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Relationships between sediment, moisture and soil crust characteristics 
in and environments 

Alastair Kirk 

From a geomorphological point of view, and environments are characterised by 

complex process interactions and suites of landforms which can be sensitive to their 

controlling parameters. Relationships between sediment, moisture and soil crust 

characteristics are no exception. Field research and a programme of laboratory study 

were undertaken between 1993 and 1995 on the soils of the northern Badia of Jordan 

to advance knowledge on aspects of and zone soil dynamics, with a particular 

emphasis on crusting. 

The research focuses primarily on the effect soil crusts have upon the equilibrium of 

sediment dynamics at a hillslope scale and a ridge-furrow scale. The implications of 

the crust upon moisture storage within the surface layers of the soil are examined and 

the spatial characteristics which arise due to management practices and climate 

variables considered. A new, non-destructive dielectric technique to investigate 

moisture content in dryland soils has been developed and tested. 

Monitoring has taken place to examine the effects of irrigation upon the surface 

characteristics of the surrounding soil, with special reference to evaporation fluxes 

within a furrow and the associated precipitation of salts. The role of small-scale 

topography tends to be underestimated. Different types of crust have been studied 
from various topographic locations. Soil fabric and porosity have been studied, to 

increase understanding of micro-scale depositional and erosional processes. A new 

method of tracing' fine material through the upper soil profile has been developed. 

As crusts form, the tracer can be used to monitor the movement of fines, permitting a 

much clearer understanding of soil and water dynamics as a result of rainfall events. 
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Chapter 1- Introduction 

1. INTRODUCTION 

The degradation and irreversible destruction of soil have reached alarming 

proportions. Every year worldwide S-7 million ha of agricultural land are lost, and 

the productivity of even more land is steadily decreasing. A quarter of agricultural 

land is badly damaged, i. e. its productivity is significantly impaired. (Steiner, 1996, 

p. Vi) 

1.1 RESEARCH AIMS 

This study arises from the need to gain a better understanding of the processes of soil 
degradation in and environments. The underlying motive for such work lies in the 

fact that the soil and water of the northern Badia are not being used in a sustainable 

manner, because the bedouin are generally unaware of the need to conserve them. 

From a scientific point of view and environments are poorly understood and the 

processes involved in soil crusting are no exception. 

The research framework needed to undertake such work inevitably embraces 

methodologies and expertise from both the geomorphological and the soil science 

communities. The former brings a truly spatial and topographical element to the 

study and the latter provides many of the techniques and methods of classification. 

Within this multidisciplinary approach, a number of primary research aims were 
recognised: 

1. To sample soil crusts in order to monitor their effect upon the equilibrium of 

sediment dynamics at a hillslope and ridge-furrow scale. 

2. To observe the effect that the crust has upon moisture storage within the 

surface layers of the soil and to explain the spatial characteristics which 

arise due to management practices and climatic variables. 



Chapter 1- Introduction 

3. To monitor the effectiveness of a new, non-destructive, dielectric technique 

to examine moisture content in dryland soils. 

4. To examine the effect of irrigation upon the surface characteristics of the 

surrounding soil, with special reference to the evaporation fluxes within the 

furrow and the associated precipitation of salts. 

S. To investigate the role of small-scale topography upon the type of crust 

which forms in terms of both fabric and porosity. 

6. To develop a new method of tracing fine material through the upper soil 

profile during crust formation using rainfall simulation and use it to monitor 

the movement of fines during crust formation and development. 

1.2 THE NORTHERN BADIA 

For the purpose of this research, the term northern Badia will be used to define an 

area on the southern and western slopes of the Jebal Hauran. The Jebal Häuran is 

distinct, from a climatic perspective, from areas further south and east towards Azraq 

and Safawi respectively. 

A large number of farms, supported by irrigation water from a basalt aquifer, have 

become established between Mafraq and Umm el Quttayyn over the last twenty 

years. As the search for new agricultural land has continued in the 1990s, land to the 

east of Umm el Quttayyn has been brought into production. As the bedouin extend 

the eastern boundary of irrigated agriculture, opportunities to monitor the effect of 

the irrigation techniques upon the soil have arisen. The field sites have, therefore, 

been primarily chosen to represent the present eastern boundary of irrigation. 

The area has attracted geological attention, notably from Huntings Technical 

Services (1965); van den Boom & Suwwan (1966); Bender (1968); Barberi et al. 
(1979); Abed et al. (1985); Dwairi (1987); Guba & Mustafa (1988); Moffat (1988); 

Andrews (1992) and Ibrahim (1993a, 1993b). However, until the formation of the 
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Badia Research and Development Programme at the end of 1992, there had been 

little work pertaining to the geomorphology or soils of the area. The Programme, a 

joint venture between the Royal Geographical Society, London and the Higher 

Council for Science and Technology, Amman, was primarily set up to examine how 

sustainable development could take place within the fragile Badia environment. The 

work presented here represents the first major in depth research carried out on the 

soils of the northern Badia. 

1.3 RELATED RESEARCH ON SOIL CRUSTS FROM OTHER ARID ENVIRONMENTS 

Although there has been much work on soil crusts over the past fifty years, much of 

it has been laboratory-based. Field-based research has generally concentrated upon 

and sandy soils (Valentin, 1986; Bresson & Valentin, 1990; Valentin, 1991; Bielders 

et al., 1996) or temperate fine-grained soils (Mtlcher & De Ploey, 1977; Mischer et 

al., 1981; Poesen & Govers, 1986; Mermut et al., 1995; Men-nut et aL, 1997). The 

Badia soils, therefore, represent a good opportunity to study and fine-grained soils. 

Much of the literature is dominated by soil scientists and so the topographic 

component is largely ignored: yet it is of vital importance to the understanding of 

spatial differences in crust morphology (Bielders et al., 1996). There are obvious 

benefits in combining the two approaches to aid understanding of the surface 

processes and their effect on soil structure. 

1.4 THE ORGANISATION OF THE THESIS 

The following is a summary of the thesis layout. The first half of the thesis, from 

chapter 2 to chapter 5, researches the underpinning assumptions, theories and 

methods which are used for data collection and analysis and provide a necessary 
foundation to the data presented and discussed in chapters 6 to 8. 

Chapter 2 provides the reader with an essential understanding of the characteristics of 
the northern Badia environment. It is an area unknown to many, and therefore it is 
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appropriate to outline the geological formations, the hydrogeology and the climate as 

well as to summarise some of the past and present human impact on the landscape. 

Chapter 3 reviews the principal research which has been carried out on soil crust 
formation, concentrating upon the physical and chemical processes which contribute 

to their development, before looking at the way in which water moves through the 

crust, by both infiltration and evaporation. Areas of further soil crust research are 
highlighted to show how this thesis fits into the broader patterns and questions of the 

discipline. This is followed in chapter 4 by an examination of the techniques used to 

determine the material properties of the crusts collected in Jordan. The chapter 

outlines the significance of well-designed spatial sampling and discusses methods 

which have had to be adapted for the specific problems inherent in the Jordan 

samples. Chapter 5 introduces an integrated set of climate data from different spatial 

and temporal scales to show the importance of contemporary data as a foundation to 

rainfall modelling. Methodological considerations are presented for the setting up of 

rainfall simulation studies. 

Chapter 6 examines the use of a capacitance probe in measuring the moisture content 

of the surface soil layers. This is a new technique, not previously used in an and 

environment, which requires calibration for the specific soil type. Data are provided 

which link wind direction, rainfall and the extent of crust formation with the final 

moisture content of the soil. The physical and chemical properties of the soil are 

drawn together in chapter 7, in order to look at local redistribution of sediment within 

the ridge-furrow sequence. The effect of irrigation upon secondary development or 
destruction of crust structure is then considered. The data presented in chapter 7, 

which predominantly concerns soil material properties, are reinterpreted in chapter 8 

using micromorphology to examine the effect of erosional and depositional processes 

on soil fabric. Rainfall simulation experiments and discussion on the movement of 
fines into the soil profile complete chapter 8. Finally, chapter 9 summarises the 

original contribution made by this research and explains how it integrates with the 

general trends of soil crust research, before recommending possible avenues for 

further research. 
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2. PHYSICAL AND ANTHROPOGENIC CHARACTERISTICS OF 

THE NORTHERN BADIA 

"A little later we turned to the right, off the pilgrim road, and took a short cut across 

gradually rising ground to flat basalt ridges, buried in sand till only their topmost 

piles showed above the surface. It held moisture enough to be well grown over with 

hard wiry grass and shrubs up and down the slopes, on which a few sheep and goats 

were pasturing. " (T. E. Lawrence, 1926 p. 84) 

2.1 INTRODUCTION 

Many developing countries, especially those with a considerable environmental 
diversity, tend to concentrate economic development in regions which have a good 

propensity to give a positive rate of return. In many countries, however, population 

pressure has caused people to settle in more marginal areas. In the Hashemite 

Kingdom of Jordan, past economic concentration in the prosperous Jordan Valley 

and the Jordanian hills has led to over-population. There is now an increasing 

urgency to examine potential for development in the desert areas or Badia of eastern 

Jordan (Allison et al., 1992). While and lands can be resource-rich, this is not the 

case in eastern Jordan. The fact that the area suffers from a large water deficit 

compounds the human and ecological hardship. Betts (1992) suggests that the 

imbalance between east and west Jordan has always been the case: `Throughout 

history, the resources of the environmentally rich Mediterranean zone have been 

plentiful and numerous, but limited choice and scarcity of resources has 

characterised the semi-arid and arid regions further east' (p. 111). Increasing 

anthropogenic activity in such a fragile environment gives rise to land degradation 

which is epitomised by the reduction of soil quality. The removal of the vegetation 

cover, associated with population pressure and more specifically over-grazing, is 

held to be the major cause of land degradation in Jordan (Farhan & Mikbel, 1986) 
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and in and lands in general (Agnew & Anderson, 1992). The natural response of 

most human groups, such as the Bedouin of Jordan, to harsh and fragile 

environmental conditions is to diversify, to rely on a variety of different agricultural 

and economic livelihoods, so that if one fails there will always be another (Betts, 

1992). It is in just such a precarious environment in northern Jordan that agricultural 

development is being encouraged, providing the context and indeed the necessity for 

research into the physical environment. 

Jordan, along with its neighbours Syria, Lebanon and Israel, lies on the narrow strip 

of land, often called the Levant, which connects the two largest continents of Asia 

and Africa (Phillips, 1954). Jordan occupies the position of a transitional state, 

separating Israel to the west, with its predominantly Mediterranean climate, from the 

northern part of the Arabian desert to the east. Despite its small size, Jordan is 

diverse both culturally and physically, epitomising its transitional nature. The 

precipitation gradient is marked, changing from well over 500 mm a' in the 

northwest in the area surrounding Irbid, to under 50 mm d' in the southeast beyond 

Azraq, El-Jafr and Ma'an, a distance little more than 100 kilometres. The desert area 

or Badia includes the whole of the eastern part of Jordan, making up over 80% of the 

total land area (Al-Homoud et al., 1995). The Badia is classed as a semi-arid to and 

steppe environment and falls almost exclusively in the and climate zone, with 

rainfall less than 100 mm a' in most areas (Figure 2.1). 

The reason why the northern Badia, otherwise known as the Hauran, can be taken as 

a geographical entity, distinct from the rest of the Badia further south, is primarily its 

geology. The stratigraphy and structure, in particular, determine the individual 

surface and groundwater characteristics. Much of the northern Badia lies on a Tertiary 

basalt pavement, which gives rise to a very specific environment. The area is a 

complex collage of basalt flows which differ in age and have been extruded from 

volcanic cones lying along large fault and dyke sequences (Ibrahim, 1993a). Basalt 

boulders of differing size currently dominate the ground surface. The age, mineralogy 

and material properties of the basalts are the major factors influencing boulder size, 

drainage density, wadi morphology, slope form and slope angle (Allison & Higgitt, 

in press). 
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Figure 2.1: Mean annual rainfall distribution map of Jordan 
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Figure 2.2: The northern Badia and the Jebal Haurän 
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The northern Badia has an altitudinal variation of approximately 1 000 metres. The 

central sections of the Jebal Hauran reach over 1 400 metres in southern Syria, while 
the Azraq basin and Sirhan depression to the southwest of Azraq on the border with 
Saudi Arabia are just over 400 metres (Figure 2.2). The ground surface is one of 

undulating topography where small wadis have slowly cut down 25 to 30 metres 

through the basalt flows (Al-Homoud et al., 1995). Only in the most well developed 

wadis does there seem to be any evidence of incision. The relative relief is very low. 

Gradients above 2% are rare except in the vicinity of volcanic cones and dykes. 

2.2 THE GEOLOGICAL SETTING OF THE NORTHERN BADIA 

The geology of the northern Badia is the key to interpreting much of the 

geomorphology, hydrogeology and pedology. The basalts of the Ash Shamah 

plateau, an area which extends from the north Jordan Valley through southern Syria, 

the north eastern part of Jordan and a small section of north western Saudi Arabia 

(Figure 2.3), have dominated landscape evolution since the mid-Pleistocene. 
Because of the importance of the plateau formation within the geological history of 
the whole of Jordan, it is essential to understand the structural geology of the wider 

region. 

2.2.1 The geological history of Jordan 

Ona continental scale, many of the sedimentary geological sequences originate from 

the narrowing and eventual closure of the Tethys Sea to the north. The northward 

progression of the Arabian plate with respect to the African plate caused crustal 
downwarping, attenuation and considerable faulting. In terms of vulcanicity, the two 

main fissure systems, which trend east-west and northwest-southeast, refer to the 

main periods of activity during the early Miocene and Pliocene-Holocene 

respectively. The palaeomagnetic data suggest that there has been a two-stage 

movement of the Arabian plate causing the two distinct periods of vulcanicity along 

the Dead Sea Rift and, more importantly, in the northern Badia (Barberi, 1979). 
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There was little terrestrial sedimentation until the Late Jurassic when the eolian 
Kurhub Sandstone was laid down over the whole of what is now Jordan. Shaw 

(1947) was the first to identify these Nubian-type, poorly consolidated sandstones in 

the exposures in Wadi Hathira (Kurnub). Their existence in the eastern part of 
Jordan was later corroborated by Quennell (1951). A gradual marine transgression 

during the Cretaceous resulted in the laying down of various bedded limestone facies 

interbedded with marls, called the Ajlun series. The Ajlun is thickest in the north 

and west, gradually thinning to the south and east. The Belqa series overlies the 

Ajlun series and is made up predominantly of marls and chalks. The Belga series 

was continuously sedimented throughout the Upper Cretaceous, Palaeocene, Eocene 

and into the Oligocene, when there was terrestrial emergence (Burdon, 1959). The 

continuation of sedimentation between the Mesozoic and Cainozoic is largely 

unknown in Europe but in Jordan there is no sedimentation break within the chalk- 

marl facies. The transition can only be identified by the micropalaeontological 

record. 

A combination of the closure of the Tethys Sea, more specifically the Bitlis Ocean, 

and the relative movement of the Arabian Peninsula during the Late Cretaceous, 

caused the opening of the Red Sea forming the present Jordan-Arava graben. The 

large-scale rifting and the associated sinistral strike-slip faulting which developed 

along the eastern edge of the Jordan Valley rift are the most important developments 

in the formation of the present Jordanian landscape. The Oligocene saw the uplifting 

and tilting to the east of the marine sediments, to produce a peneplained surface 

which originated on the edge of the newly formed rift valley and dipped into Arabia 

in the east. As the land emerged from its final transgressive phase, there was 

rejuvenation of the drainage feeding the Jordan Valley. Each successive opening and 
downward movement of the Jordan Rift Valley has lowered the base-level and 

captured drainage patterns which would have originally flowed parallel to dip, east 

towards Wadi Sirhan. 
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Figure 2.3: The structural geology of the Western Arabia rift system 

(Quennell, 1984, p. 777) 
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Quennell's 1956 reconstruction has shown seven low-level surfaces, which suggests 

that it was the repeated lowering of the valley rather than the uplifting and tilting of 

the block that has been instrumental in encouraging drainage rejuvenation. The Wadi 

Mujeb and Wadi Hasa, which descend into the deepest part of the rift valley, have cut 

through over 1 750 metres of strata. The other important aspect of the rifting has 

been the considerable faulting, which has occurred across the whole of Jordan as a 

result of the down-throw of the rift valley. Faulting has encouraged the location of 

drainage networks in the west and provided weak points for volcanic activity in the 

east and north. The watershed divides the drainage into the rift valley to the west and 

an. inland into the string of topographic depressions including the Azraq depression to 

the north, Wadi Sirhan and the El-Jafr depression to the south (Beheiry, 1969). The 

marine Belqa sequences have been eroded, mainly by eolian processes, leaving flint 

on the ground surface. The occasional inselbergs, such as those at Qatafi, are made 

up of harder limestone, chalk or flint inliers. 

2.2.2 The evolution of the Ash Shamah basalts 

The term Ash Shamah basalts originating from the nomenclature of Barberi et al. 

(1979) and Quennell (1984) was adopted by Ibrahim (1993a) to refer to the exposed 

group of basalts of northern Jordan and termed the Harrat Ash Shaam Basaltic Super- 

Group (Table 2.1). The Miocene and Pliocene saw limited sediment deposition 

except for lacustrine deposition in the Rift Valley. However, from as early as 13.7 ± 

0.7 Ma, until less than 0.5 Ma, there were major extrusive flows of basalt throughout 

southern Syria and northern Jordan (Moffat, 1988). The flows covered an area of 

approximately 45 000 km2 of which a quarter is in present Jordanian territory 

(Bender, 1975). The western boundary of the plateau is on the rift itself in the Golan, 

which stretches eastwards around the southern edge of the Damascus Basin. 

However, the majority of volcanism occurred well within the Arabian Plate (Barberi 

et al., 1979). Alkali olivine basalts (Ibrahim, 1993a) originated along fissures and 

were laid down in thin horizontal beds. The beds were later covered by more viscous 

mountain building flows which built up the Jebal Haurän, emanating from fissures 

with a south-southeast to north-northwest strike (340°), an angle almost normal to the 

south Palmyra zone of faulting (Quennell, 1984, Figure 2.3). 

13 



Chapter 2- The study area 

Mediterranean 
Sea 

5 
SýPýP 

PS 
.'v 

"ý man 

®4 

N®3 

V' 

9G 

} 
9ý 

." a4}4ä 
fj+ 

++I- + 
4, 

Ulf of Aqaba ° 20 40 80 k"" 

Figure 2.4: A simplified geology of Jordan. Source: Barberi et al. (1979) 

Key: 1= Precambrian Basement; 2= Palaeozoic to Triassic sediments; 3= Jurassic 
and Cretaceous sediments; 4= Tertiary sediments; 5= Tertiary and Quaternary 
volcanics; 6= Quaternary sediments 

14 



Chapter 2- The study area 

Some of the cones are geologically young; the youngest flows in Syria in the 

northwestern Jebal Haurän have been dated at 4 000 B. P. (De Vries & Barendsen, 

1954). The resulting basalt wedge is approximately 1 500 metres thick in southern 
Syria, thinning southwards until it pinches out just north of Azraq. Such a loading on 
the crust is considerable and may have encouraged underthrusting (Quennell, 1984). 

The basalts are petrographically very similar and can be classified as either alkali 
basalts or basenites/nephaline basenites (Barberi et al., 1979), consisting of 
labradorite (60-70% anorthite), olivine, clinopyroxene, augite and magnetite- 

ilmenite. Although Burdon (1959) denies the existence of zeolites, large quantities 

of zeolite and palagonitized tuff have been found in certain of the volcanic cones 

especially around Jebal Aritain and Jebal al-Asfar (Dwairi, 1987; Ibrahim, 1993b). 

During the earliest geological surveys of the northern part of Jordan, the so-called 

Nordostjordanische Deckenbasalte (Bender, 1968), six separate phases of vulcanism 

were identified (van den Boom & Suwwan, 1966). The first three (B I -B3) were not 

exposed, but were known for their hydrogeological properties as aquifers (Hunting 

Technical Services, 1965). They were thought to constitute a total thickness of up to 

150 metres separated by paleosols approximately 5 metres thick. Between 6 and 20 

metres of deposition was found below a fourth layer of basalt (B4), which has an 

exposure of some 60 metres in the Wadi Dhuleil, between Safawi and Ruwaishid 

(Hunting Technical Services, 1965). While the oldest basalts are laid down upon 

Middle Eocene Limestone, the fourth phase is covered by a Miocene interbedded 

sand- and limestone. Bender (1968) dated the four lower basalts to between the 

Upper Eocene and Miocene. The fifth basalt (B5) was regarded as the most 
important and most extensive extrusion. It was measured at 25 metres thick and 

overlaid an unconformable layer of older basalts, tuff, palagonitic sediments and clay 
horizons, as well as the calcic sandstones and marls of the Miocene. 
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Harrat Ash Shaam Basaltic Super Group 

Formation Group Bender Moffat (1988) 

(1968) K-Ar ages 
ahda Vesicular Basalt (FA) BISHRIYA B6/5 0.1-1.45 Ma 

Wadi Manasif Basalt (WMF) (BY) B6 

ritayn Volcaniclasics (AT) RIMAH Bt 2.01-2.94 Ma 

Hassan Scoriaceous (HN) (RH) Bt 

ahadda Basalt (M) B5 

adhala olivine Pyric Basalt (MOB) B5/4 

asimyya Aphanitic Basalt (HAB) ASFAR B5 1.96-3.41 Ma 

shayib Olivine Pyroxene Pyric Basalt (UB) (A) B5 

fayhim Xenolithic Basalt (UM) B6/5 

Salaman Flood Basalt (SN) SAFAWI B5/4 8.45-9.3 Ma 

bed Olivine Pyric Basalt (AOB) (SW) B5 mean 8.91 Ma 

Ali Doleritic Trachytic Basalt (AI) B5 

Continental / Marine Sedimentation (QCS) tt4 

Quirma Calcareous Sandstone Formation 

WISAD B4 9.37-10.53 Ma 

(WD) 

Table 2.1: A summary of the geology of Harrat Ash Shaam Basaltic Super Group 

Source: adapted from Ibrahim (1993a) 

The B5 basalts were found to correlate well with the basalt extrusions overlying the 

limestone plateau to the north of the Yarmouk river, which were dated to coincide 

with the tectonic mountain building phases of the upper Pleistocene (Bender, 1968). 

Between the fifth and sixth phases of vulcanicity observed by Bender (1968), there 

was a tuff phase (Bt) in which a thin layer of tuff and lapilli became incorporated into 

the upper part of the fifth layer (B5). The final basalt extrusion (B6) was 
characterised by kilometre-long flows from north to south which covered all the 

. older basalt phases. 
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Plate 2.1: A False Colour Composite Landsat TM image of part of the northern 

Badia close to Safawi 
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Again these flows can be correlated with the basalt flows flowing westwards between 

Mukheiba and the confluence of the Yarmouk and Jordan rivers (Bender, 1968). 

The more recent classifications of the exposed basalt phases, Table 2.1, shows that 

the classification of Bender (1968) is more complicated. While the B4 correlates 

with the Wisad, the Upper layers described by Bender (1968) as B5 and B6 are less 

well correlated. The more recent research by Barberi et al. (1979), Moffat (1984) 

and the work of the Jordan Geological Survey (Ibrahim, 1993a) indicates that there 

are various formations, each with a different mineralogy (Barberi et al., 1979; 

Ibrahim, 1993a). One consequence is different boulder size at the ground surface 

(Allison & Higgitt, in press), this being important in understanding the present 

landscape. The Landsat Thematic Mapper image (Plate 2.1) shows part of the basalt 

plateau around Safawi. A recent flow dominates the centre of the image showing 

minimal drainage connectivity and a large number of qa. Older Basalts, such as the 

Abed basalt can be distinguished in the western section of the image in the wadi beds 

just to the west of Safawi as well as in the wadi beds in the east. A clear line of 

dykes can be seen running west-northwest in the northeastern corner of the image. 

The field sites used in the research are located to the east of this image. 

2.3 HYDROGEOLOGY 

There are three major aquifer systems which underlie the northern area of the Badia. 

The lower two are charged from the west of Jordan and the upper by precipitation 

falling on the Jebal Haurän. The aquifers are separated by aquitards, but there is 

considerable leakage in different areas of the Azraq Basin (Gibbs, 1993). The lowest 

aquifer is constrained within the braided river sands of the Kurnub sandstone and is 

as deep as 3.4 kilometres in the Azraq area (Andrews, 1992). The late Cretaceous 

limestones of the lower Ajlun group separate the lowest and middle aquifers. Due to 

the chemical change of the groundwater during its movement through the aquifer, 

there is an increase in the amounts of salts adsorbed with distance from the source 

and hence the water found in both the lower and the middle aquifers is partially 
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saline and of inferior quality when compared with the water from the upper aquifer, 

which is contained within the Pleistocene basalts of the Harrat Ash-Shaam Basaltic 

Super Group. 

The water contained in the upper aquifer, which recharges in the Jebal Haurän above 

800 metres (Dottridge, 1998), is extremely pure (Lloyd, 1965; Drury, 1993). With 

increasing distance south from the recharge source there is metasomatism which is 

enhanced by the over-extraction of water in the Azraq area. This results in a rapid 

degradation of water quality (Table 2.2) 

Site Northing Total 
Dissolved Salt 

(mg/1) 

Sodium 
Adsorption 

Ratio 

Electrolyte 
Conductivity 
(mmho/cm) 

J01 184875 221 2.35 300 

J07 180850 229 2.06 340 

J05 152443 374 3.46 610 

J14 144350 846 4.89 1520 

Rain water n/a 123 0.22 190 

Table 2.2: A transect of water quality in the basalt aquifer: Source: Drury, 1993 

JO 1: Upper farm; J07: Lower farm; J05: 10 km N. of Azraq; J 14: 10 km W. 

of Azraq (the farms are shown on Figure 2.8) 

The Jebal Haurdn is the most important recharge area east of the Jordan Valley. It is 

the only region with a higher rainfall that can sustain a recharge to groundwater 
(Burdon, 1982). At present abstraction is in excess of 60 million m3 ä1 which 

compares unfavourably with current recharge estimates of 22-36 million m3 aal 
(Dottridge, 1998). The drying up of the Azraq springs in 1987 and 1992 and the 
consequent drying of the lake at Azraq are clear signs of the unsustainability (Al- 
Jayyousi & Shatanawi, 1995). 
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2.4 GEOMORPHOLOGY 

The geomorphology of the Ash Shamah basaltic plateau is dependent upon the 

characteristics of the individual lava flows which make up the basaltic super group. 

As has already been seen in section 2.2.2, the most recent geological surveys indicate 

that the super group can be split into five major groups and fifteen formations. The 

older basalts, for example from the Safawi Group (Table 2.1), have developed much 

more mature landscape characteristics. The older basalts in the east around Safawi 

are generally of the Abed (AOB) and Salaman (SN) type; and their corresponding 

slope development is that of convex and concavo-convex slopes (Allison & Higgitt, 

in press), while the wadi channels and corresponding drainage density is well 

developed (Al-Homoud et al., 1995). The geomorphology of the younger basalts, 

such as the Bishriya (BY), is characterised by concave slopes and a poorly developed 

drainage pattern (Allison & Higgitt, in press). 

The other significant geomorphological features on the plateau are the Qa (Arabic for 

low place - Plate 2.2). These pans develop over a long period of time which means 

that the largest Qa can be found on the older basalts (Plate 2.1). The Qa and Marab 

are local names given to sediment pans which often cover several square kilometres. 

The Qa are topographic lows where sediment is deposited either from in-flowing 

wadis or by slope wash from the surrounding hillslopes. The distinctive hydrological 

feature which characterises Qa is the lack of significant outflow. As water and 

sediment are transported into the closed depressions, deposition leaves a build-up of 

fine silt layers. The surface is relatively impervious, except for the desiccation 

cracks, and the resulting infiltration capacity is very low (Allison et al., 1993; 

Warburton, in press). 

The Marab usually make up sections of wadis where the gradient has become so 

reduced as to create large areas of silt deposition. Most of the Qa and Marab deposits 

are made up of fine-grained sediments and usually display low salinity. Although 

most sediment-filled depressions fall into the categories of Marab or Qa, there is, in 

reality, a spectrum of distinct features, which display slightly different depositional 

and transport regimes. 
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Plate 2.2: Looking north over Qa Sbeika from a row of dykes 
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Chapter 2- The study area 

The typical desert pavement, which covers much of the landscape with its individual 

clasts of basalt, has a good potential for soil water and dew retention during the 

cooler parts of the year in comparison with the areas further east and south, where 

there is only a small covering of flints and chert (Garrard et al., 1975). The moisture, 

although limited, is often enough to encourage the growth of small annuals, including 

cereal grasses. Towards the north west the basalt boulders become progressively 

covered by lichens, due to the greater moisture availability. 

Each type of basalt, although petrographically similar (Barberi et al., 1979), displays 

differing clast size and shape. Clast morphology plays an important part in 

determining certain slope processes including raindrop impact, infiltration, erosion 

and runoff. The Abed basalt consists of large clasts often measuring about 30 cm in 

diameter. The Salaman basalt has weathered into small basalt chips, which are 

elongate and rarely measure more than a few centimetres. The difference in sediment 

cover is considerable. The large Abed blocks have large spaces between one another 

which allows a significant amount of sediment to be moved by water. The basalt 

chips of the Salaman, on the other hand, cover the sediment almost completely, 

acting as a mulch and therefore reduce the possibility of erosion. 

The wadi systems are extensive (Figure '2.2), although few of the channels are well 

developed. The general direction of water flow is from north to south, from the Jebal 

Haurän to the Azraq Basin. Much of the drainage pattern in the east is dominated by 

the Wadi Rajil, which flows down the eastern side of the Jebal Haurän, through the 

Qa and Marab at Sbeika. The wadi then flows southwards and eventually flows 

westwards into Qa Azraq. Much of the western drainage is dominated by a few large 

wadis, such as wadi Safawi, which drain the Jebal Haurän from the south and flow 

through Marab at Khanna or Be'gawier before entering Qa Azraq. 
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2.5 THE SOILS OF JORDAN 

The soils of Jordan are closely associated with the geomorphology, tectonic activity 

and the underlying geology. The Jordan Valley, which is undergoing considerable 

tectonic activity, has soils which are dominated by highly weathered colluvial 

material and fan deposits from the valley sides. In addition, there is an inlux of 

alluvial material from the extensive wadi systems which have cut down, against the 

regional isostatic and tectonic movements, from the interior of Jordan. 

In the west and north of Jordan along the East Bank highlands, plentiful rainfall has 

allowed relatively deep soils to develop. Terra rossa soils tend to be associated with 

the hard crystalline limestone beds of the Ajlun Series, while the brown chert soils 

form on the much more siliceous and cherty limestones of the Belga Series 

(Beaumont & Atkinson, 1969). Both soil types range from clay loams to silty clays, 

with upward of 50% clay and 30% silt, and tend to be slightly alkaline (Fisher et al., 

1966). 

Further eastwards in the Badia as a whole, the soils become lighter in colour, usually 

taking a light brownish-red hue associated with the and climate. Only small areas of 

the desert steppe contain sandy soil because of the limited outcropping of sandstone. 

More regular are the limestone and chert soils which are thin, stony and mixed with 

loess material originating further east in Arabia (Bruins & Yaalon, 1979). 

2. S. 1 The soils of the northern Badia 

The soils of the northern Badia should be considered separately from the rest of the 

Badia because they have developed and are considerably affected by the underlying 

basalts. The soils are deep reddish brown in colour (10-5YR 4/4-6/6) and are largely 

covered by basalt boulders. Soil depth is spatially variable, depending on the surface 

topography (Allison & Higgitt, in press). On topographic highs soil depth will 

usually be less than half a metre and in places bedrock is exposed, but in basins of 
high sedimentation from the surrounding slopes, soil depth can be more than two 

metres. The data presented in Table 2.3 are taken from the survey of the whole of the 
Wadi Rajil region, which includes most of the basalt plateau to the east and south of 
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the Jebal Haurän, carried out by Huntings Technical Services in 1992 and 1993. It 

can be seen that there is relatively little variability between soil types. Most of the 

soils which fall under the Camborthid classification are fine grained. One of the sub- 

groups, the Typic Calciorthid, contains considerable amounts of caliche and 

carbonate nodules. 

Soil taxonomic Soil description Colour Location and 
Subgroups geomorphology 
Typic Deep silty-sandy clay loam, compacted at 7.5-5YR Throughout region 
Catnborthid depth with basalt stones and gravel at 5/6-4/6 or about 50 cm, often with hard capped 

vesicular surface 10-9YR 5/6 

Xerertic Heavy silty clay loam to clay. Strong 7,5-5YR 
Camborthid platy to wedge structure but lacking 4/6-4/4 

slickensides. Often compacted at depth 

Xerochreptic Silty clay loam to silty clay, often with 7,5-10YR 
Camborthid moderate sub-angular blocky structure. 5/6-4/6 Developed from limestone alluvium, 

becoming sandy and gravelly with depth 

Typic Deep very gravelly silt loam to sandy clay 7 5-5YR 
Calciorthid loam to clay loam. Large soft to 5/6-4/6 

moderately hard calcareous concentration 
producing a calcie horizon from about 20 
cm depth. Common Mn concentrations 

Flat to gently sloping Qa 
and alluvial plains around 
Qa Be'gawier and Qa 
Sbeika 

Found in small blocks in 
the northern and middle 
parts of the Wadi Rajil. 
More extensive around the 
southern limits of the 
basalt 

Flat wide wadis and Qa 
with gravelly gritty 
surface, sometimes with 
caliche. Found north of Qa 
Be'gawier 

Typic Unstructured, extremely gravelly coarse 7,5-SYR Northern edge of Wadi 
Torriorthent sand to sandy clay loam, poorly sorted 5/6-4/6 Rajil 

Table 2.3: An overview of soils found on the basalt plateau of northern Jordan, 

Source: unpublished data from Huntings Technical Services 

It has been suggested that the soils of the region are a result of weathering of the 

basalt (A1-Homoud et al., 1995), especially in past pluvial environments. However, a 

micromorphological study of the soil fabric and mineralogy suggests that the 

pedogenesis is more complex (Kirk, in press). The occurrence of calcareous nodules 

and a preponderance of silt-sized quartz grains within the fabric suggest a mixture of 
origins. There is no doubt that some physical and chemical weathering is presently 
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acting on the basalt to provide a sediment source because at depth, basalt core stones 

are well weathered. The inclusion of calcareous material would suggest a limestone 

source, indicating either wind-blown sediment from the south or east, or a local 

remnant from pre-basaltic erosion of the underlying limestones. Since quartz is not 
found in basalt, the quartz within the soil cannot be derived from basalt weathering. 

A more likely source is the Arabian loess deposits. If Bruins & Yaalon (1979) and 

Issar & Bruins (1983) are correct in their theories concerning deposition in the Negev 

and Sinai, then it is likely that some sedimentation in the Ash Shameh plateau has a 

similar origin. 

2.6 CLIMATE 

The climate of the northern Badia can be classified as Mediterranean Saharan 

because, although it is arid, it is less and than the Arabian or North African deserts 

and has a smaller seasonal and diurnal temperature range, with the sparse rainfall 

concentrated in the winter months. Air temperature is highly variable and although 

the average is only 17.5 °C, the minimum and maximum temperatures are -5 °C and 

46 °C respectively (Al-Homoud et al., 1995). 

2.6.1 Climate in the Eastern Mediterranean region 

The general pattern of climate which controls much of the Levant and the Gulf is 

dominated by large-scale atmospheric circulation conditions. The patterns would 

have been present in the past, although they could have been geographically 

displaced and changed in intensity over time (Wigley & Farmer, 1982), dependent on 

factors such as the North Atlantic Oscillation (Cullen, 1997). Winter is characterised 

by cyclonic disturbances and low mean pressure in the Mediterranean, with higher 

pressure further east associated with the Siberian high. Unsettled weather in the 

Mediterranean basin is especially prevalent when the westerlies are in their low- 

index or blocked stages and the Polar Front Jetstream exhibits a strong oscillatory 

pattern allowing meridional transport of cold air (Perry, 1981). The lower position of 
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the Polar Front Jetstream over central Europe brings with it substantial amounts of 

rain. During spring the Sub-tropical Jetstream begins to move northwards from its 

location over the Tropic of Cancer and as the Polar Front Jetstream is pushed 

northward, precipitation is reduced. 

In the winter and spring, the Cyprus lows are an important key to precipitation over 

the Levant (Krown, 1966; Lamb, 1968). Eastern penetration depends on the tonality 

of the upper flow and the strength of the Siberian High. There is some debate 

whether the position of the European Trough in the Mediterranean gives more or less 

rainfall in the Levant. It is generally believed that if cyclonic conditions stagnate 

over Cyprus, dry winter conditions will tend to prevail over the Middle East. If the 

surface cyclonic conditions move to the east, westerly winds predominate and 

precipitation occurs, especially over higher ground (FAO, 1962). Lamb (1968) 

believes that wetter conditions between the fifth and third millennium B. P. were 

primarily due to the easterly position of the trough. Krown (1966), however, relates 

wetter conditions in the Levant to a more westerly position of the trough in the 

Mediterranean. 

By May, the influence of the Polar front and its associated westerlies is negligible. 

They are replaced with sub-tropical ridges of high pressure. It is during the summer 

months that the contracted circum-polar vortex ensures that the Mediterranean is a 

region of subsidence associated with a sub-tropical, upper tropospheric high (Perry, 

1981). The effect of the Indian Monsoon is considerable. As it advances northwards 

during June, the easterly jet strengthens due to pressure differentials over continental 

Asia. The resulting complex set of jets extends over southern Arabia. The intensity 

of the jets is directly proportional to the rainfall received by the Upper Nile 

catchment. The jet system is also associated with upper air convergence causing 

widespread subsidence characteristic of the Middle Eastern desert areas. Although 

during most summer seasons there is consistent high pressure, the northerly 

expression of the jets can have an occasional effect in the northern Badia. 

It is during the transitional seasons, especially in early autumn, that year-to-year 
variation in the general circulation is greatest, causing widely unsettled weather in 
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the Mediterranean. The combination of the irregular southerly movement of the Sub- 

tropical Jetstream from its summer position over Turkey down to northern Sudan and 

the subsequent increase in surface pressure over the Levant causes a pulsatory 

seasonal transition (Perry, 1981). 

Figure 2.5: Mean water need or potential evaporation (mm) between 1966-1980 

using Thornthwaite's model (1955) - Source: Shehadeh (1985), p. 34 
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2.62 Precipitation and mass water balance in Jordan 

With the exception of the Jordan Valley, rainfall decreases from west to east and 

from north to south. The eastward precipitation decrease is mainly caused by the 

adiabatic heating of the moist winds on the lee slopes of the mountains bordering the 

east side of the Jordan Valley. The variation from north to south is attributed to the 

increased distance from the main tracks of Mediterranean depressions and the small 

number of depressions which travel along the southern Mediterranean track 

(Shehadeh, 1985). The two maps (Figure 2.5 & Figure 2.6), taken from Shehadeh 

(1985), show various average data for the evaporative fluxes for the whole of Jordan. 

The potential evaporation map and moisture deficiency map (Shehadeh, 1985) are 
based on the moisture budget equations of Thornthwaite & Mather (1955). Both use 
data from the period 1966 to 1980. Although potential evaporation is as low as 400 

mm a1 around Irbid and Ajlun, giving an overall annual positive water balance, in 

the Badia the figure is above 900 mm a1 and more recent data estimates a potential 

evapotranspiration rate of between 1 800 and 2 000 mm al (Dottridge, 1998), which 

is much higher than the annual rainfall. The average moisture deficiency map 

corroborates the potential evaporation, indicating minimum moisture deficiency in 

the mountains and considerable deficits in the Badia and the Arava with maxima of 

1 827 mm in Ghor Safi and 1 646 mm in Aqaba. 

2.6.3 Climate factors affecting the northern Badia 

The specific control on climate, in particular the precipitation, is the Jebal Haurän. 

The mountain range rises over 1 400 metres in southern Syria and is a significant 

orographic barrier to the air masses travelling from the Mediterranean. In the winter 

months, although much of the moisture is deposited on the hills as precipitation 

either side of the Jordan Valley, there is a significant amount of precipitation in the 

northern Badia as the air masses are forced to rise over the Jebal Haurän. The 

precipitation gradient is such that the amount of rainfall at the summit is up to five 

times greater than the mean figure for the northern Badia. This not only affects the 

availability of water on the foot-slopes of the Jebal Hauran but is important for wadi 
flow throughout the region (Dottridge, 1998). 
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Figure 2.6: Mean moisture deficiency (mm) between 1966-1980 

Source: Shehadeh (1985), p. 35 
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2.7 HOLOCENE CLIMATE CHANCE 

Climate change research in recent decades has largely focused upon the higher 

latitudes of Europe and America, rather than on the low to middle latitudes of the 
Middle East. The situation reflects the relative ease of finding suitable datable 

sediments in the higher latitudes, while similar indicators in the lower latitudes are 
difficult to find (Baruch, 1994). For example, Roberts (1982), in his survey of Near 

Eastern Lake level dates, found only 154 14C dates from 31 sites which covered 
Arabia, the Levant, Egypt and North Sudan as well as Greece, Turkey, Iran and the 
Caucasus. Remarkably few stratigraphic events have been radiometrically fixed 

outside Israel and the Nile Valley (Butzer, 1975). Many of the dates which do exist 

are taken from the Jordan Valley and Lake Lissan (Dead Sea), but it is often argued 
that these should be considered as a special case, because the whole rift valley floor 
has dropped between 150 and 200 metres due to down-faulting at around 20 000 B. P. 
(Neev and Emery, 1967). More recently, with the development of thermo- 
luminesescence dating, there has been an increase in the study of the effect of climate 
change on Paleolithic sites (Valladas, 1992; Goldberg, 1994; Mercier & Valladas, 
1994). 

A key debate in the environmental and climatic histories of the Middle East centres 

on the correlation of pluvial events with the glaciation events of northern Europe and 
the extent to which specific events can be defined as being pluvial or interpluvial. It 

has been suggested that the periods between 17-10 ka and 10-6 ka show strong 

evidence of being pluvial (Neev & Emery, 1967; Horowitz, 1979), but the 
intervening period is contested and some think that 10-6 should also be considered as 
pluvial (Bar-Mathews, 1997). Using planktonic foraminiferal faunas, Thiede (1978) 

suggests that winter and summer water temperatures on the Levantine coast during 

the height of the last glaciation (ca. 18 000 B. P. ) were approximately 18°C and 25°C 

respectively. Butzer (1975), on the other hand, suggests that the Holocene climatic 

variations do not neatly fit into those of the higher latitude glaciations, varying 

considerably from region to region within the Mediterranean and North Africa. 
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Issar and Bruins (1983) attempt to use a combination of aquifer geochemistry and 

changes in the depositional pluvial-eolian regime to consider what they see as a 

series of multi-annual cycles, bringing about fluctuations between periods of drought 

and periods of higher humidity. Looking at the 2H composition in the Kurhub 

sandstone aquifers in the Sinai and the Negev, Issar & Bruins (1983) identified 

periods when a lower deuterium excess in the palaeowater occurred, which could be 

interpreted as either an increase in sea surface temperature or an equivalent increase 

in humidity. In addition, the plains of the northern part of the Negev, as well as the 

valley systems of the southern Negev and Sinai, are covered in a 14 metre layer of 

loess, the Neviot series, which is thought to be pluvio-eolian in origin (Bruins & 

Yaalon, 1979). The composition of the sediment is similar to that of contemporary 

dust which is transported during the early and late summer Hamseen winds, which 

come from Arabia. There are alternating silty and clayey bands which have been 

attributed to moister and drier conditions in the Upper Pleistocene and Holocene 

(Bruins & Yaalon, 1979). The upper Holocene layers of this loess have a low clay 

content (25%), but further down there is an increase in the clay to 40-60%. Ganor 

(1975) associates the sedimentological and meteorological conditions optimal for 

dust deposition and found that dust falling without rain consists of less than 20% 

clay, but pluvio-eolian deposition can contain between 50 and 60% clay. Hence the 

Neviot sequence would seem to suggest that rainfall has been 50-100% more than 

present levels during the Pleistocene. This adds weight to the work done on aquifer 

recharge (Issar & Bruins, 1983), as they suggest that between 20 000 and 70 000 B. P. 

there was twice the level of precipitation relative to the period after 20 000 B. P. 

More recent evidence from the study of pedogenic carbonate nodules has shown that 

there were periods at 13 000,28 000 and 37 000 which were significantly wetter than 

present (Goodfriend & Magoritz, 1988). 

Old marsh deposits have been found in the Sinai at Wadi Feiran with silt and clay 

sequences. The age of the uppermost layers of marsh deposits is about 20 000 B. P. 

(Carmi et al., 1971), which suggests a considerable reduction in the water supply and 

a corresponding disappearance of the lake and marsh. Although these paleo- 

geomorphological data are useful in pin-pointing a likely threshold in the magnitude 
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of precipitation, the lack of dates for the area constrains the utility of the datasets, 

especially in trying to understand smaller fluctuations within the cycle. 

The closest location to the northern Badia where paleo-environmental research has 

been carried out, is at El Jafr, 120 kilometres south of Azraq (Huckriede & 

Wiesemann, 1968). They date the end of the sedimentation phase of pluvial 

limestone in the El Jafr depression at 27 700 ± 870 B. P., which occurs in the middle 

of the Late Pleistocene Glacial. They suggest that the pluvial period was followed by 

a much drier climate until the Late Pleistocene when wetter conditions returned, 

although without significant further sedimentation. 

Although it has been possible to place the end of the last Pluvial in the late 

Pleistocene, there has been little attempt to suggest a chronological sequence for 

more recent smaller-scale changes. Unlike the threshold change from Pluvial to 

Interpluvial, which leaves significant markers in the stratigraphy, smaller variations 

can often only be detected in the historical record using alternative sources of 
information. The only attempt to link such smaller changes in climate and 

precipitation over the Late Pleistocene and Holocene periods has been that of Butzer 

(1958). He uses historical, archaeological and geomorphological sources to produce 

a chronology of what he calls postpluvials and subpluvials (Table 2.4). He also tries 

to illustrate the relative fluctuations in rainfall (Figure 2.7). 

+ 
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Figure 2.7: Relative trends of Near Eastern precipitation during the Late Glacial and 
Postglacial periods - Source: Butzer (1958). 
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POSTPLUVIAL I. During the period following the close of the Pleistocene Pluvial 
about 16 000 B. P., wind erosion was particularly pronounced. Temperatures and 
rainfall of the Near East were somewhat less than that of present, probably reaching a 
minimum during the 14 000 B. P. 

SUBPLUVIAL I. (12 000 B. P. ) A moderate and likewise temporary improvement of 
rainfall conditions. A last readvance of the disappearing Pleistocene glaciers took 
place, accompanied by lower temperatures effective to at least as far south as 33° N. 

POSTPLUVIAL IIa. (10 500 -8 800 B. P. ) Following the humid relapse associated 
with the last glacial advance, temperatures rose. Typical conditions included a 
rainfall slightly less than present. 

POSTPLUVIAL Ilb. (8 800 -7 000 B. P. ) A marked improvement in precipitation. 

SUBPLUVIAL II. (7 000 -4 400 B. P. ) The Neolithic moist interval which enjoyed a 
somewhat higher rainfall than the present, despite indications of higher local 
temperatures. If evaporation was high then conditions were part-way to being fully 
Pluvial. Sudden decreases in rainfall seem to have occurred shortly after 5 600 and. 
4 850 B. P. 

POSTPLUVIAL III. (4 400 -2 850 B. P. ) Renewed decrease in precipitation during 
the fifth millennium B. P. led to a longer period of variable conditions. Average 
rainfall was a little below that of today, but interrupted by at least one moist spell in 
around 3 200 B. P. 

POSTPLUVIAL IVa. (2 850 -1 200 B. P. ) Characterised by rainfall conditions 
similar to that of today but with small scale fluctuations. Periods of higher humidity 
occurred around 1 800 B. P. and 1 500 B. P., but these were juxtaposed with drought 
conditions in between and especially around 1 400 B. P. 

POSTPLUVIAL IVb. (1 300 B. P. to the present day) Short term fluctuations 
continue with rainfall on average slightly higher than that of present. Colder 
conditions caused the Black Sea and the Nile to freeze during the around 1 000 B. P. 
Only in the last century has there been a marked climatic deterioration, with a 1%to 
15% decrease in rainfall, a fall in interior-draining lake levels and a decrease in the 
Nile volume. 

Table 2.4: Classification of climatic fluctuations since the last Pluvial - adapted from 

Butzer (1958) 
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2.8 ANTHROPOGENIC CONSIDERATIONS IN THE NORTHERN BADIA 

The area named by archaeologists the southern Haurän (Butler, 1919) has been 

irregularly populated since prehistory (Garrard et al., 1975). Evidence for human 

groups has been found as early as the Neolithic, indicating that a highly mobile and 

diversified nomadic population lived in northern Jordan (Homes"Fredericq & 

Hennessy, 1989). Jawa, one of the oldest known walled cities in the world, is situated 

on an island in the Wadi Rajil (Helms, 1981; Betts, 1991) on the eastern slopes of the 

Jebal Haurän: it is here that water catchment and harvesting schemes dating back to 

3200 BC have been discovered. The Bible talks of the giant cities of Bashan, the 

capital of which was the city of Edrei (Num. 21: 33; Deut. 3: 1,10; Josh. 13: 31). The 

main building phase which is visible today is Nabataean, Roman and Byzantine, with 

considerable later modification by the Muslims. From a geographical point of view, 

given the fragile environment which exists in the northern Badia, it is important to 

ascertain how large settlements could have been built and how they survived. If a 

large population was maintained in the past it is interesting to consider what effects 

the earlier generations had in modifying the landscape. 

The study of settlement patterns in and areas can provide a highly 

sensitive indication of the climate, of the delicate balance between human 

populations and environmental resources and of the mechanisms of 

human adaption to a marginal climate. Furthermore, because of their 

very marginal nature and therefore lack of agricultural disturbance, such 

regions are eminently suitable to study the past (Garrard et al., 1975, 

p. 109). 

The Nabatean settlements, dating back to circa 2 050 B. P., are mostly covered by the 

Roman re-building but inscriptions, especially on family tombs, can be found. The 

main Roman period of building began in the time of Trajan and is said to have 

flourished until the, time of Constantine. The greatest period of building was that of 

the Byzantine stretching from the second quarter of the fourth century until the 

seventh (Butler, 1919). The Romans were always keen to protect their realm and 

road networks from bedouin attack (Issac, 1992) and so the regular scattering of forts 
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such as the one at Deir al kahf is not so surprising. The large towns of Umm al-Jimal 

and Bosra, however, pose a problem. If the climate was similar to the present, then 

how could such a fragile environment support large Roman towns. Umm al-Jimal, 

translated as ̀ mother of camels', lying about 20 km east of modern-day Mufraq, was 

a walled city, covering more than a third of a square kilometre and had a probable 

population of 10,000 (De Vries, 1981). The city in the sixth century probably had 

more than twenty churches, a Praetorium and many grand two- and three- storey 

mansions (Lankester Harding, 1959). What is most important, with regard to this 

study, is that the city has no natural wells or springs, but was situated just to the east 

of a wadi and 400 metres northwest of the city wall there was a masonry dam. From 

this dam, a sub-surface aqueduct can be traced to the east wall with several tributary 

aqueducts flowing from it before turning into the city and flowing into a large Roman 

reservoir situated in the centre of the city. The wadi, which probably only flowed a 

few times during the winter season, would have been dammed up and water would 

have flowed through the various sealed conduits and filled at least four reservoirs, as 

well as separate cisterns. It was not lack of water which caused the city's decline, 

but an earthquake in 747 AD (De Vries, 1981) which destroyed many of the 

settlements in the southern Haurän region. It was a geological catastrophe, with 

perhaps upwards of a thousand year return interval, which devastated the cities of the 

northern Badia rather than the fragile environment. 

Butler's expedition early in this century came to the conclusion that there had been a 

considerable change in climate over the last fifteen hundred years. He says in his 

description of Deir al-Kahf: 

"It is quite certain that the region was not desert in ancient times; for 

all the way from Ic nät there are remains of ancient walls that divided 

fields and the traces of furrows still remain as evidence of former 

cultivation. These signs of former fertility extend farther to the south 

and southeast, as far as the eye can reach" (Butler, 1919, p. 145) 

Butzer (1955) confirms that there were periods between 1-180 AD, 390-415 AD and 

670-925 when the whole of Jordan was wetter than it is today. Whether or not the 
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climate was wetter during the six hundred years after Christ, what is important is that 

agriculture was widely practised as far east as Deir al-Kalif. The basalt-covered 

ground would have been cleared and the blocks used to enclose fields around the 

various settlements. The removal of the basalt blocks would have reduced 
infiltration, encouraged the erosion of fine material by the wind, and, as a 

consequence, reduced the fertility of the top soil. In other words, the modern 

geomorphological landscape has been sculpted by anthropogenic behaviour, not of 

the recent past, but of the ancient past. 

The geography of the southern Haurdn and the rest of the Harra has probably 

changed little since the dispersion of the population after the earthquake in the eighth 

century. Most of the villages have grown up during the twentieth century, often upon 

sites of the earlier Christian settlements. The population is heavily concentrated near 

Mufraq and is situated either on the Mufraq to Safawi road or on a parallel road 

which runs just south of the Syrian border. There are no settlements east of Al- 

Bishriya, except for a small cluster of houses between Jebal Aritain and Jebal al- 

Asfar, until the road joins the Amman-Baghdad highway at Safawi. Both Safawi and 

Al-Ruwaishid, which is a further 90 kilometres east, grew up earlier this present 

century around pumping stations for the Baghdad-Haifa oil pipeline, but since its 

demise in the 1940s, they have become service centres for travellers driving between 

Jordan and Iraq. The population in the villages has more than tripled over the last 

twenty years from 5,161 in 1976 to 16,267 in 1994 (215% increase) as the 

government has actively tried to settle the Bedouin, but there is still a large semi- 

nomadic population which travels throughout the year looking for pasture over the 

whole region (Maani et al., 1995). 

2.9 PASTORALISM AND IRRIGATED AGRICULTURE 

The majority of the Bedouin living in the northern Badia rely on small-scale, 

speculative rain-fed growing of wheat and barley and keeping of sheep and goats. In 

the north, around villages like Deir al-Kahf (Figure 2.2), there is often enough 

rainfall for a reasonable annual crop. Further south the risks associated with rain-fed 
farming are much greater. One factor which has made rain-fed agriculture less viable 
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in recent years is the construction of dams on the Jebal Haurän in Syria. Formerly, 

there was regular wadi flow down from the mountains and through the foothills of 

the southern Haurän. Now the only flow in the wadis is generated by the much lower 

rainfall totals which fall on the Jordanian foothills of the Jebal Hauran. In the last 

decade, irrigation agriculture has been encouraged by loans from the government to 

drill private wells. As the population has settled, land cleared by earlier generations 

has been used. The new generation of entrepreneurial farmers has also moved 

eastward. New land has been brought into use by clearing the basalt boulders. 

Removal is almost complete near Mufraq and gradually reduces until it fades out 

about 65 km east of Mufraq. 

The choice of the farms (Figure 2.8) used in the research was twofold. First, they 

occupy the current eastern fringe of irrigated agriculture over the area as a whole and 

therefore represent the threshold between desert and land utilisation. Second, they 

form a transect up the foothills of the Jebal Haurän and so lie on a gradient of 

considerable change in altitude and rainfall. Each farm has been granted loans to 

drill wells which reach down to the upper basalt aquifers. The depth' of the aquifer 

below the surface declines from 450 metres at the most northerly farm to 292 metres 

at the southerly farm (Drury, 1993). Such figures represent very deep wells and 

considerable financial investment in the region of £60,000. The rate of water 

extraction is approximately 60 m3s ', which is fed onto the fields using a series of 

pipes. Irrigation lines called laterals draw off the main pipes and are submerged 

under plastic sheeting. Water is delivered to the plants by means of drippers or 

emitters at a rate of between 2£ hhl and 81 h'1. The emitters are placed at selected 

intervals (0.5 -1 metres) along the irrigation laterals depending on the planting 
distance, the type of crop to be irrigated and the type of soil (Goldberg et al., 1976). 

The soil in the immediate vicinity becomes saturated during irrigation, but the 

moisture level drops away from the emitter. 

Irrigation begins in April (Plate 2.5) and continues throughout the summer until 
October. The usual crops are tomatoes, chillies, okra and water melon. Other 

methods of irrigation are used for forage crops and fruit trees, but these are less 

abundant because of the lower short-term return that they give to the farmer. At the 
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Plate 2.3: Ploughing the land for the following season's cultivation - often 

encouraging large deflation of fines. 
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Plate 2.4: The laying down of irrigation laterals and urea on newly ploughed land 
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Plate 2.5: Irrigation begins in April. Black plastic sheeting reduces evaporation 
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end of the season, the plastic and the irrigation pipes are all rolled up and stored and 

the plant residue is left as forage until the farmer decides to plough and plant wheat, 

barley, shallots or cauliflower as rain-fed crops for the winter -season. Once the 

winter crops have been gathered in the following March, the fields are left bare, 

while other fields are prepared for the next year's irrigation. A three or four year 

rotation is adhered to, so that after three years of being bare, a field will once again 

be ploughed and prepared for another season of irrigated crops. 

In preparation for irrigation, the land will be cleared of basalt if it is the first year of 

cultivation and ploughed before the winter rains (Plate 2.3). The land will then be 

left for four or five months, during which time a crust will have formed. In late 

March or early February the soil will be ploughed once again and then rolled before 

laying the irrigation pipes and planting (Plate 2.4). Urea fertiliser is then applied in 

strips parallel to the irrigation lines, which are spaced at two metre intervals, and 

covered in black plastic. Soil is then heaped on to the edge of the plastic from the 

intervening area which produces a ridge and furrow effect (Plate 2.5). 

2.10 CONCLUSION 

The Jordan Badia constitutes a zone of anthropogenic and environmental transition. 

At the human level, it constitutes the interface between the sedentarised populations 

of the west to the nomadic bedouin of the east. From an environmental point of 

view, the and steppe of the Syrian desert lies on the transitional agro-climatological 

zone which divides the semi-arid Mediterranean basin from the hyper-aridity of 

Arabia. Due to the area's lack of economically exploitable resources, harsh climate 

and shortage of water, past human occupation has been sporadic and often associated 

with -either pluvial climatic conditions or territorial conquest. Until recently, the area 
has been inhabited by nomadic bedouin who have made their livelihood by the 

herding of sheep, goats and speculative planting of wheat in areas of known water 
flow. In the last two decades sedentarisation has begun. Coinciding with the growth 
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of village populations, there has been an increase in land clearance, enclosure and 

intensified agricultural activity. The changing use of such a fragile environment will 

inevitably have many consequences, including anthropogenic effects on physical 

parameters such as soil quality. 
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3. PROCESSES AFFECTING SOIL CRUST FORMATION AND THE 

SUBSEQUENT ALTERATIONS IN THE MOVEMENT OF WATER 

AND SEDIMENT AT THE SOIL SURFACE 

"The upper few millimetres of soil is the gateway to the soil below, and thus it has a 
direct and dramatic influence on the world around us. " (Poesen & Nearing, 1993, p. v) 

3.1 INTRODUCTION 

Soil crusting defines a set of mechanisms which have long been observed in soil 

science (Duley, 1939). Because the surface soil layers provide the interface between 

the atmosphere and the regolith, they have an important role in determining the 

movement of water and the transport of mineral and organic materials over the land 

surface. A soil crust controls, to a large extent, the flux of nutrients, water, gases and 

heat to and from the underlying soil (Poesen & Nearing, 1993). Sumner & Stewart 

(1992) assert the profound influence of crusts upon the soil-air interface: `As a result 

of particle sorting by [the] water, crusts are formed which determine all future 

allocation of precipitation to infiltration and runoff (p. iii): Indeed, the soil crust 

plays such an important boundary role that it has aroused the interest of many widely 
differing disciplines. 

This chapter will discuss the processes which cause the formation and development 

of different sorts of soil crusts, using examples from both field and laboratory. The 

intrinsic properties of soil which give it a propensity to crust will be investigated. 

The effects of surface crusts upon runoff, erosion, infiltration, solute movement and 

evaporation need to be considered, especially with regard to soil and water 

chemistry. The morphology and classification of crusts will be reviewed. Soil 

crusting will be put into context with soil degradation processes acting in and 
environments and plant, soil and water interactions. 
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3.2 HISTORICAL DEVELOPMENTS IN SOIL CRUST RESEARCH 

The importance of soil crusts has long been recognised (Duley, 1939). His 

observations of the surface factors affecting the rate of intake of water by soils provide 

the basis on which soil crust research now rests. 

7t has been observed in the present studies that the rapid reduction in 
the rate of intake of water by bare soils as rain falls on the surface is 
accompanied by the formation of a thin compact layer at the surface of 
the soil. Through this layer the water seems to pass very slowly. This 
layer is apparently the result of a severe structural disturbance due in 
part to the beating effect of the raindrops and in part to an assorting 
action as water flows over the surface and the fine particles are fitted 

around the larger ones to form a relatively non pervious seal, giving the 
soil a slick appearance on the surface' (Duley, 1939, p. 62) 

The formation of the surface seal was seen by Duley (1939) not as an increase in fine 

material at the soil surface, but rather as a movement of fine material into the pores 

which surround the larger particles, thus producing a compact and dense surface 

layer. 

The first systematic laboratory tests carried out on soil crusts, measuring permeability 

(McIntyre, 1958a) and raindrop impact effects (McIntyre, 1958b), involved the 

formation of crusts in small cups using simulated rainfall. The experiments were 

designed to test the effect of washing-in of fine material and the compaction of the 

surface by drop impact. It was noticed that as the soil surface aggregates dispersed fine 

particles were released, washed into and filled the sub-surface pores (McIntyre, 1958b). 

Coincident with the relocation of fines to produce the surface seal, there was a 

considerable reduction in permeability of the crusted material from 144 mm h4 for 

non-crusted soil to 1.8 x 10.2 mm hhl (McIntyre, 1958a). It was considered that the 

structural sealing caused by raindrop impact was two-layered, with a thin 0.1 mm skin 

and a washed-in zone extending down a further 2 mm to 3 mm. Both of the layers 

reduced permeability, the skin by an order of 2000 and the washed-in zone by an order 

of 200 compared with the undisturbed soil beneath. Despite inaccuracies in the 

measurement of hydraulic head gradient, work by McIntyre laid the blueprint for many 

of the soil crust concepts, such as skin and washed-in layer, as well as drawing a 
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general scheme of crust formation emphasising the role of compaction by raindrops 
(Mualem et a!., 1990). 

By the mid- to late 1960s research had shifted to look at the intrinsic nature of the soil 

undergoing seal formation (Tackett & Pearson, 1965). The formation of soil crusts was 

related to particular particle-size distributions within the soil. However, it was 

suggested that the skin might not be related to compaction effects. In order to discover 

the nature of the washing-in of particles and the necessary effect of inter-aggregate 

clogging, it was observed that there was a gradual change in the bulk density pb of the 

upper two centimetres of the soil profile from 1.32 g cm 3 to 1.61 g cm 3. It can thus be 

deduced that the disturbed layer is considerably thicker than previously assumed by 

McIntyre (1958a) and that particles that are washed-in down the profile are permeating 

deeper. The results cast doubt upon the observational identification of the exact nature 

of the seal and washed-in layers. The concept of a two-layer crust, comprising skin and 

washed-in zone, was challenged by Evans & Buol (1968). Whereas Duley (1939) and 

McIntyre (1958a) examined low magnification micrographs (xl5), more recent work 

concentrated on micrographs of soil crusts taken by a petrographic microscope, at 

magnifications up to x100. These micrographs showed that, in some soils, particles in 

the layer immediately below the surface skin were preferentially orientated, while for 

others orientation of silt and sand particles occurred in deeper layers of the crust only. 

As microscope technology has improved, more detailed studies have been undertaken 

to analyse the structure of soil crusts. 

With the advent of scanning electron microscopy (SEM), the high-resolution 
. study of 

the micromorphological aspects of crust form has increased knowledge of the washed- 

in layer. It has been possible to identify thin seals measuring less than 0.1 mm (Epstein 

& Grant, 1973; Chen et al. 1980; Tarchitzky et al, 1984). Although no distinct visual 

layers were identified beneath the seal which corresponded to the washed-in zone 

observed by McIntyre (1958a), there was a 2-3 mm layer with a higher density than 

bulk soil, within which aggregates had been destroyed (Chen et al. 1980; Tarchitzky et 

a1., 1984). A reduced porosity would be expected during the formation of the seal. It 

was found that the-upper 0.1 mm of the soil was devoid of large pores. In the 0.1 mm 
to 0.5 mm zone such pores represented just 1% of the total volume and in the 1 mm to 
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2 mm layer they occupied 10-13% (Epstein & Grant, 1973). It was also observed that 

there was little difference in the proportion of clay in the top 0.22 mm of the soil, when 

compared with the underlying material, suggesting that the finer particles were not 
being washed down the profile, but rather being transported away by runoff (Epstein & 

Grant, 1973). This view was supported by Eigel & Moore (1983), who found that the 

main effect of rainfall was an increase in bulk density near the surface. There was an 

observed gradual decrease in bulk density with depth from 1.95 g cm 3 at the surface to 

1.35 g cm 3 at a depth of 10 mm (Eigel & Moore 1983). However, neither rainfall 

duration nor intensity was found to have an effect on the particle size distribution in the 

top, layer of the soil. 

Much early work concentrated upon the physical processes causing aggregate 

breakdown, namely raindrop impact. However, research in the late 1970s and 1980s 

began to investigate the role of soil chemistry in clay dispersion mechanisms. It was 

shown that it was possible to have a well-developed washed-in zone without the 

occurrence of a surface skin seal (Gal et al., 1984; Shainberg, 1985). If conditions are 

favourable for clay dispersion, i. e. high sodicity and a low electrolyte content in the 

water, then it is possible for naked sand grains to be held loosely at the surface while 

the fine silts and clays are redeposited in pores in the subsurface, thus clogging them 

and making the washed-in zone less porous. The surface sand grains can easily be 

eroded by subsequent runoff water. The washed-in layer is then exposed and the 

surface seal never develops. 

Field studies have observed crust layers of up to 20 mm, which is considerably thicker 

than those observed in the laboratory (Hillel, 1959; Hadas & Frenkel, 1982; Boiffin, 

1984; West et al., 1992). The term natural crust has been used to describe thick, 

naturally occurring crusts which are made up of a seal and numerous in-washing 

events. Thick natural crusts were characterised by a slow build-up of bulk density 

down through the top 20 mm (Hillel, 1959) or several distinct layers (Hadas & Frenkel, 

1982; Boiffin, 1984). It is conceivable that relatively minor changes in soil texture or 

structure, not noticeable by microscope observations, may significantly affect the 
hydraulic conductivity (Mualem & Assouline, 1989) and therefore be a sign of reduced 
infiltration (Edwards & Larson, 1969; Sharma et al., 1981). In the upper layer of the 
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soil profile there was an abrupt decrease of hydraulic head at the upper layer to a depth 

of 10 mm and only at 20 mm did it reach its equilibrium value (Sharma et al., 1981). 

The hydraulic gradient profile is therefore an important source of information about the 

actual seal layer (Mualem et al., 1990). 

In recent years there have been attempts to model the different physical and chemical 

processes together (Le Bissonnais, 1990; Römkens et al., 1990). The initial structure 

(Chiang et al., 1993), particle-size distribution (Onofiok & Singer, 1984) and 

antecedent moisture content (Le Bissonnais & Bruand, 1993) are important factors 

influencing aggregate slaking and crust development. A study of three Californian 

soils with very different physical characteristics showed that the coarser-textured sandy 

loam soil showed no evidence of a washed-in zone, but the finer silt and clay loam soils 

had a distinct washed-in layer (Onofiok & Singer, 1984). In conjunction with the 

physical processes, however, is the chemistry of the soil or applied water. High levels 

of exchangeable sodium in the soil (E. S. P. ) or in the soil water (S. A. R. ) have been 

shown to be responsible for a significant washed-in zone and subsequent reduction in 

infiltration rate (Agassi et al., 1981; Kazman et al., 1983; Gal et al., 1984). The levels 

of sodium are offset, to a certain extent, by the electrolyte concentration of the applied 

water and the presence or absence of swelling clays such as montmorillonite. Together 

these factors allow chemical dispersion of soil particles to take place and free them to 

move downwards through the soil profile and clog the pores in the sub-surface. 

3.3 PROCESSES INVOLVED IN THE FORMATION OF SEALS AND CRUSTS 

3.3.1 Surface sealing vs, surface crusting 

A distinction is usually made between surface sealing and crusting. The Soil Science 
Society of America (1984) define surface sealing as the orientation and packing of 
dispersed soil particles in the immediate surface layer of the soil, rendering it 

relatively impermeable to water. Römkens et al. (1990) define the surface seal as the 
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structural degradation of a thin layer at the soil surface during a rainstorm or 

irrigation event. The seal is therefore critical for short-term rates of erosion and 

determines hydraulic properties. The surface crust, on the other hand, refers to the 

hardening and increase in strength of the surface layer during subsequent drying. 

Similarly, Bradford & Huang (1992) state that the seal represents the breakdown of 

clods and aggregates, due to chemical and physical variables, upon wetting by 

precipitation or irrigation. The inter-aggregate pores become filled with detached 

material and, with the reorientation of particles, forms a dense layer. The soil crust 

can only be said to form as the soil dries (Remley & Bradford, 1989). In summary, 

the seal refers to the moist condition and crust refers to the resulting dry hard surface 

layer (Mualem et al., 1990). 

3.3.2 Aggregate stability and the condition of soil erosivity 

Aggregate stability, a measure of soil aggregate resistance to breakdown, influences 

many soil physical and hydraulic characteristics including surface sealing, soil surface 

roughness, infiltration and hydraulic conductivity. Much of the soil erosion process 

research focuses on erosion sub-processes such as aggregate stability (De Ploey & 

Poesen, 1985; Farres, 1987; Imeson & Kwaad, 1990). Soil aggregate stability is of key 

importance, not only in constraining the magnitude of soil erosion during rainstorms 

(Bryan 1968,1969; Farmer, 1973) and determining the amount of rainsplash (Parsons 

et al., 1994; Mermut et al., 1997), but also to the formation of structural crusts (Farres, 

1978; Bradford et al., 1986; Norton, 1987) and depositional crusts (Morin & Van 

Winkel, 1996). The instability of aggregates is essential for crusting to occur. 

However, for most soils, wash and splash amounts decrease once a seal is established 

(Bradford et al., 1986a, 1986b; Norton, 1987). A positive correlation was found 

between the aggregate stability of four American soils, infiltration and clay content, 

and a negative correlation with strength (Table 3.1). 

4 
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Soil Series % Sand 
2-0.05 

mm 

% Silt 
2-50 

um 

% Clay 
<2 
Um 

MWDt 

mm 

Ds0t 

mm 

>250, um 

% 

Strength 
At 
kPa 

Infiltration 
At 

mm h'I 

Vicksburg 8 85 7 0.65 0.05 39.2 36.5 3.9 

Miami 10 60 30 1.15 0.68 85.4 6.2 12.2 

Sharpsburg 4 63 33 2.00 1.39 89.2 1.7 32.8 

Brooksville 4 59 37 2.15 1.51 92.5 16.4 15.7 

Table 3.1: Indices of seal formation, aggregate stability (2-8 mm aggregates) and 
infiltration rates on four soils after rainfall simulation for 30 minutes. All 

slopes have steepness of 9 %. Adapted from Bradford & Huang (1992) p. 60 
tMWD: mean weight diameter (Kemper & Rosenau, 1986) 1 D50: median aggregate 
diameter of prewetted aggregates 

Sand 
% 

Silt 
% 

Clay 
% 

Soil 
identification 

Location Source 

80 15 5 Loamy fine sand Niono, Mali Hoogmoed (1986) 
83 2 15 Loamy sand Coastal plain, Israel Ben-Hur et al. (1985) 

84 5 11 Ferralitic Adiopodoum6, Lafforgue & Naah 
sandy soil Ivory Coast (1976) 

84 6 10 Loamy sand soil Jodhpur, India Sharma et al. (1983) 
84 10 6 Loamy sand soil Owerri, Nigeria Boers et al. (1988) 
85 2 13 Loamy sand soil Sharon Plain, Israel Morin et al. (1981) 
86 6 8 Sverdrup Minnesota, USA Young & Onstad 

sandy soil (1976) 
89 2 9 Fine sandy soil Tongeren, Belgium Poesen (1984) 

89 7 4 Princeton Loamy Indiana, USA Mannering (1967) 
fine soil 

90 6 5 Sand Agadez, Niger Valentin (1986) 
92 5 3 Sand Sadore, Niger Hoogmoed (1986) 
94 4 2 Sand Indiana, USA Mannering (1967) 

Table 3.2: Textural composition of sandy soils reported to be susceptible to surface 

sealing. Source: Poesen (1992) 
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The two key variables which affect aggregate stability are the textural attributes of the 

soil (Kheyrabi & Monnier, 1968; Bradford et al., 1987b; Poesen, 1992 " Table 3.2; Le 

Bissonnais & Arrouays, 1997) and antecedent moisture (Cousen & Farres, 1984; Le 

Bissonnais et al., 1989; Le Bissonnais, 1990; Truman et al., 1990; Levy et al., 1997). 

The physical composition of the soil has important implications for seal development 

and strength, which reach a threshold of <200 g kg'' clay, 30 g kg's organic C and 2.0 

% CBD-extractable Al and Fe (Le Bissonnais & Singer, 1993). The presence of 

swelling clays is especially important, during intense rainfall, for rapidly reducing the 

infiltration rate (Mermut et al., 1995). The rainfall component (Le Bissonnais, 1990) 

will change according to the initial structural state of the soil (Figure 3.1). If 

aggregates are saturated before rainfall, breakdown intensity is closely related to the 

kinetic energy of raindrops. If the aggregates are dry, breakdown intensity . is 

independent of kinetic energy and only depends on raindrop size and rain intensity. 

Rainfall 

Free energy Kinetic energy 

Slaking and Dispersion Mechanical 
microcracking breakdown 

Splash 

Figure 3.1: The two rainfall components controlling aggregate stability. 

Source: Le Bissonnais (1990) 
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The processes involved in aggregate stability change spatially and temporally. For 

example, the aggregate stability of tropical soils is more dependent upon rainfall energy 

than antecedent moisture condition (Watung et al., 1996), while different crust forms 

can often be identified depending on the season in which they developed (Le 

Bissonnais & Bruand 1993). Winter crusts, due to high antecedent moisture 

conditions, are formed by individual particle detachment producing a single layer of 

packed individual particles. In the spring, the dominant slaking mechanism is 

microcracking and the resulting crusts are formed by the coalescence of micro- 

aggregates. 

Hydrous and structural initial state I 

Rainfall characteristics Material characteristics 

BREAKDOWN MECHANISMS 

Characteristics of resulting units 

Kinetics of crusting 
Crust structure and properties 

Figure 3.2: The relation between the crusting parameters 

Source: Le Bissonnais (1990) 

When the processes of aggregate breakdown, particle displacement, and compaction 

under raindrop impact combine, structural evolution takes place. This structural 

evolution, in turn, determines the infiltration capacity and roughness (Figure 3.2). 

There is no unique relationship between rainfall characteristics and soil surface 
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behaviour. A soil with characteristics which make it prone to crusting will do so even 
if the rainfall is not aggressive. Conversely, if the soil is very permeable, then the most 

aggressive rainstorm will not cause crusting. 

Having argued that the stability of the soil aggregates is fundamental to the process 

of surface crusting, its measurement remains a problem. The fact that many methods 

have been used for measuring aggregate stability reflects the importance of the 

process and the lack of a reliable standardised methodology (Table 3.3). Many tests 

for erodibility do not reflect the mechanisms involved and other measures give 

contradictory results. For example, there is no standardisation in the drop 

characterisation used for calculating the time to breakdown (Farres & Cousen, 1985). 

Hence a standardised method for the study of aggregate stability would be of great 

interest for predicting erosion and crust formation on cultivated soils (Le Bissonnais, 

I996a). 

Type of Form of 
treatment sample 

Expression of 
the result 

Authors 

3-5 mm MWD Yoder (1936) 
<2 mm %> 200 Henin et al. (1958) 

Wet sieving whole soil change in MWD De Leenheer & De Boodt (1959) 
1-2 mm %> 250 Kemper & Rosenau (1986) 
2-3.4 mm MWD Churchman & Tate (1987) 
1-2 mm %> 250 Pojasok & Kay (1990) 
4-5 mm time to breakdown 

Raindrops or 2-9 mm MWD 
rainfall 5-8 mm time to breakdown 

whole soil %> 125 
Ultrasonic 4-5 mm dispersion rate 
dispersion 4-5 mm inter-aggregate 

pore volume 
Immersion 3-5 mm qualitative 

Low (1967) 
Young (1984) 
Farres (1987) 
Loch (1994) 

Edwards & Bremner (1967) 
Grieve (1980) 

Emerson (1967) 

Dry sieving <4 mm MWD Kemper & Chepil (1965) 

Table 3.3: Characteristics of some of the main methods for testing aggregate stability 
Note: several of these methods include various pretreatments 
Source: Le Bissonnais (1996b). MWD: Mean Weight Diameter 
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In response to this call for a standard method, a multi-faceted approach which 

combines much of the existing research (Yoder, 1936; Henin et al., 1958; Grieve, 

1980; Kemper & Rosenau, 1986) has been suggested in order to distinguish between 

the different breakdown mechanisms (Le Bissonnais, 1996b). It combines three 

treatments, which test for different wetting conditions and energies: fast wetting, dry 

wetting and stirring after pre-wetting, and measures the resulting fragment size 
distribution after each treatment (Le Bissonnais, 1996b; Le Bissonnais & Arrouays, 

1997). 

3.3.3 The relationship between rainfall intensity and crust development 

Various investigations have taken place, often experimental in nature, to determine 

the importance of raindrop impact on surface crust development and soil detachment 

often by describing distinct phases of detachment (Al-Durrah & Bradford, 1981; 

1982). In stage I, a crater is formed in the soil under the drop, simultaneously creating 

a bulge around the depression as the vertical strain of the drop is released. In stage II, 

the compressive stresses are converted into a shear stress because of the development 

of a radial jet. Stage III represents the complete development of a lateral jet. The 

pressure exerted upon the soil during impact is one of the most important variables in 

the modelling of aggregate stability and soil crust development. The energy required to 

detach in situ particles is considerably greater than that needed to entrain loose 

sediment (Nearing et al., 1994) and so the rainfall intensity is of ultimate importance. 

Differences in the breakdown of soil crumbs are associated with the duration of 

application of the stress and to the concentration of stress around the periphery of the 

raindrop (Ghadiri & Payne, 1977). Similarly, drop shape has an important role to play 

in causing deformation of the soil surface and erosion of the surface aggregates 

(Riezebos and Epema, 1985). 

However, it is not only the forces of the rain drop which are responsible for the soil 

crust and detachment processes. The texture of the soil and the clay lattice properties 

are paramount in determining the amount of interrill erosion: soil detachability is 
inversely related to clay content and sediment transport increases linearly with clay 
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content (Sharma et at, 1995). Swelling smectite-type clays cause the highest rates of 

splash (Mermut et a!., 1997). 

Various attempts to model the response of surfaces in terms of detachment to raindrop 
impact, drop size and rainfall velocity distributions have been carried out, using both 

semi-empirical models (Gilley et al., 1985b) and purely numerical relationships 
(Huang et al 1982; Nearing et al., 1986). The best functions for the evaluation of 

potential detachment rates seem to be based on measures that combine two or more of 

the rainfall characteristics: for example, kinetic energy multiplied by drop 

circumference (Gilley et al., 1985a), or the velocity of rainfall impact and the size of 

the raindrop, producing drop momentum, which correlates well with the resulting seal 
formation and final infiltration rate (Betzalel et al., 1995). Such an initial condition can 

be approximated to a soil crust as drop impact has a much more limited deformation 

effect on the soil surface (Nearing eta!., 1987). Peak stresses of between 0.5 MPa and 

1.5 MPa occurred within 13 to 21 µs of initial contact, with a general reduction to 

about 100 kPa after 50 µs depending on droplet size (Nearing et a1., 1987). 

In attempting to classify the effect of raindrops on individual soil particles, Alder 

(1979) listed four primary damage modes associated with the impact of liquid drops on 

a solid surface. At the start of an impact event, there is mechanical deformation of the 

surface which generates a series of stress waves moving out from the contact zone. 

Dilational, distortional and finally Rayleigh surface waves develop. After a threshold 

in pressure build-up, deformation of the droplet causes a lateral outflow sheet to form 

which can cause shearing in the local aggregates. In the case of a porous surface, water 

jets associated with the drop will travel into the subsurface pores and cracks, thus 

activating further potential physical breakdown mechanisms. Examining the effect the 

pressures have on the reorganisation of particles into a seal, Moss (1991 a) found that 

the pressure of a droplet, falling at or near to terminal velocity, is enough to propagate 

through a plastic shield and cause the reorganisation and compaction of surface soil 

particles. It is clear that the pressure of raindrops induces a strain within the top few 

millimetres of the soil and as a result there is the formation of pores and a process of 

strain-induced segregation (Bielders and Baveye, 1995a). As the soil becomes partly 

saturated there are strong cohesive forces which limit the percolation of particles into 
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the profile. However, the drop pressure is great enough to overcome the cohesive 
forces and encourage downward movement of fine particles to form a washed-out layer 

which accumulates at a depth related to the average momentum of the raindrops 
(Bielders and Baveye, 1995b). 

3.3.4 The importance of rainfall intensity and duration 

Seal development is not uniquely related to cumulative rainfall energy (Valentin, 

1986), but rainfall intensity also has an important role to play (Römkens et al., 1986; 

Mermut et al., 1995). Seal hydraulic conductance rapidly decreases with increased 

rainfall energy but then levels-off to a near constant value. The degree of seal 
development, determined by the final hydraulic conductance values, depends on 

rainfall intensity. Paradoxically, looking at the response to two rainstorms separated by 

16 hours, it was concluded that seal development was reduced as rainfall intensity 

increased and vice versa (R6mkens et al., 1985). This anomalous result is probably 

due to greater turbulence in the thicker surface water films at larger rainstorm intensity 

regimes and the eroding action of impacting raindrops. Turbulence tends to keep fine 

sediment particles and colloidal material in suspension and prevents clogging of the 

soil pores. Soil crusting should be studied over a series of wetting and drying events 

(Falayi & Bouma, 1975; Bresson & Valentin, 1990). It is clear that the amount and 

rate of aggregate pre-wetting and the ageing duration after wetting are influential in 

the overall aggregate stability during subsequent rainfall events and therefore the 

susceptibility to seal (Le Bissonnais & Singer, 1992; Levy et al., 1997). Very little 

information is currently available on changes of seal properties during subsequent 

rainfall events. The information that is available is contradictory, ranging from no 

significant effect (Morin and Benyamini, 1977), to increasing infiltration (Ben-Hur et 

al., 1985) and decreasing crust strength (Bradford & Huang, 1992). Others have 

denied the positive effect on infiltration (Roth & Helming, 1992) and found 

increasing runoff and decreased infiltration in pre-crusted soils. On highly stable 

agricultural soil, where over a third of clods were larger than 100 mm, clods reacted 
in different ways depending on the number of rainfall events (Mellis et al., 1996). It 

is likely that the apparent differences of opinion relate to the soil properties under 
investigation and, to a degree, some over-simplification of the issue. What is 
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probably closer to the truth is a model of continuous destruction and recreation of 
surface crusts during successive storms (Hardy et at., 1986). Such a view has been 

reiterated by Remley & Bradford (1989) and Luk & Cai (1990), who indicate that 

seal development is a complex interaction of contradictory processes, with sub- 

processes of both seal formation and seal destruction induced by raindrop 

compaction and detachment. The abrasion of particles during wind erosion processes 

can also influence the state of the crust between rain events, often breaking it up 

entirely if the initial crust is weak enough (Rice et at., 1996). 

3.3.5 Effect of rock fragments on infiltration and surface seal formation 

Desert hillslopes, especially those of the Badia, are often characterised by a mantle of 

stony debris, which may reflect a relict transport process or current redistribution of 

surface material (Allison and Higgitt, in press). Similar characteristics have been 

identified in the Negev (Amit & Gerson, 1986). It has been recently recognised that 

soil crusts and rock fragments have significant roles to play in determining 

infiltration (Valentin, 1994) and overland flow (Yair & Lavee, 1976). Rock 

fragments will cause increases and decreases in infiltration rate under different 

conditions and it is likely that contradictory data sets occur because there is no 

adequate methodology for describing stone cover (Dunkerley, 1995). The position of 

the rock fragment within the surface layer exerts a strong control on infiltration 

(Poesen, 1986a, 1986b; Poesen et al., 1990). The sealing index (S. I. ), which is the 

rate of change of the percolation of water through the seal during a rainfall event, 

equalled only 5.4 mm h-2 for rocks resting on the surface, while for partly embedded 

rocks it was 9.0 mm h'2. Field evidence investigating the role of rock fragments on 

raindop-soil interactions has been contradictory. Rock fragments can reduce 

raindrop impact and therefore seal formation, with the additional factor that water 

can infiltrate along the interfaces between rock and soil surfaces. Rock fragments 

also act as a mulch to reduce raindrop impact and hence sealing (Meyer et al., 1972; 

Kochenderfer & Helvey, 1987). However, a negative correlation between rock 
fragment cover and infiltration can also occur (Blackburn, 1975; Casenave & 
Valentin, 1992). Valentin (1994) shows, from field studies undertaken in West 
Africa, that the vesicular porosity of the surface seal is inversely proportional to free 
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rock fragment percentage, and increased with embedded rock fragments. Wilcox et 

al. (1988) postulate that stone pavement evolution in and and semi-arid regions is 

due entirely to surface lowering, intensified by lack of vegetation. It is therefore not 
the blocks themselves which promote or reduce infiltration, but the soil crusting and 

compaction resulting from raindrop impact. 
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Figure 3.3: Effects of rock-fragment size and cover on final runoff coefficient. Rock 

fragments rest on the soil surface. Adapted from Poesen (1992) 

The three key variables affecting the influence of rock fragments upon seal 
development and infiltration are size, percentage cover and the embeddedness of the 

rock fragments (Bunte & Poesen, 1994). Smaller clasts will tend to reduce the 
infiltration, while larger ones (>26 mm) encourage infiltration (Wilcox et al., 198$; 

Brakensiek & Rawls, 1994). If the fragment is not embedded, the soil surface could 

absorb part of the rock flow and part of the Horton overland flow created on the soil 
seal surface. In addition, the reduction in raindrop impact means that the S. I. will be 

63 



Chapter 3- Soil crust formation processes 

low. However, if the rocks are embedded, the sealed surface is bonded strongly onto 

the edges of the fragment, resulting in a higher S. I. (Poesen, 1992). Lavee & Poesen 

(1991) and Poesen & Lavee (1991) give results on the combination of size and cover 

of fragments upon infiltration and the trend is obviously positive concerning both 

variables (Figure 3.3). 

3.3.6 Influence of slope angle upon sealing and infiltration characteristics 

Various authors have suggested negative linkages between surface seal development 

and slope angle. Unit area runoff volume, on a loamy soil, decreases with increasing 

slope gradient to a threshold of 12° (Poesen, 1984; Poesen & Govers, 1986). Poesen 

(1987) uses seal strength, as measured with a torvane, and seal index (S. I. ) as two 

indicators to propose that increase in slope can be related to weaker and thinner 

crusts. He explains this by suggesting that the increase in surface wash, as slope 

angle increases, obstructs the full development of the seal. For short duration rainfall 

events there is a high negative correlation between runoff and slope, with a minimum 

value occurring at around 10°. As rainfall duration increases, runoff and slope angle 

take on a positive correlation (Luk et al., 1993). Likewise on surfaces which are 

highly susceptible to sealing, infiltration rates generally increase, while crust strength 

decreases between 9% (5.1°) and the 20% (11.3°) slopes (Bradford & Huang, 1992). 

This was seen to be a result of several factors including increasing rill activity and 

stronger erosional influences (Bradford & Huang, 1992), smaller raindrop impact per 

unit area and associated reduction in the normal component of rainfall (assuming 

vertical fall) and a higher frequency of surface ponding on lower-angled slopes which 

increase the compactive energy of raindrops (Poesen, 1984; 1986). Differential 

cracking may also play a significant role in controlling runoff at different slope 

angles (Govers, 1991). If the distribution and strength of the surface crust vary 

downslope as it becomes more concave or convex, then that will affect the way in 

which runoff is generated and where infiltration will take place (Gascuel-Odoux et 

al., 1996). 
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3.4 THE INFLUENCE OF SOIL CHEMISTRY UPON SEAL DEVELOPMENT AND 

INFILTRATION 

Permeability of soil is a function of the square of the pore radius and the porosity or 

cross-sectional area available for flow. It follows that any process or treatment which 

reduces the overall porosity will have a dramatic effect on soil permeability and 
hence infiltration of rain or irrigation water. There is a set of physico-chemical 

processes which play a role in reducing the permeability of the surface soil layers. 

Under certain conditions clays will disperse and clog the pore space as the pressures 

between the silicate clay sheets increase due to chemical imbalance. The most 

important ion is exchangeable sodium (E. S. P. ), which has a high propensity to 

develop in semi-arid and and environments due to inadequate leaching, and causes 

repulsive interparticle forces within clays. Similarly, at low electrolyte levels (EC), 

of either the soil or the applied water, dispersion will take place. All are important 

considerations when determining how aggregates have broken down and the amount 

of pore clogging which has taken place during seal formation to create a distinct 

layer of reduced permeability. Consequently, consideration of clay dispersion and 

flocculation under different chemical regimes is necessary. 

3.4.1 Dispersion of clay minerals and its effect upon infiltration 

Flocculation and dispersion are vitally important in determining the physical 

behaviour of the colloidal fractions of soils and therefore implicitly affect the 

physical properties which soils exhibit, the chemical details of which are covered by 

van Olphen (1977). For many soils the dominant ion balancing the lattice charge is 

calcium. However, soils. developed in semi-arid or and environments may have 

appreciable quantities of sodium ions balancing the charge. The predominance of 

exchangeable sodium ions may adversely affect the physical attributes of the soil, 

including permeability (Quirk, 1986). The Exchangeable Sodium Percentage 

(E. S. P. ) of the soil and the Electrolyte Concentration (E. C. ) of the applied water have 

a considerable effect on the propensity for clay minerals within the soil fabric to 

disperse. Such a dispersion and re-orientation of the clay material within the 

available pore spaces causes the plugging of pore networks, the subsequent reduction 
in hydraulic conductivity and hence a permeability drop of the near-surface layers. 

r 65 



Chapter 3- Soil crust formation processes 

The crystals of clay minerals are composed of elementary silicate sheets stacked in 

the direction of the c-axis. The mica-illite and kaolinite crystals do not expand in 

water and therefore have a fixed c-axis. Montmorillonite and related smectite 

minerals swell as a result of hydration of the cations balancing the charge of the 

elementary silicate sheets. 

The threshold concentration concept, which was initially developed by Quirk & 

Schofield (1955), has been used to determine the structural stability and permeability 

of the soil (Shainberg & Letey, 1984; Quirk, 1986). It is defined as the concentration 

in the percolating solution that would give rise to a 10-15% decrease in hydraulic 

conductivity at a given E. S. P. The difference in the observed threshold concentration 

between a sodium-saturated and a calcium-saturated soil is considerable. For the 

sodium-saturated soil only an EC of greater than 250 meq dm'3 is enough to keep it 

above the threshold limit. If concentrations as low as 50 meq dm3 are used, 

permeability is reduced by over 60%. On the other hand, if the soil is saturated with 

calcium, then even the addition of distilled water would not reduce permeability 

more than 25%. The threshold in such a case occurs at about 0.2 meq dm 3 and at 

concentrations over 2 meq dm'3 the clays flocculate. However, there has been a lack 

of consensus among soil scientists on the limit for reduction in HC below which soil 

structure is adversely affected. Suggestions for an adequate limit include 15% (Quirk 

& Schofield, 1955), 25% (McNeal & Coleman, 1966) and 50% (Shainberg & Letey, 

1984). Using a method of optical transmission (%T) to identify the stability of 

aggregates Abu-Sharar (1988) suggested that for a given S. A. R. there would be a 

critical concentration (CC) corresponding to maximum clay dispersion (minimum 

%T = 10) and a threshold concentration (TC) where there was very little dispersion 

(maximum %T = 20). 

The difference between sodium and calcium in their capacity to cause flocculation is 

illustrated in Table 3.4. More recently, the whole concept of using the critical 

threshold as a measure of soil degradation has been challenged (Crescimanno et al., 
1995), because soil instability often takes place at lower values of E. S. P. This has 

led to suggestions that infiltration rates alone are a better and more sensitive indicator 

of E. S. P. than hydraulic conductivity (Shainberg & Letey, 1984). Furthermore, 
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Crescimanno et al. (1995) point out that the behaviour of soils at increasing E. S. P. 

appears to be a continuum rather than having any threshold values. In addition, 

Curtin et al. (1994) found that it was only with the input of high mechanical energy 

that distinct thresholds occurred, whereas with reduced energy, as would be expected 

in field conditions, the thresholds were absent. 

Mineral Background pH CFC 
electrolyte mol M-3 

Georgia kaolinite NaCl 7 5.0 

NaHCO3 8.3 245.0 

CaC12 7 0.4 

Vermiculite NaCl 7 38.0 

NaHC03 8.3 58.0 
CaC12 7 0.8 

Illite 36 NaCl 7 9.0 

NaHCO3 8.3 185.0 

CaC12 7 0.13 

Table 3.4: Critical flocculation concentrations (CFC) for some clay minerals at a 

suspension strength of 0.6 g kg''. Source: Arora & Coleman (1979) 

3.4.2 Dispersion versus mechanical processes 

It is generally accepted that a high Sodium Adsorption Ratio (S. A. R. ) and a low 

Electrolyte Concentration (Quirk & Schofield, 1955; Shainberg et al., 1981) in the 

soil and soil water are associated with soil structural instability, seal development 

and degradation (Agassi et al., 1981; Shainberg, 1985). Clay dispersion at the soil 

surface under the influence of impacting raindrops has been seen as playing a major 

role in the formation of a soil crust (Miller, 1987; Miller & Scifres, 1988; Shainberg 

et al., 1989). Some consider that it is the clogging of pores immediately below the 

surface which gives rise to the washed-in zone (McIntyre, 1958; Gal et al., 1984). 
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However, much of the research has looked at the indirect effect of S. A. R. and E. C. 

on infiltration rates, rather than focusing upon the different interactions of the 

physico-chemical processes involved (Rhoades, 1972). The properties of the seal are 
determined, in the most part, by the dispersion of clays which in turn constrains the 

final rate of infiltration. Abu-Sharar et al. (1987) state that 'At present we still do not 

have reliable criteria and standards for predicting a priori how these parameters 

quantitatively affect structural stability and hydraulic conductivity of soils' (p. 309). 

The processes involved are the swelling of clays, clay dispersion with the subsequent 

plugging of connecting pores, and slaking of the aggregates. 
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Figure 3.4: The infiltration rate of the Natanya soil as a function of cumulative rain: 

The effects of soil E. S. P. and phosphogypsum application. 

Source: Kazman et al. (1983) 

The EC of the applied water plays a significant role in the degree of crusting (Oster 

& Schroer 1979; Agassi et al., 1981). Infiltration rates increase markedly as the EC 

of the water from the rainfall simulator increases from distilled to 5,6 dS m"1. When 

low concentrations are applied, dispersion is the main process forming the crust, 

resulting in an almost complete reduction in final infiltration rate (FIR), whereas if 

concentrations are high, dispersion is reduced and the crust forms entirely by 

aggregate staking, resulting in the maintenance of the FIR at 8-15 mm h'' (Agassi et 
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a1., 1981). By keeping EC and raindrop impact energy constant, that there is a 

considerable change in FIR as E. S. P. increases (Kazman et al., 1983 - Figure 3.4) 

Even at very low levels of sodicity (E. S. P. = 1.0) crusting occurs causing the 

infiltration rate to drop from over 100 mm h'' to a final infiltration rate (FIR) of only 
7mmh-1. 

A total of 2g kg" dispersed clay (i. e. less than 0.8% of the total soil clay) is 

sufficient to decrease the hydraulic conductivity of the soil by 72% (Amezketa & 

Aragiies, 1995). In addition there are significant decreases in HC at higher ECs, 

which are explained by an osmotic explosion effect caused by steep gradients in EC 

between macro- and micropores (Shainberg et a!., 1981a). 

Although clay dispersion is often upheld as the dominant physicochemical 

mechanism, there is a body of opinion which suggests that other processes are 

equally important. For example, McNeal & Coleman (1966), Jayawardene & Beattie 

(1978) and Jayawardene (1979) concluded that swelling of soils was the dominant 

mechanism by which hydraulic conductivity (HC) is reduced. An alternative view, 
first proposed by Emerson (1964), is that soil aggregates when immersed in water 

often break down into discrete units. This process of slaking, which can proceed 

without prior clay dispersion, has been argued by Abu-Sharar et al. (1987) to be 

more important. At an S. A. R. of zero there is no 52 µm clay dispersion until the EC 

is reduced to 3.19 mol m'3 and none at the 51 µm level until the EC is as low as 0.28 

mol ni 3. As EC is reduced, there is extensive slaking of larger into smaller 

aggregates along with a release of clay. Abu-Sharar et al. (1987) repudiate the 

mechanism proffered by Emerson & Bakker (1973), who suggest that clay is only 

dispersed from the periphery of aggregates, and instead propose that larger 

aggregates begin to slake along planes of weakness prior to dispersion. By 

measuring the optical transmission (%T) of suspensions of a Jordanian soil, Abu- 

Sharar (1988) concludes that slaking of soil aggregates into fine aggregates (2-5 µm) 

takes place without any clay dispersion. This means that the deterioration in soil 

structure and consequent reductions in HC could be attributed to the failure of 

aggregates, rather than the clay dispersion mechanism proposed by Shainberg et al. 
(1981a, 1981b). 
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3.4.3 Effect of conditioners and water quality on dispersion and crust formation 

In order to reduce soil structural degradation and to retard the rate of both structural 

and depositional crust formation (Le Souder et al., 1989), ways have to be found to 

overcome the mechanisms of seal formation and crust development, therefore 

maintaining a high infiltration rate. The main method is the use of conditioners, 

which are mixed in with the surface soil layers before or during irrigation and 

cultivation. These conditioners take on various forms including mineral 

conditioners, mulches, organic polymers and sewage sludge. In the past, large 

amounts of conditioner were applied at high cost, to improve soil structure. New 

strategies of application using various mixtures in smaller amounts have revived 
interest in controlling the development of crusts (Norton et al., 1993). 

Phosphogypsum applied at 5 Mg ha' , 
in order to release electrolytes into the 

percolating and runoff water and hence reduce clay dispersion, results in maintaining 

soil aggregate stability (Agassi et al., 1990). Runoff is reduced by 75%, while 

erosion is reduced to only 1-3% of the original rate. Application of gypsum to the 

soil during tillage causes a considerable reduction in crust strength (Frenkel & Hadas, 

1981), although the effect is exponential with the greatest differences occurring as 

strength increases. Others have disagreed suggesting that, due to a greater retention 

of clay in the surface layers, surface crust development increases (Borselli et al., 
1996a) and therefore seedling emergence reduces due to fewer cracks (Borselli et al., 
1996b). 

Comparing the dissolution coefficients of mined and industrial gypsum and their 

relative effects upon infiltration into a sodic soil, Keren & Shainberg (1981) observe 

that industrial gypsum dissolves an order of magnitude faster than mined gypsum. 
The subsequent FIR using the mined gypsum is unable to counteract the effect of the 

sodic soil, except if the gypsum is ground to powder. However, for the industrial 

gypsum the infiltration rate increases between two and four times compared with the 

soil without gypsum. Le Souder et al. (1989) use an aluminium polycation which is 

sprayed onto the soil and adsorbs on negative clay sites to modify clay reorganisation 

and flocculation. Using micromorphological analysis, it can be observed that the 
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formation of the seal takes longer to develop with the conditioner and depositional 

crusts are absent. 

While the addition of gypsum and mineral or organic polymers modifies the soil by 

protecting clays against the propensity to disperse, thus reducing crust formation and 
increasing hydraulic conductivity, mulches are used to protect the soil surface 

aggregates from raindrop impact. Mulches are effective in reducing raindrop splash 

by more than 92% and interrill erosion by 76% (Singer et al., 1981). The preventing 

of raindrop impact by mulching maintains a relatively high permeability at the soil 

surface (Agassi et al., 1985), although the best results come when mulching is 

combined with chemical amendments (Zhang & Miller, 1996a). 

Organic polymers such as ̀ Super Slurper' (Hemyari & Nofziger, 1981), which is a 

hydrolysed starch polyacrylonitrile graft copolymer, more commonly Polyacrylamide 

(PAM) (Levy et al., 1995; Trout et al., 1995; Zhang & Miller, 1996b), as well as 

cationic polymers (Ben-Hur et al., 1990), have all been used to increase permeability 
in soil crust conditions. The application of PAM is intended to stabilise soil 

aggregates by flocculating the clay particles. Its adsorption by clay minerals is 

therefore highly dependent upon the molecular size, conformation, charge 

characteristics of the polymer and the nature of the soil colloids such as external 

surface area and pore sizes (Letey, 1994). Polymers have been shown to be effective 
in increasing hydraulic conductivity (Helalia et al., 1988) and porosity 
(Shanmuganathan & Oades, 1982). They also encourage flocculation (Helalia & 

Letey, 1988), which increases aggregate stability and therefore reduces runoff and 

erosion (Zhang & Miller, 1996b). PAM is widely used on and soils where past 
irrigation with poor quality water has led to an increase in ESP and a reduction in soil 

stability. The addition of PAM to low EC water triples FIR, but when added to saline 

water its effectiveness is reduced to 35% (Levy et al., 1995). PAM is able to control 

the development of runoff at low ESPs (<4); but is ineffectual at higher ESPs, but 

erosion is reduced at all levels. Trout et al. (1995) record a mean reduction in 

erosion of 70% and an increase in infiltration of 30%. Ben-Hur et al. (1990) 

reviewed the effectiveness of non-ionic, anionic and cationic polymers and found 

that the'first two had little effect, but that the cationic polymer had a flocculating 
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action which compensated for the disruption of aggregates by raindrop impact. 
Hemyari & Nofziger (1981) measured the effect such polymers had on crust strength 
and found reductions of 84%, 75% and 54% for a sandy loam, a loamy sand and a 

clay loam soil, indicating that the largest reductions in strength occurred on the soils 

with the highest clay contents. Similarly, it was found that in sandy soils conditioned 

with gel, there were improvements in the soil hydraulic properties (Al-Darby, 1996) 

and a small decrease in crust strength, but only with saline application waters (Al- 

Omran et al., 1991). 

Both Shainberg et al. (1990) and Stem et al. (1991) compared the different effects of 

polymers, mulches and phosphogypsum (PG) and came to similar conclusions: PAM 

is more effective than PG. When they are mixed together infiltration is further 

improved (Figure 3.5). 
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Figure 3.5: Infiltration rate of a grumusol as a function of cummulative rainfall, 

phosphogypsum treatment (PG, at 5 Mg ha'), and PAM application (at 

20 kg ha''). DW = distilled water. Source: Shainberg et al. (1990) 
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Sewage sludge is another, rather underused method of increasing the aggregate 

stability of soils and reducing the propensity to seal (Pagliai et al., 1983), although 
there has been evidence of toxicity and contamination if the sludge is enriched in 

heavy metals. However, municipal waste can be used effectively to increase the 

stability of soil aggregates by reducing clay dispersion (Abu-Sharar, 1993 - Figure 

3.6. ) 
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Figure 3.6: Relative hydraulic conductivity' associated with the clay threshold 

concentration at the respective SAR for sludge-amended soil samples 
from Jordan. Source: Abu-Sharar (1993). 

$ Percent of the corresponding maximum value obtained when initially permeating 
the most concentrated electrolyte solution. 

The improvement in permeability is highly dependent on the type of conditioner 
applied (Abu-Sharar, 1996). Sewage sludge causes a greater increase in infiltration 

than gypsum, which in turn is better than cement dust while the application of 
phosphate rock has least effect (Abu-Sharar, 1996 - Table 3.5). 
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Treatment Plot I Plot 2 Plot 3 Average 

Control 4.86±0.13 3.29±0.15 3.75±0.19 3.97±0.68 

Phosphate rock 5.03±0.27 

Cement dust 10.54±0.49 

Gypsum 22.05±0.18 

Sewage sludge 42.61±0.00 

5.68±0.00 5.03±0.66 " 5.25±0.51 

10.96±0.00 9.86±0.28 10.47±0.56 

21.11±0.04 19.51±0.54 20.89±1.10 

39.91±0.45 38.48±0.23 40.33±1.74 

Table 3.5: Steady state infiltration rate (mm h'1) for the treatment plots as measured 
in summer 1992 using distilled water and a constant head device (average 

of 10 replicates), Jordan. Source: Abu-Sharar (1996) 

3.5 SOIL CRUST FORM AND MICROMORPHOLOGY 

Although the factors which combine to produce a soil crust are well known, the 

processes acting within the surface layers can usually only be identified by observing 
the morphological changes. Morphological analysis has been used from the very 

earliest research (Duley, 1939; McIntyre, 1958a, 1958b; Evans & Buol, 1968). 

However, because there is considerable variability in soil and rainfall characteristics in 

addition to methodological differences between scientists, there have often been 

divergent interpretations of the imagery. Any micromorphological description has the 

important limitation of scale. Spatial relationships that occur on a greater scale than the 

area of the sample (mm to cm) cannot be appreciated, which puts more responsibility 

on the sample collector. In addition, with such a dynamic process, it is impossible to 

make statements about processes if samples are only taken at the end of rainfall events. 

Changes in morphology occurring during earlier stages of rainfall are lost, such as the 

formation of microlayers which are later eroded (West et a!., 1992). 

Theories involving the formation of soil crusts fall into two major categories, first 

properly defined by Chen et al. (1980), who defined soil crusts as either structural or 
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depositional. Structural crusts are formed by water drop impact and associated rapid 

wetting of the soil surface. Depositional crusts are formed by the translocation of 
fine particles and their deposition at a certain distance from their original location 

(Valentin & Bresson, 1992). More recently other terminology has been developed: 

disruptional rather than structural crust, because this type of crust is formed by 

structural disruption, and sedimentational rather than depositional, because this term 

has been used as a possible synonym to washed-in zone (Arshad & Mermud, 1988; 

Moore & Singer, 1990; Slattery & Bryan, 1994). Alternative terms such as lamellar 

crust have been defined to correspond with McIntyre's skin seal. However, the skin 

seal, which is often dominated by a strong continuous orientation of clay particles, is 

extremely thin (< 50, um) and is probably better defined as an afterflow seal (Slattery 

& Bryan, 1994), as it forms over depositional and structural crusts by fine particle 
deposition after rainfall cessation rather than by raindrop impact. The processes 
leading to the formation of structural crusts may well act simultaneously with those 
leading to depositional crusts. However, in order to investigate one particular 

process, the processes have often been treated separately. While most research has 

focused upon the formation of structural crusts, some have recently questioned such a 
focus: Morin & Van Winkel (1996) argue that all the processes involved in forming a 

structural crust increase the sediment availability in sheet wash, so that depositional 

crusts will subsequently form downslope. The most comprehensive classification to 
date is that of Valentin & Bresson (1992 - Table 3.6). 

3.5.1 Comparative micromorphologies of temperate and and soil crusts 

Certain types of crust are more likely to develop in temperate environments (Mücher 

& De Ploey, 1977), while others will have a tendency to occur only in and ones 
(Chen et al., 1980) (Table 3.6 & Figure 3.7). Arid topsoils, dominated by silt and 

clay, are very similar to those which occur under temperate conditions. In sandy 

soils, several specific crusts develop, which occur almost exclusively in and 

conditions (Bresson & Valentin, 1990). 
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Table 3.6: Classification of soil crusts according to morphology, genesis and 

environment. Source: adapted from Valentin & Bresson (1992) 
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The drying crust occurs on soils where the surface is protected from raindrop impact 

by vegetation. Surface structural changes are restricted to a slight cementation of the 

upper millimetres due to repeated wetting and drying. The layered structural crust 

consists of a layer of loose grains overlaying a plasmic seal which, in its most 

advanced form, Valentin (1991) categorises as filtration pavement (three layer crust). 

The uppermost layer consists of loose, coarse grains, the middle layer is made up of 
fine, cemented grains with vesicular voids, and the lower layer is a plasmic seal 

which is finer, more oriented material with a much reduced porosity (Valentin, 

1981). The erosion crust refers to the plasmic layer remaining after the removal of 

sandy layers by wind and water erosion. The fourth category of and sandy crust 
formations is the runoff depositional crust (Bresson & Valentin, 1990). These 

consist of several alternate sorted micro-beds, with a more or less inter-bedded 

orientation. They are often a few centimetres thick and often lie above structural 

crusts in the base of furrows. Sedimentation crusts consist of densely-packed, well- 

sorted particles, the size of which progressively increases with depth. 

3.5.2 Biological crusts 
Whatever the type of crust, whether it be erosional or depositional, it may be 

strengthened by certain algae or fungi. Microphytes are often associated with soil 

surface crusts (West, 1990) and have been seen to play a major role in the initiation of 

crust development (Johansen, 1993). Soil scientists have largely ignored or played 
down the role of organisms in the formation process, despite the importance attributed 

to them by biologists and ecologists. Some microphytic crust organisms, particularly 

the cyanobacteria (e. g. Microcoleus vaginatus, Chlamydomonas acidophilia), exude 

mucilaginous materials that glue the organisms, organic matter and soil physical 

particles in place (Campbell et al., 1989), but destroy alumino-silicates (Kovda, 1980). 

Others are more filamentous (e. g. Nostoc commune and Lyngbya sp. ) and bind particles 
by entanglement (McKenna Neuman et al., 1996). Because microphytic crusts 

variously cover landscapes with generally sparse vascular plant growth and litter, but 

high rates of natural erosion, it has been appealing to assume that soil surface 

microphytes slow down both wind and water erosion. There have indeed been 

numerous qualitative statements which suggest such a connection (Mücher, 1988; 

78 



Chapter 3- Soil crust formation processes 

Campbell et al., 1989), but much of the research has not been supported by evidence 
from well-designed experiments (West, 1990). Recent work has begun to quantify the 

importance of different microphytic species on interrill erosion, infiltration capacity 

(Williams et al., 1995) and wind erosion (McKenna Neuman et al., 1996). The 

research suggests that microphytic crusts are vital in the stabilisation of the finer soil 

fractions (Williams et al., 1995), while McKenna Neuman et al. (1996) conclude that 

on sandy soils only the filamentous algae can protect the soil surface against wind 

erosion. The formation of pedestal features in areas colonised by microphytic crusts 

confirms that surrounding uncolonised crust will be more prone to erosion (Casenave 

and Valentin, 1989). Such crusts consist of either mineral layers with a small amount 

of associated algae or cryptogamic crusts which are made up of continuous cryptogam 

mats (Mischer et al., 1988). 

The influence of microphytic crusts has often been overlooked and yet, especially in 

the case of and zone soils, they are a very important natural mechanism for protecting 
the soil surface. An almost negligible amount of water is needed for their colonisation 

and yet they are fragile and very susceptible to tillage, grazing and vehicle compaction, 
taking many years to recover from disturbance. 

3.5.3 Changes in the soil surface characteristics 

Most of the soil crusting literature has concentrated either on the processes involved 

in the formation and development of the seal or on its effects on infiltration, runoff 

and erosion. Much less attention has been given to the change in morphology of the 

soil surface as a result of the formation of a seal or the micro-scale spatial 
distribution of surface crusts. Various scientists have attempted to divide seal 

formation into distinct periods, each defining a specific stage of the process and 

consequently a specific morphology (Chen et al., 1980; Moore & Singer, 1990; Le 

Bissonnais & Singer 1992; Le Bissonnais & Singer 1993). Stage I refers to the time 

period from the beginning of rainfall to the initiation of runoff. Stage II lasts until 

runoff has reached steady state. Stage III defines the period after steady state runoff 
has been established (Chen et al., 1980). The stages will be profoundly affected by 
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the initial water content (Le Bissonnais & Singer 1992) and it is possible that soils 

under experimentation will not reach Stage III (Le Bissonnais & Singer 1993). 

Changes in surface roughness during rainfall events have long been identified and 

correlated with changes in infiltration (Steichen, 1984), runoff (Cogo et at, 1983), 

erosion (Johnson et at, 1979) and more recently with antecedent soil water content 

(Rudolph et at, 1997). Surface roughness controls the spatial surface processes and 

in return, the surface processes also change the surface topography, displaying an 

inseparable interaction (Bradford and Huang, 1992). Changes in surface roughness 

have an important impact upon water and wind erosion (Saleh et at, 1997). As the 

surface changes microtopographic highs and lows change, allowing an evolving 

spatial distribution of different crust types (Bielders et at, 1996). With new 

instruments that can measure down to the millimetre scale, such as laser scanners 
(Römkens et at, 1988; Huang & Bradford, 1990; Magunda et at, 1997) and close- 

range photogrammetry (Jeschke, 1990; Helming et al., 1993; Merel, in press), it has 

been possible to identify precisely changes taking place as the crust forms over single 

or multiple rainfall events. Such equipment gives a height resolution of 

approximately 0.2 mm (Helming et at 1993; Huang & Bradford, 1990). 

The initial change in microtopography causes the surface roughness to increase with 

rainfall. The fine material consolidates in the interstices, while the larger scale 

roughness produced by the larger clods remains unchanged. As the soil aggregates 

continue to slake on the impact of raindrops (Le Bissonnais et al., 1989), and as clay 
dispersion takes place due to the low electrolyte content of the rainwater (Norton et 

al., 1993), the small micro-aggregates and primary particles become oriented and 

organised into a crust (Farres, 1978) by interstitial filling (Boiffin, 1986). 

Microtopographic highs tend to be lowered over time, so that the locations and 

potential for ponding decrease and therefore infiltration becomes more indistinct and 

eventually disappears, thus increasing overall runoff (Magunda et al., 1997). Zobeck 

. and' Onstad (1987) reported a positive correlation between random roughness and 

cumulative precipitation. 
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Results obtained by Helming et at. (1993) suggest that the random roughness 

coefficient (RRC) decreased by about 12% after rainfall for an initially rough relief, 
but there was a 43% decrease in RRC for a surface which was initially finer. The 

propensity of a soil to crust also depends upon the initial clod size (Rudolph, 1997). 

Farres (1978) found that a clod of 3.3 mm diameter takes much longer to crust than 

one of 6.7 mm, although Zobeck and Popham (1992) found that aggregate size and 

crust cover were not affected by geometric aggregate diameter. Although under high 

energy raindrop impact conditions most aggregates will eventually break down, large 

surface aggregates and primary particles (>1000 µm) actually reduce the possibility 

of crusting by allowing surface pores to persist, and consequently encouraging 

hydraulic penetration (Moss, 1991b). Bradford & Huang (1992) disagree that 

decreasing roughness automatically follows from an increase in rainfall. They 

suggest that the initial surface condition and controlling processes are more 
important. For example, if there is a flat surface, surface roughness will always 
decrease, but for soil on 9% and 20% slopes there is progressively more roughness 
because erosion is more important than crusting. For soils containing rock 
fragments, surface roughness changes become more complex still (van Wesemael et 

al., 1996), with an overall increase in R. RC for all sizes of rock block, although for 

the smallest (1.7-2.7 cm) fragments an initial decrease was observed. 

The importance of surface roughness for soil crust research is that it has implications 

for agricultural management, with specific reference to tillage methodologies 
(Allmaras et al., 1967; Römkens & Wang, 1984). If the soil preparation involves 

creating a rough surface, then infiltration will continue to be high, even on steeper 

slopes, but if the method creates a fine flat surface, then crusting will dominate. 

Linden & Van Doren (1986) introduced two surface configuration parameters of clod 

inclination and average relief to determine the importance of roughness on transport 

and erosion. 
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3.6 THE EFFECT OF SOIL CRUSTING UPON WATER FLUXES AND HYDRAULIC 

CONDUCTIVITY 

3.6.1 Physical properties affecting infiltration 

In soils displaying stable surface aggregates, there is an inevitable decrease in the 

infiltration capacity as a result of the reduction in the matric suction gradient that 

occurs as infiltration proceeds (Hillel, 1980). Generally, the infiltration rate (IR) is 

high during the early stages of infiltration, particularly when the soil is initially dry, 

but decreases to approach a constant rate asymptotically, due to a reduction in the 

matric suction gradient which occurs as infiltration proceeds (Shainberg & Levy, 

1996). In the initial wetting, the surface becomes saturated, while the sub-surface 
layers remain dry and hence the matric suction gradient is great. As the wetting zone 
deepens, the gradient is reduced. However, the infiltration of water into bare soils 

will be vastly reduced if a seal forms on the soil surface (Morin & Benyamini, 1977; 

Ben-Hur et al., 1987; Morin et al., 1989; Morin & Kosovsky, 1995). The nature of 
the soil surface will be the main control upon the reduction. in infiltration through the 

particle size distribution (Poesen, 1984; Moss, 1991a), porosity (Ela et al., 1992), 

soil chemistry, stability of the soil aggregates (Farres, 1978), the roughness of the 

surface (Falayi & Bouma, 1975; Steichen, 1984), bulk density of the resulting crust 
(Saleh, 1993), and dominant clay mineralogy (Sumner, 1992; Mermut et al., 1997), 

although the chemistry of the applied water is also important (section 3.4). 

3.6.2 Modelling approaches to infiltration through crusted soils 
Infiltration of water, whether it be rain or irrigation water, through the top few 

millimetres of the soil has always been at the forefront of soil crust research. The 

infiltrating water acts as the medium in which dispersed aggregates are taken down the 

profile to provide a washed-in layer. During this century various scientists have 

attempted to model infiltration into soils and more recently into crusted soils. Models 

have tended to revolve around analytical and empirical approaches (Horton, 1940) and 

numerical solutions (Green & Ampt, 1911; Richards, 1954; Philip, 1957). Analytical 

difficulties in solving the Richards equation for composite domains have limited 

studies to numerical solutions on the one hand or solutions based on drastic 
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simplifications of the original problem on the other. The problem arises because 

infiltration begins at time zero with a simple 3-dimensional movement of water through 

the profile, but with small increases in time there is a considerable change in the 

boundary conditions as a seal develops. As has been discussed previously, this change 

is gradual and highly dependent upon intrinsic and extrinsic factors. Hydraulic 

conductivity (K) of the near surface-pores is rapidly reduced creating a two-layered 

medium, with the surface FIR tending to 0, but with the subsoil FIR remaining high. 

Ponding follows the decrease in K, causing a distortion in the energy impact of 

raindrops and affecting the pressure of water on the surface. 

The Green-Ampt approach with flux conditions through the seal has been used to 

acquire an analytical solution for infiltration, assuming hydraulic resistance of the seal 

increased exponentially with time (Farrell & Larson, 1972). However, soil water 

suction and hydraulic conductivity were assumed to be temporally constant below the 

seal. Similar assumptions were used by Brakensiek & Rawls (1982), who used a 

weighted average conductivity in the Green-Ampt formulation, rather than a flux 

condition. For a high rainfall rate and certain other assumptions, a similarity of wetted 

profiles exists in the early stages of infiltration through a seal (Ahuja & RSmkens, 

1974). Hortonian approaches to infiltration were found to be more closely matching to 

laboratory and field experiments under simulated rainfall by using an exponential 
decay equation (Morin & Benyamini, 1977; Morin & Cluff, 1980). The increasing 

resistance is a function of cumulative kinetic energy of impacting rainfall. A Green- 

Ampt type solution for infiltration through a stable crust was obtained, but again soil 

water suction and hydraulic conductivity had to be assumed constant (Hillel & 

Gardner, 1970). Only in 1983 was a model developed in which these two parameters 

were incorporated when Ahuja (1983) developed two new Green-Ampt type equations 

for predicting infiltration through a stable crust. More recently Aboujaoudd et al. 

(1991) looked at a finite-difference numerical solution of the Richards equation for 

one- and two-dimensional flow. In the first of their two models the crust is assumed to 

be instantaneously saturated and has an impedance characterized by a hydraulic 

resistance. The second model considers the underlying soil as well as the crust in a 
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two-layered system. Most of the above studies assumed that the crust was initially 

saturated and subsequently Hillel and Gardner (1969) modeled the infiltration by 

q=-KI 
hr. 

ý-hN+el J9 

where q [ms" I is the infiltration flux density through the crust, 

K [ms''] is the hydraulic conductivity of the crust, 

e [m] is the crust thickness and 

hN and hex [m] are the effective pressure at the interface, and at the crust 
surface. 

In the field, crust thickness need not be constant. In fact microtopography studies have 

shown that crust thickness even at the scale of a furrow can have significant spatial 

variability (Bielders et al., 1996). At such a scale, use of a one-dimensional flow 

model to describe infiltration is questionable. 

3.6.3 The evaporation of water from soils 
The study of water movement in soils has generally focused upon infiltration and 

although it is known that much water is lost through evaporation, especially in semi- 

and and and environments, little research has been carried out (Rose, 1996). The 

vapour pressure of water in moist soil differs little from that of free water (Marshall 

& Holmes, 1988). Accordingly, the rate of evaporation from initially saturated soils 
is constant under given atmospheric conditions (Bond & Willis, 1969). Laboratory 

experiments using soil columns (Gardner & Hillel, 1962; Gardner & Gardner, 1969) 

have been shown to be in agreement with the non-linear desorptive diffusion 

equation proposed by Gardner (1962), 

dS 
_ 

D(S / L) S e'r2 Dt El °- dt -- 4 L2 L >o3, 
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where S is the depth of stored water between the soil surface and some depth L, 

Et is the evaporation rate and 

D is the soil diffusivity, which itself is a non-linear function of soil water content. 

Despite the difficulties in the natural spatial variability in soil water content (Nielsen 

et at, 1973; Biggar and Nielsen, 1976), it has been seen that the simple model 

described the field-scale water transport well (Parlange et at, 1993). However, the 

only field experiments looking at the simultaneous redistribution and evaporation of 

water after its application either concentrate on one soil (Gardner et at, 1970) or use 

non-destructive techniques for measuring water content, which are unable to define 

adequately the fine resolution changes in soil moisture (Gardner et at, 1970; 

Parlange et at, 1993). 

The upward movement of water through soil is easier on one level to conceptualise 
than infiltration because issues of ponding and changes in the soil surface 

characteristics avoided. However, just as the presence of a mulch (Bond & Willis, 

1969; Gill & Jalota, 1996) reduces evaporation, then it is likely that a surface crust 

also helps to retain water in the soil (Bresler & Kemper, 1970). Just as the presence 

of a crust complicates the numerical and analytical modelling of infiltration (Section 

3.6.2), the same is likely for evaporation from a multi-layered soil column as similar 

changes in boundary conditions have to be imagined. Although water in the crust 
itself will evaporate quickly because of an increase in its conducting capacity, water 

cannot be drawn up to the surface from under the crust because of the destruction of 

the soil structure and specifically the conducting pores (Bresler & Kemper, 1970). 

3.7 CONCLUSION 

It is apparent that there is still much which is not known about infiltration processes 
into soils and that, despite many different approaches to the problem, there is no one 

convincing model. 
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There are differing opinions which relate to the formation of seal and crust 
development. It can be seen as a highly complex set of mechanisms which relate to 

the geomorphological context, the climate, hydrological attributes and the 

pedological, as well as human influence through conditioner use and agricultural 

practice. It is important that the methods of data collection and analysis are 

appropriate to the process that is to be elucidated. As the research in this thesis 

includes a large amount of soil micromorphology, it is important to get the temporal 

and spatial scales correct. It is also important to consider how to constrain specific 

variables during field measurements. Much of the work reviewed in this chapter 

refers to laboratory simulations rather than work in the field. Such factors as the 

water chemistry used in a rainfall simulator, not to mention the actual methods of 

rainfall simulation, are easy to overlook. The following chapter seeks to address 

such problems discussing the methodology which underpins the research. 
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4. FIELD AND LABORATORY TECHNIQUES 

The intensity with which a soil must be sampled to estimate with given accuracy 

some characteristic will depend on the magnitude of the variation within the soil 

population under consideration. (Petersen & Calvin, 1986) 

4.1 INTRODUCTION 

In recent years, attention in geomorphology has been turning from a more traditional 

form - process understanding of earth surface properties to material properties 
(Allison, 1996). While geomorphology has concentrated significantly on, 

explanations of process-form interactions, other disciplines, such as soil science, civil 

engineering, engineering geology and geology, have been focusing on either 

material-form or material-process relationships. Such philosophical assumptions in 

each subject area lead to an inability for interdisciplinary communication which is 

sorely needed if scientists are going to be able to understand landscape processes. 
There is pressure upon geomorphologists to take material properties into account and 
likewise there is pressure exerted by geomorphologists, which can be seen in 

Allison's (1997) recent argument that process-form interactions are vitally important 

to the engineering geology community. It is no longer enough to say that a certain 

process working at a certain scale in the landscape will produce a specific form. It is 

therefore simplistic to suggest that the process of mechanical impact of raindrops 

upon a soil surface will produce a smoother, denser soil surface layer or form, which 

will in turn affect other processes such as infiltration, ponding, runoff and erosion. 

Chapter 3 has sought to identify many of the complex material properties, both 

physical and chemical, which are important temporally and spatially in producing 

different types of crust. 

87 



Chapter 4" Field and laboratory techniques 

It is important when studying soil crust sediments to carry out a series of analyses to 

examine the material physical and chemical attributes. In many cases standard 

methods of analysis can be adopted. For the purpose of this study new techniques 

have been developed to examine specific phenomena. Finally, there are some 

situations where standard methods have been adapted to meet specific -needs 

associated with this research. 

4.2 FIELD SURVEYING AND SAMPLING FRAMEWORK 

The most northerly farm known as High Farm (section 2.9 and Figure 2.10), which lies 

on the eastern edge of Al-Rafai'at, has the most complex geomorphology of the three 

studied (Figure 4.1). Drainage is to the north and west with the highest part of the 

farm lying in the south-east. There is a complicated basin in the middle of the farm 

which encourages some internal drainage. Slope angles are small, which means that 

the different aspects have little appreciable effect upon wind and water erosion. The 

Middle Farm lies on the outskirts of Umm Hussein and is about 5 km south of 

Al-Rafai'at. The well is situated at the , 
top of a small hillock and drainage tends to 

radiate from the summit (Figure 4.2). The slopes are more clearly defined than on 

High Farm with steeper gradients, but they are also complex. The Low Farm, which 

lies on the Mafraq - Safawi road in the village of Ashrafia, is the simplest in slope 

form, with the main fields sloping from the east and west into a small wadi (Figure 

4.3). The High and Middle Farm soils were classified as Xerocreptic Camborthids and 

the Low Farm soil was classified as a Typic Calciorthid (El-Rihani et al., 1993). A 

detailed field survey was undertaken to establish the precise topography of each site 

and decide on the level of detail needed for sampling and analysis. One site had to be 

selected for particular plot experiments and therefore a site with simple slope 

characteristics needed to be established. Hence, Low Farm was chosen for more 

detailed sampling framework, while the Middle and High Farms were used to 

corroborate and reinforce the data collected from Low Farm. 
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Figure 4.1: Digital elevation model of High Farm showing sampling transect 
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Figure 4.2: Digital elevation model of Middle Farm showing sampling transect 
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Figure 4.3: Digital elevation model of Low Farm showing sampling transect 

91 



Chapter 4- Field and laboratory techniques 

4.2. ) Field survey 

Almost without exception in the soil crust literature, there is little consideration of 

where samples are taken with respect to controls such as slope position, despite clear 

evidence that soil physical and chemical properties are profoundly affected by 

topography (Malo et al., 1974; Gregorich & Anderson, 1985; Pierson & Mulla, 1990; 

Brubaker et al., 1993; Brown & Dunkerley, 1996). All three farms were surveyed 

using a Leica Wild TC 1010 total station level. The perimeter of each farm, field 

boundaries and several random transects were surveyed to establish spot heights. The 

accuracy of the data were tested by comparing results for a benchmark at the beginning 

and end of each survey session. On each occasion work was found to be accurate to 

one millimetre. The results were inputed in a C++ program to translate the measured 
data into x, y and z co-ordinates. The co-ordinates were transferred to an Arc-Info TIN 

coverage in order to produce detailed topographic maps (DEMs). 

4.2.2 Soil sampling 

On many occasions soil scientists collect large bulk samples (Chartres & Mücher, 

1989). Others take soil from the surface 250 mm or less for use in laboratory plots 
(Al-Durrah & Bradford, 1981; Shainberg & Singer, 1986; Abu-Sharar, 1988; Le 

Bissonnais et at., 1989; Ben Hur et al., 1990; Moss, 1991a). The key to successful 

sampling is scale. Most processes are scale-specific and interact with other processes 

acting at different scales and so the sampling strategy needs to account for these 

relationships. For example, aggregate breakdown is fundamental to the formation of 

a soil crust. However, the breakdown of one specific aggregate is not going to have 

much effect on the amount of erosion taking place in a ridge-furrow sequence and 

still less on the general erosion taking place on a whole field. Likewise, the erosion 

processes acting on one agricultural field are not going to explain the general 
landscape characteristics of a whole catchment. Many of the processes related to soil 

crusting are best observed using plots, in both the field and the laboratory. Plots used 
in other studies vary in size from less than I m2 (Bradford et at., 1986; Farres & 

Muchena, 1996) through 1 m2 and 2 m2 (Morin et at., 1981; Agassi et al., 1990; Abu- 
Sharar, 1996), up to large plots such as 10 mx 20 m (van der Watt & Claassens, 
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1990) and 70 mx 100 m (Baumhardt et at, 1992). The choice of plot can determine 

the scale of the process. which is being observed. On occasions the scale problem is 

overcome by having interlocking plots of increasing size (Abrahams et al., 1995). 

From initial observation of the sites, it became clear that there were two levels of scale 
by which processes could be observed: the field and the ridge-furrow sequence. Few 

studies take a more holistic view of landscape position (Govers & Poesen, 1986; 

Gascuel-Odoux et al., 1996; Ternan et al., 1996). Many prefer, instead, to sample 

several soils from different regions in order to understand differences in soil physical 

characteristics (Bradford et al., 1990; Le Bissonnais & Singer, 1993; Valentin, 1994). 

A similar lack of awareness of the role of micro-topography occurs at the ridge-furrow 

scale, because many scientists use level plots rather than looking at actual changes 

within a field ridge-furrow sequence, despite evidence suggesting distinct changes in 

crust properties (Bielders et al., 1996) and infiltration (Aboujaoud6 et al., 1991; Trout 

eta!., 1995). 

In order to try to gain an understanding at the various scales, a diversity of sampling 

was undertaken. Initially a random stratified sample was taken at the field scale. Each 

farm was stratified into distinct areas, depending on agricultural usage. First, the newly 

ploughed land which was being used for irrigation for the first time during the summer 

of 1994. Second, the land which had previously been irrigated. Third, partially cleared 
land which had not been irrigated before (Plate 4.1). At this level of investigation, 

infiltration characteristics and soil bulk density were measured and bulk samples were 

taken from the top 150 mm. The second level of sampling involved a transect across 
the whole of a farm taking in the topographic changes at each farm (Loague, 1992; 

Perrolf & Sandsrom, 1995) in order to identify erosional and depositional dynamics 

at the scale of a whole slope. Points were chosen along a line at 50 metre intervals. 

At each 50 metre point a crust sample was taken and the top 150 mm was angered. 
The. third sampling level involved taking up to eight crust samples from the ridge- 
furrow sequence around one point on the 50 metre transects. This allowed the 

sampling of different types of crust within a1 metre area, to investigate small-scale 

salinity changes and variations in erosion and sedimentation which were identified 
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Plate 4.1: A view of Low Farm across land which has not yet been used for 

irrigation towards an area which is presently undergoing irrigation 

94 



r 

it 

l 

40 

top tll±j_1t a 

l+ 
ý 

ý1}a 

JAMW 

a. 

r` 



Chapter 4- Field and laboratory techniques 

in the crust development. Finally, 1 m2 plots were prepared for rainfall simulation 

experiments. Samples were taken from the plots at a time sequence during rain to 

investigate the processes of seal formation under experimentally constrained 

conditions. 

A significant problem with sampling the surface characteristics of and soils is their 

friable and unstable nature. It is difficult to take a standard sample with a Kubiena 

tin or similar technique. If the soil is wetted, the surface characteristics are disturbed 

and the density of the sample makes it even more problematic. To overcome these 

problems, the surface layer was divided from the subsurface soil. The top layer often 

lifted off easily and samples were placed-in a plastic sample bag. A 15 cm auger 

sample was then taken from the same location. At some locations pieces of crust 

were needed for thin section analysis and so the sample was wrapped in tissue to 

ensure safe transportation. 

4.2.3 Plot simulation studies 

Several weeks before the rainfall experiments were due to start, ten plots were 

selected on Low Farm at Ash-rafiyya. Plots were located, using the DEM, in an area 

with a small 0.5° - 1° east-west slope (Stem et al., 1991; Ternan et at, 1996). In 

order to reduce the variability of aggregate and clod sizes across a plot and to limit 

preferential water movement or storage within the soil, most scientists coarsely sieve 

the soil in the plot (Morin et al., 1981; Bradford et al., 1986; Shiel & Yuniwo, 1993). 

Each area, of about 1.5 m2, was ploughed manually so that all the soil from the top 

10 cm had been overturned and all the large clods were broken up. The finely 

aggregated soil was then flattened and constrained on the up-slope and side-slope 

positions by 1mx0.15 m planks which were buried to about 8 -10 cm depth (Luk & 

Morgan, 1981; Sidiras & Roth, 1987; Stern et al., 1991). The plots were given the 

dimensions of 1 m2 to correlate with the area over which the simulated rainfall fell. 

They were left without disturbance for two weeks before commencing the 

experiments. 
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4.2.4 An investigation to relate climatic variables to crust development and strength 

One of the important features of crust development during the winter on ploughed 

fields is the spatial variability of crust formation due to the predominant wind direction 

during rain events (Sharon et al., 1983; Sharon et al., 1989). To investigate the intra- 

furrow variation, a series of shear vane tests were carried out at High Farm at 

Al-rafai'at. Two transects, one at 50 in and the other at 5 in intervals, were sampled 

along a north-south trending ridge-furrow sequence, from a topographic high point to 

the base of the slope. At each point along the transect, an approximate profile was 

measured from one ridge to the next and shear vane data were obtained for five points: 

eastern ridge summit, eastern flank, base, western flank, and finally the western ridge 

summit. 

4.2.5 Infiltration tests 

Infiltration of water, whether it be rain or irrigation water, has always been a key 

component of soil crust research (Section 3.6). The infiltrating water acts as the 

medium in which dispersed soil aggregates and primary soil particles are taken down 

into the soil profile to provide a washed-in layer. Field infiltration experiments usually 

take the form of either rainfall simulation tests or single / multi-ring infiltrometers 

(Roth eta!., 1985; Sidiras & Roth, 1987; Youngs, 1991; Boers et al., 1992). There are 

certain limitations to each method as a way of modelling actual infiltration during a 

rainfall event. A rainfall simulator can reproduce rainfall in a reasonably accurate 

manner, but it is extremely difficult to constrain the plot in order to collect the runoff in 

order to calculate the total infiltration. 

Infiltration tests were undertaken in the field using a double ring infiltrometer. The 

outside ring, with a radius of 153 mm, was used to reduce the amount of lateral water 

movement from the inside infiltrometer. The inner ring, with a radius of 118 mm, from 

which measurements were taken, was kept at a constant head with a depth of 170-180 

mm (Sidiras & Roth, 1987). A test should last until the steady state infiltration rate has 

been reached (Bowyer-Bower, 1993). That time is determined by the nature of the land 

system under study (Warburton, in press) and large variations can exist over small 
distances (Merzougui & Gifford, 1987). From pilot studies it was seen that steady state 
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occurs after approximately an hour to an hour and a half. Each test was therefore 

conducted for two hours. 

In each of the stratified sampling areas (Section 4.2.2), four infiltration tests were 

carried out. Both rings were pushed into the soil to a depth of between 3 cm and 7 cm 

to avoid piping. The outer ring was filled to 15 cm and then left to drop of its own 

accord. A piece of sackcloth was laid in the inner ring to reduce the amount of 

disturbance of the soil aggregates as the water was poured in. The constant head of 

water was maintained using a simple siphon from a 1000 ml cylinder and regulated by 

a small clamp (Figure 4.4). Readings were taken at 60 second intervals for the first 

fifteen minutes because the initial infiltration rate was often high. After the first fifteen 

minutes, readings were taken at two minute intervals. After an hour, the readings were 

taken every four minutes. After each infiltration test the ground was excavated to 

measure the wetted perimeter. 

Tube 

Material to protect soil 
from impact of water 1000 ml cylinder 

Inner ring Tap 

Outer ring 

////// //. SOIL 
/////////// / ///////////// 
//////////////////////// 

Figure 4.4: Double ring infiltrometer used in the field 
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There is limited knowledge concerning the dynamics of two and three dimensional 

flow into soil media (Philip, 1986), especially in the case of soil crusts where there are 

different layers of permeability (Hillel & Gardner, 1970). It is important to be aware 

that the infiltration ring size affects the infiltration rate. The bigger the ring, the greater 

the accuracy since there is a more representative area of soil within the ring, and 

therefore a smaller likelihood of getting too many large or small pores. Bouwer (1986) 

recommends a ring of at least 1m in diameter but that is not necessarily practical, 

especially with regard to the water usage. Generally the infiltration rate measured 

using smaller rings will be higher than in larger rings (Youngs, 1987). Another 

potential source of error is lateral water movement beneath the ring. Normally a 

second or double ring can compensate for this phenomenon, but it is almost impossible 

to judge its effectiveness (Youngs, 1987) and indeed Swartzendruber & Olsen (1961) 

concluded that it is in fact wrong to use a second ring to buffer for edge effects and 
lateral flow. Another problem that arises with the use of a double ring is the question 

of water levels. While it is clear that a constant head should be maintained in the inner 

ring, what is not so clear is whether it is important to keep the water level in the outer 

ring at that same constant head. Lastly, there is a question concerning the level of the 

constant head in the inner ring. It has been suggested that a head such as 170 mm is 

much too - large and causes a situation where there is viscous flow in the upper 

centimetres of the soil column (Abu-Sharar, pers. comm. ). The view taken for this 

work was that the head level should remain constant throughout all the experiments so 

that values can be compared. 

4.3 LABORATORY WORK 

4.3.1 Particle size analysis 

One of the key controls upon the formation and development of soil seals and crusts 
is particle size (Tackett and Pearson, 1965; Moss, 1991a). Whether the washed-in 
formation of thick structural crusts (McIntyre, 1958a) or the formation of 
depositional puddle crusts (Farres, 1978; Valentin, 1992) is being investigated, the 
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most important variable will be the preferential movement of different sediment size 

fractions either over the surface as surface wash or down into the sub-soil and into 

the pore spaces. It is only by looking at the three-dimensional spatial changes in 

particle size distribution that one can become familiar with the processes taking place 

in the field. In determining the particle size distribution certain experimental 

limitations must be considered. 

Several possibilities of grain size measurement are available to the geomorphologist. 

If the particles are larger than silt size, the grains can be measured using sieves. 

Material smaller than 2 mm can be measured manually under a microscope (Folk, 

1966). Such a method is accurate, despite being somewhat subjective, but takes a 

great amount of time. Most scientists use methods of sedimentation for the smaller 

fraction (<63 µm). More recently, electrical sensing and laser defraction techniques 

have been developed. These are not without problems (Goudie et al., 1990). The 

method adopted in this work follows the British Standards methodology (BS 1377, 

1990). The >63 µm fraction is dry sieved with mesh sizes of 63 µm, 212 µm and 

600 µm. The silt and clay fractions are then separated using sedimentation by the 

pipette method (Gee & Bauder, 1986). 

Material which has previously been air-dried is disaggregated with a pestle and 

mortar and passed through a2 mm sieve to remove the gravel fraction. A sub- 

sample of approximately 10 g is placed into a beaker before 10 ml of dispersing 

agent, sodium metaphosphate, is added along with 100 ml of distilled water. The 

mixture is then left to stand overnight. Prior to wet sieving the material on a 63 µm 

sieve, the mixture is agitated by placing the beaker into an ultrasonic bath for 15 

minutes (Edwards & Bremner, 1967). The soil solution is poured onto the 63 µm 

sieve and a gardening sprayer containing distilled water is used to break up any 

remaining aggregated particles. The sub-63 µm fraction is collected in a tray placed 

underneath the sieve and then washed into a 500 ml sedimentation tube. The 

remaining material on the sieve is then washed into an evaporating basin and left in a 
drying oven overnight at 105 °C. When a set of sedimentation tubes have been 

filled, they are placed into a water bath which is set at 25 °C. Using Stokes' Law, it 

is possible to work out, at a given water temperature, the rate of settling-out of any 
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grain size fraction. After shaking the tubes a 10 ml pipette is placed down into the 

sample at a depth of 10 cm. At 4 minutes and five seconds a sample is taken and 

placed into a pre-weighed vial. The material collected should represent a sample of 

the medium to fine silt and clay. The procedure is repeated with the pipette after 46 

minutes and then 6 hours and 54 minutes to get samples of the fine silt and clay and 

then just the clay respectively. The vials are left in a drying oven overnight at 105 °C 

and then reweighed. Meanwhile, the >63 µm sample, which has been dried, is 

shaken through a nest of three sieves (63,212 and 600 µm) and the sediment 

remaining on each sieve represents the total coarse, medium and fine sand fractions. 

The sand fractions can be worked out directly by comparing their weights with the 

initial sub-sample. The silt and clay samples are calculated by taking the clay and 

subtracting the clay and fine silt and then multiplying out to get a percentage of the 

original sample. This procedure is repeated with the weights from the other vials to 

obtain percentages for each fraction. The only fraction which is not directly 

determined is the coarse silt (20 - 63 µm) which is calculated as a remainder of the 

total. 

One of the problems of the above procedure is that two methods are being used to 

look at the whole particle size range and this leads to the question of what exactly is 

being measured as grain size (Komar & Cui, 1984). A sieve of a certain diameter 

assumes that all grains are spherical and that any grain with a diameter no greater 

than the length of the size of the sieve openings will fall through. Such a 

preconception is not associated with the sedimentation method because 

measurements are made on an equivalent sedimentation diameter. Irregular grains 

will have the same settling rate as near-spherical particles. Natural grains typically 

have angular shapes which roughly approximate to triaxial ellipsoids (Sahu, 1965). 

Ideally, the sedimentation method should be used for the whole size range, but the 

sands would settle out much too quickly to secure an accurate measurement. The 

sedimentation method uses a general equation which was first obtained by Stokes 

(1851), who noted that a sphere or cylinder will pass through water at a certain rate, 
depending not only on the density of the liquid and mass of the particle but also on 
the internal friction of the liquid itself. Such a resistance proves to be proportional, 
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for a given fluid and velocity, not to the surface but to the radius of the sphere 

(Stokes, 1851). Of the two techniques, sedimentation is more accurate because the 

probability of a particle passing through a sieve in a given time of shaking depends 

on the nature of the particle, the number of particles of that size and the properties of 

the sieve (Day, 1965). In the case of the Jordanian Badia soils, most variability in 

particle size is in the silt and clay fractions and so it is being measured almost 

entirely by sedimentation which should give accurate data. 

4.3.2 Soil chemistry 

The soil crust represents the interface between the main body of soil and the 

atmosphere. It is instrumental in controlling the flow of water in and out of the soil. 

In an and environment, a majority of water entering the soil is stored in the upper 

centimetres and is gradually drawn back to the surface by evapotranspiration, 

diffusivity or capillary action caused by evaporative forces. In a non-irrigated 
landuse system, there is an equilibrium between the amount of water and vegetation. 

If water is artificially introduced into the system, upward non-transpirational water 

flow increases and consequently salts are absorbed, transported and precipitated at 

the soil surface. A soil crust may be more or less affected by salt precipitation over 

small spatial scales and this can lead to preferential secondary soil detachment and 

transport. It is therefore important to study the change of salt accumulations over 

both time and space. Soil samples were tested for the four major exchangeable soil 

cations, Na, Mg, Ca and K, using atomic absorption spectrometry (Hesse, 1971; 

Page, 1982). 

To obtain a useable solution from the soil, NH4Ac was leached through 5g of the 

sample. The leachate contains the exchangeable cations which have been replaced 
by the ammonium. The leachate is reduced to a spray by a nebulizer, and drawn into 

a cloud chamber, where the larger drops condense and drain out. The smaller drops 

mix with the acetylene fuel and continue into the burner. The drops and fuel are 

completely mixed by the time they reach the burner and are ignited to form a flame 

that burns at 2300 °C. Standard solutions in diluted extracts (NH4Ac) are introduced 
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in the same way to calibrate the machine for each cation over its likely concentration 
range. 

The wavelengths at which individual elements absorb are well defined and each 

element has an optimum range between x20 and x200 of its specific sensitivity which 

represents the threshold at which the element reaches its atomic phase (Table 4.1). 

For example, in the case of magnesium, which has a quoted sensitivity of 0.015 

p. p. m., the optimum range of absorption is between 0.3 and 3 p. p. m. Absorption is 

only linear in this range so if the concentration of the sample lies outside this range, 

two options are available. First, the initial sample can be diluted by a known 

quantity of NH4Ac, although there may well be more inaccuracy in diluting the 

sample than there would have been from using the more concentrated solution. The 

alternative is to increase the sensitivity range of the machine by rotating the burner 

by 300. This, in effect, limits the area over which the lamp beam interacts with the 

flame, which reduces the sensitivity and gives a tenfold increase in the range. 

Element Wavelength Slit width Sensitivity Sensitivity Linear range 

nm (mm) (mg (1) check (mg 1") (mg (') 

Calcium 442.7 0.7 0.092 4.0 5.0 

Magnesium 285.2 0.7 0.0078 0.3 0.5 

Sodium 589.0 0.4 0.012 0.5 1.0 

Potassium 766.5 1.4 0.043 2.0 2.0 

Table 4.1: Element sensitivity during A. A. S. operation - Source: Perkin Elmer (1982) 

When measuring the concentration of elements in solution to the accuracy of 0.1 

p. p. m., there is always the possibility of error. The main sources of error occur in the 

sample preparation, variations in the fuel flow, fluctuations in the flame and 
inconsistent sample nebulization and atomisation. Other sources of error can arise 
because standard solutions may degrade in quality. There is a possibility of chemical 
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interference, where the resonance wavelength of one element is somehow dependent 

on the presence of another (Cooke, 1969). In order to reduce such errors various 

steps were taken. First, the machine was set to take five readings of the leachate 

from which it calculated a mean. In addition, several samples from each batch of 30 

were randomly retested to check the reliability of the data being collected. To reduce 

any errors in the standard solutions, the machine was recalibrated after every five 

samples. If there was a noticeable difference (± 1 p. p. m. ) in the second run, all the 

samples were tested again. If the standards were old, new standards were made. 

Sodium was the only element which could be tested directly from the leachate. It 

was necessary when measuring potassium to add 0.03 ml of 15,000 p. p. m. sodium 

solution because this increased the sensitivity of the AAS to the potassium. In 

addition, 0.4 ml of lanthanum chloride solution had to be added per 4 ml of leachate 

when testing for calcium and magnesium in order to overcome interference 

problems. 

4.3.3 Soil fingerprinting 

One of the questions in the northern Badia is the origin of the soil. While 

microscopic fabric analysis can provide information on the mineralogy of the soil its 

use as a quantitative tool is limited, especially in the identification of clay minerals. 

XRD (X-ray diffraction) is a technique which can characterise and evaluate the 

mineralogy and therefore help to explain how the soil has formed (Whittig & 

Allardice, 1986). It is a fast and precise method of characterising the mineralogy of 

fine-grained sediments (Hardy & Tucker, 1988). X-ray radiation beams hitting the 

sample will be diffracted depending on the minerals in the sample. The sample 

rotates so that different minerals will diffract at different degrees of rotation. The 

output appears as a series of peaks at different intervals which denote the type of 

clay. The height of the peak gives the relative magnitude of clay in the sample. The 

initial hypothesis (Al-Homoud et al., 1995) was that the soils of the northern Badia 

are derived primarily from the weathering of local basalt. To test the hypothesis 

samples of unweathered basalt, weathered basalt and soil from Low Farm were 

compared using X-ray diffraction and fluorescence. 
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For X-ray diffraction analysis a sample of the finest material (<5 µm) is needed. For 

the weathered basalt and unweathered basalt samples, this was obtained by breaking 

down the rock with a tungsten carbide ball mill and an agate pestle and mortar. For 

the soil, a sample was left in a sedimentation tube for approximately seven hours 

until only the finest silts and clays remained in suspension. Material was taken from 

the tube and placed in a beaker with three small glass slides in the base. The beaker 

was left several days to allow the water to evaporate leaving the sediment to settle on 

the slides. Many geologists have tried to make slides which have no interference 

from the non-clay fraction, but settling of particles is problematic and the <2 µm 

classification for clays can be unhelpful. If there is too large a proportion of quartz, 

feldspar and calcite the task of identification becomes more difficult because of 

overlapping diffraction maxima (Towe, 1974). One slide was used directly without 
further treatment. One was heated in a furnace to 375 °C. The third was soaked in 

ethylene glycol. Under treatment, the clay diffraction pattern will change allowing 
better distinguishing between clays. Measuring the actual amounts of different clays 
has caused some disagreement. Some prefer to compare the magnitudes against set 

standards (Gibbs, 1967). Others have calculated formulae which take into account 
different crystallinity indices (Hooton & Giorgetta, 1977). For the analysis of the 

Jordanian samples exact magnitudes were considered unnecessary as only one 

sample of each type was being used. Approximations were taken using the relative 

areas under the diffractogram peaks. 

4.3.3.1 X-ray fluorescence 

X-ray fluorescence records the chemistry of the complete mineralogical component 

of the rock or soil being measured. In trying to fingerprint the soil to understand its 

possible source material and how it was moved to its present location, it is valuable 

to obtain a good idea of the mineralogical chemistry and compare it with that of the 

underlying rock. 

In order to measure any material, whether soil or rock, it has to be initially ground 
down to silt-sized components. To grind large particles an ordinary rock crusher is 

used, but once the material is in small enough pieces, it can be placed in a tungsten 
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carbide ball mill. Grinding requires cleanliness to avoid contamination between 

samples. 

X-ray fluorescence requires a small pellet of the material for investigation, made 

using a hydraulic press. The sample is mixed with a single drop of Mowoil which 

acts as an adhesive. The mixture is placed into a chamber, flattened and white boric 

acid powder is used as a backing to the sample. A SPECAC hydraulic press 

operating at 7 tons of pressure is used to bind the material into a small round disk 

which can then be used for analysis. 

4.4 MICROMORPHOLOGICAL FABRIC ANALYSIS 

Micromorphological investigation of a soil fabric is an important procedure to look at 

the processes and forms produced by raindrop impact, salt precipitation and the 

effects of irrigation. It is an important way of characterising crusts and has been used 

extensively by soil scientists and to a lesser extent by geomorphologists (Evans & 

Buol, 1968; Mücher et al., 1981,1988; Boiffin & Bresson, 1987; Norton, 1987; 

Arshad & Mermut, 1988; Valentin et al., 1992). Of interest in this project was the 

relationship between micro-topography and soil crust micromorphological attributes 

over small areas. By studying the changes in soil crust fabric, the processes of 

erosion and deposition could be elucidated. In addition, the use of rainfall simulation 

and tracers was developed to identify how particles penetrated the sub-crust layer and 

how surface silts became reorganised as a result of rainsplash and seal development. 

4.4.1 Polyester versus epoxy resins 

Many materials have been used to impregnate soil samples with differing success. 
The most suitable resins have the following properties (Murphy, 1986): low 

viscosity; miscible with acetone or a styrene monomer to lower its viscosity; able to 

be cured without requiring extreme conditions; not to change the physical structure 

of the soil sample or itself be changed by contact with soil material; to be totally 
isotropic and colourless in thin section, with a refractive index of about 1.54. 
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No resins are perfectly suitable for all soil types. Only Carbowax 6000 is miscible 

with water and has been used with wet clay and peat soils. However, it has the major 
disadvantage of being too soft when cured and is therefore difficult to cut (Murphy, 

1986). Epoxy (Norton, 1987) and polyester (Mischer et at, 1981; Bresson & Boiffin, 

1990; Bielders et al., 1996) resins have become the usual media within which soils 

are impregnated. Each has specific advantages and disadvantages. 

The most significant advantage epoxy resins have over polyester resin is that they 

can be added to the sample and cured overnight. In comparison polyester resins take 

about six weeks to cure. Epoxy resins will cause little shrinkage, have resistance to 

other solvents and chemicals, have no volatile loss during curing, will adhere to 

almost any surface and are extremely tough when cured (Bouma, 1969). On the 

other hand, they will not mix with acetone to reduce the viscosity and their viscosity 

will usually only decrease with temperatures in excess of 70 °C. The resin, as it 

cures, goes through a very intense exothermic reaction and there are potential 

problems with regard to mineral transformations and structural rearrangements. 
Epoxy resins have been used successfully by various authors (Martin et al., 1979; 

Chiou et al., 1983), but in general soil scientists prefer to use polyester resins. 

Polyester resins are readily available and usually considerably cheaper than their 

epoxy counterparts. A considerable amount of time and careful supervision is 

needed for the completion of the process, Shrinkage can occur if the resin cures too 

fast or if any of the solvent is trapped in the sample upon curing. The final 

disadvantage is that the resin is not as strong as, epoxy resin once cured, but it should 

allow cutting and grinding without releasing mineral grains. The main advantage of 

polyester is that of viscosity. Polyester resins, with a viscosity usually around 6- 20 

poise at 20 °C, can be diluted to the viscosity of water by adding acetone. This factor 

alone, added to the fact that there is a long residence time in the sample before 

curing, means that. the impregnation quality is superior to that produced using epoxy 
(FitzPatrick, 1984, Tippkötter & Ritz, 1996). 
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4.4.2 Preparation for sample impregnation 

In order to look at soil under a microscope, samples first have to be impregnated so 

that they can be cut and ground to 30 µm to allow mineral identification (Gribble & 

Hall, 1992). To ensure that samples will fully impregnate, it is vital to remove as 

much water as possible. Virtually all polyester and epoxy resins, being hydrophobic, 

require complete removal of water from the samples (Murphy, 1986). This can be a 

problem for soils with high levels of organic material, which have to go through 

freeze drying or acetone replacement in order to remove the water without shrinking 

the sample (Chiou et al., 1983; Murphy, 1982). For and soils, however, there is 

generally a low organic matter content and the soils are almost completely dry. 

4.4.3 Problems of impregnation in and soils 

One problem, revealed by this research, is that samples with low organic matter have 

a great propensity to slake. In preparation for impregnation acetone must be added to 

reduce the viscosity of the resin to allow full impregnation. It should be added 

slowly, causing it to soak into the sample from the base until only the top of the 

sample is left out of the acetone to allow air to be released as the acetone rises 

through the sample through capilliary action. The beakers containing the sample are 

sealed for three days in order to. force air out from the pore spaces as the acetone rises 

up through the sample by capillary action. 

Because the crust samples are fragile, the acetone caused some of the crust samples 

to slake and within minutes the structure had completely collapsed. An alternative 

way of adding the acetone without disruption had to be found. Slaking can only 

occur if air is in the sample when the acetone is added because the mechanism relies 

on the fact that the air is forced to escape on impact of a drop of liquid causing 
disintegration of the soil aggregates. If the air within the soil could be extracted 
beforehand, the risk of slaking would be minimised. 
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Figure 4.5: Apparatus for adding acetone under vacuum 

The sample was therefore placed into a desiccator alongside a small beaker of 

acetone and then closed. Two glass tubes, descending down into the desiccator 

through a rubber bung (Figure 4.5), were attached to a vacuum pump and a clamped 
funnel respectively. The vacuum pump was turned on and 1 bar of pressure was 

reached forcing the air to be evacuated and allowing the acetone to vaporise and fill 

the chamber. Once the vacuum had been in place for ten minutes, the clamp on the 

second tube was released . very slowly, allowing acetone to drop into the base of the 

beaker. Once the acetone had reached the top of the sample, the clamp was shut off 

and the vacuum slowly released. The sample with acetone could then be taken out of 

the desiccator and wrapped in aluminium foil to stop acetone evaporation 
(FitzPatrick, 1984). Using this method, it was found that slaking was avoided. 
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4.4.4 Resin impregnation 

Once the samples are thoroughly wetted with the acetone, the foil is removed from 

the plastic beakers and the remaining acetone removed by suction. It is important to 

make sure that the samples themselves do not dry out. Meanwhile, the polyester 

resin is mixed with the hardening catalyst before diluting the whole mixture with 

acetone to lower the viscosity. The initial dilution is about 10 % resin + catalyst : 90 

% acetone. The mixture is poured into the beakers completely covering the samples 

and the beakers are resealed to stop evaporation. The solution has such a low 

viscosity that it will permeate all the pore spaces and channels, replacing the acetone. 

This is of utmost importance when dealing with a very fine-grained soil matrix. The 

samples are sealed for a week to ensure full saturation before the foil is removed to 

allow the acetone to evaporate. As evaporation takes place, the liquid level falls 

rapidly due to the high quantity of acetone in the beakers concomitant with resin 

replacement and polymerisation. After 10 to 14 days resin polymerisation is 

complete and the sample is put in the soil oven at 40 °C. When it is almost set, the 

temperature is raised to 60 °C and then 80 °C at four day intervals, after which it is 

kept at 100 °C overnight to cure the resin completely. Cooling should be done over 

three to four days slowly reducing the temperature by 20 °C per day to avoid 

cracking. The whole method should take between five and six weeks. 

When the sample is cut and the thin section made, it is possible to lose tiny fragments 

of resin or a single mineral grain during the grinding process which could 

subsequently be interpreted as a pore space. To avoid this problem dyes are used in 

the resin to distinguish pore spaces from holes in the section. In all the samples from 

Jordan, an ultra-violet dye, Uvitex OB, was used. It cannot be seen under a 

polarising microscope, but can be identified under ultra-violet light (Bresson & 

Boiffin, 1990). Such a dye is invaluable when analysing pore space, because all the 

pore spaces will reflect the UV light while the soil mass and any holes will be 

anisotropic. 
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4.4.5 Thin section preparation and mounting 

Once the impregnated sample block is cured it is ready to be cut and ground down to 

30 gm. For certain purposes, such as image analysis, the cut polished block is all 

that is required (Chartres, 1994) and it can be more accurate than thin sections for 

pore analysis. However, for fabric, microstructure and mineralogical analysis thin 

sections are required. All cutting and grinding must be done using a coolant to 

reduce the heat of the cutting action and to remove particles from the cutting edge of 

the blade. Water should never be used for soil thin sectioning, because it will cause 

the sediment on the slide to buckle due to the expansion of clay particles even when 

the impregnation is complete (Dalrymple, 1957; Murphy, 1986). 

The block needs to be sliced down to-about 4 mm using a thin, disk saw-blade made 
. \'t 

with a diamond bearing bronze rim. Then one side of the slice is polished, using a 

set of diamond plates and petroleum spirit as a lubricant. Two coarse diamond plates 

are used to get the section completely level and then the fine diamond plate is used to' 

obtain a highly polished surface. It is vital to get a completely level surface because 

otherwise at the stage of grinding down to 30 µm the area of the section not level will 

pull off the slide. Immediately the section is polished it should be stuck on to a slide 

to avoid buckling as the section absorbs atmospheric moisture. The glass slide is 

cleaned with petroleum spirit and the polished soil surface is adhered using a glass 

bond glue. The slide and sample am-theurput under an air-compressed jig which can 

apply up to 160 mm Hg pressuremnifter ten minutes, a UV lamp is turned on 

underneath the samples for a further ten minutes. The glue normally sets in daylight 

over a period of hours due to natural UV. The time can be significantly reduced if an 

artificial light source is introduced to increase the bond. The glue has probably 

reached 90% of its strength in an hour and can be cut, but it is better to leave the 

sample overnight to allow the bond to reach full strength. 

The next stage is the cutting and grinding of the sample on the slide. The slide is 

attached to a vacuum plate, which in turn is fixed to a circular arm which rotates 
downwards on to the cutting and grinding wheels in the instrument. The arm has a 
highly accurate micrometer affixed so that small µm increments can be made. Once 
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the edge of the slide is calibrated with the cutting wheel, the sample is moved by 

approximately 250 pm so that once the saw is rotating, it will cut most of the sample 

off the slide leaving only 250 . tm on the slide. The arm is then moved along to the 

grinding wheel which has a more accurate micrometer (± I gm) and the process is 

repeated. The sample is gradually cut down to about 35 µm. The exact thickness can 

only really be judged by looking at the quartz under the laboratory microscope, but 

with experience it is possible to see the thickness while still fixed on the machine. 

The final grinding and polishing has to be done on the diamond plate to get it down 

to the correct thickness (usually between 25 and 30 µm). Lastly, a cover slip is 

placed on top of the sample for protection following the same method as before using 

the glass bond. 

4.5 CONCLUSION 

Much of the soil crust literature has concentrated upon the soil processes which lead 

to a specific micromorphological form or state of land degradation and much less 

emphasis has been laid upon the geomorphological context. The sampling 
framework of this research has attempted to focus upon the spatial variability of soil 

crusts, from within a ridge-furrow sequence to the whole field. Although most 

scientists have identified different crust forms on widely differing soil textures 

(Bresson & Valentin, 1990; Valentin & Bresson, 1992), it is unusual to find 

explanations of variability over a single soil type and indeed within the scale of an 

agricultural field (Bielders et al., 1996; Brown & Dunkerley, 1996). 

The techniques described above allow the analysis of fine resolution changes in soil 

characteristics, which will increase understanding of the classification of spatial 
differences in crust formation. In addition, with a multiple-scale approach, it should 
be possible to observe how spatial variations in crusts at a ridge-furrow scale affect 

the overall erosion and deposition regimes within the whole field. 
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5. THE USE OF LOCAL CLIMATE DATA FOR ESTABLISHING 

RAINFALL SIMULATION PARAMETERS. 

"For rainfall simulator data to be of wide use, some uniformity of equipment and test 

procedures is needed, and the data must be obtained under relatively standard 

conditions that closely simulate natural rainfall intensity and energy. " (Robinson, 

1979, p. 1) 

"Rainfall simulation, the technique of applying water to plots in a manner similar to 

natural rainfall. " (Neff, 1979, p. 3) 

5.1 INTRODUCTION 

To model and simulate rainfall it is necessary to have a clear idea of normal winter 

rainfall. To examine the sedimentary processes involved during raindrop impact and 

to understand moisture residency, it is important to measure the frequency of 

rainstorms and the characteristics of individual rainfall events. While most field 

scientists who use rainfall simulation provide some background rainfall data, it is 

usually only in terms of mean annual precipitation (Agassi et al., 1990; Ben Hur et 

al., 1990). Only rarely is rainfall intensity measured (Gascuel-Odoux et al., 1996). 

In addition, it is important to measure other climatic parameters such as the rate of 

evaporation, to elucidate the moisture fluxes at the soil surface. 

5.2 CLIMATE CONSIDERATIONS 

Good climate data must be a foundation not only for rainfall simulation experiments, 
but also for research into soil-water interactions. It is necessary to take data from a 

number of different temporal scales and resolutions to gain a thorough understanding 
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Plate 5.1: The Automatic Weather Station at Menara 
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of climate conditions in an area such as the Badia, where data points are few. The 

majority of data used in this study come from stations monitored by either the Water 

Authority of Jordan or the Jordanian Department of Meteorology (Table 5.2). Some 

of the stations monitor daily rainfall totals and others record hourly rainfall data. The 

most important short-term high resolution data have been obtained from an 

Automatic Weather Station (AWS) installed specifically for this study. The AWS 

was placed close to Lower farm at Menara in order to establish a good climate link 

with the rainfall simulation and the soil-water experiments. The station was 

operational from the middle of August 1994 until the summer of 1996. The weather 

station (Plate 5.1) has six sensors: solar radiation, net radiation, wet- and dry-bulb 

temperature, wind direction and wind run, in addition to a rain gauge. Each sensor 

samples every ten seconds and produces an hourly mean. The rain gauge works as a 

tipping bucket mechanism whereby the rainfall is measured at a resolution of 0.5 mm 

and summed hourly. All the data are collected on a data logger which is powered by 

a small solar panel fixed to the main mast of the weather station. The data logger 

must be downloaded every month onto a portable data-unit which connects to the 

serial port on the back of a personal computer. 

5.2.1 Temperature 

The climate of the western area of the Badia has a marked, but not extreme, variation 
in daily and annual temperature. Summer temperatures rarely rise above 40 °C while 

winter temperatures seldom dip below 0 T. This reflects the fact that the area lies 

close to the transition between Mediterranean conditions and a more continental 

climate, characterised by greater extremes, further east. 
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Figure 5.1: Mean daily temperature between August 1994 and June 1996 

The mean daily temperature for 1994 ranged between 26.2 °C in August and 5.2 °C 

in December, but in the following year the range was less extreme with a mean daily 

temperature of 25.5 °C in August and 7.3 °C in January 1996 (Figure 5.1. ). 

Concomitantly, there is a reductior the variability of the mean temperature from 

summer to winter. The highest in: urnal variability of mean daily temperatures 

occurred in late spring and early s. ,. aer. May 1995 was the highest with 7.5 °C. 

This is likely to be associated with the hot chamseen winds which blow from Arabia 

in late spring and cause rapid warming. Generally, the cool months of December 

through to February have low inter-diurnal variability of between 3 and 4 T. It 

should be noted that there is a three week gap in the dataset during January 1995, due 

to operation failure. 

The diurnal temperature range is also seasonally dependent, with the greatest ranges 

during late spring and early summer (Figure 5.2). The lowest temperatures occur 

between 4 and 6 a. m. while the highest occur bdtwcen 2 and 4 p. m. The lowest 

diurnal variation occurs in December and January where the mean range stays 
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Figure 5.2: The change in diurnal temperature ranges for the year August 1994 to 
July 1995 
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between 0 °C and 20 °C. The range increases in April because the lowest night 

temperatures remain below 5 °C but the maximum daytime temperatures are in 

excess of 32 T. 

5.2.2 Wind run and direction 

Wind is an important factor influencing micro-topographic variation in rainfall 

(Sharon et al., 1989) and evaporation in the Badia. Wind data show a high diurnal 

variation in both speed and direction. There is a fairly consistent pattern to these 

features illustrating a summer-winter contrast. During summer (Figure 5.3), there is 

a prevailing north-easterly wind during the evening and night. However, in 

association with an increase in air temperature between 5 a. m. and 3 p. m. there is a 

significant shift to a north-westerly wind direction, which seems to follow one of two 

patterns. Usually the wind shifts slightly via the north, but occasionally there is a 

systematic veer via the south. The shifts of around 270° from north-east to north- 

west via south indicate periods of meteorological instability and often there is a risk 

of rainfall. 

The pattern of wind direction differs considerably during the winter as seen in Figure 

5.3 for the months October to April. The wind during the night predominantly comes 

from the east to south-east, although there are occasions when there is more of a 

northerly to north-westerly wind. As with the summer pattern, there is a movement 

towards the north-west as the daytime temperature increases, although unlike the 

summer pattern, the majority of the shift occurs via the south. The mid-day wind 

direction commonly comes from the south, the south-west, west and north-west. In 

the evening there is a shift back via the south. Obviously this simplified summary 

generalises about the summer and winter positions. In reality only June to August fit 

completely into the summer pattern and November through to February fit the winter 

pattern; the intervening months are inevitably evolving from one pattern to the other. 

Five circular plots, Figure 5.4a-e, show the wind direction data in a form which is 

easier to interpret, although it must be noted that they represent a mean for the two 

years of data rather than for specific months. When the data were originally plotted, 

there was a large spike at north which did not correspond to the rest of the wind data 
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Figure 5.3: The relationship between diurnal wind direction and time of year 

and was thus considered an artefact introduced by the data-logger. The inclusion of 

the spike subdued the remainder of the data and therefore the plots display data from 

0.8° to 359.2°. The arrow shows the direction of the vector mean, that is the 

direction of the resultant vector (Cox, pers. comm. ). 

On the one hand, the plots indicate that there is a systematic shift in wind direction 

during the day and on the other hand, show that there is a strong correlation between 

wind direction and rain events. During the period between midnight and 06.00 in the 

morning, when the wind speed is relatively low, the mean wind direction is from the 

north-east (55.5°) and the high vector mean suggests that there is little standard 

deviation. As the morning continues there is a shift in the wind direction, but no 

particular dirction is favoured resulting in a very low vector strength. However, in 

the afternoon, as the wind speed increases, there is a significant shift to a north- 

westerly wind (316.5°). Such a change probably indicate katabatic airflows 

descending from the Jebal Haurän due to differences in pressure. In the evening, 

between 18.00 and midnight, there is evidence of a strong shift back to north-easterly 
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¶ 

Figure 5.4a: Wind direction between midnight and 06.00 (mean direction 53.6°) 

i 

Figure 5.4b: Wind direction between 06.00 and midday (mean direction 52.8°) 
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N 

Figure 5.4c: Wind direction between midday and 18.00 (mean direction 316.5°) 

i 

Figure 5.4d Wind direction between 18.00 and midnight (mean direction 31.8°) 
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P 

Figure 5.4e Average wind direction during all rainstorms (mean direction 318.2°) 

winds (31.8°) which mainly occurs via the north. Most interesting is the fact that the 

average wind direction during rainfall events is from the north-west (318.2°), which 

corresponds to the observation that unsettled weather is dominated by low pressure 

disturbances penetrating eastern Jordan from the Mediterranean. In this case, it is the 

larger synoptic-scale circulation which controls the rainfall and wind characteristics, 

whereas normally they reflect local variations in pressure caused by the orographic 

effect of the Jebal Haurän mountains. This has important implications for west- 
facing slopes, because the incident angle between the rainfall and the slope is close to 

normal and therefore mechanical impact is much higher than on corresponding east- 
facing slopes. Slope position and aspect become important, therefore, in the amount 

of crust which can form. 
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Figure 5.5: Changes in mean diurnal wind speed for different months at the AWS 

The variation in windspeed is more difficult to analyse due to the lack of reliable data 

after October 1994, but the main trends can be seen in Figure 5.5. It is more difficult 

to generalise about patterns within the temporal series because of the magnitude of 

variation. Even averages over one hour are liable to mask significant variations in 

the time-series, especially gust events which may be important as geomorphological 

agents. 

It is possible to make some useful observations. First, the highest wind speeds occur 

in the hours following sunset, reaching a maximum between 8 and 10 p. m. Figure 

5.6 indicates that there is a strong relationship between wind strength and direction 

with the highest windspeeds occurring from the north and north-east. In fact, as well 

as there being much less wind from the southern and western quadrants, it is also 

much weaker. 
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Figure 5.6: The relationship between wind direction and speed 

5.2.3 Evaporation 

The processes leading to the formation of a soil surface seal have a profound effect 

upon the net water balance within the top layers of the soil (section 3.6). Water 

cannot be drawn up to the surface from under the crust because of the destruction of 

the soil structure and specifically the conducting pores (Bresler & Kemper, 1970). In 

an and environment the soil moisture flux is predominantly negative, only turning 

positive for brief periods after rainfall or the application of irrigation. However, if no 

seal is produced, the rate of water evaporation from the soil could be of an order of 

magnitude greater than if a seal had formed as a result of a rain event. It is therefore 

crucial to account for the rate of evaporation in order to model the water balance 

before, during and after wetting (Rose, 1996). Although a computer program was 

available from the Institute of Hydrology (IH) to calculate the evaporation term for 

periods of 24 hours using Penman's equations (Penman, 1948), it became clear that it 

would not provide the hourly resolution needed and so alternative calculations were 
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carried out. As the evaporative flux is an important term in calculating the soil water 
balance during and after water input and since the residence time of water in the soil 
is brief, hourly resolution is necessary. The Penman equation predicts evaporation 
from two terms, which depend on net radiation (C1), wind speed and humidity (C2), 

respectively. All of these variables can be calculated directly or indirectly from the 

weather station data. The full Penman equation, as approximated by Linacre (1992, 

p. 105), can be rewritten 

(1.3 uS Evaporation 
0y=+ (R�) + 

Q+ 
(5.1) 

yyr 
where 

c1= gradient of the saturation vapour pressure / temperature curve [hPa / C°], 

y= the psychometric constant (altitude dependent) [0.61 hPa/C° at 800 metres a. s. l. ], 

R� = net solar radiation [W/m2], 

u= wind speed [m/s] and 
S= saturation deficit [hPa]. 

In order for an hourly evaporation to be calculated, 0 and S need to be derived from 

the wet and dry bulb temperatures Td and T,,. 

Saturation vapour pressure 

17.29 TA 
(5.2) S= 6.1 e Td + 237 ' 

and vapour pressure 

v= 6.1e 17.27 T 
_y(TA+TW), (5.3) 

Tw+237 

with relative humidity 

h=(-)x100 (5.4) 

and the saturation deficit 

S= 8-v, (5.5) 

which means that the gradient A can be calculated by 
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IM 
(2501-1 

5) 
8.314[7 +273]2 

(5.6) 

Therefore if Td and Tx, are known as well as wind speed u and net radiation R, their 

values can be substituted into the original equation to find the evaporation. 
Correction factors must be applied to the equations to assure that all the units 

compatible. In order to correct the calculations some standards have to be 

introduced. A net radiation of 28 Wm2 results in an evaporation rate of 1 mm per 
day (Linacre, 1992) which means that an evaporation rate of 1 mm h" or 24 mm/day 

would require 672 W m'2. Therefore the hourly readings for the Cl (the radiation 
term) should be corrected by 1/672. Similarly a wind speed of 1m s"1 and a 
saturation deficit of 1 millibar result in 0.2 mm of evaporation per day (Linacre, 
1992). If u and S are both numerically 1, the aerodynamic term C2 would equal 3.77 

mm h" or 90.49 mm/day instead of 0.2 mm/day which means that C2 should be 

corrected by 452.46. 

The evaporation flux calculated by the II-! and revised Penman equations are 
summarised in Table 5.1 for the period 7th -23rd August 1994. 

The revised Penman method IH Penman method 

Period 

Total heat budget term (CI) 

Total aerodynamic term (C2) 

Total evaporation 

7 Aug. at 00 h to 23 Aug. at 2400 h 

56.76 mm 

70.92 mm 

127.68 mm 

49.43 mm 
76.51 mm 

125.94 mm 

Table 5.1: Comparison of two ways to calculate the Penman evaporation coefficients 
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The differences between the terms C1 and C2 are caused by the difference in altitude 

by which each term is calculated; the IH equation models evaporation according to 

the height of the AWS at 100 m whereas the Jordanian data come from an altitude of 

800 m. Altitude has an important role to play in determining evaporation rates, as it 

profoundly influences the value of the psychometric constant y. At sea-level the 

constant is 0.67 hPa / C°, but at an altitude of 1000 m it falls to 0.59 hPa / C° 

(Linacre, 1992). A decrease in y increases the relative importance of the radiation 

term and reduces the influence of the wind speed and humidity terms in the 

evaporation equation, explaining the contrast between the two methods. 
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Figure 5.7: Total daily evaporation versus rainfall [7th August -20th October 1994] 

From the daily totals of evaporation and rainfall (Figure 5.7), it is clear that there is a 

very strong negative water balance with daily evaporation rates commonly above 7.5 

mm per day during the summer months. Only on days of extreme rainfall, which 

occasionally occur, at the close of the summer season, is there a small positive water 
balance which only lasts for a few hours. However, by the middle of October the 
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evaporation rates are usually below 5 mm per day which gives a much greater 

potential for there to be a positive water balance, if only for a few days. 

5.2.4 Rainfall 

Rainfall is the key factor in soil crust formation and in the soil-water balance. The 

frequency, intensity and duration of rainstorms and the pattern of rain events are all 

factors which must be taken into account. Rainfall is the one climatic variable about 

which there is a reasonable amount of data at different spatial and temporal scales. 

Station name Station Grid Altitude in Date Type of 

code Reference metres a. s. 1. established gauge 1 

North East 

Deir al Kahf F4 32° 16' 36° 52' 1025 1963 D 
Umm El-Quttein Fl 32° 18' 36° 39' 986 1947 D&R 

Al-Aritain F6 32° 7' 36° 59' 800 1963 D 
H5 - As-Safawi F2 32° 10' 37° 9' 715 1968 D&R 

Tullul E1-Khureishe F14 322' 36° 38' 550 1968 T 

Azraq Evap. Station F9 31° 58 36° 50' 533 1962 D& R 

D: Manual Daily ;D&R: Automated Daily and Recorder ; T: Totalizer 

Table 5.2: Rainfall stations within the Azraq Basin which are within 50 km of the 

field site at Ash-raf a. Adapted from Water Authority, Jordan (1989) 

Stations monitored by an automated system (D & R) contain the most detailed 

information including hourly readings of rainfall which correspond to the accuracy of 

the AWS information. The manual daily stations only give information about the 

total rainfall over a 24 hour period; these data are still useful in ascertaining the days 

of the year in which rain events occur. The least useful of the stations is the totalizer 

at Tullul El-Khureishe, which only gives an annual estimate of rainfall and can only 
be used for looking at long-term trends in rainfall. 
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The long-term variation in annual rainfall depicted in Figure 5.8 and Figure 5.9 

shows a high degree of fluctuation between years and in most cases a visible decrease 

in the amount of precipitation from the onset of data recording in the early 1960s to 

the late 1980s. First, Figure 5.8 and Figure 5.9 show a large coefficient of variation 

between years for all stations; the standard deviation of annual rainfall totals for each 

station is of the order of 45% of the mean. There is a reduction of standard deviation 

for the data from the Umm El Quttain and Deir El-Kahf stations from the earliest 

years to the 1980s. The standard deviations of the annual rainfall for the whole 

period for the two stations are 76.7 mm and 63.4 mm respectively whereas those of 

the 1980-1989 period are only 34.2 mm and 51.3 mm. Safawi and Aritain do not 

have a significant decrease in the standard deviation and in the case of Azraq the 

standard deviation of the annual rainfall actually increases from 31.4 mm to 37.1 min 
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Figure 5.8: Annual change in precipitation for the Jebal Haurän sites (1963-1989) 
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The Jebal Hauran stations (Figure 5.8) indicate a considerable reduction in annual 

precipitation from the first ten years to the last ten years. The means for Umm El 

Quttain, Deir El-Kahf and Aritain over the whole period are 169.4 mm, 136.4 mm 

and 100.9 mm respectively, but the 1980-1989 means decrease to 137.4 mm, 
110.1 mm and 87.6 mm. In the case of Umm El Quttain, only two years with annual 

rainfall significantly less than 200 mm occurred over the period 1963-1974, while in 

the 1980s there was not a single year when the rainfall reached 200 mm. Additional 

annual rainfall data for years 1992/93 and 1993/94 of 12.8 mm and 79.8 mm 

respectively would suggest a continuation of this trend. The Deir El-Kahf data show 

a similar trend and there are indications that Aritain has a reduction although the data 

are limited. The annual totals in 1994/95 and 1995/96 for the Menara station, which 
lies between the three Haurän stations, were 203.5 mm and 122 mm. The winter of 
1994 was in fact the wettest since 1979, but the winter of 1995 was closer to the 
long-term mean. 
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Figure 5.9: Annual change in precipitation for the non-orographic sites (1963-1989) 
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The sites unaffected by the orographic nature of the Jebal Haurän represent a rather 
different picture. The means for Azraq and Safawi for both the total series (1963- 

1989) and the shorter period (1980-1989) are similar: the mean for Safawi being 76.1 

mm and 76.7 mm for both periods, while Azraq decreases slightly but not 

significantly from 70.0 mm to 67.3 mm. Data for Tullul El-Khureishe are inadequate 

to make any valuable comparisons. 

The monthly mean rainfall data for 1980-1989 for the five rainfall stations nearest the 

field sites, indicate some interesting trends, which are summarised in Figure 5.10. 

Umm El Quttain has the highest mean annual rainfall of approximately 122 mm, with 

a rapid increase in rain from October to a maximum in December before decreasing 

slightly until March and then dropping off quickly in April leading to a negligible 

amount in May (<1 mm). Deir El-Kahf and Aritain show a similar pattern with 

annual means of 113 and 89 mm respectively with their highest monthly rainfalls in 

December. These three stations give credence to the idea that frontal systems that 

continue over the hills to the east of the Rift Valley will tend to give precipitation 

only as they are forced to rise over the higher ground of the Jebal Haurän. The 

amount of rainfall at these stations during the winter is highly dependent upon two 

variables: the altitude of the station and its distance eastwards. Umm El Quttain has 

the highest rainfall because it is the most westerly of all the stations on the Jebal 

Haurän, even though Deir El-Kahf has a slightly higher elevation. Umm El Quttain 

receives the rainfall first, whereas Deir El-Kalif, which lies on the south-eastern side 

of the hills, is slightly in the rain shadow and therefore receives less. 
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Figure 5.10: Mean monthly precipitation for stations in the area (1980 - 1990) 

While the three stations on the footslopes of the Haurän mountains experience 

rainfall due to an orographic effect, the other stations, which lie at much lower 

elevations, seem to be dominated by other climatic patterns which contribute to a 

more random distribution in rainfall (Sharon, 1972). These stations are dominated by 

a rainfall pattern which bears little relation to the precipitation falling on the hills to 

the north and west. Azraq, for example, has an October rainfall mean which is 

almost double that of the other stations and is only one of three stations to experience 

rainfall in May. The Safawi and Azraq graphs show no distinct seasonal trends, no 

particular maxima, and are dissimilar to the more traditional pattern exhibited by the 

Haurdn sites. 

Further analysis shows that the rainfall pattern becomes less temporally variable the 
further away the site is from the Jebal Haurän. The non-orographically affected sites 

of Azraq and Safawi display a more consistent, if limited, pattern of rainfall 
throughout the winter season and over the last thirty years there has been more 
continuity in the amounts of rainfall. Paradoxically, the sites on the Jebal are less 

consistent and indeed seem to be within a variable regime whereby there are years of 
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plenty followed by years of relative drought. They seem, therefore, to be more 

profoundly affected by the larger-scale meteorological conditions that control the 

climate further to the west, specifically the frequency of eastward penetration of 

cyclones from the Mediterranean in winter. 

A clear idea of the normal winter rainfall is necessary so that rainfall simulation 

experiments can accurately model reality. Despite a great amount of variability 
between years, it remains useful to investigate the nature of the rainfall using the high 

resolution data obtained by the AWS. As can be seen in Table 5.4, where the mean 
intensity used is 75 mm h'1, there is a tendency for scientists to look at rainfall 
intensities which may have return intervals of several years (Farmer, 1973; Bryan, 

1974; Riezbos & Seyhan, 1977; Roth et al., 1985; Cleary et al., 1987). While such 

an approach is suitable when looking at threshold erosion events, it is excessive when 

considering the formation of soil crusts on unstable soils. In the Badia, soil crusts 

will form annually regardless of big storm events and therefore it is more important, 

when considering simulation, to attempt to model typical conditions. 
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Figure 5.11: Individual rainfall events at Menara [August 1994 - May 1996] 
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Figure 5.11 and Figure 5.12 show the individual rainfall events which have occurred 

since the setting-up of the AWS in August 1994 and a calculation of the monthly 

rainfall respectively. Between August 1994 and August 1996 there were 190 hours 

of recorded rainfall which fell on a total of 75 days; 52 % of the rainfall events 

amounted to less than 0.5 mm of rain. The important variables which should be 

examined are the number of high magnitude events and the length of time over which 

a rainfall event lasted. There were relatively few storms with a rainfall intensity 

above 4 mm h"(see section 5.3.5 for further discussion), especially in the second 

winter season when there were only four such events (Figure 5.11). In a wet year, 

such as the winter of 1994/1995, when there were 12 storms (> 4 mm h''), the pattern 

of rainfall shows a smaller frequency of overall rainfall, but with a greater number of 
high magnitude events (Figure 5.13). Of the 74 hours of recorded rainfall during the 

1994/5 season, only 25 had 0.5 mm h'', whereas in the following drier season there 

were 112 hours of recorded rainfall, of which 74 hours (66%) constituted events of 
0.5 mmh''. 
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Figure 5.12: Monthly rainfall totals at Menara [August 1994 - May 1996] 
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This suggests that marry of the rainfall events in the winter of 1995/6 were 

characterised by several hours of the day with a light drizzle which never exceeded 

0.5 mm h'1 (Figure 5.14). 

Considering that the majority of soil erosion processes occur at higher rainfall 

intensities, it is important to note that there were significant storm events at the 

beginning of each winter season: in the first season there was a 19.5 mm h" event at 

the beginning of September and in the second season there was the largest single 

event of the two years at 21 mm h'1 in November 1995. 
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Figure 5.13: Rainfall frequency distribution at Menara [August 1994 - May 1996] 

136 



Chapter 5- Analysis of climatic data 

I. - 

0 C 

5 

4-1 

3- 
c 

w O 
c2 
O 
m 
I 
0 

1H 

o ........ ýI Tell rI ßi111 ...... ....... ... .. 

-ý-T-ý - r---r- 
AS0NDJFMAMJJAS0NDJFMAMJJA 
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5.3 INTRODUCTION TO RAINFALL SIMULATION 

The simulation of rainfall for studies of infiltration, surface runoff, erosion and 

surface crust formation is not new. Simple methods of applying rainfall using 

watering cans were adopted as early as 1932 (Duley & Hays, 1932). Since then, 

rainfall simulators have been used extensively in soil research. While in the 

laboratory it has been possible to refine the designs of simulators to almost any 

specification of drop size, intensity and energy, simulators used in the field have 

encountered considerable problems (Imeson, 1977; Yair et al., 1980). 

5.3.1 Why rainfall simulation 

There are four pragmatic reasons for using rainfall simulation as a tool in soil 

research. Soil and soil-water interactions and processes can be measured in a 

relatively short time (Meyer, 1965). Simulated storms can be applied for selected 

periods using specific soil treatment conditions. Observations from a series of 

storms can indicate relative differences in those treatments. Measurements taken 

during simulated storms can be replicated on the same or different plots (Meyer, 

1994). 

In and and semi-arid environments the need for rainfall simulation experimentation 
increases. Individual storms, often with intensities with return intervals of a number 

of years, can be the most important in modifying the landscape. For example, at the 

Muaq'qar experimentation station in Jordan, where the mean rainfall is 150 mm a 1, 

five winter seasons were needed to obtain enough rainfall data to carry out adequate 

experimentation on the effect of different soil amendments because some years had 

as few as three rainstorms in the whole winter season (Abu-Sharar, 1996 - Table 5.3). 

Rainfall simulators do not eliminate the need for natural rainfall experiments. In fact, 

such experiments are vital for long-term studies which seek to elucidate different 

processes caused by large amounts of low-intensity rainfall and their relationship 

with the high magnitude events which occur more infrequently. However, the length 
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of time needed to obtain satisfactory results with enough variability in the storm 

events which occur will often be prohibitive. The present scientific environment 

requires rapid answers and the questions which are asked in twenty years will 

probably not be those which are designed to be answered with present long-term 

experiments (Neff, 1979). It is important, therefore, to combine the two approaches 
by using longer-term and larger-scale projects to verify simulator results. 

Season Date Total rainfall Number of Rain storms (mm): 

(mm) rain storms 

First Last Maximum Minimum 

1987 / 88 17/10 19/3 114 18 20.4 0.3 

1988 / 89 19/11 14/3 123 11 49.8 0.5 

1989 / 90 2/1 2/4 74 8 21.2 0.9 

1990 / 91 22/10 16/2 29 3 11.6 6.4 

1991 / 92 13/10 31/12 76 7 22.8 2.3 

Table 5.3: Selected parameters of the rainfall events in the Muaq'qar Experiment 

Station for the years 1987 - 1992. Source: Abu-Sharar (1996) 

There is very little soil crust research which does not use some aspect of rainfall 

simulation to model crust formation, development and morphological characteristics. 
Table 5.4 gives a sample of the simulators that have been used and shows the wide 

variety of research which has been undertaken, although it can be noticed that much 

of the research is carried out in the laboratory rather than the field. 

5,3.2 The characterisation of natural rainfall 

It is significant that the understanding of natural rainfall is limited and therefore it is 

impossible to model it accurately using rainfall simulation techniques. Research has 

increasingly allowed the accurate simulation of individual rainfall 
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Table 5.4: Rainfall characteristics used for rainfall simulation in soil crust research. t Authors using simulators developed by others (in brackets) 
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characteristics (Bubenzer, 1979), and complicated simulators have been constructed 

with increasing control on every variable (see Table 5.5). Despite expert knowledge 

in the latest nozzle technology, scientists using rainfall simulators have a limited hold 

on the very thing they are imitating. The presupposition underlying most soil 

research that there is a simple relationship between the rainfall spectra and rainfall 

intensity over space and time is incorrect (A. Gadian, pers. comm. ). 

The difficulty in rainfall simulation arises because of the technical inability to 

measure natural rainfall adequately. Four rainfall variables are regularly cited as 

being fundamental to soil surface processes such as erosion, runoff and surface 

sealing: intensity, kinetic energy, drop size distribution and the effect of wind upon 

these (Hudson, 1961). An essential problem in simulating each of these variables is 

that they are all temporally and spatially variable during a storm event. 

Rainfall intensity is important because it significantly affects the amount of 
infiltration, whether a crust is present (Farres, 1978) or not (Dunne, 1991). However, 

the recording of the mean intensity of a rain event is inadequate for modelling the 

impact of rainfall on the soil surface. Convective storms in semi-arid, and and most 

tropical areas are often brief but with a large magnitude, which means that hourly 

measurements, as with the AWS at Menara, do not accurately describe the intensity 

unless the length of the storm is also measured. Even measurement of the storm 

length approximates the intensity, because storms will often increase in intensity to a 

maximum before decreasing again. The period of maximum intensity is the rainfall 
feature most significant in terms of erosivity. 

Kinetic energy is connected to intensity, although there is a significant departure 

from a linear relationship which has been noted by various authors (Laws & Parsons 

1943; Mihara, 1951; Hudson, 1961). The kinetic energy increases rapidly from low 

intensities, but a wide scatter is associated with these low intensities. Between 

intensities of 25 and 50 mm h'', the marginal rate of increase in kinetic energy falls 

to zero and the relationship becomes linear. At intensities greater than 100 mm h'' it 

is suggested that there is a slight reduction in kinetic energy and the variation 
between storms becomes negligible (Hudson, 1961). 
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In any rainstorm, whether of low or high intensity, there is always a significant 

distribution in the size of raindrops (Figure 5.15). The minimum size of a raindrop is 

governed by the minimum size required to fall out of suspension in the air, while the 

maximum size is about 6 mm, above which drops generally become unstable 

(Blanchard, 1950). It is observed that there is a general increase in drop size and 

distribution as intensity increases. Even at high intensities, however, the number of 

large drops remains fairly constant. Therefore for any rain event there will be 

continuous spatial and temporal changes in dropsize distribution corresponding to 

changes in intensity. 
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Figure 5.15: Percent of total volume contributed by simulated raindrops for eight 

rainfall intensities. Source: adapted from Laws & Parsons (1943) 

Wind is an important secondary variable because it affects the velocity and the angle 

of impact of raindrops on the soil surface. Most frontal rainstorms are associated 

with increased wind speed which in turn increases the effective rainfall intensity 

(Sharon et al., 1983). Associated with the impact angle of the rainfall is the slope 
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angle, which determines the angle at which the rain hits the surface. When these two 

factors are combined, there can be as much as 3: 1 variation in point measurements on 

local slope gradients and their orientation relative to the incoming rain (Sharon et al., 

1983). In section 5.2.2 the correlation was made between the prevalent wind 

direction and rainfall which has implications for asymmetric patterns in soil crusting 

due to the micro-topographic slopes of furrows. In a ridge and furrow sequence there 

will be large variations in the erosivity of the rainfall because of such changes in 

local slope angle. The potential effect of these combined factors on the dislocation 

and splash of surface particles cannot be disregarded. Rain hitting a perpendicular 

surface will cause some material to be dislocated due to the development of radial 

jets (Al-Durrah & Bradford, 1981) and the propagation of Rayleigh surface waves 

causing lateral outflow sheets to form (Alder, 1979), but if a horizontal component is 

added to the rainfall, then there is much more potential for material dislocation and 

consequently erosion. In terms of crust formation, additional intensity of the rain 

will directly affect the vertical formation of the structural crust; with greater 

availability of dislocated particles, there is a greater propensity for depositional crusts 

to form. While a vertical rain-gauge will correctly measure quantity and intensity of 

inclined rain, the velocity factor must be increased by I/ cos 0 from the horizontal, 

which is especially important when values of terminal velocity are squared for 

calculating kinetic energy (Hudson, 1961). 

5.3.3 Rainfall simulation techniques 

Building a simulator requires a compromise among the four important variables of 
intensity, kinetic energy, drop size distribution and the effect of wind. It is often 

prudent to concentrate on one at the expense of the others depending on the focus of 

their research. With contemporary nozzle technology, it is possible to get close to 

simulating rainfall with a wide spread of drop sizes, especially at the higher rainfall 

intensities. Many of the devices for simulating so-called `natural rainfall', whether 

of the drop-former or pressure nozzle variety, are designed to obtain a constant 

distribution of raindrops over a certain area for a given period of time. Although it is 
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possible to achieve a fairly constant distribution of raindrop size using a drip-former 

design, the more popular and versatile nozzles tend to give a great range of raindrop 

sizes approximating to the distributions of Laws & Parsons (1943). However, nozzle 

or sprinkler type systems tend to display an inverse relationship between median 
drop diameter and the applied intensity. Furthermore, depending on the type of 

nozzles, the fall velocities are often less than the terminal velocities of equivalent 

drops of natural rainfall (Riezebos & Seyhan, 1977). Whilst many simulators can 

simulate at different intensities, this is nearly always done between runs, rather than 

within runs, which does not correspond to temporal changes in intensity during a rain 

event (Neff, 1979). A primary consideration is whether the simulator is to be used in 

the laboratory or in the field. Field simulators generally have to be portable, require 

a large water supply and are generally limited in height which reduces the capability 

of getting drops falling at near-terminal velocity. It is also difficult to have any 

control over the wind despite elaborate sheets of metal and/or plastic. Larger-scale 

experiments have been undertaken (Swanson, 1965; Abrahams et al., 1995), but the 

scale presents problems of process measurement. The small size of most plots can 

cause a problem when considering the disproportionate effect stones, bushes, animal 
burrows, etc. can have within the plot (Neff, 1979). In the laboratory it is much 

easier to control the rainfall and wind variables, especially with the building of 

towers 10 metres or more in height in order to obtain the correct velocities for the 

drop sizes required. Once again, the biggest limitation under these conditions is the 

size of plot, although the constraint is due to the size of building, rather than any field 

consideration. Most scientists using simulators in the field or laboratory work on 

plots of only a few square metres which often requires scaling-up with all the 

implications that involves (Kirkby et al., 1996). 

5.3.4 The Safawi Rainfall Simulator 

The simulator used for the research in Jordan had to meet various specifications. 
First, the simulator had to be portable for movement over rocky ground from one plot 

to another. Second, efficient use of water was necessary since a regular water supply 

could not be guaranteed at the field site and therefore all the water had to be brought 
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to the site. It was therefore decided that the simulator should be approximately 

modelled on the simulator developed by Roth et al. (1985). 

A nozzle system, although used in many laboratory-based experiments, is impractical 

for use in the field due to the amount and pressure of water needed to run such a 

system. Therefore, a drop-former type simulator was employed using irrigation 

piping and drip formers from the irrigation system. Drip formers that deliver a 

specific number of drops and volume of water per unit of time were purchased 

locally. However, since most had an application rate too large for the simulator, a set 

of adjustable drip-formers were purchased. These were constructed from two thin 

cylinders, the outer of which could be rotated by hand. Each cylinder had a hole in 

its side of approximately 2 mm x4 mm; by changing the relative positions of the two 

holes, the flow of water could be changed. If the holes did not coincide, there would 

be no flow; conversely, if the holes coincided exactly, flow would be at a maximum. 
The drip-formers were punched into the irrigation tubing which was placed in a spiral 

and fixed upon a wire grid. The tubing was fixed at both ends to a two-way valve 

which came from the water container above to ensure that water extended all the way 

along the pipe, so that there was an equal supply to each drip former. 

The tank was suspended 30 cm above the piping and was joined by means of a valve 

which regulated the flow of water out of the tank. The tank when full held 78 litres 

of water and had an access tube extending from the side and hatch on the top for 

measuring water temperature and electrical conductivity. 

A completely steady water level in the tank (Roth et al., 1985) was attempted by 

placing a second container above the first so that as the water level dropped the 

vacuum in the upper tank would be broken, allowing water into the lower tank and 
thus keeping a constant head. Difficulties in obtaining a pure vacuum in the upper 

tank, however, led to an alternative solution. The intensity was measured and an 

appropriate amount of water was added to the upper tank at 5 min intervals to keep 

the head, and thus the rainfall intensity, constant throughout each experiment. 
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Figure 5,16: The Safawi rainfall simulator 
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Plate 5.2: The Safawi rainfall simulator 
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Chapter 5- Analysis of climatic data 

Before each experiment started, a plastic sheet was placed under the set of drip 

formers before the valve was opened and each former calibrated until it appeared that 

all the drip formers were dripping at approximately the same rate. The water level in 

the tank was then measured and the plastic sheeting carefully removed, marking the 

beginning of the experiment. 

5.3.5 Rainfall parameters 

None of the Jordanian rainfall data show the intensity or drop size distribution of 

individual storms. In addition to the hourly data from Menara, the most accurate 

rainfall intensity data for the Badia are 20 minute resolution for the automatic 

meteorological stations (Table 5.2). 
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Figure 5.17: Rainfall intensity diagram for Azraq rainfall station (F9) [1965-1985] 

source: Water Authority (1989) 
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Data from Umm El-Quttayyn from the winters of 1992/93 and 1993/94 indicate that 

the maximum rainfall intensities for each season were at least 42 mm h"l (14 mm in 

20 minutes) on 18th December 1993 and 60 mm h'' (20 mm in 20 minutes) on 17th 

January 1994. Such data would be underestimated by the rainfall intensity graph for 

Azraq (Figure 5.17), only a few kilometres to the south of the field site (Water 

Authority of Jordan, 1989). 

Data from the AWS for the winter seasons 1994/95 and 1995/96, which only give 

rainfall per hour (Figure 5.11a), similarly suggest that the highest storm intensities lie 

between 40 and 60 mm h'1, but that most of the rainfall events consist of between 

0.5 and 5 mm which gives intensities of between 1 and 15 mm h". It seems that 

Jordan intensity graphs, such as that in Figure 5.17 for Azraq, are calculated upon 

rainfall amounts per hour, which result in much lower intensities because the storms 

rarely last more than 20-30 minutes. 

From observation of rain storms in the Badia, it can be seen that there are a few short 
highly intense rain storms and a larger amount of longer very low intensity events. 

By observing the marks of the first raindrops on the soil surface, it is concluded that 

the drop size is usually large. It appears that, due to the very poor aggregate stability, 

even the smallest and least intense amounts of rain will cause mechanical breakdown 

of the surface soil aggregates and crust formation. 

With this evidence in mind, a proposed intensity range of 10 - 15 mm h'' was 

adopted to most closely simulate natural rainfall conditions. Although there is some 

debate concerning the relative importance of rainfall intensity and kinetic energy of 

raindrops on soil crust formation (R6mkens et al., 1986; Valentin, 1985; Moss, 

1991 a), it is generally agreed that greater rainfall intensities tend to seal the soil more 

quickly and hence reduce vertical development of the crust (Romken et al., 1986). 

Thus it is sensible to simulate rainfall at conditions which compare favourably with 

the majority of rainfall events in the region. There is a large body of opinion which 

suggests that rainfall should be simulated at high intensities (Tables 5.4 and Table 

5.5), because it is often the threshold events, i. e. those with high return intervals, 

which are most important in modifying the landscape. From a practical point of view 
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Chapter 5- Analysis of climatic data 

it is easier to simulate at higher intensities because nozzles and drip-formers are more 

efficient at higher intensities and the process under examination will be activated 

more rapidly and responses will be more easily measured. However, it is important 

to realise that soil processes do occur at lower intensities, albeit over longer temporal 

scales. Surface crusts may well take several large storm events to develop in 

temperate locations, but in desert soils such as those in Jordan, there is a very high 

propensity to crust even with small amounts of rainfall. 
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Figure 5.18: An experiment calculating the volume of drops leaving the drip-formers 

In order to calculate the mean size of the raindrops falling from the simulator, the 

number and volume of drops falling from a random sample of drop-formers was 

measured over a period of one minute. Figure 5.18 shows that there is a high 

positive correlation between the number of drops and the total volume which 

indicates that there is little change in drop dimension over time or over the spatial set 

of drip formers. It is possible to work out the mean size of each drip by assuming 

each drip approximates to a sphere with volume Vd and diameter Dd, so 

Vd 
46 Vd r Dd3 

Dd --3 

3\2 ;r 
(5.7) 
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The experimental results obtained show that the mean drop size is 6.18 mm with a 

standard deviation of 0.32 mm. A drop size of almost 6.2 mm is large, but if 

compared with the drop sizes obtained in Table 5.5 which have an mean diameter of 

3.6 mm, it is consistent with the larger drop sizes simulated in Maine, Nebraska, the 

CSIRO in Australia and in Uganda. 
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Figure 5.19: Fall velocities of waterdrops from specific heights (adapted: Laws, 1941) 
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Table 5.5: Rainfall simulators and infiltrometers using drop formers to simulate 
rainfall. Source: adapted from Bubenzer (1979), pp. 125-126 
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From the work of Laws (1941), which is usually cited as the reference point for 

calculating the velocity of different drop sizes from different heights, it is possible to 

approximate the velocity of the drops impacting at the soil surface as 6.85 ms1 

(Plate 5.1). 

Using the formula KE = 
fmv2 

to calculate the kinetic energy of raindrops and using 

the velocities obtained by the experimental work of Laws (1941), it is possible to 

calculate that the mean kinetic energy of a single drop from the Safawi simulator, 

hitting the soil surface from a height of 3 metres, is 3x 10" Joules. This figure is 

equivilent to the kinetic energy obtained by a drop with diameter of 5 mm travelling 

at terminal velocity (i. e. 9.4 metres fall). 

5.4 CONCLUSION 

The study of soil crust formation lends itself to plot experimentation using rainfall 

simulation. However, this chapter highlights various aspects of soil crust research 

which are often neglected. It can be seen that the majority of soil crust research has 

taken place in the laboratory. As discussed in Chapter 4, the laboratory provides a 

location for almost all variables to be controlled, even to the extent of sieving of the 

soil to a specific particle size distribution (Farres & Muchena, 1996). While such 

experiments are undoubtedly important for determining distinct soil processes at a 

small scale, it nevertheless represents a gross simplification of field conditions where 

soil conditions are not homogeneous and where there are multiple-scale interactions. 

To understand soil crust formation fully it is vital that detailed analysis of climate 

characteristics is carried out. Rainfall is the most important variable because of its 

role in forming the crust. It would seem from the analysis provided here that the 

majority of rainfall events are of very low intensity: 52 % of rainfall events in the 

two seasons monitored showed 0.5 mm of rainfall falling within an hour. In both the 

1994/95 and the 1995/96 seasons there was evidence of at least one heavy rainfall 

event which contributed up to 20 mm in an hour and probably resulted in intensities 

of over 50 mm h". Such events are very important in forming crust on newly 
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ploughed land at the beginning of each winter season and subsequent rainfall events 

would only serve to strengthen and develop that crust which was already created. 
The rainfall statistics also show some interesting spatial and, temporal trends. 

Rainfall patterns divide between the Jebal Häuran sites, (Deir EI-Kahf, Umm El- 

Quttain and Aritain) which are dominated by relief rainfall, and the non-orographic 

sites (Safawi, Azraq and Tullul El-Khureishe). The former seem to have had a 

general decrease in annual rainfall since monitoring began in 1963, whereas the latter 

show no such decrease. The rainfall distribution during the winter season is also 
distinct with the Häuran sites being dominated by a modal pattern, while the others 

display a much more random pattern showing that they are much less affected by the 

relief rainfall of the Jebal Häuran. 

Wind direction has a profound effect on the impact velocity of raindrops and is 

therefore important for describing areal extent of crust and different amounts of soil 

erosion on lee and windward facing slopes. There is a distinct and regular diurnal 

pattern to the wind direction. In the summer months there is a prevailing north- 

easterly wind during the evening and night, but as the temperature begins to rise in 

the morning there is a significant shift to a north-westerly direction. This usually 

occurs via north, but the data show that there are occasions, probably indicative of 

meteorological instability, when the wind veers via the south. The data for the winter 

months show a much more complicated pattern because much more of the afternoon 

shift veers via the south and the evening and night wind is easterly to south-easterly 
instead of north-easterly. The most important aspect of the data in relation to areal 

extent of crust formation is the direction of the wind during rainfall events. This 

quite clearly has been shown to come from the north west with a mean direction of 
318.2°. The implications of the data on soil crust formation will be more fully 

explored in the following chapter. 

Wind speed, temperature and radiation elements all combine to produce an 
understanding of the evaporative fluxes which will vary depending on the presence 

or absence of a crust. Evaporation during the summer months has been shown to 
fluctuate between 5 and 10 mm per day creating a very strong negative water 
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balance. However, in the winter months evaporation rates drop below 5 mm per day 

allowing positive water balances for several days after rainfall. 

The main reason that this work requires background information on climate 

variables, is so that it is possible to adequately model rainfall using simulation 

techniques. The plot experiments carried out at Low Farm, despite difficulties in 

obtaining local high resolution rainfall data, are based upon real rainfall 

characteristics. A large number of simulators have been reviewed and it is clear that 

there is great disparity in the classification of rainfall variables between simulators. 
However, it is clear from the literature that the criteria for measuring rainfall 

variables is derived from the experimental set-up. In other words the raindrop 

characteristics which are obtained from the simulator depends upon the processes 

which are being observed. The Safawi rainfall simulator, which was constructed in 

Jordan using local materials to a similar specification to that of Roth et at. (1985) 

with a drop height of 3 metres. The use of local irrigation drip-formers meant that 

the mean drop size was calculated to 6.18 mm giving a velocity at drop impact of 
6.85 ms 1. This represents a drop size which is larger than other rainfall simulators. 
However, this was unavoidable and therefore the more meaningful measure of the 

kinetic energy would suggest a drop-size of 5 mm travelling at terminal velocity, 

which is a more appropriate way of comparing the Safawi simulator with others in 

the literature. 

Soil crust research typically concentrates on either the soil processes or on the 

hydrological aspects although the two are intimately linked. From a good climate 
base, the next three chapters explore the following linkages. 

The effect of aspect on moisture retention as controlled by differences in soil 
crust formation. 

2. Water and wind erosion on the soil surface characteristics, at both a field and a 
ridge/furrow scale. 

3. The micromorphological changes that accompany soil crust formation with 

respect to the microtopography. 
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6. SOIL SURFACE MOISTURE FLUXES AND THE ROLE OF THE 

SURFACE CRUST 

The major avenue for increasing water available for crop production and aquifer 

recharge is to reduce the amount of water evaporating from the soil surface. 

(Kemper et al., 1994, p. 56) 

6.1 INTRODUCTION 

The main focus of this chapter is to investigate the effect of the surface crust upon 

the moisture regime in the surface layers of the soil. The soil crust is predominantly 

seen as a sign of soil degradation, affecting the infiltration of water into the soil. 
However, the purpose behind looking at moisture changes in the soil directly below 

the crust is to examine the role of the crust in evaporation. This is especially 
important in and environments because the moisture residency in the soil relates 

directly to biomass production. In order to accurately study small variations in 

moisture, a non-destructive method was needed. The Institute of Hydrology (IH) 

have been recently developing a surface capacitance insertion probe (SCIP) which is 

able to measure to such a resolution. This instrument has not been used in and 

environments before and therefore a detailed calibration procedure needed to be 

carried out to make use of its capability. The first section of the chapter introduces 

the methodology and principles which act as a foundation to the field measurements. 
The data are analysed in the second half of the chapter. 

6.2 DIE MEASUREMENT OF FIELD MOISTURE CONDITIONS 

In order to investigate the influence of the surface crust on the moisture dynamics of 
the near surface soil layers, a non-destructive method for moisture content 
determination is needed. The standard procedure calculates the weight-loss of a 

sample after it has been in a soil oven for at least 16 hours (Gardner, 1986; Goudie, 

1990; BS1377,1990). There are two main problems with such a method. First, there 
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is the practical consideration of doing research in desert environments; spatial 

variations in soil moisture will be small, but nevertheless important. It is vital in 

such cases to obtain an accurate weight as soon as possible after the sampling, which 
is usually impossible, given the location. Second and more important, the moisture 

content of soil is best monitored over time, for example after a rainfall event, and this 

is impossible with a destructive method. If samples are taken nearby, there is a high 

probability that the moisture conditions will be different because moisture content 

has a high spatial variability (Mason et al., 1957). Sampling will alter the moisture 

conditions of the surrounding soil, especially when a crust structure is disrupted. To 

overcome these problems, various options are open, all of which rely on obtaining 

indirect readings for moisture content. The neutron probe has been used extensively 

for looking at large-scale changes down the soil profile. Neutrons emitted from the 

probe are scattered and slowed down by hydrogen nuclei in the soil: this transfer of 

energy can be measured, and the moisture content inferred. The resolution of the 

equipment ranges from 16 cm radius at saturation to 70 cm near zero moisture 

content (Van Bavel et al., 1956): therefore, the instrument is not ideal for monitoring 

high resolution soil surface moisture variability. To obtain high resolution data, 

electrical methods can be used which relate the soil moisture to the dielectric 

constant of the soil. Two such techniques have emerged over the last twenty years: 

Time Domain Reflectometry (TDR) and the Surface Capacitance Insertion Probe 

(SCIP) (Ansoult et a1., 19ß4; Campbell, 1990). 

The link between moisture content and dielectric constant has been acknowledged for 

many years (Smith-Rose, 1933; Hoekstra and Delaney, 1974), and yet only in the last 

decade has equipment been developed to measure it. Because soil is made up 

primarily of solid material, water and air, the dielectric constant, which is very 

sensitive to the amount of water, will give a ratio of water to non-water components. 
Time-Domain Reflectometry (TDR) is the measurement of the transit time of an 

electromagnetic wave propagating in the medium, so that the greater the moisture 
level, the slower the speed of the wave. Methods using capacitance, such as the SCIP 

(Figure 6.1, Plate 6.1), have two metal electrodes which measure the capacitance of 
the soil between. It is the soil which forms the dielectric medium. Increased 
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moisture levels raise the level of the bulk dielectric coefficient of the soil, which 

raises the capacitance and consequently alters the frequency of the oscillator current 

containing the capacitance (Dean, 1995). 

The dielectric constant, which is a ratio and has no units, is an electromagnetic 

property of materials and is defined as the electric dipole moment per unit volume. 

In a composite material like soil, there are several contributions to the total electric 

dipole moment per unit volume. The dipole contribution responds to a given 

frequency, until a threshold frequency is reached, when it is no longer fast enough to 

react to changes in the electric field, and ceases to contribute to the net dielectric 

constant. The threshold depends on the strength of the surrounding molecular bonds 

and the inertia of the dipole. Water molecules have a permanent electric dipole 

moment and they reach the threshold of a few gigahertz, at which the dielectric 

constant progressively falls from a value of 80 (Dean, 1994). Further technical 

details concerning the functioning of the Capacitance probe can be found in 

Appendix I 

Figure 6.1: The Surface Capacitance Insertion Probe 
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Plate 6.1: The SCIP measuring soil moisture at a plot at Lower Farm 
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6.2.1 SCIP calibration 

In order to calibrate the SCIP effectively, a method was required which compared the 

volumetric moisture content of a soil column with frequency readings from the 

probe. A plastic cylinder with a diameter of 19.9 cm and a height of 17.8 cm was 

placed upon a sieve with a piece of coarse filter paper in between. Assuming a soil 

bulk density of 1.3 g cm 3, which was an average of field measurements* a calculated 

mass of 6065 g was put into the cylinder. The mass of the soil, cylinder, filter paper 

and sieve was measured to a resolution of 0.5 g. The soil was saturated from the base 

by placing the soil column in a larger container and filling it slowly with distilled 

water, forcing all the air up out of the soil. Once the soil was saturated, the probe 

was placed in the soil to obtain the highest dielectric constant reading. To obtain the 

saturated volumetric weight, the column was taken from the larger container, placed 

over a bucket and then weighed so that the water in the bucket could be included in 

the calculation. The probe stood in the soil throughout the test. There was no 

opportunity for preferential drying around the holes made by the probe and the 

difficulty of pushing the probe into the soil when it was very dry was circumvented. 

The core was then allowed to drain freely and the weight and dielectric constant were 

measured at regular intervals. For all measurements the probe was placed at a depth 

of 10 cm below the surface rather than 5 cm as it provided better sampling of the 

entire soil column. Once the core stopped dripping into the bucket, the soil was 

assumed to have reached field capacity (24 - 48 hours after the start of the 

experiment) and the contents of the bucket were discarded. 

The core dried in a warm room. The probe was used every 2 days to measure the 

change in moisture. Once it became very dry, the core was placed in an oven set at 
30 °C in order to drive off the remaining moisture. After about two months, the 

weight of the soil was equal to that at the start of the experiment at which point the 

calibration was complete. 
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Figure 6.2: Calibration curves for the SCIP 

The results of the calibration, which plots the SCIP readings against the volumetric 

moisture content, are shown in Figure 6.2. It shows a high degree of linearity, 

especially at the dry end of the scale, as shown by the high Pearson correlation and 

regression results. The first thing to notice is that the curve shows a certain amount 

of 'flattening-off at the high moisture levels. There is a reduction in the marginal 

increase of permittivity after 25% moisture content and a total decline after 30%. 

This suggests that the SCIP is least able to distinguish between moisture variation 

when the soil is near to saturation. 
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Figure 6.3: Graph to predict soil moisture from the dielectric constant 

Using Figure 6.2 and the resultant regression equation y=1.89x +7,69 gives 

considerable problems at the dry end of the scale because the lack of linearity at the 

moist end affects the more accurate dry end of the spectrum. As it stands, any 

permittivities lower than 7.69 would be considered as a negative moisture condition. 
Many of the data points do fall into this category, due to the very low amounts of 

moisture in the Jordanian soils. However, if the higher moisture contents are ignored 

and the low moisture data points are transformed to increase linearity (Figure 6.3), 

the regression has a steeper gradient and a smaller intercept y=4.57x + 3.98. This 

approach allows accurate prediction of the field moisture condition up to about 15% 

volumetric moisture which is appropriate for the dry nature of the soils under 
investigation. 
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6.3 THE RELATIONSHIP BETWEEN CRUST DEVELOPMENT AND MOISTURE STORAGE 

Almost every commentator in the field of soil crust research has noted the potential 

for the crust to prevent the entry of water into the soil profile. Prolific numbers of 

studies, both using fieldwork (Morin & Benyamini, 1977; Agassi et al., 1981; Trout, 

1990; Fattah & Upadhyaya, 1996) and theoretical models (Hillel & Gardner, 1970; 

Ahuja, 1983; Brakensiek & Rawls, 1983; Ahuja et al., 1989; Aboujaoude et al., 

1991; ), have been carried out showing that infiltration is drastically reduced by the 

alignment and rearrangement of surface soil particles into a dense crust. However, 

there is little research looking at the role of the soil crust as a barrier to evaporation. 

This seems to be a key issue, especially in semi-arid and and ecosystems, where the 

conservation of soil moisture is essential. One problem that has made research into 

this area so difficult is the lack of a portable non-destructive method for measuring 

water content of soils and specifically a way of detecting small variations in moisture 
in the sub-surface layers of the soil. The following work seeks to look at moisture 
levels in the soil directly beneath the soil crust and consider if there are links between 

crust development and the storage of moisture. 

6.3.1 Statistical considerations for analysing independent paired data 

The research on soil moisture presented below falls into two distinct categories: first, 

examination of within-furrow variations, primarily relating aspects of crust type and 

thickness to the moisture budget and second, changes of soil moisture under specific 

agricultural management considerations. 

In order to statistically analyse two paired datasets, it is useful to discover if one 
dataset is statistically different from the other. The t-test, which is often used in 

geomorphological applications (see, for example Loureiro & Coutinho, 1995), 

examines the difference of the means of two samples. It becomes particularly useful 
for investigating the difference between two matched pairs of data, such as the 

moisture content on one side of a furrow compared with that measured on the other 

side of the furrow. The approach taken here combines the statistical and visual to 

allow the reader to come to a fuller understanding. In the case of paired data, line 
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segments can be a very effective way of displaying the data (McNeil, 1992). Further 

information on the statistical methods used can be found in Appendix 2. 

6.3.2 Correlation between rainfall intensity, crust formation and subsequent 

moisture conservation 

The first set of experiments considered the variation of soil crust development due to 

aspect. Plate 6.2 shows a typical ploughed field at the site of High Farm in Al- 

Rafai'at during the early part of the year prior to preparation for summer irrigation. 

The, soil was ploughed the previous autumn, in this case 1993, and left bare over the 

winter period. The ridge and furrows produced run roughly North to South (bearing 

008°), which means that for wind coming from a north-westerly direction during the 

majority of rain events (see chapter 5), rainfall intensity and therefore the points of 

highest erosivity will occur on slopes facing north and west. If it is assumed that the 

effective intensity and total depth of rainfall incident on windward-facing slopes are 

greater than on leeward slopes (Sharon et at., 1983), then there will be evidence 

shown both at the scale of a slope (Sharon et al., 1983) and on ridges in a cultivated 

field (Sharon et at., 1989). Although Sharon looks specifically at an erosional 

response to micro-topographical variations in rainfall, it is equally valid to assume 

that crust development will also be affected. Plate 6.2 shows distinctively the 

difference between the West-facing furrow flank and the East-facing flank. The crust 

is well developed on the former and has stabilised the flank, but on the latter a crust 

has not formed at all and in fact, because of its instability, there is evidence that 

material has slumped into the furrow base. 
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Figure 6.4 A simple plot of paired points (each point shows two measurements, one 

each side of the furrow) to show the relative differences in soil moisture 
in the top 5 cm of a ridge and furrow sequence at High Farm 

The SCIP was used in conjunction with data from a shear vane in order to investigate 

the link between crust strength, and therefore crust development, and sub-crust 

moisture. The High Farm SCIP data are presented below in different forms. Figure 

6.4 shows any =x line to denote equality: any point lying on it has an equal moisture 

distribution on both sides of the furrow. The points below the line represent places 

where the moisture was higher on the windward flank and all those above the line 

represent areas where it was lower. The further the points are from the line, the 

greater the difference between the wind- and leeward flanks. 
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Plate 6.2: The differences in soil crust development on east and west facing furrows 

The west facing furrow flank is crusted and is shown by the lens cap 
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Chapter 6- Soil Moisture fluxes 

Site Obs. DC(5) S. D. F-test t-test DC(10) S. D. F-test t-test 

East facing 1 21 5.38 1.39 0.67 3.2x10- 8.17 3.44 0.059 TUIO-4 

base 1 21 19.38 21.24 24.60 22.73 

West facing 1 21 8.73 1.54 13.20 5.44 

East facing 2 21 6.67 1.81 1.8x10-7 4.6x10-3 12.42 4.27 8.8x10-5 1.8x10-3 

West facing 2 21 11.59 7.06 18.48 9.33 

East facing 3 18 4.88 0.50 5.1x10-5 4.6x10-8 7.42 2.64 0.078 2.3x10-4 
Furrow base 3 18 20.41 25.99 24.62 

West facing 3 18 8.50 1.54 11.91 4.22 

orth facing 1 21 8.71 1.65 0.53 0.022 11.66 3.27 0.43 0.12 

urrow base 1 21 12.33 1.83 19.29 2.19 
South facing 1 21 8.01 1.91 11.02 4.05 

North facing 2 13 7.69 0.58 0.94 0.29 9.25 1.37 0.84 0.013 

South facing 13 7.01 0.53 8.06 1.29 

Table 6.1 Statistics associated with the permittivity readings for furrow flanks 

The set of statistics (Table 6.1) and the accompanying graphs (Figure 6.5 to Figure 

6.9) reiterate the data which has been presented in Figure 6.4, but with more detail 

from individual furrow sets. In viewing the results for the F- and t-tests in Table 6.1 

it can be seen that the majority are highly significant at the critical values, namely 
F0.05 and to. 05. In order to reject Ho for the F-test, the variance of both populations 

needs to be taken into account and compared with the critical values for v, and v2 in 

an F-test table. In all the cases in Table 6.1, v, and v2 are equal and the values range 
from 2.46 (21 observations) to 3.12 (13 observations). 

All the values for the F-tests are considerably lower than these values and therefore 

Ho cannot be rejected. In other words, each sample set has been drawn from 

populations with similar or equal variance. It is therefore appropriate to test for a 

difference in the mean values confident that a significant outcome will reflect a 
difference between the means and not the variances. 
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Considering the t"test values, at a significance value of P(0.05) it is possible to 

ascertain whether the difference of the means is significant or not. From Table 6.1 it 

can be seen that values for the comparison of East and West facing flanks range from 

0.0046 to 4.55 x 10"8 and therefore it can be concluded that the means are 

significantly different and that one set is consistently higher than the other. For the 

North and South flank, data values range from 0.022 to 0.29 which means that in two 

of the four cases it is not possible to reject HO which says that the means are similar. 

The main disadvantage with the t-test is that it does not estimate magnitude and 

although the comparison with the y=x line in Figure 6.4 does give a helpful visual 

impression, it is better to use the vertical line plots and the tilted line segment graphs 

shown in Figure 6.5 to Figure 6.9. 

From the three sets of graphs showing East-West data sets from High and Low farm 

(Figure 6.5 to Figure 6.7) a few additional points can be made which become clear 

using such a graphical method. First, there is a consistent increase in moisture at all 

three sites when comparing the westward flank with the eastward one. Second, there 

is an indication that the wetter the soil, the more difficult it is to distinguish between 

flanks. This is partly due to the plotting of the data on a log scale, but there is still a 

recognisable pattern at all the sites. Certainly any observation which shows a higher 

east-flank reading tends to be at the higher moisture levels. Third, the levels of 

moisture are, on average and at the upper range, higher when using the 10 cm rods, 

but that probably reflects higher evaporative losses from the soil closer to the surface. 
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Figure 6.5 Summary of moisture levels in East/West facing furrows at High Farm 
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The results from the comparison of south-north flank variations are not so 

compelling, although some points could be reiterated. The variation seems larger 

and more consistent at the dry end of the scale and most of the points which show 
higher levels on the southern flank are at the moister end. However, the differences 

on the north- facing flanks tend to be greater than the south-facing flanks, and the 

length of the lines descending are much less than those ascending. The less 

convincing results for the Low Farm example reflect the small number of 

observations and in fact the graph, in this case, is more convincing than the results 
from the t-test would imply. The other main difference is that the degree of moisture 
in the soil at 5 cm and 10 cm is much more similar and generally the values as a 

whole are much lower than the east-west data with permittivities rarely being greater 
than 12. This may be because the strongest winds come from the north, and so there 
is a higher uptake of water from the soil. 

Figure 6.10 and Table 6.2 present data indicating the shear strength of the surface 
soil. From the strength characteristics, the thickness of the soil crusts can be inferred 

and this provides insight for the previous graphs of soil moisture. It is helpful to 

remember the image of Plate 6.2, which shows the physical situation illustrated by 

these data. Plate 6.2 shows an almost total absence of crust on the east-facing furrow 

flank in contrast to the developed crust seen on the west-facing flank. The shear vane 
is the main method for measuring shear strength of soil (BS 1377,1975). A torque is 

applied to a vane of known dimensions which has penetrated the soil and when the 

torque is sufficient, the soil will shear. The shear strength of the soil crust correlates 

with crust thickness (Glancey et al., 1988), although there is considerable scatter in 

the data which can be reduced using an automated system (Upadhyaya et al., 1995). 

There are some obvious problems associated with this method. The vane is larger 

than the thickness of the crust which leads to an under-estimation of crust strength. 
In addition, the very penetration of the instrument into the soil before the torque is 

applied is likely to compromise crust strength. However, as a relative measure 

within datasets, it is a good link between shear strength and crust development. 

Figure 6.10 shows that, apart from one notable exception, there are higher strength 

characteristics, both at the surface and at 5 cm depth, on the west-facing flank. This 
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is also borne out with the t-test with P-values of 0.0086 and 0.0005 respectively. The 

ploughed soil has no inherent strength because of recent tillage and therefore the 

east-facing flank, which has practically no visible crust development, has very low 

values. The west-facing flank, on the other hand, shows considerable structural crust 

development which accounts for a mean strength of 7.45 kN m 2, almost six times 

that of the east-facing flank. The difference at 5 cm depth is obviously not 

attributable to the crust, but instead signifies a wetter sub-soil which has flocculated 

together to form aggregates. 

Site Obs. Mean 

(kN m2) 

S. D. 

(kN m2) 

Median 

(kNm"2) 

IQR Skewness 

(kN m2) 

East ridge 22 1.76 2.99 0.43 2.73 2.63 

West-facing flank 22 7.45 9.64 4.78 5.59 3.13 

Furrow base 22 16.23 16.14 9.39 19.81 1.51 
East-facing flank 22 1.30 4.20 0 0.68 4.14 
West ridge 22 1.93 6.04 0 1.71 4.22 

5 cm depth 

East ridge 15 1.57 1.51 1.20 1.37 1.25 

West-facing flank 15 7.10 4.73 6.15 7.17 1.16 
Furrow base 15 9.03 10.09 5.81 6.49 2.32 

East-facing flank 15 1.41 1.16 1.37 2.22 0.51 

West ridge 15 1.45 0.89 1.02 1.20 0.79 

Table 6.2: Summary Statistics for the soil shear strength at High Farm 

Table 6.2 shows that the surface crust is strongest and thickest at the base; a 
depositional crust has formed as material has been washed-in (Valentin & Bresson, 

1992). Moisture levels are generally highest at this point as the depositional crust 

represents the most significant barrier to evaporation. The ridges, on the other hand, 

are very low in both strength and moisture, even though a structural crust has formed. 
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However, there is often a gap between the underside of the crust and the soil below 

and furthermore the crust is very friable. Such characteristics have evolved because 

most wind and water erosion takes place at the ridges and therefore their stability is 

undermined. 

6.3.3 The moisture regime in the soil before and after ploughing 

Table 6.3 shows a set of data at High Farm, where the farmer had recently ploughed 
his land (i. e. during the previous two weeks), but had missed some strips where the 

crust remained. In contrasting their relative moisture contents it is possible to see 

that as the crust is broken down or in some way removed, this promotes rapid 

evaporation even during the winter months. The moisture levels of the ploughed 

areas are consistently low, the only exception being the P(10) furrow where the probe 

hit the plough layer on a couple of readings and hence it gave an uncharacteristically 

high reading. Due to the recent nature of the tillage there is little difference between 

Sample Ridge Ridge Furrow Furrow Ridge Ridge Furrow Furrow U(5) U(10) 

site P(5) P(10) P(5) P(10) U(5) U(10) U(5) U(10) 

Obs. 12 12 882244 15 15 

Mean 0.05 0.25 0.09 1.18 0.33 3.06 1.98 6.72 15.67 17.29 

Median 0.05 0.24 0.08 0.9* 11.44* 11.44* 

P= ploughed U= unploughed (5 / 10) depth of probe * highly skewed dataset 

Table 6.3: Moisture levels before and after tillage (% moisture). The readings were 
taken on 5th March 1995 with an air temperature of 21 °C and a ground 
surface temperature of 31 °C 
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the ridge and furrows made by the plough. The adjacent unploughed land did show a 

considerable difference between ridge and furrow for reasons explained in the 

previous section. The results from the unploughed ridges and furrows are not 

statistically accurate because of the low number of observations and therefore 

another area in the same field, which did not have an obvious ridge-furrow sequence, 

was measured. These data (U5 and U10) differ considerably from those of the 

ploughed land, and assuming that the latter had similar moisture levels prior to 

ploughing, it is obvious that the water evaporates rapidly once the crust has been 

taken away. Furthermore, there is little difference between the five and ten 

centimetre sampling depths, signifying that during the winter the crust acts as a 

barrier to evaporation. The crust plays a significant role in the storage of moisture in 

the soil during the winter. 
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Figure 6.11: Rates of drying of a plot after rainfall simulation 
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Figure 6.12: Rates of drying of a plot after natural rainfall 

Figure 6.11 and Figure 6.12 show results from small plot experiments which 

investigate the drying of soil under a crust during May 1995. Figure 6.11 illustrates 

the effect after applying a rainfall event from the rainfall simulator described in 

chapter 5. The event consisted of a 60 minute simulation at a rainfall intensity of 

approximately 15 mm h71. The soil was measured at 20 points within the plot and an 

average taken. The graph shows that the surface layer (5 cm depth) becomes 

saturated during the event. Within 12 hours an equilibrium level is attained and the 

marginal rate of drying is much reduced. The 10 cm probe readings suggest much 

less saturation during the event, but a similar reduction to an equilibrium level takes 

place by 12 hours. Obviously these data are limited, but nevertheless show that in 

May, the evaporative flux is such that water evaporation from the soil, albeit crusted, 
is extremely rapid, especially in the short term. A more realistic graph is Figure 6.12 

which presents the, changing moisture regime of a similar plot during two rain events 
in late March 1995. The soil moisture changes, especially with regard to the two 
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rainfall events which occur between 120 and 144 hours after the initial readings. The 

5 cm data, which seems to rise steadily throughout the period of data collection, 

gives problems of interpretation. If the data are correct, it must mean that moisture 
levels remain constant during the winter months in the region immediately below the 

crust and that moisture loss occurs from lower in the profile. 
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Points on a furrow/ridge sequence 

Figure 6.13: The effect of salinity on the SCIP using the irrigated ridge-furrow 

sequence. Points 1-5 are the data produced with the 5 cm probe while 

points 6 to 10 are data produced with the 10 cm probe 

Lastly, Figure 6.13 shows moisture readings from an irrigated ridge and furrow 

sequence. This is ground which has been left fallow for a year since irrigation and 
the crust has developed into a thick compaction crust, although there is still evidence 
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Plate 6.3: Salt staining on land one year after being used for irrigation 
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of brown staining in the centre of the furrow (Plate 6.3). This suggests that a sodium 

salt stain or precipitate of a mixture of salts is present at the soil surface. As the 

introduction to this chapter clearly states, the SCIP is unable to cope with soils with a 
high electrolyte conductivity. Figure 6.13 shows two sets of data across a number of 

ridge-furrow sequences and compares it with y= 80.2 signifying the permittivity of 

water. Once there is enough water to allow connection between the electrodes the 

salts conduct and give an exorbitant reading. If the soil was totally dry there would 

be no effect, but as the soil in question is under the crust there is enough soil 

moisture to allow it to conduct. This further illustrates the fact that it is the centre of 

the furrows which become most affected by increasing levels of salt. The 10 cm rod 

results, which are given in points 6 to 10, show the effect of depth and suggest that 

there are excess salts in the sub-soil as well as the surface although to a lesser extent. 

6.4 CONCLUSION 

The method of determining soil moisture using soil capacitance is new and to date 

only two articles have been published giving results from field measurements 
(Robinson & Dean, 1994; Wu, 1998). While the method is not without its problems, 

especially concerning the effects of electrical conductivity, it has great potential for 

measuring moisture at the soil surface. The problem of excessive salinity is a 

problem in dryland irrigated soils and therefore it has been necessary to see the effect 
it would have on soil permittivity. In saline soil the permittivity readings jumped to 

figures well in excess of that of water itself suggesting that conductivity only has an 

effect at a certain threshold condition. These results concur well with the theoretical 

approaches of Campbell (1990) and Mualem & Friedman (1991). It means that 

salinity has no effect until it reaches a threhold, but at that threshold the data become 

obviously wrong and can therefore be easily identified and discarded. 

One of the biggest advantages in using the SCIP is that it is very sensitive to small 

changes in moisture at the driest end of the spectrum which makes it ideal for work 
in and and semi-arid environments. The calibration experiment, which needs to be 

done with each soil type because of changes in the overall dielectric properties 
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associated with mineralogical make-up, shows good linearity at the dryer end of the 

spectrum. Only at volumetric moisture contents above 25% is there a visible 
'flattening-off of the data. 

There are two important facets of the research that can be drawn out in this chapter. 

First, there is an important link between wind direction, rainfall, micro-topography of 

the land surface, soil crusting and moisture storage. Little research has followed 

Sharon's work in the 1980s (Sharon et al., 1983; Sharon et al., 1989) despite the 

importance of greater impact velocities of raindrops on inclined soil surfaces. His 

work focused upon differences in erosion, but such asymmetrical rainfall energy 

patterns have additional implications for the formation and development of crusts. 

Taking the predominant wind direction during rainfall events, calculated in Chapter 

5, it was possible to hypothesise that north and west facing slopes would have a more 

developed crust than those facing south and east. Taking the two indirect measures 

of crust development, namely crust strength and sub-crust moisture content, it has 

been seen that there is greater crust development on west facing furrow flanks 

compared to east facing ones. The crust strength at the soil surface of the west-facing 

furrow flank was on average 5.7 times higher than the strength of its paired east- 

facing furrow flank. Even at 5 cm depth, the mean was still five times higher on the 

west-facing flank although the data at depth show the increased soil moisture rather 

than the thickness of the soil crust. The data show a similar pattern for north and 

south albeit to a lesser extent.. The difference between sides of a furrow show that 

the variation is greater at the dry end of the scale whereas if the soil is wetter it is 

more difficult to distinguish between the furrow. flanks. At 5 cm depth, some of the 

driest east- facing furrows showed volumetric moisture levels of below 0.001% 

compared with between 2 and 3% on the associated west-facing furrow 

The second point links the formation of crusts with the ability of the soil to store 
moisture. The nature of evaporation from the soil is poorly understood, especially in 
dryland environments (Rose, 1996). The data presented here shows that evaporation 
is reduced because of the presence of a crust. This is evident when different sides of 

a furrow having an asymmetric crust development are compared, but also when 

recently ploughed soil is compared with crusted soil. There was generally about an 
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order of magnitude difference between land which had been ploughed and land 

which had not been. The moisture content at 5 cm depth for ploughed soil was 
typically about 0.05% and 0.25% for 10 cm depth. The correspnding data for 

unploughed land were 0.33% and 3.06%. This shows clearly that the destruction of 

the crust increases evaporation rapidly and within two weeks there is almost a 

negligible amount of moisture in the soil. When comparing the moisture levels at 5 

and 10 cm depths on furrow flanks it was found that there was a greater level of 

moisture at 10 cm depth indicating that, despite the presence of the crust there was 

still evaporation from the soil directly below the crust. 

The fact that soil moisture is lost rapidly after ploughing has important implications 

on soil management and the balance needed between tillage techniques and 

optimising soil moisture in the sub surface soil. Some tillage is always needed to 

allow planting. In addition it is important that the crust is not too thick and well 

developed so as to impede seedling emergence. This has been observed as a problem 

since the very earliest of soil crust research (Hanks, 1960; Arndt, 1965; Rathore et 

al., 1982; Shiel & Yuniwo 1993) because of the reduction in potential for young 

seedlings to push through a barrier of densely packed soil at the surface. If no 

ploughing takes place there is much less of a possibility for this to occur because the 

crust will have formed over at least one season and will be almost impenetrable. By 

ploughing, the newly formed crusts are relatively weak and easy for germinating 

seeds to push through. So while keeping crusts on cultivated land will increase the 

moisture storage ability of the soil, these considerations have to be offset against the 

ability for seeds to be planted and for their emergence. 

188 



PAGE 
MISSING 

IN 
ORIGINAL 



Chapter 7- Processes influencing sediment transfer 

7. PEDOGENESIS, THE DEVELOPMENT OF SURFACE SEALS 

AND CONTEMPORARY SEDIMENT TRANSFER PROCESSES 

To understand the spatial distribution of crusts, one needs to consider the entire 

history of the surface microrelief (Bielders et al., 1996 p. 853) 

7.1 INTRODUCTION 

This chapter has several purposes. First, it seeks to elucidate the way in which the 

present soil has evolved by the two main processes of weathering and eolian 

deposition. Examining pedogenesis is necessary because it increases our 

understanding of why certain processes, such as aggregate breakdown, are important 

in the Badia environment. Furthermore, the instability of and eolian soils leads to a 

greater propensity for erosion and soil degradation, which then provokes questions 

on the way in which the soil is managed. The previous chapter looked at the surface 

crust as a natural barrier to the evaporation of water from the soil and examined 

changes in moisture over small spatial scales. This chapter seeks to explore the role 

of the crust as a natural way of protecting the soil from wind erosion and investigates 

the nature of microtopographic differences in crust type and the resulting soil 

characteristics. The question of the scale of erosion and deposition within a hillslope 

that is undergoing agricultural activity 'is tackled and infiltration rates on different 

levels of crust development based on land usage are compared. 

7.2 FINGERPRINTING LOCAL BASALT AND SOIL SIGNATURES 

Most soils develop over a long period as a result of various inputs, which derive from 

a number of erosional, depositional and weathering processes, to produce a complex 

mixture of gas, water, organic and mineral matter. By looking at the mineral 

chemistry, the nature of the clays and the sedimentary character of the soil it is 

possible to gain a picture or fingerprint of the various inputs which have been 

instrumental in soil formation. In order to fingerprint a soil in such a way, X-ray 
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fluorescence (XRF) and X-ray diffraction (XRD) analyses need to be carried out to 

determine the geochemistry. 

Site Pyroxene Olivine Phillipsite Chabazite Faujasite Smectite Illite Kaolinite Quartz 

S-3 xxx tr -x-xx 

S-11 xxxxx tr xx 

S-16 x tr x tr tr x x tr tr 

S-17b x x x - tr x tr tr tr 

S-26 x - x -x x tr x x 

S-27 x tr x -x x x tr x 

S-30 x tr x - tr x tr x x 

S-46 x tr x -- x tr x x 

S-54 x tr x - x tr x x 

S-57 x x x tr tr x tr tr x 

Table 7.1: Occurrence of minerals after the alteration of basaltic glass 

adapted from Dwairi (1987). (x = abundant tr = trace) 

The opinion that the soils of the northern Badia are mainly a result of the weathering 

of the underlying basalt (Al-Homoud et al., 1995) can be tested by comparing the 

XRF and XRD signatures of the soil with the rock. Such an opinion is feasible given 

that there is evidence to suggest that weathering of the basalt core-stones beneath the 

soil is now taking place (Allison et al., 1993). 

The most comprehensive set of X-ray data on the basalt and zeolite has been 

collected by Dwairi (1987). The <5 pm fraction of powdered basaltic glass material 

taken from Jebal Aritayn was examined by Dwairi (1987) who observed two main 

clay peaks at 6°20 and 12.3°20. The first peak corresponded with the diagnostic d- 

spacing of 17 A for smectite clay, which was confirmed by its collapse after heating. 

The other peak was initially identified as phillipsite, but after heating it was 

considered to be kaolinite. Dwain analysed the mineralogy of samples taken from 

Aritayn, which make up the most recent volcanic facies, and found that the 

predominant clay was smectite (Table 7.1). 
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Figure 7.1: X-ray diffraction results comparing basält, weathered basalt and soil 
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In both marine and non-marine palagonitic environments, it has been suggested that 

the formation of smectite clays is a prerequisite for phillipsite crystallisation 

(Arrhenius & Bonatti, 1965; Hay, 1966; Kastner, 1976). Similarly in zeolite terrains, 

it has been found that magnesium-rich clays, such as smectite, saponite and chlorite, 

precede zeolite in the alteration sequence. 

7.2.1 X-ray examination of soil and rock materials at Low farm 

An experiment was designed to compare the basalt and soil with Dwairi's results 

(Dwairi, 1987). A sample of basalt and soil was taken from Low Farm. The basalt 

sample was divided into two, representing pure basalt and nodules of weathered 

basalt. It was hypothesised that if the soil was of basalt origin, the three samples 

would exhibit a common mineralogy, but that they would reflect a breakdown of 

certain minerals and an addition of clay-forming minerals and water. However, if 

there was a significant change in the mineralogical character, then it would be 

supposed that the soil forming process was complicated by other factors. 

The XRD signatures from samples taken at Low Farm suggest some interesting 

similarities with those obtained by Dwairi (1987). The kaolinitic peak at 12.3°20 

(Figure 7.2) is not particularly surprising, although in both cases the peak is 

relatively small, which is concomitant with the low-energy weathering environment 

found in the Badia. The smectite peak, which Dwairi describes as a extended peak, 

is very similar to a mixed-layered clay comprising chlorite and illite- type clays 

(Hardy, pers. comm. ). It would be foolish to make too much of this apparent 

correlation because palagonitic alteration would have only taken place in proximity 

to the cones. However, the correlation between the clays in the soil and those 

associated with past vulcanism suggests that the soils are dominated by clays which 
have formed through the weathering of the basalt and the associated authigenic 

counterparts. However, the clays need to be-put into the context of the overall 

mineralogical chemistry (Table 7.2) before such assumptions can be accepted or 

rejected. 

193 



Chapter 7- Processes influencing sediment transfer 

Major oxides Basalt (%) Basalt t Weathered basalt Soil (LF3) 
(%) (%) (%) 

Si04 40.02 44.6 18.49 43.90 
A1203 15.16 16.0 5.56 13.59 
Fe203 12.25 11.2 2.19 6.67 
MgO 6.04 4.6 1.91 4.40 
CaO 11.76 11.0 40.86 11.46 

Na2O 2.44 3.9 0.31 0.74 
K20 1.153 2.1 1.040 1.972 
Ti02 2.309 3.6 0.293 1.188 

MnO 0.214 0.1 0.051 0.180 
I'205 0.655 0.5 0.282 0.263 
CO2 estimate 4.0 25.00 
H2O estimate 3.0 4.0 

Total 92.00 97.6 70.99 83.18 

Trace elements Basalt Weathered Soil 
(ppm) basalt (ppm) (ppm) 

Sr 654.8 219.2 246.1 
Ba 459.2 108.7 429.3 
Cr 229.3 14.5 122.2 
V 205.4 61.8 149.1 
Ni 191.8 19.5 43.7 
Zr 182.5 75.5 340.1 
Zn 96.6 43.4 76.1 
Cu 56.3 14.3 18.4 
Nb 44.1 7.3 21.6 
Ce 31.9 17.4 39.4 
Nd 27.3 27.5 32.2 
Ba 21.4 8.4 13.8 
Y 21.2 14.3 31.7 
La 17.9 25.8 30.9 
Rb 11.1 22.3 45.3 
Pb 8.5 13.6 15.9 
Th 5.8 2.3 5.7 

Table 7.2: X-ray fluorescence data for Low Farm 

t Basalt XRF data from Dwairi (1987) 
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The basalt exhibits a regular chemical composition, although the total percentage of 

92% is less than would be expected, suggesting about 4% of CO2 and 3% structural 

and adsorbed water. The differences between the basalts can be explained by the fact 

that they are derived from different flows and that the smaller percentages of sodium, 

potassium and titanium relate to the acidity of the basalt. The low proportion of 

magnesium oxides and higher proportion of aluminium oxides suggest a basalt which 

is high in aluminosilicates, indicating a relatively late evolution. The high levels of 

calcium correlate well with the high strontium levels and come from two possible 

sources. First, the basalts are rich in calcium-rich aluminosilicate plagioclase 

feldspar which are shown by the large number of peaks of anorthite in the XRD, 

especially at 23.8°20 and between 27.6 and 28.1 °20. Second, the other possible 

source of the calcium is from the calcium carbonate veins within the basalt. In 

addition, the XRD shows that there is no quartz and that the other significant mineral 

present is diopside, which occurs around 30 and 35.5°20. Diopside is a pyroxene 

composed of a magnesium-calcium silicate. 

The weathered basalt data, which were for material taken from nodules within the 

basalt, would suggest large differences in the mineralogy from that of the parent 

basalt. The large deficit in the total means that there is probably more than 25 % 

C02, which should be assumed to be linked with the large calcium value, creating 

over 73% calcite, which is evident in the XRD. The XRD suggests that there is 

about 10% quartz, leaving approximately 8% for clay minerals. The strontium value 

has decreased significantly, despite the increase in calcium, indicating that the 

calcium is being derived from elsewhere other than the basalt and hence diluting the 

strontium. It is noticeable that on the underside of many of the basalt blocks there 

are significant deposits of caliche. This suggests two things. First, it is possible that 

the large amounts of calcium within the basalt are relatively mobile and upon 

chemical weathering the basalt releases the calcium quickly. Second, it is possible 

that the calcium is derived from elsewhere. The basalt overlies large formations of 

limestone and it may outcrop occasionally over the Jebal Hi uran. Evidence from soil 

thin sections examination, in the form of calcium carbonate nodules, would support 

the idea of a limestone influence. In an environment with a very high evaporative 
flux 
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for most of the year, it is possible that groundwater is forced to the surface through 

capillary action and as it passes through bands of limestone the water is heavily 

charged with calcium, which is then precipitated on the basalt blocks on or near the 

surface. 

From the XRF data for the soil it can be seen that there has been a dramatic increase 

in SiO2, but that the iron, magnesium and titanium oxides have decreased 

substantially. The combination of a low total value and a CaO content of 11.46% 

gives rise to an estimate of 25% calcite. The remainder of the total value can be 

explained by the presence of a greater volume of structural and adsorbed water 

within the soil fabric. It is evident that the influence of the basalt fraction has been 

vastly reduced. The anorthite and diopside have been weathered to form some of the 

clay minerals and are otherwise virtually unrecognisable. The dominant mineral is 

now quartz, which almost completely dominates the silt fraction. The quartz has 

obviously been incorporated into the soil profile from elsewhere, because there is no 

source in the vicinity as neither basalt nor limestone has quartz as a weathering 

product. It is likely that it is derived from an eolian process, probably originating in 

the Arabian Peninsula, if the evidence of Bruins & Yaalon (1979) and Ganor (1975) 

is taken into account (section 2.7), or alternatively from the Sahara (Yaalon & Ganor, 

1973; Simonson, 1995; Yaalon, 1997). 

In terms of the clay content found in the soil sample, the XRD results show that 

about 15% of the clay is made up of kaolinite, confirmed by the peak at 12.4°20, 

which is removed upon heating. In addition, there is evidence for a somewhat 

diluted peak between 8 and 9°20, which corresponds to approximately 30% illite 

mica clays, as can be seen in the XRD graph. The majority of the clays (about 55%) 

can only be classified as mixed-layered clays, which are randomly orientated and 

contain units of chlorite and illite. The mixed-layer clay may contain smectite, 

because there is a peak between 6.1 and 6.3°20, corresponding to the Dwairi results. 

However, there are no clear signs of change upon glycolation, which can support the 

idea that there is a majority of chlorite and illite. Whatever the exact composition of 
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the mixed-layered clays, it is likely that the clays exhibit a swelling nature similar to 
that of the smectites because they are very fine-grained crystalline amorphous clays. 

Mineralogy Basalt 
(%) 

Weathered 
basalt (%) 

Soil (LF3) 
(%) 

Anorthite 60 0 0 
Diopside 40 0 0 
Quartz 0 10 45 
Calcite 0 75 25 
Clay 0 10 30 

Table 7.3: X-ray diffraction data for Low Farm 

All samples show a very high content of fine to coarse silt, clearly indicative of the 

eolian origin of the material (Yair & De Ploey, 1979; Gerson & Amit, 1987; 

McFadden et al., 1987; Whalley et al., 1987). The soils described by Yair & De 

Ploey (1979) were taken from the northern Negev south of Beer Sheva with an 

underlying geology of limestone. In their X-ray analysis they have 60% smectite and 

kaolinite, 20% calcite, 5-10% illite, 10% quartz and 5% K-feldspar and attapulgite. 

The last three of these were seen as indicative of eolian action. Likewise in the 

Badia, where the predominant wind direction is from the east (section 5.2.2) and 

therefore from Arabia, there is a large quantity of quartz in the soil sample which 

would suggest that there is a predominantly eolian origin. With the additional 

evidence of decreasing strontium levels and large increases in calcite, it is possible to 

show that the basalt is in fact a secondary contributor to the pedogenesis. 

In summary, it is likely that the large silt fraction is mainly derived from colian 

sources to the east and south, while the clays are a mixture of eolian origin, but with 

a considerable input from the local weathered basalt and associated minerals such as 

zeolites. This is significant because it changes opinion on the evolution of the Badia 

soils and is the first study where data are provided to determine the sources of the 

sediment. 
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7.3 HILLSLOPE SEDIMENT FLUXES 

Having determined the origin of the soil, this can act as a foundation to look at the 

contemporary processes acting at various scales within the hillslope. The challenge 

when scaling up is to recognise the differences between local and regional signals. In 

the case of the field sites under observation, the relationship between these signals is 

complex through space and time. During the winter, when the soil has been 

ploughed, surface roughness is at its greatest. This invariably results in rapid 

crusting on one furrow flank and virtually none on the other giving rise to the 

differences in moisture storage discussed in Chapter 6. Wind is the dominant process 

at the hillslope scale especially during and after ploughing. Before a crust has 

formed there is a high propensity for rapid deflation of fines. Water erosion plays a 

lesser role causing runoff along furrows and into rills and eventually wadi systems. 

Such processes are only infrequently activated due to the lack of significant storm 

events, which means that most of the hydrological processes occur at the ridge- 

furrow scale and are not replicated at the larger hillslope scale. 

In the summer, the soil surface is flattened and an artificial ridge-furrow sequence is 

produced. Water erosion can still take place at the smaller scale due to over- 

irrigation, but because rainfall events are very unusual during the summer there is no 

feedback to the larger scale. Wind erosion continues to predominate but, once the 

crops grow, its influence is reduced. Man-induced processes become much more 

important. Compaction of the already crusted soil is likely to enhance the 

degradation process of crust formation. In addition, irrigation during the summer has 

an important effect on the soil salinity, causing salt precipitation. 

7.3.1 Processes acting within the scale of the hillslope 

It is important to look at the sediment fluxes at different spatial scales as they will 

change at different rates over various temporal scales. The eolian and hydrological 

erosion processes will be controlled by the climatic variables discussed in Chapter 5 

as well as the soil characteristics, but underpinning the natural factors, the attributes 

will be constrained by human activity. It is important to consider the changes in soil 
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chemistry and soil physical attributes within the framework of irrigation 

management, crop rotation and cultivation practices. 

In order to evaluate the amount of erosion and deposition which has taken place, 

changes in particle size distributions will be examined. The results will be drawn 

from crust and auger samples, transect data and data from ridge-furrow sequences. 

Site Sand (%) Coarse silt (%) Fines (%) 

Low Farm (FC) 18.9 32.6 48.5 

Low Farm (FA) 12.2 31.7 56.1 

Low Farm (RC) 19.3 32.5 48.2 

Low Farm (RA) 14.2 30.3 55.5 

FC = Furrow Crust; FA = Furrow Auger; RC = Ridge Crust; RA = Ridge Auger 

Table 7.4: Average values for particle size variation at Low Farm 

From the transect taken at Low Farm (Figure 4.3), which shows downslope changes 

in each individual size fraction, it can be seen that there are no significant trends 

within the data which are immediately clear, except that there is more variation in the 

crust samples in comparison with the auger samples and that there is more variability 

in the furrow crust samples than the ridge crust samples. It is more useful to 

concentrate on the grouped size fractions, fines, coarse silt and sand, in order to 

identify changes downslope more readily (Figure 7.3). As coarse silt is the dominant 

fraction, it is treated on its own in order to compare it with the fines, which have been 

defined as material below 20 µm and the sand which lies above 63 gm. 
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It can be seen that the auger samples retain their characteristics downslope and there 

is no significant change. The furrow crust shows some variation, but it is not slope- 

related and can therefore be accounted for by local differences in the depositional 

regime. The ridge crust shows the only distinct reduction in fines and increase in 

sand along the transect. It can be suggested that it is the ridge which is most exposed 

to wind erosion and therefore is most prone to the removal of tines from the crust 

moving downslope. This increases the relative percentage of coarser material, which 

acts as a natural armouring mechanism. Although there are no visual differences in 

the furrow crust, Table 7.4 shows that both the ridge crust and the furrow crust have 

lost on average 16% of the fines and increased a similar amount in the sand fraction 

when compared with the auger samples. 
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Figure 7.4: The changes in the fine fraction (<20 pm). down the slope profile at Low 

Farm 
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Figure 7.4 summarises the two main aspects of downslope changes in the particle- 
size distribution taken from the transect study (section 4.2.2). First, with the 

exception of 6RA and 3FC, there is consistently more fine material (<20 µm) in the 

auger samples than in the crust samples showing that there is either deflation of fines 

from the crust or washing-in of fines during the development of the crust itself. 

Second, as in Figure 7.3, there is a general increase in the amount of fines in the 

crust samples moving upslope, i. e. the sample numbers decrease from 6/7 to 1/2. 

Site Coarse 
sand 
(%) 

Medium 
sand 
(%) 

Fine 
sand 
(%) 

Coarse 
silt 
(%) 

Medium 
silt 
(%) 

Fine 
silt 
(%) 

Clay 
(%) 

Average Crust 6.89 3.66 8.43 32.56 15.30 13.10 20.10 
Furrow 

Average Auger 4.19 3.17 6.67 31.79 15.21 14.13 24.93 
Furrow 
Average Crust 6.06 3.59 8.41 33.26 14.39 13.90 20.44 
Ridge 
Average Auger 6.92 3.96 6.93 31.57 14.70 12.93 23.04 
Ridge 

Average Crust 11.80 6.6 11.43 38.53 14.20 9.33 8.13 
Uncropped 

Average Auger 4.95 4.6 10.50 30.55 14.05 13.80 21.50 
Uncropped 

Table-7.5: Changes in particle size distribution between cropped and uncropped soil 
at Low Farm 

Table 7.5 shows clearly that there is a distinct difference in the soil surface 

conditions at sites which have been cleared of basalt, but are not undergoing 

cultivation, For the auger samples there is very little change compared with auger 

samples under the land which has been ploughed and cultivated. However, the crust 
displays a totally different fabric. All of the, sand fractions have increased so that the 

total sand is around 30% compared with about 19% and 18% for the average furrow 

and ridge crusts respectively. The coarse silt is likewise high, with about 18% more 
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than the newly formed crusts. The medium silt shows no apparent change, but both 

fine silt and clays have drastically decreased. If the auger samples represent the real 

particle size distribution, then there are 32% and 62% reduction in fine silt and clay 

respectively. 

This is important. It means that the natural soil crust will develop, as long as there is 

no cultivation taking place, to an equilibrium stage. The finest material is relatively 

quickly removed and the sediment making up the crust becomes much more 

dominated by the sand and coarse silt fractions. The sand and coarse silt act as an 

armour against further wind erosion and even rainsplash erosion during precipitation 

events. 

o2um +6um 

Cumulative percentage of particle-size distribution 

Figure 7.5: Changes in the fine fraction (<20 µm) down the slope profile at Middle 
Farm 
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These results represent a considerable change in focus from most soil crust research. 

Whereas much research sees a soil crust as a sign of degradation, reduction in 

infiltration rate and an encouragement to soil erosion, the present data seem to 

suggest that the formation of a soil crust provides more of a defensive mechanism. 

In observing the current landscape, the major wind erosion occurs as a result of 

ploughing at the wrong time, allowing much more fine material to be lost as the soil 

is turned over. 

Moving to downslope changes at Middle Farm (Figure 7.5), trends are not so clear, 

although there is a similar discrepancy between the crust samples with less fine 

material and the auger samples with more. The downslope component is not marked 

in the same way as that of Low Farm, because it has a north-south aspect rather than 

a west-east. Also the samples taken from the top of the transect are on an exposed 

summit of a small topographic high. There is a downslope change in the auger 

samples: the samples at the base of the slope MF 1-6 have a much higher fine content 

than those further up the slope. This suggests that the bulk soil, represented by the 

auger samples, is fining downslope as a result of longer-term slope wash, but that the 

surface crust is affected by short-term wind erosion. 

The patterns at High Farm have two components, which are controlled by either their 

position on the slope or their agricultural use. Figure 7.6 and Figure 7.7 show the 

increasing coarse silt fraction (20 - 63 µm) and fine fraction (<20 µm) respectively. 

Both 3U and 4U, which were samples along the transect but had not been ploughed, 

behave much like the samples from the uncropped land in Low Farm (Table 7.5); 

they have a much lower percentage of fines, but rather more coarse silt and sand. 

Looking at the fine fraction from the samples, which lie on the cultivated area, there 

is also a reduction from the upper slope positions (1/2) to the lower ones (6/7). 
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Figure 7.6: Downslope changes in coarse silt (20-63 µm) at High Farm 
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7.3.2 Patterns of infiltration through crusted soil with different levels of 

agricultural use 

Both at High and Low Farms, there is a considerable difference in the physical 

components of the crust depending on whether the land is being used for irrigation or 

is uncropped. It would therefore be appropriate to see if the physical structure of the 

crust has an effect on the infiltration rate. The literature has concentrated upon 

looking at the role of the soil and water chemistry (Agassi et al., 1981; Shainberg et 

al., 1981a; Kazman et al., 1983; Ben-Hur et al., 1985; Shainberg, 1985), upon 

infiltration through the crusted layer and rather less upon the effects of particle-size 

distribution (Poesen, 1984; Moss, 1991a), porosity (Ela et al., 1992) and clay 

dispersion (Amezketa & Aragues, 1995). The results presented below seek to show 

the effect that land-use and consequent crust formation have upon the infiltration rate. 

The data are displayed in two formats (Figure 7.8 to Figure 7.10). First, the average 

raw data are shown with each line representing four infiltration tests carried out on a 

specific soil crust type: `uncleared land', `used land' and `new land' which has been 

ploughed ready for cultivation (Section 4.2.5). The time variable in each case has been 

transformed to allow a greater resolution for the first 20 minutes when the majority of 

change in the infiltration rate occurs. The second graph shows a set of nonlinear 

regressions calculated by using a Hortonian-type infiltration equation, 

(7.1} 1=io+1, e-k'9 

where io is the final infiltration rate (asymptote), 

t is time, 

and il and k are constants initially derived from calculating a linear regression 
between log-transformed infiltration and log-transformed time. 

This equation was fitted by a nonlinear least squares method: that is, the best fit 

equation was found by a program searching in parameter space for the set of parameter 
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values minimising the sum of squared deviations between observed and predicted 
infiltration rates. 

The uncleared land has a higher infiltration rate than the other two with a relatively 

small initial rate. There is a crust on the soil surface, but it has developed over many 

years and has a better developed pore network and moisture holding ability because 

perennials will grow during the spring. There is enough porosity developed to allow a 

higher intake of water, but due to the existence of the crust, there is a natural storage to 

allow plants to grow. The upper soil layers are much less dense compared with those 

on the previously irrigated land and there are many fine root hairs from the natural 

vegetation which allow a higher final infiltration rate. The result for High Farm 

(Figure 7.8) is consistently above the corresponding curves for Middle Farm (Figure 

7.9) and Low Farm (Figure 7.10), because at the latter two sites there was no uncleared 

land near to the farm and so the infiltration tests were carried out on land that had been 

cleared, but not ploughed. This explains the reduced level of the final infiltration rate. 

Increased grazing, compaction and a removal of the stone fragments all play a role in 

decreasing the overall infiltration rate and reducing soil moisture storage. 

For the new land the initial infiltration rate is the highest in every case. The crust on 

these soils has recently developed and is comparatively thin. Therefore, as the 

infiltration rings are pushed into the soil, there is a considerable disruption of the crust, 

especially in the area next to the ring. This results in a high initial rate, which rapidly 

falls as the aggregates break down and fill the cracks that have developed due to the 

ring insertion, and the steady state is reached within about half an hour. In the case of 

Middle Farm and Low Farm, the final infiltration rate is the lowest, which is somewhat 

surprising since the soil has recently been tilled. This can be explained by the fact that 

there are no natural pathways, such as root hairs, to increase infiltration. Such a result 
brings into question the type of ploughing method used in this environment. 
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Figure 7.8: Infiltration curves at High Farm 
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The previously irrigated land has a similar curve to the ploughed land but with a 

reduced initial rate of infiltration. The soil at the surface, which has a highly 

compacted thick crust developed over the previous year's cultivation, has a dramatic 

effect on both initial and final infiltration rates. Previous irrigation and cultivation have 

caused an in-washing of finer materials, which have clogged the pores in the upper soil 

layers resulting in a low final infiltration rate, but which is balanced by an increase in 

overall permeability due to an increase in the network of old root channels. 

In conclusion, there is strong evidence that the intake of water into the soil is reduced 

as land is ploughed and then irrigated. Although all the soils show signs of crusting,, 

the crust on the uncleared land is much less resistant to water entry. Once the soil has 

been tilled, however, the natural pathways which have evolved through the crust are 

destroyed and the new crust is significantly more resistant to water entry. After 

compaction and irrigation for one year the resistance is often increased but this is offset 

by the additional organic matter left in the upper soil layers. In the short term there is a 

degradation of the soil surface if infiltration rates can be used as an indicator. It is 

possible in the long term to postualte that if the soil is left, it will revert to a natural 

crust with a higher infiltration rate. 

7.3.3 Spatial sediment variations within the ridge furrow sequences 

The ridge and furrow sequence used in farming in the Badia, which have already 
been described in Chapter 2, represent a complex set of slopes albeit at a relatively 

small scale in comparison with the general slope characteristics. For the purposes of 

the research, each position within the sequence needs to be defined. The first 

position is the outer ridge which is artificially formed by the farmer as he attempts to 

cover the plastic irrigation sheeting. The crops often lie in a slight depression on the 

far side of the ridge, having been encouraged to grow up through holes within the 

plastic. The second position is the outer furrow flank which is the slope dividing the 

outer ridge from the depression of the furrow. The third position is the base of the 
furrow and the fourth position is the centre flank. The final position is the smaller 

ridge which lies approximately half way between the rows of crops. As an example, 
Figure 7.11 shows two transects across the sequences LF3-3 and LF3-4 respectively 
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showing various positions which have been described above. However, it must be 

noted that at some sites only three or four samples were taken and that not every 

sequence showed exactly the same characteristics. Table 7.6 shows all the possible 

sequence positions with the actual samples taken at each site. 

Site Ridge under 

plastic 

Outer furrow 

flank 

Furrow 

base 

Inner/ central 

furrow flank 

Central 

ridge 

LF3-1 D& E C B A 

LF3-2 A B&F C&E D 

LF3-3 A B&D C 

LF3-4 A B&F C&E D 

LF3-5 D C B A 

Table 7.6: Compilation of sample details taken at each site 
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Figure 7.11: Two transects of the ridge and furrow sequence at LF3-3 and LF3-4 
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It can be seen that the flanks of the main furrow at points B and E-F have a much 

higher relief than the average slope angle of between 0.5° and 2°, often with local 

slopes exceeding 30° and regularly between 15° and 30°. Rainsplash erosion is least 

likely to affect the sequence during the first year of cultivation, because the sequence 

is only created in late March or early April by which time rain is unlikely. Only in 

subsequent seasons, while the soil is left fallow, would rainsplash erosion take place. 

In the short term, the more likely forms of erosion would be compaction and 

aggregate break-up from human activity on the one hand, and, sheet erosion caused 

by over-irrigation, on the other. 
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Figure 7.12: Inter-furrow variation in particle size - Furrow I Crust (LF3-1) 

From the graphs of inter-furrow variation from Low Farm (Figure 7.12 to Figure 

7.17) it can be seen that there is a considerable amount of variability. As each graph 
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is analysed, it is important to keep in mind the different positions within the sequence 

each sample occupies. 

In the first example (LF3-1), samples C and A have a significant reduction in the 

clay and fine silt fraction compared with the other three locations. This would 

suggest that the fines are being preferentially removed from the flanks, but not the 

furrow base. If wind erosion was seen as the main potential erosive agent, it is 

unlikely that such a difference would occur. The control has to be the set of auger 

samples in Figure 7.13, which suggest that clay content should be about 21 to 24%, 

as there is no possibility of the auger soil being affected by wind erosion except 

indirectly over a long period. The furrow base must have had some deposition from 

the surrounding flanks, which has compensated for any wind erosion. 

C) 

Q 

I 

0 

100 
90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

126 20 63 212 600 2000 

Particle size (um) 

Figure 7.13: Inter-furrow variation in particle size - Furrow 2 Auger (LF3-2) 
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Figure 7.14: Inter-furrow variation in particle size - Furrow 2 Crust (LF3-2) 

2000 

The two figures representing the auger and crust samples taken at site 2 (Figure 7.13 

and Figure 7.14) should be taken together for direct comparison can be made with the 

control. Samples B and C are the only samples which display little change between 

the auger and crust samples, the latter having a similar disposition to site 1. A is 

reduced, despite being sampled under the plastic, but at 2% is not significant in 

relation to likely errors in sampling and analysis. Both F and E have a reduction of 

clay content of about 5% in the crust while D experiences a drastic reduction in both 

clay and fine silt to the order of 20 and 10% respectively. Despite a reduction of clay 
in E, both E and C remain the crust samples with the highest fines content, which 

correlates well with the furrow bottom sample findings from site 1. Sample D would 

seem to give the most problems in interpretatiop as there is so rapid a decrease in all 

the fine material below 6 µm. 
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Figure 7.15: Inter-furrow variation in particle size - Furrow 3 Crust (LF3-3) 

0 
0 
v 

C 

Q 

V w 

iý 

G 

U 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

E 

A&C. 

F 

6 20 63 212 600 
Particle size (um) 

Figure 7.16: Inter-furrow variation in particle size - Furrow 4 Crust (LF3-4) 
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Figure 7.17: Inter-furrow variation in particle size - Furrow 5 Crust (LF3-5) 

As with site 2, the furrow base D at site 3 has a high level of fine silt and clay 

fractions, although it is a little low in the medium silt fraction. All the samples are 

high in the coarse silt fraction. A is slightly lower than expected, but only by a 

matter of about 2% when compared with the previous sites which is not significant. 

The central ridge sample C displays similar tendencies to sample D in the previous 

example, although here the medium silt goes up to over 40% of the total sample. B 

is behaving in a similar way, which suggests that the actual position in the sequence 

is not primarily responsible, but rather there is a complex relationship between the 

irrigation input, the associated wetting bulb and their effect on the soil surface 

conditions. Both B and C are stained darkbrown. 

Six samples were taken at site 4. Here 'C and E remain high, with E showing signs 
that there has been some possible deposition of fines. A is likewise unchanged and 
has similar characteristics to C. The outer furrow flanks B and F show differing 

amounts of clay loss with B showing very little, but F displays a considerable 

reduction in clay, which is quite unlike sample D, because there is a relatively high 
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amount of fine silt, although chemically there is a similarly high amount of calcium, 
magnesium and sodium. D displays similarities with central ridge samples from 

previous sites. 

Site five presents the largest interpretative problems. The samples come from a part 

of the field which had been replanted with wheat and had not been left fallow like 

sites 1 to 4. The original ridge-furrow sequence is unrecognisable, as the soil had 

been reploughed before planting, and yet the former soil chemical and physical 

attributes are still evident. A, B and C are all affected by high quantities of sodium, 

calcium and magnesium which manifests itself once again by low clay contents and 
for the flanks, low fine silt contents as well. Site B, despite a very low clay content, 
has a much higher level of fine silt and comparatively less medium silt. The likely 

explanation is that the fine silt had been redeposited due to its topographic position in 

the furrow base. Conversely, sample D shows a higher level of clay than samples in 

a similar position at other sites, but this can be explained by the additional soil 

stability and protection against wind erosion given to the soil by the wheat. 

Not only does the phenomenon of sample D at site 2 exist elsewhere, but its 

occurrence is more extreme in Figure 7.15 to Figure 7.17. Another important detail 

to note is that all the samples reflecting this dramatic reduction in fine silt and clay 

were stained darker brown than the surrounding soil. Such a feature of the data, with 

very low clay and fine silt contents and a comparatively large medium silt fraction, 

cannot be fully understood within the confines of the particle size data and a simple 

model of erosional processes. Instead it is necessary to study the chemical data for 

the same samples to see if they can shed light on it. 

7.3.4 Chemical changes in the ridge furrow crust sequence 

It has been observed that there is a large reduction in the fine silt and clay fractions 

toward the centre of the furrow and it has been suggested that there is no physical 

reason for such an occurrence and that the phenomenon is chemical. Figure 

7.18shows the change in the three major cations in the crust samples alongside the 

change 
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in particle size. It is quite evident that there is a significant increase in magnesium, 

calcium and sodium towards the centre of the furrow. The sodium is most 

prominent, often rising from 3-5 ppm at the edge of the ridge-furrow sequence to 

over 100 ppm in the centre. The magnesium shows a threefold increase, while the 

calcium is less variable with typical increases of about 25%. Only the potassium 

remains about the same across the sequence. Looking at the results for the auger 

sample, there are still noticeable increases in the concentrations of the three cations 

towards the centre of the ridge/furrow sequence, but the increase is about half that of 

the crust samples. With such an apparent coincidence between the soil chemistry 

data and the particle size data (Table 7.7), it is necessary to look for some physico- 

chemical process taking place at the crust surface. 

Sodium Magnesium Calcium Clay Fine silt 
Sodium 1.0 
Magnesium 0.96 
Calcium 0.95 0.99 
Clay 0.71 -0.82 0.76 
Fine silt 0.76 -0.90 -0.88 0.94 
Medium silt 0.89 0.97 0.95 -0.92 

Table 7.7: Correlations between physical and chemical characteristics at site 2 

7.4 LINKAGES BETWEEN SOIL PHYSICAL AND CHEMICAL CHARACTERISTICS 

-0.96 

It has been emphasised that the physical and chemical attributes of the soil cannot be 

taken in isolation. Table 7.8 shows correlations between each of the particle size 
fractions for the whole of Low Farm. First, it must be noted that there is an in-built 

negative correlation between the fine fractions due to the cumulative structure of the 
data. In addition, the sand fraction plays a limited part in the soil, rarely making up 
more than 10% of the total, and does not change significantly between sites. There is 
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C. sand M. sand F. sand C. silt M. silt F. silt clay 
Coarse sand 1.00 
Medium sand 0.73 1.00 
Fine sand 0.45 0.63 1.00 
Coarse silt 0.09 0.14 0.48 1.00 
Medium silt -0.19 -0.21 0.08 0.41 1.00 
Fine silt -0.21 -0.27 -0.43 -0.35 -0.65 1.00 
Clay -0.26 -0.23 -0.52 -0.82 -0.67 0.41 1.00 
(obs=103) 

Table 7.8: Correlation of soil physical characteristics 

C. silt M. silt F. silt Clay Ca Mg Na K 
Coarse silt 1.00 
Medium silt 0.47 1.00 
Fine silt -0.27 -0.73 1.00 
Clay -0.80 -0.81 0.40 1.00 
Calcium 0.40 0.79 -0.47 -0.70 1.00 
Magnesium 0.46 0.91 -0.64 -0.76 0.88 1.00 
Sodium 0.41 0.76 -0.38 -0.71 0.88 0.84 1.00 
Potassium 0.38 0.57 -0.35 -0.58 0.45 0.57 0.61 1.00 
(obs=42) 

Table 7.9: Correlations of selected physical and chemical characteristics for LF3 

Variables Correlation r-squared r-squared for transformation 
Coarse silt - Clay -0.80 0.65 n/a 
Medium silt - Fine silt -0.73 0.42 n/a 
Medium silt - Clay . 0.81 0.65 0.77 (log10 of medium silt) 
Medium silt - Calcium 0.79 0.63 n/a 
Medium silt - Magnesium 0.91 0.83 0.84 (3q of medium silt) 
Medium silt - Sodium 0.76 0.58 0.61 (3q of medium silt) 
Fine silt - Magnesium -0.64 0.41 n/a 
Clay - Calcium -0.70 0.50 n/a 
Clay - Magnesium -0.76 0.58 n/a 
Clay - Sodium -0.71 0.50 n/a 

Table 7.10: Correlation and regression coefficients between the fine fraction and soil 

chemical attributes at LF3. 
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rarely a large amount of sand except, in crust samples where all the fines have been 

blown away, which suggests that they create stability in the soil by acting as an 

armouring mechanism to the soil below. It is the <63 µm fraction which is important 

to study in the Badia as it is the largest proportion of the soil fraction and the 

changing inter-relationships of the fine fractions are vital in understanding crust 
formation processes and the likelihood of wind erosion. 

From the correlations in Table 7.10, it can be seen that the medium silt is the 

controlling physical variable because it has high correlations with every other 

attribute except potassium. Indeed if Figure 7.19 is taken into account, it can be seen 

that the relationship is particularly close with magnesium, which means that it could 

be used as a predictive tool to identify areas which have high electrical conductivities 

because magnesium is in turn closely related to calcium and sodium (Figure 7.20 to 

Figure 7.22). 
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Figure 7.19: Relationship between medium silt and magnesium at LF3 
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Figure 7.20: The relationship between calcium and sodium at LF3 
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Figure 7.22: Relationship between calcium and magnesium at LF3 

It is evident that there is an increase in sodium, calcium and magnesium in the 

middle of furrows and this leads to a decrease in the percentages of clay and fine silt 

and a relative increase in the proportion of medium silt. This leads to the following 

questions. Why is there a special case in the middle of furrows rather than closer to 

the irrigation water sources? Why is there no evidence of movement of potassium to 

the surface as there is with the other cations measured? How can the apparent 

paradox be solved of increasing salinity and sodicity leading to an overall weakening 

of the crust? 

The idea of salinity increasing towards the middle of the furrow is not unusual as 

there has been plenty of research to show that this does in fact happen. Salinities 

increase towards the boundaries of the wetting bulb (Hillel, 1971, Bresler et al., 
1982). Evaporation is reduced closer to the plants by the layers of black plastic 

which cover the irrigation pipes. As the wetting front extends laterally there are 

changes in the evaporative regime of the soil (Gardner & Hillel, 1962). As the 

surface layers become progressively drier, evaporation becomes more sensitive to the 
heat flux in the soil (Rose, 1968). In addition, salts become more soluble in the soil 

225 



Chapter 7- Processes influencing sediment transfer 

Plate 7.1: Water evaporating at the centre of the furrow 
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Plate 7.2: Saline deposits and brown sodium staining between irrigation lines 
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water as its temperature rises and therefore there is an increase in the propensity for 

water with high electrolyte conductivities to evaporate at the edge of the wetting bulb 

(Plate 7.1). The wetting bulb acts as a threshold position where the lateral movement 

stops and upward movement takes place by capillary action (Bresler & Kemper, 

1970; Parlange et al., 1993; Rose, 1996). As the water reaches the surface, the water 

evaporates into the atmosphere, leaving a high quantity of salts in the surface layers 

of the soil (Plate 7.2). 

Potassium salts are the only ones which do not seem to be affected by this lateral 

movement of irrigation water through the soil. The previous graphs and correlations 

show that potassium is reasonably stable within the soil profile. Potassium is much 

less likely to be taken up by water for two reasons. First it has a much higher 

electronegativity, i. e. the amount of electron density available for binding and 

bonding is greater than for the other cations. Second, its atomic value is greater than 

the other cations (Ki' = 1.33 A compared with Na+ = 0.97A, Ca2+ = 0.99A and Mg2+ 

= 0.66A). A much stronger charge of H+ ions would be needed to cause dissolution 

and therefore it remains in the silicate structures of the clays and is less available for 

cation exchange (Sparks & Huang, 1985). 

The third issue concerns the apparent paradox between stability and instability due to 

the contrasting effects of salinity and sodicity. It is well documented that higher Ec 

values of water allow soil to flocculate and its tendency to crust is vastly reduced 

(Shainberg, 1985). However, if the S. A. R. or E. S. P. is increased then the opposite 

process of dispersion occurs which causes crusts to form more rapidly (Abu-Sharar, 

1988). Looking back to Figure 7.18, Figure 7.20 and Figure 7.21 it would seem that, 

sodium becomes the most mobile, which would lead to higher dispersion rates. This 

allows the freeing up of the finest fractions of the soil, which then can be entrained 
by the wind. The structure of the crust is actually weakened rather than strengthened, 

because there is no mechanical impact (Le Bissonnais, 1990). In the field the darker 

brown patches represent staining from the sodium salts and their structure is crumbly 
because the sodium has dispersed most of the clay, which has then been eroded by 

the wind. Such circumstances allow a relationship to be identified between the 

medium silt and clay because the former increases relatively as the latter is eroded. 
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7.5 CONCLUSION 

The chapter has sought to explain the different sediment fluxes which occur at 
different scales within the field. The soil has evolved through a complex interaction 

between eolian activity, erosion and deposition of local limestone-derived material as 

well as the weathering-out of the basalt. A combination of X-ray determination and 

thin section analysis allows an interpretation as to which of theses sources is 

important. The thin-section data, which are more fully dealt with in Chapter 8, show 

clearly that there is quartz in the soil which means that it cannot be completely 

basalt-derived because quartz is not a weathering product of basalt. The X-ray 

results confirm this showing that the soil contains approximately 45% quartz. In 

addition the X-ray results also show a considerable incorporation of calcites in the 

weathering products which may indicate a limestone origin although it is widely 

acknowledged that calcites build up naturally in desert soils. In general the X-ray 

results would tend to suggest that it is the eolian processes which now predominate. 

It has been seen that the crust plays a special role in controlling the magnitude of 

wind erosion. Crust samples have on average 12 to 20 % lower clay contents and up 

to 25 % more sand than auger samples. In areas where the crust has formed over a 

number of years, the clay content is almost one third of the value of soil below. This 

suggests that the fines are blown from the surface crust leaving the coarser sediment 

which armours the soil against further soil erosion. 

The management of the soil is particularly important, because it influences the type 

of crust which forms and consequently modifies the infiltration capacity. It is 

evident that clearing the boulders from the surface and then ploughing the soil has a 
detrimental effect upon the infiltration of water into the soil. At High Farm this is 

particularly evident with a final infiltration rate for uncleared land of 47.9 mm h71, 

the rate for land which has just been ploughed, of 32.7 mm h'1 and the land which 
has already been cultivated having a final infiltration rate of only 19 mm h'1. At all 
the sites the newly ploughed land, which has a very thin crust, has the highest initial 

rates of infiltration. This suggests that infiltration is not solely controlled by the 
initial state of the crust, but is determined by the established rootways and by the way 
in which the crust develops during infiltration itself. In terms of management 
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Figure 7.25: A summary of the formation of a sodic evaporation crust 
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practice the results suggest that the clearing of boulders degrades the surface soil 

layers and that conventional ploughing reduces the number of hydrological pathways 

by which water can infiltrate. Reducing the impact of ploughing by using seed drills 

and machinery which only breaks up the crust in the vicinity of the area of seedling 

emergence would seem to be a better way forward. 

During the preparation of fields for summer irrigation there is considerable change to 

the soil surface characteristics which lead to the establishing of micro-topographic 

erosion processes and the evaporation of highly charged water from the subsurface of 

the soil during irrigation. An important and revealing part of the research is to see 

the linkages between the wetting bulb extent, evaporation and precipitation of salts 

on the crust surface and the subsequent modification of the crust's physical 

components. Previous research has confined the human impact on crusts to 

compaction and the effect of water chemistry upon infiltration, but here there is clear 

evidence that there is a complex redistribution of water and dissolution of salts after 

irrigation which results in a morphological restructuring of the soil crust. The result 

is a sodic evaporation crust (Figure 7.25), which develops from upward movement of 

sodic water through the crust causing clay dispersion. Normally, under infiltration 

conditions such clay dispersion would cause a strengthening of the crust due to pore 

clogging. In the present situation, however, due to the upward movement of water, 

clogging cannot take place and instead the clays and fine silts are eroded from the 

surface of the crust. This is clearly happening at the centre of most ridge-furrow 

sequences during irrigation and is shown by decreasing fine silt and clay contents and 

an increase in salts. The clay and fine silt contents commonly decrease from between 

30-40% at the edge of the ridge-furrow sequence to below 8% at the centre. This 

decrease is negatively correlated with a 4x increase in magnesium, a 20% increase in 

calcium and"a tenfold increase in sodium. These are considerations which have not 

been adequately examined by previous work and this research can thus be considered 

to be making a fundamental advance in this area. 

Chapter 8 will consider these microtopographic changes in soil crust structure, by 

looking at variations in porosity and micromorphological fabric. The results of the 
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rainfall simulation experiments in conjunction with a physical tracer will then be 

examined in order to pursue a greater understanding of how fine material moves 
during the crust formation process. 
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Chapter 8- Micromorphological analyses 

S. THE CHARACTERISATION OF SOIL CRUST FORMATION 

USING IMAGE ANALYSIS AND PHYSICAL TRACING 

Morphological descriptions of surface crusts are a useful tool to help explain crust 

behaviour and to provide direct evidence of processes that have been important to 

the development of the crust. West et al. (1992, p. 89) 

8.1 INTRODUCTION 

The debate over the process of surface seal formation has been the key question 

arising from all research in this sub-discipline of soil science. From the earliest 

experiments, notably those of McIntyre (1958a), to the most recent research, such as 

that of Mermut et al. (1995), opinion is divided on whether there is a washed-in layer 

or the formation of the seal only represents a breaking-down and redistribution of the 

surface aggregates and soil particles. Such key questions in any research discipline, 

and especially in the earth sciences, can rarely be answered simply. The study of 

surface seals is no exception. There are many factors which affect the formation and 

development of surface seals, such as particle size distributions, aggregate stability, 

climatic and hydrological factors including rainfall characteristics, soil moisture 

conditions and evaporation fluxes, not to mention anthropogenic factors such as 

farming practices (Section 2.9). The question of how to characterise the various 

processes upon the soil surface has always been at the forefront of research (Le 

Bissonnais, 1990). While several scientists have used either field experiments or a 

laboratory approach, many have found that the only way to visualise the processes 
involved has been to use micromorphology. 

The research of the preceding chapters has focused upon small-scale changes in the 

sedimentary composition of crusts and the way that soil chemistry and micro- 
topography affect the distribution of fines within the crust structure. Looking at 
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particle-size distributions alone is not sufficient to examine the degradation of the 

soil surface, because the analysis inevitably means that the crust structure is 

destroyed. If, however, it is expected that the crust structure changes in relation to 

the micro-topographical position or the amount of sodium precipitated at the soil 

surface, then there should be evidence in the micromorphology of the thin-sections. 

The chapter is divided into three parts. Initially an qualitative examination of 

micromorphological photographs will take place. The colour and fabric of the 

sections at low magnifications are invaluable for observing the differences between 

samples. Second, black and white photographs have been taken under UV light to 

obtain images which determine the pore structure. Using image analysis tools allows 

a quantitative picture to be constructed of how different manifestations of crust-type 

actually differ structurally. Third, data will be presented from the rainfall simulation 

tracer experiments. These involved the examination of thin sections to look at the 

filtration of a fine-grained hematite tracer (<63 µm) through the surface soil layers 

during rainfall-induced crust formation. 

8.2 THE USE OF MICROMORPHOLOGY AS A TOOL FOR SOIL CRUST EVALUATION 

The use of micromorphological analysis is not new in investigations of soil crust 

formation (Evans & Buol, 1968; Epstein & Grant, 1973; Farres, 1978; Chen et al, 

1980; Onofiok & Singer, 1984; Tarchitzky et al, 1984; Valentin & Bresson, 1992; 

Mermut et al., 1995). Although it is possible to see a change in form of the soil surface 

in terms of a drastic reduction in roughness as a seal develops, it is impossible to see 

with the naked eye what has happened with respect to movement of particles and the 

redistribution of pore space. In an and environment, where aggregate stability is very 

low, and especially in the colian silty soils of the northern Jordanian Badia, slaking 

crusts are most in evidence and the reorganisation and reorientation of the primary silt 

particles can only be seen using such a technique. 

Micromorphologists have spent the last twenty-five years seeking ways to quantify 
their results other than simple point counting. Since the introduction of Quantimet in 
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the early 1970s, image analyses of soil pores and aggregates have been the main 

areas of investigation (Jongerius et al., 1972; Ismail, 1975; Murphy et al., 1977a, b). 

More recently several image analysis techniques have been combined to provide 

more powerful quantitative methods at looking at the mineralogy and microfabric of 

the soil (Tovey et al., 1992). In addition, as techniques from remote sensing have 

been adopted, other features can also be observed, such as different classes of matrix 

optical anisotropy (Terribile & FitzPatrick, 1995). The scale of the images which can 

be handled has increased greatly from a few cm2 to several dm2 (Grevers & de Jong, 

1992). Instead of image analysis taking place on a single image, several arrays of the 

same image can be overlaid and displayed as an RGB colour composite image (Protz 

et al., 1992; Terribile & FitzPatrick, 1992). In other words, if three photographs are 

taken, one under plain polarised light (PPL), one under circular polarised light (CPL) 

and a third under incident ultra-violet light (IUV), they can be combined to create a 

false colour composite which is essentially a three-dimensional image: each image or 

band gives a certain amount of information, but combined they allow the interpreter 

to observe and classify the image to a much larger extent. 

At present, computerised image analysis of soil fabric is the only reliable method for 

investigating the size, shape, orientation, distribution, frequency, shape of the walls 

and morphology of pores (Bui et al., 1989; Mermut et aL, 1992). Various techniques 

have been used on thin sections and polished blocks to enhance the contrast between 

particles and pore space to allow accurate image analysis to take place. The standard 

technique is to use an ultra-violet dye which fluoresces under a UV light source 

allowing the pore space to appear as white while the fabric remains isotropic (Geyger 

& Beckmann, 1967). However, the polyester resins which are commonly used for 

the impregnation of samples are often somewhat fluorescent (AltemilIler & van 
Vliet-lanoe, 1990). This is unavoidable in most cases, because, even though other 

resins are less fluorescent, they have poorer overall refractive properties. It is also 

the case that certain minerals, depending on orientation, do have fluorescent 

properties (e. g. phosphates and carbonates) and this can give an over-estimate of pore 

size (Altemüller & van Vliet-lanoe, 1990). Unlike thin sections, polished blocks 

require the use of epifluorescence microscopy whereby a high intensity UV source is 
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used as an excitation source to produce fluorescence of a longer wavelength. It must 
be remembered, however, whether looking at pore space distribution in thin section 

or using polished blocks, it is likely that there will be some under-estimation of total 

pore space and an over-estimation of clay, because the resolution is not good enough 

using optical microscopy and the medium of study is three-dimensional (25-30 µm 

for a thin-section) and yet it is being classified as though it were only two- 

dimensional (Murphy & Kemp, 1984). 

The established method for measuring pore size by image analysis is the pore-chord 

intersection technique (Jongerius et al., 1972; Ismail, 1975; Murphy et al., 1977a, b; 

Bui et al., 1989). This method systematically or randomly scans the pores using a set 

of horizontal transects of an image and then measures the chord lengths (the length 

from one side of the pore to the other along the transect), plotting them as frequency 

distributions. More recently this approach has been modified because measurements 

in one dimension are not an accurate representation of the pore size in three 

dimensions Unless the shortest chord length for any one pore is measured, it is 

impossible to extrapolate meaningful soil moisture retention data (Bui et al., 1989). 

A technique using a multi-directional minimum chord algorithm, although still 

estimating in two dimensions rather than three, has been developed which will 

measure up to 16 directions across the pore in order to find the minimum chord 

length (Bouabid et al., 1992). As software has advanced, so has the ability to 

measure more and more mineralogical and porosity parameters. The research 

recorded here used a variety of image processing software packages: TERRAMAR, 

PHOTOSHOP and GLOBAL LAB IMAGE. The last of these classifies particles primarily 

according to their grey level, but will weight certain particles depending on specific 

size and shape criterion of interest to the interpreter. Once the software has identified 

the particles in any particular class, it will calculate over 50 different particle 

attributes (see Appendix 3) using the number of pixels which make up the particle in 

question (Terribile & FitzPatrick, 1995, p. 41). 
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Company Software Main 
Application 

Morphology Multivariate 
segmentation 

Geometric 
correction 
(warp) 

3D 

Ai Cambridge 
LTD 

Perception Opt. Mier. * NO NO NO 

AMS Optomax V Opt. Mier. ** NO NO NO 
Bioscan Optimas Opt. Mier. ** NO NO NO 

Buehler Omnimet I Opt. Mier. * NO NO NO 

Data 
Translation 

Global Lab 
Image 

Opt. Mier. ** NO NO NO 

Digithurst Microscale Opt. Mier. * NO NO NO 

Foster-Finday C-images Opt. Mier. ** NO NO NO 

Foster-Finday PC-image Opt. Mier. * NO NO NO 

Kontron- 
Zeiss 

Videoplan 
(manual) 

Opt. Mier. NO NO NO 

Kontron- 
Zeiss 

Vidas Opt. Mier. NO NO NO 

Kontron- 
Zeiss 

Ibas Opt. Mier. ** NO NO YES 

Leica Quantimet 
500 

Opt. Mier. *** NO NO NO 

Leica Quantimet 
570 

Opt. Mier. *** NO NO NO 

Media 
Cybernetics 

HAIL Opt. Mier. ** NO NO NO 

Noesis Visilog Opt. Mier. *** NO NO NO 

Olympus Cue 4 Opt. Mier. *** NO NO YES 

Quantel Crystal Opt. Mier. ** NO NO NO 
Seescan 
imaging 

Solitaire plus Opt. Mier. NO NO NO 

Synoptics Semper6p General 
purpose 

*** YES YES NO 

Table 8.1: Comparison between image analysis software packages. 
Adapted from Terribile, pers. comm. (Opt. Micr. - Optical microscopy) 

The most recent techniques to quantify, 3-dimensional pore space have used 

consecutive slices of a polished block 40 µm thick, which have then been 

photographed digitally and interpreted using image analysis software (Vogel, 1997). 
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Although such a technique is in its infancy and various problems have arisen, such as 

geometric correction between photographs, it has a much greater potential for 

accurately describing pore shape, size and connectivity. 

8.3 INITIAL OBSERVATIONS FROM THE THIN SECTIONS 

Before quantitative analyses of soil fabric and pore space can be considered, it is 

important to look at the photographic images in order to understand the 

morphological change of the crust at different locations so that the processes can be 

explained. The terms of classification are generally taken from Bullock et at (1985) 

or FitzPatrick (1993). The most important terms, which will be used in the following 

analyses, are vughs and vesicles. These refer to relatively large unconnected voids, 

the former defining irregular, elongated voids, while the latter defines voids with a 

smooth and near-spherical morphology (Bullock et al., 1985). 

Site Ridge under 

plastic 

Outer furrow 

flank 

Furrow 

base 

Inner/ central Central 

furrow flank ridge 

LF3-1 D& E C B A 

LF3-2 A B&F C&E D 

LF3.3 A B&D C 

LF3-4 AC&E 

Table 8.2: The microtopographic position of the sample points at each site 
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Plate 8.1 a: Microphotograph of the side ridges (2A) 

Plate 8.1b: Microphotograph of the side ridges (3A) 
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Plate 8.2a: Microphotograph of the furrow flank (2B) 
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Plate 8.2b: Microphotograph of the furrow flank (2F) 
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Plate 8.3b: Microphotograph of the furrow base (3B) 
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Plate 8.4a: Microphotograph of the central ridge (2D) 
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Plate 8.1 to Plate 8.4 show photographs which were taken at low magnification (x40) 

at different locations on the ridge - furrow sequence (Table 8.2). Taking sample 2A 

and 3A, which are the two ridge samples, it can be seen that there are some well- 
developed vesicles within a very densely packed fabric. The soil is poorly sorted 

vesicular and contains no discrete aggregates. There is no obvious connectivity and 

there is a layer at the surface which has no pores. The surface is dominated by very 

fine material, while sand-sized mineral grains tend to concentrate randomly in certain 

parts of the thin section, although often accumulating round the edges of vesicles. 

The examples from a furrow flank, 2B and 2F (Plate 8.2), show a higher degree of 

connectivity with a porosity which is more vughy than vesicular. Again the fabric is 

poorly sorted with a weakly developed pedal structure. The surface is not developed 

in the same way as the ridge with some area where the seal has almost been eroded 

away, while other areas show some evidence of deposition. Where rock fragments 

lie on the surface, there is scouring of the fine material and a deposition of the 

coarser grains. 

The furrow base sections show a very distinct type of crust formation (Plate 8.3) with 

a fabric which is correspondingly different. The fabric, especially in 3B, is almost 

entirely fine-grained and dense except for a few planar voids, and it can be classified 

as having a moderate to strong platy structure (Drees et at, 1994). Sample 2C has 

evidence of several pulses of depositional activity characterised by a set of laminae 

which are coarse at their base and fine on their upper surface. The crust is the 

thickest of all the crusts under consideration. The difference between the fine- 

grained depositional crust of 3B and the rather coarser nature of 2C is dependent 

upon the type of runoff flow, with the latter being a result of more turbid flow 

conditions. 

Finally the central ridge sections at 2D and 3C (Plate 8.4), which in the previous 

chapter have been named sodic crusts, have a much less dense fabric and resemble a 

typical slaking structural crust (Valentin & Bresson, 1992). There is evidence of a 

vesicular structure as on the other ridges, but much of the fine silts and clays have 

gone leaving a large percentage of coarser-grained material at the surface. The voids 
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which are not vesicles tend to be large and nondescript with a high level of 

connectivity. 

At one level, such qualitative description is not new (Evans & Buol, 1968). 

However, the soil crust literature has tended to take each type of crust form and 

assign it a different process, rather than see that there is an inter-relationship between 

the position within the ridge-furrow sequence and the crust form. Past research has 

tended to look at crusts formed in totally different environments (Casenave & 

Valentin, 1992; Le Bissonnais & Singer, 1993; Valentin, 1994; Mermut et al., 1995) 

rather than concentrating on a geomorphological approach, which seeks to look at 

soil crusts in the context of erosion and deposition (Bielders et a!., 1996). The 

following section will build upon the qualitative information and lead to a discussion 

of how the micromorphology gives an accurate picture of the process history. 

8.4 THE CONNECTION BETWEEN PORE ATTRIBUTES AND SOIL. DEGRADATION 

The movement of water, gas and solutes through soil is controlled by its structure 
(Bouma & Kooistra, 1987; Vögel, 1997). The characterisation of the geometric 

properties of different soil crust micromorphologies can show how specific crust 

types and the amount of crust development affect the pathways for such movement 

and therefore can help in classifying the extent of degradation. 

In order to gain a high-resolution image of the pore structure in a thin section, 

photographs have to be taken under UV light. The UV dye, which is embedded in 

the resin during the impregnation process, fluoresces while the soil fabric remains 
dark. Therefore if the UV light is allowed to shine through the section before being 
filtered-out and then goes up through the microscope to the camera, the resulting 
image will be a black and white representation of the fabric and pore space 
respectively. Special Kodak Tmax film is used to obtain the greatest contrast, and 
subjected to a maximum contrast developer. The final photographic image is then 
scanned and saved in a TIFF format in PHOTOSHOP. This software allowed further 

contrast to be obtained, because the smaller grey levels become indistinct after 
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scanning, and this was done by comparing the screen image with the thin section 

under the microscope. 

The Global Lab Image software calculates pore indices (Appendix 3) based upon 

either upon the number of pixels or that of calibrated units. It bases its classification 

entirely upon grey-levels. Therefore, by specifying a certain grey-level threshold, the 

program will count all the particles which have values below that threshold. 

There are some problems when defining the edge of a pore. There is not a sudden 

change from a high grey-level to a low one. Instead there is often a gradual change 

through some intermediate values. There is an in-built third dimension to the thin- 

section which is due to the fact that there is some change in the shape of the pore 

over a thickness of 30 µm. The amount of error is small and can usually be reduced 
further by the contrast features in PHOTOSHOP. 

Each thin-section image can be classified and data extracted. Mean data for the 

whole section were produced (Table 8.3) and can be used-to obtain measures of 

connectivity and total pore area in the section. Table 8.3 shows the mean values, but 

minimum and maximum values are also produced along with a measure for standard 

deviation. All the statistics presented have been calibrated to a millimetre scale. In 

all the images, except one, the calibration factor is I pixel: 0.0071 mm x 0.0071 mm 

or in other words a single pixel approximates to about 50 µm2. 

8.4.1 Pore shape and the formation of vesicles and vughs 

In addition to mean values for each section, Global Lab Image produces data for each 

pore, which allows characteristics such as the sphericity and orientation of pores to 
be calculated. The software is able to identify particles larger than 5 pixels in size. 
However, because the images have been scanned-in from photographs, there is a 
limited resolution, which means that the smallest pores tend to approximate spheres. 
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Table 8.3: Mean values for certain pore attributes measured by Global Lab image 
(terms defined in Appendix 3) 
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If they were included in the data analysis they would artificially raise the roundness 

values. Therefore all the single pore analysis was carried out on particles greater 

than 150 pixels. In addition, only the upper parts of the images were used for the 

single pore analysis (Sub-sample) in order to concentrate on the crust rather than the 

sub-soil (Table 8.4). It is clear on many images that at a certain point there was a 
discernible change in the porosity, either as a result of a structural threshold between 

crust and sub-soil, or because the base of the crust had been disturbed during 

transportation. Only in the cases of LF3-2C and LF3-3C was the whole image taken 

due to the interconnectivity of the pore system. 

Site Image dimensions 
Width Height 
(pixels) (pixels) 

Sub- 
sample 
(pixels) 

Sub- 
Sample 
(mm) 

No. of 
particles 

LF3-1A 937 1270 700 5.0 102 
LF3-1B 970 1256 456 3.2 58 
LF3-1C 970 1256 516 3.6 117 
LF3-1D 970 1256 700 5.0 43 
LF3-1E 970 1256 604 4.3 74 
LF3-2A 970 1256 700 5.0 65 
LF3-2B 970 1256 616 4.4 167 
LF3-2C 970 1256 1255 8.9 107 
LF3-2D 1256 970 512 2.7 65 
LF3-2E 970 1256 679 4.8 33 
LF3-2F 900 1256 406 2.9 73 
LF3-3A 970 1256 728 5.2 63 
LF3-3B 1251 905 550 3.9 82 
LF3-3C 900 1256 1251 8.9 129 
LF3-3D 905 1251 700 5.0 76 
LF3-4A 900 1256 660 4.7 42 
LF3-4C 900 1256 730 5.2 68 
LF3-4E 900 1256 730 5.2 59 

Table 8.4: Image attributes for single pore analysis 

The roundness coefficient is a value calculating how closely the pore resembles a 

circle and is calculated by 4n x Area/Perimeter2. The values fall between 0 and 1, 

with a pore of circular cross-section scoring 1 and an elongated crack scoring near 0. 
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Dotplots clearly show the frequency distribution of pore shape between sites on the 

ridge - furrow sequence. Circular graphs displaying the orientation of pores within a 

section are calculated by taking the major axis of the pore and relating it to 00 which 

represents the top of the section. Sequences of orientation plots are provided to 

indicate whether there is prefered orientation of the pores which is often difficult to 

visualise. 

Figure 8.1 to Figure 8.7 show comparative changes in pore roundness within the 

ridge and furrow sequence. In Figure 8.1 it can be seen that IA has a bimodal 

distribution: the majority of pores are quite well rounded but a considerable number 

are angular. IB has a generally well rounded set of pores and from Plate 8.5 it can be 

seen that a number of vesicles have formed directly below the seal. IC is dominated 

by angular-shaped pores and from Plate 8.5 it can seen that there is a considerable 

amount of connectivity. The near-surface pores would be better described as vughs, 

due to low roundness values, rather than vesicles and are probably not formed by the 

sudden entrapment of air which occurs to form the vesicles. 1D is almost devoid of 

pores and from Figure 8.1 it can be seen that, although there are few angular pores, 

there is not a high frequency of well-rounded pores either. 1E has a large number of 

vesicles to a depth of 3-4 mm which are evident from Figure 8.1 and Plate 8.5. The 

majority of the pores are not connected and have been formed as a result of raindrop 

impact. 

Sequence LF3-2 shows the greatest variability between crust types and 

correspondingly has a great variation in roundness coefficients (Figure 8.3 and 

Figure 8.4). 2C and 2E are strongly influenced by being in the base of the 

topographic sequence. They show a large amount of deposition which is evident in 

the very strong pore orientation and low roundness values. 2A is dominated by some 

very large near-surface vesicles, the largest measuring over 4.5 mm2. Between 2A 

and 2C, there is the furrow flank which has a large number of small vughs which are 

not connected but their greater angularity implies that they are probably not caused 

primarily by raindrop impact (Figure 8.4 and Plate 8.6). Sample 2D, which is 

dominated by a high salt content, has a mixture of vesicles and vughs, but also has a 
higher amount of connectivity, which gives the impression of a less stable structure. 
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2F has a large variability in roundness with a few small vesicles, but rather more 

vughs which tend to be slightly oriented around the horizontal. 

Looking at sample 3A, there is an obvious similarity to its predecessor 2A: it has 

several large vesicles, although unlike 2A it has a better developed set of connecting 

channels which link several of the large voids (Plate 8.7). Samples 3B and 3D have 

clearly defined depositional structures resulting in long, thin and well-oriented pores, 

although there are some smaller, more rounded pores (Figure 8.5 and Figure 8.6). 3C 

has similar characteristics to 2D with a very loose structure and a large variety of 

pore shapes and orientations. 

The three samples from site LF3-4 are taken from the ridge nearest the irrigation 

lateral and the two furrow bases. 4A is a prime example of a skin layer of between 

0.2 and 0.4 mm in thickness with well developed vesicles beneath. Both 4C and 4E 

show two horizons with a very clear deposition layer which has formed above the 

structural crust beneath. 4E has an especially well formed laminar structure which 

accounts for its low roundness and high pore orientation. 

8.4.2 The characterisation of surface crusts using pore attributes 

It has been recognised that tillage practice has a profound effect upon soil structure 

and porosity (Kooistra, 1987; Norton & Schroeder, 1987; Mermut et al., 1992) and 

that soil management affects the resulting type of soil crust (Pagliai, 1987). The 

preceding analysis together with the photographic evidence leads to various 

fundamental implications for the study of surface crusting. The vertical development 

of crusts is highly variable over small spatial scales. Often this is because one crust 

has been overlain by another, especially in the case of depositional crusts forming 

above structural crusts (Boiffin & Bresson, 1987). Due to the extremely low 

aggregate stability of such and soils, there is rapid reorganisation of particles which 

occurs until the seal has developed sufficiently to constrain further erosion. 
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Figure 8.2: Pore orientation (°) at LF3-1 
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Plate 8.5: Images of porosity using UV light photography at LF3-1 
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Plate 8.6: Images of porosity using UV light photography at LF3-2 
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Plate 8.7: Images of porosity using UV light photography at LF3-3 

260 



1 mm 
LF3-3A LF3.3B 1 mm 

1mm 

LF3-3C 
ONWNWM 1mm 

LF3.3D 



Chapter 8- Micromorphological analyses 

1 

.9 

.8 

.7 

.6 
ý 

.5 

.4 

.3 

.2 

.1 

0 

Figure 8.7: Roundness changes with microtopographic position at LF3-4 

u34A 

4º341 

Figure 8.8: Pore orientation (°) at LF3-4 

v"o 

262 

LF3-4A LF3-4C LF3-4E 



Chapter 8- Micromorphological analyses 

Plate 8.8: Images of porosity using UV light photography at LF3-4 
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The crust samples at the base of the furrow sequences are formed initially by 

raindrop impact, but the process is interrupted as material is deposited from the 

ridges and furrow flanks. The material that is being deposited is also being 

reorganised as the coarser particles are laid down more rapidly than the finer material 
At the same time, raindrops disrupt the surface material, forming discontinuous areas 

of structural crusts on the surface of the depositional crust. The topography has a 

vital role to play in the crust formation, because in addition to its effect on the 

vertical development, it has been shown that it affects the areal development. The 

ridges next to the irrigation laterals, IE, 2A, 3A and 4A, are all dominated by large 

vesicles, which is indicative of rapid entrapment Of air. The surface of the crust has 

large embedded particles which would suggest that much of the finer material has 

been washed out. The furrow flanks are harder to classify as there is a complicated 

set of processes acting simultaneously. As the structural crust is formed, vesicles 

form, but then, as sheet-flow is generated from the ridges, there is erosion and the 

vesicles either are destroyed or become vughs. In general there is a washing-in of the 

finer material, which produces a much denser surface layer. It is likely that towards 

the base of the furrow flank vesicles are intact as the sheet flow loses energy, while 

nearer the ridge, vesicles are eroded or become misshapen vughs. This agrees well 

with the recent findings which relate the vesicular nature of the surface soil to the 

hillslope position (Brown & Dunkerley, 1996), albeit on a smaller scale. 

The influence of the irrigation becomes apparent on the central ridge, 2D and 3C, 

where there is a remnant of a structural crust, but it has become structureless. 
Chapter 7 has shown that the central ridge is dominated by the salts precipitating on 
the surface causing widespread dispersion of the clay and fine silt. The loss of clay 

explains the lack of determinable structure, as many of the bridges between pores and 
larger mineral particles have been destroyed as the clay has dispersed, and then been 

washed away or washed further into the soil profile. 

The pore roundness and orientation statistics provide a good means by which to 

classify the UV micromorphological images, because each topographic position has a 
different emphasis in relation to the different processes involved. Due to the nature 
of the pores produced during crust formation, i. e. vesicles, vughs or cracks between 
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laminae, problems of anisotropy (Vögel et al., 1993) are avoided because the voids 

appear similar whichever direction the thin-sections are cut. The depositional crusts 

are dominated by well orientated cracks between each set of laminae and have very 

low roundness values. The structural crusts have non-orientated pores which are, in 

many cases, almost perfectly spherical and the furrow flanks are in between. 

Finally, by observing the total porosity (Figure 8.9) it can be seen that the central 

ridges have almost twice as much porosity than the other samples reinforcing the 

suggestion that they have become unstable and structureless. The furrow flanks, on 

the, other hand, have often become so dense, through the washing in of fine material 

and the destruction of surface pores, that they exhibit very low porosity. 
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Figure 8.9: Changes in porosity at different topographical locations 
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8.5 METHODS FOR TRACING THE MOVEMENT OF PARTICLES DOWN THE SOIL 

PROFILE 

If it is recognised that during a rainfall event, there is a profound change in the 

surface soil characteristics, in terms of both a reorganisation of particles and a 

redistribution of pore space, then it is important to design an experiment which will 

allow the observer to measure what has taken place. If field experiments are used, 

perhaps with a measured input of rain from a simulator, then it is impossible to see 
how particles have moved: there is no way of telling how far a particle has moved 
between rainfall initiation and the end of the experiment. If thin sections are made 
before and after such a rainfall event, only general trends can be observed by 

comparing the two images. Soil scientists have often tried to circumvent this 

problem by laboratory experiments on soils which have been manufactured to the 

criterion of the scientist. For example, Bielders & Baveye (1995a) use a mixture of 
92.5% sand and 7.5% clay to gain more understanding of vertical sorting in structural 

crusts. Isotropic tracers have often been used to define movement of water in the 

surface layers of the soil (Jaynes & Rice, 1993; Philips, 1994; Curmi et al., 1996; 

Aeby et al., 1997), while physical tracers have recently been used to measure relative 

amounts of sediment transport during overland flow (Abrahams et al., 1986; Parsons 

et al., 1993). Image analysis has often accompanied these methods, especially in 

order to look at micro-scale solute pathways (Walker & Trudgili, 1983). 

8.5.1 The use of physical tracers to identify particle movement 

In the experiments of Parsons et at (1993), it was established that magnetite was a 
highly effective tracer, being transported rapidly by overland flow. Although the 

movement of magnetite was detected by its magnetic properties, it seemed that a 

similar technique using hematite could be used to monitor the vertical movement of 
fines through the soil surface during sealing. However, instead of using the magnetic 

properties of the mineral tracer to observe movement, it became clear that the 
isotropic nature of the material in thin-section would serve as an excellent 

representation of particle movement. In temperate or tropical soils such a method 

would be inappropriate, because of the isotropic nature of the organic fraction. In 
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and soils where the organic matter content is often less than 1%, this ceases to be a 

concern. In fact the hematite is highly visible among the light brown groundmass of 
the thin section. 

The fact that hematite has a much higher density than the natural soil was identified 

as a potential problem for the determination of rates of detachability and transport by 

Parsons et al. (1993), but they overcame it by reducing the grain size about 20 µm 
less than material normally entrained by overland flow. Further reduction resulted in 

much lower detachability rates because of the relative size of the particles and the 

increasing likelihood that they would pass down into the interstices during rainfall. 
The majority of the Badia soil lies within the coarse silt fraction, 20 - 63 µm, and so 
it seemed prudent to crush the hematite to below 63 µm. As the main interest of the 

research was the movement of fines down the profile, it was necessary that there was 

no artificial encouragment of movement by making the particles smaller. There is 

therefore an implication of mass of the hematite as one would expect it to move 
faster and further down through the soil in comparison with the surrounding soil. 

Before the experiments took place, thin sections of the soil were examined and it was 

observed that there were considerable amounts of heavy minerals, such as rutile and 

garnet, in the surface layers of the soil. There was no indication that they had settled 

at certain layers within the soil due to their higher density; in fact their incorporation 

within the crust was evident. Another line of evidence concerning the relative 
importance of density and particle size comes from research into desert pavements 
(e. g. McFadden et al., 1987). It is becoming more generally accepted that these 

landforms are produced, by not so much an upward movement of coarse material, but 

rather an active filtration of fine material downwards. 

In order to see how much less dense material would behave under similar rainfall 
conditions, another plot was prepared with a surface of talc instead of hematite. 
Unfortunately, the talc acted as a colloidal material, as can be seen in Plate 8.16, and 
moved much further into the profile, but coated and joined aggregates, as would be 

expected of clay particles. 
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Plate 8.9: Filling the header tank to keep a constant head of water during rainfall 

simulation experiments 
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8.5.2 The plot experiments 

The plots, already described in section 4.2.3, were left to settle for two weeks before 

the rainfall simulation experiments (Plate 8.9). Shortly before starting the rainfall 

simulation, the hematite tracer was introduced to the plot by sprinkling it evenly over 

the plot. Each rainfall simulation experiment lasted 90 minutes with an intensity of 

15 mm h''. In order to obtain a time series to look at changes in vertical movement, a 

plastic sampling tin was placed over a section of soil at t= 30, t= 60 and t= 90 

minutes (Plate 8.10). This meant that the sealing was constrained at a specific time: 

once the experiment had finished a sample was cut from under the sampling tin. 

Ideally a section would have been collected at t=0, but the problem of sampling and 

impregnating dry soil (Section 4.4.3) meant that this could not be achieved. 

8.5.3 Image analysis 

Once the samples had been dried, impregnated and thin-sectioned (Section 4.4), the 

samples were ready to be analysed. Because the use of hematite was due to its 

isotropy, the distribution could be easily identified by converting the sections to 8-bit 

grey level images. Two methods were employed: a digital camera and an ordinary 

SLR camera. In the last five years camera and computer technology has enabled 

images to be stored digitally and it therefore represents an ideal way of analysing thin 

sections and polished blocks quickly and accurately (Vögel, 1997). The thin-sections 

were photographed under plain polarised and cross polarised light with a Kodak 

DCS240 digital camera mounted above a Nikon Labophot II microscope and stored 

as 8-bit black and white TIFF images. The images were converted to a two band 

image file using ARC-INFO and loaded into TERRAMAR where they could be 

analysed. 

The traditional method of digital image acquisition involves either capturing stills 

using a video camera (Bouabid et al., 1992; Terribile & Fitzpatrick, 1995) or 

photographing thin-sections with a conventional SLR camera (Anderson et al., 1996; 

Velde, 1996). Images are then scanned-in at a certain resolution to allow enough 
detail to be analysed appropriately. In this research, photographs were taken using 
tungsten film and a Canon EOS 600 SLR camera. Several attempts were needed for 
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each photograph because it was difficult to gauge the exposure due to the different 

thicknesses of thin-sections and the contrast between hematite and soil fabric. After 

developing the positives, they were scanned to a resolution of 300 dpi using a slide 

scanner and stored as TIFF images. 

The first of the methods has various advantages in terms of its versatility, immediate 

results and the ability to take several shots under different lighting conditions without 

problems of geometric correction. However, its resolution, 1012 x 1524 pixels, 

means that it is very difficult to obtain clearly focused imagery, especially when 

working at magnification and with a predominantly fine-grained soil. Because the 

computer screen can only display 72 dpi, it is impossible to see if an image is 

properly focused unless it is printed out, which negates all the initial flexibility of the 

system. As high image resolution was the most important criterion for analysing the 

data, the digital photographs, despite their versatility, were rejected for the more 

traditional photographic method. Digital cameras are likely to become more useful 

for image processing as the technology improves and allows automatic focusing and 

higher resolutions. 

The original TIFF images were converted to RAW images, which are images without 

a header file attached, and read into the TERRAMAR image processing software. In 

order to classify the images, training areas had to be set up on the image to 

characterise the hematite, the fabric and the pore space. Each training area included 

several thousand pixels in order to gain a frequency distribution of DN values for 

each class, which the maximum likelihood classifier then used to extrapolate to the 

whole image. Certain areas, such as the pore boundaries and heavy minerals, had 

DN distributions which did not fit into a particular class and so they were denoted as 

unclassified and drawn black. The classified image was then reimported to ARC- 

INFO and added to a specifically written header and colour file so that the final 

image could be transferred back to a TIFF format to allow printing. 
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8.5.4 Movement of fines: initial observations 

The first observation is that the movement of fines is concentrated along the 
boundaries of gravel or rock fragments. Plate 8.11 and Plate 8.15 show that the 

majority of the hematite is concentrated along the boundaries of basalt fragments or 

calcium carbonate nodules. Plate 8.11 is particularly interesting, because the basalt 

fragment, which is just off the top-right-hand corner, initiates a series of laminae 

which flow down in to the micro-depression to create a depositional crust. The 

surface of the soil is probably of the order of 0.5 mm lower than the surrounding 
level and yet material is being washed in. 

The second observation is that there is formation of vesicles, Plate 8.14, due to the 

rapid entrapment of air in the near-surface soil. Despite this rapid process, hematite 

has been able to filtrate and coat the sides of the pore. 

Banding is evident at 30 minutes, with a clearly defined dense seal at the surface, 

above which larger sand grains and gravel lay. Then there is another distinct band 

approximately 250 pm below the surface. At 60 minutes, the hematite band is 

almost continuous and very clear and there is evidence of a band further down the 

section. There is a textural change below the lowest band in both cases (Plate 8.13), 

which looks to be size orientated; below the band it is impossible to distinguish 

specific particles while above it the grains look larger and less cohesive. By 90 

minutes there is still a large accumulation of hematite at the surface with only the 

sand-sized grains above. There is a hematite-free zone which inhabits the area 

directly below the surface seal and then there is another set of layers between 200 

and 400 µm below the surface. 

Taking the structural crusts, there is an uneven boundary in the lower band of 
hematite as time continues. For example in the two sections taken at 60 minutes, 
there is a difference with one displaying a lower boundary at about 150 pm while the 

other section, which is within two centimetres of the first, has a lower boundary at 
400 µm. 
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Lastly, in connection with the discussion in 8.5.1, it is interesting to note how the 

different sizes of hematite have moved relative to each other. The thin-sections show 

a variety of different shapes and sizes of hematite grains which are inevitable during 

the crushing process. However, it is impossible to conclude that certain sizes of 

particles have moved preferentially to others; there are larger particles remaining at 

the surface, but also some which have travelled to the base of the lower layer of 

hematite. Likewise with the smallest particles, there are many incorporated at the 

surface, but also many lower in the profile. 

8.5.5 The movement offenes: explanation 

Previous research into the effects of rock fragments on surface seal formation and 

infiltration has been inconclusive. While it is generally accepted that infiltration is 

increased due to the presence of rock fragments (Collinet & Valentin 1979), more 

recently it has been suggested that the relationship between infiltration and rock 

fragments in the sealed soil is not so simple (Poesen, 1986a; Poesen et at, 1990). 

Instead the size and embeddedness of the fragment is more important (Bunte & 

Poesen, 1994) because they affect the neighbouring porosity (Poesen & Ingelmo- 

Sanchez, 1992). The results from the hematite tracer show how infiltration is 

affected by the presence of small rock fragments, i. e. smaller than the threshold value 

of 26 mm given by Wilcox et at (1988). Hematite clearly flows rapidly around the 

edges of the rock fragments suggesting that as the surface seals, runoff is quickly 

generated and turbid flow into the soil is preferentially oriented to the edge of 

embedded fragments. This would seem to contradict the view that embedded 

fragments promote runoff rather than infiltration (Poesen, 1986a; Poesen et al., 

1990). What is more likely, especially in a fine-grained soil, is that the fines are 

rapidly entrained as the seal develops and runoff is initiated. The water charged with 

silt-sized grains preferentially infiltrates between rock fragments and the developing 

seal. However, the very process of turbid infiltration actually causes the plugging of 

the infiltration route as the silt settles out. Infiltration is therefore reduced and runoff 

is increased. 

-There is clear evidence that washing-in takes place during the formation of structural 

as well as depositional crusts. The surface layer of hematite seems to be already 
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stable by 30 minutes and does not change much in the following 60 minutes. It has 

been noted that the initial vertical growth of the crust is large and the rate of increase 

declines through time (Farres, 1978) until a threshold thickness is reached which is 

controlled by the aggregate size. The form of the crust resembles that of a sieving 

structural crust (Valentin & Bresson, 1992) which is made up of a layer of loose 

skeleton grains overlaying a much finer plasmic layer. 

The second layer of hematite which seems to mark the base of washing-in of fines is 

not stable over space or time. There are some hematite particles between the plasmic 
layer below the surface and the base layer. This second layer has not been observed 
in structural crusts, although Pagliai (1987) shows microphotographs with a fine 

plasmic base layer separating the bottom of the crust and the subsoil, but he fails to 

explain the processes involved in its formation. Valentin and Bresson (1992) suggest 

that pavement crusts, which form in and eolian soils, may have different textural 

bands due to the origin of the soil, but this is unlikely because the soil in the plots 

was manually tilled before experimentation. A more reasonable suggestion is that 

these are sieving crusts where the coarse silt grains have washed down to the base of 

the crust. However, the depth depends not so much on initial aggregate size, but 

upon the force of the drop impact (Bielders & Baveye, 1995). There is no reason to 

account for the difference in depth of the lower level in, for example t= 60, except to 

say that the sample with a deeper horizon of hematite had a larger number of drop 

impacts or drops with a higher kinetic energy within the 60 minutes. 

There is great variability in crust-type depending on the interactions of the two major 

crust formation processes: raindrop impact and micro-scale movement of 
disaggregated fine material from topographic highs to lows. Our understanding of 

micro-scale processes is limited, but using a tracer allows greater insight into the 

movement of fines in an and environment. Bielders et al. (1996) show how runoff 
and erosion crusts forming on sandy soils exhibit features dependent upon the 

original roughness of the soil. In silty soils, as found in the Badia, there is rapid 
erosion from microtopographic highs which may only be millimetres in magnitude 
(Plate 8.11) and yet depositional crusts with a depth of up to a millimetre form within 
30 minutes of rainfall, causing a reduction in the original roughness element. 

275 



Chapter 8- Micromorphological analyses 

lam, 

ý"ý ire ýr ;5 ' , , ." v.. 

.4 

Plate 8.10: The collecting of the samples from the plot at different times 
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Plate 8.11: Thin-section photographs with their associated classifications at t= 30 

minutes 
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Plate 8.12: Thin-section photographs with their associated classifications at t= 30 

minutes 
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Plate 8.13: Thin-section photographs with their associated classifications at t- 60 

minutes 
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Plate 8.14: Thin-section photographs with their associated classifications at t= 90 

minutes 
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Plate 8.15: Thin-section photographs with their associated classifications at t= 90 

minutes 
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Plate 8.16: Thin-section photographs from the plot prepared with talc 
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8.6 CONCLUSION 

Micromorphology is a technique which is under-used in geomorphology despite its 

ability to distinguish erosional and depositional processes. In addition, the use of 

physical tracers, which can be clearly identified under the microscope, can be 

invaluable in determining the way in which surface sediment has been transported 

during a rainfall event. In soil science, as Bielders et a!. (1996) correctly observe, 

there is little or no account of the topographic position at any scale. The 

combination, therefore, of a combined geomorphological and micromorphological 

approach is exciting in that the spatial distribution of crusts can be explained by the 

micro-topography and the associated processes which are acting at that scale. The 

spatial distribution of crusts over small areas is of vital importance because it 

increases our ability to model infiltration and runoff. With an increasing move 

towards highly detailed DEMs and associated fractal modelling the information 

provided in this chapter allows a better constraint upon the process dynamics at the 

fine scale. 

Soil crusts are not homogeneous over small spatial scales. This chapter considers the 

topographic location of the surface crust and its relation to fundamental changes in 

their fabric and porosity. Most of the differences are associated with secondary crust 

formation. Initially, structural crusts form at all points along the ridge-furrow profile 

with characteristically large vesicles and a very fine-grained surface seal. Given the 

negligible aggregate stability, these form almost immediately. however, as a rain 

event continues, or as irrigation water flows over the surface, the crusts on the furrow 

flanks become erosional crusts with a distinct modification in seal density and a 

change in porosity from non-connecting vesicles to connecting vughs. In the furrow 

base, the original structural crust is buried by fine-grained laminae which constitute a 
depositional crust. The pecentage of fines (<20 µm) in the particle size distribution 

of the furrow base crust samples increases to a level 5% to 10% greater than other 

positions on the ridge-furrow sequence. The composition of the structural crust is 

not necessarily destroyed, but the permeability of the surface changes as the porosity 
becomes dominated by cracks rather than pores. 
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Pore size, shape and connectivity analysis is of fundamental importance to the 

modelling of infiltration. High porosity does not necessarily lead to high 

permeability. This is clearly shown in section 8.4.1 where the ridge samples have 

large vesicles which are unconnected and would therefore give a low rate of 
infiltration. The thicker depositional crusts, despite their characteristic fine-grained 

nature, have a developed crack network with a much higher connectivity. The 

porosity is often much less, but the permeability is likely to be greater. 

To observe the movement of fine material into the soil profile during crust formation, 

a hematite tracer ground to 20-63 pm was used. By spreading it over the soil surface, 

the redistribution of the tracer during a rainfall event could be monitored using 

micromorphological analysis. Hematite has not been used before as a tracer for the 

investigation of downward movement of fines, but because of its isotropy, it presents 

a very striking visual impact. Hematite is not without its problems, especially in 

terms of density, but by looking at the position of other heavy minerals within the 

soil profile, it is argued that its use is valid. 

The results from the hematite tracer show how infiltration is affected by the presence 

of small rock fragments, i. e. smaller than the threshold value of 26 mm given by 

Wilcox et aL, (1988). Hematite clearly flows rapidly around the edges of the rock 
fragments suggesting that as the surface seals, runoff is quickly generated and turbid 

flow into the soil is preferentially oriented to the boundaries of embedded fragments. 

This would seem to contradict the view that embedded fragments promote runoff 

rather than infiltration (Poesen, 1986a; Poesen et al., 1990). What is more likely, 

especially in the fine-grained soil of the Dadia, is that the fines are rapidly entrained 

as the seal develops and runoff is initiated. The water charged with silt-sized grains 

preferentially infiltrates between rock fragments and the developing seal. However, 

the very process of turbid infiltration actually causes the plugging of the infiltration 

route as the silt settles out. Infiltration is therefore reduced and runoff is increased. 

There is clear evidence that washing-in takes place during the formation of structural 

as well as depositional crusts. The surface layer of hematite seems to be already 
stable by 30 minutes and does not change much in the following 60 minutes. The 
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form of the crust resembles that of a sieving structural crust (Valentin & Bresson, 

1992), which is made up of a layer of loose skeleton grains overlaying a much finer 

plasmic layer. 

The second layer of hematite which seems to mark the base of washing-in of fines is 

not stable over space or time. There are some hematite particles between the plasmic 

layer below the surface and the base layer. This second layer has not been observed 

in structural crusts before, and it is suggested that these are sieving crusts where the 

coarse silt grains have washed down to the base of the crust. The depth, however, 

does not depend so much on initial aggregate size, but rather upon the force of the 

drop impact (Bielders & Baveye, 1995). The likely explanation for the difference in 

depth of the lower level is not because of variability in aggregate size (Farres, 1978), 

but rather because of differential drop impacts or drops with a higher kinetic energy. 

There is great variability in crust-type depending on the interactions of the two major 

crust formation processes: raindrop impact and micro-scale movement of 

disaggregated fine material from topographic highs to lows. Understanding of 

micro-scale processes is limited, but using a tracer allows greater insight into the 

movement of fines in an and environment. In the silty Badia soils, there is rapid 

erosion from microtopographic highs and subsequently deposited as depositional 

crusts with a depth of up to a millimetre. Within 30 minutes of rainfall there is a 

rapid reduction in the original roughness element. 
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9. CONCLUSION 

This thesis has presented results from work carried out on soil degradation in the 

northern Badia of Jordan taking soil crusting, and its associated effects on water 

movements, as an illustration of the quality of the soil. 

The aims of the research were as follows: 

1. To sample soil crusts in order to monitor their effect upon the equilibrium of 

sediment dynamics at a hillslope and ridge-furrow scale. 

2. To observe the effect that the crust has upon moisture storage within the 

surface layers of the soil and to explain the spatial characteristics which 

arise due to management practice and climatic variables. 

3. To monitor the effectiveness of a new, non-destructive, dielectric technique 

to examine moisture content in dryland soils. 

4. To examine the effect of irrigation upon the surface characteristics of the 

surrounding soil, with special reference to the evaporation fluxes within the 

furrow and the associated precipitation of salts. 

5. To investigate the role of small-scale topography upon the type of crust 

which forms in terms of both fabric and porosity. 

6. To develop a new method of tracing fine material through the upper soil 

profile during crust formation using rainfall simulation and use it to monitor 

the movement of fines during crust formation and development. 

9.1 ORIGINALITY OF TUE RESEARCH 

This thesis includes the following original contributions to knowledge. 
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This is the first study of surface soil characteristics in northern Jordan. Data have 

been provided which increase understanding on a number of issues. The pedogenesis 

has been elucidated using a combination of XRD, XRF and thin section mineralogy 

to fingerprint the soil and discover how it has evolved (section 7.2.1). It is clear that 

the formation of the Badia soils is not described adequately by the process, of 

weathering of the basalt (Al"Homoud el al., 1995). It is difficult to imagine how 

such weathering could have occurred in such a young landscape unless there was a 

much wetter climate in the past. The evidence for such a change in precipitation 

level was discussed (section 2.7) and has to be rejected. An interpretation of the 

environment and the data of section 7.2 lead to the conclusion that the soil has 

developed with contributions from the basalts and limestones of the Jebal Ilaur3n, 

but the majority has clearly originated from the deserts of the Sahara or the Arabian 

Peninsula. This is fundamental to the research, because it explains why the general 

particle size distribution is dominated by the silt fraction. 

Soil crusts are not homogeneous over small spatial scales. In considering the 

topographical location of the surface crust, not only can considerable changes in their 

particle size distribution be identified (section 7.3.3), but also fundamental changes 

in their fabric (section 8.3) and porosity (section 8.4.1) can be clearly established. 

Most of the differences are associated with secondary crust formation. Initially, 

structural crusts form at all points along the ridge-furrow profile with 

characteristically large vesicles and a very fine-grained surface seal. Given the 

negligible aggregate stability, these form almost immediately. However, as a rain 

event continues, or as irrigation water flows over the surface, the crusts on the furrow 

flanks become erosional crusts with a distinct modification in seal density and a 

change in porosity from non-connecting vesicles to connecting vughs. In the furrow 

base, the original structural crust is buried by fine-grained laminae which constitute a 

depositional crust. The pecentage of fines (ß20 Elm) in the particle size distribution 

of the furrow base crust samples increases to a level 5% to 10% greater than other 

positions on the ridge-furrow sequence. The composition of the structural crust is 

not necessarily destroyed, but the permeability of the surface changes as the porosity 
becomes dominated by cracks rather than pores. 
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Pore size, shape and connectivity analysis is of fundamental importance to the 

modelling of infiltration. High porosity does not necessarily lead to high 

permeability. This is clearly shown in section 8.4.1 where the ridge samples have 

large vesicles which are unconnected and would therefore give a low rate of 

infiltration. The thicker depositional crusts, despite their characteristic fine-grained 

nature, have a developed crack network with a much higher connectivity. The 

porosity is often much less, but the permeability is likely to be greater. 

Research presented in this thesis has shown the effect irrigation water has upon the 

secondary development of crusts within the same sequence (section 7.3.4). There are 

important linkages between the wetting-bulb extent, the concentration of salts at the 

boundary of the wetting-bulb, the evaporation of water from the soil and the 

subsequent precipitation of salts at the surface. This process, although documented 

in the literature (Hillel, 1971; Bresler et al., 1982), has not been taken further to 

identify the linkages with the secondary crust development or its ensuing effect on. 

particle reorganisation and erosion. Such links between the physical and chemical 

processes occurring within the soil are often missing in the soil science literature, 

because of a lack of communication within the discipline, and yet it is of utmost 
importance that they are recognised. 

There is a complex movement of water and dissolution of salts after irrigation which 

results in a crucial change in the crust morphology. The soil, being alkaline with a 

pH of more than 8, will readily exchange H*- ions with the salts in the cation 

exchange sites. The dissolution of salts, and preferentially sodium, into the soil 

water causes salt precipitation at the soil surface as the water evaporates (section 

7.3.4). The resulting crust has been classified in this work as a sodic evaporation 

crust. Sodium is the most destructive soil cation because it is most likely to cause 

clay dispersion: therefore, these types of crust characterise severe physical and 

chemical degradation. The physical consequence of the formation of a sodic 

evaporation crust is a 70% to 80% reduction in the clay and fine silt fraction of the 

soil. The clays, having dispersed at the soil surface, are rapidly deflated by the wind. 
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This thesis highlights the lack of work carried out on evaporation of water from soil 

crusts, because the water chemistry affects the crust structure in a totally different 

way from infiltrating water. Infiltrating water at specific levels of SAR and ESP is 

extremely well documented (sections 3.4.1 and 3.4.2), but nothing has apparently 

been written on the evaporation of saline water from soils and its effects on clay 

dispersion. Chapter 7 concludes that rather than causing pore clogging, the 

evaporation of sodic water causes dispersion of clay and fine silt which is then 

removed by erosion. 

Until the completion of this work, evaporation through soil crusts was poorly 

understood and yet, in the context of soil moisture retention in dry land farming, it is 

very significant. The crust acts as a barrier to infiltration (section 3,6.1), but it has 

rarely been recognised that the crust can equally reduce evaporation from the soil. 

Various experiments were carried out to investigate how the crust affected the 

moisture levels of the soil beneath by developing a new method using a surface 

capacitance insertion probe (SCIP). Data are presented which compare the soil 

moisture before and after the crust is destroyed by ploughing (section 6.3.1) and it 

can be seen that within two weeks of ploughing, the moisture content is reduced to 

less than half of its value when crusted. 

The relationship between micro-topography, the erosivity of rain and the wind 

direction was identified by Sharon et al. (1983) and Sharon et al. (1989), but the 

presence or otherwise of a soil crust was ignored. The ridges and furrows at the 

field-sites provided an ideal place to consider soil crusting. Crusts were seen to 

develop almost exclusively on the west-facing furrow slopes leaving the cast-facing 

slopes uncrusted. Given that the aggregate stability is so low, the impact of drops on 

the east-facing furrow flanks must be negligible, which is accordant with the westerly 

wind direction during rain events (section 5.2.2). The fact that crusts develop on one 

side of the furrow, allowed comparison of moisture contents across the furrow. The 

crusted side had a consistently higher moisture content and the difference was more 

evident at 5 cm depth rather than at 10 cm (section 6.3). 
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The SCIP has been introduced to geomorphological research and the potential 

advantages have been identified (section 6.1). It is a non-destructive technique for 

accurately measuring soil moisture, using the difference between the dielectric 

constants of soil and water to obtain a frequency measurement which can be 

calibrated to volumetric moisture content. Although the apparatus was unable to 

work at high soil salinities, it performed well in non-saline soils, allowing the 

accurate measurement of low moisture contents. In and environments the need to 

discern small changes in moisture is important which means that this apparatus can 

be considered as a tool in equal standing with the more common Time Domain 

Reflectometry apparatus. The potential problem with soil salinity is easily 

noticeable, because it works to a threshold and then gives a very high dielectric 

constant, showing the operator that it has ceased to give an appropriate reading. 

Rainfall simulation is an important tool for investigating the processes of soil crust 
formation (section 5.3). The rainfall variables, which are being modelled, often bear 

little relation to those of the environment under study. Therefore, a concerted effort 

was made to establish a good climate record for the northern Badia (section 5.2), 

before rainfall simulation variables were calculated (section 5.3.5). 1laving 

ascertained the likely rainfall characteristics of the region (section 5.2.4), a rainfall 

simulator was purpose-built and plots were located at the field site at Ash-rafiyya. 

In order to observe the movement of fine material into the soil profile during crust 
formation, a hematite tracer was used which could be spread on the soil surface and 

then monitor the redistribution of the tracer during a rainfall event using 

micromorphological analysis. Hematite has not been used as a tracer for the 

investigation of downward movement of fines, but because of its isotropy, it presents 

a very striking visual impact (section 8.5.1). Hematite is not without its problems, 

especially in terms of density, but by looking at other elements in the soil 

micromorphology, it is argued that its use is valid (section 8.5.1). The option of 

changing the mean grain size, as Parsons et at. (1993) have done with magnetite, was 
thought inappropriate given the nature of the process. 
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The results from the hematite tracer show how infiltration is affected by the presence 

of small rock fragments, i. e. smaller than the threshold value of 26 mm given by 

Wilcox et at (1988). Hematite clearly flows rapidly around the edges of the rock 
fragments suggesting that as the surface seals, runoff is quickly generated and turbid 

flow into the soil is preferentially oriented to the boundaries of embedded fragments. 

This would seem to contradict the view that embedded fragments promote runoff 

rather than infiltration (Poesen, 1986a; Poesen et at, 1990). What is more likely, 

especially in the fine-grained soil of the Badia, is that the fines are rapidly entrained 

as the seal develops and runoff is initiated. The water charged with silt-sized grains 

preferentially infiltrates between rock fragments and the developing seal. However, 

the very process of turbid infiltration actually causes the plugging of the infiltration 

route as the silt settles out. Infiltration is therefore reduced and runoff is increased. 

There is clear evidence that washing-in takes place during the formation of structural 

as well as depositional crusts. The surface layer of hematite seems to be already 

stable by 30 minutes and does not change much in the following 60 minutes, The 

form of the crust, resembles that of a sieving structural crust (Valentin & Bresson, 

1992), which is made up of a layer of loose skeleton grains overlaying a much finer 

plasmic layer. 

The second layer of hematite which seems to mark the base of washing-in of fines is 

not stable over space or time. There are some hematite particles between the plasmic 
layer below the surface and the base layer. This second layer has not been observed 
in structural crusts before, and it is suggested that these are sieving crusts where the 

coarse silt grains have washed down to the base of the crust. The depth, however, 

does not depend so much on initial aggregate size, but rather upon the force of the 
drop impact (Bielders & Baveye, 1995). The likely explanation for the difference in 

depth of the lower level is not because of variability in aggregate size (Farces, 1978), 

but rather because of differential drop impacts or drops with a higher kinetic energy. 

There is great variability in crust-type depending on the interactions of the two major 

crust formation processes: raindrop impact and micro-scale movement of 
disaggregated fine material from topographic highs to lows. Understanding of 
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micro-scale processes is limited, but using a tracer allows greater insight into the 

movement of fines in an and environment. In the silty Badia soils, there is rapid 

erosion from microtopographic highs and subsequently deposited as depositional 

crusts with a depth of up to a millimetre. Within 30 minutes of rainfall there is a 

rapid reduction in the original roughness element. 

9.2 THE EXTENSION OF PREVIOUS WORK 

In terms of knowledge about the soils of the Badia, lying on the basalt plateau, this 

thesis represents the first detailed examination, beyond that of the Huntings soil 

surveys carried out over the past decade. 

Sharon's work (Sharon et al., 1983; Sharon et al., 1989) on the effects of micro- 

climatology, and specifically incident rainfall, on soil erosivity, has been neglected in 

geomorphological research. The erosivity of rainfall, especially in and environments 

where sediment is easily entrained, has a profound effect upon erosion, and therefore 

landscape evolution, at all scales. Chapter 6 takes this concept of erosivity and 

demonstrates its use in differential soil crust formation. Soil crusts will only develop 

on those slopes which are facing the wind-bearing rainfall. If the soil crust is as 

effective a moisture storage mechanism as the data suggest, then there are important 

implications for land management in terms of method and direction of ploughing. 

There have been attempts to define stages of soil crust formation (Boiffin, 1986; 

Boiffin & Bresson, 1987; Bresson & Boiffn, 1990) and to classify the resulting 
forms in different environments (Bresson & Valentin, 1990) soil textures (Valentin 

and Bresson, 1992) and management practices (Pagliai, 1987; Dielders et al., 1996). 

It has been acknowledged that one crust form will often develop over another 
(Boiffin & Bresson, 1987), but there has been no consideration of the evolution of 
the crust once it has formed except in terms of additional rainfall. Chapter 7 provides 
data on two important aspects of post-crust formation development. By comparing 

newly formed crusts with those that have formed during a previous season, it can be 

seen that the amount of fines incorporated within the crust is reduced over time by 
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wind action. The resulting crust becomes coarser over time and takes on the role of 
armouring the soil beneath. The soil crust, in this case, needs to be seen as a natural 

mechanism of soil protection rather than of degradation. 

In addition to the effect of wind upon already established soil crusts, chapter 7 

investigates the effect of changing soil and water chemistry on the soil crusts. The 

so-called sodic evaporation crust is a secondary development of the crust which 

profoundly affects the morphology and its propensity to be eroded, because of the 

interaction of cations and clays within the soil. Management practice, and especially 

the application of irrigation in and soils, will have an important part to play in 

causing changes to the soil crust morphology. 

Finally, the use of physical tracers has been limited (Parsons et at, 1993), especially 

in the study of soil crusting. However, this thesis has demonstrated that such a 

method is extremely useful in determining the movement of specific particle size 

fractions. Using a tracer avoids the need to artificially produce soil crusts of a certain 

texture (Bielders & Baveye, 1995a; 1995b) and instead allows work to be carried out 

in the field. One area where this technique proves invaluable is within the debate 

over the effect of rock fragments at the soil surface. The hematite tracer shows that 

fines are rapidly entrained as the seal develops and runoff is initiated. Initially, the 

water charged with silt preferentially infiltrates along the rock fragment perimeter, 

but this very process actually causes the plugging of the route, thereby reducing 

infiltration over time. These observations illuminate the debate on the effectiveness 

of rock fragments in increasing infiltration (Collinet & Valentin, 1979; Poesen, 

1986a; Wilcox, 1988; Poesen et at, 1990; Bunte & Poesen, 1994). 

9.3 FURTHER RECOMMENDATIONS 

The following recommendations are intended to promote further research. 

1. Soil formation in the Badia is a complex mixture of eolian and colluvial 

processes and weathering. In order to understand the genesis of the soil 
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further, it is necessary to conduct XRD and XRF examination on soils 

underlying different basalt types in order to constrain the basalt influence. 

SEM work would be additionally required to understand the transport 

mechanisms better. Opportunities to core in Qa Azraq or some other large qa 

would potentially combine with the soil fingerprinting to obtain a more 

precise picture of Holocene climate change, with special reference to 

increases in rainfall during past pluvials. 

2. Hematite has proved to be a valuable way of tracing sediment down the soil 

profile during crust formation, but the use of painted quartz, which has a 

closer similarity to the surrounding soil, could improve the method of tracing 

sediment further. In addition, the experimentation could be expanded to 

include different rainfall intensities and a finer time resolution. 

3. There is much potential to work on the modelling of evaporation through 

different types of soil crust. Monitoring of soil moisture below the crust, at 

various depths, should take place over a whole winter season coinciding with 

accurate rainfall data in order to increase understanding of the mechanisms 

involved. A mathematical model could then be constructed to describe the 

processes in detail. Such a model for dryland agriculture could lead to better 

agricultural practice, reducing the burden on the groundwater supplies. 

4. Although the use of digital photography was eventually rejected in this work, 
there is a great potential for analysing a large number of thin sections or slices 

of polished blocks in a short time. As the pixel resolution of the digital 

cameras increase, there are possibilities of describing crust types and their 

associated porosity in three dimensions. In addition, as soil is increasingly 

viewed and described by fractal geometry (Anderson et at, 1996), there is a 

greater need to increase the amount and resolution of data available in three 
dimensions to allow the modelling of the soil surface and the sub-surface and 
associated hydrological processes. 

This thesis increases the general understanding of soil crusting processes in and 
environments. Its contribution is important for the understanding of soil degradation 
in drylands and its conclusions bring greater clarity to the processes involved. 
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APPENDIX 1: Technical information concerning the working of the Surface 
Capacitance Insertion Probe (SCIP) 

The use of electromagnetic waves in determining soil moisture 

It is well known and documented that electromagnetic systems with frequencies 

between 108 and 2x 1010 Hz can be used in many applications in the earth sciences 

(Hoekstra & Delaney, 1974; Campbell, 1990; Roth et al., 1992; Dirksen & Dasberg, 

1993; Selker et al., 1993). The dispersion and velocity of propagation of 

electromagnetic pulses through a medium such as soil can be derived from the 

dielectric constants (Smith-Rose, 1933; Hoekstra & Delaney, 1974). Time-Domain 

Reflectometry (TDR) and the Capacitance Probe rely on the known dielectrical 

properties of a soil at a certain frequency in order to calculate the percentage 

moisture present in the soil. 

The SCIP works by setting up an oscillatory electric field between two metal 

electrodes. As the frequency of the electric field increases, it finds an equilibrium 

frequency where a charge travels between the electrodes. This frequency is inversely 

proportional to the permittivity, and therefore directly proportional to the dielectric 

constant, of the material. The real dielectric constant is the electrostatic condition, 

measuring the ratio of the size of the electric field in a vacuum as opposed to that in a 

substance. In a vacuum, the electric field cannot decay from a point charge q, but in 

a given substance, there will be an exponential decay because the ions or electrons in 

the substance act contrary to the electric field. The ratio of the rate of that decay in 

any substance compared with its response in a vacuum is called the dielectric 

constant. 

If co is the dielectric permittivity of free space, equal to 8.85 x 10''2 F/m, the electric 
field due to a point charge q is 

q 
4, r eo r2 

in a vacuum and 
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E= --- 
q 

4ireo E, r2 

if q is embedded in a substance with dielectric constant «,. However, in the case of 
the SCIP there is not a point source, but instead an oscillatory current is set up which 

selects the imaginary component of the wave rather than the real part to derive the 

dielectric constant. The imaginary dielectric constant gives a value to the amount of 

variance of the electric field as it changes position within the oscillatory current. 

The dielectric constant, which is inversely proportional to the dielectrical 

permittivity, is a function of the frequency fat which the instrument is working and 

the conductivity a, which here means the electric conductivity of the soil fabric and 

soil water. As the frequency approaches zero, the dielectric constant becomes 

increasingly dominated by the conductivity effect. In other words, when the lower 

threshold in frequency is reached ionic movement is so slow that the conductivity 

effect has time to resist the electric field. However, in addition to lower frequencies, 

the higher the static conductivity, the more resistant are the ions to movement in the 

electric field; this is measured by the imaginary dielectric constant. Soil and soil 

water salinity are serious problems as they increase conductivity which in turn 

increases the measured dielectric constant, and implies that the soil is more moist 

than it really is. 

The electrical conductivity of soil and water, both free and physically and chemically 
bound, influences the measurement of the absolute level of moisture. The 

mineralogy of the soil may be significant: for example, certain iron minerals such as 

magnetite affect the dielectric constant, especially when the soil is saturated 
(Robinson et at, 1994), which necessitates prior instrument calibration for the soil 
type. Bound water and bulk density have been studied to investigate their effect on 
the dielectric properties of soils. Dirksen & Dasberg (1993) found that only soils 
with bulk densities exceeding 1.35 g CM -3 corresponded well with the standard Topp- 
Davis-Annan calibration equations (Topp et at, 1980). Furthermore such calibration 
equations did not correlate well with soils with high clay contents because of the 
quantity of bound water, although bulk density was seen as the greater limitation. 
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The largest problem, however, is the soil salinity. If there is a small amount of water 
in the system, conductivity will not exert an effect as the ionic mobility relies upon a 

minimum water content. With sufficient water in the system to allow a complete 

pathway from one electrode to the other, i. e. long-range connectivity, a percolating 

threshold is reached. At this point the loss tangent, the ratio of the imaginary to the 

real dielectric constant, becomes constant (Campbell, 1990). Below the percolating 

threshold, the resistivity will be very large, but once the threshold is reached it 

decreases as a power law (Mualem & Friedman, 1991). So for best sampling 

conditions, long-range connectivity needs to be established, but must be below the 

percolating threshold. 

In addition to visualising soil as a tripartite system of air, solid and water, Ansoult et 

at (1984) maintain that soil should also be characterised by its electrical properties. 

Each of the three original soil components, if separately placed between conducting 

plates and submitted to a varying electric field, exhibits a specific capacitance 

signature characterised by the dielectric constant. The dielectric constant of air is 1, 

that of solid material such as the mineragenic component of soil lies around 4, 

although Campbell (1990) suggests a range between 2 and 14, while the dielectric 

constant of water equals 80. The large differences between the mineralogical and 

water elements indicate that the water component exerts a majority influence upon 

the soil dielectric properties. In response to an electric field, movement of charge 

from one environment to another defines a streamline (Ansoult et al., 1984). In an 

oscillating electric field, the dielectric effect of a porous medium results from an 

averaging of the dielectric effects of each of the streamlines. 

Obtaining the dielectric constant from field measurements of frequency 

Consideration of the above limitations of soil moisture measurement using methods 

of capacitance, suggests that it is important to transform the frequency readings from 

the SCIP to a useful measure of moisture, in this case, dielectric constant (DC). 

First, the readings from the SCIP are converted to a frequency in MHz by 
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multiplying each reading by 8000. A ratio F calibrates the SCIP readings in air and 
deionised water. Two ratios were calculated; one for each of the probe lengths: 

= 
F(air)s 

and 
F(air)lo 

F 
F(water)s 

F° = F(water)10 

These ratios are combined with the constants C, and C3 and the permittivity of water 

e. The permittivity of water changes slightly with its temperature, decreasing by 

0.38 per °C increase. At 15 °C Ew = 82.2 (Dean, 1994) but as the average 

temperature in Jordan is closer to 20 °C a value of 80.2 is more appropriate. C, is a 

function of the spacing of the two electrodes on the probe and C3 represents the 

internal capacitance of the circuit board within the SCIP itself. From C, and C3, it is 

possible to calculate C2, the stray parallel capacitance caused by the connections 

between the circuit-board and the electrodes. Once the capacitance of the SCIP is 

defined, an expression for L, the inductance, which is made up from a constant 

inductance of 0.24 microhenrys from the circuit-board and a stray inductance, can be 

determined. Finally, gCa, which is a constant related to the probe circuitry for the 5 

cm and 10 cm rods, is included to convert the frequency readings (in MHz) to 

permittivity readings using 

' 
-(C2) 

f2 .1 

1- 15.10'2 

ý(f)_ 
(2; r)2 "L 

10-12 Co. & 

The final result is the imaginary dielectic ' constant or permittivity e(j) for the 

frequencies read in the field. They do not have units because permittivity is a ratio 
between the capacitance of the soil and that of a vacuum. 
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APPENDIX 2: STATISTICAL METHODS FOR DETERMINING SIGNIFICANT 

RELATIONSHIPS BETWEEN SOIL MOISTURE MEASUREMENTS 

In order to consider two datasets in a parametric way, whether using a simple t-test or 

more complicated statistical analysis such as Anova, it is important to know whether 

the variances between the two are similar, although such preliminary testing is 

deemed superfluous by some (Moser & Stevens, 1992). The F-test or ratio of 

variance test indicates whether it is advisable to continue with the other statistical 

relationships; it takes two sample sets and asks if the variances of the two 

populations are equal (Zar, 1984; Fowler & Cohen, 1992) using 

F =, 
a, ' (greater variance) (6.5) 
Q2 (lesser variance) 

Each sample set will have a critical value for a certain probability dependent on the 

degrees of freedom. If F is significant, it will be higher than the critical value and the 

null hypothesis is rejected as the populations have different variances. However, it is 

generally more important to try and prove that the variances are similar because then 

it is relevant to proceed to the r-test to see if the difference in the means is significant. 

If the soil characteristics are similar on both sides of the furrow, then it is expected 
that moisture varies randomly depending on the natural variability of the soil and 
therefore a 1-test would not prove to be significant. However, if a particular 

characteristic of the soil consistently influenced one side of the furrow differently 
from the other, it is anticipated that the t"test would give a significant result. 

For much of the moisture data, an analysis of paired measurements is necessary. The 
data tend to fall into two types: either data are collected at a single point in space 
with readings taking place over time, or the temporal component is constant with 
comparison being made over space. This is particularly the case when comparing 
within-furrow changes in moisture. There are statistical problems in using the t-test 
alone to look at such pairs of data because of inherent assumptions within the I-test. 
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The t-test works best on data which are normally distributed with no covariates and 

are therefore sensitive to, departures from the normal distribution such as skewness 

and the existence of outliers, but this is tested using the F-test. More importantly 

each pair should also be independent. It is better still to accompany the t-test with a 

graphical display to give weight to the analysis (McNeil, 1992). 

The sum-difference plot, which is calculated by taking the sum and difference of 

each pair, may be used in conjunction with ayx line to observe which data point 

is consistently higher than the other. However, the graph may be difficult to 

interpret, especially in terms of the magnitude of difference between the two sets of 

data points. The tilted line segments can give a very good visualisation of 

differences. It is important to set up identical limits for each vertical axis to allow 

accurate comparison; however, the display can cause illusions as it is difficult to tell 

if near horizontal lines are descending or rising and it is still problematic to obtain an 

idea of magnitude. The best way to display the data is to draw the pairs of data using 

parallel line segments with one symbol at one end showing one data point and a 

different symbol at the other end signifying its pair. By retaining position along a 

common scale for all responses and using length rather than slope to depict response 

increases, this graph provides a more effective display than the equivalent graph 

based on parallel co-ordinates (McNeil, 1992). 
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APPENDIX 3: Particle Features associated with GLOBAL LAB IMAGE 

Area: The area of the particle, excluding holes. 

Average radius: The average radius from the centre of area (Centroid X, Centroid 
Y) to the perimeter. 

Axis Ratio: A value between 0.0 and 1.0 computed by - Minor Axis / Major Axis. 

Angle: The angle in degrees of the Major Axis of the particle with respect to vertical. 

Box Area: The area of the bounding box oriented along the X and Y axes. This is 
equal to -X Difference *Y Difference. 

Box Ratio: A value between 0.0 and 1.0, computed by - Area / Box Area. 

Centroid X: The X centre of area for the particle, excluding hole area. 

Centroid Y: The Y centre of area. for the particle, excluding hole area. 

CG Distance: The distance from the co-ordinate origin (0,0) to the centre of area 
(Centroid X, Centroid Y). 

Colour: Background colour (-1) or first level particle colour (0). First level holes are 
background colour, second level holes are particle colour, etc. 

Grey Average: The average greyscale value of all pixels within an object. 

Grey Total: The sum of intensity (sum of the greyscale values of all pixels within an 
object). 

Hole Area: The area in all holes within a particle. This includes the area of holes 
within holes. 

Hole Ratio: A value between 0 and 1 computed by - Hole Area /( Area + Hole 
Area). 

No. of holes: The number of (first level) holes in the particle. 

Length: The length of the bounding rectangular box, oriented along the major and 
minor axes. 

Length difference: A measure of symmetry along the major axis, computed as the 
displacement along the major axis of the centre of the bounding box from the centre 
of area. A value of 0 means that it is symmetric about the major axis. The sign of 
this value distinguishes left-handed and right-handed particles. 

Length ratio: A value computed by - Width / Length. 

Major Axis: The length of the major axis of an equivalent ellipse (an ellipse with the 
same second moments of area as the particle). 
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Minor Axis: The length of the minor axis of an equivalent ellipse. 

Maximum radius: The maximum radius from the centre of area (Centroid X, 
Centroid Y) to the perimeter. 

Maximum X: The maximum (rightmost) X co-ordinate in the particle. 

Maximum Y: The maximum (bottommost) Y co-ordinate in the particle. 

MaxMinRad: A value in the range -180 degrees to +180 degrees, computed by 
Angle at RMax - Angle at RMin. 

Min X: The minimum (leftmost) X co-ordinate in the particle. 

Min Y: The minimum (topmost) Y co-ordinate in the particle. 

Minimum radius: The minimum radius from the centre of area to the perimeter. 

Parent ID: If the particle is a hole, this value is the particle number assigned to the 
parent particle. If the particle is a first level particle (its parent is the background), 
this value is -1. 

Perimeter: The length around the outside edge of the particle. This calculation is 
somewhat inaccurate because of the error introduced by the staircase effect, due to 
pixel quantization. A correction term is subtracted from the perimeter count to 
average out the error. The correction term assumes that half of the pixels are 
connected by their sides, and half are connected by their comers. 

Pixel area: The number of pixels in the particle, excluding pixels that are part of 
holes. This value is not calibrated. 

PPDA: A value computed by - Perimeter2 / Total area. 

Radius ratio: A value computed by - RMin Angle / RMax Angle. 

Roundness: A value between 0.0 and 1.0 indicating how closely the shape of the 
particle resembles a circle. This is computed by -4 Tt * Area / Perimeter . 

RMax Angle: The angle in degrees (with respect to horizontal) of the maximum 
radius from the centre of area to the perimeter. The angle is computed in the range of 
-90 to +90 degrees in a clockwise direction. 

RMin Angle: The angle in degrees (with respect to horizontal) of the minimum 
radius from the centre of area to the perimeter. The angle is computed in the range of 
-90 to +90 degrees in a clockwise direction. 

Sum of X: First moment of area in X. This is the sum of the X-co-ordinates of all 
pixels in the particle. 

Sum of XX: Second moment of area in X. This is the sum of the squared X-co- 
ordinates of all pixels in the particle. 
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Sum of XY: Second moment of area in X and Y. This is the sum of the XY product 
(the X-co-ordinate times the Y-co-ordinate) of all pixels in the particle. 

Sum of Y: First moment of area in Y. This is the sum of the Y-co-ordinates of all 
pixels in the particle. 

Sum of YY: Second moment of area in Y. This is the sum of the squared Y-co- 
ordinates of all pixels in the particle. 

Total area: Total area of the particle, including holes. 

Tot pix area: Total number of pixels in the particle, including pixels that are part of 
holes. This value is not calibrated. 

Width: The width of the bounding rectangular box oriented along the major and 
minor axes. 

Width difference: A measure of symmetry along the minor axis, computed as the 
displacement along the minor axis of the centre of the bounding box from the centre 
of area. A value of 0 means that it is symmetric about the minor axis. The sign of 
this value can distinguish left-handed and right-handed particles. 

X at Max Y: The X pixel co-ordinate corresponding to the value of Max Y. If there 
are more than one, the rightmost is used. 

X at Min Y: The X pixel co-ordinate corresponding to the value of Min Y. If there 
are more than one, the leftmost is used. 

X Difference: The extent of the particle along the X axis. 

X Perimeter: The X component of the perimeter, measured along the X axis. 

Y at Max X: The Y pixel co-ordinate corresponding to the value of Max X. If there 
are more than one, the bottommost is used. 

Y at Min X: The Y pixel co-ordinate corresponding to the value of Min X. If there 
are more than one, the topmost is used. 

Y Difference: The extent of the particle along the Y axis. 

Y Perimeter: The Y component of the perimeter, measured along the Y axis. 
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