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Abstract

The work in this thesis is concerned with the study of stability and scattering of
solitons in planar models ie where spacetime is (2+1)-dimensional. We consider both
integrable models, where exact solutions can be written in closed form, and non-integrable

models, where approximations and numerical methods must be employed.

In chapter 111 we use a ‘collective coordinate’ approximation to study the scattering
of solitons in a model motivated by elementary particle physics. In chapter IV we dis-
cuss a method to obtain approximate soliton configurations which can then be used to
investigate soliton dynamics. In chapter V' we perform a test of the ‘collective coordinate’
approximation by applying it to the study of classical and quantum soliton scattering in
an integrable model, where exact results are known. Chapters VI and V II are concerned
with an integrable chiral model. First we construct exact solutions using twistor meth-
ods and then we go on to study soliton stability using numerical techniques. Through
computer simulations we find that there exist solitons which scatter in a way unlike any
previously found in integrable models. Furthermore, this soliton scattering resembles very
closely that found in certain non-integrable models, thereby providing a link between the

two classes. Finally, chapter VIII is an outlook on current and future research.
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Introduction 2

possessing soliton solutions. Areas of mathematics such as group theory, complex anal-
ysis and algebraic geometry are all important in the study of solitons and have led to
techniques which may be used, among other applications, for constructing exact solutions
which describe multi-soliton configurations where each soliton moves with an indepen-
dent speed, undergoes multiple collisions and emerges intact with an unchanged speed.
Although solitons occur in nonlinear equations there are remarkable methods by which
two independent soliton solutions can be combined to produce a third. This linear-like

aspect of soliton theories is one of the important properties that distinguish them from

general nonlinear systems.

In more than one space dimension the situation is far less well understood. There
are examples of equations possessing soliton solutions but most are simple extensions of
familiar examples from one space dimension. Some higher dimensional systems which
possess soliton solutions have originated in physical theories, particularly in the area of
elementary particle physics. The localised structure of solitons together with their collision
properties make them ideally suited to describe elementary particles. Ideas from physics
have also led to work which unifies those equations with soliton solutions and gives a
deeper understanding of the origin of solitons. Although the physicist and mathematician
have not studied solitons in total isolation, many methods and perspectives are quite
different in the two approaches. A combination of techniques from both fields appears to

be required in order to gain a better understanding of higher dimensional soliton systems.

In this thesis we shall be concerned with investigating the dynamics of solitons in
planar systems ie where space is two dimensional. Some of the systems have a close
relationship with well known soliton systems in one space dimension, while others are
new systems which arise from physical theories. In order to investigate the dynamics of
solitons one must study how they interact (what happens if two lumps collide) and how

they behave if they are slightly perturbed or deformed.

Planar systems are particularly interesting models to study for the following main

reasons;

e A two dimensional space allows a much greater freedom of motion than the much
studied, but more restrictive, one dimensional space systems, where the solitons are con-

fined to motion on a line.

e Computers which are currently available have now reached the point at which studies

of dynamical solitons in planar systems are just feasible.
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e Many physical processes occur in which space can effectively be regarded as two
dimensional. For example, in condensed matter physics many important phenomena
take place in layers of a material, which are therefore effectively planar systems. As an
application, planar models which possess soliton solutions are currently popular models

for high temperature superconductivity.

This thesis is laid out as follows. In chapter II we shall review some of the main
equations of soliton theory, and use one of the most well known, the Korteweg de Vries
equation, to discuss some of the many techniques that are used to study soliton systems.
We shall then review recent work, which has origins in the physical theory of gauge
fields, that attempts to unify the known soliton equations as special cases of one master
system. To close the chapter we shall discuss an application of solitons in the field of
elementary particle physics, and describe how soliton-like objects occur in a large class of
interesting systems known as o-models. In chapter /1] we shall study a planar model,
motivated by physics, in which the solitons are interpreted as elementary particles. Using
a combination of analytical techniques and numerical computation the interaction and
scattering of solitons in this model is investigated. In chapter IV it is described how
approximations to solitons may be obtained through calculating instanton holonomies.
The example studied in detail is that of the sine-Gordon model and through a curious
observation we are in turn able to use the generated approximations to obtain Skyrme
fields. Chapter V is concerned with testing the main approximation method used in
studying soliton scattering. The method is tested in both the classical and quantum
regime by applying it to the study of kink scattering in the sine-Gordon model, where
exact results are known. Chapters VI and VII are concerned with a planar model
in which exact analytic solutions can be found in closed form. In chapter VI we use
twistor methods to construct the soliton solutions, give several useful formulations of the
model, and investigate the stability of the soliton under radially symmetric perturbations.
In chapter VII we use a numerical scheme to study the initial value problem for this
model. Although exact multi-soliton solutions can be found analytically, in which soliton
scattering is trivial, we find that soliton scattering can also be highly non-trivial in the

same model. Finally, chapter VIII is an outlook of current and future research.



soliton theory 4

CHAPTER 1L
Soliton Theory

2.1 SOLITONS IN INTEGRABLE SYSTEMS

One of the key equations of soliton theory is the KdV equationm
us + 6uty +ugzr =0 (2.1)

which was introduced in 1895 by Korteweg and de Vries to describe the propagation of
waves on the surface of a shallow channel. It is easily verified that it has the travelling

wave solution

u = 2k?%sech®k(z — 4k%t — z) (2.2)

where ¢ gives the phase of the wave and 2k? is the amplitude, which is equal to half
the speed. In 1965 Zabusky and Kruskal™ performed numerical simulations of the KdV
equation in connection with the study of phonon interactions in a one-dimensional anhar-
monic lattice, from which the KdV equation arises in the continuum limit. They found
that from certain initial data a series of pulses emerged, each resembling the solitary wave
solution (2.2). Since the speed of a solitary wave is proportional to its amplitude then the
pulses eventually separated until they lined up in order of increasing size. Zabusky and
Kruskal were using periodic boundary conditions in their simulations, so that the faster
pulses eventually caught up to the slower ones and produced the following remarkable
result. The larger pulse would overtake the smaller one and, despite the highly nonlinear
interaction, would reappear intact with an unchanged speed and size. The only effect of
the interaction was a phase shift of the pulses. This elastic collision behaviour is respon-
sible for the pulse being named a soliton, which is meant to convey a particle-like nature

(cf phonon, proton etc).

The numerical discovery of the soliton led to analytical work which centered first on

the study of the conservation laws of the KdV equation and culminated in the much

celebrated inverse scattering transformation (IST) ™
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of conserved quantities. It would therefore seem that equations such as the KdV and
sine-Gordon equation are in some sense special, and indeed they are examples of so called
integrable systems. For systems with a finite number of degrees of freedom the notion of
integrability is well defined, and relates the number of conserved quantities to the number
of degrees of freedom of the system. For more general systems, such as the KdV equation,
a definition of integrability is much more difficult to give. For our purposes we shall con-
sider a system to be integrable if it can be written as the compatibility condition for an
overdetermined linear system, and possesses an infinite number of conserved quantities.
Many other definitions are possible,"¥ such as requiring the system to have the Painlevé
property, or involving the applicability of some technique such as the IST. It should be
stressed that integrable systems are very much the exception rather than the rule, and it is
only in very special equations that dispersion effects are exactly balanced by nonlinearities
thereby allowing soliton solutions to exist. It is characteristic of integrable systems that
exact multi-soliton solutions may be constructed in closed form. In addition to the IST a
variety of other methods have also been used to construct multi-soliton solutions, includ-
ing Backlund transformations,[w] where multi-soliton solutions are generated through a

The direct method is

recursive procedure, and the direct bilinear method of Hirota.™

a particularly convenient way of constructing soliton solutions, and does not make use of
an associated linear problem, but instead relies upon finding a change of variables which
then reduces the given equation to a certain bilinear form. As an example we shall use
the Hirota method to construct the N-soliton solution of the KdV equation. The change

of variable required for the KdV equation is
u = 2(log ), (2.11)
upon which the KdV equation becomes
(D:Dy+ D3)r.r =0 (2.12)
where the Hirota derivatives are defined by
DyDT f.g = (0 — 8u)"(8z — Out)™ f(z,t)g(a!, t)|z=zr1=ts

These derivatives have many special properties which make the construction of soliton so-

lutions to bilinear equations, such as (2.12), an elegant procedure. In the Hirota formalism
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the one-soliton solution of the KdV equation is given by

T=1+¢" (2.13)

where

m = kiz — kJt + (2.14)

The two-soliton solution is a natural generalization of this and is given by

T=1+eM +e® 4 emtmtin (2.15)
where
k; — k; .2
A 1 ]
e = 2.16
(k,' + /C]' ) ( )

The quantity Ajs is related to the phase shift which the two solitons experience as they

collide. For completeness we give the expression for the N-soliton solution

1 1 N
T= Z Z e"p(z Ajjpipg + Zumi) (2.17)

m=0  un=0 i>j i=1
from which it can be seen that the phase shift experienced by a soliton which undergoes

several collisions is merely the sum of the phase shifts from each individual collision,

regardless of the order in which the collisions take place.

Together with the discovery of new techniques for constructing solutions, there has
also been great progress in identifying those equations which possess solitons. Today there
are many examples of integrable systems with soliton solutions, and many equations are
known to have a whole hierarchy of integrable equations associated with them. However,
the majority of soliton systems are confined to one space dimension, and in higher dimen-
sions soliton theory is not so well understood. There are examples of integrable planar
systems (ie where space is two dimensional) such as the Kadomtsev-Petviashvili"” (KP)

(18]

and Davey-Stewartson’ ~ equations, which are solvable by the IST, but most are simple

generalizations of familiar examples from one space dimension. The KP equation
(ut ‘+' 6’U.'U,$ + uxzz)x + 3Uyy = 0 (2-18)

is an example of an integrable equation in (2+1)-dimensions. It describes the propagation

of waves in shallow water and is a two-dimensional version of the KdV equation. If we


















































































































































































































































































































