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PRACTICAL CONSIDERATIONS IK THE RECONCILIATION OF THE DIRECT 

AND IKDIP3CT HSTHOSS 0? M?ASUF:Ii?G' T^S AIR-FARTH CURRENT 

Progress i n any f i e l d of s c i e n t i f i c i n t e r e s t i s often advanced by the 
f a i l u r e to f i n d agreement between two d i f f e r e n t approaches to a p a r t i c u l a r 
measurement i n the f i e l d . T h i s i s so because i t f o r c e s a t t e n t i o n on the 
theory behind the measurements and the conditions under which the measure­
ments were made. 

Such a problem i s i d e n t i f i e d i n the f i e l d of Atmospheric E l e c t r i c i t y . 
D i f f e r i n g r e s u l t s have been found for the value of the f i n e weather a i r -
e a r t h current when measured by the " i n d i r e c t 1 ' and " d i r e c t " methods of 
approach. The i n d i r e c t method i n v o l v e s the recording of the f i n e weather 
c o n d u c t i v i t y and the p o t e n t i a l gradient and equating t h e i r product with 
the conduction cu r r e n t . I n the d i r e c t method, the t o t a l charge a r r i v i n g 
at a portion of the e a r t h ' s s u r f a c e i s measured. The d i r e c t method, 
though more d i f f i c u l t , appears to be the :v.ore fundamental measurement and 
a c r i t i c a l review of previous experiments and the hypotheses attempting • 
to e x p l a i n t h e i r d i f f e r i n g r e s u l t s , i s made. The l i m i t a t i o n s of work 
at ground l e v e l , i n that i t p r e d i c t s a system from the examination of one 
of the system's boundaries, i s i n d i c a t e d . v 

The- experimental problems a s s o c i a t e d with the d i r e c t and i n d i r e c t 
met.-.ods • are described with p a r t i c u l a r r e f e r e n c e to the s i t e used for the 
measurement of atmospheric e l e c t r i c i t y a t Durham Observatory. In 
p a r t i c u l a r , the e f f e c t s of p o l l u t i o n and the displacement current are. , 
d i s c u s s e d and seme d e t a i l s of an u n s u c c e s s f u l attempt to devise a form 
of the d i r e c t method that would enable the true magnitude of any convection 
current to be found, are given. 

Suggestions are made for the measurements required and the c o n d i t i o n s 
under which they should be made i f the f i n a l r e s o l u t i o n of these 
d i f f e r e n c e s i n the recording of the f i n e weather a i r - e a r t h current i s to 
be achieved. 

R.R. DASSLET 

M.Sc. 

1969 
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CHAPTER 1., DEFINITION OF THE PROBLEM 

1.1. I n t r o d u c t i o n . 

A b r i e f p e r u s a l of the c o n t i n u a l l y i n c r e a s i n g number of s c i e n t i f i c 

j o u r n a l s often l e a d s to the opinion that the progress i n s c i e n c e i s a 

s u c c e s s i o n of'minute advances on a very broad f r o n t , each gathered 

f a c t c o n t r i b u t i n g to the knowledge s t o r e . But any system r e l y i n g on 

an a r b i t r a r y accumulation of information w i l l not advance, save by 

chance, u n l e s s i t has d i r e c t i o n . Chance d i s c o v e r i e s there have been, 

and probably more than the formal standards of s c i e n t i f i c w r i t i n g s 

a l l o w . Among these were the d i s c o v e r i e s of sulphanilamide by E h r l i c h and 

Domagh while v/orking on azo-dyes i n 1930, and of p e n i c i l l i n by Fleming 

as a r e s u l t of n o t i c i n g apparently i n s i g n i f i c a n t d e t a i l s of h i s c u l t u r e s . 

I i might be argued that these d i s c o v e r i e s are r e f l e c t i o n s on the c h a r a c t e r 

of the workers r a t h e r than on the s u c c e s s of the 'normal' s c i e n t i f i c 

process of f a c t - g a t h e r i n g . For normal s c i e n c e i s not l o o k i n g f o r 

fundamental n o v e l t i e s , but f o r the ordered p a t t e r n a c c e p t a b l e to i t s 

b a s i c commitments and the unexpected di s c o v e r y i s thus not s o l e l y 

f a c t u a l i n i t s r e s u l t . 

Roentgen (1) i n t e r r u p t e d a normal i n v e s t i g a t i o n i n t o the p r o p e r t i e s 

o? cathode r a y s because he had noted t h a t a barium p l a t i n o c y a n i d e 

screen, a t some d i s t a n c e from h i s s h i e l d e d apparatus, glowed when discharge 

was i n progress. F u r t h e r i n v e s t i g a t i o n showed that the cause of the glow 

came i n s t r a i g h t l i n e s from the' cathode ray tube, c a s t shadows tha t could 

not be d e f l e c t e d by a magnet and was an agent with some s i m i l a r i t y to 

l i g h t . 

The announcement of X-rays was r e c e i v e d not only with s u r p r i s e , but 



with some shock, f or people had been usi n g cathode ray tubes .for some time. 

Although X-rays were not d i r e c t l y p r o h i b i t e d by theory, f o r the l i g h t 

spectrum contained v i s i b l e , i n f r a - r e d and u l t r a - v i o l e t a r e a s , they did 

v i o l a t e deeply entrenched e x p e c t a t i o n s . 

The d i s c o v e r y of anomalies thus produees a s t a t e of t e n s i o n w i t h i n the 

accepted thought, f o r a change i n the r u l e s may r e f l e c t on much s c i e n t i f i c 

work tha t appears to have been s u c c e s s f u l l y completed. 

I f there i s no major theory to cover an a r e a of s c i e n c e , then there 

tends to be a r a t h e r negative restatement of the fundaments of the f i e l d 

with l i t t l e progress, as i n the case of e l e c t r i c i t y , where i n the e a r l y 

beginnings of i t s s c i e n t i f i c study, there were three segments of opinion. 

Some f e l t that a t t r a c t i o n and f r i c t i o n a l generation were the b a s i c 

e l e c t r i c a l phenomena with r e p u l s i o n , a secondary e f f e c t , due to mechanical 

rebounding. A very small group held t h a t a t t r a c t i o n and r e p u l s i o n were 

phenomena of equal magnitude and the t h i r d school regarded e l e c t r i c i t y 

as a ' f l u i d ' running through conductors and t h e i r attempts to capture t h i s 

f l u i d l e d to the Leyden j a r . I t was the concern of F r a n k l i n and h i s 

immediate s u c c e s s o r s to e x p l a i n the behaviour of t h i s new experimental 

f a c i l i t y which produced a major theory of e l e c t r i c a l behaviour. 

The alignment of thought around a major theory l e a d s to the s e l e c t i o n 

of experiments with f a r more p r e c i s e d e t a i l and r e q u i r i n g more s p e c i a l i s e d 

equipment. The normal s c i e n t i f i c s t u d i e s of f a c t c o l l e c t i o n and theory 

a r t i c u l a t i o n become h i g h l y d i r e c t e d a c t i v i t i e s and r e s u l t i n s c i e n t i f i c 

papers d e s c r i b i n g i n v e s t i g a t i o n s of minute a r e a s with very much reduced 

• v i s i o n . T h i s f o r c e s a study i n depth and d e t a i l which may b r i n g up abnorm 

- a l i t i e s t h a t would otherwise be overlooked and i n turn, these a b n o r m a l i t i e s 



may lead to the overthrow of the o r i g i n a l major theory. 

There i s always an element of c r i s i s i n t h i s method of s c i e n t i f i c 

progress. Indeed the l a r g e r the c r i s e s , the more major the break with 

accepted theory.. Newton's theory oz l i g h t and col-our was put forward 

because none of the e x i s t i n g t h e o r i e s would account f o r the length of 

the spectrum and the wave theory r e p l a c e d Newton's because of the growing 

concern with d i f f r a c t i o n and p o l a r i s a t i o n e f f e c t s . ( 2 ) . ( 3 ) . 

Thermodynamics was derived from the c o l l i s i o n of two e x i s t i n g 

nineteenth century p h y s i c a l t h e o r i e s ( k ) and quantum mechanics from 

d i f f i c u l t i e s with black-body r a d i a t i o n , s p e c i f i c heat and the p h o t o e l e c t r i c 

theory. ( 5 ) . 

Normal s c i e n c e i s net n e c e s s a r i l y d i f f e r e n t i a t e d from c r i s i s s c i e n c e 

by a l a c k of d i s c r e p a n c i e s , but the r e s e a r c h worker must be s e n s i t i v e to 

the importance of the discrepancy t h a t confronts him.. I t may r e q u i r e time 

before i t can be s a i d whether a discrepancy i s of importance to the 

s t r u c t u r e of. a theory. I t was s i x t y years a f t e r Newton's o r i g i n a l comput­

a t i o n that the discrepancy of the p r e d i c t e d motion of the moon's perigee 

to that of the observed motion could be shown by C l a i r a n t to be only due to 

the mathematics of a p p l i c a t i o n and would not r e q u i r e an a l t e r a t i o n of • 

Newton's i n v e r s e square Ir.w. ( 6 ) . 

I t may r e q u i r e experimental techniques more advanced than can be' 

provided at the time, as with Kepler, who i n 1628, noted that the t a i l s 

of comets always curved away from the sun and c o r r e c t l y assigned t h i s 

curvature to a pressure exerted by the sun's r a y s ; yet t h i s could not be 

experimentally demonstrated i n a l a b o r a t o r y u n t i l 1901, when the e f f e c t s , 

of r a d i a t i o n pressure were noted on d e l i c a t e t o r s i o n a l b a l a n c e s . 



I t may a l s o r e q u i r e i n t e r p r e t a t i o n as with the d i s c o v e r y of Uranus. 

Between 1690 and 1781, seventeen d i f f e r e n t astronomers had seen s t a r s i n 

p o s i t i o n s now c a l c u l a t e d to be that of Uranus at - that time. I n 1769, an 

astronomer had observed i t f o r four days without n o t i c i n g any motion. 

K e r s c h e l , i n 1781, provided the experimental advance r e q u i r e d , with a 

new telescope of h i s own design,, and saw a d i s c shape which was unusual f o r 

s t a r s . He did not i d e n t i f y i t u n t i l he had given i t f u r t h e r s c r u t i n y and, 

n o t i c i n g i t s motion, he then announced t h a t he had seen a new comet. 

There were then s e v e r a l months of f r u i t l e s s attempts to f i t i t s o r b i t to 

a cometary motion before L e x e l l suggested that i t might be a planet. ( 7 ) 

The advent of radio-astronomy has meant that astronomy is- s t i l l an 

area where anomalies r e q u i r e judgement as to whether they support and 

confirm the major theory or whether they w i l l become the vexations th a t 

l e a d to the c r i s i s point i n the major theory's e x i s t e n c e . 

C l o s e r to the e a r t h ' s s u r f a c e , the study of Atmospheric E l e c t r i c i t y , 

which had i t s beginnings i n the e a r l i e s t work on e l e c t r i c i t y , has 

i n c r e a s i n g l y f e l t the b e n e f i t of modern e l e c t r o n i c s . The i n c r e a s e d 

s e n s i t i v i t y i n measurement techniques and the development of continuous 

recording have begun to counteract the d i f f i c u l t y of reproducing 

experimental c o n d i t i o n s , which i s one of the major problems of any a p p l i e d 

d i s c i p l i n e whose ulti m a t e experiments must be under geographical or 

atmospheric c o n d i t i o n s . 

These advances i n experimental technique have enabled study i n g r e a t e r 

d e t a i l and a t g r e a t e r depth than before and t h i s , , as might be expected, 

has r e s u l t e d i n apparent disagreement i n the experimental determination 

of v a r i a b l e s fundamental to the f u r t h e r advance of the s c i e n c e . 

4 



The aim of t h i s work i s to de s c r i b e the development of one such 

problem i n the f i e l d of Atmospheric E l e c t r i c i t y and to examine the 

p o s t u l a t e s on which the matter r e s t s . S p e c i f i c a l l y the problem i s th a t 

of the measurement of the e l e c t r i c a l conduction c u r r e n t to the e a r t h ' s 

s u r f a c e under c o n d i t i o n s of f i n e weather and i t s r e l a t i o n to the other 

major e l e c t r i c a l v a r i a b l e s of the atmosphere. 

5 



1.2. Fine Weather E l e c t r i c a l Phenomena. 

The e f f e c t s of l i g h t n i n g f l a s h e s and thunderstorms have been a source 

of av/e and wondering s i n c e the beginning of h i s t o r y . The r e l i g i o u s 

s i g n i f i c a n c e of l i g h t n i n g as the evidence f o r , or the r e t r i b u t i o n of, 

the gods, has e x i s t e d up to quite modern times and a more domestic 

e l e c t r i c a l phenomenon i n the a t t r a c t i v e f o r c e s of s t a t i c e l e c t r i c i t y has 

been known almost as long as man's c i v i l i s e d e x i s t e n c e . Indeed the study 

of s t a t i c e l e c t r i c i t y was attempted by Thales of Miletus i n the 6th 

century B.C. 

I t i s not s u r p r i s i n g t h e r e f o r e that the idea of l i g h t n i n g . a n d thunder-

as a l a r g e - s c a l e v e r s i o n of some of the e f f e c t s of s t a t i c e l e c t r i c i t y 

and i t s c o r o l l a r y , t h a t e l e c t r i c i t y e x i s t s i n the a i r , should have 

e x i s t e d f or many y e a r s . V/ALL(1?08) would appear to be the e a r l i e s t 

i n v e s t i g a t o r to record t h i s suggestion as. a r e s u l t of h i s o b s e r v a t i o n s . 

There were s e v e r a l s u b j e c t i v e accounts of t h i s comparison butj as has been 

mentioned, i t r e q u i r e d the development of the Leyden j a r and e a r l y 

e l e c t r i c a l machines f o r the beginning of o b j e c t i v e measurements of e l e c t r i c 

d i s c h a r g e s . 

The e a r l y workers attempted to prove the presence of e l e c t r i c i t y i n 

thunderclouds and perhaps the most well-known of those engaged i n this, 

somewhat hazardous t a s k was FRANKLIN(1750, 1752) who flew a k i t e with a 

conducting s t r i n g ending on an i n s u l a t i n g ribbon. F r a n k l i n was a c t u a l l y 

f o r e s t a l l e d by D'ALIEARD(1752) who obtained sparks to an earthed wire from 

an i n s u l a t e d i r o n rod. LEM0NNIER(1752), with apparatus s i m i l a r to 

D'Alibard's, f i r s t observed that e l e c t r i c a l e f f e c t s could be obtained 



even i n f i n e weather which was quite unexpected. K i s apparatus, an early-

p assive probe(q.v.) c o n s i s t e d of an i r o n spiked wooden pole, from which 

an i r o n wire v/as l e d int o a b u i l d i n g . T h i s wire, without making any 

other contacts, ended on a s t r e t c h e d s i l k f i b r e . He could obtain sparks 

from the' e l e c t r i f i e d i r o n wire i n f i n e weather and noted th a t p a r t i c l e s 

of dust were a t t r a c t e d to i t . He suspected a v a r i a t i o n i n these f i n e 

weather e f f e c t s with the time of day. B3CCAMA confirmed t h i s i n 1775. 

and determined that h i s wire was p o s i t i v e l y charged i n f i n e weather. 

DE SAUSSUP.E0779) was probably the f i r s t to di s c o v e r an'annual v a r i a t i o n 

i n the s i z e of f i n e weather e l e c t r i c a l e f f e c t s . He developed a form of 

electrometer and used i t i n a way that foreran a l l methods of measuring 

p o t e n t i a l gradient dependent on bound charge. DE ROMAS(1753)>' using a 

k i t e , found f i n e weather e f f e c t s a t . a s i m i l a r time to Lemonnier, 

As l a t e r workers continued t h e i r i n v e s t i g a t i o n s i n t o atmospheric 

e l e c t r i c a l e f f e c t s , they e s t a b l i s h e d that the a c t i v e region of the 

atmosphere can at any one time be di v i d e d i n t o a r e a s of charge generation, 

mainly a s s o c i a t e d with the development of thunderstorms, and ar e a s of 

charge d i s s i p a t i o n , the f i n e weather areas where the ea r t h r e c e i v e s a 

current of p o s i t i v e . c h a r g e . The cur r e n t c y c l e i s thus from the thunder­

storm top to the e l e c t r o s where, from there to a f i n e weather area, then 

to the e a r t h where i t i s returned to the thunderstorm base. The term, 

e l e c t r o s p h e r e , a l l o w s reference to the conducting a r e a of the ionosphere 

without r e f e r e n c e to the ionosphere's own p r o p e r t i e s . I n the f i n e weather 

area, i t was e s t a b l i s h e d that the.three most important v a r i a b l e s were the 

p o t e n t i a l gradient, the conductivity.and the conduction c u r r e n t and i t i s -

the i n t e r - r e l a t i o n of these p r o p e r t i e s that i s of concern. 

7 



1.2.1. P o t e n t i a l Gradient, 

The d e f i n i t i o n of the p o t e n t i a l d i f f e r e n c e between two points i s t h a t 

i t i s the mechanical work per u n i t charge necessary to move a small positiv< 

charge from one point to another. I n atmospheric e l e c t r i c i t y , i t i s not 

p o s s i b l e to f i n d out about e l e c t r i c a l c o nditions outside the e l e c t r o s p h e r e 

and thus there i s no means of c a l c u l a t i n g the work done i n bringing a charge 

from an i n f i n i t e d i s t a n c e to e a r t h . Therefore i n place of the aero 

p o t e n t i a l of t h e o r e t i c a l e l e c t r o s t a t i c s , the p o t e n t i a l s u r f a c e of the e a r t h , 

a conductor, i s taken as aero and a l l p o t e n t i a l s are measured r e l a t i v e to 

i t . This i s p e r m i s s i b l e as a l l the formulae are concerned wit.h d i f f e r e n c e s 

of p o t e n t i a l . From c o n d u c t i v i t y measurements at v a r i o u s h e i g h t s , the t o t a l 
2 

columnar r e s i s t a n c e of a column of a i r of 1m c r o s s - s e c t i o n from the e a r t h 
17 

to the e l e c t r o s p h e r e has been found.to be about 10 ohms. T h i s means that 

the e l e c t r o s p h e r e i s of a p o t e n t i a l of about 3.6 x 10^V with r e s p e c t to the 

earth,(GISH, 1951) t f o r the r e s i s t a n c e of the whole atmosphere i s 200ohms. 

The r a t e of change of p o t e n t i a l with d i s t a n c e g i v e s the f o r c e a c t i n g 

on a charged body. The d i r e c t i o n of the force i s such as to move a 

p o s i t i v e l y charged body to a p o s i t i o n of lower p o t e n t i a l . 

E l e c t r i c I n t e n s i t y E = where ~ i s the P o t e n t i a l Gradient. The . 
dx' dx 

p o t e n t i a l gradient and e l e c t r i c a l i n t e n s i t y a r e , i n t h i s work, l a r g e l y . 

v e r t i c a l . The e a r t h ' s s u r f a c e i s a conductor so t h a t the p o t e n t i a l 

gradient at i t s s u r f a c e and c l o s e to i t must be v e r t i c a l . The change i n 

d i s t a n c e dx i s t h e r e f o r e a change i n height and i s measured p o s i t i v e l y 

upwards. 

Under normal f i n e weather c o n d i t i o n s , the p o t e n t i a l V i n c r e a s e s with'• 

height, so that — i s p o s i t i v e and thus E negative. To avoid s i g n 8 



confusion* F = ^ i s used for p o t e n t i a l g r a d i e n t . F i s then p o s i t i v e i n 

f i n e weather. V e r t i c a l c u r r e n t s i n the atmosphere w i l l be taken as 

p o s i t i v e i f b r i n g i n g a p o s i t i v e charge downwards. The conduction current 

w i l l then be p o s i t i v e i n a p o s i t i v e p o t e n t i a l g r a d i e n t . 

Measurement of the p o t e n t i a l gradient i n f i n e weather at d i f f e r e n t 

heights above the e a r t h ' s s u r f a c e has shown that there i s l i t t l e change 

i n the f i r s t few minutes despite the e l e c t r o d e e f f e e t . ( q . v . ) At heights 

above approximately 100 metres, the p o t e n t i a l gradient shows a p r o g r e s s i v e 

decrease with height.(CHALMERS - 1957) 

1.2.2. Condu c t i v i t y . 

Considerable work on the nature of atmospheric c o n d u c t i v i t y has shown 

that ions, p a r t i c l e s of molecular s i z e or l a r g e r , c a r r y i n g p o s i t i v e or 

negative charges, c o n s t a n t l y disappear by combination with ions of the 

opposite s i g n , or are changed i n t o ions of a g r e a t e r s i z e by combination 

with uncharged p a r t i c l e s . There must t h e r e f o r e be some compensatory 

mechanism for the production of i o n s . Three processes have been found 

to c o n t r i b u t e to t h i s mechanism. I o n i s a t i o n i s caused by 1. cosmic 

r a d i a t i o n , 2. r a d i a t i o n from ,J.he sun, and 3. r a d i a t i o n from the e a r t h and • 

the atmosphere. The l a s t process i s only important i n the area c l o s e to 

the e a r t h . 

The c o n d u c t i v i t y of the atmosphere i s produced by these ions moving 

i n the e l e c t r i c f i e l d . OHM's Law i s u s u a l l y obeyed and the c u r r e n t between 

two points i s proportional to the - p o t e n t i a l d i f f e r e n c e , the r a t i o being 

the c o n d u c t i v i t y or the r e c i p r o c a l of the r e s i s t a n c e . 

I t i s more convenient to-use c o n d u c t i v i t i e s - a s d i f f e r e n t ions can then 



be thought of as conductors i n p a r a l l e l and the t o t a l c o n d u c t i v i t y can be 

obtained by summing the separate c o n d u c t i v i t i e s of the v a r i o u s i o n s . 

I f the p o t e n t i a l of the e l e c t r o s p h e r e with respect, to the e a r t h i s V 
V and the columnar r e s i s t a n c e i s R, then — = i , where i i s the conduction K 

current d e n s i t y . I f r i s the r e s i s t a n c e of the lowest metre of the 

column, the p o t e n t i a l drop a c r o s s t h i s i s F, the average p o t e n t i a l 

gradient i n the lowest metre, then F = i r = . The s p e c i f i c c o n d u c t i v i t y 
\ 1 v \ of a i r A = —, t h e r e f o r e F = — and the s p e c i f i c c o n d u c t i v i t y X. f o r r K - i 

p o s i t i v e i o n s i s \ < i = |-1, where i„ i s the c u r r e n t density of -positive ions, 

S i m i l a r l y , f o r negative ions A = =2« The s p e c i f i c c o n d u c t i v i t y can also, 

be r e l a t e d to m o b i l i t y and charge, so X = n^ew^ a n d = n^ew^, where 

n^, are the numbers of p o s i t i v e and negative ions with m o b i l i t i e s » 

v/̂  and charges +e, -e r e s p e c t i v e l y . 

These formulae can only be used f o r steady c o n d i t i o n s or f o r changes 

which occur over periods which are long compared with the r e l a x a t i o n time 

of the atmosphere. The r e l a x a t i o n time i s a measure' of the r a t e at which 

a conductor l o s e s charge or the r a t e at which the e l e c t r i c a l c o n d i t i o n s 

i n the conductor a d j u s t themselves a f t e r a change. 

Large i o n s , and probably intermediate s i z e d i o n s , have sm a l l m o b i l i t i e s 

and t h e i r numbers are seldom great enough compared v;ith the number of small 

ions f o r them to play any s i g n i f i c a n t part i n c o n d u c t i v i t y . 

The f i n e weather c o n d u c t i v i t y a t many p l a c e s shows a maximum i n the 

e a r l y morning with a f a l l soon a f t e r s u n r i s e ; t h i s i s probably accounted 

f o r by the formation of mist or .by the i n c r e a s e d p o l l u t i o n of the a i r . 

P o l l u t i o n i n c r e a s e s the number of n u c l e i present and to maintain the 

e q u i l i b r i u m of i o n i s a t i o n , any i n c r e a s e i n the numbers of n u c l e i present 



w i l l l e a d to an i n c r e a s e of l a r g e ions and a decrease i n the number of 

small ions and thus a decrease i n c o n d u c t i v i t y . The y e a r l y v a r i a t i o n 

therefore shows a maximum c o n d u c t i v i t y i n summer .and a raini~.ua i n w i n t e r . 

1.2.5. Conduction Current. 

The a i r - e a r t h conduction curr e n t i i s r e l a t e d to the l o c a l p o t e n t i a l 

gradient F and the l o c a l c o n d u c t i v i t y by i = A F . T h i s holds e s p e c i a l l y 

when F and \ are values measured c l o s e to the e a r t h ' s s u r f a c e . The 

p o t e n t i a l gradient F at the e a r t h ' s s u r f a c e i s the most widely measured 

e l e c t r i c a l v a r i a b l e . However, the conduction curr e n t i s a l s o i = ^, 

where V i s the p o t e n t i a l d i f f e r e n c e between the e l e c t r o s p h e r e and the e a r t h 

and R i s the columnar r e s i s t a n c e , i t has become i n c r e a s i n g l y evident that 

the value of i i s f a r more fundamental than the value of F, although more 

d i f f i c u l t to obtain. There are two main reasons for assuming t h i s to be 

so. F i r s t l y , as both the e a r t h and the e l e c t r o s p h e r e are good conductors 

and the c u r r e n t s w i t h i n them are s m a l l , the p o t e n t i a l d i f f e r e n c e between 

them at any i n s t a n c e i s almost e x a c t l y the same i n a l l p l a c e s and l o c a l 

d i f f e r e n c e i n the values of the conduction c u r r e n t must chen represent 

d i f f e r e n c e s i n the l o c a l columnar r e s i s t a n c e . The a i r - e a r t h conduction 

current depends on the t o t a l columnar r e s i s t a n c e and not d i r e c t l y on the 

l o c a l c o n d u c t i v i t y , thus l o c a l changes of c o n d u c t i v i t y a f f e c t the a i r - e a r t h 

current only to the extent to which they a l t e r the t o t a l columnar r e s i s t a n c e 

Measurement of p o t e n t i a l g radient depends on l o c a l v a r i a t i o n s of the 

c o n d u c t i v i t y and i s often of doubtful s i g n i f i c a n c e . Secondly, i f there ' 

are no h o r i z o n t a l c u r r e n t s , convection c u r r e n t s or accumulations of charge, 
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the s i r - e a r t h c u r r e n t i s the'same a t a l l l e v e l s . T h i s i s a r e s u l t of t 

q u a s i s t a t i c s t a t e . 

Although a current i s flowing i n the atmosphere and so the a c t u a l 

charges do not remain s t a t i c , i n steady c o n d i t i o n s , charges which have 

teen moved from a c e r t a i n region are replaced by others moving i n t o the 

region with the r e s u l t that a t any one i n s t a n t , the d i s t r i b u t i o n of 

charge i s the same. T h i s i s known as the q u a s i s t a t i c s t a t e and i t i s 

assumed that the laws\of e l e c t r o s t a t i c s can s t i l l be a p p l i e d . I f any 

change i n the steady condition occurs, c o n d i t i o n s w i l l r e v e r t to a new 

steady q u a s i s t a t i c s t a t e i n accordance with the r e l a x a t i o n time. 
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1.5« Methods of Measuring A i r - e a r t h C u rrent. 

The techniques for measuring the a i r - e a r t h c u r r e n t can be c l a s s i f i e d 

i n t o two c a t e g o r i e s ; the d i r e c t method and the i n d i r e c t method. 

The d i r e c t method measures the a c t u a l charge reac h i n g a.portion of the" 

e a r t h ' s s u r f a c e i n a given time and should be a d i r e c t measure of the 

a c t u a l a i r to ea r t h c u r r e n t . The u s u a l form of the apparatus i s a l a r g e 

c o l l e c t i n g s u r f a c e i n s u l a t e d from the ground. To t h i s i s attached an 

instrument, such as an electrometer or a very s e n s i t i v e galvanometer, 

which i s used to measure the charge c o l l e c t e d i n a given time. 

The i n d i r e c t method i s to measure independently the l o c a l c o n d u c t i v i t y 

and the l o c a l p o t e n t i a l gradient and to take t h e i r product a s the a i r - e a r t h 

conduction c u r r e n t . The l o c a l c o n d u c t i v i t y has been measured with 

v a r i a n t s of the apparatus used by EBERT(1901) f o r ion counting and 

GERDIEN(1905) for c o n d u c t i v i t y . I t i s b a s i c a l l y a hollow c y l i n d e r 

c o n t a i n i n g a c o a x i a l rod. The rod i s connected to some form of measuring 

apparatus and a p o t e n t i a l d i f f e r e n c e i s a p p l i e d between the rod and the 

c y l i n d e r . A i r i s drawn through the apparatus and the f r a c t i o n of the 

ions i n the a i r c o l l e c t e d by the apparatus w i l l depend on the p o t e n t i a l 

gradient, the a i r - f l o w and the apparatus dimensions. 

The methods of measuring the p o t e n t i a l gradient can a l s o be divi d e d 

i n t o two types. The f i r s t type i s to measure the p o t e n t i a l d i f f e r e n c e 

between two points a t d i f f e r e n t h e i g h t s using a p o t e n t i a l e q u a l i s e r . 

These e q u a l i s e r s include water-droppers (KELVIN - 1859 and SIMPSON - 19105, 

f u s e s (VOLTA - 1800), and r a d i o a c t i v e sources (SCRASE - 195^, MUHLEISEN • 

- 1951, et a l ) . 
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The second method i n v o l v e s measuring the b'ound charge on a p o r t i o n 

of the ea r t h ' s s u r f a c e or an ea r t h connected body. • The s u r f a c e d e n s i t y 

of charge on a f l a t p ortion of the su r f a c e of the ea r t h 0 = -£ F and . • . o 
there v / i l l be an exposure f a c t o r f o r an ea r t h connected body. T h i s i s 

the p r i n c i p l e behind the U n i v e r s a l Portable E l e c t r o m e t e r (V.'ILSON - 190S) 

and f i e l d machines such as the Agriraeter (PU3SELTVEDT - 1925, CHALMERS 

- 1953a), the E l e c t r o s t a t i c JTuxraeter (MATTHIAS - 1926) and the F i e l d M i l l 

(IIAENWELL and VAN VOOEHIS -1933, et a l ) . The f i e l d m i l l has probably 

been most widely used f o r t h i s purpose. A f i x e d t e s t p l a t e i s connected 

to e a r t h through a r e s i s t a n c e and capacitance i n p a r a l l e l . A r o t a t i n g 

earthed cover a l t e r n a t e l y exposes and s h i e l d s the t e s t p l a t e from the 

l i n e s of force and the r e s u l t i n g a l t e r n a t i n g c u r r e n t to e a r t h - i s a m p l i f i e d , 

r e c t i f i e d and measured. Many designs of f i e l d m i l l have used p l a t e s 

c o n s i s t i n g of equal s e c t o r s of a c i r c l e with a s i m i l a r s e t of earthed 

s e c t o r s r o t a t i n g above them g i v i n g an output of approximately t r i a n g u l a r 

waveform. 

The theory of the f i e l d m i l l has been d i s c u s s e d by MAPLESON and 

WHITL0CKO955) and i t s s e n s i t i v i t y by DAHL(1951). The output of t h i s 

instrument i s an a l t e r n a t i n g c u r r e n t p r o p o r t i o n a l to the magnitude of the 

p o t e n t i a l gradient, but g i v i n g no i n d i c a t i o n of i t s s i g n . ? o r many 

purposes t h e r e f o r e i t i s necessary to arrange a method of determining 

t h i s . The f i e l d m i l l has been developed to be a u s e f u l , r e l i a b l e 

instrument, but has the disadvantage f or conduction c u r r e n t work that 

i t i s e s s e n t i a l l y a point source,measurement. 

I n t e r e s t i n antennae f o r the measurement of p o t e n t i a l gradient was 

rev i v e d by CROZIER(19?3) with a p a s s i v e antenna whose se n s i n g u n i t had 
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s u f f i c i e n t l y low conductance and capacitance to render the use of 

e q u a l i s e r s , the water-droppers, f u s e s and r a d i o a c t i v e c o l l e c t o r s p r e v i o u s l y 

mentioned, unnecessary. The low loading r e q u i r e d i s achieved by the use 

of feedback techniques and high q u a l i t y i n s u l a t i o n - . 

Instruments designed on these l i n e s have been used to measure the 

f i n e weather conduction c u r r e n t a t s e v e r a l s i t e s and i n v a r i o u s 

circumstances. Unfortunately the r e s u l t s obtained by the i n d i r e c t and 

d i r e c t methods do not appear to reach a common co n c l u s i o n and there has 

been some d i s c u s s i o n as to whether these d i f f e r e n t methods do i n f a c t 

measure the same t h i n g s . 

I t i s necessary t h e r e f o r e to study c r i t i c a l l y the experimental technique 

and the theory on which they are based, and f u r t h e r i n atmospheric 

e l e c t r i c a l work, the meteorological and geographical c o n d i t i o n s under 

which they were a p p l i e d . 
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1.'+. The Problem. 

I t i s .possible f o r the t r a n s f e r of charge i n . a v e r t i c a l d i r e c t i o n to 

be achieved not only by conduction c u r r e n t s , but by convection c u r r e n t s 

i n which v e r t i c a l motion of a i r c o n t a i n i n g more ions of one s i g n than 

the other may occur. D i f f u s i o n of ions may a l s o c o n t r i b u t e to t h i s 

charge t r a n s f e r . The d i r e c t method, as i t measures the a c t u a l • a i r - e a r t h 

current a r r i v i n g a t a p o r t i o n of the e a r t h ' s surface, v / i l l measure the 

summation of these c u r r e n t s . The i n d i r e c t method, measuring only l o c a l 

c o n d u c t i v i t y and p o t e n t i a l gradient, w i l l give only the conduction 

c u r r e n t . 

The l o c a l c o n d u c t i v i t y that must be used i n the i n d i r e c t method i s 

the sum of the c o n d u c t i v i t i e s of b o t h \ ^ 1 a e c a u s e a t a height of one 

metre both s i g n s play a n e a r l y equal p a r t . Close to the e a r t h ' s s u r f a c e , 

i n a normal f i n e weather f i e l d , the c u r r e n t can only be c a r r i e d by 

p o s i t i v e ions, so while at one metre, i t i s i = F(X^ +\p)> c l o s e to 

ground l e v e l , i t must be i = F \, . Measurements have shown tha t F does 
o 1 o 

not vary near the e a r t h ' s s u r f a c e and that F and F are very s i m i l a r 
S 

which was contrary to the p r e d i c t i o n s of the simple e l e c t r o d e e f f e c t . 

E a r l y measurements of the a i r - e a r t h c u r r e n t by the two methods 

appeared to i n d i c a t e that the i n d i r e c t method gave a value twice as l a r g e 

as the d i r e c t method, as would be expected i f the c o n d u c t i v i t i e s of 

e i t h e r s i g n were of equal magnitude and height and i f convection c u r r e n t s 

such as postulated by WHIPPLE(1932) occurred. 

However, the NOLANS(1937) and NOLAN(19^0) made simultaneous 

measurements of the a i r - e a r t h c u r r e n t by bo tin methods and found the 
16 



c o n d u c t i v i t y measured i n d i r e c t l y exceeded th a t measured d i r e c t l y by 

only 10 per cent. With F constant with height, t h i s i n d i c a t e d that 

+ X, was equal to A., and thus \,( must vary with height, a r e s u l t 

found by HOGG(1939). 

KRAAKEVIK and vLARK(l95S) measured the p o t e n t i a l gradient and the 

c o n d u c t i v i t y from a i r c r a f t and found•differences i n c o n d u c t i v i t y of 

20 per cent i n the' austausch region; that region of the atmosphere where 

continued mixing of a i r occurs. I t i s p o s s i b l e t h e r e f o r e that the 

10 per cent d i f f e r e n c e found by the Nolans i s not a l o c a l d e v i a t i o n , 

but has a r e a l s i g n i f i c a n c e . LAV: (1963) implied the e x i s t e n c e of a 

convection current comparable with the conduction c u r r e n t , from h i s 

r e s u l t s at Cambridge. 

Of these r e s u l t s , those of Hogg' are probably the most s i g n i f i c a n t 

because h i s s i t e most n e a r l y approached th a t acceptable to theory,- but 

i t i s necessary to r e s o l v e these d i f f e r e n c e s and to e s t a b l i s h the r e a l 

r o l e , i f any, of convection c u r r e n t s . I t w i l l be u s e f u l f i r s t to 

examine the requirements of an i d e a l s i t e and then proceed' from there 

to examine the published work i n the l i g h t of t h e i r approach to the 

t h e o r e t i c a l i d e a l . 
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CHAPf-S?. 2. THE EXPSRIHEKTAL* SITS 

The study of f i n e weather phenomena, i s n e c e s s a r i l y governed by 
atmospheric conditions ar.c the experimenter has not only l i t t l e c o n t r o l 
over h i s experimental c o n d i t i o n s , b u t " u n t i l the development of airborne 
measurements during the second world war, was i n the p o s i t i o n of examining 
the behaviour of h i s system by e f f e c t i v e l y studying one ' e l e c t r o d e *• and 
i t s immediate surroundings. The model adopted for the system i s one of 
c l a s s i c s . - ! e l e c t r o s t a t i c s , as can be seen from the d e f i n i t i o n of the three 
major v a r i a b l e s i n the previous chapter, but, i n p r a c t i c e , there w i l l be 
d e v i a t i o n s from the simple model and f o r these, there must be some form 
of compensation. I t w i l l be u s e f u l to consider these d e v i a t i o n s i n terms 
of an a c t u a l experimental s i t e , t h a t of the Observatory s i t e of Durham 
U n i v e r s i t y which i s s i t u a t e d 1I:m. West of Durham C i t y , 0.75km. Morth of 
the L a b o r a t o r i e s and 120 metres above sea l e v e l . 
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P l a t e 1a The O b s e r v a t o r y S i t e 



2.1. Compensation. 

I n the e q u i v a l e n t c i r c u i t of the atmosphere sketched on p.?., the 

e a r t h i s a c t i n g as a conductor, t r a n s f e r r i n g by ground c u r r e n t s the 

charge brought to i t i n the f i n e weather a r e a s to those a r e a s of 

thunderstorm c o n d i t i o n s . L i n e s of f o r c e can be p i c t u r e d a r r i v i n g on the 

e a r t h ' s s u r f a c e i n a d i r e c t i o n at r i g h t angles to the l o c a l plane of t h a t 

surfaGe. Thus l i n e s of e q u i p o t e n t i a l w i l l l i e p a r a l l e l to the e a r t h ' s 

s u r f a c e . Should the s u r f a c e not be plane, but have on i t such earthed 

conductors as houses or t r e e s , t h i s w i l l d i s t u r b the d e n s i t y of the l i n e s 

of force and a l t e r the l e v e l s of e q u i p o t e n t i a l . Any measurement of the 

p o t e n t i a l gradient w i t h i n the area of disturbance w i l l not be' absolute 

and a r e d u c t i o n f a c t o r must be defined before comparison can be made with 

absolute values over l e v e l ground. I f the plane of the ground i s not '.: •.• 

h o r i z o n t a l , then a c o l l e c t o r of a p p r e c i a b l e area or length must s t i l l be 

p a r a l l e l to t h i s plane, i f i t i s to cause minimal disturbance to i t s 

surroundings. 

An example of t h i s can be seen ( P l a t e 1..and F i g . 1.) a t the 

Observatory s i t e where the slope of the a v a i l a b l e s i t e was 1 i n 12. An 

i n c i d e n t a l e f f e c t of t h i o i s that any frame f o r a p l a t e type c o l l e c t o r 

must be designed to minimise s t r e s s i n g on any i n s u l a t i n g m a t e r i a l t h a t 

may show p i e a o - e l e c t r i c e f f e c t s . I n P l a t e 1., i t can be seen that the 

nearness of hedge and t r e e to the experimental area w i l l c o n s t i t u t e 

disturbances to the l i n e s of e q u i p o t e n t i a l that may not be n e g l i g i b l e . 

I n g e n e r a l , any measuring apparatus standing above the plane of i t s 

surroundings w i l l r e q u i r e e i t h e r the c a l c u l a t i o n of a r e d u c t i o n f a c t o r or 
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compensation for the disturbance i t c r e a t e s . B E R N D O H F ( 1 9 0 O ) considered 

the matter t h e o r e t i c a l l y and found that a v e r t i c a l conducting post 1cm. 

high has l e s s than 1 per cent e f f e c t on the p o t e n t i a l measured 1m. from 

the ground 3m. away. T h i s gives the order of s e p a r a t i o n r e q u i r e d between 

such apparatus i f compensation i s neglected.' A R U O L D et a l d 9 6 5 ) have 

considered the reduction e f f e c t s of nearby t r e e s both t h e o r e t i c a l l y and 

p r a c t i c a l l y . I n p r a c t i c e , i t i s simpler to compensate f o r the reduction 

f a c t o r produced by apparatus, because of the complex, shape of the equipment. 

T h i s i s done by measuring the p o t e n t i a l gradient near to the c o n d u c t i v i t y 

or current measuring device, and applying a p o t e n t i a l derived from that 

measurement to the device, thus maintaining i t as c l o s e as p o s s i b l e to the 

p o t e n t i a l of i t s surroundings. When measuring the f i n e weather current by 

the d i r e c t method there i s a f u r t h e r compensation r e q u i r e d , f o r a change of . 

p o t e n t i a l gradient during the time of exposure of the c o l l e c t i n g s u r f a c e 

produces an e f f e c t known as the displacement c u r r e n t . 

The change i n p o t e n t i a l gradient produces a change i n the bound charge 

on the c o l l e c t o r . • For a u n i t area of the c o l l e c t o r , the s u r f a c e charge 

Q = -6 P. • A change of p o t e n t i a l gradient with time = — 4? i s o ° at c at dt o 
e f f e c t i v e l y a c u r r e n t sometimes gr e a t e r than the conduction current and i t 

i s not d i r e c t l y d i s t i n g u i s h a b l e from the true conduction c u r r e n t . 
—12 ? 

I f the true conduction c u r r e n t i s of the order of 2 x 10 A/m~, an 
a l t e r a t i o n i n p o t e n t i a l gradient of 300 V/rn i n an hour w i l l then give a 

1 "> 2 
displacement c u r r e n t of 0.7^ x 10" A/m • 

Unless compensation i s made f o r t h i s displacement c u r r e n t , instantaneous 

measurement i s not l i k e l y to give an accurate answer for the conduction 

curre n t and long exposure times must be used to average t h i s e f f e c t . 20 -



2.2. The E l e c t r o d e E f f e c t . 

I f the earth's s u r f a c e i s considered to be one e l e c t r o d e i n the system 

then the experiments w i l l be c a r r i e d out. in- a volume - of a i r bounded a t one 

end by a negative e l e c t r o d e and extending i n t o the c e n t r a l region. P o s i t i v e 

ions can enter t h i s volume from the c e n t r a l region and leave i t v i a the 

negative e l e c t r o d e but no negative ions can enter the system u n l e s s they 

are produced at the negative e l e c t r o d e . I n the simple model t h i s i s not 

so and the volume under c o n s i d e r a t i o n becomes depleted i n negative ions 

and must acquire a p o s i t i v e space charge. T h i s space charge w i l l i n c r e a s e 

the p o t e n t i a l gradient near the e l e c t r o d e and decrease i t near the centre 

u n t i l the same currant flows through a l l c r o s s - s e c t i o n s . The p o t e n t i a l 

gradient and the i o n i c d i s t r i b u t i o n w i l l , however, no longer be uniform. 

T h i s i s known as the E l e c t r o d e E f f e c t and'in a simple form would show 

i t s e l f i n a space charge near the e a r t h and a p o t e n t i a l gradient at a 

height of a few metres, which i s a p p r e c i a b l y l e s s than that c l o s e to "the 

ea r t h ' s s u r f a c e . 

However, i t i s found t h a t , i n very many observations, there i s only a 

small d i f f e r e n c e i n the p o t e n t i a l gradient a t the height of one metre and 

that c l o s e to the ground, and so the e l e c t r o d e e f f e c t i s not found i n a 

simple form. I t has been reported to e x i s t f o r the condition's of the 

Greenland i c e cap.(PLUVTNAGE and STAHL - 1953, RUHNKE - 1962) and i n the 

centre of l a r g e l a k e s (HUHLEISEN - 19'5l), and very s t i l l night air.(CROZIEH 

- 19'o3a, 1965). An account f o r these r e s u l t s i s obviously p e r t i n e n t to the 

understanding of the c o n d i t i o n s of c o n d u c t i v i t y and p o t e n t i a l gradient and 

hence to the importance to anomalous r e s u l t s f o r the f i n e weather' conduction 
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c u r r e n t by the d i r e c t and i n d i r e c t methods. Attempts have been made to 

provide explanations, although these have been hampered by l a c k of a 

comprehensive theory. Theories with d i f f e r e n t assumptions with regard to 

recombination have been advanced by VON SCHWELDERO908), BEHACKERO910), 

SCH0LTZO931) and more r e c e n t l y , CHALMERS(1966). These have shown t h a t a 

decrease of some 30 per cent betv/een the e a r t h ' s s u r f a c e and 1m. above i t 

should have been expected. 

WHIPPLE(1932) suggested that as the a i r near the e a r t h ' s s u r f a c e i s not 

s t i l l , a process of eddy d i f f u s i o n could c a r r y p o s i t i v e charge upwards and 

that t h i s would avoid the discrepancy betv/een the simple e l e c t r o d e e f f e c t 

theory and experimental r e s u l t s . 

CHALMERS(19^6) showed tha t a q u a s i s t a t i c s t a t e with l i t t l e a l t e r a t i o n 

of p o t e n t i a l gradient w i t h height could be achieved w i t h a s u i t a b l e form 

of v a r i a t i o n of the r a t e of i o n i z a t i o n v/ith height and suggested that t h i s 

v a r i a t i o n - c o u l d , fee caused by r a d i o a c t i v e m a t e r i a l ^ i n the top s o i l . T h i s 

would be supported by the tendency f o r the e l e c t r o d e e f f e c t to be found in... 

a r e a s such as i c e caps and the e f f e c t of r a d i o a c t i v i t y a t the s u r f a c e v/ould 

be reduced. 

LAW(1963) introduced convection c u r r e n t s as a reason f o r the absence 

of the e l e c t r o d e e f f e c t . 
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Another major c o n s i d e r a t i o n i n the assessment of an experimental s i t e 

i s the degree of p o l l u t i o n to v.'hich i t ' i s subjected and the r e s u l t a n t 

c o n s i d e r a t i o n s of space charge on the model. 

*^uite apart from obvious p o l l u t i o n of the atmosphere by i n d u s t r i a l 

and household e f f l u e n t s , a p p r e c i a b l e p o l l u t i o n can be caused by road 

v e h i c l e .=?.nd r a i l w a y locomotive exhausts. By the term p o l l u t i o n i s meant 

the a l t e r a t i o n of the e x i s t i n g balance of ion production and removal by 

the i n f l u x of ions from an e x t e r n a l generator. 

The f a c t that the exhaust of a steam locomotive always gave r i s e to 

a p o s i t i v e space charge was n o t i c e d by KELVIN(1O0O) and again -by ISRAEL i 

(1950); I t was i n v e s t i --atsd i n more d e t a i l by MUHLEI3EN(1953) who found 

p o s i t i v e space charges to be a l s o produced by d i e s e l engines and other 

burning p r o c e s s e s . Negative space charges were produced from chemical 

plant and gasworks. l/HITLOCK and CHALMERS(1955) found t h a t ' t h e s e space 

charges could be i d e n t i f i e d where the exhausts were some way away and no 

longer v i s i b l e . BRA3EFIELD(1959) found e f f e c t s from the exhaust of road 

t r a f f i c . CHAL5-:SRS(1952) found negative p o t e n t i a l g r a d i e n t s on the l e e 

side of high t e n s i o n cables under c o n d i t i o n s of mist and fog. BENT and 

HUTCHINSON(1956) found that i n p l a c e s down-wind, where the mist had 

evaporated, the negative space charge s t i l l p e r s i s t e d i n the a i r . 

MUHLEISEN(1953) observed i n fine.weather p o s i t i v e space charges from 

cab l e s whose diameters were too small to be s u i t a b l e f o r the voltage 

c a r r i e d . Thus l o c a l c o n d i t i o n s w i l l play a l a r g e part i n the amount of 

space charge present at the measuring s i t e and r a p i d f l u c t u a t i o n s of 
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p o t e n t i a l gradient due to t h i s have often been found i n f i n e weather 

conditions, p a r t i c u l a r l y i n or near l a r g e towns. 

As. the i n d i r e c t method of measuring the a i r - e a r t h c u r r e n t measures 

l o c a l c o n d u c t i v i t y and l o c a l p o t e n t i a l gradient, i t i s important to 

a s s e s s the degree of p o l l u t i o n a t an experimental s i t e before comparing 

the r e s u l t s with those obtained a t a d i f f e r i n g s i t e . 

The Durham Observatory s i t e has become l e s s tenable as a s i t e , a s 

p o l l u t i o n from road t r a f f i c on a major trunk road and i t s e x i t road i n 

Durham has i n c r e a s e d . These roads pass w i t h i n -Jkm. to windward of the 

s i t e . A main r a i l w a y l i n e i s only -£km. from the s i t e a l s o i n the 

d i r e c t i o n of the p r e v a i l i n g wind and high t e n s i o n e l e c t r i c i t y pylons pass 

the s i t e on a l l s i d e s a t d i s t a n c e s of 1 to 6km. (see F i g . 1 b . ) 
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2.k. S i t e Decign F e a t u r e s . 

There are other more minor points that the nature of the experimental 

s i t e nay impose upon the design of the apparatus. As the r e s o l u t i o n of 

the problem would'involve measurement of the a i r - e a r t h current by i n d i r e c t 

and d i r e c t methods a t d i f f e r e n t h oivhts c l o s e to the e a r t h ' s s u r f a c e , a 

form of c o n s i s t e n t base, l e v e l i s r e q u i r e d . 

I t i s a great advantage to have an a r t i f i c i a l l y prepared part of the 

'earth's* s u r f a c e , even i f i t does not contain beneath i t an underground 

recording room such as the one a t Kew.(HOGG - 1939). I t may be that time 

and expense are ag a i n s t t h i s and i t i s true that i t would no longer be a 

' n a t u r a l 1 s u r f a c e i n terms of r a d i o a c t i v e content or even thermal 

r a d i a t i o n , should the l o c a l e f f e c t of convection be considered. As the 

i n d i r e c t method i s e s s e n t i a l l y a method of measurement a t a point the 

s i z e of the prepared a r e a may not be l a r g e . With the d i r e c t method the 

exposed p l a t e may be of the order of 1m. a c r o s s and thus a s u i t a b l e 

experimental s i t e may be approximately 10m. square, e s p e c i a l l y i f comparison 

i s to be made between the two methods on the same s i t e . A ' n a t u r a l ' g r a s s 

s u r f a c e r e g u l a r l y cut by a mower with blades of a f i x e d height may be the 

only p r a c t i c a l form. I n t h i s case, the environment i s preserved, but the 

accuracy of p o s i t i o n i n g i s reduced . 

I n any i n v e s t i g a t i o n i n atmospheric e l e c t r i c i t y , extreme care must be 

taken with the i n s u l a t i o n . For f i n e weather measurement, the arrangements 

r e q u i r e d to pro t e c t the i n s u l a t o r s from the r a i n and to keep them f r e e from 

condensation by warming with heating c o i l s are l e s s s t r i n g e n t a s the apparatus 

v / i l l not be running under v/et c o n d i t i o n s . However, the va3.ues of the 
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parameters measured are ge n e r a l l y smaller so the measuring instruments 

have t o be more s e n s i t i v e . I f the measurement involv e s the c o l l e c t i o n 

of a charge, there i s a leakage which takes place w i t h a time constant 

C.R., where C i s the capacity of the c o l l e c t o r and R, the leakage 

resistance t o e a r t h . The c o l l e c t i o n of the charge i s u s u a l l y expressed 

as a voltage V = Q/C, so C must be reduced f o r high s e n s i t i v i t y and S 

must be increased as much as possible. I n t h i s not only the leakage 

at the i n s u l a t o r s must be considered, but also the leakage and the 

capacitance of the cables connecting the measuring apparatus t o the 

recording devices. Besides p i e z o - e l e c t r i c s t r a i n on the i n s u l a t o r s and 

cable, d i f f i c u l t i e s are experienced w i t h condensation, dust dri v e n up on 

to low i n s u l a t o r s by r a i n splashes and sp i d e r s ' webs, so a c a r e f u l choice 

of i n s u l a t i n g and cleaning procedures must be adopted. There are also 

hazards s p e c i f i c to the s i t e which have nuisance value. For instance, 

at Durham Observatory s i t e , the s o i l i s boulder clay w i t h a very high 

water t a b l e and unless underground p i t s were r e g u l a r l y d r i e d and a i r e d , 

water tended.to seep through the w a l l s i n t o the spaces housing apparatus 

as the i n i t i a l water-proofing of the concrete was not adequate. I n t h i s 

case the slope of the s i t e was an advantage as i t s i m p l i f i e d the 

c o n s t r u c t i o n of drainage sumps. 

The other perennial problems w i t h outdoor equipment are e a r t h 

connections and contact p o t e n t i a l s . D i f f e r e n t e a r t h connections may be 

at d i f f e r e n t p o t e n t i a l s because of e a r t h currents or e l e c t r o l y t i c e f f e c t s 

and induced currents must be avoided. Contact p o t e n t i a l s between 

d i f f e r e n t metals or the same metals w i t h d i f f e r i n g surface c o n d i t i o n s 

caused by o x i d a t i o n may be of the order of v o l t s which w i l l give e f f e c t s 
26 



comparable w i t h the n a t u r a l f i n e v/eather p o t e n t i a l g r a d i e n t s . 

I t i s i n the l i g h t of these considerations, fundamental and p r a c t i c a l 

t h a t these experimental r e s u l t s must be i n t e r p r e t e d . The ne:-:t chapter 

w i l l deal i n d e t a i l w i t h the experimental techniques t h a t have been used 

i n both the d i r e c t and i n d i r e c t methods of measuring a i r - e a r t h c u r r e n t . 
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CHAPTER 3 PREVIOUS WORK 

5«1» Previous Experiments using D i r e c t Measurement Methods. 

H i s t o r i c a l l y , the f i r s t attempt a t d i r e c t measurement of the a i r 

- e a r t h current was made by EB3RT(1902)• However, as h i s p l a t e was n e i t h e r 

maintained i n the plane of the ear t h nor a t earth p o t e n t i a l , h i s r e s u l t s 

cannot be accurate. 

WILS0N(1906) had h i s t e s t p l a t e connected t o a' gold, l e a f electrometer. 

Surrounding the t e s t p l a t e was a guard r i n g connected t o the system 

through a compensating condenser. The electrometer was brought t o the 

zero p o s i t i o n w i t h an earthed cover 'placed over the t e s t plate.. The 

cover was removed and the compensator adjusted t o keep the electrometer 

i n i t s zero p o s i t i o n . A f t e r a given time i n t e r v a l , the cover was replaced 

and the compensator again adjusted t o give zero d e f l e c t i o n of the 

electrometer. The d i f f e r e n c e i n compensator p o s i t i o n s . gave a measure of 

the charge on the pl a t e when i t was exposed. I f the compensating condenser 

was not used, removal of the cover would have brought the p l a t e t o a 

p o t e n t i a l other than t h a t of e a r t h . 

I n h i s l a t e r c a p i l l a r y electrometer, WILS0NO916) a u t o m a t i c a l l y • 

ad j u s t e d the p o t e n t i a l of the p l a t e t o t h a t o f ' t h e e a r t h . • Wilson made 

measurements at 66, 90 and 130cms. from the ground but made no attempt t o 

determine any r e l a t i o n s h i p between the values a t these h e i g h t s . As the 

t e s t p l a t e has t o be covered and uncovered and the readings have t o be 

taken v i s u a l l y , these methods are not r e a d i l y adapted t o continuous 

reco r d i n g of the a i r - e a r t h c u r r e n t . However, the covering of the t e s t 

p l a t e i n t h i s manner means t h a t no compensation f o r the e f f e c t of p o t e n t i a l 

gradient changes i s needed as there i s no bound charge a t the beginning 

and the end of the observation. 
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I f Wilson's method i s used without the compensating condenser, 

removal of the cover would b r i n g the' plate 1 to a p o t e n t i a l considerably 

d i f f e r e n t from t h a t of ea r t h . SMITH(1956) found t h a t there appeared t o 

be no current a t a l l i f t h i s was done and a measuring instrument of 

small capacity was used. When the cover i s removed,, the p l a t e acquires 

a charge -A£ QF on. i t s upper side. The corresponding charge +A£ QF must 

reside on the lower surface of the pl a t e as the capacity of the 

electroscope i s small. Assuming the c o n d u c t i v i t y of the. a i r i s the same 

e i t h e r side of the p l a t e , the charges w i l l d i s s i p a t e w i t h the same 

r e l a x a t i o n time and there w i l l be zero net c u r r e n t . 

A recent M o d i f i c a t i o n of Wilson's apparatus was used by COBB and 

PHILLIPS(19o2). They used 6 symmetrically disposed c i r c u l a r p l a t e s 

mounted on a r o t a t i n g t a b l e . A c i r c u l a r sector was f i x e d over the t a b l e . 

On e n t e r i n g the shielded area, the net charge on the p l a t e was due t o 

conduction alone. A brush contact c a r r i e d away t h i s charge to a f i l t e r : 

which a l l e v i a t e d i n t e r f e r e n c e from the brush pick-up. This network had 

a RC product of 2k0 seconds which determined the time constant of the 

measuring system. A f t e r c o r r e c t i o n f o r the current from the lower p l a t e 

surface due to the capacitance of t h a t surface and c o n d u c t i v i t y close t o 

i t , i t was shown t h a t the r o t a t i n g p l a t e c o l l e c t e d about 76 per cent of 

the a i r - e a r t h current but the v a r i a t i o n s from t h i s f i g u r e r e s u l t e d i n the 

absolute value of the a i r - e a r t h current not being e s t a b l i s h e d closer than 

an e r r o r of 10 per cent. 
1, 

SIMPS0N(T910) designed a 1?m^ c o l l e c t o r f o r a h i l l s i t e i n I n d i a . 

Because of i t s size and c o n s t r u c t i o n the height could not be a l t e r e d , so 

i t was b u i l t i n the plane of the ea r t h and attached t o i t was a water-
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dropper which kept the c o l l e c t i n g area a t the earth's p o t e n t i a l . The 

drops breaking away from the dropping vessel, carry away a charge 

p r o p o r t i o n a l t o the charge on the c o l l e c t i n g surface. The drops were 

c o l l e c t e d i n an i n s u l a t e d c o l l e c t o r attached t o an electrometer. The 

electrometer d e f l e c t i o n v/as r e g i s t e r e d every 2 minutes and thus the 

a i r - e a r t h current could be continuously recorded. The p o t e n t i a l gradient • 

v/as measured on a second electrometer and t h e o r e t i c a l c o r r e c t i o n s f o r the 

displacement current made. This form of c o r r e c t i o n was s u i t a b l e f o r 

Simpson as he v/as i n t e r e s t e d i n the d a i l y v a r i a t i o n s i n the a i r - e a r t h 

current r a t h e r than instantaneous r e l a t i o n s h i p s . 

CHALMEHS and LITTLE(19^7) used an exposed p l a t e connected t o a -̂ uF 

capacitor and through t h i s . } t o e a r t h . The capacitor was discharged every 

10 minutes through a b a l l i s t i c galvanometer and recorded p h o t o g r a p h i c a l l y . 

The capacitor decreased the leak and also prevented the c o l l e c t o r p l a t e 

from varying much from the p o t e n t i a l of the e a r t h . I n d i v i d u a l readings 

are not very valuable because no c o r r e c t i o n v/as made f o r f l u c t u a t i o n s of 

p o t e n t i a l g r a d i e n t . This e r r o r v/as reduced by averaging over long periods. 

CHALMERS(1956) used a s i m i l a r method w i t h a valve electrometer. I n t h i s 

work compensation v/as provided by simultaneous measurements of the 

p o t e n t i a l gradient as i n Simpson's method. 

SCHASE(1933) attempted to overcome displacement cu r r e n t d i f f i c u l t i e s 

and t o record continuously, by connecting one p a i r of quadrants of a 

quadrant-electrometer through a capacitor t o a r a d i o - a c t i v e e q u a l i s e r , 

which recorded the p o t e n t i a l g r a d i e n t , and the other p a i r of quadrants t o 

the current c o l l e c t o r . 

So, whereas the normal use of the quadrant electrometer r e q u i r e s one 
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p a i r of quadrants connected t o the current source and the other p a i r 

earthed, here n e i t h e r p a i r of quadrants were earthed.(Fig. 2 . ) 

When both p a i r s of quadrants were earthed and then released, one set 

received the charge from the c o l l e c t o r , t h a t i s the sum of the conduction 

and displacement c u r r e n t s . Simultaneously t h e ' r a d i o - a c t i v e equaliser 

was a f f e c t e d by any change i n p o t e n t i a l g r a d i e n t . These changes a f f e c t , 

the second set of quadrants through the condenser. Adjustment of the 

condenser allowed these changes i n p o t e n t i a l gradient t o a f f e c t both 

sets of plat e s equally and thus t o have no e f f e c t upon the electrometer 

reading. 

The m a t e r i a l used i n the r a d i o - a c t i v e equaliser was polonium and t h i s 

was too slow t o respond to many f i e l d changes. Scrase t h e r e f o r e 

introduced a wire mesh connected t o the equaliser and placed over the 

c o l l e c t o r a t a height such t h a t the p o t e n t i a l gradient over the p l a t e v/as 

always t h a t recorded by the equaliser but any r a p i d f l u c t u a t i o n s of the 

p o t e n t i a l were smoothed out. The quadrants were earthed f o r 1 minute a t 

10 minute i n t e r v a l s , g i v i n g a trace r i s i n g from zero over a period of 

9 minutes, the mean slope of each' l i n e of which i s a measure of the a i r -

- e a r t h current f o r t h a t p e r i o d . 

L i t t l e d i s t o r t i o n of the l i n e s of force occurred as the capacity of 

the c o l l e c t i n g system was la r g e enough f o r the p o t e n t i a l never to be 

g r e a t l y d i f f e r e n t from t h a t of e a r t h . 

Because of the sluggishness of the c o l l e c t o r the p o t e n t i a l gradient 

over the pl a t e v/as sometimes s l i g h t l y d i f f e r e n t from t h a t which would 

have occurred i n the absence of the wire net and under these 

circumstances the current measured i s not q u i t e the n a t u r a l current t o 
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an area of the earth but i s r e a l l y a measure of the un i p o l a r c o n d u c t i v i t y 

of the a i r between the wire net and the p l a t e . 

'The apparatus had the advantage t h a t the c o l l e c t o r can be placed some 

distance from the electrometers and i t r e a l l y only f a i l e d because of the 

slow response of the polonium e q u a l i s e r . I f t h i s was re.placed by a f i e l d 

measuring device w i t h a more r a p i d response, greater success should be 

achieved by t h i s method. Suggestions were made t o t h i s e f f e c t by.GOTO 

(1951) and CHALMERS (1953b). Chalmers, using an agrimeter, found t h a t the 

output from t h i s instrument was not steady enough to provide the s o l u t i o n 

ADAKSON and CKAL1-IERS(1956) suggested a f i e l d m i l l . ADAMSON(19b0) 

developed Scrase's apparatus using a f i e l d m i l l and a d i f f e r e n t i a l a mpli­

f i e r i n which the sum of the a i r - e a r t h and displacement c u r r e n t s was 

measured a t one t e r m i n a l of the a m p l i f i e r and the f i e l d m i l l provided 

automatic and continuous compensation f o r the displacement current at the 

other t e r m i n a l . 

By increasing the time constant of a system .similar to t h a t of Scrase 

MUHLEISEN(1953) avoided Scrase's d i f f i c u l t i e s . But the increased time 

constant meant a greater averaging e f f e c t on short f l u c t u a t i o n s of the 

va r i a b l e s measured. KASEMIR(1951) produced f o r e x p e d i t i o n work and 

mountain s t a t i o n s , apparatus designed t o measure long term v a r i a t i o n s and 

had i n consequence a long time constant of an hour. The current v/as 

a m p l i f i e d through an electrometer valve and recorded on a- s i x "channel 

recorder. The p o t e n t i a l gradient was simultaneously recorded using a 

r a d i o - a c t i v e e q u a l i s e r . The c r i t i c a l p o i n t i n operation i s the mainten 

-ance of the high i n s u l a t i o n . The long time constant was used t o even 

out the e f f e c t of p o t e n t i a l gradient change. 
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A = area of p l a t e 
i = a i r - e a r t h current density 
F ' = p o t e n t i a l gradient near the earth 
),,, = p o s i t i v e c o n d u c t i v i t y a t the earth 
R = resistance ) . ->-,•> \ i n p a r a l l e l 
C = capacitance') 

F i g . 3 . Kasemir's Method 



I n h i s second method, KASEHIR(1955) attempted t o e l i m i n a t e the e f f e c t 

of p o t e n t i a l gradient changes ( F i g . 3 . ) . He considered the a i r - e a r t h 

current being c o l l e c t e d by a p l a t e exposed t o the a i r . The current flowed 

through a c a l i b r a t e d resistance to ea r t h and the voltage drop across the 

resistance was measured. The t o t a l current from the c o l l e c t o r was 
£ cli 

A i + A—o -rr where A v/as the surface area of the c o l l e c t o r : i , the a i r 
Xi d t » 

- e a r t h current density and A£ i / ^ , the surface density of the bound 

charge. I f the c o l l e c t o r v/as connected t o ea r t h through R and C i n 

p a r a l l e l and V was the p o t e n t i a l of the c o l l e c t o r w i t h respect t o e a r t h , 
V 

tnen tne current I through R was —; there was a charge Q on the capacitor 
C such t h a t Q = CV and, i f V a l t e r e d , there v/as a current ^ = C^r 

dt. dt 
through C. The t o t a l current from the c o l l e c t o r v/as then I + 4^ = 

dt 
d l 

I + CR̂ -. Since no charge accumulated on the c o l l e c t o r apart from the 
bound charge then A i + kfo 4^ = I + CR— . I f R and c' were chosen so t h a t 

X-! d t dt 

RC = £Q/^,j,then I v/as equal to A i and the current through I? :would be 

equal to the a i r - e a r t h current to the c o l l e c t o r without the need f o r 

c o r r e c t i o n f o r the displacement c u r r e n t . This amounts t o matching the 

time constant of the c o l l e c t o r c i r c u i t t o the r e l a x a t i o n time of the 

lower atmosphere. I n p r a c t i c e \ ^ i s not constant and so RC v/ould need 

c o n t i n u a l adjustment f o r complete matching. 

ISRAEL(1955) discusses the assumption of the method t h a t any change 

i n p o t e n t i a l gradient i s accompanied by a change i n a i r - e a r t h current the 

c o n d u c t i v i t y remaining constant. A change of c o n d u c t i v i t y g i v i n g a change 

i n p o t e n t i a l gradient would appear as an a i r - e a r t h c u r r e n t . 
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RUHNKE(1961) also discusses the e r r o r s of i n c o r r e c t matching. 

CHALMERS(19o2) used a m o d i f i c a t i o n of Wilson's method w i t h charge 

measured by an e l e c t r o n i c a m p l i f i e r . His r e s u l t s showed t h a t the 

assumption of constant c o n d u c t i v i t y required by Kasemir's matching c i r c u i t 

was not c o r r e c t . He measured separately the charges from the p l a t e on 

uncovering, during c o l l e c t i o n and on covering and i n t h i s form h i s 

apparatus was not continuously recording. GOTO(1957) adapted Wilson's 

method to record continuously by having three p l a t e s r o t a t i n g beneath a 

hole i n an earthed cover. Each p l a t e was earthed when shielded from the 

f i e l d , exposed and then shielded again. The net charge acquired by the 

electrometer i s t h a t from the a i r - e a r t h c u r r e n t . When the p l a t e leaves 

the shielded region i t acquires a p o t e n t i a l d i f f e r e n t from t h a t of the 

eart h and t h e r e f o r e d i s t o r t s the l i n e s of force and the current flow. 

Wilson avoided t h i s by use of a v a r i a b l e compensating condenser, but t o 

compensate a u t o m a t i c a l l y Goto used a f i x e d condenser w i t h a v a r i a b l e 

p o t e n t i a l s u i t a b l y derived from a water-dropper or an i n v e r t e d f i e l d 

machine. 

I f Goto's apparatus was s i m i l a r i n operation to an agrimeter, VON 

KILINSKI's (1952, 1953) method used the p r i n c i p l e of the f i e l d m i l l t o 

avoid d i r e c t current a m p l i f i c a t i o n . The current from the c o l l e c t i n g 

p l a t e puts a p o t e n t i a l on a s t a t i o n a r y vane. A s i m i l a r s t a t i o n a r y vane 

opposite has a f i x e d p o t e n t i a l a p p l i e d t o i t , though t h i s vane could be 

used to compensate f o r displacement current i f the output of a f i e l d 

machine was connected through a condenser t o i t i n place of the f i x e d 

p o t e n t i a l . 

Below the two s t a t i o n a r y vanes are r o t a t i n g sectors a l t e r n a t e l y 
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exposing and s h i e l d i n g a second p l a t e from the p o t e n t i a l s on the s t a t i o n a r y 

vanes. The a l t e r n a t i n g s i g n a l from the second p l a t e i s a m p l i f i e d and 

r e c t i f i e d . I n the l a t e r paper he provided a matching c i r c u i t i n place of 

the capacitor used to minimise displacement current e f f e c t s and had the 

c o l l e c t o r p l a t e slowly r o t a t i n g to break spiders' webs. To avoid the 

problem of the electrode e f f e c t and to i n v e s t i g a t e more f u l l y the presence 

of convection c u r r e n t s , DOLEZALEK(1960) and ISRAEL and DOLEZALEKO96O) 

suggested a d i r e c t method of measurement using a surface 2 or 3metres 

above the ground and maintained at the n a t u r a l p o t e n t i a l of the atmosphere 

r a t h e r than using a ground reference. They suggested a metal net which 

would not i n t e r f e r e w i t h the n a t u r a l motion of the atmosphere. CHALMERS 

(1962) showed t h a t , although t h i s method would be of use i n measuring the 

convection c u r r e n t , i t would not d i r e c t l y measure the conduction current 

as outside the region of the electrode e f f e c t the downward part of the 

conduction current c o n s i s t i n g of p o s i t i v e ions would be nearly equal t o 

the upward par t c a r r i e d by the negatives and the t o t a l c u r r e n t to the net 

would be nearly zero. 

KASHMIR and RUHNKE(1958) suggested .measurement of the a i r - e a r t h 

conduction current by an earthed wire at a height of 1m., causing a 

concentration of current flow l i n e s which would enhance the conduction 

current r e l a t i v e t o any convection current present. The p o t e n t i a l g radient 

i s measured by another wire a t 1m. high also equipped w i t h a r a d i o - a c t i v e 

e q u a l i s e r . 

I f the p o t e n t i a l of the wire i s V and i t s capacitance/unit l e n g t h i s 
n 

C, then the charge/unit l e n g t h i s Q such t h a t V + — = 0. Q w i l l not be 

evenly d i s t r i b u t e d but there w i l l be no p o s i t i v e charges as they i n v o l v e 
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a d i f f e r e n c e of p o t e n t i a l along the w i r e . 

I f there i s a charge dCJ/unit area, then the p o t e n t i a l gradient a t the 

surface- of the wire =-dQ/eQ. I f the c o n d u c t i v i t y due t o ions opposite 

i n sign t o the charge 0 i s X , the current to the u n i t area i s d i = -XdQ/£r . 
o 

When i n t e g r a t e d f o r the whole v/ire, i = q - \hV/£ q as V i s the 

p o t e n t i a l at 1m. V gives the p o t e n t i a l gradient F&v» over the f i r s t metre 

and i measures a m u l t i p l e of &&v* which i s only the u n i p o l a r conduction 

current at 1m. i f the p o t e n t i a l gradient remains constant over the f i r s t 

metre. Convection current e f f e c t s are not included and so the method i s 

more of the i n d i r e c t type than the d i r e c t type. X can be found from the 

measurement of F . and XF . 
• av av 

KA3EMIR(1960) adapted t h i s method f o r balloon radiosonde v/ork as only 

p o t e n t i a l gradient and c o n d u c t i v i t y measurements had been c a r r i e d out i n 

the upper a i r ( c f . 3 . 2 . ) and i t i s necessary to measure a l l three variables,, 

i, X, and V, to check the degree t o which Ohm's Law i s obeyed. Below the 

radiosonde b a l l o o n , he suspended on a nylon cord an antenna which was 

connected v i a a three-channel matching c i r c u i t t o an electrometer. The 

second channel of the matching c i r c u i t was connected t o a lower antenna 

hold i n place r e l a t i v e t o the balloon by.an i n v e r t e d parachute. The t h i r d 

channel was used f o r zero. The upper antenna c o l l e c t e d p o s i t i v e charge, 

the lower negative charge, but' the system s u f f e r e d from the f a c t t h a t i t 

was measuring \F and not the t o t a l v e r t i c a l current and from the d i f f i c u l t y 

of matching at d i f f e r e n t l e v e l s i n the atmosphere, e s p e c i a l l y i n the 

region of austausch ( c f . 3 . 2 . ) . 

I n h i s paper commenting on the methods of I s r a e l and Bolezalek and of . 

Kasemir and Ruhnke, CHALMERS(1962) suggests a f u r t h e r m o d i f i c a t i o n of 
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Wilson's method which w i l l be considered i n s e c t i o n 3 . 3 . 
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3 . 2 . - Previous Experiments using the I n d i r e c t Measurement Methods. 

The method and the techniques a v a i l a b l e have been described b r i e f l y 
i n s e c t i o n 1 . 3 « There have been three main v a r i a n t s of the c o n d u c t i v i t y 
measuring device - those of GE?J)IEN(1905), SCHEHING(1906) and NOLAN and 
NOLAN(1937). The general theory f o r a c y l i n d r i c a l condenser instrument 
of t h i s type ( F i g . k . ) v/ith a tube radius of a-and a c e n t r a l wire radius 
of b when a p o t e t n i a l V i s applied and a i r drawn through a t a v e l o c i t y U 
i s as shown. 

At a point r from the ax i s of the c e n t r a l wire the p o t e n t i a l gradient 
V = —=——TTT. An ion of m o b i l i t y w at the outer w a l l w i l l move a r a d i a l r i n ^ a / o ; 

dr r l r ( a / b ) distance dr i n a time d t , where dt = — . and i n t e g r a t i n g over ' w \f 5 • 2 

the distance from the outer t o inner c y l i n d e r t = —- ~« During 

t h i s time the a i r w i l l have moved a distance Ut along the c y l i n d e r . I f 

t h i s distance i s le s s than L, the l e n g t h of the inner w i r e , then the whole 

of the moving ions w i l l be c o l l e c t e d , i . e . U <̂  I f IT i s much l a r g e r 

than ^, then only a f r a c t i o n of the ions w i l l reach the inner cylinder-. 
I n a s i m i l a r manner, i f the c e n t r a l wire i s a distance S from the 

S 
t e;.itry p o i n t of the apparatus then only when U ̂  ~ w i l l the ions reach 

the wire and Ohm's Lav; hold. 

The number of ions under t h i s c o n d i t i o n which w i l l then reach the 

c e n t r a l wire i n u n i t time w i l l be t h a t number i n radius R where 
p 2 

U(R~-b ).ln(a/b) = 2wVL. I f there are n^ ions per u n i t volume of n o b i l i t y 
• « ,. , . , t . , 2n.evf.VL 2/v,VL ŵ  , then the current a t the c e n t r a l c y l i n d e r 1 = J ^ ^ y ^ y - = Yn('>/b) 

from which \^ can be found as can X 2, i f the p o t e n t i a l i s reversed. 

Gerdien's o r i g i n a l method was t o charge the c e n t r a l electrode to a 
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p o t e n t i a l V* w i t h the outer electrode earthed and then f i n d the p o t e n t i a l 
\ c V V"2 a f t e r s. time t , such that-A^ - T° L N « * 

NGLAii(l9*fO) a l t e r e d the p o t e n t i a l of the outer c y l i n d e r i n such a 

way £.s to keep the c e n t r a l wire at a constant p o t e n t i a l , thus making the 

system a n u l l method and removing the e f f e c t of s t r a y c a p a c i t i e s or. the 

above system. 

SCKERIIiG(1906) used the r e l a x a t i o n time f o r a charged conductor, as 

a method of f i n d i n g the c o n d u c t i v i t y as = *./>^ » sr.dT., = ^0//-P 

under conditions i n which Ohm's Law holds. I t i s d i f f i c u l t t o ensure 

t h a t Ohm's Law does hold because of induced charges which vary as the 

p o t e n t i a l v a r i e s . These he avoided by p u t t i n g the wire i n a l a r g e 

earthed cage. I f t h i s i s done then care must "ce taken not to enclose 

the conductor t o t a l l y and give c o n d i t i o n s of s a t u r a t i o n r a t h e r than Ohm's 

Law and to avoid the earthed screen from c o l l e c t i n g induced charges 

which may a f f e c t ions approaching the conductor. To prevent t h i s , the 

whole i s placed beneath trees or a r o o f . 

NOLAN and NOLAN(1937) obtained \^ from \ = n^w by a • combination 

of the Ebert and Gerdien methods. They used two large i d e n t i c a l 

c y l i n d e r s , one of which c o l l e c t e d a l l the ions ox m o b i l i t y above a 

c e r t a i n value g i v i n g n e. To the other,'smaller p o t e n t i a l s were applied 

i n succession and the slope of the r e s u l t i n g current vs p o t e n t i a l curves 

gave Aj = n^ew^j. By d i v i s i o n , ŵ  v/as obtained which i s a more r e l i a b l e 

value than t h a t obtained by other methods. The value of n^e was then 

obtained from a standard Ebert ion counter and \^ r e c a l c u l a t e d more 

ac c u r a t e l y . 

Modern p r a c t i c e i s t y p i f i e d by the apparatus of HIGAZI and CHALMERS 
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(1966) which consisted of Gerdien tubes w i t h constant applied p o t e n t i a l s , 

the current being measured by v i b r a t i n g reed electrometers. The tubes 

are maintained a t the p o t e n t i a l of t h e i r surroundings by a servopotentioraeter 

dr i v e n by the a m p l i f i e d and r e c t i f i e d output of a f i e l d m i l l . ( F i g . h . ) . The 

design of c o n d u c t i v i t y meters, l i k e the design of f i e l d m i l l s , can then 

be considered t o have reached a reasonably s a t i s f a c t o r y s t a t e i n t h a t 

standardised instruments can be produced and used i n a way which w i l l 

enable the experimenter t o d i s t i n g u i s h the v a r i a t i o n s of the system which 

he i s measuring from the e f f e c t s of the system on h i s apparatus. 

As the e f f e c t of space charge, the unbalanced charge present i n a 

volume of a i r , appears to be important to the consideration of d i r e c t and 

i n d i r e c t methods of a i r - e a r t h current i t w i l l not be out of place t o 

consider b r i e f l y here the main methods of space charge measurement. They 

can be considered under four headings. 

1 . Space charge i s drawn- i n t o an earthed cage and the p o t e n t i a l a t 

a p o i n t i n the cage i s measured. 

2 . The whole space charge i n a volume of a i r i s c o l l e c t e d and measured. 

3 . Poisson's Law i s used t o deduce space charge from changes i n 

p o t e n t i a l gradient w i t h h e i g h t . 

C o l l e c t i o n by e l e c t r o s t a t i c means; i o n counters to which f i e l d s 

of e i t h e r s i g n are a p p l i e d a l t e r n a t e l y or simultaneously. 

A f u l l d e s c r i p t i o n of these methods v/as given by VONNEGUT and M003EO958) 

who developed apparatus of type 1 . and suggested the use of apparatus of 

type 2 . w i t h glass wool f i l t e r s t o c o l l e c t the t o t a l space charge. BENT 

(196*0 constructed such an instrument. I n order t o avoid the e f f e c t s of 

induced charges and the disturbance of the e x i s t i n g e l e c t r i c a l s t a t e i t 

ifO 



i s desirable to maintain the cover of a f i l t r a t i o n apparatus at the 

p o t e n t i a l of i t s surroundings, although i t i s obviously undesirable t o use 

an i o n or droplet-producing equaliser f o r t h i s purpose. . Perhaps the 

passive probe cf CBQ£IEH( 195.3b) w i t h an antenna form other than t h a t o f . 

the long wire might be of use here. 

Measurement of space charge i s a. s e n s i t i v e way of measuring a change 

i n p o t e n t i a l gradient as f o r instance i t i s not possible at the moment 
- 1 

to measure a p o t e n t i a l gradient change of Vm but i t i s possible t o 

measure the space charge present at t h i s change. 

Conductivity measuring apparatus has been adapted f o r use i n balloons 

(COHIiilTI et a l 195^ and others) and i n a i r c r a f t (GISH and WAIT 1950, 

KRAAKSVZK and CLARK 1958 and others) as has p o t e n t i a l g r a d i e n t measuring 

apparatus. There are d i f f i c u l t i e s i n the use of such apparatus as the 

a i r c r a f t d i s t o r t s the f i e l d - and i s very l i a b l e t o become charged i t s e l f . 

I t i s important, however, to attempt these measurements as they give 

i n s i g h t i n t o the system away from the v i c i n i t y of the negative electrode 

and also outside the "aust&usch" region - a region of c o n t i n u a l mixing of 

the a i r extending from the earth's surface t o a height which i s determined 

by the meteorological c o n d i t i o n s p a r t i c u l a r l y temperature. 

This region, which may be up to 3km. high i s where small-scale 

convection c u r r e n t s occur mixing the surface a i r and i t s c o n s t i t u e n t ions 

thoroughly through the r e g i o n . The height of t h i s r e gion i s governed by 

the -level of temperature i n v e r s i o n and SAGALYK and FAUCH23 (195*0 found 

a very d i s t i n c t increase i n p o s i t i v e c o n d u c t i v i t y as w e l l as changes i n 

temperature, humidity and large i o n content i n passing through the upper 

l i m i t of t h i s r e g i o n . .1 



KIGAZI and CHALMERS(1966) found evidence of the e f f e c t of turbulence 

and wind speed on the r a t i o s of the c o n d u c t i v i t i e s at-und close t o ground 

l e v e l , so i t i s apparent t h a t t u r b u l e n t mixing must be considered another 

•boundary' e f f e c t t o add to the electrode e f f e c t when the conduction current 

i s measured close t o the earth's surface. 

The importance of convection currents can be assessed i f the conduction 

current i s measured by the i n d i r e c t method at d i f f e r e n t l e v e l s . I f there 

i s no convection c u r r e n t , then the conduction current w i l l be the same 

at a l l l e v e l s . 

Measurement of the i n d i r e c t method involv e s measuring the p o t e n t i a l 

gradient as w e l l as the c o n d u c t i v i t y and because of the s e l f charge 

possessed by the balloon or a i r c r a f t , a s i n g l e f i e l d m i l l cannot be used 

as the charge on a p o r t i o n of a conductor w i l l depend on the e x t e r n a l 

p o t e n t i a l gradient and on the p o t e n t i a l d i f f e r e n c e between the conductor 

and i t s surroundings. 

I f tv/o f i e l d machines are used a t places on the conductor symmetrical 

w i t h respect to a h o r i z o n t a l plane, then the sum of the charges and hence 

the sum of the outputs of the machines w i l l be p r o p o r t i o n a l t o the 

p o t e n t i a l d i f f e r e n c e between the cases and t h e i r surroundings and the 

di f f e r e n c e of outputs w i l l be p r o p o r t i o n a l t o the a c t u a l p o t e n t i a l g r a d i e n t . 

GUHN et a l ( 1 9 ^ 6 ) f GUNN(19^8) and GISH and WAIT(1950) used two separate 

f i e l d machines above and below the wings. Others, JONES et a l ( 1 9 5 9 ) t 

CURRIE and KREIELSHEIMER(1960), KOEAYASEtand KYOZUKA(1962) have used 

double f i e l d machines of various types. By using more f i e l d machines s t i l l 

i t i s possible not only t o f i n d the s e l f charge, but also the h o r i z o n t a l 

components of the p o t e n t i a l g r a d i e n t . 
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With balloons and g l i d e r s , where the speed of movement i s l e s s than 

f o r a i r c r a f t , the s e l f charge has sometimes been n e u t r a l i s e d by water-

droppers - e.g. L I K K E O 9 0 M , LEC0LA2ET(19^-8) . 

With a double f i e l d m i l l , the p o t e n t i a l gradient can be separated, 

but the apparatus w i l l s t i l l d i s t o r t l i n e s of force and, where other 

apparatus i s close, t h i s may be important. SHIDDY and CHALMERS(1953) 

minimised the d i s t o r t i o n by designing a servo-mechanism t o reduce the 

sum of the outputs t o zero and thus b r i n g the machine t o the p o t e n t i a l 

of i t s surroundings. 

lv'ILDMAN(.19o2) devised a f i e l d m i l l s u i t a b l e f o r use when the 

conduction current i s no longer small compared w i t h the i n d u c t i o n s i g n a l . 

His machine had a r o t o r w i t h two concentric r i n g s of holes covering and 

uncovering two sets of i n s u l a t e d studs g i v i n g two separate s i g n a l s w i t h 

d i f f e r e n t dependence on p o t e n t i a l gradient and conduction c u r r e n t , a l l o w i n g 

these two e f f e c t s t o be d i s t i n g u i s h e d . 



J-.5. Discussion of Further' Experimental Designs. 

CHALMERS(1962) showed t h a t the attempts of I s r a e l and Dolezalek and 

of Kasemir and Ruhnke to avoid the electrode e f f e c t and to measure 

d i r e c t l y the conduction c u r r e n t a t another l e v e l ' other than t h a t of 

ground were not t r u l y measuring conduction c u r r e n t . Chalmers suggested 

an a l t e r n a t i v e method based on Wilson's apparatus. \/ILSGN(l203) measured 

the a i r - e a r t h current d i r e c t l y w i t h a large c o l l e c t i n g p l a t e placed i n 

the plane of the earth and elim i n a t e d the displacement c u r r e n t by 

measuring the average current ever a r e l a t i v e l y long period of time. 

Chalmers suggested two h o r i z o n t a l p l a t e s separated by a t h i n l a y e r of 

i n s u l a t i n g m a t e r i a l , placed i n the plane, but above the l e v e l "of the 

earth's surface and held at the p o t e n t i a l of the surroundings, which 

would then receive d i f f e r e n t components of the conduction c u r r e n t . The 

upper pla t e would receive the p o s i t i v e component of the conduction and 

the lower p l a t e ' t h e negative component. By measuring each separately, 

the t o t a l current could be obtained. 

The extent t o which the system was a f f e c t e d by convection currents 

would depend on the size of the c o l l e c t i n g p l a t e s . The method of 

maintaining the system a t the p o t e n t i a l of the surroundings should be a 

more modern version of the apparatus of SCRASE(193j?) w i t h a f a s t e r 

response time, so tha t the system could record simultaneously, and 

compensation f o r the displacement current should be based on balancing 

the change i n the bound charge on the c o l l e c t o r surface by the use of 

capa c i t o r s . Obviously f o r t h i s compensation t o be e f f e c t i v e , the response 



time must also be very s h o r t . 

An unsuccessful .attempt was made t o put these suggestions of Chalmers 

i n p r a c t i c e and the d e s c r i p t i o n of t h i s attempt w i l l be a convenient 

framework f o r discussion of f u r t h e r experimental p o i n t s . 

The current c o l l e c t o r consisted of two c i r c u l a r p l a t e s of aluminium 

separated by an i n s u l a t i n g sheet of perspex approximately 6mm. t h i c k 

b o l t e d together by nylon nuts and b o l t s set i n perspex i n s u l a t i n g c o l l a r s . 

The 'sandwich' was mounted on f o u r .wooden posts by means of perspex 

i n s u l a t o r s . The posts dropped i n t o brass tubes completely sunk i n the 

ground and held r e l a t i v e t o one another by a metal X-piece also belov; 

ground. The height of the p l a t e could be a l t e r e d by adding or removing 

wood blocks of appropriate size i n t o the brass tubes. 

The c o l l e c t o r i s an unshielded c o l l e c t o r and t h e r e f o r e the edge 

e f f e c t s are minimised by having a c i r c u l a r shape which has the least. 

circumference f o r a given area. The size of the c o l l e c t o r must be a 

compromise between o b t a i n i n g the l a r g e s t possible s i g n a l from the p l a t e 

and the ease w i t h which the p l a t e can be moved from one height to another. 

An area of 1 square metre was chosen. This s i m p l i f i e s the c u r r e n t density 

c a l c u l a t i o n s and means the measuring instrument attached to the p l a t e must 
-12 

be capable of measuring 2 x 10 amps. The other f a c t o r s i n f l u e n c i n g 

size are the degree of r i g i d i t y r e q u i r e d and the number of supports allowed. 

To minimise p i e z o - e l e c t r i c e f f e c t s i n the i n s u l a t i n g l a y e r and also 

to ensure t h a t the p l a t e i s t r u l y i n the plane of the earth's surface, the 

p l a t e must be- as r i g i d as p o s s i b l e . To minimise, d i s t o r t i o n t o the l i n e s 

of f o r c e , the number of supports must be the minimum p e r m i s s i b l e . 

V/ood was chosen f o r the supports as, although not an exceptional 
*+5 
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i n s u l a t o r , the leakage of charge would be small, and y e t , because of the 

s l i g h t c o n d u c t i v i t y , the charge they hold would be small and so the 

d i s t o r t i o n they cause w i l l also be s m a l l . 

The i n s u l a t o r s were not heated, although t h i s can be done by using 

heater c o i l s wound on the i n s u l a t o r supports, since f o r f i n e weather work, 

the c o l l e c t o r i s not used i n c o n d i t i o n s of dampness and the warmth of the 

heater a t t r a c t s spiders. When not i n use' and i n r a i n , the p l a t e was covere 

by waterproof canvas guyed down. This protected the upper p l a t e , but 

r a i n splashes from the ground reached the lower p l a t e even when at 50cm. 

above the ground. 

I t was found d i f f i c u l t t o prevent p i e z o - e l e c t r i c e f f e c t s and leakage 

between the p l a t e s w i t h only 6ram. gap and p l a t e 2. shows the c o l l e c t o r . • 

r e b u i l t w i t h 2 .5cra. P.T.F.E. p i l l a r s between the upper and lower p l a t e s 

v;ith aluminium cross braces on inward f a c i n g side.*: of the sandwich. 

This i s l e s s acceptable t h e o r e t i c a l l y , as the upper and lower p l a t e s are 

now so f a r separate t h a t they no longer remain at the same h e i g h t . But 

the p l a t e s must s t i l l be kept a t the same p o t e n t i a l or there w i l l be a 

conduction current between them. 

This form of c o l l e c t o r was chosen t o be as simple as possible and t o 

allow.a n a t u r a l grass e a r t h surface t o be below i t . 

I t would appear necessary, however, t h a t the c o l l e c t o r p l a t e should 

be p r operly engineered, p r e f e r a b l y on the r o o f of an underground 

l a b o r a t o r y such t h a t l e v e l s and s t r a i n s can be p r o p e r l y a d j u s t e d . I t may 

be an advantage t o have more than one sandwich p l a t e a f t e r the fashion 

of GOTO(1957) or COBB and PHILLIPS(1962). Measurement of the charge 

c o l l e c t e d by the p l a t e can be made by an electrometer, by discharge 
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through a b a l l i s t i c galvanometer or by d i r e c t c urrent a m p l i f i c a t i o n . 

CHALMERS and LITTLE (19^7) obtained r e s u l t s f o r f i n e weather 

conduction current using a h i g h l y s e n s i t i v e b a l l i s t i c galvanometer. Use 

of a b a l l i s t i c galvanometer means t h a t recording must be se q u e n t i a l r a t h e r 

than t r u l y continuous and i n an attempt t o reduce the time between 

discharges a p h o t o c e l l a m p l i f i e r based on the design i n r e f e r e n c e ( 1 1 ) was 

c o n s t r u c t e d ( F i g . 5 ) • A lamp was mounted so t h a t i t s beam was r e f l e c t e d 

by the primary galvanometer to the apex of a r i g h t angled prism. The 

beam i s d i v i d e d by the prism on to two 90CV pho t o c e l l s chosen f o r t h e i r 

l a r g e surface area. The photocells were par t of a balance c i r c u i t and a 

secondary galvanometer i n d i c a t e d the out-of-balance throw of the c i r c u i t . 

The prism was mounted on a t u r n t a b l e t o increase the degree of adjustment. 

The necessary sequential operations can be achieved a u t o m a t i c a l l y by 

various methods. A system of p o l a r i s e d r e l a y s and a Thorn r o t a r y stepping 

r e l a y operated by a cam from a synchronous motor was found most r e l i a b l e 

(Plate 3*), although a pulse timer such as the cold-cathode valve c i r c u i t 

of BRITEC Ltd.(S) i s more s o p h i s t i c a t e d . 

The drawback to a l l p h o t o c e l l a m p l i f i c a t i o n methods of the type used 

i s t h a t the noise l e v e l of the primary galvanometer i s a m p l i f i e d w i t h the 

s i g n a l and i f the signals are close t o the l i m i t of s e n s i t i v i t y of the 

galvanometer then they are no more e a s i l y separated than before. 

As an a l t e r n a t i v e to galvanometer measurement a D.C. a m p l i f i e r using 

an i n v e r t e d t r i o d e a f t e r the fashion of Rowson et a l ( 9 ) ( 1 0 ) can be 

b u i l t , although i n the example constructed f o r t h i s work great d i f f i c u l t y 

was experienced i n achieving s t a b i l i t y . KAY(1950) produced an e l e c t r o n i c • 

method of measuring small d i r e c t c u r r e n t s . CHALMERS(1956) used a valve 



Plate 3 The Timing Mechanism 



electrometer and a miniature electrometer valve c i r c u i t was used by 

CKOZIEH(1963). IHIANITOVO958) has made a survey of such e l e c t r o n i c methods. 

Perhaps the most common form of electrometer c i r c u i t i s the v i b r a t i n g 

reed electrometer. This had not been t r i e d o r i g i n a l l y as the system of 

compensation f o r displacement current envisaged r e q u i r e d the operation o f 

the electrometer referenced not to ear t h p o t e n t i a l but the p o t e n t i a l of 

the c o l l e c t o r p l a t e s ' surroundings and i t . was considered t h a t t h i s would 

a f f e c t i t s s t a b i l i t y too d r a s t i c a l l y . I t had, however, the correct' 

s e n s i t i v i t y ( 3 y- 10 'amps, f u l l scale) and p r e l i m i n a r y experiments 

i n d i c a t e d t h a t i t operated s u c c e s s f u l l y a t a p o t e n t i a l of 100 v o l t s above 

t h a t of earth and t h a t when t h i s p o t e n t i a l was changed r a p i d l y , the 

disturbance caused was n e g l i g i b l e . The head u n i t s of two Ekco- V i b r a t i n g 

reed electrometers were t h e r e f o r e attached t o the c o l l e c t o r , one to each 

pl a t e i n such a way as t o be i n s u l a t e d from the supports but to minimise 

d i s t o r t i o n ( P l a t e 2 . ) . The measuring u n i t s were l i k e w i s e i n s u l a t e d , so 

t h a t the system could be maintained a t a p o t e n t i a l close t o t h a t of the 

c o l l e c t o r ' s surroundings. Their i n i t i a l performance i n the open suggested 

t h a t the c o l l e c t o r p l a t e sandwich, as o r i g i n a l l y b u i l t , generated r e l a t i v e l y 

large p i e z o - e l e c t r i c charges. 

I n order t o maintain the c u r r e n t - c o l l e c t i n g system a t the p o t e n t i a l 

of i t s surroundings, the p o t e n t i a l gradient must be measured by a f i e l d , 

machine such t h a t the output of the f i e l d machine can be a p p l i e d t o the 

current c o l l e c t o r . SMIDDY and CHALMEHS(1960) adapted a Honeywell Brown 

E l e c t r o n i c chart recorder t o balance continuously the outputs of a double 

f i e l d m i l l and thus keep i t at the p o t e n t i a l of i t s surroundings. 

As o r i g i n a l l y constructed, the continuous balance u n i t of the recorder 
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compares, by a potentiometric method^an input e.m. f*9 generated by a 

thermocouple .or- s i m i l a r DC s o u r c e v ; i t h an e.m.f. of known value s u p p l i e d 

by the instrument. Any d i f f e r e n c e between the voltage of the thermocouple 

and that of the potentiometer s l i d e i s converted i n t o AC by a v i b r a t i n g 

reed and then i n power g i v i n g a f i n a l output which a c t u a t e s a servo 

motor. The servo motor d r i v e s the s l i d e to the c o r r e c t p o t e n t i a l ( F i g . ) . 

For the balancing system to be of use .in the p r o v i s i o n of voltages 

equivalent to the p o t e n t i a l i n the atmosphere, the voltage a c r o s s the 

s l i d e wire must be s e v e r a l hundred times that o r i g i n a l l y s u p p l i e d . The 

o r i g i n a l s l i d e wire must t h e r e f o r e be r e p l a c e d by a composite r e s i s t a n c e 

constructed on a t u f n o l s t r i p . T h i s composite r e s i s t a n c e c o n s i s t e d of 
1 " 

101 10BA b o l t s separated from each other by a ^ gap, the potentiometer 

s l i d e moving over the b o l t heads. To the r e v e r s e s i d e of the b o l t s , a 

hundred 10K ohm r e s i s t o r s mounted i n banks on p r i n t e d c i r c u i t were s o l d e r e d . 

I n operation a few contacts a t each end have to be shorted out to b r i n g 

the s l i d e zero and f u l l s c a l e i n coincidence with zero and maximum 

volta g e . 

HIGAZI and CHALMERS(1966) have de s c r i b e d the use of t h i s system to 

maintain c o n d u c t i v i t y meters a t the p o t e n t i a l of t h e i r surroundings. The 

output of a conventional s i n g l e f i e l d m i l l s e t up i n a p i t a few metres 

from the c o n d u c t i v i t y meters was a m p l i f i e d and r e c t i f i e d and a p p l i e d 

to the r e c o r d e r . The f i e l d m i l l g i v e s an output independent of the 

s i g n of the p o t e n t i a l gradient and some method of s i g n d i s c r i m i n a t i o n 

i s u s u a l l y r e q u i r e d . ( c f . MAPLESON and WHITLOCK, 1955; ADAHSON, 1960; 

MALAN and SCHONLAND, 1950; COLLIN, 1962 e t c . ) 
Higazi and Chalmers avoided the need f o r s i g n d i s c r i m i n a t i o n by 

*9 



permanently d i s p l a c i n g the zero by a small charged p l a t e near the m i l l . 

T h i s i s permitted i f i t i s assumed tha t the p o t e n t i a l g r adient between 

the ground.and the l e v e l of the c o n d u c t i v i t y meters i s n e a r l y uniform 

and thus almost f r e e from space charge. I n t h e i r case, measurement 

of space charge(BENT and HUTCHINSON, 1966) j u s t i f i e d t h i s assumption. 

The p o r t i o n of the f i e l d m i l l output caused by t h i s displacement was 

backed o f f by a s u i t a b l e c i r c u i t p r i o r to"the output being a p p l i e d to 

the Honeywell r e c o r d e r . 

Some work was done on a s i m i l a r system and the p r i n c i p l e could be 

ap p l i e d to any f i e l d machine with a s u f f i c i e n t l y r a p i d response time. 

There are disadvantages about using a f i e l d m i l l f o r the measurement of 

the p o t e n t i a l gradient when the measurement i s to be r e l a t e d to the 

s i z e a b l e a r e a of a d i r e c t method cu r r e n t c o l l e c t o r . The f i e l d m i l l 

i s e s s e n t i a l l y a point measurement and, i f p o s i t i o n e d a t any l e v e l 

above ground l e v e l , r e q u i r e s a r e d u c t i o n f a c t o r to compensate f o r the 

d i s t o r t i o n i t causes. The p u b l i c a t i o n of CROZIEK 1s(19&3) d e s c r i p t i o n . 

of a p a s s i v e antenna or p a s s i v e probe o f f e r s the advantage of 

1. a voltage output e q u i v a l e n t to the average value of the f i e l d over 

the a r e a enclosed by i t s antenna 

2. a f a s t response time to f i e l d changes a t the antenna height 

3. the f e a s i b i l i t y of s e v e r a l antennae, f r e e from mutual i n t e r f e r e n c e , 

v e r t i c a l l y above each other and a t l e v e l s between the ground and 1m. 

D0LEZALE1C(1963) s a i d that convection c u r r e n t s would charge i t l i k e r a i n d r o p s . 

The p r i n c i p l e of the p a s s i v e probe i s very old and was used by 

LEHONNIER(1'752) i n some of tho e a r l i e s t measurements of f i n e weather 

phenomena. 
50 



-J j 

W.T. 

v 

0 -

r 

IOVIlf.,\Y: ft*-! 
:Hr.p.'.iLE (l 

L. 

Farmer's C i r c u i t Diagram 

•VAJiiDA.C.T'.Vif 

I .4 . 
FLe* .T iv . 

H.T. 

! < > > 
i ! 1 ; 
i ; 

! i t j 

Brewer's C i r c u i t Diagram 

F i g . 7 



A s t r e t c h e d i n s u l a t e d wire or probe a c q u i r e s the p o t e n t i a l of i t s 

surroundings because of the c o n d u c t i v i t y of the a i r but t h i s i s a slow 

process as to remove a d i f f e r e n c e i n p o t e n t i a l , charge of one s i g n must 

be c a r r i e d to the wire or charge of the other s i g n removed. T h i s process 

can be speeded up by e i t h e r i o n i z i n g the surrounding a i r or c a r r y i n g 

p a r t i c l e s away from the c o l l e c t o r . The l a t t e r was implemented by VOLTA 

(1800) usin g a fuse and by KELVIN(18^9) using.a water-dropper. 

The i o n i z a t i o n of the surrounding a i r can be achieved by u s i n g a 

r a d i o - a c t i v e source; the most common being polonium,anc<-source. As 

these 'loaded' probes v/ere f a s t e r i n response and thus more s u i t a b l e f o r 

continuous recording, they became more h i g h l y developed than the 

'unloaded' or p a s s i v e probes. I t i s only r e c e n t l y that the measuring 

techniques designed f o r loaded probes have been modified f o r p a s s i v e 

probes. 

The r a d i o - a c t i v e probe i s the best of the loaded probes. - T h i s 

measures the p o t e n t i a l between the height of the antenna and the e a r t h ' s 

s u r f a c e . I f there i s a leakage path to e a r t h from the probe, then the 

antenna w i l l not come to the p o t e n t i a l of i t s surroundings and i t would 

be u n l i k e l y t h a t any l e a k would remain constant. 

The f i r s t attempt to prevent such leakage was when GISH and SHERMAN 

(1929) surrounded the i n s u l a t o r of t h e i r apparatus with metal connected 

to a potentiometer and maintained a t the p o t e n t i a l of the apparatus. 

Being a n u l l method t h i s gave more s e n s i t i v e readings but constant 

adjustment rendered i t u n s u i t a b l e f o r continuous r e c o r d i n g . 

BREWER(1953 - Fig.k.) used negative feedback to guard a l e a k - f r e e 

r a d i o - a c t i v e c o l l e c t o r maintaining the n u l l reading and yet re c o r d i n g 
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continuously. His c i r c u i t was developed from one a p p l i e d by FARMER(19^2 

- Fig. 7 ) to an i o n i z a t i o n chamber and i t i s h i s c i r c u i t which has i-n 

turn been modified bj- C r o z i e r f o r the p a s s i v e probe. 

Farmer replaced the electrometer suspension f i b r e with the h i g h l y 

i n s u l a t e d ;~Tid of an electrometer v a l v e . His o r i g i n a l c i r c u i t only took 

a p o s i t i v e s i g n a l , although KUiiLJillSENO951) adapted i t to take s i g n a l s . 

of both s i g n s . 

Brewer a l s o used a centre zero arrangement to accept negative s i g n a l s 

and h i s c i r c u i t produced s u f f i c i e n t power to d r i v e a d i r e c t w r i t i n g 

recorder. His f i n a l c i r c u i t had a range of +500v and an a m p l i f i c a t i o n 

f a c t o r of 0.99. 

The r a d i o - a c t i v e probe, despite i t s p o p u l a r i t y compared with the 

passive probe, has i t s disadvantages. Muhleisen found that the ions 

produced by the r a d i o - a c t i v e probe were c a r r i e d by the wind and could a l t e r 

the p o t e n t i a l by up to 30 per cent. 

CR0ZIER('i9:'jJb) t h e r e f o r e a p p l i e d the b a s i s of Brewer's c i r c u i t to . 

the more s t r i n g e n t conditions of the p a s s i v e probe. The p a s s i v e probes, 

whose d e s c r i p t i o n follows are based on those of C r o z i e r , adapted f o r a 

B r i t i s h electrometer v a l v e . 

For the purposes of d e s c r i p t i o n the instrument can be d i v i d e d i n t o 

two s e c t i o n s , the f i e l d i n s t a l l a t i o n ' ( F i g . 9 ) and the sensing e l e c t r o n i c s 

( F i g . 1 0 ) . 

The f i e l d i n s t a l l a t i o n c o n s i s t s of a s u i t a b l y i n s u l a t e d antenna, i n 

t h i s case a long s t r e t c h e d wire, one end of which i s mounted i n the 

head u n i t of the sensing e l e c t r o n i c s . T h i s i s connected by a two-

conductor cable to an a m p l i f i e r and power u n i t housed indoors. 
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For t h e o r e t i c a l c o n s i d e r a t i o n s , the antenna may be considered as a w e l l 

i n s u l a t e d t h i n wire of c r o s s - s e c t i o n a ens. s t r e t c h e d p a r a l l e l to the 

ground at a height h cms. Assuming f o r the moment, that no instruments 

are attached,, that the atmospheric c o n d u c t i v i t y i s constant and that the 

p o t e n t i a l gradient i s steady, then a f t e r 10 to 30 minutes (the atmospheric 

r e l a x a t i o n time) the antenna w i l l have e f f e c t i v e l y l o s t any net charge 

that i t may have had. I t s p o t e n t i a l i s than that of the atmosphere a t 

a height h cms. The antenna possesses equal induced charges, negative 

above and p o s i t i v e below. A cur r e n t w i l l flow continuously from the 

antenna through the a i r to the ground and an equal current flows to the 

antenna from above. For r e f e r e n c e , a plane P at a height H, s u f f i c i e n t 

to be unaffected by the small d i s t o r t i o n of the f i e l d near the antenna, 

w i l l be considered. (Fig.8a.) 

I t has been assumed that the c o n d u c t i v i t y \ below P i s constant, 

which i m p l i e s an absence of space charge. An e q u i v a l e n t r e s i s t a n c e and 

capacitance network that would represent t h i s s i t u a t i o n (Fig.8b.) would 

have the condition, 

r„C.n = r C = £ A. G G p p o'/. 
C„ = kC G p 

and r •-• kr„,' where £ i s p e r m i t t i v i t y of the P Cv o 
atmosphere and k a constant determined by the dimensions. The a p p l i c a t i o n 

of an a l t e r n a t i n g p o t e n t i a l v = V exp jwt to the system a t P g i v e s a 
P P 

p o t e n t i a l v a t a equal to v / ( k + 1 ) . Thus the performance of the system 

i s such that the p o t e n t i a l of a i s a f i x e d f r a c t i o n of the p o t e n t i a l a t P 

and i s i n phase with that p o t e n t i a l and the f r a c t i o n i s independent of 

frequency and c o n d u c t i v i t y . The p o t e n t i a l of the f r e e atmosphere at h i s 
53' 



maintained i n s t a n t a n e o u s l y at a f r a c t i o n h/.H of that p o t e n t i a l at P as 

the c o n d u c t i v i t y i s assumed constant. • Because' there i s no frequency 

dependence, then the p o t e n t i a l a i s a l s o that of the f r e e atmosphere at h. 
i 

I f the c o n d u c t i v i t y i s not uniform belov; P, then the c o n d i t i o n 

r^C^, = r C does not hold nor i s the p o t e n t i a l of e i t h e r the antenna G G p p * 
or the free atmosphere i n s t a n t a n e o u s l y held at h/H of the value at P. 

However, the antenna p o t e n t i a l can be seen to- be maintained at a c l o s e 

approximation to the p o t e n t i a l of the f r e e atmosphere. C r o z i e r d i s c u s s e s 

t h i s non-uniform s i t u a t i o n assuming c o n d u c t i v i t y i s a f u n c t i o n of height 

alone. For a c y l i n d r i c a l wire, the d i s t o r t i o n of the- f i e l d i s g e o m e t r i c a l l y 

confined to a space of approximately 10 wire diameters i n depth and 

width. (Fir;.8a.) 

For uniform c o n d u c t i v i t y , the current and f i e l d l i n e s converge on the 

wire from above and below from a width of two wire diameters. C r o z i e r 

contends that any probable c o n d u c t i v i t y gradient i n the immediate v i c i n i t y • 

of the wire w i l l not a f f e c t t h i s a p p r e c i a b l y . Thus i f the ground and 

the plane P are more than s e v e r a l tens of wire diameters from the antenna, 

the r e s i s t a n c e s r r and r ^ are c l o s e l y approximated by the r e s i s t a n c e of 

a i r s l a b s two wire diameters t h i c k extending v e r t i c a l l y from the wire to 

the ground and from the wire to the plane P. 

I f , now, a step change AV occurs i n the p o t e n t i a l at P, than i n i t i a l l y 
P 

there w i l l be a step change AV i n the p o t e n t i a l of the antenna and V. 
a n 

i n the p o t e n t i a l of the a i r a t antenna height such that 

AV. ^ AV. = AV £ — a h p H 

As the c o n d u c t i v i t y i s non-uniform, r^/rn (the r a t i o of columnar r e s i s t a n c e s 

w i l l d i f f e r from h/H and the a i r p o t e n t i a l w i l l r e l a x toward Ay^ = Ay^ £h 

5h 



with a time constant determined by the c o n d u c t i v i t y • d i s t r i b u t i o n . The 

antenna p o t e n t i a l w i l l a l s o r e l a x towards a f i n a l value of 

=/\y r . / ( r . + r J , r.,/(r„+r ) .a. r,/r„, so that the f i n a l v a l u e s of a p « " P ^ ^ P — n i l 
AV a and£v/^ w i l l be p r a c t i c a l l y the same and with almost the same time 

constant, as, area f o r area, s i m i l a r charges must be moved through 

s i m i l a r . r e s i s t a n c e s i n the antenna curr e n t s l a b s as i n the .space w e l l to-

the s i d e . 

To develop a numerical example, a 1mm. wire 1m. from the ground would 

give the plane P, 10 x 1cm. above the wire and the i n i t i a l s t e p changes 

AV"h and$/ a about 99. per cent of the step changeA^ p. The l e n g t h of the 

wire i s a r b i t r a r y , though i f long enough, the magnitude of r Q ean be 

decreased to a point where antenna i n s u l a t i o n can be attempted. T h i s 

i n c r e a s e s C^, making p o s s i b l e the t o l e r a n c e of a very small capacitance 

i n the sensing u n i t . (As p r e v i o u s l y noted, i n s u l a t i o n and capacitance 

problems had p r e v i o u s l y l i m i t e d the use of the p a s s i v e probe.) 

Taking the length of the wire as 20m. and assuming the ends are 

guarded, € Q = 8.35 x 10 f a r a d m .and a value of \ = 5 x 10 mho m , 
14 then on the above model r„ = 5 x 10 ohms and C„ = 0.35 pf. I n a U G 

-1 

p o t e n t i a l gradient of 100 v o l t s per metre, a current of 2 x 10 ^ amp. 

flows to t h i s antenna from above, and from t h i s antenna to the ground, 

through the a i r . To measure t h i s c u r r e n t to an accuracy of 1 per cent, 

the current drawn by the sensing u n i t and a c r o s s the i n s u l a t o r s must be 
-15 

no more than 2 x 10 ' amp. and the input capacitance to the sensing 

u n i t around 0.003 pf- The apparatus attempts to meet these r i g o r o u s 

requirements by the use of feedback techniques and high q u a l i t y i n s u l a t i o n . 

The system used a t Durham c o n s i s t e d of antenna of 20 metre 20SWG tinned 53 
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copper wire suspended from wooden posts by means of.a 2m. guard w i r e . 

The sensing' u n i t of the antenna was mounted on an aluminium boom of 

approximately the same length as the antenna height above ground. The 

i n s u l a t i o n of the antenna and guard wires was P.T.F.E. The head u n i t 

boom was supported by i n s u l a t o r s of perspex. Since the sensing u n i t and 

boom were maintained a t a p o t e n t i a l c l o s e to the antenna p o t e n t i a l by the 

feedback, the end e f f e c t ••.•as small and the f i e l d d i s t o r t i o n introduced by 

the wooden posts was l a r g e l y n e u t r a l i s e d . 

The sensing e l e c t r o n i c s i s represented i n fig.10. One end of the 

antenna l e d through the P.T.F.E. bushing to the c o n t r o l g r i d of a 

Mullard KE1^03 electrometer valve which was housed with the va r i o u s b i a s s i 

b a t t e r i e s i n the head u n i t . 

A two-conductor cable took the output s i g n a l plus the b i a s of the 

electrometer valve and a p p l i e d i t between'the c o n t r o l g r i d and the cathode 

of the 6SJ7 cathode. The f l o a t i n g 6SJ? c i r c u i t together with the f i x e d 

285v. supply, generated a feedback p o t e n t i a l a t the 6SJ7 cathode. T h i s 

feedback p o t e n t i a l was a p p l i e d to the whole electrometer valve c i r c u i t , 

the hc-ad u n i t case and guard wi r e s through the two-conductor c a b l e . The 

c i r c u i t was economical when s s v e r a l probes were i n operation as the 285v. 

supply could be common to a l l and no separate f l o a t i n g s c r e e n voltage 

s u p p l i e s were r e q u i r e d . 

Since the head u n i t case and boom acted as a guard, i t should be near 

the p o t e n t i a l of the antenna, I n f i g . 1 0 . i t i s attached 3v. below the 

negative filament terminal r e s u l t i n g i n i t s being maintained a t about 

-0.9v. with r e s p e c t to the antenna. The insulator, leakage would then be 

i n the c o r r e c t d i r e c t i o n to tend to n e u t r a l i s e the negative g r i d c u r r e n t 

56 



4 f 

• 

- ' 

P l a t e 5 Phe Passive Probe F i e l d I n s t a l l a t 



P l a t e 6 The Passive Probe Head U n i t 



I 

! I 

• m 

I 
• 

J I 
H 

— 

H 
P l a t e 7a The Passive Probe A n c i l l a r y E l e c t r o n i c s 



I 
I 

i 
> 

11 

i 
i I I 
I 

• I 

I 
i 

P l a t e ?b Pa. Probe A n c i l l a r y E l e c t r o n I C S 



-1^ -which at 3.0 x 10 ''amp. i s j u s t above the 1 per cent l i m i t acceptable 

•for a 1m. high 20m. antenna. The voltage gain of the arrangement was 

s u f f i c i e n t to reduce the input capacitance of the ME1403 g r i d from 0.2 pf. 

to l e s s than 0.003 pf. 

The p o t e n t i a l between point B and the ground f o l l o w s the p o t e n t i a l of 

the antenna a t A with a small e f f e c t and any s u i t a b l e voltage measuring. 

u n i t drawing l e s s than 0.5 mA. can be connected a t 3. O v e r a l l c a l i b r a t i o n 

of the c i r c u i t could be obtained simply by applying known voltages between 

the antenna wire and the ground. The expected range f o r the instrument 

was from -lOOv. to 250". i n f i n e weather. The instrument was not usable 

during r a i n , as the moisture lowered the i n s u l a t i o n - a n d raindrops h i t t i n g 

the antenna deposited charges or caused charges by s p l a s h i n g . The head 

unit and booms were protected by t a i l o r e d polythene covers during wet 

weather. 

The o r i g i n a l i n t e n t i o n was "to e f f e c t a m o d i f i c a t i o n to the head u n i t 

so that only the electrometer valve was housed'in i t , b i a s voltages being 

s u p p l i e d to i t by weatherproof c a b l e s . A s i m i l a r m o d i f i c a t i o n was made 

by S?AHGLSR(19o2) who s e a l e d the electrometer valve i n an epoxy assembly 

with a needle type antenna for the measurement of b i o l o g i c a l p o t e n t i a l s 

where space was a t a premium. The advantage for outdoor use i s not s.o 

much space as a weight reduction which would allow a l i g h t e r , more compact 

boom and reduce tension on the i n s u l a t o r s . Fig.11. shows the layout of 

the design. The c a s i n g was of b r a s s tube, i n the lower end of which was 

f i x e d a BTG valve base with a P.T.F.E. i n s e r t . The e l e c t r o d e s of the 

iiEl^iOJ, except the c o n t r o l g r i d , were soldered to t h i s . The soldered 

j o i n t s must be f u r t h e r than i.25cms, from the g l a s s sheath of the valve 
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t o prevent damage to the valve. The c o n t r o l g r i d electrode v:as sheathed 

w i t h PVC and l e d clear of the valve and w a l l to a Plessey c o a x i a l plug 

w i t h a. P.T..F.E. i n s e r t at the other end of the tube. The matins end of 

the Plessey plug was attached to the antenna w i r e . The head u n i t was 

f i x e d to the boom by a curved ' c l i p ' of brass and was connected t o the 

r e s t of the sensing u n i t by a s i x core cable. 

Spangler surrounded h i s valve w i t h an i n e r t atmosphere of n i t r o g e n 

sealed i n w i t h epoxy r e s i n . The ME1403 u n i t was f i r s t t r i a d as described 

w i t h an a i r atmosphere and then completely encapsulated w i t h A r a l d i t e epoxy 

r e s i n , but the d i f f i c u l t y w i t h t h i s head u n i t i n outdoor c o n d i t i o n s proved 

to be the c o l l e c t i o n of d i r t and moisture across the i n s u l a t i o n c f the B?G 

valve base. Great care must also be taken i n handling the valves them­

selves or i n s u l a t i o n breakdown occurs across the glass sheath between elec­

trodes. Once contaminated,' they are very d i f f i c u l t t o clean s u c c e s s f u l l y . 

One f u r t h e r disadvantage w i t h the r e s i n sealed valve i s t h a t once sealed, 

i t cannot be inspected. The ME1'r03 g r i d c u r r e n t , measured over high 

resistances by a P h i l i p s GM5020 electrometer, was found t o be higher than 

the s t a t e d c h a r a c t e r i s t i c s . I t was t h e r e f o r e decided t o make a l a r g e r 

head u n i t , more amenable t o experimentation and co n t a i n i n g i t s own bias 

voltages. From t h i s , the f i n a l head u n i t (Plate ) was developed. The 

electrometer valve must be kept i n darkness to minimise the p h o t o e l e c t r i c 

increase i n g r i d current on exposure to l i g h t . 

F i g . 12. shows a c a l i b r a t i o n curve obtained f o r t h i s probe by applying 

known voltages between the antenna and the ground. The curve suggests a 

l i n e a r response f o r an antenna a t 1 metre over a range of 300 volts/metre 

p o s i t i v e t o 150 volts/metre negative. I t w i l l be no t i c e d t h a t the curve 
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does not go through the o r i g i n but gives a zero f i e l d output of Stamps. 

I t was thought possible t h a t t h i s was due to contact p o t e n t i a l s , though 

contact p o t e n t i a l s i n ' t h i s instrument do not have p r o p o r t i o n a l l y the same 

e f f e c t on the measured f i e l d as dp the i n t e r n a l contact p o t e n t i a l s of a 

f i e l d m i l l . . 

T y p i c a l comparisons are shown i n figures13 and 14 . Fig.13. shows a-

steady f i n e weather afternoon w i t h l i t t l e cloud. I t would be expected 

t h a t the instantaneous v a r i a t i o n s of the passive probe would be less 

v i o l e n t than t h a t of the agrimeter as the l a t t e r gives p o i n t measurements 

r a t h e r than the probes averaged values. 

Fig.14. i n d i c a t e s charging of the antenna as con d i t i o n s of very l i g h t 

r a i n developed. The large p o s i t i v e peak occurred as a b i g cumulus cloud 

came overhead. The output from both probe and agrimeter went negative 

as the r a i n s t a r t e d , but the probe d r i f t e d r a p i d l y more negative and only 

returned toward a reading comparable w i t h the agrimeter as the r a i n 

ceased. I t must be emphasised t h a t l i g h t r a i n caused these r e s u l t s . 

Under moderate and heavy r a i n , moisture c o l l e c t e d on the i n s u l a t o r s and 

the high resistance necessary f o r operation was broken down. Trouble was 

also experienced w i t h spiders' webs, wind-blown seeds and a i r - p o l l u t i o n . 

I t was found advisable t o give the i n s u l a t o r s a d a i l y r o u t i n e clean and 

to check again before use. 

Crozier's antenna - a s t r a i g h t two-ended system - apparently gave a 

f a i r l y s a t i s f a c t o r y performance w i t h no guard s e c t i o n and f u l l antenna . 

p o t e n t i a l across the i n s u l a t o r s . 

Keeping the antennae l e v e l at t h e i r respective heights was another 

r o u t i n e adjustment, as the wire stretched under tension and i t s l e n g t h 
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v a r i e d w i t h temperature. Occasionally i t was severely s t r a i n e d by strong 

winds or c o l l i s i o n w i t h dogs and s i m i l a r animals. Birds d i d not perch 

on the antennae but were content t o s i t on the support posts and 

co n t r i b u t e considerably t o the i n s u l a t o r cleaning problem. A u s e f u l 

m o d i f i c a t i o n would be to have the guard wire i n s u l a t o r s made from several 

metres of nylon attached t o a device s i m i l a r to a fisherman's r e e l , 

i n s u l a t e d from but mounted on the support posts. - This would s i m p l i f y 

adjustment problems considerably. 

Despite the p r a c t i c a l d i f f i c u l t i e s of maintaining the antenna system, 

i t i s considered t h a t the reasons f o r the u n s a t i s f a c t o r y performance of 

the passive probes at the observatory s i t e were p r i m a r i l y connected w i t h 

the c o n d i t i o n s in.which the electrometer valve was expected to work. The 

g r i d current i s requ i r e d to be very low and t h i s e s s e n t i a l l y means low 

leakage. DAGPUHAR(19S8) quotes experiments i n which a M21402 valve 
-15 

operating at r a t e d values, had a negative g r i d current of 1.3 x 10 - ̂ amp. 
-13 

m a l i g h t - t i g h t box whicn rose t o 3 x 10 amp. when exposed to dust and 
humid a i r . I t was also noted t h a t a -J" diameter hole i n a box containing 

-12 
the valve i n some instances gave a p h o t o e l e c t r i c current of 10 amp. 

Attempts to c o n t r o l the humidity w i t h i n the sensing u n i t were made w i t h 

the i n s t a l l a t i o n of desiccator u n i t s . 

Electrometer valves are also s e n s i t i v e to v i b r a t i o n and mechanical 

shock which may r e s u l t i n a change i n valve geometry and corresponding 

changes i n the valve c h a r a c t e r i s t i c s . 

However, i f the design of the sensing u n i t can be developed to i s o l a t e 

completely the valve from the u n c e r t a i n t y of i t s environment, there i s no 

doubt t h a t the instrument i s a valuable a d d i t i o n t o the range of f i e l d 
• 60 



measuring devices. I t s development and the accumulation and i n t e r p r e t a t i o n 

of p o t e n t i a l gradient measurements by t h i s method are worthy of separate 

study. Aspects t h a t would be of p a r t i c u l a r i n t e r e s t would include the 

determination of exposure f a c t o r s of other f i e l d measuring instruments, 

the v a r i a t i o n of p o t e n t i a l gradient w i t h wind speed close t o the ground 

both l a t e r a l l y i n t r a c k i n g the course of charged dust clouds across a t e s t 

s i t e , or v e r t i c a l l y i n the measurement of departures from p o t e n t i a l 

l i n e a r i t y such as those during co n d i t i o n s of a strong electrode e f f e c t . 

C o r r e l a t i o n w i t h space charge measurements would not be easy because the 

l a t t e r are e s s e n t i a l l y measured at a s i n g l e p o i n t . 

Compensating f o r the displacement current i s perhaps the most 

d i f f i c u l t part of the direct'method of a i r - e a r t h current measurement, i f 

the r e s o l v i n g time of the apparatus i s to be f a s t enough t o give records 

d i s t i n g u i s h i n g l o c a l e f f e c t s from world-wide e f f e c t s . 

Mention has already been' made of the e a r l y work, where the measured 

current was i n t e g r a t e d w i t h time and the displacement current e f f e c t i v e l y 

neglected, and of the designs of SCRA3E(1933)i G0T0(1957) and KASEMIK(1955) 

whose speeds of response were l i m i t e d by the response of a r a d i o - a c t i v e 

c o l l e c t o r , of a waterdropper and the r e l a x a t i o n time of the atmosphere. 

ADAMSOHO96O) developed a system which gave a muih f a s t e r response 

time of the order of 20 seconds, although t h i s i s s t i l l some way- from the 

desired 1 second response. An average change i n p o t e n t i a l gradient of 

1V/m i n 1 sec. at a p o t e n t i a l gradient of 100V/m w i l l give a displacement 
n —12 2 

current of 8.8 x 10 A/m , when the conduction current may only be 
—12 2 

2 x 1 0 A/m . Adamson used a f i e l d m i l l designed w i t h o v e r a l l negative 

feedback so t h a t the r e l a t i o n between the f i e l d and the output 61 
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was c l o s e l y l i n e a r . The output of the m i l l was then d i f f e r e n t i a t e d and 

fed i n t o one h a l f of a double electrometer valve. To the other h a l f of 

the valve, would be fed, f o r f i n e weather work, the curr e n t from an 

unshielded current c o l l e c t o r . The d i f f e r e n t i a t e d s i g n a l from the m i l l 

i s p r o p o r t i o n a l t o the displacement current and so both halves of the 

valve receive the displacement current s i g n a l and the f i n a l response 

a m p l i f i e d by the d.c. a m p l i f i e r i s due only t o the conduction c u r r e n t . 

CHALMERS(1963) suggested the p o s s i b i l i t y of compensating f o r the 

displacement current by using a r a p i d l y responding f i e l d machine t o 

measure the p o t e n t i a l at the height of the current c o l l e c t o r . The output 

would then be used t o apply a voltage t o the p l a t e t o keep i t a t the 

p o t e n t i a l of i t s surroundings and also t o apply a voltage equivalent to. 

twice t h a t p o t e n t i a l t o a condenser t h a t i s connected t o the c o l l e c t o r and 

t h a t has the same value as the sum of the s t r a y and cable capacitances. 

The suggestion i s t h a t i f the response time of the compensating system 

i s s u f f i c i e n t l y r a p i d , then the change i n bound charge on the c o l l e c t o r 

p l a t e w i l l always be balanced and the net change i n bound charge w i l l 

be zero. This d i f f e r s from e a r l i e r methods i n t h a t the displacement 

current i s e l i m i n a t e d from the c o l l e c t o r i t s e l f . Applied t o the 

c o l l e c t o r system suggested by CHALMERS(1962), the system would appear 

s i m i l a r t o fig.15 . The d i f f i c u l t y may be i n the production and 

a p p l i c a t i o n of the doubled voltage and i n the speed of the instantaneous 

matching of the system. HUTCHINSON(1966) described the p a r t i a l success 

of a s i m i l a r s.ystem w i t h the current c o l l e c t o r a t ground l e v e l . He 

was able t o show t h a t the compensation could be e f f e c t i v e and 

instantaneous, although he was tr o u b l e d by zero f l u c t u a t i o n s of the f i e l d 
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m i l l system which l i m i t e d the s e n s i t i v i t y . I n order t o reduce the noise 

l e v e l of the system, he suggested the use of a f i e l d - d i f f e r e n c e meter 

which would respond immediately to the departure of the f i e l d from a 

convenient average value which was i t s e l f being adjusted c o n s t a n t l y as 

the p o t e n t i a l gradient altered.' 

The displacement current can be reduced i f the current c o l l e c t o r i s 

surrounded by a ra i s e d s h i e l d . I f the c o l l e c t o r i s a t ground l e v e l t h i s 

can be earthed. I f the c o l l e c t o r i s r a i s e d above the l e v e l of the ground, 

then the s h i e l d can e i t h e r be ra i s e d r e l a t i v e t o the c o l l e c t o r and 

maintained at the p o t e n t i a l of the c o l l e c t o r or kept i n the plane of the 

c o l l e c t o r at a p o t e n t i a l s l i g h t l y less then t h a t of the c o l l e c t o r . The 

choice v/ould depend on the mechanics of the c o l l e c t o r system. The object 

of the s h i e l d i s t o d i v e r t a p o r t i o n of the displacement c u r r e n t from the 

c o l l e c t o r by a l t e r i n g the d i s p o s i t o n of the l i n e s of f o r c e . U n f o r t u n a t e l y , 

as the ions w i l l also f o l l o w the l i n e s of f o r c e , some p o r t i o n of the 

conduction current w i l l also be d i v e r t e d . I n f i n e weather v:ork, the 

shielded r e c e i v e r w i l l not s u f f e r .from the charging by c o l l i s i o n t h a t 

occurs when raindrops impact upon i t but i t may i n t e r f e r e w i t h the 

i d e n t i f i c a t i o n of the e f f e c t s of l o c a l space charge pockets t h a t may move 

i n the atmosphere w i t h a h o r i z o n t a l v e l o c i t y component. I f continuous 

recording i s t o be undertaken, i t i s f e a s i b l e t o t r a n s l a t e data d i r e c t 

to a d i g i t a l form f o r r a p i d access t o a computing system. This has 

already been achieved a t Durham w i t h records from a mobile instrument 

van. I t woul-d be possible to improve on the o r i g i n a l system of 

i n t e g r a t i n g the current w i t h time and thus n e g l e c t i n g the displacement 

current by computing the compensation r e q u i r e d a t any i n s t a n t from a 
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continuous record of p o t e n t i a l gradient and a d j u s t i n g the current records 
accordingly. 
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CHAPTEP 4. VALUES FOK THE A IP-EARTH CURPSr'T 

4.1. Comparison of Published Values f o r the A i r - E a r t h Current. 

Early measurements of the a i r - e a r t h current by the d i r e c t and i n d i r e c t 

methods near the ground seemed to i n d i c a t e t h a t the i n d i r e c t r e s u l t was 

twice the r e s u l t given by the d i r e c t method which was expected i f the 

c o n d u c t i v i t i e s of each sign were constant w i t h height and d i d not vary 

and i f convection currents wer;. present. 

WILSON(190b) had h i s apparatus set i n a s i t e on a h i l l (Kamildon H i l l , 

near Peebles) reasonably clear of ob s t r u c t i o n s a f f e c t i n g the f i e l d and 

measured at various heights without attempting to determine any r e l a t i o n ­

ship between the hei g h t s . 

SIMPSON(1910) obtained values, when corrected f o r displacement 
-12 3 

c u r r e n t , of the order of 3.4 x 10 A/ra~ though h i s s i t e , a tennis court 

ringed by stop nets, trees and mountains,•was not e n t i r e l y s u i t a b l e . 

WATSON (1929) used a Wilson apparatus at Kew and conparc-d the r e s u l t s 

obtained there f o r the d i r e c t method w i t h r e s u l t s obtained a t various c o n t i n e n t a l s t a t i o n s by the i n d i r e c t method. 

\ 
Kew 0.79 x 10~ 1 2arap/a 2 

1 ̂ 2 
Gottingen 2.7 x 10"12amp/m2 0.93 1.3 x 10"'i2amp/m2 

Potsdam 2.37 x 10" 1 2anp/m 2 1.16 1.27 x 10~12amp/m2 

Davos 1.71 :•: 10"12amp/m2 1.13 0.91 x 10~12amp/m2 

The simple electrode e f f e c t postulated by VON SCHV:EIDLEP(1908) and others, 

was not found by Watson f o r Kew, as the v a r i a t i o n between the p o t e n t i a l 

gradient -with height i n the f i r s t few metres was small and so he concluded 

t h a t there must be turbulence c a r r y i n g a p o s i t i v e conduction current 
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of a magnitude' equivalent .to F upwards against tho f i e l d . 

WHIPPLE(1932) suggested th a t a process of eddy d i f f u s i o n could carry 

p o s i t i v e charge upwards. The magnitude of eddy d i f f u s i o n which i s 

greater than t h a t of ordinary d i f f u s i o n depends on the meteorological 

conditions,, e s p e c i a l l y the temperature g r a d i e n t , and w i l l vary w i t h time 

and place. Eddy d i f f u s i o n cannot produce any v e r t i c a l e l e c t r i c a l c urrent 

unless there i s a v a r i a t i o n of space charge density w i t h h e i g h t . Space 

charge depends on dF/dx and thus the e l e c t r i c current of eddy d i f f u s i o n 
2 2 

i s p r o p o r t i o n a l t o d F/dx . The c r i t i c i s m was t h e r e f o r e made t h a t , as 

the v e r t i c a l v e l o c i t y of eddy d i f f u s i o n was small, a f a i r l y l a r g e p o s i t i v e 

space charge would be needed and t h i s would produce a change of p o t e n t i a l 

gradient w i t h height,.greater than t h a t a c t u a l l y found. LETTAU(1941) 

extended the theory f o r eddy d i f f u s i o n varying w i t h height but the 

c r i t i c i s m remains. 

NOLAN and NOLAN(1937) operated both d i r e c t and indirect.methods 

simultaneously a t Glencree; d i r e c t l y by using Wilson's method and 

i n d i r e c t l y by counting p o s i t i v e and negative ions and e s t i m a t i n g t h e i r 

m o b i l i t y . They found t h a t the c o n d u c t i v i t y was the same t o w i t h i n 10 per 

cent by both methods. Considered w i t h a f i e l d t h a t was found to be 

p r a c t i c a l l y constant over the f i r s t metre, t h i s r e s u l t suggests t h a t 

at 1m. i s equal to A. at the ground and thus A- must vary 

r a p i d l y w i t h h e i g h t . NOLAN(19^0) repeated these measurements w i t h 

s i m i l a r r e s u l t s , f i n d i n g t h a t the c o n d u c t i v i t y by the a s p i r a t i o n method 

exceeded that" by the Wilson c o l l e c t o r by only 12. per cent. The Glencree 

s i t e was reasonably f r e e from p o l l u t i o n , although there was a marked 

increase i n the l a r g e i o n concentration when the wind was from Dublin 
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(NOLAN and NOLAN, 193D. The s i t e was bordered on two sides by b u i l d i n g s 

and on the t h i r d by a hi l l r J . d e but, by app l y i n g an exposure f a c t o r , he 
-12 2 

obtained a' value of 2.7 x 10 amps/m by the Wilson method, against 
—12 2 

Watson's value of 1 x 10 amps/m and the continent average of 
' - 'i ? 2 approximately 2 x 10 "amps/m . He suggested t h a t the a i r - e a r t h current 

at Kew was abnormally low although he postul a t e d the 12 per cent d i f f e r e n c e 

as a convection c u r r e n t . 

H0GGO939) making simultaneous measurements from the underground 

l a b o r a t o r y at Kew, found t h a t the Wilson apparatus a t ground l e v e l gave 

a value f o r the c o n d u c t i v i t y almost equal t o the p o s i t i v e c o n d u c t i v i t y 

measured by a Gerdien apparatus at ground l e v e l . This also a p p l i e d t o the 

negative c o n d u c t i v i t y i f the Wilson instrument was exposed to n a t u r a l 

reverse f i e l d s . He confirmed the v i r t u a l absence of v a r i a t i o n i n 

p o t e n t i a l gradient a t t h i s s i t e reported by WATSOMd929) and again by 

SCRASE(1S35)• He also found t h a t \^ decreased w i t h h e i g h t , the decrease 

being most r a p i d i n the f i r s t 12.5cms. and being around one h a l f i t s 

value a t 1m. arid higher. X2 increased from zero a t the surface t o about • 

equal t o at 1m. and consequently the t o t a l c o n d u c t i v i t y remained very 

nearly constant over the whole range of height considered. He also found 

t h a t near t o the ground there was a s n a i l p o s i t i v e space charge of about 

1,000e/cm and t h a t t h e 1 r a t e of i o n i s a t i o n was l e s s a t 100cms. than i t 

was at ground l e v e l . Some of the observations a t the various heights were 

performed i n d i f f e r e n t seasons of the year and some of the apparatus was 

changed during the observation p e r i o d . Although ..corrections were made t o 

make the observations comparable., i t i s a p i t y t h a t w i t h the advantages 

of the underground l a b o r a t o r y , the equipment was not made a l i t t l e more 
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f l e x i b l e . 

LU'TZ(1959) compared iiieasureraents made at Munich i n 1936 by the 

i n d i r e c t method w i t h measurements made by the d i r e c t method i n 1909. He 

found values t h a t gave a r a t i o of 2:1 which supported the d i f f u s i o n ' t h e o r y . 

However, h i s measured space charges appeared too small t o give a s u f f i c i e n t 

convection current end CHALiiSRS(1957) suggested t h a t the d i f f e r e n c e might 

be due to changing conditions between 1909 and 1936. CHALMERS(19^6) 

took Hogg's r e s u l t t h a t \ = 2.\ and showed t h a t w i t h the assumption 

of a r a t e of i o n i s a t i o n at ground l e v e l f i v e times t h a t at 1m., i t was 

possible t o get a v a r i a t i o n of c o n d u c t i v i t y l i k e Hogg's and a p o t e n t i a l 

gradient t h a t was reasonably constant under conditi o n s of a q u a s i s t a t i c 

s t a t e f o r large and small ions of both signs and small-space charge. Ke 

suggested t h a t t h i s increase i n i o n i s a t i o n near the surface was due t o 

and\p- r a d i a t i o n from r a d i o - a c t i v e substances i n the top l a y e r of. the 

e a r t h . IIES3 and 0'DOHNKLL(1931) made measurements which shewed a 

v a r i a t i o n i n i o n i s a t i o n d i d i n f a c t occur. PIERCE(1953) showed the 

a c t u a l v a r i a t i o n w i t h height was not f a r d i f f e r e n t from t h a t suggested by 

Chalmers i n t h a t he found 60 i o n pairs/cc./sec. at 1cm. above ground and 

only S ion pairs/cc./sec. a t 1m. He pointed out t h a t r a d i o - a c t i v e 

f a l l - o u t was l i k e l y to increase the e f f e c t of Q>- r a d i a t i o n w i t h time. 

This was f u r t h e r supported by the discovery of p r i m i t i v e electrode e f f e c t s 

i n areas where the ground r a d i a t i o n would be shielded'from the atmosphere, 

namely the Greenland ice cap(PLUVINAGE and STAHL, 1953, and RUHKKE,1962) 

and the surface of a lake.(HUHLEISEN,1961). 0'D0NNELL(1952) measuring 

c o n d u c t i v i t y , f a i l e d t o get the changes of c o n d u c t i v i t y w i t h height t h a t 

Hogg found, nor d i d he f i n d the t o t a l c o n d u c t i v i t y a t a height of 1m. 
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equalled the p o s i t i v e c o n d u c t i v i t y a t the earth's surface. CHALMERS(1953a) 

pointed out t h a t O'Donnell expressly set up h i s apparatus always under the 

branches of large trees as p r o t e c t i o n from the f i e l d of the e a r t h and 

th a t t h i s i s a d i f f e r e n t experimental c o n d i t i o n from measurement i n the 

open. I f the p r o t e c t i o n from the f i e l d given by the trees i s complete, 

then Fg, F and i become zero and i f the p r o p e r t i e s of the p o s i t i v e and 

negative ions were not d i f f e r e n t , then the r a t i o X1 /X, would be expected 

to be equal t o one. 'A, /X, would also tend to u n i t y w i t h i n c r e a s i n g 
i g 

turbulence as O'Donnell found. 

ISRAEL (195*0 c o l l e c t e d together r e s u l t s from d i f f e r e n t s t a t i o n s which 

gave a mean f o r d i r e c t measurements of 1.9 x 10~ ̂ A/m from .12 sets 
—12 2 

and a mean f o r i n d i r e c t measurements of 2.8.x 10 A/ni from 26 sets. 

However, the i n d i r e c t measurements contain a greater number of r e s u l t s 

from s t a t i o n s i n u n p o l l u t e d areas such as ice caps and oceans and i t has 

been suggested (CHALMERS, 1957) t h a t the d i f f e r e n c e i s not r e a l l y ' 

s i g n i f i c a n t . 

The problem of the two methods of determining a i r - e a r t h current 

appeared to have been f a i r l y d e f i n i t e l y solved by the agreement found 

between the NOLANS(1957) and HOGG(1939)• 

However, LAV/(1963) used Ebert i o n counters to measure the number o f 

small ions of both signs at f o u r l e v e l s close t o the ground at a s i t e 

i n Cambridge. He also measured space charge and the p o t e n t i a l a t 1m. 

He found t h a t the t o t a l c o n d u c t i v i t y decreased w i t h height under most 

co n d i t i o n s . He concluded that t h i s was incompatible w i t h a conduction 

current constant w i t h height and t h a t i t i m p l i e d the existence of a 

convection current comparable w i t h the conduction c u r r e n t . He has been 
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able t o give an account of h i s r e s u l t s i n v o l v i n g b o t h t h i s convection 

current and a v a r i a t i o n i n i o n i s a t i o n w i t h height, thus f a l l i n g between 

the t h e o r i e s o f Whipple and Chalmers. Law's apparatus d i f f e r e d 

s i g n i f i c a n t l y from t h a t of Hogs; and HIGA2I and CKALHS2S(19oo) o b t a i n e d 

r e s u l t s at the Durham Observatory s i t e i n general agreement w i t h Lav;, 

while using c o n d u c t i v i t y apparatus very s i m i l a r to t h a t of Hogg. Higasi. 

and Chalmers found t h a t b o t h \ j and X 2 decreased w i t h h e i g h t . The 

average values of the r a t i o s of c o n d u c t i v i t y a t ground l e v e l , 20cms. and 

1 metre were:-

\/\B "'k3 V \<20)
 1-21 \2A(20) 1 ' 3 0 

The suggestion derived from t h i s was th a t there was a s i g n i f i c a n t d i f f e r e n c e 

i n the c o n d i t i o n s between Kew and Durham and Cambridge, p a r t i c u l a r l y i n -

the condensation-nuclei content, as the a i r at Kew has a high degree of 

p o l l u t i o n compared w i t h the other s i t e s and consequently t h i s i s r e f l e c t e d 

i n the c o n d u c t i v i t y and p o t e n t i a l g r a d i e n t s . The p o t e n t i a l gradient at 

Kew was gene r a l l y about four times as great as those a t Durham and 

Cambridge. Higazi and Chalmers also found t h a t a l l r a t i o s tended t o u n i t y 

as the wind speed increased. They suggested t h a t an explanation i n terms 

of t u r b u l e n t mixing of the a i r near the ground would tend to a l i m i t i n 

strong winds, when the a i r i n the lowest metre was thoroughly mixed and 

showed the same c h a r a c t e r i s t i c s wherever sampled. The mixing would 

overcome the separating e f f e c t of the e l e c t r i c f i e l d and would keep the 

r a t i e tending to u n i t y , although t h i s would leave the problem of how the 

current was c a r r i e d i n t o -the ground i t s e l f unanswered. 
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•The question.of the importance of convection currents had been 

reopened by KRAAKEVIK and CLAHK(1953) w i t h the result's they obtained 

outside the area close t o the earth's surface. I f there was no s i g n i f i c a n t 

e f f e c t due to convection c u r r e n t s , the conduction current would be-the 

same at a l l l e v e l s i n the atmosphere. EVERLING • and WIGAND0921), w i t h 

e a r l i e r airborne measurements, had found the conduction current to decrease 

w i t h i n c reasing a l t i t u d e , but KRAAKEVIK(1958) had found, the conduction 
-12 2 

current constant w i t h height over Greenland at a value of 3*7 x 10 A/ra . 

Over Chesapeake Bay, however, Kraakevik and Clark, measuring c o n d u c t i v i t y 

and p o t e n t i a l gradient from an a i r c r a f t near the boundary of the austausch 

region found t h a t above the austausch, the conduction current was constant 
-12 2 

w i t h height at an average of 1.1 x 10 A/m . Within the austausch i n two 
-12 2 

regions they found values of 1.5 x 10 A/m i n d i c a t i n g t h a t the conductio 

current d i d a l t e r w i t h h e i g h t . They considered t h a t upward convection 

of p o s i t i v e space charge w i t h i n the austausch would cause t h i s and t h e i r 

p o t e n t i a l gradient measurements showed space charge of about the r i g h t 

magnitude. Up to t h i s time, those who considered t h a t Hogg's r e s u l t s were 

most s i g n i f i c a n t had accepted the Nolans' r e s u l t s as confirmatory and 

taken the 12 per cent d i f f e r e n c e t h a t Nolan had explained as a convection-

current to be j u s t a l o c a l d i f f e r e n c e . Kraakevik and Clark's r e s u l t s 

then gave some greater s i g n i f i c a n c e t o t h i s convection c u r r e n t . They 

suggested t h a t the source of p o s i t i v e charge re q u i r e d to support a 

continuous convection current might be p o s i t i v e l y charged n u c l e i from 

combustion processes.(MUHLEISEM, 195&) Another major source could be 

the breaking of waves at sea.(BLANCHA3D, 19S1) 

CHALMERS(1964), considering the simple case when the conduction c u r r e n t 71 



w i t h i n the austausch was the same a t a l l l e v e l s , showed t h a t the t o t a l 

v e r t i c a l current during th° time when convection was•occurring-was le s s 

than the value when there was no convection. This l a t t e r value would 

i t s e l f be less than the value of conduction w i t h i n the austausch. 

However, the f a c t that the t o t a l current i n t o the ear t h must be equal 

t o the t o t a l v e r t i c a l current and not to the conduction cu r r e n t during . 

convection, again focussed a t t e n t i o n on the s i t u a t i o n close t o the e a r t h 1 

surface. 

KASEMIR(19oO) made an attempt t o measure d i r e c t l y the a i i ' - e a r t h 

current i n the upper a i r , although i t has been shown t h a t he was, i n 

f a c t , measuring^F., He found t h a t above the austausch, the a i r - e a r t h 

current density was the same a t a l l heights and was nearly f o u r times . 

as l a r g e over Greenland as over the p o l l u t e d areas of the eastern U.S.A. 

His r e s u l t s i n the austausch were not r e l i a b l e as matching was not 

achieved. UCHIKAWA(1961) measuring the conduction cu r r e n t by the i n d i r e c 

method found the value i n the austausch t o be 1 . ; times t h a t above the 

austausch. 

HOGG(1950, 1955) made attempts t o r e l a t e the l o c a l c o n d u c t i v i t y a t 

the earth's surface more p r e c i s e l y t o the a i r - e a r t h c u r r e n t . At f i r s t 

he d i v i d e d the columnar c o n d u c t i v i t y i n t o two p a r t s ; the upper par t a t 

high l e v e l s due to cosmic r a d i a t i o n and unaffected by l o c a l changes near 

the ground, and the lower part dependent on the surface c o n d i t i o n s 

( i . e . r a d i o - a c t i v e m a t e r i a l and concentration of la r g e and small ions) 

and a f u n c t i o n o f \ . I n the second attempt he used the e m p i r i c a l 

equation f o r the v a r i a t i o n of c o n d u c t i v i t y w i t h height given by GISH and 

WAIT(1950), \ = X q + Ah 2. Neither of these methods, however, can take 
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i n t o account the abrupt change i n c o n d u c t i v i t y a t the upper boundary of 

the austausch r e g i o n . 

EUIS(1957) has compared over f i f t y c u r r e n t density measurements 

derived i n four ways:-

1. The p o t e n t i a l d i f f e r e n c e between the electrosphere and the ear t h 

and the columnar r e s i s t a n c e , 

2. Measurements of p o t e n t i a l gradient and c o n d u c t i v i t y above the 

austausch, 

3. The d i r e c t method a t the surface, 

^f. The i n d i r e c t method at a height approximately 1 metre above the 

surface, 

He d i v i d e s trie s t a t i o n s i n t o three areas A. Polar, B. Oceanic and low 

p o l l u t i o n areas, C. Areas of high p o l l u t i o n , w i t h the f o l l o w i n g r e s u l t s . 

• A B C 

10~12A/m2 10~12A/m2 10*"12A/m2 

1. i = V/R 3 A 2 A 1.1 

2 . i = ?(X 1 + X 2) 3.3 1.8 1.3 

3. D i r e c t i 3.0 - 1.2 

L . i = FX1 3 A 1.9 1.^ 

at 1 metre 

He r e i t e r a t e s WATSON•s(1929) suggestion of a convection c u r r e n t equal 

i n size to F^5. I n h i s survey he neglects those values f o r the conduction 

current measured on mountain s i t e s because of t h e i r dependence on .their 
-12 2 

l o c a l c o n d i t i o n s . Conduction curre n t s of the order of 13 x 10 A/m 

f o r instance, have been found on the summit of Jungfraujoch against normal 

values of ?.A x iO~ 1 2A/ r a
2 which, i f the conduction was to be the same a t 
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a l l l e v e l s would be anomalous. 

I n any d e t a i l e d comparison of r e s u l t s from d i f f e r e n t areas, i t must 

also be remembered th a t the annual v a r i a t i o n s and sometimes d i u r n a l 

v a r i a t i o n s of the a i r - e a r t h current i n d i f f e r e n t places have shown-

d i f f e r e n t r e s u l t s . A l i s t of such v a r i a t i o n s was given by HOGG(1950). 

I n general, i f i = \ F and i = V/R, as V and R vary less t h a n ^ or F, i "is 

more nearly constant than X or F. R w i l l have a v a r i a t i o n inverse t o 

th a t of X and of smaller amplitude and so i w i l l f o l l o w the changes i n 

X and give a v a r i a t i o n the inverse t o F. 

SAGALYN and FAUCHEP.(195o) suggested t h a t the v a r i a t i o n of the a i r 

-ea r t h current could be described so 
1 1 dV 
i ' d t = V d t R d f 

World 
uncle. 
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k.2. Conclusions. 

I t has been shown t h a t f o r an understanding of the f i n e weather 

e l e c t r i c a l phenomena i n the atmosphere i t i s necessary t o measure the 

a i r - e a r t h current d i r e c t l y as w e l l as the c o n d u c t i v i t y and p o t e n t i a l 

g r a d i e n t , and t h a t , although the a i r - e a r t h current i s probably a sore 

fundamental v a r i a b l e than the other two, i t s measurement i s more d i f f i c u l t 

and hence the st a t e of the apparatus so f a r developed, less s a t i s f a c t o r y 

than the measurement of c o n d u c t i v i t y and p o t e n t i a l g r a d i e n t . 

Provided t h a t the area concerned i s a f a i r sample of the earth's 

surface, the d i r e c t method of measurement at the surface w i l l . g i v e a 

measure of the a c t u a l a i r - e a r t h c u r r e n t . I f the r e s u l t s between t h i s 

and the i n d i r e c t method do not agree, i t can be i n f e r r e d t h a t the 

conduction current c a l c u l a t e d from the i n d i r e c t method does not comprise 

the whole c u r r e n t . I t i s , however, d i f f i c u l t to say how much of the 

t o t a l a i r - e a r t h c u r r e n t , measured by the d i r e c t method, i s conduction 

c u r r e n t , unless the components of the t o t a l a i r r - e a r t h current can be 

measured at heights above the surface of the e a r t h . D0LEZALEK(1960j took 

a number of measurements of F, i and X and discussed the various f a c t o r s 

t h a t would give apparent d e v i a t i o n from Ohm's lav;, f o r i f convection 

currents e x i s t , then d e v i a t i o n s from Ohm's law w i l l appear. He came t o 

the conclusion t h a t a comparison of r e s u l t s from the two methods of 

determining the a i r - e a r t h current i s not s u f f i c i e n t t o give the convection 

c u r r e n t . I f the c o n s t r u c t i o n a l and o p e r a t i o n a l d i f f i c u l t i e s can be 

solved, then a system such as was attempted here may w e l l give a measure 

of the importance of the convection currents i n the lower r e g i o n of the 

75 



atmosphere. I t may be also t h a t conclusions based on s i m i l a r measurements 

at d i f f e r e n t , heights are less l i a b l e t o e r r o r than those based on a 

comparison of r e s u l t s from d i f f e r i n g measuring methods. The d i f f i c u l t i e s 

of d e f i n i n g a system from measurements made from one boundary, the 

negative electrode, of the system are enhanced by the f a i l u r e of the 

theory of the simple electrode e f f e c t t o s a t i s f y , the conditi o n s found i n 

p r a c t i c e . This i s not only because of the v a r i a t i o n i n r a t e of i o n i s a t i o n 

at the earth's surface, but also because of the presence of t u r b u l e n t 

mixing close t o the earth's surface. The assumptions of the q u a s i s t a t i c 

s t a t e and of h o r i z o n t a l s t r a t i f i c a t i o n lead t o a current density the 

same at a l l l e v e l s . The r e s u l t s from the i n d i r e c t method suggesting the 

conduction current i s not constant w i t h height leads t o the assumption • 

t h a t some other c u r r e n t , the convection current must also not be constant 

w i t h h e i g h t . 

The development of analogue computing techniques makes i t f e a s i b l e to 

consider the development of model systems f o r the t h e o r e t i c a l s o l u t i o n s 

t o these problems, i f s u f f i c i e n t primary i n f o r m a t i o n can be gathered 

under known c o n d i t i o n s . ISRAEL(1957) c a l l e d f o r synoptic measurements of 

F, i and \ to be made to separate l o c a l e f f e c t s from those w i t h a world­

wide basis and the separation of l o c a l e f f e c t s i s e s s e n t i a l , i f r e s u l t s 

are to be compared between d i f f e r e n t s i t e s . I t has been shown t h a t the 

degree of p o l l u t i o n and the presence or absence of the electrode e f f e c t 

has inf l u e n c e d the conclusions drawn from experimental r e s u l t s i n the 

past. The separation of l o c a l e f f e c t s from more.fundamental v a r i a t i o n s 

i s the more important, since COLLIN, GROOM and HIGAZK1965) have i n d i c a t e d 

periods of a u t o - c o r r e l a t i o n t h a t i n d i c a t e the atmosphere has a.'memory'. 
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Their analysis of HIGAZI and CHALMERS1(1966) r e s u l t s i n d i c a t e d t h a t the 

len g t h of the memory was due mainly to the replacement and mixing of the 

a i r by the wind, although some small e f f e c t was made by the exponential 

r e l a x a t i o n of e l e c t r i c a l phenomena i n the atmosphere. 

WHITLOCK and CHALMERS(1956) found v a r i a t i o n s ' i n the fine" weather 

p o t e n t i a l gradient t h a t suggested the movement of wind borne pockets of . 

space charge. BENT and HUTCHINSON(1966) found r e p e t i t i v e p a t t e r n s i n space 

charge records t h a t had t h e i r counterparts i n the wind speed, temperature 

and humidity records and suggested the movement of wind borne convection 

c e l l s . 

SERBU and TRENT(1958) found changes i n c o n d u c t i v i t y before the onset 

of fog(and before i t s d i s s i p a t i o n too).. DOLEZALEK(19o2) found t h a t the 

c o n d u c t i v i t y decreased and the p o t e n t i a l gradient increased about 1 to 2 

hours before fog appeared. The care w i t h which a s i t e must be chosen has 

already been i n d i c a t e d but these l a s t f i n d i n g s r a i s e the question of the 

choice of periods f o r a n a l y s i s . 

I t has been usual f o r f i n e weather phenomena to choose days t h a t 

appear undisturbed e i t h e r from meteorological or p o t e n t i a l gradient records 

but ISRAEL and LAHHAYSR(19^8) suggested t h a t conclusions should be based 

on the a n a l y s i s of a l l records except those when p r e c i p i t a t i o n was a c t u a l l y 

o c c u r r i n g . 

The f u l l separation of l o c a l i n f l u e n c e s on the value of the conduction 

current and the importance of the convection current must t h e r e f o r e c a l l 

f o r f u l l y automatic recording. I n d e e d , . i t may prove t h a t the automatic 

p r o v i s i o n of a d i g i t a l output f o r computer access may be the only 

s a t i s f a c t o r y method of overcoming the problem of the displacement c u r r e n t , 
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i f the d i r e c t method of measurement i s t o be used above ground l e v e l . 

BENT and HUTCHINSON(1965) have demonstrated such a system f o r f u l l y 

automatic recording and automatic data-logging systems f o r the remote 

recording of meteorological v a r i a b l e s have been commercially a v a i l a b l e f o r 

some t i m e ( l 2 ) . 

I t i s , t h e r e f o r e , suggested t h a t the understanding of the importance 

of the components of the a i r - e a r t h current would be m a t e r i a l l y advanced, 

i f standardised equipment could be set up to run simultaneously and 

continuously at three s i t e s . 

- I t i s suggested th a t the v a r i a b l e s t h a t should be measured are 

a.) a i r - e a r t h current by the d i r e c t method, b.) c o n d u c t i v i t y , c.) 

p o t e n t i a l g r a d i e n t , d.) space charge," and e.) wind speed, and'that 

the equipment should be based on a.) a properly engineered double 

c o l l e c t i n g p l a t e w i t h a computer•calculated compensation f o r displacement 

c u r r e n t , b.) a c o n d u c t i v i t y measuring system a f t e r HICJASI and CHALMERS* 

(1966), c.) a f i e l d m i l l or passive probe system, and d.) space charge 

apparatus a f t e r BENT(1964). 

I t i s suggested t h a t such apparatus should be placed i n three 

c a r e f u l l y chosen s i t e s , one i n a p o l l u t e d area, one i n an area f r e e from 

p o l l u t i o n and one i n an area where the electrode e f f e c t was found t o 

occur. 

Obviously a p r o j e c t of t h i s size would probably r e q u i r e some 

i n t e r n a t i o n a l cooperation f o r i t i s u n l i k e l y t h a t a l l three s i t e s would 

be found i n t h i s country. However, the meteorological sciences have long 

shown the lead i n such forms of s c i e n t i f i c cooperation. The p r o j e c t would 

also be expensive, but i n terms of economic and s c i e n t i f i c r e t u r n , i t 
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n i g h t be preferable to standardise on equipment at t h i s stage and o b t a i n 

a long period of r e s u l t s r a t h e r than f o r i n d i v i d u a l - researchers, e s p e c i a l l y 

research students, to develop t h e i r own v a r i a n t s of apparatus and be o f t e n 

w i t h r e s u l t s covering very small periods of time. 

I t i s also true t h a t i n favourable economic climates, government 

organisations have been prepared to spend such money as would be r e q u i r e d 

i n t h i s f i e l d . I n p a r t i c u l a r , the author i s g r a t e f u l f o r the r e c e i p t of 

a U.S. Navy grant. He i s also g r a t e f u l f o r the p r i v i l e g e of studying 

under the l a t e Professor J.A. Chalmers and Dr. W.C.A. Hutchinson. 
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