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A B S T R A C T 

A phenomenological study is made of several aspects of the standard model 

(and beyond) in the context of collider physics. These calculations are performed 

in the framework of Quantum Chromodynamics (QCD) and the standard Elec-

troweak theory in an attempt to understand the underlying gauge theory more 

fully. 

In chapter 2, a precision QCD and electroweak calculation is performed to 

predict the high transverse-momentum distribution of the intermediate vector 

bosons produced in pp collisions. Calculated cross-sections are compared with 

data from the CERN collider and predictions are made for the Tevatron, LHC and 

SSC. Theoretical uncertainties, due to scale and structure function ambiguities, 

are estimated. 

In chapter 3, the equivalent photon approximation (or EPA) is studied at high 

energies to determine the accuracy of the approximation. An exact calculation 

of the process e + g—• e + g-f-7 is performed and compared with an approximate 

calculation of the process 7+g —* 7+g > where the initial-state photon is produced 

(using the EPA) from an initial-state electron. The test is carried out for the 

cases where the final-state electron are tagged and untagged. At high energies, 

the approximation is accurate to within 10%. 

In chapter 4, deep inelastic Compton scattering is investigated at energies 

of the HERA ep collider. A study of the production rate is made to determine 

the feasibility of measurement at HERA and i t is clear that for < 50 GeV/c 

the cross-section wil l be measurable. In addition, studies are made to determine 

the efficiency of this process as a probe of the proton structure functions. The 

cross-section is only weakly dependent on the structure functions. 

In chapter 5, the production of charged Higgs scalars is considered at hadron 

colliders. The fully inclusive cross-section for charged Higgs scalars is calculated 

and compared with the associated W boson cross-section. The generic process 

g + 6 —• 6 - M + i", which may proceed through an intermediate charged Higgs 

(or W ) or through QCD processes, is studied and the Higgs cross-sections are 

compared with the W and QCD cross-sections. 
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1. Introduction: The Standard Model, Beyond 
the Standard Model and Collider Physics 

The standard model of particle physics, which describes the fundamental 

constituents of nature and the interactions between them, is both simple and 

beautiful. This model provides us with a framework within which the universe 

may be understood, though at the present time this understanding can in no way 

be deemed complete. The strength of this model is that i t provides a deep and 

consistent phenomenological probe of our present ideas, leading to an increased 

sophistication of our knowledge of the universe. 

In the present model, all matter comprises of two types of particles, quarks 

and leptons. Both of these are point-like and have spin-1/2. There are four 

known interactions between these fundamental particles: the weak nuclear force, 

the electromagnetic force, the strong nuclear force and finally, the force of gravity. 

The last of these is a negligible perturbation at the energies that are presently 

available to us for investigation. The remaining three interactions are described 

by gauge theories and are mediated by spin-1 gauge bosons. Quarks experi

ence all three of these interactions while leptons experience only the weak and 

electromagnetic interactions. Following constraints from charged-current weak 

interactions, i t seems natural to group the quarks and leptons into 3 families: 

( i / c ,e~) , (UT,T~~) for the leptons and (u,rf')i (c>5') Had for the 

quarks. The primes indicate Kobayashi-Maskawa mixing and this phenomenon 

is absent from the lepton sector because the i/'s are presently considered mass-

less. The quarks appear in three different colours, which may be considered the 

charges of the strong interactions. Of these particles, the top quark, t, has yet 

to be discovered. Present limits on its mass indicate that i t lies in the region 

76GcV/c2 < mt < 180 GeV/c2. 

The weak and electromagnetic interactions are unified [1] partially within the 

gauge group 

SU(2)L®U(l)Y. 

To generate large masses for the intermediate vector bosons, this gauge theory 
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is spontaneously broken - via the Higgs mechanism in the case of the standard 

model. Whilst this mechanism produces masses for the weak bosons i t leaves the 

photon massless. This unified picture of the electromagnetic and weak nuclear 

interactions has been very successful in making a connection between theory 

and experiment. However, i t must be said that this unification is incomplete, 

in that, at presently available energies, the coupling constants for the weak and 

electromagnetic interactions are different. 

The popular theory for strong interactions at the present time is Quantum 

Chromodynamics [2], The strong nuclear force is based on an exact local gauge 

symmetry, SU(3)c which is a non-Abelian lie group. This strong interaction 

is mediated by an SU(Z) octet of coloured gauge bosons, the so-called gluons. 

Since this is an exact gauge symmetry the gluons are massless. I t is generally 

believed at the present time (though no rigorous proof exists) that the quarks 

and gluons are confined within colourless hadrons. This property of QCD means 

that coloured quarks or gluons are never directly observed in experiments. An 

important property of non-Abelian gauge theories is that of asymptotic freedom, 

which implies that quarks behave as free particles at high energies [3]. 

The successes of the electroweak unification led to an increase in the size 

of the standard model gauge group to incorporate Quantum Chromodynamics 

(QCD), which is the only consistent theory (at the present time) for the strong 

nuclear interaction. This extended gauge group is 

SU(3)C ® SU(2)i <8> U(1)Y. (1.1) 

Attempts to unify these three interactions have been made [4] but no entirely 

satisfactory model has yet been found. 

Although the standard model has withstood stringent tests in the past, there 

is a general consensus that the standard model is a window to some more unifying 

theory. In addition, the completion of the standard model picture requires the 

discovery of the masses of the top quark and the Higgs scalar. Of these two the 

observation of the latter is extremely important, to clarify ideas on how spon

taneous symmetry breaking occurs. Indeed this ranks as the major project in 

2 



particle physics at present. Other problems that must be answered are the fine-

tuning problem, the unification problem and the role of gravity. These however, 

are long term problems. Another indication that our understanding is incom

plete has to do with the fact that in the minimal version of the standard model, 

(with three generations of quarks and leptons and one Higgs doublet) there are 

18 arbitrary parameters [5]. Except for the couplings in (1) below, the other ar

bitrary parameters in the standard model are linked in some way with the Higgs 

sector and with the mechanism of spontaneous symmetry breaking. Any exten

sion of the minimal standard model increases the number of a priori unknown 

parameters. In a minimal model these parameters are: 

(1) The gauge couplings - one for each interaction. (3) 

(2) The Higgs sector parameters - m\y and m/y. (2) 

(3) Masses in the fermion sector - 6 quarks, 3 leptons. (9) 

(4) The Cabbibo-Kobayashi-Maskawa matrix elements for the quark sector. (4) 

Several theoretical scenarios have been developed i n recent years to overcome 

some or all of the above problems with the standard model. One common re

quirement for all of them is that they must reproduce the standard model at 

energies of the order of the mass of the electroweak intermediate vector bosons. 

Another feature of these theories is that they all have some new fundamental 

underlying theory which is valid at some higher energy scale (between 1 TeV and 

Mptanck). This means that experimental investigation of these theories must wait 

at least unti l the Superconducting Supercollider (SSC) is built. 

The dramatic progress made by particle physics in the last 2 or 3 decades has 

resulted from the building and running of particle accelerators. The progress in 

accelerator design has resulted in higher energies, higher luminosities and high 

precision detectors. The challenge that faces experimentalists is to continue this 

trend. In the last decade or two, the technological leap from the fixed target 

experiments to the collider experiments led to the discovery of the intermediate 

vector bosons and a host of other crucial pieces of evidence that make the stan

dard model so successful. LEP, the new electron-positron collider at CERN, is 

already producing results. The proton-antiproton collider at Fermilab has had 
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an extremely successful run and results are beginning to surface after analysis. 

Several other lower energy colliders are presently producing precision data. In 

the near future, the proposed building of the SSC, LHC (Large Hadron Collider) 

and UNK (in the Soviet Union) will permit even more exploration. 

I t seems then that the task that awaits theoretical particle physics is two-fold. 

On the one hand the availability of new precision data permits more stringent 

testing of the electroweak theory and of perturbative QCD. In the electroweak 

sector theorists are presently producing very refined quantitative tests that will 

be compared with the extremely precise data that will become available from 

LEP. Hopefully this will help to probe the Higgs sector. In perturbative QCD 

the theoretical uncertainty in calculations is still large, and i t seems that the 

most precise calculations have a systematic uncertainty of at least 20%. The 

challenge that faces theorists in this case is to extend the calculations to higher 

orders in as and to pin down the uncertainties in the structure functions of the 

hadrons and the fragmentation functions. On the other hand, a second task is to 

extend the standard model in a way that wil l lead the subject forward but wil l 

still allow i t to be tested by experiment, either presently or in the near future. An 

example of this is the minimal extension of the standard model (ie. extending the 

Higgs sector to two complex doublets), which happens to have the same Higgs 

structure as the minimal version of supersymmetry. The 1 TeV scale is important 

in a discussion of this type. I f the mass of the Higgs boson is larger than 1 TeV 

then the weak interactions become strong on the TeV scale. This is the most 

compelling argument to suggest that some new physics must appear at the TeV 

scale. 

The topics studied in this thesis are all concerned with Collider Physics. In 

chapter 2, attempts are made to perform precision calculations in perturbative 

QCD to predict (up to 0(a\)) the production of the intermediate vector bosons, 

at large transverse momentum, in hadron colliders. First, i t is shown that there 

is reasonable agreement between theory and experiment at y/S = 630GeV and 

second, predictions are made for the Fermilab collider and the SSC, UNK and 

LHC. In chapter 3, the equivalent photon approximation is tested for the new 

e-p collider (HERA) in Hamburg. This test arose out of need, since a significant 
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fraction of the experiments at HERA will involve almost real photons in the initial 

channel. Thus HERA can also be considered as a very high energy photon-proton 

collider. In chapter 3, one such process is considered at HERA. An investigation 

of deep inelastic Compton scattering is made to determine the size of the expected 

cross-section and whether this will be a feasible project for the experimentalists. 

Cross-section measurements of this process can, in principle provide a probe of the 

hadronic component of the photon. This is a very clean process experimentally, 

and in fact the only limitations are the statistical errors from the smallness of the 

cross-sections. Finally in chapter 4, charged Higgs production is considered at 

the SSC and Tevatron. This is done as part of a larger project which is underway. 
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2. W,Z Production at Large Transverse Momentum at pp Colliders 

2.1 I n t r o d u c t i o n 

In the early 1970's, the Drell-Yan process in the parton model [1] was success

fu l in producing descriptions of the invariant mass and longitudinal distributions 

of large-mass leptonic pairs produced at fixed-target hadronic colliders. However, 

i t was unsuccessful in describing the large tail of the high transverse momentum 

distributions which were observed experimentally. In the naive parton model, the 

only source of transverse momentum in the final state is the intrinsic transverse 

momentum of the partons within the hadrons. Early work on a QCD-improved 

Drell-Yan process performed by Altarelli et al. [2,3], and others [4] suggested that 

the large tail at high transverse momentum could arise from higher-order pro

cesses in Quantum Chromodynamics (or QCD), such as quark-gluon scattering 

and gluon emission. These calculations were based on the theory developed by 

Politzer et al. [5], Sachrajda et al. [6] and Amati et al. [7]. 

The production of the intermediate-mass vector bosons at pp colliders tests 

the Drell-Yan process in the high energy regime. As in the case for large-mass 

lepton pairs mentioned above, the QCD-improved Drell-Yan process is successful 

in predicting the total cross-section and the differential cross-section, da/dpj>y in 

the high pr region for vector boson production as an expansion in a a , the strong 

coupling constant. The extension of these theoretical calculations to 0(a8) intro

duced large corrections to the naive parton model predictions, especially at fixed 

target energies where i t became necessary to employ resummation techniques. 

The theoretical prediction of the boson p^-distribution has a further compli

cation. I f the pr of the boson is O(mjy) , then renormalisation group-improved 

perturbation theory is valid. The large pr tail of the py-distribution is already 

predicted at the 0(as) level. However, i f AQCD <C PT < then a new scale 

enters the problem and large terms of the form 

1 W j n W ( 2 ^ ) f m < 2 n - l (2.1) 
PT PT 

force the consideration of terms to all orders. These terms, which are character-
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istic of a theory with massless vector bosons (or gluons), have to be resummed. 

The large logarithms arise from the emission of soft gluons. 

The UA1 and UA2 collaborations at the CERN SppS Collider have pub

lished data on the high transverse momentum distribution of the weak vector 

bosons produced in pp collisions [8,9]. The data is being augmented by recent 

experimental runs at CERN and at the Tevatron. The availability of this data 

provides the opportunity to perform theoretical tests of perturbative QCD in the 

high pr regime. This is particularly important for positive q2 processes such as 

the Drell-Yan process because these have large 0(a8) corrections to the leading 

order cross-sections. As more data becomes available and as the experiments 

become more sophisticated the statistical and systematic errors will decrease al

lowing this process to be used to increase our understanding of a s , &QCDi and the 

parton distributions of hadrons. Improved data would also permit a general test 

of the standard model. I f the theoretical predictions for these /^-distributions 

differ significantly from the experimental curves, this would have to lead to a 

re-examination of the theory upon which the calculation is based. 

The search for as yet outstanding standard model physics and for new physics 

at the existing colliders and at the proposed colliders and supercolliders depends 

on a thorough understanding of the background to such processes. For example, 

one may consider the search for a heavy top quark, with m* > mw + ^ H , which 

decays by 

t _> 6 + w+ 6 + e + + i / e . (2.2) 

This search wil l require a good knowledge of the vector boson background. Simi

lar considerationsalso apply to 'new physics'. In the minimally-extended standard 

model, for example, the Higgs sector comprises two complex doublets, instead of 

one. The phenomenological implication of this expanded Higgs sector is that the 

spectrum of scalars increases from one to five; two neutral scalar Higgses, a pair 

of charged scalar Higgses, H+ and f f ~ , and a neutral pseudoscalar Higgs. The 

charged Higgses have identical decay modes to those of the weak vector bosons 

and any hope of discovering these at the hadron colliders wi l l demand a very 

sharp analysis of W boson production, from which charged Higgs production wil l 
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have to be distinguished. 

Discussions of the factorisation theorem and structure function definitions 

are presented in section 2.2, together with a description of what Ellis et at. [10] 

call the operational procedure. I n section 2.3, a review of the matrix element cal

culations is given. Initially, the calculation was performed with the 0{OL\) matrix 

elements of reference [10], which covered only the non-singlet sector. Later, when 

the fu l l second-order calculation of Arnold and Reno [11] became available, the 

calculation was repeated to provide a fu l l second-order prediction. In section 2.4, 

the kinematics and techniques of integration are described. One source of uncer

tainty in these calculations is the choice of structure functions. A description of 

the MRS structure functions [12] is presented in section 2.5. Another theoret

ical uncertainty that appears in QCD calculations is the choice of scales. Two 

arbitrary scales appear in calculations that involve hadrons. One is related to 

the choice of renormalisation scheme and the other to the choice of factorisation 

scheme. In section 2.6 the procedure of 'optimisation' is described, in which some 

arbitrariness in the choice of the scales is removed. In section 2.7 the theoretical 

predictions for the production of W and Z bosons at high pr are presented for 

the energies at which the CERN collider and the Tevatron operate and at the 

energies at which UNK, the LHC and the SSC wil l operate i f they are built. In 

section 2.8, a discussion is presented of the uses of this calculation together with 

an estimate of the theoretical uncertainty. 

2.2 Factorisation, Structure Function Definitions and Operational 

Procedure 

The calculation of higher-order processes i n QCD is of paramount impor

tance in determining the validity of perturbative QCD. This is particularly true 

for interactions such as the Drell-Yan process, which have a large 0(a8) correc

tion to the leading order result. The procedure for calculating these processes 

is presented here i n a very qtialitative fashion. The higher-order processes are 

computed in perturbation theory i n the QCD-improved parton model. I f a cal

culation is performed naively in perturbation theory as a perturbation series of 
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Feynman graphs, i t has infrared and mass singularities. Politzer [13] suggested 

that these divergences could be factored out of the parton cross-section and ab

sorbed into the structure functions via convolution integrals over the z». In this 

prescription the part of the parton cross-section that remains is well-behaved and 

can be calculated in perturbation theory. The procedure then is completed by 

convoluting the bare structure functions with the singular factors to produce the 

dressed structure functions which are finite and physically measurable. Ellis et 

al. [14] show that this separation of infrared and mass divergences occurs to all 

orders in perturbation theory. 

Therefore, there are two ingredients in the calculation of cross-sections of 

hadronic interactions. First, there is the set of structure functions that describe 

the momentum distribution of the constituents within the hadrons and the set of 

fragmentation functions that describe the decay of scattered partons into hadrons. 

In inclusive processes, such as the present one being studied, i t is only the former 

that is relevant. These ingredients cannot be calculated and have to be extracted 

from experiment, usually from deep inelastic scattering. Second, there are the 

matrix elements which are calculated in perturbation theory from the underlying 

field theory. The inclusive hadronic cross-section is obtained by convoluting the 

matrix elements with the structure functions, summing over all parton types. 

The structure functions represent the long-distance aspect of QCD while the 

hard process cross-section represents the short-distance aspect. This separation 

of long- and short-range effects survive to all orders in as. This is the factorisation 

theorem. 

The parton distribution functions are process independent but enter different 

processes in specific and well-defined ways. This means that if parton distribu

tions are determined from deep inelastic scattering then the cross-sections for 

other processes, for instance the Drell-Yan process, can be predicted. 

The extraction of structure functions from experiment relies very heavily 

on data produced i n deep inelastic scattering experiments (see figure 2.1). The 

structure function determination for the Drell-Yan process is somewhat more 

complicated and the connection between the Drell-Yan and deep inelastic scat

tering structure functions will be demonstrated below. In the naive parton model 
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(Unotmrad hgdrons) 

F i g u r e 2.1 Deep inelastic scattering: lepton + proton —• lepton + X . 

(when terms of the 0(1/Q2) are neglected) a structure function, such as F i , is 

defined as a convolution of the probability density of a quark (with momentum 

fraction y) in a hadron with the pointlike cross-section of the process under in

vestigation. In general 

2Fi ~ / %o(y)*(yP + q) + 0 (1 /Q 2 ) , (2.3) 
J y 

where P is the momentum of the hadron and q the momentum of the current. 

The validity of this expression depends on the l/Q2 approximation, in which 

all terms of 0(k2/Q2) and 0(k%/Q2) (where y/k2 is the virtual mass and k? is 

the intrinsic transverse momentum of the quark within a liadron) are neglected. 

This forces the final-state parton to be quasi-real and collinear. It is clear that 

in this approximation (2.3) factorises into two real processes, the probability 

density of finding one given quark in the hadron and the hard-process, pointlike 

cross-section. 

In the deep inelastic limit the structure functions F\ and F 2 are related to 

the 7*p cross-sections by the following [15] in the deep inelastic limit, 

2 F l = 

x <ro 

where a? and ai are the photon-proton cross-sections for transverse and longi-
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tudinal virtual photons respectively. For deep inelastic scattering 

ao = 4n2a/s. (2.5) 

Explicit expressions for or ah given in reference [15]. If x = Q2/2p.g the 

structure function F i may be written in terms of the partonic variables as 

2Fl=fax,Q>)) 

i J y \ a o )Y'X 

z 

In (2.6) £o> &T &l ^ the corresponding 7*5 cross-sections. 

A useful definition of the structure functions F j , F2, and JP3 is [3] 

(^1 ,^2 ,^3) = (2FuF2/z,Fz). (2.7) 

The naive parton model cross-section for the process 7* + Qi —* <fr (see figure 2.2) 

is given simply by 

= (2.8) 

where 2 = Q2/2pi.q and p; is the momentum of the Inserting this in the T% 

analogue of (2.6), the parton model expression for the structure function Ti may 

be obtained: 

(2.6) 

1 

k=£c? / -ioi(ym - - ) = E c?<*w(*). (2-9) 
2 j y y s 

where go(s) is the "bare" quark distribution in the hadron. 

In QCD however, the factorisation theorem requires that the partonic cross-

section be calculated to higher orders in a8. Up to 0(a8) the structure function 
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with 3o§ 
F i g u r e 2.2 Lowest-order parton level graph: 7 * 4- quark —» quark. 

may be written as 

1 

2Fi(x,Q2) ~ / % o ( y ) [ e 2 6 ( x / y - 1) + <ra.(z/y,Q2)+---}. (2.10) 
»/ if X 

The coupling constant a , used above is the running coupling constant and is 

described in more detail in the next section. The diagrams of figure 2.3 have 

to be calculated to obtain an expression for the cross-section at 0 ( a a ) . This 

next-to-leading correction includes real processes 

Q + 7* -> Q + 9, 

9 + 1* ^>q + q, 

(where g represents a gluon) and virtual diagrams which interfere with the zeroth-

order graph. 

To derive an expression for the total cross-section for the first process in 

(2.11), consider a general A + B —> C + D process. The differential cross-section 

is given by 

(2.11), 

_ 1 PI \M\\ (2.12) 

where dSl is an element of the solid angle about pc, » — (PA + PB)2, \PA\ = 

IpbI = Pi aud (pel = |Pz>| = The matrix element squared for the process 

7* + q-*q + g is 

\M\* = 32* 2 (e?«o:.)f ( - ; - £ + ^ ) , (2.13) 

where *,u and t are the usual Mandelstam variables. It peaks in the — t —• 0 
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(b) 
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F i g u r e 2.3 The next-to-leading order parton level graphs, (a) gluon emis
sion, (b) gluon scattering and (c) virtual corrections to the leading order 
diagrams. 

region which is indicative of peaking in the forward region. In terms of the 

partonic variables, the transverse momentum pr is given by 

stu J2 _ 
PT = 

(2.14) 
(s + Q 2 ) 2 ' 

and in the small scattering angle case this reduces to 

This step allows the solid angle element in (2.12) to be expressed in terms of pr 

in the small scattering angle case as 

(2.15) 

4?r . 2 dSl = —dp?. (2.16) 

And so the general expression for a 2 —> 2 process for small scattering angles is 

da 1 
•\M\*. (2.17) 

dp\ " 16*j* 

Finally, the expression for the matrix element can be rewritten to exhibit its pr 
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dependence as 

da 2 - 1 a* 

where z = Q 2 / (a + <?2) and 

W = f ( i + * V ( i - * ) ) . 

P M ( r ) is the usual Altarelli-Parisi splitting function that describes the probability 

of a quark radiating a gluon and downgrading its momentum by a fraction z. 

The total cross-section for the process is then 

{Pr)ma* 

v{i*q-*qg)= J (2-19) 

The upper limit of the /^-integration is given by 

(PT)max = s2/A = Q2(l - z)/4z (2.20) 

and then 

"(7*« - qg) - c ? < T o ( g ) P „ ( ^ ) l n ( ^ ) . (2.21) 

The constant fi2 is introduced as a lower cutoff to regularise the divergence when 

j>T —• 0. The dependence of this expression on Q2 indicates a scaling violation 

and enters the formalism as a result of gluon emission. 

This additional 0(a8) contribution may be added into (2.9) to produce a 

partly corrected expression for T%\ 

• j y y t* . 

The change in the structure functions Ti due to modification by QCD is now 

shown more explicitly. The programme is to define the part on densities beyond 
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the leading order in QCD so as to preserve the form of the .F's. (2.22) represents 

only one part of the 0(a$) corrections. When the remaining 0(as) corrections 

are added in the full 0(a8) contribution to the total cross-section produces 

1 

X ' (2.23) 

Here / runs over the quarks and antiquarks and the aj are the appropriate coupling 

factors (including colour factors), t = InQ 2 / / * 2 and the functions / are 0(as) 

process-dependent pieces. 

Unfortunately ot8(Q2)ln(Q2 / fi2) does not vanish at large Q2 and so the ex

pressions for the T*& are not very useful in a perturbation series in as. However, 

this type of terms may be factored out and reabsorbed in the definition of the 

parton densities: 

1 

+ 

(2.24) 

Note that q(x,t) is defined in terms of T*. The reason for this is that the largest 

fraction of the data available for the construction of structure functions is Ti data 

from deep inelastic scattering. This has to be taken into account if expressions 

for the other structure functions are required. For instance, the expression for 

T\ is 

- / [ E e?(*<\ ~ *> + «'(*)[/,,!(^) - /ftl< J>])«<».*) 
X ' (2.25) 

The connection between this and the Drell-Yan process is now considered. In 

the naive parton model the differential cross-section with respect to the invariant 
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F i g u r e 2.4 Lowest-order Drell-Yan process. 

mass squared of the leptons of the Drell-Yan process (see figure 2.4) is simply 

daDY 4na2 [ dx\ dx2 
dQ< 

In this equation, y/s is the incoming partonic energy, r = Q 2 / s , and / runs over 

the quarks only. (1) and (2) refer to the parent hadrons. 

The 0(a6) contributions to the cross-section are from (see figure 2.5) 

9 + q(q) -> 7* + q(q) 
(2.27) 

q + q - » 7 * + 0, 

together with the inteference between the zeroth-order diagram and the virtual 

gluon corrections to the zeroth-order diagram. The Drell-Yan cross-section to 

0(a8) may be written as 

0 0 / 

* fa ~ *> + * " + (2.28) 

+ ( ( ^ i ) + } (* l ) )* («»> + (1 ~ 2)) 

x (*(1 - *) + « 1 - + 

where as usual z = Q 2 / a . 
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F i g u r e 2.5 O(ats) corrections to the Drell-Yan process, (a) Gluon emission, 
(b) Gluon scattering and (c) Virtual corrections to the zeroth-order graph. 

(2.28) must be compared with the expression for Ti which defines the QCD-

improved parton density, that is, q(x,t) + q(x,t) = ^iOM)* The equivalence of 

the splitting functions in this equation and in (2.23) has been checked [16] and 

so 

P™{z) = P w ( , ) , 
(2.29) 

The expression for the Drell-Yan cross-section includes the process-dependent 

quantities and f j f Y . However, to non-leading-order parton densities in the 

hadron are defined in terms of f f j 2 ^ and f j ) 2 \ which, as seen earlier, are closely 

related to the deep inelastic scattering data that are available. The expression 

for the Drell-Yan cross-section must be corrected for this, giving 
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0 0 / 

x (5(1 - ») + a,(*)0(l - *)[/*>>) - 2f\2\z))) 

+ ( ^ ( . j , f J o W ^ , * ) + (1 « 2))a,(t)*(l - *)[ / /*(*) - /<2 )(z)] 

(2.30) 

The calculation of the cross-section to 0(as) reduces to the calculation of 

the two terms f ? Y ( z ) - 2$\z) and f * Y ( z ) - / J 2 ) ( * ) . They are independent of 

any infrared singularities and of the method of regularisation. Their derivation 

to 0(as) is performed by Altarelli et al. [3] and expressions for the various terms 

are presented in that paper. 

To establish connection between the above discussion and the operational 

procedure in the work of Ellis et al. [10] and Arnold and Reno [11], the procedure 

of Altarelli et al. [3] is presented here. Consider again the case of photon-parton 

scattering. If 4-momentum of the parton is p and that of the photon </, then 

the absorptive part of the forward scattering amplitude may be expanded in the 

usual way: 

W" = ^ ( - 5 " " + £ £ ) + W 2 (p" - £ 2 / ) (f - Z j l f ) , (2.31) 

where only two of the four inelastic structure functions in the most general expres

sion for this tensor are independent. In the large Q2 case when virtual photons 

can resolve the constituents within the hadron, then 

- (2.32) 
^(z,Q2) = 2W1. 

By saturating the indices within these expressions with the tensors — g^v and 

pPp? in n-dimensions the following expressions are obtained: 

-arw* = (1 - e)F2(z,Q2) - ( f - 6)(/2(*,Q 2) - : F i ( * , Q 2 ) ) , 

o* ( 2 - 3 3 ) 

P V WV = g j ( ^ ( z , Q J ) - * (*,<?*)). 

The second of these is proportional to the longitudinal cross-section ai which 
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has been calculated by Zee et al. [17] 

°l = <*.[fl2H*) - tf\z)) = g C f 2 z . (2.34) 

Hence to obtain an expression for F% it is necessary to calculate the first equation 

in (2.33) from the relevant Feynman graphs. 

As has already been seen, the first graph to consider is just the basic y*+q —• q 

(see figure 2.2) which is given by 

Ti = 6(1 - *) , (2.35) 

and which defines the normalisation of the partonic cross-section. To the next 

order in a8 there are two contributions with quarks in the initial channel, firstly 

t* + q->q + 9 (2.36) 

and secondly, the interference terms between the lowest order graph and the 

virtual corrections to the lowest order (see figure 2.3). In n-dimensions it is 

necessary to make the replacement a8 —* a8(fi2)€, where fi has dimensions of 

mass so as to maintain the correct dimensionality of the matrix element squared. 

In n-dimensions the matrix element squared for real gluon emission is 

* * 0 * 2 
\Mp = 4 « , | ( 1 - <)(„')'[(1 - *)(-% - | ) - + 2e] (2.37) 

The general expression for two particle phase space in n-dimensions for the 

production of two on-shell massless particles is 

PS = J J j^IT{2nrS^(pi+Pi-p3-pi)S(pl)S{Pl), (2.38) 

where the initial state particles have momentum pi ,2 and the final state particles 

have momentum pz,4* If the initial particles are directed along the (n — l)th 
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direction then in the centre-of-mass system of the final state particles p4 may be 

written: 

Pi = (|p4|, — ,Nc<w0), (2.39) 

where the dots represent n — 2 unspecified momenta. In this frame the n — 2 

angular integrals can be done so that (2.38) may be written as 

CO l 

PS = ^ r | ^ y / rf|p4||P4|1-2c / d(cos6)(l - cosHrSis - 2v^|p 4 |). (2.40) 
- 1 

The |p4 f integral is trivially done with the 8 function. By setting y = j ( l + cos$), 

this reduces to 

o 

In the centre-of-mass frame we have 

< ? 2 ( l - z ) 
<S — ^———— 

Z 
t = r 2 ! ( 1 _ y ) (2.42) 

z 
Q2 

u = —y. z 

Using (2.42) and (2.34) in the first equation in (2.33) and integrating over y, an 

expression for F2{ztQ2)\real1S obtained: 

n(*,Q*)U, = ^ F ( ^ y ^ ± X M , (2.43) 

where X is obtained by incorporating the matrix element squared for the 0(as) 

process for the real gluon emission into the longitudinal cross-section discussed 
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above. Finally, by adding in the virtual corrections the final result for the struc 

ture function T% is 

- 6(1 - z ) - - - C F P 9 q { z ) \ - ^ - j 

, L , 2 ^ l n ( l - * A 3 1 1 + 2 * , n A A . 

+ T v c r ( i + * ' \ - t r r ) + - 2 ( 1 3 ^ - ( m y < 2 - 4 4 ) 

+ 3 + 2 * - ( | + y ) * ( l - * ) ] . 

If this calculation is done explicitly, a double pole in e cancels between the virtual 

and real contributions. From this expression the function fg2^ may be obtained 

[3] 

+ 3 + 2 * - ( ! + y ) t f ( l - * ) + P M ( * ) ( - i + 7 s - l n 4» + l n £ ) ] . 

(2.45) 

The term proportional to 

^ - j + 7£ ~ In 4tt^ (2.46) 

in the above contains the relevant Altarelli-Parisi splitting functions. In the MS-

scheme (following the prescription of't Hooft[18]), the 1/c term is subtracted out. 

Bardeen et al. [19] later noted that this divergent term always appears together 

with 7£ and In 47T. Eliminating the divergences by the subtraction of the 1 jt term 

introduces the transcendentals 7£ and In 47r, which enter the result because of the 

specific way in which the calculation was continued to n ^ 4 dimensions. They 

are not present in the physical predictions of the theory. In the MS-scheme all 

three terms are subtracted out. The JE term is the Euler-Mascheroni constant. 

Comparison between the definition of fq^ above and the expression for the 

structure functions given by Arnold and Reno [11] and Ellis et al. [10] shows a full 

connection between the two. The MRS structure functions that have been used 

in this study, like the Diemoz et al. set [20] used by Arnold and Reno, have quark 
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F i g u r e 2.6 The hadronic production of vector bosons. 

distributions obtained from deep inelastic scattering data. The entire calculation 

has been performed in the MS-scheme and this entails the subtraction of the 

anomalous dimension term described above and the setting of the ffl and fg2^ 

terms to zero since these are absorbed into the structure functions. 

For this next section of the discussion the notation of Arnold and Reno [11] 

is used. The generic process that is studied is shown schematically in figure 2.6 

and the cross-section that corresponds to this process may be expressed as 

da f . . da 
= E / d x i d x i ^ M f o p u r i G t i x u M ^ G f i x ^ M 3 ) , (2.47) 

dpiwHyw 

where fi2 and M2 are the renormalisation and factorisation scales respectively, 

and ddij/dtdu is the QCD-improved constituent cross-section, which is a function 

of the partonic variables of the initial state partons and the strong coupling 

constant (see section 2.4). A and B are hadron labels, i and j run through the 

partonic constituents of the hadrons and the Gf refers to the distribution of 

parton t in hadron A. This differential form of the cross-section is connected to 

the usual expression for cross-sections via a constant factor 

da Ewd 
= *-rTw-' (2.48) 

djljPdyW dtp* 

daij/dtdu is convoluted with the structure functions to produce the hadronic 

cross-section. 
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The first step is to calculate in perturbation theory the bare result for the 

Feynman diagrams. The calculation of Arnold and Reno [11] is described in some 

detail in section 2.3. The QCD-improved hard-process cross-section is given by 

s da- *do$ „ sdaW 
- r ^ = — r ^ ^ + t + u - m ^ ) 4- + (2.49) dtdu dt 

The superscripts indicate the order in a8. The relationship between this finite 

hard-process cross-section and that calculated in perturbation theory is defined 

by the relationship between the bare and factorisation scheme dependent struc

ture functions. The convention adopted by Arnold and Reno is 

s da sdaW 
dtdu ~* dt 

6(s + t + u - m^) 

i 

o 
l 

-?±jdx2R(x2,M2) 

sdaW 
dt 

sdaW 

6{x\(s 4-1 — mw) 4- u) 
pi—*HPi 

(2.50) 

dt 
S(x2(s 4- u — mfy) 4-1). 

J>2—**lVl 

The functions R that appear in (2.50) are obtained from (2.45) and are given by 

R(z,M2) = CfPgq(z){ - - - ln47r + 1 E 4- In ^ + f„(z). (2.51) 

These have been generalised in the Arnold and Reno paper to 

CfPgg(z)( ln4ff + f E + In — ) 4- Ci^j(z). (2.52) 

The C functions are immediately identifiable with the process-dependent func

tions fgfg obtained earlier. The relationship between the renormalised and bare 

structure functions can now be obtained explicitly as 

l 

GilA(x,M2) = \sU6(z - 1 ) 4 - 7 ± R i ^ ^ 2 ) G J m ( f ) - (2.53) 
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The x\ and x\\ integrals in (2.50) are trivially done, 

s da sdaW 
dtdu 8(3 + t + U — m f j r ) dt 

as 1 —u 
2n s + 1 -

a* 1 

3 + t — m^r 

- t 

, M ' ) 

2tt j 4-1* — m£ 

dt Pi-»-ttpi/(s-f/-m?„) 

eft P2—<P2/(s+tt~m|y) 
(2.54) 

These definitions fix the conventions and procedure for the rest of the calculation. 

As has already been discussed, in the MS scheme the term proportional to — 1/c— 

ln47r + IE is subtracted out and the functions C££j = 0. Finally, in this study 

the factorisation scale, M 2 , is set equal to the renormalisation scale, / i 2 and so 

the term lnM 2 / /x 2 = 0 in (2.52). 

2.3 Notation and Matrix Elements 

Consider a proton and an antiproton with 4-momenta Pi and P2 respectively, 

which collide with centre-of-mass energy y/S to produce a W or Z boson, with 

4-momentum pty, and anything else. This process is described schematically 

in figure 2.6, together with a possible decay mode of the vector boson. In the 

centre-of-mass frame of the colliding hadrons, Pi and P2 have components 

P i = V ^ / 2 ( 0 , 0 , l ; l ) 

P 2 = v / 5 /2 (0 ,0 , - l ; l ) 

and pw is defined by 

(2.55) 

PW = (P$,PY;EW). (2.56) 

The hadronic variables in the problem are given by 

S = (Pi + P2)2, 

T = (Px-pw)\ (2-57) 

V = (P2-pw)2-

The calculation assumes that there is just one active parton per hadron. If x\ 
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and x2 are the momentum fractions of the relevant quarks or gluons within the 

hadrons then we can define the momenta of the partons in the hard interaction 

as 

Pi = *i-Pi» 
(2.58) 

P2 = X2P2 

and the partonic variables are 

s = x\x2S, 

t = * i T , (2.59) 

u = x2U. 

In this study it is necessary to consider both the 2 —> 2 and the 2 —* 3 cases, 

corresponding to W + one-jet and to W+ two-jets respectively. As this is the 

study of the fully inclusive cross-section, that is p + p —* W + X , it is suitable in 

the latter case to define s2l the invariant mass of the two-jet system 

s2=s + t + u - m\v. (2.60) 

The QCD Coupling Constant. 

In the last section the scale dependence of the renormalised QCD coupling 

was indicated. This scale dependence of as = g^/Air is defined by the /?—function: 

A = 11 - f « ; (2.61) 

38 
A = 102 - —nf. 

If the first two terms on the right hand side of this expression are kept and the 

truncated differential equation is solved for a«(/ i 2 ) then 

± + * i n f - J ^ ^ n * ( 2 . 6 2 ) 

A constant of integration, A, is introduced in this solution and is forced to be 

dimensionful. This a8 is called the 'two-loop' coupling constant, and is a function 
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of the scale p and the fundamental QCD scale parameter A. This solution, which 
is used in the computations in these projects, is obtained by inverting (2.62) in 
a short fortran subroutine as a function of the scales mentioned above. 

M a t r i x Elements. 

The squared matrix elements presented in references [10] and [11] are given 

for the standard Drell-Yan process, that is the production of a virtual photon 

+ one jet or two jets, either from quark-antiquark annihilation or quark-gluon 

scattering and from corrections to these processes. At the end of the discussion 

the modifications to these formulae for the production of W and Z bosons will 

be presented. 

The leading-order processes that contribute to the large pr spectrum of 

bosons produced at pp colliders are the 0(as) processes (see figure 2.5) 

The interference between the zeroth-order qq annihilation term and the 0{or8) 

transverse momentum in this contribution (as in the the case of the zeroth-order 

diagram) is the intrinsic transverse momentum of the partons within the hadrons, 

which is only relevant in the very small pr range. In this study calculations are 

restricted to the region in which finite-order perturbative QCD is valid and this 

restricts the study to the large-py region. 

The hard subprocess cross-section for the 0(at) gg-annihilation term shown 

above is given by 

q + q-+W + g, 

q(q) + 9 -* W + g ( f ) . 
(2.63) 

virtual diagram (see figure 2.5) contributes to O(o 3), but the only source of 

= Kel^To(Q2,u,t)S(s +t + u- Q2), 
* 8 

(2.64) s ... 
dtdu 

where e/ is the charge of the quark, Q 2 = rriyy in the case of TV-production, To 
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is the leading-order matrix element squared, given by 

T 0(<? 2,«,*) = ( 1 . e ) ( . , 1 , 3 3 2 ^ 4 ) _ „] w 

and K, which contains the coupling and colour factors etc., is given by 

^ C F W ^ ) V W ) w • ( 2 - 6 6 ) 

As has been mentioned earlier, a8 is rescaled to keep it dimensionless in n-

dimensions, that is 

The q—g interaction that contributes to this order may be obtained by direct 

crossing of the qq interaction to this order, with a suitable adjustment of the 

colour factors and spin- and colour-averages. The hard subprocess cross-section 

is given by 

<^7T- = -K'e}—So(Q\u,t)6(s + t + n- Q2), (2.67) atau * s 

where K' = K/(2Cp) and So is obtained by an s *-* xt crossing of To 

/ *6 K f f . ft _ P ̂  ̂  ^ 
S0(Q2,s,t) = (2.68) 

These two processes complete the 0(a9) contribution to the production of a 

boson and one jet. 

The 0(al) contributions to the cross-sections have many origins. As has been 

mentioned earlier, the Ellis et al. [10] paper considers only the non-singlet case, 

which will be considered first here. The diagrams of figure 2.7 are the virtual 

corrections to the 0(a8) annihilation process in figure 2.5 These are of 0(a\) and 

so are beyond the order to which this calculation is done, but the interference of 

these terms with the 0(a8) terms produces an 0{a\) contribution. There are two 

pieces to this part of the squared matrix elements, one of which is proportional 
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Figure 2.7 Virtual corrections to the leading-order non-singlet graphs. 

to the leading order and is ultraviolet renormalised by including the necessary 

counterterm for the A/S scheme. This counterterm is given by: 

where, as usual, the coupling constant is replaced by the running coupling con

stant described above. The remaining piece of this contribution to the O(aJ) 

cross-section is finite in the limit e —• 0 and requires no further renormalisation. 

In the non-singlet case there are three identifiable processes that give rise to 

O(ol) real corrections to leading order. These are 

q + q-* W + g + g 

q + q,~* W + q + q, (2.70) 

and they are shown in figures 2.8-2.10 respectively. With the relevant cuts, i t 

is posssible to ensure that the massive boson is well separated from the beam 

direction. Then the only infrared and collinear singularities that can exist occur 

in figure 2.8 and in the square of the matrix element of the first two diagrams 

of figure 2.9. These singularities appear as poles in c, after integration over 
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Figure 2.8 0(o|) diagrams that contribute to the process q+q —• 

the phase space of the gluons. The singularities due to soft gluons show up as 
poles in the already defined variable $ 2 , the invariant mass of the two-jet system 
recoiling against the boson. When one of the gluons is soft (as in the leading-
order) the singularity appears at 32 = 0. Collinear divergences appear as usual 
after integration over the angular parameters of the final state gluons. The poles 
in 6 in the soft gluon case are highlighted by implementing the identity 

= -\S(S2)[1 -elnA+ i « 2 l n 2 A] + ^ i — - e ( l n * 2 ) ^ + 0(e2), (2.71) 

where the plus-prescription terms are defined in the usual way as: 

0 0 
,4 A (2.72) 

The upper limit A in these expressions will be obtained later as a function of the 

external momenta and the momentum fractions. 

Ellis et al. [10] divide up these real O(aJ) contributions into four parts. 

The terms that contain mass singularities (described above) are factored into 
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Figure 2.9 O(oj) diagrams that contribute to the process q+q — VV>$+$. 
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Figure 2.10 0{a\) diagrams that contribute to the process q+q —• W+q+q 
in the non-singlet case. 

sdai/dtdu and, following the discussion of section 2.2, this piece may be written 

as 

31 



$(*!(* +1 - Q2) + u) 

+ £ / ^ . M * ) , ^ + u - Q2) + 0 + 3 ^ , 
(2.73) 

where the function has been defined in (2.51). As has already been mentioned 
this part of the 0(a\) correction contains the singularities as 5 2 —* 0 and these 
singularities cancel with the singularities in the virtual component of the O(aJ) 
cross-section. These cancellations are manifest in the expressions for the matrix 
elements in the appendices of references [10,11]. After convolution with parton 
densities the terms proportional to the R—functions in (2.73) will define the scale-
dependent parton densities. The other three terms require no factorisation and 
so dajj = dajj, da/jj = dajjj, dajy = dajy. The non-singlet hard cross-section 
then is defined by 

^virtual foTtal 
A^*i^>-J^ss"+J-as-* {2-74) 

The full expression for this non-singlet 0(a\) correction to the leading order is 

given in the appendix to reference [10]. 

The singlet sector of this 0(a\) correction has been dealt with by Arnold 

and Reno [11]. This contribution to the correction comes from the following real 

processes: 

q(q) + 9-+ W + q(q)+g 

g + g^W + q + q (2.75) 

q + q->W + g + 

The 0(a\) contributions with a quark and a gluon in the initial channel are 

obtained by performing an s «-• u crossing on the diagrams G{ in figure 2.8, while 

the contributions with two gluons in the initial channel are likewise obtained with 

the appropriate relabelling of the momenta in the G,- diagrams of figure 2.8. The 

quark singlet contributions from the diagrams in figures 2.9 and 2.10 are simply 

added in. 

As in the case of the non-singlet correction, the interference of the virtual 

diagrams at 0(a\) with the leading order diagrams for the process with a gluon 
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Figure 2.11 The diagrams that make a contribution to the AA- and VV-
terms in Z production. 

in the initial channel produces an 0(ot\) contribution. This is obtained from the 
diagrams V% in figure 2.7 by suitable crossings. The hard process cross-section is 
obtained by analytic continuation, where logarithms yield terms proportional to 
ITT. Arnold and Reno performed the calculation in Euclidean space, where it is 
real, continued from Euclidean s to Euclidean u and vice versa, and finally they 
continued back to Minkowski space and took the real part. 

For the case of W-production, both vectorial and axial contributions must 

be considered and this requires a treatment of 75 in dimensional regularisation. 

Following Chanowitz et al. [21], Arnold and Reno indicate that there exists some 

ambiguity in this application but demonstrate that this ambiguity is irrelevant 

for their calculation. The VA-terms vanish when the phase space integrals are 

performed. In the case of massless fermions, the AA- and VV-terms are identical 

in all except the interference contributions shown in figure 2.11: 

2i*e(F5 + F 6)*(F 7 + F 8 ) , 

2Re(Hi+H2y(Hz+H4)y 

2Re(H5 + H(iy(H1 + HB). 

(2.76) 

The squared matrix elements for these processes are separated into their vectorial 

and axial parts. Further details are presented in their paper [11]. 

33 



The complete structure of the cross-section for massive photon and W,Z 
production is presented as a sum over the different contributions. To adjust the 
formulae for W,Z production several changes have to be made. The appropriate 
weak coupling constants have to be introduced, the correct flavour combinations 
have to be chosen, together with the relevant K-M matrix elements, and finally 
a sum has to be performed over the final flavours. 

Coupling Constants. 

For the production of intermediate vector bosons the following change has to 
be made in the coupling constant: 

a\y \/2Gpmyy 
a~* T~~ 4* 

a 
(2.77) 

where o is the electromagnetic fine structure constant, which runs to (127.8)"1 

at the scale of the W mass, and sin2$w is defined in terms of the parameter p, 

where 

P= ™\6 . (2.78) 

Within the standard model, this parameter is constrained to be close to unity. 

The experimentally obtained value of sin2 $w is 

siv?0w - 0.23. (2.79) 

The complete normalisation and coupling constants then are given by: 

Kqq —• Kqql48in2Qw, 
(2.80) 

Kqg —* Kqg/4sin20w 

Matrix element and parton combinations for W production 
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The structure of the hard-process cross-section for the production of mas

sive photons is simply the sum of the different parts given in the appendices to 

references [10] and [11]. For W and Z production, the combinations of the differ

ent contributions are somewhat trickier and require the introduction of the K-M 

matrix elements and various quark-quark, quark-gluon and gluon-gluon combina

tions. In the following construction of the cross-section parts, i,j are the family 

indices of the initial-state partons. The weak mixing angles are contained in the 

matrices 

where K is the K-M matrix. Following Arnold and Reno the top quark and all 

terms of the order 

D 

U 

0 \Ki}\\ 

Re(K*K), (2.81) 

[b distribution in hadron] x [b weak mixing angles] (2.82) 

have been ignored. This reduces the 0-matrix to the form 

cos2Bc sin29c 0 

sin2$c cos29c 0 0 

0 0 0 

(2.83) 

and the D and U matrices to 

/ l 0 0 

D~U 0 1 0 

iO 0 0 

(2.84) 
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For W+ production: 

ud -> W+ : Gijftqq - g-y*) + (qq -> ggy*) + 2TR\FY + F 2 | 2 ] 

+ [C/i,|F5 + F 6 | 2 + I > i i ( « ^ r ) ] 

+ 0^[2(Fi + F 2)*(F 5 + F 6 ) + (u ~ *)] 

uu -+ W + : ( r r£>)^ |F 3 + F 4 | 2 + DaW + F 6 | 2 

+ 8ij2Uii(Fz + F 4)*(F 5 + F 6 ) (2.85) 

uu W + : [CTain + F 6 j 2 + Ujjiu ~ t)] + «g Efe2(ffi + ft)'(JT7 + #s) 

«<* -> W+ : Efo|F« + F 6 | 2 4- i O i i 2 ( i f i + ff2)*(#5 + #e) 

ug W+ : I7;,-[(g0 -> 97*) + ($0 <?07*)] 

w _> W+ :(trD)(gg g}7*)-

In (2.85) the F's and Ws refer to the Feynman diagrams in figures 2.9 and 

2.10. To complete the construction for Ty+-production, symmetries are invoked. 

Weak interactions in general violate both C and P invariance but to a good 

approximation maintain CP invariance. This means that weak interactions are 

invariant under simultaneous particle *-* antiparticle and A —A transforma

tions, where A is the particle helicity. This, together with isospin and a 180 degree 

rotation of the plane of the W and the beam, requires the following addition to 

(2.85) : 

u dyd <-+ u ,0 0 T , t 7 D. (2.86) 

This completes the expression for W+-production. 

The structure function combinations for the different processes in (2.85), 

where the quark labels for the different contributions are generic labels, are pre

sented here. For instance, 

wJs ud + u3 + uE + cJ-J- C8 + cb. (2.87) 

The symmetry relations described above increase this combination with terms of 
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the type 

du + dc + • • • (2.88) 

Those processes that are prefixed by a Sij are convoluted with quark and anti-

quark distributions from within the same family. 

The Couplings, Matr ix Element Structure and Parton Combina

tions for Z Production. 

The Z-fermion coupling is 

In this case the vectorial and axial couplings are different and are defined by 

These couplings require the definition of the T3 and e/ for the relevant fermions. 

In this case it is the inclusive cross-section that is being studied and so the 

relevant fermion-Z couplings are those for the u and d quarks. T3 = 1, — 1 for the 

u and d quarks respectively. 

Following Arnold and Reno, it is useful to define the quantity: 

e (2.89) 
2y/2sin0w 

\4UlJ 
00 ( T 3 — 4efsin40w)i 

(2.90) 
(mWV 
\4MiJ 

(A) T 3 . 

(2.91) 
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The structure of the matrix element combinations are 

ud-*Z 

uu-+Z :6ij[(qq - p 7*) + (qq - 991*) + 2T*|Fa + F 2 | 2 ] 

+ ^ J [ 2 ( * i + F 2)*(F 5 + F 6 ) + 2(F 3 4- F 4)*(F 5 + F 6 ) + (u ~ t)] 

+ M * * J + NiAm + ftl2 + 

uu -> Z : | ^ J [ 2 ( f f i + ft ) ' ( f t + ft) + 2 ( f t + ft)*(ft + ft) + («<-> *)] 

ti$ -» Z ig*[(qg -> 57*) + -+ 207*)] 

(2.92) 
In this expression Nuj are the number of up and down type flavours used in the 

calculation. 

Once again the parton combinations must be saturated to include all possi
bilities for Z production. This leads to the following additions to the expression 
above: 

1. u *-* <f, 
(2.93) 

2. u +-* u, d «-* d. 

To obtain the final inclusive cross-section, these expressions are folded into 

the kinematics and the remaining phase space integrals. These are described in 

section 2.4. 

2.4 Kinematics and Integration Techniques. 

This is a study of the inclusive process 

p + p _ W^Z0) + X (2.94) 

up to O(orJ). To this order the intermediate vector boson is accompanied by one 

or two jets. The invariant mass of the two jet system in the latter case is defined 
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in (2.60) and can be rewritten as 

32 = X1X2S + x\T + (1 - Z\)mlyX2U + (1 - ss)"!^ - myr, (2.95) 

where the definitions of the partonic variables have been used. By simple rear

rangement this gives the following expression for X2: 

ari^ + 1/ — m^y 

A change in integration variable from X2 to 5 2 in the general expression for the 

cross-section ((2.47)) may be performed here with the Jacobian 

(2.97) 
x\S + U — mfp ' 

and lower integration limit 

A = U + ari(5 + T - rr?^) > 0. (2.98) 

This makes the lower limit for the x\ integration as 

B = - — ^ — 5 - . (2.99) 

This effectively completes the requirements for the calculation of the differential 

cross-section 

1 1 

(2.100) 

except for the structure functions, which will be described in the next section, 

and the choice of the scales, which will be described in section 2.6. For the 2 —> 2 

processes, s% is set to zero in (2.96). 
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However, to obtain a differential cross-section with respect to the transverse 
momentum only, one has to obtain the relevant limits for the y—integration. 
Consider a general 2 —> 2 interaction a + 6 —• c + d. The hadronic cross-section 
is given by: 

da 
dp2

Tedyc d3pc 

da 
/

da 
dxadxbGa/A(xa,fi2)Gb/B(xb^2)Ec-^ 

= JdxadxbGa/A(xa,p2)Gh/B(xh,fi2)^6(s + t + u - m2

c - md)^£i 

(2.101) 
where a is the hard process cross-section and, as usual, xa and xb are the momen
tum fractions of the interacting partons within hadrons A and B respectively. 
The only massive particle in this treatment is the vector boson and so rn2 is set 
to zero. The rapidity of the boson is defined by 

y c = - l n Ec + pLt 

.Ec-PLc. 
(2.102) 

where Ec and pic are the energy and longitudinal momentum of the vector boson, 

respectively. The 4-momentum, c, may be written in the form 

c = (Px,m^sinhy c;m^cosli2/ c), (2.103) 

where my = yjp? + m 2 is the transverse mass. It is possible to restate the 

partonic variables 5 , r, and u in terms of the transverse momentum, rapidity, 

hadronic variables and momentum fractions. Then, by performing the xb integral, 

and using the condition xatb < 1, the limits of the rapidity integration are easily 

obtained. For the 2 —* 3 process, where s2 ^ 0, the ^-function above is replaced 

by a ^-function and the number of integrals is increased by one. 

The integrals were performed numerically with the integration package VE

GAS [22], which uses Monte-Carlo techniques. The package requires several 

passes through the Monte-Carlo procedure because of a sophisticated redefini

tion of the grid to increase the efficiency of the integration. 
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There are several advantages in using such a package. For instance, it is possi
ble by suitable programming to mimic the experimental set-up (for the measure
ment of a particular quantity) in the theoretical calculation and thereby match 
the calculation as closely as possible with the experimental measurement of the 
quantity being calculated. A good example of this is the imposition of cuts in 
calculations to match the efficiency and triggering of experiments. 

In addition, matrix elements for higher-order processes are generally very 
long and complicated and quite often not susceptible to reduction in size and 
complexity. It is then quite suitable to leave the expression in an unreduced form 
and then to number-crunch with a package like VEGAS. This is particularly 
true in the case of the calculation of helicity amplitudes using spinor techniques 
[23,24]. 

2.5 The MRS Structure Functions 

One source of theoretical uncertainty in these calculations concerns the choice 
of parton distributions. In this study the recent parametrisations of Martin, 
Roberts and Stirling [12] have been used. 

These sets of parton distributions have been obtained by a next-to-leading-

order structure function analysis of deep inelastic scattering data, which can now 

be measured with high precision. These measurements are a good test of QCD 

and provide a means of making precise measurements of the scale parameter, 

AQCD* I n addition, they allow an accurate determination of the parton distri

bution functions. Martin et al. [12] analyse the data directly in terms of the 

In Q 2 dependence of the parton distributions. This dependence is defined by the 

Altarelli-Parisi equations, including the next-to-leading order corrections. 

The quark distribution functions may be determined directly from a mea

surement of deep inelastic scattering cross-sections, but not the gluon distribu

tion function. This quantity enters the picture indirectly, via the singlet (under 

SU(Nf)) structure function evolution equation and this represents some freedom 

of choice, loosely constrained by theory. To represent this uncertainty, the MRS 
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structure function sets include various gluon parametrisations. These were ob
tained from several equally acceptable fits to deep inelastic scattering data and 
are described below. 

The non-singlet calculation of W, Z—production to 0(at2) has been performed 

with the earlier sets of MRS structure functions, called MRSl,2 and 3. These 

sets correspond to different values for AQCD different forms for the gluon 

parametrisation: 

setl : AQCD — 107MeV — soft gluon 

se12 : AQCD = 250MeV — hard gluon (2.104) 

setZ : AQCD = 178AfeV - -4= gluon. 
y/X 

Sets 1 and 2 are analogous to the earlier parametrisations of Duke and Owens 

[25]. 

The complete second-order calculation, with the matrix elements of Arnold 

and Reno [11] was performed with the more recent MRSE' and MRSB' sets 

[26]. These sets have AQCD =100 and 200 MeV respectively and identical soft 

gluon parametrisations. These structure function parametrisations are valid in 

the following x and Q2 regions: 

10~4 < x < 1, 
(2.105) 

5 GeV2 < Q2 < 1.31 x 106 GeV2. 

2.6 'Optimisation' Procedures with respect to the Choice of Scales. 

Finite order perturbative QCD calculations have certain ambiguities which 

severely limit their predictive capabilities, especially when precision measure

ments are made. In this section, a description of the dependence of the differential 

cross-section of the process p + p —* W(Z) + X on the choice of renormalisation 

and factorisation schemes is presented. This is accompanied by a phenomenolog-

ical description of the technique of 'optimisation', first suggested by Stevenson 
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[27], which, it is hoped, removes some of the theoretical ambiguity but does not 

solve the problem. In 0{a\) calculations in perturbative QCD renormalisation 

scheme dependence is introduced via the arbitrary scale, / i , in the coupling con

stant o 5(/i), where fi has dimensions of mass. To this order, the factorisation 

scheme ambiguity is introduced partly by the freedom of choice that exists for 

the scale that characterises the structure functions, and partly by the definition 

of the structure functions themselves. 

Three types of divergences enter QCD calculations: (i) the ultraviolet diver

gences from the consideration of loop diagrams, (ii) the infrared mass singularities 

that result from the collinear emission of gluons from the quarks in the initial 

channel and finally (iii) the infrared divergences that result from the collinearity 

between the bremsstrahlung final state boson and the parent final state quark, 

(iii) is regulated by the mass of the intermediate vector boson, while (i) and (ii) 

are handled by dimensional regularisation. The arbitrary renormalisation scale 

H is introduced through the M5-scheme. As we saw in section 2.2, the singulari

ties associated with the initial state partons are factored off and this requires the 

introduction of the factorisation scale, M , which gives rise to scale dependent 

structure functions. 

In the rest of this discussion the phenomenological formalism of Aurenche 

et at. [28-30], with respect to the 'optimisation' theory, is followed. Initially, it 

is suitable to consider only the non-singlet case. Then, the generic form of the 

cross-section is given by 

B * L = ? M [ f i B + 2^1(61n(, t/A) + 2 1 n ( P r / A / ) P „ ® ] a B 

+ ? M K H \ ® GV(M) ® GV(M) (2-106) 

= ?MffBorn N + £ i 0 0 T _ £ M p i { M , A ) ] , 
n 1 n w J 

where a& is the hard process cross-section for the process 

q + q-+W(Z) + g, (2.107) 

and 

a B o r n = a <8> GV(M) ® GV(M). (2.108) 

43 



The M, A dependent piece in (2.106) is just 

pi(My A) = - [2ln(pr/M)P q q 9 *B + J f * ] 0 GV(M) ® Gv(M)/aBorn. (2.109) 

The .A ® £ indicates that these are convolution integrals. ff gg, the higher-order 

correction after factorisation is finite and independent of /i and M. pi is renor-

malisation scheme independent and may therefore be calculated in any renormal-

isation scheme. (2.106), where r = 61n(/i/A), demonstrates the ft dependence of 

the second-order cross-section. 

As has been mentioned previously, a 3(/i) is defined up to second order and 

the scale dependence of this coupling is given by the equation 

where b = and c = ft/4/?o and 

«(„) = ^ 2 . (2.111) 

The solution of this equation requires a constant of integration, A, and is 

T = * + c l n y 0 ( 2 . 1 1 2 ) 
a(/i) 2(1 + ca(ji)) v 7 

The renormalisation scale dependence of the second-order cross-section can now 

be fully expressed in terms of a(fi). Although it is reasonable to set p ~ O(pr) to 

prevent large logarithms of the form ln(/i/pr) from appearing, QCD perturbation 

theory does not specify a value for fi. If /x —• ft1 then the cross-section is corrected 

by terms that are of order a 3(fi). This is demonstrated in the evolution equation 

for a: 

a(ii') = a(/i) + &ln(/i//i> 2(//) + 0(a 3 ) . (2.113) 

In the next chapter, the phenomenology of this optimisation is presented 

and it will be seen that the dependence of the second-order cross-section on 
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H is approximately parabolic. If the factorisation scale is kept fixed at some 

suitable value, this parabolic relationship provides the opportunity of locating a 

renormalisation scale that satisfies the condition 

This point on the — p curve specifies the PMS—scale (or Principle of Min

imum Sensitivity scale). This scale has some theoretical appeal because the 

perturbation series to all orders must be scale independent and for the second-

order cross-section, this point on the graph most satisfies this condition. The 

other scale that is sometimes chosen is that denoted by the name 'fastest ap

parent convergence' (or FAC) scale, and is defined as the scale that sets the 

higher order contribution to zero. On the a^-fi curve it is the scale at which 

the first-order curve intersects with the first+second-order curve. 

By substituting the expression for the second-order cross-section into (2.114) 

the following transcendental equation is obtained: 

ho. CO. 

1 + c a l a 5 ? T h = ) + sRT+S) = a p i ( M ' A ) - ( 2 - 1 1 5 ) 

This equation is solved numerically for a = a\M) for fixed M , px, X? and y. 

In (2.115) pi, b and c are renormalisation scheme independent and therefore 

so is a'. It is then possible to express the renormalisation scheme independent 

second-order cross-section as 

The factorisation scale dependence of the cross-section remains. This is dealt 

with in a similar fashion. The definitions for the distribution functions and 

the short and long scale parts are given in section 2.2. Performing the change 

M —• M\ the correction factor that follows is at least of order a 3 . This may be 
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verified by observing that the Gv dependence is given by [31] 

GV{M') = GV(M) + a (M)ln(M/M')P w 0 GV(M) + 0 (a 2 ) (2.117) 

and by noting the general M-independence of the higher-order a?Kqg. Again the 

condition for 'optimisation9 is defined by 

dM 
= 0, (2.118) 

M—Mopt 

and again this is solved numerically. Aurenche et al. [28] show that the 'optimum' 

point, at which the cross-section is determined, is a saddle point of an approxi

mately hyperbolic surface, spanned by when it is plotted as a function of \i 

and M. 

The previous discussion is restricted to the non-singlet sector. In the singlet 

sector both quarks and gluons are admitted in the initial channel. In principle, 

each sector should be optimised separately and this is described by Aurenche et 

al. [28]. However, if the whole of is optimised, they estimate the introduced 

error to be less than 10%. 

2.7 Numerical calculations - non-singlet 0(a2

s) calculation 

Chronologically, this calculation was performed in two parts. The first part 

was performed with the non-singlet matrix elements of Ellis, Martinelli and 

Petronzio [10] and this is presented first. The 0(a8) cross-sections have also been 

calculated by Ellis and Stirling [32] and the integration limits, matrix-elements 

and structure function combinations for this calculation were checked numerically 

against those of the former (for the 2 —» 2 case). 

The contribution of the 0(ot\) diagrams to the cross-section is scale dependent 

and in the first case, to obtain a feel for this contribution, the scales are set at 

p. = M = p^, (2.119) 

and unless otherwise stated, the rest of the calculation is performed with n = M . 
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p*(GeV/c) 
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Figure 2.12 Ratio of the O(of) corrected to the 0(as) uncorrected trans
verse momentum distribution for the non-singlet part of the p + p-+ W + X 
cross-section at y/S - 630 GeV The QCD scale is Q = pSfi and MRSl 
structure functions are used. 

R = (d<r/dPT)o(al) 
( d ( T / d p ^ ) 0 ( a s ) 

(2.120) 

is presented in figure 2.12 and we see that for p ^ > 20 GeV/c the second-order 

contribution is constant at ~ 30%. 

Since these matrix elements are restricted only to the nonsinglet sector, some 

assumption has to be made about the contribution of the singlet sector at O(a^). 

An estimate of this uncertainty may be obtained by determining the contribution 

of the singlet sector to the 0(a8) cross-section and then by assuming that the 

contribution of the singlet sector to the O(aJ) is of the same level. At the C E R N 

energy, ^/S = 630 GeV the cross-section is dominated by the nonsinglet sector 

(see figure 2.13). The maximum contribution of the singlet sector occurs at 
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Figure 2.13 The fraction of the O(cts) differentia) cross-section that is the 
singlet contribution at \ / S = 630 GeV with Q = pjf and the MRSB' struc
ture functions. 

small pip . This curve depends on the scale and structure functions, but these 

uncertainties are of the order of 15-20%. With the assumption made above, 

this allows us to set the theoretical uncertainty due to the non-availability of the 

singlet matrix elements to be of the order of 10%. This estimate of the uncertainty 

is larger at higher \ / S , since the singlet contribution to the cross-section increases 

with centre-of-mass energy. 

The prescription for the choice of scales, as mentioned earlier, is that of 

'optimisation'. However, unlike the procedure described by Aurenche et al. [28-

30] in this study, the factorisation and renormalisation scales have been set equal 

to each other and a one-dimensional optimisation has been performed. The 

procedure was carried out for the non-singlet sector only, as this removes the 

need to approximate the singlet contribution to the optimisation. In their studies 

of prompt photon production at pp colliders, Aurenche et aL [28] make the point 

that the combined optimisation of the singlet and non-singlet sectors should 

produce an optimum scale that differs little from the scales obtained from the 

separate optimisation of these sectors. This uncertainty is very small when pW is 

large, because (see figure 2.13) in this region (at C E R N energies) the non-singlet 

contribution dominates. 
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Figure 2.14 The 0{QS) and 0(or§) non-singlet transverse momentum dis
tributions at pj = 50 GeV/c as a function of the QCD scale. The QCD 
scales Qp\i$ and Qfj\c> as defined in the text, are indicated. 

The technique of optimisation is described here. In figure 2.14 the differential 

cross-section, dtrjdpj, is plotted against the scale Q, which has been set to 

Q = P ^ x / , (2.121) 

where / = ^ -» 32 and where \/S = 630 GeV and p^ = 50 GeV/c. The mono-

tonically decreasing curve represents the 0(as) non-singlet cross-section and the 

second curve is its 0(ck\) partner. It is clear that the higher-order curve is less 

scale dependent than the leading-order one and this is a good sign. In addition, 

the next-to-leading order curve has the characteristic parabolic shape which pro

vides two choices for the scale, QPMS a n ^ QFAC- As has been mentioned previ

ously, QFAC 1 S * n e 'fastest apparent convergence' scale and is the scale at which 

all higher-order contributions are forced to be zero. QPMS is more appealing 
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Figure 2.15 The QCD scale, as defined in the text, as a function of • 

theoretically, in the sense that any perturbation theory calculation to all orders 

is by definition scale independent and at 0{a2

s) this point on the curve represents 

a quantity that is scale-independent; it is the turning point of the 0(a\) cross-

section. It is this scale that is used in this study. To pin down the scale further, 

it was necessary to repeat this calculation with a finer grid for the scale and for 

the set of kinematic parameters set above, and the optimised scale emerges as 

Q — OAplf' This procedure is repeated for different values of p^. In figure 2.15, 

the optimised scale is plotted against p^. It is clear that for p^v > 15GeV/c, 

the optimised scale is constant at 

Qopt ~ 0.4 x $ . (2.122) 

This flatness in the curve is a reflection of the constancy of the 'K-factor' seen in 

figure 2.12. 

50 



The low-pr region is the pr < 10 GeV/c region. In this region, as indicated in 

the introduction, there is multigiuon emission and Sudakov form factors have to 

be taken into account. An analytic continuation to this region has been performed 

by Davies, Stirling and Webber [33] at 0(as) and by Davies and Stirling [34] for 

the non-singlet sector at 0(a\). 

In this study, the procedure of 'optimisation1 is regarded as a prescription 

for choosing the renormalisation and factorisation scales. It is not claimed that 

this choice of scales is theoretically more correct than setting the scale to any 

other of the large scales that appear in the theory, such as pj. or m\y. However, 

the procedure does present a mechanism for the unambiguous definition of scales 

that takes into account the higher-order corrections. In addition, it provides a 

quantitative measure of the pr range in which perturbative QCD holds. In figure 

2.15, it is clear that for pr < 8 GeV/c, perturbative QCD begins to break down. 

The data presented by the UA1 [8] and UA2 [9] collaborations at CERN are 

in the form of the differential cross-section 

J 1 da 
~Z W J W' (2.123; 
<?toi PT dpf 

where ot0% is the total TV* cross-section at y/S = 630 GeV which corresponds to 

the total number of W's observed. For calculational purposes, this quantity at0t 

is handled differently from the differential cross-section because it is an 0(cts) 

quantity. As a function of scale it is monotonically decreasing and so cannot be 

optimised with respect to scale. In determining this quantity the scale is set at 

m\y* 

The uncertainty that arises from the choice of structure functions is demon

strated by the use of the MRSl and MRS2 sets. These differ in the value of 

AQCD (107 and 250 MeV respectively) and in the gluon parametrisations. MRS2 

contains a hard gluon and MRSl a soft gluon. These provide upper and lower 

bounds on the uncertainty due to the structure functions. 

In figure 2.16 the differential cross-section in (2.123) is plotted against p™ 

together with the 1987 data from UA1 and UA2. The final states are eu and 

\iv for UA1 and eu for UA2. For the reasons presented above, only data that 
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Figure 2.16 The non-singlet corrected QCD predictions for the W trans
verse momentum distribution in pp collisions at y/S = 630 GeV, together 
with the data from the UA1 and UA2 collaborations. The lower and upper 
curves are for the MRS1 and MRS2 structure function sets. 

correspond to > 10 GeV/c are plotted. The agreement is good over the 

complete range shown. At present it is clear that the data are not yet suitable for 

the discrimination between the two sets of parton distributions or to pin down 

a prediction of AQCD* With better statistics a good test should be possible. 

However, the uncertainty in the measurement of p^ is a potential problem. It 

depends on the measurement of the missing transverse momentum of the neutrino 

and for this reason the UA2 collaboration prefers to base its measurement of p? 

on the transverse energy carried away by the hadronic jets for their QCD analysis 
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Figure 2.17 The non-singlet corrected QCD predictions for the W trans
verse momentum distribution at y/S = 1.8 TeV. Again the upper curve 
relates to the MRS2 set of structure functions while the lower curve to the 
MRS1 set. 

of W + jet events [9]. Their estimate of the error in the measurement of pjf is 

±SGeV/c over and above the errors shown on their data in figure 2.16. The 

prediction for the Fermilab collider at 1.8 TeV is shown in figure 2.17. 

The UA1 data contain two events in the largest bin: a muon event + 2 jets 

and an electron event + 2 jets. These have pj? significantly larger than the rest 

of the sample, 8 2 ± 1 2 G e V / c and 105 ± 1 4 GeV/c, respectively. This event rate is 

an order of magnitude larger than the theoretical expectations. It is clear that it 

is no longer possible to adjust the QCD parameters to force the theoretical curve 
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in figure 2.16 to be much harder in the tail. The parton distributions and AQCD 

are too well constrained by other processes to allow any significant variation. 

More recent data has since become available and they are presented below 

with an update of the theoretical calculation to take into consideration the re

cent work of Arnold and Reno [11]. This removes the uncertainty of the singlet 

contribution at 0(a\) and so helps to tighten the bounds on the theoretical 

uncertainty. 

At the time that this part of the study was performed, the UA1 and UA2 

collaborations had about an order of magnitude fewer Z events and so a com

parable study of the p%> spectrum was not possible. The most recent runs at 

the C E R N SppS collider have obtained significantly more data than the previous 

runs and so this situation may improve. Benchmark calculations for the C E R N 

collider and for the Tevatron are presented in figure 2.18 for the non-singlet case 

at 0{a\). 

2.8 Numerical calculations - complete O(aJ) calculation 

When the complete 0{a\) matrix elements became available, the FORTRAN 

code was updated and the calculation was repeated. In this first part, the calcu

lation and discussion is restricted to C E R N energies. To obtain an indication of 

the contribution of the singlet sector to the O(aJ) cross-section, the scales were 

set, as before, to 

\i = M = $ (2.124) 

and the quantity J?, defined in (2.120), is shown in figure 2.19 as a function of 

pip . It is clear from a comparison of this figure with figure 2.12 that the singlet 

contribution at 0(a\) increases the overall cross-section by approximately 10% . 

It must be emphasised that this effect is scale dependent. 

The process of optimisation was repeated with the full set of initial state 

partons. In figure 2.20 the ratio fi0pt/Px * s plotted against and it is clear that 

for pji > lOGeV/c, the scale is constant at 0.4 x p5j5\ A comparison between 
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Figure 2.18 The corrected QCD predictions for the Z transverse momentum 
distribution in pp at y/S = .63 and l.S TeV. The lower and upper curves are 
for the MRSl and MRS2 sets of structure functions, respectively. 

figure 2.15 and figure 2.20 demonstrates that the full second-order correction 

constrains the pj- dependence of the optimised scale more sharply than the non

singlet correction alone. This scale is used for the rest of the calculation. 

The full second-order differential cross-section dajdp^ differs only slightly 

from the partially corrected one at the optimal scale. The most recent data from 

UA2 [35] are shown in figure 2.21, together with the full O(aJ) theoretical pre

diction for the MRSB' set of structure functions. The calculation was performed 

at the optimal scale. Again, there is good agreement between the theory and the 
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Figure 2.19 Ratio of the fully-corrected O(oj) to the 0(as) uncorrected 
transverse momentum distribution for the p + p —» W + X cross-section at 
• n / J = 630 GeV The QCD scale is Q = p% and MRSl structure functions 
are used. 

available data. 

At pp—colliders there exists an assymetry in the rapidity distributions of 

W+ and W~ bosons. The rapidity distributions of W+ and W~ produced at the 

C E R N collider at a transverse momentum of 50 GeV/c, are plotted in figure 2.22. 

As expected, the summed and W" cross-section is symmetrical about the 

y = 0 axis, while the W + , W " cross-sections are not. Data on this asymmetry 

are not yet available. 

Data from the Tevatron are imminent and so predictions for the vector boson 

px-distributions at 1.8 TeV are important. The first step was to repeat the 

optimisation calculations that were done at the C E R N energy. It turns out 

that at 1.8 TeV the straightforward analysis that was possible at y/S = 630 
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Figure 2.20 The QCD scale, QpjtfS* d e f i n e o < i*1 t n e t e x t » ** a function 
of in the fully-corrected case. 

GeV, was not possible. The relationship between the optimised scale and p^ 

is given in table 1 and it is clear that this relationship is qualitatively different 

from that at the C E R N energy. The reason for this appears to stem from the 

numerous In silM*1 terms that appear in the matrix elements. A possible solution 

of this problem is to calculate the cross-section at the optimum scale at each pj.'. 

However, this is not feasible below an p? 60 GeV/c since in this r a n 6 e the 

process of optimisation takes the calculation into the non-perturbative regime. In 

table 1, the difference in the cross-sections calculated at the optimised scale and 

at pj is shown and it is clear that the theoretical uncertainty is large at small 

Pr . Part of the effect at small p^ has to do with the fact that the optimised 

scale squared falls to below 5 GeV 2 and the MRS structure functions 'freeze' 

below this value of Q 2 . 

It is interesting that at p^jf = 65 GeV/c there are two discernable peaks, one 
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Figure 2.21 The fully-corrected QCD predictions for the W transverse mo
mentum distribution in pp collisions at \fS = 630 GeV, together with the 
most recent data from the U A l and UA2 collaborations. 

at 0.15 x pf and the other at 0.04 x pf . At pf = 60 GeV/c the former peak is 

just about washed out. Investigation of this continues. 

For the purpose of making benchmark predictions for the Tevatron and the 

proposed 6 TeV pp-collider in the Soviet Union (called UNK), the QCD scales 

were set at my/ and the results are plotted in figure 2.23. The theoretical uncer

tainty due to the arbitrariness in the choice of the scales has also been studied 

at y/S = 1.8 TeV for the two conventional scales, m\\r and p^. In figure 2.24 the 

ratio R is plotted against pip, where 
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Figure 2.22 The W^tW asymmtery in pp collisions. 

d<r/dpr(Q = rnw) R = 
dc/dpW(Q=p%)' 

The structure functions used in this set of calculations are the MRSB' set. This 

uncertainty due to the scales is of the order of 10%. 

Since the cross-sections at y/S = 1.8 TeV are particularly sensitive to the 

gluon content of the proton, a study was made of the dependence of these cal

culations on the gluon distribution function. The scale was set at the mass of 

the W boson for each set of structure functions. In this study, the sets chosen 

are the MRS1 and MRS2 sets which have been described earlier. They have the 
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Table 1 

PT Qopt/p% QoPt GeV T 
PT Qopt/p% QoPt GeV 

20 0.03 0.6 0.44 
30 0.03 0.9 0.41 
40 0.04 1.6 0.35 
50 0.04 2.0 0.30 
60 0.04 2.4 0.22 
70 0.15 10.5 0.14 
80 0.17 13.6 0.13 
90 0.20 18.0 0.12 

100 0.20 20.0 0.12 
120 0.23 27.6 0.11 
140 0.24 33.6 0.11 
160 0.28 44.8 0.11 
180 0.29 52.2 0.11 
200 0.29 58.0 0.11 

same quark distributions but differ in their gluon parametrisations. The ratio 

d*/dp%(MRS2) 
" da/dp%(MRSl)' 

is plotted against pjf and the uncertainty that arises from hard- and soft-gluon 

parametrisations is of the order of 20% (see figure 2.25) at Tevatron energies 

and is fairly constant through the pj? range, whereas at C E R N energies, the 

dependence falls rapidly from 20% at low p^ to a few percent at large values of 

Py>. A similar study of the dependence of the differential cross-section on the new 

set of MRS structure functions (MRSE' and MRSB') indicates that the structure 

function dependence is smaller than 10% throughout the p% range. 

For completeness, two further predictions are in order. The construction of 

the LHC and SSC is now a real possibility. They will be pp-colliders. With the 

appropriate changes in the structure function combinations, benchmark predic

tions for the W p^-spectrum are presented in figure 2.26, with p. = M = mw* 
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Figure 2.23 The fully-corrected O(oj) QCD predictions for the W trans
verse momentum distribution in pp at y/S = 1.8 and 6.0 GeV. 

The full second-order theoretical predictions for the differential cross-section 

of neutral intermediate vector bosons have been performed as well. The predic

tion for the C E R N collider is presented in figure 2.27 and for this calculation the 

scale was set at 0.4 x pj. and the MRSB' set of structure functions was used. In 

the same figure the corresponding curve for the Tevatron is plotted but in this 

case the scale is set at m^. Unfortunately at the present time data are not avail

able from the UA1, UA2 or C D F collaborations but with the Tevatron being a 

copious producer of the Z boson, spectra will become available in the near future. 
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Figure 2.24 The ratio of the differential cross-section calculated with QCD 
scale Q = to that calculated at with the MRSB' structure func
tions. 

Perhaps the most important aspect of this work is the potential it presents 

for the extraction of the gluon content of the hadron. Up to next-to-leading 

order, the matrix elements are known fully and the phase space integrals are 

performed without any tricky approximations. The gluon contribution to the 

differential cross-section da/dp^dyw at p™ = bOGeV/c is shown in figure 2.28 

for y/S = 0.63 and 1.8 TeV as a function of the rapidity of the W boson. This 

indicates that at the Tevatron the gluon contribution to the differential cross-

section reaches approximately 60% in certain rapidity regions. Of course, there 

is still significant uncertainty in the parametrisations of the sea quarks but when 

the gluon contribution is in the region of 60%, this uncertainty decreases in 

importance. This calculation is performed with the MRSB' structure function 

set. 
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Figure 2.25 The ratio of the differential cross-section calculated with the 
MR52 structure functions to that with the MRSl set of structure functions. 
The QCD scale is set at Q = m^y. 

A study of < pj? >, the average pjf of the W bosons produced in these pp 

collisions, was undertaken. The definition of this average is 

w j f " da/dp$ x p% 
< PT >— -

Vtot 
(2.125) 

and since the partonic differential cross-section is singular at most in l/pjf lnp^, 

a Monte-Carlo integration with a lower limit of pjtin = 0 GeV/c is possible. The 

naive QCD expectation is that < pJjT > scales with y/S. The general expression 

for the expectation value of the p?2 is given by: 

< ^ 2 > = a , x S x / (r , ln ( | / 2 /m^) , ln (m^/A 2 ) ) (2.126) 

where r = rn^/S. It is clear that this scaling relationship holds in the case of 

fixed r and at leading order (where there is no \i dependence). The deviation 
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Figure 2.26 The fully-corrected 0(a%) transverse momentum distribution 
of W bosons produced in pp — W + X at VS = 16 and 40 TeV. 

from this scaling prediction for the 0(a~) calculation (see figure 2.29) is quite 

startling. This curve was obtained with a newly optimised scale of 0.3 x mw and 

with the MRSB' set of structure functions. Optimisation in this case is efficient 

at all values of \/S. The calculation of < pjT > and < pjf* > are as theoretically 

constrained as the calculation of the differential cross-sections. The discrepancy 

that exists between the theoretical predictions for < > as a function of \/S 

and the available data (see figure 2.29) may provide a measure of the intrinsic 

transverse momentum of the par tons within the hadrons. 
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Figure 2.27 The fully-corrected 0 ( a | ) prediction for the transverse mo
mentum spectrum of Z bosons produced in pp —* Z + X at y/S == .63, 1.8 
and 6.0 TeV. 

2.9 Conclusions, 

It has been shown that the QCD prediction for the W transverse momentum 

spectrum is in good agreement with the data from the UA1 and UA2 collabo

rations at the C E R N SppS collider. This agreement was first achieved with the 

non-singlet 0{ot\) matix elements of Ellis et al. [10] and this required an assump

tion about the contribution of the singlet sector at next-to-leading order. It has 

been shown that this approximation was valid. With the inclusion of the singlet 

sector [11], this uncertainty has been removed from the calculation so that the 
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Figure 2.28 The gluonic fraction of the differential cross-section of the fully 
inclusive production of large transverse momentum W's in pp collisions, for 
VS=.M&nd 1.8 TeV. 

uncertainty in the calculation is restricted to: (i) the structure functions and (ii) 

the choice of scale. 

To present some indication of the theoretical uncertainty, the cross-section is 

calculated using three different structure functions and two scales (see table 2). 

The actual quantity presented here is 

J j [da/dp?] x d f l 
**-J 

VtoU 
(2.127) 

which is suitable for this purpose because it is the quantity that the experimen

talists use to convert their events into cross-sections. So for instance, if the total 

number of events obtained during a run is JV, then the number of events that 

theory predicts for the bin [i — j] would be 

2.0 

N1 = Fi-j x N. (2.128) 
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Figure 2.29 The average transverse momentum of VV bosons produced in 
pp collisions as a function of y/S. This calculation was performed at an 
optimum scale of 0.3m^ and with the MRSB' set of structure functions. 

Table 2 
Str.Func. Scale Q ^QCD •F20-40/ 2 & •^60-100/ E F 

MRSB' Qopt .200 0.856 0.118 0.026 
MRSB' m\v .200 0.845 0.126 0.029 
MRSE' Qopt .100 0.846 0.125 0.028 
MRSE' m\v .100 0.839 0.130 0.031 

MRS2 Qopt .250 0.860 0.116 0.025 
| MRS2 TTi\y .250 0.847 0.124 0.028 

The ratios F allow for the cancellation of some of the uncertainty. 

Examining table 2, it is possible to estimate that the theoretical uncertainty 
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in the calculation is of the order of 20%. 

It is clear that this process is not yet a precision test for perturbative QCD. 

However, the recently upgraded C E R N collider (with the addition of ACOL) 

together with the recent upgrade of the UA experiments promise to improve 

considerably the statistics of the data. In addition, the C D F experiment is a 

copious producer of W and Z bosons and there is considerable hope that in the 

near future the process could be extremely important in pinning down AQCD ^ d 

the structure functions. Already there is fairly good agreement with the standard 

QCD predictions such as 

AQCD ~ 200 ± 100 MeV. (2.129) 

The search for the top quark and the charged Higgs will be facilitated by the 

understanding of this process which is a background process for these searches. 

The, as yet unavailable, data from the Tevatron and from the proposed UNK 

accelerator will be challenged by well-defined and constrained theoretical pre

dictions. Any statistically significant deviation in the data must signal 'new 

physics'. 
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3. A Study of the Equivalent Photon Approximation at HERA 

3.1 I N T R O D U C T I O N 

The HERA electron-proton collider is ideally suited to the study of hard scat

tering processes in almost-real photon-proton collisions [l]. Such processes pro

vide many important tests of perturbative QCD and measurements of hadronic 

structure. Current fixed-target photoproduction experiments have collision en

ergies limited to several tens of GeV. In contrast, HERA can investigate pho

toproduction at energies of order hundreds of GeV. For instance, if the proton 

beam at HERA has an energy of 820 GeV, then if 

£ 7 = 10 GeV, y/S= 180 GeV 

and if 

E1 = 20 GeV, y/S = 250 GeV. 

As a result, processes such as the production of large transverse momentum jets 

[2,3], hadrons [4] and single photons [5], Drell-Yan lepton pairs [6] and heavy 

quark pairs [7,8,9] can be studied. 

Especially interesting are those processes which have been calculated to next-

to-leading order in QCD perturbation theory. These offer the prospect of -preci

sion tests of the theory. Examples are the production of large transverse momen

tum photons (yq —* yq) [10] and the production of heavy flavours (yg —* QQ) 

[11]. The first of these processes is important because in principle it provides a 

measurement of the quark distributions in the proton. According to the detailed 

phenomenological analysis of reference [5], the cross section should be measure-

able out to about pj> a 50 GeV/c which corresponds to x values for the quarks of 

0(0.1) (assuming the standard HERA parameters with y/s = y/s^ = 314 GeV). 

If the inclusive cross sections can be measured to an accuracy of better than 

order 10%, then some discrimination between various standard sets of quark dis

tributions can be achieved [5]. In addition, the small pj cross section receives 
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contributions from the hadronic (i.e. quark and gluon) content of the photon, and 

it may be possible to extract information on these quantities by first 'subtracting 

off' the Born contribution [5], 

There is, however, an important caveat to all of this. The 'precision' studies 

so far have all used the Equivalent Photon Approximation (EPA). This approx

imation, developed by von Weizsacker [12] and Williams [13] in 1934, helps to 

reduce the complexity of a certain class of cross-section calculations in small-

angle electron scattering. For example, it may be used to relate the high energy 

photon-induced cross section da1A—B to the corresponding electron-induced cross 

section daeA->B by 

d<*eA-+B = j dx G 7 / e ( « ) da^A-^B, (3.1) 

where G1je(x) is the structure function analogue for the distribution of photons in 

an electron. Clearly if one is interested in studying higher order QCD corrections, 

the quark and gluon content of the proton and photon and so on, it is important 

to establish that the errors introduced by this approximation are small and under 

control. This is the subject of the present study. 

In the earlier work on the EPA [12,13], the approximation was defined in 

a semi-classical fashion in terms of the relevant impact parameters and the fre

quency of the photons. The cross-section expression above in this early formula

tion would have been written as 

/ du: 
d*eA-B = / —N{u)d(TlA^B, (3.2) 

where N{u))/u represents the number of equivalent photons with frequency u in 

the field of a fast moving charged particle. The expression obtained for N(u>) by 

von Weizsacker and Williams was 

N { u ) - ± l n { J L ) (3.3) 
TV O m 

where bjy is the largest impact parameter in the problem and bm is the smallest. 

If the impact parameter is larger than b^ = E/(iom) then the field of the rela-

tivistic particle (mass m) varies rapidly and the contribution to the cross-section 
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falls off rapidly. This determines the value of 63/. In this semi-classical theory, 

the Compton wavelength of the relativistic particle is used as the small impact 

parameter. Substituting these expressions for the impact parameters into (3.3), 

it is easily shown that the virtual photon-spectrum exhibits a logarithmic depen

dence on the frequency u of the Coulomb field. The function N{UJ) above is given 

by 

JV(u,) = f l n ( § ) . (3.4) 

Many interesting real photoproduction processes may be studied at HERA 

such as the photoproduction of large pr jets. However, for most of them it 

is not feasible to perform exact calculations, either because the diagrams are 

too complicated or the calculation time is excessive. The Compton scattering 

process is used as a simple test case since exact and approximate calculations 

are feasible to check the EPA. In addition, it may be noted that this happens 

to be an interesting process in its own right (see chapter 4). Here, a short 

study of the efficiency of the approximate calculation is made for the specific 

case of performing calculations with HERA parameters. This is done by doing a 

complete calculation for the process 

e + g->e + g + 7 (3.5) 

and this is compared with the Compton scattering cross-section 

7 + q 7 + q, (3.6) 

where the initial state photons are the quasi-real photons that result from brem-

strahlung off the 30 GeV electron beam and which are described by the EPA. 

In the second section, the usual EPA is derived in the infinite-momentum 

frame, based on the derivation of Chen and Zerwas [14]. In section three, a 

description of the matrix element calculation for the process in (3.5) is presented. 

This calculation was performed with the spinor techniques of Kleiss and Stirling 

[16,17]. In section four, the phase space calculation is described. The results 

of the calculation are presented in section five, and finally the conclusions are 

presented in section six. 
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Figure 3.1 Diagrams for the inelastic scattering of an electron on a proton 
target in time-ordered perturbation theory. 

3 .2 D E R I V A T I O N O F T H E E L E C T R O N ' S T R U C T U R E F U N C T I O N ' . 

Detailed derivations of the E P A can be found in the literature (see for example 

references [14,17,18]) and so in this section the E P A is derived schematically 

using the technique of time-ordered perturbation theory in the infinite momentum 

frame. In the single photon approximation the diagrams in figure 3.1 represent 

inelastic electron scattering on a target A , 

ei + Ai -> e/ + A / . (3 .7 ) 

There are two possible intermediate states \n) in this process which correspond 

to the cut lines in figure 3.1 and the transition amplitude for this process is given 

by 
^ < f\H\n >< n\H\i > 

T/.-=—ETE:—' (3-8) 

n 

where H is the Hamiltonian of the interaction and Ei and En are the initial state 

and intermediate state energies respectively. 
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The internal photon line leads to a factor of (2n)~z E"1 ( j ) in the expression 

for the transition amplitude. Additionally, for each intermediate step there is a 

factor (Ei — £ „ ) , where En is the total energy in the initial channel and En is 

the intermediate-state energy. The eiyef—vertex is written as tf(p/)e7^u(pi)€fi-

The intermediate-state ket is given by |n) = |c / ,7>,A), and substituting these 

into (3.8) produces the following expression for the transition amplitude: 

" * ^ 2 E ( 7 ) [ E ( e , ) - £ ( e / ) - £ ( 7 ) ] 
+ ... 

P<7)=P(« . ) -p(e / ) 
(3.9) 

up to constant factors. This sum runs over the helicity states of the photon. 

Contributions from the longitudinal and scalar polarisations of the photon have 

been left out. 

Assume that the incoming electron's three-momentum is P along the x-axis 

say, and that the three-momenta of the outgoing electron and photon are P' and q 

respectively. In the infinite momentum frame the momenta may be parametrised 

as 

p(c,) = ( P ; S ( e , ) ) = ( P , 0 ; P + g ) , 

2 2 
p(e/) = (P';E(ef)) = ((1 - * ) P , - q T ; ( l - x)P + ™**%p )• (3-10) 

7>(7) = ( q ; £ ( 7 ) ) = ( * P q T ; * P + 

In these expressions, x is the momentum fraction of the initial-state electron 

carried off by the photon and qj = I<1T| is the transverse momentum of the 

photon. In time-ordered perturbation theory, the vertices conserve momentum 

but not energy. 

With the momenta in (3.10), the denominator in (3.9) reduces to 

-(ti+™2<*2) , 3 1 1 ) 

which indicates that cross-section is dominated by the small-^p region where the 

scale of the matrix element is given by the inverse mass of the electron. This 
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fact allows the second diagram in figure 3.1 to be ignored since the scale of the 

amplitude in this case is given by the inverse mass of the proton. The square of 

the numerator in (3.9) has a term of the form 

^ [ « ( e / ) / ( A ' ) « ( c , ) ] ' [ « ( e / ) / ( A ' ) « ( c . ) ] , (3.12) 
a 

where the sum runs over the spins of the electron. Using the spin sums 

53 U(J>' ' M f r s ) = (t + m )' 
(3.13) 

s 

and averaging over the direction transverse momentum of the final state electron 

(3.12) reduces to 

fry x 2 ^ [ + (1 ~ *2)1 + • - (3-14) 

The longitudinal and scalar polarisations of the photon do not contribute to 

leading order in q% and so the transition amplitude squared may be written as 

2(1 - x) 
* 2 ( 4 + m2*2) 

(3.15) 

In deriving (3.15), terms containing higher powers of the denominator (3.11) -

which do not give logarithmic behaviour when the transverse momentum is in

tegrated (sec below) - have been omitted. They may be taken into account to 

obtain corrections to the leading order electron structure functions [14,17,18]. F i 

nally, the cross-section for this process may be obtained by multiplying (3.15) by 

the flux factor and then integrating over the momenta of the final-state electron: 

a(eiAi - > e f A f ) = - dx^-^ — I n ^ — < r ( y A i - Af). (3.16) 
7T J X TTl^X 

0 

Comparing (3.16) with (3.1) gives the electron 'structure function': 

^ . S h ^ Z f t , (3.17) 
7T X 

where TJ = q™ax/mex ^> 1. In practice the value of q™ax will be determined by 

the other kinematic variables in the process. It is not in fact a well-defined quan-
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tity since when the final-state electron's transverse momentum becomes large, 

the small-angle approximation breaks down and the electron's phase space inte

gration no longer factorises from the rest of the final state. All one can say, then, 

is that q™ax is some quantity of the order of the maximum transverse momen

tum allowed by the overall kinematics. Within this definition, there are various 

possibilities for the variable 77: 

In what follows different choices for rj will be used to determine which gives the 

best approximation to the cross section. 

The above analysis is relevant for the situation where the scattered electron is 

'untagged', i.e. allowed to have any final-state momentum and therefore almost 

always lost in the beam-pipe at small angle. If, on the other hand, the electron 

is detected or 'tagged1 in some small angular range then the above expressions 

for 7] are replaced by the ratio of the maximum and minimum tagging angles 

(see below). In what follows the E P A is studied for both tagged and untagged 

electrons. 

The E P A provides a measure of the 'photon content' of the electron and to 

obtain a cross-section of an electron initiated process, such as e,* + A{ —• e/ + A / , 

the corresponding photon cross-section may be convoluted with the E P A (see 

As has been mentioned previously, to test the validity of the E P A in the 

H E R A context a complete calculation of the process is 

is performed where the final state photon has large momentum transverse to the 

electron-proton beam direction, and compare the resulting cross section with the 

real photon Compton scattering cross section for 

convoluted with the electron structure function derived above. The gauge-invar

iant set of Feynman diagrams for the process (14) are shown in figure 3.2. The 

7] = 
Js E 

(3.18) 
2m c ' me' 2m e ' 2m c 

(3.1)). 

7 + $ - * 7 + g 
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Figure 3.2 Feynman diagrams for the scattering process e + q —* e + q + f . 

four diagrams are calculated at the helicity amplitude level - using the 'spinor 

techniques' of reference [16] - and then evaluated numerically. Note that because 

the cross sections of interest involve small-angle electron scattering, it is necessary 

to keep the electron mass non-zero throughout the calculation, i.e in the matrix 

element and in the phase space integrals. 
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3.3 T H E H E L I C I T Y A M P L I T U D E C A L C U L A T I O N . 

The gauge-invariant set of Feynman diagrams for the process in (3.5) com

prises of four diagrams, shown in figure 3.2. The diagrams have been calculated 

at helicity amplitude level and then evaluated numerically. In what follows, this 

calculation is repeated to demonstrate the use of spinor techniques in the evalu

ation of Feynman graphs. 

The calculation was done with massive electrons but massless quarks. The 

quark helicity at the qyq—vertex is conserved and so the helicity of both the 

initial and final state quarks is set at \(q). However, for the massive electrons 

helicity is not conserved at the eye—vertex. The initial- and final-state electrons 

have helicities A(e,*) and A(e/), respectively and the helicity of the photon is A(7). 

The initial- and final-state electrons in figure 3.2 have momenta pi and pz 

respectively, while the initial- and final-state quarks have momenta p2 and p\ 

respectively. The external photon has momentum k. To begin with, the Feynman 

diagram in figure 3.2(1) is expressed in terms of the spinors, polarisation vectors 

and 7—matrices, as usual. 

where m is the mass of the electron and the € is the polarisation vector of the 

the external photon. The 7—matrices are the usual Dirac ones. 

The spinors [15,16] are defined in terms of a fundamental negative-helicity 

spinor, u_(fco) and the corresponding positive-helicity spinor is then defined as 

M(k,pj,Xi,\j) = u(pz,Xz)(ieyft)€fA*(k,X1) 

(fe7ii)v(pi,Ai) x 
U>3 + *) m (P4 - P 2 ) 2 . 

(3.19) 

fi(p4, A,) (ieqyx) «(P2> A g ) , 

u+(k0) = # 0 ti-(fc 0 ), (3.20) 

where the four vectors ko and Ar{, satisfy the following: fco-ko = 0, &o.&o = ~ * 

ko.k'0 = 0. These spinors represent the helicity states of a massless fermion of 
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momentum ICQ; that is, 

u\(h)ux(h) = i ( l + A 7

5 ) # 0 . (3.21) 

From these, it is possible to construct spinors for any other fermion as follows 

u\(p) = {f + ">)«-A(*o)/>/2p.*o f (3.22) 

where A = ± 1 . The spinors are normalised in the usual way, u\(p)u\(p) = 2m, 

where m is the mass of the particle. To take (3.19) a step further, the polarisation 

vector, €, is defined in terms of states of definite helicity denoted by 

where po is any light-like vector which is not collinear to k. This vector po defines 

the gauge in which the calculation is performed. 

Using the Chisholm identity 

[«A(PI)Yv\{n)hti = 2 x [ux(p2)u\(pi) + W-A(PI)"-A(P2)], (3.24) 

j. may be expressed in terms of spinors as 

m = [«A(po)tlA(fc)-H«-A(fc)g-A(po)] ( 3 2 5 ) 

The internal fermion lines are treated as a sum of the two helicity projections 

divided by the usual propagator squared. So for instance, an internal fermion 

line, f , is replaced by 

t = «+0>)MP) + MP)«-G>). (3.26) 

The expression for the helicity amplitude (3.19) can now be expressed in 
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terms of spinors and 7 matrices, using (3.23) and (3.26), as 

M ( k , p j , \ l 9 \ j ) = C x M(p3,A3)(»e7^)[iZ(po,A7)7,iti(Ar,A7)] 

[u(p3, +)ii(p3, +) + w(p3, -)«(P3, - ) + «(&, +)«(&, +) + u(fc, -)tl(fc, - ) ] , 

7i/u(pi, Ai )u(p4, A g )(7" )u(p2, A g ) 
(3.27) 

where the couplings and propagators are collected together in C 

° = [(pz + fc)2 - m2]( P 4 - P2)V4(J><>-*)' ( 3 ' 2 8 ) 

and the v and A indices have been contracted. 

By applying the Chisholm identity (3.24), the hclicity amplitude may then 

be expressed completely in terms of products of spinors as 

X(fr ,p j ,A 7 ,Aj ) = 4 C x tZ(p3,A3)[w(^%-A7)fi(po,-A7)4-M(po,A7)t7.(A:,A7)] 

MP3, +)w(P3- +) + w(P3, - )w(p 3 , - ) + +)w(fc, +) + u(k,-)u(k, -)] 

Mp2,A g )u (p 4 .A g ) + u ( p 4 , - A f ) u ( p 2 » - A f f ) ] « ( p i , A i ) . 
(3.29) 

Finally, it is necessary to define spinor products which define the spinor al
gebra for the calculation. In the case in which there are massive particles, three 
spinor products are required. These are: 

S+-(pi,P2) = fi+(pi)ti_(p2) 

= (p? + ipDm/m - (p? + ipl)m/m* 

S_+(p1,p2) = [S+-(p2,Pi)]*, (3.30) 

tH = [2p? - 2 P f ] 1 / 2 . 

The connection with the massless case is a smooth one, meaning that as m —• 0 

in (3.30), the spinor products reduce to those for the massless case: 
S(PUPi) = u+(Pi)«-(P2) = -S(p 2 ,P i )* , 

(3.31) 

T(p,,P2) = « - ( p i ) « + ( P 2 ) = [S(p2,Pl)]*. 

These lead to the following relation between the spinor products and the dot 
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product between momenta: 

Wj>l,p2)| 2 = 2pi.p2, (3.32) 

in the massless case. Notice that in the massless case it is only the first two 

spinor products in (3.30) that survive. 

The helicity amplitude can now be presented in terms of these spinor products 

which will allow the diagram to be calculated, in terms of the momenta and 

helicities of the particles, using (3.30). 

M ( k , p j , \ y j \ j ) = 4 C x [S ( j* , f c ,A3 , -A T ) 

X [S(P0yp3, - A 7 , +)S(p 3 ,P2, + , Xq) + S(P0,P3, - A 7 , -)S(p3,l>2, Ag)+ 

S(po, * , - A 7 , +)S(fc,p2, + , A^) + 5(p 0 , - A 7 , - ) S ( k , p 2 , Xq)] 

x 5(p 4 ,pi ,A g ,Ai)-r-

S ( P 3 , f c , A 3 , - A 7 ) 

x [S(po,P3, -A 7 ,4-)5(p 3 , />4, + , -Ag) + 5(po,P3, - A 7 , - ) S ( p 3 , P 4 , -Ag)+ 

S(po, ky - A 7 , +)S(fc,p 4 , + , - A g ) + 5(p 0 , - A 7 , - )S(A- ,p 4 , - , -Ag)] 

x ^(P3 ,P i , -A g ,A i )H-

^(P3?Po,A3,A 7) 

x A 7 , +)5(p3,P2, + , X q ) + £ ( & , / * , A 7 , - ) 5 ( p 3 , p 2 , - , A , ) ] 

x S(p4,Pi ,A f f ,Ai)+ 

5(P3,Po ? A 3 ,A 7 ) 

X [S(fc,p 3, A7> +)^(P3,P4, + , -Ag) + S(fc,p 3 , A 7 , -)5(j)3,P4, -Ag)] 

X S(p2,Pl , -Ag,Al)] . 

(3.33) 

This expression for the helicity amplitude is a function of the momenta of the 

external four-momenta, the one gauge-determining four-momentum and the he

licities of the initial- and final-state electrons, the photon and the quark. A helic

ity amplitude is calculated for each of the possible helicity combinations. Noting 

that the particle helicities can be ± 1 , and that the helicity is not conserved at 

the e7e-vertex but is conserved at the qyq—vertex, the possible amplitudes for 
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this diagram are: 

M(k,pj, A 7 , A i , A2,A3,A 4) A r f ( * , j y , + , + , + , + , + ) 

M(kypj, + , + , + , - , - ) 

j M ( f c , P ; , + , - , + , + , + ) 

M(k,pj, + , - , + , - , - ) 

A * ( * , P i , + , + , - , + , + ) 

«M(*M>;> - > - ) 

M(h,pj, + , - , - , + , + ) 

(3.34) 

This list of helicity amplitudes is completed by repeating the cycle for the negative 

photon helicity case. Numerically, this doubles the contribution from (3.34). This 

process is repeated for each of the four diagrams. 

The next step in the calculation is to coherently add up each helicity ampli

tude for the full set of diagrams. For instance, 

M«~"(k9pj9 + , + , + , + , +) = ] T Mi(k,ph + , + , + , + , +) , (3.35) 

where i runs through the full set of diagrams. These helicity amplitudes are 

imaginary numbers at this stage of the calculation. They are then squared and 

summed over all possible helicity combinations, providing finally the matrix el

ement squared for the process in (3.5). This quantity must be gauge-invariant 

and as the four momentum po is restricted only by the requirement that it is not 

collinear with fc, changing po should leave the matrix element squared unchanged. 

This provides a good self-consistency check. 
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M. 7? 

79 

Figure 3.3 A schematic representation of the 2 —* 3—body phase space 
calculation. 

3.4 T H E P H A S E S P A C E I N T E G R A L S . 

For three particles in the final state, the invariant phase space is given by 

<">* - / m ^ ^ ' ' ^ ' + K ~ n - p " ( 3 ' 3 6 ) 

The three-body phase space is treated in two steps, each of two-body phase space. 

As is shown schematically in figure 3.3, the first step is to consider the production 

of an electron and a composite yq system to which a mass of Miq is designated. 

The next step is to handle the decay of this composite state into a photon and a 

quark. 

For the first step, (3.36) may be written as 

(psf = ( 2 * r 5 | / ^ * ( 4 ) ( P I + P2 - P3 - p,q) 

s 

x j dM*q J d*P,qS(P*q - M*q) (3.37) 

The *yq integrals may be simplified somewhat by making the observation that in 
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(3.37) 

J rf*P7, = J dE„<PP„6(Plq - M*q) 

dEl 

2Eiq 

and Eyq = p*g — M%q. Using (3.38), the expression for the phase space reduces 

to a recognisable two body phase space with some additional integrals: 

( p s ) 3 = ( 2 * r 5 ^ / ^ ¥ ^ ( 4 W P 2 - P 3 - P „ ) 
16 J pi £ j i q S 

X 

S0 So 

s 

(3.39) 

5„ 

At this stage it is possible to simplify matters by going into the ep centre-of-

mass frame in which pj 4- p§ = ^ and then 

( P S ) ' = ( 2 . ) " ^ / " Pi ~ E„)...., (3.40) 

where dQ is a volume element. In this frame |p3| = |P 7 g | = P/» say. Then 

W = VS = (p2, + m 2 ) 1 ' 2 +{p} + M 2 , ) 1 / 2 (3.41) 

and it is easily shown that 

dW W , 

^ = P W ( 3 ' 4 2 ) 

The volume element may be written as dfl = sin0 (10 = dcosQ d<l>. Substituting 

this volume element expression and (3.42) into the phase space expression (3.40) 
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produces 

<psp = / l a ! " / ^ 
" J V J (3.43) 

The next step is to enter the 7g centre-of-mass frame and to repeat this last 

two body calculation. For this step, Miq and Plq are available from the above 

and the phase space for this two-body decay is 

Putting (3.44) in (3.43) a final expression for the three-body phase space is ob

tained: 

3 - J V S J (3.45) 
x / dcosO^d^y. 

The integrals in (3.45) are performed numerically with the V E G A S package. 

To perform the M*q integral, it is necessary to define the upper and lower limits 

of M L . The upper limit is defined by invariant external kinematics: 

Sep = 2 P C . P P = 4 x 30 x 820 GeV\ (3.46) 

where Pe and Pp are the laboratory frame momenta of the electron and the proton, 

respectively. So is denned by a suitable cut-off value and the M*q integral can 

be written as 

^ep dM^ ^ 

/ I w f x M " = / d l a M " x M ^ ( 3 - 4 7 ) 

So So 

In terms of the random V E G A S integration parameter r\, M*q is defined by 

M 2

? = S 0" x S l p , (3.48) 

where 0 < r j < 1. The Jacobian for this change of variable is just JM = ln(S/5o). 
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The cross-section calculation is obtained by convoluting (3.45) and the matrix 

element calculation of the last section with the distribution function of the quarks 

within the proton. I f the momentum of the quark within the proton is p2 = i x P p , 

then 

Sgq = X X Sgp > So + (M7q + m c ) 2 (3.49) 

and the upper and lower limits of the a:—integration are 

&max = 1» 
5p + ( M „ + me)2 (3.50) 

Sep 

In terms of the random V E G A S parameter r2, X = JX x r2 + xm t*„ where J x = 

In the eg centre-of-mass frame, the four-vectors may be defined as follows: 

pi = (p,0,0;[p 2 + m2]?), 

P2 = (-p,0 ,0;p) , 

p 3 = (qcos$,—qsinOsin<l>,--qsin0cos<l>;p<l), 

Pyq = (—qcosQyqsinOsiTKfriqsinOcosfcE-yq), 

where p = \ / i / 2 , and g, p§ and 22 7 9 are defined as 

En = V 5 - p 5 , 

<?2 = ( l > § 2 - m ? ) 

(3.51) 

which lead to 

P 3 " 2VJ ' 

*2 = ^ - < . 
The matrix elements have a pole in the t-channel. This pole can be isolated 
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and absorbed into the phase space expression, i is defined as 

t = ( p \ - Pz)2 = -2pi.p3 + 2ml 
(3.53) 

= -1{p\p%~pqcose) + 2ml, 

where p, q are defined above. Dividing (3.45) by i gives 

2x 
(PS* = 1 1 1 / 9 dcosO f f 
K ] (2nY32y/sJ -2(firt - pqcosO) J 9 J 

- \ ° 0.54) 
_ 1 1 1 f qdy 

(27r)3 32Vs7 - 2 ( a - 6 y ) " " ' 
-1 

where a = p\p\ and b = pq. If the substitution 2 = a — by is made in (3.54) then 

this integral reduces to 

a+6 

a-6 

In terms of the V E G A S parameter, r 3 , this integral may be parametrised as 

follows: 

z = (a + b)r>(a-b)l-r* 

In z = r 3 ln(a + 6) + (1 — r 3 ) ln(a — 6). 

This substitution introduces a Jacobian Jeos = ln[(a — b)/(a + 6)]. 

The final stage is to develop the four-momenta of the photon and quark in the 

final state and this is achieved by going to the yq centre-of-mass frame defining 

the photons angular variables in terms of the V E G A S random parameters as 

cos 0 7 = 2r4 — 1 

and <t>-y = 27rr5. 

This prepares the phase space for computation. 
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The amplitude for the scattering process (3.5) contains additional singulari

ties when the final-state photon is collinear with the outgoing electron and quark. 

However these are not in the 'physical' region, since the experimental set-up that 

is envisaged triggers on a large transverse momentum photon balanced by a large 

transverse momentum (quark) jet, with the electron emerging at small angle to 

the beam. The three final-state particles are therefore always well-separated in 

phase space. To make this more precise a minimum invariant mass cut (which 

has been defined as Mlq above) is imposed on the final-state jq system together 

with a minimum transverse momentum cut on the photon. 

A check for the phase space was performed by using the kinematics of the 

problem and producing the four-vectors and event weights with the phase space 

generator, R A M B O [19]. By building in the identical cuts to this check, it was 

possible to obtain exact correspondence between the two phase space calculations. 

3.5 C A L C U L A T I O N S AND COMPARISONS. 

For the final-state configuration that is of relevance only the third and fourth 

Feynman diagrams in figure 3.2 are numerically relevant. However some care 

must be taken with this statement as only the complete set of four diagrams is 

gauge invariant. In other words, the statement that some diagrams give bigger 

contributions than others is gauge dependent. The first two diagrams do not 

have an intermediate quasi-real photon propagator and are therefore outside the 

E P A interpretation. 

Gauge in variance is only slightly broken by considering this subset of Feyn

man diagrams. This has been checked in the following manner. The structure 

function and phase space weight of the calculation were switched-off, though the 

phase space subroutine still produced the four vectors of the external particles, 

which therefore satisfied the mass-shell and conservation of momentum condi

tions. The ratio 

M(diagram$l + 2) + M(diagrams3 + 4) 
M(diagrams3 + 4) ' * * J 

was considered where the diagram numbers refer to their numbering in figure 3.2. 
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Deviation from 1 in the quantity in (3.56) provides a measure of the breakdown of 

gauge in variance. The gauge-defining vector, po? is a general, massless four-vector 

and was parametrised in terms of (r, 0, <f>). These parameters were then allowed 

to vary in incremental steps of the order of 10~ 2 through their full range and no 

deviation from one in the ratio (3.56) bigger than 0.1% was found. However, as 

expected, when po = fc, the photon four-momentum, the matrix element diverges 

because of the (po.k) pole in (3.23). However, if this pole is approached in 

cos# increments of 1 x 10~ 6 , keeping cos<£ fixed on the cos0 of the photon, no 

divergence is encountered and the ratio in (3.56) is unaltered. If this incremental 

step is further decreased to 1 x 10""7 then the divergence is encountered but the 

ratio is still consistent with gauge invariance around this divergence. Thus, for 

this set of gauges, diagrams 1 and 2 in figure 3.2 may in practice be ignored. 

For the actual cross section calculations the MRS1 set of quark distributions 

is used [20], with AQCD — 107 MeV, and the factorisation scale is set equal to 

the transverse momentum of the photon. Four flavours of quarks are assumed. 

These parameters are held fixed throughout the analysis. The effect of different 

choices of parton distributions and of different scales has been studied for the 

E P A cross section in reference [5]. 

The first step was to obtain some indication of the relative accuracy of the 

three usual choices for n in the electron 'structure function' in (3.18) in the case 

in which the final state electron is untagged. The invariant mass of the final-

state 7g—system is given a lower cut, Miq = y/s^ > 20GeV. The results of 

this calculation are presented in table 1. The uncertainties, error(l), error(2) 

and error(3) refer to the choices n = \ / I / 2 m e , t) = Ee/me and rj = y/S/2me 

respectively. Note the s denotes the yq subprocess centre-of-mass scattering 

energy, i.e. s = s y q . 

The results indicate that in the case of the untagged final-state electron, 

the y/S/2me choice for rj produces the smallest error in the cross-section. This 

is not perhaps surprising since \ f S / 2 represents the absolute maximum of the 

transverse momentum of the outgoing electron. It also has the advantage of 

being Lorentz invariant. From the results of reference [5] the total cross-section 

for pj. > 10 GeV/c is an order of magnitude larger than that with pj* > 20 G e V / c , 
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Table 1 

PT % error(1) % error(2) % error(3) 

10 -19.5 -13.5 -0.5 
20 -19.1 -19.1 -6.9 
30 -18.5 -21.0 -9.1 
40 -17.9 -22.0 -10.2 
50 -17.2 -22.5 -10.9 
60 -16.4 -22.8 -11.0 
70 -15.2 -22.8 -11.0 
80 -14.7 -22.8 -11.0 

and this is where the EPA with T) = y/S/2rne has a very small error. The EPA 

does appear to get slightly worse at large values of j>J, but the corresponding 

cross-sections are too small to be measured experimentally . 

The approximate calculation consistently underestimates the exact cross sec

tion. This is presumably because with exact kinematics and matrix elements 

the quasi-real photon has an effective 'intrinsic' transverse momentum which can 

enhance the transverse momentum of the final state photon, giving a harder 

spectrum and a larger cross section at large pj>. It may be concluded at this 

stage, therefore, that for untagged electrons the choice t\ = y/S/2me gives the 

best approximation to the large p j cross section, and that the residual errors are 

significantly smaller than the theoretical uncertainties in the photon-proton cross 

section. 

It is interesting to investigate the energy dependence of the accuracy of the 

EPA in the untagged case. This has been performed for two values of the mini

mum transverse momentum of the photon, 10 GeV/c and 50 GeV/c. In the first 

instance, the energies of the incoming electron and proton are set equal to each 

other and the invariant mass of the Miq system is maintained at 20 GeV/c. The 

percentage errors are obtained, as in the last case, via 

M a(approx) — a( exact) . mm. %error = —f- }- x 100% (3.57) 
a(exact) 

and the results are presented in figure 3.4. It is clear that the 17 = Ee/me = 
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Figure 3.4 Percentage error from the equivalent photon approximation in 
the process ep — epf at high energy. The error is shown for two values of the 
final state photon minimum transverse momentum (10 GeV/c (solid curves) 
and 50 GeV/c (dashed curves)) as a function of the scattering energy, in the 
electron-proton centre-of-mass frame. 

\ZS/2m c choices fare better in this energy range and become more efficient with 

increasing energy. With the higher />J cut the error increases to about —10%, 

indicating a weak dependence on the subprocess scattering energy. Note that the 

choice TJ = y/l/2m€ is everywhere less accurate and gets steadily worse as the 

energy increases. There is a slight improvement with the higher cut, simply 

because In r) is larger. 

To investigate this further the calculation was repeated, setting Ep = 820 GeV 
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so as to examine the dependence of the rj = Ee/me choice on the electron energy 

for more HERA-like parameters. The results are then surprisingly good. The 

choice rj = y/S/2mt presents errors which are approximately -0.5% and this error 

is constant through the energy range considered. The results of this comparison 

are shown in figure 3.5. The loss of Lorentz invariance when Tf = Ee/me is chosen 

is demonstrated by the fact that the behaviour of the Ee/me curve in this case is 

significantly different from the behaviour of the corresponding curve in figure 3.5. 

This clearly demonstrates that the parameter rj cannot be chosen independently 

of the other four-momenta in the scattering process. 

By a change of variables, the In 17 term in the EPA may be recast in terms of 

an integral over the angle of the outgoing electron: 

O ( l ) 

— ~ 21n(??) + ... (3.58) / & + 0(*r2) 
0 

in the high energy limit. If the outgoing electron can be detected at small angle 

then the limits in this intergral are replaced by the maximum and minimum 

scattering angles. Then providing 1 >̂ 0max > Q > Omin ^ the logarithm of 

ij is replaced by ln (0 m a i c / 0 m , n ) , i.e. 

"max n 

e2. 
mtn 

With this replacement of the logarithm in the electron structure function (3.17) 

a measure of the accuracy of the EPA in the case of a tagged electron may 

be obtained. Again the case of a minimum photon transverse momentum of 

Py. > 10 GeV is taken with the energy parameters of the HERA collider. The 

results of the calculation are presented in table 2 for various ranges of the electron 

scattering angle (in milliradians). 

In the milliradian angular range the approximation again works remarkably 

well. At large scattering angles the approximation breaks down, as expected, 

but the error is still not particularly large. Note that the last range in Table 
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Figure 3.5 Percentage error from the equivalent photon approximation for 
a fixed value (820 GeV) of the proton energy and the final state photon 
minimum transverse momentum (10 GeV/c), as a function of the electron 
energy. The errors corresponding to three different choices of»/ are displayed. 

2 corresponds to scattering angles between about 5 and 57 degrees. At very 

small scattering angles the approximation also breaks down, simply because the 

inequality 0m,*n » 17"1 is no longer valid. The choice 77 = y/s/2me gives if* ^ 

10~6 at HERA energies and therefore a deviation may be expected when Omin 

approaches this value. It would be straightforward to generalise the logarithm 

to incorporate a dependence on both rj and the scattering angles in order to 

interpolate between the tagged and untagged situations. Note that the EPA 

cross sections are the same for each of the angular ranges in Table 2, since the 
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Table 2 

@maz % error 

0.01 0.10 16.9 
0.10 1.00 3.6 
1.00 10.00 0.6 

10.00 100.00 1.6 
100.00 1000.00 27.5 

logarithm in the electron structure function is the same (ln(10)) in each case. 

The energy dependence of the EPA in the tagged case is investigated in the 

same way as for the untagged electron. The efficiency of the approximation is 

checked for three 0 regions and these results are presented in Table 3. Again, the 

calculation is performed with a minimum of 10 GeV/c, the angular ranges are 

in milliradians and the errors are in percentages. 

Table 3 

y/S(GeV) 1 - 1 0 10-100 100-1000 

40 6.0 1.1 5.2 
80 2.4 0.7 10.4 

120 0.8 0.8 13.6 
160 0.6 0.8 16.3 
200 0.4 0.8 19.8 
240 0.3 0.8 23.9 
280 0.3 0.9 26.2 
320 0.3 0.9 28.1 
360 0.3 1.1 30.0 

These results indicate that the EPA in the case of the tagged electron is very 

stable with respect to energy in the range S = [1,100] mrad. However, this is not 

very interesting for HERA parameters (at the early stages of HERA operation). 

The minimum tagging angle at HERA will be in the region of 6deg [21]. To 

obtain a measure of the efficiency of the EPA (for the tagged case) in this region 
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Table 4 

9min r̂aax % error 

6deg 8 deg 5.1 
8deg 10 deg 7.4 

lOdeg 12 deg 9.7 
12deg 14 deg 12.6 
14deg 16 deg 15.6 
16deg 18 deg 17.9 
18deg 20 deg 23.8 
20deg 22 deg 28.4 
22deg 24 deg 30.9 
24deg 26 deg 35.7 
26 deg 28 deg 44.0 
28deg 30 deg 46.4 
30 deg 32 deg 48.5 

the total cross-section is calculated in two-degree bins in both the exact and 

approximate cases and then compared. These results are contained in table 4. 

The EPA is efficient to within 10% in the small 6 region and breaks down in 

the large 9 region. In this case as well, the EPA overestimates the total cross-

section by the percentages in table 4 and this grows with Qmin. 

3.6 C O N C L U S I O N S . 

The accuracy of the equivalent photon approximation at HERA energies has 

been investigated by performing an exact calculation of the cross section for large 

transverse momentum photon production and comparing it with the approximate 

calculation using different choices of the variable 17 which enters in the electron 

'structure function'. It has been shown that for the untagged case the choice 

77 = y/s/2me works very well over a wide range of scattering energies and photon 

transverse momenta. The residual errors are significantly smaller than (i) the 

other O(10 — 20%) theoretical uncertainties due to higher order perturbative 

corrections and parton distribution uncertainties and (ii) the contributions at 
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smaller p j from the quark and gluon content of the quasi-real photon. It would 

be expected that these conclusions will also be valid for other hard scattering 

processes, such as the the production of large transverse momentum jets. 

In the study of processes such as deep inelastic Compton scattering at HERA, 

the use of the EPA will be a useful tool in producing a realistic spectrum of 

photons in the initial state. This approach will be an alternative one to that 

used by Aurenche et at. [10], in which they adopt an average photon momentum. 

As has been mentioned above, the smallest angle at which the final-state elec

tron will be tagged is about 6 deg. Above this angle, the uncertainty introduced 

by the use of the tagged-EPA is well-established and up to an angle of 12 deg 

this is < 10%. If the HERA detectors can cope with tagging at even smaller 

angles then the level of uncertainty introduced will be significantly smaller. Be

tween 0.5 deg and 5 deg the uncertainty reduces to 1.6% and this improves at 

even smaller angles. The dependence of the tagged EPA on y/S is very small 

indeed. 
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4. Photoproduction of High Transverse 
Momentum Photons at H E R A 

4.1 Introduction 

As early as 1969, Bjorken and Paschos [1] suggested that the study of deep 

inelastic Compton scattering was a 'good way to find out about the internal 

structure of the proton1. Ever since then there has been great interest in the 

subject and many studies have been made of it [2-5]. Interest in the subject 

was renewed when plans were published for the building of the ep—collider called 

HERA, in Hamburg. Experimentation at HERA is scheduled to begin in 1990 

with two major detectors, ZEUS and HI . The scattering of (almost) real photons 

off protons will be a significant fraction of the physics experimentation at the new 

collider. 

In general, the study of hadronic scattering processes with large px in the 

final state is a good source of information relating to the short-distance struc

ture of the hadrons. However, there is a multitude of par tonic processes that 

contribute to these scattering cross-sections and very often it is difficult to ex

tract unambiguous conclusions from them. If the interactions that are considered 

include photons as one of the external particles, then the number of contribut

ing subprocesses decreases significantly. The situation improves further if the 

process that is considered is the photoproduction of large transverse momentum 

photons, so that there are photon couplings in the initial and final states. The 

unique feature of the photon as compared to the hadron in the initial and/or final 

states is that it has a pointlike coupling to the part on s. It couples to the quark 

charge and so different subprocesses have different weightings and so there is the 

possibility that the different contributions to the cross-section may be untangled. 

An additional advantage in the utilization of deep inelastic Compton scattering 

as a probe is the smaller effect of the intrinsic transverse momentum, which for 

photoproduction gives rise to smaller corrections than for hadroproduction. 

The (almost) real photon beam is defined in terms of the four momentum of 

the final-state electron. Then, in terms of the initial and final electron energies 
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Figure 4.1 Deep inelastic Compton scattering. 

Figure 4.2 The Born-level diagram 7 + q —* 7 + q. 

and the scattering angle of the electron, it is possible to write the following 

relations: 

where 2£7 is the photon energy and Q 2 the invariant mass of the virtual photon. 

For small angles the expression for Q 2 may be written as 

To obtain a measurement of Q , the values for Ef and 9 have to be determined 

experimentally: the energy via calorimetry and the angle via solid-state detec

tors, perhaps. According to Engelen [6], these solid-state detectors will allow a 

measurement of 9 down to 7 milliradians. However, as has been mentioned in 

chapter 2, this minimum angle (during the initial experiments) is more likely to 

be in the region of 100 milliradians. In this study it is assumed that tagging will 

not be efficient at small angles and the untagged EPA is used (see chapter 2). 

E-y = E{ — Ef 

Q2 = 2EiEf(l - cos 9), 
(4.1) 

Q 2 = EiEfB2. (4.2) 
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Deep inelastic Compton scattering is generically described by the process 

7 + proton —> 7 4- X. (4.3) 

In this study, the basic subprocess (see figure 4.2) 

7 + <?-*7 + g (4.4) 

is examined together with the QCD corrections up to 0(aa). These QCD-

motivated corrections may be divided into two categories. The first includes all 

the additional contributions to the basic subprocess in (4.4) at leading-logarithm 

(or L L ) level. The set of processes is shown in figure 4.3 are obtained by con

sidering either the photon structure function or the quark- or gluon-photon frag

mentation function (see section 4.2). A further set of these processes contains 

both the photon structure function and the fragmentation function (see figure 

4.4). The final state signals in these L L processes are identical to the signals of 

the basic subprocess in (4.4). These processes have been considered by various 

authors [4,5] and several references will be made to these papers in the rest of 

this chapter. An additional 2 —• 2 process that produces an identical final state -

that is, a jet and a photon - is the gluon-photon fusion graph that proceeds via a 

quark box (see figure 4.5). This process has been studied by Combridge [7] and 

is included in this study. 

The third category of processes represents the next-to-leading order in a8 

corrections to the process in (4.4). These QCD corrections (see figure 4.6) are 

sufficiently straightforward to permit the inclusion of all the graphs up to 0(as) 

and these are characterized by the processes 

with a photon and two jets in the final state and the interference between the 

0(a2

s) virtual diagrams and the basic Compton subprocess. In chapter 1, it was 

seen that a similar high-pr hadronic interaction was extremely complicated in 

7 + <Z->7 + 9 + 0 
(4.5) 

7 + 0 - > 7 + tf + Qy 
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a b) (c) 

(d) (e) 

Figure 4.3 Leading-logarithm diagrams that contribute to 0 ( a 2 ) with the 
final state quark fragmenting into a quark and photon OR the hadronization 
of the initial-state photon. 

(b) (a) 

(c) 

Figure 4.4 Leading-logarithm diagrams that contribute to 0(o ) with the 
hadronization of the initial-state photons AND the fragmentation of the 
final-state quark into a quark and a photon. 

next-to-leading order and this indicates the usefulness of these initial-state and 
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Figure 4.5 The box diagram 7 + gluon -* 7 + gluon. 

>-<>-<>-^ 

!b) 

Figure 4.6 The diagrams that contribute to next-to-leading order in a«. 

final-state photon interactions. These graphs have been calculated by Duke and 

Owens [4] and by Aurenche et al. [5] and their results have been used in this 

study. 
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Aurenche et al. [5] have performed cross-section calculations of this process 

explicitly for HERA. However, they have used an average energy of 16 TeV for the 

photon beam. An alternate approach has been used in this study. The equivalent 

photon approximation is used to produce an energy spectrum of the photons for 

the kinematic parameters of HERA's experiments and the conclusions of the last 

chapter are utilized to provide some idea of the amount of uncertainty that this 

introduces. 

The plan of this chapter is as follows. In section 4.2, the photon structure 

function is investigated and some idea of the validity of its application is pre

sented. The q —* q~f fragmentation function is also described in this section. The 

kinematics of the problem are dealt with in section 4.3, both for the leading and 

the next-to-leading order calculations. This is important because of the extremely 

asymmetrical nature of HERA's kinematics. In section 4.4, the subprocess ma

trix elements and the structure function definitions for the 0(as) corrections are 

discussed. The numerical calculations are presented in section 4.5 and finally, 

some conclusions are drawn in section 4.6. 

4.2 The Photon Structure Function 

It is a well known fact that real photons, in most cases, behave as if they have 

hadronic properties; that is, the photons first hadronize and then interact with 

the partons in the proton. The corresponding Feynman diagrams are shown in 

figures 4.3 and 4.4 and it is clear that the final states are indistinguishable from 

that of the basic Compton subprocess if the photon beam fragments are of low 

energy and experimentally indistinguishable. This is true if the incident photon 

transfers a large fraction of its energy to the large-py final-state particles. This 

transfer is estimated to be in the region of 80-100% of the incoming photon's 

energy. 

The hadronic properties of the photon are described by the QCD-improved 

parton model on condition that the photon is being investigated at large Q 2 , 

which is usually the case when the final-state particles have a large invariant 
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mass or when final state has a large transverse momentum. In the case of any 

hadron the structure of the hadron is described by distribution functions qi(x9 Q2) 

which provide a measure of the probability of finding parton i in the hadron with 

momentum fraction x when the hadron is probed at scale Q2. It is well known 

that in the hadronic case, the dependence of the qi on the scale is described by 

the Altarelli-Parisi equations, which are solved with the requirement of an initial 

condition of the distribution at some scale QQ (obtained from experiment), x 

and Q2 dependent parametrizations are then obtained for the parton structure 

of the hadron. 

However, in the case of the photon structure function this procedure is some

what more complicated. Witten [8] has shown that as Q2 —• oo, the quark and 

gluon distributions within a photon are exactly calculable. This deduction was 

continued to two-loop order by Bardeen and Buras [9]. DeWitt et al. [10] de

rived the leading-order evolution equations for the Q2—evolution of these parton 

distributions and the asymptotic solutions to these equations lead to unphys-

ical divergences at x —• 0, and it has been shown [9] that the degree of the 

pole increases with the order in perturbation theory. Gluck and Reya [11] sug

gested that, if distribution functions at some fixed Q\ were introduced such that 

F^Xy Q2) were finite for all a*, then the solution of the evolution equations would 

produce a finite F% at all values of Q2. These functions at QQ are unknown and 

this implies that in QCD only the Q2 dependence of the distribution functions 

will be known. It has been suggested [12] that the only parts of the distributions 

at QQ that should be retained are those parts that are necessary to regulate the 

divergences at small x. But the Q2—dependence of this part of the distribution 

functions is small, it is not clear that this procedure will work. Theoretically, it 

is not yet determined whether the asymptotic solutions for the distributions are 

reliable. Gluck et al. [11] have indicated that they are unreliable if x < 0.2 or 

Q2 < 500 GeV2 and for many applications one or both of these conditions are 

satisfied. Drees and Grassie [13] obtained new parametrizations using the full 

solution of the inhomogenous evolution equations, which are free of divergences. 

The L L contributions are of the same order (in a and as) as the basic Comp-

ton subprocress since the photon structure function has a factor of a/aS(Q2). In 
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this study only the asymptotic parton model solution and the Duke and Owens 

[4] parametrization are used for the parton distributions within the photon. The 

parton model prediction for this asymptotic quark distribution function is the 

following simple expression 

Gqh(x, = HQ2/Ahco)4§;NC X [* 2 + (1 - x ) \ (4.6) 

where eq is the electric charge of the quark and Nc is the number of colours. 

Of course, there is no analogous expression in the parton model for the gluon 

distribution in the photon. The Duke and Owens parametrizations for the quark 

and gluon distributions are presented in the appendix of reference [4]. 

The non-perturbative part of the photon structure function is usually de

scribed through the V D M (or vector dominance model). I f this part of the 

photon structure function has to be taken into consideration a great amount of 

care should be taken since the constituent partons within the mesons have an 

intrinsic transverse momentum which wil l be of the order of 2 GeV/c. At SPS 

energies the V D M contribution is negligible [13] and it may be safely assumed 

that at HERA energies this effect is small enough to be ignored. 

The q —> 7 fragmentation function has also been calculated in the naive 

parton model [8,14] and is given by 

D,/q(z, Q>) = HQV^QCD)^ x LtSLllL. ( 4 . 7 ) 

Again, Duke and Owens [4] have performed a parametrization for this function 

and this is presented in the appendix of reference [8]. 
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4.3 The Kinematics 

The leading order case 

The new ep collider at DESY examines the collisions between a 30 GeV 

electron beam and an 820 GeV proton beam and i t is clear that the kinematics 

are very asymmetrical. For this reason, i t was decided to perform the calculation 

in the laboratory system so that the rapidity distributions of the calculated cross-

sections reflect this asymmetry. This discussion is divided into two parts: one 

for the 2 —• 2 processes and the next for the 2 —> 3 processes. 

The general expression for the 2 —> 2 differential cross-section is given by 

7*) 

= Y , I ^ « ^ » ^ ^ 7 X G 7 / e ( * T ) G v p ( * » 5 Q 2 ) G a / 7 ( * « , Q J ) 2 3 7 / , ( Z e , Q 2 ) 

x - ^ ( a + b->c+ d)S(s + < + «), 

(4.8) 

where S, t, and u are the partonic variables defined later in terms of the four-

momenta of the external particles. As usual, G^p(x^ Q2) represents the distribu

tion function of parton b with momentum fraction x\> of the proton at momentum 

scale Q 2 . Ga^(xajQ2) is the measure of the distribution of parton a within the 

initial-state photon with momentum fraction xa of the photon momentum and 

D1fq(zc^ Q2) is the final-state quark to photon fragmentation function where zc is 

the momentum fraction of the fragmented photon. Finally, Gy/e(xd) is the elec

tron 'structure function' based on the equivalent photon approximation, which 

has been studied in chapter 2. 

There are four classes of subprocesses that must be included in (4.8). 

(1) . a = c = 7 and b = q(q). This process is the Born Compton process at 

0 ( a 2 ) . In this case, the photon structure function and the quark fragmentation 

function reduce to 

Glh{x) = D l h = 6(1 - * ) . (4.9) 

(2) . a = 7 and 6,c = q(q) or g. These processes involve the fragmenta-
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tion of the final-state quark (or antiquark), into a quark (or antiquark) and a 

photon and are of 0(aa8). However, the fragmentation functions D y f q g are of 

0(a/a8) leaving these processes with a net contribution of 0 ( a 2 ) . In this study 

the processes which depend on the gluon fragmentation are ignored. 

(3) . a and b=q(q) or g. These processes involve the photon structure function 

which is at 0(a/ag) and this again leaves the net contribution of these processes 

at 0 ( a 2 ) . 

(4) . a, 6, and c = q(q) or g. These processes involve convolution with both 

the photon structure functions and the fragmentation functions and are of order 

a 2 x ( a / a , ) 2 , giving 0 ( a 2 ) . Previous studies have indicated that these processes 

wil l possibly only be important at very small pp and they have been ignored in 

this study. However, their contributions are considered in a study being carried 

out presently [15]. 

The discussion of the kinematics for the 2 —• 2 processes is considered class 

by class. In the following, the generic process is given by 

a + b c + <f, (4.10) 

where a represents the photon or the photon-emitted parton, b is the proton-

emitted parton and c is the final state photon or parton that fragments. The 

partonic variables are defined in the usual way as: 

s = (Pa+ Pb)2 

* = ( P a - P c ) 2 (4.11) 

U = (Pb-Pc)7-

In the basic Compton process in class (1) (see figure 4.2), the relevant four-

vectors are 
pa = (0,xePe;xePe) 

Pb = (0,-xpPp;zpPp) (4.12) 

pc = ( P x ? P T s i n l i y T 5 P r c o s l l 2 ' 7 ) » 

where xe and xp are the momentum fractions of the electron and proton carried 

away by the photon and parton, respectively. The partonic variables in terms of 
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(4.12) axe 

u = -2a : e P c pJexp(-y 7 ) (4.13) 

i = -2xvPpp\ exp(y 7 ), 

where P e and Pp are the energy of the electron and proton, respectively. Substi

tuting these into the delta function in the cross-section expression (4.8) produces 

lower limits for xt and xp and upper and lower limits for y1 in terms of the 

energies of the electron and proton and p j . These limits are: 

2Pppe - J*P*P? 2Pppe + J i P f p ; 
V < exp(y 7) < — V -

IPVPT ~ 2PPPT 
PePlexpj-y-r) < x < ( 4 1 4 ) 

2P PPC - Ppplexp(yi) ~ P ' 
XpPpplexp(yf) < x < 1 

2x pPpP e - P epJexp(-t/7) 

This £ function in (4.8) also produces a factor in the denominator of the cross-

section expression given by 

4*pPpPc - 2Ptp\exp(~yry ^4*15^ 

The kinematic limits for the contributions in class (2) are obtained in a similar 

fashion. However, the additional fragmentation parameter, z has to be taken into 

consideration and this is demonstrated now. In this case the relevant four-vectors 

are 
Pa = (0,OyxePe;xePe) 

Pb = (0,0, -zPPP; XpPp) ( 4 > 1 6 ) 
prs inhy prcoshy 

Pc = (0, pr, —-—; ). 

This leads to the following for the partonic variables: 

£ = \xtxvPtPt 

£_ -2xePeprexp(-y) 
z 

-2xpPpprexp(y) 
u = . z 

(4.17) 

Substituting (4.17) into the S function in (4.8) produces exactly the same upper 
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and lower limits for the rapidity and for xp. For z and xt they are 

XpPpPT exp(y) + PePT exp(-y) < Z < 1 

2 X f e P p , , " ' " (4.18) 

2xpz:FcPp - PcPTexp(-t/) 

where in this case the rapidity and transverse momentum refer explicitly to the 

rapidity and transverse momentum of the parton c which fragments into a nearly 

collinear parton and photon. As in the previous case, the 6 function in (4.8) 

produces a factor in the denominator of the cross-section expression given by 

AxpPpPe - 2P e prexp(-y) /2* ( 4 * 1 9 ) 

Class (3) contributions are slightly more complicated. In these diagrams three 

momentum fractions appear, the two which have been introduced in classes (1) 

and (2) and the momentum fraction of the parton in the photon, designated as 

Xy. The effective parton content of the electron (which produces the hadronizing 

photon) is given by 

l 

Gq/e(*) = J dx7dxeGy/e(xe)Gqtg/1(xy)6(x - xyxe), 
\ (4.20) 

dx 

where 

xe = — < 1 (4.21) 
2% '1 

and the lower limit of the x7— integration is given by ar7 > x. x is some function 

/ of the other kinematic variables. The ful l expression for the differential cross-

section for the terms in class (3) is given by 

l 
da 
,2 A„ J DXPG1,9/p(XP> j dxGM/e(*> Q2)$(* + U + * ) . . " (4.22) 
T 

xmtn 0 

dp\dy 

By substituting (4.20) into (4.22) and by performing the a:-integral the following 
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expression for the cross-section may he obtained 

l 

2 mm 
' , (4-23) 

/

dx 
~ G j / e ( ^ e = g(xp,Xy,...))Gqigh(x^Q2).... 

The implementation of a Monte-Carlo simulation program, with VEGAS, is 

straightforward for the terms in classes (1) and (2). However, in the case of class 

(3) care has to be taken. The delta function in (4.20) produces the relationship 

xe = l&lA. (4.24) 
x1 

I f further, the fraction x 7 = / r , where r is a VEGAS random number between 0 

and 1, then (4.24) may be written as 

X e * 7 (4.25) 

= / ( a : P , . . . ) 1 - r . 

This change in variable produces the Jacobian dx1/x1 = d\nx1 = In /d r . The 

limits for a:7, xv and the rapidity are identical to the limits for the calculation in 

class (1). 

The phase space configuration for the box diagram is identical to that for the 

basic 2 —• 2 Compton diagram. 

The next-to-leading order case 

There are 2 —» 2 and 2 —* 3 processes that contribute to the cross-section at 

order-a 2a, and the general expression for the cross-section is 

« * ( Q 2 ) i 
^ 2 . s 

\Gq,p(xh,Q2)K(sXu,Q2) + Gg/p(xh,Q2) x A " ( U ( 4 ' 2 6 ) 

X G1fe{Xa) x 0(S + f-M), 

where K and K1 are the next-to-leading order matrix elements and Q2 is the 
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QCD scale which we discuss in section 4.5. The treatment of the 2 —• 3 body 

kinematics here follows closely that of Aurenche et al. [5]. 

The kinematics for the two-body phase space are as for case of the basic 

Compton term. Now consider the process 

Pa + Pb -> Pc + Pd + Pc (4.27) 

where pa and pc are the momenta of the initial- and final-state photons, respec

tively. I f 32 is the invariant mass of the system recoiling against the photon in 

the final state, then the partonic variables may be described as 

* = (Pa + Pb)2 

t = (Pa - Pc)2 (4.28) 

U = S2 — S — t . 

Then i t is possible to introduce rescaled variables 

t 
V = l + T 

S 
T 

—U 
w = 

(4.29) 

s + i 

S + T ' 

where 5, T and U are the usual hadronic variables. 

The momentum fractions, xe and xp may be restated as 

VW 
Xe = 

VW 

1 — V 

(4.30) 
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which permits (4.26) to be rewritten as 

v 1 
Ec-z— =— 1 ~ I dv I dwxlxlv[v(l — v)w] 

dpc *p\ J J 
VW VW/v 

* [Gq/p(xPrQ2) x A ' ( 5 , f , « , Q 2 ) + G,/p(x„Q2) x K'(iJ,u,Q2)] 

(4.31) 

This expression has been checked against the corresponding expression in refer

ence [16] (for pp 2 —• 3 cross-sections) and found to be identical. The integration 

limits in (4.31) are obtained in the usual manner by utilizing the 0—function in 

(4.26) : 

s+i+u>0 

and this produces the relevant limits. The implementation of the program VE

GAS in this case is straightforward. 

4.4 The Matrix Elements 

The ful l set of matrix elements (except that for the box diagram) are given 

by Aurenche tt al. [5] and these have been checked against those of Duke and 

Owens [4]. In the former, these matrix elements are calculated in n-dimensions 

and in this summary they are presented only as functions of 5, v and w. To make 

contact with (4.8) i t is noted that 

dv $ dt 

The Born diagram 

The hard-process cross-section for the Born term (shown in figure 4.2) is 

* _ * ! £ ! x I ± i ! ( 4 . 3 2 ) 

dv s v 

where eq is the charge of the quark. The fact that this process couples to the 
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fourth power of the charge of the quark means that i t may be used to determine 

the charge of the quarks. 

The quark fragmentation diagrams 

These processes, shown in figure 4.3a,b involve a photon and a parton in the 

initial channel. The hard-process in diagram (a) is 

7 + + (4.33) 

where the quark (antiquark) may fragment into a quark (antiquark) and a photon. 

The matrix elements for the hard-process are given by 

—(J , v) = r - 1 X + (4.34) 
dv s L l — v v J 

The hard-process in diagram (b) is 

7 + q(q) -> q{q) + <?, (4.35) 

This process appears to be identical to the basic Born process with the final-state 

photon replaced by a gluon. However, this is not true. A t «-* u transformation is 

required since in the Born diagram the final-state photon corresponds to particle 

c i n a + 6—> c + d whereas in this diagram the gluon corresponds to the particle 

d. The hard-process cross-section is then given by 

i f f 2iraase2 i + ( i _ „ J * 

_(,,„) = —r^Cf X [ ± _ 9 ' ] . (4.36) 

(4.34) and (4.36) are then convoluted with the proton structure functions (or the 

structure functions of the isoscalar target in the case of the NA14 data), with 

the electron 'structure function' and with the quark —• quark -|- 7 fragmentation 

function. I n this study, the gluon —* gluon + 7 fragmentation processes have 

been left out as they are only expected to contribute at at very small pp. 
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The photon structure function diagrams 

The hard-processes for these terms, shown in figure 4.3c-e, involve a parton 

derived from a photon (particle (a)) and a parton derived from a proton (particle 

(6)). The process indicated in diagram (c) is 

q + q -> 7 + ^ (4.37) 

This process is the time-reversed reaction of (4.33) and, up to colour factors, has 

the identical matrix elements, given by 

dv Nc « L l — v v J 

The process in diagram (d) is 

q(q) + 9 - 7 + q(q)- (4.39) 

This is the time-reversed process of (4.35) and again simply requires an adjust

ment to the colour factors. The hard-process cross-section is given by 

d*,* v *<xcL9e\ l + ( i - t , ) 2 
—(a, v) = - r 2 x [ , (4.40) 

where Nc is the number of colours. 

Finally, the process in diagram (e) is 

9 + q(q) - 5(5) + 7- (4.41) 

As in previous cases this process is identical to the Born diagram up to colour 

factors and a t <-* u change. I t is given by 

^ x [ i + f z ^ J (4.42) 
dvx Nc* 1 1 - v 1 

As usual, these contributions are folded in with the proton (or isoscalar tar

get) structure functions the electron 'structure function' and the photon structure 

functions. As has been mentioned previously, those diagrams that contain both 

the photon hadronization and quark fragmentation have been ignored in this 

study. 
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The box diagrams 

The hard-process cross-section for the box diagram is given by 

! l = T ^ ; [ D M , A l ' ] x C x F , (4.43) 

where the sum runs over all particle helicities and C, F are the associated colour 

and flavour factors for the subprocess. The factor of j is a result of averaging 

over the initial-state helicities. 

The relevant subprocess for this study is 

7 + 9 -» 7 + 9> (4.44) 

via a quark box (see figure 4.6). For this diagram the C in (4.43) is given by 

C =^Tr(XaXb)Tr(XaXb) 

= i x 26ab x 26ab <4'45) 
ID 

= 2. 

A factor of 1 /8 must be included to average over the initial gluons. The flavour 

factor F in (4.43) arises out of the coherent sum over the different flavour loops 

and this is given by 

f = ( 4 - 4 6 ) 

N, 

Putting (4.45) and (4.46) into (4.42) the following expression is obtained for 

J V / * 4 

da 1 l r r t l . l 2 1 2 100 , A A 0 f S 

In this study, the matrix element squared has been constructed from the basis 

of linear polarisation states [7,17], I n the following ' 1 ' refers to the polarisation 

direction perpendicular to the scattering plane and by '2' is meant the direction 
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of the vector 2 = k x 1/lb, where k is the 3-momentum of the photon. The matrix 

element squared for the box diagram is given by 

£ \MX? = p + 2\Mn^n? + |A4 2 2^ 2 2 | 2 + 2 |A< 1 2_i 2| 2 + 2|JW 1 2_ 2 1| 2. 

Fontannaz and Schiff [17] obtain this expression by invoking time-reversal in-

variance and symmetry relations. The various helicity amplitudes are given by 

Combridge in reference [7], except for the 12 —• 21 contribution which is easily 

obtained from symmetry arguments to be 

This completes the hard-process cross-section, which as usual is convoluted with 

the gluon distribution function within the proton and the photon distribution 

within the electron. 

The 0(a9) contribution 

In this section a short description of the calculation performed by Aurenche 

et al. [5] is given. Much of this discussion follows and supplements the discussion 

on the 0(at\) calculation of Ellis et al. [18] and Arnold and Reno [19] in chapter 

1. The generic forms of the processes that contribute to the 0(a8) cross-section 

are 

A 
(4.48) 

A4i 2— 2i (£,£,«) = A4M-»I3(J , 

7 + Q -> 7 + X> 

7 + 9 -> 7 + X, 
(4.49) 

and the cross-section expression that is used is 

(*e)E jdx* \G9/P(XP) 
da / dx.G E 

<f3k 

8 da 
(--^(7 + q -> 7 + q)&{* +1 + «) + X 

7T dt 
a8 1 k'($,t>u) 
27T7T S 

a8 1 k(syi9u) 
2irn s 

Q(s,iu)) 

(4.50) 
k refers to the 0(a8) QCD-improved hard cross-section with 7 + 9 in the incoming 
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channel. The contributions to k are twofold. The 0(a2) diagrams in figure 4.6 

interfere with the zeroth-order basic Compton term to produce the virtual 0(as) 

contribution to (4.50). The real diagrams in figure 4.6 constitute the rest of k 

and they are of the form 

The diagrams that contribute to k' are also shown in figure 4.6 and they have 

the form 

7 + 0 - » 7 + g + $. (4.52) 

Diagrams that are of higher order in a8 but which contribute to order as when 

convoluted with the photon structure function are ignored. I t has been argued 

[4,5] that these contributions are small. 

In (4.50) k and k1 are calculated perturbatively. To extract the fu l l 0(as) cor

rections from k and k1 the factorization theorem (discussed in chapter 1) has to be 

invoked. This involves defining the choice of parton distribution functions (with 

which the hard-process perturbative cross-sections are convoluted) since k and the 

genuine 0(as) corrections are related through the bare, scale-independent distri

bution functions G(xp) and the dressed, scale-dependent distribution functions, 

G(x,Q2). For completion, the description of the parton distribution function 

definitions is repeated here. 

As was shown in chapter one, all higher order corrections to deep inelastic 

scattering are included in the definition of the parton distribution functions. So, 

for instance 

* * T ^ « £ # W « . t f > . (4.53) 

with (see chapter 1) 

Gl/p(x,t)=Gt/p(x) + J ̂ [^gtP„(£ ) + a 4/„(i)) x G l / p ( y ) 
(4.54) 

In this expression the usual definitions hold for t and the Altarelli-Parisi splitting 

functions, Pqq and Pqg. The form of the functions / depends on the manner in 
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which the mass singularities in the hard-process are dealt with. I n [5] the mass 

singularities are handled with dimensional regularization and in this case the 

form of the function f q q is 

«./»(*) = a.f„(z) + g [ - i + yE - In4*] Pn(z). (4.55) 

The form of <x$fqq(z) and Pqq have already been given in chapter 1. The form of 

fag is very similar, 

«./«(*) = + g [ - 7 + 7£ - ln47r] P„(z). (4.56) 

and, again, a«, fqg and P g 5 are given in chapter 1. 

Another convention for the definition of the parton distributions is provided 

in [20] and [21]. In this convention none of the higher order terms to 0(as) 

appear in the Altarelli-Parisi equations. Instead, they are included, for each par-

ton subprocess, in the hard process cross-section and this alters the relationship 

between G and F% in (4.53). In this case f'qq = f'qg = 0. This is the so-called 

universal, process independent definition of the parton distribution functions. 

To O(o s ) , these two definitions lead to the same physical cross-section. The 

connection between the ful l 0(a9) and the perturbative 0(as) corrections is 

presented in equation (25) of reference [5]. 

The same choices exist for the photon structure function and the quark frag

mentation function. The photon structure functions of Duke and Owens [4] are 

a result of a leading log analysis of the available data and this leads to a non-

universal choice for the definition of parton distribution functions in the photon. 

The expressions for / ? / 7 are obtained from the relevant gluon expressions for 

these functions [22,23]. 

The 0(as) elastic diagrams, that is, the interference between the basic Comp-

ton diagram and the virtual corrections to this diagram, have been calculated in 

[5] i n the Feynman gauge and the ultraviolet and infrared divergences are han

dled with dimensional regularization. The ful l expression for the 0(a8) matrix 

elements are presented in the appendix of the Aurenche et al. paper [5] and they 

have been used in this calculation. 
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4.5 Numerical Results 

In the cross-section calculations that follow the nucleon structure functions 

of Martin, Roberts and Stirling [24], which have been discussed in chapter 1, 

have been used. For the photon structure functions and the quark fragmentation 

function, the leading log analysis of Duke and Owens [4] is utilised. For the 

entire calculation, the QCD scale is set at Q = p j . The universal definition 

for the parton distribution functions (discussed in the last section) has been 

implemented; that is the functions f'qq and fqg have been set to zero, in accordance 

with the choice made in [24]. 

The first experimental results on the inclusive photoproduction of prompt 

photons at high transverse momenta were presented by the NA14 collaboration 

at CERN [25]. This experiment was performed at the CERN SPS in the E12 

e — 7 beam. The bremsstrahlung photon beam results from an electron beam 

of average energy 140 GeV. The mean energy of the photon beam is 80 GeV. 

The data were collected off an isoscalar Li target and a y > —1.0 rapidity 

cut is made. For this particular calculation, the electron 'structure function', is 

switched off, the initial photon energy is set at 80 GeV and the rapidity cut is 

included. The dashed curve in figure 4.7 is the cross-section of the basic Compton 

process, 7 -h q —• 7 4- q and i t lies consistently below the data points. However, 

there is good agreement between the data and the 0(as) calculations, providing 

some confidence to extend this study to HERA energies. 

As has been indicated in section 4.3, the cross-section calculations for HERA 

have been performed in the ep laboratory frame. The first quantity considered is 

the differential cross-section da /dp j , where p j is the transverse momentum of the 

final-state photon. This quantity was calculated with the MRSl set of structure 

functions and the differential cross-section is shown in figure 4.8. One purpose of 

this study was to determine i f the study of the deep inelastic Compton processes 

were experimentally feasible at HERA and this involves the calculation of an 

expected event rate. I f an integrated luminosity of 100 p b - 1 per year is assumed, 

the cross-section in figure 4.8 indicates that i t will be measurable (meaning about 

one event per 1 GeV/c bin) out to a p j . = 50 GeV/c. The corresponding upper 

limit for a measurable cross-section at the NA14 experiment is p j = 4.5 GeV/c. 
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Figure 4.7 Comparison with data from the NA14 experiment: da/dpi* as 
a function of nj, for 7 -f isoscalar target —» 7 + X , £ 7 = 80 GeV and 
y > —1.0 in the centre-of-mass frame. The square error brackets indicate 
the systematic errors. The broken curve is the QED Compton contribution 
while the full curve is the fully corrected QCD cross-section. 

pi <GiV/c) 

Figure 4.8 The complete next-to-leading-order prediction for da/dp^, as a 

function of p j at HERA, as described in the text. T/S = 314 GeV. 
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Figure 4.9 Contributions to the photon pj, distribution normalized to the 
leading-order QED Compton contribution. The full curve represents the sum 
of the Compton, leading logarithm, box and O(os) contributions and the 
broken curve represents the sum of the Compton and 0(as) contributions. 

The relative importance of the leading log corrections and the higher order 

corrections are given in figure 4.9. The quantities plotted are the ratios 

da/dj>p[ Compton term + LL terms + box terms + 0 ( a a ) ] 
dapj [Compton term] 

da I dp ̂  [Compton term + 0(a8)j 
2 da Idpj, [Compton term] ? 

plotted against p j . These curves indicate that the higher order processes are par

ticularly important at small p j . At large p^ their contribution is fairly constant 

and of the order of 20% and under control. 

As has been described i n chapter 1, MRS1 is the soft gluon set of structure 

functions with AQCD(— ^MS) = MeV. The calculation has been repeated 

with other structure function sets. However, on the logarithmic-scale of figure 4.8 

the sensitivity of the differential cross-section, da/dpf, to the structure functions 

cannot be demonstrated. This dependence on the different MRS parton distri

butions is shown in figures 4.10 and 4.11. The MRS2 set, which has AQCD = 250 
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Figure 4.10 Dependence of the Born term differentia! cross-section on the 
choice of parton distributions MRSl, MRS2 and MRS3 normalized to the 
MRSl prediction. 

M e V , is a hard gluon set while the MRS3 set has AQCD = 178 MeV with a 

l / y / x gluon distribution. Figure 4.10 shows the dependence of the Born term on 

the structure functions. The Born contribution to the cross-section is dependent 

purely on the quark distributions in the proton. In fact, since the quark charges 

enter the cross-section expressions in the fourth power, i t is the up-quark distri

bution that dominates this dependence. The x—values that are probed in this 

process are O ( 1 0 - 1 ) . I n this range the valence quark distributions in MRSl and 

MRS2 are very similar and so the Born contributions to the cross-section with 

these distributions are very similar. 

In figure 4.11, the structure function dependence of the corrected cross-section 

is demonstrated. When the leading log and higher-order corrections are switched-

on, the gluon contribution to the cross-section is 0(35%). At an x-value of ~ 10~ 2 

(corresponding to ~ 10 GeV/c), the MRS2/MRS1 gluon ratio is about 0.8 

and at an x-value of ~ 10" 1 , (corresponding to ~ 30 GeV/c) this ratio is 

~ 2. This is mirrored in figure 4.11 by the sharp decrease in the ratio (of the 

fully-corrected cross-section) at small and by the peak in the ratio at ~ 25 

GeV/c, which is larger than the peak in the corresponding Born term ratio by a 
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Figure 4.11 Dependence of the fully corrected differential cross-section on 
the choice of parton distributions MRSl, MRS2 and MRS3 normalized to 
the MRSl prediction. 

factor of about 2. 

Since the three distribution sets, MRSl,2 and 3, are fitted to the same deep 

inelastic scattering data, it is not surprising that they give similar cross-sections. 

However, recent deep inelastic scattering data presented by the BCDMS collab

oration [26] differs significantly from the deep inelastic muon-proton scattering 

data produced by the EMC collaboration [27], in the small x region. For exam

ple, the measured value of F2 at an x—value of ~ 0.1 is larger in the BCDMS 

case by 10 — 15%. This new set of data has been incorporated into a new dis

tribution f i t by Martin et al [24] and an alternative set of distributions, MRSB, 

became available. This new set has a up quark distribution which is 10-15% 

larger in the a:—region of interest. The dependence of the Born cross-section on 

the MRSB quark distribution is shown in figure 4.10. Again, the cross-section ra

tio MRSB/MRSl is plotted and the ratio is no larger than 5%. The contribution 

of the gluon to the higher-order contribution has a compensating effect since the 

MRSB gluon is some 10-15% smaller than the MRSl gluon i n this range. This 

dilutes the enhancement in the Born term. 
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Figure 4.12 Dependence of the fully corrected differential cross-section 
dtr/dp^dyt as a function of rapidity on the choice of parton distributions 

MRSl , MRS2 and MRS3 normalized to the MRSl prediction. The is 
fixed at 10 GeV/c. 

To further probe the sensitivity of this process to the structure functions, a 

similar study was made of its rapidity distributions at a fixed pJ of 10 GeV/c. 

For the cross-section ratios MRSB'/MRSl and MRSE'/MRSl (see figure 4.12) 

the sensitivity increases to about 10% and this is because a rapidity distribution 

probes the x parameter-space. The MRS2/MRS1 ratio is in the region of 20% 

and this process might be suitable to distinguish between parameter sets that 

contain hard and soft gluons. 

The total cross-section, as a function of Pj? , n , is given by 

Vs/2 
da (p™«)= f dp 

dp 
mtn P t 

This cross-section is presented in figure 4.13, calculated with the MRSl set of 

structure functions. 

The asymmetry in the photon rapidity distributions reflects the asymmetry in 

the kinematics at HERA. In figure 4.14, the differential cross-section dajdpjdxp 
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Figure 4.13 The fully corrected 'total' (ie. pj, integrated) cross-section a 

againt p i p t n using the MRSl parton distributions. 

is presented for the three values of p j = 10,20,30 GeVJc as a function of the 

rapidity of the final-state photon. The plots at each p j are the rapidity spectra 

of the fully-corrected cross-section up to 0(a*), again with the MRSl parton 

distributions. As p j increases, the rapidity distribution shifts to more negative 

values and this reflects the fact that more and more of the subprocess energy 

enters through the quarks, rather than the initial-state photon. 

4.6 Conclusions 

It is clear that the process e + p —• 7 + X should be observable at HERA up 

to p j . = 50 GeV/c. At p j = 20 GeV/c a rate of 40 events per year per GeV/c 

may be expected while the pj—integrated cross-section indicates 220 events per 

year above pj? , n = 20 GeV/c and 1 event per year above p*p ,n = 65 GeV/c. 

The hope that this process will be a 'clean' probe for the proton structure 

function was unfounded. As can be seen in figure 4.11, four recent sets of parton 

distributions give cross-sections which differ by less than 10% in the relevant 
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Figure 4.14 Rapidity spectra dajdplpdy1 against y* for pj, =10, 20, 30 
GeV/c. Note that negative rapidity corresponds to the incoming proton 
direction. 

kinematic region. This similarity in cross-section is due to a partial cancellation 

between the leading-order quark and leading log, next-to-leading-order gluon 

contributions. 

The 0(a8) corrections seem well under control since the corrections to the 

Born term are approximately 40% at p j = 20 GeV/c and then reduce to ~ 20% 

at p j . = 40 GeV/c. This makes optimisation (with respect to the QCD scales) of 

the higher-order cross-sections less urgent. I n any case, i t will first be necessary 

to obtain the cross-section to O(a^). 

The weak dependence of the process under investigation on the structure 

functions means that cross-sections wil l have to be measurable to within 5% 

for i t to be used as a probe of the proton. This translates into the need for 

± 1 % resolution in the momentum of the final-state photon i f i t has a transverse 

momentum of ~ 30 GeV/c. I t will be extremely difficult to achieve this level of 

statistical and systematic precision in the experiments. 

However, the photoproduction of prompt photons will provide an accurate 

'benchmark' for the standard model, and any significant deviation from the above 
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theoretical predictions could signal new physics. 
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5. Production of Charged Higgs Bosons 
at the TEVATRON and SSC 

5.1 I N T R O D U C T I O N 

The standard model of electro weak interactions has been highly successful 

in reproducing all experimentally observed electroweak phenomena. However, 

the standard model is incomplete in certain respects. At the present time the 

mechanism of symmetry breaking remains a source of great speculation. The 

discovery of the intermediate vector bosons, the and Z° , at the CERN col

lider confirmed that the electroweak interactions are based on an SU(2) x U(l) 

gauge symmetry, which is spontaneously broken to U(\)EM* The discovery of 

the mechanism via which this spontaneous symmetry breaking occurs is perhaps 

the most important project in particle theory today. 

Several theoretical mechanisms have been proposed for this spontaneous sym

metry breaking. The Higgs model is a satisfactory technique for generating 

masses for the intermediate vector bosons and for the fermions, but the mecha

nism is not very well understood. One feature of the Higgs mechanism is that i t 

guarantees the renormalizability of the electroweak theory. The most economic 

version of the standard model has just one complex doublet with four scalar de

grees of freedom associated with the four generators of the SU(2) x U(l) gauge 

group. On breaking the symmetry three of these degrees of freedom are absorbed 

as longitudinal components by the and Z° and are responsible for the gen

eration of the intermediate vector boson (and the fermion) masses, while the 

remaining degree of freedom corresponds to a physical, electrically-neutral, CP-

even scalar; commonly referred to as the Higgs boson of the minimal standard 

model. There appear to be no theoretical constraints on the number of Higgs 

doublets that may be introduced into the electroweak Lagrangian and this study 

concerns the phenomenological implications that result from an increase in the 

Higgs sector from one to two complex doublets. Both in minimal and nonmini-

mal models, the Higgs bosons are elementary. To fully understand spontaneous 

symmetry breaking via the Higgs mechanism i t will be essential to perform a 
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complete spectroscopy of the Higgs sector, both neutral and charged. More com

plicated mechanisms have been proposed for spontaneous symmetry breaking, 

such as technicolor and compositeness, both of which contain composite Higgs 

scalar s. 

I f the electroweak theory is embedded in a larger gauge group (which wil l 

be characterised by a large energy scale, for example the Planck scale) then due 

to radiative corrections, the Higgs scalar (or scalars) will attain a mass of the 

order of this large scale. In order to prevent this in the minimal model one is 

forced to 'fine-tune' the parameters of the theory at every order of perturbation 

theory in an unnatural way. The minimal standard model, which has only a 

single, neutral Higgs boson, cannot l i f t the 'fine tuning' problem. Theoretically, 

supersymmetry (SUSY) may be invoked to overcome this problem. A minimal 

SUSY model, which can deal with the hierarchy problem, contains a complex 

two-doublet Higgs sector. I t is for this reason that the nonminimal model that 

has attracted most attention is the two-doublet Higgs extension of the standard 

model which has a Higgs sector that is the same as that of the minimal SUSY 

model. 

The extension of the minimal Higgs sector is a reasonable theoretical step 

since there is a total lack of any experimental verification for this minimal model. 

This step increases the size of the Higgs sector and gives rise to Higgs bosons that 

are charged, thus increasing the scope of the experimental searches. The existence 

or nonexistence of these charged and neutral Higgses may be determined in the 

next generation of colliders. For light Higgs bosons (that is, m # < Mz/2) a 

complete search wil l be possible at the existing colliders; at the SLC and at LEP. 

At LEP I I , this search capability will be extended to mjf ~ SSGeV. Several 

recent studies have been made concerning the theory and phenomenology of 

these charged Higgs bosons [1-4]. This study is a part of a larger study [5] that 

extends this phenomenology, particularly at the TEVATRON and the SSC. This 

is a report of charged Higgs production accompanied by a brief study of the 

QCD-background and the background due to the production of W ± . I n section 

5.2, a theoretical overview is presented of the non-minimal standard model and 

the Feynman rules that govern the production and decay of the charged Higgs 
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bosons. In section 5.3, the zeroth- and first-order contributions to the process 

A + B —» H± + X, (A,B protons or antiprotons) is considered. This is followed in 

section 5.4 by a discussion of the matrix element calculations of the subprocess 

g + b —»t -f- 6 + f where the final-state b + f are produced through an intermediate 

W or H. This calculation is done with the formalism of the Kleiss-Stirling spinor 

techniques [7]. Some details of the numerical calculations are given. 

5.2 T H E NONMINIMAL H I G G S M O D E L 

As far as is known, there is no compelling reason to believe that the mini

mal Higgs model is the correct one. I t is therefore important to investigate the 

implications of nonminimal Higgs models, both as an extension of the standard 

model and as a minimal version of supersymmetry. The two-doublet version 

of the standard model is of phenomenological interest because i t increases the 

number of observable Higgses. However, i t does this with only a small increase 

in the number of arbitrary parameters. Theoretically, i t is satisfying because 

it maintains the constraint on the value of the p parameter, which has been 

found experimentally to be very close to 1. In addition, i t does not introduce 

any flavour-changing neutral currents, as long as the Higgs-fermion couplings are 

chosen appropriately. 

Consider a model in which the Higgs sector comprises 2 doublets, <j>\ and ^2 , 

both complex SU(2)i scalar fields. These may be written as 

In supersymmetry, this two doublet structure is required to cancel out the addi

tional contributions to the triangle anomalies due to the Higgsino. In (5.1) the 

<f>\ doublet (Y = —1) generates masses for the T^L = —1/2 quarks and charged 

leptons, while the <fn doublet (Y = +1) gives mass to the T$L = +1/2 quarks. 

0* 
1 <t>x 

1 

<P2 
0 0 

(5.1) 
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In this case the most general Higgs potential that leads to the spontaneous 

symmetry breaking of SU(2)L X U(1)Y to U(1)EM is [4] 

V(<t>uH) = A , ( ^ - v\f + A 2 ( ^ 2 - v\f 

+ A 3 [ ( ^ i - v\) + - v\)\ 

+ Ag[Jfa(tf |4l)-*l«ll 1 

+ A 6[/m(4{02)] 2. 

In (5.2) the A; are real parameters and for a large range of them the correct 

form of electroweak breaking is guaranteed. The v\$ are the vacuum expectation 

values of the neutral members of the doublets. The sum of the squares of vacuum 

expectation values is defined by 

™w =92(vi + v | ) , 

where g is the weak coupling. I f the A; are non-negative, the minimum of the 

potential is given by 

/ n \ / n \ 
(5.3) 

The required constraints on the A,- are less stringent than mentioned above. To 

produce the necessary symmetry breakdown, the requirement that has to be met 

is that all the Higgs bosons should have positive mass-squared. 

As usual the degeneracy of the ground state after spontaneous symmetry 

breaking produces additional scalars, called the Goldstone bosons. (In this model 

there are eight degrees of freedom; three Goldstone bosons and five Higgses.) In 

the charged sector they are given by 

G± = +f cos $ + $ sin 0, (5.4) 

where 0 is given by 

t a n £ = V2/v\. (5.5) 

The physical, charged Higgs states that are orthogonal to these Goldstone bosons 

< 01 > = < 02 > = 
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are 

H± = -</>f sin 0 + <t>f cos 0. (5.6) 

The masses of these physical, charged Higgs bosons are m2

H± = A^vJ + v\). In 

this treatment [4] CP-invariance of the Higgs sector is assumed and this leads 

to a decoupling of the imaginary and real parts in the neutral scalar field. The 

neutral, Goldstone boson in the imaginary, CP-odd sector, is given by 

G° = V2(Im <j>\ cos 0 + Im <j>\ sin 0) 

and the orthogonal, neutral Higgs boson is 

A0 = y/2(-Im sin 0 + Im <j>\ cos /?), (5.7) 

and m^o = 4- v\). This CP-odd scalar is usually called a pseudoscalar. 

On the other hand, the real part of the Higgs sector (that is, the CP-even part) 

contains two physical scalars which are neutral. They mix through the squared 

mass matrix 

/ 4V2(Ax + A 3 ) + v\\r> ( 4 A 3 + A 5 )«iV2 \ , 
M = I m I . (5.8) 

V (4A3 + A 5)i; 1i;2 4v|(A 2 + A 3 ) + ^ A 5 / V 

The corresponding orthogonal physical states are 

H° = y/2[(Re<j>\ - vx)cosa + (Re<j>\ - v 2 ) s ina ]+ 

fiQ = \/2[—(Re<t>i — vi )s ina + (Re<j>\ — v 2)cosa]. 
(5.9) 

a is defined below. The corresponding masses are given (in terms of the elements 

of (5.8)) by 

m2

Hotko = 1/2 [Mn + Mn ± yJ(Mn - M 2 2 ) 2 + 4AfJJ. 

Note that this expression sets the following condition 

772//0 > 771/jO . 
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The mixing angle a used in (5.9) is given by 

2 M 1 2 

sin 2a = —, 

J ( A / u - M 2 2 ) 2 + 4A/?2 

M u - M 2 2 

cos 2a = ^ ( M H - M M P - M M ^ ' 

where M , j are the elements of the matrix M of (5.8), and so ultimately a depends 

on the parameters in the Higgs potential. 

Instead of the single free parameter of the standard minimal Higgs model, the 

mass of the scalar boson, this nonminimal model contains six free parameters. 

Without loss of generality these may be chosen to be the four Higgs masses, the 

ratio of the vacuum expectation values 0 and the mixing angle a. a and 0 are 

chosen such that 
- T T / 2 < a < 0 

(5.11) 
O<0< T T / 2 . 

These parameters are independent of each other in the most general model. How

ever, in minimal supersymmetry the number of free parameters reduces to three; 

for example, mw,vijv\ and m # ± . 

The relevant terms in the Lagrangian for the different couplings are presented 

now [6]: 

T e r m f o r V H H interactions 

*9 

— 
2 cos 6\v 

CVHH = - ^W+H-d" [H° sin(a - 0) + h° cos(a - 0) + iA°] + h.c. 

iA0^ (H° sin(a - 0) + h° cos(a - 0)) (5.12) 

- (2xw - l)H'd^H+ 

where as usual 

X&lY = X(dflY) - Y(d"X) 

The ZH{Hi vertices are excluded by Bose statistics. 
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Figure 5.1 The quark-charged Higgs vertices. 

T e r m f o r W H interactions 

CWH = (gmwW+W-" + Q M Z Z„Z*) \H° cos(p - ct) + h°sm(0 - a) 
\ 4COSVW / [ 

(5!l3) 

The elusive nature of the Higgs bosons is due in large part to their extremely 

weak coupling to light fermions. Therefore, the interesting processes to consider 

phenomenologically will be those which contain the W+ZH~ vertex. Unfortu

nately, as can be seen from (5.13), at tree level the W+ZH~ vertex is absent in 

an SU(2) x U(l) model [1]. 

T e r m fo r Higgs boson interactions w i t h u and d type quarks 

This term is given by 

9™u 
2mjysin/3 

2mw cos P [ 

w « ( / f 0 sin a + h° cos a) — i cos pu^u AQ 

dd{H® cos a — h° sin a) — i sin pdy^dA0 

+ H*VU£U [(rrifi tan P + mu cot P) 
2y/2m\v [ 

+ (m^ tan P — mu cot P)*y$\ d + ft..c. 

(5.14) 

For the Higgs boson couplings to the lcptons, (u,d) are replaced by ( f , e~ ) . 

I n figure 5.1 the vertices between up and down type quarks and the charged 

Higgs bosons are shown. From the relevant terms in the electroweak Lagrangian 
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Figure 5.2 The hadronic production of charged Higgs bosons. 

above, the vertex (a) may be written as 

—7=^ \(md tan P + cot 0) + (m^ tan {$ — mu cot /#)7s] (5.15) 
2y/2m\v 

and the vertex (b) as 

—~r [{rrid tan /? + m u cot 0) — (m^ tan 0 — m„ cot /?)7s]. (5.16) 

5.3 T H E P R O C E S S A + B -> + X 

The fully inclusive production of charged Higgs scalars at hadron colliders 

has been studied before [1],[8] and in this study the formalism of [8] is followed. 

The process is shown schematically in figure 5.2, where A,B are protons and 

X stands for anything. As usual, the most general expression for a hadronic 

cross-section is given by 

<r(A+B - H*) = YfGa/A(xa,Q2)0aah^H±^Gb/B(xb,Q2)^(A ~ £ ) , (5.17) 
M 

where a, 6 are partons and the G's are distribution functions of the partons within 

hadrons. a is the hard process cross-section. 
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(a) 

g 0QQQ90Q.Q,QQ 

(b) 

(c) 

Figure 5.3 The next-to-leading order contributions to charged Higgs pro
duction in hadronic interactions. 

To the zeroth-order in at the dominant diagrams that contribute to the fully 

inclusive cross-section are those of the type shown in figure 5.1 with d —* b and 

u —> t and the couplings for these vertices are 

*9 
2y/2m\v 

[m 6 tan/?( l - 75) + m<cot/?(l + 75)] x \Vtb\ 

[mb tan0(1 - 75) - mt cot 0(1 + 75)] x | V 4 6 | . 
(5.18) 

It is clear that the hard-process cross-section depends on the mass-squared of 

the fermions in the couplings and hence the dominant couplings of the charged 

Higgs in the minimally extended standard model are those to the top and bottom 

quarks. 

In figure 5.3 the four diagrams that contribute to the next order in OL8 are 

shown and these are the subprocesses 

t + 9 -> b + H +. 
(5.19) 
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For a heavy top quark, the parton distribution function is, to a good approxi

mation, derived from the 0(aa) splitting of the gluon. This is true until the full 

Q C D evolution of the parton distribution functions occurs at an energy which is 

at least some orders of magnitude larger than the mass of the top quark. This 

qualitative argument makes the parton distribution function of the top quark an 

0(as) effect and so, of the four diagrams in figure 5.3, diagrams (c) and (d) may 

be neglected in practice. Here the bottom quark is considered to be a light quark. 

However, on examining the leading-order diagram, t + b —• f f + , and the 

next-to-leading-order diagram (b) it is clear that the latter contributes partially 

to the distribution function of the top quark and this leads to double counting 

since the top quark distribution function is included in the zeroth-order diagram 

[8]. This double counting occurs when the intermediate top quark line is on 

mass-shell and collinear with the gluon, that is, when it is a real parton. This 

condition also gives rise to mass singularities. In perturbative Q C D calculations 

these mass-singularities must be removed from the hard-process cross-section. 

Following Olness and Tung [8], it will be shown that the removal of these 

mass singularities leads to the removal of the double counting. The full partonic 

cross-section is given by 

<7(a + & - H±) = YlGc/Az*iQ2)®*cd-*H± ® G d / 6 ( x 6 , Q 2 ) , (5.20) 
c,d 

where Gcja is the distribution of the c-parton in the a-parton. a for these partonic 

processes may be obtained by inverting (5.20) since the calculation of <r(ab —* H) 

and GJs are well established in perturbative Q C D (assuming that the factorisation 

theorem holds order by order). 

To zeroth-order in ats, the c-parton distribution within an a-parton is simply 

given by 

Then (5.20) gives the relation 

*(o)( a 6 _ H ) = a ( o ) ( a 6 (5.2i) 

To 0(a8) the expression for the partonic cross-section is a combination of the 
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zeroth- and first-order hard processes, given by 

<rW(ab -> ff) = aW(ab - H) + G $ 0 a^(ad - H) + ® *<°)(c6 - H). 

(5.22) 

The superscripts in these expressions refer to the order in as. Inverting this 

equation and substituting (5.21) the following expression for the hard process 

may be obtained 

*W(ab - H) = <rM(ab -> H) - a^\ad -> H) ® G{$b - <r{0\cb G$m. 

(5.23) 

The terms on the right of (5.23) are all calculable and this gives a^. 

Now if the process (r(gb —• H + ) is considered, in terms of (5.23) the expression 

for the hard-process cross-section may be written as 

&W(gb ->H) = o&Xgl -* H) - G ^ J ® <r ( n )(/6 -» # ) , (5.24) 

since there is no zeroth-order contribution from a gluon in the initial state. Olness 

and Tung [8] call the second term in (5.24) the subtraction term and it is clear 

that this term has exactly the right form for the collinear configuration that leads 

to the double counting (see figure 5.3). However, the removal of this term also 

leads to the removal of the mass-singularity in the 0(as) cross-section in the 

limit that the mass of the top quark goes to zero. 

To obtain a complete expression for the production of a positively-charged 

Higgs scalar from a collision of a hadron A and a hadron B , (5.21) and (5.24) are 

substituted into (5.17). This gives 

<r(AB - H + ) = [Gt/A - G't/A] ® <t<°>(/5 -» H+) ® G g / j B + 

G h / B ® *{l)(9b -> JT+) ® G f f M + (A ~ B ) , 
(5.25) 

where G ^ = G ^ ® 6 ^ . (5.25) shows clearly that the subtraction term removes 

from the zeroth-order term the potential source of double counting. 
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The matrix element squared for the process t -f- b —• H+ is obtained readily. 

If the momentum of the top quark is p\ and that of the bottom quark p2 (in 

figure 5.2), then the Feynman diagram gives 

Ma{puXi) = g ( p 2 > A 2 ) [ ^ ^ — ( C i + C 2 7 5 ) ] t t ( p i 1 A 1 ) , (5.26) 

where C\ and Ci may be obtained from (5.18). Then 

.2 J _ 

A—1 

(Ci + Ca7l)«(piiAi)fi(pi,Ai)(Ci - C 2 7sWp2,A 2 )] 

0* - - . . . . . . ( 5 ' 2 ? ) 

.2 

For this 2 —> 1 process, 

(Pi + P2)2 = rnf + 2pi ./>2 = " i / / 

and so 

8 m ^ 
[2(rn^ - m?) X 2(mJ tan 2 fi + m 2 cot 2 0 ) ] , 

(5.28) 

where (5.18) has been used. This expression has to be spin- and colour-averaged 

and this means multiplying (5.28) by (4 x 3 )" 1 . This expression has been checked 

by C.S . K i m [5]. 

The matrix element squared for the associated 2 —• 1 W ± production graph 

is obtained similarly and the final expression that is used in the computation is 

2 
9 i t / |2 T/ 2 _2\/_2 

M f a i ) = 2 ^ ; | V i t l K ™ * " m < ) ( m ? + 2 m w ) * • ( 5 , 2 9 ) 

As a check, on setting the mass of the top quark to zero this reduces to the 
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well-known expression for the matrix element squared of the process qq[ —> W+ 

12 

For the associated 2 —• 2 processes, the matrix elements of C.S. K i m et al. [16] 

were used. 

For the total cross-section with n-particles in the final-state the number of 

integrals is given by 3n — 4 plus 2 (for the convolution integrals over the momen

tum fractions of the partons within the protons). Hence, in the 2 —> 1 case there 

is just one integral and a suitable one is the rapidity of the final-state particle. 

The upper and lower limits of this integral are given by 

y/S y/S 
- In < y# < In 

rnjj run 
and xa and xb are determined as 

X a = ^7§ey" 
xb = >«. 

For the 2 -+ 2 case, the kinematics will be the same as that discussed in the 

2 —• 2 case in chapters 1 and 3. 

The expression for the total cross-section is, usual, 

*AB(*i ~ ) = J dxadxbGa/A(xa, Q2)Gb/B(xb, Q2)cab{s,....) + (A ~ B). (5.31) 

The parton distribution functions that were used in this study are those of W - K . 

Tung et al. [9]. They have been generated by a Q C D evolution program with 

variable heavy top-quark mass. The usual parton distribution functions (the 

so-called fixed-parameter sets) [10-12] are not suitable as they do not take into 

consideration the variable heavy top-quark mass. The evolution of the distribu

tions with six quark flavours (all of which come into play above their thresholds) 

is performed with the scheme of Collins and W - K . Tung [13] and the top-quark 

mass that enters these evolution equations enters the hard partonic cross-sections 

as well. The initial parton distributions at QQ = 2.25 GeV are those of the E H L Q 

set 1 [12] with XQCD = 200 MeV. 
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The W vector boson and the charged Higgs have identical decay modes and 

so it is important to estimate the size of this background. The branching fraction 

of the charged Higgs to anything is dependent on the mass of the top quark, the 

mass of the scalar itself and on the parameter tan /?. If the top quark is lighter 

than the charged Higgs then the scalar will decay dominantly via H + —> <6, 

suppressing all other decay modes. In this case the dominant background is the 

Q C D one. However, if this particular decay mode is kinematically forbidden, 

then the decays that matter are those via —• cs and f f + —• r + i / . Setting 

tan/? = 1, these branching fractions are given by Barger and Phillips [3] as 

64% and 31%, respectively. The tan 0 dependence of these branching fractions 

is demonstrated by the fact that if tan/? = 2 then these numbers change to 

13% and 82%, respectively. (These branching fractions have been checked in the 

present study). The corresponding branching fractions for the W bosons to the 

TV decay mode is of the order of 10% and so it is clear that if the mass of the top 

quark is greater than the mass of the charged Higgs boson, then the TV decay 

mode may offer a possibility for the detection of these charged scalars above 

the W background, even if the W production cross-section is greater than the 

corresponding cross-section for the Higgs scalrs. 

For the set of curves presented in figure 5.4 the factorisation and renormali-

sation scales are both set at m% in the case of the calculation of the Higgs boson 

production, and at myy in the case of production. In addition, the arbitrary 

parameter tan/?, defined in (5.5) has to be stipulated. The total cross-sections for 

positively-charged Higgs and production are presented for different values 

of mjf and m< and for tan/? = 1 at \/S = 40 TeV. The total cross-section is of 

the order of tens of picobarns. It is clear from the curves in figure 5.4 that for 

this value of tan /?, the background to fully inclusive charged Higgs production 

from W production at the SSC may be too large except at very large values of 

m<; that is, for mt > 160 GeV the signal of a light Higgs (m# ~ 40 GeV/c2) will 

be observable. However, the cross-sections are very dependent on the parameter 

tan/? and in figure 5.5, the identical calculation is performed with tan/? = 0.1. 

It is clear that in this case the region of visibility of the charged Higgs above the 

W background improves dramatically. 
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Figure 5.4 The total cross-section for charged Higgs production at the SSC. 

The calculation is repeated for the energies at which the Tevatron is operating 

and with tan/3 = 1. The results are presented in figure 5.6 and it is clear that the 

window of visibility is wider in this case. This interesting feature arises through 

the particular nature of the Higgs-fermion couplings. These are proportional 

to the mass of the fermions, while the corresponding W-fermion couplings are 

independent of these masses. For a light Higgs, m# = 40 GeV/c2 the signal 

is certainly above the W background if m« > 95 GeV/c2. However, the W 

production cross-section is larger than that of the charged Higgs with run = 

80 GeV/c2 if the mass of the top quark is less than 170 GeV/c2. A more complete 
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Figure 5.5 Charged Higgs production at the SSC with tan 0 = 0.1 

study of this is being prepared [5]. 

This scenario seems bleak, since the discovery of the charged Higgs bosons at 

the colliders depends on the observation of the decay modes of the scalars above 

the backgrounds due to, firstly W decay and then secondly and more seriously, by 

the usual Q C D processes. However, it is important to recall that the dominant 

decay mode of the scalar boson is H+ —* t + b and since the Higgs couplings in 

this decay mode go as the mass of the top quark, this presents some incentive to 

explore these 2 -> 3 processes. This is done in section 5.4. 
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Figure 5.6 Total cross-section for charged Higgs production at the Tevatron. 

5.4 T h e generic process: £ + + 5 

This generic process is studied here, and is shown in figure 5.7, where in the 

final state F -f b may be produced via the decay of the positively-charged Higgs 

scalars, U + , or via the competing W + decay (eg. see figure 5.8) or the usual 

background Q C D processes (see figure 5.9). The matrix elements for the Q C D 

processes were calculated by Ellis and Sexton [15]. The other two processes are 

discussed below. 

However, it must be made clear that the dominant production mode at the 

S S C is the gluon-gluon one. This process (shown in figure 5.10), for single charged 
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Figure 5.7 The generic process: 0 + S-*f-M + 5. 

g Q.9.0QOQQ0QQ, 

Figure 5.8 The process: 0 + + & with an intermediate charged 
Higgs or W ± . 

g ftg&P 0-Q.9.P.Q.Q.Q QSf&QSLQJUl 

Figure 5.9 The competing QCD processes: f + S ~+ f+f + S. 

Higgs production is, 

It can be efficiently approximated [6] by the internal process 

149 



Figure 5.10 The dominant production mode for charged Iliggs at the SSC 

g + b->t + H~ 

where the b quark distribution is, as usual, generated by the Altarelli-Parisi 

evolution equations. This alternative process is shown in figure 5.8. 

Four Feynman diagrams contribute to the process 

0 + 6 - > f - M + 6, (5.32) 

with an intermediate negatively charged Higgs boson. These diagrams are shown 

in figure 5.11. In figure 5.11(b) the gluon has momentum the incoming 6 quark 

has momentum pi , and the final state t, 6 and f have momenta p2, pz and 7)4 

respectively. 

Then the Feynman diagram in figure 5.11(b) may be written as 

Ma =u(p3,A 3) —7T ( m 6 t a n / ? ( l - 7 5 ) - m t c o t / ? ( l + 75))|V< 6| u(pA,\A) 
2\J2mw 

X [(Pz + P 4 ) 2 - m j r + imnTH] ~ 

X 5(P2,A2) (m 6 tan /? ( l - 7 5 ) + m < C o t ^ ( l +75)|Vi 6 |) 

x « ( w f A i ) [ - i f . I 5 7 l 4 ( f t ^ ) i 
(5.33) 

Following the prescription of Kleiss and Stirling [7] the polarisation vector 
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Figure 5.11 The full gauge-invariant set of Feynman diagrams for the pro
cess: g + b^t + t + b. 

for the gluon is given by 

4(<iSA*) = N x w(^ \ )7 r c t i ( /> 0 ,A 5 ) , (5.34) 

where the vector po specifies gauge for the gluon and 

N = [4 ( 9 .po) ] - , / 2 . 

/>g can be any light-like vector not collinear to The helicity amplitude Ma 

is a function of the different momenta and helicities in figure 5.11(a). These 

polarization vectors correspond to states of definite helicity, denoted by e£ . In 

addition, since they carry physical, transverse polarizations the calculation of 

the matrix element squared does not require the introduction of ghost terms to 

cancel the extra degrees of freedom that enter through unphysical polarization 

states. 

Using the spinor techniques procedure [7] outlined in chapter 2, this Feynman 

structure is rewritten in terms of the spinor products defined in chapter 2. In 
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the expression below, the following notation for the spinor products is used: 

S\it\i(PiiPj) = S(i,j,\i,\j). 

The expression expands to 

Ma = £ GfcfD?{mJtaa a /?S(3 ,4 t A 3 , - l ) 
1=1,5 I 

[5(2,1, A 2, -1)5(1,6, - 1 , A5) + 5(2,5, A 2, -1)5(5,6, - 1 , A 5] 5(5,1, A 5, A,) 

+ [5(2,1, A 2, -1)5(1,5, - 1 , - A 5 ) + 5(2,5, A 2, -1)5(5,5, - 1 , - A 5 ] 5(6,1, - A 5 , Ai)J 

+ mim, tan /? cot 05(3,4, A 3 , +1) 

| [5(2,1, A 2 , -1)5(1,6, - 1 , A 5) + 5(2,5, A 2 , -1)5(5,6,-1, A5] 5(5,1, A 5, A,) 

+ [5(2,1, A 2 , -1)5(1,5, - 1 , - A 5 ) + 5(2,5, A 2 , -1)5(5,5,-1, - A 5 ] 5(6,1, - A 5 , Ai) J ^ ^ 

+ mtmb cot /? tan 05(3,4, A 3 , - 1 ) 

5(2,1, A 2 , +1)5(1,6, +1, A 5) + 5(2,5, A 2, +1)5(5,6, +1, A5] 5(5,1, A 5 , \ i ) 

+ [5(2,1, A 2, +1)5(1,5, +1, - A 5 ) + 5(2,5, A 2 , +1)5(5,5, +1, - A 5 ] 5(6,1, - A 5 , A » ) | 

+ m 2 cot 2 05(3,4,A 3,+1) 

[5(2,1, A 2 , +1)5(1,6, +1, A5) + 5(2,5, A 2,+1)5(5,6, +1, A5] 5(5,1, A 5, Ai) 

+ [5(2,1, A 2 , +1)5(1,5, +1, - A 5 ) + 5(2,5, A 2 , +1)5(5,5, +1, - A 5 ] 5(6,1, - A 5 , A i ) | | 

{1 

{ 

In (5.35) the colour factor, C ^ , is given by summation/averaging over final/initial 

colours. In this case this is 12/24. The denominator, Df is given by 

D? - [(P3 +P4? - ml + i m f i T a ] - ^ + <f)V|4l*>.<z]-1/2, 

and finally, the couplings and normalisation constants are given by 

G f = 2ig2ga/2m2

ff. 

The rest of the diagrams in figure 5.11 are treated in the same fashion. The 

helicity amplitudes depend on the external momenta and on the helicities of 

152 



the internal and external particles. The external quarks are massive and so the 

conservation of helicity at the vertices is broken. To obtain the final matrix 

element squared the following procedure is used: 

(a) For each set of momenta pj the value for each of the M^(pj,\j) is cal

culated for a particular combination of helicities. 

(b) These values are then summed over t to obtain an helicity amplitude, t 

runs over the full set of diagrams in figure 5.11, which is gauge-invariant. 

(c) Each helicity amplitude is then squared and summed over all helicity com

binations, thus producing the matrix element squared, which has been checked 

to be independent of the choice of gauge po-

The calculation of the diagrams in figure 5.11, with the Higgs bosons replaced 

by bosons is performed using the same techniques but with the following 

changes. The Htb vertex used in (5.33) is replaced by the Wtb vertex 

" ' ivf 7 " ( 1 " 7 5 ) | V '& 1 ' 

where as usual g = Sm^yGf/y/2 and the W-boson propagator is given by 

p2 - rn\v + imwTw 

£ = 1 specifies the Feynman-'t Hooft gauge, while ( = 0 specifies the Landau 

gauge and it is the latter one that is used in this study. Again, the helicity 

amplitudes are checked for gauge invariance. 

This hadronic cross-section calculation was performed with a Monte-Carlo 

simulation program. Initially, the phase space configurations were generated with 

the 'democratic' phase space generator, R A M B O [14]. Although this helped to 

simplify the program considerably, the method proved to be unsuccessful. The 

reason for this is that in both sets of diagrams the propagators of the scalar and 

vector bosons are strongly peaked when the momentum squared of the bosons 

are close to rnyy H (see (5.36)). The Monte-Carlo program that was used has the 

built-in facility to readjust its grid as it progresses from iteration to iteration, 

153 



so as to focus on regions which are peaked. This leads to the vast majority of 

phase space points in the configuration to fall within this strongly-peaked region, 

making the Monte-Carlo simulation extremely unrealistic and inefficient. 

In terms of the momenta specified in figure 5.11(a) the 3-particle phase space 

integral is 

/

dzp2 dzpz dzpi . \\cU\t v 

( 2 ^ 2 £ ; 2 ( 2 J r ) 3 2 f ; , ( 2 ^ ) 3 2 ^ ( 2 W ) * ( P l + 9 " n ~ W " P < ) ' 

The integral can be rewritten (as in chapter 2) in terms of an intermediate final-

state compound system with an invariant-mass squared of M | 4 , energy £ 3 4 and 

momentum P34 = p3 + p\ as (ignoring constant factors) 

Pi +g-j>2 -ftO 
s 

J dMl j d*Pu6(P*t - Ml) (5.37) 

5 

X 

So 

/ ^ / ^ 5 ( 4 > ( P 3 + 9 + w - P m ) ' 
It is easily be shown that (5.37) may finally be written as 

J 2 J 3 I (5.38) 

X /^ /^ i 5 ( 4 ) ( / , 3 + 9 + P4-P34)-
And the integral over M | 4 can be performed analytically. The rest of the phase 

space is performed analogously to that performed in chapter 2 and this works 

very well. 

As has been mentioned previously, the production of a final state consisting of 

a top quark, a bottom quark and an anti-top quark can proceed via three routes. 

The first is the pure Q C D path (see figure 5.9) and this is a very threatening 
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Figure 5.12 The rapidity distribution of the the three competing pro
cesses; QCD, intermediate charged Higgs and intermediate W bosons. y/S = 
2000 GeV and mt = 40 GeV/c2 

background in the hadron colliders. Some indication is presented of the size of 

this background. 

The parton distributions that have been used in this study are those of 

Eichten et a/.[12], the EHLQ set 1. This next-to-leading order set has AQCD = 

200 MeV and is stable to x ~ 10" 4 . As in the previous calculation the factorisa

tion scale has been set at mt for all the calculations, except for the weak vector 

boson case. I n these calculations minimal cuts were employed to protect the 

infrared singularities that appear and tan/3 is set at 1. 
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Figure 5.13 The rapidity distribution of the the three competing pro
cesses; QCD, intermediate charged Higgs and intermediate VV bosons. y/S = 
2000 GeV and mt = 200 GeV/c2 

In this project several distributions were studied to search for suitable win

dows within which the charged Higgs cross-sections might be visible above the 

backgrounds. The most suitable one is the rapidity distribution of the top quark 

with momentum p2- The case for y/S = 2000 GeV and mt = 40 and 200 GeV/c2 

are presented in figures 5.12 and 5.13, respectively. In figure 5.12, i t is clear that 

the charged Higgs signal for m# is observable above the W cross-section, but 

is completely swamped by the QCD process. This situation worsens in the case 

rn# > 40 GeV/c2 However, in figure 5.13 i t is clear that for the case of a heavy 
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Figure 5.14 The rapidity distribution of the the three competing pro
cesses; QCD, intermediate charged Higgs and intermediate W bosons. y/S = 
40 TeV and mt - 200 GeV/c2 

top quark the situation improves dramatically. The charged Higgs signal is larger 

than the QCD background for mjy < 70 GeV/c2. 

As has been mentioned earlier, this calculation has been repeated for for the 

SSC, at y/S = 40 TeV. I n this case, (see figure 5.14) the QCD cross-section dom

inates the charged Higgs signal for (mff > 40 GeV/c2) even for m< = 200 TeV. 

Again, to draw any conclusions a study must be made of the decay widths 

and braching fractions of the top quarks in the final-state. This part of the study 
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is incomplete and will be presented in [5]. 

5.5 Conclusions. 

The total charged Higgs fully-inclusive cross-sections have been calculated 

and compared with the production cross-section of the charged intermediate vec

tor bosons. The cross-section is extremely model-sensitive, depending strongly 

on the value of the parameter tan 0. Not very much may be said about the pos

sibility of observation. For the particular value of tan 0 chosen i t is clear that for 

a light Higgs and heavy top quark, the fully-inclusive charged Higgs cross-section 

at hadronic colliders competes with that of the W bosons. For the Tevatron, 

there appears to be a window available for the observation of a light charged 

Higgs, though this window is small; and i f detector details are considered, i t may 

be insufficient. However, conclusions may only be drawn after these production 

cross-sections are folded in with the relevant branching fractions. I t appears that 

in the case where m< > m#, the decay mode W,H —> TV is a very hopeful one. 

The second part of the calculation prepares the way for some exploration 

of the production of the charged Higgs and their subsequent decay to fermions 

(H+ —• t + 6 or Z f + —• f -f- vr or any other) both for real and virtual Higgses. 

In the results presented in the last section i t is clear that, except for a small 

window for light Higgses at the Tevatron, the QCD background is overwhelming. 

A complete study of this is presently under way [5]. 
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