on-shell

degrees of freedom. To eliminate the mismatch between bosonic and fermionic degrees

of freedom, an extra symmetry is needed. To obtain this extra symmetry, a new term is

introduced into the action. As well as supersymmetry, the full action is invariant under

a new symmetry called the κ-symmetry [21]. The κ-symmetry transformation provides

a projector which projects out half the degrees of freedom of the fermionic spacetime

coordinates.

One of the advantages of the GS formalism is that it can easily be generalised to the

case of a curved target superspace. In this case, it is realised that the κ-symmetry requires

background SUGRA fields to be on-shell [22]. Although it is very powerful at the classical

level, the disadvantage of GS formalism is that it is very difficult to quantise.

Before we end this section, let us make a couple of remarks. The first remark is

that there is a duality, called T-duality, which relates type IIA and type IIB superstring

theories. For example, consider a type IIA superstring theory on a compactified spacetime

which is R1,8 × S1 where the radius of S1 is given by R. This theory is dual to a type IIB

superstring theory on a R1,8 × S1 spacetime where the radius of S1 is given by α′/R.

The other remark concerns the construction of a superstring theory. We have discussed

the RNS approach in which a supersymmetric worldsheet is embedded into a bosonic

target space. We have also discussed the GS approach in which a bosonic worldsheet

is embedded into a supersymmetric target space. It is therefore natural to ask if it is

possible to supersymmetrise a string theory by embedding a supersymmetric worldsheet

into a supersymmetric target space. This is indeed the case. This formalism, called the

superembedding formalism, is constructed by the reference [23].
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X1,...,Xp

Xp+1,Xp+2,...,X9

Figure 1.2: A single Dp-brane. This Dp-brane stretches along Xµ directions, where µ =

0, 1, . . . , p. The directions XI , I = p+ 1, . . . , 9 are transverse to the Dp-brane. Note that

the X0 direction is not shown in this figure.

1.3 D-branes

1.3.1 Single D-brane

Apart from strings, type IIA and type IIB superstring theories also contain objects called

D-branes. The introduction of D-branes breaks symmetries of the underlying superstring

theory. For example, D-branes in a flat spacetime break translational symmetry.

D-branes are extended hypersurfaces on which open strings end. In flat spacetime with

Cartesian coordinates XM ,M = 0, 1, . . . 9, using an appropriate frame of reference, a D-

brane can be described as having coordinates Xµ, µ = 0, 1, . . . , p on its worldvolume, and

XI , I = p+ 1, . . . , 9 transverse to it. This D-brane is called a Dp-brane, where p denotes

the number of spatial directions on the D-brane. A Dp-brane is illustrated in figure 1.2

D-branes couple to background fields which are created from a closed string spectrum.

Let us restrict the discussions to the low energy limit, where the background fields are

massless. We then focus on R-R gauge fields. Recall that in four dimensions, a gauge field

is electrically or magnetically coupled to a point electric or magnetic charge. Consider

a static electric or magnetic point charge in a four-dimensional flat spacetime written in

terms of spherical coordinates

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2). (1.33)

The charge is located at the origin r = 0. In the case of an electric charge, the radial
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direction of the electric field is given by

Er = −∂rAt = Ftr. (1.34)

The electric charge is computed using the Gauss’ law which instructs us to integrate the

electric field over the sphere surrounding the electric charge:

electric charge =

∫
S2

~E · d~S =

∫
S2

Err
2 sin θdθdφ =

∫
S2

∗F. (1.35)

In the case of a magnetic charge, the radial direction of the magnetic field is given by

Br =
1

r2 sin θ
Fθφ. (1.36)

The magnetic charge is given by

magnetic charge =

∫
S2

~B · d~S =

∫
S2

Brr
2 sin θdθdφ =

∫
S2

F. (1.37)

The coupling of an R-R gauge field to a D-brane generalises this idea. Consider a Dp-

brane which sources an R-R gauge field. There are 9 − p directions which are transverse

to the Dp-brane. These transverse directions are shown in figure 1.3. Let us decompose

these directions into 1 radial direction and 8− p angular directions. These 8− p angular

directions form an S8−p which surrounds the Dp-brane. In order to compute the electric

charge, one integrates ∗F over the asymptotic (8− p)-sphere. That is

electric charge =

∫
S8−p
∗F. (1.38)

This requires ∗F to be an (8 − p)-form, and hence F is a (p + 2)-form which is the field

strength of a (p + 1)-form R-R gauge field. Similarly, in the case of magnetic charge, we

have

magnetic charge =

∫
S8−p

F. (1.39)

Therefore, F is an (8−p)-form which is the field strength of a (7−p)-form R-R gauge field.

In other words, if we set q = 6 − p, then a (q + 1)-form R-R gauge field is magnetically

coupled to a D(6− q)-brane.

So for p = −1, 0, 1, 2, 3, a (p + 1)-form R-R gauge field is electrically coupled to a

Dp-brane and is magnetically coupled to a D(6− p)-brane. In this sense, a D(6− p)-brane

is magnetic dual to a Dp-brane. In a special case where p = 3, a D3-brane actually carries

both electric and magnetic charges. This corresponds to the fact that a D3-brane couples

to a 4-form R-R gauge field which has a self-dual field strength.
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S8-p

Dp-brane

Figure 1.3: A hyperplane transverse to a Dp-brane. The Dp-brane which is seen as a dot

in this figure is surrounded by an (8− p)-sphere.

Dp-branes with p = −1, 0, 1, 2, 3 carry electric charges while Dp-branes with p =

7, 6, 5, 4, 3 carry magnetic charges. Dp-brane charges µp are quantised according to Dirac-

Teitelboim-Nepomechie charge quantisation condition [24–26] which is given by µpµ6−p =

2πn, n ∈ Z. For D3-branes, each of them carries both electric and magnetic charges.

Furthermore, the electric and magnetic charges have the same magnitude. The charge

quantisation condition is modified [27, 28] to µ3µ
′
3 + µ′3µ3 = 2πn, n ∈ Z, where primed

and unprimed notations denote charges of different D3-branes.

D-branes carrying charges are stable. In a type IIA superstring theory, stable D-branes

are D0,D2,D4,D6 since R-R gauge fields are of odd-forms. In a type IIB superstring

theory, stable D-branes are D(−1), D1,D3,D5,D7 since R-R gauge fields are of even-forms.

By using T-duality, D8-branes can also be included into a type IIA superstring theory.

Similarly, D9-branes can also be included into a type IIB superstring theory.

States on a stable Dp-brane can be obtained by quantising open strings which end on

that Dp-brane. The lowest energy states are massless. The bosonic sector consists of 9−p

scalar fields and a gauge field. The total on-shell degrees of freedom of the bosonic sector

is then (9 − p) + (p − 1) = 8. The fermionic sector consists of spinors which have 8 total

on-shell degrees of freedom. The reason that degrees of freedom of fermions and bosons

are the same is because the Dp-brane is supersymmetric.

A supersymmetric Dp-brane action can be obtained by using a similar approach to

that of a superstring action. Although it is not known how to apply the RNS formal-

ism (worldvolume supersymmetry), it is possible to apply the GS formalism (spacetime
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supersymmetry). The action is given in the references [29–31].

Let us discuss some of the symmetries of a supersymmetric Dp-brane in a ten-dimensional

flat spacetime. The Dp-brane is invariant under an SO(1, p) Lorentz symmetry. The 9−p

scalar fields transform under an SO(9 − p) internal symmetry. The D-brane also has

supersymmetry. There are two ten-dimensional Majorana-Weyl spinors ε1, ε2 of super-

symmetry transformation. Together these spinors have 32 independent real components.

The κ-symmetry projects out half of this number. So there remains 16 independent real

components. We thus say that this D-brane has 16 supercharges.

Let us now turn to a supersymmetric Dp-brane in a more general background. For

applications in chapters 2 and 3, we are only interested in the bosonic part of a Dp-brane

action. The bosonic part of background fields contains a metric GMN , an NS-NS 2-from

gauge field BMN , a dilaton Φ and R-R n-form gauge fields C(n). The bosonic part of

worldvolume fields contains 9−p scalar fields encoded in an embedding function XM (ξµ),

and a gauge field Aµ with field strength Fµν = ∂µAν − ∂νAµ. The bosonic part of the

worldvolume action is given by

S = SDBI + SWZ , (1.40)

where the first part is the DBI action [32,33]:

SDBI = −TDp
∫
dp+1ξe−Φ

√
−det(gµν + Fµν), (1.41)

where

gµν = P [G]µν =
∂XM

∂ξµ
∂XN

∂ξν
GMN , (1.42)

Fµν = 2πα′Fµν + bµν , bµν = P [B]µν =
∂XM

∂ξµ
∂XN

∂ξν
BMN , (1.43)

µ, ν = 0, 1, . . . , p, M,N = 0, 1, . . . , 9. (1.44)

Here P [...] is a pull-back of a background field into the Dp-brane worldvolume. Note that

we have made a shift in the dilaton field Φoriginal = Φ + log gs, so the vacuum expectation

value of Φ is zero. We will adopt this convention throughout this thesis. The second part

of the bosonic D-brane action is the Wess-Zumino (WZ) term

SWZ = µDp

∫ (∑
n

P [C(n)] ∧ eF
)
p+1

, (1.45)

where the sum is over all background R-R gauge fields. The exponential is expressed

formally as Taylor expansion with wedge product omitted. The (...)p+1 means that a

(p+ 1)-form should be extracted from the bracket.
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p1 p2

p1-p2

p2-p1

p1-p1

p2-p2

Figure 1.4: Two parallel but non-coincident Dp-branes with strings stretching between

them.

In the Dp-brane worldvolume action, TDp is the Dp-brane tension which is given by

TDp =
1

(2π)pgsl
p+1
s

. (1.46)

The quantity µDp is the Dp-brane charge1. Supersymmetry requires that

µDp = TDp. (1.47)

We have discussed that a stable Dp-brane can be added into a type II superstring the-

ory. It is also possible to add more than one Dp-brane and still get a stable configuration.

There are several possible configurations. However, we will only state some configurations

that are relevant to us.

1.3.2 Multiple D-branes

The first example of multiple D-branes that we will discuss is a set of N coincident Dp-

branes. At low energy, the matter contents of this system is not simply N multiples of the

contents from a single low-energy Dp-brane. Instead, the degrees of freedom get enhanced

due to the coincidence of the Dp-branes.

This is easily seen from the open string point of view. Consider two parallel but non-

coincident Dp-branes which are shown in figure 1.4. Let us label them as p1 and p2. There

are four types of open strings which stretch from these Dp-branes.

1The Dp-brane charge discussed here has a different normalisation from that discussed previously.

Notice that the symbol µDp here is differed from the symbol µp which is used previously.
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• A p1 − p1 string where both endpoints are on the p1.

• A p1 − p2 string where one endpoint is at the p1 while another is at the p2.

• A p2 − p1 string where one endpoint is at the p2 while another is at the p1.

• A p2 − p2 string where both endpoints are on the p2.

Note that the strings are oriented, so it is necessary to distinguish between p1 − p2 and

p2−p1 strings. The spectrum of each of p1−p1 and p2−p2 strings contains massless states

with matter contents the same as those discussed in the previous subsection. However,

the spectrum of each of p1− p2 and p2− p1 strings generically contains no massless states.

So these states are not relevant at low energy.

But when the two D-branes coincide, some states become massless. The field contents

from each of p1 − p2 and p2 − p1 strings are the same as those from each of p1 − p1

and p2 − p2 strings. Note that even if the matter contents are the same, the strings are

still distinguishable. The matter contents can in fact be realised as fields transforming

in an adjoint representation of a U(2) gauge group. The internal degrees of freedom can

collectively be represented by a 2 × 2 matrix. Different strings are realised as different

components of this matrix.

The discussion can be generalised to the case of N coincident Dp-branes. In this case,

the massless fields transform under an adjoint representation of a U(N) gauge group. In

fact, the U(N) gauge group can be decomposed as U(1)×SU(N). The U(1) part decouples

from SU(N). So N coincident Dp-branes contain massless fields which consist of 1 gauge

field, 9 − p scalar fields and fermionic superpartners. All these fields transform in an

adjoint representation of an SU(N) gauge group.

The matter content suggests that, as in the case of a single Dp-brane, the coincident Dp-

branes in a flat spacetime has 16 supercharges. However, the complete supersymmetric

action is not known. In fact, it is already difficult to obtain a non-Abelian version of

DBI action. Since the fields are non-Abelian, the ordering of the fields is important.

For example, commutators that obviously vanish in single D-brane action have to be

introduced at appropriate places in the coincident D-branes action. Attempts are carried

out for example in [34–36]. The DBI action is obtained with the help of T-duality and

is written using a symmetrised trace prescription. However, this action does not work

beyond the fourth order in field strength [37–40]. Furthermore, the D-branes have to be

in a static gauge, in which the embedding function is given by Xµ = ξµ, XI = XI(ξµ).
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X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

k D1-branes • •

N D3-branes • • • •

Table 1.1: The D1/D3 brane intersection in a ten-dimensional flat spacetime.

This means that a subset of spacetime coordinates is identified with the worldvolume

coordinates. Note that the non-Abelian WZ action can also be written down and is given

by the reference [36].

Let us now consider N coincident D3-branes in a flat spacetime with all other back-

ground fields turned off. Up to the second order in field strength, the complete action can

be obtained, and the worldvolume theory is an N = 4 SU(N) super-Yang-Mills (SYM)

theory in a four-dimensional flat spacetime. This theory is N = 4 because the 16 super-

charges that the D3-branes possess are realised as forming 4 Weyl spinors in 4 dimensions.

The matter content of this theory consists of a gauge field, four Weyl spinors, and six real

scalars. These fields form a group called the N = 4 vector supermultiplet. Because of

supersymmetry, all the fields in the supermultiplet transform in the adjoint representation

of the gauge group, which in this case is SU(N). Other properties of this theory will

be discussed in section 1.4. For now, let us instead discuss other examples of multiple

D-branes configurations.

Apart from multiple D-branes with 16 supercharges, it is also possible to construct

systems that are still supersymmetric but has less amount of supersymmetry. We are

interested in a particular case of D-brane intersections which has 8 supercharges.

Consider a stack of k coincident D1-branes and a stack of N coincident D3-branes in

a ten-dimensional flat spacetime. The directions of D1-branes and D3-branes are given

in table 1.1. The D3-branes are in X0, X1, X2, X3 directions while the D1-branes are in

X0, X4 directions. The two stacks of D-branes intersect if they share the same position

in X5, X6, . . . , X9 directions. For any value of k and N, the system has 8 supercharges.

More generally, intersecting D-branes have 8 supercharges if the total number of di-

rections that only one stack of D-branes span is equal to 4 or 8. In the above example of

the D1/D3 system, such directions are X1, X2, X3, X4, so there are 4 in total.

The D1/D3 system can be explained from the point of view of either D-branes stack.

However, we are mainly interested in looking at D3-branes worldvolume. Although the

action of multiple D3-branes has 16 supercharges, the solution which corresponds to the
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D1/D3 brane intersection preserves only 8 supercharges. The solution is static, and in the

case of k = 1, N = 2, it contains a non-Abelian gauge field and a scalar field transforming

in an adjoint representation of an SU(2) gauge group. The solution is recognised as a

non-Abelian ’t Hooft-Polyakov monopole in the BPS limit. This non-Abelian monopole is

smooth everywhere. Furthermore, it has SU(2) gauge symmetry at its core, but the gauge

group is broken to U(1) asymptotically. We will give a further review of this solution in

chapter 5.

1.3.3 D-branes as solutions of supergravity

We have been looking at low energy stable D-branes from the worldvolume perspective.

Alternatively, D-branes can be viewed as solutions of type IIA/IIB supergravity theories.

But before we discuss these solutions, let us first review how to obtain a trivial solution

of the type IIA/IIB supergravity theories.

A solution of the type IIA/IIB supergravity theories can be obtained by solving equa-

tions of motion of the theories. A trivial solution is given by setting the metric flat:

GMN = ηMN , and turning off the other fields. This solution is simply a ten-dimensional

flat spacetime. If we consider a local supersymmetry transformation of this solution, we

see that

δΨi
M (X) = ∂M ε

i(X), i = 1, 2, (1.48)

while local supersymmetry transformations of the other fields are trivially satisfied. In

order to see if a solution preserves supersymmetry, one looks for εi(X) which make local

supersymmetry transformations vanish, and counts the total number of independent real

components of these εi(X). In this trivial case, the vanishing of the local supersymmetry

transformations implies that ∂M ε
i(X) = 0. Therefore, εi are arbitrary constant spinors.

Because each of the εi is a ten-dimensional Majorana-Weyl spinor which has 16 indepen-

dent real components, there are in total 32 independent real components from all the εi.

With this results, we say that the ten-dimensional flat spacetime preserves (all of the) 32

supercharges.

Let us now turn to solutions which correspond to D-branes. A solution called extremal

p-brane solution is associated to a stack of N coincident stable Dp-branes in flat spacetime.

Some of the symmetries of this solution are the same as that of D-branes. For example,

this solution has SO(1, p)×SO(9−p) isometry, meaning that the metric is invariant under

the group SO(1, p)× SO(9− p). This group is identified with the Lorentz group SO(1, p)

and the internal symmetry group SO(9− p) of the Dp-branes. Furthermore, the extremal
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p-brane solution preserves 16 supercharges which is the same amount of supersymmetries

that Dp-branes have.

An extremal 3-branes solution is of relevant to us. The non-vanishing fields are given

by [41,42]

ds2 = H−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) +H1/2(dr2 + r2dΩ2

5),

F (5) = ±(1 + ∗)dtdx1dx2dx3dH
−1,

(1.49)

where

F (5) = dC(4), (1.50)

H = 1 +
R4

r4
, R4 = 4πgsα

′2N, (1.51)

and dΩ2
5 is a metric of a unit S5. The sketch of the geometry of this solution is given in

figure 1.5. Note that the ± sign of F (5) in fact only depends on orientation, so without

loss of generality, we can choose either + or − sign. Note also that we have omitted the

wedge product ∧ in the expression of F (5). The hyperplane t− x1− x2− x3 is interpreted

as the D3-brane worldvolume while the other six directions are interpreted as transverse

directions to the D3-branes. The electric and magnetic charges of the solution are given

by integrating ∗F (5) and F (5) over the large S5 which surrounds the sources of the ∗F (5)

and F (5) : ∫
S5

∗F (5) =

∫
S5

F (5) ∝ N. (1.52)

By using the charge quantisation condition, the quantity N is discrete. It can be inter-

preted as the number of D3-branes. This is because N D3-branes source the N units of

the 5-form R-R charges. We will discuss more about the extremal 3-brane solution in

section 1.4.

There are solutions called non-extremal black p-brane solutions [41], which break all

the supersymmetry. These solutions contain outer and inner horizons. In the case where

these horizons coincide the solution no longer has any horizon, and is identified with the

extremal p-branes. Entropy of black p-branes can be obtained. In particular, the entropy

of a near extremal black 3-brane solution is given by the reference [43]. The idea is to

compute the area of the event horizon of the near extremal black 3-brane solution. This

area is proportional to Bekenstein-Hawking entropy of the solution. The entropy scales as

N2 which is identified with internal degrees of freedom of large N limit of SU(N) gauge

group on the worldvolume of N coincident D3-branes.
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Figure 1.5: A sketch of the geometry of an extremal 3-brane solution.

1.4 Development: gauge/gravity duality

AdS/CFT correspondence [44] is a conjecture stating that a certain type of gauge theory

is equivalent to a certain type of string theory. This correspondence and its generalisations

are used to compute and describe physics of strongly coupled gauge theories which are

tractable by only a few of other approaches.

1.4.1 Original AdS/CFT correspondence

Let us first motivate AdS/CFT correspondence in its original form. Consider a stack of

Nc coincident D3-branes. We have seen in the previous section that there are two possible

low-energy interpretations of the D-branes: either as an object on which open strings can

end or as a solitonic solution of type IIB supergravity theory.

In the first low-energy interpretation of D3-branes, the action is of the form

S = Sbulk + Sbrane + Sint. (1.53)

Sbulk describes the interactions between closed strings that propagate in the bulk. In

the low energy limit where E � 1/
√
α′, the closed strings become free. So gravitons,

which are from spectrum of closed strings, are non-interacting. This gives rise to a flat

spacetime. Similarly, the Sint part, which describes the interaction between closed and

open strings, also vanishes in the low-energy limit. This implies that the D3-branes live

in a ten-dimensional flat spacetime with other background fields turned off. As for Sbrane,

which is a worldvolume action on the D3-branes, its DBI part is reduced to YM in the low

energy limit. Therefore it describes an N = 4 SU(Nc) SYM theory in a four-dimensional

Minkowski (flat Lorentzian) space.
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Let us now consider the second low-energy interpretation. In the low-energy limit, type

IIB superstring theory reduces to type IIB supergravity theory. The stack of D3-branes is

then viewed as a supergravity solution which is given by the equation (1.49). Two limits

of the metric are worth mentioning. The first limit is r � R, which is far away from the

D3-branes. In this limit, the metric reduces to

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 + dr2 + r2dΩ2

5, (1.54)

which describes a ten-dimensional flat spacetime. The second limit is r � R, which is

close to the D3-branes. This limit is also called the near-horizon limit. In this limit, the

metric reduces to

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
(dr2 + r2dΩ2

5), (1.55)

which describes AdS5×S5. We say that the AdS5 part (t, x1, x2, x3, r) of this metric is in

the Poincaré coordinates. The full geometry of the equation (1.49) interpolates between

a ten-dimensional flat spacetime and an infinite throat region with geometry AdS5 × S5.

In the low energy limit, only these two geometries are important. Consider closed string

excitations in the full background geometry. The proper energy Er of an object at a

position r is observed by an observer at the asymptotic flat spacetime as

E =
Er(

1 + R4

r4

)1/4
. (1.56)

If the object gets closer to r = 0, its the energy as observed by an observer at infinity

would appear to be lower. In the low energy limit E � 1/
√
α′, the proper energy of a

closed string near r = 0 can become very large. As a result, the full spectrum of the

quantised closed string should be considered. This gives a type IIB superstring theory

in AdS5 × S5. From the point of view of an observer at infinity, there are two kinds of

low energy excitations: any excitation from the region which is very close to r = 0 or

low energy excitations in the asymptotic region r � R. These two kinds of excitations

decouple from each other. An excitation near r = 0 cannot escape to the asymptotic

region r � R, while an excitation in the asymptotic region r � R cannot be captured by

the branes which are very small when compared to the wavelength of the excitation.

Therefore, to a good approximation, this second low-energy interpretation describes

two decoupled systems: type IIB superstring theory in AdS5 × S5 and a system of free

closed strings in flat spacetime.
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Figure 1.6: A diagram showing a motivation of AdS/CFT correspondence. The equiva-

lence between the two low energy interpretations of D3-branes suggests that an N = 4

SU(Nc) SYM theory in a four-dimensional Minkowski space is dual to a type IIB super-

string theory in AdS5 × S5.

In each of the low energy descriptions, there are two decoupled systems. Both descrip-

tions have, in common, a system of free closed strings in a ten-dimensional flat spacetime.

It is then natural to assume that the rest are equivalent. This means that an N = 4

SU(Nc) SYM theory in a four-dimensional Minkowski space is expected to be equivalent

(dual) to a type IIB superstring theory in AdS5×S5. The equivalence is called AdS/CFT

correspondence. We summarise the results of the motivation in figure 1.6. Note that

the background in which the type IIB superstring theory lives is in fact given by the full

solution (1.49). We, however, usually mention only the metric.

The N = 4 SU(Nc) SYM theory in a four-dimensional Minkowski space is invariant

under a group called the conformal group which consists of four translations, six Lorentz

generators, one scale transformation and four special conformal transformations. These

fifteen generators form an SO(2, 4) algebra. The conformal invariance of this theory re-

mains at the quantum level. Because of this property, this theory is called a conformal

field theory (CFT). The implied invariance under the scaling transformation implies that

this theory has no dimensionful scale. Since this theory has no length scale, it is charac-

terised by dimensionless quantities which are a dimensionless coupling constant gYM and

a number Nc from the SU(Nc) gauge group.

For our purpose, AdS/CFT correspondence will be useful for studying the SYM theory

at large Nc and strong coupling. As Nc → ∞, the coupling of the SYM theory is better

described by the ’t Hooft coupling λ = g2
YMNc. Therefore, by strong coupling, we mean

λ → ∞. In particular, consider the limit where gYM → 0, Nc → ∞ but λ is kept fixed.

Then take the limit λ→∞.
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When the SYM theory is in this strong coupling limit, the dual superstring theory in

AdS5 × S5 becomes tractable. This can be seen by relating the dimensionless constants

between the two theories. The dimensionless constants of the SYM theory are gYM and Nc

while the dimensionless constants of the string theory are gs and R/
√
α′. The relationships

are

gs =
1

2π
g2
YM ,

R4

α′2
= 2g2

YMNc = 2λ. (1.57)

Therefore, the limits in the field theory translates to gs → 0 and R4/α′2 → ∞. In these

limits the string theory reduces to classical supergravity.

Our discussions of AdS/CFT correspondence and its applications will be based on this

limit. This means that we consider the case where N = 4 SU(Nc) SYM theory in a

four-dimensional Minkowski space at large Nc and strong coupling is dual to a classical

type IIB supergravity in AdS5 × S5. We will call the former as the field theory side while

the latter as the gravity side.

We can also motivate the correspondence between the two theories by discussing sym-

metries. The field theory is invariant under the SO(2, 4) conformal group. Furthermore,

it is also invariant under a group called the R-symmetry group, which, in this case, is

SU(4)R. Recall that the matter content of this theory consists of a gauge field, four Weyl

spinors, and six real scalars. The field theory’s matter content transforms in this R-

symmetry group as follows. The gauge field transforms in 1, the fermions in 4 and the

scalars in 6 of the R-symmetry group. This means that the R-symmetry rotates each type

of the fields among themselves. The conformal symmetry and R-symmetry are bosonic;

that is, the generators of these symmetries transform bosons to bosons and fermions to

fermions. The field theory also has fermionic symmetries, whose generators transform

bosons to fermions and vice versa. This theory has 16 supercharges. Additionally, there

are 16 real superconformal charges which are needed to ensure the closure of the algebra

of the bosonic and fermionic symmetries. These bosonic and fermionic symmetries all

together combine into a superconformal group SU(2, 2|4).

This symmetry group can also be realised from the gravity side. The AdS5 part,

(t, x1, x2, x3, r), of the equation (1.55) is by definition the solution of the embedding of the

hypersurface

X2
0 +X2

5 −
4∑

n=1

X2
n = R2, (1.58)
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into an R2,4 space with metric

ds2 = −dX2
0 − dX2

5 +
4∑

n=1

dX2
n. (1.59)

This solution is given by

X0 =
R2

2r
+

r

2R2

R2 +
3∑
j=1

xjxj − t2
 , X5 =

r

R
t,

Xi =
r

R
xi (i = 1, 2, 3),

X4 =
R2

2r
− r

2R2

R2 −
3∑
j=1

xjxj + t2

 .

(1.60)

Both the ambient metric (equation (1.59)) and the constraint (equation (1.58)) are invari-

ant under the rotation group SO(2, 4). Therefore, the AdS5 part has an isometry group

SO(2, 4). The S5 part of the metric (1.55) has an isometry group SO(6) ∼= SU(4). The

fermionic symmetries are coming from preserved supercharges. Although the background

(1.49) preserves only half the supersymmetry, its near-horizon limit r � R preserves all

the supersymmetry. In other words, AdS5×S5 has 32 supercharges. When combining the

bosonic and fermionic symmetries, the full symmetry group of the gravity side is SU(2, 2|4)

which is the same as the symmetry group of the field theory side.

Note that in fact the SU(2, 2|4) symmetry of the field theory side is a global symme-

try while the SU(2, 2|4) symmetry of the gravity side is a gauge symmetry. This is an

example of a correspondence between global symmetries of the field theory side and gauge

symmetries of the gravity side.

Consider the AdS5 part of the metric (1.55). The r coordinate ranges from 0 to ∞.

The Gtt = −r2/R2 component of the metric is zero at r = 0, so there is a horizon at r = 0.

We call this horizon as the Poincaré horizon. Another point of interest of this AdS5 is its

boundary, which will be described in terms of the conformal boundary. A metric ds̃2 is

conformally equivalent to a metric ds2(X) if ds̃2 = k2(X)ds2(X) for a function k(X). Let

us multiply the AdS5 part of the metric (1.55) by R2/r2, and then take the limit r →∞.

We obtain

ds̃2 → −dt2 + dx2
1 + dx2

2 + dx2
3. (1.61)

This is the conformal boundary of the Poincaré AdS5. This conformal boundary is a four-

dimensional Minkowski spacetime which can be identified with spacetime in which the

field theory lives. In this way, the field theory side of the AdS/CFT correspondence can

be thought of as living on the boundary of the gravity theory. This is also true in the
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generalised version of AdS/CFT correspondence where the conformal boundary of the

gravity side is no longer flat but the field theory still lives on this boundary.

Important quantities in a quantum field theory can be obtained by studying correla-

tion functions, all of which are encoded in a generating functional. It is usually difficult

to compute a generating functional of a generic quantum field theory. However, in the

framework of AdS/CFT correspondence the calculations are much simpler. A generat-

ing functional of the field theory side can be obtained [45, 46] by computing a partition

function in the dual gravity theory. More explicitly,

〈e
∫
d4xφ0(x)O(x)〉CFT = ZSUGRA

∣∣
φ(x,∞)=φ0(x)

, (1.62)

where the left-hand side describes the generating functional of the field theory while the

right-hand side describes the partition function in the gravity side. On the gravity side,

one solves the equation of motion for the field φ(x, r), where x is a collective name for

(t, x1, x2, x3). Then one computes the on-shell supergravity action, which in turn can be

used to obtain the on-shell supergravity partition function ZSUGRA and then evaluates at

the boundary r →∞. This gives, via AdS/CFT correspondence, the generating functional

of the field theory side. The field φ0(x) is identified with a source of the field theory

operator O(x).

As an example, consider a massive scalar field in AdS5 which can be thought of as

coming from a Kaluza-Klein (KK) reduction on S5 of the scalar field in the full AdS5×S5

spacetime. This means that the scalar field φ10D(x, r,Ω5) in AdS5 × S5 is given by

φ10D(x, r,Ω5) =
∑
l

φl(x, r)Yl(Ω5), (1.63)

where Yl(Ω5) is a spherical harmonics on S5 with a collection l of quantum numbers. The

equation of motion is given by

∂r
(
r5∂rφ

)
r5

+
R4

r4

(
− ∂2

∂t2
+

∂2

∂~x2

)
φ− m2R2

r2
φ = 0, (1.64)

where ~x = (x1, x2, x3). Note that m2 depends on quantum numbers of the spherical har-

monics on S5. Note also that we have omitted the index l. The asymptotic form of the

solution of the above equation of motion is given by

φ→ φ0(x)

r4−∆
+
φ1(x)

r∆
, (1.65)

where ∆ = 2 +
√

4 +m2R2. Note that if m2 is considered arbitrary, this solution holds as

long as m2R2 ≥ −4. This is an example of Breitenlohner-Freedman (BF) bound [47, 48].
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From the asymptotic form, one can identify φ0(x) as a source of the corresponding operator

O(x) in the field theory, and identify φ1(x) as a vacuum expectation value (VEV) of

the operator. Note that the VEV can also be obtained by a functional derivative of

ZSUGRA. In some cases, the on-shell supergravity action is infinite, so regularisations and

renormalisations are needed to be applied before computing the action and ZSUGRA.

Although there is still no concrete proof, it is widely believed that AdS/CFT corre-

spondence can be extended. In the extended version, the field theory side does not need to

be CFT, and the gravity side does not need to be AdS. We call this extended framework

as gauge/gravity duality. It is often the case that several motivations of a given proposed

duality are sufficient to start the investigation.

In our case, we want to extend the original AdS/CFT correspondence to study the field

theory at finite temperature, finite volume, and containing flavour fields. Such models are

in fact already available in the literatures. Let us discuss the cases that are relevant to us.

1.4.2 Extension: finite temperature and finite size

So far, we have considered the field theory side which is at zero temperature and lives in an

infinite space. We will also be interested in studying the field theory at finite temperature

and lives in a compact space. This generalisation can be done simply by compactifying

the Wick rotated time direction and making AdS5 to be in global coordinates.

Let us put the field theory in a compact space. This is equivalent to studying the

gravity side with a metric

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ̄2
3 +R2dΩ2

5. (1.66)

We call this metric as the global AdS5×S5 and call the AdS5 part (t, Ω̄3, r) of this metric as

the global AdS5. Recall that the Poincaré AdS5 has the Poincaré horizon. On the contrary,

the global AdS5 is smooth everywhere. The point r = 0 in which the radius of the three-

sphere shrinks to zero is called the AdS centre. Another difference between the Poincaré

AdS5 and the global AdS5 is that while the boundary of the Poincaré AdS5 is R1,3, the

boundary of the global AdS5 is R×S3. The boundary of the global AdS5 is at r →∞. In

order to obtain this boundary, we multiply the global AdS5 metric by 1/(1 + r2/R2), and

then take the limit r → ∞. This gives the boundary metric ds2
boundary = −dt2 + R2dΩ̄2

3.

As in the case of the Poincaré AdS5, the global AdS5 satisfies the equations (1.58) and

(1.59). However, the Poincaré AdS5 covers only a part of the global AdS5.

The temperature T can be added into the global AdS5×S5 by Wick rotating the time
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coordinate t → τ = it, then compactifing it on a circle τ ∼ τ + β, and finally identifying

the period with the inverse temperature β = 1/T . This temperature is identified with the

temperature on the field theory side. The global AdS5 × S5 at finite temperature is valid

for T ≤ THP = 3/(2R). For our application, if T < THP , the results will not depend on

T. So whenever we consider T < THP , we will simply focus on zero temperature.

In the case T ≥ THP , another metric is thermodynamically preferred. It is obtained [49]

simply by introducing a black hole. The metric is given by

ds2 = −
2ρ2

H

uR2

1− u2

1− uR2

4ρ2H

dt2 +
2ρ2

H

u

(
1− uR2

4ρ2
H

)
dΩ2

3 +
R2

4u2(1− u2)
du2 +R2dΩ2

5. (1.67)

This metric has an event horizon at u = 1, and a boundary at u = 0. The temperature

whose inverse is identified with the period of the Wick rotated time coordinate which makes

the near-horizon metric contain no conical singularity is called the Hawking temperature.

For this metric, the Hawking temperature is given by

T =

√
2ρH

πR2
√

1− R2

4ρ2H

, (1.68)

which is identified with the temperature of the dual field theory. We will call this metric

as (AdS − Schwarzschild)5 × S5 in the global coordinates, and call its AdS part as the

global AdS-Schwarzschild.

In the TR→∞ limit, the metric becomes

ds2 =
2ρ2

H

uR2

(
−(1− u2)dt2 + d~x2

)
+

R2

4u2(1− u2)
du2 +R2dΩ2

5. (1.69)

This metric has an event horizon at u = 1, and a boundary at u = 0. The Hawking

temperature is

T =

√
2ρH
πR2

. (1.70)

We will call this metric as (AdS−Schwarzschild)5×S5 in the Poincaré coordinates, and

call its AdS part as the Poincaré AdS-Schwarzschild. Before taking the TR → ∞ limit,

R is the radius of the S3 in which the field theory lives. So one may interpret that in the

TR→∞ limit the dual field theory is at finite temperature and lives in the infinite-volume

space. Alternatively, one can say that the field theory is at infinite temperature and lives

in the finite-volume space. We will often adopt the former point of view.

Let us now try to visualise the AdS5 part of these spacetimes. We start with the global

AdS5 metric.

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ2
3 (1.71)
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Figure 1.7: Illustrations of the space which is conformal to the global AdS5. τ is the time

coordinate and is in the vertical direction. θ is the radial coordinate of the global AdS5,

and is shown in the figure as the radial direction. The θ = 0 axis corresponds to the AdS

centre, while the cylinder’s boundary θ = π/2 corresponds to the AdS boundary. ϕ is the

S1 representative of S3, and is shown as the angular direction. The picture on the left

shows the full cylinder. The picture on the right shows the cylinder’s vertical slice which

passes through the θ = 0 axis. θ is increasing from 0 to π/2 both to the left and to the

right of the θ = 0 axis. The values of ϕ on the left and on the right of the θ = 0 axis are

ϕ = π and ϕ = 0, respectively.

After the coordinate transformation: t = Rτ, r = R tan θ, the metric becomes

ds2 =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θdΩ2

3) ≡ R2

cos2 θ
ds′2. (1.72)

Instead of visualising ds2, it is simpler to visualise ds′2. The range of τ is −∞ < τ < ∞,

and the range of θ is 0 ≤ θ ≤ π/2. For illustration propose, let us view S3 simply as S1,

that is, we replace dΩ2
3 with dϕ2, where ϕ is in the range 0 ≤ ϕ < 2π. The AdS centre

is at θ = 0, while the AdS boundary is at θ = π/2. We visualise this conformal space of

global AdS5 in figure 1.7. We draw it in the cylindrical coordinate system in which θ is

the radial direction, ϕ is the angular direction, and τ is the vertical direction. In the same

figure, we also present the vertical slice which passes through the θ = 0 axis of this space.

Let us now turn to the Poincaré AdS5 metric

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2. (1.73)
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Figure 1.8: Illustrations of the space which is conformal to the Poincaré AdS5. This space

is embedded into the space of figure 1.7. The picture on the left is taken from figure 2(b)

of the reference [5]. It shows that the conformal space to the Poincaré AdS5 occupies

a wedge-like region within the cylinder. Region I represents the Poincaré AdS boundary

while Regions VIII-XVII represent the Poincaré horizon. Details of these and other regions

are discussed in the reference [5]. The picture on the right shows the cylinder’s vertical

slice which passes through the θ = 0 axis. θ is increasing from 0 to π/2 both to the left

and to the right of the θ = 0 axis. The values of ϕ on the left and on the right of the

θ = 0 axis are ϕ = π and ϕ = 0, respectively. The light blue shaded region corresponds

to the (t, r) subspace at x1 = x2 = x3 = 0 of the Poincaré AdS5.

Again, we want to visualise the space associated with the metric ds′2 which is defined via

ds2 =
R2

cos2 θ
ds′2, (1.74)

where θ here is the same as θ in the metric (1.72). Since the Poincaré AdS5 is a part of the

global AdS5, it is possible to find the relationship between the coordinates (t, r, x1, x2, x3)

of the Poincaré AdS5 and the coordinates (τ, θ,Ω3) of the metric (1.72). The reference

[5] thoroughly studied this relationship and show explicitly how the Poincaré AdS5 is

contained within the global AdS5. We reproduce their results in figure 1.8. This figure

shows that the conformal space of the Poincaré AdS5 occupies a wedge-like region within

the cylinder of the conformal space of the global AdS5. The same figure also shows the

vertical slice which passes through the θ = 0 axis. The resulting triangular region shows

the (t, r) subspace at x1 = x2 = x3 = 0 of the Poincaré AdS5.
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Let us now visualise the global AdS-Schwarzschild. The metric is given by

ds2 = −
2ρ2

H

uR2

1− u2

1− uR2

4ρ2H

dt2 +
2ρ2

H

u

(
1− uR2

4ρ2
H

)
dΩ2

3 +
R2

4u2(1− u2)
du2. (1.75)

It is useful to make the coordinate transformation

t = Rτ, u =
4ρ2

H

R2

1

(1 + 2 tan2 θ)
. (1.76)

This gives

ds2 =
R2

cos2 θ

(
−g(θ)dt2 +

dθ2

g(θ)
+ sin2 θdΩ2

3

)
≡ R2

cos2 θ
ds′2, (1.77)

where

g(θ) = 1− 1

4

(
16ρ4

H

R4
− 1

)
cos4 θ

sin2 θ
. (1.78)

Since the metric (1.77) is put in the similar form as that of the metric (1.72), we can

visualise the global AdS-Schwarzschild by following the steps similarly to those outlined in

the case of the global AdS5. The only difference is that θ here is in the range θH < θ ≤ π/2,

where

θH = tan−1

(
1√
2

√
4ρ2

H

R2
− 1

)
. (1.79)

We show the conformal space of the global AdS-Schwarzschild and its slice in figure 1.9. In

the figure, the black hole is depicted as a cylinder whose boundary at θ = θH corresponds

to the black hole horizon. The value of θH is increased as the temperature of the black

hole increases.

Given the gravity theory on each of the AdS5×S5 spacetimes, let us now try to see to

what field theory this gravity theory corresponds. The motivation of the duality can be

done by following the low energy limit discussion. The only metric that can be motivated

in this way is (1.69). It can be realised (see for example [50]) as a near-horizon limit of a

non-extremal black 3-brane solution which is a solution of type IIB supergravity theory.

Unlike the extremal 3-branes, the non-extremal black 3-brane solutions do not preserve

supersymmetry. So we may expect that the worldvolume theory on the corresponding

3-brane in string theory also does not have supersymmetry. However, the matter con-

tent should be the same2 as that of N = 4 SU(Nc) SYM theory in a four-dimensional

Minkowski space. Although supersymmetry is broken, we will sometimes call the the-

ory as if it has N = 4. This is just to remind us of the matter content. Note also that

temperature introduces a scale. So the field theory is no longer conformal.

2Strictly speaking, the reference [49] states that in this case the supersymmetry is broken such that

scalars and fermions gain mass and are ignored from the discussion.
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Figure 1.9: Illustrations of the space which is conformal to the global AdS-Schwarzschild.

τ is the time coordinate and is in the vertical direction. θ is the radial coordinate of the

global AdS-Schwarzschild, and is shown in the figure as the radial direction. The grey

cylinder represents the black hole with horizon at θ = θH . The boundary θ = π/2 of the

light blue cylinder corresponds to the AdS boundary. ϕ is the S1 representative of S3,

and is shown as the angular direction. The picture on the left shows the full cylinder. The

picture on the right shows the cylinder’s vertical slice which passes through the θ = 0 axis.

θ is increasing from 0 to π/2 both to the left and to the right of the θ = 0 axis. The values

of ϕ on the left and on the right of the θ = 0 axis are ϕ = π and ϕ = 0, respectively.

This motivates the correspondence between an N = 4 SU(Nc) SYM theory with

large Nc, λ in a four-dimensional Minkowski spacetime at finite temperature and type IIB

supergravity theory in (AdS−Schwarzschild)5×S5 in the Poincaré coordinates. In fact,

the metric (1.69) is a part of the type IIB supergravity solution

ds2 =
2ρ2

H

uR2

(
−(1− u2)dt2 + d~x2

)
+

R2

4u2(1− u2)
du2 +R2dΩ2

5,

F5 =
4

R
(1 + ∗)

(
2ρ4

H

R3u3
dtdx1dx2dx3du

)
=

4

R
(1 + ∗)Vol(AdS5),

(1.80)

where Vol(AdS5) is the volume form of the AdS part of the metric.

Let us now consider the other cases. The metrics (1.66) and (1.67) cannot be realised

as coming from near-horizon limit of a certain solution of type IIB supergravity theory.

However, we simply believe that the duality still applies. So in the case of (1.66) we say

that an N = 4 SU(Nc) SYM theory with large Nc, λ in R× S3 is equivalent to type IIB
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supergravity theory in global AdS5 × S5 where the full background is given by

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ2
3 +R2dΩ2

5,

F5 =
4

R
(1 + ∗)r3dtdrVol(S3) =

4

R
(1 + ∗)Vol(AdS5),

(1.81)

where Vol(S3) is a volume form of the unit S3. This background is a solution of type IIB

supergravity theory, but it is not a near-horizon limit of any known solution of type IIB

supergravity theory. This solution has the isometries SO(2, 4) and SO(6) and preserves

the full supersymmetry. So, the dual field theory should still have the same symmetry as its

infinite volume counterpart. However, the generators of the conformal group SO(2, 4) are

modified3 in such a way that the conformal group no longer contains a scaling symmetry.

This agrees with the fact that the theory now has a dimensionful scale which is the radius

R of S3.

Similarly, for the case of (1.67) we say that there is a correspondence between an

N = 4 SU(Nc) SYM theory with large Nc, λ in R×S3 at finite temperature and type IIB

supergravity theory in global (AdS − Schwarzschild)5 × S5 where the full background is

given by

ds2 = −
2ρ2

H

uR2

1− u2

1− uR2

4ρ2H

dt2 +
2ρ2

H

u

(
1− uR2

4ρ2
H

)
dΩ2

3 +
R2

4u2(1− u2)
du2 +R2dΩ2

5

F5 =
4

R

(
2ρ4

H

u3

(
1− uR2

4ρ2
H

)
dtVol(S3)du

)
=

4

R
(1 + ∗)Vol(AdS5),

(1.82)

which is a solution of type IIB supergravity theory.

1.4.3 Further extension: adding flavour fields

We have discussed the extension of AdS/CFT correspondence to the case where the field

theory is at finite temperature and/or living in the compact space. We are now interested

in making the field theory more resemblance to the real QCD. There are several directions

to do this. However, we will only focus on a model called the D3/D7 model. This model

is not the most efficient4 , but it is relatively simple to compute, and its results can be

used to give some insights into QCD-like systems.

3See for example [51] for generators of the conformal group SO(2, 4) on R× S3.
4A more efficient model, called the Sakai-Sugimoto model [52, 53], describes a QCD-like system with

Nf massless flavour fields having SU(Nf ) × SU(Nf ) flavour group that is spontaneously broken down

to SU(Nf ). This behaviour is in a close resemblance to the real QCD. The efficiency of Sakai-Sugimoto

model is realised for example in the computation of meson masses which is in a reasonable agreement with

experiments.



1.4. Development: gauge/gravity duality 33

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

Nc D3-branes • • • •

Nf D7-branes • • • • • • • •

Table 1.2: The D3/D7 system in a ten-dimensional flat spacetime.

X1,X2,X3

X4,X5,X6,X7
X8,X9

Nc D3-branes

L

Nf D7-branes

Figure 1.10: The D3/D7 system in a ten-dimensional flat spacetime. The D3-branes and

the D7-branes are separated by the distance L. In this figure, the X0 direction is omitted.

The matter content in the N = 4 SU(Nc) SYM theory transforms in the adjoint

representation of the gauge group. To move towards QCD, the D3/D7 model introduces

multiplets which transform in a fundamental representation of the gauge group while still

preserving as many supersymmetries as possible.

In the D3/D7 model, we consider a stack of Nc coincident D3-branes, and a stack

of Nf coincident D7-branes. For simplicity, let us consider the case of a flat spacetime

with coordinates XM ,M = 0, 1, 2, . . . , 9. The D3-branes cover X0, X1, X2, X3 while the

D7-branes cover X0, X1, . . . , X7. These two types of D-branes do not necessarily coincide;

the stack of D7-branes can be separated from the stack of D3-branes. The setting is shown

in table 1.2 and figure 1.10.

As in the case of the original AdS/CFT correspondence, here it is also possible to

discuss the low energy limit. We consider a probe limit where Nf � Nc. In this case, the

gravity side consists of closed strings and open 7−7 strings. The strings and branes live in

AdS5×S5 spacetime. In this probe limit D7-branes do not back-react on the background

geometry. The field theory side of the correspondence contains open 3 − 3, 3 − 7, and

7 − 3 strings. The 3 − 3 strings give, as usual, the N = 4 vector supermultiplet. The
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Figure 1.11: An illustration of gauge/gravity duality from the D3/D7 model. On the

gravity side (left) D7-branes wrap around AdS5 × S3 within AdS5 × S5. The relevant

degrees of freedom are from the closed strings propagating in the bulk and the 7 − 7

strings on D7-branes. The S5 is not shown in the figure. On the field theory side (right),

the relevant degrees of freedom are from the 3− 3 strings which correspond to the closed

strings and the 3−7, and 7−3 strings which correspond to the 7−7 strings on the gravity

side. This figure is adapted from the figure 3.1 of the reference [6]

3 − 7 and 7 − 3 strings give Nf copies of the N = 2 hypermultiplets transforming in

a fundamental representation of the SU(Nc) gauge group. An N = 2 hypermultiplet

contains a Dirac spinor and two complex scalars. The R-symmetry group of the N = 2

hypermultiplet is given by SU(2)R. The spinor transforms in 1 while the scalars transform

in 2 of this R-symmetry group. Since the N = 2 hypermultiplets are introduced, the full

supersymmetry of the theory is reduced to N = 2. Because of supersymmetry, every field

in the hypermultiplets has the same mass. If the D3-branes coincide with the D7-branes,

then the hypermultiplets are massless. However, if the D7-branes are separated by the

distance L from the D3-branes, then the hypermultiplets gain the mass mq = L/(2πα′).

Having motivated the correspondence, we present the statement. On the field theory

side, there is an N = 2 SYM theory in a four-dimensional spacetime. The matter contents

are from an N = 4 supermultiplet transforming in an adjoint representation of the SU(Nc)

gauge group and from N = 2 hypermultiplets having SU(Nf ) flavour symmetry and

transforming in a fundamental representation of the SU(Nc) gauge group. On the gravity

side, there is a stack of Nf D7-branes wrapping AdS5 × S3 within AdS5 × S5 spacetime.

The correspondence is shown in figure 1.11.

Massless hypermultiplets on the field theory side corresponds to Nf D7-branes wrap-

ping the whole of AdS5 and an equatorial S3 ⊂ S5. An embedding which gives massive

hypermultiplets is more complicated. It is determined by minimising the area of the D7-
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branes. Then the hypermultiplet mass is determined from how far the asymptotics of the

D7-branes are from the origin of the X8 −X9 plane.

Let us now discuss embeddings into each type of spacetimes and how to draw field

theory informations from these embeddings.

Low temperature T ≤ THP systems in an infinite space

For the AdS5×S5 in the Poincaré coordinates, the part of the metric on the six-dimensional

transverse space to the D3-branes is given by

R2

r2
(dr2 + r2dΩ2

5). (1.83)

This part of metric is conformal to

dr2 + r2dΩ2
5, (1.84)

which is a six-dimensional flat metric. When visualising the six-dimensional transverse

space to the D3-branes, it is often convenient to instead visualise the six-dimensional flat

space which is conformal to the actual transverse space. We adopt this view point for the

case of AdS5×S5 in the Poincaré coordinates considered here and for the subsequent cases

of the other AdS5 × S5 spacetimes. Let us express the metric part (1.84) into Cartesian

coordinates. We can write

r2 = (X4)2 + (X5)2 + (X6)2 + (X7)2 + (X8)2 + (X9)2, (1.85)

as well as the relationships between Ω5 and (X4, X5, . . . , X9). The full metric is then given

by

ds2 =
r2

R2
(−dt2+d~x2)+

R2

r2
((dX4)2+(dX5)2+(dX6)2+(dX7)2+(dX8)2+(dX9)2). (1.86)

To describe the embedding of D7-branes, let us define

ρ2 = (X4)2 + (X5)2 + (X6)2 + (X7)2, (1.87)

L2 = (X8)2 + (X9)2, (1.88)

as well as the coordinates Ω3 and φ. The coordinates ρ and Ω3 are polar coordinates of the

hypersurface X4−X5−X6−X7 while L and φ are polar coordinates of the hypersurface

X8 − X9. The coordinates Ω3 describe the S3 ⊂ S5 which the D7-branes wrap. The

coordinate transformation (t, ~x,X4, . . . , X9)→ (t, ~x, ρ,Ω3, L, φ) gives

ds2 =
ρ2 + L2

R2
(−dt2 + d~x2) +

R2

ρ2 + L2
(dL2 + dρ2 + L2dφ2 + ρ2dΩ2

3). (1.89)



1.4. Development: gauge/gravity duality 36

Let us consider the D7-brane embedding which is given by (t, ~x, ρ,Ω3) = (t, ~x, ρ,Ω3) and

L = L(ρ), φ = 0. The equation which determines the embedding is given by

L′′(ρ) +
3

ρ
L′(ρ) + L′(ρ)3 = 0, (1.90)

which is subject to the boundary conditions at the AdS boundary ρ → ∞ and at ρ = 0.

Instead of solving this boundary value problem, it is more convenient to use a method

called the shooting method to transform this problem into an initial value problem. In

this case, let us consider the initial condition at ρ = 0. Numerically, it is not possible to

impose the condition exactly at ρ = 0; we need to make an expansion near ρ = 0. This

gives

L(ρ) = L0 +O(ρ3). (1.91)

Then we are instructed to solve the differential equation subject to this initial condition

near ρ = 0, and match the solution with the asymptotic behaviour near ρ→∞ :

L(ρ) = m+
c

ρ2
+O

(
1

ρ3

)
. (1.92)

The value of m is proportional to the dual field theory’s N = 2 hypermultiplet mass,

which we will simply call the quark mass. Since m is the distance between the D3- and

D7-branes, the quantisation of the string stretching between these branes gives rise to the

quark mass mq = m/(2πα′). The asymptotic expansion also determines the VEV of a

quark bilinear operator 〈qq̄〉 , which in this case is proportional to the coefficient c of the

sub-leading term.

Various embeddings are shown in figure 1.12. There are two kinds of embeddings which

we will call the equatorial embedding and the Minkowski embedding. This figure visualises

these embeddings by showing that while the equatorial embedding reaches all the way to

the Poincaré horizon, the Minkowski embedding stops at some point above the Poincaré

horizon. If we consider the AdS5 part, then we see that the equatorial embedding covers

the whole AdS5 but the Minkowski embedding does not. These behaviours are visualised

in figure 1.13. At each position on the AdS5 part of the D7-brane embedding, the D7-

branes wrap an internal S3 ⊂ S5. This wrapping is shown in figure 1.14. It is characterised

by an angle θ which is given by

θ = tan−1

(
L

ρ

)
. (1.93)

For example, for θ = 0, the brane wraps the equatorial S3 of the S5 while for θ = π/2,

the S3 shrinks to a point at the pole of the S5. In figure 1.15, we show the angle θ for

various D7-brane embeddings. The plot shows that the equatorial embedding wraps the
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Figure 1.12: Examples of D7-brane embeddings into the Poincaré AdS5 × S5 spacetime.

These pictures show the D7-brane embeddings from the point of view of the six-dimensional

flat space which is conformal to the transverse space to the D3-branes. The plot on the left

shows the embeddings plotted in the ρ − L plane. The red curve is called the equatorial

embedding, for which the D7-branes cover the whole AdS5 part. The blue curves are

called the Minkowski embeddings, for which the D7-branes do not cover the whole AdS5

part. These two kinds of embeddings are visualised by the pictures on the right. In these

pictures, the black dots represent the positions of the X1 −X2 −X3 hyperplanes.

equatorial S3 of the S5 at every position r. The behaviours for the Minkowski embeddings

are clearly different from this. Asymptotically as r →∞, a Minkowski embedding wraps

the equatorial S3 of the S5. However, as r is lowered, the S3 is shrinking, and at r = r0 > 0,

the S3 shrinks to a point. The value r0 is the shortest distance between this Minkowski

embedding and the Poincaré horizon.

Having discussed the geometry of the embeddings, let us now discuss the asymptotic

behaviour. The equatorial embedding has m = 0 and c = 0 while the Minkowski em-

beddings have m > 0 and c = 0. Note that every embedding has c = 0. This behaviour,

however will no longer be true when we discuss the embedding at finite temperature and/or

finite space.

Low temperature T ≤ THP systems in a finite space

Let us now consider the embedding in global AdS5 × S5. We need to change the radial

coordinate to u which satisfies
dr2

1 + r2

R2

= R2du
2

u2
. (1.94)
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Figure 1.13: Schematic diagrams showing D7-brane embeddings into the AdS5 part of the

Poincaré AdS5 × S5 spacetime. The Poincaré AdS5 × S5 spacetime is represented by the

slice of its conformal space (see figure 1.8). These pictures show that for the equatorial

embedding, the D7-branes (grey-coloured) fill the whole AdS5 part, but for the Minkowski

embedding, the D7-branes fill from the AdS boundary down to some point outside the

Poincaré horizon.

We choose [7]

u =
r +
√
r2 +R2

2
. (1.95)

The AdS centre is now at u = R/2 while the AdS boundary is at u→∞. In this coordinate

system, the six-dimensional transverse space is conformal to the flat space with metric

du2 + u2dΩ2
5. (1.96)

At the AdS centre, the S5 in this space has the radius R/2. This S5 is just an artefact of

this coordinate choice. Let us now describe the embeddings. Instead of (ρ, L)., it is more

convenient to use (u, χ = sin θ). So the metric is now given by

ds2 =− u2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3

+
R2

u2
du2 +R2 dχ2

1− χ2
+R2χ2dφ2 +R2(1− χ2)dΩ2

3.

(1.97)

The equation which determines embeddings is given by

χ′′(u) +
3R2χ(u)

u2
+

4u
(
R4 + 4R2u2 + 16u4

)
χ′(u)3

R (16u4 −R4) (1− χ(u)2)

+

(
3R5 + 16R3u2 + 80Ru4

)
χ′(u)

16u5 −R4u
+

4χ(u)χ′(u)2

1− χ(u)2
= 0.

(1.98)

Near the AdS centre, there are two main types of embeddings. Let us call them the Ball

embedding and the Minkowski embedding. A Ball embedding has the expansion

χ(u) = χball −
3

2R2

(
u− R

2

)2

χball +O((u−R/2)3), (1.99)
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Figure 1.14: A part of a D7-brane embedding which wraps an internal S3 ⊂ S5. The big

sphere represents S5 while the red circle represents S3. The internal angle θ characterises

the position of the wrapped S3.

where 0 ≤ χball ≤ 1. For a Minkowski embedding, as in the case of its counterpart in

Poincaré AdS5 × S5, it does not reach the AdS centre. Instead, it ends at some point

u = uMink > R/2. The expansion near u = uMink is given by

χ(u) =1 +
R4 − 16u4

Mink

R4uMink + 4R2u3
Mink + 16u5

Mink

(u− uMink)

−
2
(
68R4u2

Mink − 16R2u4
Mink − 384u6

Mink + 5R6
)

3
(
4R2u2

Mink + 16u4
Mink +R4

)
2

(u− uMink)2 +O((u− uMink)3).

(1.100)

There is in fact another type of embedding which is called the critical embedding. It

satisfies the initial conditions of both the Ball and Minkowski embeddings. The expansion

near u = R/2 is given by

χ(u) = 1− 2

R2

(
u− R

2

)2

+
4

R3

(
u− R

2

)3

+O((u−R/2)4). (1.101)

Every type of embeddings has the same AdS boundary condition which is given by

χ(u) =
m

u
+
c1

u3
− mR2

2u3
log

u

R
+O(u−4). (1.102)

We present the embeddings in figures 1.16, 1.17, and 1.18. There exists a Ball em-

bedding which satisfies χ = 0. As in the case of Poincaré AdS5 × S5, this Ball embedding

always wraps around the equatorial S3 ⊂ S5. So we call this embedding as the equatorial

embedding.
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Figure 1.15: The internal angle θ at each position r of the Poincaré AdS5 × S5. The

curves in this figure correspond to the curves presented in figure 1.12. This figure clearly

shows the difference between the equatorial and Minkowski embeddings. The equatorial

embedding reaches the AdS centre r = 0, and the internal angle θ is always θ = 0 (S3

always wraps the equatorial of S5). On the other hand, the Minkowski embeddings have

varying θ, and they stop at some point at which θ = π/2 (which corresponds to the internal

S3 shrinking to a point).

Out of possible embeddings, only the critical embedding is irregular; it contains conical

singularities. Consider an induced metric of a D7-brane embedding:

ds2 =− u2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3

+

(
R2

u2
+
R2χ′(u)2

1− χ(u)2

)
du2 +R2(1− χ(u)2)dΩ2

3.

(1.103)

Let us expand this metric near u = R/2 of the critical embedding. In order to do this, we

make a change of coordinate u = R/2 + ξ/(2
√

2). This gives

ds2 ≈ −dt2 +
ξ2

2
dΩ̄2

3 + dξ2 +
ξ2

2
dΩ2

3, (1.104)

which shows conical singularities at both external S3 (whose metric is dΩ̄2
3) and internal S3

(whose metric is dΩ2
3); if there were to be no conical singularity, the numerical coefficients

in front of ξ2dΩ̄2
3 and ξ2dΩ2

3 should have been 1 instead of 1/2. On the contrary, the other

embeddings are smooth everywhere. Each of them could potentially becomes singular at

the position where the S3 shrinks to a point. At the AdS centre of a Ball embedding, the
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Figure 1.16: Examples of D7-brane embeddings into the global AdS5×S5 spacetime. The

red curves represent ball embeddings, the blue curves represent Minkowski embeddings,

and the black dashed curve represents the critical embedding. The idea of this figure is

from figure 1 in the reference [7].

external S3 shrinks to a point. The expansion around this point gives

ds2 ≈ −dt2 + ξ2dΩ̄2
3 + dξ2 +R2(1− χ2

ball)dΩ2
3, (1.105)

where ξ = 2u − R. Clearly, there is no conical singularity. Similarly, at the tip of a

Minkowski embedding, the internal S3 shrinks to a point. The expansion around this

point gives

ds2 ≈ −
(
4u2

Mink +R2
)

2

16R2u2
Mink

dt2 +

(
4u2

Mink −R2
)

2

16u2
Mink

dΩ̄2
3 + dξ2 + ξ2dΩ2

3, (1.106)

where

ξ2 =
2R2 (u− uMink)

(
16u4

Mink −R4
)

uMink

(
4R2u2

Mink + 16u4
Mink +R4

) . (1.107)

Again, there is no conical singularity.

The on-shell action of the D7-branes is given by

SD7 = −TD7NfR
7

∫
dΩ3dΩ̄3dtdu

u4

R4

(
1 +

R2

4u2

)(
1− R2

4u2

)3(
1

u2
+

χ′2

1− χ2

)1/2

(1−χ2)3/2.

(1.108)

The free energy of the embedding is given by −SD7. However, this value is not finite; a

regularisation is needed to be performed before computing the free energy. We follow the

discussions outlined in the references [54,55]. Let us define

S0 = − SD7

TD7NfR7
∫
dΩ3dΩ̄3dt

=

∫ ∞
R/2

du
u4

R4

(
1 +

R2

4u2

)(
1− R2

4u2

)3(
1

u2
+

χ′2

1− χ2

)1/2

(1− χ2)3/2

(1.109)
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Figure 1.17: Various D7-brane embeddings in global AdS5 × S5. The pictures are shown

in the six-dimensional flat space conformal to the actual transverse space. Each blank

sphere represents S5 with a radius R/2 at the AdS centre. These spheres are artefacts of

coordinate choice we use.

The divergence of this action is due to the behaviour near the AdS boundary. To fix this

problem, the integral over u should be from R/2 to R/(2ε) for a small ε. Consider the

AdS5 part. The hypersurface perpendicular to the u direction at u = R/(2ε) has a metric

ds2
γ = γµνdx

µdxν = −(1 + ε2)2

4ε2
dt2 +

R2(1− ε2)2

4ε2
dΩ̄2

3. (1.110)

The Ricci scalar Rγ is given by

Rγ =
6

R2

4ε2

(1− ε2)2
. (1.111)

The counter-terms are given by

L1 = −1

4

√
−γ

R6 sin θ̄ cos θ̄
= − 1

64ε4
(1 + ε2)(1− ε2)3, (1.112)

L2 =
1

48

√
−γRγ

R4 sin θ̄ cos θ̄
=

(1− ε4)

32ε2
, (1.113)

L4 =
1

2

√
−γχ2

ε

R6 sin θ̄ cos θ̄
=

1

32ε4
(1 + ε2)(1− ε2)3χ2

ε , (1.114)
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Figure 1.18: The internal angle θ at each position r = (4u2 − R2)/(4u) of the global

AdS5 × S5. The curves in this figure correspond to the curves presented in figure 1.16.

This figure clearly shows that while all the Ball embeddings reach the AdS centre r = 0,

the Minkowski embeddings stop at some point at which θ = π/2 (which corresponds to

the internal S3 shrinking to a point). The critical embedding interpolates between these

two kinds of embeddings, and reaches the AdS centre r = 0 when θ = π/2.

L5 =
1

24

√
−γRγ

R4 sin θ̄ cos θ̄
log
(
χ2
ε

)
χ2
ε =

(1− ε4)

16ε2
log
(
χ2
ε

)
χ2
ε , (1.115)

Lf = −1

4

√
−γ

R6 sin θ̄ cos θ̄
χ4
ε = − 1

64ε4
(1 + ε2)(1− ε2)3χ4

ε , (1.116)

where

χε ≡ χ
(
R

2ε

)
. (1.117)

The subtracted action is given by

Ssub = S0 + L1 + L2 + L4 + L5 + Lf . (1.118)

The scaled free energy is given by

F = lim
ε→0

Ssub, (1.119)

and the condensate is proportional to

c = − lim
ε→0

R6

16ε3
R3

√
−γ

sin θ̄ cos θ̄
δSsub

δχε
= c1 −

mR2

2
log
(m
R

)
. (1.120)

These quantities are plotted in figure 1.19. They are not multivalued for any given

quark mass. This implies that the phase transition between the Ball embeddings and

the Minkowski embeddings is continuous. The reference [8] shows that the phase transi-

tion is of third order.
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Figure 1.19: Free energy (left) and condensate (right) versus quark mass. For each plot,

the red curve presents the data from Ball embeddings, the blue curve from Minkowski

embeddings, and the black dot from the equatorial embedding. These plots show the

smooth phase transition between the Ball embedding phase and the Minkowski embedding

phase. The reference [8] shows that the phase transition is of third order.

High temperature T ≥ THP systems

Let us now briefly discuss the embeddings into an (AdS−Schwarzschild)5×S5 spacetime.

For our purposes, the discussions in the cases of infinite and finite volume are similar, so

we consider them together. The embeddings are shown in figure 1.20. There are two main

kinds of embeddings: the Black Hole embeddings for which the branes pierces through

the event horizon, and the Minkowski embeddings for which the branes closes off before

reaching the horizon. These two types are separated by the critical embedding. Within

the class of the Black Hole embeddings, there exists the equatorial embedding for which

the branes always wrap around the equatorial S3 ⊂ S5. In this thesis, for the systems with

T ≥ THP , we only consider the equatorial embedding.

Mesonic excitations

Having discussed the embeddings, we are now interested in describing mesons on the field

theory side. This corresponds to studying certain fluctuations of D7 worldvolume fields

transforming in an adjoint representation of the SU(Nf ) gauge group.

The meson mass spectrum can be obtained by studying normal modes of the corre-

sponding fields on gravity side. This means that one needs to require the fields to be

regular everywhere and to vanish at the AdS boundary. The frequency of a field which

satisfies this condition tells us about the value of the meson mass in the dual field theory.

For the case of finite temperature, the mesons are not stable, and cannot be described in
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Figure 1.20: Various D7-brane embeddings in (AdS−Schwarzschild)5×S5. The pictures

are shown in the six-dimensional flat space conformal to the actual transverse space. Each

sphere represents the black hole.

terms of normal modes. Instead, one has to determine both the mass and the decay rate.

These informations are encoded in complex frequencies which can be determined from the

quasi-normal modes (QNM) of the corresponding fields on the gravity side. In this case,

one demands the fields to be ingoing waves near the black hole horizon, and to vanish at

the AdS boundary.

In our study, we will limit ourselves to the case of Nf = 2. The SU(2) flavour symmetry

is historically called isospin symmetry. It appears in a QCD Lagrangian if up and down

quarks are of the same mass and there is no other quark flavours. The up and down

quarks are eigenstates of τ3 ≡ σ3/2 with eigenvalues 1/2 and −1/2 respectively. Here, σ3

is the third component of the Pauli spin matrices. The flavour fields in our case can be

described in a similar way.

Initially, there are equal numbers of the ‘up’ and ‘down’ flavours. We want to introduce

the imbalance of the numbers. This can be done by introducing an isospin chemical

potential. On the gravity side, this is equivalent to introducing a gauge field A
(3)
0 on D7-

branes. The subscript 0 means that the field is in the time direction while the superscript
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(3) means that it is in the τ3 direction of the gauge group.

After turning on the isospin chemical potential, the mass spectrum of mesonic exi-

tations will be changed. When the isospin chemical potential reaches a certain value,

we expect that the system is unstable. In the finite temperature case, the instability is

demonstrated when an oscillation of a field corresponding to a meson keeps growing over

time. In other words, its complex frequency has a positive imaginary part. In the zero

temperature case, it is more difficult to determine the instability. A potential situation

is when a meson has a zero frequency. If the isospin chemical potential is increased fur-

ther, then there is a possibility that the meson can develop a frequency with a positive

imaginary part.

When the old system is unstable, a new system is developed. In other words, the system

undergoes a phase transition. In our case, mesons are condensed in the new system. The

order parameter of the phase transition is given by VEV of the mesons.

In chapter 2 and 3, we will demonstrate how to use gauge/gravity duality to describe

and investigate instabilities of N = 2 systems living in a compact space.

1.5 M-theory branes

The discussions so far have covered some aspects of superstring theory and its applications.

There is another direction which we want to cover. This concerns M-theory, and will be

discussed in the rest of this chapter and in chapters 4 and 5.

There are 5 types of consistent superstring theories. They are called type I, type

IIA, type IIB, heterotic E8 × E8, and heterotic SO(32). We discussed type IIA and IIB

superstring theories in the previous sections. The type I superstring theory can be obtained

from the type IIB superstring theory by requiring that strings are unoriented. This means

that one projects out the states which are not invariant under the worldsheet parity

operation: σ1 → −σ1. This operation exchanges the left- and right-moving oscillation

modes of a closed string, so for example, only one of the two gravitinos survives this

projection. This will imply that the type I superstring theory has N = 1. In addition

to the unoriented closed string, the theory also contains unoriented open strings. The

heterotic theories are obtained by combining the left-movers of 26-dimensional bosonic

strings with the right-movers of 10-dimensional superstrings. The heterotic theories also

have N = 1 supersymmetry.

Different types of superstring theories are related by dualities. For example, T-duality
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Figure 1.21: Examples of string dualities. This web of dualities suggests how to obtain

string theories and the eleven-dimensional supergravity from the M-theory.

relates type IIA to type IIB, and relates heterotic E8 × E8 to heterotic SO(32). Another

duality called S-duality relates one theory at weak coupling to another theory at strong

coupling. For example, type I is related to heterotic SO(32) while type IIB is related to

itself. A type IIA superstring theory at a strong coupling has an extra dimension which is

a circle of radius gsls. So the strong coupling gs →∞ theory has eleven dimensions. This

theory is called M-theory, and was discovered in the reference [56]. Additionally, a strong

coupling heterotic E8 × E8 theory has an extra dimension as a line interval of size gsls.

The eleven dimensional strong coupling gs → ∞ theory obtained this way is again M-

theory. Furthermore, the low energy limit of M-theory is given by an eleven-dimensional

supergravity theory [57]. Examples of these string dualities are shown in figure 1.21.

M-theory does not have any strings or any perturbative objects, so its matter contents

cannot be obtained from the same approach as that of string theories. Nevertheless, since

the low energy limit of M-theory is an eleven-dimensional supergravity theory, whose

Lagrangian is known [58], the matter content of low-energy M-theory is just the matter

content of an eleven-dimensional supergravity theory. The bosonic part contains a graviton

(44 degrees of freedom) and a 3-form gauge field (84 degrees of freedom) while the fermionic

part has a gravitino (128 degrees of freedom). All of these fields are massless.

As in the case of string theory, there are objects charged under a form field. In the case

of M-theory, these objects are called M-branes. Since there is only one type of form fields,

the types of M-branes are limited. There are M2-branes which are electrically coupled to

the 3-form gauge field and M5-branes which are magnetically coupled to the 3-form gauge

field.
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Recall that in type IIA and IIB supergravity theories, there are extremal p−brane

solutions which are associated to multiple Dp-branes of type IIA and IIB superstring

theories. In the eleven-dimensional supergravity theory, the solutions associated to M2-

branes and M5-branes can be obtained. The entropies of these solutions can also be

computed. They scale as N3/2 and N3 for M2-branes and M5-branes respectively, where

N is the number of coincident M-branes. These entropy scalings are clearly differed

from the case of D-branes whose entropy scalings N2 are associated to internal degrees

of freedom of Yang-Mills theories. Ones are not familiar with the N3/2 and N3 scalings

of internal degrees of freedom. From this point of view, it is a puzzle to determine a

non-Abelian theory to which the stack of multiple M-branes is related. Fortunately, the

case of coincident M2-branes is already known. However, there is still no known complete

low-energy worldvolume Lagrangian for M5-branes.

The matter content on M-brane worldvolumes can be obtained by considering the

symmetries which are broken by the associated supergravity solution. For each broken

symmetry, there is a massless field called the Goldstone mode. These fields form the

matter content of the associated M-branes. For an M2-brane, there are 8 scalar fields in

the bosonic sector and 8 on-shell fermionic degrees of freedom in the fermionic sector. For

an M5-brane, the bosoic sector consists of 5 scalar fields and a 2-form gauge field with

a self-dual field strength. The 2-form gauge field has 3 on-shell degrees of freedom. The

fermionic sector contains 8 on-shell fermionic degrees of freedom which are given by 2

(symplectic) Majorana spinors.

1.5.1 M2-branes

The low-energy description of the theory on a single M2-brane is known. It was first

obtained by the GS formalism [59] and later by the superembedding approach [23]. The

extension to the case of multiple M2-branes is non-trivial because there is no 1-form gauge

field in the matter content. Nevertheless, a 1-form gauge field can be introduced as long

as it does not have any degree of freedom. In this case, the gauge field is technically the

Chern-Simons gauge field.

The maximally supersymmetric N = 8 multiple M2-brane theory is given by the

Bagger-Lambert-Gustavsson (or BLG) model [60–63]. This model uses a 3-bracket [·, ·, ·]

which is a generalisation of a commutator [·, ·]. Let T a be a generator of the 3-bracket

algebra. The commutation relation is given by

[T a, T b, T c] = fabcdT
d, (1.121)
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where f is totally anti-symmetric in the upper indices a, b, c. The metric is given by

hab = tr(T a, T b). (1.122)

It is used to raise and lower the indices, for example fabcd = fabceh
ed. The 3-bracket is

used to define the derivative:

δA,BX ≡ [A,B,X]. (1.123)

The derivative on the 3-bracket has the property:

δA,B[X,Y, Z] = [δA,BX,Y, Z] + [X, δA,BY, Z] + [X,Y, δA,BZ], (1.124)

and the trace should be invariant:

0 = δA,Btr(X,Y ) = tr(δA,BX,Y ) + tr(X, δA,BY ). (1.125)

These conditions give the fundamental identity

[T a, T b, [T c, T d, T e]] =[[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e]

+ [T c, T d, [T a, T b, T e]],
(1.126)

as well as

tr([T a, T b, T c], T d) + tr(T c, [T a, T b, T d]) = 0. (1.127)

The appearance of the 3-bracket in the BLG model is seen for example in the scalar

potential which is of the form tr([XI , XJ , XK ], [XI , XJ , XK ]), where I, J,K = 1, 2, . . . , 8.

The BLG model can be well-defined as long as one can find a 3-algebra which satisfies the

above properties. It is shown [64,65] that the only non-trivial finite-dimensional 3-algebra

with positive definite metric hab is given by

fabcd ∝ εabcd, hab ∝ δab, a, b, c, d ∈ {1, 2, 3, 4}. (1.128)

This algebra is called A4. The BLG Lagrangian with A4 describes 2 coincident M2-branes.

If one relaxes the requirement that the 3-algebra is to be finite-dimensional, one can

have the Nambu-Poisson bracket. On a three-dimensional manifold N3 with coordinates

{y1, y2, y3}, the Nambu-Poisson bracket is locally given by (here y is the collective name

for {y1, y2, y3})

{f1(y), f2(y), f3(y)}NP ≡ εijk
∂f1(y)

∂yi
∂f2(y)

∂yj
∂f3(y)

∂yk
, i, j, k ∈ {1, 2, 3}. (1.129)

Let χa(y) with a = 1, 2, . . . be a basis of functions on N3. The commutation relation and

the trace are given by

{χa(y), χb(y), χc(y)}NP = fabcdχ
d(y), (1.130)
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and

tr(f1, f2) =

∫
N3

d3yµ(y)f1(y)f2(y), (1.131)

where µ(y) is chosen to ensure that the trace is invariant under the derivative

δA,BX ≡ {A,B,X}NP . (1.132)

The representation of the Nambu-Poisson bracket is given for example by the reference [66].

The BLG Lagrangian with the Nambu-Poisson bracket describes an infinite number of

coincident M2-branes.

We have mentioned above that theories on maximally supersymmetric N coincident

M2-branes can be constructed as long as N = 1, 2,∞. In order to describe different

numbers of N, one needs to relax some conditions.

If one relaxes the condition that the theory should be maximally supersymmetric,

then one can have an alternative model. This is called the Aharony-Bergman-Jafferis-

Maldacena (or ABJM) model [67]. The ABJM Lagrangian also uses a Chern-Simons

gauge field and a 3-bracket. However, the 3-bracket here is less restrictive and allows

one to describe any number N of coincident M2-branes. The ABJM theory has N = 6

supersymmetry for a generic case. The reference [68] shows that the ABJM theory gives

the desired N3/2 scaling of degrees of freedom.

1.5.2 M5-branes

The low energy description of a single M5-brane is expected to be a (2, 0) superconformal

field theory. The first description was obtained by the superembedding approach [69],

which gives equations of motion of the fields on the M5-brane. We will be mainly interested

in the equation of motion of the 2-form gauge field B. If we ignore all other fields, then

this equation contains two kinds of 3-from fields. The first one is a field strength H = dB

of the 2-from gauge field while the second one is an auxiliary field h. The auxiliary field is

not a field strength of any 2-form fields but it is self-dual h = ∗h. Let the Greek indices

label the directions on the M5-brane. The duals of H and h are given by

H̃µνρ = (∗H)µνρ =
1

3!
εµνρλτσHλτσ, (1.133)

h̃µνρ = (∗h)µνρ =
1

3!
εµνρλτσhλτσ = hµνρ, (1.134)

where ε012345 = 1, and the indices are raised and lowered by the Minkowski metric. The

equation of motion
1

4
Hµνρ = m−1λ

µ hλνρ (1.135)
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algebraically relates the two kinds of the 3-from fields. Here m−1λ
µ is the inverse matrix of

mµ
λ = δµ

λ − 2kµ
λ, (1.136)

where kµ
λ = hµνρh

λνρ.

Let us now discuss how to construct the action which will give the equations of motion

(1.135). Such an action with manifest Lorentz invariance cannot be constructed without

introducing an auxiliary field. To get some insights into why this is not possible, let us

consider a naive attempt. Quadratically, the action should give the equation of motion

Hµνρ = H̃µνρ. We require the action to be invariant under the gauge transformation

δB = dΥ. All possible gauge invariant quadratic terms in the Lagrangian are

HµνρHµνρ, H̃µνρH̃µνρ, HµνρH̃µνρ. (1.137)

However, the first term and the second term are not linearly independent to each other

while the third term is a total derivative:

HµνρH̃µνρ = ∂µ(3BνρH̃µνρ). (1.138)

So at the quadratic level, the Lagrangian is of the form

Lquadratic ∝ HµνρHµνρ, (1.139)

which fails to give the linearised self-duality condition Hµνρ = H̃µνρ.

Let us now discuss the attempts which will lead to the correct result. One way to do

this is by dropping the requirement that the action should be manifestly Lorentz invariant.

One makes the 1+5 splitting [70,71] in which one direction is split from the six-dimensional

manifold. One can either split the time-like direction or the space-like direction. Let us

focus on the latter case and label the separated direction as x5, and the other directions

as xâ, â = 0, 1, 2, 3, 4. Let us first consider the quadratic level, for which the action is given

by

S =
1

2

∫
d6x

(
H̃ âb̂5Hâb̂5 − H̃

âb̂5H̃âb̂5

)
. (1.140)

The equation of motion is given by

εâb̂ĉd̂ê5∂ĉ(Hd̂ê5 − H̃d̂ê5) = 0, (1.141)

which gives general solutions

Hd̂ê5 − H̃d̂ê5 = −2∂[d̂Φê]. (1.142)
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The gauge transformation

δΦB5â = Φâ, δΦBâb̂ = 0 (1.143)

leaves the action invariant. This transformation B → B + δΦB is therefore the symmetry

of the theory and can be used to gauge transform the equation (1.142) to give

Hd̂ê5 − H̃d̂ê5 = 0, (1.144)

which is, as required, equivalent to Hµνρ = H̃µνρ. As well as giving the linearised self-

duality condition, the quadratic action should also be Lorentz invariant. The Lorentz

transformation xµ → Λµνx
ν = −Λν

µxν on the B-field is given by

Bµν(xτ )→ Λµ
ρΛν

σBρσ(Λλ
τxλ). (1.145)

Infinitesimally Λµ
ρ ≈ δρµ + λµ

ρ the Lorentz transformation is

δBµν = λσ
ρxσ∂ρBµν + λν

ρBµρ + λµ
ρBρν . (1.146)

The component Bâ5 enters the quadratic action only through the total derivative. There-

fore, it is convenient to use the gauge transformation δB = dΥ to choose the gauge in

which Bâ5 = 0. The only relevant Lorentz transformation is then

δBâb̂ = 2λ[b̂
ĉBâ]ĉ − λĉd̂x

d̂∂ĉBâb̂ + λĉxĉ∂5Bâb̂ − λ
ĉx5∂ĉBâb̂, (1.147)

where λĉ ≡ λĉ5. The quadratic action is not invariant under this transformation, but

rather under the modified Lorentz transformation

δBâb̂ = 2λ[b̂
ĉBâ]ĉ − λĉd̂x

d̂∂ĉBâb̂ + λĉxĉH̃âb̂5 − λ
ĉx5∂ĉBâb̂, (1.148)

which is equivalent to the usual one at the level of equations of motion. The quadratic

action is manifestly invariant under the Lorentz transformation in the five-dimensional

part {xâ}. Therefore, we only need to check the part of the transformation which mixes

xâ with x5. The relevant transformation parameters of this part are given by λĉ. So, it is

sufficient to show that the transformation

δBâb̂ = λĉxĉH̃âb̂5 − λ
ĉx5∂ĉBâb̂, δBâ5 = 0 (1.149)

leaves the action invariant. As is explicitly shown in the reference [71], this is indeed the

case.

Having made sure that the quadratic action (1.140) is desirable, let us now consider

the full non-linear action [71]:

S =

∫
d6x

(
1

4
H̃ âb̂Hâb̂ + L

)
, (1.150)
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where

L ≡
√

det(δb̂â + iH̃â
b̂) =

√
1 +

1

2
trH̃2 − 1

4
trH̃4 +

1

8
(trH̃2)2. (1.151)

Here we define

Hâb̂ ≡ Hâb̂5, H̃âb̂ ≡ H̃âb̂5. (1.152)

The quantities Hâ
b̂, H̃â

b̂ are 5× 5 antisymmetric matrices. The trace and determinant of

these matrices are denoted as tr and det . The full non-linear action also has the symmetry

(1.143). It is invariant under the modified Lorentz transformation for which the relevant

part is

δBâb̂ = λĉxĉVâb̂ − λ
ĉx5∂ĉBâb̂. (1.153)

The check is shown in the reference [71]. After an appropriate gauge fixing, the equation

of motion of the non-linear action is given by

Hâb̂ = Vâb̂, (1.154)

where

Vâb̂ ≡ −
∂L

∂H̃ âb̂
=

(
1 + 1

2trH̃2
)
H̃âb̂ − H̃

3
âb̂√

1 + 1
2trH̃2 − 1

4trH̃4 + 1
8(trH̃2)2

. (1.155)

The reference [72] shows that the equations (1.154) and (1.135) are equivalent. To get

some insights into the derivation, let us show the key steps which follow the reference [72]

very closely. The equation (1.135) gives

1

4
Hâb̂ = Q−1((1 + 2trh2)hâb̂ − 8h3

âb̂
), (1.156)

1

4
H̃âb̂ = Q−1((1− 2trh2)hâb̂ + 8h3

âb̂
), (1.157)

Q = 1 + 4(trh2)2 − 16trh4, (1.158)

where h is the matrix form of hâ
b̂ ≡ hâb̂5. It is also convenient to denote the matrix forms

of Hâ
b̂, H̃â

b̂ as H, H̃. In most steps of the derivation, one needs to repeatedly use the

Cayley-Hamilton formula for the 5× 5 antisymmetric matrix X:

X5 =
1

4

(
trX4 − 1

2
(trX2)2

)
X +

1

2
(trX2)X3. (1.159)

This formula implies that, without loss of generality, h can be written in the form

h = aH̃ + bH̃3, (1.160)

where a, b are scalar functions. It is also convenient to express h in the form

h = (x+ yh2)H̃, (1.161)
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where x, y are scalar functions. By using the equation (1.157), applying the Cayley-

Hamilton formula (1.159), and then comparing the coefficients of h and h3, one gets

h = (1 + 2trh2 − 8h2)
H̃

4
. (1.162)

By substituting h from the equation (1.160) into the equation (1.162), using the equation

(1.159), and then comparing the coefficients of H̃ and H̃3, one gets two equations for the

unknown variables a and b. There are two possible solutions, but we choose the one for

which its leading order is h = H̃/4. The required solution gives

h = H̃
(trH̃2(−4 + 4L)− 4trH̃4)

4((trH̃2)2 − 4trH̃4)
− H̃3

4 + 4L+ trH̃2
. (1.163)

As a check, by making an auxiliary scaling h → αh,H → αH, H̃ → αH̃, and expanding

near α = 0, the equation (1.163) becomes αh = αH̃/4 + O(α2). By substituting the

equation (1.163) into the equation (1.156), one arrives at the result (1.154).

Having shown that the action (1.150) agrees with the equations of motion from the

superembedding approach, let us now review the extension of this action. The idea is

to use the GS formalism, that is, to include the other fields and get a supersymmetric

action in which the worldvolume fields couple to an eleven-dimensional background. One

can either keep using the 1 + 5 splitting [73, 74] or try to complete the GS formalism

after making the action manifestly Lorentz invariant [75, 76]. Let us review the latter

case, which is of relevance to us. In order to keep the manifest Lorentz invariance, the

references [75,77] introduce an auxiliary field a(x) which can be seen as projecting out one

direction. The quantities

Hµν = Hµνρ
∂ρa√
∂σa∂σa

, H̃µν = H̃µνρ
∂ρa√
∂σa∂σa

(1.164)

will appear in the action. The quantity ∂ρa can either be space-like or time-like, but for

definiteness, we choose it to be space-like. By simply choosing a(x) = x5, one can see that

the equation (1.164) reduces to the equation (1.152). Let us keep a(x) arbitrary and write

down the action:

S = 2

∫
M6

d6x

[√
det(δµν + iH̃µ

ν) +
1

4(∂a)2
∂λaH̃

λµνHµνρ∂
ρa

]
. (1.165)

Here, the symmetry which ensures that the equation of motion is the non-linear self-duality

condition is given by

δBµν = 2∂[µaΦν](x), δa(x) = 0. (1.166)
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In an appropriate gauge, the equation of motion of Bµν is

Hµν = Vµν(H̃) , Vµν(H̃) ≡ −
∂
√

det(δνµ + iH̃µ
ν)

∂H̃µν

, (1.167)

while the equation of motion of a(x) is the consequence of the equations of motion of the

B-field. There is an extra symmetry (called the PST symmetry)

δa = ϕ(x), δBµν =
ϕ(x)√
(∂a)2

(Hµν − Vµν), (1.168)

which ensures that a(x) is auxiliary. One can see that after gauge fixing, this covariant

formulation gives the non-covariant one. It is possible to choose the gauge in which

a(x) = x5. In this gauge, the action (1.165) reduces to the action (1.150), and the equation

(1.166) reduces to the equation (1.143). Furthermore, by fixing the gauge, one can obtain

the non-covariant modified Lorentz transformation. One first chooses the gauge a(x) = x5,

then makes the gauge transformation which is a combination of the PST symmetry and

the Lorentz transformation to ensure that one still has the gauge a(x) = x5. By using

this gauge choice and fixing Bâ5 = 0, one gets the modified Lorentz transformation whose

relevant part is given by the equation (1.153).

One can naturally promote the action (1.165) to the one which fully describes an M5-

brane coupled to a general eleven-dimensional supergravity background. This involves

working with curved metrics as well as supersymmetry, so before writing down the action,

let us review some essential materials.

The eleven-dimensional target space has the coordinates ZM = (XM , θ), whereXM are

eleven bosonic coordinates and θ are 32 real fermionic coordinates. Here M = 0, 1, . . . , 10,

and we omit the fermion index. When a theory involves a fermion in a curved space, it is

necessary to define a flat space on which the gamma matrices can be kept constant. This

flat space is called the tangent frame. The map between the bosonic part of the target

space and the bosonic part of the tangent frame is given by the vielbein eAM (X), where

A = 0, 1, . . . , 10 is the index on the tangent frame. The tangent frame also contains the

fermionic part, whose indices represented by the beginning of Greek alphabet: α, β, . . . ∈

{1, . . . , 32}.

As we have discussed previously, the field content of the eleven-dimensional super-

gravity theory consists of a graviton eAM (X), a gravitino ψαM (X), and a 3-form gauge

field CMNP (X). The superfields which encode these supergravity fields are respectively

given by a tangent–space vector supervielbein EA(Z) = dZMEM
A(Z), a Majorana–

spinor supervielbein Eα(Z) = dZMEM
α(Z), and the 3-form gauge superfield C3(Z) =
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1
3!dZ

M1dZM2dZM3CM3M2M1 . It will be convenient to also define the C6(Z) dual of the

C3(Z). Note that the index ordering of differential forms here is in the opposite order to

those given in the definition (1.30). The convention here is usually applied when super-

symmetry and superfields are involved.

Let us now show essential equations of motion of the background supergravity theory.

The vector supervielbein satisfies the following essential torsion constraint

TA = DEA = dEA + EBΩB
A = −iEαΓAαβE

β , (1.169)

where ΩB
A(Z) is the one–form spin connection in D = 11, ΓAαβ = ΓAβα are real symmetric

gamma matrices and the external differential acts from the right. The field strengths of

C3(Z) and C6(Z) are constrained as follows

dC3 = − i
2
EAEBEαEβ(ΓBA)αβ +

1

4!
EAEBECEDF

(4)
DCBA(Z) ,

dC6 − C3dC3 =
2i

5!
EA1 · · ·EA5EαEβ(ΓA5···A1)αβ +

1

7!
EA1 · · ·EA7F

(7)
A7···A1

(Z)(1.170)

F (7)A1···A7 =
1

4!
εA1···A11F

(4)
A8···A11

, ε0...10 = −ε0...10 = 1.

Here ΓA1A2...An = Γ[A1
ΓA2 . . .ΓAn].

Let us now show the fields on the M5–brane worldvolume. The induced metric on the

worldvolume is constructed with the pull–backs of the vector supervielbeins EA(Z)

gµν(x) = EAµE
B
ν ηAB, EAµ = ∂µZ

NEN
A(Z(x)). (1.171)

The generalised field strengths of the B-field B2(x) = 1
2dx

µdxνBνµ(x) is

H3 = dB2 + C3 , (1.172)

where C3(Z(x)) is the pull-back on the M5–brane worldvolume of the 3–form gauge field.

To ensure the 6d worldvolume covariance of the M5–brane action one uses a normalised

gradient of the auxiliary scalar field a(x) which can be chosen to be time–like or space–like.

For definiteness, we show the space–like case:

vµ(x) =
∂µa√

∂νa gνλ(x) ∂λa
, vµv

µ = 1. (1.173)

The projector of rank one

Pµ
ν(x) =

∂µa∂
νa

(∂a)2
, PP = P, (∂a)2 ≡ ∂νa gνλ ∂λa = ∂νa ∂

νa , (1.174)

singles out one worldvolume direction from the six, i.e. makes the 1+5 covariant splitting

of the 6d worldvolume directions.
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Let us now present the M5–brane action [74–76] in a generic eleven-dimensional su-

pergravity background:

S = +2

∫
M6

d6x

[√
−det(gµν + iH̃µν) +

√
−g

4(∂a)2
∂λaH̃

λµνHµνρ∂
ρa

]
−
∫
M6

(C6 +H3 ∧ C3) , (1.175)

with

H̃ρµν ≡ 1

6
√
−g

ερµνλστHλστ , H̃µν ≡
∂ρa√
(∂a)2

H̃ρµν , g = det gµν , (1.176)

where ε0···5 = −ε0···5 = 1 .

In addition to the gauge symmetry δB2 = dΥ, the action (1.175) has also the following

two local gauge symmetries :

δBµν = 2∂[µaΦν](x), δa(x) = 0, (1.177)

as well as

δa = ϕ(x), δBµν =
ϕ(x)√
(∂a)2

(Hµν − Vµν), (1.178)

where

Vµν(H̃) ≡ −
∂
√

det(δνµ + iH̃µ
ν)

∂H̃µν

, Hµν ≡ Hµνρ
∂ρa(x)√

(∂a)2
, (1.179)

with ϕ(x) and Φµ(x) being arbitrary local functions on the worldvolume. The first symme-

try (1.177) ensures that the equation of motion of B2 reduces to the non–linear self–duality

condition

Hµν = Vµν(H̃) , (1.180)

while the second symmetry (1.178) is responsible for the auxiliary nature of the scalar

field a(x) and the 6d covariance of the action.

The action (1.175) is invariant under the supersymmetry transformation of the form

δεE
A = 0, δεC

(3) = id(ε̄∆2), (1.181)

δεB = −iε̄∆2, δεC
(6) = 2id(ε̄∆5)− i(ε̄∆2) ∧ dC(3).

It is also invariant under the local fermionic kappa–symmetry transformations with the

parameter κα(x)

iκE
α ≡ δκZMEαM =

1

2
(1 + Γ̄)αβκ

β, iκE
A ≡ δκZMEAM = 0, (1.182)

δκgµν = −4iEα(µ(Γν))αβ iκE
β, δκH

(3) = iκdC
(3), δκa(x) = 0 ,



1.5. M-theory branes 58

where (1 + Γ̄)/2 is the projector of rank 16 with Γ̄ having the following form√
det(δνµ + iH̃µ

ν) Γ̄ = γ(6) − 1

2
ΓµνλPµ

ρH̃νλρ −
1

16
√
−g

εµ1···µ6H̃µ1µ2λH̃µ3µ4ρP
λρΓµ5µ6 ,

Γ̄2 = 1 , trΓ̄ = 0, (1.183)

where

Γµ = Eµ
AΓA , γ(6) =

1

6!
√
−g

εµ1···µ6Γµ1···µ6 . (1.184)

When compared with the other symmetries, the kappa–symmetry is relatively difficult to

check. So let us give a brief review of its proof. Let us decompose the action (1.165) as

S = S0 + S2 + SWZ , (1.185)

where

S0 = 2

∫
M6

d6x

√
−g

4(∂a)2
∂λaH̃

λµνHµνρ∂
ρa,

S2 = 2

∫
M6

d6x

√
−det(gµν + iH̃µν) ≡ 2

∫
M6

d6x
√
−gL,

SWZ = −
∫
M6

(C6 +H3 ∧ C3) .

(1.186)

Their kappa–symmetry transformations are found to be of the form

δS0 = −2i
√
−gEαµ (Jµ0 )αβiκE

β,

δS2 = −2i
√
−gEαµ (Jµ2 )αβiκE

β,

δSWZ = −2i
√
−gEαµ (JµWZ)αβiκE

β,

(1.187)

where (with fermion indices suppressed)

Jµ0 =

(
−1

2

v(µεν1)ν2ν3ν4ν5ν6vν2H̃ν3ν4H̃ν5ν6√
−g

)
Γν1 +

(
−1

2
H̃µν1ν2 + 3H̃ [µν1vν2]

)
Γν1ν2 ,

Jµ2 = (2gµνL − tr(VH̃)Πµν + 2(VH̃)(µν))Γν −
(

1

2
Vν3ν4vν5

εν3ν4ν5µν1ν2√
−g

)
Γν1ν2 ,(1.188)

JµWZ =

(
1

2
H̃µν1ν2Γν1ν2 − 2Γµγ̄

)
,

where Πµν = gµν − Pµν . To determine Γ̄, one requires

LJµ2 = −L(Jµ0 + JµWZ)Γ̄, (1.189)

with

Γ̄2 = 1 , trΓ̄ = 0. (1.190)
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If this is true, one will have (with fermion indices suppressed)

δS = −2i
√
−gEµ(Jµ0 + JµWZ)(1− Γ̄)iκE

= −i
√
−gEµ(Jµ0 + JµWZ)(1− Γ̄)(1 + Γ̄)κ

= −i
√
−gEµ(Jµ0 + JµWZ)(1− Γ̄2)κ

= 0.

(1.191)

If one contracts the equation (1.189) with Γµ, then one gets Γ̄ which is given by the

equation (1.183). The Γ̄ obtained this way indeed satisfies the equation (1.189).

It is also possible to construct the M5–brane action by using a different splitting. We

are particularly interested in the so called 3+3 splitting. Recall that in the 1+5 splitting,

the manifest SO(1, 5) 6d Lorentz symmetry is broken to SO(1, 4). In the 3 + 3 splitting,

the manifest 6d Lorentz symmetry is broken to SO(1, 2) × SO(3). The 3 + 3 splitting is

motivated from the construction [66, 78] in which a 5–brane action based on the BLG

action is obtained. To see whether this 5–brane action would be related to the original

M5–brane action, the reference [2] constructs a full non-linear M5–brane action with a

3 + 3 splitting. We discuss this full action in chapter 4.

Having discussed single M5-brane actions, let us now turn to coincident M5-branes.

The worldvolume description of coincident M5-branes is very subtle. There have been

various attempts, for example in references [3,4,79–97], to describe the worldvolume theory.

However, it is still no known complete description.

We are mainly interested in the model [87]. This model describes a non-Abelian 2-form

field with a self-dual field strength. We have mentioned above that in order to include

a non-dynamical gauge field in the case of coincident M2-branes, one needs the Chern-

Simons gauge field. In the case of M5-branes, however, the Chern-Simons gauge fields

are dynamical. A non-dynamical 1-form gauge field is instead obtained from boundary

values of the 2-form. We are interested in studying the solutions of this model in which

the relevant equation of motion is given by

H̃µν = ∂5Bµν , µ, ν ∈ {0, 1, . . . , 4}, (1.192)

where

H̃µν =
1

6
εµν5ρστH

ρστ , Hµνλ = 3D[µBνλ] = 3[∂[µ +A[µ, Bνλ]]. (1.193)

The auxiliary gauge field is determined by the equation:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = c

∫
dx5 H̃µν . (1.194)
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Solitonic solutions of this model are obtained in [3, 4, 97]. In chapter 5, we will explain

the solutions [3, 4] which describe M2/M5 intersections as viewed from the worldvolume

of M5-branes.



Chapter 2

Instability of N = 2 gauge theory

in compact space with an isospin

chemical potential

This chapter is largely based on [1]. We use a D3/D7 model to study, via gauge/gravity

duality, a strongly coupled N = 2 gauge theory in compact space with an isospin chemical

potential. We show an instability of an old ground state and show the presence of a new

ground state.

In section 2.1, we first briefly review D3/D7 system in global coordinates at finite

and at zero temperature. We consider the set up which corresponds to turning on an

isospin chemical potential in a homogeneous ground state of a strongly coupled N = 2

gauge field theory on R × S3 having massless flavour fields. In section 2.2 and 2.3, we

discuss the fluctuation of scalar fields and gauge fields on the D7-branes worldvolume in

the homogeneous ground state. The study is performed respectively at zero temperature

and at finite temperature. In order to study stabilities of the system, the spectrum of each

fluctuation field is analysed. For each field, an isospin chemical potential has a critical

value beyond which the ground state becomes unstable or just potentially unstable. These

instabilities are clarified in section 2.4 where a new ground state, which has a finite vacuum

expectation value for a mesonic operator, for each field can be constructed when the isospin

chemical potential is higher than its corresponding critical value. By comparing free energy

of different ground states, the state having the lowest free energy is identified as the true

new ground state. We end this chapter with section 2.5 which gives a discussion and an

outlook on this project.

61
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From our findings, there are two features worth mentioning. The first is that the

particles which condense first are not vector excitations (‘rho mesons’), but rather scalar

particles charged under the global symmetry group.1 The second feature is that the

thermal pole masses of some of the mesons can cross as the dimensionless ratio is varied.2

This crossing behaviour is also the case for the condensate formation. In our model the

crossing does not involve the lightest particle, but in other models the situation may not

be so simple, and it would be interesting to investigate this further.

2.1 Holography with a dual S3

2.1.1 Brane embeddings in global AdS5 × S5 and AdS5-Schwarzschild

In this section we will briefly review some properties of the global AdS5 × S5 and AdS5-

Schwarzschild spaces as well as various embeddings of D7-probe branes in these geome-

tries [55]. String theory in global AdS5 × S5 space is believed to be dual to the N = 4

SYM theory at zero temperature, which lives at the boundary of this space, which is an

S3 × R. Turning on the temperature makes the time direction (both in the gauge and

gravity sides) compact, with the radius being inversely proportional to the gauge theory

temperature.

The metric of the global AdS5 spaces (both at zero and finite temperature) is given by

ds2 =

(
1 +

r2

R2

)
dτ2 +

dr2

1 + r2

R2

+ r2dΩ2
3 +R2dΩ2

5 , (2.1)

where the origin of the AdS space is at r = 0, the boundary is at r → ∞, and R is the

AdS radius. The Euclideanised time direction τ is periodic with period Rτ . Since the

theory is conformal, it implies that only the ratio of the thermal circle τ and the size

of the boundary sphere on which dual theory is living, R/Rτ , is physically observable,

i.e. unchanged by the conformal symmetry of the theory.

As the temperature of the thermal AdS space is increased, a first order Hawking-Page

phase transition takes place and global AdS-Schwarzschild space replaces the thermal

AdS space as the proper ground state of the system [49]. The metric of the global AdS-

1This could perhaps have been expected from the analysis of the meson spectrum of [7], which finds

that these SO(4) charged scalar mesons are the lightest, but their work does not discuss the effect of a

chemical potential, and the qualitative argument based on only a comparison of the mass may in any case

not be the complete story.
2This crossing behaviour is somewhat reminiscent of the mixing of states observed in [98].
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Schwarzschild black hole is given by

ds2 = −
(

1 +
r2

R2
− M2

r2

)
dt2 +

dr2

1 + r2

R2 − M2

r2

+ r2dΩ2
3 +R2dΩ2

5 , (2.2)

where M2 = 8GNmbh/(3π) and mbh is the mass of the black hole, while its temperature

is given by

T =
1

4π

(
2r0

R2
+

2M2

r3
0

)
, (2.3)

where

r2
0 = R2

(
−1 +

√
1 + 4M2/R2

2

)
. (2.4)

The dimensionless ratio R/Rτ is proportional to TR, and we will later on expand our

results for large values of this parameter, interpreting this limit as one at finite temperature

and large volume [8, 55], so that a comparison with results in the Poincaré patch can be

made.

Introducing D7-probe branes in this geometry corresponds, in the holographic lan-

guage, to adding flavour hypermultiplets to N = 4 SYM on the sphere S3. A study of

various D-brane probes, in particular D7-probe branes, in these geometries was performed

in [8, 55]. However, in this chapter we are only interested in the embedding where D7-

branes ‘coincides with D3-branes’. This corresponds to adding massless hypermultiplets.

In this chapter, instead of using the coordinates (2.1), it will be useful to use another

set of coordinates given by

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +

R2

u2
(du2 + u2dΩ2

5) , (2.5)

which is related to (2.1) via the coordinate change

u =
1

2
(r +

√
r2 +R2) . (2.6)

In these coordinates the origin of the AdS space is at u = R/2, while the boundary is an

S3 at u→∞. We will also use

ds2 = − 1

4z2

(
1 + z2

)2
dt2 +

R2

4z2

(
1− z2

)2
dΩ̄2

3 +R2 dz2

z2
+R2dΩ2 , (2.7)

which is related to the previous coordinates by z = R/(2u). Let us also note that in the

z coordinate the origin of AdS space is at z = 1, while the boundary is at z = 0.

Similarly for the system at finite temperature in addition to metric (2.2) we will also

use (u, t) coordinates,

ds2 = −
2ρ2

H

uR2

F (u)

W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2 +R2dΩ2

5 , (2.8)



2.1. Holography with a dual S3 64

where

F (u) = 1− u2,
ρ4
H

R4
=

1

16
+
M2

4R2
, W (u) = 1− uR2

4ρ2
H

. (2.9)

Note here that the variable u is dimensionless and ranges from u ∈ [0, 1], where the horizon

is at u = 1, and the boundary is at u = 0. The Hawking temperature of this black hole is

T =

√
2ρH

πR2
√

1− R2

4ρ2H

. (2.10)

For numerical investigation it turns out that another form of the metric at finite T will

also be useful.3 If we change coordinates as

v =
1− u

1− uR2

4ρ2H

Λ =
8ρ2

H

4ρ2
H +R2

, (2.11)

then the metric becomes

ds2 = − v(Λ− v)

(1− v)(2− Λ)
dt2 +

Λ− 1

(2− Λ)(1− v)
R2dΩ̄2

3 +
Λ− 1

4(1− v)2v(Λ− v)
R2dv2 +R2dΩ2

5 ,

(2.12)

where

dΩ̄2
3 = dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2. (2.13)

In these coordinates v = 0 is the horizon while v = 1 is the boundary, and Λ is function

of the temperature given by

Λ =
4(πTR)2

3(πTR)2 −
√

(πTR)2 (−2 + (πTR)2)
. (2.14)

2.1.2 Chemical potentials and homogeneous solutions

In this section we will construct solutions which correspond to adding a chemical potential

associated to the global SU(2) flavour symmetry. This symmetry originates from the

fact that we are considering two coinciding D7-probe branes. In addition to the SU(2)

symmetry, our systems also exhibits another global SO(4) symmetry associated to the

residual global isometry of the system of probes. In principle one could also consider

switching on a chemical potential which is associated to this symmetry group, as it was

done in e.g. [99]. However, our prime interest will be the physically more relevant SU(2)

group, which has direct analogue with the SU(2) flavour symmetry group in the Sakai-

Sugimoto model [98].

3This is related to the fact that the solutions at vanishing bare quark mass can be related to Heun

functions in these coordinates.
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In order to turn on a chemical potential corresponding to this global SU(2) “isospin”

symmetry, let us consider two coincident D7-branes, which for simplicity have equatorial

embedding θ = 0, so that the induced metric on the D7-branes is

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 +
R2

u2
du2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +R2dΩ2

3 . (2.15)

In other words, the D7-probes fill out the full AdS5 space, as well as a maximal S3 ∈ S5.

We should note that there are two S3 factors present on the world-volume of the brane,

one Ω̄3 which is dual to the boundary S3 and another one S3 in S5, which is part of the

global symmetry group.

In order to turn on a chemical potential we need to turn on the A0 component of the

gauge field, such that it satisfies the boundary condition

A0(x, z → 0)→ µIτ
3 , (2.16)

where τ3 = σ3/2 with σ3 being the third Pauli spin matrices (and we will define τ1 and

τ2 in the similar way). As a first guess for finding the ground state of the system in the

presence of this chemical potential, we consider the homogeneous ansatz

A = A
(3)
0 (u)τ3 dt , (2.17)

so that the DBI action becomes

S = −TD78π4R3

∫
dz
√
−g(z)

[
1 +

π2R4

2λ

(
∂zA

(3)
0 (z)

)2
gtt(z)gzz(z)

]1/2

. (2.18)

The equation of motion for the field A0(z) can be integrated once, yielding

∂z(A
(3)
0 (z)R) =

4cz(1 + z2)√
(1− z2)6 + 32 c

2π2

λ z6
, (2.19)

where c is an integration constant. We are looking for a physical configuration which is

smooth and differentiable everywhere. Specifically, we require that the field A0 and its

derivatives are smooth at the origin of AdS space. However, by expanding the right hand

side of the above equation near the origin of AdS space one sees that the radial derivative

of the A0 field is non-vanishing. In other words, it is not possible to obtain any nontrivial

(different from a constant solution) homogeneous solution which is smooth at the origin.

This observation persists also for the Yang-Mills truncation of the DBI action, and it

also holds in the Poincaré limit (see [100]). Hence as the starting configuration for our

fluctuation analysis we will use a homogeneous solution with non-zero isospin potential,

given by

A0 = a0τ
3 , a0 = const. . (2.20)
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This solution implies that at zero temperature, the homogeneous background does not

lead to generation of an isospin density.

Above the Hawking-Page transition, the situation is similar. The homogeneous ansatz

yields a first order differential equation,

∂uA
(3)
0 (u)

(
1− uR2

4ρ2
H

)2

= a0 , (2.21)

where a0 is an integration constant. This is solved by

A
(3)
0 (u) =

µI(1− u)

1− uR2

4ρ2H

, (2.22)

where we have imposed the boundary condition that A0(u → 0) = µI at the boundary,

and also required vanishing of A0 at the horizon of the black hole in AdS space. In contrast

to the low temperature situation, we see that there is now a non-vanishing isospin density

present, even for this homogeneous system.

2.2 Perturbative analysis of the homogeneous vacuum at

T = 0

While the homogeneous and isotropic solution which was discussed in the previous section

is a legitimate solution to the equations of motion, we expect that for large enough values

of the chemical potential this configuration will become unstable and “decay” into another,

presumably non-homogeneous or non-isotropic ground state. Our expectations are based

on a similar analysis which was previously performed for the Sakai-Sugimoto model in [98].

A major difference, however, with respect to the analysis of that paper is that we are now

dealing with a field theory on a compact space. In the present section we will discuss

the perturbative stability analysis at T = 0, which from a technical perspective largely

follows the meson spectrum analysis of [7]; we recall some elements of that construction

for completeness and in order to be able to compare with the finite temperature analysis

which is to follow in section 2.3.

2.2.1 Scalar fluctuations at zero temperature

We will start the perturbative analysis of the homogeneous solution (2.20) by considering

scalar perturbations. By scalars we here mean scalars in the dual theory that are also

scalars from the point of view of the D7-probe, i.e. gauge theory scalar fields which are
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uncharged under the SO(4). Some of the scalars in the dual gauge theory originate from

the components of the gauge field on the D7-probe and will be analysed in the next section.

Our starting point is the flat (i.e. maximal) D7-probe embedding with the world-volume

field (2.20) turned on. The induced metric on the world-volume was written in (2.15).

Since the D7-probe brane is filling out the full AdS5 space and wrapping a maximal S3 in

S5, there are only two transverse scalars to the brane world-volume, and they are within

the S5. To see which scalars these are, let us write the metric on S5 as

ds2
5 =

1

1− w2
1+w2

2
R2

(
dw2

1 + dw2
2 −

(w2

R
dw1 −

w1

R
dw2

)2
)

+

(
1− w2

1 + w2
2

R2

)
dΩ2

3 . (2.23)

Note that the metric significantly simplifies for w1 = 0, w2 = w. It can easily be checked

from the equations of motion that it is indeed consistent to set one of the w1, w2 to zero.4

We expect that the first instability will appear already for the lowest lying (S-wave) mode

on the dual gauge theory sphere S̄3, which is also a singlet on S3 ∈ S5. Therefore, when

looking for the instabilities in the system, we will look at the fluctuation which is a function

of only the time and u-coordinates. Let us define the fluctuation variable as

Ψ(t, u) =
δw2(t, u)

2πα′
. (2.24)

The induced metric on the D7-brane becomes

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 (2.25)

+
R2

u2
du2 +R2

(
1− (2πα′)2 Ψ(t, u)2

R2

)
dΩ2

3 + (2πα′)2

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

.

We next need to write down the action for the scalar fluctuation to leading order in α′.

A subtle point here is that all scalars are in the adjoint representation of the SU(2)

group on the world-volume of two D7-branes. The approach we adopt here to write the

action, is to first treat all scalars as abelian and derive the action for the fluctuation by

linearising the DBI action. In the last step we then promote all fields to be in the adjoint

representation by introducing an overall trace in front of the action (for more on this and

other approaches, see e.g. [36, 101]).

4The fluctuation in the other direction leads to the same spectrum, so we will not comment on it any

further (though we should emphasise that this is a property of the equatorial embedding not shared by

non-zero bare quark mass embeddings).
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Following these steps we end up with the action governing the scalar fluctuations,

S = −TD7
4π6R4

λ

∫
dudt u3

(
1 +

R2

4u2

)(
1− R2

4u2

)3

×

[
−R

2

2

(
4u

4u2 +R2

)2

DtΨ
(a)DtΨ

(a) +
u2

2R2
∂uΨ(a)∂uΨ(a) − 3

2

Ψ(a)Ψ(a)

R2

]
. (2.26)

Since we expect that an instability will appear in the gauge direction orthogonal to the

background field A0, we make the ansatz for the fluctuation field to be

Ψ(t, u) = e−iωt
(

Ψ(1)
ω (u)τ1 + Ψ(2)

ω (u)τ2
)
, (2.27)

where we have focused on one Fourier mode.

The equations of motion for the components Ψ
(1)
ω and Ψ

(2)
ω are coupled, but can be

decoupled by changing variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) . (2.28)

The equations of motion for the components Ψ(±) are

∂u(
√
−gguu∂uΨ

(±)
ω )√

−gguu
− gtt

guu

(
ω ±A(3)

0

)2
Ψ(±)
ω +

3

R2guu
Ψ(±)
ω = 0 , (2.29)

which for the specific metric on the D7-brane world-volume become

∂2
uΨ(±)

ω +

∂u

(
u5
(

1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(

1 + R2

4u2

)(
1− R2

4u2

)3 ∂uΨ(±)
ω

+

 R4

u4
(

1 + R2

4u2

)2 (ω ± µ)2 +
3

u2

Ψ(±)
ω = 0 . (2.30)

These equations can be solved by reducing them to Schrödinger form. A very similar

equation has been analysed in [7] for the determination of the mesonic spectrum on the

world-volume of a probe D7 brane at T = 0, in global AdS space. Following steps similar

to those in [7], and focusing on modes which are constant both on the S3 ∈ S5 and on the

gauge theory S̄3, we obtain for the spectrum of fluctuations

(µ+ ω)R = ±(3 + 2n) n = 0, 1, 2, . . . . (2.31)

Here n is the main quantum number. We see that the key effect of the non-vanishing

chemical potential is to shift the frequency ω → ω + µ. Because of this we see that for

large enough chemical potential µ > µcrit = 3/R, the frequency of the lowest lying mode

becomes zero, signalling that the homogeneous solution potentially becomes unstable at

this value of the chemical potential, and a condensate of the scalar might form.
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2.2.2 Vector fluctuations at zero temperature

Following the perturbative analysis in the scalar sector, we now turn our attention to

vectors. We again expect unstable modes, but would like to know whether or not they

occur before the instability of the scalar sector. An analysis of the vector mode spectrum

was performed in infinite volume limit (on the Poincaré patch) in [102] and then later

extended to non-zero chemical potential in [101,103,104]. At finite volume and vanishing

temperature and chemical potential the spectrum can be found in [7]. The upshot of the

analysis of [102] is that the lowest lying supermultiplet consists of two transverse scalars

describing the transverse fluctuations of the D7-brane in the S5, one scalar which originates

from the vector component in the internal S3 ∈ S5 wrapped by the D7-brane, and gauge

components in the non-compact directions of AdS5. As one moves to the compact case,

i.e. global AdS space [7], the states from this supermultiplet get reorganised (split) so that

the lightest state in the compact space is the scalar which originates from the component

of the gauge field in the direction of the internal S3 ∈ S5. The vector components in the

direction of the dual sphere as well as the transverse scalars both have larger masses. We

now want to see how the fluctuations from the vector sector are shifted upon introducing

a chemical potential.

The gauge theory vector fluctuations

Let us start with the vector components in the direction of the sphere S̄3 of the dual

gauge theory. These fluctuations are dual to the vector excitations in the gauge theory.

Similarly to what we did for scalars, we start by writing the fluctuations as

A = A
(3)
0 (u)τ3dt+Ra

(1)
i (t, u, Ω̄3)τ1dθ̄i +Ra

(2)
i (t, u, Ω̄3)τ2dθ̄i , (2.32)

where i = (1, 2, 3) are indices on the dual S̄3, and as for scalars we fluctuate in the gauge

directions orthogonal to A
(3)
0 . Since we know that the lowest lying vector is a singlet on

S3 we do not have to consider excitations which depend on the coordinates of the internal

sphere.5

5In the language of [7] we consider type II fluctuations, with type I fluctuations to be considered in the

next subsection. Looking ahead, it turns out that type III fluctuations condense after type I fluctuations

and we will not consider them in detail here.
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Next, we linearise the Yang-Mills action on the world-volume of the D7-probe,

S = −TD7π
2R

4

2λ

∫
d8ξ
√
−g
[
(∂uA

(3)
0 )2gttguu

+R2
(

((Dtai)
(a))2gttgii + (∂ua

(a)
i )2guugii

)
+R2(faij)

2giigjj
]
, (2.33)

where

(Dtai)
(a) = ∂ta

(a)
i − ε

abcA
(b)
0 a

(c)
i , faij = (∂ia

(a)
j − ∂ja

(a)
i ) . (2.34)

Here, gij is the metric on S̄3. The equations of motion for the fluctuations a
(a)
i are given

by

√
−gεabcA(c)

0 Dta
(b)
i gttgii +

√
−g∂t

(
Dta

(a)
i

)
gttgii + ∂u

(√
−g∂ua(a)

i guugii
)

+
∑
j

(√
−g
(
∂ja

(a)
i − ∂ia

(a)
j

)
gjjgii

)
= 0, (2.35)

In order to solve this equation let us Fourier transform in the time direction. In order

to decouple the equations for the fluctuations a
(1)
i and a

(2)
i we introduce a new pair of

variables

X̄
(±)
i (u, ω, Ω̄3) = e−iωt

(
a

(1)
i (u, ω, Ω̄3)± ia(2)

i (u, ω, Ω̄3)
)
. (2.36)

This finally yields the fluctuation equations

∂u

(√
−gguugii∂uX̄(±)

i

)
+
∑
j

∂j

(√
−ggjjgii

(
∂jX̄

(±)
i − ∂iX̄(±)

j

))

−
√
−ggttgii

(
ω ±A(3)

0

)2
X̄

(±)
i = 0 , (2.37)

which are equivalent to

Du
(
∂uX̄

(±)
i

)
+∇j

(
∂jX̄

(±)
i − ∂iX̄(±)

j

)
− gtt

(
ω ±A(3)

0

)2
X̄

(±)
i = 0. (2.38)

In order to solve these equations, we make a factorised ansatz for X̄i, as a product of

radial and angular functions, and expand the angular part X̄Ω̄3
i (Ω̄3) on S̄3 in terms of

vector spherical harmonics. In general, the fluctuations could also depend on a direction

on internal sphere S3. However, as mentioned before, we will focus only on singlets under

the global SO(4) symmetry group. Also, while there exists three type of vector spherical

harmonics on S̄3, it has been argued in [7, 102], that for fluctuations of the vector field

which are taking place in S̄3 ∈ AdS5, only Y l,±
i which transform in

((
l∓1
2 , l±1

2

))
, l ≥ 1)

irreducible representations of SO(4) are relevant. Hence we expand the fluctuations as

X̄
(±)
i (u, ω, Ω̄3) =

∑
l̄,s=±

Φ̄
(±)

ω,l̄,s
(u)Y l̄,s

i , (2.39)
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where the index (±) refers to the two linear combinations of modes as defined in (2.36),

and the ± index refers to the value of the index s labelling the vector spherical harmonics.

The spherical harmonics satisfy the identities

∇i∇iY l,±
j −RkjY

l,±
k = −(l + 1)2Y l,±

j ,

εijk∇jY l,±
k = ±(l + 1)Y i

l,± ,

∇iY l,±
i = 0 ,

(2.40)

Using these identities the equation for the vector fluctuations can be rewritten as

Φ̄
(±)′′

ω,l̄,s
(u) +

∂u

(√
−g(u)guu(u)P (u)

)
(√
−g(u)guu(u)P (u)

) Φ̄
(±)′

ω,l̄,s
(u)

− 1

guu(u)

[
gtt(u)

(
ω ±A(3)

0 (u)
)2

+ (l̄ + 1)2P (u)

]
Φ̄

(±)

ω,l̄,s
(u) = 0 , (2.41)

where the ± sign in front of A0 in the equation is correlated with the (±) sign on the

Φ̄(±) and P (u) is the inverse of the u-dependent part of the the metric factor in front of

dΩ̄2
3. We should note that this equation is independent of the quantum number s = ±1,

which will be different when we start looking at the vector fluctuations in the direction

of the internal sphere. In the case of zero temperature the fluctuation equation becomes

(see also [7])

Φ̄
(±)′′

ω,l̄
(u) +

∂u

(
u3
(

1 + R2

4u2

)(
1− R2

4u2

))
u3
(

1 + R2

4u2

)(
1− R2

4u2

) Φ̄
(±)′

ω,l̄
(u)

+

 R4

u4
(

1 + R2

4u2

)2 (ω ± µ)2 − R2

u4
(

1− R2

4u2

)2 (l̄ + 1)2

 Φ̄
(±)

ω,l̄
(u) = 0 . (2.42)

This equation is very similar to (2.30), and can again be cast in Schrödinger form. We

then find that the spectrum of vector fluctuations for the l̄-th spherical harmonics is given

by

(ω ± µ)R = (3 + l̄ + 2n) n = 0, 1, 2, 3.... l̄ = 1, 2, 3.... , (2.43)

Here n is again the main quantum number, and l̄ is an SO(4) quantum number corre-

sponding to the sphere S̄3 ∈ AdS5. We see that the result is again the same as the one

in [7] if we consider SO(4) singlets (i.e. set l = 0), except that the chemical potential shifts

the frequency ω → ω ± µ.

From equation (2.43) we see that for a critical value of the chemical potential given

by µcrit = 4/R, the lowest lying mode l̄ = 1 will become massless. Therefore, we expect
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that when the chemical potential is larger than this value, the system potentially becomes

unstable.

The charged scalar fluctuations

Let us now consider fluctuations of the vector field in the direction of the internal S3 ∈ S5,

which are dual to an SO(4) charged scalar field in the gauge theory. Since the WZW term

in the action is now non-zero, when considering fluctuations, we have to modify the action

from (2.33) by adding the term

SWZW =
TD7π

2R4

λ

∫
Tr(C ∧ F ∧ F ) , dC =

4

R
(1 + ∗)Vol(AdS5). (2.44)

Similarly as before, we make an ansatz as in (2.32) except that the index i is now taking

values in the internal S3. In addition, we will also allow the fluctuations to depend on both

S3 and S̄3 variables. In order to decouple the equations of motion we redefine variables

as in (2.36) and make a factorised ansatz

X
(±)
i (u, ω,Ω3, Ω̄3) = e−iωtΦ(±)(u)Ȳ l̄(Ω̄3)Y l,s

i (Ω3) , (2.45)

where the index (±) refers to the sign in the linear combination (2.36), i denotes the index

in the direction of the internal S3, and the index s = ±1. Also to shorten the notation

we have suppressed indices on the functions Φ(±), which should really also carry indices

(ω, s, l̄, l).

Following the same procedure as for scalars and the other gauge components we arrive

at the equation for the fluctuations (see also [7])

∂2
uΦ(±) +

∂u(u5
(

1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(

1 + R2

4u2

)(
1− R2

4u2

)3 ∂uΦ(±) +
R2

u4
(

1 + R2

4u2

)2 (ω ± µ)2Φ(±)

−

(l + 1)2 + l̄(l̄ + 2)
R2

u2
(

1− R2

4u2

)2 + 4s(l + 1)

 1

u2
Φ(±) = 0 , (2.46)

where the sign in the (ω ± µ) is the same as for Φ(±). We should note that this equation

explicitly depends on the quantum number s, which is labelling the vector harmonics on

S3. This is in contrast to the previous case for the equation for vector fluctuations on S̄3.

Putting equation (2.46) in Schrödinger form, like we did for the other fluctuations, we
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obtain for the spectrum

(ω ± µ)R = 3 + 2s+ l + 2n+ l̄ where

l̄ = 0, 1, 2, . . . l = 1, 2, 3, . . . n = 0, 1, 2, . . . s = ±1 . (2.47)

This is the same as (4.31) of [7] except for the shift ω → ω + µ. Let us also note that the

lowest lying excitation carries quantum numbers (l̄ = 0, l = 1, s = −1, n = 0), and this

mode will reach zero frequency when µ > µcrit = 2/R.6

2.3 Perturbative analysis of the homogeneous vacuum at

T 6= 0

In the previous section we have observed that the homogeneous isotropic ground state

at non-zero chemical potential and zero temperature was unstable under both scalar and

vector fluctuations. We would now like to see how is this modified once the temperature

is turned on, paying particular attention to the order in which the instabilities set in as a

function of temperature.

We should emphasise that in contrast to the zero temperature case, where all fluctua-

tions have real frequency ω (corresponding to stable mesonic scalar and vector particles),

at finite temperature (above the Hawking-Page transition), even in the absence of chemical

potential all fluctuation frequencies have a non-vanishing imaginary part. When the chem-

ical potential is zero the imaginary part of these frequencies are negative, corresponding

to the fact that these excitations are decaying in time, i.e. that they describe quasi-stable

particles. However, as the chemical potential is turned on, if there is indeed an instability

present, we expect that the negative imaginary part of the frequencies will become posi-

tive, i.e. that a decaying excitation would become an exponentially growing mode, which

signals an instability. In what follows, we will therefore focus on studying the imaginary

part of the quasi-normal modes of the system.

We start our analysis by looking at the scalar fluctuations, and repeat the procedure

similar to that at zero temperature. Again, we use the metric on the S5 as in (2.23),

keeping only the transverse scalar Ψ(t, u) nonzero (see equation (2.24)) and making it

depend only on time and the radial direction u. As argued before, such excitation is

6The fact that this excitation has the lowest mass at µ = 0 was also observed in [7], but no attempt

was made to study its condensation under the influence of a chemical potential.
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consistent with the full equations of motion, and should correspond to the lowest energy

mode, an S-wave on S̄3. The induced metric on the D7-brane world-volume is then

ds2 = −
2ρ2

HF (u)

uR2W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2

+R2

(
1− Ψ(t, u)2

R2

)
dΩ2

3 +

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

, (2.48)

where

F (u) = 1− u2 , W (u) = 1− uR2

4ρ2
H

. (2.49)

As before, we Fourier transform the scalar Ψ(t, u) and make the ansatz that it is pointing

in the direction orthogonal to the A
(3)
0 τ3 in colour space,

Ψ(t, u) =

∫
dω

2π
e−iωt(Ψ(1)

ω (u)τ1 + Ψ(2)
ω (u)τ2) . (2.50)

We then again change variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) , (2.51)

so that the equations for the Ψ(±) fluctuations decouple and are given by7

∂u

(
W (u)F (u)

u ∂uΨ
(±)
ω (u)

)
W (u)F (u)

u

+
R4W (u)

8uρ2
HF (u)2

(
ω ±A(3)

0 (u)
)2

Ψ(±)
ω (u)

+
3

4u2F (u)
Ψ(±)
ω (u) = 0 . (2.52)

We solve the fluctuation equation by imposing that the modes satisfy an incoming bound-

ary condition at horizon,

Ψ(±)
ω (u)

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (2.53)

The equations for the vector fluctuations are derived in a similar way. Let us first

consider the vector fluctuations which are dual to vectors. We take them to be singlets

under the global SO(4) (l = 0), and orthogonal to the isospin chemical potential in the

gauge group as we did at zero temperature, see (2.32). Following steps similar to those

at zero temperature, instead of a
(1)
i , a

(2)
i , we introduce a new pair of variables X

(±)
i , as in

7Note that at T = 0, the equations only depend on ω − µ, and hence the critical chemical potential

coincides with the frequency of the lightest mode. At T > 0 the A
(3)
0 component is no longer a constant,

and obtaining the critical chemical potential is more complicated (physical states are no longer straight

lines in the ω, µ plane).
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(2.36) and Fourier expand it in spherical harmonics as in (2.39). Hence, we arrive at the

equations of motion for these fluctuations

∂2
uΦ̄(±)s,l̄

ω +
∂uF (u)∂uΦ̄

(±)s,l̄
ω

F (u)
− (l̄ + 1)2 R2

8ρ2
HW (u)F (u)u

Φ̄(±)s,l̄
ω

+
R4W (u)

8uρ2
HF (u)2

(ω ±A(3)
0 )2Φ̄(±)s,l̄

ω = 0 . (2.54)

As for scalars, we impose incoming boundary conditions at the black hole horizon

Φ̄(±)s,l̄
ω

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (2.55)

Finally, we turn to the vector fluctuations dual to the charged scalars. Following similar

steps as we did at zero temperature we arrive at the equations governing these fluctuations

(see equation (2.46))

∂u

(
W (u)F (u)

u ∂uΦ(±)

)
W (u)F (u)

u

− (l + 1)2 1

4u2F (u)
Φ(±) − l̄(l̄ + 2)

R2

8ρ2
HW (u)F (u)u

Φ(±)

− s(l + 1)

u2F (u)
Φ(±) +

R4W (u)

8uρ2
HF (u)2

(ω ±A(3)
0 )2Φ(±) = 0 . (2.56)

where we have again suppressed the indices (ω, l̄, l, s) on the functions Φ and we impose

incoming boundary conditions at the horizon of the black hole

Φ(±)
∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (2.57)

In order to solve the fluctuation equations (2.52), (2.54) and (2.56), we use a shooting

technique, in which we start from the horizon and look for modes that decay at infinity

i.e. we look for the modes that describe normalisable excitations. These boundary condi-

tions will be satisfied only for a discrete set of frequencies. We plot the imaginary parts of

those frequencies for the scalar and two vectors, for fixed temperature and various values

of the chemical potential µ, in figure 2.1.

We see that as the value of the chemical potential is increased, the imaginary parts

of the frequencies, which were initially all negative, become less and less negative and

approach zero. When the chemical potential exceeds a critical value, the imaginary parts

become positive one by one, signalling the presence of unstable modes in the system.

Similarly, the real parts of the frequencies are decreasing to zero as the chemical potential

grows, signalling again the onset of an instability. For a particular value of the temperature

presented on the left plot in the figure 2.1, we see that the vector dual to the gauge theory
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Figure 2.1: Plots of the imaginary (left) and real (right) parts of the frequencies for

the lowest lying uncharged scalar fluctuation (red), the vector fluctuation (blue) and the

charged scalar fluctuation (green), at fixed temperature πTR = 2, as a function of the

chemical potential.

charged scalar remains the lightest in the spectrum and condenses first, followed by the

transverse scalar and finally the vector.

In general, one would expect that particles condense roughly when the chemical po-

tential become of the order of their mass. It is thus of interest to look at the behaviour

of the masses8 as a function of temperature. Figure 2.2 shows the result of this analy-

sis. We here observe another interesting phenomenon, namely that there is a crossover

point at some critical value of the temperature, above which the lightest vector becomes

lighter than the transverse scalar. This suggests that above the crossover temperature,

the lightest vector would condense before the lightest transverse scalar, if it had not been

for the SO(4) charged scalar that condenses even earlier. One can indeed see that the

corresponding imaginary parts cross as well, approximately at this point, see figure 2.3.

For large TR, the results read

charged scalar : µcritR ≈ 2.00πTR− 2.00× 0.05

4πTR
+ · · · ,

vector : µcritR ≈ 4.00πTR− 4.00× 0.05

4πTR
+ · · · ,

uncharged scalar : µcritR ≈ 4.16πTR− 4.16× 1.00

4πTR
+ · · · .

(2.58)

The leading order terms should agree with those obtained in the Poincaré patch, though

to our knowledge only the one for the vector has been computed in the literature [101,

104,105]. The result for the critical chemical potential of [101,104] (when extrapolated to

8We use pole masses here for convenience as they are easy to obtain from the quasi-normal mode

analysis, and the intuition we want to verify is anyhow qualitative.
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Figure 2.2: Left is a plot of the real parts of the frequencies for the various modes (colours

as in figure 2.1) as functions of the temperature at fixed value µR = 5 of the chemical

potential. The plot on the right shows the real parts of the frequencies as functions of

both temperature and chemical potential.
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Figure 2.3: Critical chemical potential as function of temperature, in two different dimen-

sionless combinations. The figure on the right shows more clearly what happens in the

TR→∞ limit, which can be interpreted as the large radius limit at fixed temperature.

zero bare quark mass) seems to be somewhat larger than ours, which may be due to the

fact that we have used a Yang-Mills truncation rather than the full DBI action.

2.4 The new ground states at zero and finite temperature

In the previous two sections we have seen that for large enough chemical potential the

homogeneous ground state on S̄3 ∈ AdS5 becomes unstable under both scalar and various

components of vector fluctuations. This is happening both at zero and non-zero tem-

perature. In particular we observe that, at zero temperature, vector fluctuations in the

direction of the internal S3 ∈ S5 are the first to became unstable. As the temperature

is increased, these vector components remain the first to become unstable. On the other



2.4. The new ground states at zero and finite temperature 78

hand, the ordering in which the other components of the vector fluctuations and the scalar

fluctuations become unstable is dependent on the temperature, as there is a ‘crossover’

temperature above which all vector components first become unstable.

Our previous analysis was done in perturbation theory, i.e. at the linearised level. So

we would now like to see if the instabilities which we have found are present in the full

non-linear theory, and to explore the new ground state in which the system settles for

large enough values of the chemical potential.

2.4.1 The new ground state at zero temperature

In section 2.2.2 we have observed that as the chemical potential is turned on, when its

value reaches µ ≥ 2/R, the lowest lying mode of the vector component in the internal S3,

becomes massless, signalling the onset of possible instability in the system. We have also

seen that for even larger values of the chemical potential, the scalar becomes massless at

µ ≥ 3/R and the other components of the vector develop an instability for µ ≥ 4/R.

To see whether the appearance of these massless modes indeed signals a real instability,

we will now turn to the full non-linear theory and try to explicitly construct the new

ground state to which the system would evolve as a consequence of the instability. As

the perturbative analysis suggests that vector components in the internal S3 direction are

first to condense, we will start the analysis of the new ground state by turning on only

those components. We will later, for comparison, also analyse possible ground states due

to condensation of the other fluctuations, and verify that those always have higher energy

than the scalar condensate.

When writing down an ansatz for the scalar condensate ground state, we will use the

fact that in perturbation theory, the first unstable mode is an l̄ = 0, l = 1, n = 0, s = −1

wave (where l̄ labels modes in the S̄3 and l labels modes in the S3 ∈ S5). As far as the A0

component is concerned, at linearised level one cannot see the back-reaction of the scalar

on the background value of this field, so in principle one cannot say if in the new ground

state the A0 component will start to depend on the angular coordinates or not.

As a simplest attempt we take A0 to remain homogeneous, i.e. independent of the S̄3

angular coordinates. With this ansatz, potential problems in the equations of motion could

originate from expression of the form “AαAβg
αβ
S3 ”, which are now turned on due to the

non-vanishing vector field in the direction of the internal sphere S3. Since these terms will

typically produce spherical harmonics of higher l-number we would need to balance them

in the equations of motion. However, we expect that the ground state would originate from
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condensation of only the lowest harmonic, so that higher l-harmonics are not needed. It is

possible to reconcile these two observations if the “AαAβg
αβ
S3 ” expression is independent of

the angular coordinates. This can indeed be achieved for a particular linear combination

of spherical harmonics given by

Yα =
ik0

K
Y 1,0,0,−1
α +

(k1 + ik2)

K
Y 1,0,−1,−1
α +

(k1 − ik2)

K
Y 1,0,1,−1
α

where K ≡
√
k2

0 + 2(k2
1 + k2

2) , (2.59)

and k0, k1, k2 are three arbitrary real numbers which are not simultaneously vanishing,

and (l,m1,m2, s) are the quantum numbers of the spherical harmonics. We should note

here that value of these quantum numbers will be taken to be the same as those of the

lowest lying excitation we have previously found in the perturbative analysis. Explicitly,

the spherical harmonics are given by

Y 1,0,0,−1 = −i sin2 θdφ− i cos2 θdψ

Y 1,0,1,−1 =
ei(ψ+φ)

√
2

dθ +
i sin θ cos θei(ψ+φ)

√
2

(dφ− dψ)

Y 1,0,−1,−1 =
e−i(ψ+φ)

√
2

dθ − i sin θ cos θe−i(ψ+φ)

√
2

(dφ− dψ) ,

(2.60)

where θ, φ, ψ are Euler coordinates on S3 ∈ S5,

ds2
S3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 . (2.61)

It is also useful to keep in mind that

(Y l,m1,m2,s
i )∗ = −(−1)m1−m2Y l,−m1,−m2,s

i . (2.62)

Our ansatz for the new ground state is

A0 = A
(3)
0 (u)τ3 , Aα = Rη(u)Yα(Ω3)τ1 (2.63)

Plugging this into equations of motion, and using identities (2.40) we get an equation for

A0(u)

∂u

(
(∂uA

(3)
0 )u3

(
1− R2

4u2

)3
/
(

1 + R2

4u2

))
u3
(

1− R2

4u2

)3
/
(

1 + R2

4u2

) − R2

u2
(η(u))2A

(3)
0 (u) = 0 , (2.64)

and an equation for the function η(u)

∂u

(
∂uη(u)u5

(
1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(

1 + R2

4u2

)(
1− R2

4u2

)3 +
R4

u4
(

1 + R2

4u2

)2 (A
(3)
0 (u))2η(u) +

4

u2
η(u) = 0 .

(2.65)
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Figure 2.4: Profile of the fields A0 (left) and η (right) of the charged scalar condensate,

evaluated at µR = 2.5. The boundary is at z = 0 and the AdS centre is at z = 1.

Note that these are independent of the parameter K, which only appears in the angular

part of the equations of motion, which is automatically satisfied for our ansatz.

Equations (2.64), and (2.65) are written in the non-compact coordinate u for which

the AdS centre is at u = R/2 and the boundary is at u = ∞. However, for numerical

considerations it is more convenient to perform a coordinate change to compact coordinates

z = R/(2u), so that the AdS origin is at z = 1, and the boundary at z = 0. The equations

of motion then are given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
η(z)2A

(3)
0 (z) = 0 ,

∂2
zη(z) +

3 + 4z2 + 5z4

z5 − z
∂zη(z) +

(
4

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
η(z) = 0 .

(2.66)

We are interested in the solutions of these equations that are regular everywhere, and

in particular at the origin of AdS space. This removes half of the solutions, as can be

seen by looking at the z → 1 limit of the above equations. Namely, assuming that A0

and η are regular at the AdS origin, it is easy to see that the above equations reduce to

the conditions that the first derivatives of A0 and η are vanishing at the origin. Hence,

the general regular solution will be parametrised by two parameters a, b. We then solve

the equations of motion by shooting from the AdS origin, and look for the solutions at

the boundary such that η is normalisable, while A0 is not. This normalisability condition

further reduces the number of parameters by one. Hence in the expansion near infinity

A
(3)
0 = µ− ρz2 + · · · , A(1)

α = RρηYαz
2 + · · · . (2.67)

both the densities ρ and ρη are functions of the chemical potential µ.

We plot the radial profile of the functions A0(z) and η(z) for one particular solution
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Figure 2.5: The plot on the left shows the isospin density ρR (blue) and scalar density

ρηR (red) of the charged scalar condensate as functions of the isospin chemical potential.

The plot on the right shows the scaled free energy as function of chemical potential.

in figure 2.4. As required, we see that the solution is regular everywhere, and approaches

the origin of AdS with vanishing derivative, so that no cusp is present. We also study

various solutions for different values of chemical potential, see figure 2.5. The shooting

procedure shows that there is a critical value of the chemical potential µcrit ∼ 2/R below

which there is no nontrivial solution present. Above µ = µcrit a nontrivial condensate

of scalar particles forms, and in the neighbourhood of µcrit, this condensate is to a good

approximation given by

ρη =


0 for µ < µcrit

√
µ− µcrit for µ > µcrit .

(2.68)

We have also evaluated the free energy for various values of the chemical potential

(see figure 2.5), and observed that it is less than the (vanishing) free energy of the trivial

configuration, which is in agreement with the statement that this is the ground state.

In summary, our analysis shows that for large enough value of the chemical potential,

this system undergoes a second order phase transition in which the homogeneous isotropic

solution is replaced with a non-isotropic one. The order parameter in this transition is the

density ρη, and the critical exponent is the same as in the Landau-Ginsburg theory with

positive quartic potential.

In order to complete the picture, and to show that (as expected from the perturbative

analysis) the charged scalar condensate is always the one with the lowest energy, we will

now construct condensates of the transverse scalar and the vector, and show that their

energies are always higher than the one of the charged scalar. When constructing the

transverse scalar ground state we recall that perturbative analysis suggested that the
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Figure 2.6: Left: a plot of the functions A0(z) (solid curve) and ψ(z) (dashed curve) for

the vector solution. Right: plots of the functions A0(z) (solid) and Φ (dashed) for the

scalar configuration, both evaluated at a fixed value of chemical potential µR = 4.5.

s-wave is the first excitation of the scalar which becomes massless. Hence we make a

homogeneous (i.e. only u-dependent) ansatz as follows

A = A
(3)
0 (u)τ3 dt , Φ = Φ(1)(u)τ1 , (2.69)

where the vector A0 is present to account for the non-vanishing chemical potential, while

all other vector components are zero. The equations of motion for the fields (A0,Φ) are

given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
Φ(z)2A

(3)
0 (z) = 0 ,

∂2
zΦ(z) +

3 + 4z2 + 5z4

z5 − z
∂zΦ(z) +

(
3

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
Φ(z) = 0 .

(2.70)

Similarly, when constructing the ground state originating from vector condensation,

we start with an ansatz which is similar to that of the vector component dual to a charged

scalar, i.e. we write

A0 = A
(3)
0 (u)τ3 , Aᾱ = ψ(u)Yᾱ(Ω̄3)τ1 , (2.71)

where Yᾱ is as in (2.63), except that the index ᾱ = 1, 2, 3 now refers to the S̄3 ∈ AdS5.

The equations of motion then become

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− 4

(1− z2)2
ψ(z)2A

(3)
0 (z) = 0 ,

∂2
zψ(z) +

1 + 3z4

z5 − z
∂zψ(z) +

(
4R2

(1 + z2)2
A

(3)
0 (z)2 − 16

(1− z2)2

)
ψ(z) = 0 .

(2.72)

We should emphasise here that this equation is derived from an ansatz which uses spherical

harmonics with l̄ = 1, s = −1, similar to the ansatz we used when we constructed the state
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Figure 2.7: Plots of the densities ρ (blue) and ρη (red), as a function of the chemical

potential µ, at zero temperature, for the vector condensate (left) and scalar condensate

(right).

for the vector dual to a charged scalar. However, we have also seen in the perturbative

analysis that vector fluctuations in the direction of S̄3 ∈ AdS5 are insensitive to the

quantum number s, unlike the fluctuation in direction of S3 ∈ S5. Therefore, it should

also be possible to construct an alternative state with spherical harmonics with l̄ = 1, s = 1.

This is indeed the case, and the free energy of this state is the same as for the state with

l̄ = 1, s = −1.

Equations (2.70) and (2.72) are solved in the same fashion as equation (2.66), that

is by the shooting method and imposing that the solution is regular everywhere and in

particular at the origin of AdS5. The solutions for the radial functions (A0,Φ) for the

scalar configuration and (A0, ψ) for the vector are plotted in figure 2.6. We also plot the

densities for both configurations (defined analogous to (2.67)) as functions of the chemical

potential, see figure 2.7.

In order to compare various configurations we plot the free energies for all three states,

see figure 2.8. As expected from the perturbative analysis, we see that the state which

originates from a condensation of the vector components which are dual to a charged

scalar has the lowest free energy. We also see that as the chemical potential is increased,

the difference between the free energies of the other two states and the true ground state

becomes larger.

2.4.2 The new ground state at finite temperature

So far we have seen that at zero temperature, the ground state originates from the conden-

sation of vector components which are dual to a charged scalar, exactly as perturbation
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Figure 2.8: Scaled free energy of the zero-temperature condensates as a function of the

dimensionless chemical potential. The vector is plotted in blue, the scalar in red, the

charged scalar green. The black line along the x-axis denotes the old ground state.

theory suggested. We now want to see what is happening with this new ground state as

the temperature is turned on. We start by making the same ansatz as at zero temperature,

see (2.63). The equations of motion in the coordinates (2.12) are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
R2η(v)2A

(3)
0 (v) = 0 , (2.73)

together with

∂2
vη(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vη(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
η(v) = 0 . (2.74)

We are interested in finding regular solutions to these equations. It is easy to see that

the solutions which are regular are parametrised by two free parameters. A general,

perturbative expansion of the solution near the black hole horizon which is regular is

given by

A
(3)
0 (v) = av +

ab2(Λ− 1)

8ΛR2
v2 +O(v3) ,

η(v) = b− (Λ− 1)b

Λ
v − 12b(Λ− 1) + (2− Λ)(Λ− 1)a2R

16Λ2
v2 +O(v3) ,

(2.75)

i.e. a regular solution is parametrised by two real numbers a, b. We also see that the

general regular solution for A0 vanishes at the horizon, as required by global regularity.

We solve this system of equations again using a shooting method with two free parameters.

As at zero temperature, we require in addition that the solution for η is normalisable at

infinity, or explicitly

A
(3)
0 (v) = µ− ρ(1− v) +O((1− v)2) , η(v) = ρη(1− v) +O((1− v)2) . (2.76)
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Figure 2.9: Left are plots of profile of the fields A0 (solid) and η (dashed) for the charged

scalar, evaluated at πTR = 2.5 and µR = 10.1. The boundary is at v = 1 and horizon at

v = 0. Right plot is for densities ρ (blue) and ρη (red), as function of chemical potential

µ, at fixed temperature πTR = 2.5.

This is possible only for a particular pair of parameters a, b, or in other words both

densities ρ, ρη are functions of the chemical potential. An example of the radial profiles

for a regular solution is plotted in figure 2.9. We also plot both densities as a function

of chemical potential (see right plot on figure 2.9). We observe that, just as at zero

temperature, the densities increase as the chemical potential is increased.

As for zero temperature, we should make sure that possible alternative states which

appear due to condensation of other unstable particles have a larger free energy (as sug-

gested by perturbation theory). We start with the scalar ground state. We make the same

ansatz for the ground state, as we did at the zero temperature, see (2.69). The equations

of motion in the coordinates (2.12) are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
χ(v)2R2A

(3)
0 (v) = 0 ,

∂2
vχ(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vχ(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
χ(v) = 0 .

(2.77)

Similarly, the ground state originating from the vectors is derived starting with the ansatz
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Figure 2.10: Plots of solutions (A0(z),Φ(z)), and (A0(z), ψ(z)) for the scalar and vector

condensates respectively, at fixed temperature πTR = 2.5 and chemical potential µR = 4.5

(the curve for A0 is rather straight only because the plot is made for a chemical potential

only slightly above the critical value).

(2.71). The equations of motion are given by

∂2
vA

(3)
0 (v)− 2− Λ

4(Λ− v)(1− v)v
ψ(v)2A

(3)
0 (v) = 0 ,

∂2
vψ(v) +

(
1

v
− 1

Λ− v

)
∂vψ(v)

− 2− Λ

(Λ− v)(1− v)v

(
1− (Λ− 1)R2

4(Λ− v)v
A

(3)
0 (v)2

)
ψ(v) = 0 .

(2.78)

As before we consider only regular solutions to the equations (2.77) and (2.78) and require

that the solutions are normalisable. Sample solutions for rather arbitrary values of the

temperature and chemical potential are plotted in figure 2.10. We have also evaluated the

densities for these solutions, and find a qualitatively similar dependence on the chemical

potential as before. We have also verified that indeed the charge scalar always has a lower

free energy than the condensate of the other particles, as predicted by perturbation theory.

Finally, we present in figure 2.11 the dependence of the charged scalar condensate

densities on the temperature, for fixed chemical potential. This shows how increasing the

temperature ‘melts’ the condensate.

2.5 Discussion and outlook

In this chapter we have analysed the stability of the homogeneous isotropic phase of

conformal N = 2 super-Yang-Mills theory on a three sphere in the presence of an isospin

chemical potential. We have found that for sufficiently large chemical potential, the theory
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Figure 2.11: Dependence of the charged scalar ground state densities on TR at fixed

chemical potential µR = 4.005.

exhibits unstable vector and scalar modes, as well as an unstable vector mode which is

dual to an SO(4) charged scalar in the dual gauge theory. The latter modes turn out to

condense first. We have verified this explicitly by constructing the condensate and showing

that it has the lowest energy. The new ground state is anisotropic in the directions of the

internal three sphere within the five sphere, but isotropic on the gauge theory sphere.

Therefore, the new ground state breaks the global SO(4) symmetry.

Since the anisotropy of the system originates from the compactness of the internal

three sphere, this anisotropy persists if we take the limit towards a non-compact system,

i.e. the limit in which the radius of the sphere on which the dual gauge theory lives is

taken to be very large (at fixed temperature).

We have observed that the spectrum of fluctuations of the more massive vector and

scalar mesons crosses as a function of TR. This does not influence the formation of the

dual charged scalar condensate, but it conceivably plays a role for larger values of the

chemical potential. In particular, by doing a fluctuation analysis around the dual charged

scalar condensate, one expects by analogy to the results of [98] that at some point new

instabilities will set in, corresponding to the more massive particles condensing as well.

An analysis of this type has appeared for example in [101, 103, 106, 107]. However, all of

these references show that the new ground state is always stable. It would be interesting

to see whether our case would turn out otherwise.



Chapter 3

An N = 2 Gauge Theory in

Compact Space at Zero

Temperature with an External

Magnetic Field

An influence of external magnetic field on a strongly coupled system is an interesting

problem to study. For example, it is found [108, 109] that external magnetic field breaks

chiral symmetry of a QCD system. This effect is known as magnetic catalysis. For a

review, see [110].

In the context of gauge/gravity duality, this effect is studied in the reference [111].

This reference studies the D3/D7 model at zero temperature in Poincaré coordinates with

a constant B-field added into the background geometry. This constant B-field plays a role

of constant external magnetic field in the dual field theory. As well as studying magnetic

catalysis, which centres around massless quarks, this reference also studies the system in

the case of massive quarks. In principle, their model can be used to describe the system

at any value of quark mass and external magnetic field.

A natural extension to this model is to discuss finite-size effect. This can be done by

using global coordinates. The field theory side then lives on R × S3. Since the space is

compact, it is not possible to define a constant B-field. The reference [112] studies this

set-up and suggests that in order for the B-field to not back-react on the background

metric, the B-field has to be pure gauge. Unfortunately, as later suggested by our study,

the D7-branes cannot be embedded into the background suggested by the reference [112],

88
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and hence this choice of B-field is wrong. We found a more proper choice of B-field in

which the D7-branes are allowed to be embedded. The discussion of this particular model

is the subject of this chapter. This is based on an on-going work with Suphakorn Chunlen,

Kasper Peeters, and Marija Zamaklar.

The introduction of the B-field seems to induce a quark mass gap in which there is no

known embedding which produces these forbidden values of quark mass. The mass gap

separates Ball and Minkowski embeddings.

3.1 Equations of motion on probe D7-branes

In some places in the previous chapter, we show the derivation of equations of motion

by substituting an ansatz into an action and then vary the action. While this method is

quick, it is not always correct. The safest way is to vary the action to get equations of

motion, and then substitute the ansatz into the equations of motion.

In fact, as pointed out in the reference [113], the quick method was widely used around

ten years ago. It turns out it is still used nowadays. There is no problem with the quick

method as long as it can be shown that the solutions obtained from this method actually

solves the equations of motion of the model.

In the case at hand, the model is non-linear and lives in a compact space. It is tempt-

ing to use the quick method and guess a natural-looking ansatz to avoid complications.

Unfortunately this does not work. Instead, the way to tackle this problem is to obtain

the equations of motion from the first principle. The form of the equations will give us an

idea of what ansatz is to use.

The full equations of motion for probe branes are given in the reference [113]. Here,

we rederive the equations of motion for the case of D7-branes. For the system we study, it

is sufficient to consider only the DBI action. In the background with a constant dilaton,

the DBI action is given by

SDBI = −TD7

∫
d8σ
√
−det(eab + 2πα′Fab), (3.1)

where eab = Eµν∂ax
µ∂bx

ν with Eµν = Gµν+Bµν . Spacetime coordinates are denoted by xµ

while worldsheet coordinates are denoted by σa. The equations of motion for embedding

function xλ(σ) and for gauge field Ab(σ) are respectively given by

∂b

(√
−EEbaEνλ

∂xν

∂σa

)
+ ∂a

(√
−EEbaEλν

∂xν

∂σb

)
−
√
−EEba∂λEµν

∂xµ

∂σa
∂xν

∂σb
= 0, (3.2)

∂a(
√
−E(Eab − Eba)) = 0, (3.3)
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where Eab and E are inverse and determinant of Eab = eab + 2πα′Fab, respectively. Note

that even if gauge field is not turned on, the left-hand side of the equation (3.3) is not

trivially zero. With a given embedding ansatz, this equation essentially constrains the form

of background B-field. Note that as a consistency check, it can be shown that equations

(3.2) and (3.3) are invariant under gauge transformations that relate B and F. We discuss

this gauge symmetry in appendix 3.A.

3.2 Embedding at zero temperature in finite volume

On R3, one is normally interested in studying a constant magnetic field. Here, we would

like to see what happens if the system is put on S3. However, on S3 it is not clear what it

means to have a constant magnetic field. A possible way to get as close as possible to the

concept of a constant magnetic field is to utilise the symmetry of S3. An attempt given

in [112] is to use local tetrads. Consider the background whose metric is given by

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +

R2

u2
(du2 + u2dΩ2

5), (3.4)

where

dΩ̄2
3 = dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2 , dΩ2

5 = dθ2
3 + sin2 θ3dφ

2
3 + cos2 θ3dΩ2

3. (3.5)

Local tetrads are given by

e(1) = Rdθ̄, e(2) = R sin θ̄dφ̄, e(3) = R cos θ̄dψ. (3.6)

They are used to define a pure gauge B-field

B = He(1) ∧ e(2) = HR2 sin θ̄dθ̄dφ̄ = d(−HR2 cos θ̄dφ̄). (3.7)

The embedding is given by

{t, u, θ̄, φ̄, ψ̄, θ, φ, ψ, θ3, φ3} → {t, u, θ̄, φ̄, ψ̄, θ, φ, ψ} (3.8)

with

{t, u, θ̄, φ̄, ψ̄, θ, φ, ψ} = {t, u, θ̄, φ̄, ψ̄, θ, φ, ψ}, θ3 = θ3(u), φ3 = 0. (3.9)

The worldvolume gauge field is not turned on.

We now show that their ansatz does not satisfy the equation (3.3). We split the inverse

matrix Eab into two parts as follows

Eab = Sab + Jab, (3.10)
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where Sab is a symmetric part while Jab is an antisymmetric part. We substitute the

ansatz into the equation (3.3). For this purpose, it is useful to compute Jab. The non-zero

components of Jab are

J θ̄φ̄ = − HR2

sin θ̄

(
H2R4 +

(
u− R2

4u

)4
) = −J φ̄θ̄. (3.11)

The left-hand side of the non-zero component of (3.3) is then

∂a(
√
−E(Eaφ̄ − E φ̄a)) =∂θ̄(

√
−E(E θ̄φ̄ − E φ̄θ̄))

=− 2HR2

H2R4 +
(
u− R2

4u

)4∂θ̄

(√
−E

sin θ̄

)

=
2HR5u√

H2R4 +
(
u− R2

4u

)4
sin θ̄ sin θ cos θ cos3(θ3(u))×

×
(

1− R4

16u4

)√
1 + u2θ′3(u)2

6= 0.

(3.12)

So the gauge field equation of motion (3.3) is not satisfied.

Let us now propose another attempt. Consider background metric (3.4), and the

background B-field

B =
1

2
H ′(u)R2(sin2 θ̄dudφ̄+ cos2 θ̄dudψ̄) +H(u)R2 sin θ̄ cos θ̄(dθ̄dφ̄− dθ̄dψ̄). (3.13)

It can be shown that B = dΛ, where

Λ =
1

2
H(u)R2(sin2 θ̄dφ̄+ cos2 θ̄dψ̄). (3.14)

To discuss the embedding, let us make a change of coordinates:

χ = sin θ3 cosφ3, κ = sin θ3 sinφ3. (3.15)

The metric becomes

ds2 =− u2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2)

+
R2

u2
du2 +

R2

1− χ2 − κ2

(
dχ2 + dκ2 − (κdχ− χdκ)2

)
+R2(1− χ2 − κ2)(dθ2 + sin2 θdφ2 + cos2 θdψ2).

(3.16)

Note that with this choice of coordinates, χ, κ ∈ [−1, 1]. Let us use the embedding

{t, u, θ̄, φ̄, ψ̄, θ, φ, ψ, χ, κ} → {t, u, θ̄, φ̄, ψ̄, θ, φ, ψ} (3.17)
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with

{t, u, θ̄, φ̄, ψ̄, θ, φ, ψ} = {t, u, θ̄, φ̄, ψ̄, θ, φ, ψ}, χ = χ(u), κ = 0. (3.18)

We do not turn on worldvolume gauge field here. With the embedding ansatz, two equa-

tions can be obtained from (3.2), (3.3). The are given by

0 =χ′′(u) +
3χ(u)

(
4R2u4H ′(u)2 +

(
R2 − 4u2

)2)
(R2u− 4u3)2 − 4χ(u)χ′(u)2

χ(u)2 − 1

+

(
256R8u4H(u)2 + 12288R4u8H(u)2 +

(
R2 − 4u2

)4 (
3R4 + 16R2u2 + 80u4

))
χ′(u)

u (4u2 −R2) (R2 + 4u2)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

+

(
1024R6u8H(u)2 + 4

(
R2 − 4u2

)2 (
3R6u4 + 8R4u6 + 48R2u8

))
H ′(u)2χ′(u)

u (4u2 −R2) (R2 + 4u2)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

+
4u
(

128R4u4H(u)2
(
R4 + 16u4

)
+
(
R2 − 4u2

)4 (
R4 + 4R2u2 + 16u4

))
χ′(u)3

(R2 − 4u2) (R2 + 4u2) (χ(u)2 − 1)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

(3.19)

0 =H ′′(u)− 256R4u4H(u)H ′(u)2

256R4u4H(u)2 + (R2 − 4u2)4

−
4R2u3

(
256R4u4H(u)2 +

(
R2 − 4u2

)2 (
3R4 + 8R2u2 + 48u4

))
H ′(u)3

(R2 − 4u2) (R2 + 4u2)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

+
64H(u)

(
R3 − 4Ru2

)2 (
u2χ′(u)2 − χ(u)2 + 1

)
(χ(u)2 − 1)

(
256R4u4H(u)2 + (R2 − 4u2)4

)
+

((
R2 − 4u2

)4 (
R4 + 48u4

)
− 256R4u4H(u)2

(
R4 + 16R2u2 − 16u4

))
H ′(u)

u (4u2 −R2) (R2 + 4u2)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

+
4u
(

128R4u4H(u)2
(
R4 + 16u4

)
+
(
R2 − 4u2

)4 (
R4 + 4R2u2 + 16u4

))
H ′(u)χ′(u)2

(R2 − 4u2) (R2 + 4u2) (χ(u)2 − 1)
(

256R4u4H(u)2 + (R2 − 4u2)4
)

(3.20)

Equivalently, these two equations can also be obtained by first putting the ansatz into the

action, and then vary the action with respect to H(u), χ(u). For reference, the substituted

action is

S = −TD7
R6

2

∫
d8σ sin θ cos θ sin θ̄ cos θ̄

u

R

(
1 +

R2

4u2

)√√√√( u4

R4

(
1− R2

4u2

)4

+H(u)2

)
×

√√√√((1− χ(u)2)

(
4

(
1− R2

4u2

)2

+H ′(u)2R2

)
+ 4u2

(
1− R2

4u2

)2

χ′(u)2

)(
1− χ(u)2

)
.

(3.21)
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We note that H(u) = H, for a constant H is not a solution of the equation of motion. In

general, we need to numerically solve for χ(u) and H(u).

Before showing how to solve the equations of motion, let us try to see why our choice

of ansatz is natural. From the ansatz (3.13), the norm BµνB
µν of B-field is angular inde-

pendent. This property is desirable because it is quite analogous to the case of a constant

B-field in R3. Moreover, the constant B-field preserves SO(2) subset of the SO(3) rota-

tional symmetry of R3. So by analogy, we should expect that our B-field ansatz preserves

a certain amount of SO(4) rotational symmetry of S3. To see if this is the case, let us

adopt the criteria which is shown in the reference [114]. This criteria is used in order to

check if a given gauge field is spherically symmetric. For a basis {ξm} of a vector field

generating rotations, the gauge field A is spherically symmetric if it satisfies

LξmA = dαm. (3.22)

This implies

iξmF = dΨm, (3.23)

where iξm is an interior product by ξm. So for any ξm, if there exists Ψm, then our

gauge field is spherically symmetric. In our case, we should expect that our B-field is

preserved under a subset of this basis. We may use the gauge transformation discussed in

the appendix 3.A to replace F with B. So essentially, we want to compute iξmB, and see

if there is Ψm which satisfies

iξmB = dΨm. (3.24)

The generators of rotations on S3 are given by

R1 = − i
2

(
cos(φ̄+ ψ̄)∂θ̄ − cot θ̄ sin(φ̄+ ψ̄)∂φ̄ + sin(φ̄+ ψ̄) tan θ̄∂ψ̄

)
, (3.25)

R2 = − i
2

(
sin(φ̄+ ψ̄)∂θ̄ + cot θ̄ cos(φ̄+ ψ̄)∂φ̄ − cos(φ̄+ ψ̄) tan θ̄∂ψ̄

)
, (3.26)

R3 = − i
2

(∂ψ̄ + ∂φ̄), (3.27)

L1 = − i
2

(
− cos(φ̄− ψ̄)∂θ̄ + cot θ̄ sin(φ̄− ψ̄)∂φ̄ + sin(φ̄− ψ̄) tan θ̄∂ψ̄

)
, (3.28)

L2 = − i
2

(
sin(φ̄− ψ̄)∂θ̄ + cot θ̄ cos(φ̄− ψ̄)∂φ̄ + cos(φ̄− ψ̄) tan θ̄∂ψ̄

)
, (3.29)

L3 = − i
2

(∂ψ̄ − ∂φ̄), (3.30)

where

[Ri, Rj ] = iεijkRk, [Li, Lj ] = iεijkLk, [Ri, Lj ] = 0. (3.31)
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So

ΨR1 = (no solution), ΨR2 = (no solution), ΨR3 =
i

4
H(u)R2, (3.32)

ΨL1 = i
4H(u)R2 sin(2θ̄) sin(φ̄− ψ̄), ΨL2 = i

4H(u)R2 sin(2θ̄) cos(φ̄− ψ̄),

ΨL3 = i
4H(u)R2 cos(2θ̄). (3.33)

This means that our B-field is symmetric under SO(3)×SO(2) ⊂ SO(3)×SO(3) ∼= SO(4).

Let us now turn to the ansatz of the transverse scalar. The equations (3.2) and (3.3)

are non-linear. So without making the full use of the symmetry of the system, it is quite

unlikely to find the solution. We assume that the scalar χ is preserved under the same set

of the generators which preserves B-field. This means that

R3χ = L1χ = L2χ = L3χ = 0. (3.34)

This requirement implies

χ = χ(u). (3.35)

So based on symmetry alone, our ansatz is natural. Let us try to see if it is possible to have

a more general ansatz. For simplicity, we want the norm of the B-field ansatz to still be

angular independent. This can be achieved by using the B-field of the form B = dΛ with

Λ = H(u)Y (θ̄, φ̄, ψ̄), where Y (θ̄, φ̄, ψ̄) is a linear combination of vector spherical harmonics

of either mode l̄ = 1, s̄ = 1 or mode l̄ = 1, s̄ = −1. Combining this with the embedding

ansatz (3.18), we can indeed obtain the equations of motion (3.19) and (3.20). Finally, in

order to see if there is an even more general ansatz, we will need some further insights.

At the moment, it is not clear whether this is the case. So we will simply use the ansatz

(3.13) and (3.18) which are based on symmetry considerations, but keep in mind that we

might be missing a non-trivial ansatz.

Let us now proceed to solve the equations of motion (3.19) and (3.20). We the use

shooting method by starting from the position closest to AdS centre and shoot to AdS

boundary. Different kinds of embeddings are distinguished by different initial conditions.

We expand near u = uini, where uini = R/2 for Ball embeddings, and uini = uMink > R/2

for Minkowski embeddings. Since the equations of motion (3.19) and (3.20) are symmetric

under χ(u) ↔ −χ(u), H(u) ↔ −H(u), we can take, without loss of generality, χ(uini) ≥

0, H(uini) ≥ 0. For Ball embedding, the expansion near u = uini is given by

χ(u) = χball −
3

32R2

(
−R

2
+ u

)2 (
16 +H2

c2

)
χball +O((u−R/2)3), (3.36)
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H(u) =
Hc2

R2

(
−R

2
+ u

)2

− 2
Hc2

R3

(
−R

2
+ u

)3

+O((u−R/2)4). (3.37)

For Minkowski embedding, we have

χ(u) = 1 + χM1(u− uMink) + χM2(u− uMink)
2 +O((u− uMink)

3), (3.38)

H(u) = HM +HM1(u− uMink) +HM2(u− uMink)
2 +O((u− uMink)

3), (3.39)

where χM1, χM2, HM1, HM2 are long expressions of uMink, HM . By counting parameters,

regularity requirements demand that a Ball embedding has two free parameters remaining

while a Minkowski embedding has one free parameter remaining. Note in particular that

in order to avoid B-field singularity at the AdS centre, we require H(u)→ 0 as u→ R/2.

We show this regularity requirement explicitly in the appendix 3.B.

We solve the equations of motion (3.19) and (3.20) subject to the above initial condi-

tions, then match the solution with the expansion near the AdS boundary:

χ(u) =
m

u
+
c1

u3
− mR2

2u3
log

u

R
+O(u−4), (3.40)

H(u) = Hext +
Mtz

u2
− 2HextR

2

u2
log

u

R
+O(u−3). (3.41)

The quantity m is proportional to the bare quark mass mq = |m|/(2πα′) while Hext are

proportional to the value of external magnetic field. As for the vacuum expectation value,

we need to properly renormalise the on-shell actions. Again, we follow the procedure

discussed in the references [54,55]. We have also outlined this procedure in chapter 1. We

start from

S0 = − S

R7TD7

∫
dtdΩ̄3dΩ3

. (3.42)

We integrate u/R from 1/2 up to 1/(2ε) and add counter terms which are given by

L1 = − 1

64ε4
(1 + ε2)(1− ε2)3, (3.43)

L2 =
(1− ε4)

32ε2
, (3.44)

L4 =
1

32ε4
(1 + ε2)(1− ε2)3χ2

ε , (3.45)

L5 =
(1− ε4)

16ε2
log
(
χ2
ε

)
χ2
ε , (3.46)

Lf = − 1

64ε4
(1 + ε2)(1− ε2)3χ4

ε , (3.47)

LH = −
(
1 + ε2

)
H2
ε log(2ε)

2 (1− ε2)
. (3.48)
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Figure 3.1: Plot of brane shapes for D7-branes embedding. The plots from left to right

and top to bottom are at fixed external magnetic field Hext = 0, 2, 4, 5, respectively. Each

red curve is for Ball embedding where D7-branes reach AdS centre while each blue curve

is for Minkowski embedding where D7-branes do not reach AdS centre. The horizontal

and vertical axes are u
√

1− χ2/R, uχ/R. For some non-zero values of Hext, there are

forbidden values of bare quark mass.

where

χε ≡ χ
(
R

2ε

)
, Hε ≡ H

(
R

2ε

)
. (3.49)

The subtracted action is given by

Ssub = S0 + L1 + L2 + L4 + L5 + Lf + LH . (3.50)

The resulting vacuum expectation values are given by

c = −R3 lim
ε→0

ε
δSsub

δχε
= c1 −

mR2

2
log
(m
R

)
, (3.51)

M = −2R2 lim
ε→0

δSsub

δHε
= Mtz +HextR

2. (3.52)

Here c is proportional to a vacuum expectation value of a quark bilinear operator, while

M can be interpreted as an induced current.

In the figure 3.1, we show the brane shape at various fixed Hext. Let us first discuss the

top left plot which corresponds to Hext = 0. As we have mentioned in chapter 1, this case

is studied in the references [8, 55]. The brane shape plot is visualised in the reference [7].

In the plot, the horizontal and vertical axes are u
√

1− χ2/R, uχ/R. The AdS centre is

at u = R/2, and is shown in the plot as an arc of radius 1/2 centred at the origin. The

horizontal axis represents the origin of the X8−X9 plane1 while the vertical axis shows the

1As discussed in chapter 1, the X8 − X9 plane is the flat plane which is conformal to the transverse

plane to D7-branes.
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distance away from the origin of the X8−X9 plane. Therefore, the quark mass can be read

off from the value of the vertical axis when the horizontal axis approaches infinity. The red

curves represent Ball embeddings while the blue curves represent Minkowski embeddings.

As mentioned in the previous chapter, the phase transition between these embeddings is

of third order [8].

Let us now discuss the other plots of figure 3.1. For a given Hext in the range 0 <

Hext . 4.8, there is a “mass gap”. This is the region in which some values of bare quark

mass are excluded. This is under investigation. The mass gap closes off at Hext ≈ 4.8. The

development of the mass gap can be viewed as follows. From the point of view at the AdS

centre, more and more Ball embeddings disappear as Hext is increased. This potentially

leaves the quark mass gap between the Ball and Minkowski embeddings. Furthermore,

although the presence of the B-field generically reduces the value of quark mass for each

embedding, the quark mass of the Minkowski embedding is decreased too slowly that

the lowest quark mass obtained from the Minkowski embeddings is still greater than the

highest quark mass obtained from the Ball embeddings. This leaves a mass gap between

the Ball and Minkowski embeddings.

It is not visually clear from the figure 3.1 that there is actually a mass gap. So let us

present an alternative plot. In figure 3.2, we make the similar plots to those of the figure

3.1, but we use the z-coordinate: z = R/(2u), and change the horizontal and vertical axes

to z, χ/(2z). For each curve in these plots, the quark mass can be read off from the value

at the vertical axis. So the figure 3.2 clearly visualises the mass gap.

In figure 3.3, we plot possible values of Hext and m. Note that since the bare quark

mass is given by mq = |m|/(2πα′), it is more appropriate to investigate the phase diagram

from the right plot. At some places in the plot, lines from different configurations are

crossed. At these places, the free energy will need to be compared. We however, postpone

this calculation until we understand the more important issue which is the presence of the

mass gap in the phase diagram.

We have mentioned above that the disappearance of Ball embeddings is partly respon-

sible for the presence of the mass gap. We want to make sure that the disappearance is

not due to a numerical mistake, therefore we will cross check the analysis by an analytical

calculation. The analysis will be possible in the simplest case which is the case of the

equatorial embedding. In this special case, the disappearance is due to the fact that there

is a maximum value of Hext which can be obtained from the analysis. The disappearance

of other Ball embeddings are because of similar reasons.
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Figure 3.2: Plot of brane shapes for D7 embedding in z-coordinates where z = R/(2u).

The plots from left to right and top to bottom are at fixed external magnetic field Hext =

0, 2, 4, 5, respectively. Each red curve is for Ball embedding where D7-branes reach AdS

centre while each blue curve is for Minkowski embedding where D7-branes do not reach

AdS centre. The horizontal and vertical axes are z, χ/(2z). Quark mass of each embedding

is proportional to the position of the brane on the vertical axis. The plots clearly show

the development of mass gap.

3.3 Equatorial embedding analysis

3.3.1 Analytical discussion

Before analysing the equatorial embedding analytically, let us first numerically demon-

strate the saturation of the external magnetic field. For the equatorial embedding, we

have χ(u) = 0. This makes the equation (3.19) trivially satisfied while the equation (3.20)
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Figure 3.3: Plot of possible values of Hext and m. Different lines represent different initial

condition of χ(u), while different points along each line represent different initial condition

of H(u). Red curves represent Ball embeddings while blue curves represent Minkowski

embeddings. The left plot presents the raw data while the right plot shows the phase

diagram. The quark mass is proportional to |m|, so the horizontal axis of the right plot

has to be |m|. Given Hext, |m|, we ask for a unique configuration. So if the line crosses, free

energy of different configurations will need be compared. Furthermore, the phase diagram

should not have a gap. So this phase diagram is quite subtle because of the presence of

the mass gap.

is reduced to

H ′′(u)− R4H(u)H ′(u)2

R4H(u)2 +
(
u− R2

4u

)4 −
64H(u)

(
R3 − 4Ru2

)2
256R4u4H(u)2 + (R2 − 4u2)4

−
2
(
R2 + 4u2

) (
R2 − 4u2

)3
H ′(u)

256R4u5H(u)2 + u (R2 − 4u2)4 −
(
R4 + 16R2u2 − 16u4

)
H ′(u)

16u5 −R4u

− 4R2u3H ′(u)3

(R2 − 4u2) (R2 + 4u2)
−

8R2u3
(
R4 − 16u4

)
H ′(u)3

256R4u4H(u)2 + (R2 − 4u2)4 = 0.

(3.53)

We will also use z-coordinate which is given by z = R/(2u). The equation of motion is

H ′′(z)− 16z4H(z)H ′(z)2

16z4H(z)2 + (z2 − 1)4 −
16
(
z2 − 1

)2
H(z)(

16z4H(z)2 + (z2 − 1)4
)

+

(
16
(
z4 − 4z2 − 1

)
z4H(z)2 +

(
z2 − 1

)4 (
3z4 + 1

))
H ′(z)

16 (z4 − 1) z5H(z)2 + (z2 − 1)5 (z2 + 1) z

+
z3
(

16z4H(z)2 +
(
z2 − 1

)2 (
3z4 + 2z2 + 3

))
H ′(z)3

16z4 (z4 − 1)H(z)2 + (z2 + 1) (z2 − 1)5 = 0.

(3.54)

We solve the equation (3.53), or alternatively the equation (3.54), by shooting from the

AdS centre and read off the value of Hext at the AdS boundary. The only parameter
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Figure 3.4: The plots of Hext versus Hc2. In these plots, we use the setting uball/R =

500001/1000000, uinf/R = 10000. The right plot clearly shows that there is a maximal

value of Hext.

to tune is Hc2. In figure 3.4, we present the results obtained from setting uball/R =

500001/1000000, uinf/R = 10000, where uball and uinf are numerical values for AdS

centre and AdS boundary, respectively. Note that we make uball/R to be numerically very

close to 1/2. This allows us to study up to high value of Hc2 with precision. Numerically,

we see that Hext asymptotically reaches 5.58.

Let us now analytically study the equatorial embedding. We suppose that the non-

linearity should already be encoded in the solution to the equation of motion at the first

order in H(z) :

H ′′(z)−
(
3z4 + 1

)
H ′(z)

(1− z2) (z2 + 1) z
− 16H(z)

(1− z2)2 = 0. (3.55)

By requiring H(1) = 0, H(0) = Hext, the solution is given by

H(z) = Hext

(
1 +

8z2

(1− z2)2 log

(
2z

z2 + 1

))
. (3.56)

We now study the full equation. Our plan is to expand around the first order result near

the AdS centre and near the AdS boundary, then match these results together at the

mid-point. We make an assumption that the non-linearity is already given in the solution

(3.56). Using the full equation of H(z) to determine the coefficients, we expand the field

H(z) near the AdS centre (z = 1) and near the AdS boundary (z = 0) respectively as

H(z)
∣∣∣
z→1
≈H0

(
1 +

8z2

(1− z2)2 log

(
2z

z2 + 1

))
+
c

4
(1− z)2 +

c

4
(1− z)3

+
−c3 − 6c2H0 + c

(
56− 12H2

0

)
− 8H3

0

384
(1− z)4 + · · ·+ (· · · )(1− z)8,

(3.57)

H(z)
∣∣∣
z→0
≈H0

(
1 +

8z2

(1− z2)2 log

(
2z

z2 + 1

))
+ a+ bz2 + 8az2 log(z)

− 2(4a− b)z4 + · · ·+ (· · · )z6 log(z),

(3.58)
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Figure 3.5: Left is the contour plot of the solution to (3.59). Right is the plot from the

left with the result from the full numerical solution plotted in red.

where H0, c, a and b are related to Hc2, Hext and Mtz. The first term of each expansion is

from the solution (3.56). The orders of the two expansions can be arbitrary and are not

directly related to each other, but the higher the orders the more accurate the result. We

take z = 1/2 as the meeting point in which the two expansions of H(z) are approximately

equated. The first and second derivatives of them are also approximately equated at that

point. After substituting and eliminating the unwanted parameters, we are left with a

polynomial equation containing only Hext and Hc2 :

25H7
c2

(
1311465− 49672H2

ext

)
+ 28H5

c2

(
19611320H2

ext − 504255471
)

+96H3
c2

(
11139559023− 475946168H2

ext

)
+ 37748736Hc2

(
237464H2

ext − 4951755
)

−75497472Hext

(
3520H4

ext + 277624H2
ext − 4951755

)
= 0.

(3.59)

The degrees of Hc2 and Hext depend on the orders of the expansions of H(z) near centre

and boundary respectively. The contour plot of this equation is shown in figure 3.5.

From the plot, we choose the curve that include the point (Hc2, Hext) = (0, 0). Despite

the strange behaviour near (0, 0), the solution shows that Hext reaches a constant as Hc2

goes to infinity. This qualitatively agrees with the numerical result. This is shown in the

right plot of the figure 3.5.

Although our analysis is done perturbatively, this does not necessarily mean that only

small values of Hc2 can be trusted. In fact our analysis includes the following non-linear

considerations
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• We do not expand the part

H0

(
1 +

8z2

(1− z2)2 log

(
2z

z2 + 1

))
(3.60)

as we expect non-linear behaviour is already presented in the linear equation (3.55).

If we expand that term, the asymptotic value of Hext will not be close to the actual

numeric value.

• We make boundary expansion up to the term that gives non-linear relationship

between Hext and Hc2. Expanding fewer term does not capture the non-linearity

and hence the result would only be valid for small value of Hc2. On the other hand,

we expect that expanding more terms would lead to complications and that no

further insights can be gained.

It turns out that our analysis capture the behaviour at small Hc2 as well as at large

Hc2. For the mid-values of Hc2, more analysis would be required. However, we expect

that the graph of Hext versus Hc2 would be monotonically increasing. Therefore, there

is a maximal value of Hext. Indeed, we can extract the maximal value by considering the

limit Hc2 →∞ of equation (3.59) where the equation reduces to

25H7
c2

(
1311465− 49672H2

ext

)
= 0, (3.61)

and hence Hext,max = 5.14 (note that the numerical result gives Hext,max = 5.58.). The

equatorial embedding cannot exists for Hext > Hext,max and hence the branes disappear.

3.3.2 Numerical analysis: shooting from the boundary

In this subsection, still with the equatorial embedding, we make another cross check of

the numerical result. Here, we consider the shooting method in which the shooting starts

from the AdS boundary. In this case, we have to scan the two-dimensional parameter

space (Hext,Mtz). Because of the symmetry H(u) ↔ −H(u) of the equation of motion

(3.53), we can take, without loss of generality, Hext ≥ 0. Given a point in the parameter

space (Hext,Mtz), we solve the equation of motion and study the behaviour of H(u), and

wherever possible we read off the value of H(u) (called Hc0) at the AdS centre.

In figure 3.6, we present a scan of (Hext,Mtz) parameter space. The blue line and

brown dots in the figure are associated with solutions with smooth H(u). Points along

blue lines are associated with physical solutions because Hc0 = 0 while brown dots are

associated with unphysical solutions in which Hc0 6= 0. There is another kind of unphysical
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Figure 3.6: The plot shows the (Hext,Mtz) parameter space. The blue line is associated

with solutions which give B-field vanishing at the AdS centre. Brown dots are associated

with solutions which give B-field non-vanishing at the AdS centre. The solutions associated

with the blue line and brown dots have smooth profiles H(u). Grey dots are associated with

solutions that have |H ′(uclose)| > 1015 at some uclose > R/2; this numerically indicates

that H ′(u) blows up at some point.

solutions. They are associated with grey dots in the figure. For these solutions, H ′(u)

blow up at some point u = uclose > R/2. Note that the blue line occupies part of the

border between the brown and grey regions.

3.4 Full check by shooting from the boundary

The cross check from the previous section suggests that our numerical results are likely to

be correct. To see if this is really the case, we need to make a further check. In this section,

we solve the equations of motion (3.19)-(3.20) by shooting from the AdS boundary, then

study the profiles of χ(u) and H(u). From the boundary expansions (3.40)-(3.41), there are

four parameters to tune: (m,Hext, c1,Mtz). Since the equations of motion (3.19)-(3.20) are

symmetric under χ(u) ↔ −χ(u), H(u) ↔ −H(u), we can take, without loss of generality

m ≥ 0, Hext ≥ 0.

In principle, we need to make the full scan of the four-dimensional parameter space

(m,Hext, c1,Mtz). This means that at each point in the parameter space we have to deter-

mine the behaviour of the associated solution. However, the direct analysis will most likely

consume a lot of time and computational resources. So our strategy is to start from a

given value of (m,Hext), and then scan the (c1,Mtz) space. Once we have enough insights

into the problem, we will, hopefully, be able to make a better algorithm for the full scan
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of the four-dimensional parameter space.

There are two kinds of physical solutions: Ball embeddings and Minkowski embeddings.

So our algorithms will be to look for the solutions of these types while discarding unphysical

solutions in the process. The algorithms are as follows

Determining Ball embeddings (“Ball embedding algorithm”)

1. Fix (m,Hext).

2. Make a rough scan in the (c1,Mtz) space. Initially, we take the sample points:

−10 ≤ c1/R
3 ≤ 10 with step size 1, and −10 ≤Mtz/R

2 ≤ 10 with step size 1.

3. At each sample point, read off the value of uclose. Typically, if uclose > R/2, the

solution has |H ′(uclose)| and |χ′(uclose)| blowing up. But if the solution is smooth

everywhere, we take uclose = R/2.

4. From these sample points in the (c1,Mtz) space, pick around ten points which give

the lowest uclose. Then make a rectangle enclosing these points and make around

400 equally spaced sample points.

5. Repeat steps 3-4 until either of the cases below is realised:

(a) The point with uclose = R/2 is obtained. Then scan around this point to find

other points with uclose = R/2. Repeat until all the important representative

points with uclose = R/2 are obtained. For these points, read off H(uclose). The

points which give H(uclose) = 0 are physical while other points are unphysical.

(b) Alternatively, if after making a very fine scan there is no point with uclose = R/2

can be obtained, then conclude that for this value of (m,Hext), there is no

physical solution associated with Ball embeddings.

Determining Minkowski embeddings (“Minkowski embedding algorithm”)

1. Fix (m,Hext).

2. Make a rough scan in the (c1,Mtz) space. Initially, we take the sample points:

−10 ≤ c1/R
3 ≤ 10 with step size 1, and −10 ≤Mtz/R

2 ≤ 10 with step size 1.

3. At each sample point, read off the value of χ(uclose).
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4. From these sample points in the (c1,Mtz) space, pick around ten points which have

χ(uclose) closest to 1. Then make a rectangle enclosing these points and make around

400 equally spacing sample points.

5. Repeat steps 3-4 until either of the cases below is realised:

(a) There are points in which the profiles of χ(u) and H(u) are smooth from

u = uclose to u → ∞. These points are associated to the physical Minkowski

embeddings. As a cross check, we also require χ(uclose) ≈ 1.

(b) Alternatively, if after making a very fine scan there is no point with χ(uclose)

numerically close to 1, then conclude that for this value of (m,Hext), there is

no physical solution associated with Minkowski embeddings.

Given (m,Hext), the idea is to follow the above algorithms, then determine if there ex-

ists physical Minkowski or Ball embeddings. If there are no physical embeddings possible,

then this suggests that there is a mass gap. However, we still do not have enough control

over this numerical calculation to confirm if there is really a mass gap. Nevertheless, let

us simply present our attempts so far. We consider three cases with fix m/R = 0.4 but

vary Hext = 1, 2.5, 3. If the right plot of figure 3.3 is correct, then the first case should

give a Ball embedding, the second case gives no physical embedding, and the third case

gives a Minkowski embedding.

3.4.1 The case m/R = 0.4, Hext = 1

Let us discuss the results for the case m/R = 0.4, Hext = 1. In figure 3.7, we present

the results obtained from the algorithm which tries to determine Ball embeddings. In

this figure, we show the contour plot of uclose/R in the (c1,Mtz) parameter space. We

also present the points which give uclose/R = 0.5001 which is the numerical value for

uclose/R = 0.5. These points (shown as black dots) have smooth profiles of χ(u), H(u). So

they are potentially associated with physical Ball embeddings. In order to determine if

this is really the case, we will have to read off the value of Hc0 ≡ H(R/2). Physical Ball

embeddings have smooth profiles of χ(u), H(u), and have Hc0 = 0.

In the left plot of the figure 3.8, we make the interpolation of black dots from figure

3.7. We define the affine parameter α as the distance along the curve from a reference

point. We also indicate the point which is taken to have α = 0. The right plot shows the

values of Hc0 as a function of α. The physical Ball embedding has Hc0 = 0. However, this



3.4. Full check by shooting from the boundary 106

Figure 3.7: The contour plots showing the values of uclose/R in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 1). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤Mtz/R

2 ≤ 10. The middle plot is the same

as the left plot but with a smaller range focusing around the points with uclose = 0.5001R

(the numerical value for uclose = R/2). The sample points with uclose = 0.5001R are

shown in black dots. The right plot is the colour bar encoding the values of uclose/R. Note

that we use dark blue colour for uclose/R ≥ 1.

is not seen from our data. At α = 0, the value of Hc0 is 0.009. As α increases, the value of

Hc0 is generically increased. From the curve, it is therefore advisable to study the point

around α = 0 more carefully to see if we can have a solution with Hc0 = 0.

Let us now discuss the results which are obtained from the algorithm which tries

to determine Minkowski embeddings. In figure 3.9 we show the values of χ(uclose) in

the (c1,Mtz) parameter space. In order to have a physical Minkowski embedding, we

require χ(uclose) ≈ 1. However, the best result obtained from our sample points gives

χ(uclose) = 0.65. We have made a reasonably fine tuned scan. So based on this result

and the behaviour of the contour plot, it is highly unlikely that there is a Minkowski

embedding for (m/R,Hext) = (0.4, 1).

3.4.2 The case m/R = 0.4, Hext = 2.5

Let us now discuss the results for the case m/R = 0.4, Hext = 2.5. The discussion is in a

similar way as the previous case. We show the results from the Ball embedding algorithm

in figures 3.10-3.11. We have made the contour plot of uclose/R in the (c1,Mtz) parameter
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Figure 3.8: The left plot shows the interpolation of black dots from figure 3.7. We define

the affine parameter α as the distance along the curve from a reference point which is

shown to have α = 0. The right plot shows the values of Hc0 ≡ H(R/2) as a function of

α. The minimum value of |Hc0| which we found is 0.009 at α = 0. A further investigation

is required to see if we can get the point with Hc0 closer to 0.

space, and present the sample values (shown in black dots) which give uclose/R = 0.5001.

These values are interpolated and assigned an affine parameter α. As shown in figure 3.11,

the affine parameter α is taken to be the angle from a reference axis. We then plot the

value of Hc0 for various α in the right plot of figure 3.11. This plot suggests that it is

unlikely to have the solution with Hc0 = 0, and hence there is no physical Ball embedding

for (m/R,Hext) = (0.4, 2.5).

Let us now discuss the results which are obtained from the Minkowski embedding

algorithm. In figure 3.12 we show the values of χ(uclose) in the (c1,Mtz) parameter space.

The value of χ(uclose) which is closest to 1 is found to be 0.967. This value is quite close to

1, the value which suggests the physical Minkowski embedding. So we will need a further

investigation.

3.4.3 The case m/R = 0.4, Hext = 3

Let us now discuss the results for the case m/R = 0.4, Hext = 3. We show the results from

the Ball embedding algorithm in figure 3.13. We have made the contour plot of uclose/R

in the (c1,Mtz) parameter space. From our sample points, we do not get any point with

uclose = 0.5001R. The closest we get is 0.546R. So it is quite unlikely that there is a Ball

embedding for (m/R,Hext) = (0.4, 2.5).

Let us now discuss the results which are obtained the Minkowski embedding algorithm.

From the data presented in figure 3.14 we see that the value of χ(uclose) which is closest
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Figure 3.9: The contour plots showing the values of χ(uclose) in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 1). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤Mtz/R

2 ≤ 10. The middle plot is the same

as the left plot but with a smaller range focusing around the points with χ(uclose) closest to

1. The right plot is the colour bar encoding the values of χ(uclose). The physical Minkowski

embedding has χ(uclose) ≈ 1. However, the best result obtained from our sample points

gives χ(uclose) = 0.65. So it is highly unlikely that there is a Minkowski embedding for

(m/R,Hext) = (0.4, 1).

to 1 is found to be 0.999. This value is very close to 1, so we expect that there is a

nearby point in the (c1,Mtz) space which gives χ(uclose) ≈ 1 as well as smooth profiles

of χ(u), H(u) in the range u ∈ [uclose,∞). If this point exists, then we can conclude with

a certainty that there is a Minkowski embedding. However, we will have to see if this is

really the case.

3.5 Summary and discussions

In this chapter, we analyse the finite size effect of external magnetic field on a strongly

coupled gauge theory at zero temperature by using the D3/D7 model. This model was

studied before by [112]. The external magnetic field is studied by turning on a pure gauge

B-field whose form is based on local tetrads. We argue however that this ansatz does not

solve the constraint on D7-branes. We propose a new ansatz which is based on vector

spherical harmonics. We check that this ansatz indeed satisfies the equations of motion

on D7-branes.
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Figure 3.10: The contour plots showing the values of uclose/R in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 2.5). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤Mtz/R

2 ≤ 10. The middle plot is the same

as the left plot but with a smaller range focusing around the points with uclose = 0.5001R

(the numerical value for uclose = R/2). The sample points with uclose = 0.5001R are

shown in black dots. The right plot is the colour bar encoding the values of uclose/R.

By analysing the embedding, we find that for some fixed external magnetic field, there

is a range of values of quark mass where the system cannot be studied. We call this

forbidden region as “mass gap”. One of the reason for its presence is the disappearance

of some Ball embeddings. Note that the appearance of the mass gap in the presence of

B-field is unusual because the gap is in the middle of the spectrum of the bare parameter

space. Therefore, we have to make sure that our finding is not due to a numerical mistake.

For this reason, we try several cross checks.

We first make a cross check by analysing the equatorial embedding. The results suggest

that the equatorial embedding does disappear for a sufficiently large value of external

magnetic field. We have also scanned the whole parameter space to confirm that this is

really the case.

Although the above cross check seems to confirm some features of the mass gap, it

is still not completely clear. So we make another cross check. This time, we use the

shooting method by shooting from the AdS boundary. This requires the full scan of the

four-dimensional parameter space (m,Hext, c1,Mtz). However, we still do not have a full

control over this computation, so we study some example points.
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Figure 3.11: The left plot shows the interpolation of black dots from figure 3.10. We define

the affine parameter α as the angle from a reference axis.The right plot shows the values

of Hc0 ≡ H(R/2) as a function of α. The interpolation suggests that it is unlikely to have

Hc0 = 0.

We fix (m,Hext) and scan the resulting (c1,Mtz) space. Typically, there are two

kinds of unphysical solutions: either that the profiles χ(u), H(u) are non-smooth or that

the profiles χ(u), H(u) are smooth everywhere but H(R/2) 6= 0. These solutions occupies

most of the (c1,Mtz) space. So we need to be careful to isolate all the physical embeddings

from unphysical ones. This is under an investigation.

If, after the investigation, it turns out that the mass gap does really exist, then it is

possible that this implies that the ground state we are investigating is not the real ground

state. A preliminary result based on scalar fluctuations also suggests that this ground

state, which is homogeneous, is not the real ground state. So we will have to find the real,

inhomogeneous ground state.

After making sure whether the mass gap exists, it is also interesting to see what

happens to the system if we turn on the chemical potential. In particular, we want to see

how the full phase diagram involving magnetic field and chemical potential looks like.

3.A Gauge symmetry of embedding equations of motion

We consider gauge transformation

Aa → Aa + ∂aλ, P [B]ab → P [B]ab (3.62)

or

Aa → Aa −
1

2πα′
λa, P [B]ab → P [B]ab + ∂aλb − ∂bλa. (3.63)
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Figure 3.12: The contour plots showing the values of χ(uclose) in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 2.5). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤ Mtz/R

2 ≤ 10. The middle plot is the

same as the top left plot but with a smaller range focusing around the points with χ(uclose)

closest to 1. The right plot is the colour bar encoding the values of χ(uclose). The physical

Minkowski embedding has χ(uclose) ≈ 1. The best result obtained from our sample points

gives χ(uclose) = 0.967. Since this value is quite close to 1, we need a further investigation

to see if there is a physical Minkowski embedding.

It is easy to see that Eab is invariant under the above gauge transformations. This implies

that equation (3.3) is also invariant under this gauge transformation. For equation (3.2),

expanding derivatives in the first two terms gives

∂b

(√
−E(Eba + Eab)

)
Gνλ∂ax

ν + ∂b

(√
−E(Eba − Eab)

)
Bνλ∂ax

ν

+
√
−EEba(Eνλ + Eλν)∂b∂ax

ν +
√
−EEba (∂µEλν − ∂λEµν + ∂νEµλ) ∂ax

µ∂bx
ν = 0.

(3.64)

Using equation (3.3), the above equation gives

∂b

(√
−E(Eba + Eab)

)
Gνλ∂ax

ν

+ 2
√
−EEba

(
Gνλ∂b∂ax

ν +
1

2
(∂µGλν − ∂λGµν + ∂νGµλ + (dB)µλν) ∂ax

µ∂bx
ν

)
= 0,

(3.65)

which is manifestly invariant under the gauge transformation.
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Figure 3.13: The contour plots showing the values of uclose/R in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 3). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤ Mtz/R

2 ≤ 10. The middle plot is the

same as the left plot but with a smaller range focusing around the points with values

closest to uclose = 0.5001R. From our data, there is no point with uclose = 0.5001R. The

closest we get is 0.546R. So it is quite unlikely that there is a Ball embedding.

3.B Regularity of B-field

In order for B-field to not change the geometry, we require the B-field to be pure gauge

(dB = 0). In fact, we also need it to be regular everywhere. Otherwise, the singularity

will makes dB 6= 0.

For the Ball embedding, we consider the metric near AdS centre as this is the potential

point where B-field becomes singular. We make a change of a variable

u =
R

2
+
v

2
(3.66)

and expand the metric to the leading order of v. This gives

ds2 ≈− dt2 + v2(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2) + dv2

+R2(1− χ2
ball)(dθ

2 + sin2 θdφ2 + cos2 θdψ2).
(3.67)

That is, the near centre geometry is R1,4 × S3. On the R1,4 part, we can reparameterise

to Cartesian coordinates

x = v sin θ̄ cos φ̄, y = v sin θ̄ sin φ̄, z = v cos θ̄ cos ψ̄, w = v cos θ̄ sin ψ̄. (3.68)
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Figure 3.14: The contour plots showing the values of χ(uclose) in the (c1,Mtz) parameter

space with fixed (m/R,Hext) = (0.4, 3). The left plot is the interpolation of the contour

plot for the full range −10 ≤ c1/R
3 ≤ 10,−10 ≤ Mtz/R

2 ≤ 10. The middle plot is the

same as the top left plot but with a smaller range focusing around the points with χ(uclose)

closest to 1. The right plot is the colour bar encoding the values of χ(uclose). The physical

Minkowski embedding has χ(uclose) ≈ 1. The best result obtained from our sample points

gives χ(uclose) = 0.999. Since this value is very close to 1, it is highly likely that there is

a physical Minkowski embedding. However, a further investigation is required to see if a

physical Minkowski embedding really does exist.

Then, B-field is

B =R2

(
H(u)

v4
− 1

4

H ′(u)

v3

)
((xdx+ ydy + zdz + wdw)(ydx− xdy + wdz − zdw))

+
H(u)R2

v2
(dxdy + dzdw) .

(3.69)

Regularity at v = 0 requires H(u) = H0v
2 + . . . . This condition should be imposed only on

Ball embedding since in Minkowski embedding, the D7-brane does not reach the centre.



Chapter 4

The M5–brane action revisited

This chapter is largely based on [2].

Having discussed an application of gauge/gravity duality, let us now turn to something

different. In chapter 1, we have briefly mentioned that a single M5–brane action in a

general eleven-dimensional supergravity background is already constructed. In particular,

we stated that the covariant action of [75, 76] can be constructed with the help of an

auxiliary field. In the case of flat six–dimensional worldvolume, if the auxiliary field

is gauge-fixed to lie along one spatial (or temporal) direction of the worldvolume, then

Lorentz symmetry is only manifest in five–dimensional subspace. In this way, this action

is a 1 + 5 splitting of the six dimensions of the M5–brane worldvolume.

The references [66,78] construct an alternative 5–brane action based on the BLG action.

This construction is called Nambu–Poisson (NP) M5–brane model. It is conjectured to

be related, via a map [115] analogous to Seiberg–Witten map [116], with the original

M5–brane in a constant C3–field background. In the NP M5–brane model the manifest

SO(1, 5) 6d Lorentz symmetry is naturally broken by the presence of multiple M2–branes

and the C3–field to SO(1, 2)× SO(3), which corresponds to a 3 + 3 splitting.

To see whether the quadratic NP M5–brane would be related to the original M5–brane

action, we are motivated to construct a full non-linear M5–brane action with a 3 + 3

splitting. Our strategy to achieve this goal is as follows1. We will start with the covariant

form [119] of the quadratic self–dual action of [66] for a 2–form chiral gauge field in six–

dimensions. In addition to the conventional invariance under the gauge transformations

of the chiral field, the covariant action possesses two more local symmetries. One of them

1For analogous procedures of getting manifestly duality–symmetric non–linear actions see e.g. [71,117,

118].

114
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ensures that the auxiliary fields, which make the action covariant, are non–dynamical and

another one guarantees that the self–duality condition on the field strength of the chiral

field is the general solution of its equations of motion. We will add to this quadratic

action a generic non–linear function of components of the chiral field strength and derive

conditions on the form of this function imposed by the two local symmetries. We will then

check that the non–linearly self–dual field strength of the superembedding formulation

satisfies these conditions and, as a result, will derive an explicit form of the M5–brane

action in which the 6d diffeomorphism invariance is subject to 3+3 splitting.

In section 4.1 we introduce main notation and conventions used throughout this chap-

ter. In section 4.2 we review the original action and present the structure of the novel

action for the M5–brane. The derivation of the new action is explained in section 4.3.

In section 4.4 we show that on–shall values of the two actions are equal and in section

4.5 briefly discuss the dimensional reduction of the novel M5–brane action to that of the

M2–brane. The results are summarised in section 4.6, where we also discuss open issues

and possible directions of further research. In the appendix 4.A we give more details of

the check of the form of the new M5–brane action by comparing the self–duality relations

which follow from the action with those obtained in the superembedding description of

the M5–brane.

4.1 Notation and Conventions

The 6d and the D = 11 Minkowski metrics have the almost plus signature, xµ (µ =

0, 1, · · · , 5) stand for the worldvolume coordinates of the M5–brane which carries the chi-

ral gauge field B2(x) = 1
2dx

µdxνBνµ(x). The D = 11 bulk superspace is parametrised

by ZM = (XM , θ), where XM are eleven bosonic coordinates and θ are 32 real fermionic

coordinates. The geometry of the D = 11 supergravity are described by tangent–space

vector supervielbeins EA(Z) = dZMEM
A(Z) (A = 0, 1, · · · 10) and Majorana–spinor su-

pervielbeins Eα(Z) = dZMEM
α(Z) (α = 1, · · · 32).

The vector supervielbein satisfies the following essential torsion constraint, which is

required for proving the kappa–symmetry of the M5–brane action,

TA = DEA = dEA + EBΩB
A = −iEαΓAαβE

β , (4.1)

where ΩB
A(Z) is the one–form spin connection in D = 11, ΓAαβ = ΓAβα are real symmetric

gamma–matrices and the external differential acts from the right.
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The induced metric on the M5–brane worldvolume is constructed with the pull–backs

of the vector supervielbeins EA(Z)

gµν(x) = EAµE
B
ν ηAB, EAµ = ∂µZ

NEN
A(Z(x)). (4.2)

The M5–brane couples to the D = 11 supergravity 3–form gauge superfield C3(Z) =

1
3!dZ

M1dZM2dZM3CM3M2M1 and its C6(Z) dual, their field strengths are constrained as

follows

dC3 = − i
2
EAEBEαEβ(ΓBA)αβ +

1

4!
EAEBECEDF

(4)
DCBA(Z) ,

dC6 − C3dC3 =
2i

5!
EA1 · · ·EA5EαEβ(ΓA5···A1)αβ +

1

7!
EA1 · · ·EA7F

(7)
A7···A1

(Z) (4.3)

F (7)A1···A7 =
1

4!
εA1···A11F

(4)
A8···A11

, ε0...10 = −ε0...10 = 1.

The generalised field strengths of B2(x) which appears in the M5–brane action is

H3 = dB2 + C3 , (4.4)

where C3(Z(x)) is the pullback on the M5–brane worldvolume of the 3–form gauge field.

4.2 M5-brane actions

We start by briefly reviewing the original form of the M5–brane action and then will

present our main result, namely, the alternative worldvolume action for the M5–brane in

a generic D = 11 supergravity background.

4.2.1 Original M5–brane action

In this case to ensure the 6d worldvolume covariance of the M5–brane action one uses a

normalised gradient of the auxiliary scalar field a(x) which can be chosen to be time–like

or space–like, e.g.

vµ(x) =
∂µa√

∂νa gνλ(x) ∂λa
, vµv

µ = 1 (4.5)

The both choices are equivalent since in the action ∂µa appears only in the projector of

rank one

Pµ
ν(x) =

∂µa∂
νa

(∂a)2
, PP = P, (∂a)2 ≡ ∂νa gνλ ∂λa = ∂νa ∂

νa . (4.6)

This projector singles out one worldvolume direction from the six, i.e. makes the 1+5

covariant splitting of the 6d worldvolume directions.
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The M5–brane action in a generic D = 11 supergravity superbackground constructed

in [74–76] has the following form:

S = +2

∫
M6

d6x

[√
−det(gµν + iH̃µν) +

√
−g

4(∂a)2
∂λaH̃

λµνHµνρ∂
ρa

]
−
∫
M6

(C6 +H3 ∧ C3) , (4.7)

with

H̃ρµν ≡ 1

6
√
−g

ερµνλστHλστ , H̃µν ≡
∂ρa√
(∂a)2

H̃ρµν , g = det gµν , (4.8)

where

ε0···5 = −ε0···5 = 1 .

In addition to the conventional abelian gauge symmetry for the chiral 2-form, the

action (4.7) has also the following two local gauge symmetries :

δBµν = 2∂[µaΦν](x), δa(x) = 0, (4.9)

as well as

δa = ϕ(x), δBµν =
ϕ(x)√
(∂a)2

(Hµν − Vµν), (4.10)

where

Vµν(H̃) ≡ −2
δ
√

det(δνµ + iH̃µ
ν)

δH̃µν

, Hµν ≡ Hµνρ
∂ρa(x)√

(∂a)2
, (4.11)

with ϕ(x) and Φµ(x) being arbitrary local functions on the worldvolume. The first symme-

try (4.9) ensures that the equation of motion of B2 reduces to the non–linear self–duality

condition

Hµν = Vµν(H̃) , (4.12)

while the second symmetry (4.10) is responsible for the auxiliary nature of the scalar field

a(x) and the 6d covariance of the action.

The action (4.7) is also invariant under the local fermionic kappa–symmetry trans-

formations with the parameter κα(x) which acts on the pullbacks of the target–space

supervielbeins and the B2 field strength as follows

iκE
α ≡ δκZMEαM =

1

2
(1 + Γ̄)αβκ

β, iκE
A ≡ δκZMEAM = 0. (4.13)

δκgµν = −4iEα(µ(Γν))αβ iκE
β, δκH

(3) = iκdC
(3), δκa(x) = 0 ,

where (1 + Γ̄)/2 is the projector of rank 16 with Γ̄ having the following form√
det(δνµ + iH̃µ

ν) Γ̄ = γ(6) − 1

2
ΓµνλPµ

ρH̃νλρ −
1

16
√
−g

εµ1···µ6H̃µ1µ2λH̃µ3µ4ρP
λρΓµ5µ6 ,

Γ̄2 = 1 , trΓ̄ = 0, (4.14)
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where

Γµ = Eµ
AΓA , γ(6) =

1

6!
√
−g

εµ1···µ6Γµ1···µ6 . (4.15)

4.2.2 New M5–brane action

For this case, to ensure worldvolume covariance of the construction, instead of the single

scalar field we need to introduce a triplet of auxiliary scalar fields as(x) with the index

(s = 1, 2, 3) labelling a 3-dimensional representation of GL(3) which is an internal global

symmetry of the action. The partial derivatives of the scalars are used to construct the

projector matrices [119]

Pµ
ν = ∂µa

rY −1
rs ∂

νas, Πµ
ν = δνµ − Pµν , Πµ

ν ∂νa
s = 0 (4.16)

with Y −1
rs being the inverse matrix of

Y rs ≡ ∂λar∂ρasgλρ. (4.17)

The projectors identically satisfy the following differential condition

Π[ρ
λΠκ]

µDλP
ν
µ = 0 = Π[ρ

λΠκ]
µDλΠν

µ (4.18)

where Dµ is the worldvolume covariant derivative with respect to the induced metric gµν .

Note that the projectors (4.16) have rank 3 and thus effectively split the 6d directions

into 3+3 ones orthogonal to each other.

The new M5–brane action coupled to a curved superbackground has the following form

S =

∫
M6

d6x

[
−
√
−g
6

(G̃µνρGµνρ + 3F̃µνρFµνρ) + 2LM5(F,G)

]
−
∫
M6

(C6 +H ∧ C3) ,

(4.19)

where

LM5 = − 1

36(1 +G2)
εµ1µ2µ3µ4µ5µ6Gµ1µ2µ3Fµ4νλFµ5

λκFµ6κ
ν

+
1

1 +G2

√
−det

(
gµν +

1

2
(F +G)µρσ(F +G)νρσ

)
) (4.20)

and Fµνρ and Gµνρ are components of the field strength Hµνρ projected as follows

Fµνρ ≡ HτσλP
τ
µΠσ

νΠλ
ρ , Gµνρ ≡ HτσλΠτ

µΠσ
νΠλ

ρ , G2 ≡ 1

6
HµνρΠ

µ
τΠν

σΠρ
λH

τσλ, (4.21)

F̃µνρ ≡ H̃τσλP
τ
µΠσ

νΠλ
ρ , G̃µνρ ≡ H̃τσλΠτ

µΠσ
νΠλ

ρ , . (4.22)

The action enjoys the following two local gauge symmetries analogous to eqs. (4.9)

and (4.10). The first one is

δBµν = P ρµP
σ
ν Φρσ(x), δas = 0, (4.23)
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where Φρσ(x) are arbitrary parameters. Note that in view of the conditions (4.18) it follows

that the projected field strengths (4.21), and hence LM5(G,F ), are invariant under this

symmetry

δΦGµνρ = δΦFµνρ = 0, (4.24)

while their dual (4.22) are not.

The second symmetry ensures the triplet of the scalar fields as(x) to be auxiliary

δas = ϕs(x), δBµν =
1

2
ϕrY −1

rs ∂
ρas εµνρτσλ

(√
−gF̃ τσλ − ∂LM5

∂Fτσλ

)
, (4.25)

where ϕs(x) are local parameters2.

This symmetry allows one to gauge fix as(x) to coincide with three world–sheet co-

ordinates, e.g. xa (a = 0, 1, 2) or xi (i = 3, 4, 5), thus getting a non–covariant but non–

manifestly worldsheet diffeomorphism invariant M5–brane action. For instance, let us

impose the gauge fixing condition

as = δsa x
a , (4.26)

identifying as with xa. Then the following combination of the worldvolume diffeomorphism

δxµ = ξµ(x) and the local symmetry (4.25) leaves this gauge condition intact

δas(x) = ξµ(x)∂µa
s + ϕs(x) = ξs(x) + ϕs(x) = 0, → ϕs(x) = −ξs(x).

Under the local transformation combined of the 6d diffeomorphism δxµ = ξµ(x) and the

local variation (4.25) with ϕa(x) = −ξa(x) the gauge field Bµν transforms as follows

∆ξµBµν = δξµBµν −
1

2
ξa(x) εaµντσλ

(√
−gF̃ τσλ − ∂LM5

∂Fτσλ

)
,

while the other M5–brane fields XM (x) and θα(x) being transformed in the conventional

way as worldvolume scalars. In the gauge (4.26) the action (4.19), (4.20) is non–manifestly

invariant under the modified worldvolume diffeomorphisms of the above form.

Upon tedious computations we have checked that the action is invariant under the

kappa–symmetry transformations (4.13) but with a Γ̄ projector which has the following

2In what follows we will use a normalisation of the functional derivative, denoted by ∂L(F )
∂Fµν...

, which differs

from the one defined in (4.11). Namely, by definition the variation of a p–form Fµ1···µp and the corre-

sponding functional derivatives are defined as follows δFµ1···µp = δFν1···νp
δFµ1···µp
δFν1···νp

= δFν1···νp
1
p!

∂Fµ1···µp
∂Fν1···νp

.

So that
∂L

∂Fν1···νp
≡ p! δL

δFν1···νp
.
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form

1

1 +G2

√
det

(
δνµ +

1

2
(F +G)µρσ(F +G)νρσ

)
Γ̄ =

= γ(6) +
1

6
γ(6)(3F +G)µνρΓµνρ +

1

2(1 +G2)
γ(6)FµντF ρλτΓµνρλ

+
1

6(1 +G2)
γ(6)Γµνρ

(
3(FFG)µνρ + (FFF )µνρ

)
, (4.27)

where

(FFG)µνρ ≡ FµτσFνσλGρλτ , (FFF )µνρ ≡ FµτσFνσλFρλτ . (4.28)

Note that the term multiplying Γ̄ on the left hand side of (4.27) is equal (modulo
√
−det gµν)

to the last term of the non–linear part (4.20) of the M5–brane Lagrangian.

Finally, the non–linear self–duality condition which is obtained from action (4.19) as

the consequence of the equations of motion of B2 (see eq. (4.39) of the next Section) has

the following form

G̃µνρ =
1√
−g

(
∂LM5

∂G

)µνρ
, F̃ [µνρ] =

1√
−g

(
∂LM5

∂F

)[µνρ]

. (4.29)

As we will show, this self–duality condition is related to eq. (4.12) via the manifestly

covariant self–duality relation which comes from the superembedding approach [69].

4.3 Derivation of the new M5–brane action

In the previous section, we have shown the new M5–brane action (4.19). In this section,

we discuss its derivation. The first step is to start from the covariant form [119] of the

quadratic action [66] for the 6d chiral field. It is given by 3

S =
1

6

∫
d6x

√
−det gµν (H − H̃)µνρ(Πλ

µΠκ
νΠτ

ρ + 3Πλ
µΠκ

νPτ
ρ)Hλκτ

≡ 1

6

∫
d6x

√
−det gµν [(G− G̃)µνρG

µνρ + 3(F − F̃ )µνρF
µνρ] . (4.30)

As a consistency check, this action can also be obtained from (4.19) by truncating the

latter to the second order in the chiral field strength H3. The action (4.30) is invariant

under the symmetry (4.23) and under the linearised counterpart of (4.25)

δas = ϕs(x), δBµν =
1

2
ϕsY −1

sr ∂
ρar εµνρτσλ

√
−g
(
F̃ τσλ − F τσλ

)
. (4.31)

3For simplicity, but without loss of generality, we consider (for a moment) the pullbacks of the 11D

gauge fields be zero.
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The quadratic action leads to the equation of motion

∂ρ

(√
−g(G− G̃)µνρ + 3

√
−g(F − F̃ )[µνρ]

)
= 0. (4.32)

One may guess that the general solution is given by

√
−g(G− G̃)µνρ + 3

√
−g(F − F̃ )[µνρ] ?

=
1

2
εµνρτσλ∂τ

[√
−gΦ̃σλ

]
, (4.33)

for some arbitrary integration constant Φ̃σλ = Φ̃[σλ]. However, this solution is not good

because it is incompatible after contracted with the projections Pµ
′

µ P ν
′

ν P
ρ′
ρ and Π

[µ′
µ P ν

′
ν P

ρ′]
ρ ;

the LHS does not survive the projection, while the RHS does, which restricts Φ̃σλ. So we

need to modify the RHS of (4.33) to make it vanish under the projections Pµ
′

µ P ν
′

ν P
ρ′
ρ and

Π
[µ′
µ P ν

′
ν P

ρ′]
ρ . For this purpose, we consider the identity

Φ̃σλ = Φ̃ηξ(P
η
σP

ξ
λ + 2P ησΠξ

λ + Πη
σΠξ

λ). (4.34)

Since each term is of different projection, we propose that the general solution of the

equation of motion (4.32) is of the form

√
−g(G−G̃)µνρ+3

√
−g(F−F̃ )[µνρ] =

1

2
εµνρτσλ∂τ

[√
−gΦ̃ηξ(αP

η
σP

ξ
λ + 2βP ησΠξ

λ + γΠη
σΠξ

λ)
]
,

(4.35)

for some numbers α, β, γ. The requirement that RHS vanishes under the projections

Pµ
′

µ P ν
′

ν P
ρ′
ρ and Π

[µ′
µ P ν

′
ν P

ρ′]
ρ implies that β = γ = 0. Furthermore, without loss of gen-

erality, we can take α = 1. Therefore, the general solution to the equation of motion

(4.32) is given by

√
−g(G− G̃)µνρ + 3

√
−g(F − F̃ )[µνρ] =

1

2
εµνρτσλ∂τ

[√
−gΦ̃ηξP

η
σP

ξ
λ

]
, (4.36)

for some arbitrary integration constant Φ̃ηξ. This integration constant can be compensated

by a gauge transformation of the equation of motion under (4.23) with gauge parameter

−Φ̃ξη. Hence, in view of the definition of the projected components of the field strength

(4.21), the solution of the dynamical equation is equivalent to the self-duality conditions

(G− G̃)µνρ = 0, (F − F̃ )[µνρ] = 0. (4.37)

We are now looking for a non–linear generalisation of the action (4.30) which would

respect the both symmetries (4.23) and (4.25). Note that the second symmetry should be

deformed by the non–linear terms, since the form of its transformation is associated with

the form of the non–linear self–duality condition. In the case of the M5–brane these are

(4.10)–(4.12), and (4.25) and (4.29).



4.3. Derivation of the new M5–brane action 122

Since the field strength components Fµνρ and Gµνρ are invariant under the transfor-

mations (4.23) (see eqs. (4.24)), while their dual (4.22) are not, the non–linear terms in

the action should only depend on F and G. So the general form of the non–linear action

which respects the symmetry (4.23) is obtained by replacing the quadratic terms FF and

GG in (4.30) by an arbitrary function L(F,G)

S =

∫
M6

d6x

(
−
√
−g
6

(G̃µνρGµνρ + 3F̃µνρFµνρ) + 2L(F,G)

)
. (4.38)

The variation of this action with respect to the gauge potential B2 produces the equations

of motion

∂ρ

[(
∂L
∂G

)µνρ
−
√
−gG̃µνρ + 3

(
∂L
∂F

)[µνρ]

− 3
√
−gF̃ [µνρ]

]
= 0. (4.39)

In view of (4.24) and the fact that L only depends on F and G, we can integrate the above

equation of motion with the help of the symmetry (4.23) along the same lines as in free

theory. The integration produces the non–linear self–duality relations

G̃µνρ =
1√
−g

(
∂L
∂G

)µνρ
, F̃ [µνρ] =

1√
−g

(
∂L
∂F

)[µνρ]

. (4.40)

We should now find conditions on the form of L(F,G) imposed by the requirement that

the action is invariant under

δas = ϕs(x), δBµν =
1

2
ϕsY −1

sr ∂
ρar εµνρτσλ

(√
−gF̃ τσλ − ∂L

∂Fτσλ

)
. (4.41)

Upon somewhat lengthy calculations using, in particular, the properties of the projectors

(4.16)–(4.18) and the form of their variation under (4.41)

δϕPµν = 2Πρ(µ∂
ρϕrY −1

rs ∂ν)a
s (4.42)

we get the following condition on L(F,G)

∂µ

[
Y −1
rs ∂

νas
(√
−g
(
∂L
∂G

)µτσ
Fντσ −

√
−gGµτσ

(
∂L
∂F

)
ντσ

−g
2
εντσλξηF

λξηF τσµ − 1

2
εντσλξη

(
∂L
∂F

)λξη (∂L
∂F

)τσµ)]
= 0. (4.43)

This condition is analogous to those found in other instances of models with non–linear

(twisted) self–duality, e.g in D = 6 [71] and D = 4 [117, 118]. It is well known that these

conditions may have different solutions leading to different non–linear generalisations of

quadratic duality–symmetric actions (see e.g. [71,117,118,120,121]). We are interested in

a particular solution of the above equation, i.e. in the form of L(F,G) which describes the
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M5–brane. To find this form we assume that, as in the case of the self–duality condition

(4.12) obtained from the original M5–brane action, also the self–duality conditions (4.29)

(or (4.40)) should be equivalent to the self–duality conditions appearing in the superem-

bedding formulation of the M5–brane [69]. Exploring these conditions we shall derive the

form (4.20) of the non–linear M5–brane Lagrangian.

4.3.1 Non–linear self–duality of the M5–brane in the superembedding

approach

In the superembedding description of the M5–brane [69,122] the field strength H3 of the

chiral field B2 is expressed in terms of a self–dual tensor h3 = ∗h3 as follows4

1

4
Hµνρ = m−1λ

µ hλνρ ,
1

4
H̃µ1ν1ρ1 =

1

6
εµ1ν1ρ1µνρm−1λ

µ hλνρ = Q−1mµ1λhλ
ν1ρ1 (4.44)

where m−1λ
µ is the inverse matrix of

mµ
λ = δµ

λ − 2kµ
λ , m−1λ

µ = Q−1(2δµ
λ −mµ

λ), kµ
λ = hµνρh

λνρ (4.45)

and

Q = 1− 2

3
tr k2 . (4.46)

As was shown in [72], by splitting the indices in eqs. (4.44) into 1+5 and expressing

components of h3 in terms of H̃µν5 one gets the duality relation (4.12)5.

We shall now carry out a similar procedure, but splitting the 6d indices into 3+3, and

upon a somewhat lengthy algebra will arrive at the self–duality condition in the form of

(4.29), thus getting the non–linear function LM5(F,G) (4.20) which enters the M5–brane

action (4.19).

The 3+3 splitting can be performed with the use of the projectors (4.16), but for

computational purposes we have found it more convenient to pass to a local tangent–

space frame using 6d vielbeins emµ (emµ ηmne
n
ν = gµν) and to write the 3+3 tangent space

indices explicitly. So the three directions singled out by the projector Pm
n ≡ eµmPµ

νenν ,

which we assume to contain the time direction, will be labelled by the indices a, b, c, and

the three spacial directions singled out by Πm
n ≡ eµmΠµ

νenν will be labeled by i, j, k:

Pm
n → δba , Πm

n → δji , a, b, c = 0, 1, 2; i, j, k = 3, 4, 5 , (4.47)

4Our normalisation of the field strength differs from that in [72] by the factor of 1
4

in front of H3.
5This splitting is amount to projecting the tensor fields along the direction of ∂µa and orthogonal to it.
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while the 6d Levi–Civita tensor splits as follows

εµνρλτκ ⇒ εabcεijk, ε012 = −ε012 = 1, ε345 = 1 . (4.48)

We are now ready to split the indices of H3 and h3 in (4.44).

3+3 splitting

As h3 is self–dual, we pick its 10 independent components in the local Lorentz frame as

follows

hija, hijk (4.49)

and define6

fka ≡
1

2
εijkhija, g ≡ 1

6
εijkhijk. (4.50)

In view of the self–duality

hmnp =
1

3!
εmnpl1l2l3hl1l2l3 , (4.51)

we have

hjab = −εabcf jc , habc = gεabc, (4.52)

or

fic =
1

2
εabchi

ab g = −1

6
εabch

abc. (4.53)

The corresponding components of H3 are defined as

F ka ≡
1

2
εijkHija, G ≡ 1

6
εijkHijk. (4.54)

The duals of F and G are

F̃ic ≡
1

2
εabcHi

ab, G̃ ≡ −1

6
εabcH

abc. (4.55)

Note that the tensors (4.54) and (4.55) are counterparts of (4.21) and (4.22) in the local

Lorentz frame (4.47).

Our final goal is to write F̃ , G̃ in terms of F,G using the relations (4.44). To this end,

using (4.44) we first find the expressions for F,G, F̃ and G̃ in terms of g and fai

1

4
F ai = Q−1

(
f(1 + 4g2 − 4trf2) + 8f3 − 8gf−1 det f

)a
i

= Q−1 ∂

∂f ia

(
1

2
(g2 + trf2)− 1

16
Q

)
, (4.56)

6One should not confuse the field g(x) with the determinant of the induced metric gµν .
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1

4
G = Q−1

(
g + 4g3 + 4gtrf2 − 8 det f

)
= Q−1 ∂

∂g

(
1

2
(g2 + trf2)− 1

16
Q

)
, (4.57)

and

1

4
F̃ ai = Q−1

(
f(1− 4g2 + 4trf2)− 8f3 + 8gf−1 det f

)a
i

= Q−1 ∂

∂f ia

(
1

2
(g2 + trf2) +

1

16
Q

)
, (4.58)

1

4
G̃ = Q−1

(
g − 4g3 − 4gtrf2 + 8 det f

)
= Q−1 ∂

∂g

(
1

2
(g2 + trf2) +

1

16
Q

)
, (4.59)

where

Q = 1− 16g4 + 16(trf2)2 − 32g2trf2 − 32trf4 + 128 g det f, (4.60)

trf2 ≡ fai f bj δijηab , det f ≡ 1

6
εijkε

abcf iaf
j
b f

k
c , (f−1)ai det f ≡ 1

2
εijkε

abcf jb f
k
c .

(4.61)

The M5–brane action in terms of G and F ia

Let us now present the M5–brane action in the local tangent frame. For the fields (4.54)

and (4.55) the M5–brane action (4.19) takes the following form

S3+3 = −
∫
d6x

(√
−det gµν(F iaF̃

a
i +GG̃)− 2LM5

)
−
∫
M6

(C6 +H ∧ C3) , (4.62)

where the term LM5 is

LM5 =
√
−det gµν

GdetF

1 +G2
+

√
det
(
δji (1 +G2) + F ai F

j
a

)
1 +G2

 . (4.63)

Note that the action (4.62) is equivalent to (4.19), but the former is simply in the local

tangent frame.

Let us also present the non–linear self–duality relations (4.29) in the local tangent

frame. They are

G̃ =
1√

−det gµν

∂LM5

∂G
, F̃ ai =

1√
−det gµν

∂LM5

∂F ia
. (4.64)

The advantage of the local tangent frame is that it allows us to use Mathematica to

check the non–linear self–duality relations. We first check that the non–linear self–duality
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relations obtained from the M5–brane action is equivalent to those obtained from the

superembedding approach. To give some insights, we first present several special cases,

and then proceed to explain the full check. In addition to this check, we also need to check

that the condition (4.43) is satisfied.

Self–duality relations in particular cases

To guess the form (4.63) of the function LM5 in the M5-brane action we first consider a

number of simple cases.

f = 0 case

The relations (4.56)-(4.60) reduce to

Fi
a = F̃i

a = 0 , Q = 1− 16g4,

1

4
G =

g + 4g3

1− 16g4
=

g

1− 4g2
, (4.65)

1

4
G̃ =

g − 4g3

1− 16g4
=

g

1 + 4g2
. (4.66)

We now solve eq. (4.65) for g

g =
±
√

1 +G2 − 1

2G
. (4.67)

Since, due to (4.65), in the linear approximation G/4 = g, we should pick up only the

solution with the upper sign. Substituting this solution into (4.66) we get the relation

between G̃ and G

G̃ =
G√

1 +G2
=
∂
√

1 +G2

∂G
. (4.68)

We see that eq. (4.68) is exactly the same as (4.64) when in (4.63) we put F ai = 0 = Fµνρ.

This demonstrates how the (square root of) factor 1+G2 appears in the function LM5(F,G)

(4.20) or (4.63) of the M5–brane action (4.19).

g = det f = 0 case

Now the relations (4.56)–(4.60) reduce to

G = G̃ = 0 , Q = 1 + 16(trf2)2 − 32trf4,
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1

4
F ai = Q−1

(
f(1− 4trf2) + 8f3

)a
i

= Q−1 ∂

∂f ia

(
1

2
trf2 − 1

16
Q

)
, (4.69)

1

4
F̃ ai = Q−1

(
f(1 + 4trf2)− 8f3

)a
i

= Q−1 ∂

∂f ia

(
1

2
trf2 +

1

16
Q

)
, (4.70)

Let us simplify things even further by considering a solution of the non–linear self–duality

equation such that the only non–zero components of fai are f1
i . Then the above equations

further reduce to

G = G̃ = 0 , Q = 1− 16(f2)2, f2 ≡ f1
i f

1
i ,

1

4
F 1
i = Q−1

(
1 + 4f2

)
f1
i =

f1
i

1− 4f2
, (4.71)

1

4
F̃ 1
i =

f1
i

1 + 4f2
, (4.72)

From these equations we find that

1− 4f2 = −2(1∓
√

1 + F 2)

F 2
, 1 + 4f2 =

2
√

1 + F 2

F 2
(
√

1 + F 2 ∓ 1) ,

f1
i =

F 1
i

2F 2
(±
√

1 + F 2 − 1).

Since, due to (4.71), in the linear approximation F ai /4 = fai , in the above relation we

should pick the upper sign and upon substituting it into (4.70) we get the duality relation

F̃ 1
i =

F 1
i√

1 + F 2
=
∂
√

1 + F 2

∂F i1
. (4.73)

We see that this relation coincides with (4.64) for G = 0 and F ai having only the non–zero

components F 1
i .

Self–dual string soliton (g 6= 0, det f = 0 case)

Let us now consider a more complicated particular case of a string soliton solution of [71].

A similar consideration is applicable to the BPS self–dual string of [123]. For the string

aligned along the x2–coordinate, in terms of fields (4.54) and (4.55) the string soliton

solution of [71] has the following form:

G = −βx
1

ρ4
, F k1 = −βx

k

ρ4
, (4.74)

G̃ = −α
′x1

ρ
, F̃ k1 = −α

′xk

ρ
. (4.75)
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where k = 3, 4, 5, ρ :=
√
x2

1 + x2
3 + x2

4 + x2
5, β is a constant and

α′(ρ) =
β√

β2 + ρ6
. (4.76)

In this form the string soliton solution was considered in [3]. It naturally splits the 6d

worldvolume into 3+3 directions.

The form (4.74) of G and F suggests that in (4.56) and (4.57) g 6= 0 and the non–zero

components of fai are f1
i . So the equations (4.56)–(4.60) reduce to

Q = 1− 16(g2 + f2)2. (4.77)

1

4
F 1
i =

f1
i

1− 4(g2 + f2)
,

1

4
G =

g

1− 4(g2 + f2)
, (4.78)

and
1

4
F̃ 1
i =

f1
i

1 + 4(g2 + f2)
,

1

4
G̃ =

g

1 + 4(g2 + f2)
. (4.79)

Carrying out the same analysis as in the previous examples, from (4.77)–(4.79) we get the

duality relations

F̃ 1
i =

F 1
i√

1 +G2 + F 2
=
∂
√

1 +G2 + F 2

∂F i1
, G̃ =

G√
1 +G2 + F 2

=
∂
√

1 +G2 + F 2

∂G
(4.80)

which are again a particular case of (4.64). One can then guess that in the manifestly

covariant formulation the expression under the square root combines into the determinant

of the matrix formed by the bilinear combinations of Gµνρ and Fµνρ as in eq. (4.20) or

(4.63).

To see that this is indeed so and that (4.63) should also contain the term GdetF let

us consider the case in which G = 0 while F ai is (otherwise) generic.

G = 0 case

We have

G = 0 =
(
g + 4g3 + 4gtrf2 − 8 det f

)
, (4.81)

1

4
G̃ = 2Q−1g , (4.82)

Q = 1− 16g4 + 16(trf2)2 − 32g2trf2 − 32trf4 + 128g det f

= 1 + 16g2 + 16(trf2)2 + 48g4 + 32g2trf2 − 32trf4, (4.83)

1

4
F ai = Q−1

(
f(1 + 4g2 − 4trf2) + 8f3 − 8gf−1 det f

)a
i

(4.84)
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and

1

4
F̃ ai = Q−1

(
f(1− 4g2 + 4trf2)− 8f3 + 8gf−1 det f

)a
i
. (4.85)

Now, the direct computation of detF using (4.84) and (4.81) gives (see also eq. (4.107)

of the Appendix)

detF = 8Q−1g . (4.86)

Comparing this equation with (4.82) we get

G̃ = detF , (4.87)

which is exactly the relation that we get by varying the term (4.63) of the M5-brane

action (4.19) or (4.62) with respect to G and setting G = 0 afterwards. This explains the

appearance of the term GdetF in the M5–brane action.

On the other hand, upon expressing the right–hand side of (4.85) in terms of F ai

and performing somewhat lengthy computations using Mathematica one gets the duality

relation for F̃ which coincides with eq. (4.64) evaluated at G = 0.

Finally, by a direct check using Mathematica one can verify that also in the generic case

the components F , F̃ , G and G̃ of the field strength H3 determined by the superembedding

relations (4.56)–(4.60) satisfy the non–linear duality relations (4.64) which follow from the

M5–brane action (4.19). Main steps of the calculation are described in the Appendix.

The last point that one should check is that the function (4.20) satisfies eq. (4.43) which

insures the invariance of the M5–brane action under the local transformations (4.25). The

direct calculation shows that this is indeed so. Actually, (4.20) satisfies even stronger

relation, namely, it makes to vanish the expression under the derivative in (4.43).

4.4 Comparison of the two M5–brane actions

As was discussed in [119] duality symmetric actions corresponding to different splittings of

space–time differ from each other by terms that vanish on–shell, i.e. when (an appropriate

part of) the self–duality relations is satisfied. In [119] this was discussed for the free chiral

2–form in 6d.

We shall now confront the two M5–brane actions (4.7) and (4.19) by comparing their

values for the 3-form field strength satisfying the non–linear self–duality equation. As we

have seen, the non–linear self–duality relations that follow from these actions are similar

and are equivalent to the self–duality condition that follows from the superembedding
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formulation. Therefore, to compute the on–shell values of the M5–brane actions we will

substitute into them the expressions of the components of H3 and H̃3 in terms of the

components of the self–dual tensor h3.

In the case of the novel action these are eqs. (4.56)–(4.59). Substituting them into

the action (4.19) (or (4.62)) and using Mathematica we find that the on–shell value of the

self–dual M5–brane action is

Son-shell
M5 = 4

∫
d6x
√
−det gµν Q

−1 −
∫
M6

(C6 +H ∧ C3) . (4.88)

Notice that the Lagrangian of this action is the functional of Q(h) defined in (4.46). We

thus see that the on–shell action is manifestly 6d covariant and does not depend on the

auxiliary fields ar(x) (4.16).

To compute the corresponding on–shell value of the original M5–brane action (4.7) we

perform the 1+5 splitting of the duality relations (4.44) which take the following form

H̃âb̂5 = 4Q−1
(

(1− 2trf
2
)f + 8f

3
)
âb̂5

, Hâb̂5 = 4Q−1
(

(1 + 2trf
2
)f − 8f

3
)
âb̂5

,

where f âb̂ = hâb̂5 and â, b̂ = 0, 1, 2, 3, 4. Upon substituting the above expressions into the

action (4.7) we find that its value is again given by eq. (4.88). Thus the two forms of the

M5–brane action give rise to the same equations of motion and their on–shell values are

equal and are given by the superembedding scalar function Q(h). For the self–dual string

soliton considered in Section 4.3.1, the value of the action determines the tension of the

string, as was discussed in [71].

An interesting open problem that may have important consequences for the issue of

quantisation of the self–dual fields is the understanding of the off–shell relationship between

the different self–dual actions.

4.5 Relation to M2–branes

The new form of the M5–brane action can be useful for studying its relation to the Nambu–

Poisson description of the M5–brane in a constant C3 field originated from the 3d BLG

model with the gauge group of volume preserving diffeomorphisms [66,78]. The BLG model

invariant under the volume preserving diffeomorphisms describes a condensate of M2–

branes which via a Myers effect may grow into an M5–brane. In [66,78] it was conjectured

that the Nambu–Poisson M5–brane model is related to the conventional description of the

M5–brane in a constant C–field background through a transformation analogous to the

Seiberg–Witten map [116]. Such a map between the fields and gauge transformations of
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the two models was constructed in [115], however the relation between the two actions

still remains to be established. We leave the study of this issue for future and will only

show that in a flat background without C–field the worldvolume dimensional reduction of

the bosonic M5–brane action (4.19) (or (4.62)) directly results in the membrane action.

To this end we fix the 6d worldvolume diffeomorphisms by imposing the static gauge

xµ = Xµ, XI(xµ) I = 6, 7, 8, 9, 10

where XI(x) are five physical scalar fields corresponding to the target–space directions

transversal to the M5–brane worldvolume. We perform the dimensional reduction of three

worldvolume directions xi (i = 3, 4, 5) assuming that the scalar fields XI and the chiral

tensor field Bµν only depend on the three un–compactified coordinates xa and not on xi.

Then the induced worldvolume metric takes the form

gµν = (ηab + ∂aX
I∂bX

I , δij) , gai = 0 . (4.89)

We use the local gauge symmetry (4.25) to fix the values of the three auxiliary scalars

ar(x) in such a way that the projectors (4.16) take the form

Pµ
ν = δaµδ

ν
a , Πµ

ν = δiµδ
ν
i . (4.90)

Then the components Gµνρ (4.21) of the gauge field strength vanish and Fµνρ reduce to

Faij = ∂aBij ⇒ F ia =
1

2
εijkFajk = ∂aX̃

i , (4.91)

where the dualised components of the gauge field Bij(x
a)

X̃i ≡ 1

2
εijkBjk

play the role of the additional three scalar fluctuations of the membrane associated with

D = 11 target–space directions orthogonal to the membrane worldvolume. Indeed, upon

the dimensional reduction the M5 brane action (4.62) becomes

SM2 =

∫
d3x

√
−det(ηab + ∂aXI∂bXI + ∂aX̃i∂bX̃i) , (4.92)

which is the action for a membrane in flat D = 11 space–time in the static gauge.

4.6 Discussions

Using the non–linear self–duality equation for the 3–form gauge field strength arising in

the superembedding description of the M5–brane we have derived a novel form of the

kappa–symmetric M5–brane action with a covariant 3+3 splitting of its 6d worldvolume.



4.A. Exact check of the M5–brane action non–linear self–duality from
superembedding 132

The value of this action on the mass–shell of the non–linear self–dual gauge field

coincides with the on–shell value of the original M5–brane action expressed in terms of

the 6d scalar function Q of the self–dual chiral field h3 appearing in the superembedding

description of the M5–brane. It would be interesting and important to better understand

the off–shell relation between the two actions.

Having at hand the M5–brane action in the form (4.19), (4.20) one can repeat the

steps of [124] towards understanding the link of this action to the Nambu–Poisson 5–

brane of [66, 78] by restricting the worldvolume pullback of the 11D gauge field C3 to be

constant and by partial gauge fixing local symmetries of (4.19), (4.20) to a group of 3d

volume preserving diffeomorphisms. The Seiberg–Witten–like map constructed in [115]

may be need to relate the fields of the two models. It would be also of interest to relate

our construction to a noncommutative M5–brane of [125].

The novel form of the action is also naturally suitable for studying the effective theory

of the M5–brane wrapping a 3d compact Riemann–manifold.

As another direction of study, one may try, using the superembedding form of the

self–duality relation, to construct an M5–brane action in the form which exhibits 2+4

splitting of the 6d worldvolume which may be useful for studying M5–branes wrapping 2d

and 4d manifolds, and M5–brane instantons wrapping 4d divisors of Calabi–Yau 4–folds

in M3 × CY4 compactifications of M–theory as discussed e.g. in [126–131].

4.A Exact check of the M5–brane action non–linear self–

duality from superembedding

To check the form of (4.20) (or, equivalently, (4.63)), using the superembedding relations

(4.56)–(4.59) we should verify that

G̃(f, g) = 4Q−1
(
g − 4g3 − 4gtrf2 + 8 det f

)
= 1√

− det gµν

∂LM5
∂G

(
F (f, g), G(f, g)

)
, (4.93)

and

F̃ (f, g) = 4Q−1
(
f(1− 4g2 + 4trf2)− 8f3 + 8gf−1 det f

)
= 1√

− det gµν

∂LM5
∂F

(
F (f, g), G(f, g)

)
. (4.94)

To verify the above relations, on their right hand sides we should takeG– and F–derivatives

of LM5 in the form (4.63), substitute into the results the expressions (4.56) and (4.57) for

F and G in terms of f and g, and to see that they coincide with the left hand sides of
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(4.93) and (4.94), i.e. with G̃ and F̃ expressed in terms of f and g. In particular, we will

need to express tr(F 2), tr(F 4) and det(F ) in terms of f and g.

The algebra is very involved but it is manageable systematically by Mathematica. To

this end we used NCAlgebra package which is found in http://math.ucsd.edu/∼ncalg/.

4.A.1 Matrix Notation

To use Mathematica we should properly define the matrices we deal with. Let Fa
i be the

components of the matrix F , ηab or ηab be the components of the matrix η and δij or δij be

the component of the matrix δ. It will be clear from the context whether the indices of η

and δ are up or down. To simplify the notation, we drop δ from all the matrix expressions.

For example, Fa
jδjkF

k
bη
bcFc

i is denoted as FδF T ηF or just FF T ηF. This expression

is what in previous sections we simply referred to as F 3.

The inverse matrix F−1 has the components (F−1)i
a. We will, actually, encounter the

adjugate matrix adj(F ) and the cofactor matrix co(F ) ≡ adj(F )T more often than F−1

and (F−1)T . The definition of adj(F ) is

adj(F )i
a ≡ (F−1)i

a detF =
1

2
εijkε

abcFb
jFc

k, (4.95)

where

detF ≡ 1

6
εijkε

abcFa
iFb

jFc
k. (4.96)

In the matrix form, the equation (4.56) reads

F = 4Q−1
(
f(1 + 4g2 − 4tr(fT ηf)) + 8ffT ηf − 8g η co(f)

)
(4.97)

its transpose is given by

F T = 4Q−1
(
fT (1 + 4g2 − 4tr(fT ηf)) + 8fT ηffT − 8g adj(f) η

)
. (4.98)

and

Q = 1− 16g4 + 128g det(f)− 32g2tr(fT ηf) + 16(tr(fT ηf))2 − 32tr(fT ηffT ηf). (4.99)

We are ready to discuss the computation of the expressions tr(F 2) ≡ trF T ηF ,

tr(F 4) ≡ trF T ηFF T ηF and det(F ) in terms of f and g.

4.A.2 Outline of computation

To compute F T ηF, the following identities are useful to simplify the results:

η2 = 1, (4.100)
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fadj(f) = adj(f)f = det f, fT co(f) = co(f)fT = det f, (4.101)

adj(f)ηco(f) = −(fT ηf)−1 det(fT ηf) = −adj(fT ηf)

= −(fT ηf)2 + tr(fT ηf)fT ηf − 1

2
[(tr(fT ηf))2 − tr((fT ηf)2)],

(4.102)

where in the last equality we used the Cayley–Hamilton formula for 3 × 3 matrices. We

also need the Cayley-Hamilton formula of the form

(fT ηf)3 = tr(fT ηf)(fT ηf)2 − 1

2
[(tr(fT ηf))2 − tr((fT ηf)2)]fT ηf − (det f)2. (4.103)

Using these formulas one can see that each term in the expression for F T ηF is proportional

to either

1, or fT ηf, or (fT ηf)2. (4.104)

Therefore,

tr(F 2)

16Q−2
=tr

(
f2
)

+
(
−48g det(f) + 16tr

(
f4
)

+ 8g2tr
(
f2
)
− 8

(
trf2

)2)
+
(
64g det(f)tr

(
f2
)
− 192g3 det(f)− 192(det f)2 + 96g2tr

(
f4
)

+ 16g4tr
(
f2
)

−64g2
(
trf2

)2 − 16
(
trf2

)3
+ 32tr

(
f2
)

tr
(
f4
))
,

(4.105)

where tr(f2) and tr(f4) are shorthand for tr(fT ηf) and tr((fT ηf)2).

We compute tr(F 4) and tr(F 6) ≡ tr((F T ηF )3) using the same method. We finally

trade tr(F 6) with detF using the Cayley–Hamilton formula

detF =

√
−1

6
(tr(F 2)3 − 3tr(F 4)tr(F 2) + 2tr(F 6)) (4.106)

The explicit expression for detF in terms of f and g looks as follows

1

64
Q3 det(F ) = det(f) + 12g2 det(f) + 48g4 det(f) + 64g6 det(f) + 192g det(f)2

+1280g3 det(f)2 − 512 det(f)3 − 4 det(f)tr(f2)− 96g2 det(f)tr(f2)

−320g4 det(f)tr(f2) + 256g det(f)2tr(f2) + 4g(trf2)2 + 32g3(trf2)2

+64g5(trf2)2 + 16 det(f)(trf2)2 + 320g2 det(f)(trf2)2 − 64 det(f)(trf2)3

+64g(trf2)4 − 4gtr(f4)− 32g3tr(f4)− 64g5tr(f4)− 32 det(f)tr(f4)

−640g2 det(f)tr(f4) + 128 det(f)tr(f2)tr(f4)− 192g (trf2)2tr(f4)

+128g(trf4)2, (4.107)
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We can now compute the expression in terms of f and g of the term in (4.63) containing

the square root √√√√
1− det(F 2)

(1 +G2)2 + (G2 + tr (F 2)) +
1

2

(
(trF 2)2 − tr (F 4)

)
1 +G2

= Q−3(1 +G2)−1

√√√√( 12∑
n=0

an(f)gn

)2

, (4.108)

where the argument of the square root in the last line, which turns out to form a perfect

square, is a polynomial in g with coefficients an(f) depending on tr(f2), tr(f4) and det(f).

The form of these coefficients is rather cumbersome, and we do not give it here. Using the

above expressions we can then check that (4.93) indeed holds.

We now pass to the check of (4.94). In the matrix form it reads

F̃ = 4Q−1
(
f(1− 4g2 + 4trf2)− 8ffT ηf + 8g η co(f)

)
=

1√
−det gµν

η
∂LM5

∂F T
. (4.109)

This is a matrix equation, and we need to compute F , FF T ηF , and η co(F ). To do

this, we proceed as above and compute F , FF T ηF and FF T ηFF T ηF and then trade

FF T ηFF T ηF with ηco(F ) using the relation

ηco(F ) = −
(
FF T ηFF T ηF + 1

2F
(
(trF 2)2 − tr(F 4)

)
− tr(F 2)FF T ηF

)
detF

. (4.110)

In the final result, the matrices F , FF T ηF and η co(F ) are expressed in terms of g, f ,

ffT ηf , and η co(f). We can then substitute these into ∂LM5/(
√
−detgµν∂F ) which is

given by

1√
−detgµν

η
∂LM5

∂F T
=
Gηco(F )

(1 +G2)
+

−det(F ) η co(F )

(1+G2)2
+

(F tr(F 2)−FFT ηF)
1+G2 + F√

1− det (F 2)

(1+G2)2
+ (G2 + tr (F 2)) + 1

2
((trF 2)2−tr(F 4))

1+G2

,

(4.111)

and check that eq. (4.94) does hold.



Chapter 5

Non-Abelian Self-Dual String

Solutions

This chapter is mostly based on [3, 4]

In this final topic, we discuss a solution of coincident M5-branes. Although, as dis-

cussed in the introduction, there is still no complete description of coincident M5-branes,

we can still analyse BPS solutions of the model; in order to obtain BPS equations, we do

not need to know the complete model.

Motivated by the analysis in [132, 133], a theory of non-abelian chiral 2-form in 6-

dimensions was constructed [87]. The theory admits a self-duality equation on the field

strength as the equation of motion. It has a modified 6d Lorentz symmetry. On dimen-

sional reduction on a circle, the action gives the standard 5d Yang-Mills action plus higher

order corrections. Based on these properties, it was proposed that the theory describes the

gauge sector of multiple M5-branes in flat space. In this theory the self-interaction of the

two-form gauge field is mediated by a set of five-dimensional non-propagating Yang-Mills

gauge field. In the Abelian case, the 1-form gauge field is free and simply decouples.

We give a further support of this proposal by constructing the non-abelian self-dual

strings to the equation of motion of the non-abelian theory [132]. We first observe that

an auxiliary 1-form gauge field of the Perry-Schwarz solution [71] is based on a Dirac

monopole. This suggests that the non-abelian self-dual string solution may be constructed

by taking the auxiliary Yang-Mills gauge field to be given by a non-abelian monopole.

Indeed, we are able to construct an SU(2) self-dual string solution both for uncompactified

six dimensions as well as with one dimension compactified. Our solution is obtained by

replacing the Dirac monopole in the Perry-Schwarz string, in the uncompactified case to

136
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the non-abelian Wu-Yang monopole; and in the compactified case to the ’t Hooft-Polyakov

monopole. Our solutions can be interpreted as two M5-branes intersecting with a single

M2-brane.

We then consider the case of an arbitrary number N5 of M5-branes and construct a

self-dual string solution with N2 unit of self-dual charges. This solution is supported by an

auxiliary Yang-Mills gauge field which is a charge N2 monopole solution We will work out

the dependence on N2 and N5 in the radius-transverse distance relation describing the M2-

branes spike, and show that it agrees with the supergravity description of an intersecting

M2-M5 branes system. Therefore our results provide further support of the model of [87].

In section 5.1, we review the non-abelian 5-brane theory of [87]. In section 5.2, after

reviewing the original Perry-Schwarz self-dual string solution, we present a new abelian

self-dual string solution which is orientated in a different direction. The existence of

the latter solution is guaranteed by the Lorentz symmetry of the Perry-Schwarz theory.

Then we solve the non-abelian equation of motion of [87] and obtain an exact solution

describing a string. We then discuss how this solution can be lifted as a solution of the

(2,0) supersymmetric theory. The resulting solution describes a non-abelian string with

self-dual charges. In section 5.3, we consider the compactified case and construct the

corresponding self-dual string solution. In section 5.4, we discuss the case of an arbitrary

number of M5-branes with self-dual string of arbitrary charge . This chapter is concluded

with some further comments and discussions in section 5.5.

5.1 Review of the Non-Abelian Multiple 5-brane Theory

In [87], an action for non-abelian chiral 2-form in 6-dimensions was constructed as a

generalisation of the linear theory of Perry-Schwarz. As in Perry-Schwarz, manifest 6d

Lorentz symmetry was given up and the self-dual tensor gauge field is represented by a 5×5

antisymmetric field Bµν , µ, ν = 0, .., 4. Throughout this chapter we use the convention that

the 5d and 6d coordinates are denoted by xµ = (x0, x1, · · · , x4) and xM = (xµ, x5). We

use ηMN = (−+++++) for the metric and ε01234 = −ε01234 = 1, ε012345 = −ε012345 = 1

for the antisymmetric tensors. The Hodge dual of a 3-form GMNP is defined by

G̃MNP := −1

6
εMNPQRS G

QRS . (5.1)

Motivated by the consideration in [133], a set of 5d 1-form gauge fields Aaµ was intro-

duced for a gauge group G. The proposed action is

S = S0 + SE (5.2)



5.1. Review of the Non-Abelian Multiple 5-brane Theory 138

with S0 a non-abelian generalisation of the Perry-Schwarz action,

S0 =
1

2

∫
d6x tr

(
−H̃µνH̃µν + H̃µν∂5Bµν

)
(5.3)

where Hµνλ = 3D[µBνλ] = 3[∂[µ +A[µ, Bνλ]]; and with SE

SE =

∫
d5x tr

(
(Fµν − c

∫
dx5 H̃µν)Eµν

)
, (5.4)

where Eµν(xλ) is a 5d auxiliary field, providing a constraint such that Aµ carries no extra

degrees of freedom. Here c is a constant and it was taken to be 1 in [87]. Actually one can

take any nonzero value of c and this makes no change to all the symmetries discusses in [87].

The only modification is the relation of the Yang-Mills coupling to the compactification

radius, g2
YM = πRc2. In the following we will show how the value of c is fixed by the

requirement of charge quantisation of our self-dual string solution.

Besides the Yang-Mills gauge symmetry,

δAµ = ∂µΛ + [Aµ,Λ], δBµν = [Bµν ,Λ], δEµν = [Eµν ,Λ] (5.5)

for arbitrary Λ = Λ(xλ), the action has the tensor gauge symmetry

δTAµ = 0, δTBµν = Σµν , δTEµν = 0, (5.6)

for Σµν(xM ) satisfying D[λΣµν] = 0. This form of symmetry first appears in [85]. As

demonstrated in [87], the theory has manifest 5d Lorentz symmetry and a modified 6d

Lorentz symmetry. To establish those symmetries of the action, one takes the field con-

figuration satisfying the boundary conditions:

DλBµν , ∂5Bµν → 0 as |xM | → ∞. (5.7)

With an appropriate fixing of this tensor gauge symmetry, one can turn the equation

of motion of Bµν into a first order self-duality condition:

H̃µν = ∂5Bµν . (5.8)

The gauge field is auxiliary and is determined by the equation:

Fµν = c

∫
dx5 H̃µν . (5.9)

This constraint was inspired from the analysis of the dimensional reduction, in which one

gets multiple D4-branes plus higher derivative correction terms. Notice that, on mass-

shell, the constraint (5.9) simply says that Fµν is given by the boundary values of Bµν for

the uncompactified case:

Fµν = c(Bµν(x5 =∞)−Bµν(x5 = −∞)), (5.10)
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and

Fµν = 2πRcH̃(0)
µν , (5.11)

when x5 is compactified on a circle of radius R. Here H̃
(0)
µν is the zero mode part of the

field strength.

5.2 Non-Abelian Self-Dual String Solution: Uncompactified

Case

In this section, we construct self-dual string solution that satisfies both (5.8) and (5.10).

As mentioned above, a direct observation on the constraint (5.10) shows that the solution

cannot be aligned in the x5 direction since this would imply Fµν = 0 which is trivial.

This does not imply the non-existence of a string solution in other directions, because the

self-duality equation (5.8) has only 5d Lorentz symmetry as it’s a gauge fixed equation

of motion [87]. Therefore, as a preparation to constructing the more general non-abelian

self-dual string solution, we will first construct an abelian self-dual string solution aligning

in the x4 direction and we will start by reviewing the original abelian self-dual string

solution of Perry and Schwarz.

5.2.1 Self-dual string solution in the Perry-Schwarz Theory

In [71], a nonlinear theory of chiral 2-form gauge field which results in the Born-Infeld

action for a U(1) gauge field when reduced to 5 dimensions was constructed. The Perry-

Schwarz non-linear field equation is given by

H̃µν =
(1− y1)Hµν5 +Hµρ5H

ρσ5Hσν5√
1− y1 + 1

2y
2
1 − y2

, (5.12)

where

y1 := −1

2
Hµν5H

µν5, y2 :=
1

4
Hµν5H

νρ5Hρσ5H
σµ5. (5.13)

As they demonstrated, the equation of motion (5.12) admits a solution describing a self-

dual string soliton with finite tension aligning in the direction x5. Since (5.12) is (non-

manifest) 6d Lorentz covariant, it means there must also exist self-dual string solution

aligned in other directions. In the following, we review their construction. Then we

construct new self-dual string solution aligned in a different direction.
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Self-dual string in the x5 direction

The ansatz Perry and Schwarz considered for their self-dual string solution is

B = α(ρ)dtdx5 +
β

8
(±1− cos θ̃)dφ̃dψ̃, (5.14)

where the 6d metric is

ds2 = −dt2 + (dx5)2 + dρ2 + ρ2dΩ2
3, (5.15)

with the three-sphere given in Euler coordinates

dΩ2
3 =

1

4
[(dψ̃ + cos θ̃dφ̃)2 + (dθ̃2 + sin2 θ̃dφ̃2)], (5.16)

where 0 ≤ θ̃ ≤ π, 0 ≤ φ̃ ≤ 2π, 0 ≤ ψ̃ ≤ 4π. For this ansatz, it is y1 = α′ 2, y2 = α′ 4/2 and

the non-linear field equation (5.12) reads

α′(ρ) =
β√

β2 + ρ6
. (5.17)

This can be solved easily in terms of a hyper-geometric function. The solution is regular

everywhere where α ∼ ρ as ρ → 0, while α ∼ − β
2ρ2

+ const. as ρ → ∞. Note that the

same ansatz also solves the linear self-duality equation, where in this case we have,

α′(ρ) =
β

ρ3
(5.18)

and the solution is singular at ρ = 0. In other words, the non-linear terms in the field

equation has smoothen out the singularity at ρ = 0.

The magnetic charge P and electric charge Q per unit length of the string are given

by

P =

∫
S3

H, Q =

∫
S3

∗H, (5.19)

where ∗ denotes the Hodge dual operation and S3 is a three sphere surrounding the string.

It is straightforward to obtain that

P = 2π2β, and Q = 2π2ρ3α′(ρ)|ρ→∞ = 2π2β, (5.20)

hence the string is self-dual. This holds for both the nonlinear and the linear cases. Note

that our answer is 1/8 of those in [71] as we have introduced the factor of 1/4 into the

metric (5.16) in order to reproduce the correct volume 2π2 for a unit three sphere.

The charge quantisation condition [27,28]

PQ′ +QP ′ ∈ 2πZ (5.21)
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for the self-dual string gives

β = ±n
√

1

4π3
, (5.22)

i.e.

P = Q = ±n
√
π, (5.23)

where n is a positive integer. Note that the charge quantisation condition we used is dif-

ferent from the Dirac-Teitelboim-Nepomechie charge quantisation condition [24–26] Perry

and Schwarz used. The condition (5.21) is obtained with a self-dual string probing another

self-dual string and the positive sign in the charge quantisation condition is appropriate

for dyonic branes in D = 4k + 2 spacetime dimensions [27,28].

Perry and Schwarz have also computed the tension of their string solution. Since the

solution is static, the energy can be identified with the Lagrangian and the energy per

unit length is found to be

T = c̃β4/3, (5.24)

where c̃ is a known numerical coefficient. We remark that for the self-dual string solution

of the linearised theory, the tension is

T = 0 (5.25)

since obviously the action vanishes on-shell. Since the charges and tension are well defined,

it appears that the singularity at ρ = 0 is not harmful.

We also remark that the Perry-Schwarz self-dual string solution is non-BPS as there

is no other matter field turned on to cancel the tensor field force. In the literature, there

is also the 1/2 BPS self-dual string of Howe, Lambert and West [123]. In fact the Perry-

Schwarz self-duality equation of motion can be embedded in the fully supersymmetric

five-brane equation of motion of [69, 122] by setting all the matter fields to zero and

hence the Perry-Schwarz self-dual string solution can be lifted to be a solution of the

full five-brane equation of motion, albeit a nonsupersymmetric one. Unlike the nonlinear

Perry-Schwarz self-dual string solution, the Howe-Lambert-West self-dual string solution

is singular at the location of the string. In fact B ∼ 1/ρ2 near the string, which is exactly

as in linearised Perry-Schwarz self-dual string solution.

Self-dual string soliton in the x4 direction

The Perry-Schwarz solution is translationally invariant along x5. One may want to gener-

alise this solution directly and construct a non-Abelian self-dual string solution which is
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translationally invariant along x5 but this is not possible. As reviewed above, the gauge

field strength in the non-abelian theory is given on-shell by the boundary value of B-field

as (5.10) Therefore, if the non-Abelian solution is translationally invariant along x5, then

Fµν = 0 which is trivial.

To get a non-trivial solution, we need to base our construction on Perry-Schwarz soli-

tons which are translationally invariant along other direction, say x4. Such a solution can

be easily obtained by rotating the original Perry-Schwarz solution as Perry and Schwarz

has proved that their theory and the non-linear equation (5.12) respect Lorentz symme-

try. Therefore, a simple Lorentz transformation which swap (x4, x5) → (−x5, x4) can be

applied on the original Perry-Schwarz solution (the minus sign is needed to preserve the

orientation of spacetime) to obtain the desired solution.

To facilitate the discussion, it is more convenient to use the spherical polar coordinates

which is related to the Euler coordinates by the change of coordinates

θ̃ = 2θ, φ̃ = ψ − φ, ψ̃ = ψ + φ. (5.26)

With this coordinates, the three-sphere metric is given by

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 (5.27)

with the ranges 0 ≤ θ ≤ π/2, 0 ≤ φ, ψ ≤ 2π, and the Perry-Schwarz ansatz (5.14) becomes

B = α(ρ)dtdx5 + β

(
1

4
± 1

4
− 1

2
cos2 θ

)
dφdψ. (5.28)

Next change to Cartesian coordinates

x = ρ sin θ cosφ, y = ρ sin θ sinφ, z = ρ cos θ cosψ, w = ρ cos θ sinψ, (5.29)

where we have denoted (x1, x2, x3, x4) = (x, y, z, w). The metric becomes

ds2 = −dt2 + dx2 + dy2 + dz2 + dw2 + d(x5)2, (5.30)

and the Perry-Schwarz ansatz reads

B = α(ρ)dtdx5 + β

1
4 ±

1
4 −

1
2
w2+z2

ρ2

(x2 + y2)(z2 + w2)
(xzdydw − xwdydz − yzdxdw + ywdxdz). (5.31)

Keeping the orientation, we swap (x4, x5) → (−x5, x4) and obtain our ansatz for a

string solution along the x4 direction,

B = α(ρ)dtdw−β
1
4 ±

1
4 −

1
2

(x5)2+z2

ρ2

(x2 + y2)(z2 + (x5)2)
(xzdydx5−xx5dydz−yzdxdx5 +yx5dxdz) (5.32)
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where now

ρ =
√

(x5)2 + r2, r :=
√
x2 + y2 + z2. (5.33)

It follows that

H =
α′

ρ
dtdw

(
xdx+ydy+zdz+x5dx5

)
+
β

ρ4

(
x5dxdydz−xdydzdx5+zdydxdx5−ydzdxdx5

)
,

(5.34)

∗H =
α′

ρ

(
x5dxdydz−xdydzdx5+zdydxdx5−ydzdxdx5

)
+
β

ρ4
dtdw

(
xdx+ydy+zdz+x5dx5

)
,

(5.35)

and

y1 =
(α′)2(x5)2

ρ2
− β2r2

ρ8
, y2 =

β4r4

2ρ16
+

(α′)4(x5)4

2ρ4
. (5.36)

Then the field equation (5.12) gives

β

ρ4
x5dtdw+

α′

ρ
(−xdydz+zdydx−ydzdx) =

α′x5

ρ
Gdtdw+

1

G

β

ρ4
(−xdydz+zdydx−ydzdx),

(5.37)

where

G =

√
1 + β2r2ρ−8

1− α′2(x5)2ρ−2
. (5.38)

The equation (5.37) is equivalent to

α′ =
β√

β2 + ρ6
, (5.39)

which is the same equation as before. As a consistency check, we integrate over the S3

transverses to x4 and obtain the same charges

P = Q = 2π2β. (5.40)

For the linearised case, α′ = β/ρ3.

Self-dual string soliton in the x4 direction in the Bµ5 = 0 gauge

The potential BMN in the solution (5.31) or (5.32) does not satisfy the condition Bµ5 = 0

as needed in [71, 87]. However this is not a problem as they are indeed gauge equivalent

to one which does. Instead of giving the gauge transformation, it is more instructive to

construct directly the linearised self-dual string soliton in the x4 direction in this gauge.

The starting point is (5.34) with α′ = β/ρ3. Our strategy is to integrate the self-duality

equation of motion

Hµν5 = ∂5Bµν (5.41)
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to get Bµν . Then we use Bµν to compute the whole HMNP and check its consistency with

our ansatz. The components of H are

Htwi =
βxi

ρ4
, Hijk =

εijkβx
5

ρ4
, (5.42)

Htw5 =
βx5

ρ4
, Hij5 = −

εijkβx
k

ρ4
. (5.43)

Integrating (5.43), we get the following components of Bµν :

Bij = −1

2

βεijkxk
r3

(
x5r

ρ2
+ tan−1(x5/r)

)
, Btw = − β

2ρ2
, (5.44)

In principle, x5 independent constants of integration can be added but we will not need

them. It is now easy to check a consistent solution is obtained by setting all the other

independent components of Bµν to be zero.

Three remarks are in order:

1. We remark that if we apply the condition (5.9) to the Perry-Schwarz self-dual string

solution, we obtain

Fij = −cβπ
2

εijkxk
r3

, Ftw = 0 (5.45)

for the auxiliary gauge field. Certainly this U(1) field decouples and play no role

in the abelian case. However it is interesting to note that this is precisely the field

strength of a Dirac monopole in the (x, y, z) subspace! The presence of a Dirac

monopole was already apparent in the original solution of [71]. Here, we reveal that

the same monopole configuration also appears as the auxiliary gauge field. It turns

out the use of an non-abelian monopole in place of the Dirac monopole is precisely

what is needed to construct the non-abelian self-dual string solution.

2. The solution in the form (5.44) will be our basis for the construction of the non-

abelian self-dual string in the next subsection. We remark that it is also quite

interesting that this form of the solution provides a link between linearised Perry-

Schwarz self-dual string and Howe-Lambert-West self-dual string [123]. To explain

this, let us first give a brief review on the key construction of Howe-Lambert-West

self-dual string. In the superembedding approach of (2,0) supersymmetric theory,

there are two non-linearly related 3-form field strengths which are called H and h.

The 3-form H is exact but not necessarily self-dual while the 3-form h is self-dual

but not necessarily exact. When constructing self-dual string, one of the scalar

fields is also turned on. The equation of motion is non-linear. However, with an



5.2. Non-Abelian Self-Dual String Solution: Uncompactified Case 145

appropriate ansatz, it is possible to impose a BPS condition which eventually gives

a linear differential relation between H and the scalar field. Writing in our notation,

the BPS equations of motion read

Htwi = ∂iφ, Htw5 = ∂5φ, (5.46)

Hijk = εijk∂5φ, Hij5 = −εijk∂kφ, (5.47)

where we have rescaled the scalar to absorb an inessential numerical factor. These

conditions ensure the self-duality of H. Furthermore, they agree precisely with the

Perry-Schwarz’s equations of motion (5.41) if one identifies Btw = φ. In other words,

the linearised Perry-Schwarz self-dual string solution could be lifted to a 1/2 BPS

solution in the (2,0) supersymmetric theory by adding a scalar field that satisfies the

‘BPS’ condition (5.47) (due to self-duality, the condition (5.46) is not needed).

3. Substituting equation (5.44) into the BPS condition (5.47), we obtain

φ = − β

2ρ2
. (5.48)

Since the scalar field describes a transverse direction of the M5-brane, we rescale it

to give a length dimension:

X := 2
√

2
φ√
TM5

, (5.49)

where TM5 = (2π)−5l−6
p is the tension of the M5-brane, and lp is Planck’s length. The

numerical factor 2
√

2 is introduced in order for the energy to be correctly scaled.

We now compute the energy of the self-dual string with an excited scalar field.

As mentioned above, the gauge sector does not contribute to the string tension

(and hence energy), we only consider the scalar sector of an M5-brane action. By

considering an M5-brane action (see chapter 4 for complete actions) up to a quadratic

term in scalar field, the relevant part of the action is

Squad,scalar = −TM5

∫
d6x

1

2
∂µX∂

µX. (5.50)

The energy of the self-dual string is then given by

E = TM5

∫
dwdρdΩ3ρ

3 4

TM5
(∂iφ∂iφ+ ∂5φ∂5φ)

= 8π2β2

∫
dwdρ

1

ρ3

=
4π2

√
2
β
√
TM5

∫
dwdX

= n
1

(2π)2l3p

∫
dwdX.

(5.51)
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In the final step, we used the equation (5.22). Note that (2π)−2l−3
p is a tension TM2

of an M2-brane. We see that the energy we obtained can be identified with the

energy of a stack of n coincident M2-branes.

5.2.2 Non-abelian Wu-Yang string solution

Now we are ready for the non-abelian case. As noted above of the roles played by the Dirac

monopole in the abelian Perry-Schwarz solution, it is natural to consider the non-abelian

generalisations of the Dirac monopole in the construction of the non-abelian self-dual

strings. Here we have two candidates: the Wu-Yang monopole and the ’t Hooft-Polyakov

monopole where the latter involves a Higgs scalar field while the former does not. See, for

example, [134] for a review of these solutions. We will use these non-abelian configurations

to construct non-abelian self-dual string solutions for both the uncompactified case (where

the Wu-Yang solution will be used) and compactified case (where the ’t Hooft-Polyakov

monopole will be used).

Let us first briefly review the non-abelian Wu-Yang monopole. Without loss of gener-

ality, we will consider SU(2) gauge group with Hermitian generators T a = σa

2 satisfying

[T a, T b] = iεabcT c, a, b, c = 1, 2, 3. (5.52)

This corresponds to the relative gauge symmetry of a system of two five-branes. Our

convention for the Lie algebra valued fields are: Fµν = iF aµνT
a, Aµ = iAaµT

a and F aµν =

∂µA
a
ν − ∂νAaµ − εabcAbµAcν .

The non-abelian Wu-Yang monopole is given by

Aai = −εaik
xk
r2
, F aij = εijm

xmxa
r4

, (5.53)

where i, j = 1, 2, 3 and Note that the field strength for the Wu-Yang solution is related to

the field strength F
(Dirac)
ij = εijmxm/r

3 of the Dirac monopole by a simple relation:

F aij = F
(Dirac)
ij

xa

r
. (5.54)

In fact by performing a (singular) gauge transformation

U = eiσ3ϕ/2eiσ2θ/2e−iσ3ϕ/2, (5.55)

one can go to an Abelian gauge where only the 3rd component of the gauge field survives.

In this gauge

Aai = δa3 A
(Dirac)
i . (5.56)
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Despite its close connection with the Dirac monopole, the Wu-Yang solution is not a

monopole since it does not source the non-abelian magnetic field. In fact the colour

magnetic charge vanishes ∫
S2

F a = 0. (5.57)

Nevertheless the Wu-Yang solution is a useful prototype for constructing a non-abelian

monopole and we will follow the common practice of the literature to refer to it as the

Wu-Yang monopole. In particular, a magnetic charge can be defined if there is also in

presence a Higgs scalar field as in the ’t Hooft-Polyakov monopole.

Inspired by the relation (5.54) of the Wu-Yang solution, we will try to solve the non-

abelian self-duality equation (5.8) by adopting the following ansatz for the field strength,

Ha
µνλ = H

(PS)
µνλ

xa

r
(5.58)

Here r =
√
x2 + y2 + z2 and

H(PS) :=
β

ρ4

[
dtdw(xdx + ydy + zdz + x5dx5)

+ x5dxdydz − zdxdydx5 − ydzdxdx5 − xdydzdx5
]

(5.59)

is the field strength for the linearised Perry-Schwarz solution in the x4 direction (5.34).

The self-duality of (5.58) follows immediately from the self-duality of the Perry-Schwarz

solution. For the moment, we will allow β to be a free parameter.

Our strategy is again to integrate Hµν5 = ∂5Bµν to get Bµν . Then we obtain Fµν and

Aµ from the boundary value of Bµν . Finally, we use Bµν and Aµ to compute the whole

HMNP and check its consistency with our ansatz. Now the components of our ansatz are:

Ha
twi =

βxixa

rρ4
, Ha

ijk =
εijkβx

5xa

rρ4
, (5.60)

Ha
tw5 =

βx5xa

rρ4
, Ha

ij5 = −
εijkβx

kxa

rρ4
. (5.61)

Integrating (5.61), we get the following components of Bµν :

Ba
µν = B(PS)

µν

xa

r
, µν = ij or tw, (5.62)

where B
(PS)
ij , B

(PS)
tw are the B-field components (5.44) for the Perry-Schwarz solution. In

principle, x5 independent constants of integration can be added but we will not need them.

A consistent solution can be obtained by setting all the other independent components

of Bµν to be zero. To see this, let us compute Fµν from (5.10). It is remarkable that

F aij = −cβπ
2

εijmxmxa
r4

, F atw = 0, (5.63)
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which is precisely the form (5.53) of the Wu-Yang monopole if we take

cβ = − 2

π
. (5.64)

As a result, the non-vanishing component of the gauge field is given by

Aai = −εaik
xk
r2
. (5.65)

So far we have used only the field strength components Hij5, Htw5 of (5.61). However since

Dµ(xaT a/r) = 0 for the Wu-Yang gauge field, therefore (5.60) is reproduced immediately

and (5.58) is indeed satisfied.

Like the Wu-Yang monopole, the colour magnetic charge of our Wu-Yang string so-

lution vanishes. This is not a problem as we should not forget about the scalar fields as

our ultimate aim is to construct the non-abelian self-dual string solution in the multiple

M5-branes theory and so the inclusion of scalar fields is natural from the point of view of

(2,0) supersymmetry. Although we do not have the full (2,0) supersymmetric theory, one

can argue that the self-duality equation of motion (5.8) is not modified by the presence

of the scalar fields. This can be seen by a simple dimensional analysis since the dimen-

sion of a canonically normalised scalar field is two, and there is no local polynomial term

one can write down which is consistent with conformal symmetry. That the self-duality

equation is not modified by the scalar fields is also the case in the other proposed con-

structions [80,135,136]. As for the scalar field, first it is clear that due to R-symmetry, the

self-interacting potential vanishes if there is only one scalar field turned on. As a result,

the equation of motion of the scalar field is

D2
Mφ = 0. (5.66)

This is the general situation but for special cases, for example when a BPS condition is

satisfied, the second order equation could be reduced to a first order equation. A reasonable

form of the BPS equation is the non-abelian generalisation of the BPS equation (5.46),

(5.47)

Hijk = εijk∂5φ, Hij5 = −εijkDkφ. (5.67)

We conjecture that (5.67) is indeed a BPS equation of the non-abelian (2,0) theory since

first of all it implies the equation of motion (5.66). Moreover (5.67) would follow immedi-

ately from the supersymmetry transformation (Γ012345ε = ε, Γ012345ψ = −ψ)

δψ = (ΓMΓIDMφ
I +

1

3!2
ΓMNPHMNP )ε (5.68)
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Figure 5.1: An M2 brane ending on a system of two parallel M5-branes separated by a

distance.

(which is the most natural non-abelian generalisation of the abelian (2,0) supersymmetry

transformation) and the 1/2 BPS condition

Γ046ε = −ε, (5.69)

together with the condition that φ6 := φ = φ(xa), a = 1, 2, 3, 5.

We note that (5.67) is compatible with the self-duality equation if the scalar field is

equal to the Btw component:

φa = Ba
tw = − β

2ρ2

xa

r
, (5.70)

or more generally,

φa = −
(
u+

β

2ρ2

)
xa

r
, (5.71)

where u is a constant. To see the physical meaning of this solution, let us consider the

transverse distance |φ| defined by |φ|2 = φaφa. This gives

|φ| = |u+
β

2ρ2
|. (5.72)

We will choose the constant u to be of the same sign as β so that |φ| is never zero. This

describes a system of M5-branes with a spike at ρ = 0 and level off to u as ρ→∞. Hence

the physical interpretation of our self-dual string is that two M5-branes are separating by

a distance u and with an M2-brane ending on them. With this interpretation, there is a
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symmetry breaking and one can identify an U(1) B-field at the large distance ρ:

Bµν ≡ φ̂aBa
µν = ±B(PS)

µν (5.73)

where φ̂a := φa/|φ| and the + (−) sign in the second equation above corresponds to the

case c > 0 (c < 0). Since the field configuration approaches that of the abelian self-dual

string at large distance, we immediately obtain the charges

P = Q = −2π2|β| = −4π

|c|
. (5.74)

and charge quantisation determines that

β = ∓n
√

1

4π3
, c = ±4

√
π

n
(5.75)

and P = Q = −n
√
π. We require that the theory should admit solution with the minimal

unit of charge and so the possible values of the constant c in the non-abelian action (5.4)

is:

c = ±4
√
π (5.76)

and the charges of our solution are P = Q = −
√
π.

Just as in the abelian case, the action for the gauge fields vanish on shell. Therefore

the string gets its energy solely from the scalar field. We may try to compute the energy

by following the discussion of the abelian case. However, we postpone the computation of

energy until we discuss a more general case in section 5.4.

5.3 Non-Abelian Self-Dual String Solution: Compactified

Case

In this section, we consider the theory with x5 compactified on a circle with radius R and

construct the self-dual string solution. The constraint that the gauge field has to satisfy is

now (5.11). Without loss of generality, let us assume that the string aligns in the w = x4

direction.

In the compactified theory, the field strength can be expanded in terms of Fourier

modes,

HMNP =
∑
n

einx
5/RH

(n)
MNP (r). (5.77)

The gauge field Bµν can be then obtained by integrating over the equation of motion

Hµν5 = ∂5Bµν . It is

Bµν =
x5

2πRc
Fµν(r) +

∞∑
n=−∞

einx
5/RB(n)

µν (r), (5.78)
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where we have used the boundary condition (5.11) to determine the first term and B
(0)
µν (r)

is an integration constant. The higher modes B
(n6=0)
µν are given by:

H
(n6=0)
µν5 (r) =

in

R
B(n6=0)
µν (r). (5.79)

Notice that the first term on the right hand side has no contribution to Hµνλ because of

Bianchi identity and hence

H
(n)
µνλ = D[λB

(n)
µν] (5.80)

for all n.

Let us consider an ansatz with the only nonzero components of gauge potential being

Btw and Bij . The self-duality condition reads

Hijk = εijkHtw5, Htwk = −1

2
εijkHij5, (5.81)

or, written in terms of modes,

D[iB
(0)
jk] = εijk

Ftw
2πRc

, DkB
(0)
tw = − fk

2πRc
(5.82)

Dkb
(n)
k =

in

R
B

(n)
tw , DkB

(n)
tw = −b(n)

k

in

R
, n 6= 0, (5.83)

where we have denoted

fk(r) :=
1

2
εijkFij and b

(n)
k (r) :=

1

2
εijkB

(n)
ij for n 6= 0. (5.84)

Notice that the 2nd equation of (5.82) takes exactly the same form as the BPS equation

for the ’t Hooft-Polyakov magnetic monopole if we identify −2πRcB
(0)
tw as the scalar field

there. Indeed in the BPS limit, the equation of motion for the ’t Hooft-Polyakov monopole

reads
1

2
εijkFij = Dkφ, (5.85)

where φ is an adjoint Higgs scalar field. The solution is given by

Aai = −εaik
xk

r2
(1− kv(r)), φa =

vxa

r
hv(r), (5.86)

where

kv(r) :=
vr

sinh(vr)
, hv(r) := coth(vr)− 1

vr
. (5.87)

Asymptotically r →∞, we have

Aai → −εaik
xk

r2
, φa → |v|x

a

r
:= φ∞, (5.88)
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which coincides with Wu-Yang monopole. Note that the gauge symmetry is broken at

infinity to U(1), the little group of φ∞. This may be identified as the electromagnetic

gauge group and one could use this to define the magnetic monopole charge [137, 138].

The electromagnetic field strength can be defined as

Fij = F aij
φa

|v|
= εijk

xk

r3
, for large r. (5.89)

The magnetic charge is given by p =
∫
S2 F = 4π, which corresponds to a magnetic

monopole of unit charge. Note that at the core r → 0, we have

Ai → 0, φ→ 0 (5.90)

and hence the SU(2) symmetry is unbroken at the monopole core.

The resemblance of our equation with the BPS equation of the ’t Hooft-Polyakov

monopole motivates us to take for Aµ the same ansatz as in the ’t Hooft-Polyakov

monopole,

Aai = −εaik
xk

r2
(1− kv(r)), (5.91)

This implies Ftw = 0 and hence the 1st equation of (5.82) can be solved with

B
(0)
ij = c0Fij , (5.92)

where c0 is an arbitrary constant. On the other hand, (5.83) gives

DkDkB
(n6=0)
tw =

n2

R2
B

(n6=0)
tw . (5.93)

For zero mode, we have DkDkB
(0)
tw = 0, combine them together we can write

DkDkB
(n)
tw =

n2

R2
B

(n)
tw . (5.94)

We take the ansatz for B
(n)
tw as

B
(n) a
tw = an(r)

vxa

r
(5.95)

then the equation (5.94) is equivalent to

∂r(r
2∂ran(r))

r2
− 2kv(r)

2

r2
an(r) =

n2

R2
an(r). (5.96)

The well-behaved physical solution is

a0 = α0hv(r), (5.97)

an6=0(r) = αn
e−|n|r/R

vr

(
1 +

vR

|n|
coth(vr)

)
, (5.98)
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where αn are arbitrary constants. Here we have dropped the independent solutions which

are exponentially increasing at large distance and hence not physical. As a result, we

obtain for the gauge fields

Ba
tw = −hv(r)

2πRc

vxa

r
+
∑
n6=0

αne
inx5/R e

−|n|r/R

vr

(
1 +

vR

|n|
coth(vr)

)
vxa

r
, (5.99)

Ba
ij =

x5

2πRc
F aij(r) + c0F

a
ij(r) +

∑
n6=0

einx
5/RB

a (n)
ij (r). (5.100)

where

b
(n) a
k = −v3 R

in
(ra′n − kv(r)an)

xkxa

r
− δak

vR

in
ankv(r)

1

r
, n 6= 0. (5.101)

The proportionality factor for a0 is determined by recalling that −2πRcB
(0)
tw is the scalar

of the ’t Hooft-Polyakov monopole, while αn6=0 are left undetermined. Physically this

corresponds to different excitations over the fundamental solution with all αn6=0 = 0.

Note that there is a “winding mode” in Bij , while there is no such mode in Btw because

Ftw = 0. Although this has no effect classically, we expect that this is observable quantum

mechanically like the Berry phase. See, for example, [139–141] for a discussion of Berry

phase associated with branes in string theory.

Next let us include a (2,0) scalar field φ. As above we assume that it satisfies the BPS

equation (5.47), then the BPS equation is satisfied automatically if we identify φ(0) = B
(0)
tw .

As a result, we have

φ(0) a = −u
(

coth(vr)− 1

vr

)
xa

r
. (5.102)

where

u :=
v

2πRc
(5.103)

set the scale of the vev of φ(0) at large r since we can say φ(0) → − |v|
2πRcx

aT a/r as r →∞.

In addition, one can define a U(1) projection onto φ(0). This allows us to define the charges

P = Q =

∫
S1×S2

Haφ̂a

= ∓
∫
dx5dSk

1

2
εijk

(
1

2πRc
F aij

xa

r
+ (KK)

)
= −4π

|c|
,

(5.104)

where the − (+) sign in the second equation above corresponds to the case c > 0 (c < 0);

and the term (KK) stands for the KK modes and their contribution to the charges is

zero. Substituting (5.76), we find that the solution is self-dual and carries the charges
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Figure 5.2: Scalar Profile. The red curve corresponds to R = 4 and the blue one to R = 1

P = Q = −
√
π. Physically one can identified this self-dual string with the uncompactified

one obtained in the previous section and so they carry the same charges.

The scalar profile of (5.102) is plotted in figure 5.2, for two compactification radius

R = 1 and R = 4 and a fixed vev u = −0.5. One may compare our results to the

scalar profile in [142]. In this work, a modified Nahm’s equation for the scalar field was

conjectured. However unlike the ordinary Nahm’s equation where one can obtain the non-

abelian Yang-Mills gauge field at the same time, it is not clear how one might obtain the

corresponding non-abelian tensor gauge field from the modified Nahm’s equation and the

proposal still needed to be completed. Nevertheless, qualitatively their scalar profile is

similar to ours.

5.4 Non-Abelian SU(N5) Self-Dual String Solution

5.4.1 Generalised non-abelian Wu-Yang monopole

Our construction of the self-dual string solution in the SU(N5) theory will be based on a

generalisation of the SU(2) charge one Wu-Yang monopole solution to one with arbitrary

charge n. Let us start with a review of the generalised Wu-Yang monopole.

Consider an SU(2) gauge theory, and for reasons which will become clear later, let us

denote the Lie algebra generators by αa with

[αa, αb] = iεabcαc. (5.105)

The generalised Wu-Yang monopole is given by the following field configuration [134]

Ak = iAakα
a = − i

2r
(τ (n)
ϕ θ̂k − nτ

(n)
θ ϕ̂k), (5.106)
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i.e.

Aθ = − i

2r
τ (n)
ϕ , Aϕ =

in

2r
τ

(n)
θ . (5.107)

Here

θ̂kdx
k := cos θ cosϕdx1 + cos θ sinϕdx2 − sin θdx3,

ϕ̂kdx
k := − sinϕdx1 + cosϕdx2, (5.108)

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (5.109)

r̂(n) := (sin θ cos(nϕ), sin θ sin(nϕ), cos θ),

θ̂(n) := (cos θ cos(nϕ), cos θ sin(nϕ),− sin θ) =
∂r̂(n)

∂θ
,

ϕ̂(n) := (− sin(nϕ), cos(nϕ), 0) =
1

n sin θ

∂r̂(n)

∂ϕ
(5.110)

and

τ (n)
r = r̂(n) · ~α, τ

(n)
θ = θ̂(n) · ~α, τ (n)

ϕ = ϕ̂(n) · ~α, (5.111)

The Wu-Yang monopole configuration considered in section 5.2 is given by the case n = 1.

It is useful to note that

Ak = UĀkU
−1 + U∂kU

−1, (5.112)

with

U = e−i~α·ϕ̂
(n)

(5.113)

and

Āk =
n

r

1− cos θ

sin θ
ϕ̂k × iα3, (5.114)

As a result,

Fij = UF̄ijU
−1, (5.115)

where

F̄ij = ∂iĀj − ∂jĀi = nεijk
xk

r3
× iα3. (5.116)

Since

Uα3U−1 = r̂(n)
a αa, (5.117)

we obtain

Fij = nεijk
xk

r3
ir̂(n)
a αa. (5.118)

Therefore (5.106), (5.118) provide a generalisation of the Wu-Yang monopole solution to

“charge” n.
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We also note that

Di

(
r̂(n)
a αa

)
= 0 (5.119)

holds for the generalised Wu-Yang monopole. This is a generalisation of Di(x
aαa/r) = 0

for the charge one case.

5.4.2 Non-abelian self-dual string and the distance-radius relation

In this subsection we construct a self-dual string solution where the tensor gauge field is

embedded in an SU(2) sub-algebra of SU(N5). Let us denote the generators of the SU(2)

factor by αa:

[αa, αb] = iεabcαc. (5.120)

We embed the Pauli spin matrix into an upper left corner of N5×N5 matrices of SU(N5) :

αa =
σa

2
⊕ 0N5−2, (5.121)

where 0N5−2 is an (N5 − 2)× (N5 − 2) zero matrix. The trace is then given by

tr(αaαb) =
1

2
δab. (5.122)

Consider an ansatz of the field strength

Hµνλ = H
(PS)
µνλ ir̂(n)

a αa, (5.123)

Obviously the field strength is self-dual. Since r̂
(n)
a is independent of x5, we can immedi-

ately integrate H045, Hij5 over x5 and obtain

Bµν = B(PS)
µν ir̂(n)

a αa, µν = ij or tw. (5.124)

One still need to check that this B-field reproduces correctly the other components

Hijk. To check this, we note that the constraint (5.9) gives

Fij = −cβ π
2
εijm

xm

r
ir̂(n)
a αa Ftw = 0. (5.125)

Therefore if we take

β = −2n

cπ
, (5.126)

for an integer n, then the auxiliary gauge field is given by the generalised Wu-Yang

monopole. As a result of (5.119), we have

D[λBµν] = ∂[λB
(PS)
µν] ir̂(n)

a αa (5.127)
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and the result agrees with (5.123).

To obtain a self-dual string solution, we observe that the BPS equation (5.67) can be

solved with

φ = −
(
u+

β

2ρ2

)
ir̂(n)
a αa. (5.128)

This leaves an unbroken U(1) generated by

φ̂ := φ/|φ| = ∓ir̂(n)
a αa (5.129)

at ρ → ∞. Here |φ|2 := φaφa and the −(+) sign is chosen for u > 0(u < 0). Without

loss of generality, we take u > 0 below. The asymptotic U(1) fields are identified by a

projection

H
U(1)
µνλ := Ha

µνλφ̂
a, BU(1)

µν := Ba
µν φ̂

a, (5.130)

then

H
U(1)
µνλ = H

(PS)
µνλ , BU(1)

µν = B(PS)
µν . (5.131)

The U(1) magnetic and electric charges (per unit length) are defined by

P =

∫
S3

HU(1), Q =

∫
S3

∗HU(1). (5.132)

This gives the U(1) charges,

P = Q = 2π2β (5.133)

The charge quantisation condition is modified due to the existence of a non-trivial

centre in the residual gauge group of the non-abelian theory. In fact, in a non-abelian

Yang-Mills gauge theory with an unbroken gauge group of the form

H = U(1)×K, (5.134)

where the U(1) factor allows one to define the electric and magnetic charges, and K is any

residual gauge group, Corrigan and Olive have shown [143] that the charge quantisation

takes the form 1

e4πiqg = k, (5.135)

where k is an element in C(K), the centre of K. For example, if K = SU(N), then

C(K) = ZN ,

k = e2πin/N1N , n = integers (5.136)

1The normalisation of the magnetic charge was taken as ∇ · ~B = 4πgδ(3)(x) in [143].
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and the charge quantisation condition for the monopoles reads

qg =
n

2N
. (5.137)

For us, since the symmetry is broken down by the scalar field as SU(N5) → U(1) ×

SU(N5 − 1) and since (2,0) supersymmetry demands that all fields in theory to be in the

adjoint representation, this means the centre of the residual gauge symmetry is given by

ZN5−1. The same argument as Corrigan and Olive then gives

PQ′ +QP ′ =
2π

N5 − 1
Z. (5.138)

We can now use the charge quantisation condition (5.138) to fix the value of β. Let

us consider the situation where the self-dual string configuration arises as the intersection

of a number N2 of coincident M2-branes ending perpendicularly on our system of M5-

branes. In this case, the charges P,Q should be proportional to N2. Substituting (5.133),

we obtain

P = Q = 2π2β =
N2√
N5 − 1

√
π. (5.139)

From the field theory point of view, the geometrical shape of the M2-branes spike is

described by the scalar field X = 4φ/
√
TM5. Note that the normalisation factor of 4 is

differed from the normalisation factor of 2
√

2 used in the abelian case discussed above.

Again, the normalisation factor is introduced in such a way that it gives the correct energy.

It is convenient to introduce the root-mean-square distance (setting lp = 1)

D :=

√
1

N5TM5
|tr(4φ)2| (5.140)

as a measure of the transverse distance of the M2-branes spike from the system of M5-

branes. The cross section of the M2-branes spike is an S3 and the radius ρ is governed by

the transverse distance-radius relation

D = D0 +
4πN2√

N5(N5 − 1)ρ2
(5.141)

where

D0 :=
2
√

2u√
N5TM5

(5.142)

is a constant. For large N5, the energy of the spike is given by

E =
TM5

2

∫
d5xtr(DµXD

µX) = N2TM2

∫
dwdD, (5.143)

which is identified as an energy of a stack of N2 coincident M2-branes.
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In addition to the worldvolume description, the system of intersecting M2-M5 branes

also admits a supergravity description from which one can extract the transverse distance-

radius relation and compare with our field theory result. However, the supergravity solu-

tion, beyond the brane probe approximation, for a system of M2-branes intersecting on

a system of separated M5-branes where (N5 − 1) of them are in coincidence and another

single M5-brane is separated at a finite distance away from the main group is not known.

The closest system which admits a supergravity solution is the system of N2 M2-branes

intersecting a system of N5 coincident M5-branes [144]. In this reference the technique of

blackfold is applied and the transverse distance-radius relation

D =
2πN2

N5

1

ρ2
(5.144)

is obtained. At distance D large enough compared with the separation so that one cannot

resolve the details of the separation, one can expect the supergravity solution for our

system can be approximated by the supergravity solution of this system. In this case, one

can ignore the first term in our field theory result (5.141) and our transverse distance-

radius relation

D = 2
2πN2

N5

1

ρ2
(5.145)

agrees with that of supergravity on their N2 and N5 dependence. Note that, however,

(5.144) and (5.145) differs by an overall scale factor of 2. This is presumably due to a

subtlety in the scaling of the M5-branes model.

We remark that the field theory description and the supergravity description are good

only in their respective regime of validity. To confirm the validity of the agreement we

found above, one need to check that there indeed exists an overlapping regime where one

can trust both descriptions and hence compare the results sensibly. To check this, we note

that our description of the M2-branes spike as a worldvolume soliton of the M5-branes

is good provided that higher derivative corrections to our non-abelian action is small:

lp|∂2Φ| � |∂Φ|. This translates to

ρ� lp. (5.146)

On the other hand, the validity of the blackfold description [144] was discussed in [145].

It was found there that for zero angular velocity which is our case, one needs

ρ� max(lp, ρc), (5.147)

where ρc := N
1/3
5 (1 +

√
1 + 64N2

2 /N
4
5 )1/6lp. Therefore in the region (5.147), both the

supergravity description and the M5-branes worldvolume description are valid. Now in
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order for the field theory result (5.141) to reduce to the form (5.144), it is required that

ρ�
(

3

4π3

)1/4( N2

uN2
5

)1/2

. (5.148)

Thus, by arranging the parameters N2, N5 and u (for example a scaling limit involving

large N2, N5 and small ul2p), a non-empty region of ρ satisfying both (5.147) and (5.148)

can always be achieved, and so the agreement we found is justified.

5.5 Discussions

In this chapter we have constructed the non-abelian string solutions of the non-abelian

5-brane theory constructed in [87], for both uncompactified and compactified spacetime.

The string solution in non-compact spacetime is supported by a non-abelian Wu-Yang

monopole, while the string solution in compact spacetime is supported by a non-abelian

’t Hooft-Polyakov monopole. We showed how these solutions can be embedded in the

(2,0) supersymmetric theory by including a single scalar field obeying a first order BPS

equation. Although we don’t have the full (2,0) supersymmetric construction yet, we

argued that it is the correct BPS equation of the (2,0) theory since it solves the equation of

motion, and moreover it can be derived from the most natural form of the supersymmetry

transformation law in the non-abelian (2,0) theory. These string solutions carry self-dual

charges and has infinite tension arising from the scalar profile which corresponds to having

a M2-brane spike on the M5-branes system. These properties are consistent with what

one expects for the non-abelian self-dual strings living on a system of two M5-branes.

We have also constructed a self-dual string solution in the SU(N5) non-abelian theory

of five-branes. Our solution carries an arbitrary N2 unit of self-dual charge and obtains

its charge through the generalised non-abelian Wu-Yang monopole configuration carried

by the auxiliary one-form gauge field. We have also shown that the radius-transverse

distance relation describing the M2-branes spike agrees with the supergravity description

of the intersecting M2-M5 branes system. Our results therefore provide further evidence

that the non-abelian theory [87] does give a description for a system of multiple M5-branes.

This solution was obtained for a special symmetry breaking where there is a residual

SU(N5 − 1) gauge symmetry. For a more general configurations of the Higgs field, the

residual symmetry at infinity could be smaller and the self-dual string would be char-

acterised by more number of charges. The discussion is similar to that of non-abelian

monopole [114]. It will be interesting to construct these other kinds of self-dual strings

and understand their dual description in supergravity and M-theory.
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With the solutions at hand, one may perform a small fluctuation analysis of the solu-

tions and use it to learn more about the dynamics of non-abelian self-dual string. It would

also be interesting to include couplings to a background C-field. In [146,147], the quantum

Nambu geometry has been obtained as the quantum geometry for M5-branes in a large

constant background C-field. One should be able to construct the star-product for this

geometry and use it to derive the “Seiberg-Witten” map for the non-abelian M5-branes

theory in a background C-field.

We note that our field theory description is not good near the spike region (ρ ' 0).

Apparently, unlike the non-abelian BPS monopole, the non-abelian interaction here is not

sufficient to remove the spike singularity. Nevertheless one can expect it to be smoothen

out only in the complete description of M-theory with all higher derivative corrections

included [71].

It is hoped that the self-dual string solution constructed here could provide further

insights into the understanding of the N3 entropy growth of the multiple M5-branes system

[148]. Recent progress on this problem has been achieved in [149–151].



Chapter 6

Conclusion

In this thesis, we have shown an aspects of developments of branes in string and M-theory.

We started with an application of gauge/gravity duality. We then moved on to M-theory

where there are still a lot to be done in constructing M-branes worldvolume actions.

In chapter 2, we used a D3/D7 model to describe meson condensation at finite isospin

chemical potential in an N = 2 SU(Nc) strongly coupled gauge theory with Nf = 2 sets

of hypermultiplets. We focused on the case where the gauge theory lives on R× S3. The

study was done by considering two coincident D7-branes embedded in global AdS5 × S5

background with or without black hole. The background also includes a 5-form flux and a

constant dilaton. AdS boundary expansion of a field on D7-branes gives, via gauge/gravity

duality, source and vacuum expectation value of the corresponding operator. We first

studied a ground state without meson condensate in a presence of finite isospin chemical

potential. At a critical value of isospin chemical potential, this ground state is unstable

under mesonic fluctuations. So there is a phase transition. We found that the new ground

state is described by scalar meson condensate which breaks a global SO(4) symmetry.

This is the case for both zero and finite temperature cases. We have focused on the case

of massless hypermultiplets. So it would be interesting to see if, for the case of massive

hypermultiplets, the new ground state would be of the same type.

In chapter 3, we also used a D3/D7 model to study a strongly coupled system with

massless or massive hypermultiplets. We studied a finite size effect of an external magnetic

field on this system at zero temperature. In order to describe an external magnetic field, we

turned on B-field with components on S3 ⊂ AdS5. Exactly the same system was studied

before by [112]. However, B-field used in this reference does not solve the constraint

imposed by D7-branes. We corrected this by constructing B-field with the help of vector
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spherical harmonics. We found that there is a forbidden region, which forbids us to

construct any embedding configuration for some given values of hypermultiplets mass and

external magnetic field. We are currently making a cross check to see if our results are

correct.

We then changed our consideration to M-theory. A worldvolume theory of M5-brane

embedded in a general eleven-dimensional background had been computed before by [75,

76]. In chapter 4, we revisited this system by constructing an alternative action which

describes exactly the same system. Our construction is called 3+3 splitting. In order to

have a covariant action, we need to introduce 3 auxiliary fields. Additionally, our action

is supersymmetric, and kappa symmetric. There are also additional symmetries to ensure

that we get the desired equations of motion. With the form of our action, we ultimately

expect that our action will be used to understand the conjectured relationship between

multiple M2-branes and a single M5-brane.

In chapter 5, we considered a model [87] which will ultimately be extended to a com-

plete worldvolume theory of multiple M5-branes. Although this model originally only de-

scribed a tensor gauge sector of multiple M5-branes, with additional arguments based on

supersymmetry and conformal symmetry, we could use this model to construct self-dual

strings. The self-dual strings are important because they describe M2/M5 intersection

from M5-branes point of view. Most notably, we have found that radius-transverse dis-

tance relationship of the self-dual string exactly agrees with the relationship derived from

black-fold approach [144, 145]. This finding gives us a more confidence in the model [87].

To better understand multiple M5-branes, it would be advisable to use this model to

construct other solitonic solutions. Some works in this direction has been carried out in

literatures [97,152].

Branes are important objects in string and M-theory. We have discussed examples

which show the importance of branes in string and M-theory. We have shown how to

apply a D3/D7 model to describe physical systems. We have shown the construction of

an M5-brane model with 3+3 splitting. We have found solutions of a multiple M5-branes

model describing M2/M5 brane intersection.



Bibliography

[1] S. Chunlen, K. Peeters, P. Vanichchapongjaroen, and M. Zamaklar, “Instability of

N=2 gauge theory in compact space with an isospin chemical potential,” JHEP

1301 (2013) 035, arXiv:1210.6188 [hep-th].

[2] S.-L. Ko, D. Sorokin, and P. Vanichchapongjaroen, “The M5-brane action

revisited,” arXiv:1308.2231 [hep-th].

[3] C.-S. Chu, S.-L. Ko, and P. Vanichchapongjaroen, “Non-Abelian Self-Dual String

Solutions,” JHEP 1209 (2012) 018, arXiv:1207.1095 [hep-th].

[4] C.-S. Chu and P. Vanichchapongjaroen, “Non-abelian Self-Dual String and M2-M5

Branes Intersection in Supergravity,” JHEP 1306 (2013) 028, arXiv:1304.4322

[hep-th].

[5] C. A. Bayona and N. R. Braga, “Anti-de Sitter boundary in Poincare coordinates,”

Gen.Rel.Grav. 39 (2007) 1367–1379, arXiv:hep-th/0512182 [hep-th].

[6] J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfall, “Mesons in Gauge/Gravity

Duals - A Review,” Eur.Phys.J. A35 (2008) 81–133, arXiv:0711.4467 [hep-th].

[7] J. Erdmenger and V. Filev, “Mesons from global Anti-de Sitter space,” JHEP

1101 (2011) 119, arXiv:1012.0496 [hep-th].

[8] A. Karch, A. O’Bannon, and L. G. Yaffe, “Critical Exponents from AdS/CFT with

Flavor,” JHEP 0909 (2009) 042, arXiv:0906.4959 [hep-th].

[9] B. Zwiebach, A First Course in String Theory. Cambridge University Press,

2nd ed., 2009.

[10] K. Becker, M. Becker, and J. Schwarz, STRING THEORY AND M-THEORY: A

Modern Introduction. Cambridge University Press, 2007.

164



BIBLIOGRAPHY 165

[11] P. West, Introduction to Strings and Branes. Cambridge University Press, 2012.

[12] J. Terning, Modern Supersymmetry: Dynamics and duality. Oxford University

Press, 2006.

[13] J. Simon, “Brane Effective Actions, Kappa-Symmetry and Applications,” Living

Rev.Rel. 15 (2012) 3, arXiv:1110.2422 [hep-th].

[14] D. S. Berman, “M-theory branes and their interactions,” Phys.Rept. 456 (2008)

89–126, arXiv:0710.1707 [hep-th].

[15] D. P. Sorokin, “Superbranes and superembeddings,” Phys.Rept. 329 (2000) 1–101,

arXiv:hep-th/9906142 [hep-th].

[16] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann,

“Gauge/String Duality, Hot QCD and Heavy Ion Collisions,” arXiv:1101.0618

[hep-th].

[17] P. Ramond, “Dual Theory for Free Fermions,” Phys.Rev. D3 (1971) 2415–2418.

[18] A. Neveu and J. Schwarz, “Factorizable dual model of pions,” Nucl.Phys. B31

(1971) 86–112.

[19] F. Gliozzi, J. Scherk, and D. I. Olive, “Supersymmetry, Supergravity Theories and

the Dual Spinor Model,” Nucl.Phys. B122 (1977) 253–290.

[20] M. B. Green and J. H. Schwarz, “Covariant Description of Superstrings,”

Phys.Lett. B136 (1984) 367–370.

[21] W. Siegel, “Hidden Local Supersymmetry in the Supersymmetric Particle Action,”

Phys.Lett. B128 (1983) 397.

[22] E. Bergshoeff, E. Sezgin, and P. Townsend, “Superstring Actions in D = 3, 4, 6, 10

Curved Superspace,” Phys.Lett. B169 (1986) 191.

[23] I. A. Bandos, D. P. Sorokin, M. Tonin, P. Pasti, and D. V. Volkov, “Superstrings

and supermembranes in the doubly supersymmetric geometrical approach,”

Nucl.Phys. B446 (1995) 79–118, arXiv:hep-th/9501113 [hep-th].

[24] P. A. Dirac, “Quantized Singularities in the Electromagnetic Field,”

Proc.Roy.Soc.Lond. A133 (1931) 60–72.



BIBLIOGRAPHY 166

[25] C. Teitelboim, “Gauge Invariance for Extended Objects,” Phys.Lett. B167 (1986)

63.

[26] R. I. Nepomechie, “Magnetic Monopoles from Antisymmetric Tensor Gauge

Fields,” Phys.Rev. D31 (1985) 1921.

[27] S. Deser, A. Gomberoff, M. Henneaux, and C. Teitelboim, “Duality, selfduality,

sources and charge quantization in Abelian N form theories,” Phys.Lett. B400

(1997) 80–86, arXiv:hep-th/9702184 [hep-th].

[28] S. Deser, A. Gomberoff, M. Henneaux, and C. Teitelboim, “P-brane dyons and

electric magnetic duality,” Nucl.Phys. B520 (1998) 179–204,

arXiv:hep-th/9712189 [hep-th].

[29] M. Aganagic, C. Popescu, and J. H. Schwarz, “D-brane actions with local kappa

symmetry,” Phys.Lett. B393 (1997) 311–315, arXiv:hep-th/9610249 [hep-th].

[30] M. Cederwall, A. von Gussich, B. E. Nilsson, P. Sundell, and A. Westerberg, “The

Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity,”

Nucl.Phys. B490 (1997) 179–201, arXiv:hep-th/9611159 [hep-th].

[31] M. Aganagic, C. Popescu, and J. H. Schwarz, “Gauge invariant and gauge fixed

D-brane actions,” Nucl.Phys. B495 (1997) 99–126, arXiv:hep-th/9612080

[hep-th].

[32] M. Born and L. Infeld, “Foundations of the new field theory,” Proc.Roy.Soc.Lond.

A144 (1934) 425–451.

[33] P. A. Dirac, “An Extensible model of the electron,” Proc.Roy.Soc.Lond. A268

(1962) 57–67.

[34] A. A. Tseytlin, “On nonAbelian generalization of Born-Infeld action in string

theory,” Nucl.Phys. B501 (1997) 41–52, arXiv:hep-th/9701125 [hep-th].

[35] A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,”

arXiv:hep-th/9908105 [hep-th].

[36] R. C. Myers, “Dielectric branes,” JHEP 9912 (1999) 022, arXiv:hep-th/9910053

[hep-th].



BIBLIOGRAPHY 167

[37] A. Hashimoto and W. Taylor, “Fluctuation spectra of tilted and intersecting

D-branes from the Born-Infeld action,” Nucl.Phys. B503 (1997) 193–219,

arXiv:hep-th/9703217 [hep-th].

[38] F. Denef, A. Sevrin, and J. Troost, “NonAbelian Born-Infeld versus string theory,”

Nucl.Phys. B581 (2000) 135–155, arXiv:hep-th/0002180 [hep-th].

[39] A. Sevrin, J. Troost, and W. Troost, “The nonAbelian Born-Infeld action at order

F**6,” Nucl.Phys. B603 (2001) 389–412, arXiv:hep-th/0101192 [hep-th].

[40] P. Koerber and A. Sevrin, “The NonAbelian D-brane effective action through order

alpha-prime**4,” JHEP 0210 (2002) 046, arXiv:hep-th/0208044 [hep-th].

[41] G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl.Phys.

B360 (1991) 197–209.

[42] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field

theories, string theory and gravity,” Phys.Rept. 323 (2000) 183–386,

arXiv:hep-th/9905111 [hep-th].

[43] S. Gubser, I. R. Klebanov, and A. Peet, “Entropy and temperature of black

3-branes,” Phys.Rev. D54 (1996) 3915–3919, arXiv:hep-th/9602135 [hep-th].

[44] J. M. Maldacena, “The Large N limit of superconformal field theories and

supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252, arXiv:hep-th/9711200

[hep-th].

[45] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from

noncritical string theory,” Phys.Lett. B428 (1998) 105–114,

arXiv:hep-th/9802109 [hep-th].

[46] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2 (1998)

253–291, arXiv:hep-th/9802150 [hep-th].

[47] P. Breitenlohner and D. Z. Freedman, “Positive Energy in anti-De Sitter

Backgrounds and Gauged Extended Supergravity,” Phys.Lett. B115 (1982) 197.

[48] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended

Supergravity,” Annals Phys. 144 (1982) 249.



BIBLIOGRAPHY 168

[49] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in

gauge theories,” Adv.Theor.Math.Phys. 2 (1998) 505–532, arXiv:hep-th/9803131

[hep-th].

[50] G. Policastro, D. T. Son, and A. O. Starinets, “From AdS / CFT correspondence

to hydrodynamics,” JHEP 0209 (2002) 043, arXiv:hep-th/0205052 [hep-th].

[51] K.-j. Hamada and S. Horata, “Conformal algebra and physical states in noncritical

three-brane on R x S**3,” Prog.Theor.Phys. 110 (2004) 1169–1210,

arXiv:hep-th/0307008 [hep-th].

[52] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD,”

Prog.Theor.Phys. 113 (2005) 843–882, arXiv:hep-th/0412141 [hep-th].

[53] T. Sakai and S. Sugimoto, “More on a holographic dual of QCD,”

Prog.Theor.Phys. 114 (2005) 1083–1118, arXiv:hep-th/0507073 [hep-th].

[54] A. Karch, A. O’Bannon, and K. Skenderis, “Holographic renormalization of probe

D-branes in AdS/CFT,” JHEP 0604 (2006) 015, arXiv:hep-th/0512125

[hep-th].

[55] A. Karch and A. O’Bannon, “Chiral transition of N=4 super Yang-Mills with flavor

on a 3-sphere,” Phys.Rev. D74 (2006) 085033, arXiv:hep-th/0605120 [hep-th].

[56] E. Witten, “String theory dynamics in various dimensions,” Nucl.Phys. B443

(1995) 85–126, arXiv:hep-th/9503124 [hep-th].

[57] W. Nahm, “Supersymmetries and their Representations,” Nucl.Phys. B135 (1978)

149.

[58] E. Cremmer, B. Julia, and J. Scherk, “Supergravity Theory in

Eleven-Dimensions,” Phys.Lett. B76 (1978) 409–412.

[59] E. Bergshoeff, E. Sezgin, and P. Townsend, “Properties of the Eleven-Dimensional

Super Membrane Theory,” Annals Phys. 185 (1988) 330.

[60] J. Bagger and N. Lambert, “Modeling Multiple M2’s,” Phys.Rev. D75 (2007)

045020, arXiv:hep-th/0611108 [hep-th].

[61] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple

M2-Branes,” Phys. Rev. D77 (2008) 065008, arXiv:0711.0955 [hep-th].



BIBLIOGRAPHY 169

[62] A. Gustavsson, “Algebraic structures on parallel M2-branes,” Nucl.Phys. B811

(2009) 66–76, arXiv:0709.1260 [hep-th].

[63] J. Bagger and N. Lambert, “Comments on multiple M2-branes,” JHEP 0802

(2008) 105, arXiv:0712.3738 [hep-th].

[64] G. Papadopoulos, “M2-branes, 3-Lie Algebras and Plucker relations,” JHEP 0805

(2008) 054, arXiv:0804.2662 [hep-th].

[65] J. P. Gauntlett and J. B. Gutowski, “Constraining Maximally Supersymmetric

Membrane Actions,” JHEP 0806 (2008) 053, arXiv:0804.3078 [hep-th].

[66] P.-M. Ho and Y. Matsuo, “M5 from M2,” JHEP 0806 (2008) 105,

arXiv:0804.3629 [hep-th].

[67] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810

(2008) 091, arXiv:0806.1218 [hep-th].

[68] N. Drukker, M. Marino, and P. Putrov, “From weak to strong coupling in ABJM

theory,” Commun.Math.Phys. 306 (2011) 511–563, arXiv:1007.3837 [hep-th].

[69] P. S. Howe and E. Sezgin, “D = 11, p = 5,” Phys.Lett. B394 (1997) 62–66,

arXiv:hep-th/9611008 [hep-th].

[70] M. Henneaux and C. Teitelboim, “Dynamics of Chiral (Selfdual) P Forms,”

Phys.Lett. B206 (1988) 650.

[71] M. Perry and J. H. Schwarz, “Interacting chiral gauge fields in six-dimensions and

Born-Infeld theory,” Nucl.Phys. B489 (1997) 47–64, arXiv:hep-th/9611065

[hep-th].

[72] P. S. Howe, E. Sezgin, and P. C. West, “The Six-dimensional selfdual tensor,”

Phys.Lett. B400 (1997) 255–259, arXiv:hep-th/9702111 [hep-th].

[73] J. H. Schwarz, “Coupling a selfdual tensor to gravity in six-dimensions,” Phys.Lett.

B395 (1997) 191–195, arXiv:hep-th/9701008 [hep-th].

[74] M. Aganagic, J. Park, C. Popescu, and J. H. Schwarz, “World volume action of the

M theory five-brane,” Nucl.Phys. B496 (1997) 191–214, arXiv:hep-th/9701166

[hep-th].



BIBLIOGRAPHY 170

[75] P. Pasti, D. P. Sorokin, and M. Tonin, “Covariant action for a D = 11 five-brane

with the chiral field,” Phys.Lett. B398 (1997) 41–46, arXiv:hep-th/9701037

[hep-th].

[76] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin, et al.,

“Covariant action for the superfive-brane of M theory,” Phys.Rev.Lett. 78 (1997)

4332–4334, arXiv:hep-th/9701149 [hep-th].

[77] P. Pasti, D. P. Sorokin, and M. Tonin, “On Lorentz invariant actions for chiral p

forms,” Phys.Rev. D55 (1997) 6292–6298, arXiv:hep-th/9611100 [hep-th].

[78] P.-M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, “M5-brane in three-form flux and

multiple M2-branes,” JHEP 0808 (2008) 014, arXiv:0805.2898 [hep-th].

[79] N. Lambert and C. Papageorgakis, “Nonabelian (2,0) Tensor Multiplets and

3-algebras,” JHEP 1008 (2010) 083, arXiv:1007.2982 [hep-th].

[80] N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld, “M5-Branes,

D4-Branes and Quantum 5D super-Yang-Mills,” JHEP 1101 (2011) 083,

arXiv:1012.2882 [hep-th].

[81] M. R. Douglas, “On D=5 super Yang-Mills theory and (2,0) theory,” JHEP 1102

(2011) 011, arXiv:1012.2880 [hep-th].

[82] H. Singh, “Super-Yang-Mills and M5-branes,” JHEP 1108 (2011) 136,

arXiv:1107.3408 [hep-th].

[83] N. Lambert and P. Richmond, “(2,0) Supersymmetry and the Light-Cone

Description of M5-branes,” JHEP 1202 (2012) 013, arXiv:1109.6454 [hep-th].

[84] N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld, “Deconstructing (2,0)

Proposals,” Phys.Rev. D88 (2013) 026007, arXiv:1212.3337.

[85] P.-M. Ho, K.-W. Huang, and Y. Matsuo, “A Non-Abelian Self-Dual Gauge Theory

in 5+1 Dimensions,” JHEP 1107 (2011) 021, arXiv:1104.4040 [hep-th].

[86] K.-W. Huang, “Non-Abelian Chiral 2-Form and M5-Branes,” arXiv:1206.3983

[hep-th].

[87] C.-S. Chu and S.-L. Ko, “Non-abelian Action for Multiple Five-Branes with

Self-Dual Tensors,” JHEP 1205 (2012) 028, arXiv:1203.4224 [hep-th].



BIBLIOGRAPHY 171

[88] F. Bonetti, T. W. Grimm, and S. Hohenegger, “A Kaluza-Klein inspired action for

chiral p-forms and their anomalies,” Phys.Lett. B720 (2013) 424–427,

arXiv:1206.1600 [hep-th].

[89] F. Bonetti, T. W. Grimm, and S. Hohenegger, “Non-Abelian Tensor Towers and

(2,0) Superconformal Theories,” JHEP 1305 (2013) 129, arXiv:1209.3017

[hep-th].

[90] H. Singh, “The Yang-Mills and chiral fields in six dimensions,” JHEP 1302 (2013)

056, arXiv:1211.3281 [hep-th].

[91] H.-C. Kim and K. Lee, “Supersymmetric M5 Brane Theories on R x CP2,” JHEP

1307 (2013) 072, arXiv:1210.0853 [hep-th].

[92] D. Fiorenza, H. Sati, and U. Schreiber, “Multiple M5-branes, String 2-connections,

and 7d nonabelian Chern-Simons theory,” arXiv:1201.5277 [hep-th].

[93] C. Saemann and M. Wolf, “Non-Abelian Tensor Multiplet Equations from Twistor

Space,” arXiv:1205.3108 [hep-th].

[94] C. Saemann, “M-Brane Models and Loop Spaces,” Mod.Phys.Lett. A27 (2012)

1230019, arXiv:1206.0432 [hep-th].

[95] S. Palmer and C. Saemann, “M-brane Models from Non-Abelian Gerbes,” JHEP

1207 (2012) 010, arXiv:1203.5757 [hep-th].

[96] C. Saemann and M. Wolf, “Six-Dimensional Superconformal Field Theories from

Principal 3-Bundles over Twistor Space,” arXiv:1305.4870 [hep-th].

[97] C.-S. Chu and H. Isono, “Instanton String and M-Wave in Multiple M5-Branes

System,” arXiv:1305.6808 [hep-th].

[98] O. Aharony, K. Peeters, J. Sonnenschein, and M. Zamaklar, “Rho meson

condensation at finite isospin chemical potential in a holographic model for QCD,”

JHEP 0802 (2008) 071, arXiv:0709.3948 [hep-th].

[99] S. P. Kumar, “Spinning flavour branes and fermion pairing instabilities,” Phys.Rev.

D84 (2011) 026003, arXiv:1104.1405 [hep-th].

[100] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers, and R. M. Thomson,

“Holographic phase transitions at finite baryon density,” JHEP 0702 (2007) 016,

arXiv:hep-th/0611099 [hep-th].



BIBLIOGRAPHY 172

[101] M. Ammon, J. Erdmenger, M. Kaminski, and P. Kerner, “Flavor

Superconductivity from Gauge/Gravity Duality,” JHEP 0910 (2009) 067,

arXiv:0903.1864 [hep-th].

[102] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, “Meson spectroscopy

in AdS / CFT with flavor,” JHEP 0307 (2003) 049, arXiv:hep-th/0304032

[hep-th].

[103] M. Ammon, J. Erdmenger, M. Kaminski, and P. Kerner, “Superconductivity from

gauge/gravity duality with flavor,” Phys.Lett. B680 (2009) 516–520,

arXiv:0810.2316 [hep-th].

[104] J. Erdmenger, M. Kaminski, P. Kerner, and F. Rust, “Finite baryon and isospin

chemical potential in AdS/CFT with flavor,” JHEP 0811 (2008) 031,

arXiv:0807.2663 [hep-th].

[105] K. Peeters, J. Powell, and M. Zamaklar, “Exploring colourful holographic

superconductors,” JHEP 0909 (2009) 101, arXiv:0907.1508 [hep-th].

[106] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic

Superconductor,” Phys.Rev.Lett. 101 (2008) 031601, arXiv:0803.3295 [hep-th].

[107] I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar, et al.,

“Holographic Type II Goldstone bosons,” JHEP 1307 (2013) 108,

arXiv:1302.5641 [hep-th].

[108] V. Gusynin, V. Miransky, and I. Shovkovy, “Catalysis of dynamical flavor

symmetry breaking by a magnetic field in (2+1)-dimensions,” Phys.Rev.Lett. 73

(1994) 3499–3502, arXiv:hep-ph/9405262 [hep-ph].

[109] V. Gusynin, V. Miransky, and I. Shovkovy, “Dimensional reduction and dynamical

chiral symmetry breaking by a magnetic field in (3+1)-dimensions,” Phys.Lett.

B349 (1995) 477–483, arXiv:hep-ph/9412257 [hep-ph].

[110] I. A. Shovkovy, “Magnetic Catalysis: A Review,” Lect.Notes Phys. 871 (2013)

13–49, arXiv:1207.5081 [hep-ph].

[111] V. G. Filev, C. V. Johnson, R. Rashkov, and K. Viswanathan, “Flavoured large N

gauge theory in an external magnetic field,” JHEP 0710 (2007) 019,

arXiv:hep-th/0701001 [hep-th].



BIBLIOGRAPHY 173

[112] V. G. Filev and M. Ihl, “Flavoured Large N Gauge Theory on a Compact Space

with an External Magnetic Field,” JHEP 1301 (2013) 130, arXiv:1211.1164

[hep-th].

[113] K. Skenderis and M. Taylor, “Branes in AdS and p p wave space-times,” JHEP

0206 (2002) 025, arXiv:hep-th/0204054 [hep-th].

[114] N. Manton and P. Sutcliffe, Topological solitons. Cambridge University Press,

2004.

[115] C.-H. Chen, K. Furuuchi, P.-M. Ho, and T. Takimi, “More on the Nambu-Poisson

M5-brane Theory: Scaling limit, background independence and an all order

solution to the Seiberg-Witten map,” JHEP 1010 (2010) 100, arXiv:1006.5291

[hep-th].

[116] N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP

9909 (1999) 032, arXiv:hep-th/9908142 [hep-th].

[117] G. Bossard and H. Nicolai, “Counterterms vs. Dualities,” JHEP 1108 (2011) 074,

arXiv:1105.1273 [hep-th].

[118] P. Pasti, D. Sorokin, and M. Tonin, “Covariant actions for models with non-linear

twisted self-duality,” Phys.Rev. D86 (2012) 045013, arXiv:1205.4243 [hep-th].

[119] P. Pasti, I. Samsonov, D. Sorokin, and M. Tonin, “BLG-motivated Lagrangian

formulation for the chiral two-form gauge field in D=6 and M5-branes,” Phys.Rev.

D80 (2009) 086008, arXiv:0907.4596 [hep-th].

[120] M. K. Gaillard and B. Zumino, “Duality Rotations for Interacting Fields,”

Nucl.Phys. B193 (1981) 221.

[121] G. Gibbons and D. Rasheed, “Electric - magnetic duality rotations in nonlinear

electrodynamics,” Nucl.Phys. B454 (1995) 185–206, arXiv:hep-th/9506035

[hep-th].

[122] P. S. Howe, E. Sezgin, and P. C. West, “Covariant field equations of the M theory

five-brane,” Phys.Lett. B399 (1997) 49–59, arXiv:hep-th/9702008 [hep-th].

[123] P. S. Howe, N. Lambert, and P. C. West, “The Selfdual string soliton,” Nucl.Phys.

B515 (1998) 203–216, arXiv:hep-th/9709014 [hep-th].



BIBLIOGRAPHY 174

[124] I. A. Bandos and P. K. Townsend, “Light-cone M5 and multiple M2-branes,”

Class.Quant.Grav. 25 (2008) 245003, arXiv:0806.4777 [hep-th].

[125] E. Bergshoeff, D. Berman, J. van der Schaar, and P. Sundell, “A Noncommutative

M theory five-brane,” Nucl.Phys. B590 (2000) 173–197, arXiv:hep-th/0005026

[hep-th].

[126] E. Witten, “Nonperturbative superpotentials in string theory,” Nucl.Phys. B474

(1996) 343–360, arXiv:hep-th/9604030 [hep-th].

[127] R. Kallosh and D. Sorokin, “Dirac action on M5 and M2 branes with bulk fluxes,”

JHEP 0505 (2005) 005, arXiv:hep-th/0501081 [hep-th].

[128] L. Anguelova and K. Zoubos, “Five-brane Instantons vs Flux-induced Gauging of

Isometries,” JHEP 0610 (2006) 071, arXiv:hep-th/0606271 [hep-th].

[129] D. Tsimpis, “Fivebrane instantons and Calabi-Yau fourfolds with flux,” JHEP

0703 (2007) 099, arXiv:hep-th/0701287 [hep-th].

[130] M. Kerstan and T. Weigand, “Fluxed M5-instantons in F-theory,” Nucl.Phys.

B864 (2012) 597–639, arXiv:1205.4720 [hep-th].

[131] M. Bianchi, G. Inverso, and L. Martucci, “Brane instantons and fluxes in

F-theory,” JHEP 1307 (2013) 037, arXiv:1212.0024 [hep-th].

[132] C.-S. Chu and D. J. Smith, “Multiple Self-Dual Strings on M5-Branes,” JHEP

1001 (2010) 001, arXiv:0909.2333 [hep-th].

[133] C.-S. Chu, “A Theory of Non-Abelian Tensor Gauge Field with Non-Abelian

Gauge Symmetry G x G,” arXiv:1108.5131 [hep-th].

[134] Y. M. Shnir, Magnetic Monopoles. Springer, 2005.

[135] H. Samtleben, E. Sezgin, and R. Wimmer, “(1,0) superconformal models in six

dimensions,” JHEP 1112 (2011) 062, arXiv:1108.4060 [hep-th].

[136] H. Samtleben, E. Sezgin, R. Wimmer, and L. Wulff, “New superconformal models

in six dimensions: Gauge group and representation structure,” PoS CORFU2011

(2011) 071, arXiv:1204.0542 [hep-th].

[137] G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl.Phys. B79

(1974) 276–284.



BIBLIOGRAPHY 175

[138] A. M. Polyakov, “Particle Spectrum in the Quantum Field Theory,” JETP Lett.

20 (1974) 194–195.

[139] B. Chen, H. Itoyama, and H. Kihara, “NonAbelian Berry phase, Yang-Mills

instanton and USp(2k) matrix model,” Mod.Phys.Lett. A14 (1999) 869–879,

arXiv:hep-th/9810237 [hep-th].

[140] B. Chen, H. Itoyama, and H. Kihara, “NonAbelian monopoles from matrices:

Seeds of the space-time structure,” Nucl.Phys. B577 (2000) 23–46,

arXiv:hep-th/9909075 [hep-th].

[141] C. Pedder, J. Sonner, and D. Tong, “The Geometric Phase and Gravitational

Precession of D-Branes,” Phys.Rev. D76 (2007) 126014, arXiv:0709.2136

[hep-th].

[142] V. L. Campos, G. Ferretti, and P. Salomonson, “The NonAbelian self dual string

on the light cone,” JHEP 0012 (2000) 011, arXiv:hep-th/0011271 [hep-th].

[143] E. Corrigan and D. I. Olive, “Color and Magnetic Monopoles,” Nucl.Phys. B110

(1976) 237.

[144] V. Niarchos and K. Siampos, “M2-M5 blackfold funnels,” JHEP 1206 (2012) 175,

arXiv:1205.1535 [hep-th].

[145] V. Niarchos and K. Siampos, “The black M2-M5 ring intersection spins,” PoS

Corfu2012 (2013) 088, arXiv:1302.0854 [hep-th].

[146] C.-S. Chu and D. J. Smith, “Towards the Quantum Geometry of the M5-brane in

a Constant C-Field from Multiple Membranes,” JHEP 0904 (2009) 097,

arXiv:0901.1847 [hep-th].

[147] C.-S. Chu and G. S. Sehmbi, “D1-Strings in Large RR 3-Form Flux, Quantum

Nambu Geometry and M5-Branes in C-Field,” J.Phys. A45 (2012) 055401,

arXiv:1110.2687 [hep-th].

[148] I. R. Klebanov and A. A. Tseytlin, “Entropy of near extremal black p-branes,”

Nucl.Phys. B475 (1996) 164–178, arXiv:hep-th/9604089 [hep-th].

[149] S. Bolognesi and K. Lee, “1/4 BPS String Junctions and N3 Problem in 6-dim

(2,0) Superconformal Theories,” Phys.Rev. D84 (2011) 126018, arXiv:1105.5073

[hep-th].



BIBLIOGRAPHY 176

[150] H.-C. Kim, S. Kim, E. Koh, K. Lee, and S. Lee, “On instantons as Kaluza-Klein

modes of M5-branes,” JHEP 1112 (2011) 031, arXiv:1110.2175 [hep-th].

[151] T. Maxfield and S. Sethi, “The Conformal Anomaly of M5-Branes,” JHEP 1206

(2012) 075, arXiv:1204.2002 [hep-th].

[152] C.-S. Chu, “Non-Abelian Self-Dual Strings in Six Dimensions from Four

Dimensional 1/2-BPS Monopoles,” arXiv:1310.7710 [hep-th].


