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Abstract 

In the western Sirt Basin, sedimentation during the Late Paleocene was characterized 

broadly by shallow-marine carbonates, local build-ups and deeper-water shales and marls on the 

Dahra Platform and in the Dor al Abid/Zallah Troughs. Seven lithofacies and eleven associated 

microfacies have been recognised within the Selandian/Thanetian carbonate succession in the 

study area, and these range from mud-supported carbonates to grain-dominated facies. The 

Dahra Formation on the Dahra Platform was deposited on a homoclinal carbonate ramp with 

inner, mid and probably outer ramp facies, each with distinctive sub-facies and microfacies. The 

similarity of facies and associated microfacies throughout the Dahra Formation suggest 

deposition under similar conditions throughout the east and west Dahra Fields on the Dahra 

Platform, and these persisted during deposition of the Zelten and Harash Formations. The 

Mabruk Member, which consists mainly of mainly shallow-water carbonates bounded above 

and below by deeper-marine shale and marl, accumulated in lagoonal and reefal environments, 

probably in a rimmed-shelf setting. Different types of diagenetic alteration occurred at various 

stages in the Paleocene sedimentʼs history including dissolution, cementation and compaction. 

Primary and secondary types of porosity were developed within the studied rocks, particularly 

in the Dahra Formation, where the depositional facies, diagenesis and the pattern of carbonate 

cycles played an important role in porosity creation and preservation.  

The Selandian/Thanetian succession is dominated by a regressive trend, especially on 

the Dahra Platform, which resulted in the development of shallowing-up cycles. Numerous key 

surfaces have been documented with characteristic funnel-shaped and bell-shaped log patterns, 

based on which a number of depositional sequences have been recognized. These sequences 

comprise both transgressive systems tract and highstand systems tract and are commonly 

defined by transgressive surfaces, particularly on the Dahra Platform. The possible lack of reef-

building organisms along with tectonic subsidence and/or significant sea-level rise resulted in 

the development of a drowning unconformity on the top of the Mabruk Member.  

The thickness of the entire Paleocene succession is generally thicker in the trough areas 

and thinner over the platform. The latter is dominated by uniform and monotonous strata with a 

significant thickness of shallow-marine carbonates, suggesting relative stability in tectonics, 

sea-level and climate. The high temperature recorded from the aqueous inclusions in the 

Thanetian section is possibly due to the passage of hydrothermal fluids from deeper parts of the 

area; the high thermal conductivity of carbonates, along with the Mid-Late Tertiary uplift and 

erosion may also have been involved. The overall similarity of the Paleocene palaeotopography 

suggests that differential subsidence and sea-level fluctuation were the dominant process that 

controlled the spatial and temporal variation of the Paleocene facies. 
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CHAPTER ONE: INTRODUCTION 

1.1. General Introduction 

 Geological studies in Libya started in the early 20
th 

century by Italian geologists 

and continued through the mid-century by French, and U.S. geologists. By the end of 

1960ʼ s several papers on the geology of Libyan oil fields had been published and 

highlighted the importance of Libya as a major hydrocarbon producing country.  

 The northern part of the country is situated on a tectonically active subsident 

margin, which includes the Cyrenaica Platform, Benghazi Basin, Sirt Basin and the 

offshore Sabratah Basin. The southern part of the country lies within a stable cratonic 

area and includes the Al Kufra Basin, Murzuq Basin and Ghadamis Basin (Gumati, et 

al., 1991). The Sirt Basin developed through inter- and intra-plate movements resulting 

from the relative motion of the American, African and Eurasian plates during the 

opening of the Atlantic Ocean and the development of the Mediterranean on the 

foreland of the African Plate (Anketell, 1996). The sedimentary succession in the Sirt 

Basin, which is typical of those developed in a failed rift system, ranges in age from 

Cambro-Ordovician to Recent. The Sirt basin is the most important sedimentary basin 

in Libya as it is a site of most oil and gas production of the country. The Paleocene 

strata, however, are economically important in that about one-quarter of Libyan 

production of hydrocarbon is contained in them.  

 The Paleocene rocks in the Sirt basin have been the subject of many regional 

studies that have dealt mainly with structure and tectonics, stratigraphy and broad 

sedimentology, especially in the central and eastern part of the basin. Gumati and Kanes 

(1985) produced a subsidence curve that exhibits a sudden flattening corresponding to 

the Maastrichtian, and this possibly indicates a suspension of subsidence during 

Maastrichtian time. The same authors stated that the advent of the Danian was 

accompanied by widespread rising sea level, possibly in response to a regional phase of 

subsidence. This resulted in the deposition of thick open-marine mud-rocks in the 

subsiding areas. The stable platforms, on the other hand, were largely dominated by 

carbonate deposits.    

 Sinha and Mriheel (1996) studied the evolution of the Paleocene succession in 

the south-central Sirt Basin and recognised several transgressive-regressive marine 

cycles. In the western part of the basin the tectonic movements in the Dahra Platform 

were more downward through vertical isostatic subsidence until late Eocene time. 

During the late Eocene-Oligocene the platform underwent a major regional tilting 
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towards the axis of the Ajdabiya Trough (Roohi, 1996). Abadi (2002) studied the 

tectonics of the Sirt Basin and the interfaces between tectonic subsidence analysis, 

stress inversion and gravity modelling, and concluded that Sirt Basin evolution is 

marked by a large number of rifting pulses from Late Jurassic/Early Cretaceous to early 

Eocene, with three major rifting phases. The third phase (Paleocene to early Eocene) is 

characterised by differential subsidence and fault reactivation. 

There are few published studies, however, on the sedimentology and 

stratigraphy of the late Paleocene. Detailed petrographic, sedimentological and 

sequence stratigraphic studies of the Late Paleocene succession in the western part of 

the basin have not been conducted. This research study aims to provide new information 

to the geology of Paleocene time in the western part of the Sirt Basin, through study of 

the Paleocene succession and discusses its spatial and temporal variations, 

palaeoenvironments, cyclicity, facies, sequence stratigraphy and post-depositional 

processes resulting from regional, local and lab work. 

The literature reviews of the Paleocene Epoch showed that the Paleocene was a 

time of renewed vertical movements, which produced a strong differentiation between 

the sedimentation patterns on the horsts and in the grabens. Limestone, dolomitic 

limestone/dolomite, argillaceous limestone/marl, and shale are all present in the studied 

Paleocene strata, which were deposited on a homoclinal carbonate ramp and carbonate 

shelf. Analysis of post-depositional changes of the studied Paleocene rocks shows 

different types of alteration that occurred at different stages of the sediment history; 

among them dissolution, cementation and compaction are the most common processes. 

Primary and secondary types of porosity have been documented in the studied rocks, 

particularly in the Dahra Formation, where the depositional facies and diagenesis played 

an important role in their creation and preservation.  

The overall pattern of shale and carbonate strata reflects alternating 

transgressive-regressive cycles in the Paleocene succession. Spatially, carbonates are 

confined to the structurally higher platform areas, whereas shales occupy the troughs. In 

the study area, particularly on the Dahra Platform, the late Paleocene succession is 

dominated by a regressive trend, which resulted in the development of shallowing-up 

cycles. A number of key surfaces have been recognised within the succession with 

characteristic funnel-shaped and bell-shaped well-log patterns. The thickness of the 

Paleocene succession in the study area is commonly close to the underlying structure; 
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thicker in the trough areas and thinner over the platforms; this was probably the 

response to subsidence and widespread sea-level fluctuations. 

This study gives added value to the petroleum geology of the western part of the 

basin and contributes new data based on an integrated approach utilizing data from 

different subdisciplines of upstream geosciences such as seismic, wire-line logs and 

core samples. The practical work examined more than 50 wire-line logs, several seismic 

sections, and morethan 1500 feet (~457metres) of core samples representing the Dahra 

Formation, and its equivalent, the Zelten and Harash Formations in the Dahra Platform 

and adjacent Dor al Abid Trough. More than 320 thin-sections have been examined 

petrographically and around two hundreds of samples have also been investigated using 

scanning electron microscopy, cathodoluminescence microscopy, X-ray diffraction, 

stable isotope analysis and Fluid inclusion petrography.  

 

1.2. Aims and Objectives 

According to the literature, no detailed sedimentology and sequence 

stratigraphic studies for the Late Paleocene succession have been published so far. This 

study is the first to deal with the detailed sedimentology and petrography of the Dahra, 

Mabruk, Zelten and Harash Formations in the western Sirt Basin. It is also the first to 

interpret the sequence stratigraphic framework of the Selandian/Thanetian succession in 

the study area.  

Inspired by the need to document these carbonates and the necessity to explore 

and understand the role of tectonics, eustasy, climate and sediment production on the 

spatial and temporal variations of the Paleocene successionin the western sirt basin, in 

this research I have focused on the thickness discrepancies, lithological variations, 

palaeoenvironments, cyclicity and facies association of the studied Paleocene 

succession. The overall aim of this project is to address the implication of the above 

mentioned processes on the syn-depositional carbonates in the western Sirt Basin. 

Specifically this study will address four inter-dependant principle aims: 

1- To identify the distribution and thickness variations of the carbonate  

depositional facies and its associated microfacies in the western Sirt Basin. 

2- To investigate and fully constrain the burial carbonate diagenesis and  

resulting reservoir quality for the Late Paleocene succession of the western Sirt 
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 Basin. 

3- To apply sequence stratigraphy to the Paleocene carbonate successions and 

 determine the key factors that controlled the spatial and temporal distribution of  

 the facies. 

4- To identify the role tectonic subsidence has played during the Late Paleocene 

 rifting in the western Sirt Basin and how carbonate facies variations and 

 detailed petrography can be used as supporting evidence. 

 

1.3. Location and geographic setting of the study area 

The study area, which is located between the coordinates 28°44´50.02´´& 30° 

12´ 6.74´´ N and 16° 53´ 10.77´´& 18° 00´ 44.06´´E), covers the most prominent 

northwest-southeast trending tectonic features in the western Sirt Basin. It includes the 

Dahra Platform and Dor al Abid Trough. Broadly, the area is bounded by the Maradah 

Trough on the east and northeast, by the Zallah Trough on the southwest and by the 

Waddan Uplift on the west (Fig.1.1). 

The Dahra Platform is bounded on the west and southwest by the Dor al Abid 

and Zallah Troughs, respectively, and on the south and southeast by the Al Kotlah 

Graben, whereas the Al Hagfah (Maradah) Trough represents the east – north-eastern 

border of the Dahra Platform (Fig. 1.1). The northern boundary of the platform is not 

clearly defined, although it might extend to the offshore area. The Dor al Abid Trough 

is bordered on the southwest by the northernmost part of the Al Hulayq High. Here the 

trough swings abruptly SSW into the Abu Tumayam Trough which is bordered on the 

west by the SSW arm of the Al Hulayq High and on the east by the Southern Platform 

(Anketell, 1996). 
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Figure 1.1 Location map of the study area. 
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1. 4. Data Base 

This study has been carried out based on the following materials: 

1. More than 1500 feet of slabbed core sample retrieved from six wells located on the 

Dahra Platform and Dor al Abid Trough in the western Sirt Basin. 

2. Three hundred and twenty thin-sections, among them about two hundred sections 

were   uncovered, polished, impregnated and stained and/or half stained. 

3. Around 50 electrical well logs (spontaneous potential, neutron, gamma ray, sonic, 

resistivity and density) with mainly 1:500 scale 

4. Spectral gamma ray charts for a few wells (surface) at 1:200 scale 

5. Several seismic sections across the Dahra Platform and Dur al Abid Trough 

6. Conventional core analysis results 

7. Tectonic and concession maps of the Sirt Basin 

 

1.5. Methods of study 

To achieve the overall aims and specific objectives of this study, based on the 

above noted data-base, the following tools and techniques have been applied: 

1.5.1. Core logging 

Detailed core logging was undertaken on the 1:100 scale to reveal the various 

geological character and to document the subtle sedimentological features. It involved 

noting lithology, sedimentary structure, texture, degree of bioturbation, cycles, 

thickness, dolomitized intervals and fossil content. Sample location, sedimentary cycles 

and sequence stratigraphic approach were involved as well. The carbonate facies were 

classified according to Dunham’s textural classification (1962) and Embry and Klovan 

(1971). Brief descriptions and remarks have been added were necessary. The logs were 

drawn using CorelDraw X5 and the final core logs of the studied wells are presented in 

Appendix one. 

 

1.5.2. Wire-line Logs 

Although many of the available wire-line logs are somewhat old, especially the 

gamma ray, they have been utilized were possible to get the most possible accurate 

results. These electrical logs involve spontaneous potential, resistivity, sonic, gamma-

ray, neutron, density and conductivity. They have been used to delineate and correlate 

different sedimentary facies within the same structural setting (platform/trough). 
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1.5.3. Seismic Sections 

A few regional seismic lines located on the Dahra Platform, in Dor al Abid 

Trough and across these two adjacent structural elements have been used. Most of these 

lines are already interpreted by either the operating company or other organizations. The 

author has introduced his own explanation of these lines in order to interpret the 

Paleocene succession in the context of tectonics and other geological processes and its 

outcome on the facies distribution in the study area. 

 

1.5.4. Computer based-mapping and cross-sections 

A number of thickness, topography and structure maps have been produced 

using Surfer software. These maps represent the whole Paleocene Succession, Danian, 

Selandian, Thanetian ages, and each Paleocene rock unit (8 Formations), along with the 

topographic and structure map of the uppermost Cretaceous (Maastrichtian) Kalash 

Formation.  

In addition to the sedimentological logs, CorelDraw X5 has also been used to 

conduct several stratigraphic and structural cross-sections on the Dahra Platform and 

across the Dahra Platform and Dor al Abid Trough. The regional cross-sections have 

either been constructed using available data, or modified from published reviews. 

 

1.5.5. Petrography and analytical techniques 

A variety of petrographic and analytical procedures have been employed in this 

study; they include: polarized microscopy (thin-sections), SEM, CL, XRD, stable 

isotopes, and fluid inclusions.  

 

1.5.5.1. Thin-sections 

A polarised microscope was used in describing around 320 thin-sections 

representing the core samples recovered from the Dahra (and Mabruk), Zelten and 

Harash Formations in the western part of the Sirt Basin. Since the studied rocks are 

composed of limestone and dolomite a large number of the thin-sections were stained or 

half stained, using the method described by Adams et al. (1984) adapted from Dickson 

(1965). The thin-sections were classified according to Dunham (1962) and Embry and 

Klovan (1971). 
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Each thin-section description involves type and percentage of carbonate grains (skeletal 

/non-skeletal), cement, matrix, porosity, diagenetic minerals and diagenetic processes. 

Environment of deposition and depositional texture (classification) are also included. 

 

1.5.5.2. Scanning Electron Microscopy 

The high magnification attainable and extreme depths of field make SEM an 

excellent tool for examining the details of mineral morphology, grain-cement 

relationships, and porosity, especially microporosity (Emery and Robinson, 1993).  

A total of 40 samples have been analysed using secondary electron mode and 

back-scattered mode of the SEM. Some of the samples were examined in the 

Department of Physics, Durham University. The coating process used a Cressington 

Coating System 308R. The rest of samples were analysed in the SEM Lab at the Libyan 

Petroleum Institute Laboratories in Tripoli, Libya.  

 

1.5.5.3. Cathodoluminescence Microscopy (CL) 

CL is a surface phenomenon and luminescence can be obtained from any highly 

polished surface, whether it is a rock chip or a thin section. In this study a number of un-

polished, double-polished, un-covered, and un-stained thin-sections were used to 

distinguish original depositional material from altered depositional carbonate and 

cement, and to address the mineral paragenesis.  

The most important ions affecting luminescence intensity in carbonates are Mn
2+

 

and Fe
2+

, with the manganese activating luminescence and the iron quenching it. Hence 

variations in luminescence intensity usually reflect a variation in the ratio of Mn
2+

 to 

Fe
2+

 in a crystal (Adams and Mackenzie, 1998). 

The CL colours produced in calcite and dolomite by Mn
2+

 range from yellow to 

dark reds and pinks. Broadly, low Mg calcites give a yellow CL, high Mg calcites are 

orange to red, and dolomite is characteristically a brick-red colour. 

 

1.5.5.4. X-Ray diffraction analysis 

XRD is a fast and reliable method of determining the bulk mineralogy of 

carbonate rocks (aragonite, calcite, dolomite, siderite, etc.). Part of the study was to 

examine the samples to determine the mineralogical composition of the whole rock; this 

was achieved via running a total of 43 samples in the X-ray diffraction apparatus at the 

XRD Lab in the Libyan Petroleum Institute Laboratories in Tripoli, Libya. 
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1.5.5.5. Stable Isotope Analyses 

Oxygen isotope data are used to determine past water composition and 

temperature. Carbon isotope records are used to constrain ocean nutrient and water 

circulation patterns, and the concentration of atmospheric carbon dioxide. Both stable 

isotopes can be used for stratigraphic studies. 

A total of 189 samples from five wells were chosen to be analysed for δ
13

C and 

δ
18

O signature (matrix-whole rock). Some of the samples was analysed in the Stable-

Isotope and Luminescence Laboratory at the University of Birmingham, whereas the 

rest of the samples were analysed in the Stable Isotope Laboratory at the Earth Sciences 

Department, Durham University. The analytical procedures were the same but at 

Durham they were carried out using an Isotope Ratio Mass Spectrometer Thermo 

Finnigan Gasbench II connected to a Thermo Finnigan MAT 253. The procedure was as 

follows:  

100 -140 μg of powdered carbonate were placed into 4 ml glass vials then sealed 

by a lid and pierceable septum. The vials were placed in a heated sample rack (90°C) 

where the vial head space was replaced by pure helium via an automated needle system 

as part of a GV Instruments Multiflow preparation system. Samples were then manually 

injected with approximately 200μl of phosphoric acid and left to react for 1 hour before 

the headspace gas was sampled by needle and introduced into a continuous-flow GV 

Isoprime mass-spectrometer. Samples were calibrated using IAEA standards NBS-18 

and NBS-19 and reported as ‰ on the VPDB scale.  

 

1.5.5.6. Fluid Inclusions  

Fluid inclusions are the only direct records of palaeo-fluids existing in the 

subsurface, and as such, have the potential to record conditions accompanying 

geological processes. Fluid inclusion petrography was undertaken by Fluid Inclusion 

Technologies, Inc. in Tulsa, Oklahoma, U.S.A. 

Thin-sections were prepared from two wells located on the Dahra Platform, and 

at depths warranting further examination following the preliminary assessment of the 

Fluid Inclusion Stratigraphy (FIS) results. The sections were then examined under a 

petrographic microscope using a variety of fluid inclusion techniques (e.g. UV- 

fluorescence, microthermometry, etc.) in order to verify the presence of petroleum-

bearing inclusions in the rock samples. Petrographic examination was also necessary to 

verify that petroleum bearing fluid inclusions present in the samples and responsible for 
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the observed mass spectra are not relict features (i.e., that they were not already present 

in the mineral grains prior to deposition). In this study the fluid inclusion results were 

used to estimate the time and temperature of carbonate cementations and utilized to 

determine the burial history of the study area.  

 

1. 6. Thesis outline  

The present research study is organised in seven chapters. Chapter 1 starts with a 

short literature review and outline the main scientific problems the thesis will address. It 

also includes the main aims and specific objectives, location of the study area, data- 

base and the methodology. In Chapter 2 a review of regional geology of Libya as a 

whole with a brief outline on its sedimentary basins is presented. It focuses on the Sirt 

Basin, its structural and stratigraphic evolution with emphasies on the western part of 

the basin. In the same chapter the stratigraphy of the Paleocene succession and its 

various rock units in the study area are also introduced.  

Chapter 3 represents comprehensive sedimentological and petrographic 

investigations of core samples retrieved from the late Paleocene rocks in the study area. 

The sedimentological description has been performed according to Dunham, 1962; 

Embry and Klovan, 1971, and Choquette and Pray, 1970. Thorough petrographic 

examination and facies analysis along with the facies sequence and environmental 

interpretation of the whole succession are presented in this chapter.  

Detailed investigation and documentation for the diagenetic processes and 

products of the studied rocks along with the impact of these processes and events on the 

reservoir characteristics of these rocks are addressed in Chapter 4.  

Chapter 5 provides a review of the classical stratigraphy of the area along with 

the results of a sequence stratigraphic application. This chapter shows how sequence 

stratigraphy combines lithology, fossils and facies analysis and recognizes packages of 

strata each of which was deposited during a cycle of relative sea-level change and/or 

changing sediment supply. 

Investigations of the possible effects of tectonic, eustatic sea-level and climatic 

processes on the distribution of different sedimentary facies during the Paleocene Epoch 

in the study area are treated in Chapter 6. Comprehensive conclusions of the entire 

thesis along with recommendations for further work are available together in Chapter 7. 

The appendices show the data used and produced in this research are present at the end.
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CHAPTER TWO:  REGIONAL GEOLOGY OF LIBYA 

2.1. Introduction 

In view of the country almost being in the Sahara, except for the northern parts, 

difficulties of travel have, in the past, caused the country to remain unmapped, and 

geological information has been acquired slowly (Conant and Goudarzi, 1967). 

 The geological studies in Libya started in 1911 with surveys by many Italian 

geologists, including Gregory (1911), Marinelli (1920) and Ahlmann (1928). Desio and 

his co-workers published reports on their studies in the country from 1911 to 1943.  

French geologists studied the former Fezzan province of south-western Libya and 

published their work in many geological reports from 1943 to 1955. Geologists from the 

U.S. Geological Survey made hydrological and geological surveys from 1952 to 1964, 

which resulted in many short reports, including 1: 2,000,000 topographic and geological 

maps. 

The intensive search for oil began in Libya in 1953, and the geological studies 

then become more focused on the subsurface of the oil fields. By the end of 1960s 

several papers on the geology of Libyan oil fields had been published. These include the 

Zelten field (Fraser, 1967), Augila field (Williams, 1968), Intisar A field (Terry and 

Williams, 1969), and the Sarir field (Sanford, 1970). The first symposium on the 

geology of Libya was held in 1969, which provided important geologic information on 

Libya, and since then a series of symposia on the geology and petroleum geology of 

Libya has been hold regularly. In addition, there have been a number of significant 

publications since 1960 dealing with surface exposures, although some of these have 

extended into the subsurface. These include Jordi and Lonfat (1963) and Gobrbandt 

(1966b) on the western flank of the Sirt Basin (Hun Graben); Desio et al (1963), 

Burollet (1963) and Magnier (1963) on the Jabal Nefusa (western Libya); and Pietersz 

(1968), and Barr and Hammuda (1971) on northern Cyrenaica. Important summaries of 

plate tectonics in relation to Libya have been made by Anketel (1996), Guiraud (1998) 

and Morgan et al. (1998). 

Libya can be divided into two geological provinces, each of which includes a 

number of sedimentary basins. The northern part of the country is situated on a 

tectonically active and subsiding margin (unstable shelf) and includes from west to east 

the Pelagian Shelf (Tripolitania Basin), Jeffara Trough, Sirt Basin and Cyrenaica 

Platform. The southern part of Libya, which lies within a stable, cratonic area, includes 

the Ghadamis, Murzuq and Kufra Basins. Major hydrocarbon discoveries have been 
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made in the Palaeozoic reservoirs in the Ghadamis and Murzuq Basins, and in Mesozoic 

and Cenozoic reservoirs in the Sirt and Pelagian Basins (Gumati et al, 1996).  

The Phanerozoic sedimentary column in the country varies in thickness from 

zero at basement outcrops in the south, to more than 7000 m encountered in the offshore 

Sirt Basin to the north. The age of these sediments ranges from Cambrian to Recent. A 

number of transgressive and regressive cycles occurred during the Phanerozoic. Marine 

incursions during the Ordovician, Silurian, Devonian, Carboniferous, Late Cretaceous 

and Tertiary reached far south into Libya (Conant and Goudarzi, 1967). Thus the 

sedimentary section is dominated by marine shales, carbonates and evaporites in the 

northern parts of the country; it becomes increasingly clastic southwards, with an 

increasing frequency of stratigraphic hiatuses (Gumati et al, 1996).  

The volcanic events in Libya are believed to have been concurrent with 

movements along deep-seated fractures, perhaps associated with the great orogenic 

pulse of the Alpine cycle. Precambrian crystalline rocks occur in south and south-

eastern Libya in the area of the Tibesti Mountains, Jabal Archenu, and Jabal Auenat. 

These rocks are metamorphic, composed of para- and ortho- gneiss, quartzite and 

marble, all intruded by granitic rocks (Goudarzi, 1959). 

According to Energy Intelligence Research, in 2003 Libya was the 11th largest 

exporter of petroleum in the world and reached the peak of 3.3 million barrels a day in 

1970; it currently produces about 1.7 million barrels of crude a day. According to the 

National Oil Corporation (NOC), only around 30 per cent of Libya has been explored 

for hydrocarbons. There are about 320 producing fields with a total reserve exceeding 

50 billion barrels of oil and 40 trillion cubic feet of gas. 

 

2.2. Geographic setting 

Libya is situated on the Mediterranean coast of North Africa, between latitudes 

20
o 

and 33
o
 N and longitudes 10

o
 and 25

o
 E, and has an area of about 1,760,000 square 

kilometres. It extends about 1900 kilometres east to west, along the southern fringe of 

the Mediterranean Sea, and about 1450 kilometres north to south. The country is 

bordered by Egypt to the east, Sudan to southeast, Chad and Niger to the south, and 

Tunisia and Algeria to the west, whereas the Mediterranean Sea represents its northern 

boundary (Fig. 2.1). 
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Figure 2.1 Major structural features and sedimentasry basins in Libya (after Rusk, 2002 

and Hassan,2009). 

 

2.3. Geological setting 

The African Plate, as a part of the southern Gondwana continent, collided with 

northern Laurasia to form the super continental landmass (Pangaea) at the end of 

Palaeozoic (Guan et al., 2005).The collision involved a significant strike-slip 

component, and a major dextral shear-zone developed along the line of contact. The 

later break-up of Pangaea in the early Mesozoic involved the establishment of a 

spreading axis throughout the Mediterranean region (Hallett, 2002).  

Rifting occurred along the northern margin of the African plate as a result of 

dextral shearing between the African and European plates, developing a complex horst 
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and graben system (Selley, 1996). Cloetingh (1988), Ziegler (1988) and Janssen (1996) 

have shown that tectonic processes taking place at plate boundaries influence the state 

of stress in large parts of the adjoining plates and affect the evolution of the sedimentary 

basins located on these plates.  

Libya as a whole is a cratonic basin on the northern fringes of the African shield 

(Goudarzi, 1970). Its northern part is situated on a tectonically active subsiding margin, 

whereas the southern part of the country lies within the stable cratonic area (Gumati, et 

al., 1991) (Fig.2.2). Structurally Libya is part of the Mediterranean foreland formed by 

the North African shield, and as a result of its position at the leading edge of the African 

Plate, the country was affected by successive phases of continental collision and plate 

divergence (Pickford, 1992). 

Several periods of major tectonic development in Libya have affected its 

structural and stratigraphic history, and include: folding and consolidation in the 

Precambrian; the formation of a NW-SE trending fault system during the Cambrian; and 

the development of regional highs and lows during the Silurian and Devonian time. The 

modification of pre-existing structural trends into WNW-ESE directions occurred 

during the Late Palaeozoic and Early Mesozoic (Thomas, 1995). 

The structure of southern Libya was influenced by the Pan African event; the 

central part was affected by the Variscan tectonic events, whereas the structures of the 

northern portion are attributed to the Tethyan extension and alpine tectonic movements 

(Goudarzi, 1980).Marine strata, however, of Palaeozoic, Mesozoic, and Cenozoic ages 

abound in the northern part of Libya, whereas Palaeozoic and Mesozoic continental 

rocks of predominate in the south.  

According to Selley (1996) compressional folds are almost absent, but block 

faulting, tilting, subsidence and uplift occurred, with angular and parallel 

unconformities common between formations. Caledonian and Hercynian, as well as 

movements during Late Cretaceous and Oligocene through Miocene times and possibly 

Holocene too, developed the major features that form the present-day structural 

elements of Libya. 

The Precambrian basement is exposed in the Al Awaynat region in southeast Libya, 

the Tibesti region along the southern border of the country, the Thamboka region in the 

southwest, and the nearby Qarqaf Arch (the border between Ghadamis and Murzuq 

Basins) (Fig. 2.1).   

 



     Chapter 2                                                                                        Regional geology 

_____________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                     15 
 

 
 

Figure 2.2 Tectonics and structural elements map for Libya and surrounding offshore 

areas (Fiduk, 2009 modified from Gibbs, 2004). 

 

 

The basement is generally overlain unconformably by Cambrian rocks, though 

this contact is often onlapped by younger rock units ranging from Ordovician to 

Paleogene in age. The first sediments to be deposited after the Pan-African Orogeny 

were Infracambrian continental sandstones. Such rocks are found around the Tibesti 

Massif at the Libyan-Chad border and in the Cyrenaica area in the eastern part of Libya 

(Hallett, 2002).The same author stated that the Ordovician tectonic events- in Libya- 

produced a series of broad, northwest-southeast to north-south troughs and swells which 

include the Tihemboka High, the Murzuq-Jadu Trough and the Tripoli-Tibesti Uplift 

which controlled deposition during the Early Palaeozoic. Deposition of mostly 

continental siliciclastics during the Cambrian and marginally marine to marine 

siliciclastics during the Ordovician and Silurian continued essentially without 

interruption from Morocco to the Middle East (Rusk, 2002). 
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Tectonic events during the Late Silurian Caledonian orogeny initially defined 

the limits of the Paleozoic basins of Libya. The east-west-trending Qarqaf Arch 

separated the Ghadamis and Murzuq Basins; the north-south-trending Sirt-Tibesti Arch 

separated the Murzuq and Kufrah Basins and, generally, the Ghadamis Basin from the 

eastern Cyrenaica–Western Desert Basin (Klitzsch, 1971; Bellini and Massa, 1980) 

(Fig. 2.2) 

From the Early Devonian, Caledonian structural movements were significant. 

An initial collision of the Laurasian landmass with Gondwana was followed by collision 

with the African Plate. In this compressional regime external cratonic sag basins 

suffered stresses from a north to east direction. In view of the differential uplift and 

subsidence of these basins, strata were folded and subjected to erosion. The Devonian in 

Libya is dominated by widespread deltaic complex, which is interrupted by uplift and 

erosion in the mid-Devonian. The Devonian deformation was reactivated during the 

Variscan movements in the Carboniferous and Permian. Variscan movements 

influenced the entire African Plate, quite intensely in many areas, causing deep erosion 

of early formed strata and a widely distributed strong unconformity across North Africa 

(Sun.et al., 2010). Besides, the older Palaeozoic strata being folded uplifted and eroded 

(Aliev et al., 1971; Burollet et al., 1978; Boote et al., 1998). In the Late Carboniferous 

and Permian, several rift basins and grabens formed along the northern margin of the 

African plate by extension as a result of the initial breakup of Gondwana and the 

opening of the Tethyan seaway (Guiraud, 1998). 

The Carboniferous Period is characterized by fluvial, deltaic and littoral deposits 

along the North African territory. In Libya a flooding event in the mid-Carboniferous 

produced carbonate deposits, after which much of the north African margin was uplifted 

and deformed as a result of the Variscan orogeny. During the Late Carboniferous, 

extensive erosion took place, a series of swells and sags were established across North 

Africa. In Libya the Sirt and Qarqaf Arches, Nafusah and Ennedi-Al Awaynat Uplifts 

and their associated troughs were formed (Hallett, 2002). 

Widespread uplift and severe erosion during the Variscan orogeny, particularly 

along the Sirt-Tibesti Arch, Qarqaf Arch, and Jefara uplift, further accentuated the 

Palaeozoic basin margins (Rusk, 2002).Permian basalts and granites have been recorded 

in the Pelagian Basin and Sirt Basin, respectively. Marine sediments of Permian age 

have also been encountered offshore Libya, and they thin southwards towards the 
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Nafusah Uplift. This may represent the southern margin of the Tethyan Basin at this 

time. 

The Mesozoic-Tertiary tectonic evolution of the African Plate is directly linked 

to the opening history of the Atlantic Ocean and the dynamics of Africa-Eurasia 

convergence (Guiraud et al., 1992). The North African continental margin was 

characterized by extension and crustal thining during the Triassic. Extensional faults of 

Triassic age along with several unconformities were developed in Libya. The 

continental and marine deposition during the Mesozoic in the Murzuk and Ghadames 

Basins continued offshore in the Tripolitania Basin, where the thickness of post-

Permian to Upper Cretaceous marine siliciclastics and carbonates may exceed 12,000 ft. 

Tectonic activity in the Tripolitania Basin and surrounding offshore areas during the 

Mesozoic was dominated by east-west-oriented dextral transtension related to 

movement of the African Plate relative to the Eurasian Plate (Van Houten, 1980; 

Anketell, 1996). 

Evidence of continental Jurassic is rare, but the incipient rifts of the Triassic 

probably continued to develop. Jurassic rocks in the Jabal Nafush, which pass into 

continental equivalents to the south, have a more marine aspect than in the Triassic. 

Morgan et al., (1998) demonstrated that the African plate began to drift northwards 

during the early Late Cretaceous, and this movement has continued to the present-day 

(Fig. 2.3). This drift has been calculated to be about 2.5cm/year. There is evidence of 

subsidence and pull-apart in the eastern part of the Sirt Basin in the Lower Cretaceous, 

where continental sandstones covered almost the entire area. 

The rift phase ended with marine incursion from the Tethys Ocean in the Early 

Cretaceous. Central Libya apparently remained a positive area (the Sirt Arch) until the 

Early Cretaceous when the arch collapsed (Fig. 2.4). Graben structures were filled with 

predominantly continental sandstones of the Nubian Formation (Tawdros et al., 1999a), 

and remained subaerially exposed until the Cenomanian, when a major flooding event 

took place. 

The uppermost Cretaceous-Early Tertiary tectonics in the Mediterranean region 

were compressional associated with the middle Alpine (Laramide) Orogeny. This 

compressional regime led to dextral movements in the area and the northward 

subduction of Tethyans oceanic crust, and eventually to the closing of the 

Mediterranean (Biju-Duval et al., 1974) (Fig. 2.5).  The Cretaceous-Tertiary boundary 
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in Libya, in general, is not marked by any apparent disruption, and no evidence has been 

found of the iridium layer which marks the boundary in many parts of the 

world.Tertiary volcanics occur in the Jabal Oweinat-Arknu complex, Jabal Hassawna, 

Jabal As Sawda, and Jabal Alharuj Al Asswad in Libya. 

In the northern sector of the Ghadamis Basin, only a thin succession of Tertiary 

shallow-marine sediments is present, and it thickens considerably northward towards 

the Tripolitania Basin and eastward towards the Sirt Basin. In the east on the 

Cyrenaican platform, deposition of thick, dominantly carbonate strata occurred (Rusk, 

2002). Nevertheless gentle tectonic forces during Paleocene times resulted in the 

gradual tilting of north-western Libya towards the east. In the eastern part of Libya 

several ridges were uplifted and appeared as islands, both along the southern Stable 

Shelf (Strougo, 1986) and the northern Unstable Shelf from northern Cyrenaica 

(Guiraud, et al., 1999). The Ghadamis Basin became emergent by the end of Paleocene 

whereas subsidence continued in the Sirt Basin. This regional tilting became one of the 

most persistent features of Cainozoic deposition in Libya (Hallett, 2002). 

 

 

Figure 2.3 Plate reconstructions showing the early opening of the Atlantic and the 

northward drift of the African plate during the Early Cretaceous (from Northern Arizona 

University Web) 
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Figure 2.4 Plate reconstruction showing the early opening phase of the South Atlantic 

and the geometry of the early Cretaceous rift systems in Africa (after Fairhead  and 

Green 1989; Fairhead and Binks 1990; Guiraud and Maurin, 1991, and Anketell,1996). 

 

Cenozoic rocks in Libya show predominantly shallow marine facies that contain 

major oil and gas accumulations, including reefs, bioherms and near-shore sands 

particularly in the Sirt Basin. They contain excellent shale and evaporite seals. 

The Paleocene succession in Libya is dominated for the most part by shallow-

water carbonates deposited in restricted shallow-shelf to open-marine environments. 

The carbonate platforms usually have a clearly definable ramp margin with more 

argillaceous sediments occurring in the deeper-water area, basin- ward of the platform 

margin. 

During the Eocene, several carbonate ramps and platforms were established in 

the Pelagian, Sirt and Cyrenaica Basins. The early Eocene was characterised by uplift of 

the Cyrenaica area in eastern Libya and the subsequent erosion produced a regional 

unconformity separating the Cretaceous from the Tertiary (Rolich, 1980; Barr & 

Berggren, 1980), and it was followed by deposition of Ypresian to Middle Miocene 

sediments. In the late Eocene, the motion of Africa relative to Europe changed from 

compressional to right lateral, then into a NW-SE compressional regime in the Early 

Miocene (Van der Meer et al., 1993). During the Late Eocene to Recent, magmatic 

activity became widespread on a regional scale and there was extensive basaltic 

volcanism in North Africa (Wilson & Guiraud, 1998). 
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During the Oligocene, sediments accumulated in a pull-apart basin formed as a 

result of strike-slip fault movement. During the Miocene, the most distinct tectonic 

event of the Alpine collision during the late Cretaceous ended. This was succeeded by a 

reactivation of the Sabratah-Cyrenaica wrench zone and significant rifting that affected 

sedimentation in the Pelagian Basin (Hallett 2002), with rapid subsidence in central 

parts of the basin. Tertiary marine sedimentary rocks of Eocene, Oligocene and 

Miocene ages occur in Cyrenaica, where they include the greater part of the rocks 

exposed there, and in the Sirt Basin, and on the Pelagian Shelf. Orogenic movements-

beginning in Oligocene time continued into the late Miocene resulting in some crustal 

warping. The Quaternary rocks in the northern part of Libya are principally continental 

deposits, but there was one large marine incursion during the Tyirrenhian stage 

(Goudarzi, 1959). The chief regional structures in Libya are the Jefara Basin, Ghadames 

basin, Gargaf Arch, Murzuq Basin, Tibesti-Haruj Uplift, Kufra Basin, Cyrenaica Uplift, 

and Sirt Basin. (Figs. 2.1 and 2.2). 

 

 

 

 

 

 

 

 

               

 

Figure 2.5 During the Paleocene Africa was heading north towards Europe, slowly 

closing the Tethys Ocean. (Wiki web). 

 

oro

http://upload.wikimedia.org/wikipedia/commons/d/d4/Cretaceous-PaleogeneGlobal.jpg
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2. 4. SEDIMENTARY BASINS IN LIBYA 

As shown in Figure1, Libya consists of four major onshore basins; the Ghadamis 

Basin in the western part of the country, the Murzuk Basin in the south west, the Kufra 

Basin in the south east, and the Sirt Basin in the north central part. The Gabes-Tripoli 

Basin (Sabratah Basin/Pelagian basin) represents the only Libyan offshore basin. In this 

section a very brief review of the geology of each basin is presented, with the exception 

of the Sirt basin, whose structural and stratigraphic history is markedly different from 

the onshore Libyan basins, and the study area is located in it. It is thus dealt with in 

more detail in a separate section below. 

The Ghadamis Basin covers the north-western part of Libya and extends into 

Tunisia and Algeria. It spreads over an area of 200,000 square kilometres. The western 

limit of Ghadamis Basin is generally taken along the Messaoud high; the northern limit 

is marked by the NafusaUplift and the southern limit by the Qarqaf Arch, where the 

basement rocks are exposed at the core of Jabal Alhasawnah (V.D. Mamgain, 1979) 

(Fig. 2.1).  

The Ghadamis Basin is considered an intracratonic basin and formed during 

Early Palaeozoic time. The geodynamic history of the Ghadamis Basin was mostly 

influenced by the Variscan and Alpine unconformities (e.g. Boote et al., 1998; 

Underdown et al., 2007). Major structural elements in the Ghadamis Basin trend ENE-

WSW. The sedimentary section in the Ghadamis Basin is punctuated by several 

regional unconformities. These include the unconformities between the basement and 

the Cambro-Ordovician, the Silurian and the Devonian, the Upper Palaeozoic and the 

Lower Mesozoic, and the Lower and Upper Cretaceous (Hammuda, 1980) (Fig. 2.6). 

The section becomes thicker and more complete in the central part where the 

sedimentary thickness exceeds 5000 metres (Goudarzi and Smith, 1978).Most of the 

Palaeozoic sectionis dominated by continental and marine clastics. These are overlain 

unconformably by thin continental to marine sediments of Permo-Triassic age. 

The Ghadamis Basin has good-to-excellent reservoir and source- rock potential 

(Hamyouni, 1984). The Silurian shales constitute good source rocks, whereas Paleozoic 

and Mesozoic clastics, particularly Silurian and Lower Devonian sandstones, provide 

good reservoirs (Bracaccia et al., 1991; Shah et al., 1993) (Fig. 2.6). 

The Murzuq Basin covers the south-western part of Libya, extending into Chad, 

where it is known of the Djado Basin (Fig. 2.6). It was initiated during the Early 

Palaeozoic and forms a large intracratonic basin. The sedimentary section in the basin is 
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punctuated by a number of unconformities which result from epeirogenic movements, 

particularly during the Palaeozoic. These movements caused pronounced irregularities 

in the thickness of sedimentary beds in the basin (Conant and Goudarzi, 1967) (Fig. 

2.6). The basin is filled with Palaeozoic and Mesozoic sediments of mostly siliciclastics, 

among which the Mesozoic section is dominated by continental siliciclastics. Cambro-

Ordovician and Silurian-Devonian siliciclastics are well developed in the southern part 

of the basin, while in the northern part the Devonian Tadrart sandstone unconformably 

overlies the Cambro-Ordovician sandstones (Pallas, 1980). 

The Murzuq Basin is filled with sediment ranging in age from the Cambrian to 

Quaternary and has a maximum total thickness of more than 5,760 metres (mainly 

siliciclastics) in the deepest parts (Hamyouni, 1984). Palaeozoic siliciclastics form good 

reservoirs and are sourced by the Silurian shales (Meister et al., 1991). The Silurian 

strata (main source rock), together with the Devonian and Carboniferous intervals are 

mature over most of the basin (Hamyouni, 1984). 

The Kufra Basin is one of the least accessible and least known of all Libyan 

basins. It covers about 400,000 square kilometres area in the southeastern part of Libya 

(Fig. 2.1).The overall geological setting of this basin is similar to that of the Murzuq 

Basin; both basins overlie basement rocks, are intracratonic, and composed dominantly 

of siliciclastic sediments (Fig. 2.6). Its Palaeozoic sedimentary section is composed 

largely of marine sediments that were deposited in the sedimentary basins and sub-

basins of North Africa. It unconformably overlies the Precambrian basement, and is 

considerably thinner than in the Ghadamis and Murzuq Basins (Gumati et al., 1996).It is 

a relatively shallow Palaeozoic basin with the maximum thickness of around 3,500 

metres of siliciclastic sediments (Bellini, 1991). 

The central part of the basin is filled with continental Mesozoic siliciclastics 

(Van Houten, 1980, and Klitzsch and Squyres, 1990) that are broadly comparable in 

facies to those of the Murzuq Basin. The more continental aspect of the facies in the 

Kufra Basin compared with those of the western basins suggest that it lay farther from 

the shores of the Tethyan Ocean (Selley, 1997). So far the hydrocarbon potential of the 

Kufra Basin appears to be poor, possibly due to the absence of structures, and the 

thermal maturity of the source rocks. 
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Figure 2.6 Palaeozoic stratigraphic section of southern and eastern basins of Libya. 

 

The Gabes–Tripoli Basin is a Mesozoic–Cenozoic basin which developed over a 

broad strain zone between the African and European plates during the late Triassic–

Middle Jurassic, and is filled with a 10 km-thick succession of Triassic to Recent 

sediments (Guiraud,1998; Anketell and Mriheel, 2000). Deposition throughout the 

Gabes–Tripoli Basin was strongly influenced by emergent areas such as the Kasserine 

and Jaffara Islands, and also by active faulting (related to Cretaceous–Eocene 

compression of earlier extensional structures) and salt movement (Bishop, 1988; 

Bernasconi et al., 1991; Zaïer et al., 1998; Anketell and Mriheel, 2000;Reali et al., 

2003). Faults associated with the opening of the Tethys Ocean and rifting between the 

European and African plates controlled sedimentation from the Middle Jurassic to the 
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present (Morgan and others, 1998). Clastic alluvial sediments from the Saharan 

Platform were deposited in the southern portion of the basin whereas open marine 

clastic and carbonate sediments were deposited in the northern portion (Burollet and 

others, 1978). 

The Lower Eocene rocks (Ypressian), which consist of dark-brown marl and 

mudstone, is considered as the primary source rock in the area, whereas the main 

reservoir rocks are Lower Eocene and Oligocene to Miocene in age (Klett, 2001) (Fig. 

2.7). 

 

 
 

Figure 2.7 Stratigraphic succession of Offshore, NW Libya. Sources: Hammuda (1991), 

Sbeta (1990), El-Ghoul (1991) and Rusk (2001). 
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2. 5. Sirt Basin 

2. 5. 1. Introduction 

The Sirt Basin is one of the youngest sedimentary basins on the African craton. 

It is located in the north central part of Libya and covers an area of approximately 

600,000 square kilometres. It is bounded to the south by the Tibesti Massif and to the 

west by Nafusah and Qarqaf uplifts; to the northwest the Sirt fault arrays swing 

westwards into the Gabes-Tripoli Basin; to the east it is bordered by the Cyrenaica 

platform (Figs. 2.1 & 2.2). The thickness of sediments in the basin increases from about 

1km near the Tibesti Uplift in the south to as much as 7 km encountered in the deepest 

part of the basin (Agedabia Trough) without reaching the basement. 

The Sirt Basin is the most important sedimentary basin in Libya as it is the 

location of most oil and gas production. It ranks 13th among the world’s petroleum 

provinces, having known reserves of 36.7 billion barrels of oil, 0.1 billion barrels of 

natural gas liquids. More than 23 large oil fields and 16 giant oil fields occur in the 

province. About 90 percent of the mean total of undiscovered oil (3,545 MMBO), 85 

percent of the mean total of undiscovered gas (32,451 BCFC), and 89 percent of the 

mean total of undiscovered natural gas liquids (1,298 MMBNGL) are estimated to be in 

the Sirt Basin Province (USGS, 2010). 

 

2.5.2. Tectonic and structural setting of the Sirt Basin 

 The Sirt Basin province is considered to be a holotype of a continental rift 

(extensional) area and is referred to as part of the Tethyan rift system (Futyan and 

Jawzi, 1996; Guiraud and Bos-worth, 1997). It displays an asymmetric half-graben style 

with gentle ENE dipping platforms and steep WSW facing footwalls (Abadi. 2002). The 

Sirt Basin developed through inter- and intra-plate movements resulting from the 

relative motion of the American, African and Eurasian plates during the opening of the 

Atlantic Ocean and the development of the Mediterranean on the foreland of the African 

Plate (Anketell, 1996). 

 The increased volume associated with subcrustal erosion and the heat generation 

from magma resulted in the doming and expansion of the crust. This process could have 

produced a crustal uplift of approximately 1-2 km (Arthyushkov et al., 1991) and the 

formation of the Sirt Arch. This uplift was accompanied by cracking of the rigid crust in 

response to the rotation of Africa relative to the European block. Strike-slip movement 

along the Jifarah-Cyrenaica shear zone associated with the opening of the 
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Mediterranean Sea resulted in the collapse of the Sirt Arch and the formation of the Sirt 

Basin (Tawadros, 2001). The collapse of the Sirt Arch probably took place in different 

steps. The initial collapse started in the Triassic in the eastern Sirt Basin and led to the 

initiation of the Sarir and Hameimat Troughs, followed by the collapse of the main arch 

during the lower Cretaceous (Tawadros et al., 1991a). 

The subsidence of the basin was initiated during the Cambro-Ordovician, and it 

is thought to have continued subsiding during the Tertiary, reaching a maximum rate of 

subsidence during the Paleocene – Eocene, corresponding to a period of major crustal 

extension and reactivation of faults (Berggren, 1974; Gumati and Kanes, 1985; Gumati 

and Nairn, 1991).The basin, a Mesozoic- Cenozoic intracratonic basin, has evolved as a 

rifted Tethyan embayment on the northern margin of the African plate. It was developed 

following a succession of global tectonic events, which led to the breakup of the 

supercontinent Pangea. The break-up history of the Gondwanan part of Pangaea 

commenced with the Late Carboniferous and Permian development of the so- called 

Neo-Tethys and the development of rift system in Gondwana (Ziegler et al., 2001). 

 These events were marked by opening of the Neo-Tethys in the central and 

eastern Mediterranean domain during Permian-Triassic time and rifting along the 

present north-western margin of Africa from middle Triassic onwards (Stampfli, 2000; 

Ziegler et al., 2001). Gras & Thusu (1998) previously proposed a Triassic age for this 

and Hallett (2002) pointed out that the evidence for incipient rifting in the Triassic is 

firmly established.  

Presence of Triassic sediments in shallow grabens in the southeast Sirt Basin 

could provide an indication that the rifting phase in the basin was initiated in the 

Triassic. However, at least one author has proposed that basin evolution across North 

Africa and the Middle East is related to lithospheric folding under compression (Wood, 

2003). The widespread extension that developed over a broad zone of strain between the 

two African sub-plates led to the collapse of the Sirt arch during the Early Cretaceous 

and hence resulted in the formation of the horsts and grabens in the basin (Burk and 

Dewey, 1974). This event, as explained by Van Houten (1983), resulted from the drift 

of the African plate, which moved north-central Libya over a fixed mantle hotspot 

during the Early Cretaceous (Figs. 2.3 & 2.4). 

Accepting a rifted origin, some uncertainty exists regarding the timing of initial 

rifting, probably mainly due to the poor age-dating of the deep stratigraphic succession. 

Rifting commenced in the Early Cretaceous, peaked in the Late Cretaceous, and 
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terminated in early Tertiary time, resulting in the triple junction (Sirt, Tibesti, and Sarir 

arms) within the basin (Harding, 1984; Gras and Thusu, 1998; Ambrose, 2000) (Fig. 

2.8). Onset of rifting in the Jurassic was proposed by Abadi (2002) and re-iterated 

recently by Abadi et al. (2008).  

It is widely accepted that the basin was formed by large- scale subsidence and 

block faulting that started during latest Jurassic/Early Cretaceous time and was 

reactivated in the Late Cretaceous (Van Houten, 1983) and Paleocene and continued in 

to the early Eocene (Gumati and Kanes, 1985; Van der Meer and Cloetingh, 1993a, 

1993b). The basin has an elongated form and associated major northwest-southeast- 

trending structural features (horsts and grabens) distinguish it from the adjacent 

intracratonic basins of Libya (Gumati and Kanes, 1985) (Fig. 2.10). These structural 

features began forming in the Late Jurassic-Early Cretaceous, and continued to develop 

until, probably, the Holocene (Selley, 1968). They extend from onshore areas 

northwards into a complex offshore terrane that includes the Ionian Abyssal Plain to the 

northeast. 

 

 

Figure 2. 8  Tectonic elements of the Sirt Basin, showing triple point junction model. 

Modified after Saenz de Santa Maria (1993). 
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Based on the Palaeozoic structural trends in Libya the Sirt Arch possibly had an 

ENE-WSW orientation, and during a long period of emergence in the early palaeozoic, 

underwent a strong phase of erosion and thick succession of  shallow marine to non-

marine clastics was deposited during the late Paleozoic to early Mesozoic.  Late in early 

Cretaceous time, the subcrustal magmatic support of the Sirt Arch was removed, and the 

area collapsed into a series of alternating, NW-SE trending horsts and grabens bounded 

by deep-seated normal faults (Roohi, 1996) (Fig. 2.10).   

Three phases in the evolution of Sirt Basin have been recognized by Harding 

(1984): a pre-graben sedimentary phase, syn-rift graben development, and post-rift 

basin fill (Fig. 2.9). The initial pre-graben stage has a regional character to its tectonic, 

structural and stratigraphic development. The intermediate stage is characterized by 

normal faulting which resulted in the formation of horsts and grabens and stratigraphic 

successions. The final stage is characterized by basin- centric subsidence with greater 

sediment thickness in the central parts of the basin than at its margins. 

Paleocene time opened with a new phase of crustal extension beneath the Sirt 

basin. The renewal vertical movements during the Paleocene produced a strong 

differentiation between the sedimentation patterns on the horsts and in the grabens in 

the Sirt Basin. A strikingly greater subsidence rate characterizes the Paleocene and 

Eocene, and rapid sedimentation was contemporaneous with the basin subsidence. 

These events were followed by a moderate rate of subsidence that characterizes the 

major part of the basin (Gumati, 1982). Roohi (1996) has suggested that the block 

movements in the Sirt Basin were generally downward and nearly vertical with different 

rates of subsidence until Late Eocene time. During Late Eocene to Oligocene time, a 

significant down warping movement took place rather abruptly and the present 

asymmetrical configuration of the Sirt Basin was developed. 

The major structure elements of the Sirt Basin, in addition to numerous small 

horsts and grabens, are;  the Hun Graben, Waddan Uplift,Zallah Trough, Dahra 

Platform, Al Hagfah Trough, Zaltan Platform, and Ajdabiya Trough (Fig. 2.10). 
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Figure 2.9 Generalized stratigraphic and lithologic chart of the northern Sirt Basin. 

Compiled and modified by the author, 2012 (nomenclature after Barr and Weegar, 

1972). 
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Figure 2.10 Major tectonic elements of Sirt Basin (Abadi, 2002). 

 

2.5.3. Stratigraphic evolution and depositional history of the Sirt Basin 

The final stage of the pre-rift phase in Sirt Basin evolution, as recognized by 

Harding (1984), is characterized by basinal centric subsidence and sediment thickness, 

and represented by the Upper Jurassic- Lower Cretaceous succession (Nubian 

Formation). During the syn-rift phase, the basin was subjected to its first major 

transgression, which resulted in the deposition of marine sediment during Cenomanian 

time (Bahi, Lidam, and Maragh Formations). The post-rift depositional phase of the 

basin was on a much gentler scale. 

Precambrian rocks have been recorded on several basement highs in the basin, 

where they predominantly comprise low-grade meta-sediments, volcaniclastics and 

granitoid intrusives. The radiometric dating of these rocks suggests a Late Precambrian 

to Early Cambrian age (Koscec et al., 1996).  
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Generally, the sedimentary succession in the Sirt Basin is typical of those 

developed in a failed rift system. It ranges in age from Cambro-Ordovician to Recent; It 

has been assumed that the basement is unconformably overlain by Cambro-Ordovician 

strata, which are widely spread through-out the basin, but with different names; Gargaf 

Group, Hofra Formation and Amal Formation. Many authors used the term Pre-

Cretaceous or Pre-Upper Cretaceous for these rocks (Figs. 2.9 & 2.11).  

Silurian-Devonian strata are known from a few localities in the western part of 

the basin; Carboniferous and Permian sediments have not been recorded in the Sirt 

Basin. Sandstones and shales of Triassic age are recorded and well preserved in central 

and eastern portions of the basin, although non-deposition/erosion occurred on the 

Waddan Platform and in the Zellah Trough (Corelab report, 2008). 

The Late Jurassic- Early Cretaceous succession is well documented and 

comprises mainly non-marine paralic sandstones and variegated shales (Nubian) (Sinha, 

1992 a) with different names as well (Nubian, Sarir, Basal Sandstone). The Variscan 

Unconformity separates the Nubian formation from the underlying granitic, 

metamorphic and Cambro-Ordovician basement (Figs. 2.9 & 2.12). During early Alpine 

time, the Austrian orogenic event resulted in a complex early Cretaceous 

structural/stratigraphic relationship, which caused widespread emergence and the 

deposition of a major regressive section during Early Cenomanian time in the northern 

Sirt Basin. Then a mid-Cenomanian uplift and erosion was followed by a major marine 

transgression from the north during the late Cenomanian (Wennekers,et al., 1996). This 

marine transgression covered the basement and non-marine pre-Upper Cretaceous 

clastics (Nubian sandstone) (Fig. 2.9). 

The sandy transgressive sediments, which began to be deposited in the 

Cenomanian and continued possibly into the basal Paleocene, form a single stratigraphic 

unit named the Bahi Formation. It consists mainly of sandstones with intercalations of 

siltstones and shales, and unconformably overlies the Nubian Formation, Amal 

Formation, or basement volcanics and granites. This is succeeded by shallow-water 

marine dolomitic limestone and dolomite, and siliciclastics of the Lidam and Maragh 

Formations, respectively (Fig. 2.9). 

Continuing tectonic activity led to the formation of a number of shallow basins 

during the Turonian in which dolomite, anhydrite and shale were developed (Argub and 

Etel Formations). The Santonian-Coniacian time was characterized by more open- 

marine conditions, which led to the deposition of shale, limestone and dolomite of the 
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Rachmat Formation and shallow-water limestone of the Tagrift Formation in the eastern 

part of the basin (Fig. 2.9). Deep-marine conditions, especially in the troughs, become 

established during the Campanian, this resulted in deposition of organic-rich shale (Sirte 

Shale) which is the main source rock for most of the hydrocarbons in the Sirt Basin. 

The uppermost Cretaceous (Maastrichtian) represents the time at which the 

maximum extent of the marine transgression occurred. Most of the basin was 

submerged and only the Al Jahamah Platform, few areas of the Az Zahrah Platform and 

the crest of the Cyrenaican ridge remained as islands during the Maastrichtian (Roohi, 

1996).  The dominant lithology is the argillaceous, chalky lithofacies of the Kalash 

Formation. This formation, which occurs over most of the Sirt Basin, is laterally 

equivalent to the Waha Limestone on the western Zelten Platform (Fig. 2.9). 

Sedimentation during late Lower Tertiary was nearly similar to that for the Late 

Cretaceous, with shallow-marine carbonates and local reefs on the structural highs and 

deeper-water shales (Hagfa Formation) and carbonates in the structural lows (Fig. 2.12). 

The Paleocene was a time of renewed vertical movements, which produced a strong 

differentiation between the sedimentation patterns on the horsts and in the grabens. 

Transgressive Paleocene seas covered the entire basin (Barr and Berggren, 1981). As a 

result, a thick succession of marine sediments was deposited in the newly subsident 

troughs (e.g., Marada Trough). Shales were generally confined to low-energy zones in 

the trough and blanketed much of the area during the transgressive cycle. Carbonates 

were deposited on the shelf margins with their facies controlled by water depth, 

topography, and currents (Gumati, 1982).The basin was dominated, during Paleocene 

times, by the Az Zahrah-Al Hufrah Carbonate Platform (Satal Bank) in the west, and the 

As Sabil Platform in the east, in addition to some smaller carbonate platforms in the 

central parts (Figs. 2.9 & 2.11). 

During the Eocene a variety of environments were represented in the basin. 

These range from deep- water shales through to shallow-water carbonates and 

evaporites which reach a maximum thickness of over 1800 m in the trough areas (Fig. 

2.12). By the end of Eocene time, most the troughs had been filled, and the main trough 

of the Sirt Basin, the Ajdabiya Trough, contains the thickest sedimentary section in the 

basin (7000 metres) (Fig. 2.12). It reaches a depth of more than 6000 metres at the coast 

and may continue to the NW into the eastern Sirt Gulf (Anketell, 1996).  

Lithostratigraphically the Oligocene rocks consist predominantly of sandstones, 

which are locally glauconitic, argillaceous and/or calcareous. The major marine/non-
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marine shoreline complex originated in the Oligocene and it persisted through the early 

Miocene, with fluvial/continental deposition in the southwest and shallow marine to the 

northeast. In post-Miocene times, the most distinctive event is the major drop in sea 

level during the Messinian which led to the incision of the As Sahabi channels. Re-

establishment of sea -level to its earlier position in Pliocene time filled the vast canyons 

of the As Sahabi channel and its tributaries (De Heinzelin et al., 1980).  
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Figure 2 11 Stratigraphic nomenclature of the western Sirt Basin, according to Barr and 

Weggar, 1972; and TEPL, 2001 (Compiled by the author, 2012).   
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Figure 2.12  Regional structural cross section across the Sirt Basin. Datum is present day sea-level (Abadi, 2002, modified from 

Roohi, 1996). 
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2.5.4. Research Area: Dahra Platform, and the Dor al Abid and Zallah Troughs 

2.5.4.1. Introduction 

The general northwest-southeast arm of the Sirt Basin comprises four major 

NW-SE grabens with intervening horsts; Hun Graben, Waddan Platform, Dor al Abid 

Trough,  Dahra Platform, Hagfa Trough, Zelten-Jahamah Platform and Ajdabiya 

Trough. The area of interest, which is located on the western side of the Sirt basin, is 

comprised mainly of the Dahra Platform, Dor al Abid Trough and Zallah Trough (Fig. 

1. 1).  

The Dahra Platform, which located between the Dor al Abid Trough and 

Maradah Trough, is tilted gently to the northeast and occupies an area of about 40,000 

km
2
. Its southern boundary is represented by the Al Kotlah Graben; the northern 

boundary is not clearly defined and probably extends to the offshore area (Fig. 2.10). 

The most prominent structural features on the Dahra Platform are the NW-SE Dahra-

Hofrah High and Qattar Ridge on the west; the NW-SE trending Manzila Ridge on the 

east; and an ENE-WSW trending high connecting the Dahra-Hofrah High and Manzila 

Ridge. 

The Dor al Abid Trough, which is located between the Waddan Uplift and the 

Dahra Platform, is a NW-SE trending graben with the greatest displacement on the 

eastern side. It is bordered on the southwest by the northernmost part of the Al Hulayq 

High, where it swings abruptly SSW into the Abu Tumayam Trough. The Dor al Abid 

Trough is deepest to the east of the bend in theAl Hulayq horst and shallows steadily to 

the SSW (Anketell, 1996). The trough is about 50 km wide in the Mabruk area and  

widen towards the south. The youngest rocks preserved in the trough are of the early 

Miocene. 

The Zallah Trough is an irregular faulted graben that narrows northwards and 

becomes shallower to form the Dur al Abid Trough. It is bordered to the south by the 

Abu Tumaym Trough and to the west by the Al Hulayq Ridge and Ma amin Graben, 

whereas the Waddan and Dahra Platforms formed its northwestern and eastern 

boundaries, respectively. The Zallah Trough is considered one of the most complex 

areas in terms of structural relationships in the Sirt Basin. Its stratigraphic section, on 

the other hand, is represented by rocks as old as Cambro-Ordovician, up to the Miocene. 

The Paleocene succession in the study area consists mainly of alternating 

shallow- marine carbonates and open- marine calcareous shales, with rapid lateral facies 

changes, which most likely are controlled by the palaeotopography and the differential 
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subsidence. In addition to academic interest the succession under examination is 

economically important in that about one-third of Libyan production of hydrocarbons is 

contained in it. Palaeocene reservoirs, however, contain about 30% of the oil reserves of 

the Sirt Basin, and oil has been found in structural and stratigraphic traps or a 

combination of both. The Danian- Thanetian carbonates are the most important 

producing reservoirs in the giant Dahra and Bahi Fields on the Dahra Platform in the 

western Sirt Basin, and in the giant Ad Daffah, Al Waha and Zaltan-Nasser Fields, as 

well as in a number of small fields and the Al Hateibah giant gas- field on the Zaltan 

Platform in the central Sirt Basin (Futyan and Jawzi, 1996). 

 

2.5.4.2. Geological Setting of the study area 

The asymmetry of several of the grabens in the western Sirt Basin has led to the 

suggestion that the bounding faults are listric faults which sole-out beneath the 

Mesozoic, with the master-fault and associated synthetic faults on the eastern basin 

margins, and the antithetic faults forming the western margins. Three systems of faults 

in the Dahra Platform have been identified by Roohi (1996); these are: NNE-SSW 

trending faults of Pre-Cretaceous age; NW-SE trending syn-sedimentary faults of 

Cretaceous age; and NNW-SSE or NW-SE striking faults developed during the Late 

Tertiary regional tilting. The structural positions of these tectonic features are reflected 

in the depositional patterns of the Upper Cretaceous-Palaeocene rocks over the Pre-

Cretaceous unconformity. Anketell and Kumati (1991b) described the western platform 

boundary fault inthe Al Hufrah region. They demonstrated a complex series of en-

echelon faults, indicating a sinistral strike-slip movement, with associated Riedel shears 

forming small-scale horst and graben structures. The fault lies close to the assumed 

junction between the basement of the western and eastern African plates, which were 

active during the Cretaceous. The platform-margin faults were reactivated as sinistral 

wrench faults in the Eocene in response to the more rapid movement of the east African 

Plate in relation to the West African Plate. 

The Manzilah Ridge is about 2000 feet structurally lower than the Dahra field 

which demonstrates that considerable ENE tilt has been imposed on the Dahra Platform 

since Danian times. It is evident that most of this tilt was imposed during the late 

Eocene-Oligocene tectonic disturbance, and was accompanied by extensive faulting and 

fracturing (Halett, 2002). Fault displacement on the platform is usually less than 200 

feet, but the platform boundary faults have displacements of 2600 to 3300 feet. 



     Chapter 2                                                                                        Regional geology 

_____________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                     38 
 

The Dor al Abid Trough is faulted by several normal faults with an almost 

NNW-SSE trend with displacement of around 800 feet at the base of Upper Cretaceous. 

Continued subsidence during the Cenozoic has resulted in the formation of structural 

sag over the Cretaceous graben. During the Late Eocene to Oligocene time, the trough 

was subjected to deformation and tilting. In the Mabruk area, the depth to the base of 

the Tertiary is around 5000 feet. The mabruk, Facha and Tagrifet Fields, however, are 

located updip of the main depocentre of the basin, and are basically faulted anticlines 

with a northwesterly trend.  

The Zallah Trough, as stated above, is considered one of the most complex areas 

in terms of structural relationships in the Sirt Basin. A very complex system of drag 

folds and wrench faults within the Paleocene and Eocene has produced flower 

structures, which in turn, formed oil-traps in that area (Knytle et al., 1996). Subsidence 

within the Zallah Trough has continued to the present-day and the eastern boundary 

fault reaches the surface close to well H1-11 (Hallett, 2002). To the west of the Zallah 

Trough the depth of basement is at only about 5,000 feet, and depth to basement 

adjacent to the west of Dor al Abid Trough is around 10,000 feet. In the central Zallah 

Trough, the depth to the base Tertiary is about 8,000 feet.  

The sedimentary section in the area starts with sandstone of the Hofra Formation 

of possible Cambro-Ordovician age. This sandstone is overlain unconformably by 

Upper Cretaceous marine sediments which, in turn, are overlain by Tertiary marine 

sediments without any significance interruption. The oldest marine Cretaceous in the 

Dor al Abid Trough is represented by the Cenomanian Lidam Formation, although the 

northern part of the Mabruk field was a positive area during pre-Upper Cretaceous up to 

the Turonian. The youngest rocks preserved in the trough are early Miocene in age (Fig. 

2.9). (Hallet, 2002). 

The irregular bottom topography that was created, in part, by block faulting 

during the Early Cretaceous in the Sirt Basin and adjacent area, persisted throughout the 

remainder of the Cretaceous. This bottom topography was possibly affected by faulting 

during the Uppermost Cretaceous as indicated by the facies changes from marl through 

limestone to dolomite during Maastrichtian time throughout the basin. 

On the eastern margin of the Zallah Trough a few hundred feet of pre-

Cretaceous non-marine sandstone overlies the metamorphic rocks, which in turn, 

overlie the granitic basement. Lower Cretaceous Nubian Sandstone, along with 

lacustrine shales of marine and non-marine characteristics, has also been recorded in the 
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Zallah Trough with upto 2,000 feet thick. The initial incursion of the early Cretaceous 

sea was followed by a major flooding event in the Cenomanian which extended marine 

conditions over most of the Sirt Basin, except for the major platform areas which 

remained as large islands. This marine transgression that continued through the Upper 

Cretaceous has resulted in the inundation of the low regions and thus a sequence of 

interbedded shales, carbonates, and some evaporites were deposited.  

At the end of Campanian time the uppermost parts of the Dahra Platform 

structural features became emergent. As shallow-marine deposition progressed, the 

major highs were gradually submerged by the end of Maastrachtian time except the 

Manzila Ridge, which was still emergent as an elongated island along the eastern edge 

of the Dahra Platform (Roohi, 1996). The subsidence curve of Gumati and Kanes 

(1985) exhibits a sudden flattening corresponds to the Maastrichtian and possibly 

indicates suspended subsidence during Maastrichtian time. The shallowing of the 

Maastrichtian Sea was accompanied by deposition of argillaceous limestone of the 

Kalash Formation over much of the basin and shallower-marine carbonates of the Satal 

Formation on the Dahra Platform and Dor al Abid Trough (Fig. 2.9). Deposition 

continued through the lower Tertiary and thick successions of shallow-marine 

carbonates, shales, and locally, evaporites were deposited in the area. 

The start of the Danian was accompanied by widespread rising of the sea level, 

possibly in response to a regional phase of subsidence. This resulted in the deposition of 

thick open-marine shales in the subsiding areas (Hagfa Shale). The stable platforms, on 

the other hand, were largely dominated by carbonate deposits. Thus, distinctive regional 

Danian carbonate banks were established. The regional, isolated, ellipsoidal-shaped 

carbonate platform of Maastrichtian to Danian age (Satal Bank) covers the Dahra 

Platform, crosses the Doral-Abid Trough and extended to the Manzilah Ridge and Al 

Bayda Platform in the central Sirt Basin (Figs.2.13 and 2.14). The passage from 

limestone to shale commonly occurs within a distance of a few kilometres and appears 

to present a ramp configuration rather than an abrupt platform margin (Hallet, 2002).   
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Figure 2.13 Danian carbonate bank (Satal bank) in the western sirt basin (PRC&TPS, 

2001). 

 

 

               

Figure 2.14 3D structure map on top of Satal Formation in the study area. 
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The Danian Hagfa shale gradually thins as it onlaps the carbonate Satal Bank. 

Almost all the pre-Danian palaeotopographic highs were sites of shoal carbonate 

 and reefal growth except the Al Jahamah Platform in the north-central Sirt Basin 

(Bezan, 1996). The same author pointed out that deposition of the Selandian Beda 

sediments started with tectonic quiescence along the western shelf of the Sirt Basin. 

Subsidence temporarily ceased and the carbonate environment dominated both the 

platforms and troughs, whereas the formation thickens in the Zallah Trough and 

decreases gradually on the platform areas (Chapter 6). 

As a result of a gradual shallowing of the sea carbonate deposition recommenced 

over the larger part of the study area and the Dahra Formation was deposited. This 

carbonate deposition was ended by the subsequent transgression over almost the entire 

area during the late Selandian/Thanetian time, when it was replaced by the open-marine 

shales of the Khalifa Formation (Fig. 2.11). The interval between the top of the 

Maastrichtian Kalash Formation and the top of the Khalifa Shale has been traditionally 

regarded as a Lower Palaeocene depositional sequence by Bezan (1996). This interval, 

which represents the period between two major transgressive events during the 

Palaeocene, comprises the Hagfa, the Upper Satal, the Beda, the Dahra and the Khalifa 

Formations. The Upper Palaeocene depositional sequence, on the other hand, is 

composed of shelf- margin carbonates at the base and grades upward to marl and 

limestone of a deep-water environment. It includes the Zelten Limestone, the Harash 

Formation and the Kheir Formation. Within the latter the Palaeocene/Eocene boundary 

lies (Fig.2.9). 

The thickness of the Palaeocene succession in the study area as a whole 

approximates close to the underlying structure with thickening in the troughs, where it 

reaches 3,500 feet, and thinning on the Platforms with less than 1,500 feet (Fig. 2.15). 

This could indicate that faulting along the edges of the trough was probably syn-

sedimentary. 

Possibly as a result of the mid-Eocene tectonic activity, many traps on the Dahra 

Platform are low relief anticlines with a north-western orientation. Alternatively, the 

complex geometry of the Palaeocene carbonates provides scope for stratigraphic traps. 

The Dahra field is partly attributed to stratigraphic trapping caused by the rapid shale-

out of the Dahra Formation to the west. The Bahi field may be partly fault dependent on 

its northern margin (Hallett, 2002). 
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Figure 2.15 Thickness of the total Palaeocene succession in the study area. 

 

2.5.4.3. Palaeocene stratigraphy in the study area 

The lithology, stratigraphic position, depositional environment, and petroleum 

significance of each rock unit within the Palaeocene succession in the study area are 

briefly reviewed in this section. 

 

2.5.4.3.1. Satal Formation    Age: Maastrichtian-Danian 

The Satal Formation is subdivided by Barr and Weegar (1972) into a lower 

member of Upper Cretaceous age (Maastrichtian) and an upper member of Lower 

Palaeocene age (Danian).The contact between these two members is placed at the 
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stratigraphic position where the underlying unit suddenly becomes more chalky and less 

dolomitic. This contact coincides with the Maastrichtian-Danian boundary. 

The lower member consists of a massive grey to white, moderate to well 

indurated argillaceous limestone that grades to chalky limestone near the top of the unit. 

The basal part of Lower Satal was deposited in a relatively deep-marine setting as 

indicated by the abundance of planktonic microfossils. The thickness of the lower 

member ranges from 400 to 900 feet in the area. The lower boundary of this member is 

conformable with the Sirte Shale (Campanian-Maastrichtian) or is unconformable with 

the Cambrian-Ordovician? Quartzite of the Hofra Formation (Fig.2.9).The upper 

boundary is marked by a thin (5 -15 feet) diagnostic zone of dense, grey, bivalve 

limestone (Barr and Weegar, 1972).  

The thickness of the upper member of the Satal Formation in the study area 

ranges from few hundred feet up to 1,500 feet (See Chapter 6). It composed mainly of 

massive dolomite with traces of anhydrite and fine-grained limestone. Benthic forams, 

algae and molluscs are common, and a shallow-marine carbonate shelf setting is likely. 

In the eastern part of the study area it shows a transition from marginal to lagoonal and 

tidal-flat facies. The upper boundary of the upper member of the Satal Formation is 

sharp and apparently conformable with the Thalith Member of the Selandian Beda 

Formation (Barr and Weegar, 1972). The author believes that the Satal Bank was 

probably drowned as it was terminated by thin beds of Hagfa Shale in the study area 

(Fig. 2.9). 

The Satal carbonate bank extends over an area of 12,000 km
2
 from the Waddan 

Uplift on the west to the Manzilah Ridge on the east and passes laterally  and rapidly 

into the Hagfah Shales (Bezan, 1996) (Fig.2.13). The Upper Satal Member forms the 

principal reservoir in several fields including the Dahra - Hufrah, Ali, Almas and Arbab 

fields in the Sirt Basin. 

 

2.5.4.3.2. Hagfa Shale      Age: Danian  

The Hagfa Shale was formally proposed by Barr and Weegar (1972) for a 

subsurface rock unit in the Sirt Basin lying between the Kalash Formation and the Beda 

Formation in a conformable relationship with both. The Formation consists mainly of 

shale with local thin limestone beds, particularly in the upper part.  The shale is 

dominantly grey, soft to medium hard, fissile, splintery and slightly silty, fossiliferous 
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and calcareous. The limestone is grey, tan and brown, very fine grained, hard, dense, 

fossiliferous and rarely glauconitic. 

The Hagfa Formation is widely distributed in the Sirt Basin, controlled by the 

palaeogeography of the early Palaeocene time. It is characteristic of the shallower 

basins, since it present throughout the central Sirt Basin as a deeper-water equivalent of 

the shelfal carbonates. In the study area, the Hagfa Shale becomes increasingly 

calcareous and changes abruptly to the Satal Carbonate. It is conformably overlain by 

the Selandian Beda Formation and overlies the Kalash Limestone of Maastrichtian age 

(Fig.2.9). The thickness of the formation in the study area varies from zero or very thin 

on the platform to more than 800 feet in the trough areas (Chapter 6). The abundance of 

planktonic foraminifers, especially in the lower part of the formation, including 

Globoconasa daubjergensis, Globorotalia compressa,and Globigerina pseudobulloides 

suggest deposition in a fairly deep, open-marine environment.  

 

2.5.4.3.3. Beda Formation      Age: Selandian  

The Beda Formation is widespread over the western part of the Sirt Basin. It is 

composed predominantly of various interbedded limestones with subordinate calcareous 

shales and dolomite, which commonly shows a fenestral fabric. The carbonate grains in 

limestones include ooids, dasycladacean algae, benthic forams, molluscs and echinoids. 

In the large part of the study area the formation becomes more shaley and is subdivided 

by Barr and Weegar (1972) into two members: a lower carbonate unit named the Thalith 

Member, and an upper shale unit named the Rabia Member (Fig.2.9). The Thalith 

Member is composed of interbeds of argillaceous limestone, calcareous shale and 

chalky marl. The Rabia Member comprises calcareous shale and mudstone with thin 

argillaceous limestone interbeds. It is limited in extent to the area around the Dahra - 

Hufrah fields. 

Over much of the study area the Beda Formation overlies either the Danian 

Hagfa Shale or the upper member of the Satal Formation in a conformable relationship. 

The Dahra Formation or Khalifa Formation conformably overlies the Beda Formation 

(Fig. 2.9). The thickness of the Beda Formation in the study area varies widely from 

few hundred feet in the trough areas up to 1,600 feet on the Dahra Platform (Chapter 6). 

 The fossiliferous assemblages of the Beda Formation represent a variety of 

shallow-marine environments of deposition (Barr and Weegar, 1972). The Beda rocks 

form reservoirs in the Ora, Zaggut and Wadi fields. 
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2.5.4.3.4. Dahra (Mabruk) Formation   Age: Selandian-Thanetian 

The Dahra Formation was also introduced by Barr and Weegar for a carbonate 

rock unit restricted to the western part of the Sirt Basin. Its type section was defined in 

the Fl-32 well, the discovery well of the Dahra East field. Lithologically the formation 

is composed of argillaceous limestone with subordinate dolomite interbedded with thin 

shale, particularly at the middle interval. The Dahra Formation consists of, according to 

Bezan (1996), argillaceous calcilutite limestone interbedded with thick shale intervals at 

the upper part, and grading downward to skeletal micrite and calcarenitic limestone, 

frequently dolomitized. 

On the Dahra Platform the limestone is broadly light to yellowish grey and 

ranges from wackestone to grainstone in texture. The main carbonate constituents are 

benthic forams, echinoderms, molluscs, ooids and green algae. The formation becomes 

more shaley in the eastern Zallah Trough and passes beneath the Al Haruj al Aswad 

volcanics as far south as the Abu Tumayam Basin (Bezan, 1996). It is not present to the 

east and south east of the Dahra Platform, where it is represented by Khalifah Shales. 

The Dahra Formation conformably overlies the Beda Formation and underlies the 

Khalifah Shales (Fig.2.9). The thickness of the Dahra Formation varies from a 

maximum of 450 feet along the platform/trough margin through around 320 feet in the 

Zallah and Dor al Abid Troughs to less than 200 feet in the northeastern part of the 

study area (Chapter 6).  According to the fossil assemblages of the Dahra Formation it 

was deposited in an inner to middle carbonate ramp with local development of reef 

facies. The Dahra Formation forms the main reservoirs in the Dahra, Hofra and Mabruk 

oil-fields. 

The carbonate unit of the Dahra Formation referred to in some oil company 

reports as the Mabruk Limestone since it forms the principal reservoir in the Mabruk 

field, is located in the Dor al Abid Trough. It forms the carbonate member of the shale 

Heira Formation, where its average thickness is about 150 feet. This carbonate consists 

of mud to grain-dominated limestone with local occurrence of dolomite in the upper 

part, and marl with intervals of mud-supported limestone in the lower part. The 

limestone is largely light yellowish grey to yellowish brown, with wackestone to 

grainstone and boundstone carbonates. The component grains are dominated by benthic 

forams, peloids, red algae, corals and calcareous algae. According to the faunal content 

it was probably deposited on rimmed shelf setting, despite the fact that an isolated 

platform within a deeper basin model has also been proposed (internal report). 
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2.5.4.3.5. Khalifa Formation    Age: Selandian-Thanetian 

The Khalifa Formation is mainly a shale unit that separating the underlying 

Dahra Formation from the overlying Zelten Formation. Its type section was defined by 

Barr and Weegar, 1972 in concession 59 on the Beda Platform. The formation consists 

of an upper argillaceous limestone unit and a lower shale interval. The limestone is dark 

grey, moderately indurated and argillaceous with minor calcareous shale. The lower 

shale unit is dark grey to black, fissile and slightly pyritic with local thin calcareous 

intervals (Barr and Weegar, 1972). On the platform crestal areas the lower unit passes 

into a shallow-water carbonate facies of the Dahra Formation. In the areas where the 

carbonates of the Dahra and Beda formations are absent or thin, the Khalifa Shale 

thickens to incorporate the shale intervals equivalent to both formations. The separation 

of the Khalifa Shale Member from the remaining shales of Selandian and even the 

Danian time is almost impossible (Bezan, 1996). Accordingly, Esso Standard of Libya 

designated this compiled shale into the Heira Formation and ranked the shale enveloped 

carbonate units as formation members. 

The Khalifa Formation conformably overlies the Dahra Formation, Beda 

Formation or Hagfa Shale and is overlain by the Zelten Formation (Fig. 2.9). The 

formation ranges in thickness from 150 feet on the Dahra Platform through 200 feet in 

Dor al Abid to more than 400 feet in Zallah Trough (Chapter 6). The fossil assemblage 

of the shale unit of the Khalifa Formation, which contains planktic forams suggests an 

open-marine environment of deposition, whereas the common benthic forams, 

particularly miliolids in the argillaceous limestone unit strongly suggests a shallow-

marine setting. On the Dahra Platform and in Dor al Abid Trough the Khalifa Shale is 

well developed, forming a seal for the underlying Dahra (Mabruk) carbonate reservoir. 

2.5.4.3.6. Zelten Formation       Age: Thanetian  

The Zelten Formation is widespread across the western and eastern parts of the 

Sirt Basin.In the central and south-central parts of the Sirt Basin, the Zelten Formation 

consists mainly of grey-coloured limestone, slightly argillaceous and chalky 

interbedded locally with thin, greenish grey, pyritic shale and becomes locally 

biohermal. It contains common fragments of bryozoan, corals, algae and echinoderms. 

In the study area, on the Dahra Platform, the formation consists predominantly of light 

grey to light yellowish grey limestone, slightly argillaceous and locally dolomitic. The 

limestone is mainly grain-supported packstone and consists primarily of benthic forams, 
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molluscan shells and echinoderm fragments. Nummulites and bryozoans are locally 

developed. Mud-supported carbonates, which are frequently dolomitized, are 

sporadically present. 

In the study area, the Zelten Formation conformably overlies the Khalifa 

Formation and underlies the Harash Formation. Towards the east, the formation is 

formally referred to as Upper Sabil Member and in the south-central part of the basin 

the Zelten Formation cannot be differentiated easily from the overlying Harash 

Formation and thus a Jabal Zelten Group is used instead (Fig. 2.11). The thickness of 

the Zelten Formation in the study area ranges from less than 200 feet on some platform 

areas to more than 400 feet in certain trough areas (Chapter 6). The fossil contents and 

the characteristic sediments of the Zelten Formation indicate an inner to mid platform 

setting of shallow marine environment. It forms the main reservoir of the Zelten Field in 

the central part of the Sirt Basin. 

 

2.5.4.3.7. Harash Formation      Age:Thanetian 

This formation was introduced by Barr and Weegar (1972) for widespread rocks 

in the western and central Sirt Basin. It is composed broadly of white to brown 

argillaceous limestone with thin interbeds of grey to green, calcareous shale. On the 

Dahra Platform of the study area, it consists chiefly of light to yellowish grey limestone, 

locally dolomitic with thin interbeds of greenish grey, fissile and calcareous shale. The 

limestone is largely grain-supported packstone with local occurrence of wackestones. 

The component grains are dominated by nummulites, small benthic forams, bryozoan 

and bivalves. Planktic forams, echinoderms and green algae also occur. 

In the study area, the Harash Formation conformably overlies the Zelten 

Limestone and is overlain by the Kheir Formation. In the south-central part of the basin 

the Harash Formation cannot be differentiated easily from the underlying Zelten 

Limestone and thus a Jabal Zelten Group is used instead (Fig. 2.11). In the central Sirt 

Basin the thickness of the Harash Formation reaches 290 feet, on the Dahra Platfortm it 

is less than 150 feet, whereas it reaches 360 feet in central part of the Zallah Trough. 

According to the fossil content and sediment characteristics of the Harash Formation, an 

inner to mid platform with a shallow-marine environment is strongly suggested. 
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2.5.4.3.8. Kheir Formation    Age: Thanetian – Yepressian 

The Kheir Formation is widely distributed throughout much of the Sirt Basin. In 

its type section in the central part of the basin, the formation composed predominantly 

of alternating beds of shale, marl and limestone. The shale is grey to dark grey, fissile 

and calcareous. The marl is grey and soft, whereas the limestone is grey, fossiliferous 

and slightly pyritic. 

In the central Sirt Basin the Kheir Formation conformably overlies the Upper 

Sabil carbonates, and is overlain by the Lower Eocene Gir Formation. It therefore spans 

the upper Palaeocene/lower Eocene boundary according to recorded foraminifera 

(Wennekers et al., 1996). Over a large part of the study area, however, the Kheir 

Formation conformably overlies the Harash Formation and overlain by the Facha 

Dolomite Member of the Lower Eocene Gir Formation (Fig. 2.9). The thickness of the 

Kheir Formation in the central Sirt Basin is around 270 feet, whereas in the study area it 

varies from less than 200 feet in the Dor al Abid Trough to about 400 feet in the Zalah 

Trough (Chapter 6). The formation contains common microfossils, including 

Operculina and smaller benthic and planktic forams. Thus the open marine environment 

characteristic of this formation is correlated over long distances across the Sirt Basin, 

implying stable conditions of sedimentation during the late Palaeocene to early Eocene 

time (Belazi, 1989). 

In the east central part of the Sirt Basin the shale interval of the Kheir Formation 

provides an impermeable top seal in the Harash and Naser oil-fields.  
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2.5.5. Summary 

Libya is a cratonic basin on the northern fringes of the African shield; its 

northern part is situated on a tectonically active subsiding margin, whereas the southern 

part of the country lies within the stable cratonic area (Gumati, et al., 1991).The 

structure of southern Libya was influenced by the Pan African event; the central part 

was affected by the Variscan tectonic events, whereas the structures of the northern 

portion are attributed to the Tethyan extension and alpine tectonic movements 

(Goudarzi, 1980).Caledonian and Hercynian, as well as movements during Late 

Cretaceous and Oligocene through Miocene times and possibly Holocene too, 

developed the major features that form the present-day structural elements of Libya. 

The country consists of four major onshore basins: the Ghadamis Basin, the 

Murzuk Basin, the Kufra Basinand the Sirt Basin. The last, which is the youngest of the 

Libyan basins, is developed through inter- and intra-plate movements resulting from the 

relative motion of the American, African and Eurasian plates during the opening of the 

Atlantic Ocean and the development of the Mediterranean on the foreland of the African 

Plate (Anketell, 1996). Rifting in the Sirt Basin commenced in the Early Cretaceous, 

peaked in the Late Cretaceous, and terminated in early Tertiary time, resulting in a triple 

junction (Sirt, Tibesti, and Sarir arms) within the basin (Harding, 1984; Gras and Thusu, 

1998; Ambrose, 2000). Onset of rifting in the Jurassic was proposed recently by Abadi 

et al. (2008). The basin has an elongate form and associated major northwest-southeast- 

trending structural features (horsts and grabens) distinguish it from the adjacent 

intracratonic basins of Libya (Gumati and Kanes, 1985).  

The sedimentary succession in the Sirt Basin is typical of those developed in a 

failed rift system and ranges in age from Cambro-Ordovician to Recent. Sedimentation 

during the late Lower Tertiary was characterized by shallow-marine carbonates and 

local reefs on the structural highs and deeper-water shales and carbonates in the 

structural lows. The Paleocene was a time of renewed vertical movements, which 

produced a strong differentiation between the sedimentation patterns on the horsts and 

in the grabens.  

The area of interest, which is located on the western side of the Sirt basin, is 

comprised mainly of the Dahra Platform, Dor al Abid Trough and Zallah Trough. The 

Paleocene succession in the study area consists mainly of alternating shallow-marine 

carbonates and open-marine calcareous shales, with rapid lateral facies changes, which 

most likely are controlled by the palaeotopography and the differential subsidence. The 
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sedimentary section in the study area starts with sandstone of the Hofra Formation of 

possible Cambro-Ordovician age. This sandstone is overlain unconformably by Upper 

Cretaceous marine sediments which, in turn, are overlain by Tertiary marine sediments 

without any significant interruption 

The interval between the top of the Maastrichtian Kalash Formation and the top 

of the Khalifa Shale has been traditionally regarded as a Lower Paleocene depositional 

sequence by Bezan (1996). This interval, which represents the period between two 

major transgressive events during the Paleocene, comprises the Hagfa, the Upper Satal, 

the Beda, the Dahra and the Khalifa Formations. The Upper Palaeocene depositional 

sequence, on the other hand, is composed of shelf-margin carbonates at the base and 

grades upward to marl and limestone of a deep-water environment. It includes the 

Zelten Limestone, the Harash Formation and the Kheir Formation. 

The thickness of the Palaeocene succession in the study area as a whole 

approximates close to the underlying structure with thickening in the troughs and 

thinning on the platforms. This could indicate that faulting along the edges of the trough 

was probably synsedimentary. 

The Palaeocene Satal, Beda and Dahra carbonates form reservoirs in many oil- 

fields in the study area, whereas the shale of Hagfa, Khalifa and Beda (Rabia) represent 

impermeable top seals for the underlying reservoirs. 

 



 Chapter 3                                                                      Sedimentology and Petrography 
___________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                     51 
 

CHAPTER THREE: SEDIMENTOLOGY OFTHE DAHRA PLATFORM AND 

DOR ALABID TROUGH 

3.1. Introduction 

The Paleocene succession in Libya is dominated largely by shallow-water 

carbonates deposited in restricted shallow-shelf to open-marine environments. In Sirt 

Basin, particularly in central and western parts, the succession is characterized by rapid 

lateral facies changes and vertical alternation of carbonates and shales. The carbonates 

were deposited on shallow to moderate depth platforms developed upon structural 

highs, separated by deeper water mudrock facies in basinal depressions. 

The study area, which comprises the Dahra Field on the Dahra Platform and 

Mabruk Field in Dor al Abid Trough, is composed generally of limestone, dolomitic 

limestone, argillaceous limestone/marl and shale. Carbonates of the Lower Paleocene 

form a major hydrocarbon reservoir in several fields in the west central Sirte Basin. All 

those fields are aligned along a WNW-ESE trend, which is interpreted as a reef and 

shoal belt facies zone tracking a seaward carbonate platform margin, which can be 

followed across the Dahra-Hofra Platform (Pawellek, 2009).  

The grain composition of carbonate sediments and rocks often directly reflects 

their environment of deposition because of the general lack of transport in carbonate 

regimens and the direct tie to the biological components of the environment (Moore, 

1989). Carbonate sands under the influence of directed currents will exhibit appropriate 

bedforms and cross-stratification as a function of current characteristics (Ball, 1967). 

Carbonate muds will be winnowed if enough wave or current energy is present in the 

environment. 

Irrespective from general geology, common lithology and broad environmental 

setting, almost nothing have been published on sedimentology and petrography of the 

Dahra, Mabruk, Zelten and Harash Formations in the study area. Hence the results 

presented here provide new information to the geology of Paleocene Succession in the 

western part of the Sirt Basin. 

Description, discussion and interpretation of the Selandian/Thanetian 

Carbonates deposited on the Dahra Platform and/or in Dor al Abid Through along with 

identification of general lithofacies, macrofacies and its associated microfacies are dealt 

with in detail throughout this chapter. Vertical and lateral variations of these carbonates 
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both on platform and in trough along with the identification of palaeo-environments and 

proposition of depositional geological setting are also incorporated.  

 

3.2. Facies analysis 

The studied intervals of the Paleocene succession on the Dahra Platform are 

comprised of the Dahra, Zelten and Harash Formations, whereas in the Dor al Abid 

Trough only the Dahra Formation equivalent, i.e. the Mabruk Member of the Heira 

Formation is involved. Complete detailed logs of the cored interval of these carbonate 

units at 1:100 scale can be found at the Appendix 1.  

 

3.2.1. General Lithofacies 

Careful examination of the studied intervals, which is mainly based on 

macroscopic and microscopic analysis, has resulted in the recognition of four main 

collective lithofacies; limestone, dolomitic limestone/dolomite, argillaceous 

limestone/marl, and shale lithofacies. The latter two facies are described below, while 

macrofacies and its associated microfacies of the carbonates are discussed, in detail in 

the next section (3.2.2.; Tables 3.1and 3.2). 

 

3.2.1.1. Marl/ argillaceous limestone and shale 

In the Dor al Abid Trough the marl is widely distributed and covers large part of 

the Paleocene succession (Heira Formation), where it locally grades to very calcareous 

shale (Fig.2.11). It represents the dominant lithofacies within the lower part of Mabruk 

Member and interbeds with bioclastic and slightly dolomitic limestone. Within the 

upper part of Mabruk the marl is much less common and occurs as thin layers 

interbedded with limestone and dolomitic limestone. Itis commonly light grey to 

greenish grey, locally light olive grey, soft to firm, sub-fissile to sub-blocky, with 

scattered fragments of coral, red algae, bivalve shells and benthic forams. It is locally 

burrowed and compacted with the development of pyrite at particular intervals (Fig. 3.1 

&Appendix 1). The shale is commonly grey to dark grey, sub-fissile to fissile, brittle 

and calcareous. 

Within the studied interval on the Dahra Platform the term shale is widely used 

and comprises commonly marl and/or very argillaceous limestone facies. It occurs as 

medium to thin beds that are intercalated with wackestone/packstone facies in the Dahra 
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and Harash Formations. It is usually medium grey to greenish grey, fissile, dolomitic, 

slightly pyritic with scattered small un-identifiable fragments (Fig.3.1&Appendix 1). 

 

3.2.1.2. Limestone, dolomitic limestone/dolomite 

Carbonate dominated intervals are widely distributed on the Dahra Platform, 

where they intercalate with the shale units not only in the Selandian/Thanetian section 

but also throughout the Paleocene succession. On the other hand, these  carbonates are 

developed at certain intervals in the Dor al Abid Trough, particularly within the 

Selandian/Thanetian  succession. The sedimentological and petrographical 

characteristics these carbonates are discussed below. 

 

 

Figure 3.1 Thin-section photomicrographs of: A) Marl lithofacies with scattered benthic 

forams, pyrite and intragranular Fe-rich calcite. Dahra Fm (3315 ft), well no.7; B) 

Fissile, dolomitic, compacted and slightly pyritic shale. Dahra Fm (3267 ft), well no. 9. 

 

3.2.2. Macrofacies and associated microfacies 

During the course of the petrographic study, the percentages of constituent 

grains, matrix, cement and porosity were estimated visually using the comparison charts 

of Baccelle and Bosellini (1965). The carbonate samples were classified according to 

Dunham (1962), Embry and Klovan (1971), and Wright (1992). To make the name 

more qualified and to give information on mineral and grain composition, the most 

abundant grain types in a given sample have been added to the rock name. A semi-

quantitative composition of the studied section has been determined using whole rock 

XRD analysis for selected samples. Burrow density was determined using semi-
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quantitative bioturbation index (BI) of Taylor and Goldring (1993) which is composed 

of six grades. 

Macroscopic and microscopic investigations of the studied samples, which 

include details of  grains, cements, microfabrics, micro-sedimentary structures and 

diagenetic features, has resulted in the recognition of seven main macrofacies and 

eleven associated microfacies within the Selandian/Thanetian carbonate succession. A 

brief description of these macrofacies is summarized in Table 3.1, while the occurrence, 

description and interpretation of the associated microfacies are discussed below: 

 

3.2.2.1. Bioclastic foraminiferal P-P/G 

3.2.2.1.1. Bioclastic foraminiferal packstone/grainstone (PMF1) 

The bioclastic foraminiferal packstone/grainstone microfaciesis widely 

distributed, occurring within the Dahra, Zelten and Harash Formations on both the 

Dahra Platform and Dor al Abid Trough (Table.3.1). 

Within the Dahra Formation on the Dahra Platform it is composed 

predominantly of rotaliids, miliolids, bivalve shells and echinoderm fragments. 

Bryozoa, intraclasts, coated grains and green algae are less common with scattered 

planktic forams, crinoids and extraclasts (Fig.3.2A&B). These components are 

commonly present in a matrix of micrite and cemented patchily by equant calcite. 

Pyrite, hematite and less commonly glauconite are associated throughout (Fig.3.2 A&C, 

and Table.3.2). Local development of dolomite crystals as an intragranular cement is 

present in well No.10 (Fig. 4.3.F–next chapter). The bioclastic foraminiferal packstone 

microfacies on the Dahra Platform is ascribed to a shallow- marine lagoonal 

environment with semi-open circulation. It would correspond to SMF 10 of Flügel 

(2004). 

Within the Mabruk Memeber in the Dor al Abid Trough it is comprised mainly 

of rotaliids, echinoderms and bryozoa. Miliolids, peloids, bivalve shells, green algae 

and calcareous algae are also present with scattered planktic forams, brachiopods, coral 

fragments and ostracods (Fig.3.2 C&D). Pressure dissolution seams with scattered 

stylolites are developed locally, particularly in well No.105, whereas partly cemented 

fractures were noticed in well No. 66. Pyrite, glauconite, phosphate and rarely limonite 

are developed locally, particularly at depths 3248-3250 feet in well No. 66, along with 

bored bioclasts and coarse dolomite crystals (Figs.3.2C& 4.1- next chapter). Extensive 
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dissolution mainly of bioclastic grains is recorded at 3726 ft. in well No.105 and at 

3303.5-3305 ft. in well No. 66; within the latter Fe-minerals are concentrated. 

According to the faunal content and based on its stratigraphic position this microfacies 

represents deposition on an inner-shelf, shallow-marine environment that was separated 

from the open shelf by a carbonate build-up or reef. It may correspond to SMF 18 of 

Flügel (2004).  

Within the Zelten and Harash Formations on the Dahra Platform it is comprised 

chiefly of echinoderm fragments, rotaliids, and bryozoa. Bivalves, echinoid spines, 

miliolids, planktic forams and nummulites are scattered throughout with rare green 

algae, gastropods, Alveolina, Assilina and red algae (Tables. 3.1& 3.2). Mechanical and 

chemical compaction has resulted in the development of fracturing, pressure dissolution 

seams and stylolites. Some precipitation of pyrite, glauconite and phosphate took place. 

Extensive dissolution intervals within this microfacies have been recorded in wells No. 

9 and No.10, in spite of the fact that most of those intervals contain later coarse calcite 

and dolomite cements. This microfacies is ascribed to an inner ramp (lagoon or back 

bank) with a regime of moderate to slightly high energy. It could correspond to SMF 10 

of Flügel (2004). 

 

3.2.2.1.2 Dolomitic bioturbated bioclastic packstone (PMF2) 

Within the Dahra Formatiion on the Dahra Platform it is composed principally 

of rotaliida, miliolids, echinoderm and small unidentifiable fragments. Bivalves, 

gastropods, intraclasts and bryozoans are also present with scattered green algae, 

peloids, red algae and extraclasts. These component grains are present in a matrix of 

partially dolomitized and bioturbated micrite (Fig.3.2G) and are locally cemented by 

syntaxial rim, ferroan calcite and ferroan dolomite cements.  Dolomite is widely 

distributed in this microfacies where it not only replaces large parts of the micrite matrix 

and some bioclasts but also occurs as void-filling cement (Fig. 4.3- next chapter). The 

burrowing is usually horizontal, with some occurrence of sub-vertical or sub-horizontal 

ones. Bioturbation index commonly ranges from 2-4 (Fig. 3.3&Appendix.1). Porosity is 

almost negligible except where unstable grains, particularly bivalves, are dissolved out. 

Burrows and bioturbation provide information on conditions of life in sediments and 

thus about the depositional environment (Curran, 1991). This microfacies, however may 
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represent deposition in a shallow-marine lagoonal environment and could correspond to 

SMF 9 or 10 of Flügel (2004). 

The dolomitic bioturbated bioclastic packstone microfacies, which is not widely 

distributed in the Mabruk Member in the Dor al Abid Trough, is composed mainly of 

rotaliida, echinoderm fragments and bryozoans. Other less common fossil debris 

includes that of red algae, small forams, corals and ostracods (Fig.3.2 E, F and H). It 

grades locally to rudstone where a significant percentage of the bioclasts are coarser 

than 2 mm, particularly in well no.66. The average size of the dolomite crystals that 

replaced the micrite substrate is around 80 µm, whereas the void-filling dolomites are 

about 200µm. Burrowing is commonly horizontal with a bioturbation index of almost 3-

4 (Fig. 3.3 & Appendix.1).Fe- minerals, particularly pyrite occur locally. Apart from 

some intragranular voids and microfractures, the overall porosity is negligible. The 

dolomitic bioturbated bioclastic packstone microfacies in this particular setting is 

ascribed to an inner-shelf, shallow-marine environment that was possibly separated 

from the open shelf by a carbonate build-up or reef. It would correspond to SMF 18 of 

Flügel (2004). 

 

Within the Zelten and Harash Formations on the Dahra Platform it is similar in 

composition to that in the Dahra Formation, but with the occurrence of echinoid spines 

and nummulite fragments. Planktic forams, and ostracods are scattered throughout 

(Tables.3.1& 3.2). These grains are cemented locally with equant sparry calcite cement 

that is locally iron-rich. A large part of the micrite matrix and bioclasts along with many 

burrows has been subjected to dolomitization. Burrowing is slightly less extensive than 

that of the Dahra and Mabruk, as the average of bioturbation index is around 2 (Fig.3.3 

& Appendix.1). The average size of dolomite crystals is 20-30µm, whereas much larger 

crystals of dolomite are recognised as void-filling cement (Figs.4.3F and 4.6- next 

chapter). Pyrite and rarely glauconite, phosphate and limonite are developed in almost 

all the studied wells on the Dahra Platform (Table 3.2). Porosity is broadly negligible to 

poor; although certain intervalshave good to very good dissolution porosity. This 

microfacies is probably ascribed to a shallow-marine back-bank setting. It may 

correspond to SMF 9 or 10 of Flügel (2004). 
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Table 3.1 Facies and associated microfacies of the Dahra Formation on the Dahra Platform 
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Table 3.1 (Cont). Facies and associated microfacies of the Dahra Formation on the Dahra Platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facies
 no.

Facies Name Description Microfacies Micro-
facies 
code

Thin-section photos Depositional 
setting

Remarks

3 Bioclastic 

mudstone

It is 0nly described in well no.8 and comprises 

mainly of doilomitic limestone, light yellowish grey 

to mottled, m.od-well sorted with very scattered 

benthic forams, peloids and gastropod molds. Bored 

and/or bioturbnated. Locally chalky and/or 

argilaceous. Porosity is fair to good. 

Dolo lime-

mudstone

PMF 6

W8-D, 3079 ft     .W8-D, 3079 ft.

Inner ramp 

(lagoon)

Similar to 

RMF 19 of 

Flügel 

(2004)

4 Bioclastic 

grainstone

Light grey, light yellowish brown to v. pale orange, 
m. sorted. Benthic forams, green algae and 
echinoderms common with scattered peloids, 
molluscan shells, intraclasts and bryozoans. Locally 
dolomitic,  bioturbated, and slightly argillaceous.  

PDS and stylolites. Brecciated interval at well 9. Fe- 
minerals and syn-sedimentary compaction features 
in well 10. Porosity is good to very good.

Bioclastic 

foraminiferal 

grainstone

PMF 7

W10-D, 3158 ft.    W8-D, 3155 ft.

Inner tomid ramp 
(possibly carbonate 

shoal/ or lagoon 
with an 

opencirculation 
(back bank)

Corresponds 
to SMF 10 or 
11of Flugel 

(2004)

 

 

 

PDS= Pressure dissolution seams   PMF= Paleocene microfacies W= Well no. D = Dahra Fm   Z= Zelten Fm       H= Harash Fm 

  

Negligible Ø= 0-5 %  Poor Ø= 5-10%   Fair Ø= 10-15%   Good Ø= 15-20%   V.good Ø=20-25% 

 

All photomicrographs are in PPL, unless otherwise stated   
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Table 3.1 (Cont). Facies and associated microfacies of the Mabruk Member in the Dor al Abid Trough.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facies 
no.

1 Bioclastic 

foraminiferal 
packstone

Light yellowish grey to pale yellowish brown, m. hard, 

fine to coarse-grained, poorly to mod. sorted. Abundant 

to common benthic forams, green algae and echinoderm 

fragments. Small forams, bryozoa, red algae, coral 

fragments and molluscan shells  dispersed throughout. 

Locally dolomitic and bioturbated, stylolitic, PDS and 

stylo-nodular structure. Levels of iron minerals 

concentration, particularly in well 66.  Overall observed 

porosity ranges from fair in well 66 to good in well 105.

Bioclastic 

foraminiferal 
packstone

Dolomitic 

bioturbated 
bioclastic 
packstone

PMF 1

PMF 2

  W66, 4277 ft.           W66, 4305 ft. Inner shelf     

(back-reef)

Corresponds to 
SMF18 of Flugel 

(2004)

2 Foraminiferal 
bioclastic 

wackestone-
wackestone/

packstone

This facies is present almost exclusively in well 105, 

where it consists of light grey to light brown, hard, fine to 

medium-grained, m. sorted. Relatively common small 

benthic forams, peloids and planktic forams. Bryozoa, 

echinoid spines and fragments are scattered throughout. 

Slightly argillaceous, locally bioturbated and dolomitic. 

Common PDS, stylolites and deformation features with 

local concentrations of iron erals. Porosity is negligible 

to poor

Bioclastic 
wackestone/

packstone

Planktic 
foraminferal
wackestone

Dolomitic 
bioturbated 
wackestone/

packstone

PMF 3

PMF 4

PMF 5

  W66, 4348 ft         W105, 3642 ft 
.

 W105, 3761 ft      W105, 3762 ft

  W 105, 3752 ft.   W 105, 3752 ft

Inner shelf 
(lagoon)

Inner to middle 
shelf

Inner shelf

Corresponds to 
RMF 20 or SMF 

10 of Flugel 
(2004)

Corresponds to 
RMF 5 or SMF 3 
of Flugel (2004)

It similar to SMF 
10 of Flugel 

(2004)

DescriptionFacies name Microfacies Microfacies
      code

Thin-section photos Depositional 
    setting

Remarks

W105, 3712 ft     W 105, 3774 ft
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Table 3.1 (Cont). Facies and associated microfacies of the Mabruk Member in the Dor al Abid Trough.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facies 
no.

4 Bioclastic 

grainstone

Recorded at one interval in wells 66 & 105. It consists 
mainly of yellowish brown to very pale orange, m. hard, 
m - well sorted. Common miliolida, small benthic 

forams, red algae, lithoclasts, green algae and bivalves. 
Gastropods, echinoderm fragments and peloids are 
scattered throughout. Rarely argillaceous or dolomitic. 
PDS and stylo-nodular structures are present along with 
pyrite, anhydrite and coarse dolomite. Porosity is good to 
very good.

Bioclastic 
grainstone PMF 7

W 66, 4275 ft.          W 105, 3736 ft.

Inner to middle 

shelf carbonate 
shoal/or  lagoon 
with open 
circulation - 
back bank

Corresponds to 
SMF10 of Flugel 
(2004)

6

7

Algal packstone

Bioclastic 

boundstone

Light yellowish grey to very pale orange (mottled), fine 

to coarse-grained, poorly to mod. sorted. Red algae, 
calcareous algae and coral fragments are common. 
Benthic forams, bryozoan, molluscan shells, echinoid 
spines and planktic forams are scattered throughout. 
Locally burrowed and slightly dolomitic and 
argillaceous. PDS and stylolites developed locally. 

Levels of pyrite, glauconite and dark grey iron minerals, 
particularly in well 103. No observed porosity.

Broadly light grey to light olive grey, locally mottled, 
fine to coarse-grained, poorly to mod. sorted. Abundant 
to common coral and calcareous algae with less common 

red algae and bryozoans. Planktic forams, echinoid 
spines, miliolids and rotaliids dispersed throughout. 
Slightly burrowed and intermittently bored. Compaction 
features developed locally along with pyrite, glauconite 
and anhydrite. Overall porosity is negligible to poor.

Algal packstone

Coral algal 
boundstone

Algal bioclastic 
boundstone

PMF 9

PMF 10

PMF 11

W66, 4253 ft          W103, 3607 ft.

W 66, 4293 ft        W 103, 3587 ft

W 103, 3637 ft       W 66, 4308 ft

Probably 
middle shelf 
(bioclastic 

shoal) or back 
reef

Middle shelfg- 
probably reef 

crest

Possibly reef 
crest or back- 

reef

Corresponds to
SMF 18 of Flugel 
(2004)

Corresponds to 
RMF 12 or SMF 7 

of Flugel (2004)

Corresponds to 
SMF 18 of Flugel 

(2004)

DescriptionFacies name Microfacies Microfacies
      code

Thin-section photos Depositional 
    setting

Remarks
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Table 3.1 (Cont). Facies and associated microfacies of the Zelten and Harash Formations on the Dahra Platform.  

 

 

Facies 
no.

1 Bioclastic 

foraminiferal 
packstone-
packstone/
grainstone

Light yellowish grey, m. hard, fine to coarse-grained, m. 
sorted with common benthic forams (particularly 
rotaliids), bryozoa and bivalve shells. Nummulites, 

gastropods, planktic forams, echinoderm and green algae 
are scattered throughout. Slightly argilaceous, dolomitic 
and bioturbated, with local development of stylolites, 
PDS and stylonodular structure. Pyrite, glauconite and 
phosphate also occur locally. Overall porosity ranges 
from fair to good.

Bioclastic 
foraminiferal 

packstone

Dolomitic 
bioturbated 
bioclastic 

packstone

PMF 1

PMF 2

W8-Z, 2747 ft.         W10-Z,2753 ft.

Inner ramp 
(lagoon)

Corresponds to 

SMF10 of Flugel 
(2004)

2

5

F oramini feral 
biocl as t i c 

wackes tone-
wackes tone/

packs tone

Nummul i t i c 
packs tone

Bioclastic 
wackestone/

packstone

Planktonic 
foraminiferal 
wackestone

Dolomitic 
bioturbated 
wackestone/

packstone

Foraminiferal 
nummulitic 
packstone

PMF 3

PMF 4

PMF 5

PMF 8

 W9-H, 2699 ft        W7-Z, 2790 ft.

W 7-Z,2845 ft        W8-Z, 2726 ft

W9-H, 2663 ft       W9-H, 2686 ft

W7-H, 2731 ft      W 8-Z, 2788 f

W7-Z, 2779 ft       W9-H, 2659 ft

Inner ramp 
(lagoon)

Mid ramp

Inner ramp
(lagoon)

Middle ramp
(probably 

nummulitic 
bank)

Corresponds to
SMF 21of Flugel 
(2004)

Corresponds to 
RMF 5 or SMF 3 
of Flugel (2004)

Corresponds to 
SMF 10 of Flugel 

(2004)

Similar to SMF 18 
of Flugel (2004)

DescriptionFacies name Microfacies Microfacies
      code

Thin-section photos Depositional 
    setting

Remarks

Light grey- yellowish grey, m. hard, fine to coarse-

grained, m. sorted. Relatively common benthic and 
planktic forams and echinoderm fragments. Other 
bioclasts include bryozoa, nummulite, echinoid spines 
and green algae. Slightly argilaceous and locally 
bioturbated, dolomitic and/or chalky. PDS and stylolites 
in well 7, whereas pyrite, phosphate and limonite in well 

9. Pporosity is  negligible to  fair.

Light yellowish-light olive grey, hard, poorly- 

moderately sorted, with common nummulites and 
common to scattered Assilina, bryozoa, echinoderms, 
molluscan shells and red algae. Slightly argilaceous and 
bioturbated.  Porosity generally good to very good.
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Figure 3.2 Bioclastic foraminiferal packstone/grainstone microfacies with common A: benthic forams, 

and echinoderms (DahraFm in well no.8), B: Coated grains and miliolids (DahraFm in well no.9),C: 

bivalves and pyrite (Mabruk Mbr in well no. 66), and D: green algae (Mabruk Mbr in well no. 105). 

Photos E-H show the general composition and texture of the dolomitic bioturbated bioclastic packstone 

microfacies, E: Mabruk Mbr in well no.103, F & H:MabrukMbr in well no.66, and G:DahraFm in well 

no.8). 
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Figure 3.3 Dolomitic bioturbated bioclastic packstone microfacies showing different 

bioturbation intensity; A) BI= 4, Dahra Formation (3308 ft), well no. 7, Dahra Platform; 

B) BI= 3-4, Mabruk Member (3704 ft), well no. 105, Dur al Abid Trough; C) BI= 2, 

Zelten Formation (2745 ft), well no. 10, Dahra Platform. 

 

 

3.2.2.2. Foraminiferal bioclastic W- W/P 

3.2.2.2.1. Bioclastic wackestone/packstone (PMF 3) 

The bioclastic wackestone/packstone microfacies is not widely distributed 

within the Dahra Formation on the Dahra Platform as it occurs mainly in well no.8 and 

at only one interval in well no.7. It consists principally of rotaliids, small forams and 

echinoderm fragments. Echinoid spines, miliolids, bryozoan, red algae, bivalve shells 

and ostracods are scattered throughout (Fig. 3.4). These grains are contained within a 

matrix of slightly and locally dolomitic micrite. Some of the intergranular voids and 

many of intragranular pores are filled with syntaxial overgrowths and coarse calcite and 

dolomite, locally iron-rich cements. At well no. 8 some bioclasts are bored and the 

micritic substrate is locally burrowed along with the occurrence of pyrite, phosphate and 

possibly limonite (Table.3.2). According to the fossil assemblages and the relatively 
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high content of lime mud this microfacies may represents deposition in a shallow-

marine lagoon and could correspond to RMF 20 or SMF 10 of Flügel (2004). 

Within the Mabruk Member in the Dor al Abid Trough this microfacies has only 

been recognised in one interval in the lower part of the upper Mabruk in well no 105. It 

is about 5 feet thick and consists of almost the same fauna as on the Dahra Platform 

along with scattered green algae and calcispheres (Fig.3.4). 

Within the Zelten and Harash Formations on the Dahra Platform the 

composition of this microfacies is similar to the other wells except that the matrix is 

made up of small fragments of various bioclasts. Petrographic investigation revealed 

that this microfacies is characterized by the development of possibly laminoid fenestra 

and/or desiccation cracks in the lower part of Zelten Formation in well no. 8 

(Fig.3.4).Therefore it may corresponds to SMF 21 of Flügel (2004). 

 

3.2.2.2.2. Planktic foraminiferal wackestone (PMF4) 

The planktic foraminiferal wackestone microfacies exists as thin beds at certain 

intervals of the Dahra Formation on the Dahra Platform, i.e. it occurs at single interval 

in wells no. 8, 9 and 10, while it has not been clearly recognized in well no.7 (Table 

3.2). It is comprised chiefly of planktic forams, rotaliids, echinoid spines and 

calcispheres. Red algae, corals, crinoids, ostracods and bryozoans are less common 

(Fig. 3.4 D & E). These constituents are contained within a dolomitic and rarely 

burrowed micrite matrix. Pyrite, phosphate and limonite are rare, but occurring 

particularly in wells no 9 and 10. Porosity is mostly negligible (Table 3.2). According to 

grain-types, grain frequency, matrix and depositional fabrics this microfacies may 

represent deposition in a mid to outer- ramp setting and it would correspond to RMF 5 

or SMF3 of Flügel (2004). 

In the Dor al Abid Trough this microfacies has been recognized at one interval 

in well no. 105 only. Its matrix is slightly argillaceous and composed mainly of small 

fragments of different bioclasts, planktics and, less commonly, rotaliids. 

Within the Zelten and Harash Formations on the Dahra Platform, the planktic 

foraminiferal wackestone microfacies occurs only in the Harash Formation in wells no. 

7 and 8, and in well no.9 it is developed in both Zelten and Harash Formations; it has 

not been recognized in well no. 10.Its composition and texture are similar to the above 

localities with the occurrence of fragments of Nummulites in the Harash Formation in 
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wells no.8 and 9, and rare Assillina, gastropoda and green algae in the Zelten Formation 

in well no.9 (Fig.3.4). The dolomite crystals, which are associated with pyrite in some 

cases, are around 80µm in size. Pyrite with some glauconite occurs in both carbonate 

grains and matrix, and along micro-fractures in the Harash Formation in well no.9 (Fig. 

4.10-.next chapter). 

 

3.2.2.2.3. Dolomitic bioturbated wackestone/packstone (PMF5) 

Within the Dahra Formation on the Dahra Platform this microfacies occurs 

mainly in well no.8, and is developed at certain intervals in wells no.9 and 10; it is 

absent in well no.7 (Table.3.2). It consists predominantly of rotaliids and miliolids. 

Echinoderm fragments, peloids and planktic forams are less common with scattered 

bryozoans, coral fragments, red algae and intraclasts (Fig. 3.4). Some grains are 

frequently coated with one layer of micrite. The micrite matrix has been subjected to 

fairly extensive burrowing and dolomitization with less common neomorphism. These 

processes in association with compaction have resulted in the formation of a mottled 

fabric at 3189 ft in well no.9. Its bioturbartion  index is about 4 (Fig.3.5&Appendix.1). 

The average size of dolomite crystals is usually 30 – 60µm in well no.8, but they 

can reach 100 µm in well no.9.  A larger size of void-filling saddle dolomite has been 

noticed in well no.9. A notable feature of this microfacies is the development of internal 

sediment, fenestral structure, rootlets and/or desiccation cracks along with the 

brecciated fabric at the upper and middle intervals of the Dahra Formation in well no.8 

(Fig.3.4G&Appendix 1). Pyrite, glauconite, phosphate and, locally hematite are 

scattered locally, particularly in well no.10. Overall porosity is poor to fair (Table 3.2). 

Based on lithology, faunal assemblage and mud to cement ratio a semi- restricted or 

open lagoon or bay with moderate to low-water circulation were possibly predominant 

during the time of deposition of this microfacies. It would correspond to SMF 10 of 

Flügel (2004). 

Within the Mabruk Member in the Dor al Abid Trough the dolomitic bioturbated 

wackestone/packstone microfacies has only been identified in well no. 105, where it is 

comprised chiefly of rotaliids, peloids and bryozoans with less common echinoderms 

and echinoid spines. These bioclasts are floated in bioturbated, dolomitic and slightly 

argillaceous micritic matrix. An extensive burrowing has developed locally with the 
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overall bioturbation index around 5 (Fig. 3.5& Appendix.1). Pressure dissolution seams 

and fractures are locally developed with the occurrence of pyrite. 

The dolomitic bioturbated wackestone/packstone microfacies on the Dahra 

Platform has only been recognised in well no.8 in both the Zelten and Harash 

Formations (Table 3.2). Its total thickness in these Formations is 11 feet and 9 feet, 

respectively. It composed mainly of rotaliids and bryozoa with less common planktic 

forams, bivalve shells, nummulites, echinoid spines and intraclasts. Equant crystals of 

calcite are present as intragranular cement, which are locally Fe-rich. The dolomitized 

micrite crystals are about 80 µm. In places this microfacies is argillaceous with 

occurrence of horizontal burrows that are filled by coarser sediments (Fig. 3.5). Almost 

no porosity has been observed. 

 

3.2.2.3. Dolomitic lime-mudstone (PMF6) 

The dolomitic lime-mudstone microfacies is the least common microfacies in 

the studied interval of the Paleocene succession in the study area. It is recognized within 

the upper part of the cored interval of the Dahra Formation on the Dahra Platform in 

well no. 8 only (Table 3.2). It is comprised mainly of fine to very fine dolomite crystals 

(˂20 µm). Its original texture was mud-supported as the amount of carbonate grains is 

less than 10% and is represented mainly by rotaliids, ghosts of micritic grains (probably 

peloids) and few gastropods (Table 3.1 & Fig. 3.4 H). Local development of coarse 

dolomite crystals (˂ 800 µm) are witnessed in vuggy and moldic porosity. Extensive 

boring of some bioclasts along with slight burrows are also recognised. Dissolution of 

some grains and possibly evaporite or even dolomite crystals has also been recorded. 

Despite the fact that many of these pores have subsequently been plugged partly by 

coarse dolomite cement, they contribute to the overall fair to good porosity of this 

microfacies (Fig.3.4). 

The presence of benthic forams, peloids and gastropods, and relative absence of 

typical open-marine fossils, along with the mud-supported texture suggest that this 

microfacies was deposited in a low-energy environment of probable an inner ramp, 

lagoonal setting. It may correspond to RMF 19 of Flügel (2004). 
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Figure 3.4 A) Bioclastic w/p with rotaliids, echinoderms and small forams, Dahra Fm (3321 ft), Well 

no.7;  B) Miliolids, echinoderms and red algae in bioclastic w/p, Dahra Fm (3181 ft), Well no. 8; C)The 

same microfacies in Dor al Abid Trough, with rotaliids, bryozoans and echinoderm fragments, Mabruk 

Mbr (3762 ft), Well no. 105;  D) & E) General views of Planktonic foraminiferal wackestone in the Dahra 

Fm (3296 ft) inWell no. 10, and in the Harash Fm (2687 ft) at well no. 9; F) Dolomitic bioturbated w/p 

microfacies in the Dahra Fm (3299 ft) in Well no.10; G) Rootlets and/or desiccation cracks in the Dahra 

Fm (3185 ft) inWell no. 8; H) Dolomitic lime-mudstone microfacies with moldic porosity, Dahra Fm 

(3079 ft), Well no. 8.  
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Figure 3.5 Dolomitic bioturbated wackestone/packstone microfacies showing different 

bioturbation intensity; A) BI= 4, Dahra Formation (3189ft), Well no. 9, Dahra Platform; B) 

BI=4-5, Mabruk Member (3719 ft), Well no. 105, Dor al Abid Trough; C) BI= 3, Harash 

Formation  (2680 ft),Well no. 8, Dahra Platform. 

 

3.2.2.4. Bioclastic foraminiferal grainstone (PMF7) 

This microfacies occurs within the Dahra Formation on the Dahra Platform and 

its equivalent Mabruk in the Dor al Abid Trough, and has not been identified within the 

Zelten and Harash Formations (Table 3.2).  

Within the Dahra Formation on the Dahra Platform it consists largely of 

miliolids, rotaliids, superficial ooids, echinoderms, green algae, bivalves, peloids and 

intraclasts. Other less common bioclasts are gastropods, bryozoans, calcareous algae, 

ostracods and extraclasts (Fig.3.6 &Table 3.2.). The ooids are coated with thin layers of 

micrite and there is commonly an isopachous rim of fibrous calcite cement around 

them. The ooids are commonly dissolved out, deformed and the cement coating in many 

cases has been fractured and separated away from the grain. This has resulted in the 

formation of ‘duck’ structures or ‘elephant-parade’ fabric (Folk, 2001) (Fig.3.6B).   

The grains are usually cemented by equant sparry calcite cement that is locally 

iron- rich. Intervals of sub-hedral to eu-hedral crystals of dolomite (60-80 µm) that 

replaces mainly the matrix, less common bioclasts, are recorded locally. Baroque or 



      Chapter 3                                                                              Sedimentology and Petrography 
__________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                           
                                                                                                                                                           69 
 

saddle dolomite (180-240 µm) in association with coarse ferroan calcite (350-600 µm) 

is developed as void and fracture-filling cement. Bored bioclasts, and pyrite, glauconite, 

phosphate and hematite are all witnessed at 3155ft in wells no. 10. Bioturbation, 

dissolution of unstable grains (mainly molluscan shells) and development of pyrite 

along with dolomitic levels are recorded at 3121ft and 3175 ft in wells no. 9 and 10 

respectively (Appendix 1 ). According to grain types, grain frequency and matrix to 

cement ratio and depositional fabrics this microfacies represents deposition in an inner 

to mid - ramp situation with good water circulation and relatively high-energy setting. It 

would correspond to SMF 10 of Flügel (2004). 

Within the Mabruk Member in the Dor al Abid Trough the bioclastic 

foraminiferal grainstone microfacies is quite similar in grain components to the Mabruk 

elswhere, in addition to the sporadic occurrence of red algae and rhodoliths. Dolomitic 

intervals are recognised at 3735 ft in well no. 105 along with the occurrence of coarse 

crystals with curved faces and undulose extinction of saddle dolomite (Fig. 4.6- next 

chapter). Extensive dissolution has occurred at interval 3068-3075ft in well no. 66 and 

resulted in the formation of good to very good secondary porosity (Table 3.2 

&Appendix.1). 

 

3.2.2.5. Foraminiferal nummulitic packstone (PMF 8) 

This microfacies occurs only within the Zelten and Harash Formations on the 

Dahra Platform, and consists chiefly of Nummulites and rotaliids. Miliolids, bryozoa, 

echinoderms, planktic forams and red algae are also present, with scattered gastropods, 

echinoid spines, Alveolina, Operculina and bivalve shells (Fig. 3.6). The overall texture 

is poorly sorted and locally is densely packed and highly compacted. The nummulites 

are commonly intact, although nummulitic debris and fragments are also present. They 

are ranging in size from 1.5mm to 4 mm long and 1 mm to 2.5 mm wide. Larger 

nummulites around 6 mm long are also observed at specific intervals within the Harash 

Formation, particularly in well no.9. In many cases their shells showing microfractures 

and their internal chambers are commonly filled by sparry calcite, which is usually iron-

rich. The micritic substrate has been subjected locally to partial dolomitization and is 

slightly burrowed. The dolomite crystals chiefly range in size from 20–40 µm, with 

some larger ones up to 60µm dolomite. Syntaxial overgrowth and intragranular calcite 

cements and dolomite, commonly ferroan, are sporadically developed. Levels of pyrite 
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and phosphate were observed in well no.9. Boring, burrowing, dolomitization and 

chemical compaction are also recorded in this microfacies. Porosity is almost negligible. 

On the basis of lithology, faunal assemblage and the overall geological setting of 

the facies, an inner to mid ramp setting with moderate water circulation was probably 

predominant during the time of deposition of this facies in the study area. It could 

correspond to RMF 7 or SMF 10 of Flügel (2004). 

 

3.2.2.6. Algal Packstone (PMF 9) 

The algal packstone microfacies has not been developed on the Dahra Platform, 

nor within the Dahra carbonates and the Zelten and Harash Formations. It occurs at 

certain intervals inwells no. 66 and 103within the Mabruk Member in the Dor al Abid 

Trough and has not been recognised in well no.105 (Table 3.2). It is composed largely 

of red algae, rhodoliths, bryozoans and echinoid spines. Coral fragments, miliolids, 

rotaliids and echinoderms are less common with scattered molluscan shells, planktic 

forams and ostracods (Fig.3.6). The depositional texture grades locally to rudstone or 

even boundstone, particularly in well no. 103. The micritic substrate, which is locally 

made up of very small bioclastic fragments, is slightly bioturbated and dolomitic. 

Development of geopetal structure within some rhodolith algae and coral chambers is 

fairly common at particular intervals (Fig. 3.6).  

Sparry calcite and syntaxial rim cements have filled the dissolved bivalves, and 

vuggy and intergranular pores, respectively. Fractures and veins are usually filled with 

coarse blocky calcite and large dolomite crystals. up to 160 µm in size. Pressure 

dissolution seams and stylolites are fairly common. Pyrite and glauconite are scattered 

throughout.  

Based on faunal content and matrix to cement ratio along with stratigraphic 

position the algal packstone microfacies may represent deposition in back-reef setting of 

an inner shelf environment, despite the fact that fore reef setting is also inferred at 

certain intervals. It may correspond to SMF 18 of Flügel (2004).  

 

3.2.2.7. Bioclastic boundstone 

3.2.2.7.1. Coral algal boundstone (PMF 10) 

The coral algal boundstone microfacies, locally framestone, developed in wells 

no. 66 and 103 within the Mabruk Member in the Dor al Abid Trough and has not been 
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recorded on the Dahra Platform (Table 3.2).It comprises mainly of scleractinian corals, 

coralline algae (rhodoliths), red algae and bryozoans (mainly cheilostome form)(Fig. 

3.6). Other less common bioclasts include that of echinoid spines, benthic and planktic 

forams, and molluscan shells. Red algae and bryozoans commonly encrust different 

bioclasts such as benthic forams and bivalves.  

These components are commonly present in a matrix of micrite that is itself a 

mixture of small fragments of various bioclasts. There are zones of mottling 

(bioturbation) and dolomite crystals with an average of 40-80µm.Eequant sparry calcite, 

void-filling coarse calcite and medium to coarse crystalline dolomite crystals (~ 100µm) 

are also present. A notable feature of this microfacies is the presence of evaporite 

crystals (gypsum) at particular intervals in well no. 66, along with fossil sponge, bored 

bioclasts and geopetal structures (Fig.3.6). Pyrite and glauconite occur locally as well. It 

seems that scleractinian corals in many places are present in their original growth 

position (in situ), and thus this faciesis ascribed to a reef setting of shallow inner to 

middle carbonate shelf. It could correspond to RMF 12 or SMF 7 of Flügel (2004).  

 

3.2.2.7.2. Algal bioclastic boundstone (PMF 11) 

This microfacies has also been identified only within the Mabruk Member in the 

Dor al Abid Trough. It occurs in wells no. 66 and 103 and is interbedded with the algal 

packstone microfacies and coral algal boundstone microfacies. It consists mostly of 

rhodolithic algae, corals and branching coralline red algae. Benthic forams, bryozoans, 

echinoid spine, planktic forams and gastropods are scattered throughout (Fig. 3.6). 

Although the overall texture is boundstone, the rudstone, floatstone and packstone 

textures also occur, with local bioturbation. Equant calcite, locally coarse, and dolomite 

cements that plug most of the previously formed porosity are present. Intervals of bored 

and/or corroded bioclasts in association with pyrite and glauconite were observed in 

both wells. Laminoid fenestrae-like structures have been recorded at 3574 ft in well 

103. The algal bioclastic boundstone microfacies in this particular location probably 

represent deposition in a reef to back reef setting, despite the fore reef setting is possibly 

inferred at certain intervals. It would correspond to SMF 18 of Flügel (2004). 
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Figure 3.6  A & B) Bioclastic foraminiferal grainstone microfacies with coated grains and superficial 

ooids. Note the formation of ‘duck’ structures in B. Dahra Fm (3088 ft and 3181 ft respectively),Well 

no.9.; C&D) show foraminiferal nummulitic packstone microfacies on the Dahra Platform within the 

Harash (2731ft) and Zelten (2779 ft) Formations, respectively.E) Algal packstone with abundant red algae 

and small bioclastic fragments, Mabruk Mbr (3632 ft) in Well no.103; F& G) Coralgal boundstone 

microfacies with scleractinian corals and coralline algae, Mabruk Mbr (4326 ft) in Well no. 66, and at 

3645 ft in Well no.103; H) Algal bioclastic boundstone microfacies shows rhodolithic algae and echinoid 

spine, Mabruk Mbr (4345ft) in Well no.66. 
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Table. 3.2. Petrographic investigation summary of the studied wells. 

Structural 

setting 
Dahra Platform Dor al Abid Trough 

Well No. Well 8 Well 9 Well 10 Well 7 Well  

66 

Well 

103 

Well  

105 

Formation H & Z D H & Z D H & Z D H & Z D M M M 

Macrofacies 

No. 
1 2 5 1 2 3 4 1 2 3 5 1 2 4 1 5 1 2 4 1 2 5 1 2 4 1 4 6 7 6 7 1 2 4 

Texture 

 

 

Carb. 

Grains 

P W 

-

W 

/ 

P 

P P 
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-
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P 

M 
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W 

G P 
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P P W 

-
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P 

G P P P W  

-
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P 

G P W 

–

W 

/ 

P 

P P 

 
W 

-

W/ 

P 

G P 

 
G P B P B P 

 
W 

-W 

/ 

P 

G 

Rotaliida P C C A C R A C C P R A C A A C A C A A C A A C C P R P - R R A C A 

Miliolida P P C C C - C C - - - C C A P P A P A R R - P R A R R R R R R C P C 

Nummulites C - A - - - - P P R A - - - R A - - - P - A - - - - - - - - - - - - 

Alveolina - - R - - - - - - - P - - - -- - - - - - - R - - - - - - - - - - - - 

Assilina - - - - - - - - R - - - - -   - - - - R - - - - - - - - - - - - - 

Echinoderms R P P C P - C - R R R P P P R C C P C C C P A C P C C R P - - P P C 

Echinoid 

spines 

- R R - R - - - P - R R R - R - R P R P P R R R - R - P R P R R R R 

Crinoids - R R - - - R R R - R - R R - R - - R P R - R - R R R R R - R R R R 

Bivalves P - R P R - P R R - R R - P R P P - P P - R P - R R R R R R R R - R 

Gastropoda - - R R - - R - - - - - R R R - R - R R - - R - P R R - R - - R R R 

Green Algae - - R R R - P - - - - R R R - - P - C P P - R - P - P - - - - P P R 

Calc.. algae - - - - - - - - - - - - - R - - - - - - - - - - - P C C C C C - - - 

Red algae - - R P R P R R - - R R R - R - R - R - - - - - - P C A P A P - - - 

Bryozoa C P P R R R R R R - R R R P P - P R P P R R P R - R R R P P R P P R 

Planktics R P R R R P R R R R R R R - R - R C R P P R - R - R - R P - - - R - 

Ostracoda - - R R R - - - - R - - R - - - R R - R - - - - - - - R R - - R - R 

Coral - - - - - R - - - - - - - - - - - - - - - - - - - R - P A P A - - - 

Ooids - - - R R - - - - - - - - R - - R - R - - - P - - - - - - - - - - - 

Peloids - - - P - - R - - R - R R R - - - - R - - - R R - - - - R - - R - R 
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Intraclasts - - - R R - P - - - - - - - - - R - P - - - R - - R - - - R - R - R 

Extraclasts - - - R - - - - - - - - R R - - - - R - - - R - - R - - - - - - - R 

Mineralogical 

composition 

                                  

Calcite A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

Dolomite R R R C A A P P P C C C A P P - C C P P R - P R P R R R P P P R - P 

Clays - - - R P P - R - P P P R R - - - - - R R R - R - - P - R - - - P - 

Pyrite R R R R P R R P P P R R R R R R R R R P R R R R R P - P P P P P P R 

Evaporite - - - - - - - - - - - - - - - - - - - - - - - - - R - - P R - R - - 

Glauconite - - - R - - - P - - R - - - R - R - R R R R - - - R - - R R R - - - 

Phosphate - R R R R - - R - - R - - - R - R - - R R - - - - R - R R - R - R - 

Fe- minerals - - P R R - - R - - R - - R R R R - R R R - P - - R - - - - R R R - 

Main 

diagenetic 

processes 

                                  

Bioturbation - - √ √ √ √ √ √ √ √ √ √ √ √ √ - √ √ √ √ √ √ √ √ - √ - √ √ √ √ √ √ √ 

Dissolution √ - √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ - √ √ - - √ - √ √ √ √ - - - √ - √ 

Cementation √ √ √ √ √ - √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ - √ 

Dolomitizatio √ √ √ √ √ √ √ √ √ √ √ √ √ - √ √ √ √ √ √ √ - √ √ √ √ √ - √ √ √ √ - √ 

Compaction √ √ √ √ √ - √ √ √ √ √ √ √ √ √ - √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Fracturing √ √ √ √ √ - √ √ - - √ √ √ √ √ - √ √ √ √ √ √ √ √ - √ √ - √ √ √ √ √ √ 

Porosity 

type 

                                  

Intergranular √ - - √ √ √ √ √ - - √ √ √ √ √ √ √ √ √ √ - - √ - √ √ √ √ - - - - - - 

Intragranular √ - - √ √ √ √ √ √ - √ √ √ √ √ √ √ √ √ √ √ √ √ - √ √ √ √ √ - √ √ - √ 

Intercrystalli - - - √ √ √ √ - - - - - - - - - √ - √ - - - - - - - - - - - - - - - 

Moldic - - - √ √ √ √ √ - - √ √ √ √ √ √ √ √ √ √ - - - - - √ √ √ - - - √ - √ 

Vuggy - - - √ √ √ √ √ - - √ √ - √ √ √ √ - √ - - - - - - √ √ √ - - - √ - √ 

Fenestrae - - - √ - - - - - - - - - - - - - - - - - - - - - √? - - - - - - - - 

Framework - - - - - - - - - - - - - - - - - - - - - - - - - √ - √ √ √ √ - - - 

Fracture √ √ √ √ √ - √ √ - - - √ √ √ √ - √ √ √ √ √ √ √ √ - √ √ - √ √ √ √ √ √ 

Porosity 

category 

N N N F P F G N N N P F N F F G F N G N N N F N F F V

G 

P P N N F N F 
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3.3. Facies sequence and environmental interpretation 

The depositional setting of the studied interval of the Paleocene succession is 

investigated based on the general vertical facies succession of the microfacies discussed 

above. The palaeobathymetry of each facies, and thus its depositional 

environment,depends on faunal associations and sedimentological features, and is 

relative with respect to the other facies, despite the fact that there might be small and 

subtle changes in the water depth and consequently in the associated microfacies, which 

are beyond the resolution and the number of samples available in this study. 

 

3.3.1. Dahra Formation on the Dahra Platform  

According to the literatures and based on the available data for this study, the 

Dahra Formation on the Dahra Platform was deposited on a homoclinal carbonate  ramp 

with inner, mid and probably outer parts, each with distinctive sub-facies and 

microfacies (Read 1982, 1985; Tucker and Wright, 1990; Flügel, 2004). In addition to 

the mid- ramp, most of the subenvironments of the back ramp-inner ramp, tidal flats, 

lagoon and shoal have also been recognised. 

The Dahra Formation is composed of argillaceous limestone with subordinate 

dolomite interbedded with thin shale (Barr and Weegar, 1972). In the eastern part of the 

study area the formation consists of 300 feet of shallow-water carbonate with thin 

interbeds of dark shale (Roohi, 1996). The same author suggested that high-energy 

conditions prevailed in the south eastern part of the study area during deposition of the 

Dahra Formation. Apart from minor difference in the thickness of the Dahra 

subdivisions (A, B and C) in the studied wells and a slight increase of argillaceous 

content in the upper part of the formation (Dahra A & B) in well no. 7, the core 

description, petrographic examination and geophysical logs indicate that there are no 

drastic changes in the facies and associated microfacies throughout the Dahra 

Formation.  It seems that the Dahra was probably deposited under similar conditions 

across the east and west Dahra Fields on the Dahra Platform. 

The cored section of the Dahra Formation begins, from the bottom, with 

foraminiferal bioclastic wackestone/packstone facies (~21feet thick) that is locally 

dolomitic and bioturbated. Its middle level is interrupted by a very thin bed (2 feet 

thick) of bioclastic packstone, light yellowish grey with common bivalve shells, 

gastropods, green algae and rotaliids. Almost all bivalve shells have been dissolved out 
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and filled later mainly by iron-rich calcite and, less commonly, Fe-dolomite. Pyrite is 

also common and occurs both in the substrate and within grains. This unit may represent 

either a storm bed or short phase of shallowing during the deposition of overall 

wackestone-wackestone/packstone facies (Appendix. 1). This is followed by about 17 

feet thick of alternations of marl, very argillaceous limestone and shale, which 

represents the second flooding event within the Dahra Formation in the area. The 

succession passes up to coarser and relatively shallower-water deposits, which are 

characterized by 20 feet thick of bioclastic foraminiferal packstone facies with local 

concentrations of dasycladacean green algae and scattered occurrence of pyrite and de-

dolomitization features. The later 37 feet are arranged into several shallowing and 

coarsening-upward cycles (Chapter 5 and Appendix 1).  

Another flooding event, and thus development of a new cycle, is represented by 

the development of 6 feet of alternations of light grey marl and calcareous shale, which 

in turn are followed by 30 feet of foraminiferal bioclastic wackestone- 

wackestone/packstone with benthic forams, echinoderm fragments, peloids and rare 

planktic forams.Upwards an overall regressive trend is evident, with the occurrence of 

bioclastic foraminiferal grainstone facies with miliolids, rotaliids, ooids and 

echinoderms.The common small benthic forams, ooids and echinoderms, with scattered 

green algae, peloids and bivalves, in addition to the high content of lime mud (apart 

from the uppermost facies, a bioclastic grainstone) suggest that an inner ramp lagoonal 

setting with semi-restricted circulation, and bioclastic carbonate shoal were probably 

dominant during the deposition of the lower part of the Dahra Formation in this 

particular locality (Fig. 3.8). 

The middle part of the Dahra Formation is dominated largely by bioclastic shoal 

deposits as indicated by wide occurrence of grain-supported carbonates with local 

development of wackestone and wackestone/packstone textures of a lagoonal 

environment. A noteworthy feature at the top of the middle part is the occurrence of 

bioclastic wackestone facies with an open-marine fauna (corals, red algae and crinoids) 

which probably represents a mid-outer ramp setting (Appendix.1). This middle portion 

of the Dahra, however, started with dolomitic bioturbated packstone with common 

small benthic forams and is stained reddish brown due to the presence of hematit. This 

facies passes up into shallower-water deposits of bioclastic foraminiferal grainstone (~ 

30 feet thick), slightly dolomitic, with common rotaliids, miliolids, ooids and 
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echinoderm fragments. Just above that, an interval of dolomitic bioturbated 

wackestone/packstone microfacies with intraclasts and/or breccia. Compaction has 

resulted in the formation of a stylo-nodular structure and stylo-breccia fabric. Besides, 

desiccation cracks, rootlets and internal sediment have been developed at the top 

interval, along with the occurrences of hematite (Fig. 3.4G).  

The stable isotope analysis of this interval shows light positive value of δ
13

C 

(1.82‰) and negative δ
18

O (-4.12‰). These overall features strongly indicate 

pedogenesis, probably in an upper intertidal or supratidal environment. Moreover the 

absence of evaporite and karstification suggest that the Dahra Formation was subjected 

to a period of exposure under semi-arid climate. 

This significant discontinuity surface was followed by 19 feet thick of 

wackestone/packstone, locally dolomitic, bioturbated and slightly argillaceous. Its base 

is highly compacted with the occurrence of iron oxides, in particular hematite. This 

succession grades upwards into bioclastic foraminiferal packstone/grainstone facies 

(~32 feet thick) with common rotaliids, miliolids and coated grains. Red algae and 

calcareous algae are locally present with development of fair to good porosity in its 

uppermost interval (Appendix. 1). This high-energy facies is overlain sharply by 3 feet 

of bioclastic wackestone facies with scattered planktic forams, red algae, coral 

fragments, bryozoans and ostracods. This interval represents the most pronounced 

flooding event (transgression) in the middle part of the Dahra Formation (might be 

similar to the drowning unconformity of Schlager, 1981, 1989) (discussed in detail in 

chapter 5). A well-sorted bioclastic grainstone facies directly overlies the hemi-pelagic 

wackestone facies, which indicates a sharp shallowing associated with high wave action 

and current activity. This was probably brought about by falling sea-level, differential 

subsidence or both.  

The upper part of the Dahra succession (about 70 feet thick) is composed mainly 

of mud-supported carbonates with local development of packstones, particularly in the 

uppermost part.The inner ramp is indicated by the occurrence of lagoonal facies, 

whereas the mid-outer ramp setting is recognised close to the top of the formation 

(Appendix. 1, Fig. 3.8). The topmost part, however, starts at its base with dolomitic 

lime-mudstone microfacies, passes up into planktic foraminiferal wackestone and ends 

with bioclastic foraminiferal packstone/grainstone microfacies. Intraclasts and breccia-

like features are observed within the later microfacies at a depth of 3132 ft in well no. 
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10; these maybe the product of significant flooding and reworking (lag) (Fig. 3.7B). 

Then a major transgression occurred and resulted in the deposition of 65-75 feet thick of 

shale in the Khalifa Formation in the area (Appendix. 1). 

  

 

 

 

 

 

 

 

 

 

 

  Figure 3.7 Angular intraclasts and/or breccia, with glauconite, in bioclastic foraminiferal 

packstone-packstone/grainstone facies in A) Dur al Abid Trough, Mabruk Member, Well no. 66 

(2249 ft) ; B) Dahra Platform, Dahra Formation, Well no. 10 (3132 ft). 

 

 

Figure 3.8 Depositional model for the Dahra Formation on the Dahra Platform. The depositional 

environments and distribution of macrofacies are shown.  
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3.3.2. Zelten and Harash Formations on the Dahra Platform 

In the study area, the Harash Formation conformably overlies the Zelten 

Limestone and is overlain by the Kheir Formation. In some areas of the basin the Zelten 

Limestone cannot be differentiated easily from the overlying Harash Formation and thus 

a Jabal Zelten Group is used instead. Since the studied samples represent the upper part 

of the Zelten Formation and the lower part of the Harash Formation, both rock units 

have been dealt with together.  

The thickness and gross lithology of the Upper Paleocene rocks (Thanetian) are 

almost consistent throughout the Sirt basin, and are mainly composed of shelf-margin 

carbonate at the base and grading upwards to marls and siliceous limestones of a deep-

water environment (Bezan, 1996). Wennekers et al (1996) stated that the carbonates and 

minor shales of the Zelten and Harash Formations were deposited in a semi-restricted 

shallow- marine environment. 

In the study area, the cored interval of the Zelten/Harash succession commences 

with about 10 feet of light olive grey, sub-fissile and pyritic marl.  It grades up to 

several levels of mainly mud-supported carbonate facies (~58 feet thick) with a mixture 

of large and small benthic forams, in association with planktics (Appendix. 1). This 

could represent deposition in a mid–outer ramp setting with fairly restricted circulation 

and below fair weather wave base (Fig. 3.10). The succession passes upward to around 

87 feet thick of chiefly grain-supported facies, in particular bioclastic foraminiferal 

packstone-packstone/grainstone, locally bioturbated and dolomitic with relatively 

common rotaliids, nummulites and echinoderm fragments. Pyrite, glauconite, phosphate 

and rare occurrences of hematite are recognised locally. An inner to back ramp is most 

likely the depositional environment for this interval of the uppermost part of the Zelten 

Formation. 

The Zelten/Harash boundary is assigned, in this study, to the top of the dolomitic 

bioturbated bioclastic packstone microfacies and is marked by the presence of slightly  

deeper-water facies (dolomitic mudstone) over the grain-dominated deposits, that 

suddenly superimposed the carbonate factory of the Zelten Formation (drowning 

platform?- Chapter 5). Around 80 feet of Harash Formation, consisting of mixed 

wackestone and packstone facies, is assigned to a broad ramp setting that ranges from 

outer ramp to back ramp (Fig. 3.10). In the eastern part of the study area of the Dahra 

Platform (Dahra East Field) nummulite foraminifera and nummulite fragments occur at 
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particular intervals through the studied section, whereas the proper foraminiferal 

nummulitic microfacies occurs mainly at two specific levels (each around 15-20 feet 

thick); the lower is in the Zelten and the upper is in Harash Formation (Appendix.1). In 

the Dahra West Field, the nummulitic facies occurs at a single interval in the Zelten 

Formation, with an average thickness of 3-7 feet, whereas it is developed at two levels 

in the Harash Formation with a thickness of 10-20 feet (Appendix.1). 

A notable feature of this facies is the development of a storm-like-bed at 2693ft 

depth in the Harash Formation of well no.8. Its base, which is mud-dominated, is 

characterized by an erosion surface and load structures, with the occurrence of flattened 

burrows in the form of stylo-nodular fabric. It passes up to grain-supported carbonate 

with common bioclasts (including nummulites) and pyrite (Fig. 3.9 A). Storm beds 

show much variation in thickness, grain size and internal structures, depending on the 

proximity to the area of the storm and the intensity of the storm (Tucker and Wright, 

1990). They commonly show marked changes in character with increasing distance 

from the shoreline and increasing water depth (Aigner, 1982; Aigner and Reineck, 

1982). A probable storm bed with common nummulites and concentration of shell 

fragments, particularly molluscs, occurs in the Harash Formation at a depth of 2675 ft in 

well no. 9 (Fig. 3.9 B). This bed may represent a lag deposit that possibly formed 

through storm reworking of the seafloor with no great transport of shells (Kreisa and 

Bambach, 1982). 

A shallow inner ramp or bank with moderate to high energy, above fair weather 

wave base is proposed for this facies, despite the evidence that throughout the Cenozoic, 

nummulitids and other large benthic foraminifera were forced to occupy deeper water 

habitats through time, due to the colonization of the shallowest water environments by 

novel genera (Chaproniere, 1975; Buxton & Pedley, 1989; Hoheneggar, 1999).  Almost 

the whole succession of the Thanetian and the individual rock units with their facies 

type and typical thicknesses can be correlated quite well over much of the studied area 

of the Dahra Platform; this suggests that similar depositional conditions were operating 

over the region. 
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Figure 3.9 Slabbed core samples showing storm beds, A) Grain-supported facies overlying 

mud-dominated facies with load structure. Dahra Platform, East Dahra Field, Harash Fm, Well 

no. 8, 2693 ft.; B) Concentration of bioclasts as a basal layer. Dahra Platform, West Dahra 

Field, Harash Fm, Well no. 9, 2675 ft. 

 

 

 

Figure 3.10 Depositional model for the Zelten and Harash Formations on the Dahra Platform. 

The depositional environments and distribution of macrofacies are shown.  
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3.3.3. Mabruk Member in Dor al Abid Trough 

The carbonate interval of the Heira Formation in Dor al Abid Trough is 

composed mainly of mud to grain-dominated limestone with the local occurrence of 

dolomite in the upper part, and marl with intervals of mud-supported limestone in the 

lower part. Wackestone to grainstone and boundstone are recognised with common 

grains of small benthic forams, peloids, red algae, corals and rhodoliths. 

The Mabruk area has been divided by the operating company into west, central 

and east segments, although some authors have dealt with the region according to the 

geographic directions.  In their abstract, however, Machhour et.al, (1998) suggested an 

inner platform for the dolomitized limestone deposits in the southern zone; protected 

middle shelf for the central zone; and a northern zone where peri-reef deposits prevail. 

An isolated platform within a deeper basin model has also been proposed (internal 

report).  

The Mabruk rocks show complex lateral and vertical variations from west 

through central to eastern areas. The section in the southernmost part of the western 

area, which is dominated by mud-supported facies, commences at the bottom, with 

about 15 feet thick of grey to dark grey, slightly soft marl. This is followed by whitish, 

soft and argillaceous mudstone, which in turn, grades upward into a thick interval of 

light grey, locally chalky, mudstone/wackestone facies with negligible to poor vuggy 

porosity. The whole interval (76 feet thick), which represents the lower Mabruk, is a 

shallowing-up succession. It is overlain by deeper-marine facies (20 feet of off-white to 

grey marl) which was probably the result of gradual subsidence of the basin and clastic 

influx. 

The succession passes up to around 53 feet of bioclastic foraminiferal 

wackestone/packstone with very good vuggy and moldic porosity. The uppermost 

interval of the Mabruk is represented by 15 feet of white to light grey, moderately hard, 

argillaceous mudstone that underlies the thick section of marls and shales of the Hiera 

Formation (Appendix. 1). Overall, this interval of the Mabruk in this location represents 

deposition of mainly carbonates, bounded above and below by deeper marine marls and 

shales, and thus this could signify a lagoonal environment of an inner shelf setting (Fig. 

3.12). 

In the central parts of the East Central Mabruk Area, the section of the Mabruk 

reservoir starts with an interbedding of algal packstone facies (moderately to well 
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sorted, slightly bioturbated and dolomitic, with a minor amount of kaolinite (7%) and 

sporadic quartz and pyrite) and bioclastic foraminiferal packstone/grainstone facies that 

is characterized by fine to coarse-grains, poor to moderate sorting and common 

bioclasts of red algae, corals, bivalves and bryozoans. This interval, which has around 5 

feet thick of dark greenish grey and slightly bioturbated marl towards the top, could 

represents deposition in a reefal location between fairweather and storm wave-base, 

where the energy is moderate to low. The presence of kaolinite in the upper part and 

below the overlying marl, in association with dolomite, may indicate an influx of 

riverine clastics through a minor sea-level fluctuation and/or a change to a more humid 

climate (Chapter. 5). 

The middle interval of the Mabruk is occupied by a thick unit of coral algal 

bioclastic boundstone facies with thickness increases from about 38 feet thick in the 

northernmost area (well no.66) to around 96 feet in the central area (well no. 103), 

where it locally interbeds with algal packstone facies. It is light grey to pale orange, fine 

to coarse-grained, hard, poorly sorted with abundant corals (branching, columnar and 

massive) and their fragments, coralline (red) algae, small forams, echinoid spines and 

molluscan shells.  At certain intervals, corals are quite large (9cm x 7cm) and they seem 

to be in their life position (Fig. 3.11). This strongly suggests that the broad middle 

interval of the Mabruk unit in this location represents a proper reef deposit (Appendix. 

1). The shape, type and extension of this reef cannot be investigated with the limited 

data available. 

In the northernmost area, in well no.66, the upper interval of the Mabruk 

(around 50 feet thick) is categorized mainly by grain-supported facies, with local 

occurrence of boundstone facies. A notable interval of this part is that of bioclastic 

foraminiferal grainstone facies (4268-4275 ft) with red algae, echinoderms, miliolids 

and green algae and rhodolithic algae, bivalves and peloids. Its porosity is mostly very 

good with intergranular, intragranular, vuggy and moldic types. This particular facies 

may signify deposition in shallow shoal setting that might have formed just behind the 

shelf-margin reef, or alternatively in a high-energy setting within the wider reef area 

(Fig. 3.12). 

The uppermost part of the Mabruk is characterised by the presence of a 

conspicuous facies contrast between bioclastic algal packstone facies below and 

greenish grey, calcareous shale above (Heira Formation). The transitional bed, 2 feet 



      Chapter 3                                                                           Sedimentology and Petrography 
__________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                    84 
 

thick, is categorized by development of breccias with angular intraclasts, that contain 

pyrite, glauconite, phosphate, reddish brown stains (hematite?), along with micro-

borings (Fig. 3.7A). The intraclasts indicate reworking and could be a lag deposit, 

associated with a major flooding event. This could be a drowning unconformity 

(Schlager, 1981, 1989). A number of mechanisms have been proposed in the literature 

in order to explain the demise of a carbonate platform and the generation of a drowning 

unconformity; a) rapid sea-level rise or the tectonic collapse of the platform (e.g. 

Schlager, 1981, 1989); b) lack of reef building organisms, causing a sharp decrease in 

the rate of carbonate production, thus fostering their drowning when subsidence or sea-

level increases (Bice and Stewart, 1990); c) 'Killing' of carbonate platforms by waters 

polluted with siliciclastics and/or volcaniclastics (Schlager, 1989); d) flooding of 

platforms by nutrient-rich waters, causing the eutrophication of the carbonate system 

and a drastic reduction of its growth potential (Hallock, 1988; Follmi, 1989). The 

proposed Bice and Stewart mechanism is probably the most appropriate cause for the 

discontinuation of carbonate production in the Mabruk Area. 

In the southern part of the East Central Mabruk Area, the entire Mabruk section 

shows the characteristic features of a lagoonal environment.  However, it starts with 

about 49 feet of alternations of light to medium grey, sub-fissile to sub-blocky marl, and 

light grey to light greenish grey, argillaceous and locally burrowed, slightly compacted, 

bioclastic wackestone/packstone-packstone facies. This Lower Mabruk interval could 

represent a somewhat deeper area in the region of a reefal complex (back reef or fore 

reef area).  

The Upper Mabruk is mostly composed of an intercalation of dolomitic 

bioturbated bioclastic wackestone/packstone and bioclastic foraminiferal packstone with 

the local occurrence of marl and greenish grey, calcareous and slightly pyritic shale. Its 

lower interval (~36 feet thick), which is dominated by wackestone/packstone, is 

characterized by the presence of small forams, bryozoans, crinoids and echinoid spines 

with scattered bivalves and green algae. The high content of lime-mud and the presence 

of an open-marine fauna in association with marl and shale probably suggests 

deposition in distal area of the inner shelf– to the proximal part of the outer shelf, below 

fair weather wave base, for the lower part of the Upper Mabruk Member (Fig. 3.12). 

This interval, which is capped by 8 feet of shale and marl, passes up abruptly into to 

much shallower deposits, around 20 feet thick, of bioclastic foraminiferal packstone. Its 
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main components are benthic forams (mainly miliolids and rotaliids), green algae 

(dasycladacean), echinoderms and molluscan shells. Its overall porosity is good to very 

good with intragranular, moldic and vuggy pores.  

Dasycladacean green algae are common within very shallow-water depths of 

only a few tens of centimetres down to depths of around10 metres (Flügel 2004; Madi et 

al. 1996). They are most common within the tidal to uppermost sub-tidal zone. Miliolid 

foraminifera and rotaliids are common in inner shallow shelves. The stable isotope 

values show low positive carbon (1.63‰) and the negative δ
18

O (-5.45 ‰) is the most 

negative value in this well. Thus the overall depositional environment of this interval 

was likely a shallow-marine lagoon that was subjected to a periodic exposure, despite 

the fact that (apart from extensive dissolution) characteristic pedogenic features have 

not been recognized. 

This interval is overlain by 3 feet of medium grey to greenish grey, sub-fissile to 

sub-blocky marl with a fairly sharp contact that signifies a deepening event, which was 

probably brought about as a result of rapid basin subsidence and/or sea-level rise 

(Chapter 5). However, continuous deepening of the basin, which was accompanied by a 

decrease in oxygen content, resulted in the intercalations of shale, marl and bioclastic 

wackestone/packstone. This transgressive sediment may represent deposition in a 

proximal outer shelf and below fair weather wave base, where local reducing conditions 

prevailed. This is witnessed by the presence of authigenic pyrite all through the interval. 

The occurrence of dolomite, kaolinite and minor quartz, on the other hand, may reflect 

proximity to a sediment source and deposition in a relatively nearshore setting (Flugel, 

2004) or it could suggest a period of low sea-level. 
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Figure 3.11 Photos of slabbed core showing corals in their growth position in the coral algal 

boundstone microfacies. Dor al Abid Trough, Mabruk Member, Well no 66, at depth of 4291 ft 

(A); 4319 ft (B); 4321 ft (C). 

 

Figure 3.12 Depositional model for the Mabruk Member of the Heira Formation in Dor 

al Abid Trough. The depositional environments and distribution of macrofacies are shown. 

 



      Chapter 3                                                                           Sedimentology and Petrography 
__________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                    87 
 

3.5. Summary  

Comprehensive investigation of the Selandian/Thanetian carbonates has resulted 

in the recognition of four major lithofacies; limestone, dolomitic limestone/dolomite, 

argillaceous limestone/marl, and shale. The marl is widely distributed in the Dor al Abid 

Trough and covers a large part of the Paleocene succession (Heira Formation), where it 

locally grades to very calcareous shale. The shale is extensively developed across the 

Dahra Platform and is usually medium grey to greenish grey, fissile, dolomitic, slightly 

pyritic with scattered small un-identifiable bioclastic fragments. 

Macroscopic and microscopic investigations of the studied samples have 

resulted in the recognition of seven main macrofacies and eleven associated microfacies 

within the Selandian/Thanetian carbonate succession. These macrofacies are: Bioclastic 

foraminiferal packstone-packstone/grainstone; Foraminiferal bioclastic wackestone-

wackestone/packstone; Dolomitic lime-mudstone; Bioclastic foraminiferal grainstone; 

Foraminiferal nummulitic packstone; Algal packstone; and Bioclastic boundstone.  

The first four macrofacies have been recognised in the Dahra Field on the Dahra 

Platform within Dahra, Zelten and Harash Formations, while the fifth one, nummulitic 

foraminiferal packstone, only occurs within the Zelten and Harash Formations. The 

main carbonate grains within the Dahra Formation are rotaliids, miliolids, echinoderms, 

molluscs, ooids and green algae. Desiccation cracks, rootlets and internal sediments in 

the middle interval of the Dahra Formation are interpreted as pedogenic features that 

developed under semi-arid conditions. 

The Dahra Formation on the Dahra Platform was deposited on a homoclinal 

carbonate ramp with inner, mid and probably outer ramp facies, each with distinctive 

sub-facies and microfacies. The core description, petrographic examination and 

geophysical log indicate that there are no drastic changes in the facies and associated 

microfacies throughout the Dahra Formation; it seems that the Dahra was probably 

deposited under similar conditions throughout the east and west Dahra Fields on the 

Dahra Platform. 

The dominant bioclasts within the Zelten and Harash carbonates are benthic 

forams, molluscan shells, nummulites, bryozoans and echinoderm fragments. The 

Zelten/Harash boundary is placed at the top of a dolomitic bioturbated bioclastic 

packstone and is marked by overlying deeper-water facies (mudstone) that suddenly 

replaced the carbonate factory of the Zelten Formation. The nummulite foraminifera and 
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nummulite fragments are scattered at particular intervals through the studied section, 

whereas the foraminiferal nummulitic microfacies itself occurred mainly at two separate 

levels in the Zelten and Harash Formations. 

A similar depositional setting was re-established in Zelten and Harash 

Formations across the area, with local occurrences of nummulitic packstone instead of 

bioclastic grainstone in the Dahra Formation and the development of mainly 

wackestone- packstone.  

The central part of the Mabruk Field in Dor al Abid Trough is dominated locally 

by algal packstone and bioclastic boundstone macrofacies, whereas the eastern and 

western parts are characterised by the common presence of facies number 1, 2 and 4. 

The component grains are dominated by benthic forams, peloids, red algae, corals and 

rhodoliths. The middle interval of the Upper Mabruk Member in the East Central Area 

is occupied by reef and reef-related facies that increase in thickness towards the south 

east. 

The deposition of a thick succession of shale and marl of the Heira Formation 

just above the Mabruk Member associated with the presence of angular clasts, 

glauconite, pyrite and hematite indicates a deeper water environment and the formation 

of drowning unconformity.The overall interval of the Mabruk Member in the study area 

represents deposition of mainly shallow-water carbonates that were bounded by deeper-

marine marl and shale; these may have accumulated in lagoonal and reefal 

environments in probably rimmed shelf setting. 
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CHAPTER FOUR: DIAGENESIS AND RESERVOIR QUALITY 

4.1. Introduction 

The diagenesis of carbonate rocks includes all of the processes involving 

dissolution, cementation, lithification and alteration of the sediments during the interval 

between deposition and metamorphism (Fl gel, 1982). 

Diagenesis includes obvious processes such as cementation to produce 

limestones and dissolution to form cave systems but it also includes more subtle 

processes such as the development of microporosity and changes in trace element and 

isotopic signature. However, diagenetic changes can begin on the seafloor, as the grains 

are still being washed around, or it may hold off until burial when overburden pressure 

has increased or pore-fluid chemistry has changed so that reactions are then induced 

within the sediments (Tucker and Wright, 1990). Major controls on the diagenesis, 

according to these authors, are the composition and mineralogy of the sediments, the 

pore-fluid chemistry and flow rates, geological history of the sediment in terms of 

burial, uplift, sea-level changes, influx of different pore-fluids and prevailing climate. 

Most of these diagenetic processes can operate in different environments, 

although some are diagnostic of a particular diagenetic environment. Marine diagenesis 

takes place on the seafloor and just below, and on tidal flats and beaches. The marine 

phreatic zone is characterized by normal-marine pore fluids supersaturated with respect 

to CaCO3 in shallow, warm seas. The meteoric diagenesis realm is the zone where rain 

fall-derived groundwater is in contact with sediment or rock. The mixing zone lies 

between the meteoric phreatic zone and underlying marine waters. It is characterised by 

a mixture of marine and meteoric waters (brackish water). Burial diagenesis is generally 

taken to begin below the depth were sediments are affected by near-surface processes of 

the marine and meteoric environments (Tucker and Wright, 1990). Burial pore fluids 

generally are supersaturated with respect to the most stable carbonate species 

(Choquette and James, 1987). 

After deposition, the Selandian/Thanetian carbonate rocks in the western Sirt 

Basin were affected by various diagenetic processes during their burial history. All three 

diagenetic environments have been documented; each has its own characteristic features 

and products. Micritization, burrowing, dissolution, cementation, compaction and 

dolomitization are all recorded, along with some less important and minor diagenetic 

events. 
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Carbonate reservoirs are characterised by extremely heterogeneous porosity and 

permeability. These heterogeneities are dependent on the environments of deposition 

and on the subsequent diagenetic alteration of the original rock fabric (Allen and Allen, 

1990). Most of the above mentioned diagenetic processes have been recognised in the 

studied Selandian /Thanetian reservoirs in both the Dahra Platform and Dor al Abid 

Trough. They affected reservoir quality in two ways; positive diagenetic processes 

which include the dissolving activity of meteoric water, dolomitization, fracturing, and 

the migration of oil;  and negative processes which include compaction, sediment filling 

(matrix deposition), pressure dissolution, and cementation (Cook, 1983). 

The aim of this chapter is to deliver a detailed description and appropriate 

interpretation of the post-depositional processes that have affected the studied interval 

of the Paleocene Succession in the Sirt Basin by using routine petrography, scanning 

electron microscopy, cathodoluminescence, x-ray diffraction, stable isotopes and fluid 

inclusions. The impact of these diagenetic processes on the reservoir quality of the 

Dahra (and Mabruk Mbr), Zelten and Harash Formations is also addressed. The latter 

issue is reported via petrographic investigations and core analysis. 

 

4.2. Diagenetic processes and products of the Selandian/Thanetian carbonates 

The carbonates of the Dahra, Mabruk, Zelten and Harash Formations, in the 

study area, have undergone a series of diagenetic processes which affected, in different 

ways, their composition, mineralogy, pore throat system, and hence their reservoir 

potential. These events vary from early diagenetic processes such as micritization, 

neomorphism, dissolution, dolomitization, and calcite cementation, to late burial 

diagenetic changes which include dolomite cementation, dissolution, compaction, and 

fracturing. 

 

4.2.1. Boring and microbial micritization 

The destruction of hard substrates by boring organisms is significant and leads 

to the breakdown of carbonate skeletons and the production of fine-grained to sand-

sized sediments, especially in warm-water environments. It is controlled by 

illumination, nutrients, sedimentation rate, siliciclastic input and water depth (Flügel, 

2004). 
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Microboring (˂ 1µm-100µm) is a product of microboring organisms including 

bacteria, cyanobacteria, fungi, foraminifera and bryozoans. They have a wide 

bathymetric distribution ranging from supratidal and intertidal environments to subtidal 

and deeper-water environments. This early diagenetic seafloor process has been 

recorded at several intervals in the studied succession in both Dahra Platform and Dor al 

Abid Trough sediments, where microborers and macroborers attacked skeletons, 

carbonate grains and, locally, the micritic substrate within the Dahra, Mabruk and 

Zelten Formations (Fig. 4.1E, F, G and H). They are fairly rounded in shape, with an 

average size of 0.2-0.5 mm in diameter and commonly are filled with small forams, 

fragments of echinoids and intraclasts, peloids and micrite sediment. 

These borings were probably made by clionid sponges. When the bores cut both 

grains and substrate it may form a hardground surface, which is best developed in areas 

of slow sedimentation and high current activity at just below the seafloor (Tucker and 

Wright, 1990). This is possibly the case at a single interval within the studied section of 

the Dahra Formation in well no.10 (Fig. 4.1H). That surface is characterized by 

encrusted and bored dolomitic packstone with a high concentration of pyrite, glauconite 

and phosphate minerals (Appendix 1- sedimentological log of well no.10).  

The bivalves and calcareous algae that present at the intervals of borings and 

hardgrounds are commonly encrusted by bryozoans. Although the bores from the algae 

occur in grains within the photic zone, grains below it are still being bored but mainly 

by fungi, which produce bores of diameter 1-2 µm (Zeff and Perkins, 1979). Encrusted 

bryozoans, brachiopods and oysters, however, occur on both surfaces of hardground 

(upper and lower surfaces). Differences in encrustation indicate the polarization of the 

fauna according to the light intensity, rate of sedimentation and turbulence level (Flügel, 

2004). 

Boring algae and fungi are believed to increase the initial intragranular porosity 

of sediment during and shortly after deposition (Bathurst, 1966; James and Choquette, 

1983). On the other hand, borings filled with internal sediment can play a negative role 

in terms of reservoir quality, as it reduces the intragranular porosity.  

Micritization is the process by which bioclasts are altered while on the sea-floor 

or just below by endolithic algae, fungi and bacteria (Tucker and Wright, 1990). 

Although this diagenetic process has affected the Dahra, Zelten and Harash Formations 

in some wells, overall it is a fairly uncommon feature in the studied interval, 

particularly within the Dor al Abid Trough. Micrite envelopes and boring are usually 
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suggestive of microbial action in shallow-marine environments; micrite envelopes are 

indicative of deposition within the photic zone, however, microboring endolithic 

organisms are also found in deeper water (Flügel, 2004). 

The micritization process helps maintain the outlines of grains in slightly 

neomorphosed rocks through the formation of micrite envelopes (Fig. 4.1A). Repeated 

boring and filling in different parts of the shell may result in the formation of a micrite 

envelope of irregular thickness. Continuous boring processes may lead to totally 

micritized grains (peloids) that are slightly smaller than the associated skeletal grains.  

Micritized grains are characterized generally by an irregular shape, structureless 

nature, and they mostly range in size from 100 to 300µm (Fig. 4.1C). In view of these 

characteristics, they have been attributed to a process of complete micritization. Pellets, 

of probably faecal origin, with smoother shapes and smaller size occur throughout the 

succession (Fig. 4.1 C&D). 

Micritic envelopes due to endolithic cynobacteria can be used as a depth 

criterion, indicating deposition within the photic zone, less than 100-200m (Zeef and 

Perkins, 1979). The micritization process itself is an early diagenetic event taking place 

within the marine phreatic environment, generally in more stagnant, low energy areas, 

near or at the sediment/water interface (Longman, 1980).  
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Figure 4.1 Micritization and boring in the Paleocene carbonates.Formation of a micrite envelope around 

carbonate grains in Mabruk Mbr in well no. 103 (A), and in the Dahra Fm in well no.9 (B).Scanning 

electron microscopy image of a pellet in the Mabruk Mbr in well no. 66. (C).Peloids and pellets in the 

DahraFm in well no9. (D). Bored bivalve shells, probably by clionid sponges, in the Mabruk Mbr. in well 

no. 103  (E), and in the Dahra Fm in well no. 7 (F). Clionid sponge boring of rhodoid algae in the Mabruk 

Mbr in well no. 66 (G). Possible hardground surface, where boring has cut grains and the matrix in the 

Dahra Fm in well no.10 (H). 
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4.2.2. Burrowing 

Bioturbation commonly alters or destroys bedding and lamination and 

contributes to homogenization of the sediment (Reineck, 1963). Burrows, in contrast 

with borings, are formed within soft unconsolidated sediments by the activity of animals 

during feeding, resting or migration (Flügel, 2004). Pedley (1992) has proposed the 

term bio-retexturing-the process by which burrowing biota may modify or transform 

original textures by relocating significant volumes of unlithified sediment into or out of 

the sedimentary layers. 

Burrowing is present throughout the studied section of the Paleocene, 

particularly in the Dahra Formation, where it is locally extensive. The Zelten 

carbonates, however, represent the least burrowed interval of the late Paleocene 

carbonates in the study area. Most of the burrows are flattened and oriented horizontally 

with some sub-horizontally or sub-vertically. Swirly structures and irregular and lined 

borders to burrows have locally been recorded (Figs. 4.2; 3.3 and 3.5). A U-shaped 

burrow with concave-down laminae (Diplocraterion) has been developed only at a 

single interval within the Dahra Formation in Well no.10. It is about 20 cm long and 

thought to have been made by sessile or semi-sessile endobenthic animals, particularly 

suspension feeders, predators and scavengers (Tucker, 2011). They believed to have 

been formed through upward or downward movement of the animal in response to 

sedimentation or erosion, respectively (Fig.4.2D).  

A feature noteworthy is that the burrowed intervals have commonly been 

dolomitized and subjected to a different intensity of compaction, which in several cases 

has resulted in the formation a vaugely bedded fabric, making identification of the 

original depositional texture (wackestone versus packstone) not easy. Differential 

dolomitization of the burrowed intervals seem to be controlled by the grain type 

(composition) and grain size of the burrow fill, i.e. many burrows are completely 

dolomitized whereas others are less dolomitic. The finer crystal size of burrow fills as 

compared with the micritic matrix may be one factor controlling the often observed 

selective dolomitization of burrow fills (Zenger, 1992). Bio-retexuring profoundly 

controls diagenetic processes because it can selectively increase individual bed 

permeability where coarse burrow back-filling is dominant. On the other hand, locally it 

can inhibit early sea floor cementation by admixing micritic sediment into grain support 

fabrics. Feeding, burrowing and irrigation increase solute transport and solid-phase 

reaction rates, thus leading to rapid carbonate dissolution (Green et al., 1992). 
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Figure 4.2 Burrows within the Selandian/Thanetian section. A) Horizontal and sub-horizontal burrows in 

dolomitic bioturbated bioclastic w/p in the uppermost part of Zelten Fm. Well no. 8, 2731 ft.; B) 

Extensivly burrowed and highly compacted feature in dolomitic bioturbated bioclastic packstone in the 

middle part of the Dahra Fm. Well no. 7, 3331 ft.; C) Horizontal burrows (grain-dominated) within a 

mud-supported matrix of the wackestone packestone facies in the lower part of the Harash Fm. Well no. 

9. 2655 ft.;  D) U-shaped burrow (Diplocraterion) inmud-supported interval in the middle part of the 

Dahra Fm., Well no. 10, 3213 ft. 

 

4.2.3. Neomorphism 

The term neomorphism was introduced by Folk (1965) to cover processes of 

replacement (transformation between one mineral and another) and recrystallization 

(change in crystal size without any change of mineralogy). Most neomorphism in 

limestones is of the aggrading type that is leading to a general increase in crystal size, 

resulting in microsparitic patches, lenses, lamina and beds (Tucker and Wright, 1990).  
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The term aggrading neomorphism is commonly used in lime mud diagenesis to 

describe the enlargement of mosaics to microspar (~5-10 μm) or to a coarser pseudospar 

(>30 μm). The key point about the neomorphism, recrystallization, and calcitization 

processes is that dissolution and re-precipitation takes place across a thin film and 

without large-scale dissolution and porosity formation (Adams and Mackenzie, 1998). 

The transformation of aragonite and high-Mg calcite grains and mud to low-Mg calcite 

is one of the most important processes in carbonate diagenesis because it controls the 

ultimate petrophysical properties of limestones and their geochemical composition 

(particularly stable isotopes and Sr content: Al-Asam and Veizer 1986a, 1986b; Banner 

1995; Maliva 1998). 

Neomorphism is not a widespread diagenetic process in the studied interval of 

the Paleocene succession. The micrite matrix in some of the thin-sections, with 

crystals/grains usually less than 5µm diameter, has been subjected to fairly extensive 

neomorphism that resulted in the development of a neomorphic fabric of subhedral to 

anhedral crystal shape with less than15µm crystal size (Fig. 4.3A&B). This aggrading 

process of neomorphism is evidenced by the irregularity of the microspar crystal 

boundaries and the patchy scattered development of micrite. However, Folk (1965) 

suggested that neomorphism from micrite to microspar is commonly a neomorphic 

response to increasing stress in a wet medium. 

The neomorphism process appears less extensive in the mud-supported intervals 

of the studied succession, where the limestone becomes gradually argillaceous. This is 

probably because neomorphic effects are most prominent in pure micrites; where there 

is significant clay content, and then aggrading neomorphism appears to be inhibited 

(Tucker and Wright, 1990). It has also been suggested that the presence of Mg
2+

 ions 

prevents neomorphism by forming a cage around the micrite crystals. If this is removed 

by meteoric water flushing or adsorption of the Mg
2+

 ions on to clay minerals, then 

microspar crystal growth takes place (Folk, 1974; Longman, 1977).  

Based on the petrographic observations and cross cutting relationships it seems 

that this process has possibly developed in the meteoric diagenetic environment, despite 

the fact that neomorphism may take place during burial diagenesis or during weathering 

(Tucker, 1991).  
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4.2.4. Dissolution 

Many carbonate rocks have suffered dissolution as a result of the passage of 

pore fluids undersaturated with respect to the carbonate phase present. 

At least two major phases of dissolution occurred in the studied interval of the 

Paleocene succession. The first phase has caused the dissolution of the original 

aragonitic, and probably high Mg-calcite grains together with some matrix. This has 

resulted in the formation of mouldic and vuggy secondary porosity at different intervals 

and is present in most of the defined facies of the Dahra, Mabrouk, Zelten and Harash 

Formations, but to different degrees (Fig. 4.3C). Much of this porosity has subsequently 

been occluded, partly or completely, by equant non-ferroan, locally ferroan, calcite or 

dolomite cements (Fig. 4.3 E&F). 

This relatively early phase of dissolution probably occurred in the upper part of 

the meteoric phreatic environment (zone of active circulation), where the meteoric 

waters are strongly undersaturated with respect to the metastable carbonate species 

(Longman, 1980). Meteoric diagenesis starts with the loss of magnesium from high-Mg 

calcite followed by the gradual disappearance of aragonite and the replacement of 

aragonite by calcite (Flügel, 2004). Although the dissolution is a major process in near-

surface, meteoric, diagenetic environments, it can also take place on the sea floor and 

during deep burial (Tucker, 1991). 

The second phase of dissolution has not only resulted in the total leaching of 

possible evaporites but also the partial dissolution of medium to coarsely crystalline 

void-filling dolomites.  As a result, moldic porosity or dedolomite porosity has been 

developed on both the Dahra Platform (Dahra Field) and the Dor al Abid Trough 

(Mabruk Field) (Fig. 4.3D, E &F). This type of porosity has probably been formed by 

leaching of the dolomite and evaporite crystals at intermediate to burial depths, 

probably through the presence of strong acidic formation waters. Despite the fact that 

open dolo-molds may indicate subaerial exposure and dissolution by karst waters 

(Braun and Friedman, 1970), the dissolution of carbonates in a deep burial setting is 

attributed to the development of pore waters with high pco2 formed during the thermal 

decarboxylation of organic matter or to sulphate reduction.  

Such corrosive fluids are most likely to be formed during compaction and 

thermal maturation of organic-rich shales (Tucker and Wright, 1990). The same authors 

stated that burial dissolution of sulphate evaporites may led to Ca
2+

 -rich fluids capable 

of dissolving dolomite and/or causing dedolomitization. 
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Scanning electron microscopy examination revealed that intercrystalline microporosity 

has also been developed in the studied rocks, in particular at wells no. 8 and 9. This 

probably developed as a result of the re-orientation and/or dissolution of outer parts of 

micrite and/or microsparite crystals (Fig.4.3G&H).  
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Figure 4.3 A&B: SEM photomicrographs showing neomorphosed micrite to microspar of less than 15 µ 

in size. Dahra Fm, 3119 ft, Well no. 8 & Mabruk Mbr., 4266 ft, Well no.66, respectively.; C: Dissolution 

(mainly molds) porosity in the Dahra Fm, 3167 ft, Well no.10.; D: Evaporite molds (left centre) in the 

Zelten Fm, 2779 ft, Well no.9.; E&F: Partial dissolution of coarse dolomite crystals (late stage) in the 

Mabruk Mbr, 3736 ft, Well no. 105& in the Dahra Fm, 3167 ft, Well no. 10, respectively.; G&H: SEM 

photomicrographs showing dissolution of the outer parts of microsparite (G) and micrite (H) crystals 

which contribute to the overall good porosity in the Dahra Fm at 3076 ft, Well no. 9, and at 3119 ft, Well 

no.8, respectively.  
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4.2.5. Cementation 

The precipitation of cements in carbonate sediments is a major diagenetic 

process and takes place when pore-fluids are supersaturated with respect to the cement 

phase and there are no kinetic factors inhibiting the precipitation (Tucker and Wright, 

1990). Most cements in carbonate rocks are themselves carbonates (broadly, calcite and 

dolomite), although quartz and evaporites occur locally (Adams and Mackenzie, 1998). 

Apart from dolomite cement, three types of calcite cement have been recognized. These 

are: isopachous calcite, equant sparry calcite, locally blocky, and syntaxial overgrowth 

cements. 

4.2.5.1. Isopachous calcite cement 

The isopachous calcite cement is not abundant and represents the least common 

cement within the studied rocks. It occurs mainly in the bioclastic foraminiferal 

packstone-packstone/grainstone and bioclastic foraminiferal grainstone facies, where it 

consists of elongate crystals oriented perpendicularly with respect to the substrate. The 

crystals grow mainly on the outer, rarely on the inner, walls of the both non skeletal and 

skeletal grains, particularly foraminifera (Fig.4.4A). Scanning electron microscope 

investigation shows that the crystals, which are usually ≤15 µ long, grow towards the 

pore and increase in size away from the substrate (Fig.4.4B).  

The features of this type of cement indicate that it is a low Mg-calcite, although 

its mode of origin is rather difficult to interpret. It could have been formed from marine 

water as a direct precipitate or by replacement of unstable minerals. Alternatively, it 

could also have been precipitated in the meteoric environment.  

The shape and distribution of this cement along with its occurrence in a 

relatively compacted fabric (pre-dating the closer packing of grains) may suggest that it 

was possibly deposited in marine environment. However, growth of bladed calcite spar, 

especially in thick isopachous crusts, has mostly been recorded from subsea-floor 

cemented limestones (Marlowe, 1971; Schroder, 1972; James et al., 1976) and is 

generally recognised as a fringe of crystals growing normal to the substrate. Thus this 

isopachous calcite probably pre-dated the dissolution and compaction processes, as 

suggested by the fact that it is present at the grain contacts, which possibly reduced the 

effect of mechanical compaction at those intervals. 
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4.2.5.2. Equant calcite cement and meniscus cement 

The term equant refers, in this study, to both equant sparry calcite cement and 

coarse blocky calcite cement. Together they represent relatively the most common 

calcite cements within the studied Paleocene carbonates.  

The equant sparry calcite cement occurs in most of the defined facies, in 

particular bioclastic foraminiferal grainstone and bioclastic foraminiferal packstone-

packstone/grainstone facies. It virtually occludes the pore spaces as second generation 

cement, following the early marine cement and is locally ferroan. The calcite crystals of 

this cement are characterised by clear, equant to slightly elongate, usually subhedral to 

anhedral, planar to slightly curved boundaries (Fig. 4.4A, E&F). 

It commonly shows a drusy mosaic, particularly where it occurs as a mould-

filling cement (Fig. 4.4H). The crystals, however, vary in size; they are commonly less 

than 50µm in diameter, but they can reach 200µm at the pore centre. Under 

cathodoluminescence, the cement crystals are largely non-luminescent to dull (weak) 

luminescent, although very thin bright zones towards the outer part of some crystals 

have been observed (Fig. 4.4 C&D). This could indicate Fe-rich fluids and the 

incorporation of Fe
2+ 

during the early stage of crystal growth. A change in pore-fluid 

chemistry with the incorporation of manganese into the crystal lattice has probably 

resulted in the precipitation of the bright outer zone. The zonation of the carbonate 

crystals is a reflection of fluctuations in the chemistry of the pore-fluids, but also of 

changes in the rate of crystal growth (Have and Heijnen, 1985).  

According to the petrographic observations and cross-cutting relationships 

among depositional and diagenetic fabrics, this type of cement could have been 

precipitated in the meteoric phreatic environment. Equant calcite cement, with a drusy 

mosaic is characteristic of the active zone of the freshwater phreatic environment 

(Longman, 1980; Flügel, 1982). Drusy sparite is the typical cement of meteoric 

diagenesis, and this together with its ferroan nature has led to the belief that the main 

site of limestone cementation is the meteoric phreatic zone (Tucker, 1981).  

The coarse blocky calcite cement, which is commonly ferroan, occurs mainly in 

grain-supported facies of the Dahra, Zelten and Harash Formations on the Dahra 

Platform and in the boundstone facies of the Mabruk Member in the Dor al Abid 

Trough. Its crystals range in size from less than 250 µm to more than 650 µm. although 

1000 µm and even 1600µm crystal sizes have been also observed in the Dahra 

Formation in Well no. 10 and in the Mabruk Member in Well no. 103, respectively. It 



         Chapter 4                                                                                 Diagenesis and reservoir quality 
____________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   102 
 

fills vuggy, moldic, fracture and intergranular porosities and developed as clean, coarse 

subhedral to euhedral crystals with fairly straight crystal boundaries along with the local 

occurrence of some inclusions (Fig. 4.5 A-C). Fluid inclusion results showed that the 

homogenization temperature from petroleum inclusions in the studied section ranges 

from 48- 67
⁰
C, and the homogenization temperature of aqueous inclusions range from 

59–90
⁰
C. This may indicate two phases of calcite precipitation during the sediment 

history in the area. See next section (4.3). 

The source of iron may have been brought into the sedimentary environment 

with argillaceous material (Oldershaw, 1971), which is available within the studied 

Paleocene succession and in the nearby area. The ferroan nature of some calcite cement 

may be ascribed to subsurface reducing conditions which may be caused by bacterial 

respiration and/or organic matter oxidation through released oxygen from pore-waters 

(Claypool and Kaplan, 1974). A high ferrous iron content is common in burial equant 

spar calcite cements, but can also exist in early cements formed in near-surface anoxic 

conditions (Scholle and Halley, 1985).  

Although meniscus cement is not widely distributed throughout the studied 

sections, it represents one of the most important petrographic features observed in the 

studied samples. It is not only a characteristic vadose-diagenetic or pedogenic feature 

but also a vital factor in the preservation of primary porosity in carbonate rocks. This 

type of cement has been documented within the bioclastic foraminiferal grainstone 

microfacies, in the upper part of the Dahra Formation in Well no.7 at a depth of 3277 ft. 

It is concentrated at grain contacts and formed crescent-shaped cement (Fig. 4.4G), as a 

result of water held near grain contacts by capillary forces (Tucker and Wright, 1990). 

Meniscus cements are recorded from some beach rocks and indicate precipitation in the 

marine vadoze zone (Taylor and Illing, 1969). They mostly originate in the vadose 

environment but can also be formed microbially in other environments (Hillgaertner et 

al., 2001). Flügel (2004) pointed out that the meniscus cements characteristically 

formed in the meteoric-vadose zone but they may also occur in the phreatic-meteoric 

and the vadose-marine environment. 

 

4.2.5.3. Syntaxial rim cement  

This type of cement, in which the cement crystals have grown by the extension 

of the lattice in depositional grains, is particularly obvious in echinoderm-rich rocks.  
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This is because echinoderm fragments are large single crystal plates of calcite 

(Adams and Mackenzie, 1998). Nevertheless, various skeletons besides echinoderms 

can be seen to have acted as a substrate for syntaxial growth of cement, such as the 

prismatic layers in gastropods and ostracods (Bathurst, 1975). 

The syntaxial overgrowth occurs mainly within the grain-dominated facies in the 

Dahra, Mabruk, Zelten and, less commonly, Harash Formations. It rarely occurs in 

wackestone-wackestone/packstone facies, since there is little original pore space 

(Bathurst, 1975). This cement is commonly a large single crystal developed on echinoid 

and crinoid fragments in optical continuity with the grain (Fig. 4.5D). Overgrowths on 

echinoderm fragments grow faster than the polycrystalline cements, since the latter 

require nucleation, whereas the echinoderm provides an existing calcite lattice (Evamy 

and Shearman, 1965). Although the echinoderm fragments can be easily distinguished 

from the overgrowth cement, it may be difficult in a few cases. Locally, in particular in 

the Dahra Formation, however, the calcite of the inner parts of overgrowth remains 

unstained whereas the outer parts are stained pink (Fig. 4.5E). Under 

cathodoluminescence both echinoderm and the inner part of the overgrowth have the 

same intensity, i.e. light brown to dull luminescence, whereas the outer parts show non 

luminescence (Fig. 4.5F).This could indicate that the inner unstained parts, which 

represent the first stage cement, tend to have elevated Mn
2+

 and low Fe
2+

 incorporation 

in the crystal lattice, whereas the outer parts could indicate changing pore fluid 

chemistry with less Mn
2+

 incorporation in the crystal lattice.  

Based on the petrographic observations, the syntaxial overgrowth cement 

probably post-dated the isopachous calcite cement and pre-dates grain to grain contact. 

This indicates that it was probably formed in the freshwater phreatic environment, since 

one of the characteristic features for recognising freshwater phreatic environments are 

syntaxial overgrowth on echinoderm fragments (Flügel, 1982). On the other hand, 

Adams and Mackenzie (1998) pointed that the syntaxial overgrowths are not diagnostic 

of a particular environment of formation, because they are often chemically zoned and 

may record precipitation over a long period of time through successive environments.  
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Figure 4.4 A: Isopachous calcite cement, around bioclasts, followed by equant sparry calcite. Dahra Fm, 

3158 ft, Well no. 10; B: SEM photomicrograph shows isopachous crystals around a mold. Dahra Fm, 

3119 ft, Well no.8; C&D: Plain light and CL of equant calcite, respectively. Note the thin light outer zone 

of some crystals (arrow). Dahra Fm, 3076 ft, Well no. 9; E: Characteristic colour staining of iron-free 

sparry calcite cement (pink). Note the development of coarse dolomite crystals. Mabruk Mbr, 4275 ft, 

Well no. 66; F: SEM photo showing isopachous calcite around a peloid and equant calcite cement 

plugging the intergranular porosity. Dahra Fm, 3181 ft, Well no.9; G: Meniscus vadose cement (arrows). 

Dahra Fm, 3277 ft, Well no. 7; H: Drusy mosaic of equant calcite cement, slightly ferroan. Dahra Fm, 

3223 ft, Well no. 10.  
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Figure 4.5 A: Coarse ferroan calcite cement in foraminiferal bioclastic W-W/P facies. Dahra Fm, 3098 ft, 

Well no. 9; B: Very coarse Fe-free calcite cement occludes secondary porosity in bioclastic foraminiferal 

P-P/G. Note the occurrence of coarse dolomite cement (white). Zelten Fm, 2833 ft, Well no. 7;  C: 

Slightly ferroan coarse calcite cement in bioclastic foraminiferal P-P/G. Dahra Fm, 3167 ft, Well no. 10;  

D: Syntaxial overgrowth cement around crinoid fragments in algal packstone facies. Note the occurrence 

of moldic porosity (blue). Mabruk Mbr., 4263 ft, Well no. 66;  E&F: Syntaxial rim cement around 

echinoderm, which is probably dolomitized and followed by equant calcite cement (pinkish).The CL 

photo (F) shows that both echinoderm and overgrowth have the same intensity, i.e. light brown to dull 

luminescence, whereas the equant calcite  cement shows non luminescence. Dahra Fm, 3134 ft, Well no. 

8. 
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4.2.6. Dolomitization 

4.2.6.1. Introduction 

Although the dolomite can be primary (direct precipitation) notably when 

forming in certain lakes and lagoons, most of the dolomite in the geological record is of 

replacement origin.  This replacement process ranges from fabric selective to pervasive 

and from fabric destructive to retentive depending on the original grain mineralogy and 

crystal size, timing of dolomitization and nature of dolomitizing fluids (Tucker and 

Wright, 1990). 

Dolomitization can take place whenever the Mg concentration is sufficiently 

high. This might have been the case in the Upper Paleocene succession, since the 

dolomite here occurred as a replacive mineral and as a void-filling cement. The 

replacement origin for much of the dolomite is indicated by the presence of ghosts of 

precursor grains and biomouldic pores, along with the occurrence of completely 

micritized grains which resist, to some extent, dolomitization. 

Following the terminology of Folk (1962), and based on the crystal size, two 

types of dolomite have been recognised in the studied succession, these are: very finely 

to medium crystalline (10-80µm) dolomite and medium to coarsely crystalline (100-

600µm) dolomite. 

 

4.2.6.2. Very finely to medium crystalline (10-80 µm) dolomite 

The finest crystal size of dolomite observed in the studied section (˂20µm) has 

replaced mainly the matrix in the dolomitic lime-mudstone microfacies in the Dahra 

Formation at Well no.8. It commonly shows loosely packed subhedral to anhedral 

dolomite crystals, fairly sucrosic texture with good intercrystalline porosity (Fig.4.6A). 

The partly dolomitized (and bioturbated) intervals are present all over the studied 

succession, i.e. in the Dahra, Mabruk, Zelten and Harash Formations. The average 

crystal size of the dolomitized matrix in the dolomitic bioturbated bioclastic 

wackestone/packstone- packstone microfacies is about 40-60µm in the Dahra 

Formation, ~80 µmin the Mabruk Member, and around 30µm in Zelten/Harash 

Formations. It replaces not only the micite matrix but many carbonate grains have been 

partially and/or totally attacked in different intensities.  

In the Dahra Formation and its equivalent Mabruk, particularly in wells no.9 and 

66, the dolomite is almost tightly packed and displays hypidiotopic (planar-s) to 

xenotopic (non-planar) mosaics. It commonly shows fairly good preservation of the 
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original texture and poor intercrystalline porosity (Fig. 4.6B). In Wells no. 8 and 10, 

however, a better preservation of intercystalline porosity has been observed. In Zelten 

and Harash Formations the very finely to medium crystalline dolomite occurs generally 

as isolated euhedral to subhedral crystals in the relatively fine- grained matrix of the 

wackestone/packstone facies. 

Since the crystal size can be used to differentiate between early and late 

diagenetic dolomitization (Lee and Friedman, 1987), the very finely to medium 

crystalline dolomite that replaced the matrix may represent an early diagenetic process 

of dolomitization. The local association of this dolomite with peritidal features 

(fenestrae, desiccation cracks, evaporite moulds, and rootlet structures) suggests an 

early diagenetic origin (eogenetic dolomite). 

 

4.2.6.3. Medium to coarsely crystalline (100-600µm) dolomite 

This coarser size of dolomite crystal occurs mainly in the Dahra Formation on 

the Dahra Platform and in the Mabruk Member in the Dor al Abid Trough, whereas it is 

less developed in Zelten and Harash Formations on the Dahra Platform. It usually 

occurs as pore-lining and/or filling cement and thus contributes in destroying, and more 

commonly occluding, the intergranular, intragranular, moldic, vuggy and fracture 

porosity. In the Dahra Formation its average size is 100-300µm and it is characterised 

by single, usually non-ferroan, euhedral to subhedral crystals, locally with curved 

crystal faces, and displays some zonation (Fig.  4.6. E&F).  

In the Mabruk Member, however, the average size of this type of dolomite is 

200-400µm, although a much coarser size (500-900µm) has been observed at specific 

intervals in well no.105, where it chiefly occurs within fractures and/or veins. Its 

characteristics are similar to that in the Dahra Formation and they show degree of 

undulatory extinction giving them an appearance similar to saddle dolomite (Radke and 

Mathis, 1980) (Fig. 4.6G&H). A similar type of dolomite was named by Beales (1971) 

as white sparry dolomite and by Zenger (1983) as baroque dolomite. Locally it is 

associated with scattered medium-sized crystals of evaporite (anhydrite) and shows 

some dissolution (Fig.4.3E&F).  

The average size of this dolomite is 200-300 µm in the Zelten/Harash 

Formations. It is commonly associated with the coarse, Fe-free calcite cement and 

together they plug the formerly developed porosity (Fig. 4.7A&C). In a few cases, it has 
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replaced carbonate grains along with coarse calcite cement with some good preservation 

of the original structure (Fig. 4.7B). 

The cloudy centres in some zoned dolomite crystals, however, suggest that 

dolomitization took place by waters saturated or slightly under saturated with respect to 

calcite, whereas the clear rims suggest that the solution was undersaturated with respect 

to calcite (Sibley, 1979). Carozzi (1993) suggested that the cloudy cores and clear rims 

indicate that the precursor carbonate was low Mg-calcite or had been converted to it 

before dolomitization. 

The medium to coarsely crystalline dolomite rhombs have two luminescence 

characters: an inner weakly to non-luminescent and thin outer slightly bright orange 

zones. These two luminescent zones are the result of the chemical differences between 

the inner and outer zones which developed as a result of differences in Fe and Mn 

contents of the dolomitizing fluids (Tucker and Wright, 1990). It has been suggested 

that the amount of manganese necessary to induce bright luminescence in carbonates 

ranges from 80 to 100 ppm.  

Tucker and Wright (1990) pointed out that the baroque dolomite can occurs in 

veins and fractures, and is commonly associated with epigenetic sulphide 

mineralization.  It is also commonly associated with hydrocarbons and this has been 

used to suggest that it forms within the oil window, at temperatures of 60-150⁰C (Radke 

and Mathis, 1980).The average crystal size of this dolomite may thus suggest significant 

depth of formation and relatively slow growth rate. On the other hand, the occurrence of 

coarse saddle dolomite probably suggests precipitation in the late, deep burial 

mesogenetic stage. The shales in the older Beda Formation, in the lower part of the 

Dahra Formation and in the Khalifa Formation are possibly the source of magnesium 

required for this dolomitization. 
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Figure 4.6 Different types of dolomite. A: Very fine-finely crystalline dolomite in dolomitic lime-

mudstone facies. Note good intercrystalline and moldic porosity.Dahra Fm, 3079 ft, Well no. 8; B: V. 

finely-medium crystalline dolomite replaced mainly micrite matrix in dol. biot. bioclastic packstone. 

Mabruk Mbr, 4285 ft, Well no.66; C & D:Medium crystalline dolomite filling intragranular porosity.Note 

the two luminescent characters in D. Dahra Fm, 3227 ft, Well no. 9; E: Dolomitized matrix and some 

grains of fine-medium crystalline dolomite. Dahra Fm, 3205 ft, Well no. 8; F: Coarsely crystalline 

dolomite filling moldic and vuggy porosity. Note the curved crystal faces and curved cleavage planes of 

dolomite crystal. Dahra Fm, 3232 ft. Well no. 10. G: XN photo shows undulose extinction of saddle 

dolomite. Note the presence of anhydrite crystals. Mabruk Mbr, 3731 ft, Well no. 105. H: characteristic 

features of saddle dolomite filling a vein. Mabruk Mbr, 3736 ft, Well no. 105. 
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Figure 4.7 Dolomite in Zelten Formation. A: Medium to coarse crystalline dolomite, along with coarse 

blocky non-ferroan calcite. Note the inclusion-rich core of the dolomite crystals; B: Replacement of 

Alveiolina foraminifera by dolomite and coarse calcite with a retentive fabric. A&B, Zelten Fm, 2731 ft, 

Well no. 9; C: Energy dispersive spectrometer graph for the medium crystalline dolomitein bioclastic 

foraminiferal packstone/grainstone microfacies. Zelten Fm, 2779 ft, Well no.9. 

 

4.2.7. Compaction and tectonic features 

It has been documented that the degree of compaction is strongly influenced by 

the presence of early cement, and to some extent by dolomitization. Macroscopic and 

microscopic examination of the rocks under investigation revealed that they have been 

subjected locally to considerable compaction (physical and chemical) and to less 

significante fracturing. 

 

4.2.7.1. Physical compaction 

It is well known that physical compaction is common during the first few 

hundreds of metres of burial in many carbonate rocks that were not completely lithified. 

The effects of mechanical compaction are found most commonly in grains that were 

affected by boring, leaching, or other grain-weakening processes during marine or 
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meteoric diagenesis (Scholle & Scholle, 2003). Local closer packing, deformation and 

fracturing of carbonate grains have been observed in all the studied formations in both 

the Dahra Platform and Dor al Abid Trough. Mechanical compaction in which some 

bioclasts, in particular foraminiferal tests, were crushed and/or flattened were not only 

observed in the Dahra Formation but also in the Zelten and Harash Formations on the 

Dahra Platform (Fig. 4.8A & B). While closer packing and deformation features are 

more common in the mud-supported facies, fracturing of grains (mainly bivalve shells) 

and substrate is widely developed, especially in the packstone/grainstone facies of the 

Dahra Formation and Mabruk Member (Fig. 4.8C). The mechanical compaction is 

locally very substantial, particularly within the Dahra Formation, and resulted in the 

vaguely bedded fabric and hence, original packstone cannot be distinguished easily 

from compacted packstone (Fig. 4.2).  

Many superficial ooids and coated grains showed breaking and cracking along 

the lamella and as a result the cortical layer has been spalled off, and intragranular 

secondary porosity has been produced (Fig. 4.8E). Mechanical compaction, which was 

probably accompanied with tectonic compression or shearing of the superficial ooids 

has produced deformed ooids and resulted in the formation of ‘elephant-parade’ fabric 

of Folk (2001) in the middle interval of the Dahra Formation (Fig.4.8D). Equant calcite 

cement was precipitated within the cavities developed in the ooids. 

Most of these mechanical compaction features probably occurred at shallow 

burial depths where the Upper Paleocene carbonates were semi-indurated. On the other 

hand the development of the sparry calcite within the ooids could strongly suggest that 

it predated compaction, and hence compaction occurred at a relatively later stage in the 

history of the sediment. Tucker and Wright (1990) stated that in the early stages of 

compaction, a preferred orientation of elongate bioclasts may develop parallel to the 

stratification/seafloor, normal to the principal stress direction. The next stage in the 

physical compaction involves the fracture of grains and the early cement fringes and the 

ductile deformation of grains and sediment. 

In addition to the above mentioned fractures, networks of microfractures that 

interconnect different types of porosity have been observed in most of the facies in both 

structural settings. On the Dahra Platform they have been recorded chiefly in the Dahra 

and Harash Formations, and fewer are present in Zelten Formation. They are commonly 

open and in some cases crossed by stylolites (Fig. 4.8H). It is noteworthy to mention 

that there is a network of open microfractures that were connected to each other and 
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developed notably within marl/argillaceous limestone intervals in the Dahra Formation 

at Wells no.7 and 9 (Fig. 4.9A).  Coarser (wider) fractures and/ or veins have also been 

witnessed at several intervals in the studied succession. Although they are not common, 

they occurred particularly in the Dahra Formation and Mabruk Member. In the former 

they are partly open, whereas in the Mabruk they are commonly plugged by saddle 

dolomite, coarse sparry calcite and sulphate minerals (Fig.4.6 G&H). 

Faulting, tectonic fractures and/or early diagenetic fractures, on the other hand 

have been recorded in the Upper Paleocene succession in the study area. A possible 

strike-slip fault with vague striations has been observed in the lower interval of the 

Harash Formation at well no.9. Two intervals of 3-5 feet thick of possibly fracture 

zones have also been observed in the Dahra Formation at wells no. 8 and 10. Tectonic 

related features are dealt with in Chapter 6. 

 

4.2.7.2. Chemical compaction 

With further burial, chemical compaction is one of the most important 

diagenetic processes. It is a major process in burial diagenesis and can liberate calcium 

carbonate to the pore fluid for cementation in the immediate vicinity or at same distance 

if there is an active groundwater system (Tucker and Bathurst, 1990).  

Dissolution seams similar to those described by Buxton and Sibley (1981) and 

Bathurst (1987) occur at many intervals in the studied rocks, particularly in the 

argillaceous limestone facies. They can be identified in both core samples and thin-

section; they display fairly smooth, undulose seams of insoluble residue and usually 

pass between and around grains (Fig. 4.8G). Dissolution seams tend to be common in 

more argillaceous limestones, and develop preferentially along the clay layers or at the 

junctions of clay-rich and clay-poor limestones (Tucker and Wright, 1990). Pressure 

dissolution occurs through dissolution across a thin film as a result of compressive 

stress at grain-to-grain boundaries (Weyl 1959; Rutter 1983) or because of dissolution 

at or just outside the rims of grain contacts resulting in an undercutting (Bathurst 1975; 

Tada and Siever 1986). Sutured contact between carbonate grains has resulted in the 

formation of stylonodular structure or stylo-breccia fabric of Logan & Semeniuk (1976) 

at several intervals in the studied succession, specifically in the Dahra Formation and 

Mabruk Member (Figs.3.5A & 4.8F). In terms of petroleum reservoir quality, the 

pressure dissolution processes involve a strong reduction in bulk rock-volume with a 
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resultant loss in porosity caused by the occlusion of pores by late diagenetic subsurface 

cements (Wong and Oldershaw, 1981) 

Stylolitization is normally absent in limestones with more than 5-10% clay 

(Tucker and Wright, 1990). It contributes, according to Flügel (2004), to bulk volume 

reduction, resulting in a marked drop in the original thickness of carbonate units. A 

variety of stylolite types is developed at various intervals in the studied succession, 

specifically in the packstone, grainstone and boundstone facies. They include large 

amplitude, small amplitude and swarms types, and they usually cross grains, matrix and 

cements, along with fractures in certain cases (Fig. 4.8H). These may have a tectonic 

origin, since they are developed normal to stress directions. They are commonly filled 

by insoluble residue (probably clay) which derived from limestone dissolution (Tucker, 

1981) and pyrite. Locally, particularly in the Dahra and Mabruk, bitumen and finely 

crystalline dolomite are also present within them. Most stylolites exhibit very low 

(small) amplitude (˂1cm) with an exception in a few intervals in the Dahra Formation 

in well no. 8, where their amplitude can reach 3cm (Fig.  4.9B). Overall, the role of 

chemical compaction in the reservoir history and quality of the studied rocks is locally 

quite significant. 
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Figure 4.8 Various compaction features in the Upper Paleocene succession. A & B: Broken and flattened 

foraminifera due to mechanical compaction. Zelten Fm, Well no.7, 2824 ft & Harash Fm, Well no.9, 2669 

ft, respectively; C: Bored and then fractured bivalve shell. Note the fracture cuts grains and matrix. Dahra 

Fm, Well no. 10, 3155 ft; D: Deformation of ooids has resulted in the formation of elephant-parade’ 

fabric of Folk (2001). Dahra Fm, Well no. 9, 3181 ft; E: Physical compaction resulting in collapse and 

spalling of an early marine cement off micrite-coated grains (arrows). Dahra Fm, Well no. 9, 3213 ft; F: 

Sutured pressure dissolution seams (stylo-breccia). Mabruk Mbr, Well no. 66, 4314 ft; G: Fairly smooth, 

undulose dissolution seams. Harash Fm, Well no. 7, 2741 ft; H: Microstylolite cuts across matrix, grains 

and fracture. Dahra Fm, Well no.8, 3291 ft. 
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Figure 4.9 A: Open microfracture network developed in marl facies in the lower part of the Dahra 

Formation. Well no. 7, 3315 ft; B: Relatively large amplitude stylolite developed in bioclastic 

foraminiferal packstone-packstone/grainstone facies in the upper part of the Dahra Formation. Well no.8, 

3115 ft. 

 

4.2.8. Minor diagenetic events 

Minor diagenetic events recognized in the Upper Paleocen succession include 

formation of authigenic pyrite, glauconite, hematite, phosphate, evaporites and clay 

minerals (Table. 3.2). 

Authigenic pyrite is the most common authigenic mineral developed within the 

studied interval of the Paleocene succession. It occurs in most of facies of the Dahra, 

Mabruk, Zelten and Harash Formations. An exception is the dolomitic lime-mudstone 

facies, where pyrite has not been detected. It is normally <5% of the total rock 

constituents but at certain intervals it can reach upto 10%. Pyrite crystals are locally 

common replacement of and/ or filling within matrix and various bioclasts including 

foraminifera, bivalves and echinoderms (Fig. 4.10). They also occur in residual clays of 

the stylolites and dissolution seams. Under the scanning electron microscope, pyrite 

crystals appear as spherical aggregates of many tiny euhedral crystals (framboids) that 

occupied matrix and/or bioclasts. They possibly occurred at shallow burial depths as a 

result of the decomposition of organic matter under reducing conditions (Lee and 

Friedman, 1987). Authigenic pyrite commonly forms under reducing conditions 

replacing organic material or in close proximity to organic material (Fl gel, 2004). 
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Glauconite is usually found in association with pyrite but in very low amounts 

(< 2%). It occurs mainly within the Dahra and Mabruk, and rarely in Zelten/Harash 

interval. It is characterised by green colour and very fine texture, and occurs locally as 

both grains and mud (Fig. 4.10).  Glauconite is probably formed in a slightly reducing, 

anoxic, non-sulphidic, post-oxic diagenetic environment (Berner, 1981). It is usually 

regarded as an indicator of marine, relatively shallow and slow sedimentation.  

In modern oceans glauconite occurs between 50 and 500 m and is abundant in 

mid-shelf to upper slope settings at depths between 50 and 300m. The glauconite 

mineral is often concentrated at discontinuity surfaces indicating depositional breaks 

(Flügel, 2004). Hematite occurs at several intervals in almost all the studied formations; 

It is characterised by a reddish brown colour and usually occurs at the top (shallowest) 

of the carbonate cycles. It is accompanied by pyrite and glauconite, and in a few cases 

with clays (Appendix. 1). At certain intervals within the Dahra Formation, it occurs in 

association with dessication cracks, fenestrae and rootlets in dolomitic, brecciated and 

mottled fabric (palaeosoils). Locally meniscus cement has developed just beneath the 

intervals with hematite.  

Within the Zelten Formation on the Dahra Platform the hematite occurs in 

conjunction with a storm bed that developed just above the most negative oxygen 

isotope value in well no.9 (-10.49). Hematite normally develops above the water table, 

and below, if the ground water is alkaline and oxidizing (Tucker, 1981). In view of its 

importance in both classical and sequence stratigraphy, the hematite will be discussed 

further in the next chapter.  

Replacement of carbonate grains by phosphate occurred sporadically and in 

trace amounts in the studied succession (Fig. 4.10C). Phosphate can be derived from the 

decay of disseminated organic matter. Once formed, phosphate nodules, phosphatized 

limestone fragments and phosphatic fossils are very resistant to weathering and easily 

reworked in to younger beds.  It could deposited during a transgression as a result of 

current and wave reworking of sediments and winnowing of finer material (lag 

deposits) (Tucker, 1981). Although no evaporite beds were found in the studied rocks, 

some samples rarely contain gypsum, anhydrite and halite crystals, particularly within 

the Mabruk Member in the Dor al Abid Trough and in the Dahra Formation on the 

Dahra Platform. The gypsum and anhydrite usually occur as isolated, euhedral crystals, 

commonly in association with finely crystalline dolomite and saddle dolomite (Figs.4.6 

G&H and 4.10D). It is well known that sulphate minerals are precipitated from brines 
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concentrated by extensive or local evaporation of water, but in these cases, probably the 

sulphate minerals are burial precipitates, not associated with near-surface evaporitic 

conditions. 

A part from the marl/argillaceous limestone facies, clay minerals of kaolinite, 

chlorite, illite and probably mixed layer illite/smectite have been recorded in the 

carbonates of the studied cores. They are normally occurring in trace amounts in the 

wackestone-wackestone/packstone and boundstone intervals in both the Dahra 

Formation and Mabruk Member (Fig.4.11). Kaolinite, which is the most common clay, 

can locally reach 10-16% of the total rock volume in the central and eastern Mabruk 

areas. This may indicate, as previously stated, invasion of riverine clastics through a 

minor sea-level fluctuation and/or a change to a more humid climate. Clay-

mineralogical assemblages of marls at the top of shallowing-upward sequences reflect 

fluctuating freshwater and marine conditions affecting shallow-water carbonates 

(Deconinck and Strasser, 1987). 

 

Figure 4.10 Minor diagenetic events in the studied Paleocene section. A: Pyrite mineral occurring in both 

matrix and grains in foraminiferal bioclastic packstone-packstone/grainstone facies. Mabruk Mbr. Well 

no. 105, 3737 ft; B: Glauconite precipitated within foraminifera chambersin bioclastic foraminiferal 

grainstone facies. Dahra Fm., Well no. 10, 3158 ft; C: Compacted, fractured and completely phosphatized 

skeletal grain in bioclastic wackestone/packstone facies. Dahra Fm, Well no. 9, 3165 ft; D: Aggregates of 

single euhedral crystals of gypsum in coral algal boundstone facies. Mabruk Mbr., Well no. 66, 4327 

ft.,XN. 
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Figure 4.11 Scanning electron microscopy analysis of the studied samples showing clay minerals 

identified within the Paleocene succession. A: SEM photomicrograph showing smectite mineral? between 

micrite crystals. The chemical composition of this smectite is shown in the EDS spectra; B: Kaolinite 

(book sheets) plugging intercrystalline porosity in bioclastic wackestone/packstone facies. Both photos 

(A&B) from the Dahra Fm, Well no. 9, 3265 ft; C & D: Illite and kaolinite minerals occurred at different 

intervals in the Dahra Formation in Well no. 8. 3185 ft, and 3119 ft, respectively; E: Rose-like chlorite 

mineral developed within algal bioclastic boundstone facies of the Mabruk Member. Well no. 103, 3577 

ft; F: Probable illite coating micrite crystals in foraminiferal bioclastic wackestone-wackestone/packstone 

facies. Mabruk Mbr., Well no. 66, 4335 ft. 
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4.3. Geochemistry of the Selandian/Thanetian Carbonates 

As shown in the previous section, the studied interval of the Paleocene 

succession has been subjected to a complex series of post-depositional changes from the 

time of deposition up to the present day. In this section, the results of isotope analyses 

and fluid inclusion studies are presented, and there is a discussion of paragenesis.   

 

4.3.1. Carbon and oxygen isotopes 

The isotopic variation in oxygen and carbon presented here considered in terms 

of diagenetic evolution; the data are discussed further in terms of stratigraphic trends 

and sedimentation patterns in the following chapter. 

Modern carbonates have carbon and oxygen stable isotope values in the range of 

0‰ and +4‰ for carbon and -2‰ and +1‰ for oxygen; the average for ancient 

limestones is normally between -2‰ and +2‰ δ
13

C and -10‰ and -2‰ for δ
18

O 

(Tucker, 1986). 

The relative isotopic concentration in a carbonate grain or cement is indicative 

of the physical conditions of precipitation and the composition of ambient pore water 

(Marshall and Ashton, 1980). Carbon isotopes are more resistant to diagenetic 

alteration; in contrast, oxygen isotope values are susceptible to diagenetic alteration due 

to their variation with the temperature of precipitation and the isotopic composition of 

the water from which precipitation takes place. The original sediment would have been 

composed of a combination of aragonite, low and high Mg calcite from lime mud, 

grains and cements, each with different original isotopic signatures, which could have 

been altered during diagenesis. Burial cements; either-filling voids or replacing original 

skeletal material generally have isotopic signals which are more negative for oxygen 

and also sometimes for carbon too. 

The fractionation of oxygen isotopes during calcite precipitation is strongly 

temperature dependent, such that a 2⁰C increase in the temperature of precipitation will 

produce a decrease in δ
18

O value of ca. 1% (Friedman and O'Neil, 1977). Diagenetic 

calcite formed after any substantial amount of burial, then, should be notably depleted 

in δ
18

O relative to soil-formed calcite (Bowen et al., 2001). 

The δ
18

O values recorded in the studied Paleocene succession range from -10.49 

‰ to +1.15 ‰, whereas the δ
13

C measurements fall in the range -4.87‰ to +3.89‰. 

The Dahra Formation on the Dahra Platform, however, shows more confined δ
13

C 



         Chapter 4                                                                                 Diagenesis and reservoir quality 
____________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   120 
 

values that range between -1.78‰ and +3.18‰, whereas the δ
18

O values reveal a wider 

range between -6.83‰ and +1.15‰. 

In well no.9, in the Dahra West Field, the base of the cored interval of the Dahra 

Formation is characterized by a pronounced negative excursion in the δ
18

O values from 

-2.39‰ to -6.14‰ and a slight negative excursion in the δ
13

C values from +3.18‰ to 

+2.56‰ (Fig. 4.12). The negative values of δ
18

O could indicate the effects of meteoric 

diagenesis or burial diagenesis from the more negative isotopic composition of 

freshwater on the one hand or the higher temperature during burial 

cementation/alteration on the other. The presence of ferroan calcite cement in this 

interval, which is a foraminiferal packstone facies could strongly suggest the second 

interpretation, since the late blocky ferroan calcite filling residual pore spaces has 

negative δ
18

O (Irwin, Curtis & Coleman, 1977; Hudson, 1975). Tucker and Wright 

(1990) have also pointed out that burial calcite spar is generally more depleted in
18

O 

than marine or earlier meteoric cements. 

A positive excursion, which is more obvious in the δ
18

O, is recorded in the upper 

part of the Dahra Formation in this well (no.9). The δ
18

O values change from -4.37‰ to 

-2.11‰ and the δ
13

C values slightly increase from +1.29‰ to +1.58‰ (Fig. 4.12). This 

pattern in the δ
18

O could indicate an upward trend to less meteoric alteration and the 

preservation of marine values. The low positive carbon values could also be marine 

signatures, or the reflection of weak meteoric alteration, as it quite usual to find that 

original δ
13
C signatures are retained during diagenesis, while δ

18
O values become 

lighter (Tucker and Wright, 1990). Marshal and Ashton (1980) have also pointed out 

that precipitates from sea water generally have an equilibrium isotopic composition, 

with low positive δ
13
C and low negative values for δ

18
O. 

 

In well no.8, in the Dahra East Field, an obvious negative excursion occurs at 

3249 feet (Dahra Fm) where the δ
18

O value is -5.98‰, and the δ
13

C value is +2.65‰ 

(Fig. 4.13). This could suggest an influence of meteoric diagenesis, or more likely a 

degree of dolomite precipitation during burial. 

A positive excursion occurs in the uppermost part of the Dahra Formation in this 

well, where the δ
18
O and δ

13
C values increase from -3.79 ‰ to +1.15‰ and from -1.83 

‰ to +1‰, respectively (Fig. 4.13). This interval is occupied by dolomitic, slightly 

bioturbated wackestone facies that is characterised by the development of desiccation 
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cracks and fenestrae. These features indicate subaerial exposure and with the positive 

δ
18

O the dolomite here could be a near-surface precipitate from seawater.  

The carbon isotope values of the Zelten and Harash Formations on the Dahra Platform 

in the east and west fields are quite similar and confined to a narrow range between 

+2.22‰ to +3.86‰. An exception to this is at a depth of 2742ft in the Zelten Formation 

(well no. 9) where a value of – 0.9‰ is obtained. The oxygen isotope values range from 

-10.49‰ to -2.21‰ (Figs. 4.12- 4.14).  

At the Zelten /Harash boundary the δ
18

O is -2.71‰ and δ
13

C is +3.48‰ in well 

no 9, and -4.28 ‰ and +3.07‰ in well no 8. The carbon isotope values are typical, 

probably original marine values, whereas the δ
18

O values could indicate less diagenetic 

alteration upwards, possibly as a result of more arid climate, when meteoric diagenesis 

would have been limited. Marshall and Ashton (1980) pointed out that precipitates from 

sea water generally have an equilibrium isotopic composition with low positive δ
13

C 

and low negative value for δ
18

O. 

The most negative values recorded in the studied section of Zelten/Harash 

Formations are at depth of 2742 ft in well no 9, where the δ
18

O decreases from -5.00 ‰ 

to -10.49 ‰, and the δ
13

C reduces from +3.8‰ to – 0.90 ‰ (Fig. 4.14). It seems that 

these values, if they are accurate, are too negative for meteoric water and thus could 

represent high temperature phase of probably burial diagenesis, which most likely 

ascribed to the presence of burial calcite. Moreover, the lowering of the sea-level that 

occurred just few feet below this interval (Appendix. 1) strongly suggests burial 

diagenesis. The stable oxygen and carbon isotopes for the two analysed wells on the 

Dahra Platform are shown in figure 4.14. 

On the Dahra Platform the overall δ
13
C and δ

18
O values show fairly similar 

trends in the Dahra and Zelten/Harash Formations in wells no. 8 and 9, respectively 

(Figs. 4.12 and 4.13). This coincidence of δ
13
C and δ

18
O trends are generally considered 

to reflect late diagenetic over-printing caused either by interaction with meteoric ground 

waters or by dissolution and recrystallisation at higher temperatures during burial 

diagenesis (Sakai and Kano, 2001; Keller et al., 2004). 
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Figure 4.12 Carbon versus oxygen isotopes of the studied Selandian/Thanetian succession in well no. 9 on the 

Dahra Platform.  A: Zelten and Harash Formations; B: Dahra Formation 
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Figure 4.13 Carbon versus oxygen isotopes of the studied Selandian/Thanetian succession in well no. 8 on the 

Dahra Platform.  A: Zelten and Harash Formations; B: Dahra Formation. 
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Figure 4.14 Oxygen and carbon isotopes for the Zelten and Harash Formations (A & B) 

and Dahra Formation (C & D) inWest and East Dahra Fields onthe Dahra Platform. 

 

 

The overall isotope values of the Mabruk Member in the Dor al Abid Trough 

range from δ
18

O -5.45‰ to -0.77 ‰, and δ
13

C 0.00‰ to +3.04‰ (Fig.  4.17). 

Pronounced negative excursions occur in the lower and upper parts of the cored section 

of wells no. 66 and 103, respectively, where the isotopic values changed dramatically 

from δ
13

C + 0.87 ‰ to – 6.31‰ and δ
18

O from -4.94 ‰ to -7.68 ‰ in the former well, 

and from -3.87 ‰ to -7.66 ‰ and from +1.15‰ to -4.87‰ in the later (Fig. 4.15). 

These values in both wells are most likely rogue values (off analyses), as they seem not 

part of the trend. Alternatively, they may represent deep burial calcite or dolomite. 

A clear negative excursion occurs in the middle interval of the Upper Mabruk in 

well no. 105, where the oxygen isotope values reduced from -2.48‰ to -5.45‰ and the 

carbon isotope values depleted from +2.23‰ to +1.63‰ (Fig. 4.16). The whole interval 

(3722 - 3743ft) is characterized by more negative oxygen isotope values and less 

positive carbon isotope values. This (interval with more negative oxygen values) could 
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suggest there may have been differences in sea-surface temperatures and/or SMOW at 

the time of deposition, compared to modern values, or that the values are due to either 

more intense meteoric diagenesis and/or relatively high temperatures during the 

precipitation of burial diagenesis cement.  

A coincidence trend, similar to that on the Dahra Platform, has occurred in the  

δ
13
C and δ

18
O values in the Mabruk Member in the Dor al Abid Trough, particularly in 

well no.105 (Figs. 4.15 and 4.16). It is probably ascribed to interaction with meteoric 

ground waters or to dissolution and recrystallisation during burial diagenesis as 

suggested by Sakai and Kano (2001) and Keller et al. (2004). 
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Figure 4.15 Stable oxygen and carbon isotopes for the Mabruk Member in Dor al Abid Trough. Wells no. 66 and 103 (reef area). 
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Figure 4.16 Stable oxygen and carbon isotopes for the Mabruk Member in Dor al Abid 

Trough.  Well no. 105, back-reef area (lagoon). 

Mabruk, Well 105 

δ18OV-PDB 
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Figure 4.17 Stable oxygen and carbon isotopes for the Mabruk Member in the Dor al 

Abid Trough. Well no. 66, reef area; well no. 103, reef area, and well no. 105, back-reef 

area (lagoon). 
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4.3.2. Fluid Inclusion results 

As previously stated the fluid inclusion analysis has been conducted by Fluid 

Inclusion Technologies, Inc. at its head office in Oklahoma, U.S.A. Ten selected 

samples from two wells on the Dahra Platform (wells no. 8 and 9) were sectioned and 

then examined under a petrographic microscope (Tables 4.1 and 4.2). Based on the 

petrographic examination, 4 samples were further analysed to determine the 

homogenization temperature of petroleum and aqueous inclusions, melting temperature 

of aqueous inclusions and salinity (wt %) (Tables 4.3 and 4.4). 

The petrographic investigation of these samples revealed that inclusions range 

from absent through rare to common, with blue, yellow to white fluorescent. Three 

samples from the Dahra Formation in well no. 8, however, did not show any visible 

liquid petroleum inclusions in slightly porous dolomitic mudstone ( sample no. 25), 

porous packstone (sample no.29), and marginally porous wackestone/packstone (sample 

no.58) (Table.4.1). In addition, no visible oil inclusions were identified in porous 

grainstone (sample no.34), slightly porous and dolomitic packstone (sample no. 39), or 

fairly porous grainstone (sample no. 52) in the Dahra Formation from well no. 9 (Table 

4.2). 

Sample no. 49, which was located in the Dahra Formation in well no. 8 at a 

depth of 3229ft, comprises several occurrences of white fluorescent inclusions within 

porous and dolomitic grainstone (Fig. 4.18 and Table 4.3), whereas sample no. 46 of the 

Dahra Fm in well no. 9, at a depth of 3216ft, contains several to common occurrences of 

blue fluorescent inclusions in porous and bioturbated grainstone (Fig. 4.18 and Table 

4.3). Visual abundance is marginally high enough to suggest an oil column or palaeo-

column at this depth.  In the Zelten Formation, well no. 8 at a depth of 2788ft (sample 

no. 21), high oil saturation is detected (an oil column or palaeo-column), which contains 

high visual abundance of yellow fluorescent inclusions in non-porous 

wackestone/packstone (Fig. 4.19 and Table 4.4). The Harash Formation in well no. 9 

(sample no. 13), on the other hand, reveals rare to several, white fluorescent inclusions 

in non-porous packstone (Fig.4. 19 and Table 4.4). 

Detailed analyses of these inclusions show that the homogenization temperature 

from hydrocarbon inclusions in the succession as a whole ranges between 48 and 67⁰C 

and the homogenization temperature from aqueous inclusions is from 59 to 90⁰C (Fig, 

4.20). The homogenization temperature from hydrocarbon inclusions in the Dahra 
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Formation ranges between 54 and 67⁰C, in Zelten Formation between 48 and 57⁰C, and 

in Harash Formation is 60⁰C. The homogenization temperature of aqueous inclusions 

could not be recorded in the Dahra Formation, in the Zelten it is 59⁰C, and in the Harash 

it ranges between 67 and 90⁰C. The melting  temperature of aqueous inclusions in 

Zelten Formation is -10.5⁰C, and in the Harash Formation range from -21.2 to -4.1⁰C 

(Tables. 4.3 and 4.4). It could not be recorded in the Dahra Formation. It is clear that the 

homogenization temperature of the aqueous inclusions is higher than that of the 

petroleum inclusions in the Zelten Formation, and is much higher in the Harash 

Formation; this might also have been the case in the Dahra Formation. This could 

suggest two phases of calcite precipitation, an earlier, shallow burial one coinciding 

with some hydrocarbon generation and another later, somewhat deeper phase of calcite 

precipitation.  

Petrographic investigation has resulted in the recognition of mainly two types of 

equant calcite cement; equant sparry calcite and coarse ferroan calcite. Petrographic 

relationships also indicate that both types of calcite cement are relatively late diagenetic 

phases, after compaction and grain fracturing (during mesogenetic phase).  

The fluid inclusion data from the studied wells show that the fluids as a whole 

attained temperatures range between 48 to 90⁰C, with the homogenization temperature 

from aqueous inclusions is from 59 to 90⁰C (Fig, 4.20). The geothermal gradient in the 

Sirt Basin, according to Hallett (2001), averages 25.5⁰C/km. The average geothermal 

gradient in the Sirt Basin is around 2.2⁰C/100 metres (~6.6⁰C/1000 feet) and the surface 

temperature is about 29⁰C (Gumati and Schamel, 1988) (Fig. 4.21). This suggests that 

the depth of calcite cementation ranged from ~4500 to ~9300 ft. However, Gumati and 

Schamel (1988) pointed out that the geothermal gradient in the basin varies between the 

troughs and the platforms and suggested that this variation is related more to thermal 

conductivity than to the depth of burial. Bearing in mind that these rocks (Zelten and 

Harash Fms) now exist at depths ranging from 2600-2900 feet, the features of the 

calcite cement suggest that precipitation took place at fairly shallow depths, since there 

is only limited chemical compaction and stylolitization, and the porosity has not been 

totally destroyed. The cementation is not complete- although it is possible that quite 

early oil entry prevented full cementation. 
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Table 4.1 Fluid inclusion petrography from the Dahra and Zelten Formations in well no. 8, the Dahra Platform. 
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  Table 4.2  Fluid inclusion petrography from the Dahra and Harash Formations in well no. 9, the Dahra Platform. 
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The degree of thermal maturity of the Upper Cretaceous shale, the regional 

structure, and the subsidence history of the basin all indicate that over 3,000ft of section 

was removed from the western flank of the Sirt Basin by uplift and erosion in the mid-

Tertiary (Gumati, and Schamel, 1988). Assuming that the highest temperatures of 

homogenization for aqueous inclusions recorded in the studied samples (90
o
C) represent 

conditions at near maximum burial, then palaeogeothermal gradients must have been 

much higher than at present (22
o
C/km or 25

o
C/km), and it supposed to be >70

o
C/km, 

and/or that the Paleocene sediments were buried deeper for a time (~9300 feet).i.e. the 

Mid-Tertiary uplift was actually associated with significant erosion. Supposing that the 

above temperature is an error measurement, a 59
o
C has been also recorded in the middle 

part of the Zelten Formation in well no. 8. Although it is still higher than the 

temperature expected, taking into account the present day geothermal gradient, a 

proposed burial diagram of the Thanetian succession in the study area has been 

constructed (Fig. 4.22).   

In the absence of igneous activity in the immediate area, the relatively high 

temperatures indicated by some fluid inclusions in the studied succession on the Dahra 

Platform is probably due to low sedimentation rates and the high thermal conductivities 

of carbonates, and/or fluid flow from deeper parts of the area. 

The fluid inclusions in the Zelten/Harash succession have salinities ranging 

between 6.6 and 23.1 wt% NaCl, which is up to five times more saline than normal sea 

water. Such fluids may represent sea water and/or more likely evaporated sea water 

from a lagoonal setting or mixing with subsurface brine. Application of fluid inclusion 

results and other analytical techniques, along with the wireline logs in the burial history 

of the studied rocks are dealt with in detail in Chapter 6. 
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Figure 4.18 A-C (left column) several white fluorescent, unknown gravity oil inclusions in 

bioclastic foraminiferal grainstone microfacies, Dahra Formation in East Dahra Field, Dahra 

Platform, Well no. 8 (3229 ft); A-C (right column) several to common occurrences of blue 

fluorescent, unknown gravity petroleum inclusions in porous bioclastic foraminiferal grainstone 

microfacies, Dahra Formation in West Dahra Field, Dahra Platform, Well no.9 (3216 ft). 
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Table 4.3 Fluid inclusion results of sample no. 49, the Dahra Fm, Well no.8 (A), and 

sample no. 46, the Dahra Fm, Well no. 9 (B). 

 

A  

Table 1: 
Kanooni-1; 49 

 Well no.8 – 
3229 (D) 

 

Population 
Fluor 
Color 

Th hc 
(°C) 

API hc 
(°) 

Th aq 
(°C) 

Tm aq 
(°C) Sal (wt%) 

pr/sec; cc wt 63 (1) 
    

pr/sec; cc wt 60 (1) 
     

B 

Table 2: 
Kanooni-2;  46 

 Well no.9 -
3216 (D) 

 

Population 
Fluor 
Color 

Th hc 
(°C) 

API hc 
(°) 

Th aq 
(°C) 

Tm aq 
(°C) Sal (wt%) 

pr/sec; cc bl 59 (2) 
    

pr/sec; cc bl 54 (1) 
    

pr/sec; cc bl 67 (1) 
     

Legend 

 

 

 

 

 



         Chapter 4                                                                              Diagenesis and reservoir quality 
____________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                 136 
 

 

Figure 4.19 A-C (left column) abundance of yellow fluorescent, unknown gravity oil inclusions 

in porous bioclastic wackestone/ packstone microfacies, Zelten Fm, Well no. 8 (2788 ft);  A-C 

(right column) rare to several white fluorescent, unknown gravity oil inclusions in dolomitic 

bioturbated bioclastic packstone microfacies, Harash Fm, Well no.9, (2698 ft). 
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Table 4.4  Fluid inclusion results of sample no. 21, Zelten Fm, Well no.8 (A), and 

sample no. 13, the Harash Fm, Well no. 9 (B). 

 

A 

 
Table 3:  
Kanooni-1; 21             

Well no. 8 – 
2788 (Z)              

Population 
Fluor 
Color 

Th hc 
(°C) 

API hc 
(°) 

Th aq 
(°C) 

Tm aq 
(°C) Sal (wt%) 

pr/sec; cc yl 57 (1)         

pr?/sec; cc yl 48 (1)         

pr?/sec?; cc       59 (1) -10.5 14.5 

 

B 

Table 4:  
Kanooni-2;  13             

Well no. 9 – 
2698  
(H)              

Population 
Fluor 
Color 

Th hc 
(°C) 

API hc 
(°) 

Th aq 
(°C) 

Tm aq 
(°C) Sal (wt%) 

pr/sec; cc wt 60 (1)   90 (1) -4.1 6.6 

pr/sec; cc       67 (1) N/A N/A 

pr; cc       70 (1) -21.2 23.1 

 

Legend 
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Figure 4.20 Homogenization temperature of petroleum inclusions (A) and 

aqueous inclusions (B) against frequency in the Selandian /Thanetian 

succession ( Harash, Zelten and Dahra Formations). 



         Chapter 4                                                                              Diagenesis and reservoir quality 
____________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                 139 
 

      
A 

 

 
B 

 

Figure 4.21  A) Geothermal gradients posted on well locations for the Sirt Basin; B) 

Burial history curve of well no.3Q1-11 in the Zella Trough, western Sirte Basin 

(Gumati and Schamel, 1988). 
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Figure 4.22 Proposed schematic burial diagram of the Thanetian succession in the study 

area. 

 

 

4.4. Diagenetic interpretation and paragenesis 

As shown in the previous section, the studied interval of the Paleocene 

succession has been subjected to a complex series of post-depositional changes from the 

time of deposition up to the present day. 

The relative timing of diagenetic features and diagenetic stagesof the 

Selandian/Thanetian carbonates has been considered on the basis of petrographic 

observations, cross-cutting relationships among depositional and diagenetic fabrics, and 

geochemical analyses. 

Evidence of the early marine sedimentation and diagenesis is recorded almost 

throughout the studied sections and is represented by boring of some bioclasts, 

microbial micritization and formation of micritic envelopes and burrowing. 

Precipitation of isopachous marine fibrous calcite cement around various carbonate 

grains has resulted in the preservation of primary intergranular porosity in the Dahra 

Formation. In addition, positive values of δ
13
Cand rather low negative δ

18
O in the 
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Dahra, Mabruk and Zelten/Harash formations strongly support diagenesis in the marine 

realm.  

The succession has also been affected by meteoric diagenesis on both structures; 

the Dahra Platform and Dor al Abid Trough. Neomorphism, dissolution, equant sparry 

calcite and syntaxial rim cement precipitations, along with clay minerals and hematite 

probably all took place in the meteoric zone. Probably the most characteristic vadose-

diagenetic or pedogenic feature in the studied samples is the meniscus cement, which 

occursin the upper part of the Dahra Formation in well no.7 on the Dahra Platform. 

Extensive dissolution of unstable grains has been witnessed at several intervals in the 

Dahra, Mabruk, and Zelten/Harash Formations. The original aragonitic, and probably 

some high Mg-calcite grains, together with some matrix, have commonly been 

dissolved and replaced in the upper part of meteoric phreatic environment (zone of 

active circulation), where the meteoric waters are strongly undersaturated with respect 

to the metastable carbonate species.  

Under cathodoluminescence, the equant calcite and syntaxial rim cement 

crystals are largely non-luminescent to dull (weak) luminescent. Clay minerals, which 

are dominated by kaolinite could reflect an influx of riverine clastics through a minor 

sea-level fluctuation. Hematite, however, occurs in association with desiccation cracks, 

fenestrae and rootlets in dolomitic, brecciated and mottled fabcies. These features, 

which occur in the Dahra Formation and in the lower part of the Zelten Formation, 

provided additional strong evidence of exposure (palaeosoils). The isotopic signature in 

well no. 8, however, support this interpretation as its δ
13
C and δ

18
O values increased 

from -1.83‰ to +1.0‰, and from -3.79‰ to +1.15‰ respectively.  

The precipitation of coarse ferroan calcite and coarse, locally saddle, dolomite 

cements, fracturing, formation of pressure dissolution seams and sylolites are the main 

evidence that burial diagenesis affected the Selandian/Thanetian carbonates in the study 

area. Although high ferrous iron content can exist in early cements formed in near-

surface anoxic conditions, it is more common in burial equant spar calcite cements 

(Scholle and Halley, 1985). The medium to coarsely crystalline dolomite has two 

luminescence characters; inner weakly to non-luminescent and thin outer slightly bright 

orange zones. The saddle dolomite is commonly associated with hydrocarbons and this 

has been used to suggest that it forms within the oil window, at temperatures of 60-

150⁰C (Radke and Mathis, 1980).Fluid inclusion results show that the homogenization 
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temperature from petroleum inclusions in the studied section ranges from 48-67⁰C, and 

the homogenization temperature of aqueous inclusions ranges from 59–90⁰C. This 

could indicate two phases of burial calcite precipitation during the rock history in the 

area. The average crystal size of the coarse dolomite (200-400 µm) may thus suggest 

significant depth of formation and relatively slow growth rate. The occurrence of coarse 

saddle dolomite probably suggests precipitation in a late deep burial mesogenetic stage, 

which in turn, has prone to alteration (dissolution) for meteoric waters in the course of 

telogenesis (during Mid Tertiary). 

The above mentioned diagenetic events and their diagenetic environments can 

be summarised as follow (Fig. 4. 23): 

 

Marine Environment 

- Microbial micritization and borings 

- Isopachous rim cement 

- Glauconite, pyrite and phosphate 

- Dolomite? 

Meteoric Environment 

- Neomorphism 

- Dissolution 

- Meniscus cement 

-  Equant calcite cement 

 - Syntaxial overgrowth cement 

- Dolomitization 

- Clays and iron minerals 

Burial Environment 

 - Coarse calcite cement 

 - Dolomite cement 

 - Dissolution? 

 - Fracturing 

 - Solution seams and stylolitization 

- Hydrocarbon entry 
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Figure 4.23 Main diagenetic events and environments of the Selandian/Thanetian 

carbonates in the study area. 
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4.5. RESERVOIR QUALITY 

Carbonate reservoirs are characterised by extremely heterogeneous porosity and 

permeability on a number of scales - from the km-scale first-order heterogeneities of 

stratigraphic packages to the microscopic grain scale. These heterogeneities are 

dependent on the environment of deposition of the carbonate facies and on the 

subsequent diagenetic alteration of the original rock fabric (Allen and Allen, 1990). 

Diagenetic processes affect the reservoir quality in two ways: positive diagenetic 

processes which include the dissolving activity of meteoric water, dolomitization, 

decarboxylation, stylolite formation, fracturing, and the migration of oil; and negative 

processes which include compaction, internal sedimentation, pressure dissolution, and 

cementation (Cook, 1983). In this section the distribution of porosity and permeability 

in the studied succession is dealt with through both petrographic examinations and 

petrophysical analysis. 

 

4.5.1. Porosity and permeability distribution in the Selandian/Thanetian 

Carbonates 

In this section, the two main reservoir parameters (porosity and permeability) of 

the studied succession will be discussed through core sample (hand specimen) 

inspection, thin -section observations, core analysis results, and scanning electron 

microscope examination. In this section the succession is dealt with as two separate 

intervals on the Dahra Platform; the lower is represented by the Dahra Formation and 

the upper signifies the Zelten/Harash interval. The Mabruk Member in the Dor al Abid 

Trough is considered independently. 

4.5.1.1. Petrographic observations 

The carbonate facies of the Dahra Formation on the Dahra Platform are 

separated locally by thin beds of shale and marl/argillaceous limestones that act as 

permeability barriers and these compartmentalize the formation into several major 

reservoir units. Macroscopic and microscopic investigations revealed that the porosity 

types developed in the Dahra Formation are dominated by mouldic,vuggy, intergranular 

and intragranular types, with less common fracture and intercrystalline porosity (Table. 

3.2).  

The primary intergranular and intragranular porosity have been observed at 

many intervals within the Dahra Formation in both; the Dahra West and East Fields. 
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 The best primary porosity is developed in bioclastic grainstone and bioclastic 

foraminiferal packstone-packstone/grainstone facies, where it ranges from negligible to 

poor (5–10%). The intragranular type of porosity is commonly developed within both 

the skeletal and non-skeletal carbonate grains, in particular foraminifera and coated 

grains (Figs. 3.2A, 3.6 A&B, 4.4A). Primary porosity is commonly negligible (˂5%) in 

the rest of facies as a result of precipitation of equant calcite, Fe-rich calcite, dolomite 

and syntaxial rim cements. The intragranular porosity is developed locally in certain 

layers and as isolated pores; hence its contribution to Dahra reservoir quality overall 

seems insignificant. Intergranular porosity, on the other hand, which is negligible as 

well, appears to have provided pathways for undersaturated fluids to pass through the 

sediment and thus create secondary dissolution porosity (Figs. 4.1B & 4.3C). 

Intercrystalline porosity occurs wherever dolomite is present; in completely 

dolomitized facies and, less importantly, in partially dolomitic limestone facies. It is the 

main porosity type, along with moldic, in the dolomitic mudstone facies (Fig. 4.6A). 

Dolomite-dominated cycles are relatively thin in relation to limestone-dominated 

cycles; they generally have fair to good porosity even in the mud-supported intervals, 

reaching to 20 % in some cases (Appendix 1). This is probably related to dolomitization 

leading to an increase in the particle/crystal size, an increase in pore volume due to a net 

addition of dolomite, the development of moldic pores and an increasing resistance to 

compaction (Lucia, 1999).  

Selective dissolution of aragonite and possibly high Mg-calcite grains, along 

with some matrix, has resulted in the formation of moldic and vuggy porosity; this is 

clearly observed in both hand-specimen and thin-section. This secondary porosity is 

widespread in the Dahra Formation and occurs in many facies in different proportions, 

and usually in association with primary inter and intra-granular porosity. Its highest 

value occurs in grain-supported facies, where it reaches 15% (i.e. fair). 

The non-fabric selective type of porosity that cuts across the fabric elements of 

the rock, namely fracture porosity, has developed locally within the Dahra Formation 

and is well developed in some wells. A network of open microfractures that were 

connected to each other developed notably within marl/argillaceous limestone intervals 

in two wells (Fig. 4.9A). According to the petrographic observations and cross-cutting 

relationships, this type of porosity developed at different stages of the sediment history; 

i.e. during the early stages of compaction at shallow burial depths. Fracturing of grains 
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and substrate has occurred, especially in the packstone/grainstone facies (Fig. 4.8C). 

Networks of microfractures that interconnect different types of porosity have also been 

observed in the Dahra Formation. They are commonly open, narrow and short, and 

locally associated with stylolites (Fig. 4.8 H). Thus it most likely developed at later 

stages and during relatively deep burial. Partly open and relatively wide fractures and/ 

or veins have also been observed at a few intervals in the Dahra Formation. The 

contribution of the fracture porosity as a whole to the reservoir quality of the Dahra 

Formation seems only locally significant. 

Microporosity; refers to that type of porosity which cannot be observed under 

the light microscope, thus the SEM was the only method by which this type of porosity 

has been observed and described. Several terms have been used in the literature, such as 

matrix microporosity, chalky porosity, intramicrite porosity, and pinpoint porosity. It 

has been developed in the Dahra Formation, particularly in wells no. 8 and 9, and 

occurs as intercrystalline micro-voids between subhedral to anhedral micrite, 

microsparite and/or dolomite crystals (Fig. 4.3). It is usually moderately connected 

through relatively narrow pore throats, but locally it is almost completely isolated. The 

shape of micrite crystals, however, is generally fairly rounded with a degree of etching. 

The development of this kind of porosity may be attributed to re-arrangement of the 

original mud grain in the sediment, which can result in a change in the crystal form or, 

most likely in this case, to dissolution of the outer parts of micrite crystals (Fig. 4.3). In 

view of relatively narrow pore throats, which may affect the permeability, the 

contribution of the microporosity to the reservoir quality of the Dahra Formation seems 

unimportant. 

The best observed porosity in the Dahra Formation is within the bioclastic 

foraminiferal packstone/grainstone facies in almost all of the studied wells. It is 

averaging 20-25% in well no. 9, and 15-20% in well no. 8. Most of it is secondary in 

origin and commonly occurs in the upper parts of shallowing-upward cycles (Fig. 4.33 

&Appendix. 1). This is probably related to meteoric influence during minor sea-level 

fluctuations. Increased porosity near the top of the Dahra Formation may be related to 

uplift and meteoric exposure during the Mid Tertiary. The latter is evidenced by the 

dissolution of the late coarse dolomite crystals (Fig. 4.3F). A notable feature in the 

Dahra Formation is that wherever primary porosity has been preserved, secondary 

porosity is also better developed. The degree of early cementation in the grain-
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supported facies does have a major effect on later compaction; moderate early cement, 

preserving some useful primary porosity, may render a carbonate less likely to porosity 

loss during burial (Tucker, 1993). There is no apparent relation between observed 

porosity and depth (Fig. 4.24). Thus overall, it can be concluded that the porosity 

evolution in the Dahra Formation was controlled by the original depositional texture, 

subsequent diagenesis and the pattern of carbonate cycles (Fig. 4.33). 

 

 

A      B 

 

 

Figure 4.24  Depth-porosity (observed)  relationship for the cored section of the Dahra 

Formation in well no. 8 (A) and well no. 10 (B). The facies types are also shown. 

BFG = Bioclastic foraminiferal grainstone 

FBW-W/P = Foraminiferal bioclastic wackestone-wackestone/packstone 

BFP-P/G = Bioclastic foraminiferal packstone-packstone/grainstone 

DM = Dolomitic mudstone 
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The thin-section porosity in the Zelten/Harash interval is generally low, 

particularly in the Harash Formation (Fig. 4.25). The Zelten Formation, however, has 

marginally better porosity, especially in the grain-dominated facies. The best porosity in 

the Zelten Formation isdeveloped in the bioclastic foraminiferal packstone-

packstone/grainstone and, less important, foraminiferal nummulitic packstone facies, 

where it ranges from fair to good and locally reaches very good, especially in well no. 

10. The rest of the facies, which are mud-supported commonly have negligible or even 

zero porosity. A notable feature is that the least estimated porosity in the grain-

supported facies is mostly recorded wherever echinoderm fragments are relatively 

common. This is probably owing to the development of overgrowth cement around 

echinoderms; this type of cement can grow faster than polycrystalline cements, since the 

latter require nucleation, whereas the echinoderm itself provides an existing calcite 

lattice substrate (Evamy and Shearman, 1965). 

By way of contrast in the central and eastern parts of the Sirt Basin the Zelten 

Formation has good porosity and permeability and hence it is the main reservoir in the 

Zelten Field. It experienced porosity enhancement due to groundwater leaching, and 

secondary porosity as high as 40% has been reported from bioclastic grain-supported 

facies (Bebout and Pendexter, 1975). The reservoir quality of the Harash Formation in 

that area is also fairly good and thus it represents the primary reservoir in the Harash 

Field. 

Although there is also no clear relation between the observed porosity and depth 

within the Zelten/Harash interval (Fig. 4.25), it is obvious that generally the same 

carbonate facies within the studied Paleocene succession have the best reservoir 

properties. 

The overall reservoir quality of the Zelten/Harash Formations in the study area 

is low. This is owing to the presence of mud-supported facies throughout the cored 

interval, the occurrence of argillaceous materials within the grain-supported facies, 

fairly extensive compaction, and less important calcite cementation (Table 3.2)  
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A      B 

 

 

Figure 4.25 Depth/porosity (observed) relationship of the cored section of Zelten 

(Z)/Harash (H) Formations in well no.7 (A) and well no9 (B). 

 

Thin beds of shale and marl/argillaceous limestone separate the Mabruk 

Member into several reservoir units. The reservoir quality of the Upper Mabruk 

Member in the Dor al Abid Trough varies from west to east across the area. In the 

western area, the lower part of the member is characterised by a few tens feet of 

NP = Nummulitic packstone 

FBW-W/P = Foraminiferal bioclastic wackestone-wackestone/packstone 

BFP-P/G = Bioclastic foraminiferal packstone-packstone/grainstone 
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bioclastic foraminiferal wackestone/packstone with very good vuggy and moldic 

porosity.In the Eastern Mabruk Area, particularly in wells no. 66 and 105, the best 

observed porosity is recorded in the bioclastic foraminiferal packstone-

packstone/grainstone facies, where it ranges from fair to good, locally very good, of 

intergranular, intragranular, moldic, vuggy and channel and/or fracture types (Fig. 4.26). 

The bioclastic boundstone facies has commonly negligible porosity, except in 

two intervals in wells no. 66 and 103 (each is around 4 feet thick), where it ranges from 

poor to fair with mainly growth framework and microfracture pores. The observed 

porosity in the algal packstone facies, which developed in wells no. 66 and 103 only, is 

usually poor and represented mainly by inter, intra-granular (growth framework) and 

fracture types.  

 

 

Figure 4.26 Bioclastic foraminiferal packstone-packstone/grainstone facies showing 

good to very good intergranular, intragranular, moldic, vuggy and fracture porosity (A 

& B), Mabruk Mbr, Well no. 66 at 4270 and 4275 ft, respectively; Fair to good 

intragranular, moldic and channel porosity (C & D), Mabruk Mbr, Well no. 105 at 3726 

and 3727 ft, respectively. 
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4.5.1.2. Petrophysical analysis  

As noted above, heterogenity in the porosity and permeability of carbonate 

reservoirs varies from km-scale to microscopic grain scale. It is controlled by the 

original depositional environment and the subsequent diagenetic alteration of the 

original rock fabric. Lucia (1999) pointed out that porosity-permeability cross-plots for 

carbonate reservoirs commonly show a large variability, and there is usually no 

relationship between them, unless pore-size distribution (volume of interparticle pore 

space) is included in the analysis. Lucia demonstrated (1983) that three permeability 

fields can be defined using particle-size boundaries of 100 and 20µm, a relationship that 

appears to be limited to particle sizes of less than 500 m. The same author (1995) named 

these three fields as petrophysical class 1 (>100 µm), class 2 (100-20 µm), and class 3 

(<20 µm) (Fig. 4.27). The overall relation shows that the interparticle (intergranular) 

porosity increases as the particle-size decreases. This seems to be the case with the 

studied samples of the Mabruk wells- since the good porosity interval is associated with 

the grainstone/packstone facies and it is less well developed in the coarser fabric 

(boundstones).    

No petrophysical measurements of the Dahra, Zelten and Harash Formations in 

the studied wells were made available in this study and the petrophysical analysis of the 

studied samples of the Mabruk Member showed that the porosity values and types 

nearly match the estimated observed porosity.  

The measured porosity and permeability of the Mabruk Memberin the studied 

wells range from 2.4 to 28.4% and 0.02 to 290 mD, respectively. The relation between 

porosity and permeability in these wells varies somewhat, i.e. it shows a direct relation 

and noticeable linear trend in wells no. 66 and 105, and a less pronounced trend in well 

no. 103 (Figs. 4. 28C, 29C, 30C, and 4.31). This may signify that the pore throats in the 

first two wells are probably wide enough to permit the fluids to pass through them, and 

hence improved the permeability, whereas in the latter well, these throats are possibly 

narrow, and thus their contribution to the permeability of the Mabruk rock is 

insignificant. Also the presence of microporosity in isolated pores is probably an 

additional reason for that.   

The best porosity in the studied wells of the Mabruk Field is recorded in well no. 

105, which is located on the southern part of the East Mabruk Area, and represents a 

back-reef/lagoon setting, whereas the reefal area wells (no. 66 and 103) show lower 

http://www.beg.utexas.edu/lmod/_IOL-CM07/cm07-glos.htm#petrophysical_class


         Chapter 4                                                                              Diagenesis and reservoir quality 
____________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                 152 
 

porosity values (Fig. 4. 32). The measured porosity in well no. 105, however, ranges 

from 3.7 to 27.2% and permeability from 0.05 to 95.4mD, with an average porosity of 

about 15% (fair to good) and the average permeability around 17mD (good). The best 

measured porosity in this well is developed in the bioclastic foraminiferal packstone-

packstone/grainstone facies and bioclastic foraminiferal grainstone facies. The main 

porosity types in these facies are intragranular and moldic with less important 

intergranular and microfracture, despite many of it, particularly moldic and fracture, 

abeing occluded partly or completely by sparry calcite, coarse calcite and saddle 

dolomite cement, and rarely by anhydrite (Fig. 4. 6 G&H). The lowest porosity values 

in this well are recorded in the foraminiferal bioclastic wackestone-

wackestone/packstone facies (Fig. 4.28 A&B). 

 

 

Figure 4.27 Porosity- air permeability relationships for various particle-size groups in  

 non-vuggy carbonate rocks (Lucia, 1983).  
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In well no. 66, the measured porosity and permeability ranges from 5 to 28% 

and 0.02 to 290mD, respectively, with the average porosity around 10% (fair) and the 

average permeability at 10mD (good). The good to very good measured porosity is 

developed in bioclastic foraminiferal grainstone facies (its average = 20%), whereas the 

bioclastic foraminiferal packstone-packstone/grainstone, bioclastic boundstone and 

algal packstone facies have fair (10-15%), poor (5-10%) and poor (8-10%) porosity, 

respectively (Fig. 4.29 A&B). The primary intergranular and secondary vuggy porosity 

are the most important contributors to the high porosity value in the bioclastic 

foraminiferal grainstone facies, despite the fact that they are completely blocked by 

sparry calcite cement at certain intervals (Fig. 4.4E). Intragranular and moldic porosity 

also developed but is less significant. 

The well no. 103, which is located in the central part of the Eastern Mabruk 

Area, relatively has the lowest reservoir quality among the studied wells. Its reservoir 

parameters range from 2 to 14% porosity with an average is about 7% (poor) and 0.04 

to 188mD permeability with an average of 6mD (fair). The best measured porosity in 

this well has been recorded in the algal packstone facies particularly at the depth 

interval between 3631-3636ft (Fig. 4.30 A&B), where the growth framework and 

fracture porosity are the most common types. The bioclastic boundstone facies 

commonly has negligible to poor porosity, especially at the uppermost interval of the 

cored section, where it is frequently less than 5%.  
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Figure 4.28 Depth-measured porosity relationship of the cored section of the Mabruk 

Member in the Dor al Abid Trough in well no. 105 with major facies shown (A); 

porosity versus depth of the various facies types (B), and a conspicuous linear trend in 

the relationship between measured porosity and permeability (C). 

 

 

 

 

 

 

BFG = Bioclastic foraminiferal grainstone 

FBW-W/P = Foraminiferal bioclastic wackestone-wackestone/packstone 

BFP-P/G = Bioclastic foraminiferal packstone-packstone/grainstone 
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Figure 4.29 Depth-measured porosity relationship of the cored section of the Mabruk 

Member in the Dor al Abid Trough in well no. 66 with major facies shown (A); porosity 

versus depth of the various facies types (B), and an obvious direct relationship between 

measured porosity and permeability (C). 

 

 

 

 

BB = Bioclastic 

boundstone 

 AP = Algal packstone 

BFG = Bioclastic foraminiferal 

grainstone 
BFP-P/G = Bioclastic foraminiferal packstone-

packstone/grainstone 
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Figure 4.30 Depth-measured porosity relationship of a cored section of the Mabruk 

Member in the Dor al Abid Trough in well no. 103 with major facies shown (A); 

porosity versus depth of the various facies types (B), and the relation between measured 

porosity and permeability (C). 

 

 

BB = Bioclastic 

boundstone AP = Algal packstone 

FBW-W/P = Foraminiferal bioclastic wackestone-

wackestone/packstone 
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Figure 4.31 Porosity-permeability relationships of the Mabruk Member in wells no. 66 

(A), 103 (B), and 105 (C). Note that direct relationships are distinct in A and C, whereas 

in B is is less well defined. 



         Chapter 4                                                                                                                                                                             Diagenesis and reservoir quality 
________________________________________________________________________________________________________________________ 
 

Ibrahim Elkanouni                                                                                                                                                                                                                             158 
 

 

Figure  4. 32 Compiled depth-porosity relationships and the porosity category (value) for each facies as a function of depth in the Mabruk 

Member in the studied wells. 
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Figure 4.33 Sedimentological core logs showing that depositional texture and the 

pattern of carbonate cycles, in addition to the diagenesis, all contribute to the porosity 

evolution in the Dahra Formation on the Dahra Platform. Well no. 8 and Well no. 9. 
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4.5.2. Summary 

The carbonates of the Dahra, Mabruk, Zelten and Harash Formations in the 

study area, were subject to a ranges of diagenetic processes which affected, in different 

ways, their composition, mineralogy, pore-throat system, and hence their reservoir 

potential. 

An early diagenetic seafloor process, boring,  has been recorded at several 

intervals inthe studied succession in both Dahra Platform and Dor al Abid Trough 

sediments, where microborers and macroborers attacked skeletons, carbonate grains 

and, locally, the micritic substrate within the Dahra, Mabruk and Zelten Formations. 

Neomorphism is not a widespread diagenetic processes in the studied interval, whereas 

burrowing is present throughout the studied section, particularly in the Dahra 

Formation, where it is locally extensive. Most of the burrows are flattened and oriented 

horizontally with some sub-horizontal or sub-vertical. Swirly structures and irregular to 

lined burrows have locally been recorded. 

Two major phases of dissolution occurred within the Paleocene succession. The 

first phase, which occurred in the zone of active circulation, caused the dissolution of 

the original aragonitic and probably high Mg-calcite grains, together with some matrix. 

The second phase of dissolution, probably a late event, burial and/or telogenetic resulted 

in the total leaching of probable sulphate minerals (gypsum-anhydrite) and the partial 

dissolution of medium to coarsely crystalline void-filling dolomite crystals.  

Isopachous calcite, equant sparry calcite, locally blocky, and syntaxial 

overgrowth cements are all documented. The shape and distribution of the isopachous 

cement along with its occurrence in a relatively less compacted fabric may suggest that 

it was possibly precipitated in a marine environment. The sparry calcite crystals 

commonly show a drusy mosaic, particularly where it occurs as a mold-filling cement. 

The coarse blocky calcite cement is usually ferroan and occurs mainly in the grain-

supported facies of the Dahra, Zelten and Harash Formations and in the boundstone 

facies of the Mabruk Member.  Its crystals range in size from less than 250 µm to more 

than 650 µm and it fills vuggy, moldic, fractures and intergranular porosities. Crescent-

shaped cement that concentrated at grain contacts (meniscus cement) has been 

documented within the bioclastic foraminiferal grainstone microfacies in the upper part 

of the Dahra Formation. The syntaxial overgrowths occur mainly within the grain-

dominated facies in the Dahra, Mabruk, and Zelten, and less commonly, in the Harash 

Formation. 
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Two types of dolomite have also been recognised, these are: very finely to 

medium crystalline (10-80µm) dolomite and medium tocoarsely crystalline (100-

600µm) dolomite. The former, which is early diagenetic in origin, replaces the micrite 

matrix and carbonate grains, and commonly shows loosely packed subhedral to anhedral 

crystals. The crystal size and its association with peritidal features suggest an early 

diagenetic origin. The coarser dolomite, which is commonly saddle type, occurs as 

pore-lining and/or filling cement and shows an inner weakly to non-luminescent and 

thin outer slightly bright orange zones. Its characteristics suggest precipitation in the 

late, deep burial mesogenetic stage. 

Local closer packing, deformation and fracturing of carbonate grains have been 

observed in almost all the studied formations in both geological structures. Most of 

these features probably occurred at shallow burial depths where the Upper Paleocene 

carbonates were semi-indurated. Dissolution seams that display fairly smooth, undulose 

seams of insoluble residue and usually pass between and around grains have been 

observed at many intervals. Large amplitude, small amplitude and swarms of stylolites 

are also developed at various intervals, especially in the packstone, grainstone and 

boundstone facies. Minor diagenetic events recognized in the studied succession include 

formation of authigenic pyrite, glauconite, hematite, phosphate, sulphates and clay 

minerals. 

The δ
18

O values recorded in the studied Paleocene succession range from -

10.5‰ to +1.15‰, whereas the δ
13

C measurements fall in the range -4.87‰ to +3.89‰. 

In addition to few a negative instances, specific intervals within the Dahra Formation 

show distinctive positive excursions, particularly in the δ
18

O, and these suggest a trend 

to less meteoric alteration and the preservation of marine values in the Dahra West 

Field, and subaerial exposure in the Dahra East Field. 

The general trend of the oxygen isotopic signature of Zelten and Harash 

Formations is positive, particularly in the Harash Formation. At the Zelten/Harash 

boundary, the carbon isotope values are probably marine, whereas the oxygen values 

could indicate the influence of a more arid climate. 

The overall isotope values of the Mabruk Member range from δ
18

O -5.45‰ to -

0.77‰, and δ
13

C 0.00‰ to +3.04‰.  They commonly followed the sedimentary facies, 

as the wells with reefal facies have similar isotope values, whereas the wells with 

lagoonal facies have a completely different trend.  
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Several occurrences of white, yellow and blue fluorescent fluid inclusions within 

the Dahra, Zelten and Harash Formations on the Dahra Platform have been documented. 

The difference in homogenization temperature between the aqueous inclusions and 

petroleum inclusions is interpreted in terms of two phases of calcite cementation. The 

highest temperatures of homogenization for aqueous inclusions recorded in the studied 

samples (90⁰C) could represent conditions at near maximum burial and thus the 

palaeogeothermal gradients must have been much higher than at present and/or that the 

Paleocene sediments were buried to a depth of ~9300 feet for a time. Alternatively, a 

passage of hydrothermal fluids from deeper parts, low rate of sedimentation and thermal 

conductivity of the carbonates can also responsible for the high temperature. The fluid 

inclusions in the Zelten/Harash succession have salinities ranging between 6.6 and 23.1 

wt% NaCl; such fluids may represent sea water and/or more likely evaporated sea water 

in a lagoonal setting or the mixing with subsurface brine.  

Macroscopic and microscopic investigations revealed that the porosity types 

developed in the Selandian/Thanetian succession are dominated by moldic, vuggy, 

intergranular and intragranular types, with less common fracture and intercrystalline 

porosity. The best porosity in the studied succession is recorded in the Dahra Formation, 

whereas the Mabruk Member, Zelten and Harash Formations have relatively lower 

porosity, particularly the Harash Formation. The best porosity is developed in the 

bioclastic foraminiferal grainstone, bioclastic foraminiferal packstone-

packstone/grainstone facies and, less important, foraminiferal nummulitic 

packstone,bioclastic boundstone and algal packstone facies. Although there is also no 

clear relation between the observed porosity and depth within the Selandian/Thanetian 

succession, it is obvious that almost the same carbonate facies all over the succession 

have the best reservoir properties. 

The relation between porosity and permeability in the Trough wells varies 

somewhat, i.e. it shows a direct relation and noticeable linear trend in some wells and a 

less pronounced trend in others. Overall, the porosity evolution in the 

Selandian/Thanetian succession is controlled by original depositional texture, 

subsequent diagenesis and the pattern of carbonate cycles. 
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CHAPTER FIVE: STRATIGRAPHY AND SEQUENCE STRATIGRPHY 

5.1. Introduction 

Stratigraphy can be considered as the relationship between rocks and time. 

Stratigraphic analysis of sedimentary basins is critical for stratal correlation and the 

reconstruction of the geohistory of a basin (Mancini et al., 2005). Stratigraphic analysis 

based on the transgressive-regressive cycles recorded in a given area can be used to 

establish a stratigraphic framework for correlation and for interpretation of basin 

history. These cycles may be related to eustatic sea level changes, but they also are 

caused by processes of subsidence or uplift, and changes in sediment supply. Cyclicity 

is a common feature of many limestone successions and occurs in the range of 

carbonate facies from platform to reef to slope and basin (Fl gel, 2004).  p-ward 

shallowing cycles (parasequences) are the basic building units of thick shallow-water 

carbonate successions throughout the Phanerozoic and are commonly organized into 

relatively large-scale depositional sequences (Chen et al., 2001). 

As documented in the previous chapters, the Dahra Formation on the Dahra 

Platform was deposited on a homoclinal carbonate ramp with inner, mid and probably 

outer ramp facies, each with distinctive sub-facies and microfacies. A similar 

depositional setting was re-established in Zelten and Harash Formations across the area, 

with local occurrences of nummulitic packstone instead of bioclastic grainstone in the 

Dahra Formation and the development of mainly wackestone- packstone. The overall 

interval of the Mabruk Member in the study area represents deposition of mainly 

shallow-water carbonates that were bounded by deeper-marine marl and shale, which 

are accumulated in lagoonal and reefal environments in probably rimmed shelf setting.  

Traditionally, the Selandian/Thanetian section in the study area comprises broadly of 

two thick regressive cycles separated by a relatively thin transgressive cycle. The 

formers are dominated by carbonate facies, whereas the latter comprises mainly shale 

and muddy intervals.  

The conventional disciplines of process sedimentology and classical stratigraphy 

are particularly relevant to sequence stratigraphy. Sequence stratigraphy is commonly 

regarded as only one other type of stratigraphy, which focuses on changes in 

depositional trends and their correlation across a basin. Owing to the ‘genetic’ nature of 

the sequence stratigraphic approach, process sedimentology is an important prerequisite 
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that cannot be separated from, and forms an integral part of sequence stratigraphy 

(Catuneanu, 2006). 

Applying sequence stratigraphic technique in this study has shown that the 

studied succession composed of several depositional sequences with both transgressive 

(transgressive systems tracts) and regressive (highstand systems tracts) packages. 

This chapter aimed to link the rocks with time through combine 

sedimentological and stratigrphic features of the studied rocks to get a better 

understanding of the evolution of the late Paleocene succession through time and places. 

This is going to be achieved via review and re-examine the stratigraphic evolution of the 

study area since the base of Tertiary (with an overview of the pre- Teriary section), 

discuss the transgression-regression cycles, identify cycle types, demonstrate changes in 

accommodation spac, and distinguish changes in environmental conditions, and hence 

facies, up through the succession. The overall analysis mainly depends on petrographic 

investigations and wireline logs, along with core samples and published and un-

published reports.  

 

5.2. Stratigraphic evolution of the study area 

As stated in Chapter 2 the sedimentary succession in the Sirt Basin ranges in age 

from Cambro-Ordovician to Recent, and is typical of those developed in a failed rift 

system. Barr and Weegar (1972) proposed the name Hofra Formation for the silicified 

quartzose sandstones penetrated in the western Sirt Basin. They assigned it to the 

Cambro-Ordovician age based on its equivalent to Gargaf Group in western Libya. The 

Lower Ordovician section has been recorded in north part of the Dahra PLatform, in 

well A1-10, where it reaches several thousand feet thick, whereas Upper Ordovician 

strata have been palynologically identifiedin well D1-32 (Wennekers, et al., 1996).  

On the other hand, Carboniferous, Permian and Triassic ages have also been 

assigned to the Hofra Formation in scattered locations in the Sirt Basin, including the 

Hofra Field, well A1-11. Late Jurassic and Cretaceous strata have also been identified 

through palynological study conducted by the Sirt Oil Company in 1992. Therefore, the 

assumption that all the quartzites can be assigned to the Cambro-Ordovician Qarqaf 

Group is no longer acceptable (Hallett, 2002). The succession in the trough areas, 

however, commenced with the Hofra Formation, of un-identified age, that overlain by 

Cretaceous to Tertiary sediments (Fig. 5.1). 
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A Silurian section has been recognised on the Dahra Platform in well D1-32. 

Black phyllites have been penetrated in many wells in the western regions of the basin, 

which are thought to be altered and/or partially silicified Silurian shales (Wennekers, et 

al., 1996). 

According to a CoreLab & LPI report (2008), a Silurian to Devonian succession 

has been recognised on the northern Dahra Platform, Waddan Platform and in the Zallah 

Trough, where it overlies Cambro-Ordovician sediments, whereas Permian, Triassic and 

Early Cretaceous successions are not preserved in these regions. In the Al Hufra Field, 

on the Dahra Platform, isolated occurrences of rocks dated as Jurassic have been found, 

presumably as isolated inliers on the Palaeozoic surface (Wennekers, et al., 1996). 

Lower Cretaceous siliciclastics (Nubian rocks) have been recorded in the Zallah 

Trough with around 2000 feet of marine and non-marine strata. The incursion into the 

deepest rift troughs began in the early Cretaceous, which marks the beginning of the 

syn-rift phase of basin development. This was followed by a major flooding event in the 

Cenomanian which extended marine conditions over most of the Sirt Basin, particularly 

in the trough areas. In the uppermost Cretaceous, subaerial exposure occurred in many 

parts of the Dahra Platform, which later during the Maastrichtian became submerged. 

By the end of the Cretaceous, the structural elements in the study area; namely 

Zallah and Dor al Abid Troughs and the Dahra Platform, had been almost covered by 

marine carbonate sediment, with deeper-water facies in low-topographic areas relative 

to the platforms (distal and proximal facies of the Kalash Limestone Formation). 

Upper Cretaceous sediments, which are composed of both siliciclastic and 

carbonate facies, were extensively deposited across the Sirt Basin and represent a major 

flooding event and initiation of syn-rift sedimentation. They are well preserved in the 

western part of the Sirt basin, where they reach up to 400 feet in thickness to the north 

of the study area and are dominated by limestone and dolomite of an inner-shelf setting. 

The Upper Cretaceous section has also been recorded by several workers in Zallah 

Trough. 

The start of the Tertiary was associated with a broad sea-level rise and this 

resulted in the deposition of thick Hagfa Shale in large parts of Zallah and Dor al Abid 

Troughs, whereas shallower-water carbonates of the Satal Formation, were deposited on 

the Dahra Platform (Fig. 2.9). During Danian time, a large part of the study area was 

dominated by the Carbonate Satal Bank, which was locally onlapped by the Hagfa 
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Shale. The stratigraphic evolution of the entire Paleocene succession, however, is dealt 

with in the following section below.  

Closure of the Tethys Ocean and associated tectonic events affected the pattern 

of sedimentation during the Eocene in the study area (Hallett, 2002). Eocene rocks 

conformably overlie Paleocene rocks and are unconformably overlain by Oligocene, 

Miocene or Holocene sediments. They are relatively thick in topographically lower 

areas, where it exceeds 5000 feet thick and is composed of a mixture of shales, shallow-

water carbonates and evaporites. In the study area, the Eocene rocks started with the Gir 

Formation, which comprises two members; a lower Facha Dolomite Member and an 

upper Hon Evaporite Member (Fig. 5.2). The average thickness of the Gir Formation is 

about 1300 feet over the Paleocene carbonate shelf facies, whereas in the trough areas 

the thickness exceeds 2900 feet (Abugares, 1996). The same author showed that the 

members of the Gir Formation represent facies zones; the Facha Member represents a 

restricted shelf facies, and the Hon Member exhibits an evaporitic facies. 
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Figure 5.1 Generalized stratigraphic section in the study area of the Sirt Basin (modified 

from Barr and Weeger, 1972; Montgomery, 1994 and Ahlbrandt, 2001). 

 

5.3. Depositional sequences of the Paleocene Succession 

It is well known that variation in eustatic sea-level and subsidence are 

responsible for the formation of transgressive-regressive sedimentary sequences. 

Relative sea-level rise commonly leads to a transgression and deepening-upward facies 

trend (Colombie and Strasser, 2005). However, high sedimentation rate keeping pace 

with or exceeding the increase in accommodation may result in aggradational or 
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progradational deposits respectively (Kendall & Schlager, 1981; Handford & Loucks, 

1994; Hunt & Tucker, 1995). 

For the northeastern Gulf of Mexico, Mancini and Puckett (2002a,b) 

demonstrated that stratigraphic analysis based on the cyclicity (transgressive-regressive 

cycles) recorded in succession can be used to establish a stratigraphic framework for 

correlation and for interpretation of basin history. They used the transgressive-

regressive cycles as phases or intervals of a single T-R cycle rather than as a sequence 

consisting of third-order, or lower, depositional sequences. 

In addition to the studied section of the Selandian/Thanetian carbonates, which 

comprise the Dahra (and Mabruk), Zelten and Harash Formations, the entire Paleocene 

succession is considered here in terms of transgression/regression episodes, based 

mainly on sedimentological core description, petrographic investigations,  well log 

characteristics, and available published studies and reports.  

 

5.3.1. Paleocene transgressive-regressive cycles 

In the absence of cores, log response may be used to estimate lithology with 

caveats. Trends in log response therefore may equate with trends in depositional energy, 

and thus with patterns of sedimentary basin fill. In shallow-marine successions, for 

example, increasing depositional energy is related directly to decreasing water depth 

(Milton & Emery, 1996). 

The recognition of transgressive-regressive episodes in this study is based on 

vertical changes of the sedimentary succession and the wireline log responses. In 

addition to Emery and Myers (1996), the latter have been adapted from Mancini and 

Puckett (2005) who utilized the following well-log responses to recognize the T-R 

cycles; a change from higher to lower gamma ray and/or from more to less positive SP 

log responses identifies the discontinuity in the log records used to separate the 

transgressive phase from the regressive phase of a T-R cycle. In general, an overall 

increase in gamma ray or change to more positive SP log response (bell-shaped trend) in 

a log pattern most probably reflects a transgressive backstepping interval, and an overall 

decrease in gamma ray or change to more negative SP log response (funnel-shaped 

trend) in log pattern most likely reflects a regressive prograding interval. A cylindrical 

gamma ray or SP log pattern is used to recognize a transgressive aggradational interval. 
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The depositional history of the western part of the Sirt Basin indicates a gradual 

sea-level rise during the Cenomanian, and overall sedimentation was restricted to the 

trough areas until the Campanian. The close of the Upper Cretaceous saw the maximum 

extent of the marine transgression across the Sirt Basin (Wennekers et.al, 1996) and 

deep-marine conditions resulted in the deposition of the widespread transgressive Sirte 

Shale of the Campanian Stage.  

The overall cycle of shale deposition with intercalation of carbonate reflects 

alternating transgressive-regressive cycles in the Paleocene succession. Spatially, 

carbonates are confined to the structurally higher platform areas, while shales occupy 

the troughs. Several intra-Paleocene unconformities are recognised, which creates a 

problem in continuous mapping, but played a major role in the trapping of oil and gas 

(Hallett, 2002). 

On the Dahra Platform, the Kalash limestone and Satal Carbonate Formations 

covered the last remnants of the pre-Sirt relief (Hofra Quartzite or granite highs) 

(Schrӧter, 1996). In the trough areas, on the other hand, the Hagfa Shale was 

predominant. Over large parts of the study area, the shales of the Danian Hagfa 

Formation change facies laterally to thick shallow-water Danian Upper Satal platform 

carbonates (Mouzughi, 1991). The Paleocene Epoch, however, commenced with a 

relatively major phase of subsidence along the marginal areas of the troughs due to 

movements on basement faults, which resulted in the deposition of a thick carbonate 

and shale section. 

  Aboushagur (1991) recognised two transgressive and regressive cycles during 

the Paleocene and Eocene across much of the Sirt Basin. Two major depositional 

sequences of the Paleocene succession, consisting of carbonate cycles separated by 

shale deposits, represent the period between two major transgression events. The lower 

sequence, which coincides with the Heira Formation in the Dor al Abid Trough extends 

from the base of Hagfa Shale/ Upper Satal Carbonate to the top of the Khalifa Shale 

Member. The upper sequence comprises Zelten, Harash and Kheir Formations. It is 

mainly composed of shelf margin carbonate at the base and grades upwards to planktic 

foraminifera-bearing marls and siliceous limestones of a deep-water environment 

(Williams, 1969; Abushagur, 1991 and Bezan 1996) (Fig. 5.2).  

 

 



Chapter 5                                                                                                              Sequence stratigraphy  
_____________________________________________________________________________                                      
   

Ibrahim Elkanouni                                                                                                                                   170 
 

 

Figure 5.2 Generalized stratigraphic column of the Paleocene succession in the study 

area, showing possible transgressive-regressive events (After Abushagur, 1991 and 

Bezan, 1996). 

 

In the eastern part of the Sirt Basin, Mresah (1993) pointed out that the presence 

of calcareous mudstone facies in the middle and at the top of the Paleocene section 

helps to define two Paleocene cycles, one in the lower part of the succession and the 

second in the upper part. 

During the Danian time an extensive transgression covered a large part of the 

Sirt Basin, coming from the north- northwest direction, and resulted in the deposition of 

thick open marine shale of the Hagfa Formation in the trough areas and carbonate 
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sediments of the Satal Formation on the stable platforms (Bezan, 1996). The Hagfa 

Formation is mainly composed of green to greenish grey, sub-fissile to blocky, pyritic 

and calcareous shale, which grades locally to marl, with thin beds of limestone, 

particularly in the upper part. A deep-marine environment of deposition is evidenced by 

common planktic forams. Molluscs, bryozoans and echinoderms are also developed at 

the top of the formation (Berggren, 1974). In the northern part of the Hagfa (Marada) 

Trough, to the northeast of the study area, Tmalla (1996) showed that the lower part of 

the Hagfa Shale is characterised by quite abundant planktic foraminifera (80-90%), 

indicating water depths in excess of 500 m, on a lower slope or basinal environment 

(Grimsdale and Van Morkhoven, 1955; Tipsword et al., 1966). 

The Upper Satal Limestone Member, of Danian age, consists of massive 

dolomite with traces of anhydrite and fine-grained limestone, with common benthic 

forams, algae and molluscs. In the eastern part of the study area it shows a transition 

from shelf margin to lagoonal and tidal-flat facies. Based on fossil content and 

sedimentary structures the Satal rocks in the Dahra Field are interpreted to have been 

deposited in a near-shore, marginal marine environment, within which three shallowing-

up sub-environments were recognised: supratidal, intertidal, and subtidal. The latter is 

subdivided on the bases of faunal content into: shallow marginal, restricted shelf and 

deep neritic shelf with normal marine fauna (Khoja, 1970). Similar facies and 

depositional environments were recognised by Kardoes (1991) in the Bahi Field and 

surrounding areas on the Dahra Platform. According to the well logs used in this study 

(SP, gamma-ray, resistivity, conductivity, neutron, density and sonic logs), these 

carbonates were blanketed in many wells by a few metres thick of calcareous shale, 

which represent the extension of the deep Hagfa shale, i.e. the Satal carbonate bank was 

onlapped and/or probably drowned by thin interval of deeper marine shale in the study 

area (Fig. 2.9). 

The Beda Formation conformably overlies the Upper Satal Member or the Hagfa 

Shale Formation. Broadly it consists of skeletal, oolitic and algal packstone/grainstone 

that passes upward to more restricted shelf facies. In the Dahra Field, on the Dahra 

Platform, the formation is subdivided into a lower Thalith Limestone Member and an 

Upper Rabia Shale Member. The Thalith Member, which overlies the Upper Satal 

Carbonate, is composed of light grey, argillaceous and fossiliferous lime-mudstone with 

scattered glauconite and pyrite, and subordinate greenish grey, calcareous shale. It 
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changes locally to a completely shale interval of the Hagfa Formation. The Rabia Shale 

Member is mainly consisting of dark grey to green calcareous shale with minor light 

grey, argillaceous limestone beds, i.e. it could represent a later development of the 

Hagfa Shale Formation.  

In the eastern part of the Dahra Platform (Manzila Ridge) the entire Selandian 

section is represented by carbonates, which comprise part of the thick Paleocene 

carbonate section (Upper Satal, Beda and Dahra Formations) (Roohi, 1996).  

In the northern Zallah and southern Dor al Abid Troughs the Beda Formation is 

represented by, from older to younger, the Thalith Member, Lower Beda and Upper 

Beda Members. The lower Beda Member is composed of oolitic and algal limestone 

passing upward to a lagoonal deposit of the Upper Beda Member.  To the south of the 

study area, the lower Beda Member has been divided by Garea (1996) in to six facies 

that were deposited in semi-open to restricted shallow lagoon and represented by three 

shallowing- upward cycles, ranging from 26 to 40 feet in thickness. Abushagur (1991) 

defined eight shallowing-upward regressive cycles of subtidal, intertidal and supratidal 

facies, ranging from 7 to 30 feet thick, in the Al Furud Formation (Upper Beda 

equivalent) in the southern part of the study area (Ghani Field, Zellah Trough).  

In the northern part of the Hagfa (Marada) Trough, however, a clear decrease in 

planktic forams in the uppermost part of the Hagfa Shale and the lower part of the 

Khalifa Formation (Rabia Shale) is noted by Tmalla (1996), who suggested an apparent 

decrease in water depth, relative to the proper Hagfa Shale, to a 50-100m deep, middle-

shelf environment.  

The base of the Thalith Member, which the author believes is part of the Hagfa 

Shale that onlapped the Satal Carbonate Bank, shows a sharp change from a negative (in 

Upper Satal Member) to a more positive SP log response, and a sudden decrease in the 

resistivity curves (Fig. 5.3). This is considered as a transgressive surface, above which 

the backstepping (deepening-up-trend) was developed. This regional transgression was 

probably associated with a high rate of carbonate production; it resulted in the 

deposition of carbonates on the positive areas, whereas in the lower topographic regions 

a classic transgressive succession (Thalith limestone followed by Rabia shale) was 

produced. This occupies the lower part of the regressive cycle of Abushagur (1991) and 

Bezan (1996) (Fig. 5.3). 
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Figure 5.3 Stratigraphy of the Paleocene succession in both Dor al Abid Trough 

(Mabruk Field) and the Dahra Platform (Dahra Field), showing the log behaviour of the 

different rock- units and major transgressive/regressive cycles. (The T-R cycles are of 

Abushagur, 1991 and Bezan, 1996). 

 

In the complex Mabruk area in the Dor al Abid Trough the two above scenarios 

are present, i.e. Beda carbonate with its two limestone members, and Rabia shale and 

Thailth limestone Members. A collective name of Hiera Formation, however, is 

formally used by the operating company in this area for the shales of Hagfa, Beda and 

Khalifa Formations (Fig. 5.3). 
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Following the deposition of the Rabia Shale in possibly a deep middle-shelf 

environment, a sudden change in the sedimentary facies is recorded at the base of the 

Dahra Formation. It commenced with several feet thick of carbonate that shows a 

marked change from more to less positive SP log behaviour, distinct increase in 

resistivity log response and obvious decrease in the sonic log. This could represent a 

remarkable shallowing which might be associated, at least locally, with subaerial 

conditions. A gradual shallowing of the sea, however, resulted in the deposition of the 

Dahra carbonates over large parts of the study area. 

On the Dahra Platform the Dahra Formation is mainly composed of light to 

yellowish grey wackestone to grainstone with local abundance of benthic forams 

(miliolids and rotaliids), echinoderms, molluscs, ooids and green algae. The interval 

between the Beda Formation and the lower Dahra Formation is dominated by a 

regressive cycle (Schrӧter, 1996).  

Major transgression occurred at the end of the Dahra carbonate deposition, and 

resulted in the deposition of several tens of feet of mainly shale with subordinate 

limestone of the Khalifa Formation on the platform and in trough areas. The electric 

logs show a sudden shift to a more positive SP log response, low resistivity behaviour 

and significant increase in the sonic record (Fig. 5.3). A notable feature is that the log 

characters of the Rabia shale interval are quite similar to those of the Khalifa Formation, 

which could support the use of collective name of the Paleocene shales (Hiera 

Formation).  

In the Zallah Trough and in the northernmost part of the study area on the Dahra 

Platform the Khalifa Formation is represented by grey–green, locally dark grey, chalky, 

slightly pyritic, and calcareous shale, with a thin limestone unit in the upper part. In the 

Dahra fields on the Dahra Platform, the formation is characterised by white to light grey 

argillaceous packstone and lime-mudstone in the upper part, and light to dark grey – 

green, soft and calcareous shale in the lower part. To the west of the Mabruk field in the 

Dor al Abid Trough, the Khalifa Formation has similar lithological characteristics; it is 

composed of wackestone/packstone facies with echinoderm fragments, bryozoans and 

benthic forams (mainly miliolids and rotaliids) in the upper part, and dark grey, blocky 

to fissile shale with scattered bioclasts in the lower part. The upper 

wackestone/packstone interval may represent the onset of the shallowing episode prior 

to the deposition of the Zelten Formation.  



Chapter 5                                                                                                              Sequence stratigraphy  
_____________________________________________________________________________                                      
   

Ibrahim Elkanouni                                                                                                                                   175 
 

To the north east of the study area (in the Hagfa Trough) the Khalifa Formation 

is represented almost entirly by shale; a 50-200 m water depth of an outer-middle shelf 

to deep-marine depositional environment has been suggested for the middle and upper 

parts of the Khalifa Formation (Tmalla, 1996). 

By the end of the Khalifa deposition, however, still-stand conditions probably 

prevailed allover the Sirt Basin and hence extensive shallow-marine limestone of the 

Zelten Formation was deposited. Spring and Hansen (1998) demonstrated that the 

Harash Formation in the Intisar Field, east central Sirt Basin, infills the irregular surface 

of the Upper Sabil shelf and envelopes the Intisar reefs in the area. They recognised five 

shallowing-up cycles in the formation. 

On the Dahra Platform, the formation consists predominantly of light grey to 

light yellowish grey packstone, slightly argillaceous and locally dolomitic, with 

common benthic forams, molluscan shells and echinoderm fragments. Nummulites and 

bryozoans are locally developed. The base of Zelten Formation on the Dahra Platform is 

characterized by a remarkable change from positive to more negative SP log response, 

decrease in gamma ray, slightly higher resistivity, a slight decrease in the sonic log and 

an important increase in the neutron log behaviour. The fossil contents, characteristic 

sediments and the electrical log features of the Zelten Limestone suggest an overall 

regressive interval, with a probable prograding trend upto the top of the Formation (Fig. 

5.3). 

On the Dahra Platform, these carbonate deposits are overlain by deeper-water 

facies of mudstone/ wackestone deposits, which probably suggest a major transgression 

and/or a drowning of the platform. This feature is better defined in well no. 9 in the 

Dahra West Field, where the basal part of the Harash Formation is characterised by 

wackestone with planktic forams and the occurrence of pyrite and glauconite. The 

boundary between the Zelten and Harash Formations shows a sharp change to higher 

gamma-ray response, slightly lower resistivity, a remarkable increase in the sonic log 

and a slight decrease in neutron log character (Fig.5.3). These could suggest a 

transgressive event, above which the deepening up-trend was developed. This is 

evidenced by the fact that the basal Harash Formation grades upwards to shallower 

facies of nummulitic wackestone/packstone, which in turn is overlain by grey-dark grey, 

fissile, calcareous shale intercalated with grey argillaceous calcimicrite and marl of the 

Kheir Formation.  
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The Kheir Formation, which marks the end of the Paleocene succession, begins 

with a slight increase in the gamma-ray log, notable decrease in resistivity behaviour, 

minor decrease in neutron and significant increase in the sonic record (bell-shaped 

trend) (Fig. 5.3). The Khier Formation is overlain by the Facha Dolomite Member of the 

Ypresian Gir Formation (mainly evaporite) all over the basin (Fig. 5.2).  

Globally, no scale T–R cycles occurred in the early Danian and the late 

Selandian. Instead, regional/local tectonic motions, and particularly dynamic 

topography, overwhelmed any small eustatic fluctuations during these periods of 

relatively stable global climate and tectonics (Ruban et al. 2012). The same authors 

pointed out that except for a generally regressive trend occurring in the late Thanetian, 

no common T–R cycles can be delineated from the study of seven tectonically stable 

region across the world, which indicates an absence of global-scale T–R cyclicity 

during the Thanetian (Ruban et al., 2010). They suggest that a warm climate and an 

absence of major glaciations in the early middle Thanetian, coupled with only slow 

eustatic change expected from tectonic processes, stabilized Thanetian eustatic sea 

level. Regional subsidence or uplift possibly generated by mantle flow in the form of 

dynamic topography, governed transgressions and regressions locally and resulted in an 

inconsistency between T–R cycles in different parts of the globe. 

 

5.4. Stratal patterns and cycles of Selandian/Thanetian carbonates 

In recent decades, there has been much interest in analysing the stacking patterns 

of high-frequency platform-top carbonate cycles. This analysis has been achieved by the 

use of accommodation or Fischer plots and supported by various analytical techniques.  

The vertical stacking patterns of metre-scale, upward-shallowing cycles, as described by 

Chen at al., (2001), and others, are mostly controlled by long-term changes in 

accommodation space; therefore they bridge the gap from individual cycles to the 

larger-scale depositional sequences, and permit the identification of sequences and their 

component systems tracts (e.g. Goldhammer et al., 1990, 1993; Osleger and Read, 1991; 

Elrick, 1995). However, Fischer plots can only give a reliable indication of long-term 

changes in accommodation if the component metre-scale cycles shallow up to sea-level 

and in so doing fill all available accommodation space. 

 

 



Chapter 5                                                                                                              Sequence stratigraphy  
_____________________________________________________________________________                                      
   

Ibrahim Elkanouni                                                                                                                                   177 
 

5.4.1. Cyclicity in carbonates 

Cyclicity is a common feature of many limestone successions and occurs in the 

range of carbonate facies from platform to reef to slope and basin (Fl gel, 2004).  In 

shallow-water carbonates there are small-scale cycles, usually composed of beds, which 

consist of repetitions of facies. These cycles are on the metre-scale, from 0.5 to 5 metres 

in thickness, in some cases up to 10 metres. High-frequency cycles also occur in 

lacustrine and pelagic carbonate successions too; they may all be defined by changes in 

microfacies, as well as by other features such as grain-size, colour, mineralogy and 

intensity of bioturbation (Tucker and Garland, 2010). Metre-scale cycles are an 

important component of sequence stratigraphic analysis and they are commonly referred 

to as parasequences. Traditionally a typical parasequence exhibits a shallowing-up trend 

and the parasequence has been defined by Van Wagoner et al., (1988) as a relatively 

conformable succession of genetically-related beds or bed-sets bounded by marine 

flooding surfaces and their correlative surfaces.  

Spence and Tucker (2007) redefined the parasequence, broadening it out 

somewhat, to: “A regionally significant metre-scale sedimentary package characterised 

by a succession of facies that may shallow-up, deepen-up then shallow-up, aggrade, or 

reflect constant water depth. They stated that in a complete cycle of accommodation 

change, the nature of the metre-scale cycles may be transgressive and transgressive-

regressive, or more typically a simple regressive cycle. Parasequences, therefore, 

typically shallow-upwards but there may also be a deepening-up and symmetrical 

(transgressive-regressive) facies arrangement (Tinker, 1998; Spence and Tucker, 2007; 

Tucker and Garland, 2010).  

The bounding surfaces which limit each parasequence are usually a clear, sharp 

contact. However, this does not mean that it always has to be a flooding surface as 

described by  Wagoner (1988); it can be an exposure horizon or shallower-water facies, 

but an abrupt change in grain assemblage or facies is typical (Spence and Tucker, 2007). 

In addition to tectonics, the available accommodation space and sediment supply are the 

main factors that control the stacking patterns of parasequences (progradational, 

retrogradational or aggradational). Progradational stacking patterns (regressive cycles) 

chiefly develop in response to a long-term decrease in accommodation space (third 

order) and typically are thinning-up cycles. On the other hand, thickening-up cycles 
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(retrogradational patterns or transgressive) could indicate a long-term increase in 

accommodation space. 

Based on mechanisms that generate cyclic deposits, two types of cycle can be 

distinguished: Autocycles, which are the result of intrinsic depositional processes (tidal-

flat progradation, tidal-island migration, sand-shoal accretion) taking place within the 

basin itself, and these cycles generally show limited lateral continuity, and random, 

irregular thicknesses; and Allocycles, that are caused by variation in the external factors 

affecting sedimentation, such as tectonics, sea-level fluctuations or climatic changes; 

these cycles typically are laterally extensive and those formed by orbital forcing may 

show regular thickness stacking patterns (thickening/thinning-up) (Fl gel, 2004).  

In many instances the interpretation of cyclic carbonates relying on allocyclicity 

assumes the existence of high-frequency, and low-amplitude, 4
th

 and 5
th

 order sea-level 

fluctuations that are often explained by changes in the Earthʾs orbital parameters 

(Goldhammer et al., 1987; Strasser 1988; Koerschner and Read 1989; Goldhammer et 

al., 1990; Read et al., 1991). Orbital forcing and resulting sea-level fluctuations are one 

major control on carbonate platform cycles. Individual shallowing-up cycles are 

interpreted as the result of 4
th

-5
th

 order sea-level oscillations. 3
rd

 order cycles (i.e. 

depositional sequences) in shallow-marine carbonates have been defined by the 

systematic thickening and thinning of individual cycles over several hundreds of 

profiles (Fl gel, 2004).    

In the Sirt Basin, the cyclicity of the Paleocene succession has been studied only 

briefly in the past and then mainly in terms of larger scale cycles rather than 

parasequences. Abushagur (1991), as noted earlier, defined eight shallowing-upward 

regressive cycles of subtidal, intertidal and supratidal facies, ranging from 7 to 30 feet 

thick, in the Al Furud Formation (Upper Beda equivalent) in the southern part of the 

study area (Ghani Field, Zellah Trough). To the south of the study area, Garea (1996) 

divided the lower Beda Member of Selandian age in to six facies that were deposited in 

semi-open to restricted shallow lagoons, and these defined three shallowing-upward 

cycles, ranging from 26 to 40 feet in thickness.  

Spring and Hansen (1998) studied the Upper Sabil (Zelten Fm equivalent)  and 

Harash Formations in the Intisar Field, east central Sirt Basin, and pointed out that the 

microfacies analysis of the Upper Sabil Formation shows a generally prograding 

character.  In the Harash Formation they recognised five shallowing-up cycles in core, 
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with the Harash B cycle comprising a shallowing- and cleaning-up carbonate cycle from 

outer ramp to mid ramp.  

Mresah (1993) recognised two major cycles (without mentioning their 

thicknesses) in the Paleocene succession in the eastern part of the Sirt Basin; the lower 

cycle, which he argued, had a clearly defined shallowing-upward trend and a relative 

increase in energy level, beginning with planktonic foraminiferal mudstone/wackestone 

grading into dolomitized bioclastic wackestone/packstone through to peloidal bioclastic 

grainstone, capped with a rotaliid-echinoderm lithofacies. The shallowing-up trend and 

the relative increase in energy levels seen in the lower cycle are closely repeated and 

better defined in the upper cycle. 

From the above reviews it is clear that the Paleocene succession in the Sirt Basin 

is dominated by a regressive trend, which is probably the usual rather than the exception 

as transgressive trends are rare in the geological record and carbonate sedimentation is 

commonly regressive in nature (Wilson, 1975). The shallowing-up trend of the Late 

Paleocene succession is likely across the Sirt basin because, with quite similar tectonic 

subsidence history across the study area (see Chapter 6), platforms would have built up 

to sea level and above, through progradation of tidal flats and vertical accretion of 

shallow subtidal sediments (Tucker, 1985).  

 

5.4.2. Cycle types 

The studied interval of the Paleocene succession on the Dahra Platform and in 

the Dor al Abid Trough is mainly composed of shallowing-up cycles, with the possible 

development of deepening-up cycles particularly in the deeper-water areas. Metre-scale 

cycle recognition, however, is frequently beyond the resolution of the available data 

(type and quality of cores, number of thin-sections and quality of wireline logs). On the 

Dahra Platform, where a ramp model is suggested for the studied formations (the Dahra, 

Zelten and Harash - see Chapter 3), the inner ramp comprises lagoonal and shallow 

subtidal cycles (bioclastic shoal), and the mid-outer ramp includes deep subtidal cycles. 

A carbonate rimmed shelf has been proposed for the Mabruk Member in the Dor al 

Abid Trough, with reef and back-reef/lagoonal settings. 

Since many sedimentological and stratigraphic features (especially the 

sedimentary structures) are larger than the core diameter, in most cases they could not 

be recognized with confidence. In fact, apart from bioturbation, most of the sedimentary 
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structures observed in the cores are compaction-related, such as dissolution seams and 

stylolites, and almost no depositional structures have been observed. Thus the 

recognition of cycles and any trends in cycle-type in this study was based mainly on 

microscopic investigations of facies/microfacies with little information coming from 

macroscopic observations of core samples and wireline logs.  

Trends in cycle-type are somewhat difficult to pick out since the cycle-type 

depends not only on the ability of carbonate production to pace any change in relative 

sea-level, but also on the subsidence or consequent uplift of any respective fault blocks 

(Tucker and Garland, 2010). Although some of the recognized cycles are of the classic 

type, a shallowing-up facies trend overlain by a flooding event, in many cases it was not 

easy to recognize the flooding surface, hence the cycle boundary was identified on the 

basis of a change in faunal type (shallow to open marine) and diversity, along with the 

lime mud to cement ratio. These limitations make the correlation of an individual cycle 

between wells difficult, if not impossible; hence correlation has been performed on the 

basis of cycle packages (parasequence sets). 

 

5.4.2.1. Ramp cycles 

5.4.2.1.1. The Dahra Formation  

The cored interval of the Dahra Formation is not the same in all the studied 

wells; in well no. 8 the bottom of the core is at a deeper level than the other wells. Thus, 

the number of cycles in this particular well is more than the number of cycles in the 

other wells, although some of the cycles could not be defined precisely and may even be 

absent in the other wells. Thus the total number of cycles varies from well to well.  

The ramp cycles in the Dahra Formation contain the foraminiferal bioclastic 

wackestone/packstone, bioclastic foraminiferal packstone-packstone/grainstone, 

dolomitic mudstone, and bioclastic grainstone facies. Back-ramp cycles occur mainly in 

the lower and upper parts of the Dahra Formation, where they are interrupted at certain 

levels by mid-outer ramp cycles. The middle part of the Dahra Formation (Dahra C), on 

the other hand, is mainly occupied by bioclastic shoal cycles of inner- ramp facies. The 

overall cycle pattern recognized in the Dahra Formation shows predominantly 

shallowing-up arrangements. In this study the shallowing-up cycles in the Dahra 

Formation are referred to as type A cycles, whereas the shallowing-up cycles in the 

Zelten/Harash Formations (next section) are termed type B cycles.  
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5.4.2.1.1.1. Shallowing-up cycles (type A cycles) 

The type A cycles of the Dahra Formation on the Dahra Platform have been 

subdivided into four sub-types; type A1, type A2, type A3 and type A4 cycles.  

The A1type cycles are the most common shallowing-up cycles recognized in the 

Dahra Formation in the studied wells and are most pronounced in the lower part of the 

Dahra Formation in well no. 8. In the studied wells, 13 cycles of this type have been 

recognized with a range in thickness from 7 to 30 feet and an average of 16.8 feet 

(Table. 5.1 A). The number of individual cycles, types and thickness average and range 

of cycles in each well can be found in Appendix. 2.  

This A1 type of cycle ranges from mid-outer to back-ramp facies, as it shallows 

from a deep subtidal base to shallow subtidal and lagoonal facies at the top. It 

commences either with shale and/or marl of deep subtidal facies or with 

mudstone/wackestone then bioturbated wackestone- with scattered small forams 

(mainly planktics), echinoid spines, echinoderms and un-identifiable bioclasts which 

passes upwards into light yellowish grey, bioturbated and slightly dolomitic packstone 

facies with green algae, bivalve shells, rotaliids and brachiopods (Fig. 5.4). Locally, 

many of these constituents have been dissolved out and most of the molds are filled 

with late equant calcite and Fe-rich calcite cements. In a few cases, some dolomite 

crystals are partly or completely dissolved out (dedolomitization) with the development 

of desiccation-like cracks.  

The type A2 cycles are identified in wells no. 8 and 9 only and their thickness 

ranges from 6 to 30 feet with an average of 19 feet. Eight cycles of this type have been 

documented (Table. 5.1A). This type of cycle commonly shallows-up in a normal 

arrangement from foraminiferal bioclastic wackestone-wackestone/packstone facies, 

locally bioturbated and argillaceous with a mixture of coral fragments, red algae, 

planktic forams, echinoderms and benthic forams to very pale orange bioclastic 

foraminiferal packstone-packstone/grainstone, locally dolomitic with crinoids, 

molluscan shells, bryozoans and benthic forams (Fig. 5.4). Locally they are capped with 

light yellowish grey packstone with miliolids, rotaliids, echinoderms, green algae and 

bivalves, and they show evidence of subaerial exposure (brecciated packstone facies 

with internal sediment, rootlets and hematite) (Fig. 5. 4).  

The type A3 cycles are recognized in the Dahra Formation in wells no. 8, 9 and 

10. Nine cycles have been identified in these wells with a thickness range from 14 to 33 
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feet and an average of 19 feet (Table 5.1A). They seem to be mid-inner ramp facies and 

normally commence with dolomitic and bioturbated packstone with echinoderm 

fragments, echinoid spines planktic forams and bivalves through to 

packstone/grainstone with benthic forams, brachiopods, gastropods and scattered ooids, 

to grainstone with different types of bioclast including coated grains, ooids, 

brachiopods, bivalves and green algae (Fig. 5.4). Although they do not show any clear 

exposure surface, locally but fairly extensive dissolution has occurred in the uppermost 

part of these cycles, as witnessed by the fair to good porosity.  

The type A4 cycles in the Dahra Formation do not show any obvious 

shallowing-up pattern, despite the fact that they are locally capped either with an 

important surface or with a flooding surface; they locally display an increase in 

bioclastic diversity upwards. In view of this they are termed aggradational cycles. They 

occur in all the studied wells on the Dahra Platform with a total of 9 cycles that range in 

thickness from 12 to 36 feet and an average of 18.8 feet.  

These cycles represent an inner to back ramp setting with deposition mostly in a 

shallow subtidal realm. In wells no. 7 and 10 they are commonly represented by a 

package of bioclastic grainstone with a variety of bioclasts, including echinoderms, 

benthic forams, ooids, coated grains, green algae and bivalve shells (Fig. 5.4). Pyrite 

and glauconite are locally common. In well no. 8, type A4 cycles exhibit a subtle and 

minor gradation from packstone/grainstone to grainstone texture with the occurrence of 

clay in the uppermost part.    
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Figure 5.4 Cycle A types recognized in the Dahra Formation on the Dahra Platform 

 

5.4.2.1.2. The Zelten/Harash Formations  

The cored section of this interval represents the upper half and lower half of the 

Zelten and Harash Formations, respectively. As shown in Chapter 3 the lower part of 

the cored section of the Zelten Formation generally represents middle- to outer- ramp 
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facies that is characterized mainly by shallowing-up cycles. The upper part of the Zelten 

Formation includes packages of facies that were deposited in an inner to back ramp 

setting and mainly comprise shallowing-up cycles. The cored section of the Harash 

Formation is interpreted as a broad outer to possibly back-ramp setting, also 

characterized by shallowing-up cycles.   

The overall cycle pattern in the Zelten/Harash succession shows chiefly 

shallowing-up facies arrangements (Fig. 5.5), and its cycles are referred to as type B, 

which have been subdivided into type B1 and type B2 (Fig. 5.5). 

 

5.4.2.1.2.1. Shallowing-up cycles (type B cycles) 

The type B1 cycles are the most common cycles recognized in the Zelten/Harash 

Formations on the Dahra Platform and they occur in almost all the studied wells. Fifteen 

cycles of this type have been identified in the studied wells with a thickness range from 

7 to 35 feet and an average of 23.3 feet (Table. 5.1B).  

They are composed of facies that were deposited in a wide range of depositional 

settings, from subtidal mid-outer ramp to intertidal lagoonal environments. They exhibit 

a shallowing-up trend generally with a light grey mudstone or argillaceous 

mudstone/wackestone at the base passing up through to foraminiferal 

wackestone/packstone with a pelagic fauna to very pale orange - yellowish grey 

packstone with more diverse bioclasts. In many cases they are topped with 

wackestone/packstone with red algae, nummulitic fragments, bryozoans and benthic 

forams (Fig. 5.5).   

Although the type B2 cycles are developed in nearly all the studied wells, they 

are less common than type B1cycles. They occur in a few intervals in both Zelten and 

Harash Formations, where they do not exceed 2 cycles in each well.  

The type B2 cycles are composed of carbonate facies that signify a shallowing-

up pattern from mid-outer ramp to inner-ramp setting. In the studied wells six cycles of 

this type have been recognized with a range in thickness from 8 to 34 feet and an 

average of about 23.5 feet (Table 5.1B). They usually commence with light to medium 

grey planktonic foraminiferal wackestone through to foraminiferal bioclastic 

wackestone/packstone with brachiopods, echinoderms, echinoid spines and bryozoans; 

they are then capped with light to yellowish grey, locally bioturbated foraminiferal 

nummulitic packstone facies (Fig. 5.5).  
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Figure 5.5 Cycle B types defined in the Zelten/Harash interval on the Dahra Platform. 

 

 

5.4.2.2. Rimmed-shelf cycles 

The rimmed carbonate shelf on which the Mabruk Member was deposited 

comprises lagoonal and reef cycles. The Mabruk Member in western and central parts of 

the study area is relatively dominated by reef and back-reef facies, whereas the south-

eastern area is characterised mainly by the development of lagoonal facies.  

 

5.4.2.2.1. The Mabruk Member 

The south-eastern area of the Mabruk Field (well no. 105) is characterised by the 

common presence of lagoonal facies, where the component grains are dominated by 

benthic forams, peloids, red algae, echinoderms, green algae and bivalves. The middle 

interval of the Upper Mabruk Member in the East Central Area is mainly represented by 

reef and reef-related facies that increase in thickness towards the south east. The central 
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part of the Mabruk Field in Dor al Abid Trough is dominated locally by algal packstone 

and bioclastic boundstone facies.  

These broad facies constitute several cycles that arranged chiefly in shallowing-

upward trends. Six types of shallowing-up cycle have been recognized in the Mabruk 

Member in the study area; three cycle types are characteristic of a lagoonal environment 

and three types are diagnostic of reef to back-reef settings. These shallowing-up cycles 

are referred to as type C cycles.  

 

5.4.2.2.1.1. Shallowing-up cycles (type C cycles)  

The C1 type cycles occur at a few intervals in all the studied wells; five cycles of 

this type have been recognized in the upper and lower Mabruk with a range in thickness 

from 8 to 23 feet and an average of about 14 feet (Table. 5.1C). They are almost 

identical to type A1 cycles developed in the Dahra Formation on the Dahra Platform 

(see Fig. 5.4). This type of cycle shallows from a deep subtidal base to shallow subtidal 

and lagoonal facies at the top; it commences with shale and/or marl of deep subtidal 

facies then bioturbated wackestone with scattered planktic and benthic forams which 

passes upwards into bioturbated packstone/grainstone facies with red algae, benthic 

forams, echinoderm fragments and bryozoans. Good to very good porosity is recorded 

in the topmost part of these cycles. 

Type C2 cycles are developed in all the studied wells, particularly in well no.  

105. Twelve cycles are present in the studied wells with a range of thickness from 5 to 

18 feet and an average of 11.5 feet. They are based with shale or lime mudstone-

wackestone/ marl with scattered benthic and planktic forams and shell fragments of 

unidentifiable bioclasts, and pass up to light olive grey, moderately sorted, bioturbated  

wackestone/packstone with echinoderms, coral fragments, rhodoliths and benthic 

forams (Fig. 5.6). The C2 cycles are commonly overlain by medium to light grey marl 

of the overlying cycle. 

Type C3 cycles are the most common type of cycle developed in the reef area of 

the Mabruk Member in the studied wells, in particular well no. 103.  Ten cycles are 

recognized in the studied wells with a range of thickness from 6 to 16 feet and an 

average of 11.5 feet (Table. 5.1C). They are formed of very light grey to light olive 

grey, locally mottled, boundstone with corals, rhodolithic algae and scattered bryozoan 

fragments, which passes up to algal packstone with common red algae, rhodoliths, 
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bryozoans and echinoid spines. Benthic forams, echinoderms and molluscan shells are 

scattered throughout (Fig. 5.6). The latter facies is normally dolomitic with the local 

occurrence of pyrite, hematite, organic material and clay.  

 

Type C4 and C5 are the least common type of cycle in the studied wells; they 

are represented only by one cycle in wells no. 103 and 66, respectively (Table. 5.1C).   

A type C4 cycle is recognized only at the uppermost part of the upper Mabruk Member 

in well no. 103. Its thickness is around 15 feet and it commences with a thin interval of 

very pale orange to yellowish grey, poorly sorted coral algal boundstone, and grades up-

ward to a relatively thick interval of highly compacted algal bioclastic boundstone, with 

common rhodolithic algae, corals and branching coralline red algae. The latter facies is 

locally dolomitic in its middle interval with the occurrence of hematite and organic 

matter in its topmost part (Fig. 5.6).   

A type C5 cycle is recognised only in well no. 66 with a total thickness of about 

16 feet. At the base it is marl, light to medium grey, subfissile to blocky, slightly 

bioturbated and locally pyritic, with scattered corals fragments, echinoderms and 

echinoid spines. It passes upward to mottled (very light grey to very pale orange), 

coarse-grained boundstone with corals and rhodolithic algae (Fig. 5.6). This boundstone 

facies is locally pyritic with the development of fair to good porosity in its upper part.    

A type C6 cycle, which represents the lagoonal setting, occurred at two intervals 

in well no. 66 and at two intervals in well no. 105. Four cycles have been documented in 

total with a range in thickness between 8 and 11 feet and an average of 9.7 feet (Table. 

5.1C).  Although it represents a prograding transition of facies from a probably semi-

restricted lagoon to a more restricted lagoonl environment, the subtle transition from 

packstone/grainstone to packstone facies could suggest an aggradational pattern, similar 

to that of type A5 cycles in the Dahra Formation. Broadly it shows a mottling, with 

yellowish brown to very pale orange colour. This type of cycle commences with 

packstone/grainstone facies with common miliolids, echinoderm fragments, bivalve 

shells and scattered dasycladacean algae. It passes upward to a well to moderately 

sorted packstone with abundant green algae and scattered bivalves, rotaliids and 

echinoderm fragments (Fig. 5.6). On the basis of petrography, the boundary between the 

packstone/grainstone and packstone facies is characterized commonly by good porosity 

and the development of pyrite.  
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Figure 5.6 Cycle C types defined in the Mabruk Member in the Dor al Abid Trough.  
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Table 5.1 Summary of cycle types, number, thickness range, and average for the Dahra 

Formation (A), Zelten and Harash Formations (B), and Mabruk Member (C) in the 

studied wells. 

A 

Formation/ 

Member 

Cycle 

type 

Cycle sub-

type 

No. of 

cycles 

Cycle 

range (ft) 

Average 

(ft) 

Dahra A A1 13 7- 30 16.8 

ʺ ʺ A2 8 6- 30 19 

″ ″ A3 9 14- 33 19 

″ ″ A4 9 12- 36 23.6 

B  

Formation/ 

Member 

Cycle 

type 

Cycle sub-

type 

No. of 

cycles 

Cycle 

range (ft) 

Average 

(ft) 

Zelten/Harash B B1 15 7- 35 23.3 

″ ″ B2 6 8- 34 23.5 

C 

Formation/ 

Member 

Cycle 

type 

Cycle sub-

type 

No.   of 

cycles 

Cycle 

range (ft) 

Average 

(ft) 

Mabruk C C1 5 8- 23 14 

″ ″ C2 12 5- 18 11.5 

″ ″ C3 10 6- 16 11.4 

″ ″ C4 1 17 17 

″ ″ C5 1 16 16 

″ ″ C6 4 8- 11 9.8 
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5.4.3. Fischer plots 

A Fischer diagram shows the thickness of each cycle through a cyclic succession 

relative to the average cycle thickness (Fig 5.7). Fischer plots are a graphical method to 

illustrate accommodation changes, and hence depositional sequences, in cyclic platform 

carbonates, by graphing cumulative departure from mean cycle thickness as a function 

of time (Fig. 5.7; Goldhammer, 1987; Read and Goldhammer, 1988; Sadler et al., 

1993). 

Basically the cycle thickness is a reflection of changes in accommodation space, 

but the relationship is complicated by many factors such as the quasi-periodicity of 

cycles, variable sedimentation rates, incomplete shallowing to sea-level, and non-linear 

subsidence rates (Chen et al., 2001).  

Fischer Plots are conventionally drawn by cumulative departure from mean 

cycle thickness against cycle number (Sadler et al., 1993). In this manner, packages of 

thicker cycles will positively deviate from the mean cycle thickness, and form the rising 

limbs of the plots, reflecting a long-term increase in accommodation space; whereas 

packages of thin cycles will be negatively deviated from the average cycle thickness, 

and form the falling limbs, reflecting a long-term decrease in accommodation space 

(Fig. 5.7).  

Sadler et al., (1993) recommended the use a minimum of 50 cycles in order to 

separate non-random from random fluctuations. Thus a number of less than 50 cycles 

may not be sufficiently long for the precise calculation of statistical parameters. 

Nevertheless, Fischer plots can still be useful in the correlation of platform sections, 

especially when combined with facies analysis (Tucker and Garland, 2010). 

Since the studied Paleocene Formations are not continuous, i.e. separated by 

gaps of several tens of feet, and the total number of cycles does not reach the number 

recommended by Sadler et al. (1993), no statistical parameters have been calculated. 

Furthermore, some recognized cycles are of subtidal facies and do not shallow up to 

sea-level, and thus their thickness may not reflect accommodation or sea-level changes. 

Fischer plots are used here to correlate and interpret possible style in cycle thickness 

patterns in a long term trend. In many cases, it is very difficult to correlate individual 

cycles from one well to another, but the overall cycle thickness trends are fairly similar. 
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Figure 5.7 Portion of a hypothetical Fischer plot showing changes in accommodation 

space as a function of cycle number (Husinec et al., 2008). 

 

 

5.4.3.1. On the Dahra Platform 

The Fischer plot for the Dahra Formation in well no. 8 (Dahra East Field) on the 

Dahra Platform shows 16 cycles with an average thickness of around 18.2ft (Fig. 5.8). 

In this figure cumulative departure from average cycle thickness of the Dahra Formation 

in three wells on the Dahra Platform is shown in both cycle number and stratigraphic 

thickness. 

The first half of the plot, which is about 170ft thick, generally shows a positive 

slope that comprises 7 shallowing-up, coarsening-up and thicker than average cycles. 

This cound indicate an up-ward increase in accommodation space that was associated 

with high rate of carbonate production. 

The middle part of the plot (cycle no. 8) is characterized by the development of 

the most conspicuous negative slope of the Fischer plot in this well. Sedimentologically, 

the interval is composed of dolomitic bioclastic packstone with lithoclasts, peloids, 

green algae, bryozoans and benthic forams. A breccia-like feature, internal sediments, 

rootlets and clay minerals are all recorded (Appendix. 1 and Fig. 5. 8). Therefore it is 

interpreted as exposure surface. This is indicated by, in addition to the above mentioned 
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features, a sudden landward shift in facies (packstone- packstone/grainstone is overlain 

by marl and mudstone facies). This negative slope corresponds to the top of the Dahra C 

and is correlatable to the other wells; it would suggest that the same process was 

controlling deposition in this part of the Dahra Formation in the study area.     

The second half of the plot comprises around 95ft of rather zigzag-like trend 

with well defined, short negative and positive segments; it is broadly characterized by 

cycles with lower than average thickness. This could indicate short-term variations in 

accommodation space and carbonate production that was probably brought about by 

sea-level fluctuations.  

In well no. 9 (Dahra West Field) the Fischer diagram shows 10 cycles with an 

average thickness of about 19.5ft. A part from significant negative slope that 

corresponds to top of the Dahra C unit (an exposure surface on top of cycle no. 5), no 

clear trend can be deduced in the lower part of the plot (Fig. 5.8). The upper part of the 

diagram shows a pronounced positive slope of two thicker than average cycles, which 

may suggest an increase in accommodation space during the deposition of this part of 

the Dahra Formation. Combined Fischer plots of the Dahra Formations in the wells no. 

8 and 9 on the Dahra Platform are shown in Figure 5.10.  

The Fischer plot for the Dahra Formation in well no. 10 (Dahra West Field) on 

the Dahra Platform shows 9 cycles with an average thickness of around 21.1ft (Fig. 5.8). 

The early part of the diagram (  50ft) shows negative slope of three shallowing and 

coarsening-up cycles. This regressive pattern would suggest that accommodation space 

was decreasing in this part of the Dahra Formation; the overall Dahra Formation is 

included in the lower Paleocene regressive cycle (Figs. 5.2 and 5.3). 

The top of the Dahra C is marked again by a negative slope in the end of the first 

half of the plot (between cycles 4 and 5). The second part of the plot does not show any 

clear trend, despite development of remarkable positive slope of thicker than average 

cycle that fairly correlatable to that of well no. 9. 
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Figure 5.8 Fischer plots of the Dahra Formation in three wells on the Dahra Platform. 

Cumulative departure from mean cycle thickness (ft) is shown against both cycle 

number and stratigraphic thickness. 

 

 

The Fischer diagrams of the Zelten/Harash interval in the Dahra west and east 

fields show rather similar trends; they broadly exhibit two remarkable positive segments 

and two short negative slopes. Figure 5.9 below shows the constructed Fischer plots for 

Zelten and Harash Formations in both fields on the Dahra Platform, in which 

cumulative departure from mean cycle thickness is shown against cycle number and 

stratigraphic thickness.  

The Fischer diagram of well no. 9 is composed of 9 cycles with an average 

thickness of about 21.6 ft. The lower half of the plot is dominated by positive slope that 
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comprises two regressive cycles of rather similar thickness (cycle no. 3&4).  This may 

suggest a remarkable increase in accommodation space was occurred which probably 

associated with relatively high rate of carbonate production (cycle nos. 3&4). The upper 

half of the plot displays a similar trend to the lower one. The Harash Formation, 

however, is represented by only three shallowing-up cycles of mid- inner ramp setting 

with a total thickness of about 74ft.  

In wells no. 7 and 8 (Dahra West and East Fields) the Fischer diagrams show 

only six shallowing-up cycles with an average thickness of 20.8 and 21ft, respectively. 

Both plots start, as in well no.9, with a small and steep negative slope of outer – mid 

ramp cycles (Fig. 5.9). Combined Fischer plots of the Dahra, Zelten and Harash 

Formations in wells no. 8 and 9 on the Dahra Platform are shown in Figure 5.10. 

Apart from the thickness of individual cycles, the overall cycle trend in the 

studied wells is almost identical, with two prominent positive slopes and two 

conspicuous negative segments. This strongly indicates a significant variation in 

accommodation space available during the deposition of the Zelten and Harash 

Formations, and would suggest that autocyclic processes were involved during the 

deposition of the upper and lower parts of the Zelten and Harash Formations, 

respectively.   
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Figure 5.9 Fischer plots of the Zelten and Harash Formations in three wells on the 

Dahra Platform. Cumulative departure from mean cycle thickness (ft) is shown against 

both cycle number and stratigraphic thickness. 
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Figure 5.10 Fischer plots of the Dahra, Zelten and Harash Formations in the Dahra east 

field (well no. 8) and the Dahra west field (well no. 9) on the Dahra Platform.  

 

 

5.4.3.2. In Dor al Abid Trough 

In the Dor al Abid Trough, the overall trend of Fischer plots of the Mabruk 

Member shows slight consistencies in the reef areas (Fig.5.11). In well no. 66, the cored 

interval is represented by 10 cycles with an average thickness of 12.8ft. The Fischer plot 

broadly exhibits two falling limbs and two rising slopes (Fig. 5.11).  

The first falling limb consists of three cycles of almost similar thickness. It could 

suggest that the rate of deposition was possibly low and could not keep pace with the 

accommodation space available during deposition of this particular interval of the 

Mabruk Member. This segment is fairly correlatable to the other wells (Fig. 5. 11).  

The middle part of the plot, which is about 75ft thick, shows positive trend of 

four shallowing-up cycles of mainly coral-algal bioclastic boundstone facies, which is 

interpreted as having been deposited in a proper reef area. Although the lower three 

cycles in this bundle shallow-up, the overall package displays an aggradational-like 

pattern (Appendix 1). This may indicate that the rate of carbonate sedimentation was 

generally equal to the rate of creation of accommodation space. The upper part of the 

plot is characterized by a prograding transition of facies from a probable semi-restricted 
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lagoon to a more restricted lagoonal environment. Thus an overall shallowing-up pattern 

(regressive package) was produced (cycles no. 8 and 9.) just before the advent of major 

flooding that resulted in the deposition of marl and shale of the Hiera Formation.   

The Fischer plot of well no. 103 is composed of 12 shallowing-up cycles with an 

average thickness of 11.6 ft. The plot shows two major negative slopes; in the early part 

and close to the end part. The early part of the diagram, which is correlatable to the 

other wells, is followed by a positive slope of thicker than average cycles that represent 

the beginning of the proper reef facies. This bundle, which comprises 5 cycles of similar 

thickness, gives an indication of an aggradational pattern. This bundle is correlatable to 

the middle part of well no. 66, but with thinner interval. 

In well no. 105, the plot represented by 12 shallowing-up cycles with an average 

thickness of 10.2 ft (Fig. 5.11). The overall diagram, however, shows two positive 

slopes and four negative slopes. Subsequent to the early negative slope, the diagram 

shows a fairly steep positive slope of two thicker than average cycles (cycles no. 3 & 4). 

This could suggest a gradual increase in accommodation space that was probably 

associated with a relatively high rate of carbonate production. This sudden increase in 

accommodation space was followed by a gentle negative slope composed of four 

shallowing-up cycles. This could suggest a low rate of carbonate production during 

deposition of the lower part of the Upper Mabruk Member. 

The second positive slope in the Fischer plot in this well is present close to the 

top of the diagram (cycle no. 11). This short positive slope is fairly correlatable to the 

other wells. It could suggest that accommodation space that created during the 

deposition of cycles no 9 and 10 was possibly filled, before the advent of major flooding 

that resulted in the deposition of marl and shale of the overlying Hiera Formation. 
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Figure 5.11 Fischer plots of the Mabruk Member of the Heira Formation in three wells 

in the Dor al Abid Trough. Cumulative departure from mean cycle thickness (ft) is 

shown against both cycle number and stratigraphic thickness. 
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5.4.4. Stable Isotope Stratigraphy  

In addition to using stable isotopes for the study of the deposition and diagenesis 

of carbonates, they can also be used in stratigraphic studies, for broad correlations 

between sections and for detecting changes in environmental conditions up through a 

succession. 

In general, carbon isotope values offer a more reliable approach than oxygen 

values, since the latter can be strongly affected by diagenesis (Flügel, 2004). When the 

oxygen isotope data obtained in this study are plotted against carbon (see Figs. 5.12 & 

5.13), the oxygen values are seen to extend from quite low negative to high negative 

values, approaching -10‰. This is most likely a diagenetic trend reflecting the amount 

of diagenetic alteration, especially the amount of calcite spar cement precipitated and 

degree of neomorphism / recrystallization during burial (see Tucker & Wright 1990). 

The carbon data on the other hand are mostly confined to a narrow band (+1 to +4‰), 

which is typical of marine carbonate, indicating little diagenetic alteration.  

The oxygen isotopic signature of carbonate minerals is mainly controlled by 

temperature of precipitation and the isotopic composition of the fluids; the carbon 

isotopic signature generally reflects the isotopic composition of the fluid and the source 

of carbon, which may be derived from bacterial sulphate reduction, fermentation and 

dissolution of carbonate minerals (Morad et al. 1990; Yoshioka et al. 2003; Ader et al. 

2009; Chakraborty et al. 2010).  

According to Tucker & Wright (1990), carbon and oxygen stable isotope values 

for modern carbonate sediments vary between +4‰ and 0‰ and +1‰ to -2‰ 

respectively, but individual bioclastic grains may vary from this (the so-called ‘vital’ 

effect); the average for ancient limestones is normally between 0‰ and +4‰ for δ
13

C, 

and -2‰ to -10‰ for δ
18

O. In this study only whole rock samples were analysed for 

their isotopic composition, with a preference given to fine-grained facies to avoid too 

much burial spar cement. 

 

5.4.4.1. On the Dahra Platform (Dahra Fields) 

The δ
18

O values recorded in the studied Paleocene succession range from +1.15 

‰ to -10.49 ‰, whereas the δ
13

C measurements fall in the range +3.89‰ to -4.87‰.  

The δ
18
O and δ

13
C values in the Dahra Formation on the Dahra Platform range between 

+1.15‰ to -6.83‰ and +3.18‰ and -1.78‰, respectively. In fact the carbon isotope 
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values of the studied Paleocene succession on the Dahra Platform are all quite similar 

and do not shows any real significant change up through the section. This suggests that 

δ
13

C seawater did not change significantly through the time of deposition of the Dahra 

Formation, and that there was little diagenetic alteration of the δ
13

C values. The oxygen 

isotope stratigraphy of the Dahra Formation does show several pronounced shifts. 

The basal part of the cored section of the Dahra Formation (3259-3338ft) in the 

Dahra East Field (well no. 8) shows little change in the isotopic signatures up-section, 

particularly the carbon values. δ
13

C ranges between 2.79‰ to 2.33‰ and δ
18

O -2.69‰ 

to -4.13‰. The interval, which is composed of 4 shallowing-up cycles, is mainly 

composed of wackestone/packstone facies, slightly dolomitic in the lower part and 

argillaceous in the upper parts, and is intercalated with shale and marl at two levels. A 

notable feature is that the upper marly interval shows more positive δ
13

C and less 

negative δ
18

O values than the lower shaley interval (2.34‰ to 3.11‰ δ
13

C and -2.69‰ 

to -1.72‰ δ
18

O). This may indicate that the upper interval was deposited in a slightly 

lower temperature and/or less warm climate than the upper one.  

This is followed by a 19 ft thick interval of pronounced negative excursion of 

δ
18

O, from -3.33‰ to -6.83‰ and a minor shift to less positive δ
13

C, from 2.59‰ to 

2.33‰. The most negative shift in the δ
18

O in this well occurs at a depth of 3244ft, in a 

dolomitic bioclastic packstone/grainstone with good intergranular and dissolution 

porosity. The quite negative δ
18

O value and high grade of dissolution could indicate a 

degree of exposure, and thus the end of a depositional cycle.  

Upwards, the interval from 3085-3242ft shows a clear trend with the δ
18

O values 

broadly increasing, apart from slight shifts, to less negative values. The δ
13

C values are 

almost constant with only minor fluctuations (Fig. 5.12). This could indicate a subtle 

change in sea-water δ
18

O or a lower temperature.     

The stable isotope trend from 3174-3185ft shows a very slight shift to less 

positive δ
13
C value and to less negative δ

18
O value. Sedimentologically the interval is 

composed of dolomitic bioturbated wackestone/packstone microfacies with intraclasts 

and/or breccia. Desiccation cracks, rootlets, internal sediment and hematite have been 

developed in the uppermost part. These features, which correspond with the top of the 

Dahra C, strongly suggest an important key surface (e.g. sequence boundary and/or 

ravinement surface), which probably coincides with the global sea-level curve of Haq et 

al., (1988) that shows a significant sea-level fall during the early Thanetian time. 
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However, there is no clear event or excursion in the isotope data at this level. Perhaps 

closer spaced sampling would have revealed an excursion. 

The overall trend of the Dahra Formation in well no. 9 is rather similar to that of 

well no. 8. The lowermost part of the cored section shows a clear shift (upwards) to 

more negative values of the δ
18

O, from –0.83‰ to -6.14‰, and a slight change to less 

positive δ
13

C values, 3.11‰ to 2.56‰. Although the isotopic signatures of the lower 

part of the Dahra Formation in this well do not show any significant changes in δ
18

O 

and δ
13

C values, petrographic investigation showed that at least four shallowing-up 

cycles had developed through it. The quite negative values of the oxygen data (-6.57‰ 

to -5.04 ‰) could indicate significant diagenetic alteration.  

The middle part of the section shows a positive excursion, particularly in δ
18

O, 

where the δ
18

O values change, upwards, from -4.37‰ to -2.11‰ and the δ
13

C values 

slightly increase from +1.29‰ to +1.58‰. This surface is close to the top of the Dahra 

C (top of Dahra C to base of Dahra B). The δ
18

O pattern could indicate a gradual change 

in seawater δ
18

O or a decrease in temperature; the second could be the result of a 

climate change or possibly deeper, cooler water.  

As noted in Chapter 4, the carbon isotope values of the Zelten and Harash 

Formations in the Dahra east and west petroleum-fields on the Dahra Platform are fairly 

similar and confined to a narrow range between +2.22‰ and +3.86‰, which is a bit 

higher than that of ancient limestones. This may ascribed to an increase in organic 

carbon, increased organic productivity or fermentation. The overall upward trend of the 

oxygen isotopic signature is less negative, which is more pronounced in the Harash 

Formation.  

In well no. 8 the Zelten/Harash interval shows a general trend to less negative 

values for δ
18
O, and δ

13
C values changes little. This may attributed to a change in the 

oxygen isotope value of seawater.  

In well no. 9, the cored section of the Zelten Formation is consisting of six 

shallowing-up cycles, whereas in the Harash, which is shorter, only three cycles have 

been recognized. The overall δ
18

O shows a slight trend towards more negative values, 

then to less negative values, and the carbon changes little. The Zelten Formation is more 

negative than that of the Harash Formation (Fig. 5.12), which possibly could ascribed to 

the fact that Zelten facies were deposited in warmer shallower water than the Harash 

facies, or there was a subtle change in δ
18

O seawater.   
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The Zelten/Harash boundary is characterized by an important basin-ward shift in 

facies (significant deepening) that is more pronounced in well no. 9. Although it is 

interpreted as a new cycle/parasequence it could indicate a much more important 

stratigraphic surface or even a drowning unconformity initiating a new sequence. The 

isotopic signature changes slightly upwards, from 3.16‰ to 3.48‰ and from -4.91‰ to 

-2.71‰ in well no. 9 (Fig. 5.12). The progressive deepening across the Zelten /Harash 

Boundary is also indicated by the occurrence of mudstone with planktic forams, 

echinoid spines, echinoderm fragments and scattered un-differentiated bioclasts. On the 

basis of sedimentology and isotopic signature this interval may represent one of the 

deepest portions of the Zelten/Harash section in the area.  

Positive δ
13

C excursions in a carbonate ramp setting are best explained as 

intervals dominated by exported carbonate material from shallow areas of the basin 

(Bádenas et al., 2005). According to the same authors two mechanisms are favoured to 

explain the shift to more positive δ
13

C values: (i) an overall increased rate of sediment 

supply during long-term sea-level rise, which resulted in an environment that supported 

the preservation of organic matter in the sediment (Weissert et al., 1998); or (ii) 

increased sediment supply to the deeper ramp from shallow-ramp regions where surface 

water productivity is greater. 

Eventually, the subtle long-term changes in oxygen recorded in the 

Zelten/Harash interval could simply be slight changes in sea-water δ
18

O or small 

changes in temperature-climate or depth. 
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Figure 5.12 Combined stratigraphy, Fischer plots and carbon and oxygen isotope curves 

of the Dahra,  Zelten and Harash Formations in wells no. 9 and 8, Dahra West and East 

Fields, respectively, the Dahra Platform. 
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5.4.4.2. In Dor al Abid Trough (Mabruk Field) 

As noted earlier, the isotope signatures of the Mabruk Member in the Dor al 

Abid Trough seem to follow the sedimentary facies, i.e. the wells located in the reef 

area have very similar isotope values, whereas the well that penetrates lagoonal facies 

has a completely different trend. 

The overall isotope values of the Mabruk Member range from δ
18

O - 0.77‰ to -

7.68‰ and δ
13

C +3.04‰ to -6.31‰. The most obvious real trend in the Mabruk wells is 

recorded in well no. 105, the east Mabruk area, where oxygen and carbon isotope values 

are almost identical.  The upper part of the lower Mabruk and the lower part of the 

Upper Mabruk in this well is composed of 5 shallowing-up cycles. There are no 

significant changes in the isotopic signature, especially in the δ
13

C values, which range 

from 1.01‰ to 3.04 ‰ and oxygen, which range from -4.19‰ to -2.48‰.  

A pronounced negative excursion occurs in the middle interval of the Upper 

Mabruk Member, where the oxygen isotope values become more negative from -2.48‰ 

to -5.45‰ and the carbon isotope values are depleted from +2.23‰ to +1.63‰ (Fig. 

5.13). The whole interval (3722-3743ft) is composed of two shallowing-up cycles and 

characterized by more negative oxygen isotope values and less positive carbon isotope 

values. This could reflect a change to higher temperature and/or warmer periods that 

were possibly brought about by the relative change of sea-level.   

Sedimentologically, the interval changes, upwards, from argillaceous 

limestone/marl through bioclastic grainstone, dolomitic at the top with development of 

good dissolution porosity and scattered pyrite and anhydrite crystals, to bioclastic 

foraminiferal packstone/grainstone facies, argillaceous in the uppermost part. This 

interval therefore represents a progressive shallowing-up succession upto the 

subsequent flooding (deepening) episode that resulted in the deposition of a thin interval 

of marl (Fig. 5.13).  

The isotope signatures of the Mabruk Member in the reef area (wells no. 66 and 

103) do not exhibit any important changes in the δ
18

O and δ
13

C values; in both wells the 

values are almost identical, especially the δ
13

C. The lower interval of the cored sections 

in this area, however, is dominated by marl and mud-supported facies, whereas the 

upper interval is characterised by common boundstone and algal packstone facies. The 

similarity of the isotope signature in both wells may suggest that no significant 

environmental changes occurred during Mabruk deposition, or, more likely, the changes 
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were subtle, and consequently the number of samples available in this study could not 

detect them. 

 

       

Figure 5.13 Combined stratigraphy, Fischer plots and carbon and oxygen isotope curves 

of the Mabruk Member (Hiera Formation) in wells no. 66 and 105 in reef area and 

lagoonal setting, respectively. Mabruk Field, Dor al Abid Trough. 
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5.4.5. Selandian/Thanetian cycles; duration and mechanism 

Estimations of the duration of cycles and cycle-sets are often made to see if there 

is a relationship with Milankovitch rhythms (Fischer, 1964; Read et al., 1986; 

Goldhammer et al., 1987, 1990). In his proposal of 50 k.y as an average duration for 

Triassic peritidal cycles, Fischer divided the total number of cycles in the platform by 

the approximate age of the platform sequence to derive an average duration for each 

cycle. Goldhammer et al., (1987) revised the length of Fischer s cycles to 20 k.y. for 

individual cycles and 100 k.y. for megacycles. Crevello (1991) studied the lower 

Jurassic carbonates in High Atlas, Morocco, and pointed out that by using an average 

age for the Liassic stages, individual carbonate cycles ranged in duration from 24 k.y. to 

129 k.y. He suggested that the duration of cycles in outer-platform strata are believed to 

reflect more accurately the lengths of individual sea-level rhythms because a more 

continuous and complete stratigraphic record is preserved along with better 

biostratigraphic age control.  

Grotzinger (1986) emphasized that the durations of most cycles are of the order 

of 10
4
 years, which is within the range proposed for Milankovitch orbitally-forced 

perturbations. Later, Goldhammer et al., (1990) assigned metre-scale cycles to 4
th
–5

th
 

order sea-level cycles, which they attributed to Milankovitch orbital rhythms with 

duration of 20,000 years, 40,000 years and 100,000 years of precession, obliquity and 

eccentricity, respectively (Tucker and Garland, 2010).  

In view of the fact that the studied succession is separated by a number of gaps 

of several tens of feet, not only between the studied formations but also within them, 

along with the absence of absolute dating and high-resolution biostratigraphy, no 

statistical parameters have been calculated, and thus the duration of cycles of the studied 

section can only be roughly estimated.  

The Dahra Formation is considered by some workers to be of Thanetian age and 

by others as Selandian/Thanetian. The latter is accepted by this author, following the 

stratigraphic charts that were adapted by CPTL (2001). Using these charts the time span 

for the Selandian/Thanetian ranges between 60.9 to 54Myr; the Dahra Formation, 

accordingly is likely to be approximately 2.4Myr in duration, and the Zelten/Harash 

Formation is about 2.3Myr.  

On the Dahra Platform, the most complete section (longest core interval) for the 

Dahra Formation is in well no. 8, where its cored interval is around 279ft thick. The 
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total thickness of the Dahra Formation in this well from well logs is 325ft.  16 cycles 

have been recognized in the core with an average cycle thickness of 18.2ft. A 46ft gap, 

according to wire-line log interpretation, could represent ~2.5 cycles.  Therefore, these 

give an estimate of cycle duration as 0.129Myr (129kyr), and an average carbonate 

accumulation rate of 0.141ft (   0.042m) 1000 yr
-1

. This figure is almost the same as the 

Upper Cretaceous Bahama platform (0.04m 1000yr 
-1

) (Tucker and Garland, 2010), very 

close to the value of 0.037m 1000 yr
-1 

for the Devonian succession in Belgium (Tucker 

and Garland, 2010), and similar to the 0.05 m 1000yr
-1

 for the Barremian-Aptian 

platform carbonates of France (from Tucker & Wright, 1992).  

In the Dor al Abid Trough, and among the studied wells, the thickest cored 

interval of the Mabruk Member in the Mabruk Field is in well no. 103, which is around 

134 ft. Twelve cycles have been identified with an average cycle thickness is 11.6 ft. 

The total thickness of the Mabruk Member in this particular well is 163ft; A 29ft gap is 

estimated to comprise around 2.5 cycles, giving a total of 14.5 cycles. Since the Mabruk 

Member is considered by many authors as a distal equivalent to the Dahra Formation, 

the cycle duration would be about 0.165Myr (165kyr) and an average sedimentation rate 

is 0.070ft (   0.021m) 1000 yr
-1

. This rate of deposition is identical to that of Permian 

Palmarito Formation in the Venezuelan Andes (Laya-Pereira, 2012) and comparable 

with the above mentioned ancient carbonate platforms.  

It is clear that the rate of deposition of the Dahra Formation on the Dahra 

Platform is around twice of that of the Mabruk Member in the Dor al Abid Trough, and 

the cycle duration of the Dahra Formation is much less than that of the Mabruk Member 

(129kyr and 165kyr). This could support the fact that inner platform area with its 

various settings (shallow subtidal–peritidal) is normally the site of high carbonate 

production (carbonate factory) relative to the outer platform areas, and that there was a 

higher rate of accommodation space development here.  

The longest (thickest) cored section of the Zelten/Harash interval on the Dahra 

Platform has been retrieved in well no. 9, which is 194ft. The time span of this interval, 

as stated above, is estimated at around 2.3Myr and the total thickness of both formations 

in this well is about 352ft, i.e. there is around 160ft of the interval is not cored, and the 

number of identified cycles is 9 with an average cycle thickness is 21.6 ft. Again based 

on wireline logs and the average cycle thickness, the uncored interval may comprise a 

further 7.54 cycles, giving a total of 16.5. These give an estimate of cycle duration as 
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0.140Myr (140kyr) and an average rate of deposition of 0.154ft (   0.046m) 1000yr
-1

, 

which is again closely comparable with other ancient carbonate platforms. The 

carbonate accumulation during the deposition of Zelten and Harash Formations on the 

Dahra Platform is similar to that of the Dahra Formation (0.046 m1000yr
-1 
– as 

compared to 0.042m1000 yr
-1

). This indicates a similar rate of creation of 

accommodation space.     

 

Depositional cyclicity is manifested in carbonate platform sequences throughout 

the geological record, from Precambrian rocks to Recent sediments (Grotzinger, 1986; 

Hardie and Shinn, 1986, James, 1989). The origin of metre-scale cyclicity has been 

discussed by many authors (Lehrmann and Goldhammer, 1999; Schlager, 2005; 

Bosence et al., 2009), and three mechanisms have been invoked to explain the repetition 

of shallowing-upward cycles: sedimentary, tectonic and eustatic (Tucker and Garland, 

2010). Despite the fact these controlling processes have similar rates of operation, 

orbital forcing has been the most common explanation for the origin of metre-scale 

cycles.  

The underlying assumption in applying a Milankovitch climate-forcing model to 

metre-scale cyclicity is that the celestial mechanics of the sun-earth system, which 

govern the orbital perturbations of the earth, have been in effect since the Precambrian, 

even though the durations and intensity of these perturbations may have changed 

through geological time (Crevello, 1991). Thus the Milankovitch model with its three 

rhythms of precession (  20kyr), obliquity (  40kyr) and eccentricity (short   100 and long 

400kyr) are responsible for variations in the amount of solar irradiance reaching the 

Earth (Tucker and Garland, 2010). 

Interestingly, the extremely approximate cycle durations deduced here for the 

Paleocene in the Sirt Basin (129, 165, 140kyr) are closest to the short eccentricity 

rhythm (105kyr), and if missed beats are taken into account (Hardie and Scinn 1986, 

and Tucker & Garland 2010), one would expect the higher figures obtained.    
  

Since the studied Paleocene succession could not be statistically analysed 

because of the lack of strong data, and identifying an ordered from disordered, random 

stacks of cycles, that might have indicated the origin and mechanisms of the 

Selandian/Thanetian cyclicity, could not be performed. Instead, spatial and temporal 

variation of the entire Paleocene Epoch in the study area, with emphasis on the 
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Selandian/Thanetian succession, and the main factors that controlled its facies changes 

and distribution are dealt with in Chapter 6. 

 

5.5. Sequence stratigraphy of the Late Paleocene succession in the study area 

5.5.1. Introduction 

Sequence stratigraphy has now developed into a fundamental approach for 

describing, understanding and predicting the nature of sedimentary units. Over the last 

three decades, three types of sequence have been defined, with different surfaces chosen 

for the bounding surfaces: depositional sequences, bounded by subaerial unconformities 

and their correlative conformities (e.g. Posamentier et al., 1988; Van Wagoner et al., 

1988, 1990; Hunt&Tucker, 1992); genetic sequences bounded by unconformable 

maximum flooding surfaces and their correlative conformities (Galloway, 1989), and 

transgressive-regressive sequences, bounded by composite surfaces which include the 

subaerial unconformity and the marine portion of the maximum regressive surface 

(Embry & Johannessen, 1992). 

Following up the early contributions in the application of sequence stratigraphy 

to carbonate depositional systems, significant progress was made in the early 1990s 

when the fundamental principles of carbonate sequence stratigraphy, as well as the 

differences between the clastic and carbonate stratigraphic models, were elucidated 

(Coniglio and Dix, 1992; James and Kendall, 1992; Jones and Desrochers, 1992; Pratt 

et al., 1992; Schlager, 1992; Erlich et al., 1993; Hunt and Tucker, 1993; Long, 1993; 

Loucks and Sarg, 1993; Tucker et al., 1993).  

The productivity of pure carbonate systems and their ‘carbonate factories,’ 

which dictates the rates of sedimentation (seafloor aggradation and progradation) 

depends on a number of factors including climate, amount of clastic influx, surface area 

of the carbonate platform, water depth and illumination, nutrients, salinity and rates of 

base-level changes (Walker and James, 1992; Schlager, 2005, Catuneanu et al., 2011).  

The dominant underlying controls on sedimentary successions are 

accommodation – the space available for sediment, and sediment supply (Tucker & 

Garland, 2010). The latter is a key factor to understand sequence stratigraphy, especially 

in the case of carbonate depositional systems (Catuneanu, 2006). In shelf carbonates 

sediment production is more often the key, since they are mostly formed and deposited 

in situ, and this is very much affected by the depositional environment- temperature, 
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energy levels, nutrients, oxia-anoxia, turbulence, climate, etc.(Tucker and Garland, 

2010; Catuneanu et al., 2011).  

On carbonate ramps, the most important depositional periods are transgressive 

and highstand systems tracts. During the former different geometries are produced, 

depending on the relative rates of sea-level change and carbonate sedimentation; 

normally backstepping of the shoreline and drowning of the earlier inner-ramp sands 

take place, or the shoreline retrogrades to produce an onlapping, retrogradational set of 

parasequences or a transgressive sheet sand. During the HST ramp carbonates aggrade 

and prograde, downlapping on to the earlier TST sediments (Tucker et al., 1993). 

Although the studied core sections are not continuous; separated by several tens 

of feet gaps, they are discussed and interpreted as a continuous package in terms of a 

sequence stratigraphic approach, based mainly on the wireline logs in the absence of 

core samples (thin-sections); an attempt was then made to analyse and interpret the late 

Paleocene succession on the Dahra Platform as a whole. Because of lack of wirline logs 

that penetrate the pre Mabruk Member section, only the cored interval of the Mabruk 

Member in the Dor al Abid Trough is interpreted from sequence stratigraphy 

perspective.  

 

5.5.2. Sequence stratigraphic analysis 

The sequence-stratigraphic analysis of the Late Paleocene succession in the 

study area depends mainly on petrographic investigations and wireline logs, with less 

dependence on core samples. Published and un-published reviews and works on 

structure, stratigraphy, seismic and sedimentology of the study area and surroundings 

were also used.  

In addition to the identified key surfaces, there are probably more subtle surfaces 

within the Selandian/Thanetian succession that are beyond resolution with the type and 

volume of data available in this study. In many carbonate successions, particularly the 

structurally active area with major and minor faulting and folding, it is difficult to use 

the traditional sequence stratigraphic approach to determine the key surfaces from 

limited and discontinuous cores, and lack of appropriate seismic sections. In addition, 

cores and wireline logs can detect only a one-dimensional view of the geology at the 

well site. All these limitations have played a major role in the sequence stratigraphic 

analysis, and affected the accuracy of the end results.  
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On wireline logs, important surfaces, particularly unconformity surfaces are 

properly correlated to the bottoms and tops of characteristic funnel-shaped and bell-

shaped log-stacking patterns. Exposure of the studied succession is indicated locally by 

the development of rootlets, internal sediments and mineralization phenomena in the 

Dahra Formation. The depositional sequences in the Late Paleocene succession 

identified in this study comprise both transgressive systems tracts and highstand 

systems tracts, whereas lowstand systems tracts were not developed (not recognised) 

probably due to the low relief ramp setting.  

The interval between two successive sequence boundaries recognized in this 

study, on the Dahra Platform, is regarded as a depositional sequence, and is referred to 

as Late Paleocene Sequence, regardless of the rock unit it involves or within which it 

occurs (e.g. LPS1= Late Paleocene Sequence 1, and LPS2 = Late Paleocene Sequence 

2). Whereas the depositional sequences recognized in the Mabruk Field in Dor al Abid 

Trough is referred to as LPSM.  

 

5.5.2.1. Late Paleocene depositional sequences on the Dahra Platform   

5.5.2.1.1. Late Paleocene Sequence 1 (LPS1)  

As shown in Figures 5.2 and 5.3, the Dahra Formation occupies the upper part of 

the lower Paleocene regressive cycle defined by Abushagur (1991) and Bezan (1996). A 

gradual shallowing of the sea resulted in the deposition of the Dahra carbonates over 

large parts of the study area.  

The thickness of this sequence (LPS1) varies from 189ft in well no. 10 to 197ft 

in well no. 8. It is characterised by a fairly well-defined funnel-shaped wireline-log 

pattern, especially in its upper part (Sp, gamma-ray, resistivity, sonic and neutron) and 

thus it is interpreted as upward-shallowing, and locally upward coarsening, a trend 

which suggest deposition during transgressive and highstand systems tracts 

(TST&HST).  

Following the deposition of the Rabia Shale in possibly a deep middle-shelf 

environment, a sudden change in the sedimentary facies is recorded at the base of the 

Dahra Formation. This is interpreted as the lower boundary of the LPS1 that probably 

corresponds to a global lowering of sea-level during the late Selandian (Fig. 5.2). In the 

global chart of sea-level of Haq et al., (1988), the eustatic sea-level drops for about 50m 

(from 201 to 150m) at the late Selandian. A well-defined landward shift in facies from 
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shale to limestone could support this interpretation. Moreover, the boundary shows a 

marked change from more to less positive SP log behaviour, a distinct increase in 

resistivity log response and an obvious decrease in the sonic log (Figs. 5.3 and 5.16).   

The upper boundary of this sequence is placed close to the middle part of the Dahra 

Formation; it coincides with the top of the Dahra C unit (at the boundary between the 

Dahra B and C), which is correlatable to the other wells. It is characterised in well no. 8 

by the development of dolomitic bioturbated wackestone/packstone microfacies with 

intraclasts and/or breccia. Desiccation cracks, rootlets, internal sediment and hematite 

have been developed in the uppermost part. The stable isotope trend in this well at this 

interval shows a very slight shift to less positive δ
13
C values and to less negative δ

18
O 

values. It represents the most conspicuous negative slope of the Fischer plot in this well 

(Figs. 5.8, 5.12 and 5.14).  

In well no. 9, however, this upper sequence boundary is marked by significant 

deepening and consequently a clear shift in depositional environments. The facies below 

the boundary, bioclastic packstone/grainstone, is characterized by extensive dissolution, 

and is immediately followed by a significant rise in relative sea-level that resulted in a 

rapid increase in accommodation space (TST2), and thus two surfaces are possibly 

amalgamated here (transgressive/ravinement surface and sequence boundary-TS&SB). 

This is witnessed by the development of a shaly and mud-supported interval of mid-

inner ramp facies (Figs. 5.14&5.16).  

In well no. 10, this surface exhibits a sudden facies change from bioclastic 

grainstone below to argillaceous wackestone above, whereas in well no. 7 the cored 

interval is just few feet below this significant surface. This sequence boundary probably 

corresponds to a significant fall during the early Thanetian time shown on the global 

sea-level curve (Fig. 5.2). This eustatic sea-level fall was possibly more than 120m 

(from about 180 to 55m). Schrӧter (1996) has probably detected this boundary and used 

it to separate the Beda Formation from the upper part of the Dahra Formation, when he 

documented the interval between the Beda Formation and the lower Dahra Formation as 

being dominated by a regressive cycle. Subsequently, sedimentation took place on a 

level surface and thickness variations remained uniform into the Eocene.  

The transgressive systems tract of the LPS1 (TST1) is only detected in well no. 

8, in which this interval is cored, whereas it is not cored in the other wells. In wells no. 

9, 10 and 7 the cored interval starts close to the TST/HST boundary (MFS), and 
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therefore the section represents only the HST. The lowermost part of the LPS1, which is 

not cored in all the wells, could comprise the lower part of the TST1, including its 

transgressive surface. In turn, it probably coincides with (according to wireline logs) the 

lower boundary of LPS1 (Rabia/Dahra contact) (Fig. 5.16).  

The TST1 comprises three shallowing-up cycles of A1 type, with a total 

thickness of 67ft (Fig. 5.14). Although there is no clear deepening-up stacking pattern of 

these cycles (parasequences/ parasequence set), they do become more argillaceous and 

thicker-upward. The package shows a very minor change from negative to more 

positive SP, a small increase in gamma ray, a slightly lower resistivity and a slight 

decrease in the neutron log (Fig. 5.14). These features might indicate that the rate of 

carbonate production during deposition of this package could just keep pace with the 

rising sea-level and hence a retrogradational to fairly aggradational stacking pattern was 

produced, probably similar to the transgressive aggradational interval of Jurassic and 

Cretaceous T-R Cycles in Northern Gulf of Mexico (Mancini et al., 2005).  

The upper boundary of this TST1 (MFS1) is placed close to the base of the 

subsequent shallowing–up cycle (lower part of Dahra C), which is composed of about 

10 ft of light grey, calcareous and pyritic shale with positive SP, a slight increase in 

gamma ray,  a low resistivity and small decrease in neutron log (Fig.5.14). In fact at this 

interval the SP for the whole well represents the most positive reading and the resistivity 

is the lowest. 

The subsequent highstand systems tract (HST1) is composed of 3-5 shallowing-

up cycles of mainly A3 type together with more restricted facies, which suggest a 

progradational stacking pattern. Its thickness is generally getting thinner westward as it 

ranges from 56ft in well no. 7 to 90ft in well no. 8, despite reaching about 96ft in well 

no. 9.  It usually starts with a cycle type A1 followed by an A3 type and capped by an 

A2 type. Thus, overall shallowing-upward trends are evidenced.  

The abundance of grain-supported carbonates in the HST1 with skeletal and 

non-skeletal grains could indicate a high rate of carbonate production with progradation 

when sufficient accommodation space was available. A feature worthy of note is that at 

about mid-way up the HST1 in well no. 7, meniscus calcite cement has been recorded in 

the upper part of an aggradational parasequence of packstone/grainstone facies (cycle 

type A4) (Fig. 5.14). This diagenetic feature, which would suggest a degree of exposure, 

could not be traced in the other wells. This early diagenetic feature alone is not 
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diagnostic because it may also develop during depositional regression when the system 

builds into the high supratidal zone, for example on tidal flats (e.g. Halley and Harris, 

1979; Gebelein et al., 1980). 

As stated earlier, the top of this HST1 (the upper boundary of LPS1) is marked 

normally by the occurrence of brecciated packstone with indications of meteoric 

exposure (dissolution and mineralization), but towards the east (well no. 8) it is 

characterized, along with the brecciated packstone, by the development of rootlets, 

internal sediments and occurrence of clays (Fig. 5.14). The shallowing-upward trend 

from shoal/lagoonal to supratidal is indicative of a progradational stacking pattern 

during the highstand systems tract (Kwon et al., 2006). The above features, particularly 

those recorded in well no.8, are interpreted to indicate progressive progradation during 

the late HST1 and a progressive loss in accommodation space up to the sequence 

boundary.  

 

5.5.2.1.2. Late Paleocene Sequence 2 (LPS2) 

The interval between the top of LPS1 and the top of the Dahra Formation is 

interpreted as occupied by LPS2. Its thickness ranges between 99ft in well no. 9 to 129ft 

in well no. 8. Although it is not cored in well no. 7, from wireline logs it reaches 118ft. 

It consists of 5 shallowing-up cycles in wells no. 9 and 10, whereas in well no. 8 it 

comprises 8 cycles (Fig. 5.14) and almost all types of cycle (A1-A4) are documented in 

this sequence.  

Its lower boundary is the upper boundary of the LPS1, whereas its upper contact 

is placed at the top of the Dahra Formation. The topmost part of the Dahra Formation 

(10-15ft thick) is not cored in wells no. 9 and 10.  

In fact, apart from its lower and upper boundaries, no important surfaces have 

been recognized within this sequence (TS or MFS) with confidence. The lowermost part 

of this sequence is characterized by the development of a shale and mud-supported 

interval in almost all the studied wells. In wells no. 8 and 10, however, this muddy 

interval is overalain by bioturbated packstone facies in the top parts of a type A1 cycle 

with dissolution features, borings, iron stains and development of features similar to 

desiccation cracks. These phenomena could indicate an important key surface and/or a 

parasequence boundary. On the other hand, the muddy interval overlying the upper 

boundary of the LPS1 may represent a transgressive systems tract (TST2), with its 
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maximum flooding surface (MFS2) placed within the thin shale/mudstone beds that 

immediately overlie the Dahra B unit (Fig. 5.14).  

The Dahra B unit itself, which occupies the lower part of the LPS2, could 

represent a significant interval as well; it exhibits a very well-defined funnel-shaped 

trend and shows a notable change from more positive to more negative SP log, a 

reduction in gamma ray and a substantial increase in resistivity. Furthermore, an 

aggradational pattern on the scale of a single parasequence has been documented in the 

upper part of the Dahra B in wells no. 8 and 10. Therefore, the Dahra B could denote 

the upper part of the transgressive systems tract (late TST2) that was followed by the 

topmost part of this sequence (HST2), up to the contact with the Khalifa Formation 

(Figs. 5.14 and 5.16). 

 

5.5.2.1.3. Late Paleocene Sequence 3 (LPS3)  

The lower boundary of this sequence coincides with the top of the Dahra 

Formation, whereas its upper boundary is not clearly identified, although the 

Zelten/Harash contact is the most probable candidate boundary for it. Its thickness 

varies from 347ft in well no. 8 to 393ft in well no. 7. 

A major transgression occurred at the end of Dahra carbonate deposition, and 

resulted in the deposition of mainly shale with subordinate limestone of the Khalifa 

Formation on the platform and in trough areas. The lower boundary of the LPS3 (the 

contact between the Dahra and overlying Khalifa Formations) is characterized by  a 

sudden shift to a more positive SP log response, low resistivity behaviour and a 

significant increase in the sonic record (a bell-shaped trend), which confirm the 

transgressive (major flooding) event. On the other hand, petrographic investigation 

showed that the uppermost part of the Dahra Formation, across the area, is characterized 

by the development of bioclastic foraminiferal packstone/grainstone facies, locally 

dolomitic with fair to good moldic and vuggy porosity and the local occurrence of 

glauconite and pyrite. Therefore, petrographic features and electric logs characters 

suggest proximity to an exposure surface associated with (or immediately followed by) 

major flooding and hence an amalgamated boundary is indicated (SB and TS) (Fig. 

5.16).  

Only one important surface has been recognized within this sequence; it occurs 

in the lower part of the Zelten Formation and is charaterised by a positive SP response, 
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low resistivity curve, high gamma and high sonic log. It is interpreted as MFS3 that 

separates the TST3 below and HST3 above; the TST3 comprises the entire Khalifa 

Formation and the lower part of the Zelten, which is argillaceous limestone intercalated 

with thin shale intervals of mid-outer ramp, whereas the upper part of the Zelten 

Formation, which comprises six shallowing-up cycles of inner to back-ramp facies, 

belongs to HST3 (Fig. 5.15).  

The upper boundary of the LPS3 is placed roughly at the top of the Zelten 

Formation. Although no clear evidence of subaerial exposure at the top of the Zelten 

Formation is detected, the boundary between Zelten and Harash Formations is marked 

by a facies change from bioclastic foraminiferal packstone/grainstone to 

mudstone/wackestone deposits with planktic forams and the local ocurrence of pyrite 

and glauconite. δ
18

O shows a slight shift to more negative isotopic signatures, and well-

log behaviour exhibits an overall bell-shaped trend, suggesting a major flooding event 

(Figs. 5.15 and 5.16).  

Spring and Hansen (1998) studied the Upper Sabil (Zelten Fm equivalent) and 

the Harash Formations in the eastern part of the Sirt Basin and demonstrated that the 

transition between those two formations reflects a sea-level fall followed, after a period 

of local lowstand deposition, by a marine transgression. They argued that meteoric 

dissolution and cements observed from core data and reworked materials of Late 

Cretaceous and Paleocene within the lower part of the Harash, suggest subaerial 

exposure at the top of Upper Sabil carbonates.  

 

5. 5. 2. 1. 4. Late Paleocene Sequence 4 (LPS4)  

The base of this sequence is placed at the Zelten/Harash boundary and its upper 

boundary is probably located at the base of the Facha Dolomite Member of the Jir 

Formation. Its total thickness ranges from 380 ft in well no. 8 (Dahra East Field) to 

645ft in well no. 9 (Dahra West Field).  

The cored section of the Harash Formation comprises two to three shallowing-

up cycles of mid- inner ramp setting, that are mainly composed of foraminiferal 

bioclastic wackestone-wackestone/packstone with less common foraminiferal 

nummulitic packstone facies. According to the wireline logs the whole interval of the 

Harash Formation across the studied wells can be subdivided into three major cycles (a 

parasequence set) that begin with argillaceous limestone and are capped with grain-
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supported carbonates (Fig. 5.16). On the basis of their position within the sequence, 

these parasequence sets are assigned to TST4, despite the fact that an overall deepening-

up pattern could not be detected from well-logs. This package is overlain by grey-dark 

grey, fissile, calcareous shale intercalated with grey argillaceous calcimicrite and marl 

of the Kheir Formation.  

The base of the Kheir Formation is marked by a slight increase in the gamma-

ray log, an important decrease in resistivity, a minor decrease in neutron and a major 

increase in the sonic record (Fig. 5.16), suggesting a maximum flooding surface 

(MFS4). This could be correlatable to the eustatic sea-level curve of Haq et al. (1988; 

Fig. 5.2). Consequently the basinal facies of the Kheir Formation could represent the 

succeeding highstand systems tract (HST4) up to the following sequence boundary at 

the base of the Eocene Jir Formation. 

Most of the defined sequence boundaries on the Dahra Platform match fairly 

well with the global cycle chart of Haq et al. (1988), which suggest that global eustacy 

was possibly the main responsible for their development.  
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Figure 5.14 Lithological characteristics, cycles, well-log response and sequence stratigraphy of the Dahra Fm on the Dahra Platform. 
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Figure 5.15 Lithological characteristics, cycles, well-log response and sequence stratigraphy of the Zelten/Harash interval on the Dahra 

Platform. 
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Figure 5.16 Lithological characteristics, well log response and sequence stratigraphy of the studied Selandian/Thanetian succession on the 

Dahra Platform. 
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5.5.2.2. Late Paleocene depositional sequences in the Dor al Abid Trough 

 (Mabruk area)  

The Mabruk oil-field lies on the west flank of the major axis on which the Bahi 

and the Dahra oil-fields are situated. As shown in Chapter 3, the Mabruk Member 

shows complex lateral and vertical variations from the west through central to eastern 

Mabruk areas. Its overall interval represents deposition of mainly shallow-water 

carbonates that were bounded by deeper-marine marl and shale; these carbonates 

accumulated in lagoonal and reefal environments of a probable a rimmed- shelf setting. 

In view of this the cored interval in the studied wells involves almost the entire Upper 

Mabruk Member and the upper part of the Lower Mabruk Member, the sequence 

stratigraphic analysis of this study is focused on the cored interval only.  

 

5.5.2.2.1. Late Paleocene Sequence1 in the Mabruk area (LPSM1) 

The thickness of this sequence (LPSM1) varies, in the reef area from 31ft in well 

no. 66 to 39ft in well no. 103, whereas in the lagoon area (well .no. 105) it is 36ft thick 

(Fig. 5.17).  

Subsequent to the deposition of the Lower Heira Shale Member in probably a 

deep middle-shelf environment, a rapid to gradational change in the sedimentary facies 

occurred in the base of the Lower Mabruk member, where the limestone commences 

and is interbedded with thin beds of shale and marl. The pronounced facies change from 

a marl-dominated to limestone-dominated interval, started at the base of the Upper 

Mabruk Member in well no. 105, and at several feet above that base in well no. 103. It 

is characterized, in the latter well, by a shallowing-upward and locally coarsening-

upward trend, which suggests a major change in the depositional facies and their 

stacking patterns.  

In well no. 66, this boundary is characterized by mottling with the development 

of internal sediments, boring and fracturing. This is interpreted as the lower boundary of 

the LPSM1 that possibly coincides to the eustatic sea-level fall during the late 

Selandian/early Thanetian (Fig. 5.2). This boundary shows a marked decrease in the 

gamma ray log, a distinct increase in resistivity log response and an obvious shift in the 

neutron/density logs, particularly in the reef area, with an overall fairly well defined 

funnel-shaped trend (Fig. 5.18).  

The upper boundary of this sequence is placed near to the middle interval of the 

Upper Mabruk Member; in the reef area it is placed at the contact between the coral 
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algal boundstone facies below and algal bioclastic boundstone (in well no. 66), or algal 

packstone facies (in well no. 103) above. It is characterised by the development of a thin 

layer of argillaceous limestone, highly compacted with the occurrence of dolomite, 

pyrite, glauconite and dark organic materials (possibly bitumen) (Fig. 5.17). The stable 

isotope trend at this boundary shows a slight shift to more negative δ
18

O and very minor 

change to less positive δ
13

C values (Fig. 5.13). 

In well no. 105, the boundary is placed at the contact between shale/argillaceous 

limestone facies and the bioclastic foraminiferal packstone/grainstone, indicating a 

landward shift in facies (Fig. 5.17). The stable isotope trend in this well at this interval 

shows a remarkable shift to more negative δ
18
O and less positive δ

13
C values (Fig. 

5.13). The wirline log signatures of this boundary show a very low gamma, a slight high 

sonic, an obvious shift in neutron/density response and a small increase in resistivity (a 

funnel-shaped trend) (Fig. 5.18).  

The lowermost part of the LPSM1 is characterized by the development of type 

C2-C4 cycles that include the algal packstone, coral algal boundstone, and foraminiferal 

bioclastic wackestone- wackestone/packstone facies in wells no. 66, 103 and 105, 

respectively. In well no. 66 each cycle shallows-up, but the parasequence set shows a 

deepening-up trend; this is evidenced by the fact that the lower cycle is mainly 

composed of red algae, benthic forams and scattered rhodoliths, and the upper cycle 

consists of red algae, rhodoliths and corals with a high argillaceous content (Fig. 5.17). 

On the basis of these features, along with its stratigraphic position within the 

succession, it has been assigned to the transgressive systems tract (TST1). Its maximum 

flooding surface (MFS1) is placed at the marl/shale interval in wells no. 66 and 105, 

whereas in well no. 103 it is placed at the lowest grain-supported and the highest mud 

content interval (Fig. 5.17).  

The MFS1 is followed by the highstand systems tract of the LPSM1 (HST1). In 

the reef area, this HST1 is occupied by relatively thick cycles of type C3 and C5 that are 

characterized mainly by the development of coral algal boundstone facies with the 

presence of dolomite in their uppermost parts, whereas, in well no. 105 this systems 

tract is represented mainly by shale, marl and mud-supported facies that, in turn, is 

followed by a sudden landward shift in facies (SB). 
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5.5.2.2.2. Late Paleocene Sequence 2 in the Mabruk area (LPSM2) 

 This sequence is much thicker than the LPSM1, particularly in the north central 

Mabruk region (towards the reef area). It gets thinner towards the southeast of the 

Mabruk field (towards the lagoon area), as it varies from 70ft in well no. 66 through to 

58ft and 47ft in wells no. 103 and 105, respectively (Fig. 5.17). The lower boundary of 

this sequence is the upper boundary of the underlying LPSM1, and its upper boundary is 

placed at the top of the Mabruk Member, where a remarkable basinward shift in facies 

is recorded (Figs. 5.17 and 5.18).  

In the reef area, this upper boundary is characterized by the development of a 2ft 

thick bed that is characterised by breccia with angular intraclasts showing microborings, 

and occurrence of pyrite, glauconite, phosphate, kaolinite and hematite (Fig. 5.17). The 

wireline logs show a pronounced increase in the gamma ray, a marked decrease in 

resistivity, a sharp shift in neutron/density, and a distinct change in the sonic record (a 

bell-shaped trend) (Fig. 5.18). 

These features are interpreted as an unconformity surface of drowning 

(drowning unconformity of Schlager, 1981, 1989), despite the presence of the kaolinite 

(~16%,), reddish brown stains and scattered evaporite crystals, along with fair to good 

intragranular and moldic porosity in the lagoon area could indicate a short period of 

exposure just prior to the major flooding (drowning). The percentage of kaolinite and 

quartz at the top of the LPSM2, according to XRD analysis, increases southeast-ward; 

both are absent in well no. 66, 10% and 2% in well no. 103, and 16% and 3% in well 

no. 105, respectively. It is fairly well known that kaolinite-rich sediments would 

represent a low-sea level. Thus, the occurrence of kaolinite in the topmost part of the 

Mabruk Member could indicate an influx of riverine clastics through a sea-level 

fluctuation and/or a change to a more humid climate. In either situation, the upper 

boundary of the LPSM2 is there, whether it is associated with subaerial exposure or not. 

Although the lower part of this sequence (LPSM2) is interpreted as a 

transgressive systems tract (TST2) that comprises, in the reef area, 2 to 3 relatively thick 

cycles of type C3, and 4 cycles of type C2 and C6 in the lagoon area, the possibility of 

development of a lowstand systems tract is not excluded completely (based on the 

above mentioned features). In well no. 66, however, the deepening-up trend is indicated 

by the lower cycle consisting of algal bioclastic boundstone and the upper one is coral 

algal boundstone facies (Fig. 5.17). In well no.105, the lower two cycles are of grain-

supported facies, whereas the upper two cycles are composed of shale and mud-
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supported carbonates. The stable isotope values of this interval show a remarkable 

excursion to less negative δ
18

O and more positive δ
13

C, which confirm interpreting it as 

TST2. Increases and positive maxima in δ
13

C correspond to phases of sediment 

accumulation during sea level high stands and transgressions. A trend towards δ
13

C 

depleted ratios and negative maxima in δ
13

C correspond to phases of sediment erosion 

and reworking during sea level lowstands and regressions (Hilbrecht et al., 1986; Voigt 

and Hilbrecht, 1997).  

The maximum flooding surface of this sequence (MFS2) is placed in well no. 

66, at the base of a roughly aggrading pattern that comprises type C6 cycles, and at the 

top of the bioclastic packstone that comprises coral fragments, bryozoans and scattered 

un-differentiated bioclasts with the occurrence of pyrite and dark organic matter.  In 

well no. 105 the MFS2 is placed at the upper part of this sequence, in the marl bed, 

above which a roughly thin shallowing-up pattern that comprises only one cycle is 

developed (HST2). A notable feature is that this HST2 is getting thinner southeast-ward 

of the Mabruk area (towards well no. 105); it follows the same trend of thickness 

variation of the entire LPSM2. This could be the result of the rate of removal of the 

upper parts of the HST2 in the proximal facies (lagoon area) being more than that of 

relatively distal facies (reef area).  

Following the HST2, a major flooding event took place at the top of the Mabruk 

Member in the study area. The surface of this event, which could be amalgamated [SB 

& TS (drowning)] is somewhat similar to the lower boundary of the LPS3 on the Dahra 

Platform that separates the Dahra and Khalifa Formations. It probably corresponds to 

the eustatic sea-level rise during the early Thanetian (Fig. 5.2).  

From a sequence-stratigraphic point of view, drowning unconformities can be 

interpreted either as sequence boundaries (SB) or maximum flooding surfaces (MFS), 

depending on the development (or not) of an intervening exposure phase (e.g. 

Catuneanu, 2006). As explained in Chapter 3, a number of mechanisms have been 

proposed in the literature to explain the demise of a carbonate platform and the 

generation of a drowning unconformity. Shallow-marine carbonate platforms become 

inactive (drowned) when the platform top is submerged below the depth range of light 

penetration (photic zone) for effective photosynthetically driven carbonate production 

(Schlager, 2005), which would prevent platform tops from keeping up and/or catching 

up to rising sea-level (Kim et al., 2012).  
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The long-term drowning of carbonate platforms requires that the reduction of 

growth over long time-scales is largely caused by environmental factors. It has been 

demonstrated in Jurassic settings that platform drowning is associated with abrupt facies 

changes (Blomeier and Reijmer, 1999) and, based on fluid inclusion palaeobarometry, 

that water depth increased at slower rates than normal platform growth (Mallarino et al., 

2002). These findings, according to Mutti et al., (2005), require environmental changes 

for platform drowning. Several processes could have resulted in long-term local 

environmental changes: increased volcanic activity; changes in circulation that would 

have resulted in increased local productivity of the surface waters; and changes in sea-

level and temperature of the surface waters (Mutti et al., 2005).  

In the study area, the possible lack of reef-building organisms, causing a sharp 

decrease in the rate of carbonate production, thus promoting drowning when subsidence 

and/or sea-level increased (Bice and Stewart, 1990), is probably the most appropriate 

cause for the discontinuation of carbonate production in the Mabruk area. In the Sirt 

Basin, several upper Paleocene coralgal bioherms were drowned at the end of the 

Paleocene and covered by hemipelagic marls, shales and limestones of the Harash and 

Kheir Formations (Scheibner et al., 2008). 
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Figure 5.17 Lithological characteristics, cycles and sequence stratigraphy of the Mabruk Member in the Dor al Abid Trough. 



        Chapter 5                                                                                                                                                                                   Ssequence stratigraphy 
__________________________________________________________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                                                                                                    227 
 

 

Figure 5.18 Well-log response and sequence stratigraphy of the Mabruk Member in the Dor al Abid Trough. 
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5.6. Summary  

The sedimentary succession in the Sirt Basin as a whole ranges in age from 

Cambro-Ordovician to recent. In the study area, the Palaeozoic and Mesozoic sections 

have been recorded in several localities on the Dahra Platform and in Zellah/Dor al 

Abid Troughs. During the Cenomanian a major flooding event occurred and extended 

marine conditions over most of the Sirt Basin, particularly in the trough areas. In the 

uppermost Cretaceous, subaerial exposure occurred in many parts of the Dahra 

Platform, which later during the Maastrichtian became submerged. 

The start of the Tertiary was associated with a broad sea-level rise, which 

resulted in the deposition of thick Hagfa Shale in large parts of the Zallah and Dor al 

Abid Troughs, whereas shallower-water carbonates of the Satal Formation, were 

deposited on the Dahra Platform. The overall cycle of shale deposition with 

intercalation of carbonate reflects alternating transgressive-regressive cycles in the 

Paleocene succession.  

The Satal carbonates were blanketed by a few metres of calcareous shale, which 

represent the extension of the deep Hagfa shale, i.e. they were onlapped and/or probably 

drowned by a thin unit of deeper-marine shale. In the Dahra Field and adjacent areas, 

the Rabia Shale Member, which consists of dark grey to green calcareous shale with 

minor light grey, argillaceous limestone beds, could represent a lateral development of 

the Hagfa Shale Formation. The base of the Thalith Member is considered as a 

transgressive surface that was probably associated with a high rate of carbonate 

production, and above which the backstepping (deepening-up-trend) was developed.   

A gradual shallowing of the sea resulted in the deposition of the Dahra carbonates over 

large parts of the study area. A major transgression occurred at the end of Dahra 

carbonate deposition, and resulted in sedimentation of several tens of feet of mainly 

shale with subordinate limestone of the Khalifa Formation on the platform and in trough 

areas.  

The log characters of the Rabia shale interval are quite similar to those of the 

Khalifa Formation, which could support the use of a collective name for these 

Paleocene shales (Hiera Formation) in the trough areas. The fossil contents, 

characteristic sediments and the electrical log features of the Zelten Limestone suggest 

an overall regressive interval, with a probable prograding trend, particularly in the upper 

part of the Formation. The boundary between the Zelten and Harash Formations shows 
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a sharp change in facies and log response that strongly suggest an important 

stratigraphic event.  

The studied Paleocene succession is dominated by shallowing-up cycles, with 

the possible development of deepening-up cycles particularly in the deeper-water areas. 

On the Dahra Platform, the Dahra, Zelten and Harash Formations comprise lagoonal, 

shallow subtidal and deep subtidal cycles. In the Dor al Abid Trough, the Mabruk 

member involved reef and back-reef/lagoonal cycles.  

The δ
18

O values recorded in the studied Paleocene succession range from 

+1.15‰ to -10.49‰, whereas the δ
13

C measurements fall in the range +3.89‰ to -

4.87‰. The carbon isotope values on the Dahra Platform are all quite similar and do not 

shows any real significant change up through the section, while the oxygen isotope 

stratigraphy of the Dahra Formation does show several pronounced shifts. 

The overall isotope values of the Mabruk Member range from δ
18

O -7.7‰ to - 

0.8‰, and δ
13

C -6.3‰ to +3‰.  They commonly follow the sedimentary facies, as the 

wells with reefal facies have similar isotope values, whereas the wells with lagoonal 

facies have a completely different trend.  

The rate of deposition of the Dahra Formation on the Dahra Platform is around 

twice of that of the Mabruk Member in the Dor al Abid Trough, and the cycle duration 

of the Dahra Formation is much less than that of the Mabruk Member (129 kyr versus 

165 kyr). This probably relates to the fact that an inner platform area is normally the site 

of higher carbonate production relative to the outer platform area. Carbonate 

accumulation during the deposition of the Zelten and Harash Formations on the Dahra 

Platform is similar to that of the Dahra Formation (0.046 m1000 yr
-1 
– as compared to 

0.042 m1000 yr
-1

), which suggest a similar rate of creation of accommodation space.  

Sequence stratigraphic analysis of the Selandian/Thanetian section in the study 

area has resulted in the identification of four depositional sequences on the Dahra 

Platform, whereas at least two depositional sequences have been recognized in the 

Mabruk area in the Dor al Abid Trough. These depositional sequences comprise both 

transgressive systems tract and highstand systems tract, while lowstand systems tract 

was not developed (or recognised), probably due to the low relief ramp setting or 

because of the location of the studied wells. A notable feature is that the lower 

sequences in both structural settings are commonly thinner than those in the upper part 

of the succession. The sequence boundaries are commonly incorporated with 
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transgressive surfaces, particularly on the Dahra Platform. The likely development of a 

drowning unconformity on the top of the Mabruk Member in the Dor al Abid Trough 

could be ascribed to a possible lack of reef-building organisms in association with 

tectonic subsidence and/or significant sea-level rise.  
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CHAPTER SIX: SPATIAL AND TEMPORAL VARIATION OF PALEOCENE 

STRATA AND SUBSIDENCE PATTERNS IN THE SIRT BASIN STUDY 

AREA 

6.1. Introduction 

The Sirt Basin of north-central Libya is a complex rift basin that is considered 

to have been initiated in the Late Jurassic (Abadi, 2002; Abadi et al. 2008). The many 

sub-basins of the Sirt evolved as a series of rifted embayments on the northern margin 

of the North African plate, following the breakup of the supercontinent of Pangaea. 

However, the duration of rifting in the Sirte Basin is more variable and this in part 

reflects the complex structural nature of the basin setting.  In such structural settings 

identification of late syn-rift and post-rift thermal subsidence are unclear and this is 

reflected in the literature with a wide variety of timings across the Sirt Basin (Gumati 

and Kanes 1985; Gumati and Nairn, 1991; Baird et al 1996; Schroter, 1996; Abadi et 

al., 2008). Subsidence and extensional fault reactivation are considered here to have 

continued into the Paleocene and probably early Eocene in response to the plate 

movements of the African, American and Eurasian plates during the opening of the 

Atlantic and development of Tethys on the foreland of the African plate (Anketell, 

1996). Evidence will be provided to support this late syn-rift timing from burial and 

subsidence histories of the Dahra platform region of the western Sirte Basin. 

Previous studies of Sirte basin subsidence and timing of rifting events have 

either focused on the regional events with limited datasets (e.g. Gumati and Kanes 

1988; Gumati and Nairn, 1991; Baird et al., 1996) or used larger data sets from across 

the Sirt Basin focusing only on the subsidence histories (e.g. Abadi et al 2008). Here 

the spatial and temporal variations in the subsidence patterns are investigated using 50 

wells, from locations given in Figure 1.1. This is combined with detailed petrography 

of the key burial diagenetic cements from core of 7 wells, wire-line logs, fluid 

inclusion analyses and stable isotope data.  

The Paleocene was a time of renewed vertical movements, which produced a 

strong differentiation between the sedimentation patterns on the horsts and in the 

grabens (Gumati and Kanes, 1985). The Selandian/Thanetian succession on the Dahra 

Platform is composed mainly of carbonate and shale facies that alternate with each 

other up to the Eocene. In the trough areas the succession comprises mainly shale and 

marl, with scattered carbonate facies, particularly in its lower part (Fig. 6.1).  
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This chapter is aimed at reviewing the spatial and temporal distribution of the 

Paleocene from the Dahra platform and Dor al Abid/Zallah trough succession. It 

provides a new appraisal of the Paleocene carbonates and how they are affected by 

late stage syn-rift tectonics and subsidence. A quantitative subsidence analysis is 

presented to understand fully the late syn-rift phase and its influence on sedimentation 

patterns. 

 

6.2. Geological history and rift framework 

Rifting commenced in the Late Jurassic, peaked in the Late Cretaceous, and 

terminated in early Tertiary time, resulting in the triple junction (Sirte, Tibesti, and 

Sarir arms; see Figure 2.8) within the basin (Harding, 1984; Gras and Thusu, 1998; 

Ambrose, 2000). According to Anketell (1996), the Early Cretaceous rifting reflected 

east-west sinistral shear zones (strike-slip) that strongly controlled clastic deposition 

in the Sarir arm of the triple junction, but Ambrose (2000) alternatively proposed that 

dextral shear forces dominated this period of deformation in the Sarir arm.  

The Sirt Basin is asymmetric, deepening to the east as shown in Figure 2.12. 

The relative relief on the juxtaposed horst and graben blocks increases to the east 

coincident with significant thinning of sediments across the province. Erosion and 

collapse associated with the Sirt Arch resulted in truncation of the Palaeozoic 

succession during the Early Cretaceous rifting phase (Burke and Dewey, 1974). The 

drift of the African plate over a fixed mantle hotspot is thought have triggered this 

event (Van Houten 1983). This early rifting phase coincided with rhyolitic and 

basaltic volcanism dated at 148-127 Ma (Rossi et al., 1991; Gras and Thrusu 1998; 

Wilson and Guiraun 1998).  A change from northward to westward African plate 

motion in the Late Cretaceous promoted further thinning of the cratonic lithosphere 

(Morgan 1980, 1983). This is marked by major basin subsidence, reactivation of 

faults and crustal extension (Gumati and Nairn 1991). Subsidence and extensional 

fault reactivation continued into the Paleocene to early Eocene, in response to the 

relative plate motions of the African, American and Eurasian plates during the 

opening of the Atlantic and development of Tethys on the foreland of the African 

plate (Anketell, 1996). Progressive erosion of younger sediments and subsequent 

episodes of block faulting resulted in placing the Palaeozoic and Mesozoic reservoirs 
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in a structural high position with respect to thermally mature Cretaceous source rocks 

that occupied the deeper portion of the Sirt Basin and its sub-basins. 

In the western Sirt Basin, Late Cretaceous and lower Tertiary carbonate 

reservoirs, commonly reefs and platform carbonates on the northwest-southeast-

trending horsts, are the dominant reservoirs in the remaining two arms (the Tibesti 

and Sirte arms) of the triple junction. The western region of the Dahra platform and 

associated Dor al Abid/Zallah Trough form the focus of this research. 

Abadi et al., (2008) identified four tectonic phases in the Sirt Basin, from Late 

Jurassic to present. They pointed out that the Paleocene rifting phase (65–49 Ma) 

marked an abrupt deepening of the basin, separated from the Late Cretaceous 

subsidence by a period of tectonic quiescence in the Maastrichtian. Abdunaser (2012) 

suggested four graben-fill stages in the western Sirt Basin from the Cretaceous to the 

end of the Paleocene with the onset of the post-rift stage in the Eocene. He related the 

rift development in the western Sirt Basin to the break-up of Gondwana represented 

by the structural evolution of the West-Central African rift system and the South and 

Central Atlantic, the Tethys and the Indian Oceans.  
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       Studied section 

Figure 6.1 Stratigraphic section in the study area showing transgressive-regressive 

deposits and main rifting phases. A: Montgomery, 1994; Gumati and Kanes, 1985 and 

Ahlbrandt, 2001; B: Spring and Hansen, 1998; C: Abadi et al, 2008. Nomenclature of 

Barr and Weeger, 1972.   
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6.2.1 Criteria for recognition of late syn-rift sedimentation 

Active extensional basins are important because their sedimentary fills and  

associated structures provide i) depocentres with high preservation potential for the 

sedimentary successions; ii) detailed records of sea–level changes and sediment 

supply rates, iii) direct information of the fault activity within a rift and; iv) directly 

attributable spatial and temporal relationships between sedimentation and tectonism.  

The sedimentary patterns associated with the subsidence and uplift of normal faults 

has lead to a number of studies focusing on theoretical fault growth models (e.g. 

Gawthorpe et al., 1997; Gawthorpe & Leeder, 2000) and changes in stratal patterns 

and thicknesses in hanging-wall depocentres (e.g. Gupta et al., 1998; Sharp et al., 

2000). However, most of these studies focus on the main rift tectonic events and their 

influence on contemporaneous strata.  

Prosser (1993) proposed a four-fold division of rift evolution to characterize 

basin-fill stratigraphy: (1) rift initiation stage, where the rate of displacement is 

relatively low and sedimentation keeps pace with subsidence; (2) rift climax, where 

the rate of displacement reaches its maximum value and sedimentation is likely to be 

outpaced by subsidence; (3) immediate post-rift stage, where active tectonism has 

ended, only a (decreasing) regional subsidence due to thermal cooling is left and 

filling of the remnant topography begins; and (4) late post-rift stage, in which a slow 

peneplanation of the remaining low-relief topography takes place.  

Although such a classification that documents the key tectonic events during 

the life history of a rift is well established and largely used in the references cited 

above, the late syn-rift phase and its recognition in sedimentation histories has been 

neglected in the literature (e.g. Schlische and Olsen, 1990; Prosser, 1993, Wilson and 

Hall, 2010). Furthermore, the tectonic controls on syn-rift successions has largely 

focused on clastic sedimentary fills (Gawthorpe & Leeder 2000), carbonates provide 

equally subtle and interesting variations across fault blocks as seen in the Sirt Basin 

(e.g. Cross et al., 1998; Bosence, 2012). Much of the literature focuses on 

sedimentation associated with the acme of rifting and subsidence and neglects the late 

stage syn-rift phases. Several characteristics can be recognized in the Sirt Paleocene 

stratigraphy of this study to assign it to a late syn-rift phase. These are:  

i) Linkage of fault segments to create large (≥10 km-long) faults with discrete 

influence on sedimentation patterns along their length; 
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ii) Large-scale regional subsidence of footwall blocks, with uniform sedimentation; 

iii) More localized and discrete subsidence along sections of hard-linked fault 

segments; 

iv) Sedimentation ≥ subsidence during the latest phase of syn-rift, leading to sediment 

bypass; 

v) Footwall blocks dominated by steady state platformal carbonates with uniform 

sedimentation and petrography and; 

vi) Hanging-wall blocks dominated by deeper-water facies with mainly shale and less 

carbonates. 

The late syn-rift phase ended by the deposition extensively distributed of early 

Eocene evaporite and dolomite (Gir Formation) with uniform lithology and thickness 

variations. These variations in the trough and platform areas have been attributed to 

the mobility and sensitivity to dissolution of the evaporites, rather than to deposition 

or tectonic effects (Baird et al., 1996). From the middle Eocene onward, faulting-

related differential subsidence decreased (Abadi et al., 2008). 

 

6.2.2. Mid Syn-rift to late syn-rift sedimentation in the Paleocene 

Regional structural map, seismic sections and well logs showed that the 

Kalash Limestone is widespread all over the study area; in the Zallah and Dor al Abid 

Troughs, and on the Dahra Platform (Figs 6.6 and 6.9). It has revealed that some parts 

of the Dahra Platform existed as palaeo-highs, probably upto the early Maastrichtian 

(Fig. 2.9).  

The Campanian high subsidence rate in the central Zallah Trough was 

replaced by intermediate subsidence in the Maastrichtian, the time during which the 

major faults became inactive (Schr ter, 1996). Gumati and Kanes (1985), who 

considered the rifting phase in the Sirt Basin to include the Cretaceous and Paleocene 

successions, pointed out that the late Cretaceous and Paleocene rifting phases of the 

central Zallah Trough are separated by a time of tectonic quiescence. During the 

Maastrichtian, subsidence patterns in the Sirt Basin appear to become spatially less 

differentiated and show patterns of less rapid subsidence before reactivation of the 

NW faulting during the Lower Paleocene (Abadi, 2002).  

Therefore, the preceding statements, along with the wide spread occurrence of 

the Maastrichtian Kalash Limestone in the Sirt Basin, with fairly uniform thickness, 
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strongly indicate that Maastrichtian time was a significant period within the basin; it 

probably represents the time of tectonic quietness within the mid syn-rift phase phase 

of the Sirt Basin, when troughs and platforms were almost discrepancy subsiding. 

This is witnessed by the fact that the entire Paleocene succession and most of the 

Eocene are, in contrast with the preceding late Cretaceous, developed in both 

structural elements (in the Zallah and Dor al Abid Troughs and on the Dahra 

Platform) with thickness of the individual rock units and overall thickness of the 

Cretaceous and Tertiary sections on either sides of the Gedari Fault are remarkably 

different (Fig. 6.3). 

The thickness difference between the Dahra Platform strata and the Zallah/Dor 

al Abid Troughs section, however, is probably due to local differential subsidence on 

both structural elements that resulted in the difference in accommodation space. Some 

of the late syn-rift differences can be further ascribed to late stage fault related 

subsidence.  

The Paleocene is widely regarded as a significant renewed phase of rifting in 

the Sirt Basin (e.g. Gumati and Kanes, 1985; Abadi 2008). The basin is recognised to 

have deepened again following the Cretaceous rifting episodes with markedly deeper 

water facies in the basinal troughs (e.g. Hagfa, Rabia and Khalifa shales) and 

carbonate platforms on the upstanding blocks (e.g. Beda, Dahra and Zelten 

Formations – this study). Interestingly the Zelten and Harash Formations of the 

carbonate platform facies demonstrate a pronounced westward extension of the 

previously formed platforms with more stability and uniform facies distribution. The 

overlying Kheir Formation is further extensively developed throughout the Sirte 

Basin. The open marine predominantly muddy facies of the formation can be 

correlated over several 100’s of kilometres and further identifies the stable conditions 

for sedimentation during the late Paleocene to early Eocene, especially of the footwall 

blocks (Belazi, 1989).  

Abadi et al., (2008) identified the Paleocene as the third phase of four main 

episodes, with rifting and subsidence most pronounced in the north-east Sirt basin. 

His tectonic subsidence map of the Paleocene-Early Eocene reveals that the study area 

has been subjected to a fairly similar rate of subsidence, except in the northern part; 

the overall subsidence in the Dahra Platform, Zallah and Dor al Abid Troughs is 

around 100-125m (~300–400ft) (Fig. 6.2). In the central part of the Al Hagfa Trough, 
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the eastern border of the Dahra Platform, a thickness of over 4000ft (~1220m) of 

Paleocene is documented (Wennekers et al., 1996). In the offshore area of the Sirt 

Basin, Bezan (1996) pointed out that the thickness of the Paleocene succession is 

˂100ft of Late Paleocene shale. He ascribed this thinning to the low rate of deposition 

(starvation), which might be evidence that the coastal area was uplifted during the 

early Paleocene by the tectonics of the Atlas wrench fault located north of the 

coastline. The thickness of the Paleocene succession is commonly close to the 

underlying structure; thicker in the trough areas and thinner over the platforms. Its 

total thickness, however, in the Zallah Trough and adjacent low areas reaches 3500ft 

(~1067m), whereas on the Dahra Platform and other high areas less than1500ft 

(~457m) is recorded (Fig. 6. 4).  

 

 

Figure 6.2 Contour map of tectonic subsidence (in metres) of the Sirt Basin (Abadi, 

2002). Note that the study area was subjected to a subsidence between 75-150 m (  

250-500ft) during the Danian-Ypressian time (white rectangle).   
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A      B 

Figure 6.3 Variation in stratigraphy and thickness on both sides of the Gedari Fault 

(the boundary between the Dor al Abid/ Zallah Trough and the Dahra Platform) 

interpreted from synthetic seismogram and sonic logs (A), and expressed in lithology 

and thickness (B). Note the thickness variation of the Late Cretaceous-Tertiary 

succession on both sides of the fault. The thickness discrepancy is less pronounced 

up-section, suggesting that the Gedari Fault became less active during the late 

Tertiary. (A: from PRC and TPS, 2003; and B: from Abdunaser, 2012). 
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Figure 6.4 Total Paleocene isopach map of the study area. Note that the Paleocene 

succession is generally thicker in the trough areas and thinner over the platforms.  

 

6.2.2.1. Danian Succession (Hagfa and Satal Formations)  

The beginning of the Danian saw a widespread sea-level rise, possibly in 

response to a regional tectonic event. This resulted in deposition of thick open marine 

shales in the subsiding areas (Hagfa Shale) in the south and southwestern part of the 

study area (Zallah Trough), whereas the stable platform (the Dahra Platform) and the 

high topographic areas within the troughs, on the other hand, were largely dominated 

by carbonates of the Satal Formation. Thus, a distinctive regional Danian carbonate 

bank was established (See Figs. 2.9 & 2.13). 

The areas with no Satal carbonate, which are smaller than those covered by the 

Satal Formation, are covered by Hagfa Shale, which onlaps and locally blankets the 
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Satal carbonate with a few tens feet of shale. Its thickness increases away from the 

platform area, where it ranges between ˂50ft on the Dahra Platform and ˃600 ft in the 

northern Zallah and Dor al Abid Troughs (Fig. 6.5A). In the south of the Zallah 

Trough its thickness can reach 1000ft, and in the depocentre of the basin (Ajdabiya 

Trough) it exceeds 2000ft (Hallett, 2002). 

The regional structural map on top of the Hagfa Shale shows strong agreement 

between the thickness distribution and the pre-existing topography (top of the Kalash 

Limestone), which persisted until the end of the Hagfa Shale (Fig. 6.7A).  

A regional isopach map for the Satal Formation has been constructed, despite 

the fact that the total depth in many wells does not penetrate the entire section of the 

Satal Formation. Nevertheless, the map reflects the effect of the underlying 

palaeotopography. It shows that the thickest section of the Satal mainly occurs at the 

Dahra Platform/Dor al Abid Trough boundary, which may coincide, towards the 

southwest, with the Satal Bank edge (Fig. 6.5A). These features could suggest that the 

rate of deposition was quite high at the bank margins, and probably greater than the 

available accommodation space, so that prograding clinoforms developed on the 

northern periphery of the Satal Bank, to the northeast of the Almas Oil Field (Fig. 

6.6). It is well known that clastic-free carbonate build-ups are usually characterised by 

a high rate of carbonate production. Although there is considerable local variability, 

clean carbonate systems often have faster accumulation rates (up to 3000–6000 gm
-2

 

yr
-1
) than those containing clastics (˂3000g m

-2
 yr

-1 
) (Woolfe and Larcombe, 1999; 

Mallela and Perry, 2007; Lokier et al., 2009). This clastic-free carbonate bank covered 

the Dahra-Al Bayda platform area, crossed the Dor-al-Abid graben in the northern 

Zallah Trough and extended to the Manzilah ridge and Al Bayda Platform in the 

central Sirt Basin (Bezan, 1996). 

The structure contour map, 3D surface and wire-frame maps for the top of the 

Satal Formation reveal that: (i) the western margin of the Dahra Platform (Gedari 

Fault) dips steeply into the Zallah Trough; (ii) the northeastern side of the Zallah 

Trough represents the deepest part of the study area; (iii) by the end of Satal 

deposition two prominent structural highs were established; the eastern high, which is 

situated on the Dahra Platform and existed since the end of Maastrichtian, was 

slightly higher than the western one and was running parallel to the Gedari Fault that 

separates the Dahra Platform from the Dor al Abid Trough in a NW-SE trend (Figs. 
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6.7A & 6.8). The other high is located in the western part of the study area and seems 

to separate the Dor al Abid and Zallah Troughs, and is inclined gently towards both of 

them.  

This feature persisted throughout the Paleocene and continued into the Early 

Eocene. A closer investigation of these highs on top of the Satal Formation showed 

that the topographic surface of the broad Satal Bank is irregular and uneven, not only 

on its wider scale but also within its local intra-highs; thus this asymmetrical surface 

may have played a significant role, particularly on the Dahra Platform, in 

accommodating (trapping) hydrocarbons in the topmost intervals of the Upper Satal 

Member. 

 

6.2.2.2. Selandian-Thanetian Succession (Beda and Dahra Formations)  

Over a wide part of the study area the Beda Formation of Selandian age 

becomes more shaley and is subdivided by Barr and Weegar (1972) into two 

members: a lower carbonate unit (Thalith Member), and an upper shale unit (Rabia 

Member) (Fig. 2.9). In some localities, the carbonate unit is quite thin and contains 

shale beds in its lowermost part, making it difficult to be recognised from the broader 

shale of the Hagfa Formation. (Figs. 6.9 A&B) 

The isopach map of the Beda Formation illustrates that the maximum 

thickness occurs in the central Zallah Trough, where it reaches upto1200ft and gets 

thinner eastwards, close to the boundary with the Dahra Platform (~500ft). It gets 

much thinner on the crest of the Dahra Platform where ˂300ft is recorded (Fig. 6.5A). 

Thus, thickness distribution and depositional pattern of the Beda Formation show a 

degree of similarity with those of the Hagfa Shale (thicker in the trough areas and 

thinner on the platforms), while they differ significantly from those of the Satal 

Formation. These are witnessed by the fact that the western margin of the Dahra 

Platform dips gradually into the Zallah Trough and thus the deepest part in the area 

shifted southwest-ward (Figs. 6.7A & 6.8).  

During deposition of the Beda Formation the area was dominated by two local 

highs; on the Dahra Platform and in the Zallah Trough. The former, which persisted 

since the Danian, sloped gently towards the south and southwest. The latter, which 

seems to have developed during deposition of the Beda sediments, runs NNW-SSE, 

and is sub-parallel to the Gedari Fault (Fig. 6.5A). It is inclined gradually eastward 
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and steeply westward (towards the depocentre of the Zallah Trough). This is marked 

by a gradual and rapid increase in thickness of the Beda Formation in those directions, 

respectively. This could suggest that a significant change in palaeogeographic 

configuration of the study area occurred during deposition of the Beda Formation, 

which may be related to local tectonic activity. Bezan and Belhaj (1996) pointed out 

that the Beda Formation exceeds 1600 feet in the central Zallah Trough and they 

ascribed this variation in thickness to subsidence along the basement faults and the 

associated high rate of deposition. Shroter (1996) has documented that high 

subsidence rates in the trough areas indicate that renewed rifting occurred during the 

Paleocene, following the deposition of Hagfa/Upper Satal Formations. 

The structural map at the top of the Beda Formation shows that the prominent 

highs, which were created during the Maastrichtian/Danian, were still in existence and 

kept the same direction. On the Beda level these features are as shallow as -2400ft 

depth on the Dahra Platform and parts of the Dor al Abid Trough. Low topographic 

areas at the end of the Beda deposition occurred mainly in the south western part of 

the study area (Zallah Trough), where the depth to the top Beda Formation is -6400ft 

(Figs. 6.7A & 6.8).  

A notable feature is that at the end of Beda deposition the local depocentre in 

the east Zallah Trough shifted westwards (towards the central Zallah Trough) (Figs. 

6.7A & 6.8). This may indicate that the eastern part of Zallah Trough was probably 

uplifted by the end of Selandian time. Van Der Meer et al., (1996) demonstrated that 

the east Zallah Trough experienced significant subsidence during the Late 

Maastrichtian and Danian, at which time it developed into a local depocentre, trapping 

large quantities of shale. During the Late Danian and Early Thanetian the east Zallah 

Trough was uplifted, but subsidence prevailed again toward the end of the Paleocene. 

During the top Danian/base Selandian a general tend towards uplift has been 

documented on the Dahra Platform. The same author demonstrated that the 

subsidence and uplift history for the Zallah and Maradah Troughs, and the Dahra and 

Zelten Platforms are rather uniform. 

A shallowing of the sea, however, has resulted in the deposition of the Dahra 

carbonates almost all over the study area. On the Dahra Platform the Dahra Formation 

is mainly composed of light to yellowish grey wackestone to grainstone with thin 

interbeds of medium to dark grey, calcareous shale. In the Dor al Abid Trough the 
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Dahra Formation (Mabruk Mbr) is predominantly composed of wackestone/packstone 

and boundstone with thin intervals of marl, whereas in the Zallah Trough the Dahra 

Formation is more shaley and the limestone occurs locally in the middle and lower 

parts.  

The isopach map of the Dahra Formation in the study area shows that it ranges 

from ˂190 to ˃500ft (Fig. 6.5A). The maximum thickness occurs again close to the 

western boundary of the Dahra Platform, where a narrow band of isopach contours 

trending northwest-southeast is present; corresponding to the direction of the regional 

Gedari Fault. The thickness of the Dahra Formation decreases away from this 

location, reaching its minimum thickness of 160ft in the north-eastern corner of the 

mapped area (Fig. 6.5A).  

The regional structural map on top of the Dahra Formation shows that the 

palaeogeographic configuration developed during the deposition of the Beda 

Formation persisted (Figs. 6.7A & 6.8). This prominent feature perhaps suggests that 

the study area has not been affected by differential tectonic activity; it may have been 

subjected to a similar rate of subsidence in both structural elements. From the middle 

Paleocene to the early Eocene, rift tectonics had less significant control on 

sedimentation, and thickness variation from trough to platform was less pronounced 

(Rusk, 2002). Shroter (1996) also documented that after deposition of the lower 

Dahra, sedimentation took place on a levelled surface and thickness variations 

remained uniform into the Eocene. Moreover, petrographic examination and 

geophysical log correlation show that there are no drastic changes in the facies and 

associated microfacies throughout the Dahra Formation. It seems that the Dahra was 

probably deposited under similar conditions across the whole Dahra Platform. 

In view of the lack of data, the limestone interval, locally dolomitic, of the 

Hiera Formation in the Dor al Abid Trough (Mabruk Member) has not been mapped 

separately; it is incorporated into the Dahra Formation in both isopach and structure 

maps (Figs.6.5A & 6.7A). The Mabruk rocks show complex lateral and vertical 

variations from the west through central to eastern Mabruk areas. The broad situation 

of the area is reflected in the structure maps on top of the Beda and Dahra Formations; 

they show that a local high developed in the Mabruk area (northwestern part of the 

mapped area) with an average difference in its elevation (relief) of about 700ft.  
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6.2.2.3. Thanetian Succession (Khalifa, Zelten, Harash and Kheir Formations)  

The transgression that occurred during the early Thanetian (end of the Dahra 

Formation) resulted in the deposition of the Khalifa Formation across almost all of the 

Sirt Basin. On the Dahra Platform the Khalifa Formation consists of an upper 

argillaceous limestone unit and a lower shale interval. The limestone is mainly 

wackestone/packstone, dark grey, moderately indurated and argillaceous with minor 

calcareous shale. The lower shale unit is dark grey to black, fissile and slightly pyritic 

with local thin calcareous intervals. 

The thickness of Khalifa Formation gradually increases from the Dahra 

Platform to the Zallah Trough. On the former it is usually less than 180ft, whereas in 

the latter it exceeds 450ft (Fig. 6.5B). An average of 220ft is recorded in the Dor al 

Abid Trough. The structure contour map on top of the Khalifa Formation shows 

almost the same palaeogeographic configuration as the Dahra Formation (Figs. 6.7B 

& 6.8). 

As noted in Chapter 5, the Zelten Limestone strongly suggests an overall 

regressive interval, with a probable prograding trend upto the top of the Formation. 

On the Dahra Platform, the Zelten Formation consists predominantly of light grey to 

light yellowish grey limestone, slightly argillaceous and locally dolomitic. The 

limestone is mainly a grain-supported packstone and consists primarily of benthic 

forams, molluscan shells and echinoderm fragments with less common nummulites 

and bryozoans. Mud-supported carbonates, which are frequently dolomitized, are 

sporadically present. 

The isopach distribution of the Zelten Formation in the study area shows that 

the thickest section occurs in the southeastern corner of the mapped area, at the Zallah 

Trough/Dahra Platform periphery, where it exceeds 400ft (Fig. 6.5B). The thinnest 

sections of ˂200ft, on the other hand, are developed in two local areas; on the western 

edge of the mapped area, and in the northern part of the Zallah Trough. The former 

coincides with the overall structural elements in the area, but the latter could suggest 

the development of a new structural high during deposition of the Zelten Limestone in 

the Zallah Trough. This is indicated by the fact that isopach contours are very close to 

each other and oriented at right-angles to the main structural elements in the area 

(northeast-southwest). Alternatively, the lack of enough well data in that particular 

area could be the main reason for this contour band; bearing in mind that this feature 
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is not recognized during deposition of the older Khalifa or the younger Harash 

Formations. 

The Zelten Formation in the north central Sirt Basin, where it represents the 

main reservoir, reaches around 700ft in thickness, of mostly shallow-marine facies. It 

thins northward and disappears along the coastal area where the Paleocene succession 

is represented by a thin shale section (Bezan, 1996). 

The isopach map of the Harash Formation in the area under investigation 

illustrates that the Zallah Trough has accommodated the maximum thickness in the 

study area (˃300ft). This thickness decreases away from the Zallah Trough north-

northeast ward, reaching its minimum of ˂100ft on the Dahra Platform (Fig. 6.5B). In 

the central part of the basin, in the Maradah and Ajdabiya Troughs, it is about 200ft 

thick (Hallett, 2002). The palaeotopography on top of the Harash Formation is almost 

identical with that of the Zelten Limestone (Figs. 6.7B and 6.8). 

The Paleocene/Eocene Kheir Formation is widely distributed throughout the 

Sirt Basin. In the study area, however, it comprises shale, marl and less common 

carbonate. Its thickness ranges from ˂200ft in the mapped area of the Dor al Abid 

Trough to ˃400ft in the Zallah Trough (Fig. 6.5B). 

A northeast-southwest trending structural low was developed during 

deposition of the Kheir Formation in the study area. It has a similar orientation and is 

in the same area, though larger, to that formed through the deposition of the Khalifa 

Formation (Figs. 6.5B, 6.7B & 6.8). Subsidence prevailed again towards the end of 

the Paleocene in East Zallah and the Dahra Platform (Van Der Meer et.al., 1996). The 

palaeotopography on top of the Kheir Formation is almost identical with that of the 

Harash Formation (Figs. 6.7B & 6.8). 
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Figure 6.5A Regional isopach maps for the Danian-Selandian/Thanetian section in the 

study area (Hagfa, Satal, Beda and Dahra Formations).  
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Figure 6.5B Regional isopach maps for the Thanetian succession in the study area 

(Khalifa, Zelten, Harash and Kheir Formations).  
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Figure 6.6 Seismic traverse across the Zallah & Dor al Abid Troughs and the Dahra 

Platform. The enlarged area of the seismic section is showing the details of the 

onlapping of the Hagfa Shale onto the Satal Carbonate Bank. Note also the uniform 

thickness of the post-Satal rock units (layer-cake strata) (from PRC and TPS, 2003). 
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Figure 6.7A Structure contour maps for the Hagfa, Satal, Beda and Dahra Formations 

in the study area (Danian-Thanetian section).  
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Figure 6.7B Structure contour maps for the Khalifa, Zelten, Harash and Kheir 

Formations in the study area (Thanetian section).  
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Figure 6.8 3D Structure maps for the entire Paleocene Succession (Hagfa, Satal, Beda, 

Dahra, Khalifa, Zelten, Harash and Kheir Fms) in the study area.  
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6.3. Discussion 

6.3.1. Sedimentation and facies variability 

In the central part of the Al Hagfa Trough, the eastern border of the Dahra 

Platform, a thickness of over 4000 feet of Paleocene is documented (Wennekers et al., 

1996). In the offshore area of the Sirt Basin, the thickness of the Paleocene succession 

is ˂100ft (Bezan, 1996). The same author ascribed this thinning to the low rate of 

deposition (starvation), which might be evidence that the coastal area was uplifted 

during the early Paleocene by the tectonics of the Atlas wrench fault located north of 

the modern Libyan coastline.  

The Paleocene succession in the study area shows dissimilar thickness in the 

Dahra Platform and the adjacent Trough when levelled to the top of the Ypresian 

Facha Member and it shows an almost identical thickness across the Dahra Platform 

(layer-cake strata) except in the area south of the Bahi Field, where a local depression 

(probably fault related) has been identified (Fig. 6. 9B). The overall thickness and 

facies of the Paleocene is commonly close to the underlying structure; thicker in the 

trough areas and thinner over the platforms. Its total thickness in the Zallah Trough 

and adjacent areas exceeds 3200ft, whereas on the Dahra Platform and other high 

areas less than1500ft is recorded (Fig. 6. 4). The thickness difference between the 

platform and the Trough strata suggest that the trough areas were possibly still 

subsiding with probably compactional-induced. This gave rise to in a local differential 

subsidence on both structural elements and hence resulted in the difference in 

accommodation space.  

The thickness distribution of different rock-units in the study area virtually 

coincides with the isopach arrangement of the Danian, Selandian/Thanetian and the 

entire Paleocene succession (Fig. 6.10), the carbonate-dominated facies are 

preferentially located over the major platforms and local highs, whereas the main 

troughs and low topographic areas are filled mainly with shale and/or marl. The Hagfa 

Formation has been considered as characteristic of the shallow basins, since it is 

present throughout the central Sirt Basin as a deeper-water equivalent of the shelfal 

carbonates. In the study area, however, the Hagfa Shale becomes increasingly 

calcareous and changes abruptly to the Satal Carbonate. 

The regional carbonate Satal Bank, which the author believes was established 

at the base of the Danian, trends almost at right angles across the Gedari fault zone 
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with almost similar carbonate facies across the area. This may indicate that the pre-

existing substrate during the Maastrichtian played a vital role in the distribution of the 

Danian Satal carbonates. The widespread distribution of the Maastrichtian Kalash 

limestone across the Sirt Basin with distal and proximal facies could support this 

explanation. Besides, Hallet (2002) pointed out that the trough areas in the Sirt Basin 

had been largely filled by the end of the Maastrichtian, and the topography of the 

intervening platforms had been levelled to the extent that only very small islands 

remained. 

As shown earlier, the maximum thickness of the Selandian Beda Formation 

occurs in the central Zallah Trough, where it reaches upto1200ft, and >1600ft has 

been recorded in the southeast of the study area (Bezan, 1996), whereas on the Dahra 

Platform it reaches only 300ft. Over large parts of the study area the Beda Formation, 

regardless of its thickness, is composed mainly of shale (Rabia Mbr) with relatively 

thin limestone (Thalith Mbr). This discrepancy in thickness and similarity in the 

facies type could indicate that the rate of deposition was relatively high and outpaced 

subsidence rates in the trough areas; sedimentation kept pace with subsidence, since 

high rates of subsidence during the Selandian have been documented (Shroter, 1996).   

The change in the position of the deepest part of the study area (Zallah Trough) 

towards the southwest by the end of the Selandian time (Fig. 6.8), in association with 

uplift of the east Zallah Trough, could be ascribed to the westward shift of Africa 

relative to Europe during the Paleocene (Anketell, 1996), one consequence was the 

deposition of thick shale units and relatively deep carbonates in the low topographic 

areas, and shallow carbonate facies sealed by thin evaporates, on the high areas of the 

Zallah Trough (Lower Beda and Upper Beda Members). On the platform areas, the 

classic lithology of the Beda Formation (limestone and shale) resumed. 

An abrupt shallowing of the sea resulted in the deposition of the Dahra 

carbonates across large parts of the study area. It becomes more argillaceous and 

shaley in the east Zallah Trough, and is replaced by the Khalifa Shale to the east and 

south east of the Dahra Platform.  

The overall facies of the Dahra Formation is quite similar, particularly on the 

platform areas. In the Dor al Abid and Zallah Troughs it comprises boundstone and 

marl, and shale and argillaceous limestone, respectively. This facies discrepancy 

could be attributed to a differential subsidence across the Dahra Platform and Dor al 
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Abid/ Zallah Troughs, along with the development of local faulting, particularly in the 

Mabruk area (Dor al Abid Trough). The thickness distribution of the Dahra Formation 

corresponds with the isopachytes of the entire Paleocene succession. This could 

suggest that the Gedari fault was active (syn-sedimentary) during deposition of the 

Dahra Formation, and the rate of tectonic subsidence (differential subsidence) of the 

platforms and the troughs throughout this interval was nearly similar. 

The overall interval of the Mabruk Member in the study area represents 

deposition of mainly shallow-water carbonates that were bounded by deeper-marine 

marl and shale; these accumulated in lagoonal and reefal environments in a probable 

rimmed-shelf setting. The local relief developed in the Mabruk area (~700ft), which 

probably resulted from local faulting, could explain the development of the various 

facies in that particular area (lagoon and reef). 

The depositional pattern of the Khalifa Formation seems to have been 

controlled by the pre-existing palaeotopography; as it is thicker in the troughs and 

thinner on the platform. This thickness discrepancy is probably an additional 

indication of penecontemporaneous faulting along the trough margins. The regressive 

and prograding strata of the Thanetian Zelten Limestone on the Dahra Platform are 

almost identical and composed mainly of wackestone/packstone facies, with local 

development of large benthic forams, including nummulites. This is almost the case 

with the overlying Harash Formation with a near uniform thickness and facies across 

the study area. 

In the north central Sirt Basin, the Zelten Formation consists mainly of 

shallow-marine facies with common corals, algae and hydrozoans, and its thickness in 

that area is about twice that of the study area (700ft and around 400ft). Both thickness 

discrepancy and facies variation of the Zelten Limestone across the Sirt Basin is 

probably attributed to the pre-existing topography that might be coupled with sea-

level fluctuations. 

The situation during deposition of the Harash Formation a cross the basin was 

slightly different; its average thickness in the study area and surroundings is about 

250ft (~76m) with an almost similar facies. This could suggest that a fairly uniform 

topography/ or low relief occurred prior to the deposition of the Harash Formation in 

the study area (at the top of the Zelten Limestone). 
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Being mainly composed of grey, greenish grey to dark grey shale with some 

mud-supported limestone, the thickness distribution of the Kheir Formation slightly 

varies from that of the Harash Formation. This is probably attributed to that the 

subsequent erosion that the Kheir Formation experienced (Wennekers et al., 1996). 

The Kheir shale interval represents the time when major changes in the dynamic 

tectonic regime strongly influenced the distribution and activity of the 

microcontinents between Eurasia and Afro-Arabia (Smith, 1971; Dewey et al., 1973). 

This together with the possible increase in igneous activity during the Selandian-

Thanetian interval could suggests that tectonic influences may have been dominant 

over eustasy in controlling the Kheir facies (Baird et al., 1996). 
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Figure 6.9A Stratigraphic cross-section across the Zallah Trough and the Dahra Platform in the study area. 
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Fig. 6.9 B Stratigraphic cross-section along the western part of the Dahra Platform in the study area. 
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Figure 6.10 Regional isopach maps for the Paleocene Succession; A: total Paleocene, 

B: Danian/Selandian Section (the Satal, Hagfa and Beda Formations), and C: 

Selandian/Thanetian Section (the Dahra, Khalifa, Zelten, Harash and Kheir 

Formations). 
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6.3.2. Burial history 

A new phase of crustal extension beneath the Sirt basin in the Paleocene time 

was possibly related to the movement of the African Plate towards the northeast. Both 

Northwestern and Northeastern Africa remained stable in the late Paleocene, but uplift 

occurred in northern Africa and rifting in central Africa (Guiraud et al., 2005; 

Swezey, 2009).  

Van Der Meer et al., (1996) documented a small uplift at 61 Ma from several 

wells in the Zallah Trough, which corresponds to the base of the Beda Formation.  

According to the well-log investigation in the Zallah Trough area, the uppermost part 

of the Beda Formation is characterized by the occurrence of evaporite beds, which 

Knytl et al., (1996) attributed to a sabkha environment that existed at the close of 

shallow-marine shelf deposition. Therefore, this tectonic event (uplift), probably 

together with sea-level could support the idea that these factors controlled the 

thickness and facies variations of the lower Paleocene succession across the study 

area. These facies variations resumed through the whole Danian and most of the 

Selandian times, but in the latest Selandian-Thanetian/Ypresian the overall facies 

changes became less pronounced. The Thanetian-Ypresian in the Sirt Basin is 

characterized by the regional subsidence rates in both grabens and horsts in the 

basin’s history, and hence the middle Paleocene to the early Eocene period rift 

tectonics had less control on sedimentation (Rusk, 2002). 

Wire-line log interpretation and petrographic investigation revealed that the 

Selandian/Thanetian strata on the Dahra Platform have similar thickness and 

comparable facies, and were affected by various processes during their deposition and 

burial. These are summarised in a schematic diagram that shows burial history of the 

studied succession, fluid inclusion results, stable isotopes and the main burial 

diagenetic features, along with the previous published subsidence curves in the study 

area (Fig. 6.11). Van Der Meer et al., (1996) curve, in the Dor al Abid Trough (well 

P1-32) shows that significant subsidence occurred during the Late Maastrichtian and 

Early Paleocene, and minor uplift occurred at the top of the Danian (between the Beda 

and Hagfa Formations), and close to the Kheir Formation/Facha Member boundary. 

The PRC&TPSL curve on the other hand, exhibits a high subsidence rate during the 

Middle Paleocene to Early Eocene time, followed by a small uplift in the Middle 

Eocene (Fig. 6.11).  
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On the Dahra Platform, although the Van Deer Meer et al., (1996) and Abadi 

et al., (2008) curves show a fairly similar degree of subsidence during the Late 

Paleocene/Early Eocene, both diagrams do not exhibit any significant uplift during the 

Mid-Tertiary. Abadi et al., (2008) concluded that tectonic heat-flow modelling in 

agreement with the observed uplift in the western Sirt Basin calibrated to observed 

maturation data, indicates elevated Tertiary palaeo-heat flow in the western Sirt Basin 

indicative of early and/or late Oligocene and Miocene underplating, preceding 

erosion. 

As discussed in Chapter 4, The carbon isotope values of the Zelten and Harash 

Formations on the Dahra Platform in the east and west fields are quite similar and 

confined to a narrow range between +2.22‰ to +3.86‰, whereas the oxygen isotope 

values are somewhat varies. The fluid inclusion analysis yielded a temperature of 

59⁰C at depth of 2788ft in well no.8 (Zelten Fm); the depth at which the δ18
O and 

δ
13

C recorded -6.00‰ and 3.62‰, respectively (Fig. 4.13). Assuming that the isotope 

values are accurate, the carbon isotope values are typical, probably original marine 

values, whereas the δ
18

O value is slightly too negative for meteoric water, suggesting 

a high temperature phase of burial diagenesis, with the precipitation of calcite that 

shows dull to non-luminescence characters (Fig. 6.11). Moreover, the location of this 

interval within the TST3 of the LPS3 strongly suggests burial diagenesis. The overall 

coincidence and similarity of δ
13
C and δ

18
O trends of the studied succession could 

reflect late diagenetic over-printing caused either by the interaction with meteoric 

ground-waters or, almost certainly, by dissolution and recrystallisation at higher 

temperatures during burial diagenesis (Sakai and Kano, 2001; Keller et al., 2004). 

According to the geothermal gradient of the Sirt Basin, which ranges between 

22-25 ⁰C/km (Gumati and Schamel, 1988), the temperature at the present depth where 

the samples are taken (Zelten Fm) should be between 47.7⁰C and 50.2⁰C. However, 

the palaeogeothermal gradient could have been much higher than that of today, and 

could exceeded 35⁰ C/km. The first possibility suggests that the recorded fluid 

inclusion temperature (59⁰C) is either due to hydrothermal fluid flow from deeper 

parts of the area and/or the result of low sedimentation rates and high thermal 

conductivities of carbonates; the second option could support the idea of uplift and 

substantial erosion during the Late Tertiary (Fig. 6.11). Additionally, the presence of 

thick lower Eocene evaporites (~1200ft) on the overlying interval seem have not 
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contributed. This is indicated by the fact that the temperatures provided by fluid 

inclusion (both aqueous and petroleum) in the Harash Formation are higher than those 

of the Zelten Formation (see Table 4.4). Mellow et al., (1995) and Taylor et al., 

(2010) pointed out that as a result of the high thermal conductivity of salt, a zone of 

suppressed temperature occurred beneath thick salt sequences; the thermal 

conductivity of salt is highly temperature dependant and decreases with increasing 

temperature, thus the contrast is greatest at shallow depths of burial. This is not the 

case in the study area, as accordingly the temperature of the Zelten Formation 

supposed to be even lower than 47.7-50⁰C. Thus, these observations could suggest 

that the above stated possibilities, accompanied by Mid-Late tertiary uplift and 

erosion are all contributed.  

Abadi et al., (2008) pointed out that maturation depth trends in the western 

Sirt Basin are slightly higher than in the east, indicative of elevated palaeogeothermal 

gradients in the Tertiary (up to 30  C/km). They attributed the high vitrinite reflectance 

values (Rₒ) in the area to late Tertiary erosion of about 3280ft, as suggested by 

Gumati and Schamel (1988). The latter authors pointed out that in the Dor al Abid 

Trough (well no. 3Q1-11) the organic maturity data of the Tertiary is immature (Ro 

˂0.5%) and the  pper Cretaceous is highly mature (1.2Ro). The elevated maturities at 

shallow depths in this well suggest an earlier deeper burial of these rocks, i.e. a 

significant amount of sediment was removed by uplift and erosion. This is evidenced 

by the fact that the Upper Eocene, Oligocene and Miocene rocks are developed in the 

subsurface of the central and eastern parts of the basin (see Fig. 2.9). In addition, the 

total Miocene section has been largely removed by erosion in the Cyrenaica region, in 

eastern Libya, but thin remnants persist to the east towards Egypt, attesting to their 

original wide distribution (Wennekers et al., 1996).   

The overall palaeotopography throughout the Paleocene seems generally 

similar; there is no substantial variation between the base and the top of the Paleocene 

succession, except for the development of a local high that became a prominent 

feature after deposition of the Beda Formation (Selandian) (Fig. 6.12); this is, despite 

the fact that it was possibly initiated by the end of Satal Bank time. It probably 

separates the Zallah and the Dor al Abid Troughs.  

The tectonic subsidence map for the Paleocene-Early Eocene (Abadi et al., 

2008) reveals that the study area was subjected to a fairly similar rate of subsidence, 
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except in the northern part; it shows that the overall subsidence in the Dahra Platform, 

Zallah and Dor al Abid Troughs during this period was around 100-125m (~300–

400ft) (Fig. 6.2). These values are greater than those of the Maastrichtian time (75–

100m, ~160-300ft, according to Abadi et al., 2008) which could support the idea of 

transgression at the base of the Paleocene, taking into consideration that these values 

are general and there might be a local discrepancy within each structural element.  

Generally, the thickness of the total Paleocene strata in the trough areas is 

more than twice that on the platforms. Specifically, the thickest Paleocene section, 

and its sub divisions, is located in the southern and the central parts of the study area 

(Zellah Trough) (Fig. 6. 10). The former, which is close to the centre of the Zallah 

Trough, could refer to the differential subsidence between the platform and trough 

areas, whereas the latter is close to the Gedari Fault that separates the Dahra Platform 

and the Dor al Abid/Zellah Trough, i.e. just at the fault escarpment. This area could 

represent the centre of the fault zone, where subsidence is greater than the rate of 

eustatic fall (Gawthorpe and Leeder, 2000), and sedimentation can keep pace with the 

sea-level rise. This evidenced by the fact that apparent vertical displacement of the 

Gedari Fault at the Dahra Platform/Zallah Trough boundary is >1500 feet, whereas it 

is much less towards the north, at the Dahra Platform/Dor al Abid Trough boundary 

and within these structural elements (Figs. 6. 9 and 6.10).  

This spatial variation in the Paleocene thickness could indicate that faulting 

along the edges of the trough areas was penecontemporaneous, with the rate of 

subsidence in the troughs, and was greater than that of the platforms, and hence 

resulted in thicker sediment accumulations in the former. The spatial and temporal 

variations in displacement have a significant impact on relative base level and 

accommodation around normal fault zones (Gawthorpe and Leeder, 2000).   
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Figure 6.11 Proposed schematic burial diagram of the Paleocene succession in well no. 8 on the Dahra Platform. Two extreme scenarios are 

shown; proposed Tertiary uplift against continuous burial up to the present day, along with stable carbon and oxygen isotopes and mesogenetic 

features. The fluid inclusion temperature is recorded in Zelten Fm at current burial depth of 2788ft. Some of the published tectonic subsidence 

curves for the Dahra Platform and the Dor al Abid/Zallah Trough are also shown. 
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The Mabruk area experienced extensive faulting with a predominantly NNW-

SSE trend of normal faults. This faulting has probably resulted in the different 

topography, and formation of local highs in the Mabruk area, which could have given 

rise to the development of different depositional environments on the broad carbonate 

shelf setting. 

 

 

 

Figure 6.12 Regional structure contour maps on top of the Kalash Limestone (base 

Paleocene) and on top of the Kheir Formation (close to top of the Paleocene) in the 

study area. 
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6.3.3. Processes affecting facies distribution 

6.3.3.1. Tectonic-related process 

In a broad sense, the Paleocene world was a ‘‘hot house’’ with a rather ‘‘calm’’ 

tectonic regime. Consequently, sea level was relatively stable, and deviations from this 

‘‘stability’’ were not great. Thus, global Paleocene sea- level changes (and consequently 

transgressions on the continental margins) were not so large as to overwhelm all 

regional variations (Ruban et al., 2012).  

Globally, there were no significant tectonic re-organizations during the Danian– 

Selandian, although gradual changes in plate motions re-shaped the world (Golonka, 

2004; Scotese, 2004; M ller et al., 2008). Therefore, differential subsidence, eustasy 

and possibly compaction were probably the cause of the variations in depositional 

environments in this time interval and changes in depositional facies. Limestone, 

dolomite, and locally anhydrite in the Satal and Beda (U Beda, L Beda and Thalith 

Members) Formations were deposited on the platforms and on high topographic areas of 

the Zallah and Dor al Abid Troughs, whereas shale and marl/argillaceous limestone 

were dominant in the troughs and in low topographic areas of the Dahra Platform. 

Rusk (2002) suggested that during the middle Paleocene to early Eocene period 

rift tectonics had little control on sedimentation. The Thanetian time, which comprises 

the Dahra, Khalifa, Zelten, Harash and Kheir Formations, is regarded as the period 

during which a sort of balance between subsidence and the rate of deposition existed, 

and thus the lithofacies were quite uniform regionally (Raveling, 1970) (Figs. 6.9A & 

6.9B). On the Dahra Platform of the study area, tectonic-related features (faulting, 

tectonic fractures and early diagenetic fractures) have been recognized from the core 

samples in the Selandian/Thanetian succession. A possible strike-slip fault with fairly 

well-defined striations has been observed in the lower part of the Harash Formation in 

well no. 9. Two intervals 3-5 feet thick, of fractured strata were observed in the Dahra 

Formation in wells no. 8 and 10. Although these tectonic features may have not been 

developed regionally, they could indicate some local tectonic movements and influence 

on sedimentation patterns in the Late Paleocene succession on the Dahra Platform.  

The thickness variation in the Zallah/Dor al Abid Trough and on the Dahra 

Platform is apparent in the Cretaceous and Tertiary successions, which suggest pene-

contemporaneous movements on both sides of the fault. The early Cretaceous to 

Miocene is the time period during which the North African continental margin changed 
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its position as a result of the opening of the Atlantic Ocean. The exact relation between 

North African plate motions and rifting has been, and still is, a subject of controversy, 

and the Gedari Fault that separates the Zallah/Dor al Abid Trough and the Dahra 

Platform is part of this (Jerzykiewicz et al., 2002).  

 

6.3.3.2. Sea-level changes 

Globally, Paleocene sea-level was up to 100m above modern sea-level, resulting 

in widespread marl deposition throughout most of the Paleocene, with superimposed 

smaller fluctuations (less than 20m) (Haq et al., 1988). M ller et al., (2008) suggested 

that Paleogene sea level should have been 70–80m higher than present-day, assuming a 

similar volume for the overall ocean basin, or upward of 120m higher than present-day, 

if this volume was significantly smaller. The start of the Tertiary in the study area was 

characterized by the deposition of thick Hagfa Shale in large parts of the Zallah and Dor 

al Abid Troughs. The lower part of the Hagfa Shale comprises 80-90% planktic 

foraminifera, indicating water depths of more than 500m (Tmalla, 1996). This high sea-

level stand during the early Paleocene in the study area corresponds with the global sea-

level curve of Haq et al., (1988) (Fig. 5.2). Broadly, high sea-level persisted throughout 

the Danian, apart from a minor regression in the middle-late Danian, so that this interval 

can be regarded as a period of relative eustatic stability; this was also suggested by both 

Haq and Al-Qahtani (2005) and Kominz et al., (2008). 

Selandian time is represented by the Beda Formation that over a large part of the 

Dahra Platform comprises a lower Thalith Limestone and an upper Rabia Shale 

members. To the east of the study area, Tmalla (1996) documented an obvious decrease 

in water depth to around 50-100m relative to that of the Danian Hagfa Shale. This, 

along with the facies changes across the Danian-Selandian boundary, could suggest a 

regional lowering of sea-level and/or tectonic uplift. The former is roughly correlated to 

the eustatic sea-level changes proposed by Haq et al. (1988) although they do not match 

perfectly. The late Selandian interval was a time of sea-level fall according to Haq et al., 

(1988) or major eustatic fluctuations according to Kominz et al. (2008). Globally, the 

late Selandian has been interpreted as a period of relative sea level stability, relatively 

stable climate and tectonics, which persisted into the early–middle Thanetian (Ruban et 

al., 2010b & 2012). In either case, however, sea-level change (eustatic and relative) has 
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probably played a major role in the deposition and distribution of the Selandian facies in 

the study area. 

As documented earlier, the study area has not been affected by any significant 

tectonic activity during the deposition of the Beda and the Dahra Formations. This, in 

conjunction with Ruskʼs (2002) statement of little effect of rift tectonics on 

sedimentation from middle Paleocene to early Eocene, could signify that eustatic sea-

level change was possibly the main factor responsible for the facies change across the 

Beda/Dahra Formation. The sudden facies change across the Dahra/ Khalifa boundary 

(the upper boundary of the LPS2) is mainly ascribed to a global transgressive event 

displayed on the eustatic sea-level chart (Fig. 5.2), with the pre-existing 

palaeotopography playing an important role in the spatial distribution and thickness 

variation of the Khalifa facies. This is indicated by the fact that the structure contour 

map on top of the Khalifa Formation shows almost the same palaeogeographic 

configuration as the Dahra Formation (Fig. 6.12B). 

The entire Khalifa Formation and the lower part of the Zelten Formation are 

included in the TST3 (Fig. 5.16) and the facies variation from shale to limestone is 

considered as a gradual and normal shallowing in this systems tract upto the MFS3. The 

eustatic sea-level curve shows fluctuations during the middle Thanetian time. This may 

suggest that factors other than eustatic sea-level were responsible for the deposition of 

the Zelten limestone in the study area; these may have been tectonics, sediment supply 

(carbonate production) and climate. 

Several studies have indicated that sea level was 70–140m higher during the late 

Paleocene and early Eocene than at present. Third-order sea- level cycles, with 

durations of hundreds of thousands to a few million years, have also been inferred and 

argued to represent eustatic variations (e.g., Haq et al., 1987; Speijer and Wagner, 2002; 

Miller et al., 2005a). In several Tethyan margin sequences, benthic foraminiferal 

assemblages and lithological evidence also indicate transgression during the PETM 

(Speijer and Schmitz, 1998; Speijer and Wagner, 2002; Gavrilov et al., 2003).  

The latest Paleocene section in the study area, which comprises the Harash and 

Kheir Formations, is interpreted as LPS4. Despite the evidence for minor fluctuations 

during the late Thanetian, the long term eustatic sea-level curve shows an overall rise 

(Fig. 5.2). This may suggest that both eustatic and local tectonics were responsible for 

the deposition of the Harash and Kheir Formations in the western Sirt Basin.  
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During the Eocene, evaporitic strata accumulated at many locations across 

northern Africa, suggesting that the nature of these strata may be related to a fall in 

eustatic sea level and an interval of relatively arid climate (Swezey, 2009). 

 

6.3.3.3. Climatic processes 

During the Cenozoic global climate changed from a Late Cretaceous–Early 

Eocene ‘‘warm mode” to a Late Eocene–Quaternary ‘‘cool mode” (Frakes et al., 1992). 

The early Cenozoic is a time interval characterized by repeated changes with respect to 

global climate. Early Paleocene climate was wet temperate, gradually warming due to 

global greenhouse conditions, from the latest Cretaceous glaciation of Antarctica 

(Barrera, 1990). Lower Paleocene sediments from Tunisia, Spain, Israel and Egypt 

contain abundant kaolinite, considered to indicate warm and perennial humid conditions 

(Bolle and Adatte, 2001). The climate in the Sahara (North Africa) during the Paleocene 

is thought to have been generally hot and humid (Bellion, 1989a), although studies of 

Paleocene strata in southern Tunisia suggest that there was a change from a warm and 

humid climate during the early Paleocene to a warm and arid climate during the 

Paleocene–Eocene transition (Keller et al., 1998; Bolle et al., 1999). 

The stable isotope analysis on the studied Selandian/Thanetian succession has 

given quite similar patterns, particularly in the δ
13

C values with no real important 

excursions up through the section. The trends show an overall slight change to less 

negative δ
18

O and to less positive δ
13

C. This suggests that there was only minor change 

in δ
13

C seawater and climate through the time of deposition of the Dahra, Zelten and 

Harash Formations. 

A long-term rise in eustatic sea-level during the early Thanetian, could have 

been coincident with a global warming trend that began during the Late Paleocene and 

ended during the Early Eocene (Miller et al., 1987; Zachos et al., 2001). In addition, a 

very abrupt and brief episode of global warming ( the Late Paleocene Thermal 

Maximum-LPTM) occurred near the Paleocene–Eocene boundary, superimposed on the 

general Paleocene–Eocene warming trend (Zachos et al., 1993, 2001). Cycle analysis of 

the studied succession revealed that cycle duration of the Dahra, Mabruk, Zelten and 

Harash Formations ranges between 129 and 165kyr, which is very close to the short-

eccentricity rhythm (105kyr), and in the range of short-eccentricity to mid-eccentricity 

(200kyr), as reviewed by Tucker and Garland (2010). This suggests that the studied 
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carbonates were probably influenced by short eccentricity-driven climate changes that 

could have been modulated by the long eccentricity rhythm, despite the fact that 

deciphering the over-riding control of the three controlling processes (eccentricity, 

obliquity and precision) can be difficult, if not impossible (Tucker and Garland, 2010). 

Oxygen isotopic signatures of carbonates are mainly controlled by temperature 

of precipitation and the isotopic composition of the fluids, where the carbon isotopic 

signature generally reflects the isotopic composition of the fluid and the source of 

carbon, which may be derived from bacterial sulphate reduction, fermentation and 

dissolution of carbonate minerals (e.g. Morad et al. 1990; Yoshioka et al. 2003; Ader et 

al. 2009; Chakraborty et al. 2010). The high amount of calcite, along with the overall 

similarity in the δ
18

O and δ
13

C values throughout the studied Paleocene succession 

could suggest a warm period that was probably associated with high carbonate 

productivity.  

  

6.4. Comparison with nearby regions 

6.4.1. El Haria Formation (Central Tunisia) 

The latest Cretaceous-Paleocene succession in Tunisia (El Haria Fm) mainly 

consists of shale and marl with thin intercalations of limestone particularly in the 

Danian part. The palaeogeography was characterized by subsiding troughs in the north 

and northeast (NW Tunisian Trough and NE Tunisian Basin) and the Gafsa Gulf in the 

southwest (Aubert and Berggren, 1976; Zaïer et al., 1998; Bensalem, 2002). During the 

Paleocene, the Kalaat Senan region was situated in the southern proximal part of the 

subsiding Tunisian Trough and in the vicinity of the emergent Kasserine Island. 

Prolonged marine sedimentation took place in a neritic setting with high subsidence 

rates and high sediment input, and with reduced sediment thickness towards Kasserine 

Island (Bensalem, 2002).  

The lower and middle Paleocene part is transgressive (zones P2 and P3), 

extending over a large part of Tunisia and, in the Tunisian Trough, is followed by a 

general shallowing trend during the late Paleocene (zones P4 and P5) (Aubert and 

Berggren, 1976; Kouwenhoven et al., 1997; Guasti et al., 2005). Biostratigraphic studies 

indicate that the environment at El Kef evolved from an open-marine, outer neritic-

upper bathyal setting towards an inner neritic setting during the late Paleocene (Donze 

et al., 1982; Peypouquet et al., 1986; Kouwenhoven et al., 1997; Guasti et al., 2005).  
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Lateral facies and thickness variations in the El Haria Fm are thought to be 

structurally controlled along basement lineaments, resulting in a number of small 

tectonically controlled basins (Zaïer et al., 1998). 

 

6.4.2. Galala Mountains (Eastern Desert, Egypt) 

The Galala Mountains in the Eastern Desert, together with areas in west Sinai 

represent a southern branch of the Syrian Arc, called the Northern Galala/Wadi Araba 

High (NGWA High) (Kuss et al., 2000).  The Campanian/Eocene sediments of the 

Galala area has been subdivided into three different environmental regimes of 

deposition or non-deposition/erosion which remained approximately in the same 

geographic position (Scheibner et al., 2001a). The most proximal regime is 

characterized by uplift and erosion or non-deposition resulting mostly from the uplift of 

the Northern Galala/Wadi Araba High (NGWA), a branch of the Syrian Arc fold-belt. 

Subsequently, the shallow-water carbonate platform and slope deposits of the upper 

Campanian/upper Paleocene succession and the upper Paleocene/lower Eocene 

Southern Galala Formation represent an intermediate system and are found north and 

south of the NGWA High. The distal regime is represented by basinal chalks, marls and 

shales of the Campanian/Maastrichtian, and of the Paleocene/Eocene strata. 

The distribution and lateral interfingering of these facies reflect different 

tectonic movements, changing basin morphology, sea-level change and progradation of 

shallow-water facies (Scheibner et al., 2001a). A combination of a sea-level fall and 

tectonic uplift in the late Paleocene (59 Ma) resulted in the prominent progradation of 

the carbonate platform. On the distal platform patch reefs, reef debris and lagoonal to 

margin/upper slope limestones were deposited (section A1), whereas slumps and debris 

flows deposits occur on the steeper slope. In the basinal areas mass flow deposits passed 

into calciturbidites. Farther south only basinal marls were deposited. 

Scheibner et al., (2003) assumed that during the early Paleocene the 

platform/basin configuration remained the same. From Selandian times (59 Ma) 

onwards the platform/basin configuration changed dramatically with a rapid southward 

progradation resulting from a combination of tectonic movements and falling sea level. 

The slope sediments of the late Paleocene platform are characterized by mass transport 

deposits like slides, slumps and debrites. The proximal basinal sediments are 



 Chapter 6                                                                    Spatial and temporal variation                             Spatial and temporal variation 
____________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   272 
 

characterized by calciturbidites that are absent in distal areas farther south (Scheibner et 

al., 2001a). 

Scheibner et al., (2003) concluded that the most important parameters that control the 

depositional geometries of the late Cretaceous mixed carbonate siliciclastic platform 

and the Paleogene carbonate platform in the Galala area are changes in relative sea 

level, sediment flux and initial topography. 
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6.5. Summary comments 

A wide spread occurrence of the Maastrichtian Kalash Limestone in the Sirt 

Basin with fairly comparable thickness, and the thinning and local absence, of the 

Upper Cretaceous strata, along with the previous subsidence studies, strongly indicate 

that the Maastrichtian time is a significant period between Late Cretaceous and Tertiary 

successions in the Basin; it represents the termination of the main rifting phase and the 

onset of late stage rifting phase of the Sirt Basin, when troughs and platforms were 

almost uniformly subsided.  

The overall thickness and facies of the Paleocene are closely aligned to the 

underlying structure; thicker in the trough areas and thinner over the platforms. The 

thickness distribution of different rock-units in the study area virtually coincides with 

the isopach arrangement of the Danian, Selandian/Thanetian and the entire Paleocene 

succession; the carbonate-dominated facies are preferentially located over the major 

platforms and local highs, whereas the main troughs and low topographic areas are 

mainly filled with shale and/or marl. The hanging- wall blocks, however, are 

characterised by subsidence controlled pattern with increased thickness of shale and 

mudstones. The foot-wall, on the other hand, is dominated by uniform and monotonous 

strata with remarkably increased thickness of shallow-marine carbonates, suggesting 

relative stability in tectonic, sea-level and climate.  

The thickness distribution of the Dahra Formation suggests that the Gedari fault 

was slightly active during the Early Thanetian; the thickness difference between the 

platform and the trough strata suggest that the trough areas were possibly still subsiding 

with probably compactional-induced. This gave rise to a local differential subsidence on 

both structural elements and hence resulted in the difference in accommodation space.  

The 700ft relief developed in the Mabruk area, which was probably due to local 

faulting, resulted in the development of the various facies (lagoon and reef). The 

thickness and facies distribution of the Khalifa, Zelten and Harash Formations in the 

study area suggest a fairly uniform topography/ or low relief feature prior to the 

deposition of each, and that the different facies could be ascribed to the pre-existing 

topography that was coupled with sea-level fluctuations.  

The high temperature of the aqueous inclusions recorded by fluid inclusion 

analysis is possibly the result of the passage of hydrothermal fluids from deeper parts of 

the area, despite the low sedimentation rate, the high thermal conductivities of 

carbonate, along with the Mid-Late tertiary uplift and erosion are all involved.  
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  The overall palaeotopography throughout the Paleocene seems to have been 

broadly similar; there is no substantial variation between the base and the top of the 

Paleocene succession, except for the development of a local high that became a 

prominent feature after deposition of the Selandian Beda Formation.  

Local biostratigraphic studies, along with the facies changes occurred across the 

Danian-Selandian boundary suggest a regional lowering of sea-level and/or tectonic 

uplift had occurred in the study area. The eustatic sea-level curve shows fluctuations 

during the middle to late Thanetian time, which may suggest that other factors than 

eustatic sea-level were responsible for the deposition of the Zelten, Harash and Kheir 

facies in the study area. The high amount of calcite, along with the overall similarity in 

the δ
18

O and δ
13

C values throughout the studied Paleocene succession suggest a warm 

period that was probably associated with high productivity or fermentation. Therefore, 

various processes have been involved in controlling the vertical and lateral distribution 

in sedimentation pattern of the studied Paleocene succession in the western part of the 

Sirt Basin. These mainly include local tectonics, eustatic sea-level fluctuations, basin 

palaeotopography, and climate. 

  



 Chapter 7                                                                    Conclusions and recommendations                      Spatial and temporal variation 
____________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   275 
 

CHAPTER SEVEN:  

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS 

7.1. Conclusions 

This chapter brings together all the key findings and main interpretations of the 

research study. The results of lab work, macroscopic and microscopic investigations 

presented in this study have been accomplished to define the lithofacies and their 

associated microfacies, postulate the environments of deposition, address the post-

depositional changes and their influence on the reservoir characteristics, investigate 

major transgressive-regressive cycles, utilize the sequence stratigraphic approach, 

monitor the spatial and temporal facies variation, and interpret the burial history of the 

studied Paleocene succession in the western Sirt Basin.  

● In the second Chapter the regional geology of Libya including its sedimentary 

basins was presented, with emphases on the structural setting and stratigraphic 

evolution of the Sirt Basin and the general geology and lithofacies of its western part. 

The Sirt Basin is the youngest of the Libyan basins, and was developed through inter- 

and intra-plate movements resulting from the relative motion of the American, African 

and Eurasian plates during the opening of the Atlantic Ocean and the development of 

the Mediterranean on the foreland of the African Plate (Anketell, 1996). The 

sedimentary succession in the Sirt Basin is typical of those developed in a failed rift 

system and ranges in age from Cambro-Ordovician to Recent.  

The Paleocene succession in the study area consists mainly of alternating 

shallow-marine carbonates and open-marine calcareous shales, with rapid lateral facies 

changes, which most likely were controlled by the palaeotopography and the differential 

subsidence. The Palaeocene succession comprises the following rock units; Hagfa 

Shale, Satal Limestone, Beda Limestone, Dahra Limestone, Khalifa Shale, Zelten 

Limestone, Harash Fm and Kheir Fm. The Satal, Beda and Dahra carbonates form 

reservoirs in many oil- fields in the study area, whereas the shale of Hagfa, Khalifa and 

Beda (Rabia) represent impermeable top seals for the underlying reservoirs. 

● In Chapter 3, the main lithofacies and their associated microfacies, along with 

the depositional environments of the Dahra (Mabruk), Zelten and Harash Formations 

have been defined. The Selandian/Thanetian Succession comprises four major 

lithofacies; limestone, dolomitic limestone/dolomite, argillaceous limestone/marl, and 

shale. The shale and marl are widely distributed in the Dor al Abid Trough and cover a 
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large part of the Paleocene succession (Heira Formation). They are also developed 

across the Dahra Platform, where the shale is usually medium grey to greenish grey, 

fissile, slightly pyritic with scattered small un-identifiable bioclastic fragments. Detailed 

microscopic examination has resulted in the identification of seven main macrofacies 

and eleven associated microfacies. These macrofacies are: Bioclastic foraminiferal 

packstone-packstone/grainstone; Foraminiferal bioclastic wackestone-

wackestone/packstone; Dolomitic lime-mudstone; Bioclastic foraminiferal grainstone; 

Foraminiferal nummulitic packstone; Algal packstone; and Bioclastic boundstone.  

The main carbonate grains within the Dahra Formation are rotaliids, miliolids, 

echinoderms, molluscs, ooids and green algae, whereas in the Mabruk Member there are 

benthic forams, peloids, red algae, corals and rhodoliths. The dominant bioclasts within 

the Zelten and Harash carbonates are benthic forams, molluscan shells, nummulites, 

bryozoans and echinoderm fragments.  

The Dahra Formation on the Dahra Platform was deposited on a homoclinal 

carbonate ramp with inner, mid and probably outer ramp facies, each with distinctive 

sub-facies and microfacies. Overall the Dahra Formation was probably deposited under 

similar conditions throughout the east and west Dahra Fields on the Dahra Platform. A 

comparable depositional setting was re-established in the Zelten and Harash Formations 

across the area, with local occurrences of nummulitic packstone instead of bioclastic 

grainstone in the Dahra Formation and the development of mainly wackestone-

packstone facies. The Mabruk Member represents deposition of mainly shallow-water 

carbonates that were bounded above and below by deeper-marine marl and shale; these 

may have accumulated in lagoonal and reefal environments in a probable rimmed-shelf 

setting. 

● The major and minor diagenetic processes and their timing, together with their 

effect on the reservoir quality of the studied carbonates are presented in Chapter 4. 

Boring, burrowing, neomorphism, dissolution, cementation, dolomitization and 

compaction are all recognised, in conjunction with the occurrence of minor diagenetic 

events, such as the formation of authigenic pyrite, glauconite, hematite, phosphate, 

sulphates and clay minerals.  

Two phases of dissolution occurred within the studied rocks; the first phase 

caused the dissolution of the original aragonitic and probably high Mg-calcite grains, 

together with some matrix. The second phase of dissolution resulted in the total 

leaching of probable sulphate minerals (gypsum-anhydrite) and the partial dissolution of 
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medium to coarsely crystalline void-filling dolomite crystals. Three types of calcite 

cement have been recognized. These are: isopachous calcite, equant sparry calcite, 

locally blocky, and syntaxial overgrowth cements. Two types of dolomite have also 

been recognised, these are: very finely to medium crystalline (10-80 µm) dolomite and 

medium tocoarsely crystalline (100-600 µm) dolomite. Mechanical and chemical 

compaction is recorded in almost all the studied formations in both structural settings, 

particularly in the Dahra Formation and Mabruk Member. 

The δ
18

O values recorded in the studied Paleocene succession range from -10.5 

‰ to +1.2 ‰, whereas the δ
13

C measurements fall in the range -4.87‰ to +3.89‰. In 

addition to a few negative instances, specific intervals within the Dahra Formation show 

distinctive positive excursions, particularly in the δ
18

O, and these suggest a trend to less 

meteoric alteration and the preservation of marine values in the Dahra West Field, and 

subaerial exposure in the Dahra East Field. The general trend of the oxygen isotopic 

signature of the Zelten and Harash Formations is positive, particularly in the Harash 

Formation. The isotope values of the Mabruk Member range from δ
18

O -5.45‰ to -

0.77‰, and δ
13

C 0.00‰ to +3.04‰.  They commonly followed the sedimentary facies, 

as the wells with reefal facies have similar isotope values, whereas the wells with 

lagoonal facies have a completely different trend.  

Several occurrences of white, yellow and blue fluorescent fluid inclusions within 

the Dahra, Zelten and Harash Formations on the Dahra Platform have been documented. 

The difference in homogenization temperature between the aqueous inclusions and 

petroleum inclusions is interpreted in terms of two phases of calcite cementation. 

Macroscopic and microscopic investigations revealed that the porosity types developed 

in the Selandian/Thanetian succession are dominated by moldic, vuggy, intergranular 

and intragranular types, with less common fracture and intercrystalline porosity. The 

best porosity in the studied succession is recorded in the Dahra Formation, whereas the 

Mabruk Member, Zelten and particularly Harash Formations have relatively lower 

porosity. The porosity evolution in the Selandian/Thanetian succession is controlled by 

original depositional texture, subsequent diagenesis and the pattern of carbonate cycles. 

● In the fifth Chapter, a classical stratigraphy, sedimentology and sequence 

stratigraphic approach have all been implemented. The purpose of this chapter is to 

demonstrate the merits of using sedimentology, petrography, wireline logs and various 

analytical techniques to assess the regional and local stratigraphy and for establishing a 
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sequence stratigraphic framework for the Selandian/Thanetian succession in the western 

Sirt Basin. 

The stratigraphic section in the study area extends from the Palaeozoic up to the 

Recent, with major and minor stratigraphic gaps throughout. The Danian time was 

associated with an extensive sea-level rise, which resulted in the deposition of thick 

Hagfa Shale in the trough areas, whereas shallower-water carbonates of the Satal 

Formation were deposited on the Dahra Platform. The overall cycle of shale deposition 

with intercalation of carbonate reflects alternating transgressive-regressive cycles in the 

Paleocene succession. Significant transgression occurred at the end of the Dahra 

Formation, and resulted in deposition of the Khalifa Formation across the study area. 

Most of the Zelten Limestone was deposited during a regressive phase with an evident 

prograding trend up to the top of the formation. The Zelten/Harash boundary shows a 

sharp change in facies and log response, which suggests an important stratigraphic 

surface.  

The studied succession is dominated by shallowing-up cycles, with the possible 

development of deepening-up cycles particularly in the deeper-water areas. Lagoon, 

shallow subtidal and deep subtidal cycles dominated the Dahra Platform, whereas reef 

and back-reef/lagoonal cycles are abundant in the Dor al Abid Trough. Carbonate 

accumulation during the deposition of the Zelten and Harash Formations on the Dahra 

Platform is similar to that of the Dahra Formation, which suggests a similar rate of 

creation of accommodation space. The high rate of deposition on the Dahra Platform 

relative to that in the Dor al Abid Trough is probably ascribed to the fact that an inner 

platform area is normally the site of higher carbonate production relative to the outer 

platform area. 

Four depositional sequences on the Dahra Platform and at least two depositional 

sequences have been recognized in the Dor al Abid Trough. These depositional 

sequences comprise both a transgressive systems tract and a highstand systems tract, 

with no lowstand systems tract recognised, probably due to the low relief ramp setting 

or because of the location of the studied wells. The sequence boundaries are commonly 

incorporated with transgressive surfaces, particularly on the Dahra Platform. The 

possible development of a drowning unconformity at the top of the Mabruk Member in 

the Dor al Abid Trough could be attributed to a possible lack of reef-building organisms 

in association with tectonic subsidence and/or significant sea-level rise.  
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● In Chapter six, the spatial and temporal pattern of the Paleocene facies and the 

burial history of the studied succession are addressed. The wide-spread occurrence of 

the Maastrichtian Kalash Limestone in the Sirt Basin with fairly comparable thickness, 

and the thining and local absence, of Upper Cretaceous strata, along with previous 

subsidence studies, strongly indicate that the Maastrichtian time was a significant period 

between Late Cretaceous and Tertiary successions for the basin; it represents the 

termination of the main rifting phase and the onset of a late-stage rifting phase of the 

Sirt Basin, when troughs and platforms subsided almost uniformly. In the Paleocene late 

syn-rift, the hanging-wall blocks, however, are characterised by a subsidence controlled 

pattern with increased thickness of shale and mudstones. The foot-wall, on the other 

hand, is dominated by uniform and monotonous strata with a remarkable increased 

thickness of shallow-marine carbonates, suggesting relative stability in tectonics, sea-

level and climate.  

The overall thickness and facies of the Paleocene is closely aligned to the 

underlying structure; thicker in the trough areas and thinner over the platforms. The 

thickness distribution of different rock-units in the study area virtually coincides with 

the isopach arrangement of the Danian, Selandian/Thanetian and the entire Paleocene 

succession, with the carbonate-dominated facies preferentially located over the major 

platforms and local highs, whereas the main troughs and low topographic areas are 

mainly filled with shale and/or marl. The high temperature recorded in the aqueous 

inclusions is possibly due to the passage of hydrothermal fluids from deeper parts of the 

area.  

The overall palaeotopography throughout the Paleocene seems generally similar; 

there is no substantial variation between the base and the top of the Paleocene 

succession, except for the development of a local high that became a prominent feature 

after deposition of the Beda Formation (Selandian); this suggests differential subsidence 

and sea-level fluctuations, along with climate as the dominant processes that controlled 

the spatial and temporal variations of the Paleocene facies. 
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7.2. Future work recommendations 

In view of the important amount of the hydrocarbon produced in the Sirt Basin, 

several studies have been conducted regarding the petroleum geology, reservoir 

characteristics, structural geology, stratigraphy and biostratigraphy. Nevertheless, the 

studied succession, and almost the entire stratigraphic section in the basin, is lacking 

any absolute dating and high-resolution biostratigraphy. Moreover, the time and 

mechanism of the Sirt Basin creation and evolution are still debatable, which is in part 

related to the poor age-dating of the deep stratigraphic succession.  

During the course of this study, a number of gaps in our knowledge of the 

sedimentology, stratigraphy and structural geology have been recognised. Many of 

these gaps can be filled and these would give added value to the overall geology of the 

Sirt Basin; First, a high resolution biostratigraphy is necessary to improve the vertical 

resolution in the succession and to enhance the lateral correlation not only within the 

same structural elements but also between the Dahra Platform and the Dor al 

Abid/Zallah Trough. Second, continuous core samples of the carbonate formations 

throughout the succession, along with a complete, up-to-date, set of wire-line logs, are 

also required to conduct a reliable sequence stratigraphic framework in the area that can 

be correlated with neighbouring regions and globally. Third, application of state of the 

art analytical techniques, particularly fluid inclusions on a systematic basis of carefully 

selected wells, would result in a better understanding of the burial history of the western 

Sirt Basin. Furthermore, additional closely spaced wells, with a complete set of logs and 

continuous cores, in the Mabruk Field in the Dor al Abid Trough will allow delineating 

the shape, type and extent of the reefal deposits in the Mabruk area.  
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Appendix 1. Sedimentological core description logs of the studied wells 
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Key to symbols used in the sedimentological logs 

 

Abbreviations used throughout the thesis 

* PDS= Pressure disolution seams      PMF = Paleocene microfacies  W= well 

H = Harash Fm Z = Zelten Fm       D = Dahra Fm 3275 = Depth in feet  

* All photomicrographs in table 3.1are in ppl, unless otherwise stated  

H= Harash Fm  Z= Zelten Fm  D= Dahra Fm  M = Mabruk Mbr M 

= Mudstone  W= Wackestone P= Packstone  G= Grainstone  

B = Boundstone  √= exist ft= feet 

A = Abundant (˃ 20 %)  C = Common (10 – 20 %) P= Present (5 – 10 %)  

R= Rare ˂5 % 

Porosity category:  

N = Negligible (˂ 5%) P = Poor (5-10%)  F = Fair (10-15%)  

G = Good (15-20%)  VG = Very good (20-25%) E = Excellent (˃25%) 

  

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   304 
 

D
ri

ll
in

g
 d

e
p
th

  
   

 (
fe

e
t)

Co
re
 N

o.

F
o
rm

a
ti
o

m

O
il
 S

ta
in

S
e
d
im

e
n

ta
ry

 S
tr

u
c
tu

re

L
it

h
o

lo
g

y

Components 

         &
 depositional 

     Texture

B
io

tu
rb

a
ti
o

n

C
y

c
le

  
S

e
q

u
e

n
c

e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well No. 8 Scale: 1:100

G
M

P

2662

2665

2671

2668

2680

2677

2674

2689

2686

2683

2698

2695

2692

2716

2713

2710

2707

2704

2701

2731

2728

2725

2722

2719

2727

2740

2737

2734

H
  
 A

  
 R

  
 A

  
 S

  
 H

Z
E

L
T
E

N

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T
Fe

Fe

C
 o

 r
 e

  
 #

  
2

C
o
re

  
#
  
3

S
a
m

p
le

H1

H3

H2

H6

H5

H4

H8

H7

H10

H9

Z1

Z2

Z3

A
g

e
L
  
 A

  
 N

  
 D

  
 E

  
 N

  
 I
  

 A
  
 N

Sheet 1 of 6

6

0
2 4

H
S

T
 3

T
S

T
 4

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   305 
 

D
ri

ll
in

g
 d

e
p
th

  
  
  
(f

e
e
t)

C
or

e 
No

.

O
il

 S
ta

in

S
e
d

im
e
n
ta

ry
 S

tr
u

c
tu

re

L
it
h

o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti
o

n
 

  
  
 I
n

d
e

x

C
y
c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well No. 8 Scale: 1:100

G
M

P

2741

2744

2750

2747

2759

2756

2753

2768

2765

2762

2777

2774

2771

2789

2786

2783

2780

3067

3064

3061

3058

3055

3076

3073

3070

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

C
 o

 r
 e

  
 #

  
3

C
o

re
  

#
  

4

S
a

m
p

le

A
g

e
L
  

 A
  

 N
  

 D
  

 E
  

 N
  

 I
  

 A
  

 N

D
  A

  
 H

  
 R

  
 A

F
o

rm
a

ti
o
m

Z
  
 E

  
 L

  
 E

  
 T

  
 E

  
 N

G
a
p

 (
o

u
t o

f 
sc

al
e
)

G
a
p

 

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

D1

D2

D3

6

0
2 4

Sheet 2 of 6

C
o
re

  
# 

 5 Might be an important
 surface ?? backed 

H
S

T
 2

H
S

T
 3

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   306 
 

D
ri

ll
in

g
 d

e
p

th

  
  
  
(f

e
e
t)

C
o
re

 N
o.

O
il
 S

ta
in

S
e
d
im

e
n
ta

r
y

 S
tr

u
c

tu
re

L
it
h

o
lo

g
y

Components 
         &

 depositional 
     Texture

B
io

tu
r
b

a
t
io

n
 

  
  

 I
n

d
e

x

C
y
c

le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
r
a

p
h

y

Remarks

Sedimentological Core Description Well No 8 Scale: 1:100

G
M

P

6

0

3077

3080

3 086

3083

3 089

3105

3102

3114

3111

3108

3126

31 23

3120

3117

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e
L
  
 A

  
 N

  
 D

  
 E

  
 N

  
 I
  
 A

  
 N

D
  
A

  
 H

  
 R

  
 A

F
o
r
m

a
ti

o
m

2
4

Sheet 3 of 6

3129

3132

3135

3138

3141

3144

3147

3150

3153

3156

C
o

r
e

 
 
#

 
 
5

C
o

r
e

  
#

 
 6

G
a

p
 

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

Candidate key surface?

T
S

T
 2

H
S

T
 2

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   307 
 

D
ri

ll
in

g
 d

e
p
th

  
  

  
(f
e
e
t)

C
or
e 

N
o.

O
il
 S

ta
in

S
e
d

im
e
n

ta
ry

 S
tr

u
c
tu

re

L
it

h
o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 

  
  

 I
n

d
e

x

C
y
c
le

  
S

e
q
u

e
n
c
e

S
tr

a
ti

g
ra

p
h
y

Remarks

Sedimentological Core Description Well no. 8 Scale: 1:100

G
M

P

6

0

315 6

3 159

3165

3162

3168

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g
e

L
  
 A

  
 N

  
 D

  
 E

  
 N

  
 I
  
 A

  
 N

D
  
A

  
 H

  
 R

  
 A

F
o

rm
a

ti
o

m

2
4

Sheet 4 of 6

G
a

p
 

3171

3174

3177

3180

3183

3186

3189

3192

3195

3198

3201

3204

3207

3210

3213

3216

3219

3222

3225

3228

3231

3234

 C
o

r
e

 
#

 7
C

o
r
e

  
#

  
8

  Internal sediment, dessication cracks
   and rootlets??

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32

  Fair to good Porosity?

H
S

T
 1

T
S

T
 2

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   308 
 

D
ri

ll
in

g
 d

e
p
th

  
  
  
(f

e
e
t)

Co
re

 N
o.

O
il

 S
ta

in

S
e
d

im
e

n
ta

ry
 S

tr
u

c
tu

re

L
it

h
o

lo
g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti
o

n
 

  
  

 I
n

d
e

x

C
y
c
le

  
S

e
q

u
e

n
c
e

S
tr

a
ti
g

ra
p

h
y

Remarks

Sedimentological Core Description Well no. 8 Scale: 1:100

G
M

P

6

0

3235

3238

3244

3241

3247

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p

le

A
g

e
L
  
 A

  
 N

  
 D

  
 E

  
 N

  
 I

  
 A

  
 N

D
  
A

  
 H

  
 R

  
 A

F
o

rm
a

ti
o
m

2 4

Sheet 5 of 6

G
a

p

 

3250

3253

3256

3259

3262

3265

3268

3271

3274

3277

3280

3283

3286

3289

3292

3295

3298

3301

3304

3307

3310

3313

 C
  

o
  

r 
 e

  
 #

  
9

 C
 o

 r
 e

  
#

  
1

0

G
a

p

 

C
 #

 1
1

D33

D34

  D
34B

D35

D36

D37

D38

D39

D40

D41

D42

D43

T
S

T
 1

H
S

T
 1

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   309 
 

D
r
il
li

n
g
 d

e
p
th

  
  
  
(f

e
e
t)

C
or

e 
N
o
.

O
il
 S

ta
in

S
e
d
im

e
n

ta
ry

 S
tr

u
c
tu

re

L
it

h
o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y
c
le

  
S

e
q
u

e
n
c
e

S
tr

a
ti
g

ra
p
h

y

Remarks

Sedimentological Core Description Well no. 8 Scale: 1:100

G
M

P

6

0

3314

3317

3323

3320

3326

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e
L
  
 A

  
 N

  
 D

  
 E

  
 N

  
 I
  
 A

  
 N

D
  
A
  
 H

  
 R

  
 A

F
o

r
m

a
ti
o
m

2
4

Sheet 6 of 6

3329

3332

3335

3338

 C
 o

  
r
 
 e

  
 #

  
1

1
D44

D45

D46

Limestone

Dolomite

Dolomitic Ls

Shale

 Npodular
 Structure

Horizonta
 l Lamination

Fenestrae

Dessication
   Cracks

Boring

Stylolites

Calcareous

Pressure
solution
seams

I

I
I

- -- - Argillacoeus

Breccia

Benthonic 
forams

Planktonic 
forams

Extraclast 

Intraclast

Coral

Brachiopods

Crinoids

Echinoderm
 fragments

Ooid

Nummulites

Superficial
 Ooids

Peloids

Gastropods

Bryozoa

Bivalves
Calcareous
 algae

Green
 algae

Bioclasts

Glauconite

Iron 
minerals

Phosphate

Pyrite

Fracture Bioturbation

D46
Sample 
number

Legend

Ostracoda

T
S

T
 1

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   310 
 

D
ri

ll
in

g
 d

e
p

th

   
  

 (
fe

e
t)

C
or

e 
No

.

F
o
rm

a
ti

o
m

O
il

 S
ta

in

S
e

d
im

e
n
ta

ry
 S

tr
u
c
tu

re

L
it

h
o

lo
g
y

Components 
         &

 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

C
y
c

le

  
S

e
q

u
e

n
c
e

S
tr

a
ti

g
ra

p
h

y

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

2626

2629

2635

2632

2644

2641

2638

2653

2650

2647

2662

2659

2656

2680

2677

2674

2671

2668

2665

2695

2692

2689

2686

2683

2

2704

2701

2698

H
  
 A

  
 R

  
 A

  
 S

  
 H

Z
E

LT
E

N

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

C
 o

 r
 e

  
 #

  
4

C
o
re

  
#
  
5

S
a
m

p
le

H1

H3

H2

H6

H5

H4

H8

H7

H10

H9

Z1

Z2

A
g

e
T
  

H
  
A

  
N

  
E

  
T

  
I 

 A
  
N

Sheet 1 of 6 

1
3

5

H11

H12

H13

At 2638-39
Tectonic Fracture (possibly 
 strike slip fault) 

Transgressive surface  and
/or Sequence boundary

Remarks

Tectonic Fracture/

H
S

T
 3

T
S

T
 4

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   311 
 

D
ri

ll
in

g
 d

e
p
th

  
  
  (

fe
e

t)

C
or

e 
No

.

O
il
 S

ta
in

S
e

d
im

e
n
ta

ry
 S

tr
u
c

tu
re

L
it

h
o
lo

g
y

Components 
         &

 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y
c

le

  
S

e
q

u
e

n
c

e

S
tr

a
ti

g
ra

p
h
y

Remarks

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e
T
  
H

  A
  
N

  
E

  
T

  
I 
 A

  
N

F
o

rm
a
ti
o

m

Sheet 2 of 6 

2706

2709

2712

2715

2718

2721

2724

2727

2730

2733

2736

2739

2742

2745

2748

2751

2754

2757

2760

2763

2766

2769

2772

2775

2778

2781

2784

Storm structure

Z
  
 E

  
 L

  
 T

  
 E

  
 N

1
3

5

Gap

C
o

re
  
#
  
5

C
o
re

  
#
  

6
C

o
re

  
#

  
7

G

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

Z12

Z13

Z14

Z15

Z16

H
S

T
 3

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   312 
 

D
ri

lli
n

g
 d

e
p
th

  
   

 (
fe

e
t)

Co
re
 N

o.

O
il
 S

ta
in

S
e

d
im

e
n
ta

ry
 S

tr
u

ct
u

re

L
it
h

o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e
n
c

e

S
tr

a
ti

g
ra

p
h
y

Remarks

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e

F
o
rm

a
ti

o
m

Sheet 3 of 6

2785

2800

2797

2794

2791

2788

2806

2803

2815

2812

2809

2830

2827

2824

2821`

2818

2845

2842

2839

2836

2833

2854

2851

2848

2857

2860

2863

Gap

Z
  
 E

  
 L

  
 T

  
 E

  
 N

Gap

1
3

5

G
a

p
C

o
re

  
#
  
8

C
o
re

  #
  
9

  1
0

Z17

Z18

Z19

Z20

Z21

Z22

T
  H

  A
  
N

  
E

  
T
  
I 
 A

  
N

H
S

T
 3

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   313 
 

D
ri
ll

in
g

 d
e

p
th

  
  
  

(f
e

e
t)

Co
re
 N

o.

O
il

 S
ta

in

S
e
d
im

en
ta

ry
 S

tr
u

c
tu

re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p

le

A
g

e

F
o

rm
a
ti

o
m

Sheet 4 of 6

3076

3088

3085

3082

3079

3091

3094

3097

3100

3103

3106

3109

3112

3115

3118

3121

3124

3127

3130

3133

3136

3139

3142

3145

3148

3151

3154

D
  
 A

  
  
 H

  
  
R

  
  A

Gap

1
3

5

C
or

e 
 #

  1
1

C
or

e 
 #

  1
2

D1

D2

D3

D4

D5

D6

S
  
E

  
L
  A

  
N

  
D

  
I 
 A

  
N

 /
 T

  
H

  A
  
N

  
E

  
T
  

I 
 A

  
N

T
S

T
 2

H
S

T
 2

 

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   314 
 

D
ri

lli
n
g

 d
e
p

th
  
   

 (
fe

et
)

Co
re
 N
o.

O
il

 S
ta

in

S
e

d
im

e
n
ta

ry
 S

tr
u
c
tu

re

L
it
h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 In

d
e

x

C
y

cl
e

  
S

e
q
u

e
n
c
e

S
tr

at
ig

ra
p
h

y

Remarks

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p
le

A
g

e

F
o
rm

a
ti
o
m

Sheet 5 of 6 

315531553155

3158

3161

3164

3167

3170

3173

3176

3179

3182

3185

3188

3191

3194

3197

3200

3203

3206

3209

3212

3215

3218

3221

3224

3227

3230

3233

I

I
II

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

Breccia ?? Fault Zone and/or Paleosols
 ??(Candidate key surface)

Gap

D
  
 A

  
  

 H
  

  
R

  
  
A

1
3

5

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

S
  

E
  

L
  
A

  
N

  
D

  
I 
 A

  
N

 /
 T

  
H

  
A

  
N

  
E

  
T

  
I 

 A
  

N

H
S

T
 1

T
S

T
 2

 

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   315 
 

D
ri

ll
in

g
 d

e
p
th

  
  

  
(f

e
e

t)

C
or

e 
No

.

O
il

 S
ta

in

S
e
d

im
e

n
ta

ry
 S

tr
u

c
tu

r
e

L
it

h
o

lo
g

y

Components 

         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

   
In

d
e

x

C
y
c

le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
r
a
p

h
y

Remarks

Sedimentological Core Description Well no. 9 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p

le

A
g

e

D
  
A

  
 H

  
 R

  
 A

F
o

rm
a

ti
o

m

Sheet 6 of 6

3234

3237

3240

3243

3246

3249

3252

3255

3258

3261

3264

3267
I

I
I I

I
II

I
I

1
3

5

Limestone

Dolomite

Dolomitic Ls

Shale

 Nodular
 Structure

Horizonta
  Lamination

Fenestrae

Dessication
   Cracks

Boring

Stylolites

Calcareous

Pressure
solution
seams

I

I
I

-  --  - Argillacoeus

Breccia

Benthonic 
forams 
(miliolids & rotaliids)

Planktonic 
forams

Extraclast 

Intraclast

Coral

Brachiopods

Crinoids

Echinoderm
 fragments

Ooid

Nummulites

Superficial
 Ooids

Peloids

Gastropods

Bryozoa

Bivalves

Calcareous
 algae

Green algae

Bioclasts

Glauconite

Iron 

minerals

Phosphate

Pyrite

Fracture

Bioturbation D46 Sample 
number

Legend

Echinoid Spine

Ostracoda

Chalcky

Calcisphere

Alviolina

D25

D26

D27

D28

D29

D30

D31

D32

S
  

E
  

L
  
A

  
N

  
D

  
I 

 A
  

N
 /
 T

  
H

  
A

  
N

  
E

  
T

  
I 

 A
  

N

H
S

T
 1

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   316 
 

D
ri

lli
n
g

 d
e
p
th

   
  
 (
fe

et
)

Co
re
 N

o.

O
il
 S

ta
in

S
e

d
im

e
n

ta
ry

 S
tr

u
c
tu

re

L
it
h

o
lo

g
y

Components 
         &
 depositional 

     Texture

B
io

tu
rb

a
ti

o
n

 

  
  

 I
n

d
e

x

C
y

c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti
g

ra
p
h

y

Remarks

Sedimentological Core Description Well no.10 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e

F
o

rm
a
ti

o
m

Sheet 1 of 

Z
  
 E

  
 L

  
 T

  
 E

  
 N

1
3

5

C
 o

 r
 e

  
 #

  
1

C
o
re

  
#

  
2

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

U

Gap

 T
  
 H

  
 A

  
 N

  
 E

  
 T

  
 I
  
 A

  
 N

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   317 
 

D
ri

lli
n
g

 d
e

p
th

  
   

 (
fe

et
)

Co
re
 N

o.

O
il 

S
ta

in

S
e
d
im

en
ta

ry
 S

tr
u

ct
u

re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 In

d
e

x

C
y
c

le

  S
e

q
u
e

n
ce

S
tr

a
ti
g

ra
p

h
y

Remarks

Sedimentological Core Description Well no. 10 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
am

p
le

A
g

e

F
o

rm
a
ti
o

m

Sheet 2 of 

Z
  

 E
  

 L
  

 T
  

 E
  
 N

1
3

5

2799

2802

2808

2805

2817

2814

2811

2826

2823

2820

2829

3122

3119

3116

3113

3131

3128

 3125 

C
 o

 r
 e

  
 #

  
3

C
or

e
  
#
  

4

3110

K
h

a
li
fa

 F
m

G
a

p
 (

o
u

t 
o

f 
s
c
a

le
)

D
  
 A

  
 H

  
 R

  
  
A

 

C
 o

 r
 e

  
 #

  
5

Z11Z11Z11

Z12

Z13

Z14

Z15

D1

D2

D3

S
E

L
A

N
D

IA
N

 /
 T

H
A

N
E

T
IA

N

H
S

T
 2

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   318 
 

D
ri

lli
n

g
 d

e
p

th
  
   

 (
fe

et
)

Co
re
 N

o.

O
il

 S
ta

in

S
e
d

im
e

n
ta

ry
 S

tr
u

c
tu

re

L
it
h

o
lo

g
y

Components 
         &
 depositional 

     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 10 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p

le

A
g

e

F
o

rm
a
ti

o
m

Sheet 3 of 

1
3

5

3132

3135

3141

3138

3150

3147

3144

3159

3156

3153

3162

3186

3183

3180

3177

3195

3192

 3189 

C
 o

 r
 e

  
 #

  
5

3174

3165

3168

3171

D
  
  A

  
  
H

  
  
R

  
  
 A

 

G
a
p
 

C
 o

 r
 e

  
 #

  
6

G
a
p
 

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

S
E

L
A

N
D

IA
N

 /
 T

H
A

N
E

T
IA

N

T
S

T
 2

H
S

T
 2

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   319 
 

D
ri

ll
in

g
 d

e
p

th
  
  
  
(f

e
e
t)

C
or
e 
No

.

O
il
 S

ta
in

S
e
d
im

e
n
ta

ry
 S

tr
u
c

tu
re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y
c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 10 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g
e

F
o

rm
a
ti

o
n

Sheet 4 of 

1
3

5

3196

3199

3205

3202

3214

3211

3208

3223

3220

3217

3226

3250

3247

3244

3241

3259

3256

 3253

3238

3229

3232

3235

D
  
  A

  
  
H

  
  
R

  
  

 A
 

C
 o

 r
 e

  
 #

  
 7

G
a
p

 

D14

D15

D16

D17

D18

D19

D20

D21

D22

D24

D26

S
E

L
A

N
D

IA
N

 /
 T

H
A

N
E

T
IA

N

H
S

T
 1

T
S

T
 2

 

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   320 
 

 

 

 

 

 

D
ri

ll
in

g
 d

e
p

th
  

  
  
(f

e
e
t)

C
or

e 
N
o.

O
il
 S

ta
in

S
e
d

im
e

n
ta

ry
 S

tr
u

c
tu

re

L
it

h
o

lo
g

y

Components 
         &

 depositional 
     Texture

B
io

tu
rb

at
io

n
 

  
  

 In
d

e
x

C
y

c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
r
a
p

h
y

Remarks

Sedimentological Core Description Well no. 10 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S
T

G
S
T

B
S

T

S
a
m

p
le

A
g

e

F
o

rm
a
ti

o
n

Sheet 5 of 

1
3

5

3260

3263

3269

3266

3278

3275

3272

3287

3284

3281

3290

C
 o

 r
 e

  
 #

  
8

Ph

3293

3296

3299

D
  
  
A

  
  

H
  
  

R
  
  

 A
 

G
a
p

 

D28

D30

D32

D33

D35

D37

D39

D40

Fe

Fe

Ph

Fe

Ph Fe

Bioturbated, Brecciated
 and/or intraclasts

S
E

L
A

N
D

IA
N

 /
 T

H
A

N
E

T
IA

N

Fe

Ph

Limestone

Dolomite

Dolomitic Ls

Shale

 Nodular
 Structure

Horizonta
  Lamination

Fenestrae

Dessication
   Cracks

Boring

Stylolites

Calcareous

Pressure
solution
seams

I

I
I

-  --  - Argillacoeus

Breccia

Benthonic 
forams 
(miliolids & rotaliids)

Planktonic 
forams

Extraclast 

Intraclast

Coral

Brachiopods

Crinoids

Echinoderm
 fragments

Ooid

Nummulites

Superficial
 Ooids

Peloids

Gastropods

Bryozoa

Bivalves

Calcareous
 algae

Green algae

Bioclasts

Glauconite

Iron 
minerals

Phosphate

Pyrite

Fracture

Bioturbation

D46 Sample 
number

Legend

Echinoid Spine

Ostracoda

Chalcky

Calcisphere

Alviolina

U V. burrow

H
S

T
 1



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   321 
 

D
ril

lin
g 

d
ep

th
   

   
(f
ee

t) Co
re 
No

.

Fo
rm

at
io

m

O
il
 S

ta
in

S
ed

im
en

ta
ry

 S
tr
uc

tu
re

Li
th

o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
tio

n

C
yc

l e

  S
eq

ue
nc

e

St
ra

tig
ra

ph
y

Re m a rk s

Sed imento log ical C ore D escrip tion W ell no . 7 Scale: 1 :1 0 0

G
M

P

H
  
 A

  
 R

  
 A

  
 S

  
 H

Z
E

LT
E

N

M
S
T

W
S

T

P
S

T

G
S
T

B
S

T

C
 o

 r
 e

  
 #

  
1

C
o
re

  #
  2

S
am

pl
e

H1

H3

H2

H4

A
g

e
T
  
 H

  
 A

  
 N

  
 E

  
 T

  
 I
   

A
  
 N

  

Sheet 1 o f 

6

0
2 4

2 7 11

2 7 1 4

2 7 1 7

2 7 2 0

2 7 2 3

2 7 2 6

2 7 2 9

2 7 3 2

2 7 3 5

2 7 3 8

2 7 4 1

2 7 4 4

2 7 4 7

2 7 5 0

2 7 5 3

2 7 5 6

2 7 5 9

2 7 6 2

2 7 6 5

2 7 6 8

2 7 7 1

2 7 7 4

2 7 7 7

2 7 8 6

2 7 8 3

2 7 8 0

2 7 8 9

2 7 9 2

2 7 9 5

2 7 9 8

2 8 0 1

2 8 0 4

2 8 0 7

Z 1

Z 2

Z 3

Z 4

Z 5

T
S

T
 4

H
S

T
 3

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   322 
 

D
ri
ll
in

g
 d

e
p
th

  
   

 (
fe

et
)

Co
re
 N

o.

F
o

rm
a
ti
o
m

O
il

 S
ta

in

S
ed

im
e

n
ta

ry

 S
tr

u
c
tu

re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

C
y

c
le

  
S

e
q
u

e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 7 Scale: 1:100

G
M

P

Z
  E

  
 L

  T
  
 E

  
 N

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

C
 o

 r
 e

  
 #

  
3

S
a
m

p
le

A
g
e

Sheet 1 of 

6

0
2

4

2810

2813

2816

2819

2822

2825

2828

2831

2834

2837

2840

2843

2846

2849

2852

2855

2858

C
 #

 4

2861

2864

2867

2870

2873

2876

2879

H
S

T
 3

T
  
 H

   
A
  
 N

  
 E

  
 T

  
 I
   

A
  
 N

  

 

 

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   323 
 

D
ri
lli

ng
 d

ep
th

   
   

(fe
et

)

Co
re
 N
o.

F
or

m
at

io
m

O
il 

S
ta

in

S
ed

im
en

ta
ry

 S
tr

u
ct

u
re

L
ith

o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

at
io

n

C
yc

le

  S
e
qu

en
ce

S
tr

at
ig

ra
ph

y

Remarks

S ed im ento log ical C ore D escrip tion W ell no .7 S cale: 1:100

G
M

P

D
   

A
   

H
   

R
  
 A

  

M
S
T

W
S

T

P
S
T

G
S

T

B
S

T

C
 o

 r
 e

   
# 

  5
C

or
e
  #

  
6

S
am

p
le

A
g
e

S
  E

  L
  A

  N
  D

  I
  A

  N
  /

  T
  H

  A
  N

  E
  T

  I
  A

  N

S heet 1 o f 

6

0
2 4

3270

3285

3282

3279

3276

3273

3288

3303

3300

3297

3294

3291

3306

 3315

 3312

 3309

3249

3264

3261

3258

3255

3252

3267

 3318

 3321

 3324

 3327

 3330

 3333

 3336

 3339

 3342

 3345

Meniscus cement 

T
S

T
 1

H
S

T
 1

T
S

T
 2

 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   324 
 

Dr
ill

ing
 de

pt
h

    
  (

fee
t)

Cor
e N

o.

Oi
l S

tai
n

Se
dim

en
tar

y
 S
tru

ct
ur
e

Li
th

ol
og

y

C o m p o n e n t s  
         &

 d e p o s i t io n a l  
     T e x t u r e

Bi
ot

ur
ba

tio
n 

    
 In

de
x

Cy
cl
e

  S
eq

ue
nc

e

St
ra
tig

ra
ph

y

R e m a r k s

S e d i m e n t o l o g i c a l  C o r e  D e s c r i p t i o n W e l l  n o .  A 6 6 a S c a l e : 1 : 1 0 0

G
M

P

M
S
T

W
ST PS

T

G
S
T

B
STSa
mp

le

A
ge

Fo
rm

ati
om

S h e e t  1  o f  1

1
3

5

4 2 4 1

4 2 4 4

4 2 5 0

4 2 4 7

4 2 5 9

4 2 5 6

4 2 5 3

4 2 6 8

4 2 6 5

4 2 6 2

4 2 7 1

4 2 9 5

4 2 9 2

4 2 8 9

4 2 8 6

4 3 0 4

4 3 0 1

 4 2 9 8

C
 o
 r 

e 
  #

  

4 2 8 3

4 2 7 4

4 2 7 7

4 2 8 0

M
   
 A
   

 B
   
 R

   
 U

   
 K

 

D 1

D 1 0

I II

I II

I I
I

I II

I II

D 2

D 3

D 4

 D 5

D 6

D 7

D 8

D 9

G a p

4 3 0 7

4 3 1 0

4 3 1 3

4 3 1 6

4 3 1 9

4 3 2 2

4 3 2 5

4 3 2 8

4 3 3 1

4 3 3 4

4 3 3 7

4 3 4 0

4 3 4 3

4 3 4 6

4 3 4 9

4 3 5 2

4 3 5 5

D 1 1

D 1 2

D 1 3

D 1 4

D 1 5

D 1 6

D 1 7

D 1 8

D 1 9

D 2 0

D 2 1

D 2 2

S
  E

  L
  A

  N
  D

  I
  A

  N
   

 / 
   
T 

 H
  A

  N
  E

  T
  I

  A
  N

TS
T 
1

HS
T 

1
TS

T 
2

H
ST

 2

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   325 
 

S
  

E
  
L

  
A

  
N

  
D

  
I 
 A

  
N

  
  
/ 

  
 T

  
H

  
A

  
N

  
E

  
T

  
I 
 A

  
N

D
ri

ll
in

g
 d

e
p
th

  
  
  
(f

e
e
t)

Co
re

 N
o.

O
il
 S

ta
in

S
e

d
im

e
n
ta

ry

 S
tr

u
c
tu

re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti
o

n
 

  
  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e

n
c

e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 103 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e

F
o

rm
a

ti
o

m

Sheet 1 of 

1
3

5

C
 o

 r
 e

  
 #

  
1

 

U
 P

 P
 E

 R
 .

 M
 A

 B
 R

 U
 K

3551

3554

3557

3560

3563

3566

3569

3572

3575

3578

3581

3584

3587

3590

3593

3596

3599

3602

3605

3608

3611

3614

3617

I I
I

I I
I

I I
I

I I
I

x

x

x

x

x

C
 o

 r
 e

  
 #

  
1

 
3548

3545

  
  U

. H
E

IR
A

  
( 

K
h

al
if

a 
F

m
 )

T
S

T
 2

H
S

T
 2

D
ri

ll
in

g
 d

e
p
th

  
  
  
(f

e
e
t)

Co
re

 N
o.

O
il
 S

ta
in

S
e

d
im

e
n
ta

ry

 S
tr

u
c
tu

re

L
it

h
o

lo
g

y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti
o

n
 

  
  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e

n
c

e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no. 103 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a
m

p
le

A
g

e

F
o

rm
a

ti
o

m

Sheet 1 of 

1
3

5

C
 o

 r
 e

  
 #

  
1

 

U
 P

 P
 E

 R
 .

 M
 A

 B
 R

 U
 K

3551

3554

3557

3560

3563

3566

3569

3572

3575

3578

3581

3584

3587

3590

3593

3596

3599

3602

3605

3608

3611

3614

I I
I

I I
I

I I
I

I I
I

x

x

x

x

x

C
 o

 r
 e

  
 #

  
1

 
3548

3545

  
  U

. H
E

IR
A

  
( 

K
h

al
if

a 
F

m
 )

T
S

T
 2

H
S

T
 2

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   326 
 

 

3 6 1 7

3 6 2 0

3 6 2 3

3 6 2 6

3 6 2 9

G a p

H
S
T
 1

3 6 3 2

3 6 3 5

3 6 3 8

3 6 4 1

3 6 4 4

3 6 4 7

3 6 5 0

3 6 5 3

3 6 5 6

3 6 5 9

3 6 6 2

3 6 6 5

3 6 6 8

3 6 7 1

3 6 7 4

3 6 7 7

3 6 8 0

3 6 8 3

3 6 8 6

3 6 8 9

3 6 9 2

3 6 9 5

3 6 9 8

 L
 W

 O
 E

 R
 .
 M

 A
 B

 R
 U

 K

C
 o

 r
 e

   
# 

 2
 

T
S
T
 1

S
  
E
  
L 

 A
  N

  
D
  
I  
A
  
N
  
  /

   
 T

  H
  
A
  N

  
E
  T

  
I  
A
  
N

3 7 1 6

3 7 1 9

3 7 0 1

3 7 0 4

3 7 0 7

3 7 1 0

3 7 1 3

U
 P

 P
 E

 R
  

M
 A

 B
 R

 U
 K

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   327 
 

D
ri

ll
in

g
 d

e
p
th

   
   

(f
e

e
t)

Co
re

 N
o.

O
il

 S
ta

in

S
e
d

im
e
n
ta

ry
 S

tr
u

ct
u

re

L
it
h

o
lo

g
y

Components 
         &
 depositional 
     Texture

B
io

tu
rb

a
ti

o
n

 
  

  
 I

n
d

e
x

C
y

c
le

  
S

e
q

u
e
n

c
e

S
tr

a
ti

g
ra

p
h

y

Remarks

Sedimentological Core Description Well no.105 Scale: 1:100

G
M

P

M
S

T

W
S

T

P
S

T

G
S

T

B
S

T

S
a

m
p

le

A
g
e

F
o

rm
a
ti

o
m

Sheet 1 of 

1
3

5

C
 o

 r
 e

  
  
#
  
  
1
  

U
 p

 p
 e

 r
  
 M

 a
 b

 r
 u

 k

3690

3693

3696

3699

3702

3705

3708

3711

3714

3717

3720

I I
I

I I
I

3687

3684

3681

3678

3675

3672

3669

3666

3663

3660

3657

U
. 
H

e
ir
a
  
( 
K

h
a
lif

a
 F

m
 )

 

S
  

E
  

L
  
A

  
N

  
D

  
I 

 A
  
N

  
  

/ 
  

 T
  

H
  
A

  
N

  
E

  
T

  
I 

 A
  
N

H
S

T
 2

T
S

T
 3

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   328 
 

3723

3726

3729

3732

3735

3738

3741

3744

3747

3750

3753

3756

3759

3762

3765

3768

3771

3774

3777

3780

3783

3786

3789

3792

3795

3798

3801

I I
I

I I
I I I

I

I I
I

I I
I

I I
I

I I
I

U

U
U

U U

C
 o

 r
 e

  
  
# 

  
 2

  

S
  E

  
L 

 A
  N

  D
  I

  A
  
N

  
  /

   
 T

  H
  A

  N
  E

  T
  
I  

A
  N

U
 p

 p
 e

 r
  
 M

 a
 b

 r
 u

 k
 

L 
o
 w

 e
 r

   
M

 a
 b

 r
 u

 k
 

T
S

T
 1

H
S

T
 1

T
S

T
 2

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   329 
 

3804

3807

3810

3813

3816

3819

3822

3825

3828

3831

3834

3837

3840

3843

L
. 
H

e
ir
a
  
( 

B
e
d
a
 F

m
 )

 

3846

3849

3852

3855

3858

3861

L
 o

 w
 e

 r
  
 M

 a
 b

 r
 u

 k
 

 

 

 

 

 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   330 
 

Appendix2. Fluid inclusions and Stable (carbon and oxygen) isotopes 

data 

 
This appendix presents the analytical data that have been collected for this study 

1. Fluid Inclusion sample data 

 

Well no. A 
No. Sample No Depth Core Comment 

1 F8-H1 2663 Yes Unwashed 

2 F8-H2 2670 ″ ″ 

3 F8-H3 2673 ″ ″ 

4 F8-H4 2676 ″ ″ 

5 F8-H5 2679 ″ ″ 

6 F8-H6 2685 ″ ″ 

7 F8-H7 2691 ″ ″ 

8 F8-H8 2700 ″ ″ 

9 F8-H9 2709 ″ ″ 

10 F8-H10 2718 ″ ″ 

11 F8-Z1 2726 ″ ″ 

12 F8-Z2 2734 ″ ″ 

13 F8-Z3 2739 ″ ″ 

14 F8-Z4 2745 ″ ″ 

15 F8-Z5 2748 ″ ″ 

16 F8-Z6 2752 ″ ″ 

17 F8-Z7 2760 ″ ″ 

18 F8-Z8 2769 ″ ″ 

19 F8-Z9 2777 ″ ″ 

20 F8-Z10 2782 ″ ″ 

21 F8-Z11 2788 ″ ″ 

22 F8-D1 3057 ″ ″ 

23 F8-D2 3063 ″ ″ 

24 F8-D3 3075 ″ ″ 

25 F8-D4 3079 ″ ″ 

26 F8-D5 3081 ″ ″ 

27 F8-D6 3089 ″ ″ 

28 F8-D7 3109 ″ ″ 

29 F8-D8 3119 ″ ″ 

30 F8-D9 3124 ″ ″ 

31 F8-D10 3126 ″   ″ 

32 F8-D12 3132 ″ ″ 

33 F8-D13 3134 ″ ″ 

34 F8-D14 3137 ″ ″ 

35 F8-D16 3146 ″ ″ 

36 F8-D17 3155 ″ ″ 

37 F8-D18 3166 ″ ″ 

38 F8-D19 3170 ″ ″ 

39 F8-D20 3174 ″ ″ 

40 F8-D21 3185 ″ ″ 
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41 F8-D22 3187 ″ ″ 

42 F8-D23 3193 ″ ″ 

43 F8-D24 3201 ″ ″ 

44 F8-D25 3204 ″ ″ 

45 F8-D26 3205 ″ ″ 

46 F8-D27 3207 ″ ″ 

47 F8-D28 3212 ″ ″ 

48 F8-D29 3221 ″ ″ 

49 F8-D31 3229 ″ ″ 

50 F8-D32 3233 ″ ″ 

51 F8-D33 3244 ″ ″ 

52 F8-D34 3247 ″ ″ 

53 F8-D34B 3249 ″ ″ 

54 F8-D35 3259 ″ ″ 

55 F8-D36 3267 ″ ″ 

56 F8-D37 3274 ″ ″ 

57 F8-D38 3277 ″ ″ 

58 F8-D39 3287 ″ ″ 

59 F8-D40 3291 ″ ″ 

60 F8-D41 3293 ″ ″ 

61 F8-D42 3298 ″ ″ 

62 F8-D43 3301 ″ ″ 

63 F8-D45 3329 ″ ″ 

64 F8-D46 3334 ″ ″ 

 

 

 

 

Well no. B 
No. Sample No Depth Core Comment 

1 B9-H1 2631 Yes Unwashed 

2 B9-H2 2639 ″ ″ 

3 B9-H3 2646 ″ ″ 

4 B9-H4 2652 ″ ″ 

5 B9-H5 2659 ″ ″ 

6 B9-H6 2663 ″ ″ 

7 B9-H7 2669 ″ ″ 

8 B9-H8 2674 ″ ″ 

9 B9-H9 2675 ″ ″ 

10 B9-H10 2678 ″ ″ 

11 B9-H11 2686 ″ ″ 

12 B9-H12 2694 ″ ″ 

13 B9-H13 2698 ″ ″ 

14 B9-Z1 2702 ″ ″ 

15 B9-Z3 2711 ″ ″ 

16 B9-Z5 2718 ″ ″ 

17 B9-Z6 2726 ″ ″ 

18 B9-Z7 2731 ″ ″ 



                                                                                             Appendices 
___________________________________________________________________________ 

Ibrahim Elkanouni                                                                                                                                   332 
 

19 B9-Z9 2740 ″ ″ 

20 B9-Z10 2742 ″ ″ 

21 B9-Z11 2747 ″ ″ 

22 B9-Z12 2752 ″ ″ 

23 B9-Z13 2755 ″ ″ 

24 B9-Z14 2767 ″ ″ 

25 B9-Z15 2770 ″ ″ 

26 B9-Z16 2779 ″ ″ 

27 B9-Z17 2788 ″ ″ 

28 B9-Z18 2808 ″ ″ 

29 B9-Z19 2814 ″ ″ 

30 B9-Z20 2817 ″ ″ 

31 B9-Z21 2821 ″ ″ 

32 B9-Z22 2843 ″ ″ 

33 B9-D1 3076 ″ ″ 

34 B9-D3 3084 ″ ″ 

35 B9-D4 3088 ″ ″ 

36 B9-D5 3093 ″ ″ 

37 B9-D6 3098 ″ ″ 

38 B9-D7 3155 ″ ″ 

39 B9-D9 3164 ″ ″ 

40 B9-D10 3172 ″ ″ 

41 B9-D11 3175 ″ ″ 

42 B9-D13 3181 ″ ″ 

 

43 B9-D15 3189 ″ ″ 

44 B9-D16 3195 ″ ″ 

45 B9-D17 3213 ″ ″ 

46 B9-D18 3216 ″ ″ 

47 B9-D19 3217 ″ ″ 

48 B9-D20 3220 ″ ″ 

49 B9-D22 3227 ″ ″ 

50 B9-D23 3228 ″ ″ 

51 B9-D24 3233 ″ ″ 

52 B9-D25 3240 ″ ″ 

53 B9-D26 3241 ″ ″ 

54 B9-D27 3249 ″ ″ 

55 B9-D28 3254 ″ ″ 

56 B9-D30 3260 ″ ″ 

57 B9-D31 3265 ″ ″ 

58 B9-D32 3268 ″ ″ 
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2. Oxygen and carbon isotope data 

 
Wells no. 8 and 9 

 

 d13C d18O 

ELK001 2.59 -3.86 

ELK002 2.46 -2.21 

ELK003 2.58 -4.97 

ELK004 2.82 -3.70 

ELK005 3.15 -2.96 

ELK006 2.75 -5.36 

ELK007 3.28 -3.84 

ELK008 3.33 -3.50 

ELK009 3.07 -4.28 

ELK010 3.50 -3.67 

ELK011 3.31 -4.51 

ELK012 3.89 -4.31 

ELK013 3.22 -6.57 

ELK014 3.44 -4.83 

ELK015 3.44 -6.49 

ELK016 3.47 -6.24 

ELK017 3.68 -4.32 

ELK018 3.66 -5.06 

ELK019 3.56 -6.64 

ELK020 3.62 -6.94 

ELK021 3.62 -6.00 

ELK022 1.54 -2.80 

ELK023 2.07 -2.43 

ELK024 1.53 -1.24 

ELK025 1.00 1.15 

ELK026 1.43 -0.81 

ELK027 -1.83 -3.79 

ELK028 1.92 -3.31 

ELK029 1.37 -3.19 

ELK030 1.98 -2.06 

ELK031 1.98 -2.60 

ELK032 2.16 -1.72 

ELK033 2.00 -3.40 

ELK034 2.09 -3.47 

ELK035 1.88 -3.45 

ELK036 1.92 -3.51 

ELK037 1.92 -3.21 

ELK038 1.92 -3.51 

ELK039 1.75 -3.27 

ELK040 1.82 -4.12 

ELK041 3.57 -4.72 

ELK042 1.82 -5.53 

ELK043 1.96 -4.46 

ELK044 2.37 -4.09 

ELK045 2.31 -4.85 

ELK046 1.89 -5.45 

ELK047 2.16 -5.82 

ELK048 2.65 -5.14 

ELK049 2.63 -5.66 

ELK050 2.48 -6.09 

ELK051 2.33 -6.83 

ELK052 2.57 -5.84 

ELK053 2.65 -5.98 

ELK054 2.59 -3.33 

ELK055 2.50 -3.72 

ELK056 2.46 -3.43 

ELK057 3.11 -1.72 

ELK058 2.72 -2.92 

ELK059 2.79 -3.18 

ELK060 2.70 -2.95 

ELK061 2.33 -3.60 

ELK062 2.34 -2.69 

ELK063 2.74 -3.45 

ELK064 2.50 -4.13 

ELK065 2.64 -3.12 

ELK066 2.22 -3.61 

ELK067 2.38 -3.28 

ELK068 2.84 -2.58 

ELK069 2.73 -4.00 

ELK070 2.74 -4.40 

ELK071 2.82 -3.74 

ELK072 2.96 -4.02 

ELK073 2.91 -4.06 

ELK074 2.91 -4.12 

ELK075 3.23 -4.02 

ELK076 3.31 -4.24 

ELK077 3.48 -2.71 

ELK078 3.16 -4.91 

ELK079 3.29 -4.59 

ELK080 2.96 -5.53 

ELK081 3.25 -5.97 

ELK082 3.53 -5.21 

ELK083 3.50 -6.77 

ELK084 3.18 -7.71 

ELK085 -0.90 -10.49 

ELK086 3.86 -4.66 

ELK087 3.57 -4.52 
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ELK088 3.53 -4.81 

ELK089 3.34 -6.92 

ELK090 3.42 -6.30 

ELK091 3.71 -6.25 

ELK092 3.58 -6.12 

ELK093 3.54 -4.23 

ELK094 3.12 -4.85 

ELK095 3.06 -5.31 

ELK096 3.29 -4.57 

ELK097 3.06 -2.38 

ELK098 2.20 -3.50 

ELK099 2.37 -3.60 

ELK100 2.49 -3.87 

ELK101 2.86 -3.84 

ELK102 2.16 -3.25 

ELK103 1.95 -3.09 

ELK104 2.00 -2.49 

ELK105 1.58 -2.11 

ELK106 1.29 -4.37 

ELK107 1.75 -5.04 

ELK108 2.16 -5.18 

ELK109 2.05 -6.35 

ELK110 2.13 -6.77 

ELK111 2.40 -6.16 

ELK112 2.52 -5.86 

ELK113 2.61 -6.05 

ELK114 2.93 -5.80 

ELK115 2.77 -6.49 

ELK116 3.08 -5.71 

ELK117 2.81 -6.57 

ELK118 2.81 -6.56 

ELK119 2.92 -6.45 

ELK120 2.87 -6.46 

ELK121 2.56 -6.14 

ELK122 3.18 -2.39 

ELK123 3.11 -0.83 
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Wells no. 66,103 and 105 

Well 

66 

 Well 

103 

 Well 

105 

 

d
13

CV-

PDB 

d
18

OV-

PDB 

d
13

CV-

PDB 

d
18

OV-

PDB 

d
13

CV-

PDB 

d
18

OV-

PDB 

0.00 -2.71 1.59 -3.78 1.81 -2.58 

0.75 -4.21 1.47 -3.59 2.15 -0.77 

1.07 -3.45 -4.87 -7.66 2.65 -2.39 

1.00 -4.20 1.15 -3.87 2.38 -3.15 

1.00 -4.30 1.07 -3.85 2.27 -2.64 

0.95 -3.73 1.59 -3.78 2.86 -2.07 

1.02 -4.41 1.24 -4.34 0.75 -4.21 

1.16 -4.29 1.80 -3.80 1.59 -5.01 

1.05 -4.62 1.53 -4.92 1.01 -4.58 

0.94 -5.14 1.98 -4.85 1.91 -4.78 

1.06 -4.19 2.04 -4.21 1.63 -5.45 

0.98 -3.79 1.96 -4.03 2.23 -2.48 

1.08 -4.57 1.88 -4.84 1.01 -2.51 

1.02 -4.72 2.44 -3.13 2.64 -3.49 

1.32 -4.12 2.31 -3.88 2.60 -2.60 

1.29 -4.18 1.75 -4.17 2.58 -2.85 

1.31 -4.37 1.84 -2.95 2.77 -2.88 

0.94 -3.12 2.32 -2.98 2.82 -3.10 

-6.31 -7.68 2.85 -3.52 2.51 -2.96 

0.87 -4.94   3.00 -4.09 

1.09 -4.14   2.73 -4.04 

1.47 -4.25   2.66 -3.16 

    3.04 -4.19 

    1.15 -3.87 

    2.53 -3.60 
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Appendix 3. Cycle type, number, and average thickness (ft) for 

the studied wells in the study area. 

 

A. On the Dahra Platform 

Formation/ 

Well no. 

Cycle 

type 

Cycle sub-

type 

No.   of 

cycles 

Cycle 

range 

(ft) 

Average 

(ft) 

Remarks 

Dahra       

Well no.8 A A1 5 8-30 17.6  

Well no.9 ″ ″ 3 7-30 17  

Well no.10 ″ ″ 3 13-22 17  

Well no.7 ″ ″ 2 11-20 15.5  

       

Well no.8 ″ A2 6 6-24 13.5  

Well no.9 ″ ″ 2 19-30 24.5  

Well no.10 ″ ″ - - -  

Well no.7 ″ ″ - - -  

       

Well no.8 ″ A3 3 18-33 23.3  

Well no.9 ″ ″ 3 14-20 16.3  

Well no.10 ″ ″ 3 17-18 17.6  

Well no.7 ″ ″ - - -  

       

Well no.8 ″ A4 2 15-29 22  

Well no.9 ″ ″ 2 12-33 22.5  

Well no.10 ″ ″ 3 21-36 30.3  

Well no.7 ″ ″ 2 16-23 19.5  
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Formation/ 

Well no. 

Cycle 

type 

Cycle sub-

type 

No.   of 

cycles 

Cycle 

range 

(ft) 

Average 

(ft) 

Remarks 

Zelten/Harash       

Well no.8 B B1 4 7-25 15.7  

Well no.9 ″ ″ 7 7-35 20.2  

Well no.10 ″ ″ - - -  

Well no.7 ″ ″ 4 15-30 25  

       

Well no.8 ″ B2 2 29-34 31.5  

Well no.9 ″ ″ 2 22-31 26.5  

Well no.10 ″ ″ - - -  

Well no.7 ″ ″ 2 8-17 12.5  
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B. In the Dor alAbid Trough 

Formation/ 

Well no. 

Cycle 

type 

Cycle sub-

type 

No.   of 

cycles 

Cycle 

range 

(ft) 

Average 

(ft) 

Remarks 

Mabruk       

Well no.66 C C1 2 10-20 15  

Well no.103 ″ ″ 1 8 8  

Well no.105 ″ ″ 2 5-23 19  

       

Well no.66 ″ C2 1 9 9  

Well no.103 ″ ″ 3 9-16 17.5  

Well no.105 ″ ″ 8 5-18 8.1  

       

Well no.66 ″ C3 3 7-14 11.3  

Well no.103 ″ ″ 7 6-16 11.6  

Well no.105 ″ ″ - - -  

       

Well no.66 ″ C4 - - -  

Well no.103 ″ ″ 1 17 17  

Well no.105 ″ ″ - - -  

       

Well no.66 ″ C5 1 16 16  

Well no.103 ″ ″ - - -  

Well no.105 ″ ″ - - -  

       

Well no.66 ″ C6 2 10-11 10.5  

Well no.103 ″ ″ - - -  

Well no.105 ″ ″ 2 8-11 9.5  
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Appendix 4. Data for topographic and isopach maps and cross sections   

The following tables present the formation tops and thickness that collected from well log and have been used in 

this study 

Well Facha Kh H Z K D B Hag. Kal/Sat K.B. TD 

Z1-11   Tops 
Thickness 

2790 

-4363 
126 

-4489 
289 

-4778 
278 

-5056 
167 

- 5223 
207 

- 5430 
353 

- 5783 
918 

- 6701 
452 

- 7153 Kal. 444 -7562 

3T1-11 
Thickness 

1708 

- 3217 
155 

-3372 
357 

-3729 
173 

-3902 
290 

-4192 
197 

-4389 
257 

-4646 
279 TD 

----- ---- 681 -4925 

P1-32 
Thickness 

3926 

-2763 
199 

-2962 
365 

-3327 
183 

-3510 
334 

-3844 
212 

-4056 
531 

-4587 
474 

-5061 
49 

-5110 U.sat 
-5695 K/T 
-6689 Kal. 
1579 Sat 

723 -9747 

F8-32 
Thickness 

1725 

-997 
292 

- 1167 
262 

- 1429 
93 

- 1522 
237 

- 1759 
134 

-1893 
322 

-2215 
296 

-2501 
44 

-2555 U.sat 
45 TD 

1165 -2600 

F12-32 
Thickness 

1354 

-1096 
297 

-1394 
242 

-1636 
157 

-1793 
188 

-1981 
142 

-2123 
328 TD 

---- ----- ----- 1069 -2451 

3P1-11 
Thickness 

2243 

-1246 
257 

-1503 
254 

-1757 
97 

-1854 
223 

-2077 
139 

-2216 
298 

-2514 
318 

-2832 
23 

-2855 U.sat 
-3489  B. 

Paleocene 
634 

946 -3583 
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Well Facha Kh H Z K D B Hag. Sat / Kal K.B. TD 

3D1-11 
Thickness 

2774 

-1429 
231 

-1660 
278 

-1938 
197 

-2135 
270 

-2405 
163 

-2568 
270 

-2838 
328 

-3166 
27 

-3193/         
-3567?? 

Or - 4208? 
1010 Sat 

1027 - 5085 

F12-32 
Thickness 

1354 

-1097 
297 

-1394 
242 

-1636 
157 

-1793 
188 

-1981 
142 

-2123 
328 TD 

------ ----- ------ 1069 -2451 

F8-32 
Thickness 

1725 

-875 
292 

-1167 
262 

-1429 
93 

-1522 
237 

-1759 
134 

-1893 
322 

-2215 
296 

-2511 
44 

-2555 
45 TD 

1165 
 

-2600 
 

B9-32 
Thickness 

1894 

-815 
294 

-1109 
266 

-1375 
99 

-1474 
245 

-1719 
148 

-1867 
270 

-2137 
332 

-2469 
44 

-2513 
196 TD 

1201 
 

-2709 
 

B10-32 
Thickness 

1810 

-861 
170 

-1031 
295 

-1326 
101 

-1427 
248 

-1675 
142 

-1817 
319 

-2136 
305 

-2441 
45 

-2486 
185 TD 

1279 
 

-2671 
 

G1-32 
Thickness 

2762 

-757 
328 

-1085 
314 

-1399 
130 

-1529 
226 

-1755 
146 

-1901 
310 

-2211 
326 

-2537 
32 

-2569/ 
-3519 
950 

1211 -4017 

B7-32 
Thickness 

1716 

-909 
190 

-1099 
302 

-1401 
104 

-1505 
252 

-1757 
168 

-1925 
273 

-2198 
313 

-2511 
42 

-2553 
72 TD 

1215 -2625 

DD1-32 
Thickness 
 

-1028 ? 
190 

-1210 
302 

-1524 
104 

-1638 
252 

-1926 
168 

-2120 
273 

-2464 
313 

-2748 
42 

-2838/ 
-3913 
72 TD 

1112 -5958 

 

No. Well Facha Kh H Z K D B Hag. Kal/Sat K.B. TD 

1  
F8-32  

 

-997 
292 

- 1167 
262 

- 1429 
93 

- 1522 
237 

- 1759 
134 

-1893 
322 

-2215 
296 

-2501 
44 

-2555 U.sat 
45 TD 

1165 -2600 

2 B7-32  
 

-909 
190 

-1099 
302 

-1401 
104 

-1505 
252 

-1757 
168 

-1925 
273 

-2198 
313 

-2511 
42 

-2553 
72 TD 

1215 -2625 

3 B9-32  -815 
294 

-1109 
266 

-1375 
99 

-1474 
245 

-1719 
148 

-1867 
270 

-2137 
332 

-2469 
44 

-2513 
196 TD 

1201 
 

-2709 
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4 B10-32  -861 
170 

-1031 
295 

-1326 
101 

-1427 
248 

-1675 
142 

-1817 
319 

-2136 
305 

-2441 
45 

-2486 
185 TD 

1279 
 

-2671 
 

5 F5-32 
 

-1087 
254 

-1341 
294 

-1635 
118 

-1753 
248 

-2001 
182 

-2183 
281 

-2464 
312 

-2776 
45 

-2821 
 

1029 -4036 

6 F6-32 
 

 -1346 
263 

-1609 
118 

-1727 
213 

-1940 
137 

-2077 
328 

-2405 
232 

-2637 
100 

-2737 Sat. 
 

985 -2780 

7 F12-32  -1097 
297 

-1394 
242 

-1636 
157 

-1793 
188 

-1981 
142 

-2123 
328 TD 

------ ----- ------ 1069 -2451 

 C1-32 -871 
 

-1131 -1421 -1548 -1778 -1977 -2213 ---- -2584 Sat 
-2969 kal 

1179 -3952 

8 G1-32  -757 
328 

-1085 
314 

-1399 
130 

-1529 
226 

-1755 
146 

-1901 
310 

-2211 
326 

-2537 
32 

-2569/ 
-3519 
950 

1211 -4017 

9 DD1-32  
 

-1028 ? 
190 

-1210 
302 

-1524 
104 

-1638 
252 

-1926 
168 

-2120 
273 

-2464 
313 

-2748 
42 

-2838/ 
-3913 

 

1112 -5958 

10 P1-32  -2763 
199 

-2962 
365 

-3327 
183 

-3510 
334 

-3844 
212 

-4056 
531 

-4587 
474 

-5061 
49 

-5110 U.sat 
-5695 K/T 
-6689 Kal. 
1579 Sat 

723 -9747 

No. Well Facha Kh H Z K D B Hag. Kal/Sat K.B. TD 

11 A1-32 -877 -1070 
378 

-1448 
105 

-1553 
264 

-1817 
181 

-1998 
375 

-2373 
1135 

--- 
245 sat 

-3508 Sat. 
-3753 Kal. 

957 -4973 

12 H1-32 
 

 
255 

 
361 

 
175 

 
283 

 
237 

 
274 

?  
471 

   

13 2H1-32  
140 

 
355 

 
164 

 
251 

 
180 

 
386 

 
450 

-  
510 Sat 

  

14 M1-32 -2814 
790 

-2024 
390 

-2414 
150 

-2564 
223 

-2787 
187 

-2974 
165 

-3139 
1601 

--- -4740 Kal. 686 -6514 

15 D1-24 -1602 
249 

-1851 
293 

-2144 
137 

-2281 
244 

-2525 
217 

-2742 
352 

-3094 
747 

--- 
743Sat 

-3841Sat 
-4584 Kal 

706 -5264 

16 C2-16  -5330 -5648 -5812 -6307 -6490 --- -6670 -8637 430 -10584 

17 M1-16  -3431 -3661 -3910 -4259 -4321 --- -4709 -5659 Waha Fm 611 -5744 

18 A1-17  -1242 
256 

-1498 
126 

-1624 
227 

-1851 
168 

-2019 
274 

-2373 
440 

-2813 
810 

-3623 Sat. 
-3917 Kal. 

807 -4973 

19 A7-17 -1438 -1726 -1976 -2116 -2375 -2558 -2966 --- -3225 Sat. 924 -7136 
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288 250 140 260 182 408 259 1401sat -4626 Kal. 

20 F1-17 -1209 
190 

-1399 
170 

-1569 
136 

-1705 
228 

-1933 
219 

-2152 
267 

-2419 
995 

--- 
535 sat 

-3414 Sat. 
-3949 Kal. 

891 -5929 

21 K1-17 -1663 
318 

-1981 
210 

-2191 
140 

-2331 
237 

-2568 
273 

-2841 
290 

-3131 
1445 

--- 
130 sat 

-4576 Sat. 
-4706 Kal. 

919 -6813 

22 L1-17 -2081 
220 

-2301 
181 

-2482 
124 

-2606 
235 

-2841 
163 

-3004 
349 

-3353 
394 

 

284 sat 

-3747 Sat 
-4031 Kal. 

849 -7255 

23 H1-11 -1315 
202 

-1517 
338 

-1855 
210 

-2065 
223 

-2289 
150 

-2438 
268 

-2706 
655 

-3361 
510 

-3871/  
-4035 

935 -4265 

24 J1-11 -2032 
216 

-2248 
419 

-2667 
255 

-2922 
255 

-3177 
205 

-3382 
282 

-3664 
990 

-4654 
398 

-5052/ 
-5222 

748 -8209 

25 M1-11  
 

-4201 
250 

-4451 
150 

-4601 
127 

-4728 
73 

-4821 
190 

-5011 
253 

-5264 
1042 

-6306 Kal. 499 -8353 

 Y1-11  -3325 -3843   -4332    632  

             

26 Z1-11    -4363 
126 

-4489 
289 

-4778 
278 

-5056 
167 

- 5223 
207 

- 5430 
353 

- 5783 
918 

- 6701 
452 

- 7153 Kal. 444 -7562 

27 2A1-11 -4619 
73 

-4692 
420 

-5112 
265 

-5377 
282 

-5659 
233 

-5892 
355 

-6247 
918 

-7165 
737 

-7902 958 -11595 

28 4A1-11 -3509 
175 

-3684 
329 

-4013 
255 

-4268 
275 

-4543 
253 

-4763 
291 

-5087 
356 

--- --- 567 -5443 

No. Well Facha Kh H Z K D B Hag. Kal/Sat K.B. TD 

29 2P1-11 -1617 
305 

-1922 
252 

-2274 
220 

-2494 
311 

-2805 
143 

-2948 
381 

-3329 
640 

-3969 
947 

-4916 986 -5911 

 2V1-11   
 

-1787 -1987  -2587 -3327  -3577 Sat 
-3777 Kal 

1183  

30 2Q1-11  -1697 
260 

-1957 
198 

-2155 
332 

-2487 
222 

-2709 
300 

-3009 
808 

-3817 
710 

-4527 913 -4857 

31 3H1-11 -3423 
148 

-3571 
427 

-3998 
291 

-4289 
279 

-4298 
490 

-4788 
315 

-5103 
1150 

-6253 
532 

-6785 
 

737 -8658 

32 3J1-11 -3683 
188 

-3871 
383 

-4254 
258 

-4512 
339 

-4851 
300 

-5151 
370 

-5521 
323 

---- 
 

---- 341 -5844 

33 3T1-11  
 

- 3217 
155 

-3372 
357 

-3729 
173 

-3902 
290 

-4192 
197 

-4389 
257 

-4646 
279 TD 

----- ---- 681 -4925 

34 3P1-11  -1246 
257 

-1503 
254 

-1757 
97 

-1854 
223 

-2077 
139 

-2216 
298 

-2514 
318 

-2832 
23 

-2855 U.sat 
-3489  B. Paleocene 

946 -3583 
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634 

35 3D1-11  -1429 
231 

-1660 
278 

-1938 
197 

-2135 
270 

-2405 
163 

-2568 
270 

-2838 
328 

-3166 
27 

-3193/         -3567?? 
Or - 4208? 
1010 Sat 

1027 - 5085 

36 3V1-11 -3440 
157 

-3597 
360 

-3957 
268 

-4225 
336 

-4561 
258 

-4819 
278 

-5097 
250 

--- ---- 503 -5347 

             

37 3X1-11 -3675 
220 

-3895 
170 

-4065 
240 

-4305 
245 

-4550 
210 

-4760 
285 

-5045 
710 

-5755 
555 

-6310 
 

625 -9805 

38 A1-57  
 

-1781 
270 

-2051 
207 

-2258 
458 

-2716 
147 

-2863 
355 

-3218 
763 

-3981 
755 

-4736 954 -5326 

39 C1-57 -1676 
162 

-1838 
461 

-2299 
258 

-2557 
296 

-2853 
158 

-3010 
420 

-3430 
952 

-4382 
611 

-4993 674 -6484 

40 G1-57 -1749 
248 

-1997 
378 

-2375 
256 

-2631 
306 

-2937 
138 

-3075 
453 

-3528 
1005 

-4533 
672 

-5205 625 -7906 

41 L1-57 
 
 

 -4735 
365 

-5108 
362 

-5470 
200 

-5670 
250 

-5920 
345 

-6265 
385 

--- ---- 730 -6650 

42 A1a-NC29A 
 

 -3821 
245 

-4066 
118 

-4184 
302 

-4486 
160 

-4646 
305 

-4951 
640 

-5591 
 

--- 454 -8195 

43 C1-NC29A 
 

 -3014 
319 

-3333 
161 

-3494 
548 

-4042 
131 

-4173 
347 

-4520 --- --- 612 -4779 

44 B1-NC29B -1401 
289 

-1690 
348 

-2038 
93 

-2131 
250 

-2381 
190 

-2571 
286 

-2857 
878 

--- 
179 sat 

-3735 Sa 
-3914 Kal 

819 -4300 

45 F1-NC29B  -1409 
277 

-1686 
155 

-1841 
250 

-2091 
200 

-2291 
227 

-2518 
353 

-2871 
60 

1035 sat 

-2931 sat 
-3966 Kal 

829 -4741 

46 H1-NC29C  -1890 
335 

-2225 
188 

-2413 
168 

-2581 
240 

-2821 
201 

-3022 
371 

-3393 
471 

409 sat 

-3864 Sat 
-4273 Kal 

788 -4622 

47 B2-NC74A 
 

 -5408 
274 

-5682 
274 

-5956 
266 

-6222 
226 

-6448 
168 

-6616 
1150 

-7766 
572 

-8338 Kal 1018 -8702 

48 A1-NC74C 
 

 -2918 
315 

-3233 
136 

-1372 
176 

-3584 
67 

-3615 
201 

-3816 
797 

-4613 
142 

-4755 1202 -7898 

49 G22-NC74F 
 

 -2735 
370 

-3105 
327 

-3432 
322 

-3754 
190 

-3944 
550 

-4494 
945 

-5439 
655 

-6094 Kal 943 -9139 
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