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ABSTRACT

This work is concerned with a theoretical description
of the scattering of charged particles from a helium target, at
non - relativistic velocities.

Using a truncated atomic eigenfunction expansion it is
necessary at high energies to make some allowance for all the
channels not explicitly included in the expansion.

This is done byconstructing a second order potential matrix. The
method is applied to the scattering by helium atoms of electrons
between 50 ev. and 1000 ev., and results are presented for
elastic scattering and the 2'S and 2'P excitations. It is found
that the inclusion of the couplings between these channels and
the inclusion of second order terms in the potential, leads to
cross sections which are in significantly better agreement with
the experimental data.

By reversing the sign of the potential, a comparison is

made between rositron and electron scattering at the same energy.
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Chapter 1

INTRODUCTION

The interaction between a charged particle and an
atom can be studied ii. two ways: experimentally, where a beam
of particles of definite energy and momentum is scattered from
atoms in a target, and theoretically, as in this thesis, where
one tries to predict the results of such an experiment. To
simplify the problem, we can assume that both the beam and
target densities are so low that interactions between the
rarticles in the beam and multiple scattering processes can
be ignored.

Let us consider, then, a single interaction between
the particle beam and an atom. The forces involved are electro-
magnetic in origin and so become small at large distances.
This implies that at large separations (R), both before and
after the collisgsion, the atom and particle can be considered
independently; and we know that an unperturbed atom will stay
in the same "eigenstate" indefinitely. Also, since we can
specify the initial momentum (go) of the particles, Heisenberg's
uncertainty principle forbids their localisation in space or

time. So each particle can be represented in free space by
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the plane wave, exp(igo.g). However, during the collision the
wave will be scattered and dispersed. The dispersion occurs
because energy can sometimes be transferred to the atom to
excite one or more of its electrons. The final structure of
the particle wave, then, depends on the final state of the atom
as well as the nature of the potentials experienced.

Since both initially and finally the atom is in a
stationary state, let us use the set of all possible atomic
eigenstates as a basis for describing the combined particle -
atom system. Thus in Chapter 2 we expand the total wavefunction
¥, in terms of the eigenfunctions, l¢n> , of the unperturbed

atom;

T -y Fp(B) |47y - (1-1)
n=o0

The coefficients of the expansion, Fn(B), are related to the
probability of finding the atom in its n-th state, and so will
tend to stationary values at large separations, R. For example
before the collicion, if the atom is originally in its n=o
state, then the Fn#o(g) are zero for large R , since we know

that the atom is definitely not in any of these states. After
the collision the Fn(g) take on nom-zero values for the open
(energetically allowable) channels, and in Chapter 3 we show

how their assymptotic form is related to the excitation cross
sections which are experimentally observed.

Using the expansion (1-1) in Shr¥dinger's wave equation,
we find we have to solve an infinite set of coupled differential
equations for the scattering amplitudes. 1In the close coupling
approximation (Bransden,1970,ch.5) the expansion is truncated

to include only the open channels. This is useful at low

energies where there may only be a few open channels, but it is
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not practicable above the ionization threshold where an infinite
number of channels are open.

At nmuch higher energies, the collision time will be
short compared with typical atomic transitiom times. So only
the initial and final channels need be included in the expansion
(1-1), since the coupling to intermediate states during the
collision will be small. This is Born's first approximation
(Mott and Massey, 1965, ch.16). An additional assumption is
that the potential due to the atom is so weak that the initial
plane wave of the particle is scarcely altered by the collision.
This, however, is a high energy approximation. The energy
range we are interested in, then, lies below the range of
validity of the Born approximation, but above the ionization
threshold. For electron scattering from helium, this is between
about 50ev. and 1000ev.

It is well known that the Born approximation does
not predict the strong forward elastic scattering peak found
experimentally, even at energies as high as 700 ev. for electrons
incident on helium (Mott and Massey, 1965, ch.16). Moreover,
this discrepancy persists even when elaborate atomic wave-
functions are used; for example, the calculations of Kim and
Inokuti (1968) who used a 20 term Hylleraas wavefunction for
helium (see Vriens et al.,1968a). For an accurate description
of the process, therefore, we need to find the cause of this
forward peak.

Massey and Mohr (1934) show that allowance must be
made for the following processes during collision:

1. Scattering by the static field of the atom.

2. Distortion of the incident and scattered particle waves.

3. Election exchange or transfer.
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4. Polarization; the disturbance of the atom by the field of the
incident particle.

The Born approximation takes account of the first
yrocess and distorted waves can easily be incorporated to take
care of the second. However, at the energies we are interested
in (above 100ev. for electron-helium scattering), neither
distortion (Massey and Mohr,1934) nor electmn exchange (Khare
and Moiseiwitsch,196%5) is responsible for the peak in the
forward direction.

The fourth effect, polarization, arises from the
interaction of the charged particle with the neutral atom.

The particle sees an asymmetric charge distribution which gives
rise to a potential which, whilst not pure Coulombic, is
nevertheless still long range. The effect on the atom is to
distort the energy levels so that interference occurs between
the inelastic channels. Massey and Mohr (1934) found that by
considering the contribution from the second order Born term
and so making an allowance for these intermediate states,
non-local terms arose in the potential which greatly increased
the scattering in the forward direction., There are two ways

of introducing these contributions.

Firstly, let us examine the partial wave treatment
of scattering. Expanding the scattering function F(R) in

a series of Legendre polynomials, ae NWﬁ wnk

09
F(R) = %Z £(R) B (cos®) (1-3)
L=0

Using this in Schr¥dinger's equation, we obtain the radial

equation (MeDowell and Coleman,1970, ch.5),
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[da/dRZ +x°- V_(R) - L(L+1)/R2:| £.(R) = 0. (1-11)

So far we have neglected both exchange and polarization. Now, in
the adiabatic limit, first order perturbation theory yields a
long range potential in the entrance channel which, for electron
scattering, is of the form
VR o~ -R0G/R (1-5)
R=>»wm
where (X, is the dipole polarizability (Bransdemn,1970, ch.5).
To allow for polarization then, a potential with this asymptotic
form can be added to the static potential Vmég) in (1-4), and
the radial equation solved for each partial wave (eg.,Khare and
Moiseiwitsch,1965). In considering the elastic scattering of
electrons from helium, LaBahn and Callaway (1969) included non-
adiabatic corrections to allow for the finite velocity of the
particle beam. However the method becomes too involved at high
energies because of the large number of phase shifts which have
to be computed (100 at 500 ev. and away from the forward direct-
ion).

Secondly, at high energies it is more natural to intro-
duce these polarization effects as contributions from second
order terms in the potential. 1In chapter 4 we show that we can
explicitly include a few strongly coupled states in a truncated
expansion, as in the close coupling method, and then take into
account those states not explicitly included by constructing a
second order potential matrix. Coupled integro-differential
equations then arise for the scattering amplitudes instead of

the ordinary differential equations of the close coupling method.

The second order potentials can be evaluated in a closure
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approximation and so depend on a parameter, the "average energy"
of the states not explicitly included in the expansion. In
Chapter 5 we show that this parameter can be fixed so that the
correct long range potential is obtained in the entrance channel.
Thus the method combines the characteristics of the close
coupling and polarized orbital methods.

In Chapter 6 we examine the asymptotic expansion of
the second order potential, particularly in the case of scatter-
ing from ground state hydrogen or helium atoms. It is shown
that the leading term is related to the forward elastic scatter-
ing amplitude given by the first Born approximation. Thus we
obtain a simple prescription for the average energy parameter:
if all the states above the ground state are averaged, it is
just the ratio of the Born amplitude and the dipole polarizability.

Other theoretical methods, for example the Second Born
and Glauber approximations have been applied to helium scattering.
The relation of these to our method is discussed in Chapter 7.

In part II of this thesis we apply the second order

rotential method to the scattering of charged particles, mainly
electrons, from helium atoms initially in their ground state.
In Chapter 8 we describe the wavefunctions used, and show the
sensitivity of the elastic cross sections to the choice of the
average energy.

We solve the coupled equations in the elastic, 2's
and 2'p channels at several energies between 50ev. and 1000ev.
The angular distributions and total cross sections obtained in
each channel are compared, in Chapters 9,11 and 12, with those
of other methods and with the available experimental data.
Chapter 10 examines the forward elastic scattering amplitudes

and cross sectlons in detail. We compare the scattering of
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electrons with that of rositrons at the same energy in Chapter 13.
Finally, the numerical methods used are outlined in
Chapter 14, and in Chapter 15 we summarise the conclusions

of the work.
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Chapter 2

A TRUNCATED EIGENFUNCTION EXPANSION

The usefulness of atomic eigenfuncion expansions has
been well established, particularly in the development of the
Born series (Mott and Massey, 1933). In this chapter we follow
the procedure of Bransden and Coleman (1972) by adopting an
impact parameter formulation. Although we are mainly concerned
with electron scattering, the method is equally applicable to
the scattering of heavier particles such as protons (Bransden,
Coleman and Sullivan, 1972). Atomic units, defined in Appendix
I, will be used throughout.

The total wavefunction of the combined projectile - atom
system, ‘W(R,r), can be expanded in terms of the eigenfunctions
of the unperturbed atom, |¢n(£i> ;

@
¥R = 3 F(R [0 (2-1)
n=o
where r represents the internal coordinates of the atom and R the
position vector of the projectile, with the nucleus of the atom
as origin. The entrance channel is taken as n=o0; in this thesis
only scattering from atoms initially in their ground state will

be examined.
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The summation over n in equation (2-1) includes an
integration over continuum states. Although ‘I(E,;) as defined
here is not symmetrised, Castillejo et al.(1960) show that
electron exchange can be described by the expansion (2-1) pro-
vided the boundary conditions are chosen correctly, and allowance
is made for the exchange singularity in the continuum integrand.
However, at the energies we are interested in (above 100 ev. for
electrons incident on helium atoms), we can ignore ex-
Change.

The coefficients Fn(g), which we show in chapter 3 to
be related .asymptotically to the excitation cross sections, are

obtained by solving Shr¥dinger's equation for WY(R,r);
( - E) ¥(R,r) = O. (2-2)
Here, H is the total Hamiltonian of the system,

H

-—}VBE + V(R,r) + H'(z) (2-3)

with V(R,r) the potential between projectile and atom, and H'(r)
the Hamiltonian of the unperturbed atom, whose eigenvalues are
€.

(H(@) - € |7,)> =o. (2-4)

Since the initial energy of the atom is GO, the total energy
E = eo + T, where T is the initial kinetic energy of the pro-
jectile. So the Shrd8dinger equation (2-2) and (2-3) becomes,

with the eigenfunction expansion (2-1),

7 ™Me

C-2Vp" + V@D + B2 - €,-D E® |8,y =0
(2-5)

o

or, using (2-4),









- 21 -

@
- i - Z/k a (b,2).
%2 a (b,2) = i% ggovnm(g) exp(i( € - €,)2/k ) a (b,7)
© (2-21)
These coupled equations are to be solved with the boundary
conditions,
a,(b,-m) = & . (2-22)

This infinite set of coupled differential equations
cannot, in general, be solved. However, it may be a good
approximation to assume that only a few low lying states are
strongly coupled. Thus we can truncate the series (2-21) at a
suitable level, as in the close coupling approximation (Bransden,
1970, ch.5). A better approximation is to make some allowance
for the states not included explicitly in the truncated expansion,
and this is the basis of the second order potential method which

we describe in chapter 4.
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Chapter 3

THE SCATTERING AMPLITUDE AND CROSS SECTION

It is now necessary to show how the amplitudes Fn(g)
of the eigenfunction exvansion used in Chapter 2 are related to
the cross sections for excitation to the n-th atomic state.

We know that the interaction between target and pro-
jectile becomes negligible at large separations. So asymptotic-
ally the amplitudes of the expansion (2-1) must, from the physics,
represent an incident plane wave, exp(igo.g), in the entrance
channel, and outgoing svherical waves, exp(iknR) /R in each
open channel. Thus

F (R) - eXp(il_«:o._lz)S

n g + £ (@ ,8) exp(ik R)/R

(3-1)
McDowell and Coleman (1970,ch.5) show that this asymptotic form

no

is only valid for potentials which fall off faster than 1/R as
R tends to infinity. Thus Coulombt potentials must be '"screemned',
as for example in the potential due to a neutral atom.

The outgoing spherical waves have in general some
angular distribution given by fn( @,§ ) , but there should be

no interference between these waves well away from the inter-

action region. Because of the analogy with Fraunhoffer diffraction
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in optics, let us use the construction of Wilets and Wallace
(1968) who place a screen at a distance Z_  beyond the interaction,
as in figure 3%a. The volume enclosed by this screen and a hemi-
sphere at infinity is assumed to be free of interactions between
the projectile and target. Since we know our complete wave-
function can be written as a linear combination of Fn(B)'¢£> ,

and if the outgoing spherical wave associated with Fn(g) is

U(R), then in the interaction~free enclosure, U(R) must be a
solution of the free particle wave equation. This is given by

equation (2-10) with the potential V(R,r) = O;
2 2
GV~ + 2k,) VR = 0. (3-2)

If there exists another function, W(R), satisfying the
same wave equation in the enclosure, then we may use Green's
Theorem (Born and Wolf, 1965) which converts a volume integral

to an integral over the surface bounding the enclosure:

J‘(Uvaw - wYew) a7 = f’ﬁ.(va-WVU) ds . (3-3)

Since the functions U(R) and W(R) are both solutions of (3-2),
the left-hand integral in (3-3) vanishes.

To find the function at a particular point P inside our
enclosure, we place a sphere r»hund the point to exclude it from
our region (see figure 3a). Born and Wolf (1965) show that its
contribution to the surface integral in (3-3) is just LRU(L),
where R is the vector joining the point to the screen. So (3-3)

becomes,

U(R) = __l__j"g‘.(UVW - w{/u) as. (3-1)
Lw




































































































































































































































APPENDIY 1,2 and 3
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