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symmetrically, and showing thickening of chrome 
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CHAPTER I 

INTRODUCTION 

Location and Surface Features. 

The igneous intrusive rocks of the Silam-Beeston range crop 

out i n a belt 20 miles long and 1-4 miles wide, between la t i t u d e s North 

4.55 minutes and 5 degrees, i n the Tawau residency, North Borneo. The 

area i s roughly l e n t i c u l a r i n shape and the major part follows the north­

western coastline of Darvel Bay. Approximately 80 square miles was mapped 

by Borneo Mining Limited during 1962, on a reconnaissance mapping scale of 

1:25.000. 

The Saddle Islands form an important group of nine islands i n 

the Darvel Bay and are included for description i n the area. They are 

composed of'ultrabasic rocks and extend southeast i n t o the bay from near 

Silam v i l l a g e . A l l the islands are small and range i n height from between 

30-500 feet. 

The greater part of the area i s uninhabited. The indigenous 

population i s scattered along the coastline of Darvel Bay and consist 

mainly of the sea faring Idahans. The largest settlement i s situated at 

the western end of Silam Harbour, close to the Kennedy Bay Timber Camp. 

Small Idahan settlements are situated a t Silam Vil l a g e , below Mount Silam, 

and i n the River Diwata estuary. Timorese, Chinese, and Philippinoes are 

mixed with Idahans i n the timber camps at Kennedy Bay, Silam Harbour and 

at the Nam Hing Company s i t e i n the River Diwata. 
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Lowland and h i l l dipterocafp r a i n forest covers over 80$ of 

the area. Trees r i s e t o 150 feet , occasionally to 200 feet,forming a 

canopy over>the smaller trees and bushes that grow between them. The 

lower ground i s being worked by the two timber companies. The commonest 

tree species are the white seraya (urat mata)j red seraya (Parashorea 

spp.); kapor (Dryobalanops spp.); and selangan batu (Shorea spp.). Non-

dipterocarps include the hard wood belian (Eusideroxylon zwageri). 

On the high ridgeiof the Silam-Beeston range, the normal type 

forest, grades in t o a stunted moss covered type of forest. The trees are 

small, and low branching, and festooned i n moss and creepers, and pitcher 

plants. Thick moss also covers the i n f e r t i l e s o i l cover. 

Mangrove forest forms a discontinuous b e l t along the coastline 

of Darvel Bay and around the island, and i s seen p a r t i c u l a r l y at the 
estuaries of riv e r s and along saline mud f l a t s . The forest mainly consists 
of species of the family Rhizophoracea. 

Secondary jungle and coastal padang are common near the s e t t l e ­
ments . 

The jungles of the area contain abundant w i l d l i f e . Wild p i g , 
deer, land t u r t l e s , are common and are a source of food. Monitor l i z a r d s 
may be seen i n the streams and snakes of a l l species are common, though 
most are harmless. One large python was found measuring 26 feet 6" and 
had a g i r t h of 1 foot 6". 

The physiographic features of the area r e f l e c t the types of 
underlying bedrock. I t i s possible to divide the area i n t o four physiogra­
phic belts. The largest of these i s formed by the narrow ridge of the 
Silam-Beeston range i t s e l f , covering approximately 50 square miles. The 
range i s largely composed of ultrabasic rocks. Heights along the ridge 
vary between 1000 feet and 2500 fe e t , culminating i n Mount Silam 2950 feet, 

on the eastern end, and Mount Beeston 2500 feet, on the western end of the 
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area. Rock outcrops are p l e n t i f u l along the range, p r i n c i p a l l y i n the 

stream sections. Above 2000 fe e t , on Mount Silam, access becomes d i f f i ­

c u l t and often dangerous along the stream courses draining the p r e c i p i ­

tous flanks. 

The northern slopes of the range pass i n t o a belt of r o l l i n g 

h i l l s , 100-500 feet high, that forms the northern boundary of the area. 

Quaternary alluvium and l a t e r i t e tend to obscure the geology i n t h i s 

b e l t , the main part of which, appears t o be composed of rocks of basic 

composition. Massive gabbro has been noted i n the River Diwata and on 

Mount Beeston at the western end of t h i s b e l t and also i n the east, 

around Kennedy Bay. 

The southern flanks of Mount Silam pass southward, i n t o the 

t h i r d belt where low l y i n g ground occurs, broken l o c a l l y by ridges 

100-1500 feet high, trending more or less p a r a l l e l to the Silam-Beeston 

range. This b e l t , which extends from Kennedy Bay, to approximately 5 

miles west of the River Diwata i s composed c h i e f l y of rocks belonging to 

the Chert-Spilite Formation of Cretaceous-Eocene age. Further to the 

west, on the south side of the range, the ophiolites may possibly be 

overlain by sandstone of probably Miocene age. This sandstone dips 

gently to the southwest i n the form of a plateau. 

Drainage of the Silam-Beeston range tends to be complex. The 

small streams draining the northern slopes of Mount Silam flow northward 

i n t o the River Bole and Sapagaya systems; on the southern slopes of Mount 

Silam, the streams flow i n t o Darvel Bay. The headwaters of the River 

Diwata, on the other hand, drains the northern slopes of the Mount Beeston. 

The main "stream of the r i v e r flows eastward from the headwaters along the 
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northern side of the range, but then at Mile 6 swings sharply to the 

south, c u t t i n g across the grain of the country rock. The River Puteh, 

draining the southern slopes of the range, joins the River Diwata a t 

Mile 4 , and the l a t t e r then flows southward t o empty i n t o Darvel Bay. 

The River Diwata drainage system i s the most important and largest r i v e r 

system i n the area.. 

PREVIOUS WORK AND A CKNOWLEDGEMEN TS 

The f i r s t reconnaissance survey of the Darvel Bay region was 

undertaken by Reinhard and Wenk i n 1951, during the preparation of t h e i r 

B u l l e t i n : "Geology of the Colony of North Borneo". The ultrabasic rocks 

of North Borneo were considered by these workers as being part of the 

Danau Formation, and of o p h i o l i t i c o r i g i n . They further considered that 

the rocks of basic and intermediate composition were of metamorphic 

or i g i n and belonged to the "Crystalline Schists" of a presumed extensive 

basement complex, underlying the whole of North Borneo. Outcrops of t h i s 

basement were confined t o the northern and eastern part of the country and 

were thought t o be of Pre-.Cambrian and Upper Palaeozoic age (Reinhard and 

Wenk, 1951 , p. 1 2 ) . 

Fitch, of the North Borneo Geological Survey Department i n 1955, 

was the f i r s t worker to investigate the Segama and Darvel Bay area north 

of 4 degrees 37a 1 N. He established the main rock types and the general 

shape of the Silam-Beeston ultrabasic mass as shown on his 1:125,000 

geological map. He concluded i n his Memoir, 4 , " (1955) "The Geology and 

Mineral Resources of part of the 3 e g ^ zad Darvel Bay arya", that the 
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c r y s t a l l i n e schists of Reinhard and Wenk were i n fact " d i o r i t i c i n t r u ­
sive rocks, genetically associated with the ultrabasic intrusions and of 
Eocene age", (1955, p. 2 4 ) . He separated the ultrabasic rocks and 
" d i o r i t e rocks" from the Danau Formation of Reinhard and Wenk and e a r l i e r 
workers and f o r the remaining volcanic and sedimentary rocks of the 
Formation, Fitch used the term "Chert-Spilite Formation" (1955, p. 2 4 ) . 
Fitch (1955, p. 80), suggested that the ' d i o r i t e rocks' had been formed 
"by assimilation of crustal material by basaltic (gabbroic) magma". The 
lower periodotite rocks he envisaged as having been forced through the 
d i o r i t i c rocks (1955, p. 81), during the period of ultrabasic i n t r u s i o n 
i n t o the Chert-SpiliteFormation, probably Late Cretaceous or Eocene times. 
He further postulated extensive thrust f a u l t i n g i n the d i o r i t i c rocks of 
the Segama headwaters (Fig. l ) and the Mt. Ambun area. Dr. Kirk (1962, 
p. 10), suggested that these thrusts l i e i n a zone of thrusting, which 
extends southward into the Mostyn area and thus includes the Silam-Beeston 
area. 

The f i e l d 'work on which t h i s work i s based was carried out under 

the d i r e c t i o n of Naylory Benzon & Co., Ltd., London and t h e i r l o c a l 

company i n North Borneo-Borneo Mining Limited. Progress reports made 

during the survey 1962 i n the Silam-Beeston area and the accompanying 

f i e l d maps, on a scale 1:25.000 and 1:500 are f i l e d i n the o f f i c i e s of the 

two companies. During the survey, which occupied about t e n months, Ibans 

from Sarawak were used as general labourers and porters. A Base Camp was 

constructed l g miles inland along the River Diwata, and several temporary 

camps were made i n the more innaccessible parts of the area. Access 

toward Mount Beeston becomes progressively more d i f f i c u l t along the course 
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of the River Diivata and though the w r i t e r made several treks t o t h i s area, 

part s t i l l remains to be traversed beyond Mount Beeston. 

A C K N O I C J E I X J E M E N T S 

The w r i t e r i s indebted to numerous.persons and organizations for 

help during the preparation of t h i s work: 

Messrs. Naylor, Benzon & Co., Ltd., London, for permission to 

use a company report as a thesis., 

Borneo Mining Limited and fellow geologists f o r helpful advice 

during the period of investigation i n the Silam-Beeston area. 

Dr. H. J. C. Kirk, of the North Borneo Geological Survey f o r • 

many suggestions, helpful c r i t i c i s m and encouragement during the prepara­

t i o n of the thesis. 

The Department of Forests, Lahad Datu f o r a contoured map of 

Mount Silam. 

The Department of Mines and Natural Resources 1for the use of 

t h e i r copying machines, and the typing out of t h i s work. 

The assistants who accompanied the author i n the f i e l d : Rian 

ak Kenyang (Headman); Bayangak Kodoko f o r the many f i e l d slides; and 

to other Ibans i n the companies1 employ who acted as labourers and 

porters. 

1. Manitoba. Canada, 
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CHAPTER I I 

COUNTRY ROCKS 

General Statement 

The intrusive igneous rocks of the Silara-Beeston range, have 

been emplaced i n t o a varied assemblage of te c t o n i c a l l y disrupted geo-

synclinal sediments and o p h i o l i t i c rocks, c o l l e c t i v e l y referred to by 

Fitch (1955, p. 24 ) , as "The Chert-Spilite Formation" of Cretaceous-

Eocene age. The Formation occurs extensively i n Eastern and Northern 

Borneo, and probably also i n the Phillippines. I n Kalimantan similar 

deposits, termed the' Danau Formation, are probably of Cretaceous-Eocene 

age ( L e i c h t i , 1960, pp. 5 3 - 5 4 ) . . The Chert-Spilite Formation and related 

formations i n neighbouring countries represent the early o p h i o l i t i c 

phase i n the development of theEast Indian Geosyncline i n these areas, as 

described by V an Bemmelen (1949)• 

Field Relations 

Rocks of 'the Chert-Spilite Formation;, i n the Silam-Beeston 

area, outcrop i n a b e l t 3 to 5 miles wide- and 15 miles i n length, along 

the southern part of the area, between the Silam Mountain and the northern 

coast of Darvel Bay. South of Mount Beeston and 6 miles to the west of 

the Diwata Valley, the Chert-Spilite Formation i s mainly overlain by sand­

stone of?Miocene age. 

On the northern side of the range, rocks of the Chert-Spilite 

Formation have a much more ir r e g u l a r d i s t r i b u t i o n . Narrow lenses of these 

rocks were mapped between the per i d o t i t e of the range and the outcrops of 
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Table 1 . Stratigraphy of the Silam-Beeston area, Darvel Bay, North Borneo. 

Age Sediments Igneous Rocks 

RECENT Coastal and f l u v i a t i l e 
alluvium, including Mangrove 
swamps along coast. 

Calc tufa deposited 
i n ultrabasic rocks. 

PLEISTOCENE High l e v e l alluvium on 
flanks of Silam mountain. 

MIOCENE - unconformity -
Sandstones and grey clays 
deposited i n widespread 
sea. 

Serpentinization and 
metamorphism of U/B rocks. 
Peridotite, dunite, 
pyroxenite, gabbroic rocks 
emplaced i n t o Chert-Spilite 
Formation, during period of 
regional crustal 
shortening. 

EOCENE - unconformity -

and Late 

CRETACEOUS 

Kulapis Formation. 
Radiolarian chert, 
graywhacke, marl, 
black shale, t h i n beds of 
sandstone and limestone 
interbedded with volcanic 
rocks i n the sea trough 
or geosyncline. 

Intrusion of per i d o t i t e 
magma i n t o consolidated 
Chert-Spilite Formation, 
at close of geosyncline. 
Basalt, some s p i l i t i z e d 
green t u f f deposited on 
geosyncline f l o o r and 
interbedded with sediments. 
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gabbroic rocks (see Map 1 and 2) around the eastern part of Mount Silam 

(Map 2 . 275.15 N.j 469.IOE) (275.SON., 470.80 E). Toward the west, 

gabbro predominates, and the ophiolites are obscure i n the low l y i n g 

ground. 

I n general the sediments and volcanic rocks of the Chert-Spilite 

Formation produce a varied topography of narrow valleys and long, sharp 

backed ridges, t h a t may follow d e f i n i t e trend l i n e s . 

Rock Types 

A great variety of rock types occur i n the Chert-Spilite 

Formation i n the Silam-Beeston area. Among the sediments, graywhacke 

appears t o be the most abundant and occurs especially t o the south of 

Mount Silam, where they form low h i l l s . A description of the main rock 

types follows: 

Graywhacke. The graywhacke occurs as massive beds and as t h i n l y 

bedded layers i n many of the stream sections that flow from Mount Silam. 

I n the lower reaches of the streams the rock occurs i n abundance as 

boulder debris. 

Fresh graywhacke i s normally dark brown t o reddish grey, f i n e 

grained and strongly indurated. Quartz and felspar i n the rock impart 

a mottled appearance. Veins of quartz and calcite also traverse the rock 

i n many l o c a l i t i e s . 

Radiolarian Cherts, Cherts are also widespread i n the area but 

rare l y outcrop i n the stream sections. Boulders are however, common. 

I n stream 1 1 , the chert appears as a reddish brown rock and i s often seen 

veined with quarts an chalcedony f o r example j.n these samples collected 
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g mile above the river mouth (272.87N; 467.68E). Chert and quartzitic 
rocks also outcrop on higher ground for instance in stream 10, below 
the contact (Map 2, 273.50N.467.80E) where the rock forms a waterfall 
5 feet high. Along the northern contact, between ultrabasic rocks and 
gabbroic rocks, 1^ miles above Kennedy Bay (275.78N:470.80E), quartzites 
containing pyrite form a ten foot bluff on the h i l l sides. In the River 
Puteh, below the contact, quartzitic cherts also contain pyrite dissemi­
nations and i n some of the pebbles collected hornblende and chlorite 
flakes were noted* 

Argillaceous rocks. Graphitic shales outcrop i n several loca­

l i t i e s i n the area. A notable outcrop occurs on the spur, between streams 

7 and 8, at approximately the 800 foot contour level (274.30N: 468.8OE). 

The shales are black' f i s s i l e and weathered. Black shales also outcrop i n 

stream 9, at the contact of the Chert-Spilite Formation and the serpentinite 

(£>74.06Nj 468.10E). Graphitic shales also are exposed along the southern 

contact of the serpentinite mass with the Chert-Spilite Formation at the 

headwaters of the River Diwata (See Diwata Traverse Map, Page 94- ). These 

mudstones and shales become progressively more streaked and massive as 

the contact i s approached, i n streams draining Mount Silam. 

The volcanic rocks mainly consist of s p i l i t i c lavas, breccias, 

and green tuffs and normally show intense alteration by hydrothermal 

solutions, particularly near the contacts with the ultrabasic mass. The 

spilites are generally green, blue or grey i n colour and many good out­

crops of the rock type occur. In stream 7, at approximately the 800 foot 

contour level (274.25N; 468.78E), a 20 foot section may be seen i n the 

eastern tributary where the spilites are associated with radiolarian chert* 
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In stream 8, epidote i s disseminated through the s p i l i t e i n samples taken 
from approximately the 1000 foot contour level (274.15N; 468.54E). Veins 
of quartz and calcite traverse the rock i n many l o c a l i t i e s , for example 
i n the River Silam (N 274.80; 470,J>2E), particularly near the contacts 
with the ultrabasic rocks. In general, the volcanic rocks become progress­
ively more schistose or streaky i n character as the ultrabasic rocks of 
the range are approached and may show intense hydrothermal alteration 
such as i n streamsJO, (273.60N; 467.68E), and 9, (274.06N; 468.10E). 

In thin section the rock consists of a fine grained aggregate 
of feldspar needles and pyroxene crystals. Amygdales i n the rock are 
frequent and are f i l l e d with calcite, chlorite and cryptocrystalline 
s i l i c a ; pyrite i s the usual ore mineral. 

Contact Areas 
There i s a general tendency for the dips of the country rock 

to steepen as the peridotite mass i s approached. This feature i s 
especially seen i n streams 9, 10 and 11 which drain the southern part of 
the range and which flow over the contact on high ground. Further, the 
sp i l i t e and mudstones of the formation become progressively more schistose 
and streaky i n character and.close to the contact have the appearance of 
being deeply altered by hydro-thermal solutions. 

The contact along the southern margin of the ultrabasic mass 
was f i r s t observed i n stream 6, at the 200 foot contour level (Map 2; 
274.47N; 469.62E), where quartzites, streaked mudstones and graphitic 
shales are i n contact with sheared serpentinites. Westward, the contact 
crosses the spur between stream 7 and 8. Boulders of quartz, s p i l i t e and 
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an outcrop of graphitic shale were found on this spur, and the contact 
has been drawn i n at the base of a steep r i s e (274.25N; 468.50E), at 
approximately the 1400 contour level. Toward the west again, sheared 
and blackened sediments occur at 1000 feet i n stream 9* (274*06N; 468.10E), 
i n a zone approximately 200 feet wide near the contact. In stream 10, at 
approximately the 1400 foot contour level, contact rocks are exposed at 
their highest level on Mount Silam. Here (273.60N; 467.65E), the 
schistose sediments and spilites were f i r s t observed at approximately 
the 800 foot contour, where the planes of schistosity l i e almost horizon­
t a l ; toward the contact the planes of schistosity steepen u n t i l they 
become vertical or steeply dipping to the northwest. The contact rocks 
are next seen ink„heastern branch of stream 1 1 , at 1000 feet (273.40N; 
467*40E), where schistose spilites and quartzites are separated from 
schistose serpentinites by about 100 feet of boulder rubble. There 
appears to be very l i t t l e difference i n the height of the contact i n the 
western branch of stream 1 1 , where the contact was seen at approximately 
1000 or 1100 feet. Spilite again forms the contact rocks i n the small 
streams that flow between the River Puteh and stream 1 1 , (272.95N; 
467.07E) and. (272.75N; 465.66E); the rocks appear highly altered by hydro-
thermal solutions. Toward the Diwata River the contact becomes obscure 
i n low lying ground, and has been drawn in. at approximately the 500 foot 
contour level. The contact was last noted at the headwaters of the River 
Diwata (see Diwata Traverse Map), where epidote hornfels and graphitic 
shales outcrop against schistose serpentinite. The contact probably runs 
westward toward Mount Beeston, from this last point, and the contact rocks 
may include Miocene sandstones. 
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The contacts on the northern side of the peridotite mass have 

only been observed.at the eastern end of the range, and i n the Kanut 

Valley. About a mile and a h a l f above Kennedy Bay (275.SON; 470.80E), 

quartzites are exposed•against schistose serpentinite rocks and mark 

the probable position of an e xtensive f a u l t system trending north-east 

and east-west. This f a u l t separates the Chert-Spilite Formation and 

gabbro rocks from the peridotite mass. Towards the west, as seen along 

the Silam Read, gabbroic rocks are exposed against the serpentinite and 

peridotite although at 275.40N; 469.10E s p i l i t e s again form a narrow 

outcrop i n a 50 foot section, i n a northward draining stream. Here, the 

s p i l i t e s are streaked and hydrothermally altered; c a l c i t e and quarta 

veins traverse the rock. Further to the west, the contact i s obscure i n 

low l y i n g ground and concealed by fans of u l t r a b a s i c debris. Gabbro 

dykes become important i n the stream sections and i n general s t r i k e to 

the northeast. In the River Kamut, gabbro i s thought to be the predomi­

nating rock type of the contact area. Massive gabbro i s i n contact with 

schistose serpentinite a t N4'47'= E 118*05'. 

More unusual contact ef f e c t s are exhibited i n several l o c a l i t i e s 

i n the area. Toward the headwaters of the RivecDiwata, where the north­

easterly flowing tributary j o i n s the main stream at Mile 7|, (See Diwata 

Traverse Map)i boulders of gabbro occur enclosed i n sheared serpentinite. 

The gabbro boulders appear to be metamorphosed around t h e i r edges. Garnet 

was found i n one of the specimens by Dr. Kirk (1962). These boulders are 

thought to have been brought up from depth along a thrust f a u l t , which i s 

now marked out by the straight course of the north-easterly flowing 

tributary. 
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In Rian Island, Darvel Bay, angular boulders of unfossil-
iferous limestone were found near'Peg 13, enveloped i n schistose serpen­
t i n i t e . The boulders are angular and appear unaltered. A similar 
occurrence was found at the southwestern headland of Saddle Island 
( L . I . 9), where grey shales and limestone xenoliths occur i n dunite 
serpentinite. Baik Island, at the south western headland, also shows 
xenoliths of sedimentary rocks i n schistose serpentinites. These broken 
off sediments of the Chert-Spilite Formation are thought to have been 
caught up i n the sheared serpentinite during the emplacement of the 
Saddle Islands ultrabasic rocks. 

The plateau, to the southwest of Mount Silam, has a general 
height of 500 feet but slopes to the southwest away from the ultrabasic 
ridge. This plateau i s known to be formed of sandstone and is of 
possible Miocene age. The sandstones are thought to underlie a peneplain 
between the watershed of the River Bole and the River Diwata and may 
possibly rest on rocks of the Chert-Spilite Formation. Actual contacts 
of the sandstone with the ultrabasic rocks have not been observed. One 
specimen of sandstone containing angular fragments of serpentinite, 
(plate 13), was found i n the headwaters of the River Bole near Mount 
Beeston, suggesting that the sandstone may be present locally on the 
northern side of the range. 
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CHAPTER I I I 

THE INTRUSIVE IGNEOUS ROCKS 

General Statement 

The Silam-Beeston ultrabasic mass i s one of a number of u l t r a -
basic bodies, which are known to occur i n the East Indian belt of young 
Tertiary ophiolites that stretches from the Philippines down through 
North Borneo to the Celebes. In the eastern part of North Borneo u l t r a -
basic rocks are known to outcrop i n the following areas: on the o f f ­
shore islands of Banggi and Malawali, near Kudatj east Marudu Bay, around 
Pingan-Pinganj the Ranau d i s t r i c t ; the Labuk Valley area; the Kinabatangan 
and Segama Valley area; and the Darvel Bay area. In general the u l t r a -
basic rocks have been.intruded into the lavas and sediments of the Tertiary 
geosyncline. 

The ultrabasic rocks of the East Indian geosyncline are generally 
associated with variable amounts of basic and intermediate rock types. In 
North Borneo, these associated rock types probably occur i n equal amounts 
to the rocks of ultrabasic composition. Large masses of gabbroic rocks 
are known to outcrop i n the Philippines and i n the Labuk and Segama Valley 
areas, as massive rock and as dykes. In the Silam-Beeston area, gabbroic 
rocks occur extensively on the northern side of the peridotite mass and 
are intrusive into the rocks of the Chert-Spilite Formation. 

Fitch (1955j P« 24), described these basic rock types as being 
of " d i o r i t i c " composition. Kirk (1962), during his survey of the Darvel 
Bay and Semporna areas, considers that most of the d i o r i t i c rocks of Fitch 
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are actually amphibolites or gabbroes In character. 
The intrusive igneous rocks of the Silam-Beeston range, cover 

an area of approximately 80 square miles. They form a belt of rocks 
twenty miles long and approximately four miles wide, trending i n general 
npr.the.ast. The peridotite rocks occur along the southern part of the 
belt and the gabbroic rocks are mainly confined to the northern side. 

A description of the chromiferous ultrabasic rocks of the 
Saddle Islands i s included i n this report. These islands are believed 
to represent a separate intrusive, arcuate shaped, sheet-like mass, i n 
rocks of the Chert-Spilite Formation. The islands are strung out over 
a distance of five miles and have a general strike i n the bay of north­
west. Part of the same intrusion i s also found on the mainland close to 
Silam village, (see Map 1), (273.10N; 469.10E). 

http://npr.the.ast
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THE ULTRABASIC ROCKS 

The term "Peridotite" i s a general term used for those rocks 
which contain only olivine and pyroxene as their chief mineral consti­
tuents. Such rocks are divisible into intergrading varieties according 
to the proportion i n which olivine, and the orthorhombic and monoclinic 
pyroxenes are present i n the rock. In the Silam-Beeston area four 
varieties have been distinguished. They are: 

(1) DUNlTE. This rock consists of not more than 
5% pyroxene, and not less than 95$ olivine. 
The pyroxene component i n the area i s usually 
enstatite. 

(2) LHERZOLITE. This rock contains olivine and the 
two types of pyroxene mineral, that i s , the 
monoclinic and orthorhombic varieties. 

(3) HAEZBURGITE. This rock type predominates i n the 
area, and forms the bulk of the Silam Mountain. 
The rock consists of 5 to 60$ enstatite. As the 
pyroxene content increases the olivine content 
decreases. 

(4) PYROXENITE. This rock i s composed wholly of the 
mineral pyroxene, usually clinopyroxene i n the 
area, or of pyroxene with not more than 5$ 
olivine. These rocks are found massive and as 
dykes i n the area transecting the other three. 

The ultrabasic rocks i n the Silam-Beeston area form a belt 3-4 
miles wide and 17 miles long, along the northwestern coatline of Darvel 
Bay. The ultrabasic rocks trend, i n general, to the northeast, and form 
the highest ground i n the area overlooking the bay. 

The general shape of the outcrop i s lenticular. In detail 
the outcrop thickens and thins rapidly along i t s length. At the eastern 
end of the range, above Kennedy Bay, the peridotite outcrop i s a mile 
wide, but rapidly narrows to a width of g mile, where the Kennedy Bay, 
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Silam Road, cuts across the range (275.25 N; 470.15 E). Further to the 
west, the outcrop rapidly broadens to i t s maximum width of three miles 
about Mount Silam, but then narrows again to a two mile width at the 
River Diwata. Approximately one mile to the west of the River Diwata 
the outcrop widens to two miles and from there attenuates rapidly to the 
west where i t i s thought to lense out to the east of Mount Beeston. 

The pattern of outcrop on the Saddle Islands i s similar to 
that seen on the range. On Laila and Saddle Islands, the outcrop 
measures approximately a quarter of a mile i n width, but narrows rapidly 
to the northwest and southeast to outcrops of less than 400 feet i n 
width, as seen i n islands 3 and 6. 

The most abundant rock type i n the Silam-Beeston igneous complex 
i s harzburgite; i t forms the bulk of Mount Silam and the h i l l s to the west 
of the River Diwata, along the range. Much of the serpentinite on the 
northern and southern margins of the intrusion are believed to have been 
derived from rocks of harzburgite composition. Within the massivey un-
sheared harzburgites, narrow dunitic segregations occur which show a 
general concordant relationship to the internal structure i n the surrounds 
ing harzburgite rock. 

Pyroxenite, occurs massive on the flanks of Mount Silam and as 
dykes cutting the harzburgites and dunites, particularly i n exposures on 
the Saddle Islands. That the pyroxenite is younger than the harzburgites 
and dunites locally, can be shown by the numerous exposures of the 
pyroxenite dykes of the Saddle Islands possessing chilled edges. 
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DUNITE 

Dunite represents approxinately % of the known ultrabasic rock 
types i n the Silam-Beeston area. 

The presence of dunitic segregations, within large masses of 
harzburgite, appears to be typical of the ultrabasic masses i n North 
Borneo. Dunite was recognized, i n massive rock, on Banggi Island, i n the 
Kapitangan ultrabasic mass, as thin lenses; and i n the Porog harzburgites, 
where one inch to two hundred feet wide lenticular masses of dunite 
occur. On Mount Silam, the dunitic layers are parallel i n strike and 
dip to the planes of fo l i a t i o n i n the harzburgite. The segregations 
never attain significant size on the mountain; but occur several hundreds 
of feet wide, i n outcrop, locally, i n the Saddle Isla'nds. 

On the Silam Mountain, dunite was noted in many l o c a l i t i e s , the 
most important of which are as follows: 

At the headwaters of stream 14, at approximately the 1800 foot 
contour level (273.85 N; 466.65 E), dunite occurs as 2-3 feet thick 
layers striking to the northeast, across the north flowing stream. These 
layers strike concordantly to the planes of fol i a t i o n i n the surrounding 
harzburgite. Dunite rocks have also been found i n the River Hitam 
(stream 1 2 ) , one half mile from i t s junction with the Sapagaya River 

(275.30 N; 468.38 E), (LS .42). The dunite layer i s here associated with 
dunitic rocks i n which the pyroxene content i s approximately 5$. In 
stream 11, a quarter of a mile from the contact of peridotite and ophio-
l i t e s , layers of dunite, 1-2 feet, thick strike N48E across the direction 
of the stream (273.45 N; 467.30 E). Further to the west, i n the River 
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Puteh, a thin lense, 2 feet 6 inches wide, has been recognized at approx­
imately the 1000 foot contour level (273.35 Nj 465.70 E). This lense 
strikes N53E concordantly to the structures i n the surrounding harzburgite. 
Similar dunitic layers occur in the same stream section containing fine 
grained pyroxene and thin stringers of spinel, visible i n hand specimen 
(LS. 66). Dunite has also been recognized i n the River Diwata as narrow 
segregations (Fitch, 1955, p. 57), i n the main stream, and also a £ mile 
up a small southwesterly flowing tributary of the River Diwata close to 
the peridotite-gabbro contact, near Mile 6 (see Diwata Traverse Map). 

The dunite layers have a much greater thickness i n the Saddle 
Islands exposures. They contain important concentrations of chrome ore. 
Reliable dips and strikes taken of the structures i n the dunite suggest 
that the layers are vertical. Noteworthy outcrops i n the islands of 
dunite serpentinite are as follows: 
1. Kalung Island, (see Map 1, and Fig. 11). Situated one and a half 
miles to the southeast of Giffard Island and one mile to the southwest 
of Baik Island, i n Darvel Bay, the island i s 600 feet long and 300 feet 
wide, and wholly composed of dunite serpentinite. The rock i s generally 
massive i n character, though j o i n t patterns are closely spaced. Gene­
r a l l y the rock i s a buff colour, and weathering of the surfaces has 
penetrated deep, so that fresh dunite serpentinite i s rare at the 
surface. Chrome ore, as single grains or as thin layers, stand out 
vivid l y i n the rock. . Layering i n the dunite serpentinite shows that 
there are two directions on the island: N70-80W along the eastern side 
of the islandj and N50-75E along the southwestern part of the island. 
Shear zones cut the rock at the southwestern corner of the island N30-40W, 
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and indicate the position of minor faults; these zones are approximately 
10 feet wide and dip steeply to the south. 
2 . Rian Island, (see Map l ) . This island (no. 3 i n the Saddle Islands 
group) l i e s between Giffard Island and Laila Island. I t i s 300 feet long 
and 50 feet wide and is composed entirely of dunite serpentinite. The 
rock is heavily slickensided and the slickenside directions indicate a 
complicated series of movements i n an upward direction. 5bm« of the 
sheared serpentinite has been pulverized, but the planes of schistosity, 
i n general, strike to the northwest, with steep dips to the southwest. 
3 . Laila Island. The southern part of this island only, is composed of 
dunite serpentihite. The irregular shaped southern peninsula of the 
island is 900 feet long and 50-300 feet wide and forms the largest single 
outcrop of dunite serpentinite i n the Silam-Beeston area. Exposures 
along the beach section show the dunite serpentinite to be a massive rock 
on the southwestern headland, and schistose elsewhere. Vertical layers 
of chromite on the headland i n massive rock strike i n a similar direction 
to Ore Zone IV, Kalung Island (see Fig. 1 1 ) , that i s , N50-60E. 

L. Islands 5. 7 and 9 are also composed chiefly of dunite serpentinite, 
part of which i s schistose. The layered structure of the 

massive rock,similar to that seen on Kalung, and Laila Island,has been 
completely destroyed by the shearing. 

In hand specimen the dunite serpentinite weathers a l i g h t buff 
colour, on the surfaces of which the accessory chromite and magnetite i s 
conspicuous, ( L . I . 92, Island 3 ) . The texture of the rock, when massive, 
is compact and has a deeply altered appearance. Fresh specimens of the 
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dunite serpentinite are rare, though one specimen was collected from 
the western side of Island 7, and has a dull black colour ( L . I . 10). 
In a specimen from Laila Island ( L . I . 58)* streaks of limonite traverse 
a relatively unweathered rock; i n Island 3 (Rian Island), and Island 6, 
the dunite serpentinite i s streaked with magnesite. 

Opposite Peg 8, on Rian Island, 12 feet up the c l i f f face, 
quartz and gold coloured mica with some hornblende occur i n a t h i n 6 inch 
wide vein cutting the rock. Aragonite crystals were noted on Island 6 i n 
some of the cavities i n slickensided dunite serpentinite and may possibly 
indicate the high pressures to which the dunite was subjected. 

nearly 

In thin section the olivine shows .complete or advanced alter­
ation to serpentine minerals. Original rock structures have generally 
been destroyed and a mesh texture superimposed (L.S. 33* River Diwata)] 
(L.S. 16, Mount Silam). Kernels of fresh olivine, where they occur are 
probably of forsterite composition. 

Accessory chromite is widely scattered i n the rock., or may occur 
as discrete layers. Individual grains are compact, (L.S. 64, Island5). 
In the l a t t e r specimen the rock i s completely altered to mesh antigorite 
and shows the chromite grains altered to magnetite around their edges.. 
In specimen L.I . 28, from Island 8, the grains of chromite have a len-^ 
ticular shape, and their axes are arranged parallel. Magnetite i s a 
common accessory mineral i n the dunite serpentinite, and has a very 
irregular shape. In one specimen from the Hitam River (L.S. 42), 
(275.30 Nj 468.38 E) coronas of chlorite occur around the edges of the 
grains of magnetite. Talc and calcite are also common accessory 
minerals. 
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HARZBURGITE AND LHERZOLITE 

As i n most of the ultrabasic outcrops i n North Borneo, 
harzburgite forms the most important rock type, together with the 
serpentinite rocks derived from them. Lherzolite occurs only as thin 
segregations within the main masses of harzburgite. 

In the Silam-Beeston range, harzburgite rocks are best seen 
over Mount Silam, where they extend for ten miles i n a northeast 
direction, (see Map l ) j the maximum width of the belt i s three and three-
quarter miles. The pattern of the outcrop i s lenticular, (see Map 1). 
The harzburgite tends to be massive at the centre of the outcrop where 
a well developed cuboidal system of jointing is characteristic of many 
outcrops. Fine examples of this joint system were seen toward the head­
waters of stream 9 (274.10 Nj 467.85 E), and stream 10 (273.85N; 467.65 E), 
and stream 11 (273.50 Nj 467.10 E), (273.25 Nj 467.20 E), between 1500 
feet and 2000 feet, on the southern side of the mountain. On the northern 
side this regular joint pattern was seen i n the headwaters of the River 
Kamut (273.75 Nj 466.80 E), (274.10 Nj 467.25 E). 

The harzburgite i n outcrop i s generally a distinctive rock on 
account of the mineral pyroxene, which forms lustrous insets i n the 
surfaces. The pyroxene mineral produces a characteristic f o l i a t i o n 
structure i n the harzburgite. In general, the harzburgite rocks are fine 
to medium grained. As the pyroxene content decreases, harzburgite grades 
into dunitic type rocks. 

Progressively, toward the north and south contact areas, the 
massive harzburgite becomes increasingly more slickensided and the joint 
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and f o l i a t i o n structures becomes less evident* Serpentinization of 
the rock also increases, and at the thrust contacts the harzburgite 
has been completely converted to serpentinite schists, (see Hap 1). 

Peridotite rocks - harzburgite and lherzolite - also occur 
i n the Saddle Islands. Harzburgites form the northern halves of Laila 
Island and Saddle Island, and the whole of Bail*. Island, opposite Kennedy 
Bay. They are generally heavily slickensided and serpentinization i s 
advanced. 

The mineralogy of the unaltered harzburgite i s simple. The 
rock consists principally of magnesian olivine, and the orthorhombic 
pyroxene-enstatite; diopsidic augite may sometimes be present. Chromite 
and magnetite are common accessories. I t is not possible to distinguish 
the harzburgite from the lherzolite i n outcrop* 

In hand specimen the rocks are fine to medium grained, blue-
grey, black, or reddish brown i n colour. The pyroxene crystals are 
visible as lustrous insets and frequently impart to the rock a strong 
f o l i a t i o n , (Plate 12). The pyroxene content of the rock varies conside­
rably from place to place; i n those stream sections which show a strong 
f o l i a t i o n structure, such as i n the. Kanut River, the pyroxene content 
may amount to approximately 60$ of the rock. Weathered surfaces are 
typically corrugated, l i g h t to dark brown i n color, the l a t t e r colour­
ation being caused by a crypto-crystalline material, white i n reflected 
l i g h t , vdiich changes abruptly to the normal colour i n unweathered rock. 

In t h i n section, the olivine forms equidimensional grains, 
1-2 mm. across, which are more or less converted to serpentine or 
antigorite. Relict olivine at the centres of the crystals are colourless 
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(L.S. 46), were taken to be of forsterite composition. One specimen from 
Mount Silam, i n stream 10 (L.S. 10) , showed granules of magnetite ou t l i n ­
ing the boundaries of the former olivine crystals. 

Generally the pyroxene i s of the non-pleochroic enstatite. The 
mineral occurs as anhedra, 2 to 5 millimeters across, scattered singly i n 
the rock, or as crystals showing a common orientation i n thin lenticular 
segregations. Some of the crystals i n thin section show an undulose 
extinction (L.S. 61) . Bastite fibres are developed i n many of the samples 
taken from stream 10, above 2000 feet, and when the fibres are parallel to 
the 010 the crystals possess a marked pearly or metallic lustre as i n 
stream 11 (L. S. 92) . 

Chromite occurs as an accessory mineral i n a l l the harzburgites. 
The mineral occurs as compact grains with angular or embayed outlines 
characteristic of minerals of early crystallization, or as i n t e r s t i t i a l , 
irregularly shaped crystals containing minute inclusions of silicate 
minerals, thus indicating a later crystallization. Spinel occurs i n 
dunitic harzburgite, at 1000 feet, i n the River Puteh section and forms 
blebs of up to one inch across i n the rock, striking parallel to the 
direction of the harzburgite f o l i a t i o n (L.S. 67j 272.97N] 465.60 E). 
In L.S. 55, from the same river, the blebs of spinel a re f a i n t l y green i n 
colour, and surrounded by a white opaque mineral which has low polariza­
tion. In L.S. 46, the spinel,in thin section,is a deep brown colour and 
occurs i n sub-ophitic relationship to the pyroxene and olivine minerals 
of the harzburgite. 

Rocks of lherzolite composition appear to form thin s egregations 
within the main mass of hazburgite on the Silam Mountain, but their actual 
distribution i s obscure. 
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The e s s e n t i a l constituents of a l h e r z o l i t e found i n the River 

Diwata (L.S. 64); are ol i v i n e and the orthorhombic and monoclinic pyroxenes; 

the pyroxene forms l e s s than 20$ of the rock by volume. L.S. 47 (274.50 N; 

465*40 E ) , contains roughly 25% of mixed colourless orthorhombic and c l i n o -

pyroxene. Individual plates of pyroxene measure 4 millimeters across and 

contain abundant inclusions of o l i v i n e . I n thin s e c t i o n the olivine i s 

almost completely converted to mesh antigorite; the diopside and ens t a t i t e 

has al t e r e d to antigorite and c h l o r i t e . 

PYRQXEWITE 

Pyroxenites form approximately 5% of the known rocks exposed a t 

the surface i n the Silam-Beeston area. On the main range the rocks are 

widely scattered and generally occur as massive rocks or as dykes cutting 

the harzburgite. I n outcrops of the Saddle Islands, pyroxenite occurs as 

thick dykes, the c h i l l e d margins of which may be seen i n several l o c a l i t i e s . 

The dykes, i n general, appear to be v e r t i c a l or steeply dipping i n the 

schistose serpentinite. 

On Mount Silam, notable outcrops are as follows: 

1. Diwata Valley. Pyroxenite occurs i n the stream section at several 

l o c a l i t i e s , approximately a t Mile 7s along the r i v e r . The pyroxenite 

appears to be int r u s i v e into sheared serpentinite and i n one exposure 

the pyroxenite i s brecciated. Kirk (1962), noted pyroxenite a t t h i s 

l o c a l i t y overlain by tremolite amphibolite, and that the contact between 

the two rocks was sharp. From t h i s l a s t outcrop, for a quarter>cf a mile 

upstream, brecciated pyroxenite occurs i n the stream section i n serpen­

t i n i t e . Along the course of the northeasterly flowing tributary of the 
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River Diwata a t 272.50 Nj 463.00 E, a ten foot wide dyke of pyroxenite 

cuts the serpentinite, and shows excellent flow layering p a r a l l e l to the 

walls of the dyke. 

2. The most important outcrops of pyroxenite i n the Saddle Islands 

are as follows: 

1. Giffard I s l a n d . Pyroxenite i s exposed i n an outcrop 250 feet wide and 

400 feet long along the beach sections of the i s l a n d . Contacts of the 

dyke have been observed on the southeast corner of the i s l a n d . The pyro­

xenite i s massive toward the centre of the i s l a n d , about Peg 3, and 

probably represents the centre of the dyke. Slickensided and schistose 

pyroxenite tend to predominate toward the northern and western margins of 

the i s l a n d . At the northern and southeastern headlands an interlayered 

relationship of the dunite serpentinite and the pyroxenite may be seen 

(Plate 15). The general direction of the layering i s N30E with a moderate 

dip to the southeast 40-60 degrees (Peg 9 ) . The st r i k e of the layers are 

thought to be p a r a l l e l to the walls of the dyke, as i n the Diwata Valley 

(272.50 N; 463.00 E ) , so that the dyke cuts the dunite serpentinite i n a 

northeasterly d i r e c t i o n . Individual layers i n the dyke range from a few 

millimeters to a foot or more (Peg 14), but along t h e i r s t r i k e they can 

be followed for only a few inches or feet. The dunitic rock between the 

pyroxenite l a y e r s i s often unsheared (Plate 15), and often contains 

chromite grains which are aligned p a r a l l e l to the walls of the laye r s 

( L . I . 24). 

2. Island 6. Massive pyroxenite occurs along the i n t e r t i d a l regions 

on the southern shore of the i s l a n d . The rocks are c h a r a c t e r i s t i c a l l y 

dark green and possess a vitreous l u s t r e . Toward the southern end of 
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the i s l a n d they a t t a i n t h e i r maximum thickness of twenty f e e t . C h i l l e d 

margins have been observed on the small bluff of the is l a n d ; the c h i l l e d 

rock i s white-green i n colour and i n thickness v a r i e s from one to three 

inches. The contact serpentinite rocks have been invaded with magnesite 

ore. Gabbro has l a t e r intruded the pyroxenite dyke and metamorphosed the 

pyroxenite rock l o c a l l y (Plate 9 ) . 

3. L a i l a I s l a n d . A dyke of pyroxenite forms a prominent r i b 7 feet wide 

on the eastern shore l i n e of the i s l a n d , approximately 500 feet from the 

southern headland. The dyke i s intrusive into sheared serpentinite and 

can be traced along the s t r i k e of N50W for 50 feet, from the shore to the 

c l i f f face. Chilled margins, one to two inches thi c k , may be seen at the 

sides of the dyke dipping v e r t i c a l l y ; they have the same bleached white-

green appearance as i n the outcrops on Island 6 and Giffard I s l a n d . The 

schistose serpentinite i n contact with the dyke i s impregnated s i m i l a r l y 

with nodules and veins of magnesite. The ore i s thought to have been 

derived from the decomposition of serpentinite during the period of 

pyroxenite intrusion. 

I n hand specimen the rock i s f i n e to medium-grained, granular 

i n appearance and i n samples from the Saddle Islands ( L . I . 50 - Giffard 

I s l a n d ) , the rock has a marked vitrous l u s t r e and i s dark t o pale green 

i n colour. Iron oxide frequently streaks the rock. A pegmatite f a c i e s 

occurs i n a small exposure on the mainland, where the most northerly 

outcrops of the Saddle Islands ultrabasics occur, opposite stream 9 

(273.25 N; 469.10 E ) . Here.the pyroxenite i s sheared and intrudes the 

serpentinite s c h i s t derived from dunite. Individual c r y s t a l s of pyroxene 

measure 3-6 inches across and, as i n most of the specimens taken from the 
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Saddle Islands, features of ca t a c l a s i s are common p a r t i c u l a r l y on the 

dyke edges. 

I n thin section, the rock may consist almost e n t i r e l y of the 

monoclinic pyroxene-augite ( L . I . 40 L a i l a I s . ) , with an extinction angle 

of approximately 43 degrees, or may range through mixed monoclinic pyro­

xene - diallage, diopside and hypersthene ( L . I . 36) - to a rock containing 

almost pure hypersthene ( F i t c h 1955, p. 59). L . I . 86 consists of twinned 

hypersthene c r y s t a l s with l e s s than % o l i v i n e . The ferroan diopside-

diallage i s frequently made conspicuous i n hand specimen by i t s pearly 

or m e t a l l i c l u s t r e (Stream 10, L.S. 43). I n thin section the rock 

generally shows a granular texture, though i n one s l i d e (L.S. 33), 

some of the c r y s t a l s are p o i k i l i t i c a l l y enclosed i n larger c r y s t a l s . 

Individual pyroxene c r y s t a l s are ragged i n appearance, cracked (L.I„ 85), 

and show strained extinction ( L , I . 86). Some of the c r y s t a l s are torn 

apart down t h e i r cleavage. I n some of the rock s l i d e s , made from the 

Giffard I s l a n d pyroxenites, part of the pyroxene grains have suffered 

granulation. Chromite i s the usual accessory mineral as i n Stream 10 

(273.75 N; 467.75 E ) . The rock may, i n part, be converted to serpentinite 

and c h l o r i t e ; L . I . 36 contains accessory limonite i n streaks. 
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SERPENTINITE 

I n the u l t r a b a s i c rocks described above much of the o l i v i n e 

component of the rocks and, to a l e s s e r extent, the pyroxene, have been 

converted to minerals of the serpentine group. Rocks i n which t h i s a l t e r a ­

tion i s complete, or nearly so, are dealt with separately, here, under the 

heading "serpentinite". Serpentinization i n the area has mainly affected, 

therefore, the dunite and harzburgite rocks. A detailed discussion on the 

origin of serpentinization i s beyond the scope, of t h i s work, but i t i s 

pertinent to point out the general d i s t r i b u t i o n . 

Serpentinization i s most intense along the southern and 

northern margins of the peridotite mass. Progressively from the 

contact areas toward the centre of the Mount Silam serpentinization 

decreases. Along the contact areas the serpentinite i s schistose 

i n character and mark the position of the extensive thrust f a u l t s . The 

control for the serpentinization appears to have been these large 

thrust planes - the North and South Silam Thrusts - which acted as 

channels along which the hydrous f l u i d s effecting serpentinization 

flowed. Faulting and shearing appears to have occurred p r e f e r e n t i a l l y 

along the zones where serpentinization was complete. 

Serpentinization has greatly affected the dunite rocks of 

the Saddle I s l a n d s . The serpentinite i s generally highly weathered and 

schistose i n character, as seen on Rian I s l a n d , and Island & and 9* 

I n some cases the serpentinite has been pulverized. Where serpentinites 

juxtapose gabbro intrusions i n the Saddle I s l a n d s , such as a t the 

southwestern corner of Giffard Island and the southwestern headland of 
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I s l a n d 3, s i l i c a has invaded the j o i n t s and forms a r e s i s t a n t network or 

boxwork i n the serpentinite. On the southwestern headland of L a i l a I s l a n d , 

and on Rian I s l a n d , opaline s i l i c a traverses the rock i n quarter inch veins 

and carry granules of chrome ore (Peg.5 L.I.42,Rian Island.);(see a l s o 

Plate l l , L a i l a I s l a n d . ) . These chromite grains are thought to have been 

derived from the serpentinite during a period of metamorphism. 

S i l i c i f i c a t i o n of serpentinite rocks are known elsewhere i n 

Borneo and i n other parts of the world. Kirk (l960,p,117) describes 

examples from the Umas Umas Valley to the south of the Silam-Beeston area, 

i n which the serpentinite has been completely converted to s i l i c a . 

Weaver (1949)> described a si m i l a r metamorphic e f f e c t i n the serpentinites 

of the Coast Range of C a l i f o r n i a . He states that s i l i c i f i e d serpentinites 

are common to highly faulted areas. Farquhar (1958), has also described 

s i l i c i f i e d serpentinites i n the T a i t a H i l l s , Kenya, and suggests that they 

have been derived from hydrothermal f l u i d s invading the rock during a 

period of regional metamorphism. 

Veining by s i l i c a and limonite, as seen i n the serpentinites of 

the Saddle Islands,appears to be an intermediate stage to the complete 

conversion of the rock to s i l i c a and silica-carbonate rocks. I t seems 

l i k e l y that the veins have been derived s i m i l a r l y from hydrous f l u i d s , 

during regional metamorphism. 

I n hand specimen the massive serpentinite i s a pale green 

to dark-grey colour and frequently has a waxy appearance (stream 10 

273.65 N; 467.65 E ) . The palest serpentinite rocks occur on the flanks 

of the Silam Mountain, between 1600 and 2000 f e e t , i n streams 9, 10 and 
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11 and also i n the Kamut River, (274.05 N; 466.50 E ) (274.45 N; 

467.05 E ) . The rock i s massive i n character, yellowish-green or dark 

green i n colour as i n L.S. 31 (273-50 Nj 467.15 E ) , and has a waxy 

l u s t r e as i n examples from stream 10, (L.S. 46: 273.70 N; 467.68 E ) . 

I n streams 9, 10, 11, the Kamut River, and i n a small tributary of the 

River Diwata a t Mile 6, t h i s massive pale serpentinite possesses a 

marked l i n e a t i o n structure, caused by the alignment of minute l e n t i c l e s 

of c h l o r i t e with admixed magnetite. 

The sheared and slickensided rocks are blue grey i n colour 

and p i c r o l i t e coats the s l i p surfaces. Asbestos f i b r e and t a l o are 

also common i n the schistose rock. 

I n t h i n sections made from serpentinites derived from dunite, 

the rock consists of a mass of serpentine minerals and possesses a 

mesh or fibrous texture. Recognisable pseudomorphs of o l i v i n e are only 

occassionally seen. I n L.S. 56, the pale green rock shows approximately 

10$ r e l i c t pyroxene; the c r y s t a l s show a marked s c h i l l e r texture and 

possibly indicate former orthopyroxene. I n L.S 0 37, from the flanks 

of Mount Silam, the pale peridotite has a streaky appearance, i s 

chromite f r e e , and contains approximately % r e l i c t pyroxene showing 

the bastite f i b r e s . Ghost structures of o l i v i n e were recognized 

i n L.S. 15. I n rocks derived from Harzburgite a c t i n o l i t e and c h l o r i t e 

are common. Chlorite i s common i n the palest serpentinite rocks 

(L.S. 37; 274.08 N; 467.96 E) and the conspicuous lack of chromite i n 

these rocks suggests that the ore has been broken down during 

serpentinization leaving r e s i d u a l magnetite. S l i d e s could not be 

obtained from the f r i a b l e slickensided and schistose rocks near the 

thrust contact areas. 
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GABEROIC ROCKS 

Gabbroic rocks are t y p i c a l representatives of Alpine Ultrabasic 

Associations (Benson 1926; Thayer 1960). Generally, the gabbroic rocks -

i n peridotite-gabbro complexes occur i n subordinate amount to the 

peridotite (Kaaden 1960, p. 117), but belong to the same igneous cycle. 

Though the boundaries of the gabbro outcrop have not been 

mapped with certainty on the northern side of the Silam-Beeston range, 

i t seems certain that these rocks occur i n a t l e a s t equal amounts to the 

harzburgite and serpentinite rock types. The gabbro has been intruded 

into rocks of the Chert-Spilite Formation together with the peridotite 

rocks, when the l a t t e r were i n a s o l i d condition (v.d.Kaaden, Muller 

1953, PP. 59-78). 

The gabbroic rocks occur i n a broad belt mainly along the 

northern and eastern sides of the u l t r a b a s i c mass. The b e l t i s 22 miles 

long and has a possible width of 1 to I 5 miles. I n general the gabbroic 

rocks form the f o o t h i l l s of the range and l o c a l l y form important ridges, 

for instance a t the entrance of Kennedy Bay which a t t a i n s a height of 

500 f e e t , Mount Beeston, 2590 feet, i s composed of gabbroic rocks. The 

northern boundary of the gabbro, between the Segama River and the Mount 

Silam, i s thought to be i r r e g u l a r ; several narrow ridges have been 

crossed i n the area but t h e i r exact location was not ascertained. These 

ridges are of quartzite and s p i l i t e , and appear to form lenses within the 

belt of gabbroic rocks (see Map l ) ; the lenses appear to become more 

important northwards of the range. 
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The gabbro occurs as massive rock and as dykes, i n swarms, on 

the northern margin of the u l t r a b a s i c rocks, p a r t i c u l a r l y i n the 

serpentinite s c h i s t s . To a l e s s e r extent they occur along the southern 

border of Mount Silam u l t r a b a s i c s i n the serpentinite s c h i s t zones. The 

dyke swarms show a marked pa r a l l e l i s m to the general elongation of the 

u l t r a b a s i c mass and to the structures i n the harzburgite. Numerous 

dykes occur i n stream 13 (275o50 N; 468,00 E ) , measure 10 to 20 feet i n 

thickness and i n general s t r i k e , to the northeast. Ch i l l e d margins may be 

seen (275.50 N; 467*85 E ) , and the contact serpentinite rocks are 

frequently i r o n stained. The dykes are generally steeply dipping; 

i n the stream 13, several dykes were found to be dipping to the 

south and southeast 60-80 degrees. Swarms of gabbro dykes a l s o 

occur i n the schistose serpentinite i n the Kamut River (274*40 N; 

466.30 E ) . These dykes vary i n width from 15 to 25 feet and s t r i k e 

east-west. They are generally coarse grained and possess a well 

developed l i n e a t i o n structure. On the southern side of the range, 

dyke swarms occur i n the Silam Road cuttings (275*20 Nj 470.40 E ) . 

These dykes also possess c h i l l e d edges and are coarse grained* They 

s t r i k e roughly east-west, with a v e r t i c a l dip and, i n thickness, 

range from 2 f e e t to 5 f e e t . Some of these dykes are brecciated i n 

the highly sheared serpentinite. Thin dykes also occur i n the River Silam 

and are strongly lineated showing c h i l l e d edges (274*85 N; 469*84 E ) 0 

The dykes trend roughly east-west with a v e r t i c a l dip i n slickensided 

serpentinite and, i n thickness range, from 2 feet to 5 f e e t . Similar 

occurrences also occur i n stream 6 and 7 (274*50 N; 469*60 E ) , and 
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THE CHROMIFEROUS ULTRA BASIC ROCKS OF THE SILMi^EEESTON 
RANGE, DARVEL BAY, NORTH BORNEO, 

•I 
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Plate 1, Hornblende gabbro, showing the w e l l developed 
li n e a t i o n structure, trending northeast, Silam 
Harbour, Darvel Bay, North Borneo. 
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(274.50 Nj 468.95 E ) j and i n stream 11 (273.05 Nj 467.65 E ) . I n the 
dunite serpentinite rocks of the Saddle Islands the gabbroic dykes are 

l e s s numerous and where they occur are generally never more than one 

foot i n width. The la r g e s t occurrence may be seen on Island 6, where 

a gabbro dyke cuts serpentinite s c h i s t s and pyroxenite, and i s 6 feet 

thick. The dyke i s also strongly layered (Plate 9). Thin gabbro dykes 

also occur on the peninsula (273.15 N J 469.15 E ) , s t r i k i n g east-west and 

dipping v e r t i c a l l y i n the schistose serpentinite. 

Massive gabbro outcrops are best seen on the beach sections 

on the eastern side of Kennedy Bay (274.50 N; 471.75 E ) . The rocks are 

strongly lineated and layered, though s t r i k e directions tend to be 

e r r a t i c . The gabbro forms the northwest-southeast trending ridge over­

looking the bay. Excellent sections of massive gabbro, strongly lineated, 

occur i n stream 1 (275.15 N; 471.25 E ) ; inclusions of s p i l i t e form a lense 

i n the gabbro rocks approximately g mile from the r i v e r mouth. Gabbro 

boulders were also seen on the h i l l a t 1000 f e e t , which forms the 

termination of the Silam-Beeston range on the east (275.80 N; 471.47 E ) . 

Massive gabbro rocks, highly weathered and slickensided occur a t Mile 

3, along the Kennedy Bay Road (275.85 Nj 471.15 E ) , (275.20 Nj 469.75 E ) , 

where the gabbro i s brecciated and weathered. This faulted gabbro i s 

thought to mark the approximate position of an important thrust f a u l t 

separating the peridotite of the range from the massive gabbro of the 

north. Outcrops of the gabbro become rare i n the low ground on the 

northern side of the range, although abundant boulder debris was noted. 
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Gabbro i n massive form i s next encountered i n the Diwata Valley a t Mile 8, 

(See Diwata Traverse map). The massive gabbro extends f o r approximately 

a further two miles toward the headwaters of the River Diwata. Contacts 

with the serpentinite are faulted. 

The gabbroic rocks of the Silam-Beeston range are conspicuously 

layered or streaked i n hand specimen by the p r i n c i p a l dark mineral of 

the rock-hornblende. The feldspar tends also to be grouped into narrow 

l e n t i c l e s , the direction of which, imparts a strong l i n e a t i o n 

occasionally to the rock. The trend of the l i n e a t i o n p a r a l l e l s the 

s t r i k e of the layering. The rock i s l i g h t to dark grey, or i n the case 

of the more hornblendic types the rock may be green-black or black, 

i n colour* 

Though most hand specimens, away from the faulted areas, appear 

massive under the microscope, for instance a t the entrance to the 

Silam Harbour (275*10 N; 471*20 E ) , the rocks are composed of shattered 

c r y s t a l s . F i t c h (1955, P* 65), considered t h i s to be evidence of 

movement of the rock when i n a semi-solid condition* The e s s e n t i a l 

minerals are the c a l c i c Felspar-labradorite, hornblende and minor amounts 

of o l i v i n e and pyroxene. The plagioclase occurs as anhedra l - l g millimeters 

across and shows frequent twinning on the a l b i t e and twinning laws. The 

hornblende may be of the colourless iron poor type, or of the green-brown 

var i e t y , or of the red, soda r i c h types. The hornblende forms streaks 

and l a y e r s and small pods of up to 3 centimeters thick i n the'white metrix 

of feldspar. The pyroxene i s normally of the colourless monoclinic 

v a r i e t y with z/c approximately 36 degrees. The pyroxene i s normally 

mixed with the hornblende and i s indistinguishable i n hand specimen* 
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I n L . I . 71* much of the colourless orthrombic and monoclinic pyroxene 

was found to be altered a t the rims to hornblende. Olivine generally 

occurs i n accessory amounts and as serpentinized anhedra i n the rock. 

Other minerals may be present such as garnet. Kirk (1962), found 

garnets i n specimens taken from the River Diwata a t Mile 7lg» Dr. Kirk 

also found prehnite i n one of the specimens taken from the same l o c a l i t y 

(see Diwata Traverse map). Prehnitization i s thought to be the r e s u l t 

of metamorphic (hydrothermal) a c t i v i t y (G.v.d.Kaaden 1960, p. 117) 

probably during the period of serpentinization. Pyrite i s a common 

accessory mineral, for example i n specimens from the Kamut River. 
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CHAPTER IV 

STRUCTURE OF THE ULTRABASIC MASS 

General Statement. 

Several authors (Van Es, 1920; Brouwer 1925; Staub 1928; 

Reinhard and Wenk, 1951, P« 27) who discuss the regional structures of 

the E a s t Indies, show that the important T e r t i a r y trend l i n e s of Sarawak, 

and Central Borneo cross North Borneo i n a general north northeast 

direction. These trend l i n e s form d i s t i n c t morphological features and 

though there i s a general northeasterly trend i n North Borneo many branch 

l i n e s occur. The general regional trend, however, continues on toward 

the Philippines. 

The chromiferous u l t r a b a s i c rocks of the Silam-Beeston Range 

show a general northeast trend and a broad concordance of i t s tabular 

or lensoid shape with the trend l i n e s of the country rock Chert-Spilite 

Formation. I n general the peridotite-gabbro complex of the range i s a 

t y p i c a l Alpine Ultrabasic intrusion (Turner and Verhoogan 1951, p. 240). 

This tabular, or s i l l - l i k e mass c h a r a c t e r i s t i c a l l y thickens and thins 

along i t s length ( T a l i a f e r r o , 1943, p. 153). 

The structures seen i n the peridotite-gabbro complex of the 

Silam-Beeston Range are of two kinds: 

(1) Igneous or Prijnary Structures, which resulted 

from intrusion and c r y s t a l l i z a t i o n of the mass; and 

(2) Tectonic or Secondary Structures created by l a t e r 

deformation of the basic and u l t r a b a s i c rocks 

during t h e i r emplacement as a ' s o l i d rock* mass 

into higher l e v e l s of the country rock 

Chert-Spilite Formation, during the Miocene 

orogeny. 
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THE CHROMIFEROUS ULTRABASIC HOCKS OF THE SILAM-
BEESTON RANGE, DARVEL BAY, N.BORNEO. 
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Diagraml. To show the r e l a t i o n s h i p s between the 
l a y e r i n g »A», and »B' the f o l i a t i o n i n the 
pe r i d o t i t e rocks of the Silam Mountain. Note that 
the planes of f o l i a t i o n may p a r a l l e l or i n t e r s e c t 
the planes of l a y e r i n g . The general d i r e c t i o n of 
l i n e a t i o n i n the s e r p e n t i n i t e i s a l s o shown; the 
a x i s of which i s h o r i z o n t a l * 

Diagram 2. To show the general r e l a t i o n s h i p s of 
the s t r u c t u r e s seen i n the chromiferous dunite 
s e r p e n t i n i t e s of the Saddle.Islands, Darvel Bay. -• 
The a x i s of l i n e a t i o n i n the Tabular deposits i s 
ho r i z o n t a l ; and the I r r e g u l a r deposits may l i e at 
any angle i n the massive dunite s e r p e n t i n i t e . 
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( l ) The Primary Igneous Structures. I n the f i e l d three d i s t i n c t types 

of primary structures have been mapped i n the area. They are: (a) 

Layering; (b) F o l i a t i o n ; and ( c ) Lineation. Layering and f o l i a t i o n 

are planar features and because there i s a close association of the 

two i n the f i e l d and because there i s often a, gradation of one into 

the other, the two structures often present d i f f i c u l t i e s i n f i e l d 

mapping (Thayer 1960). This complication a r i s e s from the f a c t that the 

planes of layering are frequently p a r a l l e l to the planes of f o l i a t i o n . 

L o c a l l y the two planes may show different s t r i k e s and i n t e r s e c t along 

t h e i r dips at various angles. Thayer pointed out (1960), that the 

layering and f o l i a t i o n may be developed separately, and independent 

of the l i n e a t i o n . The l i n e a t i o n seen i n the gabbro rocks appears to be 

a primary rock structure, but the l i n e a t i o n i n the massive serpentinite 

of Mount Silam i s a feature developed during the serpentinization of the 

rocks. 

( a ) Layering* Wager (1953, P« 335), defined a layered s e r i e s of rocks 

as an "igneous complex which can be separated by s t r u c t u r a l or 

mineralogical c r i t e r i a into a succession of sheets l y i n g one upon the 

other". The individual sheets or la y e r s as seen i n the peridotite rocks 

of the Silam-Beeston area can be separated from the f o l i a t i o n structure 

and can be used as a separate mapping feature. Individual l a y e r s , are 

c l e a r l y defined, possess sharp edges, vary i n colour, and i n the 

proportions of the different minerals present i n the rock. I n thickness, 

the l a y e r s range from a few millimeters to a foot or more and are 
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traceable along t h e i r dip and s t r i k e for several f e e t . Rossman (1959, 

p. k)» described l a y e r s (bands) i n the peridotite rocks of the Philippines, 

which ranged from a few grains to ten feet or more i n thickness. The 

thickest l a y e r s on Mount Silam were noted i n large boulders i n stream 10 

(273*60 Nj 467»65 E ) , and measured three f e e t across. Such l a y e r s i n 

the harzburgites are much l e s s persistent than those which are 

c h a r a c t e r i s t i c of stratiform complexes (Leech, 1953; Smith 1958) and 

may attenuate r a p i d l y i n a l l directions. Complications a r i s e i n the 

mapping of these l a y e r s i n the harzburgite rocks of the Diwata River, 

and i n streams 9, 10 and 11 at t h e i r headwaters, where the plane of 

layering i s p a r a l l e l to the plane of f o l i a t i o n . Diagram 1, shows the 

relationship of the structures. 

The direction of layering as seen i n the massive harzburgite 

rocks of the Mount Silam s t r i k e p e r s i s t e n t l y to the northeast and dip 

v e r t i c a l l y , or steeply to the northwest. Layering i s f i r s t seen i n 

stream 9 (274.15 N; 467.75 E ) the s t r i k e of which i s N40-50E, p a r a l l e l 

to the f o l i a t i o n directions; i n thickness, separate l a y e r s range from 

2 inches to one foot. The layers contain varying proportions of ol i v i n e 

i n the harzburgite. I n stream 10 (273*80 N; 467.65 E ) , t h i n 6 inch 

layers were seen where the f o l i a t i o n i s l e s s conspicuous i n the 

harzburgite; the l a y e r s show a general s t r i k e direction of N40*50E, 

p a r a l l e l to the f o l i a t i o n . Layering was also noted i n the Kamut River 

(273.75 N; 466.80 E ) , on the Silam Mountain. Here the l a y e r s are 

d i f f e r e n t i a l l y weathered; those i n which there i s a higher percentage 

of o l i v i n e i n the harzburgite are l e s s r e s i s t a n t to stream erosion. 
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RANGE, UARVEL BAY, NORTH BORNEO. 
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Plate 2. Prondnent layering as seen i n the peridotite rooks 
of the River Diwata. The plane of layering i n 
t h i s outcrop p a r a l l e l s the planes of f o l i a t i o n . 
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The l a y e r s range i n thickness from an inch to 1 foot 6 inches and s t r i k e 

p a r a l l e l to the f o l i a t i o n structure. I n the River Diwata, the prominent 

f o l i a t i o n i n part masks the layering, but i n the good stream sections at 

Mile 6, along the r i v e r , excellent examples can be seen (Plate 2 ) . The 

l a y e r s are formed by variations i n the amount of o l i v i n e present i n the 

harzburgite. At approximately Mile 6g, one exposure shows single c r y s t a l s 

of pyroxene 2 inch i n length, l y i n g across the general d i r e c t i o n of 

f o l i a t i o n and layering, at various angles. I n stream 9 (274*05 N; 

468.10 E ) and stream 10 (273.60 N; 467.65 E ) , the l a y e r s which can be 

seen i n large boulders, are intersected by the prominent f o l i a t i o n along 

t h e i r dips (See diagram l ) . 

Layering a l s o occurs i n the dunite serpentinite rocks of the 

Saddle I s l a n d s . Detailed mapping on the islands on a scale of 1:500 

has shown that the layered structures are confined to the massive 

unsheared serpentinite. The planar structure i s revealed by alternating 

l a y e r s of high and low grade chrome ore i n the dunite serpentinite rock 

(Plate 3j see also Diagram 2 ) , and i s s i m i l a r to the layered structures 

described by Thayer (1960, p. 207); Kovenko (1945^ Zengrin, (1947); 

and Couchet (1948. P» 104 - Mine Anna Madelaine F i g . l ) . I n the Silam 

area the l a y e r s range i n thickness from a few grains of chrome ore to 

a maximum of f i v e f e e t . The 'rhythmic 1 pattern of layering described 

by Wager and Deer (1939, P« 36) for the Skaargaards intrusion, i s best 

seen i n Kalung Island-Zone IV ( F i g . 11), and on Rian I s l a n d (Plate 6A 

and 6B). The mineral changes between the l a y e r s are generally sharp 

i n the Kalung I s l a n d l a y e r s , though gradations between the l a y e r s may 
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be seen i n the Rian Island deposit (Plate 6A and 6B). There i s no 

evidence to suggest that the l a y e r s were formed by gravity separation 

such as i s described by Peoples (1933* P. 357) for layering i n the 

S t i l l w a t e r Complex. I t seems more probable that, since the layers 

i n the massive unsheared rock i n both the harzburgite and dunite are 

v e r t i c a l or steeply dipping, they are due to flow layering of an 

inhomogeneous material p a r t i a l l y differentiated a t depth (Guild, Balsley, 

1942, p. 178). 

Some of the i r r e g u l a r i t i e s seen i n the la y e r s can be ascribed 

to movements i n the intrusive mass when the rocks were s t i l l i n a mobile, 

highly viscous condition. I n the harzburgite of the Kamut River (274*25 N 

467.18 £), l a y e r s of o l i v i n e r i c h harzburgite are folded symmetrically* 

Erosion has truncated the folds which plunge steeply to the north, or are 

v e r t i c a l . On the east coast of Kalung Island, layered chromite i n dunite 

serpentinite i s folded symmetrically (Frontpiece, Plate 4 and 5) i n drag 

folds. I t i s evident that flowage of chrome ore took place from the 

limbs of the folds to the crests and troughs during these movements. 

(b) F o l i a t i o n . F o l i a t i o n has been observed i n the harzburgite rocks of 

the Silam Mountain. The structure i s due to the p a r a l l e l arrangement of 

the enstatite and clinopyroxene c r y s t a l s which have a platy habit. 

F o l i a t i o n i s not everywhere developed and i n parts of the massive rock 

may be absent, p a r t i c u l a r l y i n rocks a t the eastern end of the range 

about the River Hitam and River Si lam area, where few r e l i a b l e s t r i k e 

directions can be obtained i n the harzburgite. Towards the shear zones 

and zones of intense serpentinization the f o l i a t i o n i s destroyed. 
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The feature i s formed by the preferred orientation of the 

tabular faces of the pyroxene c r y s t a l s along closely spaced planes i n 

the rock. I t i s comparable to the orientation of mica i n gneiss. I n 

Strongly f o l i a t e d harzburgite the pyroxene minerals form thin lenses 

(Thayer, 1960, p. 207) . I n the Silam-Beeston area the pyroxene minerals 

r a r e l y increase i n length and contiguity to such an extent that they 

merge to form lay e r s greater than the width of more than a few c r y s t a l s . 

Individual pyroxene c r y s t a l s are r a r e l y more than 5 millimeters long 

and occur singly or scattered through the rock, or i n groups forming 

small l e n t i c l e s one or two inches long. The l e n t i c l e s and scattered 

c r y s t a l s have a defi n i t e direction which i s often made more conspicuous 

by d i f f e r e n t i a l weathering of the rock surfaces. The dip component i s 

formed by the arrangement of the c r y s t a l s or l e n t i c l e s along closely 

spaced planes which, generally, are p a r a l l e l to the planes of layering 

(See diagram l ) . The f o l i a t i o n structure i n the massive harzburgite 

forms the most important s t r u c t u r a l element of the massive harzburgite 

rocks on the Mount Silam. 

F o l i a t i o n i n the harzburgite rocks was f i r s t seen on the 

eastern side of Mount Silam above 2000 f e e t . I n the stream 9 (274»20 N; 

467.75 E ) , the f o l i a t i o n occurs i n massive reddish-brown harzburgite, 

s t r i k e s to the north-east, and dips 65-86 degrees nortlrwest. I n 

stream 10, the fol i a t e d peridotite occurs i n a l e n t i c u l a r mass surrounded 

by pale green serpentinite; the s t r i k e of the f o l i a t i o n i n the harzbur­

gite, at approximately the 1700 foot contour l e v e l , i s N55-83E, with a 

dip to the' north-west 65-87 degrees (273.82 N; 467.68 E ) . I n the same 

stream section, at 2000 f e e t , the reddish brown harzburgite predominates 
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and the f o l i a t i o n s t r i k e s consistently to the northeast, and dips to the 

northwest steeply. I n stream 11 (273.42 N; 467.30 E ) , above a belt of 

massive pale green serpentinite, the s t r i k e i s almost east-west with a 

dip to the north 80 degrees, but t h i s d irection quickly reverts upstream 

to the general d i r e c t i o n of N50E above 2000 feet, (273.50 N; 467.10 E ) , 

with a dip of 60-80 degrees to the northwest. The general northeast 

direction i s maintained toward the west along the Mount Silam flanks, 

although a subordinate east-west d i r e c t i o n was observed i n the River 

Puteh (273.05 N; 466.20 E ) . A s i m i l a r variation i n s t r i k e direction 

was observed i n the small l e f t bank t r i b u t a r y of the.River Diwata a t 

Mile 6. Along the northern side of the range the f o l i a t i o n structure 

i s best seen i n the River Kamut (273.80 Nj 466.75 E ) , where the s t r i k e 

i s consistantly to the northeast. Along the excellent sections of the 

River Diwata, the s t r i k e i s to the northeast though the dip i s variable, 

generally between 50-85 degrees. Beyond Mile 6, the s t r i k e becomes 

e r r a t i c and only occasionally can the north-easterly s t r i k e be determined 

i n the slickensided rock. Towards the headwaters of the-River Diwata 

the f o l i a t i o n becomes l e s s conspicuous or i s absent i n the schistose 

serpentinite. 

I n general, the structure of the peridotite mass as shown by 

the dip and s t r i k e of the f o l i a t i o n and layering,, i s that of a sheet-like 

mass that s t r i k e s northeast and dips to the northwest 60-85 degrees. 

(c) Lineation. This structure i s thought to have developed indepen­

dently of the layering and f o l i a t i o n during the period of intense s e r -

pentinization of the harzburgite rocks. Lineation i s the arrangement 

of the components i n the rock, i n l i n e s rather than along planes (Thayer, 

1960). The massive serpentinite on Mount Silam possesses t h i s fine 
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l i n e a t i o n , which has been superimposed upon the o r i g i n a l harzburgite 

structure. 

The structure i s formed by the p a r a l l e l alignment of small 

rod-like l e n t i c l e s of chlorite and admixed magnetite, which tend to 

stand out v i v i d l y i n the pale rock. Individual l e n t i c l e s are wavy and 

rar e l y more than 5 millimeters i n length and 0.5 to 2 millimeters i n 

jthi j f e i e s s . _ The_l.enticles-rarely-occur c l o s e l y spaced?? but they are 

conspicuous enough and occur i n s u f f i c i e n t numbers to impart a strong 

direction to" the rock. The a x i s of the l i n e a t i o n i s always horizontal. 

The structure i s best developed i n the massive well jointed 

serpentinite on the flanks of the Mount Silam, away from the schistose 

serpentinite. Where the rock becomes l e s s serpentinized toward the 

centre of the mountain the structure disappears. I n stream 9 (274 .07 Nj 

467.96 E ) , approximately £ mile to the north of the contact, the 

.lineation i s developed i n massive serpentinite and trends N55E; between 

the heights of 1300 f e e t and 1500 feet (273.70 Nj 467.65 E ) , the 

linea t i o n s t r i k e s N67E; a si m i l a r direction was observed a t approximately 

1400 feet i n stream 11 (273.50 Nj 467.15 E ) . I n the River Kamut, a t 

1300 f e e t , pale grey green serpentinite shows the l i n e a t i o n s t r i k i n g 

N75-80E,- (274.06 Nj 466.50 E ) . Thin bands of pale green serpentinite 

were also observed i n the River Puteh (272.90 Nj 466.06 E) s t r i k i n g 

northeast. Toward Mount Beeston, the pale serpentinite i s generally 

sheared and the structure was not observed. 

The gabbroic rocks on the northern side of Mount Silam also 

display a marked l i n e a t i o n structure. This structure i s formed by rod­

l i k e l e n t i c l e s of feldspar and hornblende, arranged p a r a l l e l i n the rock;• 



50 

the a x i s of the l i n e a t i o n i s again horizontal. The l i n e a t i o n structure 
i s best seen i n cross sections of the rock and are analogous to bundles 
of f i b r e s arranged i n a p a r a l l e l manner. I n the gabbroic. dykes of the 
River Hitam (275.06 Nj 468.45 E ) , the l i n e a t i o n trends N50E p a r a l l e l to 
the w a l l s of the dyke. I n stream 13 (275.50 N; 468.00 E ) , the l i n e a t i o n 
i n some of the dykes also trends p a r a l l e l to the elongation of the u l t r a -
basic mass, that i s , i n a north-easterly direction. I n the River Kamut 
(275.06 Nj 466.35 E ) , the trend i s also to the north-east. I n the massive 
gabbro rock at the headwaters of the Diwata River the trend i s i n general 
N50E and east-west, though l o c a l l y many variations occur. 

(2) The Secondary or Tectonic Structures. The secondary structures, 

seen i n the peridotite-gabbro complex of the Silam-Beeston range, developed 

subsequently to the i n i t i a l period of intrusion. A s e r i e s of "tectonic 

s l i c e s " of some larger peridotite mass at depth appear to have been up-

thrust toward the south along north dipping f a u l t s i n the Darvel Bay area. 

The emplacement of the s o l i d mass of rock probably took place, during the 

Miocene orogeny, as a r e s u l t of intense regional compressive s t r e s s , 

exerted upon the mass a t right angles to i t s general elongations The 

upward movement was probably not completed u n t i l Late Miocene times. 

Adjustment i n the mass to the pressures was pr i n c i p a l l y by 

shearing along the thrust planes,by block faulting, and by the bending 

l o c a l l y of layered structures. As a r e s u l t , approximately 30$ of the 

Silam-Beeston ul t r a b a s i c mass, including the Saddle Islands, has been 

modified by the deformation. The dunite rocks of the Saddle Islands 

were espe c i a l l y affected and the greater part of i t s o r i g i n a l layered 

structure has been modified or destroyed. 
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I n the f i e l d , the thrust zones are indicated by zones of 

intense shearing, pulverization, or brecciation of the ul t r a b a s i c rocks. 

Breccias c h a r a c t e r i s t i c a l l y occur close to the thrust planes and t y p i c a l l y 

consist of rounded or sub-rounded fragments of harzburgite and serpentinite 

enveloped i n schistose serpentinite. The schistose rock i s very variable 

i n s t r i k e but a general direction can be seen. This v a r i a t i o n i s partly 

due to the f a c t that the planes of s'chistosity swing round the massive 

peridotite xenoliths. The fragments are thought to have been derived 

from the adjacent massive peridotite rock and transported several hundred 

feet along the thrust planes. The boulders gradually break down into 

schistose rock. The boulders are often slickensided, and i t can be seen . 

that the f o l i a t i o n structure may l i e a t any angle. 

Breccia and schistose zones are often dyke l i k e i n character 

and may show an abrupt or gradual t r a n s i t i o n to massive peridotite. I n 

the River Puteh, a breccia zone 25 feet t h i c k passes into schistose rock, 

through platy serpentinite, to massive serpentinite. I n general,the zone 

of shearing and brecciation may be only a few feet t h i c k or, as seen i n 

stream sections along the South Silam Thrust, they may be as much as two 

hundred feet thick, 

(a) Thrust F a u l t s . Though directions i n the sheared rock are l o c a l l y 

variable, the general directions along zones serve to indicate,in the 

field,the position of large thrust f a u l t s or s l i p planes. The rocks 

closest to the thrust planes are schistose i n character. The sections 

seen i n Map 3 of the Silara-Beeston range, shows the variations which 

occur along the range i n the thickness of the sheared rock at the f a u l t s . 
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The narrowest zone of sheared serpentinite i s probably not more than 

200-300 feet wide and occurs along the southern margins of the u l t r a -

basic mass on Mount Silam where the outcrop attains i t s maximum width 

of over three miles. Towards the east and west of Mount Silam, where 

the outcrop narrows (See Map 1) sheared rock tends to predominate, 

suggesting that the shear planes are numerous and cl o s e l y spaced. I t 

i s possible to distinguish two main thrust f a u l t s and two subsiduary 

f a u l t s i n the peridotite mass of the range. They are: 

( i ) The South Silam Thrust; 

( i i ) The North Silam Thrust; 

( i i i ) The Diwata Fault; 

( i v ) The Cross Silam Thrust (See Map 1 ) . 

( i ) The South Silam Thrust. The most important thrust f a u l t 

observed in the area forms the southern boundary t o the peridotite mass 

along the range. As shown i n Map 1, the f a u l t extends from about a h a l f 

mile north of' Kennedy Bay (275.06 N; 471.15 E) and runs sixteen or 

seventeen miles westward toward Mount Beeston. Above Kennedy Bay 

schistose serpentinite and gabbro are involved i n the thrust (275.06 N; 

471.15. E); much of the contact rocks are brecciated. Further to the west 

the course of the thrust appears to be traced by the River Silam; i n 

several of the south flowing t r i b u t a r i e s outcrops of s chistose serpentinite 

trend east-west and possibly are against s p i l i t e rocks on the southern side 

of the thrust. Ultrabasic rocks occur on the spur between streams 5 and 6 

(274.75 N; 469.50 E) and the thrust may possibly curve around the base of 
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the spur (274-80 Nj 469.85 E) to streams 6 and 7. In stream 6 (274.47 Nj 

469.60 E ) , q u a r t i z i t e s s t r i k e N60E against schistose serpentinite and 

massive harzburgite. I n stream 7 the thrust crosses low ground at approxi­

mately 274.47 Nj 469.10 E. I n stream 9*^mudstones and graphitic shales 

s t r i k e 10-65 degrees south-east, and dip steeply to the south-east; Close 

to the contact the s p i l i t e s c h i s t s are•streaky and dips are near v e r t i c a l ; 

across the contact breccias of serpentinite occur for approximately 150 

feet along the gorge (274.06 Nj 468.IO E$, (See sections C-C*)- I n stream 

10, altered s p i l i t e s and shales s t r i k e N54-65E and steepen i n dip toward 

the contact from 10 degrees. Across the contact, excellent stream 

sections show numerous outcrops of breccia and schistose serpentinite 

(273.60 Nj 467.65 E ) . I n stream 11, quartzites and ophiolite rocks show 

a s t r i k e of N20-30E with a near v e r t i c a l dipj and across the contact 100 

feet of slickensided and schistose serpentinite s t r i k e N80W on the northern 

side of the thrust. Similar structures are shown i n the small streams at 

272.97 Nj 467.06 E and 272.45 Nj 466.25 E. In the River Puteh, altered 

s p i l i t e s and quartzites s t r i k e N40W and dip to the northwest 20 degrees 

below the t h r u s t j occasional s t r i k e s are east-west. Across the thrust, 

breccias again outcrop and are followed upstream by schistose serpentinite 

i n a well marked thrust area. In the River Diwata (See Diwata Traverse 

Map and Section A-A 1), s p i l i t e and epidote hornfels outcrop below the 

thrust and s t r i k e i n an east-west direction. The South Silam Thrust 

contact i s here obscure i n the low ground of the Diwata v a l l e y . In the 

headwaters of the Diwata River the l a s t exposure of the thrust occurs, 

(see Diwata River Traverse Map). I t seems l i k e l y that the thrust contact 

continues one or.two miles to the west of t h i s point and terminates to 
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the southeast of Mount Beeston. 

( i i ) The North Silam Thrust. The most northerly thrust f a u l t 

that separates country rock Chert-Spilites from the gabbroic rocks of 

the range has not been mapped during the present survey, since t h i s 

contact area was of no significance to the Company during t h e i r period 

of work on the Silam-Beeston range. The name "North Silam Thrust" has 

been given to the thrust separating la r g e l y gabbroic rocks from the 

peridotite of the range. This f a u l t i s i l l - d e f i n e d i n r o l l i n g low l y i n g 

ground but i s thought to trend roughly p a r a l l e l to the South Silam Thrust. 

The position of the thrust was f i r s t observed i n a small stream, 

about a mile above Kennedy Bay (275.75 Nj 470.80 E ) , on the northern 

flank of the ridge. Schistose serpentinite outcrops i n the stream and 

s t r i k e s east-westj downstream, on the northern side of the thrust, 10 

feet of quartzites outcrop i n the stream together with s p i l i t e s . Further 

to the west, at Mile 3, along the Silam Road, the sheared serpentinite 

shows a very variable s t r i k e direction against brecciated and sheared 

gabbro (275.75 Nj 470.60 E ) . Along the branch road that leads to the 

west. (275.40 N; 469.50 E ) , sheared and brecciated gabbro outcrop i n the 

road cutting; schistose serpentinite rocks occur on the flanks of the 

Silam Mountain, j u s t above the road, and mark the approximate position 

of the thrust f a u l t . I n one of the small streams cutting the road (275.40 N 

469.10 E ) , ophiolites occur j u s t below the contact at approximately the 

500 foot contour, and show a general north-easterly s t r i k e . Toward the 

west, the thrust appears to swing outward into low lyi n g ground and has 

not been observed i n the alluvium and boulder beds. I n the Kanut River, 

a t approximately the 100 foot contour, a wa t e r f a l l marks the position of 
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the thrust. Here (274.84 Nj 466.30 E ) , gabbro at the base of the water­

f a l l s t r i k e s east-west against schistose serpentinite and dips to the 

north-west s i x t y degrees. The thrust zone i s al s o seen i n the River 

Diwata a t Mile 7i* where schistose serpentinite interfingers with gabbro 

dykes (see Diwata Traverse Map). The southern branch of the Diwata 

River crosses the thrust f a u l t zone a t Mile 10g, where serpentinites, 

s t r i k i n g east-west, are against gabbro on the northern side of the 

thrust. 

( i i i ) The Diwata Fault. This f a u l t i s approximately 2g 

ndles long and trends northeast across the peridotite mass of the- Silam 

Beeston range (see Map l ) . I t i s marked out by the straight course of 

the River Diwata tributary, which joins the main stream a t Mile 7 i (see 

Section A-A 1). Outcrops of schistose and brecciated serpentinite are 

common along the course of the tributary, s t r i k i n g N50E. Close to i t s 

junction with the mainstream, the sheared and schistose.serpentinite 

contains angular boulders of gabbro, which are thought to have been 

brought up along the thrust plane from depth. 

( i v ) The Cross Silam Fault. This f a u l t i s approximately one 

and a half miles long and trends north-south across the range. The 

thrust f a u l t separates the peridotite of the range from the gabbroic 

rocks at the eastern end of the range. This f a u l t also involves a 

len s e - l i k e outcrop of s p i l i t e and cherts. The st r i k e of the schistose 

rocks, as seen i n stream 2 (275.00 Nj 471.06 E ) , follows the direction 

of the f a u l t , that i s , north-south. The ophiolites pass into brecciated 

outcrops of serpentinite (275.35 Nj 471.15 E ) and into slickensided 
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serpentinite s t r i k i n g north-south a t the w a t e r f a l l , toward the head­
waters of the stream. The f a u l t i s marked out on the ridge above the 
headwaters of the stream by the depression or 'saddle' (275.50 Nj 
471.15 E ) . 

(b) Tensional F a u l t s . Tensional faulting i s known to have affected 

Mount Silam. They can be recognized on the flanks where narrow ledges, 

two to three hundred feet wide and several hundred yards long, are 

bordered on one side by a steep r i s e of one or two hundred feet. These 

f a u l t s trend N50E along the mountain and are thought to be representative 

of the period of tension fa u l t i n g which affected the whole of North 

Borneo, probably during the Quarteraary period. 

At the eastern end of the Mountain (275.15 Nj 468.75 E ) , the 

stepped feature of the flanks commences a t 1000 f e e t above the headwaters 

of the River Hitam and t r i b u t a r i e s . The s t r i k e here i s to the northeast; 

displacements can only be approximately determined by a cal c u l a t i o n of 

the height of the steep side, which here i s 100 feet. I n streams 9, 10 

and 11, the stepped feature i s pronounced, though the ledges are narrow 

and d i f f i c u l t to reach.. The s t r i k e i s again to the northeast and the 

steep sides are marked by high 200 feet waterfalls i n massive harzburgite 

l i t t l e or no brecciation has occurred, though l o c a l l y narrow zones of 

slickensided harzburgite may be seen. I n the headwaters of the River 

Kamut (274.15 N; 467.15 E ) , the stepped structure i s w e l l marked on the 

northern flanks. The trend i s again to the northeast and the throws are 

approximately 2-300 f e e t marked by the high w a t e r f a l l s . 

Across the River Diwata the stepped feature i s obscure i n the 

lower ground of mainly schistose rock. 



57 

THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM 

BEESTGN RANGE, DARVtL BAY N. BORNEO 
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Plate 3. Layering, i n chroraite deposits, i s a planar feature, and 
i s revealed by alternating layers of high and low grade 
o r e . Kaiung-halung xslana, U a r v e l bay, Worth Borneo. 
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THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM 

BEESTON RANGE, DARVEY BAY, N. BORNEO. 
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Plate 4. Subparallel layers of dense and disseminated chrome ore, 
thrown into drag folds, i n serpentinized dunite, East 
coast Kalung-Kalung Island, Darvel Bay, N. Borneo. 
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THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEL BAY, N. BORNEO. 
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Plate 5. Folded subparallel layers of chrome ore. Note thickening 
a t c r e s t s . East coast Kalung-Kalung I s . , Darvel Bay, 
North Borneo. 
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THE CHROMIFERQUS ULTRA BASIC ROCKS OF THE SILAM_ 

BEESTON RANGE, DARVEL BAY, N. BORNEO. 

8' 

aft I 

rata 

Plate 6A. Lense of Tabular Disseminated layered ore i n sheared 
dunite serpentinite, Rian Island, Darvel Bay, North Borneo. 



61 

THE CHR0M1FER0US ULTRABASIC HOCKS OF THE SILAM-

BEESTOlM RANGE, DARVEL BAY, N. BORNEO. 
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Plate 6B. Close up view of the Tabular chromite ore body, Rian Island 
Darvel Bay, showing the rhythmic pattern of the layering i n 
serpentinite derived from dunite. 
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THE CHROMIFEBOUS ULTRABASIC ROCKS OF THE SILAM-

BEE3T0N RANGE, DARVEL BAY, N« BORNEO. 
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Plate 7. Layered chrome ore i n serpentinized dunite swinging round 
from a general s t r i k e of N50W on the island, to an east-
wsst ti^_rccvicii* Rj_an -LCiianci, Darvci iJay, £*or*«h Bgx*iiqo« 
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CHAPTER V 

CHROKLTE DEPOSITS 

General Statement 

In contrast to the stratiform deposits exemplified in the 

Bushveld, the ores in Alpine Ultrabasic rocks are characterized by their 

erratic distribution, irregular form, and by their varied relations to the 

enclosing rocks (Thayer, 1 9 5 0 ) . Thayer has suggested the term "podiform" 

to cover these irregular deposits in Alpine peridotite-gabbro associations 

( 1962 , p. 2 0 4 ) and the term should include the sack form and fissure form 

deposits of Sampson ( 1 9 4 2 ) , and the schlieren banded or scattered type 

deposits* 

In the Silam-Beeston area two main types of deposits have been 

distinguished according to the classification given by Thayer under this 

general term ( 1 9 6 2 , p. 2 0 4 ) . They are: 

( 1 ) The discontinuous tabular deposit, which i s the most 
common type of deposit in the area, and which in part 
grades into the Disseminated Type deposit of Thayer. 

( 2 ) The irregular deposits, which form an insignificant 
part of the deposits in the area. 

A description of each follows: 

( 1 ) Discontinuous Tabular Deposits. Thayer ( 1960 , p. 2 0 5 ) , defines this 

type of deposit as flat lenses strung out like lima beans i n a pod along 

dunitic zones. The bodies pinch and swell, and may consist of massive or 

disseminated ore, or^mixture of the two and are connected by thin strings 

or layers of ore. These deposits grade into the disseminated tabular 

deposits of Thayer ( 1 9 6 0 , p. 2 0 5 ) . 
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Many examples of these tabular deposits are known in the Saddle 

Islands outcropping in the dunite serpentinite rocks. The lo c a l i t i e s 

where the deposit i s well developed are described below: 

Hitam Prospect - Chromite float i s scattered over a wide area 

in the River Hitam and'. i t s smaller tributary, the Rian, at the headwaters 

of the River Sapagaya ( 275 .25 Nj 468 .75 E ) . This led to the suggestion 

that an ore body existed at shallow depth beneath the laterite cover in 

the vicinity. Chromite float in the River Hitam i s f i r s t seen a t about 

the 50 foot contour level close to the confluence of the Hitam with the 

River Sapagaya. Upstream, the pebbles become progressively more angular 

and most have an average size of about 2-4" square, though occasional 

boulders 1 foot square may be seen. The chromite debris continues beyond 

the waterfall and narrow gorge, at the 250 foot contour, to the 950 feet 

contour and may also be found scattered on the interfluve between the 

Hitam and the Rian tributary. The Rian stream, which joins the Hitam at 

the gorge (250 foot contour), contains no chromite debris along i t s sc?oured, 

steep, course between the heights of 500 feet and 1000 feet. The actual 

ore body was found beneath 3-12 feet of laterite clay, at the top of the 

ris e , at the 1000 foot contour; approximately 200 tons of ore was exposed. 

The known length of the ore body i s approximately 43 feet and has a width 

of 23 feet. In general, the ore body strikes N40W and dips irregularly 

to the northeast, ten or twenty degrees. The footwall of the deposit 

rests on weathered schistose serpentinite believed to be derived from 

dunite; the hanging wall rests largely i n clay and has clearly been 

eroded. Though the present maximum thickness i s nearly two feet, the 

original ore body may have had a slightly'greater thickness. The shape 



65 
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Figure 3. Per ido t i te b l o c k e n e d by gobbro Figure 4. Fold in d i s s e m i n a t e d chromite 
a n d i n v a d e d by m a g n e s i t e , Boik I s l a n d s . b a n d . L a i l a I s l a n d s , O a r v e l B a y . 
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Figure 5 I n c l u s i o n o f c h r o m e 
o re in d u n i t e , K o l u n g I s l o n d s . 
C o n t a c t s a r e s h a r p . Note 
s t r e o k s a n d t a i l s of o r e . 
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F i g u r e 6. Inc lusion of c h r o m e 
o r e in d u n i t e , U a i l a I s l a n d s . 
O r e s t r i n g e r h a s b e e n pulled 
a p a r t a c r o s s l o c o l p r i m a r y ' 
b a n d i n g . 
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of the ore body i s irregular, but in general, plate or tabular-shaped 

and shows the characteristic pinch and swell structures along i t s length. 

Though the country rock to the ore body i s peridotite, as seen in the 

Rian and Hitarn streams, the pod appears to be surrounded by a thin shell 

of highly weathered dunite serpentinite, 1 inch to 1 foot in thickness. 

The sheared nature of the dunite serpentinite and the slickensided 

character of the chromite, suggests that the ore body moved upward in 

peridotite as a solid mass and that the dunite enclosing the ore has 

been sliced out during the movements in a manner suggested by Thayer 

for a deposit in Pakistan (Thayer 1960, p.. 219), where a chromite body 

occurs surrounded by sedimentary rocksI . 

Kalung Island. In the massive dunite serpentinite of the Island the 

layers of chrome ore stand out vividly in the coast sections. The 

ore occurs in zones but the zones are not continuous*. The maximum 

known length of any one zone i s approximately 50 feet. The chrome ore 

layers are persistent for only a few feet i n the zones and frequently 

show small displacements along their lengths. Shearing and close spaced 

faults in the island appear to have disrupted the original layered 

structures locally. Four separate ore zones have been distinguished. 

They are: 

ORE ZONE I - A narrow zone of banded chromite outcrops on the path at 

the northern end of the island. The ore zone may be traced uphill 

for 20 feet on a strike of N70-80Wj the layers appear to terminate 

abruptly at the 25 foot contour level. The maximum width of the ore 
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THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEL BAY, N.BORNEO. 
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Figure 7• Undisturbed planar 
banded ore, Kalung I s . Darvel Bay. 
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Figure 9. The break up of Tabular 
deposit 5 as seen on Mainland I s 
Darvel 3ay 
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Figure 8. Planar banded ore disturbed 
by minor f a u l t s and shears, 
L a i l a I s . Darvel Bay. 
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Figure 10 . In many l o c a l i t i e s of the 
Saddle I s . fragmentation, rounding and 
transportation of dunite boulders i n 
shear zones has taken place* Note the 
e r r a t i c s t r i k e of ore bands i n sheared 
rock, Mainland I s . Darvel Bay. 
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zone i s 15 feet and contains disseminations of chromite in layers 

to 1" thick and a more massive ore layer of 2"-31' thick, 

ORE ZONE'II - This ore zone occurs 150 feet from the northern headland 

in the east facing c l i f f * Thin disseminated chromite layers ^" to 

5" occur i n a zone 75 feet in length, directed N2O-70W. Blocks of 

massive dunite, at the c l i f f base, contain to 5" thick layers of 

chromite folded into symmetrical anticlines and synclines (Plate 4 

and 5)» The layers thicken at the crests from \." 1 " , on the limbs 

to 8" at the crests. This ore zone appears to be faulted and may 

possibly be the continuation of Ore Zone 1 . 

ORE ZONE I I I - In a zone of total width 60 feet, 12 layers of chrome 

ore occur i n the c l i f f face, striking N75W and dipping 80-85 degrees 

to the north. The layers in the c l i f f face commence at 10 feet 

above sea l e v e l , as thin disseminations and thicken gradually to 

5" and 1" layers at the base of the c l i f f . Along the same strike 

at low water level, a layer of disseminated chromite 1 foot thick 

occurs, 25 feet from the c l i f f . Many large boulders were found at 

the base of this c l i f f containing 5" to 7" thick layers of ore. 

The strike of this ore zone suggests that i t i s the 

southward continuation of ore zones I and I I . The layers also suggest 

a gradual thickening with depth down to sea le v e l . 

ORE ZONE IV (fige 1 1 ) . - This ore zone contains the thickest chrome ore 

layers exposed i n the Saddle Islands in massive, well jointed 

serpentinized dunite, along the southwestern headland. The zone has 

been traced for 150 feet i n the intertidal regions and consists of 
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numerous discontinuous layers of chromite, l/8" thick to 2 feet 

thick, striking N50-75E and dipping vertically or steeply to the 

north 60-80 degrees. The layers pinch and swell rapidly and attain 

a maximum thickness, hear Peg 7 4 , of five feet and a length of 

1 4 feet (Peg.83, Fig. 11). A N20W fault cuts out this ore body at i t s north­

eastern end. The strike of Ore Zone IV suggests that i t i s a separate 

ore zone from those described above. The chromite layers possess a well 

defined lineation structure, the direction of which i s parallel to the 

walls of the layer; the axis of the lineation i s horizontal (Diagram 2). 

As seen in the c l i f f face the separate layers again suggest 

thickening with depth (Section A'-A Fig. 11). From layers, 12 feet 

above sea level, the layers expand to 1-5 feet thick ore bodies at 

the low water mark. 

Laila Island. Si mi Tar layered ore occurrences to those of the Kalung 

Island Ore Zone IV, may be seen on the southwestern headland of 

Laila Island. The layers occur i n a zone 200 feet wide and 100 feet 

long between high and low water marks. The zone has a similar strike 

to that of Ore Zone IV, Kalung Island, that i s N50-60E dipping steeply 

to the south 50-80 degrees; the layers range i n thickness from l/8" 

to l/2" with local thickenings of up to 2 feet. The ore has the same 

mottled leopard skin appearance as ores of the Kalung Island ( L I . 3 9 ) , 

and also possesses a similar lineation structure. Figure 8, i s a sketch 

of layers on the Island which have been displaced by minor faulting. 

Island 5 . In the south facing c l i f f of the island, 400 feet from the 

southwest headland, an ore body 2" to 3' ' thick has been traced for 
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5 feet along a strike of N65W. The layers are g" to 2" thick i n 

an ore zone 1'6" wide. The ore i s fine grained and finely jointed. 

The ore body appears to be cut out by sheared serpentinite, invaded 

with s i l i c a , at the northern end. 

Saddle Island 7. Chromite occurs in the south facing c l i f f of the 

peninsula, some 300 feet northeast of the southern most tip of the 

island. The chromite appears as layers i n sheared serpentinite, 

12 feet above the shore line, at Peg. 12. The ore body has the shape 

of an inverted letter L and appears to follow the direction of 

shearing, N50W. The ore body i s 1 foot thick at the base and thickens 

upwards over a distance of ten feet to 3'3"« The ore body i s fractured 

and slickensided, i n part granulated and contains variable quantities 

of i n t e r s t i t i a l s i l i c a t e material. 

The ore body suggests that i t has been torn off from an 

original layer of chromite, during a period when the dunites were 

extensively sheared. 

Mainland Island. A 2-3 feet thick layer of massive fine grained 

chromite i s believed to have given rise to the many slickensided ore 

boulders, on the western side of the island, along the northwest 

headland. The boulders measure from 2 inches to 1 foot across. 

Pits and trenches have been dug at this locality i n the sheared 

serpentinized dunite and revealed several more fragments and boulders 

measuring 1 foot across embedded in the weathered material. The 

evidence suggests that the original layers have been destroyed by 

closely spaced fractures and that the boulders have been scattered 

along the shear zone. A similar occurrence of such scattered 
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ore i n highly sheared material has been found on Malawali Island, 

near Kudat. 

Rian Island. The deposit exposed i n the c l i f f face of the island 

f a l l s into the Disseminated Tabular Type Deposits of Thayer (1960, 

p. 205) which he defined as disseminated, ore (Schlieren plates in 

European terminology) in which layering, parallel to the long dimensions, 

i s characteristic and in which the. contacts along the edges„ore layers 
Sharp or 

a r e A i 1,1 defined. The ore body of Rian Island appears to form a part of 

an original zone of layered ore that has been segmented and strung out 

into shear blocks by post magmatic faulting (Thayer 1960, p. 205). The 

fragments of the ore zone can be traced for 150 feet on the island along 

a general strike of N50W. In the c l i f f face of the island, the ore body 

strikes N50W and dips to the south 30 degrees. The ore body has a thick­

ness of 2 feet 7 inches and a total length of ten feet and consists of 

many alternating layers of high and low grade ore, separated by variable 

thicknesses of white-yellow weathered serpentinite, derived from dunite. 

Individual layers or bands range from 1/8 inch to 7 inches^ along the 

strike the layers divide, coalesce and attenuate irregularly (Plate 68, 

& 16, 18, 19). The northern end of the ore body bends upward sharply 

terminating in frayed ends and the boundaries of the ore body 

irregularly cross the internal structure of the ore body (Plate 6a). 

Towards the northern end of the island, twenty five feet 

from the l a s t ore body, similar disseminated ore i s also exposed in 

the c l i f f face. From the general strike direction of N50W, the 

attitude of the ore body abruptly changes to an east-west strike 
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and appears to have been rotated about a near vertical axis (Plate 7). 

2. Irregular Deposits. The irregular deposits (Thayer 1960, p. 205) 

may be large or small and are characterized by their extremely 

irregular form. Many examples have ameoboid extensions or protuberences 

and defy simple description. Most of the examples of this type of 

deposit i n the Saddle Islands are generally small. 

In Fig. 5 and 6, typical examples of this type of deposit 

are shown. The blebs are always of massive ore with l i t t l e or no 

visible gangue material. Thayer (1960), suggests that the gangue 

has been squeezed out during their formation. They typically possess 

sharp outlines against the enclosing dunite, suggesting that the 

viscous blebs of chromite, separated from larger ore layers, were 

intruded into unconsolidated dunite. A similar structure was seen 

in the Katai ore deposit, in the Labuk Valley, i n which the separated 

blebs of ore in the massive dunite appeared to have been rolled. 

Fig. 6 shows how blebs of ore can be pulled apart along their length. 

On Rian Island a stringer of ore blebs dip steeply i n the dunite 

and possess rounded edges. 

Petrography of the ore. In hand specimen, the chrome ore i s 

brownish-black i n colour with a dull metallic lustre, or blue-black 

with a sub-metallic lustre (L.S. 49)* The average crystal size 

ranges between 2-3 millimeters, though in some of the chromite 

boulders, found i n the River Hitam, crystals measured 5-6 m i l l i ­

meters across (L.S. 51). Octohedra were not found. Though much of 
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FIGURE 11 GEOLOGICAL MAP OF A CHROMITE O C C U R R E N C E IN 
T H E K A L U N G - K A L U N G I S L A N D S (ZONE I Z . S . W . 
POINT) 
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the ore seen on the Saddle Islands i s massive in character, specimens 

collected from the Mainland Island ( L . I . 82) and the Hitam Prospect, 

on Mount Silam, show conspicuous evidence of cataclastic deformation. 

At both lo c a l i t i e s the ore i s heavily slickensided and i n part 

tectonically polished on the joint surfaces; in L.S. 51, from 

the Hitam ore body, individual crystals have been flattened and have 

wavy surfaces. 

The gangue in the massive- chromite frequently imparts a 

lineation to the ore. This structure i s best seen in the layered ores 

of the Kalung and Laila Islands. Here the gangue forms narrow 1-2 

millimeter lenticles i n the ore, the long axes of which are aligned 

parallel and, generally, horizontal. On L a i l a Island the direction of 

the lineation roughly parallels the N42-50E strike of the layers 

(Peg. 29). On Kalung Island (Peg. 84; L . I . 47), however, the lineation 

generally parallels the strike of the layers, that i s N80E, but 

slight discordances may be seen locally, when the direction of the 

lineation trends across the strike of the ore body. In the Hitam ore 

deposit the lineation i s poorly developed over much of the ore body; 

around Peg 8 a poorly defined lineation direction was taken to be N40E. 

In thin section the chromite grains are anhedral, ragged 

in appearance and show mutual embayments with the gangue and opposing 

crystals ( LM. 2 ) . Thin filaments of the gangue, between the crystals, 

may be the only means of determining the grain size i n specimens of 

massive ore from Kalung and the Mainland Island. Serpentine minerals 
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form the bulk of the gangue material i n the ores; dewylite 

(AH^0.3Si0 2.6H 20) was recognized by X-ray determination (L.S. 50), 

(information supplied by Naylor, Benzon & Co., L t d . ) . 

Mineralogy of the Chromite. Chromite i s the only ore of chromium. 

The ore has a s p e c i f i c gravity of 4*1 to 4*9* The brown streak and 

low magnetic s u s c e p t i b i l i t y distinguishes the mineral from magnetite, 

which i s found as a frequent accessory mineral i n the dunites of the 

Saddle I s l a n d s . 

Chromite i s a member of the spinel group of minerals and 

l i k e most of them i s an isomorphous mixture (Stevens 1944, Vol. 29, 

p. 24) of several and members or minerals. I n i t s purest form i t i s 

a chromate of i r o n , and i s expressed by the formula FeCr^O^, giving 

the percentage of C^O^ as 67.9. The mineral i s never found 

i n such purety, since chromium can be isomorphously replaced by 

aluminium and f e r r i c iron, and the ferrous iron by magnesium so that 

the commercial ore i s a mixture of these elements, and r a r e l y contains 

more than 50-55$ chromic oxide. 

The value of the chromite ore depends not only upon the 

chromium content, but upon the iron content as w e l l and these two 

elements are expressed as a chromium to iron r a t i o , which i s the 

quotient of the percentage of chromium, divided by the percentage of 

iron. For i n d u s t r i a l purposes metallurgical ore i s used for the 

manufacture of ferro-chrome s t e e l s and requires a chromium content of 

48$ and a chrome to i r o n r a t i o of 3*1* I n refractory grade ore, 
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the content of aluminum i s of importance; the sum of the chromic oxide 

and aluminum oxide should exceed 50$ (Wells, F.G. and Smith, p. 40, 

1945). 
Seven complete analyses have been made of the chrome ores 

of the Silam Beeston area, the r e s u l t s of which are l i s t e d i n the 

accompanying table from information supplied by Messrs. Naylor, 

Benzon & Co., Ltd. The samples of chrome ore have been taken from 

the Hitam Prospect, on Mount Silam, and from several l o c a l i t i e s i n the 

Saddle Islands. The chromic oxide content of the ores taken from the 

islands show a high average percentage of C r
2^3> that i s 48»74$« 

The iron content ranges between 9.31$ to 12.61$ and, since the 

microscopic evidence shows l i t t l e or no a l t e r a t i o n of the chromite 

grains, the iro n content shown i n the tables probably represents the 

o r i g i n a l percentage i n the mineral. Cr:Fe r a t i o s are thus high i n 

the ores taken from the Saddle I s l a n d s , about 3il; L eD. 4, has a r a t i o 

of 4 i l , thus these ores can be described as being of metallurgical 

grade ore. They are s i m i l a r to the Turkish ores, but the o v e r a l l 

analyses are too high i n s i l i c a for good quality basic brick making. 

The ore i s also too fine grained and would shatter on f i r i n g . 

The ores taken from the Hitam prospect show a marked 

difference i n composition to those of the Saddle I s l a n d s . The 

average chromic oxide content i s much lower, being 32*72$. The 

substitution of f e r r i c oxide for chromic oxide i n the Hitam ore 

body, probably accounts for the higher F e , ^ content, which averages 

13.77$ average. Thus the Hit "am ore has a lower chromium to iron r a t i o 

and can be classed as a refractory grade ore. 
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T A B L E 1 .C H E M I C A L A N A L Y S E S O F C H R O M I T E F R O M T H E S I L A M A R E A 

S A D D L E I S L A N D S HITAM P R O S P E C T 

1 
Averoge of 

lA 
Fine-grained 
chromite in 
boulder, 
Mainland 1. 

(L.M.2) 

IB 
Chromite in 
bonded ore, 
Kalung 1. 

(L.I .4) 

Ic 
Chromite in 
crushed ore, 
Ore-zone S , 
Island 6 

(L.I .6) 

2 
Average of 
2 A , B 

2 A 
C o a r s e ­
grained 
chromite in 
boulder 

(L .S .49 ) 

2 B 
Coarse-
groined 
chromite in 
boulder 

(L .S .50 ) 

C r 2 0 3 48-74 50-48 47-37 48-48- 32-72 32 9 0 32-55 

A l 2 0 3 
1 0 0 6 10-47 9-25 10-48 25 15 2 4 0 5 2 6 2 5 

FeO Mil 12-61 9-31 . 11-41 

F e 2 0 5 
2-34 0 -22 • ; 5 06 . 1 76 13 77 13-80* 13-75* 

Mg 0 18-77 18-76 18-40 19-15 18-92 18-80 1 9 0 5 

CoO • 0-66 0-95 0-61 0-44 0-12 0 35 NIL 

S i O z 6 ; 57 4-77 8-61 6-33 6-75 7-85 5 65 

No 2 0 0 0 7 0 0 8 0 0 9 0 0 4 

K 2 0 0 0 4 0 0 4 0 -05 0 0 4 

Loss on ignition 1-99 1-75 2 - 0 7 2-15 2 - 8 0 3 0 0 2 60 

100-35 10013 100-82 100-28 100-23 100-75 99 85 

Analyses supplied by Naylor Benzon Company Limited. "Total iron as Fe^Os 
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MAGNESITE 

BA.IK ISLAND 

1 
South headland; 

L.D. 15 Massive amorphous raagnesite 

s i o 2 -
A1 20 3 0.10 

F e 2 0 3 0.08 

FeO — 

CaO 0.65 
MgO 47.40 
Na 20 -
K 20 -
C r 2 0 3 0.10 

Loss on ign i t i o n 51.30 

Total 100.00 

Analysis supplied by Naylor, Benzon & Co. Ltd. 

Magnesite occurs as disseminations, streaks, veins, and pods i n 

the sheared serpentinites i n many parts of the Saddle Islands. The ore 

was not encountered on the Mount Silam and only one occurrence i s known 

at the headwaters of the River Diwata. The ore i s cryp t o c r y s t a l l i n e , 

massive, white to grey i n colour and possesses a marked conchoidal 

fracture. Weathering of the ore produces bulbous growths on the surfaces. 

Notable occurrences may be seen on Baik I s l a n d , Saddle Island, Kalung 
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Island (plate 8 ) , Island 6 (Plate 9)', and the Mainland Isla n d . The 

specimens collected a l l have variable amounts of admixed s i l i c a , though 

some, as on Balk Island,possess a high proportion of MgO. The magnesite 

i s thought to have been derived from.the breakdown of the serpentine 
during 

minerals^periods of metamorphism and i t a noteworthy f a c t that the 

greatest amount of magnesite ore i s to be found i n close juxtaposition 

to the dykes of pyroxenite that cut the serpentinite rocks of the Saddle 

Islands. 
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THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEL BAY, N. BORNEO 

i 

Plate 8. Veins o f magnesite i n dunite s e r p e n t i n i t e , Kalung-Kalung 
, _ i n r 5 J r> n T.T__4.U ' ^ - v n 
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THE CHROMFERGUS ULTRABASIC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEL BAY, N. BORNEO 

•ft*. 

Plate 9. Schistose s e r p e n t i n i t e impregnated w i t h magnesite ore 
( w h i t e ) , and i n t r u d e d by layered gabbro ( c e n t r e ) and 
pyroxenite (foreground), I s l a n d 6, Saddle I s l a n d s , 
Darvel Bay, North Borneo. 
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THE CHROMIFEROUS ULTRABASIC ROCKS OF THE SILAM 

BEESTON RANGE, DARVEL BAY, N. BORNEO. 

Plage 10. Dunite s e r p e n t i n i t e impregnated w i t h magnesite, Mainland 
I s l a n d , Darvel Bay, North Borneo 

Plate 11. Dunite s e r p e n t i n i t e veined w i t h opaline s i l i c a L a i l a 
I s l a n d , Darve] Bay, North Borneo. 
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THE CHRQMIFEROUS ULTRABASIC ROCKS OF THE SILAH-

BEESTON RANGE. DARVEY BAY N. BORNEO. 

-_ 

Plate 12. Prominent f o l i a t i o n i n Harzburgite, from the headwaters 
of the River Kamut, Mount Silam. 

Plate I ? . Breccia of s e r p e n t i n i t e (dark fragments) and sandstone, 
veined w i t h c a l c i t e ( w h i t e ) , from the headwaters of the 
River Bole, N.E., of Mount Beeston. 
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THE CHROKEFEROUS ULTRABASIC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEY BAY, N. BORNEO. 

Plate 14. Vein of gabbro c u t t i n g s e r p e n t i n i z e d d u n i t e , showing 
the thermal metamorphic e f f e c t (dark colour) i n the 
s e r p e n t i n i t e 

t 

1 

Plate 15. A l t e r n a t i n g l a y e r s of ser p e n t i n i z e d dunite ( d a r k ) , and 
pyroxenite ( l i g h t ) , a t the inax-giaa of Lhe pyruAeuiU; 
dyke, G i f f a r d I s l a n d , Darvel Bay, North Borneo. 
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THE CHROMIFK:.OUS ULTRABASIC ROCKS OF THE SILAM-

BEESTOW RANGE, DARVEL BAY, H« BORNEO. 

Plate 16. S u b p a r a l l e l l a y e r s o f disseniinated chromite i n dunite 
s e r p e n t i n i t e , w i t h a divergent l a y e r , L a i l a I s l a n d , 
Darvel Bay, North Borneo. 

Plate 17. ( L . I . 48). The d i s t r i b u t i o n of the s i l i c a t e gangue i n 
high grade chrome ore imparts a l i n e a t i o n s t r u c t u r e t o 
the ore body on Kalung I s l a n d (Zone I V ) , the a x i s of 
which i s generally h o r i z o n t a l . 
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THE CHROMIFEROUS ULTRABA3IC ROCKS OF THE SILAM-

BEESTON RANGE, DARVEL BAY, N. BORNEO. 

Art 

Plate 18. ( L . I . 2 4 ) . Tabular disseminated chromite from Rian 
I s l a n d , Darvel Bay, showing the rhythmic p a t t e r n of 
chromite l a y e r i n g ( d a r k ) , i n s e r p e n t i n i t e ( l i g h t ) . 

Plate 19. ( L . I . 37). Tabular disseminated chromite from Saddle 

the chrome ore (dark) l a y e r i n g i n s e r p e n t i n i t e ( l i g h t ) . 
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CHAPTER VI 

GENESIS OF THE ULTRABASIC ROCKS 

General Statement 

From the f i e l d evidence as outlined i n the previous section, 

there can be l i t t l e doubt that the sequence of events i n the Silam-

Beeston area follows the same general pattern as that which Turner and 

Verhoogan (1951, p. 201) suggested for the igneous and tectonic 

h i s t o r i e s of Alpine areas. The deposition of s i l i c e o u s cherts and 

great thicknesses of lava, of predominantly basalt and s p i l i t e 

composition, was widespread throughout the geosjnclinal belt that 

stretched from the Philippines through North Borneo to the Celebes. 

According to Bowen (1951, p. 247), "gravitational s e t t l i n g 

of ol i v i n e separating .from a b a s a l t i c magma, i s a.well established 

mechanism capable of producing magmas of t h i s (peridotite) type". 

Turner and Verhoogan point out (1951, p. 247) that, i f alpine peridotites 

represent a c r y s t a l l i n e f r a c t i o n differentiated from b a s a l t i c magma, they 

should be "expected to be accompanied by other and more s i l i c e o u s rocks 

representing the complimentary d i f f e r e n t i a t e " . I t seems u n l i k e l y that 

the small occurrences of si l i c e o u s rocks - granodiorite and granite -

mentioned by F i t c h (1955, P» 67) i n the Segama and Darvel Bay Area, 

represent these d i f f e r e n t i a t e s from such large amounts of l a v a . I t seems 

more l i k e l y that the ultrabasic rocks of the area represent mobile masses 

of c r y s t a l l i n e material that have been separated from a peridotite sub­

stratum and squeezed upward as in t r u s i v e bodies, as suggested by Turner 



88 

and Verhoogan (1951, p. 244); de Roever (1957); and G.v.d. Kaaden 

(1860, p. 119); and others. 

Two separate phases have been recognized i n the history of the 

u l t r a b a s i c rocks of the Silam-Beeston range. They are: 

(1) The I n i t i a l Magmatic Intrusive Phase; and 

(2) The Post Magmatic Phase of Emplacement and Deformation. 

(1) The I n i t i a l Magmatic Phase; The i n i t i a l upward movement of the 

u l t r a b a s i c s probably took, place during the l a t e Eocene period and during 

the closing of the geosyncline. The peridotite must have been i n a 

highly viscous condition but mobile. L a t e r a l compression forced the 

u l t r a b a s i c rocks to break away from a substratum and to ascend (Turner 

and Verhoogan, 1951, p. 224) into the Chert-Spilite Formation. The 

Saddle Islands ultrabasic rocks represent a separate i n t r u s i v e mass 

into the formation. The primary igneous structures are believed to 

have developed during t h i s i n i t i a l phase. 

The layering and f o l i a t i o n i n the Alpine type peridotite-

gabbro complexes are mose closely related, g e n e t i c a l l y , to structures 

developed by flowage of the rocks (Balk, 1937) than to layering derived 

from c r y s t a l s e t t l i n g such as seen i n the stratiform u l t r a b a s i c complexes 

(Thayer, 1960, p. 207). The dunitic material and chromite grains were 

probably concentrated into i r r e g u l a r masses before the u l t r a b a s i c rocks 

were intruded and t h e i r present tabular form was maybe attributed to 

flowage of the magma (Guild, Balsey, 1942, p. 180); and S t o l l (1948, 

p. 445) under intense l a t e r a l s t r e s s . The small drag folds, which occur 

i n dunite serpentinates of Kalung Island and i n the harzburgite at the 

headwaters of the River Kamut are thought to have been formed during t h i s 
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early i n t r u s i v e period (Plate 4 and 5 ) . Locally, the f o l i a t i o n cuts 

across the harzburgite layeres structures. I t thus appears that the 

f o l i a t i o n developed independently (Thayer, 1960) and was superimposed 

upon the layered structures. 

(2) The Post MagmaticEmplacement Deformation; The present day 

position of the u l t r a b a s i c mass i n the Silam-Beeston range, cannot be 

attributed merely to igneous intrusion. There i s abundant evidence to 

suggest that, subsequent £o the magmatic phase, the ultrabasic rocks were 

further squeezed upward by intense l a t e r a l compression. The a b i l i t y f or 

large masses of u l t r a b a s i c rock to move into higher c r u s t a l l e v e l s i n 

the " s o l i d state" has been recognized by many authors: Thayer (1942, 

p. 247)j De Roever, G.v.d. Kaaden, (1960, p. 119)j K. C. Dunham (1949)J 

Turner and Verhoogan (1951, 0. 242), and the phenomena appears to be 

t y p i c a l of alpine intrusions. The c r y s t a l l i n e masses of peridotite 

ascend along weak planes or major dislocations (Benson, 1926, p. 75-76; 

Hess, 1948, p. 432-433), probably concordantly i n the geosynclinal 

sediments. 

The tabular or lense l i k e mass of the u l t r a b a s i c mass of the 

Silam-Beeston area, moved southward along steeply dipping thrust planes 

that s t r i k e , i n general, to the northeast. The thrust planes dip steeply 
west . 

to the north, 60-80 degrees. The gabbroic rocks on the northern side of 

the range moved upward contemporaneously with the u l t r a b a s i c rocks, the 

two rocks being separated by a similar thrust plane. Pyroxenite and 

gabbro rocks intruded the u l t r a b a s i c rocks pre-serpentinization times. 

Serpentinization occurred when the mass reached the temperature 

s t a b i l i t y range of serpentinite and occurred i n the presence of abundant 
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water. Bowen and Tuttle (1949), suggest that a slowly advancing 

c r y s t a l l i n e mass of peridotite absorbs water, e s p e c i a l l y a t the periphery, 

from the invaded wet sediments to provide the f l u i d s for serpentinization 

of the harzburgites. I t has been shown i n the Silam-Beeston range that 

serpentinization i s most intense along and adjacent to the North and 

South Silam thrusts. Serpentinization decreases away from the thrust 

planes toward the centre of the massive rock i n Mount Silam and away 

from the smaller i n t e r n a l surfaces of rupture and d i f f e r e n t i a l s l i p . 

I t seems l i k e l y , that t h ^ f l u i d s derived from the wet cherts and 

s p i l i t e s of the country rock were controlled, during t h e i r ascent by 

the channels along the thrust planes. The serpentinites thus formed, 

then became l i c i for further extensive shearing and served as an 

effective lubricant for the upward migrating ' s o l i d rock 1. The massive 

blocks of harzburgite, seen at the centre of the in t r u s i o n , on Mount 

Silam, are envisaged as having moved upward at a quicker rate than the 

schistose serpentinites a t the contacts, which must have suffered 'drag' 

e f f e c t s . The process i s likened to clay being squeezed through any 

available crack i n a f a i r l y ridged block, by l a t e r a l pressure. L o c a l l y , 

as seen on Rian and Baik Island, fragments of country rock c h e r t - s p i l i t e 

were incorporated into the serpentinite s c h i s t s and carried upward as 

xenoliths i n the manner suggested by Turner and Verhoogan (1951, p. 242). 

The intense l a t e r a l compression upon the u l t r a b a s i c rocks 

greatly modified the internal structure of the l e a s t r e s i s t a n t rock -

dunite-in the area. The e r r a t i c s t r i k e and the haphazzard d i s t r i b u t i o n 

of the layered ore, on the Saddle Islands, i s only explicable by such 

large scale "flowage" of the rocks i n the s o l i d state. The tabular 
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shaped ore has been strung out into blocks, along the shear zones i n a 

manner suggested by Thayer (1960, p. 205), during a period of intense 

compression. The separated slabs of ore are often bounded by s l i c k e n -

sided f a u l t surfaces, such as occur on the Hitarn deposit. Thus, i n 

many deposits of t h i s kind, i t i s only possible to recover scattered 

blocks or fragments, usually of high grade ore, i n serpentinized s c h i s t s , 

as for instance on Mainland Island (No. 9). S t o l l (1958, p. 444), 
considers that slabs of ore may assume a mechanically more stable form 

i n the shear zones, and are capable of being carried upward as s o l i d 

enclosures. Thayer suggested for the Cuban ores (1942, p. 26-27) that 
they were formed at a much greater depth and were carried upward as 

solids i n the peridotite rocks to t h e i r present positions. 

A s i m i l a r mechanism i s thought to have been operative i n the 

Silam area and appears to have occurred at several l o c a l i t i e s i n North 

Borneo. In the Malawali Island for instance, slabs and fragments of 

ore occur scattered i n pulverized serpentinite on Pranggi headland. On 

Banggi Island, at the Kapitangan Prospect, blocks of chrome ore l i e i n 

the stream and may possibly have been eroded out of the schistose ser­

pentinite as a slab of chromite from the h i l l side and fragmented i n i t s 

present surface position by stream action. Thus i f the chromite deposits, 

as seen i n the Saddle Islands are regarded as xenoliths, then the r e l a t i o n 

between the e r r a t i c s t r i k e of the separate blocks or layered zones i n the 

dunite serpentinites and the country rock are seen to be consistant (Thayer, 

1960, p. 207). The understanding of t h i s relationship i s fundamental: 

attempts to anticipate an ore body, beyond half i t s known length, only 

tends to baffle the prospector. 
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The alignment of the Silam-Beeston range, p a r a l l e l to the east-

west structures i n the Miocene sediments, i n the Segama Valley area, suggest 

that the upward movements of the u l t r a b a s i c rocks took place during the 

Miocene period. A period of c r u s t a l shortening occurred as the peridotite-

gabbro complex was pushed southwards along steeply dipping thrust planes. 

Rapid arching of the Silam-Beeston range along an east-ivest a x i s , 

during the Miocene orogeny, with complimentary rapid sinking of the Darvel 

Bay.area (Kirk, 1962), must have disrupted a previously established 
drainage system of the Oiwata and Segama r i v e r s . The River Diwata i s an 

excellent example of antecedent drainage and i s thought to have cut into 

and across the east-west ax i s during the period of u p l i f t . River capture 

might also explain the sharp bend of the River Diwata, at Mile 6; t h i s 

r i v e r may have joined the upper Segama tributary - the Bole - which was 

cut off by the r i s i n g land mass i n the area. U p l i f t along the east-west 

axis of the range, would also explain the sudden diversion to the north 

i n the course of the RiverSegama, which must have previously emptied 

into Darvel Bay, near Lahad Datu. This r i v e r now swings to the north for 

approximately twenty miles, then turns sharply to the east to i t s estuary, 

above Dent Haven (see F i g . l ) . 

A period of young tensional faulting has affected the in t r u s i v e 

rocks of the Silam-Beeston area and has resulted i n the marked stepped 

topography of the flanks of Mount Silam. Tension f a u l t s may also have 

diverted stream 9* to the southwest and cut out the northward continuation 

of the Saddle Islands u l t r a b a s i c sheet on the mainland (see Map l ) . These 

tensional f a u l t s may have occurred at the same time as the extensive 

Quaternary f i s s u r e eruption of basalt i n the Mostyn area, about 20 miles 

to the south of the Silam area, described by Kirk (1962, p. 100). 
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CHAPTER V I I 

APPENDIX 

In the Silam Beeston area, nineteen streams drain the northern 

and southern flanks of the mountain range and have been numbered as i n 

Map 2 (see Pocket). Excellent geological sections occur i n many of them, 

though above two thousand feet on the Mount Silam, access i s d i f f i c u l t 

and dangerous. The most important of these stream sections are described 

below. 

River Diwata Traverse (Map No. 1).. 

The River Diwata drains the western portion of the Silam-Beeston 

range and flows into Darvel Bay, approximately 20 miles from the main 

town of the region, Lahad Datu. The catchment area of the r i v e r , on the 

range, covers approximately 24 square miles and thus, i s the l a r g e s t r i v e r 

system i n the area described. Shallow draught boats are capable of 

reaching mile I5, j u s t above the inland edge of the mangrove swamps, at 

the point where Borneo Mining Limited made i t s base camp. The a l l u v i a l 

f l a t s continue for. h a l f a mile inland. 

From the estuary the r i v e r meanders through low l y i n g ground 

i n rocks of the Ghert-Spilite Formation^ up to Mile 5. 

At Mile 2, outcrops of quartz and epidote hornfels occur i n 

the stream section and at Mile 5 streaked mudstones occur, with epidosite 

breccias, s t r i k i n g east-west. 

Above Mile 5, the main r i v e r crosses over the contact i n a 

poorly exposed section, into u l t r a b a s i c rocks. The f i r s t exposures 
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consist of breccias and schistose serpentinites, the s t r i k e of which was 

noted as N70E dipping steeply to the north. The sheared rock continues 

above the contact and passes through slabby peridotite to massive serpen-

t i n i z e d peridotite. The peridotite i s pale to dark green and i n parts 

exhibits a strong f o l i a t i o n , which consistently s t r i k e s to the northeast. 

Dunite segregations occur, occasionally as narrow 2-3 feet wide l a y e r s , 

concordant with the general s t r i k e and dip of the f o l i a t i o n . Fresh 

peridotite occurs i n massive rock towards the centre of the u l t r a b a s i c 

mass, at Mile 5g to Mile 6, where the f o l i a t i o n i s very conspicuous. 

Toward the sharp westward bend i n the r i v e r , at Mile 6, the 

val l e y s are steep sided and t r i b u t a r i e s of the r i v e r flow into the main 

stream over a w a t e r f a l l 100 feet high. The peridotite here shows a 

consistent f o l i a t i o n that s t r i k e s N50E and dips v e r t i c a l l y or steeply 

to the northwest. Compositional layering i n the rocks s t r i k e s p a r a l l e l 

to the f o l i a t i o n and complicates the mapping of the separate s t r u c t u r a l 

features a t t h i s l o c a l i t y . Approximately 100 feet round the bend, at 

Mile 6, to the west, c r y s t a l s of pyroxene were observed cutting across 

the l a y e r s , singly and i n groups of two or three.j the s t r i k e and dip 

of these c r y s t a l s was found to be markedly di f f e r e n t from those seen 

i n the lentie'les of pyrosene, which form the f o l i a t i o n . Further up­

stream the s t r i k e becomes more variable and close to the northern 

contact s t r i k e s vary between N20E and east-west and N50E with a general 

dip to the NW 30-50 degrees. 

At Mile 7i> the north-easterly flowing tributary, that cuts 

across the east-west a x i s of the u l t r a b a s i c mass, j o i n s the main stream. 

Approximately 100 feet up t h i s t r i b u t a r y , xenoliths of altered gabbro 
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occur i n an outcrop of sheared serpentinite. The boulders are 6" to 

l 1 across and may be rounded or angular i n shape. Some show a metaso-

matic a l t e r a t i o n around t h e i r contact margins and Dr. Kirk (1962) found 

garnets and prehnite i n some of the specimens. J u s t below Mile 1, 

pyroxenite occurs, i n a dyke 10 feet wide, cutting slickensided and 

sheared serpentinite. The pyroxenite i s flow layered and the s t r i k e 

of the layers i s more or l e s s p a r a l l e l to the walls of the dyke. The 

course of t h i s tributary, here, i s almost straight and the abundance 

of schistose serpentinite and breccias suggests that i t i s f a u l t guided. 

Sheared, black shales, and epidote hornfels are against schistose s e r ­

pent i n i t e s along the southern contact. 

The northern branch, which i s the main stream of the r i v e r , 

flows roughly westward from Mile 7s» Layered pyroxenite occurs approxi­

mately £ mile above the confluence of the two r i v e r s . Serpentinized 

and brecciated pyroxenite occurs i n one outcrop. Dr. Kirk described one 

exposure i n the stream of tremolite araphibolite overlying pyroxenite and 

showing.a sharp contact. Just above t h i s point, gabbro becomes an 

important rock member and occurs interfingering i n the contact schistose 

serpentinites. Hornblende gabbro rocks become the dominant rock across 

the contact a t Mile 8. Where the r i v e r swings south, i n a meander at 

Mile 8g, serpentinites are seen sheared against metasomatized gabbro i n 

which Dr. Kirk found abundant prehnite. Magnesite occurs as low dipping 

veins a t Mile 10g. The contact i s a steeply dipping zone of weathered, 

iron stained, crushed serpentinite and gabbro, along a thrust zone that 

probably runs i n an east-west direction. Where the r i v e r swings to the 

north a narrow l e n t i c u l a r mass of schistose serpentinite cuts the stream, 
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i n hornblende gabbro. 

At Mile 10g, the River Diwata branches again into a northern 

and southern tributary. The northern tributary continues to run i n • 

massive hornblende gabbro, which, i n part, i s layered with segregations 

of hornblende and feldspar minerals; the l i n e a t i o n i s variable, but i n 

general i t i s directed east-west. The southern tr i b u t a r y , the course 

of which describes an a r c and flows to the northeast, contains a good 

section of serpentinized, schistose and brecciated serpentinite. Approxi­

mately half a mile from the confluence, the slickensided surfaces are 

coated with fine flakes of pyrite. Gabbro rocks continue on the northern 

side of the range, toward Mount Beeston, i n h i l l y and d i f f i c u l t country; 

the width of the u l t r a b a s i c outcrop narrows and may possibly terminate 

here i n gabbro rocks. 

River Puteh Traverse 

The River Puteh i s a t r i b u t a r y of the River Diwata, which 

drains the western end of the Silam Mountain (See Diwata Traverse Map). 

I t has a catchment area of approximately 3 square miles and the main 

stream has a length of over three miles, commencing at 2,000 feet. The 

stream flows roughly southwest and joi n s the River Diwata, a f t e r swinging 

sotheast, at Mile 4. 

From the River Diwata, the tributary flows over rocks of the 

Chert-Spilite Formation. Close to the contact with u l t r a b a s i c rocks, a 

narrow dyke of gabbro cuts the cherts i n an east-west direction. This 

i s followed upstream by an outcrop of quartzite, s t r i k i n g N40W and dip­

ping northeast 20 degrees against altered s p i l i t e rocks, screaked i n an 
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east-west dir e c t i o n . The contact with the main mass of peridotite i s 

obscure, but across the contact to the north, 100 feet of breccias occur 

i n a good stream section. This i s followed upstream by intensely s l i c k e n -

sided and schistose serpentinites i n a thrust area. At the d i v i s i o n of 

the stream, into eastern and western t r i b u t a r i e s at Mile 2, folds and 

breccias occur i n serpentinites. 

The eastern branch shows schistose, brecciated, serpentinites 

i n thrust zone for approximately \ mile. In part c a l c - s i l i c a t e s veins 

traverse the rocks. The serpentinites grade into slabby peridotites 

and massive rock, further upstream, away from the contact. At approxi­

mately the 200 feet contour l e v e l , the peridotite f o l i a t i o n i s conspi­

cuous and s t r i k e s i n a north-easterly direction dipping steeply to the 

northwest. Joints i n the massive rocks s t r i k e to the north with a sub­

ordinate direction east-west. 

I n the western branch of the River Puteh, more massive 

peridotite rock i s encountered, close to the confluence of the two 

streams, i n which the s t r i k e of the f o l i a t i o n continues to be N30-60E, 

but with a southward dip of 35-80 degrees. This i s followed upstream 

by further outcrops of spinel blebs, i n dunitic rock, s t r i k i n g N40E; 

nearby c a l c - s i l i c a t e veins traverse the rock east to west. 200 feet 

upstream, the f o l i a t i o n i s conspicuous and s t r i k e s N80W and east-west, 

i n massive blue peridotite, containing t h i n bands of gabbro that follow 

the same general dir e c t i o n . This passes upstream to black peridotite, 

containing t h i n g inch bands of pyroxenite (L.S. 223), weathered white. 

Towards the headwaters the f o l i a t i o n direction returns to N50E, dipping 

northwest i n massive blue black peridotite. 
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Stream 9. This stream, which drains the southern flank of Mount Silam, 

has a length of three miles and flows from i t s headwaters, a t 2,300 feet, 

taking a south-easterly course towards Darvel Bay. Approximately half a 

mile from the coast, the r i v e r swings round to the southeast and flows 

along a straight course f or approximately h a l f a mile before turning again 

south Darvel Bay. The r i v e r appears to flow along a f a u l t that cuts out 

the northerly continuation of the Saiddle Island's dunite (See Map 2, 

273.25 N; 468.85 E ) . 

Sheared .serpentinized dunite outcrops i n the stream, j u s t below 

Mile l g , at the bend of the r i v e r , (273.25 N; 468.85 E ) . Disseminations 

of chromite occur i n the schistose rock, which show a st r i k e of N70W. 

Where the r i v e r divides into ah east and west tributary, an outcrop of 

gabbro occurs, i n s p i l i t e s , and s t r i k e s N40E. S p i l i t e , quartzite and 

epidote hornfels outcrop along the course of the stream up to 1,000 feet; 

the s t r i k e s are generally to the northeast and they show a southward dip 

of 35-60 degrees. Towards the contact the s p i l i t e s and mudstones become 

progressively more schistose and streaky i n character and i n part are 

quartz veined; the. dip of the shear zones i s 10-35 degrees to the south­

east. At the contacts the dip becomes steep and, i n part, almost 

v e r t i c a l . 

On the northern side of the contact, breccias and sheared 

serpentinite outcrop for approximately 150 feet along the gorge and 

then pass quickly into massive serpentinized peridotite, which, i n turns, 

passes into fresh peridotite. A well developed cuboidal system of 

jointing may be seen i n the c l i f f face. The stream narrows rapidly and 

the flanks become precipitous. A high 200 feet wat e r f a l l prevented 
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further examination of the stream beyond the contour l e v e l of approxi­

mately 1,900 feet. Atthis point a f o l i a t i o n structure was observed i n 

massive red-brown' harzburgite, the direction of which i s N50E. 

Stream 10. This stream drains the central portion of the southern flank 

of Mount Silam. I t i s approximately 2 miles long and flows towards 

Darvel Bay, taking a southeast dire c t i o n . Approximately h a l f a mile from 

the coast the r i v e r swings sharply to the southeast and probably marks 

the western continuation of the f a u l t as seen i n stream 9. S p i l i t e s and 

q u a r t z i t i c rocks outcrop i n the stream section, a t approximately the 800 

feet contour l e v e l , s t r i k i n g N30E-25E. Towards the contact, epidote 

hornfels and pale hydrothermally altered s p i l i t e s and graphitic shale 

s t r i k e N54-65E and dip to the northwest 10-20 degrees, p a r a l l e l to the 

alignment of Mount Silam. The streaky character and flow structures i n 

the rocks, become more prevalent over the l a s t 200 feet, below the 

contact. Across the contact, breccias and shear zones are conspicuous 

along the excellent stream sections; they s t r i k e N80E and dip to the 

northwest 35 degrees, i n a northwest dipping sheet structure. Some 

pyroxenite boulders occur, but the source rock i s not exposed. The 

peridotite upstream passes into blocky and platy serpentinite a t the 

position of the landslide, (N273.60; 467.80 E ) . Joints of the perido­

t i t e are coated with c a l c i t e , z e o l i t e and quartz and i n some parts 

garnierite occurs as thin veneers along the j o i n t s of fresh rock 

specimens. A pale blue-white altered gabbroic rock, also occurs among 

the boulder debris. At the 1,500 feet contour l e v e l a massive rock 

cutcrcp of serpentinite occurs. This has a strong lir.eation caused by 
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thin l e n t i c l e s of c h l o r i t e and admixed magnetite. At the 1,500 feet 

to the 2,000 feet contour, f o l i a t e d harzburgite occurs. 

Stream 11. This stream, approximately two miles long, drains toward 

the southeast and south, from the western part of Mount Silam, between 

the River Puteh and stream 10. Buff coloured sandstones are the f i r s t 

rocks to outcrop along the lower course of the stream (N272.65; 467.75 E) 
approximately at the 100 feet contour. S p i l i t e s and q u a r t z i t i c rocks, 

containing f i n e c r y s t a l s of p y r i t e , occur as boulders i n the stream, for 

several hundreds of f e e t . At the f i v e hundred feet contour, the stream 

divides into an east and west branch. The main stream, on the eastern 

side, up to the 1,000 feet contour, continued to flow over s p i l i t e s and 

q u a r t z i t i c rocks, the s t r i k e of which i s N20-30E, with a v e r t i c a l dip. 

About 100 feet of slickensided serpentinite occurs i n the stream flanks 

across the contact and s t r i k e s N80E to eastwest. This i s followed a 

l i t t l e way upstream f i r s t by a lense of serpentinized dunite and then 

by pale green serpentinite a t the w a t e r f a l l . A li n e a t i o n i s d i s t i n c t 

i n parts of the serpentinite and tufa forms bulbous masses i n the c l i f f 

face, where calcareous solutions have emerged along fractures i n the 

serpentinite. Upstream, the rocks are l e s s serpentinized and are more 

massive i n character and possess a w e l l developed cuboidal jointin g 

system i n some of the rock faces. The f o l i a t i o n i n the peridotite 

s t r i k e s N30E. Above t h i s point, to the headwaters, harzburgites pre­

dominate together with the subordinate pale serpentinites. 

River Silam (5). This stream i s approximately 2\ miles long and runs 

d i r e c t l y east to Kennedy Bay from the eastern end of Mount Silam 
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( F i g . 2 ) , j u s t below the Kennedy Bay Timber Camp. The r i v e r maintains 

a f a i r l y straight course and for the greater part flows over low 

l y i n g t e r r a i n and boulder beds. About a mile from the r i v e r mouth, 

sheared cherts and s p i l i t e s outcrop i n the side of the stream and 

s t r i k e N70W. The southern contact of the u l t r a b a s i c rocks i s thought 

to be only a few hundred feet away from the stream at t h i s point, since 

ultrabasic rocks are known to outcrop i n two of the l e f t bank t r i b u t a r i e s 

nearby ( F i g . 2 ) . Sheared peridotite and serpentinite s t r i k e N70E i n the 

wa t e r f a l l s of these t r i b u t a r i e s . About £ mile upstream, i n the t h i r d 

left, bank tributary, a 10 feet thick gabbro dyke i s exposed a t the 

confluence and s t r i k e s N70W and dips to the north 60 degrees. Along 

t h i s tributary, dark, blue-grey peridotite i s exposed above 100 feet and 

i s heavily slickensided. 

A £ mile upstream from t h i s l a s t tributary, brecciated gabbro 

outcrops i n the stream section and s t r i k e s N10E. This i s followed by 

further outcrops of gabbro i n schistose serpentinite s t r i k i n g N70E. 

The surrounding serpentinites pass upstream into platy and blocky s l i c k e n ­

sided peridotite, i n which the amount of pyroxene increases i n quantity 

to as much as 50-60$ of the rock. Towards the headwaters, i n a small 

gorge, the peridotite i s massive i n character and one specimen was found 

i n which the pyroxene i s a porphyritic (L.S. 24). Joints are consistent 

over short distances i n the poorly developed cuboidal jointing system. 

River Hitam. This stream has a length of approximately two miles and 

flows northwards, from 1,000 feet on the eastern end of Mount Silam, 

towards the River Sapagaya (Map. 2 ) . At the confluence of one HiLam 

River and the River Sapagaya, angular boulders of chromite are seen i n 
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.the extensive boulder fan. The f i r s t outcrop consists of slickensided 

serpentinized peridotite, i n the l e f t bank of the stream, approximately 

200 feet upstream, from the confluence. This i s followed by outcrops of 

black, serpentinized peridotite and pale green peridotite i n the c l i f f 

edge. Sheer directions are N80W and the dip i s to the south, 60 degrees. 

This i s followed upstream by extensive, wide, shear zones of slickensided 

peridotite, with occasional intervening blocks of massive peridotite. A 

l e n t i c u l a r mass of dunite outcrops at approximately the 200 feet contour 

l e v e l and i s associated with a blue-black rock i n which the pyroxene 

content i s l e s s than 5% of the rock. 

Following the d i v i s i o n of the River Hitam, a t the 150 feet 

contour, the peridotite becomes blocky, with occasional shear zones 

cutting the outcrops i n a general east-west direction. The in t e r n a l 

structure of the blue-grey peridotite i n both the t r i b u t a r i e s , i s obscure 

and few s t r i k e directions of the f o l i a t i o n i n the rocks were found to be 

r e l i a b l e . The stream i n the eastern t r i b u t a r y i s cut by a thin dyke of 

gabbro N30E, at the 200 feet contour l e v e l (Map 2 ) . 

Stream 13. This stream forms the headwaters of the River Sapagaya. From 

i t s s t a r t i n g point, at approximately 700 feet on Mount Silam, the stream 

runs north approximately p a r a l l e l to the River Hitam. Gabbro dykes are 

numerous i n the stream and cut serpentinized, slickensided, peridotite. 

The f i r s t dyke, at the 100 feet contour, s t r i k e s N40E; upstream, highly 

slickensided and schistose serpentinites are cut by streaky hornblende-

gabbro, N80W and N80E. The dyke i s 10 feet wide and possesses d i s t i n c t 

c h i l l e d margins against the serpentinite contact x-ocks, which are stained 
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with i r o n . Further upstream, other dykes of gabbro cut serpentinized 

blocky peridotite, i n the general direction of northeast and show a dip 

to the south 60-80 degrees. 

Kamut River ( 1 4 ) . The River Kamut drains an area of approximately 6 

square miles of Mount Silam and flows i n general to the northwest. The 

main r i v e r i n the system i s thought to be the headwaters of the River 

Bole, which drains into the River Segama. Along the northern f o o t h i l l s 

of the range, gabbro predominates i n the streams, as boulder debris and 

as massive outcrops. Occasionally pebbles of the Chert-Spilite Formation 

occur. Towards the contact upstream, the gabbroic rocks become more 

prevelant, mainly i n dyke form, with each outcrop separated by boulder 

debris. The contact i s exposed j u s t below the f i r s t d i v i s i o n of the 

main stream at a w a t e r f a l l . Gabbro outcrops at the base of the w a t e r f a l l 

against schistose serpentinite and s t r i k e i n an east-virest direction i n 

which occur occasional boulders of gabbro (xenoliths), and a dyke 2 feet 

thick s t r i k i n g eastwest and dipping to the south 4 5 degrees. Upstream, 

the dykes of gabbro s t r i k i n g eastwest become numerous, though they are 

generally only 2 - 5 feet wide and show a variable dip to the north or 

south i n schistose or slickensided serpentinite. At 1000 feet, the 

l i n e a t i o n i n massive serpentinite i s conspicuous and i s directed N35E; 

the axis of the l i n e a t i o n i s horizontal. Between 1500 and 2000 feet the 

stepped topography of the ridge becomes more marked, where massive 

harzburgite outcrops. The f o l i a t i o n i s well marked?striking N75E to 

east-west with dips steep to the northwest or v e r t i c a l . 
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The eastern tributary of the system, that j o i n s the main 

stream close to the contact area, has a .length of 4 miles. Boulder 

debris predominates i n the r i v e r up to the 500 foot contour l e v e l , 

where outcrops occur of sheared material s t r i k i n g i n general to the 

northeast. 

Massive grey-green serpentinite occurs i n the stream section, 

at approximately the 1000 foot contour and exhibits a c l e a r l i n e a t i o n 

structure. The a x i s of the l i n e a t i o n i s predominantly horizontal and 

the trend i s , i n general, N65-70E. Upstream, the topography i s stepped 

l e v e l areas of two to three hundred feet wide are separated by 1-200 

foot w a t e r f a l l s . Harzburgite was encountered i n one of the f a l l s the 

f o l i a t i o n of which i s s t r i k i n g east-west and dipping to the south 45 

degrees. One hundred feet upstream, highly weathered gabbro occurs, 

i n a scree slope, on the flank of the stream and i s presumably derived 

from a gabbro dyke. Above t h i s l a s t point, on the w a t e r f a l l , the harz­

burgite i s prominantly layered. The l a y e r s are 1 inch to 3 inches i n 

thickness and are folded; the crest s of the folds point to the north 

and the plunge i s steep to the north; the folds have been truncated by 

stream erosion. 

Toward the headwaters of the stream, reddish-brown massive 

harzburgite outcrops are continuous and show a strong f o l i a t i o n that, 

i n general, s t r i k e s to the northeast. 
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