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ChagterrI
INTRODUCTION

%
Consider the system of differential equations

& = Pxay)y F o= Wxy) (1.1)

where x,y,t are real variables. This system is said to

be "autonomous" because P(x;y), Q(x,y) do not contain

the variable t explicitly. From this it_follows that

if ®%(t), y(t) is a solution and k is an arbitrary

constant then x(t + k), y(f + k) is also a solution. If

X, Y, is a solution of the equations P(x,y) = O,

Q(x,y) = 0 then X = Xos ¥ = ¥4 is a constant solution

of (1.1) and the point (xb, yo) in the (x,y) plane is

called a "singular pdint“ of (l.l); We shall consider

only systems having a finite number of singular points
(which are therefore isolated). If x(t), y(t) is a .
non-constant solution then as t varies, the poinf

(x(t), y(t)) describes a curve C in the (x,y) plane

called a "trajectory™ of (1.1). The associated solution
x(t + k), y(t + k) also travels along C as t varies.  Hence,
each trajectory corresponds to an infinite family of ;
solutions. When P(x,y), Q(x,y)'satisfy a local

Lipschitz condition, there is one and only one trajectory

through each point. Trajectories cannot pass through a

S ey A B\
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singular point though they may approach one as t + + =

or as t + - », If x(t), y(t) is a periodic solution

then the corresponding trajectory C is a closed curve,
Conversely, each closed trajectory arises from a

periodic solution. The location of the closed trajectories
of (1.1) is therefore a problem of some interest. Later
on we shall use the following well-known result which

is proved in [l], page 78.

Theorem 1.1 Bendixon's Second Theorem: Let x(t), y(t)

be the parametric equations of a half trajectory C

which remains for t + + « inside a bounded domain D

which has no singular points inside it or on its boundary.

The theorem asserts that only two cases are then possible.
1. Either C is itself a closed trajectory, or

2. C approaches asympfotically a closed trajectory

In this thesis our interest is in the free
oscillation equation

d?2x dax

dx _
Iz + f(x, d‘t) It + g(x) =0 (1.2)

This is equivalent to the following &utonomous system:

dx _ o dy

at - Y 3t c ~-yf(x,y) - g(x) (1.3)

The (x,y) plane is called the "phase plane" of (1.2).
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The singular points of (1.3) are all of the form (x*, 0),
where x* is a root of g(x) = 0. If we assume that
g(x) sign x > 0 for x }# O (1.4
then (0,0) is the only singular point of (1.3). The
. "phase energy" function of (1.3) is defined to be
E(x,y).= 3y2 + G(x) (1.5)
where
G(x) = [" g(g)dg (1.5)
Urder suitable conditions on f(x,y) and g(x) we shall
show how to obtain twe constants e and e such that all
closed trajectories of (1.3) lie in the region of the
(x,y) plane dgfined by € > E(x,y) > e. If g(x) satifies
(1.4) and the condition
G(x) » + = as |x| + = (1.7)
then this region is the annulus between the two simple
closed curves E(x,y) = e, E(x,y) = e. With the help
of the tables produced in Chapter IV the numbers e, e

can be easily computed in practice.

The Li€nard equation is

2
L5+ £+ gx) = 0 (1.8)

This is the special case of (1.2) in which the function

f(x) is independent of dx. As well as being equivalent
dt

to its corresponding phase system (1.3) the Liénard
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equation is also equivalent to the autonomous system

dx

E-= z - F(X),

L = g | (1.9)

where

F(x) = [* f(g)dg (1.10)
The (x,z) plane is called the "Liénard blane" of (1.8).
The singular points of (1.9) are all of the form (x*, F(x*))
where x* is a root of g(x) = 0, If g(x) satifies (1l.u4)
then (0,0) ié the only siﬁgular point in the Liénard
plane. The "Liénard energy" function of (1.9) is
defined to be

V(x,y) = 322 + G(x) (1.11)

= iy + F(x)]2 + 6 (x) - 7(1.12)

Under suitable conditions on f(x) and g(x) we shall
show how to obtain two constants v, v such that all
closed trajectories of (1.9) lie in the region of the
(x,y) plane defiﬁed by v > V(x,y) > v. If g(x) satifies
(1.4) and (1.7) then this region is the annulus between
the two simple closed curves V(x,y) = v, V(x,y) = V.
‘Later on we shall make use of thé following well-known

result which is proved in [lj, page 108-110.

Theorem 1.2 Levinson and'Smith's Theorem:
1. f(x) and g(x) are continuous. f(x) is an even

function of x, hence, F(x) is odd. g(x) is an odd
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function of x, hence, G(x) is even. g(x) satifies
(1.4).

2. F(x) has a single positive zero Xﬁ. It is
negative for 0 < x <« X*. For x > X* it increases
monotonically and hence is positive.

3. F(x) » = with x.

Under these assumptions, the equation (1.8) possesses
a unique periodic solution.

In Chapter IV it is required to find the maximum
and minimum values of the phase energy E(x,y) on a closed
- trajectory of a system of type (1.3). The derivative
of E(x,y) following any solution x(t), y(t) of (1.3) is

dE

L yy + g(x)x

y{-yf(x,y) - g(x)} + g(x)y
-y2£(x,y) (1.13) .

This shows that E(x,y) increases when y2f(x,y) < O

and E(x,y) decreases when y2f(x,y) > 0. The maxima and
minima of E(x,y) on a closed trajectory therefore occur

at the points of it where y2f(x,y) changes sign. Similarly
the derivative of V(x,z) following any solution x(t),

z(t) of (1.9) is

av
at

zz + g(x)x

z§-g(x)] + g(x) fz - r(x{]
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= - F(x)g(x) (1;14)
The maxima and minima of V(x,z) on a closed trajectory
of (1.9) therefore occur at the points on it where
F(x)g(x) changes sign.
We now suppose the system (1l.2) has a periodic
solution whose associated closed trajectory is C;. Let

3
™

e be the maximum phase energy on C;. If the equation

2
%;% + x(x ,g:) g¥ g(x) = 0O (1.15)

where g(x) satifies (1l.4) and (1.7), has a closed

trajectory C2 lying wholly inside C;, then C, must also

- - - ’ ."=
lie wholly inside the curve E(x,y) = e . If E(x,y) > e

at all points of C, then the curve with equation E(x,y)
lies wholly inside C,, and, therefore wholly'inside Cye.
This means that both the closed trajectories C; and C,
lie in the region of the phase space defined by

e < E(x,y) < ez'= (1.16)

The problem in this thesis is to find out if a

given free oscillation equation

d
¢( Xy S5 d: + g(x) = 0 (1.17)

has any closed trajectory and if so, where. Suppose we

have found with the help of a comparison theorem (proved

in Chapter II) that there is a closed trajectory T of

(1.17) between C; and C,. Then T must lie between the

o
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curves E = e , E = e. These curves are therefore
outer and inner boundary curves for r. So the problem

is solved if we find e and e, Computation of e and e

for two standard equations is done in Chapter IV,

- Later on in Chapter V we shall take a Liénard'equation

of the type (1.8). If it hés;any Elosed trajectory, we
will.transform the equation fo the standard form by
abscissial transformation (see Chapter III), With the
-help.of a comparison theofem ksee Chapter II) and the
energy tables produced in Chapter IV, we will find the
range of variation of energy on a closed trajectory of
this new eéuation. This rang;.of variation will also be
the range of variation on.the‘corresponding closed
trajectory of the original Lienard equation because of
the invariance of the energies under abscissial
transformation (see Chapter iiI). If the so-found range
of variation of phése energieé be e and e* and that of

Liénard energies v and v then two phase énergy curves

3 b

E=e and E = g or two Liénard energy curves V = v

and V = v give outer and inner boundary curves for the

o’ ofa

closed trajectory. e and e, oF v and v may not be the

actual maximum and minimum phase or Lié¢nard energies on
the closed trajectqu but we are sure that the closed
trajectory is not certainly exterior to the curves

% % ’

E=e and E = g or to the curves V = v and V = y.

We have done it in details in-Chapter V.
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Chapter II

Comparison_ Theorems

(A) Two bv_twé autonomous system

Suppose the 2 x 2 autonomousjsystem
%= Pi(xey)s Y = Q) (x,y) (2.1)
has a clo;ed"cque Cyo | - |
Consider another 2 x 2 aﬁtoﬁ?mous:system
X = Py(x,y), ; y = Qz(x,y) (2.2)
Theorem 2.1 | ‘

, Suppose Cl is descrlbed in a.clockw1se sense as t
increases. If Ple < P2Q1 on C; then any trajectory of
(2.2) which_meets C, subsequently passes_lnto the inter-
ior of C,. | |

Suppose C; is described in an antlclockw1se sense
as t increases. If P;Q, > P,Q, on C, then'anyvtrajectory
of (2.2) which meets Cy subSequently,paééés into the -
interior of C,. | B o |
. Proof

It is sufficient to ﬁrove tﬂé.first'paft of the
theorem.. The vector (PI,QI)_péinfs along>tangent to Cy.

The vector (-Q;,P;) 1is perpendicular tb‘(Pl,Ql) and 1s

therefore normal to C;. Sinée (P;,Q;) points in clockwise

sense, (-Q,,Py) points aloné*outwérd normal. The vector

PR T . s DD :
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(P2,Q2) points inwards if its scalar product with (-Q;,P;)
is negative, that is, if P;Qy - P,Q; < O. This establishes
the theorem. | o
Cor 1

Suppose C; is described in a clockwise sense as t
increases. If P1Qy > P,y on:01 then any trajectory of
(2.2) which meets C, subsequently passes to'the exterior
of Cy. |

Suppose C; is described in ‘an anticlockwise sense
as t increases, If P;Q, < P,Q; on C, then any trajectory
of (2.2) which meets C; subsequently pésses to the
exterior of C,. o
Note In our discussion, hereafter, unless otherwise
mentioned, C; will always be supposed as described in a
clockwise sense.

If PjQy < PyQ; on C; then the system (2.2) has at
least one singular point inside Cy.

Suppose corollary false. That is there are no
singular points of (2.2) inside C,.

Any trajecfory C, of (2.2) which meets C;, thereafter
passes into the interior of C; and remains inside C; for
ever (Theorem 2.15. Sincé there are no singular p&ints

of (2.2) on or inside C; the system (2.2) has at least
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one closed trajectory inside lebj Theorem 1.1. Let T
be a closed trajectory of (2.2) inside C;. Hence there
exists at least one singﬁlar ﬁoint inside I by Index
‘theorem.  This contradicts our aséumption. Hence the
corollary is not false. |
Note I P;Q, < PzQi.on C, implies that any trajectory C,
of (2.2) inside C, cannot;meet C1.  Trajectories of (2.2)
which meet C; come from outside C, and thereafter remain
inside C; for ever. | '_
Note LI When the sign of ineQualify-does not change on
C, between P,;Q, and P,Q;, there.is aiways at least one
singular poiﬁt of (2.2) ihéide Ci,ino-mattér whether C,
is described élock&ise or anticiockwise. |
Cor 3

If P;Q, < P,Q; on Cy, and if (é.Z) has a single and
unstable singular point (S, say) inside.C; then there
exists at leasf pneﬁclosed tréjectory of (2.2) lying
wholly inside C,.
Proof

Since the singular point S-is unstable, trajectories
of (2.2) emanate away from S. Since there are no other
singular points, we can encircle § b§ a closed curve 2
which is wholly inside C; such that all trajectories of
#Poincare has established a series of Index theorems one
of which is given below.
"A closed trajectory surrounds at least one singular point"

See [2], page 79, line 8,
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J'(Z.Z) which start from S cross z1oufwapds.

By'Theofem 2.1, all-trajecteries-of'(2.2) which

| meet C) cfoss C; inwards. )

Now if the ring;shgped fegicﬁ Betweeﬁ Ci and 2 be
fhe interior of the domain D whose boundaries are C, and
2, then the domain D.is bouhdéd and containé no singular
points of (2.2) insidé if or oh_its bounéary; fSince
any trajectory of (2,2) which meeté C; or &4 enters into
D and reméins inside D for ever, we ﬁonclu@e by Theorem
1.1 that there exists a closed trajectory of (2.2) in D.

If PQ, < PéQl, the'eéﬁality oécuring anly at a
finite number of points on Qf and if there are no
singular points of (2.2) on C; then éﬁy'frajectory:of
(2.2) which meets C, passesﬂsubsequéntly into Cj. -
Conversely if any trajectory of (2.2) which meets C;, is

. not exterior to C; then P;Q; % PZQI on C;.

The equalityvfin 2 P,Q; occurs only at a finite
number of pointé (which are therefore isolated) on C,.
At all other points on Cl, trajectories of (2.2) pass
into C;. Since éolutions vary coptinuoqsly with their
initial conditions, the trajectories of (2.2) which meet

C; at these points of equality are bound to pass into C;.
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If (i) P4Q3; £ PQ; on C;, the equality occuring only

at a finite number of points‘on'cl,
(ii) there is a single and unstable singular
point of (2.2) inside C, ‘
and (iii) there is no 31ngular point of’ (2 2) on Cl,
t@zh there exists at least one closed trajectory of (2.2)
-Whlch is not exter;or to Cy. |
Proof |

Same as proof to Cor 3.

-(B)”Phase system of a free non-linear oscillation eduation
Consider the general differential equation of the
relaxation oscillations |
£+ F1(x, 0% + g(x) =0 (2.3)
where f; and g are continuous in their arguments and.g
is 1ipschit£ian, in every bounded domain, and such that
.xg{x) > 0 for x § 0, gimé(x)dx z + o,
(2.3) can be written as the first order.systgm.
%2V, 9= - £105,9)V - glx) (20w
Suppose that (2 4) has at least one perlodlc solutlon,
that is, there ex1sts at least one closed curve Cp in
the (x,v) plane._
Consider another differential equation

X+ f(x,%)% + g(x)

0 ) (2.5)
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with f, continuous in its arguménts and lipschitzian in :

every bounded domain.

(2.5) can also be written as the phdse system

&z v, ¥z = Fo(x,v)V - g(x) - (2.6)

Theorem 2.2 (De Castro's-Comparison Theorem [3])

If (i) folx,v) > £ (x, v) on Cl, the equallty : !

occuring at a finite number of p01nts on C;

and (ii) £,(0,0) < 0, .
then there exists at least one closed trajectory of
(2.5) in the (x,v) plane whlch is not exterior to C;.
Proof

- The equation 62.3) ié.a particular case of the
system (2.1) in the (x,v) plane where o : |

P'l =V, Ql_::— f]_V —g

So is equation (2.5) of (2.2) Wﬁere
P, = v, Qp = - £V -8

At a point of intersectioh.éf a-frajectory of (2.5)
with C; in the (x,v) plane, we have | g
| P1Qs = PoQy = - v (fz - fl) < O by hypothesis (i) ‘
It follows from Cor 5 that (2.5) has a closed - i
trajectory which is not exterior to Cl. f
(C) Llenard-sgstem
Consider a Liénard equation L A i

£+ 26(x) +gx) =0 (2.7)
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Where g(x) sign x> O so that any trajectory of (2.7)
is described in a cldckwise_SéﬂQe%in-the Liénérd'plane.
Suppose the eéuatién (2.7) has a élo;gd trajectory C;
in this plane. s

Now consider another Liénardiequation

X + %f,(x) + g(x) = 0 (2.8)

Let F;(x) = [~ £:.(g)dg, i = 1,2 and let f; and f,

be even functions of x so that F; and F, are odd.

Theorem 2.3

If F, sign x > F) sign x on él, the eéuaiity
occuring at a finite number of poinfs on Cj, then any
“trajectory of (2.8) which meets Cf‘subsequently passes
-into the interior of Cj. If, iﬁ addition; £f,(0) < 0O,
then there exists at least a}clpsed trajectory'of (2.8)
in the Liénard plane which is not exterior to Ci.

22292 ) . _
The equations (2.7) and (Z;Bi iﬁ the Liénard plane

(x,2) can be written as the Liénard syétems

% =z - F1(x) = P, say .
: o «(2.9)
2 = - gx)= Qiy say |
X = z - Fa(x)i= Py, say o
2 S (2.10)
2= - g(x) = Q, say]

respectively.

- At a point of intersection of a trajectory of (2.8)
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"with C; in the (k,z)‘plane,:we have

P1Qp - PpQy = - g(Fy - Fy)

- : '._; 0 oﬁ Cy. _
The -first part of the'theoreh follows by Cor b Since
f,(0) < 0, the origin which-;s thé_only singular'point
of (2.8), is uﬁétable. Hence'py Cor 5, there exists
aﬁ least a closed trajectory_of-ﬁ?.é) in fhe Liéhard
plane which-is'not'éiterior ¢o C1?7-This establishes the

-fheorem.

PN, P S



-16-

Chapter IIT

Abscissial Transformation

Let W(x) be any function such that
(1) W(x) 4+ from -« to +» as x + from -=» to +=

" (ii) the derivative %¥ = w(x), say, is continuous in

-© < X < @,

If x5 = W(xy) and yy = y) then (x;, y,) = T(xy, y,)
defines a continuous one-to-one transformation of the
(xy, y1) plane onto the (x,, y5) plane. Then we 'call
T an abscissial transformation of the plané. dbviously
T has an inverse transformation T' which is also
abscissial and cérresponds to the.inverse function of
W(x). Moreover if (x;, y;) travels along a curve C,
then (x5, y2) = T(x;, yi) travelé along some curve C,.
We write it as Cp = TC,.

Theorem 3.1

If C; is a trajectory of the system
X1 Y1s v1 = ~y1E(HCx1),yy) Q<x1).- g(W(x1)) wi(xy) (3.1)
then C; = TC; 1s a trajectory of the systemy
X2 = Y2, Y2 = ~¥2f(kps ¥5) - g(xy) (3.2)
Proof |
Let x1(t), y1(t) be a solution of (3.1) whose locus
is Cp. If x,(t) = W(x;(t)), yo(t) = y;(t) then C, is the

locus of x,(t), yé(tf.
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Now x5 (t) = wixy) x; = w(xy) yy = w(2(x)) s |

where x; = Q(x,) is the inverse of x, = W(x;).
1 2 2

Again §z(t)'= &1(t) ~y1f(W(x1), y1) wixy) - g(w(xl))w(xl)i
: = =y2f(x2, y2) w(a(xy)) - g(xy) w(n(x2)§
That is, xa(t), y2(t) is a solution of the system '

. A2 ~y2f(x2,¥2) - g(x3)

Xy T ————— Ly = (3.3)
0(x3,¥5) 0(Xp,¥2)
1
.where o(x;, yp) = ———— . So C, is a trajectory of i
w(Q(xy)) |

(3.3).
But (3.2) and (3.3) have the same trajectories. '
Therefore, C, is a trajectory of (3.2).
Now we can prove that under abscissial transformation i
the energy at a point on C; is equal to the energy at a |
corresponding point 5n C,. For this purpose we will
establish the'following %wo invariance theorems on energy
which will be found useful in Chapter V. As we are '
interested in a periodic solution of an equation, the
theorems will be confined fo ehergies on closed trajector- |
ies only. .

Theorem 3.2

If Cy is a closed trajectory of (3.1) then C, is a
closed trajectory of (3.2) and conversely.
Furthermore the greatest and least values of the

phase energy of (3.1) on C; are equal to the greatest



-18-

and least values of the phase energy of (3.2) on C,.
Exps ¥2) = 3y + G(xy) (3.4)
is, by definition, the phase energy of (3.2) where
6(xp) = [*2 g(g)dg
But |
dG(wW(g))

£ gu(g)) wlgddg = [*1 ———— dg = G(W(x;))

Hence the phase energy of 63.1) is

1ya + GW(xy)) = E(W(xy)syp) (3.5)
Therefore, if x, = W(x;), y, = y; then (3.4) and (3.5)
are equal, That is,
phase energy of (3.1) at (x3, yi)

= phase energy of (3.2) at T(xy, y;).

Therefore, maximum and minimum @hase energies'on C, and
C, are thé same,

Theorem 3.3

If £ is function of x5, only then (3.1) and (3.2)
are Liéﬁard equations and a Liénard energy is defined.
In.this case the greatest and .least values of the Liénard
energy of (3.1) on C; are equal to the greatest and
least values of the Lienard energy of (3.2) on C,.
Vixy, yp) = 3(y, + F(x,))2 + G(x,) (3.8)

s ./ '
is 'the Lienard energy of (3.2) where F(x,) = gxz f(g)de.
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But gxl f(W(E)) w(E)de = f(W(xl));' So the Liéﬁard
‘energy of (3.1) is
1(yy + FW(x1)))2 + G(W(xy)) = V(W(xy),y1) (3.7)
Iherefore,-if Xy = W(xl), y2 = y1 then (3.6) and (3.7)

are equal, That is, under abscissial transformation,

Lidnard energy is same at corresponding points. Therefore

- - ’ -
* the maximum and minimum Lienard energies on C, and C, are
the same,

. Definition

We say that the oscillafion equations
X + xf(W(x),x) wix) + g(W(x)) w(x) = 0 (3.8)
X + xf(x x) + g(x) = 0 (3.9)

are abscissially equivalent. We have just proved that
the trajectories in the phase plane of.(3.9) can be
.got frop those of (3.8) by making the abscissial
transformation corresponding to function W(x). That is,
if we know the trajectories of one, we can immediately
find the trajectories of the othefa

Theorem 3.4

Suppose that (i) g(x) sign x > 0 for x $ 0 (3.10)
(ii) g’(0) > 0 (3.11)

(iii) G(x) = [ glg)de ~» +m{?s X > ¥ (3.12)

as x -
Then the function W(x) can be chosen so as to make

g(W(x)) wix) = x.




[That is, (3.9) is abscissially equivalent to an equation

of form x + k¢(x,§) + x = O].

Proof

As x + from -=» to += the function /ZGTRJ sign x +

from -« to +e«,

Then W(g) + from - to +» as £ + from -« to +=,

Now £2 = 2G(x) = 2G(W(E))
Cp o= 4 1p2y = 4o ;
8 T T (zg ) daE (G(W(E)))
= gli(g)) S (3.13)

g

We have g(x) = g(0) + xg'(0) + X2 g " (0) + ....

But G(x) =

.. /28TX) = |x]| /E7C0Y ¥ o(x)

Again § =

Y

z
.. there exists (
st L)

Hence the derivative w(E) of W(E) is continuous and

ar is obviously continuous and positive for & # 0.
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Let x = W(g) be the inverse of & = /2G(X) sign x.

x2
2

0 + xg ' (0) + o(x2) when x is small
X g(gl)dg = %ng'(O) + o(x3)
ng'm)+<xxﬂ

[
o
b
2

/3T sign x'= x/g7(0) ¥ 6(x)
1 1

- - - > - aSE+O
/g7 (0) + o(x) /g’ (0)
dx\ = 1 > 0, by hypothesis .
== - : !
dgﬁﬂ g S
- §§ >0 at £ = 0
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positive in -« < § < +w,
..We héve now from (3.13)

£ = g(W(g)) w(g)

This establishes the theoremn.
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Chaptén IY

Standard equations

In this Chapter the_closed'tféjectoriés of certain
standafd equations are discussed. These standard equations
have unique closed trajectories. -Atlprééent,_our object
is to compute the greatest‘and least values of the phase
and Liéhayd energies on the closed trajectory of a '
standard equation; They will be used in Chapter V in
cbnjunctiqn_with the Comparison Theorem and Abscissial
Transformation. |

The first of the standard»equations is the van der

Pol equation

2 . ' )
7%y Aex2 - @)+ x = 0 | (4.1)
dt? © pZ dt .

where X and }Aaré positive constants. It follows at
once from Theorem 1.2 thét this equation has one and
only one closed trajectory in the Liénard plane. All
other tréjectories approach. this closed trajectory
asymptotically as t + +=, It fbllows that the Same 1is

" true of the trajectories in the phase plane of (4.1).

-, A A
Let e(;gu r@), gﬁ?zy Pz) dendte- the greatest and.least
values, respectively of the phase energy 3(x2 + x2) as
the point (x, x) varies round the closed trajectory of

(4.1) in the phase plane. The change of variable x = FE
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‘'reduces (4.l1) to the normalised form

d2 )
#+ A(g2 - 1)

Since x2 + x2 = N2(g2 + éz) it follows that

l%

=+ ¢=0 (4.2)

Q,

ol
>o

(=5, $2) =p-2é'(x,l)

FA N (4.3)
et B = p2e(r,1)

'It is therefore sufficient to tabulate the functions
|

.e(2,1) and e(a,1). For a = 0.1, 0.2, ...., 1.0 and for ‘

A = 2, 3, .e.., 10 the periodic solution of (4.2) has . f
}been accurately computed by Urabe [4] and Urabe, Yanagi=--

'wara and Shinohara [5] respectively. It follows from

(1.13) that the maximum and minimum values of the phase |
'energy of the closed tfajectory of (4.2) occur at points

:(a,é) at which A(g2 - l)é2 changes sign, that is, at ;
:péints where the trajectory crosses the lines § = I,
The exact coordinates of these intersection points were
?fouhd from Urabe's tables by interpolation and the

functions &(a,1), e(1,1) shown in table A were then

! . -, A A
‘calculated. Similarly let v(;‘—z,'r\z), x(p,rz) denote

. _ ,
the greatest and least values of the Lienard energy

Funection
. N _ ,
: Vix,z) = zx2 + %[?._ AX + %.Fé x3]

!

along the closed trajectory of (4,1). Since
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Vix,2) = p2[3g2 + 3(g - ag + % Ae3)_2], 5

it follows that

<
”~~
T

N

v
g2
'

]

= r.zx'z(;,l) , U”’) ;
!
paaa ) o
where v(a,1), via,1) are' the numbers corresponding to
(4.2). It follows from (l.14) that the maximum and
minimum valucs of v(x,2) for the periodic solution of
(4.2) occur at the points where X(%g3 - £)¢ changes sign,
' that is, at points where the trajectory crosses the lines
£ = : 73: The precise coordinates of these points of
intarsection were found from Urabe's tables by interpol-
ation and the functions ¥(i;1), v(A,1) shown in Table A

were then ccmpﬁted. From these tables and (4.3) and

(4.4) we can readily calculate e( r 2), e(rz,r@),

G(F%,r@), v(—g,r?) for a wide range of values of Pé and r

Our second standard equation is - |

d2x x

d?' + w(X,G,B,Y) + x =0 (u.S)

where a,8,y are positive constants and y(X,a,Bsy) is

the step function which is equal to g in the range |x| > y
' v r
and is equal to -a in the range |x| < y. The Lienard |

system (1.9) associated with (4.5) is
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2

% z - ‘P(X,a,s,__y), -fl—i- = =X, (4.6)

where ¥(x,0,8,v)

gx P(x,a,B8,Y)dE is equal to -ax in
the range |x| < v and equal to Bx - (a + B)y sign x for

x| > y. The graphs of the function Y(x,a,B,v), Y(x,0,B,Y)

N
A

) /5 '. — "f\d\«&\i‘@p AN

|

] . !

E : i

A ' ‘
| ¥

\\ .
~N/

-y - a I&H) Y

— e e - —y

: , V= (_,Q,_ i,g,;/,- ) |

————

~are shown in Figures 1 and é'respectively{ Even though
w(x,u;s,y) is discontinuous at x = * y its integral |
W&x,a,s,y) is continuous and satifies a Lipschitz
condition in == < x < ». The solutions of (4.6) are

. therefore well behaved as regards the existence and
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uniqueness problems. It follows that the same is true
of 'the solutions of (4.5). Frém Theorem 1.2 we deduce f
that thé system (4.6) has a unique closed trajectory in
the (x,z) plane which is apﬁroaéhed asymptotically by
all other trajectories as t =» f.w. It‘follows that
the same is true of the trajectories in the phase plane
of the equation (4.,5). Let e*(a,B,Y), es(a,B,Y) be
the greatest and least values, respectively, of the
_phase energy 3(x2 + ;2) as the point (x, é) varies along
the closed trajectory of (4.5). Similarly let
V*(a,s,y), ve(a,ByY) denote the greatest and least
values of the Liénard energy Ix2 + %[; + W(x,a,B,y5]2
along the closed trajectory. The change of variable 3

® = ya'reduces (4.5) to the form

2 - |
L5 + vlea,8,1) o+ ¢ = 0. (4.7)

As before, we also deduce that

e"(G,B’Y) Yzeg';(a’s,l)

v2e (a38,1), eslasBsy)

-": :': (LI-.S)
v (oyByy) = y2v (a,B851)y Vela,B,y) = y2ve(a,B,1) A

From (1.13) the maximum and minimum values of the phase : }

energy are attained at points where y(£,a,8,1)E2 changes
sign, that is, at the points where the closed tfajectory
crosses the lines § = : 1. It was by finding these

e

points of interseéction that the functions e“(a,s,l),
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e,(a,B,1) displayed in Table B were calculated. Simil-
arly the maximum and minimum of the Liéﬁard energy 1s
attained at the points where ¥(£,a,B,1)¢ changes sign,
that 1s, at the points where the closed trajectory

+

crosses the lines £ = (a. + B)/B. By finding these points

ot

of intersection the functions v (a,8,1), ve(a,B,1)
~displayed in Figure B were computéd.

We now explain how to find the points of intersection
+ .

of the lines & = igl, 1 (a + B)/B with the closed-

trajectory in the phase plane of (4.7).

Trajectorles of (u,. 7) in phase plane are made up (Flgure 4)

’

—

e

-
! N—-‘— -

.bwa

)Y

o " aw:@:w{.e@,«,&n@w
V= Y(££,8,) - am,mé)ul-z‘/&fw“ﬂﬁff “Af+g= a){
C2en deopien Lbs Tofe bfin o $tPérg=c ’
|
!

Ffute 4
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of pieces of trajectories of
%n-aE +£ =0 (4.9)
in range - 1 < £ < 1 and pieces of trajectories of
E4BE+E=DO (4.10)
in range |g| > 1. Since y(E,a,B8,1) = p(-£,a,8,1),
if gkt) is a solution of (4.,7), then so is -g(t). Thus

if the locus of (E(t), (t)) 1s C, then the locus C of

- p o DI Tty et TeTAmET T TN ATUNTSSE T LT SIS oI

TW o+ W(‘f '7)
T—‘ﬂw 5

(-g(t), -£(t)) is also a trajectory and is got by rotating

C through = radians about origin. If C is trajectory
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passing through (-l1,k;), (1,h), (1,-ky) then C* is the
trajectory passing through (1,-k;), (-1,-h), (-1,k,;).
In order that C be a piece of closed trajectory it is
necessary and sufficient that k; = k,.

For any point (1, h) we can find k; and k, as functions

of h. If we plot the graphs V = kj(h), V = ky(h) then

Vo

)

the point where these graphs cross has kj;(h) = k,(h) = k,

say. The point of intersection of graphs determines h, k
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for the closed trajectory. So problem is solved by
computing functions kj(h), ky(h) and finding their point
of intersection,

Now let us consider the equation

T+ $(E,a,a,1)E + £ = O, (4.11)
Suppose we have computed one trajectory C, of (4.9).
If C, passes through points (-w, wkj;), (w, wh) then by
shrinking C, by a factor % we would get a trajectory

through points (-1, k;), (1, h). For each value of w, we

<

& .



-31-

can determine from Cy @ pair of values h, k;. We can

then plot a continuous‘graph of the function k,;(h). The

function kl(h$ will be denoted by k,(h,a) to indicate
its dependence upon the parameter o iﬁ (4.9). We then
plot the graph | _ i _
V = ky(h, o) | | (4.12)
in the (h, V) plane.
A trajectory Cz of _

T Foaf tg =0 (4.13)
would be obtainéd‘by reflecting C, in the g-axis. If
Cz is trajectory of (4.;3) through points (w*, W*h),
(w*, —w*kz) then by sc¢aling by“a'factor'%ﬁ-we would get
~a trajectory of (u4.13) through points (1, h), (1, -k2).
So for each value of w we can determine from Cy, a pair
of values h, k, and plot the graph | -

V = k,(h, o) : ) (u.lﬁ)
in the (h, V) plane. - ' |

By considering the equation
| T+ y(E,8,8,1)6 + £ =0, (4.15)

we can similarly plot the graphs

V = k;(h, g) (4.16)

and

<
T

k,(h, g) L (4.17)
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in the (h, V) plane.

Nz

%‘
N
>

Then the point P where the graphs (4.12) and (4.17)
intersect has coordinates (h, k) from which we deduce the
points of intersection (1, h), (1, -k) of the line & = +
with the closed trajectory of (4.7). The point Q gives
the corresponding point for (4,15), the point R for the
equation

E + U(E,B,0,1)E + £ = O (4.18)

1
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and the p01nt S for (4.11).

From (1.13) the phase energy 2(52 + E2) of (4.7)
takes its maximum and minimum values on the closed
trajectory at the points where y(&,a,8,1) changes sign -
that is, at the points ¢ = z 1. Hence the point P whose
coordinates are (h, k) determines the maximum energy
e*(a,B,l) = 3(1 + h?) and minimum energy e.(a,B8,1) =
3(1 + k?). By this method the functions e*(a,B,l) aﬁd
e.(a,B,1) displayed in Figure B were computed.

Our next step will be to find out V*Qa,s,l) and
vs(a,By1). For this purpose, we find out the points of

. . . + . .
intersection of the lines £ = - (1 + %) wlth the closed '

WW}# W(q 7)

F‘Wﬂ
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trajectory of (4.7). Suppose the line £ = + (1 + %)
meets the closed trajectory at points (1 + %,‘%) and

%[(1 +%f +?12]

and (4.19)
e v ) + 4]

we explain below the method of finding % and k.

vh(a,s,l)

V*(U’B’l)

If a trajectory of (4.10) goes through points
o
E:
ectory with scale factor

.Y (3
(1, h), (1 + h), (1 + 2, -k), (1, -k) then the traj-

£> w|

goes through points
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A A aA LYY ah. NA A A
(wy, wh), ((1 + E)W, hw), ((1 + E)W° ~kw), (w, =kw).
On a loop of a trajectory of (4.9), draw the line
with slope -h where h is the value for periodic

'S A
solution of equation (4.7). Suppose (w, -wh) is the

point where this line meets this loop. Draw a

A .
perpendicular to the g-axis thirough ((1 4%%)w, 0). The

distances of this perpendiculér to the g-axis from the
: : AN N :

curve are wh and wk, So dividing these distances

A I'N ’'S
by w, we get h and k. '
We have thus found out e , ey, V , vV, for the

closed trajectory of the equation (4.7) when o and 8
are both positive. The actual comﬁuted results for

different a's and B's are shown in Table B.
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Table A

€, &, Vv, v for the closed trajectory of the van

der pol equation

X+ A(x2 - Lx +x=0 (x> 0).
A e v v &
0.2 2.28 | 2.06 1.92 1.76
0.b4 2.61 2.19 1.85 . 1.56
0.6 2.99 2,32 1.79 1.8l
0.8 3.47 2.46 1.7 - 1.28
1.0 3.95 2.63 1.70 1.17
2.0 7,74 3.81 1.58 0.90
3.0 13.23 5.47 1.54 0.79
4.0 20.62 7.56 1.52 . 0.74
5.0 29.64 10.06 1.51°  0.70
6.0 40.33. 12.99 1.51 0.67
8.0 " 66.79 20.09 1,51 0.6

10.0 100.79 28,99 1.50 0.62



?

s
[

ofs

‘e 5 €35 V , Vv, for the cl

%+ xE(x,0,8,1)" + x

10.80
30.53
60.01
95,72

136.62

245.81

333.32

545,00

- -38-

Table B

f(x,a,B,l)'

7.23

23.63 .

48.76
T4.12
99.87 -
176.26
228,17

386.u41

0, where
-a for |x| <1

8 for |x| > 1.

osed trajectory of the equation

15.62
30.92
47.06
66.39
117.08

158,03 |

 257.918 3



12.02
22.94
35.36
52.62
92.98
120,94
188.10

1.52

14,02
17.46

25.07

€y
1.28

2.08



0.25
0.50
1.00
1.50

0.25
0.50
1,00
1.50
2.00
2.50
3.50
4,00

5.00
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11.13
13.32

19.41,

'12.37

S
0.64

0.74
0.86
0.94
1.04
1.1u
1.23
1.32
1.44

ey
0.597
0.63
0.68
0.71
0.717
0.72y4
0.724
0.724

0.724



0.25
0.50
1.00

1.50

0.25
0.50
1.00
1.50

12.12
17.86
30.53
38.43

59.36

11.64
17.44
29.76
37.57

58.28
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0.6g9
0.812
1.13
1.48
1.89
2.32

€
0.55

0.58
0.60
0.61
0.615
0.62
0.625
0.625

0.625

0.53
0.54

0.55

0.55

0.55
0.55
0.55
0.55

0.55



0,25
. 0.50
1.00

1,50

42

. Vg
0.555
0.61
0.725

- 0.85

0.987

1.13

1.u46
1.63

2,01

€x
0.53

0.53

0.53

"0.54

0.54
0.54

0.54

' 0.54,

0.54

e
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52

0.52
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Chapter V

Outer and inner boundary curves of a closed traijectory.

Suppose we are given an oscillation equation
X+ E(x, ¥)x + a(x) = 0 (5.1)

Our idea in this Chapter is fo find whether this
equation has any closed trajectories and if so, where.
We shall briefly outline the general procedure which will
be followed by the illustration of an example.

Assuming that g(x) satifies the conditions (3.10),
(3.11) and (3.12), we can find from Theorem 3.4 an
abscissially equivalent equation ‘

X+ Pix, X)x + x = 0 (5.2)
In the special case when f(x, é) is a function of x
only the same will be true of {(x, x) and the graph
= Q0(x) can be easily drawn as a locus in the (x, V)

plane of the point

= /2G(e) sign 6, v = fgg; /2G(8) sign & (5. 3)

as e varies from -« to +te,
Now consider the equations
X + Ax)x +x =0 ‘ (5.4)

and

X +B(x)x +x=0 (5.5)
where A(x), B(x) satisfy the requirements of Levinson

and Smith's Theorem of Chapter I so that the equations
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3

from outside. At all points on ri", Pix,y) > A(x).
So by comparison theorem, trajectories of (5.2) cross
FI* inwards. This is true for any ioop of a trajegtory
of (5.4) outside ;. So there cannot be any closed
trajectory of (5.2) outside r,. Simiiarl§ there cannot
be any closed trajectory of (S.Q)Linside Tr,. 'Hence,
when (5.6) holds, any closed.trajectory of (5.2) must
lie in the ring betwéen r, and r,.’ |
Suppose A(x) is a step fuﬁction p(xXsasB8,y) and B(x)
a parabola A(x2 .- u?2) so that (5;6) can be writtén as
v(xXsa5B57) < P(x,y) < A(x? - }@) for ail (x,y) (5.7)
Using tables we now find maximum value e*(a,B,y) of
phase energy 1(x2 + y2) on ry, and minimum value e(i,p2)
of phase energy on . Then r (and all other closed
trajectories of (5.2) if more than one) must"lie in
region
e*(a,B,y) < %(g? + y2) < éﬁa,y@) , (5.8)
Let A be the closed'trajectopy of (5.1)-éorresponding
to the closed trajectory r of (5.2).- Since Theorem 3.2
shows that the energies on T :-and A are invariént under
abscissial transformation j iiés in the region_'.
e*(as8ay) £ B¥2.+ GO < ey pd) (5.9)
In summary when g(x) safifies (3.10); (3.11) and

(3.12) and the condition (5.7) holds then
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(i) there exists a closed trajectory A of (5.1l) in
its phase plane, | |
(i) A lies in the region defined by (5.9), and
(iii) all clésed trajectories of (5.1) lie in this region.
An_example
Locate the closed.trajectory in the phase plane of
Xt 4x(x2 = 1) + 2x3 + x = 0 (5.10)
using (i) phase energy,
and (ii).Lienard energy.
Solution There exists abscissially equivalent equation
of form - A
X+ Q)X + x = 0 (5.1

where graph of § is the locus of the point.(x, v) where

(a2 - _— .
x = /87 F 1 sign o, v = +&=d /AT FT sign ¢
: 202 + 1

as o varies from -= to +w. The curve v = @(x)lis
plotted in Figure 2. |
We see from the graph that
Plx,4,1,2.2) < P(x) < 1.2(x2 - 1,32)

ote

e  for the closed trajectory of
R+ p(X,0,B8,Y)%x + x = 0 ° (5.12)
when a = 4, 8 = 1, y = 2,2 is 283.6 and e for the

closed trajectory of
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_ ,IQ + X(xéu—" z)é-*-x =0 - (5.13)

when A = 1.2 and p = 1.3 is!l.SQ} .

Therefore the closed trajéctéby'of (5.11) lies
between the circles |

3(x2 + y2) = 1.50 and 3(x? + y2) = 283.6.
Hence because of the invariaﬁbe of energies on the
corrésponding closed trajégtories under abscissial
transformation we conclude that. the closed trajectory of

.(5.10) lies between-the closed curves

u

2
(y2 +%+

)

NofX
n

NI

' ok
1.50 and 1(y2 + % + % ) = 283.6.

Also we see from the graph.fhat
V(R,4,1.5,2.2) < P(x) < 1.2(x2 = 1.325
The maximum Liénard energy'v*(a,s,y) for the closed
trajectory of (5.12) when o = 4, 8 = 1.5, y = 2.2 is 85.7
and the minimum Liénard energy v for the closed trajec;
tory of (5.13) when A = 1.2,-/1? 1.3 is 2{65'
Therefore the closed trajectory of (5,11) lies
between the closed curves ' .
Iy + P(x))2 + 3x2
3y + Jx))2 + Iy

) = 17 0Cedrag

2,65 and
= 85,7 where

x
N
'

Hence for the same reason as above we conclude that the
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closed trajectory of (5.10) lies between the closed

curves
3 2 4 2 :
1 X" X Jr. e
iy + 4 -] + %5 +& = 2.65 ana
3 2 b2
iy + 4§ -] + % +% =857

Remark I

The functions A(x) and B(x) neea not necessarily
be a parabola or a step functioﬁ. They may'both be
parabolas or both step functions or some other functions
so long as they satisfy (5.6) and we know the maximum
and minimum energies on the closed trajectories of (5.4)
and (5.5).

Remark II

It is obvious that to get a better approximation
of the outer and inner boundary curves we must always
choose A(x) and B(x) as close as possible to {(x). If
B(x) be a parabola the followiné method would give a
very good approximation of the corresponding boundary
curve, '

Take a transparent sheet with parabolas V = ix2,
A >0, on it. By conciding the V-axis-of the parabola
with the V-axis of the curve V = (%), shift the
sheet up or down as necessary and fina out which one

of the parabolas V = a(x2 =~ r?) is closest to and above

-the graph V = {(x).
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