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ELASTIC WAVE PROPAGATION IN EMBANKMENT DAMS 
M.D. LINTON 

Abstract 

This study investigates the stresses produced in an embankment 
dam as a result of excitation due to elastic plane waves. A 
two dimensional f i n i t e element model is used to represent an 
embankment and i t s substructure. 

The model uses a quadrilateral element, formed from triangles 
with a condensed internal node, which gives a better prediction 
of stress direction than a constant strain triangle. The equations 
of motion are assembled with lumped mass and damping matrices, and 
solved by direct integration using a fourth order .Runge-Kutta 
algorithm. For time-steps in the range of s t ab i l i t y this algorithm 
is shown to be accurate and easy to use. I t is shown that the 
range of s t ab i l i ty is considerably reduced with the inclusion of 
damping, and so damping was not included in the models studied. 

Tests show that for a f i n i t e element grid to model elastic wave 
propagation i t is essential for there to be at least eight 
elements per wavelength. I f this requirement is violated the 
predicted stresses are seriously affected, and the results of 
previously published studies must be judged against this condition. 
The model grid is designed to meet this requirement for the 
propagation velocity typical of dam materials and the frequencies 
typical of seismic events. 

Two models, (a) homogeneous and (b) layered, are excited by 
P and S waves at several angles. The consequent distortions 
of static stress distributions are varied, but exhibit conditions 
that could lead to fa i lu re by slumping or by tensional cracking close 
to the crest. The severity of the stresses was greater in the cases 
of (a) S-waves, (b) angled waves, (c) layered models. 

The physical processes producing, the stress distributions are 
examined. I t is concluded that the stress distributions are 
dependent on the angle of incidence and are not capable of explanation 
in terms of natural modes of vibration only. 



Acknowledgements 

I wish to thank Dr. R.E. Long fo r the help and advice that 

he has given me as my supervisor for this thesis. Also my 

thanks go to other colleagues at Durham Ihiversity for the 

many useful conversations I have had with them. 

This research has been supported by a studentship awarded by 

the National Environmental fesearch Council to whom I am most 

grateful . Also I must thank the Ihiversity of Technology, Lae, 

Papua New Guinea for a period of six months study leave which 

enabled me to commence my studies in Geophysics. 

Finally, my thanks go to Elaine Hodgkinson for her invaluable 

heTp in producing the type script. 



iv 

Contents 

Abstract i i 

Acknowledgements i i i 

Contents iv 

Chapter 1 Embankment dams and seismic waves : methods 

of study 1 

1.1 Introduction 1 

1.2 A possible subject division 2 

1.3 Determination of strong ground motions 3 

1.4 Ftesponse of dams to earthquakes 4 

1.5 The method of mode superposition 6 

1.6 The inclusion of substructure 10 

1.7 Integrated studies 12 

Chapter 2 The f i n i t e element method 14 

2.1 Introduction 14 

2.2 Shape functions for a triangle 16 

2.3 Stress and strain fo r a f i n i t e element 21 

2.4 Finite element formulation of the equations 
of motion 25 

2.5 Consistent and lumped matrices for a constant 
strain triangle 29 

2.6 formulation of st iffness matrix for grid 
elements 36 

2.7 Condensation of an internal node 37 

2.8 Note on the centroid a quadrilateral 40 

2.9 Calculation of load vector for an element 41 

2.10 Calculation of stress in a quadrilateral 
element 46 



V 

Chapter 3 Integration of the equations of motion 51 

3.1 Introduction 51 

3.2 Choice of method 52 

3.3 The Runge-Kutta algorithm 55 

3.4 Stabi l i ty of the Runge-kutta algorithm 56 

3.5 An example 65 

3.6 Modification of equation of motion to include 
constraints 67 

3.7 Summary 75 

Chapter 4 Testing of the f in i t e , element programs 77 

4.1 Introduction 77 

4.2 Description of test grid and pulse 78 

4.3 Description of tests 82 

4.4 Summary 116 

Chapter 5 Limitations of the f i n i t e element method 117 

5.1 Introduction 117 

5.2 Restriction on time-step size 117 

5.3 Restriction on mesh size 118 

5.4 Restriction on possible input signals 120 

5.5 The f i n i t e size of grids 122 

5.6 Summary 124 

Chapter 6 The representation of an embankment dam by 

a f i n i t e element model 126 

6.1 The forms of embankment dam 126 

6.2 The features of an embankment dam model 129 

6.3 Choice of element size 132 



vi 

6.4 

6.5 

Chapter 7 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 

7.8 

Chapter 8 

Examples of f i n i t e element grids 

Design of a f i n i t e element grid for an 
embankment 

Stresses in embankments produced by 

P and S waves 

Introduction 

Conditions for fa i lure 

Description of models 

Discussion of the time-displacement graphs 

Discussion of the stress distributions 

The stress distributions and their physical 
explanation 

The stress distributions and natural modes 

of vibration 

Conclusion 

Summary 

References 

Appendix A Computer programs 

1 Function 

2 Structure 

3 Some notes 

4 Input f i l e s 

5 Output f i l e s 

Program l is t ings 

ASSEMBLY 

TIMESTEP 

PLOTS 

EDUCE 

FILES UM 

DISPLAY 
Appendix B Time-displacement graphs and stress 

distributions 

137 

141 

149 

149 

149 

157 

162 

165 

167 

179 

183 

185 

194 

199 

199 

200 

206 

209 

214 

216 

232 

239 

252 

257 

258 

accompanying 
por t fo l io 



1 

Chapter 1. Embankment dams and seismic waves : methods of study 

1.1. Introduction 

The prediction of the behaviour of a large dam when subjected to 

an earthquake is clearly of concern to the c i v i l engineer. The 

serious consequences of the fa i lure of a dam especially i f situated 

close to a populated region, can hardly be exaggerated. For 

example i t was f e l t necessary to evacuate temporarily some 80,000 

people as a result of damage to the Lower San Fernando Dam after 

the earthquake there in 1971. However, considering the many thousands 

of dams that exist throughout the world, the number of reported 

failures of dams due to earthquake is very small (Haws and Reilly (1981)). 

I t would appear that the designs used for large dams are inherently 

sound; but the engineer would be more confident in his decisions i f 

the behaviour of large dams subject to earthquake could be analysed 

with some precision. 

I t is the aim of this study to provide some insight into the dynamic 

processes of seismic wave propagation on interaction with a structure 

typical of an embankment dam. This, i t is hoped, w i l l contribute to 

the engineers understanding of the forms of fa i lure that might occur 

in a dam subject to a severe earthquake; but, as w i l l be made clear 

in this study, in view of the many limitations that surround the method 

of analysis, the conclusions can only be regarded as suggestive of the 

nature of the processes involved and not as a def ini te analysis. 



1.2. A possible subject division 

There are two broad aspects to the problem of seismic interaction 

with large dams; one area concerns matters that are primarily 

seismological whilst the other deals with the dynamic response of a 

structure to excitation. I f the problem is considered to be divided 

in this way, the aim of the seismologist's deliberations is to 

arrive at a record of a seismic event, which is to be used as the 

input for the structural engineer's analysis. This record might 

be of the form of an actual strong motion record, or a synthetically 

produced seismogram. For the engineer each of these contains i t s 

advantages. The strong motion record has the merit of being that 

of a true earthquake, containing a l l the f ine detail that is 

characteristic of a seismic event. However i t has the obvious 

disadvantage of being the record of the wrong event. To suppose 

that the record from another site (or even at the proposed site 

of a dam) w i l l be a close approximation to a future event is not 

j u s t i f i e d ; though in the absence of other information this may be 

the best that the engineer can use for his design decisions. There 

is therefore good reason for attempting to predict the form of 

strong motion records directly from earthquake source models. Some 

of this work is reviewed in section 1.3. 

This study f a l l s into the second of the two divisions just proposed, 

in that i t is an analysis of the dynamic response of a structure to 

a given disturbance. The methods that have been used for this kind 

of problem are reviewed in section 1.4. 
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1.3. Determination of strong ground motions 

Attempts at finding an analytic solution for the ground motion 

from a given earthquake source began with the pioneering study of 

Lamb (1904). The problem is of considerable analytic d i f f i c u l t y , 

and such solutions that have been obtained apply only to simplified 

situations such as the displacement due to a moving point source 

in an i n f i n i t e homogeneous space. The modelling of a simple fau l t 

was carried out by Aki (1968) for an i n f i n i t e medium, and a comparison 

of several dislocation models and their resulting motions in an i n f i n i t e 

medium, using the method of Aki , is the subject of the paper by Anderson 

and Richards (1975). An advance was made by Israel and Kovack (1977) 

by deriving a solution for an elastic half space; and more detailed 

numerical solutions were obtained by Bouchon (1980 a,b,) for both 

strike s l ip and dip s l ip fau l t s . 

These papers (and the many others that contribute to the same area of 

of study) reveal clearly that the d i f f i c u l t y of analysis and the complexity 

of the solutions. This complexity of grounds motions is shown on the 

papers of.Bouchon (1980 a ,b , ) , with graphical i l lustrat ions of components 

of displacement in three direction at the surface. In the case of a 

strike s l ip f a u l t there are large amplitudes in both horizontal directions, 

whereas the dip s l ip f au l t has large amplitudes in the vertical component 

and that which is horizontally along the strike l ine of the f au l t . 

A further point is well brought out in these papers, and in Murphy e t . a l . 

(1971) is the amplification of the ground motion i f there is a surface 

layer of low velocity sediments. Also the effect of topography on surface 

motion has been studied by Bouchon (1973), Boore (1973) and Rodgers e t . a l . 

(1974), leading to the conclusion that ground amplification could also 

be caused by surface features such as mounds. 
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These results point to the need to consider the dynamic response 

of a structure in relation to i t s immediate surroundings, and 

indeed the papers cited above were motivated by the strong motion 

record of the San Fernando earthquake of 1971 which was made at 

the si te of the Pacoima Dam. Besides providing one of the very 

few strong motion records taken at a dam s i te , i t was especially 

notable for the high values of acceleration that were observed. 

One of the horizontal components recorded a value of 1.25g (Bouchon (1973)). 

Bouchon etc. , concluded that this high value was in part due to the 

position of the seismometer which was at the top of a ridge alongside 

the dam. 

Prior to the Pacoima record the most commonly used strong motion 

record for a standard was the El Centro earthquake of 1940. I t 

was from a study of this record that Newmark (1965). took 0.6g as 

the maximum acceleration that needed to be accounted for in any design. 

This is now regarded as inadequate. 

1.4. Response of dams to earthquakes 

The simplest form of analysis of the response of a structure to 

a seismic event is a static one, in which the acceleration of the 

disturbance is replaced with an equivalent force. This method is 

given by Newmark (1965), and is used by him to explain various observed 

effects of earthquake, in particular the sliding of blocks along 

possible lines of fa i lu re . 
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A dynamic analysis of dams was given by Clough and Chopra (1966), 

using the f i n i t e element method. Of available numerical approaches 

this method has many attractions, especially i t s a b i l i t y to model 

arbitary geometries and variations in materials. This study, too, 

uses the f i n i t e element method for those reasons, but certain workers 

have used f i n i t e difference methods for the solution of elastic wave 

propagation problems e.g. Ilan et al • (1979). However the f i n i t e 

element method has proved the most popular approach to wave 

propagation problems, whether they be seismic waves or some other 

form of wave. 

An important feature of the method of Clough and Chopra is that 

the seismic disturbance is applied at a l l the nodes along the base 

of the embankment in the form of horizontal and vertical accelerations. 

The base is therefore a r ig id surface, and so in this model there 

is no interaction between the embankment and the underlying soil or 

rock. Vibration problems which consist of an elastic body attached 

to a r ig id surface with a prescribed motion are particularly suited to 

solution by the method of "mode superposition". This method was used by 

Clough and Chopra, but since i t is not used in this study a description 

of the method is given in the next section. 
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1.5. The method of mode superposition 

As w i l l be shown in chapter 2 any f i n i t e element analysis of 

a dynamics problem leads, as a result of the discretisation that 

is uses, to a f i n i t e set of ordinary second order d i f fe ren t ia l 

equations. These are wri t ten, using matrices, as 

[M] [q] + [ C] [q] + [K] [ q] = [Q(t)] 1.5.1. 

In this equation the matrices [M]3 [c] and [K] are determined 

respectively by the i n e r t i a l , damping and elastic properties of 

the continuum being modelled. The vector [ q] has as i t s components 

the displacements of certain selected nodes in the continuum, and 

[Q(t)] is a vector of specified loads (or displacements) acting at 

some or a l l of the nodes. The derivation of this equation is given 

in section 2.4. 

Once equation 1.5.1 has been assembled the problem is to determine 

[q] , the unknown displacements, as a function of time. In this 

study this is done using a direct integration algorithm. The method 

of mode superposition is an alternative to this . 

The key to the method is that there exists a matrix [ x], called 

the modal matrix, which can be used to decouple the equation set 1.5.1. 
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This matrix is found by solving the eigenvalue problem 

[ K ] [ q ] = J [M] [ q] 1.5.2. 

2 

For n degrees of freedom this w i l l give n eigenvalues u>. 3 

with corresponding eigenvectors J^J . The modal matrix is defined 

as the matrix of these eigenvectors, and so satisfies 

[K] [X] = [ M ] [ X ] [ A ] 

where [ * ] = [[q2] [q2] ... [qj] 

and [ A ] = 

I t is then possible to show that (Desai and Abel (1972), pp 358-361, 

Zienkiewicz (1977) pp 545-546) 

[ x f [ M ) [ X ] = [D] 

1.5.3. 

and [ X ] J [ K ] [X] = [D] [ A ] 

where [D\ is also a diagonal matrix. (Since the eigenvectors ^q: 

are not uniqueley determined, i t is possible to normalise them in 

such a way that[z?] is the identity matrix). 



In order to ef fec t the Uncoupling i t is necessary to assume that 

the modal matrix diagonalises the damping matrix also. We 

therefore assume that 

[x]T [c] [X] = 2 M [W] [D] 1.5.4. 

where [w] = [ A ] and 

[ r ] = 

The elements of r are termed modal damping ratios, and most 

experimental data gives information on these, rather than the elements 

of [C] (>Desai and Abel (1972) p.359). 

A change is now made to modal co-ordinates using 

[q] = [ X ) [ y ] 1.5.5. 

which, together with 1.5.3 and 1.5.4., transforms 1.5.1 to 

[ D l l Y ) + Z[T>}[w][D][y) *[ D) [ A ] [ y ) = [ * ] T [ Q(tl\V 

The coefficients of each of the terms on the l e f t hand side are a l l 

diagonal matrices, and so the set of equations 1.5.6., is decoupled 



into a set of n equations each of the form 

2 
y\ + 2 a. to. y. + oj.. y. = p At) i=lJ2J...n 1 

where the d. are the elements of [ D] and p.(t) is the ith element 

of the column vector [ X]^ [ Q(t)]. Each equation of 1.5.7. can 

be solved by standard methods. 

The eigenvalues, <D., are the natural frequencies of vibration for 

the system described by equation 1.5.1. with zero right handside, 

and the corresponding eigenvectors are termed normal modes. 

Each equation of 1.5.7. therefore gives the response of the system 

to each normal mode. The exact solution to 1.5.1. is given by the 

solutions to 1.5.7. which are "superposed" using 1.5.5. 

The primary disadvantage of this method from a numerical point of 

view lies in the solving of the eigenvalue problem 1.5.2., which 

can become quite prohibitive for a large number of degrees of freedom 

This is par t ia l ly circumvented by calculating only the normal modes 

corresponding to the lowest frequencies, and so solving only a few 

of the equations of 1.5.7. For instance in the analysis of Clough 

and Chopra (1966) the response of a system with 110 degrees of 

freedom is modelled with only 15 modes. 

The shortcomings, of truncating the number of modes is discussed 



by Hansteen and Bell (1979). They report that i f only the 

f i r s t few modes are used, then, even though i t may be possible 

to obtain reasonable values for displacemnets, the stresses 

calculated from these displacements may be seriously in error. 

One of the causes of error is that only the f i r s t few components 

of the modal load vector, [ X ] T [ Q(t)\, enter into the calculations. 

Hansteen and Bell discuss a method by which the static displacement 

due to the ignored components are included. They show, however, 

that this correction is only valid i f a l l mode frequencies up to 

and including those frequencies of the forcing loads are used in 

the calculation. I f this condition is not met then i t is better 

not to use the correction at a l l . 

1.6. The inclusion of substructure 

The principle of f a i l i n g of the method of mode superposition as 

original ly applied was that i t isolated the embankment dam from 

the underlying substructure. This means that such effects as the 

amplification of seismic waves by a layered geology, as discussed 

in section 1.3., are not included in the model. Another question 

that should be asked is to what problem are we really finding the 

solution? Since the base of the dam, which is the source of the 

motion, is kept r ig id i t must act as a reflect ing surface for any 

waves that are generated inside the embankment, and after a short 

time a set of standing waves w i l l be formed in the dam. When a l l 

the modes are superposed what is given is primarily a steady state 
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solution. This is not a fault of the mode superposition method 

as such - which, after a l l , is just a means of solving the 

equations 1.5.1. - but, since i t is effectively a solution in 

the frequency domain rather than directly in the time domain, 

i t does not draw attention to the way in which the wave in i t i a l l y 

propagates in the structure. 

I t is thus clear that a s t r i c t division between the seismological 

and engineering aspects, as given in section 2 .2 . , is undesirable, 

and that for a better understanding of the response of a structure 

to a seismic event the substructure should be included as wel l . 

Substructure methods which analyse the motions of the structure 

and the underlying soil separately, together with certain conditions 

governing compatibility along the interface, have been proposed by 

Gutierrez and Chopra (1978), and Fedock and Schreyer (1981). Certain 

advantages of the mode superposition method are retained for the 

study of the structure, but these methods are best used for the 

study of structures which are rigid comparative to the underlying 

s o i l , as , for example, a nuclear power station. 

The approach adopted in this study is to treat the structure and 

as mucht.of the underlying soil as a unified whole. The reflecting 

base to the embankment that was implicit in Clough and Chopra's 

original method is therefore transferred to a surface at some 

distance beneath the embankment. To do this the number of nodes 

has to be increased considerably, as is shown in detail in chapter 6, 
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but the f in i te element formulation s t i l l leads to a set of 

equations of the form of 1.5.1. I t would be possible to 

solve this set by mode superposition, but there are two main 

reasons for not doing so. F i r s t , the eigenvalues obtained 

would give the natural frequencies of vibration for the whole 

region modelled, both embankment and substructure. I t is to 

be expected that the frequencies of vibration that are pertinent 

to the motion of the embankment would be high compared to those 

of the substructure, and so for mode superposition to be rea l is t i c 

a large number of modes would be required. This inefficiency of 

mode superposition is recognised by Gutierrez and Chopra (1978). 

Second, since we are interested in the transient process of the 

effect of a propagating wave entering and then leaving an embankment, 

a method which is more directly in the time domain may make i t 

easier to appreciate the physical changes that are taking place 

while the wave interacts with the structure. For these reasons 

the equations of motion are solved by a direct integration algorithm 

which allows us to study the displacements and stresses for as 

many time-steps as we wish. The algorithm is described^in chapter 3. 

1.7. Integrated studies 

A ful ly integrated approach has been urged by Long (1981), in 

which the division of the problem suggested in 1.2. is not made. 

This would involve modelling, not only the embankment, but the 

earthquake source as wel l , and the interaction between the dam 
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and the substructure would automatically be included. Such a 

model would require, as well as knowledge of the materials of 

the dam and i ts surroundings, parameters concerning the rupture 

along a proposed fault l ine . 

In so far as this study includes as much of the substructure 

as was possible i t is a step towards an integrated model. The 

model used in this study has the fac i l i t y to model the propagation 

of plane waves of either P or S type, which may enter the structure 

at various angles of incidence. In this way a range of possible 

inputs, each corresponding to different seismic events, can be 

explored. This enables conclusions to be drawn on how seismic 

waves in general are l ikely to affect embankments, rather than 

how an embankment responds to a particular earthquake of the past. 

However this study does not go to the point where the source of 

e last ic waves is included in the model. Furthermore, the need for 

a suff iciently fine mesh of elements to sat isfactor i ly model any 

wave propagation, which is discussed in chapter 5, suggests that 

a f in i te element model which includes both the fault and i ts ruputre 

together with the embankment would be impracticable. In order to 

t ie the two halves of the problem together i t may be that an 

integration could be made of the analytic solutions to fault rupture, 

such as those discussed in 1.3. , with a f in i te element model of 

the embankment and i ts immediate surroundings. 
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Chapter 2 The Finite element Method 
2.1 Introduction 

The contents of this chapter follow in the main the lines of 

Desai and Abel (1972). 

An essential of the f in i te element method is the division of 

the region under consideration into a f in i te number of descrete 

elements, each of which is bounded by sides and nodes. The 

nodes are situated at the joins of s ides, but may also be placed 

at some intermediate point of a side or somewhere inside the 

element. The displacement of any point inside the element is 

then determined from the displacements at the nodes of the element 

using what have been termed the shape functions for the elements 

and which depend only on i ts geometry. Thus in turn the strain 

energy and kinetic energy of each element may be determined from 

the displacements of the nodes. In this way we can write down 

an energy equation, or, as in the present case use Hamilton's 

principle since we have a dynamics problem, and use this to 

determine the nodal displacement-time history. 

In order to show how this is put into practice we describe the 

necessary properties of shape functions in general and of 

the particular shape function that is required for the simple 

triangular element that forms the basis of this study. 
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I f an element has nodal displacements g^, g^, . . . ,qn 

then the shape functions Nni Noi ... N. are chosen so that 

the displacement u at a general point is given by 

The functions w 9 N£i etc. wil l be functions of position, so 

Ni = Ni (x3y3z) 

I f a. i s the displacement at the node with position ( x . , y z . ) 

then in order that u (x.3y .az.) = a. we choose the N. such that 

N. (x..y ,,z .) = 1 

and N. (x.Jy.Jz.)= 0 j i i 
j . T, V % 

A further desirable property is that the displacements along 

an edge of an element should be the same as those calculated 

from the adjacent element. Such elements are called conforming elements 

and certainly would appear to model real i ty more closely than 

non-conforming elements. The elements will be conforming i f the 

displacement at any point.on a side is determined only by the nodes 

which l i e on that side (since these nodes are in both the adjacent 

elements). 



Two further c r i te r ia must be sat isf ied to ensure convergence 

(Zienkiewicz (1977), pp 32-34). These are that: 

a) a rigid body displacement of the nodes should give a 

rigid body displacement throughout the element, and 

not produce any s t ra in , 

b) nodal displacements compatible with constant strain 

should in fact produce constant strain in each element. 

I t can be shown that i f the elements are conforming and that 

the conditions (a) and (b) are met then the f in i te element 

formulation wi l l be convergent, in the sense that i f f iner 

and finer subdivisions of the f inite element net are used 

then the displacements so obtained wi l l converge on the true 

solution. 

2.2 Shape Functions for a triangle 

In this study the basic element is the simplest possible of 

a l l possible 2-dimensional elements and i t certainly meets the 

above convergence c r i t e r i a . The element consists of a triangle 

with nodes at the vert ices, and the displacement at any point 

in the triangle is found from the nodal displacements assuming 

a linear displacement model. This element is i l lustrated in 

Fig. 2.1. 



i 

Fig. 2.1 Triangular element co-ordinates. 
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Let the co-ordinates of the nodes be (x^y^, (x^y^), (x^y^), 

the displacements at these nodes be (uJ3 v 2 ) a (u^v^), (u^v^, 

and the displacements at an interior point (xsy) be (u3v). Then 

a linear displacement model assumes that there are constants 

a2, a 2 J a 3 , S ^ S ^ P g such that 

M = a2 x-+ a3 y and y = 6̂ + 3 g x + y 

Since we know the a?-displacements at the nodes, we can determine 

the values of a2 and c^. 

In fact we can write 

u l 
= a 1 + 

u2 = a 1 + 

U3 
= a 

1 + 

or 'ui 
U2 = w a2 

U3. 
a3. 

and so ~al" 

a2 
-1 

. a 3 . 

*2 *1 

l2 X2 

l2 X3 

'3 a l 

"3 *2 

l3 *3 

where [A] = 

u. 

u. 

x l »1 

X2 *2 

X3 
y3. 

Therefore the displacement of an interior point can be written 

u = [1 x y] [1 x y] [ A] -1 r 
u. 

2.2.1 

a3 



We are seeking shape functions, N., such that 
Is 
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u = N l U l + N 2 u 2 + N 3 u 3 = [ N r N 2 N 3 ] u. 

u. 

u. 

2.2.2 

Comparing 2.2.1 and 2.2.2, and using the fact that they must 

hold for any values of the nodal displacements u.s we find that 

the shape functions are given by 

\N1 N2 N3] = [1 x y] [A] -1 2.2.3 

I t can be verified that 

-1 

2A 

x # 3 ~ X3 y2 X3yl ~ X l y3 X l y 2 ~ X2yl 

a.. a. 

where « 7 B * 3 - * 2

 bl = y2~ y3 

a2 = x l ~ x3 b2 = y 3 ~ y l 

<h = x 2 ~ X l b3 = y l ~ y2 

and A = h J . = h (a£2 - a2b3) = area of triangle 
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Thus 

Sj (x3yt 

N2 (x,y) 

= 2A Cx^3 ~ X#2 + V +
 a - i y ) 

1 Cx2y2 - y2y1 + b^x + ag) 
2A 

2.2.4 

I t will be seen that 

and as required. 

The ^-displacements will yield exactly the same shape functions, 

and we can combine them with the ar-displacements in the single 

matrix equation 

u 

v 

where 

v. 

V, 

and [N] = 

N1 0 N2 0 N3 0 

0 Nj 0 N2 0 



2.3 Stress and strain for a f in i te element 

The stress and strain at any point in a body are determined 

by the stress tensor a . , and the strain tensor e... These are 

related by Hooke's law 

%3 kk t j M. ^J 

where X and v are Lame's constants, 6. . i s the Kroneker delta 
13 

function and the summation convention is used. With this notation 

the strain energy density i s given by 

U = % a . . e .. 
13 13 

Since a., and e.. are both symmetric, they have only six independent 
13 13 

components, and we can rewrite V in the form 

v - * [ * ] ' [ • « ] 

where 

'11 and [e] '11 

22 '22 

'33 

'12 

'13 

23 . 

'33 

2e 12 

2e 
13 

2e 23. 



We can also write Hooke's law using [a] and [e] in the form 

[a] = [D]{e] 2.3.2 

where 

X+2\i X X 0 0 0 

X \+2v X 0 0 0 

X X \+2\i 0 0 0 

0 0 0 v 0 0 

0 0 0 0 y 0 

0 0 0 0 0 u 

In the 2-dimensional case of plane strain equation 2.3.2 reduces 

to the form 

'11 

'22 

'12} 

\+2\i X 0 

X X+2\i 0 

0 0 -u 

'11 

'22 

2e 12} 

2.3.3 

The constitutive matrix [D] can be rewritten using Young's modulus, 

ET and Poisson's ratio v in which case i t takes the form 

(1-hj) (l-2v) 

3-v >v 0 

v 2-v 0 

0 0 H(1-2M) 

2.3.4 
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The strain tensor is related to the displacements by the 

relation 

. f tui + 9 u . 

e i j " 2 y Zxj •dxi 

which enables us to write, in the 2 dimensional case, 

[•]-

32/ 

3w 
3a; 

3v 

ay 

3y 
3a: 

2.3.5 

Now, for the interior of a f ini te element, 

3u = 3AL . W 0 „ . M , 
— 1 u. + 2 u0 + 3 w_ 

d x W to 2 »S 3 

and to = a* + 3i?2 | £ v 3 

3* to 1 to 2 3* 

with similar equations for 3w and _3v .v ; 

3i/ 3^ ' 

and so we have the relation 

[e] = [B] [ q] 2.3.6 



where 
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[B] 

™1 0 
3a; 

0 W. j 

2 0 3 0 
dx dX 

0 Mr '2 0 
32/ 

™1™1™2™2™3 __c 
"by 3a; dy 3ar dy 3a; 

For the particular triangular element we are considering, the 

derviatives of the shape functions are particularly simple and 

we arrive a t , using 2.2.4 

[ B] = 2A 

b2 0 b2 0 b3 0 

0 a j 0 a2 0 a3 

a l b l a2 h2 a3 b3 

2.3.7 

We see that in this case the strain matrix [e] has constant 

components, and so this element i s called a constant strain 

triangle (CST). However, for any element, there will be a 

relationship of the form [e] = [B] [q] where [q] i s the vector 

of nodal displacements, and [B] i s a matrix determined by 

derivatives of the shape functions for that element. 

From equations 2 .3 .1 . , 2.3.2 and 2.3.6 we obtain 

[a] =[D][B][q] 2.3.8 



and U = H [q] 1 [ B ] J [ D ] [ B ] [ q ] 

rememberinn that [ D] ^ = [ D) 

2.4 F in i te Element Formulation of the Equations of Motion 

We are now in a position to determine the equation of motion 

of an element in terms of matrices [b] and [c] , which we will 

do using Hamilton's principle. This requires the evaluation 

of the Lagrangian. 

L = K - X + W 

where K i s the Kinetic energy, X i s the strain energy and w 

is the work done by the applied loads. The following analysis 

is quite general and is not specif ic to the triangular element 

we were considering above. 

I f the body has a density p and occupies a volume V with 

displacements u. throughout the body, then the Kinetic energy 

K - k \ QU. u. dV 

where the dot denotes differentiation with respect to time, 

and the integral is over the volume of the body (and the summation 

convention is in ef fect ) . The strain energy will be the integral 

of the strain energy density and so 
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x = k a.. e .. dV 
13 13 

V 

The work done by the applied loads is made up of two parts. 

The body forces F. wi l l have a contribution \JP. u. dV and 

the surface tractions will have a contribution 1 n a , u ,dS 

where nai. is the stress vector at the surface with respect to 

a plane perpendicular to the normal to the surface, and the 

integral is carried out over the surface 5 which bounds the 

volume V. Thus 

L = h\ pit. it- dV - k a .. e .. d V + 
V 

F. u. dV + 
% 1 

n a. u. dS 

To rewrite this in matrix form we let 

I"] 

u. 

[F] = [T] 

n 

n 

n 

and I a] and [ e] are defined in 2.3. Then 

L = h \ y P [it] T [ u] dV - h \ v [ o f [e] dV 

+ y l " ] T M dV * \ s [ u ) J [ T ] dS 



Now [u] * [N][q] ,[e] =[B][q) and [ a] =[D][.e] 

as shown above. Substituting these in the equation for L 

leads to 

L = % [ q ] J [ M ] [ q ] - % [ q]J [ K] [ q] + [ q]J [ Q] 

where [ M) = \ y $ N]J[ N] dv, [K] = \ Y [ B) T[ D] [ B] dv 

and [Q] = j „ l J ] T M dv + \ S [ N ] 1 [ T ] dS 

Hamilton's principle requires that we miminise the functional 

Ldb where L = L (t, [q], \ 'q] ) 

The theory of the calculus of variations shows that for this i t 

is necessary that L sat isfy the Euler equation 

3L. _ d ( 31 \ = 0 
9[q] dt \ *['q)) 

These terms are easily evaluated from the expression for L 

given above. Remembering that i f x is a column vector, then 

J L r [ x] 1 [ A] [ x] ) = 2 [A][x] and 3[x] T = [ J ] 
d[x] 3[x] 



Thus 

iii = - [ K ) [ q] + [ Q] and w = [ # ] [ $ ] 

and the Euler equation reduces to 

[*] t V] + 1*11*7] - [ « ] 

This is the equation of motion for an element and so s t r ic t ly 

should be rewritten with a notation such as 

However i f al l the nodal degrees of freedom are numbered for 

the whole grid then [q ] can be expanded with the zeros to a 

2n x I column vector, where N i s the number of nodes with 

2-degrees of freedom at each node. [q'\ and[Q ]are expanded 

simi lar ly , and [ M ] and [K ] are expanded to 2n x 2n matrices. 

The equations of motion of each element can then be added together 

to give a single matrix equation of motion for the whole grid. 

The details of this assembly process are in any text on the f inite 

element method, e.g. Desai and Abel (1972) pp. 183-188. 

I t i s also possible to include in the above analysis the effect of 

fr ictional damping forces. I f i t i s assumed that these are of a 

simple l inear type proportional to velocity, then they produce 

additional forces per unit volume of \iu (where y i s some constant). 
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I t is shown by Zienkiewicz (1977) pp. 530-531 that this leads 

to an additional term in the equation of motion leading to final form 

[M] [ q] + [C] [q] + [K] [ q} = [Q] 2.4.1 

The load vector [Q\ is ev/<x\uai-edL from the applied loads [F] 

and surface tractions [ T] using 

2.4.2 [Q] = ^ [ N ] J [ F ] dV + ^ [ N ] T[T]dS 

The st i f fness matrix [K] is determined by the element geometry 

and e last ic properties by 

[K] = [ B ] J [D][B\dV 2.4.3 
\v 

The matrices [M] and [c] have the forms 

[ T f T 

[M] = P [ N ] i [ N ] d V and [C] = [N] [V][N]dV 
J V JV 

and are often termed the consistent mass and consistent damping 

matrices respectively. 

2.5 Consistent and lumped matrices for a constant strain triangle 

In order to evaluate the expression [ M] = j v p [ N] T[ N] dV for 

a constant strain triangular element i t is easiest to use natural 

(or areal) co-ordinates. 



Fig 2.2 Natural co-ordinates tor a triancjte. 
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The triangular element has nodes 1,2,3 with co-ordinates (x^y^) 

(^2'y2^s (xz'y3* an<* t n e c o " o r c , i n a t e s of any interior point P 

are Cx3y). The natural co-ordinates (L.^L^L^) of P are defined 

by 

A A A 

I A A 

where 4 . i s the area of the triangle made by P and the side and 

A is the area of the element. This is shown in Fig. 2.2. 

L'="i at node 1 and L , = 0 along side 23 and so the contours 
1 1 J 

= constant are l ines parallel to the side 23 varying linearly 

between the value 0 along 23, to the value l through node 1. 

Similar considerations apply to the contours of Lg and L , which 

implies that the co-ordinates of P must be related to the co-ordinates 

of the nodes by the relations 

x = L2x2 + L2x2 + L^3 

y = L i y i + L2y2 + L3y3 

These two relations, together with the obvious relation 

Ll + L2 + L3 = 1 
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can be written 

1 1 I 1 

X = x i X2 xz 

y y i y2 y3 

Taking the transpose of both sides yields 

[l x y] - [L2 L2 L 3 ] 1 * 2 y2 

2 X2 y2 

1 x3 y3 

I t is seen that this equation has exactly the same form as equation 

2.2.3 and so the equality of the natural co-ordinates and the shape 

functions N13N2>N

3

 1 S established. 

The advantage of the natural co-ordinates is that we can use the 

following integration formula (Eisenberg M.A. & Walvern L.E.(1973)) 

4 £ 1 «« 2Aa!b!c! 

(a+b+c+2)! 

2.5.1 

where ayb^c are non-negative integers, and the integration is over 

the area of the triangle. 



Thus for a triangle of constant density p and thickness h 

[M] = ph \A[N]J[N] dA 

= ph 

0 

h 

0 

0 

L. 
l 

0 

h 
0 

L2 0 L2 0 L3 0 

0 L20 L20 L3 

dA 

ilising N. = L. 

Use 'Of 2.5.1 gives 

2 0 10 10 

0 2 0 1 0 1 

1 0 2 0 1 0 

0 1 0 2 0 1 

1 0 1 0 2 0 

0 10 1 0 2 

This, then is the consistent mass matrix for a constant strain 

triangle. 

An alternative approach, but without the theoretical just i f icat ion 

of the above method, is to use for the N . not the true shape functions 
i 

for this element, but functions 

[M] = phA 
12 



^ which are defined as equal to 1 over a part of the element 

adjacent to node i , and equal to 0 elsewhere. I f the parts 

chosen are non-overlapping thirds of the triangular element then 

i = 3 

i ? 3 

This then leads to a mass matrix 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

This matrix has effectively placed 1/3 of the mass of the element 

at each of i ts nodes, and accordingly is called the lumped mass 

matrix. The fact that i t is diagonal commends i f for numerical 

work, but such a matrix does not seem to reflect the continuous 

distribution of matter that actually exists . However Zienkiewicz 

(1977) p. 531 writes 

, ,vlany practitioners are today using such [ i . e . lumped] matrices 

exclusively showing often an improvement of accuracy" 

and again on pp. 536-37 writes 

"Thus any lumping which preserves the total mass will lead to 

convergent results. Key.. . and others have experimented 

successfully with various procedures which give not only acceptable 

V P * ^ . dV 

phA 
3 

[M] phA 



but often improved results over those attainable with 

consistent mass matrices". 

Accordingly, this study uses lumped mass matrices rather than 

consistent ones. 

The question of how best to evaluate the damping matrix is even 

more uncertain. What values should be given to the damping 

coefficients [y] are not known (Zienkiewicz (1977) p. 532). 

Certain schemes, such as chosing [c] = a[M] + B [K] with a,3 

determined empirically, have been tr ied. In this study, however, 

in view of the premium on computer storage space i t was decided 

that provision would be made only for a lumped damping matrix. 

As wil l be detailed in Appendix A the sti f fness matrix [K] i s of 

banded form and does not require the storage space that might have 

been at f i r s t envisaged. Thus a grid with 1000 nodes has 2000 degrees 
a. 

of freedom, and would seem to imply Lstiffness matrix of 2000x 2000. 

In practice this needs to be only 2000 x bandwidth, where the bandwidth 

might typically be 100. I f the consistent forms of [M] and [C] were 

to be used, then these would be banded in the same way as [K] and 

require identical storage space. It can thus be appreciated that 

using the lumped forms,requiring as i t does only a storage space of 

2000, not only keeps the storage down to almost a third of what i t . 

would have been but also in consequence reduces the time spent in any 

operation involving these matrices by a factor of the order of the 

bandwidth ( i . e . about 100). 
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2.6 Formulation of st i f fness matrix for grid elements 

The stif fness matrix for an element is found from equation 2.4.3, 

v 
[B]] [D][B] dV 

For a constant strain triangle, the matrices [s j and [D] are 

both constant throughout the element, and so 

[K] = Ah [B]\ D][ B] where h is the element thickness 

hE 
4A(l-K)(l-2vl 

b l 0 a l 

0 a1 b 

h ° a2 

0 a2h2 

h3 ° aZ 

0 a3 b3 

1-v 

V 

0 

v 0 

1-v 0 

0 h(l-2v) 

2.6.1 

' b l ° b 2 ° b 3 ° ' 

0 0 a^O 

a i b l a2 b2 R3 b3 

using equations 2.3.4 and 2.3.7. 

I t wi l l be seen that since ID] is symmetric,[K] wil l be a 6 x 6 symmetric 

matrix. 

In order to provide more f lex ib i l i ty in the construction of the grids 

the f inite element program used also accepts quadrilateral elements. 

These elements are however composed of four constant strain triangles 

formed by the four vertices of the quadrilateral together with a common 

vertex at the centroid of the quadrilateral. This added internal node 
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i s then eliminated by a process known as condensation, which is 

explained below. Another important advantage of using quadjlateral 

elements is that i t eliminates an arbitary skew in the results 

which tends to occur when only triangles are used, particularly i f 

they al l slope in the same direction. 

2.7. Condensation of an internal node 

I f an element has loads [Q] acting at i ts nodes, producing equilibrium 

displacements of [q] , then these wil l be related by 

where [K] i s the st i f fness matrix. ( I f there are 2 degrees of freedom 

at each node, and there are n nodes, then [K] i s 2n x 2n and [q] and [..Q] 

are each 2n x 1). 

Let this matrix equation be partitioned as follows 

U] [q] = [Q] 

[K12] 

t K22^ [ K22^ 

2.7.1 

where [K12] is now p x p and [K22] is r x r (p + r = 2n); [q^ and 

[ Q ] are p x l; [q^ and [QJ are r x 1. Also we can imagine that the 

rows have been ordered so that the displacements [ q j are those 

belonging to the node (or nodes) that we wish to eliminate. 



I t is straight forward to verify that 

1 K21] 1 K22] 

-1 -1 

-i 

-i 

- i f 

-1 
where [p] =[ Kn] - [KJ2) [K22] [ j y 

assuming that a l l appropriate matrices are non-singular. 

Thus equation 2.7.1 can be solved as 

U2] = [ P ] ^ i Q j - [ P ] " J [K12] [ K ^ - 1 [ Q g ] 
-1 -1 

[ * } = - [ K 2 2 ^ ' 1 ^ 2 2 H P ] " J K l 
-1 

The f i r s t of these can be written 

and i t will be seen that this has the form 

[K][q] = [ Q] 2.7.2 
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with 

22 22 22 

[Q] = [Q1] - [ K 1 2 ] [ K 2 2 ] ~2 [Q2] 2.7.3 

These equations determine the displacements of the nodes of the 

element except for those at the nodes we wish to eliminate, and i t 

te l ls us how to form the appropriate modifications to the stiffness 

matrix and load vector. I t wil l be noticed that i f m nodes are 

eliminated by this method then, as expected, [K] is 2(n^n) x 2(n-m) 

and [q] and [ Q] are each 2(n-m) x 1. 

For most applications the nodes that are to be eliminated are 

internal nodes and do not have any loads, and so [ = 0 and the 

modified load vector just consists of the vector of loads at the 

nodes not eliminated. Also, when [Q ] = 0 the displacements of 

the eliminated nodes are given by 

The following procedure is thus adopted to form the sti f fness matrix 

of a quadrilateral element. 

F i r s t , i ts centroid i s calculated from the co-ordinates of i ts 

vert ices, spl i t t ing the element into four triangles. 

2.7 A 



Second, the sti f fness matrix of each triangle ( 6x6) is 

found using equation 2.6.1. 

Third, the four matrices found so far are assembled into a 

10 x 10 matrix, being the stiffness matrix of the 

quadrilateral including the node at the centroid. 

Fourth, the modified st i f fness matrix [K] 3 (8x8) is found 

using equation 2.7.3. 

F i f th , the modified st i f fness matrices for each quadilateral 

element, together with the stiffness of any triangular 

elements, are a l l assembled to give the global st i f fness 

matrix of the grid. 

2.8. Note on the centroid of a quadrilateral 

In the computer code published in Desai & Abel (1972) p.453 the 

centroid is calculated using \ ( v + r + r + v ) where the 

position vector of vertex i is given by r .. This is however incorrect 

(as can be seen from the special case r 3 = ?4 which should reduce to 

a tr iangle). This error is not of great importance since there is 

no necessity for the internal node to be the centroid; however, by 

choosing the true centroid the triangular elements formed are less 

obtuse and there should be some improvement in accuracy (at least no 



l o s s ) . So the program used in this study does calculate the true 

centroid, which can be shown to be given by 

r = 1/3 ( Z l + r 2 + r 2 + r_4 -

where 2* ± r„ are the position vectors of the vert ices, and r c 

-1 to -4 -t> 

is that of the intersection of the diagonals. r g is determined from 

r>2 to and a l i t t l e algebra gives the following formulas, which 

are convenient for computation. 

4 4 

0 - v ( x i + x i + v _ Z v*, - v ( h + y<-+ v 
x = i-1 y = i=l 

4 4 
3 y j x . - x ) 3 x (y . - y ) 

where r = (x, y)s r. = ( x J 

and i30ikal are assumed to be in cycl ic order 1,2,3,4. 

2.9 Calculation of load vector for an element 

The load vector is given by equation 2.4.2 

[Q] = \ [ N ] J [ F] dV + \ [N] 1 [T] dS 
Jv J s 

There are four special cases which wil l be of use in this study, which 

will now be considered separately. 



The loads consist of concentrated forces applied directly 

at the nodes. The above equation is not really needed in 

this case since what we are given are the components of Q 

that we seek. 

The loads consist of the gravitational force on each element. 

Thus for a CST equation 2.4.2 wil l have the form 

[Q] o 

-P9. 

dv 

- h p g 

L2 0 

L2 ° 

L3 ° 

dA 

where h is the thickness of the triangle, A is area, and 

etc.are the natural co-ordinates introduced in section 2.5. 

The integration is performed using 2 .5 .1 . , giving 

[Q] -hpcjA 

0 

1 

0 

1 

0 

1 
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c) The sides of the element have a surface t r a c t i o n , which 

varies l i n e a r l y along the side. 

Consider the CST in F ig. 2.3 wi th a t rac t ion along side 23 

(the other sides being f ree) 

Using natural co-ordinates, we note that on side 23- L = 0 

and L = 1 - L t with L = 0 at node 3 and L = -l at node 2. 
f j Ci Ci Ci 

I f Z. is measured along 23 from node 3 and s is the length of 

th is side then I. = L^s and dl = sdL2 . Equation 2.4.2 thus has 

the form 

[Q] = hs [N] [ T ] dL. 2.9.1 

I f the stress vector a t node 3 is 
x 

i p y . 

and at node 2 is 

then the assumption of a l i nea r l y varying t rac t ion gives 

[T] = 
+ L2 

~PX 

A . q y 

2.9.2 

Also [ N] T 0 0 

0 0 

L2 0 

1-L2 0 

0 1-L 
21 

2.9.3 



Fig 2.3 



Subst i tu t ing 2.9.2 and 2.9.3 in to 2 . 9 . 1 . and carrying out 

the integrat ions gives 

0 

0 

hi 
6 

2py + % 

(2.9.4) 

The above load vector is that produced by a t rac t ion along side 

23 only. I f there were t ract ions along the other sides then 

each of these would give a corresponding load vector, and the 

three vectors would have to be added to give the load vector 

fo r that element. The f i na l contr ibut ion to the load vector fo r 

the whole gr id fo r a pa r t i cu la r node w i l l , of course, be the 

sum of a l l the contr ibut ions to that node that any element 

containing that node makes. 

Hydrostatic pressure. This is j us t a special case of ( c ) . 

water level 

Fig 2.4 



Let the side 23 be inc l ined at anqle a (see Fin. 2 .4 ) . The stress 

vector due to the hydrostat ic pressure w i l l be normal to the s ide, 

and l e t i t have magnitude p at node 3 and q at node 2. I f the 

water surface is a t y=d , and the co-ordinates of nodes 2 and 3 are 

(X23IJ2)s (x ,y )3 then 

(d - y3)pg 

p = p s in a x 

p = - p COS a 
V 

q = (d-y0)pg 

x 

'2' 

q Sin a 

q = -q COS a 

s in a = ( y 2 - y 3 ) / s COS a = (Xg - . tfjVs 

Thus, using 2 .9 .4 , we obtain fo r the contr ibut ion to the load vector 

for node 2 due to the hydrostat ic pressure over side 23 

(3d - y3 - 2y2) pgh *2 ~ H 

X3 X2 

Simi lar ly the contr ibut ion fo r node 3.3 i s 

(3d - y2 - 2y3) pgh 

6 

y2 - ys 

x3 X2 

2.10 Calculation of stress in a quadr i la tera l element 

Fig. 2.5. shows a general quadr i la tera l element. 
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(3) 

(2 
(4 

(1 

Fig 2.5 Quadrilateral element. 



I f the displacements at the vert-ey nodes, l,23z343 have been 

calculated by solving the equations of motion 2.4.1 then the 

displacement of the "condensed" node 5 is found using equation 

2.7.4. The stress of each of the four const i tuent CST's can 

then be found using equation 2.3.8. Thus the stress of element 

(1) i s 

[o 7 ] =[D] 

0 'J 0 •J 
0 1 0 1 

a?. 
0 

1 
a l 

7 
a2 

7 
az 

0 

1 
a3 «2 

*3 

q4 

qw 

2.10.1 

where D is the consi tut ive matrix ( 2 . 3 . 4 ) , and B of 2.3.7 has 

been wr i t ten wi th a. fo r a./2A and for b ./2A. (The superscript 

is to indicate element 1). Also the displacement of node j is given 

as 23-1 

2j 

The stress for the whole element is then taken to be the average 

over the consti tuent CST's. 

M = * ( [ o 2 ] + [o2] + [a3] + [a4]) 2.10.1 



For the purpose of computation t h i s is found by expanding the 

[B] matrix of 2.10.1 in to a 3 x 10 matr ix , and the displacement 

vector a 1 x 10 column vector consist ing of the displacements 

at a l l f i ve nodes. The four stresses of 2.10.1 can now be eas i ly 

added together to give 

14 [D][G}[q] 

where 

o • 6 y 2 

0 a > a 
1+ 2 

B 2 + 8 3 

2 * 3 

2 1 

„2 „2 
3 c> 

« 
4* 3 

2 4 7 2 2 2 2 3 2 3 4 3 .4 ,3 
V & 2 V 6 2 *2*2 V S 2 V * 2 V S 2 " : ^ 2 V B * 

1 2 A , 2 

and [ q ] 1 = q 2 ^ ^ c?5 q g q ? 7 q f i qg q1Q] 

This method of ca lcu la t ing the stresses c lear ly has a cer ta in 

smoothing e f f e c t , and i t is found to give consistent d i rect ions for 

the p r inc ip le stresses over a g r i d , e l iminat ing the skewness in 

d i rec t ion produced by a g r id of t r iang les only (as evident fo r example 

in^ I i then (1980) Figs. 4.3 and 4 . 4 . ) . Some t r i a l s carr ied out by 



G.D. Waghorn (pr ivate communication) indicate that quadr i la tera l 

elements as used here give displacements and stresses very close 

to those given by six-noded t r iangu lar elements using quadratic 

shape funct ions. 
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Chapter 3. Integrat ion of the equations of motion 
3.1 Introduct ion 

The f i n i t e element formulation of the dynamic behaviour of an 

e las t ic continuum has the e f fec t of reducing the solut ion of 

a par t ia l d i f f e r e n t i a l equation to the solut ion of a set of 

ordinary second order d i f f e r e n t i a l equations, namely the set 

2.4.1 derived in the previous chapter:-

[M][q] * [c}[q] + [K][q] - [Q(t)] 3 . 1 . 1 . 

The matrices [M] 3 [c] and [K] are determined by the properties 

of the g r i d , and [ojt)] is^given time h is tory of the applied 

loads. For a s ta t i c problem the f i r s t two terms of the equation 

vanish and the so lut ion consists of inver t ing [K] 3 or some 

equivalent procedure. Other than numerical rounding errors th is 

can be done exact ly , and so with due computing care a solut ion 

of required accuracy can be found. The errors in a s ta t i c problem 

thus l i e in the f i n i t e element formulation rather than i t s so lu t ion. 

With the dynamic problem we are however faced with the d i f f i c u l t y 

of being unable to give an exact solut ion to a set such as 3.1.1 

(unless i t happens to be a very small set and the elements of [Q(t)] 

are simple func t ions) . Some numerical method, with i t s own inherent 

inaccuracies, has to be adopted for the solut ion of equation 3 . 1 . 1 . 



3.2. Choice of Method 

There is a considerable l i t e r a t u r e concerning the time integrat ion 

schemes that are in current use. See, fo r instance the references 

at the end of chapter 21 . Zienkiewicz (1977) or the bibliography 

given in Zienkiewicz (1980?). An elegant method of der iv ing such 

schemes is given by Zienkiewicz (1977) p 570-593, g iv ing as special 

cases certain well known methods such as those known by the names 

of Newmark, Houbolt and Wilson-e. Methods may d i f f e r in that they 

are e x p l i c i t or i m p l i c i t , uncondit ional ly stable or condi t ional ly 

s tab le, single-step or mu l t i - s tep . In an e x p l i c i t algori thm the 

values at the new time-step can be found by a single calculat ion 

rather than by the solut ion of a set of simultaneous equations as 

in an i m p l i c i t method. However a l l e x p l i c i t methods are condi t iona l ly 

stable ( that i s , i f a t ime-step greater than a certain c r i t i c a l value 

is used then the values d iverge) , but certain i m p l i c i t methods are 

uncondit ional ly s tab le. A single-step method requires values at the 

previous time value only, whereas mult i -step methods require values 

at several previous t ime-steps. I t may be possible to give an 

algorithm in two equivalent forms, one of which is single-step and 

the other m i l t i - s t e p , as shown in Wood (1981) where the Newmark 

method is given in both single-step and two-step forms. 

Some wr i ters consider unconditional s t a b i l i t y a l l important; fo r 

instance Brusu & Nigro (1980) state " In order to f i l t e r the high 

frequency modal contr ibut ions out of the so lu t ion , uncondit ional ly 

stable methods must be used". This same paper, however, compares 

the resul ts of a new method proposed by i t s authors wi th the Wilson-e 
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method, Houlbol t 's method and the trapezoidal rule by tes t ing the 
single equation 

V + y = 2 y(O) = 3 'y(O) = 0. 

Their resul ts are given in Fig 3 . 1 , which are for a time-step of 

and show the predict ions of the various methods and the exact 

solut ion fo r the range 36 to 48 t ime-steps. I t w i l l be seen that a l l 

the methods suf fer to varying degrees amplitude loss , and, with the 

exception of the method proposed by Brusu and Nigro, phase s h i f t as 

w e l l . When the Runge-Kutta algor i thm, described in section 3.3, was 

used on th is same i n i t i a l value problem using the same time-step the 

predict ions of the algorithm were indist inguishable from the exact 

solut ion of y = 2 + cos t over the time-step range of Fig 3 . 1 . 

In fact the exact solut ion and the Runge-Kutta predict ion d i f fe red 

by only 10~3 a f te r 72 t ime-steps. 

In t h i s study an e x p l i c i t Runge-Kutta procedure is used, to el iminate 

the long calculat ions that would be required with an imp l i c i t scheme. 

I t also has the advantage of being single step and so only requir ing 

the i n i t i a l values in order to s t a r t . Runge-Kutta methods do not 

appear to be widely discussed in the journals covering st ructura l 

dynamics, but such a method was used by W„D. Smith (1975). This method 

was selected a f te r some prel iminary t r i a l s , and comparisons with some 

unpromising resul ts using the version of the Wilson-e procedure as given 

by Desai and Abel (1972) pp 25-26. 
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3.3. The Runge-Kutta algori thm 

By l e t t i n g [q] = [s] the set of equations 3.1.1 can be rewri t ten 

as a set o f f i r s t order equations:-

The algori thm calculates [q(t+h)] and [s(t+h)] given the values 

[q(t)\ and [s(t)] fo r a given time-step of length h. In otherwords 

i t advances our knowledge of posi t ion and ve loc i ty one time-step at 

a time. The rout ine is a four th order one ( in that i t is equivalent 

to using a Taylor series up to terms in h4), and is taken from Fox 

and Mayers (1968) p 202, except that the single variables are replaced 

with the vectors [q] and [ s ] . 

I t is f i r s t necessary to compute eight subsidiary vectors : -

[ A^] = h[ s(t)] 

[ r 2 ] = \Q(t)} -lc][s(t)] - [ K ] [ q ( t ) } ) 

[ A 2 3 = h([s(t)l + * [ r 2 ] ) 

[ r 3 ] = hlMV^lQttty] -[c]([s(t)] + * [ T $ -[K]{[q(t)} + *[•*,])} 

1 * 1 = M 

[ f t ] = [ « ] " ] ( [Q(t)] - [c] [s] - IK] [q]) 
3.3.1 

[ A J h[[s(tj] +h [ r J ) 

[wrUert^;] -[c]([s(t)} +%[r 2] - [KlQ(tr\ +%[*2])\ 

[A J h[[s(tj\ +h [ r J 
4 

[V4] = h[M] 1{[Q(Uh)} - [c][[s(t)] + [ r , ] -\K][[q(t)} + [ A 3 ] ) j 

The values of [q(t+h)) and [q(t+h)\ are given by 



[q(t+h)\ = [q(t)] + M A 2 ] + 2 + 2 [ A J + [ Atf] J 

Uft+W] = Srt+W] = [q(tj\ + I r [ r 2 ] + 2 [ r 2 ] +2[r 3 ] + 

Although th is scheme is lengthy to wr i te out i t is convenient for 

purposes of computation as i t involves only the addi t ion and 

mu l t ip l i ca t ion of matrices, except fo r the evaluation of [M] 

But i f a lumped mass matrix is used (as in t h i s s tudy) , even that 

d i f f i c u l t y disappears. The rout ine requires the knowledge of the 

applied force vector [Q] at t s ( t ^ ) 3 ar\d(t+h). In th i s study the 
h 

value at (t+^) i s taken as the average of the values at t and (t+h). 

3.4 S t a b i l i t y of the Runge-Kutta algorithm 

I f a set of d i f f e r e n t i a l equations may be wr i t ten in the form 

then i t can be shown (Lapidus and Seinfeld (1977) pp 120-131) 

that a 4th order Runge-Kutta algorithm when applied to th is set 

w i l l be stable i f 

[x] = [ A ] [ x ] 3.4.1 

1 + hX + J. 4 .4 
2T 6 

< 1 3.4.2 

where h is the time-step employed in the rout ine, and X is the 

eigenvalue of [A] with the greatest modulus. 
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Since A may be complex, l e t hx = a + ib. The case A real then 

leads to the condit ion 

1 2 1 3 1 4 1 + a + 2 a + ^ a + a < 1 

which is true for -2. 78< a < o 

Simi lar ly the case X purely imaginary gives o<b<2/2 = 2.83 

The precise values of h\ which gives s t a b i l i t y is a rather 

complicated region of the complex plane, but s t a b i l i t y is assured 

i f the condition h\\\ < 2.6. is sa t i s f i e d . 
1 'max 

3.4.3 

The homogeneous set of second order equations 

[»][!?] + lc]ik] + [K]U] - ° 

can be reduced to the type 3.4.1 by l e t t i n g 

' X l 

• • 

. 
q X 

n. 

and 

x ntl 

2n 
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This gives the set 

x l "n+1 

Xn X2n 

x 'n+1 

x 2 n 

x. 

x 

X 'n+1 

- [ M ] - 1 [C] 

x '2n 

or 
[x] 

[0] 
n 

- [ M ] - ' [ K ] ~[M] - 1 [C] 

[x] 

which is of the form [ i ] = [ ^ - ] [ x ] 

The eigenvalues are given by 

i . e . -A [ I ] 

-[M] - 2 [ K ) - M] - 1 [ c] X I J ] n 
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which reduces to 

[0] 

[M]~2 [ K] X[M] ~2 [C] + \* [Ij + [^[K] 

and hence A [ M) + A [ C] + [ K] = 0 3.4.4. 

This is cal led the aux i l ia ry of the equation set. 

An analysis of some simple cases shows that we might expect i n s t a b i l i t y 

i f there are large damping coe f f i c i en t s . 

The simplest possible case is 

q + c'q + kq = 0 k>0, c>, 0 3.4.5 

which has aux i l i a ry equation 

A + c\ + k = 0 

with roots 

A = -c±J(c2-4k) = /k ^ -a±S(*2-4)^ 

whe re 

c = a^k (a> 0) 

I t i s easy to see that fo r 0 4 a ^ 2 

A | = A 'max 
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and for a> 2 

max 
l + 1-4 

This is i l l u s t r a t e d in Fig 3;£. 

Thus for a<2 ( i . e . c<2/ k ) \x\ ~ = A and s t a b i l i t y is assured v 1 'max 
i f h <2.6 

A 

But fo r larger values of a, \\\ max = a/ k = c, and so for s t a b i l i t y 

we would require the time-step to be less than (2.6/c). Above a 

certain value the s t a b i l i t y depends almost en t i r e l y on the values of 

the damping coe f f i c ien t and the time-step required is inversely 

proport ional to that c o e f f i c i e n t . 

Another case that can be analysed is 

1 0 . i'l a 0 q2 
~k $k " ql 

0 1 + 0 c 
A 

+ k 
A 

= 0 3.4.6 

We assume that c> 03 k>0 and 04&<i 

The aux i l i a ry equation is 

X2 + cX + k ®k 

$k X2 + cX + k 
= 0 

j X2 + oX + k(l-£) \ [x2 +cX + k(l+&)) = 0 3.4.7 
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U L 

7 

/ 
/ 

Fig. 3.2 Magnitude of maximum eigenvalue against 

damping fo r equation 3.4.5 <* = c / /k 



Again we l e t o = a.A 

The f i r s t bracket of the equation 3.4.7 gives 

/ k(l-8) 

max 

2 
1 + Ai-

a* 2/(1-8) 

4(1-8) a> 2/ (1-8) 

and the second bracket gives 

> 2! 
max 

/ k(l+8) 

a//c J 1 + 

a$ 2^(1+8) 

1- 4(1+8) a> 2/ (1+8) 

We require whichever i s the greater o f these two, which can be 

seen to be 

max 

' / k(l+8) 

aA J 1 + / li­

as 2_ 
fTT+8) 

4(1-8) 
7(1+8) 

These resul ts are i l l u s t r a t e d in Fig. 3.3. 

The general pattern is s im i la r to the analysis of equation 3.4.5, 

but two points are worth not ing. 
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> — * — X — X'— *lf X — X — S. —X —x —X —X - J' 

/ / ! 
:: - i 

1 t t l 

— . . v 
X X X X \ ^ ^ w x y 

Fig. 3.3 Magnitude of maximum eigenvalue against 

damping fo r equa t i on 3.4.6 = c//k. 

The maximum eigenvalue is given by the upper 

of the two curves for I and I X j * * * 
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i ) Even with no damping (a=0), the fact that the equations are 

coupled (&>0) leads to a ra is ing of | A | ,.. and hence requir ing 
max 

a smaller t ime-step to sa t i s f y the condit ion 3.4.3, than was 

required by equation 3.4.5. 

i i ) As before, fo r a greater than a certain c r i t i c a l value the 

size of the damping is the major fac to r , but the coupling 

makes th i s c r i t i c a l value lower, and the values of | A | 
max 

higher than they were in the f i r s t example. 

I t i s possible to go one stage fur ther and consider the set of 

3 equations of t h i s type :-

[q] = 0 3.4.8 

This has an aux i l i a r y equation in factored form 

( A 2 +o\ + k)(\2 + c\ + k(l-^2) (\2+o\ + k(l+^2)) = 0 . 3.4;9 

which i s s im i la r to 3.4.7, and consequently leads to a very s im i la r 

analys is , w i th a l l the same conclusions. The aux i l i a ry equation of the set 

o f 4 equations of t h i s type does not factor so neat ly , but there seems 

no reason to doubt that in t h i s case also | A | . w i l l be of the order 
max 

of the damping coe f f i c ien t provided i t is above a certain value. 

1 0 0 

0 10 

0 0 1 

[V] 

c 0 0 

0 a 0 

0 0c 

k %k 0 

Qk k 

0 &k k 
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For a set of equations wi th l i t t l e or no damping the value of 

Ixl „ is determined by the values o f [ # ] , and, as i l l u s t r a t e d 1 'max 
in the examples above and in section 3.5, w i l l be of the order 

of the value of the maximum frequency of a l l the components that 

form the exact solut ion to the given se t . The condit ion 

Ixl h <2.6 thus can be wr i t ten 1 1 max 

i ) fo r equations with dominant damping coe f f i c ien ts 

h< 2.6 

a 

where c is the order o f the damping coef f i c ien ts 

i i ) fo r equations with l i t t l e or no damping 

h< 0.4T 

where T i s the period of the mode of highest frequency. 

3.5 An example 

The method was tested on a set o f 3 equations of the form of 3.4.8, 

wi th o = 2, k = 43 and efe = /2. Wri t ing these equations out , with 

dependent var iable [y] , we have 

y\ + ZVj + 4y2 + /2y2 = 0 

y2 + 2'y2 + J2y2 + 4y2 + J2yg = 0 3.5. T, • 

y3 + zy3 + tey2 + 4y3 =. 0 



The aux i l i a ry equation in factored form is then 

(X + 2X + 2) ' A + 2\ + 4) (X + 2X + 6) = 0 

giv ing the possible eigenvalues 

A = -l±i9 -l±i/33 -l±i,/5 

f o r which | A | = 2.45 
l l l U A 

and hence the c r i t i c a l t ime-step is when h = l.l 

I f to 3.5.1 we attach the i n i t i a l conditions 

y2= i y2 = o y3= -i 

'y£= 0 y£ = /2 y3 = 6 
then i t can be shown that the exact solut ion is 

y2 = e _ t [ 2 sin /5£ + cos /3t - 2 sin /3t + sin 
1/5 h 

y2 = e ] 2 sin /Si - sin t . 

1/5 1 

h3 = e~* I 2 sin /5t - cos /3t + 2 sin /3t + sin £ 
1/5 /3 

In th is example the value of is determined largely by the 

highest frequency component (which has a period of 2.8) rather than 

the damping coe f f i c i en t s . 



Fig . 3.4 - 3.6 gives plots of the values of y 3 y0 and y fo r d i f f e ren t 

values of t ime-step, together wi th the exact so lu t ion . For h = 0.05 

the algorithm gives values which are indist inguishable from the 

exact so lut ion even a f te r 100 timesteps. For h = 0.5 the accuracy 

is s t i l l qui te good. However, since in th is example the amplitudes 

of a l l the frequency components are the same order, any time-step 

larger than 0.5 , no matter how accurate, hardly gives a good, picture 

of the exact so lu t ion . For an example l i k e th is the c r i t i c a l value 

of the time-step is no l i m i t a t i o n . I t is not possible to p lo t the 

behaviour of the rout ine fo r time-steps greater than the c r i t i c a l value 

since the i n s t a b i l i t y is qui te spectacular. For example, with h = 2.0, 
Q 

y 3y9 and y a l l have values of order 10 a f t e r only 8 t ime-steps. 

Such extreme i n s t a b i l i t y is a l l to the good, since i f i n s t a b i l i t y is 

going to occur i t is best that the algorithm user is given a clear 

ind icat ion of i t i f he inadvertent ly selects a too large value for 

the t ime-step. . 

3.6 Modif icat ion of equation of motion to include const ra in ts . 

The vector [Q(t)] of equation 3.1.1 contains the known values 

throughout time of the external loads acting at each node. Nodes 

which have no applied forces, and are free to move in any d i r e c t i o n , 

simply have zero fo r the elements of [Q(t)\ that correspond to the 

degrees of freedom of that node. However there w i l l also be nodes 

which are not constrained by an applied fo rce , but by an applied 

displacement. A par t i cu la r case of th is is a node which is f ixed 
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throughout time. In order that th is p o s s i b i l i t y can be accommodated 

i t is necessary to modify the equations of motion 3 . 1 . 1 . Smith (1975) 

states that r i g i d nodes were simulated by set t ing to zero the 

corresponding elements of [M]~2

T which is equivalent to i n f i n i t e 

masses at those nodes. I t is not clear however how he provided 

fo r nodes moving in t ime. A d i f f e r e n t , and rather more r e a l i s t i c 

procedure, is adopted in th is study. 

Suppose that m degrees of freedom are constrained by applied loads, 

and n are constrained by applied displacements. Thus 

Cm + n = number of equations = 2 x number of hodes). 

The equations of motion may be par t i t ioned 

[«I 
1 m* 

~[K ] [K ] 
mm mn 

L m 

\ 
[Q ] 1 n1 

I rant I nn\ J M 1 nm* 1 nm1 

_ j 

t 3.6. 

In this equation the matrix [M] ~ has been wr i t t en as 

where i t is to be understood that the sub-matrices [y^J and [ y J consist 

only of non zero elements on the i r leading diagonals. This is j u s t i f i e d 

since as was stated in 2.5 the mass matrix is of lumped form and so i t s 

inverse also consists of a diagonal matr ix . Clearly the non-zero elements 

o f [ w

m I a n d [ y J a r e simply the reciprocals of the corresponding elements 

of [ M] . 



Since the displacements of the l as t n degrees of freedom are 

the given const ra in ts , [qn] a n ( j [ q-] are known. To emphasize that 

these are not unknown displacements and ve loc i t ies ca l l them [r> ] 

and [ r ] . So e f f ec t i ve l y what has to be solved is the f i r s t m 
n 

equation of 3 . 6 . 1 . 

[ ? ] [ u _ ] { [« 1 ~ [C } [q ] ~[C ] [ r ] 

~[K ] q] ~ [K ][r}\ 

However, instead of attempting to extract j us t th is set of equations -

which would involve forming the new matrices [K 1 . [K ] e t c . , - i t 
3 1 mm1 3 1 mn' 

is easier to modify the already assembled matrices [x]and [c] to form 

the fo l lowing set of equations 

{ 
[c ] [c 1 
1 mm 1 mn' 

[o] [o) [qn] 

1 mm1 1 mnJ ' [ " J > 
[0] [ I ] 3.6. 

This modif icat ion is qui te easy to do on the computer. I t requires 

that the load vector [Q] consists of the applied displacements [r_] 

f o r those degrees of freedom which are so constrained, that the rows 

of the damping matrix [c] are a l l zeros fo r those degrees of freedom, 

and the corresponding rows of[K] also consist of zeros except the 

diagonal element which is un i t y . 
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In t h i s modified form i t w i l l be seen that the las t n equations 

of 3.6.2 are now uncoupled, and a l l have the form 

Q = V ^ r(t) - q(t)} 

I f we solve th is equation using the Runge-Kutta rout ine given in 

section 3.3, and taking 

q(t ) = r(t, ) ^ o o 

q(t,o) = s(tQ) = -\v(tQ + h) - r(t-.Q)\ 3.6.3 

and r(t.: + \ ) 

we f i nd that 

= \ 1 r(t. + h) + r(t<)} 2 \ o o J 

A, = A_= A = A. = r(t +h) - r(t) 1 2 3 4 o o 

and 

r = r = r = r - 0 vl l2 [3 L4 

giving 

q(t+h) = v(tth) o o 

and 

q(t.0+h) = \ | r(tQ+h) - r r v ]= ¥%) 
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Thus by using th i s l inear approximation to the ve loc i ty and 

displacement of the constra int nodes during the in terva l t to (td+h) 

we get the correct value of the displacements of those nodes at 

the end of the i n t e r v a l . The l as t n equations of the modified set 

of equations of motion therefore y ie ld under the Runge-Kutta rout ine 

the correct applied displacements, and hence when the set of equations 

3.6.2 are solved using 3.6.3 fo r the constrained nodes the correct 

values of the displacements and ve loc i t ies q and q . of the unconstrained 
m m 

nodes w i l l be found. 

I t w i l l be noted that i t was essential f o r th is method of modifying 

the equations that the mass matrix be diagonal - fo r otherwise the 

l as t m equations would not have been uncoupled - but that the damping 

matrix did not have to be so constrained. But, fo r the reasons given 

in sections 2.5 and 2.3 the computer program that has been wr i t t en 

to carry out th is Runge-Kutta solut ion assumes that both [M] and [c] 

are diagonal. 
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3.7. Summary 

The Runge-Kutta algorithm is an accurate, ef f ic ient and easy to use 

procedure for solving sets of equations of the type 3.1.1. I ts main 

drawback is that i t is conditionally stable. The c r i t i ca l time-step 

condition, Mxlmax < 2 - ^ is however better than that of some other methods 

in use. For instance of the eight integration procedures i l lustrated by 

Zienkiewicz (1977) p.583, five are conditionally stable, and of those 

five only one has a better time-step condition. The poorest is a 

'central exp l ic i t 1 method, with h\\\ .<2. The method with a more r 1 'max 
favourable condition is unnamed, but which Zienkiewicz refers to as 

a "popular scheme", and has h\\\ . < 3.5. I t is however a two step 
1 1 max 

implicit scheme, and so without the main advantages of the Runge-Kutta 

algorithm. Indeed i f an extension in the region of stabi l i ty is required 

a user might do well to consider a f i f th order Runge-Kutta process, such 

as that proposed by Lawson (1966) for which fcM m a x < 5 - 7 -

The stabi l i ty criterion will be most troublesome for equation sets 

that have damping coeff icients, or high frequency components. For 

cases of high frequency components of significant amplitudes, as in 

the example of section 3.5 . , the stabi l i ty criterion is not really a limiting 

factor, since in order to get a solution which sat isfactori ly displays 

such components a small enough time-step must be used. For equation sets 

whose solution is dominated by low frequency components, and only comparatively 

small amplitudes of the high frequency components, the Runge-Kutta method 

wil l not be so satisfactory, as a time-step which caters for the high 

frequencies wil l have to be used even though they are of l i t t l e interest. 
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Such a situation wil l however be ideally suited to the method of 

mode superposition discussed in section 1.3. In the present study, 

which models a considerable extent of substructure, in addition to 

the region of interest , i t wil l be the high modes of vibration that 

are the signif icant ones as far as determining the displacements of 

the structure are concerned. The Runge-Kutta algorithm should be an 

effective tool in these circumstances. For models containing high 

damping coefficients but only significant low frequency components 

the mode superposition method wil l also be val id; but for models 

with both high damping and significant high frequencies neither mode 

superposition nor the Runge-Kutta procedure wil l be appropriate. In 

such a case resort would have to be to an unconditionally stable scheme, 

with a l l the increased cal l on computer resources that that entai ls . 

Although the computer program written for this study does allow for 

a damping matrix in diagonal form, in view of this di f f iculty with 

damping coeff icients, and also because l i t t l e can be said about 

reasonable numerical values for them, none of the models in this study 

include values for damping coeff icients. 
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Chapter 4. Testing of the f inite element programs 
4.1. Introduction 

Computer programs based on the theory given in chapters 2 and 3 

were written, to cater for a two dimensional plane strain model. 

The region to be studied is modelled by a grid of elements of 

either triangular or quadrilateral shape, with a variety of 

material properties. The nodes of the grid can be le f t free, 

or can be given a time history of applied loads or displacements, 

and the programs determine the displacements of a l l the nodes, 

and the stresses in each element at each time-step. The details 

of the structure of these programs, how they are used and a l ist ing 

are given in Appendix A. 

That the f in i te element method wil l introduce approximations is 

of i ts very nature, but quite what effect these approximations will 

have, especially in a dynamics problem, is not so clear. In the 

case of a stat ics problem we know that, as mentioned in Section 2.1, 

for certain types of element we wi l l have as close an approximation 

to the continuum solution as we please provided small enough elements 

are used. For a dynamics problem both the spatial and time dimensions 

are divided into discrete sections. The use of a time-step may be 

expected to lead to aliasing di f f icul t ies i f too large a value is 

used, whereas the division of space into regions with discontinuities 

in strain along their boundaries must lead to problems of dispersion. 
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I f too coarse a mesh were to be used then we might expect each 

node to behave something l ike a point source. A f in i te element 

model wil l thus only be able to give a reasonable representation 

of, say, a plane wave, i f , in the manner of Huygens' principle, 

we have nodes suff iciently close together so that when they are 

considered as point sources their secondary wavelets do sum to 

a plane wave within an acceptable tolerance. 

The tests described in this chapter form a comparison between 

known analytic solutions for certain propagation problems and f in i te 

element models for these problems, so that a clear idea of the necessary 

cr i ter ia for the use of the f in i te element method can be formed. The 

formulation of these cr i te r ia and a discussion of their implications 

is given in Chapter 5. 

4.2. Description of test grid and pulse 

For the purpose of the tests a rectangular grid of 28 x 14 elements 

was used, each element being a square of side 15m. This grid is 

i l lustrated in Fig. 4.1. 

The nodes along the base were given various time displacements, 

and the displacements of a l l the nodes were calculated at a l l time-steps. 

From these values two forms of display were examined: 

a) displacement time graphs of certain selected nodes (usually 

nodes on the line x = o) 
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b) plots of the principal stresses in each element at certain 

selected time-steps. This was either for a selected part 

of the whole grid, or for the whole grid. 

To follow the propagation of a pulse the input at the base was 

based on a pulse consisting of 1 period of a cosine wave 

displacement 

0 

< a(l ~ 

0 

COS 2ut) 

t<0 

Thus to simulate a P-wave progressing up the z/-axis the above 

displacement was applied in the y direction to a l l the nodes along 

y=0 simultaneously, whereas for an S-wave progressing up the z/-axis 

the same displacement was applied to a l l nodes simultaneously but 

in the a:-di recti on. 

For the general case of a plane wave incident at an angle e to the 

y axis> consider the a;-axis and suppose that the disturbance,.a: = 0 

begins at t = 0. 

The disturbance^ wil l begin after a time t' = x sin 9 , where c is 
c 

the velocity of propagation and x is the distance of P from 0. This 

is i l lustrated in the diagram overleaf. 



e, 

'on 

The disturbance at P is therefore equal to 

{ a i 1 - COS 2ir C t - t ' ; ! 0<t-t'<T 
T J 

and zero otherwise. 

Thus for a P-wave the components of displacement [u3v) at P are 

u = a sin 9 ) 1 - cos 2TT ( t - £ f ; V 
I y 1 

for 0<t-t'<T 

v = a cos e | J - cos 2TT f i - i ' j j 

where t ' = x sin e (a = velocity of P-waves) 
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Similarly i f g is the velocity of S-waves, then for S-wave 

propagation we have the displacements 

)| l - cos 2ir ( £ - t ' ; | u = a COS6< 1 - COS 2i ( t - f ) ^ 

for 0<t-t'<T 

i n e j ^ v = a sine< i - cos 2* Ct-t'^ 

where t' = a; sin 9 
e 

The program INPUT was used to create a date f i l e based on these 

formulas in the format required by the subroutine LOAD 2 in the 

program TIMESTEP. 

4.3- Description of tests 

Test Run A 

Boundary Conditions 
Top surface free Sides zero x-displacements Base plane wave pulse 

Pulse parameters Type P-wave 
Period 0.06s. Timestep 0.01s. Amplitude 0.1 m. 
Angle 0.0° Frequency 16.6 Hz. Timestep 5 

per period 

Material Properties 
Young's 
modulus 
n.m."2 

Poisson's 
ratio 

Density 

kg. m.-3 

Velocit 

P-wave 
m. s 

S-wave 

Wave­
length 

m. 

Elements 
per 
wavelength 

8 x 10 9 0.25 2400 2000 1155 120 8 



83 

The graphs of #-displacements against time are i l lustrated in 

Fig. 4.2 for 10 nodes from base to surface along the centre of 

the grid. 

The form of the pulse is displayed by the graph for node 225, and 

i t will be noted that after t=0.06 this node is kept with zero 

displacement. The progression of the wave to the surface (node 211) 

is clearly seen, where i t is reflected, without change of phase since 

i t is a free surface, back into the grid. This reflected wave returns 

to the base at 0.21s.where i t is again reflected, this time with a 

change of phase since the base is fixed, and we can follow the wave 

again to the surface. 

From the graph of the time taken for the peak of the wave to travel 

as i t f i r s t r ises through the grid an average speed of 1900m.s7^ is 

determined, agreeing quite well with the theoretical value of 2000m.s \ 

On the other hand i t can be seen from the time displacement graphs of 

the nodes that the exact shape of the pulse is not preserved. The onset 

of the disturbance is a l i t t l e ear l ier than i t should be, the pulse 

develops a l i t t l e ripple in i ts ta i l and there is some loss of amplitude. 

These characteristics of dispersion of the pulse are the sort of errors 

that we would expect from a process which discretises the information. 

Stress plots at various time-steps were also produced - but they are 

not reproduced here, since they are similar to those of the next run. 

However i t is worth remarking that since stress is a function of the 

spatial derivatives of displacement, any inaccuracies in the calculation 

of displacements as a result of the f in i te element approximations is 

l ikely to lead to rather worse errors in the stresses. 
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Fig. 42 Test Run A y-displacernenrs. 
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Test Run B 

Boundary Conditions 
Top surface free Sides zero x-displacements Base plane wave pulse 

Pulse parameters Type P-wave 
Period 0.06 s . Timestep 0.005 s . Amplitude 0.1 m. 
Angle 0.0° Frequency 16.7 Hz. Timestep 

per period 12 

Material Properties 

Young's 
modulus 
« m - 2 

n.m. 

Poisson's 
ratio 

Density 

kg. m. 

Velocil 

P-wave 

; ies m "1 m.s 
S-wave 

Wave­
length 

m 

Elements 
per 
wavelength 

8 x 109 0.25 2400 2000 1155 120 8 
i 

Graphs of ^-displacements against time are i l lustrated in Fig. 4.3 

for the same nodes as in A. These graphs have an almost identical 

appearance as those nodes for run A, and measurements of the progress 

of the f i r s t peak give the same velocity. However the loss in amplitude 

is not so great. For instance the displacement of the node on the free 

surface should be twice that at the base, i .e . 0.4m. In the case of A 

the graphs give a figure of 0.35m.,whereas the B graphs give 0.39m. 

Also i l lustrated for this run in Figs. 4.4-4.7 are plots of principal 

stresses for the central section of the grid at various times. The 

principal stresses are worked out for each element and plotted at the 

centre of the element. 
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For the case of a P-wave applied at the base one would expect the 

x and y displacements (u3v) for a general point to be given by 

u(x3yit) = 0 

v(x,y3t) = [ a \ 1 - cos [l - COS 2T7 11 - y<t<T + y 
\ T \ a l\ a a 

[0 for a l l other t until the f i r s t reflection arrives 

where a is the velocity of P-waves, and provided the point is not within 

half a wavelength of the free surface. 

Using the relations 2.3.5 and 2.3.3 we derive for the stress at a point 

°7 7 = *i!H. = ~ * 2 i r a S 1 n iz. (t-y) 
Zy Ta T a 

9?/ Ta T a 

a12 - ° 

The principal stresses are therefore 

°i = °n a n d °2 = °22 

and directed along the x and y axes respectively. 
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The ratio of the principal stresses wil l be at a l l times 

_1_ _ A _ v 
a 2 \+2\i 1-v 

7 7 
- when v = -

Also \a | = |o | 
max max 

2 
= ( X + 2-ng = a p 2 i r g 

= ^Traap 
2* 

With the parameter's of this t r ia l we get 

|a \ = 5.03 x 10? Pa. 
max 

a n d 'a^' m a v = 1-68 x JO 7 Pa. max 

Measurements from the plots give values 

a) on the front half of the pulse maximum compressive stresses of 

4.4 x 10 7 Pa. and 1.5 x 10 7 Pa. for in the y and x directions respectively, 

b) on the back half of the pulse maximum tensional stresses of 

4.9 x 107 Pa. and 1.67 x 10 7 Pa. 

I t wil l be seen that these values, especially in the case (b), agree well 

with the theoretically expected values. Also there did appear to be a sl ight 

improvement in the stress plots of run B, compared to those of A. 



ft 
3 

0. 
0. 
0. 
0. 

-0 . 
-0 . 
-0 . 

3 
2 
1 
0 
l0[O0 
2 
3 

88 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 

0.20 
0.15 
0.10 
0.05 
0.00 

-0.050J40 
-0.10 
-0.15 
-0.20 

0.05 0.10 0.15 ^-"0.20 0.25 

M 0.15 
" 0.10 
H 0.05 
s 0.00 
ft* -0.050 
5 - o . i o 
" -0.15 

M 0.15 
" 0.10 
H 0.05 
s 0.00 
ft* -0.050 
5 - o . i o 
" -0.15 

DO 0.05 0.10 0.15 (h-Stf 0.25 /v 
0.15 
0.10 
0.05 
0.00 

_0.050|D0 
-0.10 
-0.15 

0.05 0.10 0.15 0 . 2 0 ^ 0.25 

0.15 
0.10 
0.05 
0.00 

_0.050|DO 
-0.10 
-0.15 

0.05 0.10 0.15 0.20 N - x 0 . 2 0.30/ 

0 
0 
0 

-0 
-0 
-0 
-0 

0.20 
0.15 

10 
05 
00 
050JflO 
10 
15 
20 

0.05 0.10 0.15 0.20 30 0.35 

0. 
0. 
0. 
0. 
0. 

-0 . 
- 0 . 

20 
15 
10 
05 
00 
050 JOO 
10 

-0.15 
-0.20 

0.05 0.10 0.15 0.20 0.30 0.35 

0 
0 
0 

-0 
-0 
-0 
-0 

0.20 
0.15 

10 
05 
00 
050\D0 
10 
15 
20 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Fig. 4.3 Test Run fi. y-displacements 
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Boundary Conditions 
Top Surface free Sides zero x-displacement Base plane wave pulse 

Pulse parameters Type P-wave 
Period 0.03s. Time step 0.0025s. Amplitude 0.1m. 
Angle 0.0° Frequency 33.3 Hz. Timesteps 

per period 12 

Material Properti es 
Young's 
modulus 

n.m.^ 

Poisson's 
ratio 

Density 

-3 kg.m. 

Veloci 

P-Wave 

t i e s m r - " 1 

m.s 

S-wave 

Wave­
length 

m. 

Elements 
per 
wavelength 

8 x 10 9 0.25 2400 2000 1155 60 4 

This run has the same number of time-steps in each period as run B 

but has only half the number of elements per wavelength. This is 

achieved on the same grid by using half the period. Fromkgraph, F ig . 4 .8 . , 

the time taken byvFirst peak to travel a given distance as the wave 

f i r s t propagates along the j/-axis gives a velocity of 1850m.s".1 (sl ightly 

worse than that obtained in runs A and B) . However the dispersion of 

the wave is signif icantly worse than in either of the previous runs. This 

is shown by the loss in amplitude of the wave, even within two elements 

of the base; and at the free surface the amplitude is 0.28 instead of 

the expected 0.4. Also the pulse develops a marked ripple in i ts t a i l . 

These ripples seriously affect the stress plots (which are not given). 

On these the front of the wave is quite c lear , but within a short time 

spurious stresses appear in the wake of the pulse. 
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Fig. 4.8 Test Run C y-displcicements. 
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Test Run D 

Boundary Conditions 
Top surface free sides zero y-displacement Base plane wave pulse 

Pulse parameters Type S-wave 
Period 0.06s. Timestep 0.005s. Amplitude 0.1m. 
Angle 0.0° Frequency 16.7 Hz. Timesteps 

per period 12 

Material Properties 
Young's 
modulus 

n.r»C^ 

Poisson's 
ratio 

Density 

• .3 kg. m. 

Veloci t ies m 1 m.s Wave­
length 

m. 

Elements 
per 
wavelength 

Young's 
modulus 

n.r»C^ 

Poisson's 
ratio 

Density 

• .3 kg. m. P-wave S-wave 

Wave­
length 

m. 

Elements 
per 
wavelength 

8 x 109 0.25 2400 2000 1155 69.3 4.6 

The graphs of x-displacement against time Fig. 4.9 are given for the 

same nodes as in previous examples. The velocity of progression of the 

the f i r s t peak is found from the graph to be 107Cm.s7^.which compares 

quite well with the theoretical value of 1155 m . s .~ \ for the velocity 

of S-waves in this medium. 

Since this is an S-wave the theoretical displacements for points 

not within half a wavelength of the surface are 

a \l - COS 2TT (t-y_ )\ y_ <t<y+T 

u(x,y3t) =\ 

0 for other t» until f i r s t reflection arrives 

v(x3y3t) = 0 

Hence c n =0^ = 0 

, . J o 9 9 = u 3w = y2ua sin 2TT (t-y) 



The principal stresses therefore have magnitudes 

°1 = °12 a n d °2 = ~ °12 

but with a inclined at an angle 0 to the x-axis given by 

2a 
tan 29 = 12 

air°22 

Since a , , - o = 0 this is sat isf ied by 8 = Ti­
ll 22 4 

I t wil l be seen that as the shear wave, propagates along the 

2/-axis, o1 wi l l i n i t i a l l y be negative ( i . e . compressive) and 

ag wi l l be positive ( i . e . tensional). This behaviour is observed 

on the stress plots for the f i r s t time-steps. Furthermore the 

magnitude of both and o 2 wi l l have a maximum value 

|a 7I = \i2-na = 2i\a&p 
1 lHaX y 

o 
For the parameters of this run this has the value 2,.9 x 10 Pa. 

The graphs of the stress plots, Figs. 4.10-4.11 give a maximum 
8 

principal stress of 1.5 x 10 Pa.on the front of the pulse, and 
8 

2.7 x 10 Pa. on the back of the pulse. 

However the low number of elements in each wavelength produce an 

unsatisfactory degree of dispersion as is readily seen on the 

displacement time graphs, with a corresponding deterioration of 

the stress plots with increasing time. 

file:///i2-na
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Test Run E 

Boundary Conditions 
Top surface free Sides zero y-displacement Base plane wave pulse 

Pulse parameters Type S-wave 
Period 0.13s. Timestep 0.004s. Amplitude 0.1m. 
Angle 0.0° Frequency 7.7 Hz. Timesteps 

per period 32.5 

Material Properties 
Young's 
modulus 
n.m. ^ 

Poisson's 
ratio 

Density 

kg. m73 

Velocities . „1 m.s Wave­
length 

m. 

Elements 
per 
wavelength 

Young's 
modulus 
n.m. ^ 

Poisson's 
ratio 

Density 

kg. m73 P-wave S-wave 

Wave­
length 

m. 

Elements 
per 
wavelength 

8 x 109 0.25 2400 2000 1155 150 10 

This run is similar in nature to run D,.but with a lower frequency. 

The time-displacement graphs, F ig. 4.12, give 1133 ms"^ for the velocity 

of the progression of the f i r s t peak, which compares very well with 

theoretical value of 1155 ms" 1 . The amplitude of the pulse is 0.2 for 

a l l nodes near the base, and attains the expected value of 0.4 at the 

free surface both at i ts f i r s t and second ar r iva ls . 

The graphs of the stress plots, Fig. 4.13-4.14, also agree well with theory. 

The maximum stress is found to be 1.36 x 10 7 Pa. on both the front and back 

part of the pulse. The theoretical value is 1.34 x 10 7 Pa. 

The time-displacement graphs show very l i t t l e dispersion, and this is 

reflected in the stress plots, where a spurious stress cannot be found until 

time 0.36 ( i . e . after 90 time steps) where a small stress can be 

detected in the wake of the downgoing wave after the f i r s t reflection. 

Another indicator of the satisfactory nature of the runs are the time-

displacement graphs for some nodes in the ^-direction, F ig . 4.15.. 



These displacements should be zero, and the graphs give maximum 
-5 

values of 8 x 10 m. compared with the 0.4m. in the ^-direction. 

The ^-displacements are fa i r ly random and are certainly no more 

than you would expect simply from round off errors - a l l the 

calculations are carried out in single precision. 
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Fig. 412 Test R u n E x-displacements. 



STRESS VECTORS AFTER 0.1000 e. 
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Test Run F 

Boundary Conditions 
Top surface nodes free Sides nodes free Base plane wave pulse 

Pulse parameters Type P-wave 
Period O.Ts. Timestep 0.001s. Amplitude 0.1m. 
Angle 45° Frequency 10 Hz. Timesteps 

per period 100 

Material properties 2 layers 
Young's 
Modulus 

n.m^ 

Poisson's 
Ratio 

Densi ty 
-2 kg.m. 

Velocity Wave­
length 

m. 

Elements 
per 
wavelength 

Young's 
Modulus 

n.m^ 

Poisson's 
Ratio 

Densi ty 
-2 kg.m. P-wave 

m.s) 
S-wave 
m.s} 

Wave­
length 

m. 

Elements 
per 
wavelength 

layer 1 1 .8xl0 1 0 0.25 2400 3000 1730 300 20 
layer 2 4 .05xl0 1 0 0.25 2400 4500 2600 450 30 

This run has the grid divided into two layers of different materials as 

shown in Fig. 4.16. 

In this t r ia l the wavelength is large compared to the mesh size and 

there is no detectable dispersion in the time displacement graphs, 

Figs 4.18-4.19, and the stress plots, Figs 4.20-4.23, at successive 

time-steps vary smoothly from one pattern to another, even though the 

pattern after 120 time-steps is quite complex. From the stress plots 

the progress of the incoming P-wave at 45° i s clearly seen, and then 

i ts subsequent refraction at the boundary between the two layers, which 

is half way down the grid. Measurements from the stress plots at 

0.08s give the angle of the wave as 43° in the bottom layer, and 30° 

to the vertical after refraction. 
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The exact nature of the re f ract ion i s quite complicated, with both 

P and SV components in bbth l a y e r s . The theoret ica l resu l ts are 

derived in Aki and Richards (1980) pp. 133-152. Fig. 4.17 gives 

the expected angles of these components and the % of energy in 

each component for the parameters of t h i s t r i a l . 

We would thus expect to see pr imar i ly a refracted P-wave at about 

30° to the v e r t i c a l , which i s in agreement with the r e s u l t s . 

However, th is example i s not only complicated by the nature of the 

ref ract ion and re f lec t ion at the boundary between the l a y e r s , but a l s o , 

s ince the input wave i s not pa ra l l e l to the s i d e s f i t includes re f l ec t ions 

from the s ides almost as soon as the input pulse begins. Thus the 

re f ract ion at the boundary between the layers can only be observed at 

the leading edge of the incoming pulse. Behind th is there quickly 

develops an exceedingly complicated s t r e s s pattern which i s a r e s u l t of 

the combined displacements due to the incoming P-wave, and re f lec ted 

and/or refracted P and SV waves from the s i d e s , top, bottom and in te r face . 

I f t h i s grid were being used to model a f i n i t e region of the dimensions 

of the grid subject to the boundary conditions and input which we used, 

then, s ince the elements per wavelength and time-steps per period are 

both very favourable there seems no reason to suppose that the s t r e s s 

plots obtained are not good representations of r e a l i t y . Ihfortunately, 

however, the region to be modelled in th is study <s not f i n i t e , but i n f i n i t e 

in breadth and depth. In such a case a l l the re f lec t ions from the sides 

and base are unwanted. This presents a severe r e s t r i c t i o n on the f i n i t e 

element method for the study of t ransient wave propagation problems. 

This i s discussed at greater length in sect ion 5 .5 . 
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Fig. 4.17 Mode conversion of incident P-wave. 
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4 .4 . Summary 

The t r i a l s described in the previous sect ions are summarised 

in the following table . 

PUN P or 
S wave 

Timesteps 
per period 

Elements per 
wavelength 

Acceptabi l i ty 

A P 6 8 good 

B P 12 8 very good 

C P 12 4 bad 

n S 12 4.6 bad 

E s 32.5 10 exce l lent 

F p 100 30 . excel lent 

The "acceptabi l i ty" i s a judgement based on the features discussed 

in the previous sect ion - namely the lack of dispersion of the 

time-displacement graphs, the maintenance of amplitude, the accuracy 

of the ve loc i ty of propagation, the accuracy of the pr incipal s t r e s s e s 

and the absence of a r te fac ts from the s t r e s s p lo ts . 
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Chapter 5. Limitat ions of the f i n i t e element method 

5.1. Introduction 

The t e s t runs previously described in chapter 4 show that i t 

i s possible to model e f f e c t i v e l y the propagation of e l a s t i c waves 

provided that cer ta in c r i t e r i a are met. What these c r i t e r i a a r e , 

and what the i r impl icat ions a r e , w i l l be discussed in th is chapter. 

5 .2 . R e s t r i c t i o n on time-step s i z e 

a 

As explained in de ta i l in chapter 3 there i s » c r i t i c a l t ime-step 

s i z e whenever a Runge-Kutta algorithm i s used. This c r i t i c a l 

value i s determined s o l e l y by the l e f t handside of the equations 

of motion ( 3 . 1 . 1 . ) , and i s in no way affected by the nature of the 

forcing term [Q(tl\ . There are thus two separate quest ions: -

a) I s the time-step small enough to avoid i n s t a b i l i t y ? 

b) Is the time-step small enough to give a r e a l i s t i c model 

for a given forcing term? 

The answer to (a) i s a property of the grid being used, and i s found 

empir ica l ly in the sense that i f too large a time-step i s used then 

the i n s t a b i l i t y w i l l be manifest . 



118 

The t e s t runs revealed that 6 t ime-steps for each period of the 

forcing function gave s a t i s f a c t o r y r e s u l t s , and that i f other 

fac tors such as mesh s i z e are kept the same, a decrease in the 

t ime-step s i z e produced some improvement, but not one which was 

marked. Thus i t i s possible to adopt as a c r i t e r i o n for step 

s i z e , hy 

h < L 5.2.1 

where f i s the frequency of the forcing term. 

I t i s a lso in terest ing to note that for the t e s t runs, whenever 

t h i s c r i t e r i o n was met there was no d i f f i c u l t y in meeting the 

s t a b i l i t y condit ion. There i s , of course, no necess i ty for th is 

to be the case as the two c r i t e r i a depend on en t i re ly independent 

th ings. However, th is happy circumstance also prevai led in the 

l a t e r models to be discussed in chapter 7. A l s o , in order to give 

a deta i led picture of the progression of an e l a s t i c wave i t was 

usual ly decided to use a. t ime-step s i z e smaller than that required 

by 5 .2 .1 . 

5 .3 . Res t r i c t ion on mesh s i z e 

The t e s t runs revealed that the mesh s i z e compared with the 

wavelength of the propagating wave i s a severe r e s t r i c t i o n on the 

a p p l i c a b i l i t y of the f i n i t e element method. I t was found that for 
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too coarse a mesh the energy of the propagation wave i s 

dispersed leading to both loss in amplitude of the wave, and, more 

s e r i o u s l y , the development of r ipp les in the wake of the wave. 
t3r««.c~4>«l Stress . A ^xiK?w + b^ckcteA diS\»ot»«»»«t^ 

This in turn leads to quite unsat is factory predictions^ v e l o c i t i e s , 

and s t r e s s values with theoret ica l v a l u e s , and a v isua l interpretat ion 

of time-displacement graphs suggested that for s a t i s f a c t o r y r e s u l t s 

there should be at l e a s t 8 elements in each wavelength of the 

propagating wave. Exact ly the same f igure i s suggested by Smith (1975), 

whereas Fedock and Schreyer (1981) suggests a value of 6 elements 

in each wavelength. In th is study the more r e s t r i c t i v e f igure was 

used in the c r i t e r i o n to be met, which may be stated as 

I < \ 5.3.1 
8 

where I i s the element s i z e needed to s a t i s f a c t o r i l y propagate a 

wave with wavelength \ . 

This ru le can be regarded as a l imi ta t ion on the possible waves 

that can be modelled, e i ther in ve loc i ty or frequency. For a given 

ve loc i ty of propagation, v , 5 . 3 . 1 . , gives an upper l im i t to f requencies, 

/ , given by 

I f the frequency i s given then the ru le gives a lower l i m i t to possible 

v e l o c i t i e s . For example, for the g r i d , described in chapter 6, which 
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i s used to model embankment dams* the mesh s i z e i s 8m. (or l e s s ) . 

So for waves with a propagation ve loc i ty of 1000. nf^s the 

maximum frequency i s 15.6 Hz. A l te rna t i ve ly , i f the frequency i s 

given as 10Hz, then the ve loc i ty must exceed 640 ms~^. 

5.4. Ftestriction on possible input s igna ls 

The l imi ta t ions imposed by the condition 5.3.1 have quite far 

reaching impl icat ions . In a study such as th is i t might be thought 

desirable to use as in input signal an actual strong motion record 

such as the San Fernando record of 1971. This su f fe rs from the 

c r i t i c i s m s , already made in section 1 . 2 . , that the record of one 

l o c a l i t y may not be appl icable to a d i f ferent l o c a l i t y , nor even to 

the same l o c a l i t y at a d i f fe rent time. A more general approach, 

suggested by Smith (1975), i s to use as input an impulse function and 

use the f i n i t e element method to determine the impulse response of the 

s t ruc ture . The response of the st ructure to any input funct ion, 

whether i t be an actual strong motion record or a theore t i ca l l y derived 

seismogram, i s then found by convolving the input function with the 

impulse response. But a strong motion record i s an extremely complex 

time s e r i e s containing a wide range of f requencies, and an impulse 

function contains a l l f requencies. So i f e i the r of these were used 

as an input to a f i n i t e element model they would f a l l foul of the 

condition 5 .3 .1 . Furthermore t h i s c r i t i c i s m appl ies equally to a l l 

f i n i t e element formulat ions, such as mode superposit ion, s ince the 



l imi ta t ion r e s u l t s from the f i n i t e element approximation i t s e l f , 

and not from the procedure for solving the equations of motion. 

The t e s t s of chapter 4 have shown that i f the input function contains 

frequencies greater than that permitted by 5 . 3 . 2 . , then the predicted 

displacements w i l l contain a r te fac ts in the form of unwanted r i p p l e s . 

These r ipp les ser ious ly a f f e c t the ca lcu la t ion of s t r e s s e s , and the 

tes ts suggest that an input function that at a l l approached an impulse 

would y i e l d s t r e s s e s so corrupted by a r te fac ts as to render them of 

l i t t l e value. Indeed in the paper of Smith (1975) he remarks on a 

"r inging" in the predicted displacements which he f i l t e r s out before 

presentat ion. I t i s perhaps s i g n i f i c a n t that he does not ca lcu la te 

s t r e s s e s . 

The approach adopted in t h i s study i s rather more s i m p l i s t i c . I f 

a high frequency in the output cannot be r e a l i s t i c a l l y modelled by 

the g r i d , why put i t in in the f i r s t place? So, ins tead , t h i s study 

uses idea l ised inputs consist ing of a pulse of known frequency which 

complies with the requirement 5.3.2 - by 'pu lse ' i s meant, not an 

impulse, but one complete cyc le of a sinusoid wave, as used in the 

t e s t s . Whilst the r e s u l t s obtained with such an input w i l l be 

correspondingly i d e a l i s e d , at l e a s t we can be reasonably confident 

that any component of an actual earthquake source with the frequency 

of the pulse wi l l behave as predicted. The l imi ta t ions of th is approach 

cannot be denied, but the r e s u l t s obtained should be meaningful. 
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5.5. The f i n i t e s i z e of grids 

A l imi ta t ion to the a p p l i c a b i l i t y of the f i n i t e element method that 

i s quite d i f fe rent from those discussed in the previous sect ions of 

t h i s chapter, though which was ra ised in the d iscussion of Test Hin F, 

i s that imposed by the f i n i t e s i z e of the gr id . This i s , of course, 

no problem when the region being modelled i s i t s e l f f i n i t e . Even for 

s t a t i c problems which involve an i n f i n i t e ha l f -space a reasonable 

representation of the boundary conditions at i n f i n i t y may be simulated 

by using large elements at the edges, or better s t i l l by using some 

such a r t i f i c e as the " i n f i n i t e elements" proposed by Bettess (1977 and 1980). 

In the case of dynamic problems t h i s l imi tat ion i s much more s e r i o u s , 

s ince the f i c t i t i o u s edges of the gr id (that i s , those edges which do 

not correspond to an actual boundary in r e a l i t y ) w i l l act as r e f l e c t i n g 

boundaries, returning into the gr id energy which properly should not 

be there. In the ear ly stages of t h i s study three methods were tested 

in an attempt to overcome th is problem, for which i t can only be 

reported there was complete lack of success . The f i r s t attempt put 

the boundaries at a large distance by making the elements round the 

edge very large.; however as fa r as propagating waves were concerned 

they did not act as though they had any greater dimension than the 

conventionally s i zed elements. The same was true of the " i n f i n i t e 

elements" of Be t tess . I t has a lso been pointed out by Belytschko 

and Mullen (1978) that var ia t ion of s i ze of elements i s undesirable anyway 

in wave propagation problems because of attendent d ispers ive propert ies. 
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A third approach was to use damping elements around the edge. 

In this case it was possible to reduce the amount of reflected 

energy - but not to an acceptably low level. However i t required 

much trial and error to find suitable damping coefficients, even 

with very simple trial grids. Furthermore, as discussed in chapter 3, 

the inclusion of damping coefficients in the equations of motion 

leads to instability problems with the Runge-Kutta routine. 

Another method, proposed by Smith (1974), uses a summation of two 

solutions with different boundary conditions along the edges which 

has the effect of cancelling out the reflected wave. For an acoustic 

wave the boundary must be free for one solution, and fixed in the 

other. Since the reflected waves in these two cases are 180° out of 

phase they cancel each other. However the summation of several 

solutions is required to eliminate any multiple reflections, and the 

method fa i ls , as pointed out in a later paper by Smith (1975), when 

there are waves propagating parallel to a boundary. It is also not 

clear how the method can be used for any boundary which is being 

forced in time, such as the base of all the models considered in this 

study. For these reasons, and in view of the more than doubling of 

computer time needed, it was decided not to use this method. A survey 

of this whole problem is contained in Zienkiewicz, Kelly and Bettess 

(1979), where they do report some progress but admit that their results 

at the time of writing were inconclusive. A simple resolution of this 

problem, i f indeed one is possible, would be a major breakthrough for 

the applicability of the finite element method for this type of dynamic 

problem. 



The approach used in this study is the naive one of using a grid 

large enough so that the area of interest can be studied for long 

enough before the unwanted reflected waves begin to arrive. This 

either means that a very large grid has to be used or the time span 

that can be studied is severely restricted. The size of the grid is 

limited by the capabilities of the computer, which therefore becomes 

the overriding constraint. 

5.6. Summary 

We are now able to assess the use of the finite element method for 

the solution of dynamic problems. As expected, the modelling of a 

continuum by a set of ordinary differential equations (3.1.1) has 

brought its limitations. These limitations are the consequences of 

three separate problems. 

First, given the equations of motion 3.1.1., are we able to find 

an accurate solution to them? If we use a direct integration method 

then this puts a limitation on the time-step thit we can use. The 

tests gave the rule 5.2.1 as a condition that has to be met by a 

stepsize in order to give a satisfactory modelling of a propagating 

wave with frequency / . I t should be emphasised that this condition 

is imposed by the forcing term of 3.1.1., and not by the particular 

integration method used. In addition to this condition on stepsize 

there are the limitations inherent in the integration method, which 

for the Hinge-Kutta algorithm proved to be less restrictive than 5.2.1. 
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when the model contained no damping. I f mode superposition is used 

as a means of solving the equations of motion then the accuracy of the 

solution will depend on the number of modes used. 

A second, and more fundamental problem, is how well do the equations 

of motion 3.1.1., model the continuum at a l l? That i s , even i f we 

were able to find an analytic solution to the set 3.1.1., how close 

would i t be to propagation of a wave through a continuum? In order 

that there should be a satisfactory f i t the tests of chapter 4 suggested 

the rule 5.3.1., relating the internoda1: distance of the mesh to the 

wavelength of the propagation. For given material properties this 

is a condition between mesh size and frequency of the wave (5.3.2). 

No ingenuity in the method of solving the equations of motion can 

overcome this limitation. For instance, i f mode superposition were 

being used, and even i f all modes were being calculated, the predictions 

would s t i l l be in error i f the mesh size was not fine enough for the 

frequency of wave being propagated. The severe consequences for 

possible input signals to any finite element model have been discussed 

in section 5.4. 

The third major limitation of the finite element method is the 

extent to which it can model an infinite, or semi-infinite, region. 

As detailed in section 5.5., the reflections of waves from fictitious 

boundaries make this a severe limitation for dynamics problems. 

The finite element method when applied to dynamics problems must 

therefore be used with full knowledge of its limitations, and with 

steps taken to ensure that those limitations are not exceeded. 
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Chapter 6. The representation of an embankment dam by 

a finite element model 

6.1. The forms of embankment dam 

It is hardly surprising that no two dams are the same, each 

being built to meet the specific conditions of the site chosen. 

It is therefore necessary to look at several examples to see 

which broad features should be included in any model. 

The diagrams of Fig. 6.1-6.6 illustrate some of the variety of 

embankment dams. Fig. 6.1. is an example of the simplest type, 

constructed largely from a homogeneous material. It has a height 

of 45m. and slopes about 1 in 3. The El Isiro dam of Fig. 6.2. 

has a height of about 30m, and was built with a central core. 

This dam was built with a curved longitudinal axis (radius of 

curvature 212m. convex upstream). A dam with a more complex 

central core is illustrated in Fig. 6.3. This dam has a height 

of about 90m. and a crest length of 400m., and its more complex 

construction enables slopes of 1 in 1.6 to be used. The Mammoth 

Pool Dam (Fig. 6.4), with a height of about 110m. and a crest 

length of 250m, has neither a central core, nor with its variety 

of material types could be termed homegeneous. The 112m. high 

Djatiluhur Dam shown in Fig. 6.5, has a more complex structure, 

with a sloping core and is built adjoining a f i rst stage cofferdam. 

Another central core dam is shown in Fig. 6.6., the Nurek Dam, U.S.S.R., 

which has a height of 312m., illustrating the kind of height that 
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can be achieved by modern construction techniques. For this 

dam both a cross-section longitudinal elevation are given. 

The latter is a reminder to us that embankment dams are three-

dimensional structures with a cross-section varying throughout 

their length. 

A broad classification of types is given by Thomas (1976), and 

is illustrated in Fig. 6.7. together with typical slopes. 

A feature that i s , of course, quite specific to each dam is the 

surrounding geology. Fig. 6.8. gives a sketch in longitudinal 

elevation of the geology of the Parangana Dam, Australia, and 

i t illustrates the probably common feature of a dam built between 

the solid rock sides of a steep ravine but over a base of drift 

or other loosely consolidated material. 

6.2. The features of an embankment dam model 

The finite element method is ideally suited to modelling most of 

the features mentioned in section 6.1. Complex geometries and 

differing material types are quite easily incorporated. A decision 

has to be made whether the model is to be a three-dimensional or 

two-dimensional one. A two-dimensional plane strain model may well 

be an adequate representation for the central sections of a long 

embankment dam (Lefebvre et al (1973)), but the limitations of a 

two-dimensional model were recently forcefully, expressed by 

Prof. Severn (Dams and Earthquake (1981), p. 244). A two-dimensional 

model will completely fail to represent the longitudinal vibrations 

in a dam. The finite element method is suited to a 3-dimensional model 
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except for the rapid increase in the number of nodes as the 

size of the model is increased. Thus for the grid that was 

used in this study, which had of order 1200 nodes and a base 

length of 90 nodes, an extension to three-dimensions with a square 
5 

base would have required of order 10 nodes. Such a figure is 

beyond the computing possibilities available at the moment, and 

so in this study only a two-dimensional method was considered. 

It is not difficult with a finite element method to take account 

of the variety of material types that may be used. This is especially 

easy i f the materials are elastic, but i t is possible to incorporate 

materials with non-linear properties also. A greater difficulty is 

perhaps the determination experimentally of the best parameters that 

should be used to characterise the actual materials used. 

It is with these considerations in mind that this study has chosen 

to concentrate on a very idealised model. I f we are to gain some 

understanding of how the outline geometry of an embankment affects 

the propagation of elastic waves entering at various angles, perhaps 

i t is best, at least ini t ia l ly , not to consider a model cluttered 

up with the fine detail of a realistic model.. Since what is of interest 

is how the reflections from the sloping sides, and the refractions 

and mode conversions at interfaces, affect the wave progression 

and consequent stresses, i t was decided to model just the broad 

features of an embankment dam. For this purpose the homogeneous 

dam type was taken as a basis, such as illustrated in Fig. 6.1 

and Fig. 6.7(A). 
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6.3. Choice of element size 

Since our aim is to give a reasonable model for the propagation 

of seismic waves we will require elements small enough for that 

to be achieved. The condition that has to be met is the relation 

5.3.2., namely 

f < v 6.4.1 

where I is the mesh size and f3v are the frequency and velocity 

of the propagating wave. We can therefore regard the mesh size 

as being determined by the material of the region, which fixes u, 

and the frequency of the seismic source. From 6.4.1. we can see 

that i f this relation is satisfied for a certain velocity then 

i t is satisfied for all greater velocities; likewise i f i t is 

satisfied for a given frequency, then all lower frequencies will 

be adequate. In order to settle on the mesh size we therefore 

have to determine a minimum velocity, v . , and a maximum frequency 
mm 

Given these, the mesh size I, must be chosen so that 
J max 

1 < lain 6.4.2 
"max 

For v m - we must choose a value sufficiently small to account 

for the low velocity materials that make up the embankment. For 

this study a value of 600m.s.""' has been chosen, but even this 

value could be too high, especially for the speed of propagation 

of S-waves in materials of high Poisson's ratio, (see Watanabe (1975), 

p. 760). For this study Poisson's ratio was 0.25 throughout. Clearly, 
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i f this method were to be used for the seismic response of an 

actual dam, the mesh size could not be decided upon until 

experimental data were available for the velocities of the 

materials. 

The justification for choosing a value for / m a x comes from 

the study of the spectra of earthquakes. Fig. 6.9. is a response 

spectrum for the El Centro earthquake, plotting velocity ratios 

against frequency for different damping factors. For this spectrum 

the velocity ratio is greatest in the range 0.3 - 3.0 Hz., with 

a sharp cut off outside this range. The velocity ratio at 10 Hz. 

is about l/10th the value at 3 Hz. Fig. 6.10 is taken from the 

Pacoima Dam strong motion record of the San Fernando earthquake and 

gives peak velocity over a narrow band of frequencies for selected 

frequencies from 0.5 Hz. to 10 Hz. A spectrum is given for each of 

the horizontal records and the vertical record. For these records 

the highest velocities are in the 0.5 - 2 Hz. range, and the peak 

velocities fall by l/5th from 2 to 10 Hz. 

If we assume that i t is the energy of a seismic disturbance that 

causes the damage to a structure, then, since energy is proportional 

to velocity squared, i t is to the velocity spectrum that we should 

look to see which frequencies are the most important as far as 

structural damage is concerned. The sharp fall in the velocity 

spectra over a certain frequency thus justifies the idea of a cut-off 

frequency. For this study / m a x was taken as 10 Hz., and the spectra 

of Fig. 6.9-6.10 suggest that this is a reasonable value. 
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If i t is thought that the displacement spectrum is the more 

significant one, as far as structural damage is concerned, 

then the cut-off with higher frequencies is even more marked, 

as can be seen in Fig. 6.9, where the displacement spectrum can 

be read using the diagonal lines marked on the right side of 

the graph. 

The values chosen here for v-n and f m a v give, using 6.4.2., 
nun ma A 

a value of 7.5m. for I. It should be noticed that the values used, 

whilst acceptable, are not generous. The choice of a cut-off 

value for the earthquake spectrum is a somewhat arbitary one, 

especially since we cannot be certain that i t is the appropriate one 

for some future earthquake; and certainly there may be cases when 

the materials of a embankment demand a lower value for u A 

value for the mesh size of around 8 m. is therefore a forced choice 

for dynamic problems with dams subject to earthquake. 

It could be argued that we need not be so restrictive on mesh 

size in regions of the model which are composed of higher velocity 

materials. This is true; but there are two disadvantages. F i rs t , 

as has already been referred to in section 5.5., a variation in 

element size is undesirable as i t tends to produce dispersion of 

waves (Belytshko and Mullen (1978)). Second, a grid with element 

sizes chosen to match the material properties of each element would 

be inflexible, especially in a general study such as this, for 

studying a variety of embankment dam models. The value of 8m. was 

therefore adopted for the size of the elements throughout the grid. 
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6.4. Examples of finite element grids 

Many finite element grids have been published for dam studies. 

Most of these have been for static analyses, but a number have 

been proposed for dynamic studies. One of the earliest was that 

used by Clough and Chopra . (1966), and is reproduced in Fig. 6.11. 

This models an idealised dam about 91m. high with slopes of 1 in 

1.5., using elements of order 18m. 

The grids illustrated in Figs. 6.12-6.13 were designed to model 

actual dams. That in Fig. 6.12 was designed by Watanabe (1975) 

to model the Kisenyama dam, and has a height of 95m. with slopes 

of about 1 in 1.25. The mesh size varies from about 5m. at the 

crest to 30m. at the base. The grid of Fig. 6.13 was designed 

by Seed, Duncan and Idriss (1975) for the Upper San Leandro dam. 

This is a homogeneous dam with slopes of around 1 in 3, rising to 

61m., and has a mesh size of order 9m. 

Another example, Fig. 6.14, due to Seed (1973) was used to analyse 

the failure due to earthquake of the Sheffield dam in 1925. This 

dam would not be considered a large dam, having a height of only 

7.6m. The grid was designed with a mesh size of order 2.5m. This 

dam is one of the few examples of a catastrophic failure as a 

result of earthquake, and from his analysis Seed concluded that 

the failure was most probably due to progressive liquefaction 

along the base of the dam. 



Fig. 6.11 Finite element idealisation for an earth dam. 

From Clough and Chopra (1966). 
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Fig. 6.12 Finite element grid for Kiseyama dam. 

From Watanabe (1975) 
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Fig. 6.13 Finite element grid for Upper San Leandro dam. 

From Seed,Duncan and Idriss (1975). 
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Smith (1975) used a finite element grid to model, not an 

embankment dam, but an idealised mountain. Furthermore this 

grid (Fig. 6.15) includes a considerable amount of the underlying 

halfspace. The dimensions of. the grid :are such that a 

horizontal extent of 6.4 km, to a depth of 1.2 km below the 

ground surface, is modelled, together with a mountain of height 

420 m. above ground level and slopes of 20°. The mesh size is 

of order 80 m. 

The parameters of these grids are summarised in the Fig. 6.16. 

Finite element 
grid 

Slope Height 
m. 

Mesh size 
m. 

Height/ 
mesh size 

Clough and Chopra 34° 91 18 5 
Watanabe 
Kiseyama Dam 39° 95 5 - 3 0 6 
Seed et al . 
San Leandro Dam 20° 61 9 7 
Seed 
Sheffield Dam 22° 7.6 2.5 3 
Smi th 20° 420 80 5 

Fig. 6.16 

It will be noticed that of these grids only those by Seed meet 

the mesh size requirement of 6.4.2. In the case of the grid of 

Smith i t could be argued that since i t was to model a mountain 

rather than a dam the velocity of the material would be higher. 

However for the mesh size of 80m. to meet 6.4.2 would require 

v _.. to be 6400m.s."^ which is certainly not a realistic value. 
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The fact that the ratios of height to mesh size are similar 

for all these grids, despite the wide range in absolute 

dimensions, suggest that their designers were largely influenced 

by the geometric shape of the region to be modelled. Whilst 

i t is clear that any grid must be designed so that i t adequately 

represents the geometric complexities of the dam, what has been 

shown is that this is by no means the only criterion that must 

be satisfied. It must be concluded that any results which use 

grids that do not meet the requirement of mesh size given by 

6.4.2., should be treated with caution. As the tests of chapter 4 

showed this is especially true for any deductions concerning 

stress rather than just displacement. 

6.5 Design of a finite element grid for an embankment 

The grid illustrated in Fig. 6.15 (Smith (1975)), contains 

features that fitted the needs of this study, in that of 

models an embankment with slopes of 20° together with a considerable 

amount of the underlying half-space, and i t uses uniformly sized 

elements of quadrilaterals together with some triangles. For the 

dimensions that Smith used i t fails completely to meet the all 

important mesh size requirement. However this requirement could 

be met by a rescaling, and this would reduce the embankment height 

to 40m. 
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In the early stages of this study the grid of Fig. 6.15 was 

used, scaled to a height of 100m. It was the unsatisfactory 

results, especially in the values of stress, that were obtained 

from this grid that prompted the tests of chapter 4, leading 

to the conclusions on mesh size stated in chapter 5. It was 

therefore decided to design a new grid able to meet these 

conditions. A further point is this. A mesh size of 8m., implies, 

by the relation 5.3.1., that the wavelengths that can be modelled 

must be longer than 64m. If the magnitude of the structure is 

much less than the wavelength of an incident seismic wave then 

we would expect the structure to move as an entity without significant 

production of strains. It is only when the magnitude of the structure 

is of the same order as, or greater than, the incident wavelength 

that we would expect the production of strains across the structure. 

It is thus the larger dams that are more at risk from seismic 

disturbance. So the grid to be designed, besides having a mesh 

size of order 8m., should be as large as possible. 

Fig. 6.17 is a sketch of an outline for a grid such as that used 

by Smith (1975). The f i rst problem is to determine suitable values 

for the dimensions a3b3oth. 



Fig. 6.17 

To model a homogeneous dam the embankment slope should be about 

1 in 3 (18°). This requires o = 3h. 

The values of a and b must be chosen to minimise the problem 

of unwanted reflections, as discussed in section 5.5. A minimum 

requirement for a was determined by demanding that a vertical 

incident wave originating at the base would travel to the top of 

the dam and down again to ground level before the f irst unwanted 

reflections from the base arrive back at ground level. Assuming 

uniform velocity this gives 

3a » a + 2h or a £ h 6.5.1 
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If we further require that a diffracted wave originating at a 

base corner should arrive at the bottom of the dam slope no 

earlier than i t takes a vertically incident wave to arrive at 

ground level after a reflection from the top of the dam, we get 

a condition for bt 

Ha + b2) > a + 2h 6.5.2. 

So that the structure will be of the order of the wavelength 

we take h = 60m. and o = 180m. With these values 6.5.1 and 

6.5.2 imply that a* 60m. and 6a 170m. 

If we take a = h, and b = J8h to just meet with the requirements 

of 6.5.1 and 6.5.2., then the area of the grid of Fig. 6.7 will 

be 17.65 h . For a mesh size of 8m. this would require N elements 

to cover i t , where 

N « 0.2?5h2 6.5.3 " 

The number of elements for various dam heights is given in 

Fig. 6.18. 



1 

Height of 
dam (m) 

No. of elements 
needed 

50 690 
60 990 
70 1350 
80 1760 
90 2230 

100 2750 

Fig. 6.18. 

At this stage the choice of dimensions becomes limited by 

the size of the computer to be used. The major storage requirement 

in the finite element program is the stiffness matrix, and i t 

requires an array of (no. of degrees of freedom x bandwidth). 

The degrees of freedom are 2n3 where n is the number of nodes, 

and the bandwidth is (4d + 3) where d is the maximum difference 

in nodal, numbering for any one element throughout the grid. The 

IBM 360/168 at NUMAC allows a maximum of 1 megabyte of storage 
20 

for any one array ( i .e . 2 bytes). With single precision, 4 bytes 

are required for each real number, and so we need 

2n(4d+3) < 218 

This can be rewritten 

d < 22768 _ |j 6.5.4. 

where the square brackets indicate "nearest integer to". 
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We can express 6.5.4. as a table, as is done in Fig. 6.19. 

Number of 
nodes 

Maximum 
nodal difference 

1000 32 
1100 29 
1200 26 
1300 24 
1500 21 
2000 15 

Fig. 6.19 

Experience showed that i t was difficult to achieve the nodal 

difference requirement with over 1100 nodes. The number of 

nodes is a l i t t le larger than the number of elements, so the 

table in Fig. 6.18 suggested a maximum height of dam between 

60 and 70m. 

With all these factors in mind a grid was designed with 

a = 64m., b = 170m., o = 180m., a height of dam between ground 

level and crest of 60.8m., and slopes of 1 in 3. These values 

just meet the requirements of 6.5.1 and 6.5.2. The large part of 

the grid was divided up into 8m. squares, but with two layers of 

4m. squares along the slopes of the dam, so that more accurate 

values would be given of the stresses close to the slope surfaces. 

Some triangular and irregular quadrilateral elements were required 

to complete the grid using a total of 1140 elements and 1184 nodes. 

This grid is shown in Appendix B, the accompanying portfolio. 
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The numbering of a grid to achieve a small maximum nodal 

difference is something of an art. In the present case a 

numbering by hand achieved a value for d of 29, whereas the 

storage requirement 6.5.4. was for a d of 26. The necessary 

reduction in bandwidth was done using the bandwidth reduction 

program given in Appendix A. This program is not very efficient, 

and the necessary result was only achieved after many iterations 

of the program, with a judicious varying of the arbitary parameters 

that enter into the program. The original node numbering is shown 

in Appendix B, since all the input data is given with respect to 

that numbering, and the improved nodal numbering obtained by the 

bandwidth reduction program need never concern the user. 

6.6. Summary 

The design of any grid to model the dynamic behaviour of an 

embankment must f i rst and foremost meet the mesh size requirement 

6.4.2. Certainly some of the published girds do not meet this, 

and so cannot be considered satisfactory for use in dynamics 

problems, particularly i f the aim is to calculate stresses. 

The problem of reflections from the fictitious boundaries imposes 

further geometrical restrictions on the overall size of the grid. 

When these restrictions are combined with the limitations of the 

available computer storage we are left with a very small range of 

satisfactory grids. 



More ingenuity of design could possibly reduce the bandwidth 

of a grid, but this is a very time consuming process and would 

not give a significant improvement in the grid given in Appendix 

B. To achieve even larger grids would require another dimension 

in computing ingenuity - such as storing the stiffness matrix 

in more than one array, or, better s t i l l the elimination of 

storage of all the zero elements in the matrix. 
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Chapter 7. Stresses in embankments produced by P and S waves 

7.1. Introduction 

Our analysis has carried us to a point where we have designed 

a grid (Appendix B. Fig.B.l) which we know will be able to 

model wave propagations for certain specific velocities and 

frequencies. In particular we know that the calculated displacements 

will be accurate enough for stresses to be calculated without 

the introduction of artefacts. We are thus in a position to be 

able to calculate the stresses in an embankment as a result of an 

idealised seismic input, and see i f they are of the form likely 

to cause failure. Before these stress distributions are discussed 

we shall f i rst review the stress conditions that are necessary for 

failure. 

7.2. Conditions for failure 

The simplest, but most often used, condition for failure is the 

Coulomb criteria (Jaeger and Cook (1969), pp 87-91). It states 

that a shearing failure will occur in a plane i f the magnitude of 

the shear stress along the plane, x , is related to the normal stress 

across the plane, c , by 

| T | > a + wo 7.2.1. 

where a is called the adherence and y the coefficient of internal 
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friction. (Here, as is usual in soil mechanics positive stresses 

are congressional). a and y are properties of the material, which 

would have to be determined experimentally. If the total stress 

at any point has major and minor principal stresses and 

( i .e. a 1 > then the maximum shear stress has magnitude l[oj- o2) 

and acts along lines at 45° to the principle stresses. However 

i t can be shown that | T | - yo reaches its maximum value along lines 

at angle e to the minor principle stress, where tan 26 = ~ V y . 

Thus by 7.2.1. these are the possible directions of shear fracture. 

For u = 0 , B=45° and 135°; whereas for y>0 the two values of B l ie 

in the range 45° to 135° and are symmetric about the major principal 

stress. This is illustrated in Fig. 7.1. 

Some further analysis gives the condition for shear fracture 7.2.1. as 

2 
o 7 > b a . + 2ab 

1 t 7.2.2. 
where b = y+ / ( y + 1) 

The relation 7.2.2. will hold only i f a 2 is not so negative ( i .e . 

the minor principal stress being a tension) that the material breaks 

with extension fracture. If the tensile strength is TQI then we 

can expect extension fracture for a

2

> ~ T o ' T n e s e results are 

summarised in Fig. 7.2. 

Fig. 7.2. shows that i t is necessary to know the three material 

properties characterised by the constants T » a and y , i f a prediction 
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Fig. 7.1 Lines of shear fracture in a soil subject to major 

and minor principal, and d^. For internal 

friction greater than zero the angle 0 is 

greater than 45° 
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At A < = 2ab 

B «v. = -2a /b 

tension 

^ compression 

Fig.72 Principal s t r e s s diagram, showing regions 

of stabil i ty and fai lure. 
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is to be made of the type of failure from a knowledge of the principal 

stresses. However certain general points can be made from this 

diagram. F i rst , i t is not possible to obtain shear fracture i f both 

principal stresses are tensional - either the material is stable, or 

there is extension fracture with cracks normal to the minor principal 

stress. Second, i f the tensile strength T*Q is small - and this is 

likely for the materials of an embankment - then i f the minor principal 

stress is tensional, extension fracture is the most likely form of 

failure. Third, i f the internal friction, u , is reduced - such as by 

wetting of the material - the possibility of shear fracture is increased. 

The static distribution of stresses of an embankment does not include 

any tensions (see, for example Appendix B), and so we would not expect 

any extension fractures. The usual form of analysing the stability 

of a slope is to look for possible shear fracture along certain crit ical 

surfaces. That shear failures do take place in embankment dams is 

well documented (Newmark (1965), Seed (1970)),and they take the form 

of slumping along surfaces of approximately circular cross-section, 

stretching from some point near the top of the slope, going into the 

body of the dam and emerging near the bottom of the slope. Such a 

slope is illustrated in Fig. 7.3. 

If values for the material properties are given, then from any stress 

pattern a search can be made for any surface along which the condition 

7.2.2. holds, and so would be liable to shear fracture. This may be 
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embankment slope 
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liable to shear fracture 

7^ 

Fig.7.3 Possible slumping surface, together 

with principal s t resses. 
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done using the generalised procedure of s l i c e s , comprehensive 

details of which are given by Janbu (1973). The process is a 

lengthy one since several t r i a l surfaces may have to be considered 

before a c r i t i ca l one is found. However we can see the sort of 

stress patterns that would be needed for this kind of fa i lure , and 

these are drawn on Fig. 7.3. They are drawn with the convention 

that is used for the stress plots in Appendix B, that is with two 

dots to indicate a tensional stress. However i t is not necessary 

for one of the stresses to be in tension and the other in compression, 

only that the difference between the principal stresses is large enough to 

meet the condition 7.2.2. and so would be plotted in the shear 

fracture region of F ig. 7.2. What is important i s the orientation 

of the stresses. Since any shear wil l take place close to a l ine 

bisecting the principal stresses (at least for low values of internal 

f r i c t ion ) , in order to get shear along the proposed slumping surface 

i t is necessary for the stresses to show the variation in orientation 

that is i l lustrated in Fig. 7.3. Whenever, therefore, we notice a 

steady rotation of the principal stresses along a curved line (and 

provided they are not close to equality) we may suspect this to be 

a region of possible slumping fai lure; but a confirmation of this 

would require the analysis such as that given by Janbu (1973). 

Besides the existence of slumping surfaces, since we are considering 

a dynamics problem, there i s the possibil i ty that for some regions 

tensional stresses wil l appear, even i f only for a limited time. 

These might be in the form of one stress compressional, and the other 

tensional - l ike those given in F ig . 7.3. Since these could produce 
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a shear the term "region of shear" wil l be applied to any area 

where this kind of principal stress occurs. Another possibi l i ty 

is that both principal stresses might be tensional, and such an 

area wil l be termed a "region of tension". In a similar way i f 

both principal stresses are compressional the term "region of 

compression" may be used. I t should be noted that these terms 

are only convenient labels, and i t must not be forgotten that shear 

fracture is not confined to regions of shear, but might well occur 

in regions of compression; likewise extension fracture could occur 

in a region of shear as well as a region of tension. 

In view of the l ikely low value for the tensile strength of the 

materials used in an embankment both regions of tension and regions 

of shear must be considered l ikely areas where extension fracture 

might occur. For a completely dry embankment composed of a material 

such as sand we might expect no tensile strength at a l l , and the 

effect of tensile stresses would be to produce a crumbling of the 

embanknaant. However with the compacted clays that are typical of 

embankments there wil l be some tensile strength, at least in the 

short term (see Janbu (1973) p. 62 ) . , and in this case tensile stresses 

would produce cracking. 

Once a crack has began to develop, the further history of the dam 

would require a separate analysis. Since we shall see that tensions 

that are produced are only maintained for a short period of time i t 

might be that the succeeding period of compression would heal the 
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crack before significant development had taken place. This might 

be particularly true of the interior of the dam. However i t must 

be borne in mind that i f a crack does begin to develop then there 

is a redistribution of stresses to account for the newly created 

free surface. In particular this wil l lead to stress concentration 

at the crack tip which wil l enhance i ts propagation, and the 

following phase of compression wil l be altered quite significantly 

i f the crack has developed to some s ize . 

7.3. Description of models 

The grid developed in chapter 6, and i l lustrated in Appendix B 

Fig. B .2 . , was used in two forms, (a) as a homogeneous grid of one 

material type and (b) as a layered grid of three material types. 

The regions of each layer for case (b) are also indicated in Appendix B 

Fig. B.2. The material properties for both cases are given in Fig. 7.4. 

Model 
Young's 
Modulus 
N.m*2 

Poisson's 
ratio 

Density 
-3 

kg.m. 

P-wave 
velocity 
m.s • ^ 

S-wave 
velocity 
m.s. ^ 

Dl 
Homogeneous 
embankment and 
substructure 

2.0xl0 9 0.25 2400 1000 577 

D2 Layered 
Model 

Layer 1 1.6xl0 1 0 0.25 2500 2771 1600 
D2 Layered 

Model Layer 2 3.84xl0 9 0.25 2400 1386 800 D2 Layered 
Model 

Layer 3 8.4x10 8 0.25 2100 693 400 

Fig. 7.4. Table of material properties. 
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The values of the material properties are not those of any 

particular embankement dam, but are chosen as representative values. 

By considering the two models, homogeneous (Dl) and layered (D2), 

i t should be possible to differentiate between those effects that 

are primarily due to the geometry of the embankment and the angle 

of incidence of the seismic wave, and those effects that are 

produced by layers of low velocity material over high velocity 

material. 

For both Dl and D2 the stat ic distribution of stresses due to the 

body forces was calculated. To do this the same f in i te element 

formulation as for the dynamic problem was used, except that, instead 

of an equation of motion, an equilibrium equation 

[ K ] [ q ) = [Q] 7.3.1. 

is formed, where [ K] is the st i f fness matrix, [ Q] the vector applied 

loads and[q] the vector of nodal displacements. Equation 7.3.1. is 

solved using the routine given in Desai and Abel (1972) p. 456. The 

vector [Q] is formed using the results of 2.9(b). . The stress distributions 

for body forces are given in Appendix B Fig. B.4 and Fig. B.6 for 

the models Dl and D2. 

In addition to the body forces due to the weight of the embankment 

materials i t is possible to include the effect of the weight of 

impounded water on one side of the dam. This is done by including 

within [Q ] components due to the effect of hydrostatic pressure along 
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certain edges of the grid, using the results of 2.9(d). The 

inclusion of these hydrostatic forces for model Dl is also i l lustrated 

in Appendix B, Fig B.5. 

For each of the two embankment models, Dl and D2, a number of dynamic 

examples were calculated. Each of these examples consisted of an 

excitation along the base of the grid in the form of a sinusoidal pulse 

of one period, in exactly the same way as was used in the tests of 

chapter 4. The pulse was applied either as a P-wave or an S-wave and 

for waves entering at a variety of angles of incidnece. In order 

to meet the mesh size requirement 5 .3 .2 . , the frequency of the P-waves 

were taken as 10Hz., and for S-wave as 6Hz. For these frequencies 

the number of elements per wavelength for the various materials of 

the models are given in Fig. 7.5. 

Model 
P-waves at 0 Hz. S-waves at 6 Hz. 

Model Wavelength 
m. 

Elements per 
wavelength 

Wavelength 
m. 

Elements per 
wavelength 

Dl 100 12.5 96 12.0 

D2 
layer 1 277 34.6 267 33.3 

D2 layer 2 139 17.3 133 16.7 D2 
layer 3 69 8.7 67 8.3 

Fig. 7.5 

I t wi l l be seen that there are a number of parameters that can be 

varied. A plane wave can be varied in frequency, amplitude, angle of 

incidence and mode (P or S ) . Variations in embankment slope and 

crest width could also be considered. The examples presented were 
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chosen so that a study could be made of the affects of P and 

S-waves at a variety of angles fa i r ly close to the ver t ica l . 

Also two different amplitudes were used corresponding to base 

accelerations of g and kg. 

The parameters of each of the fifteen examples which are i l lustrated 

in Appendix B are given in Fig. 7.6. Each example, is given a 

designation, such as D2/3. This designation is sometimes extended 

to include the wave type, the angle of incidence and the base 

acceleration. Thus D2/3; P 10; g shows that example D2/3 is a 

P-wave at 10° to the vertical with a base acceleration of g. 

For each of these examples Appendix B displays two forms of resul ts . 

(a) Time-displacement graphs. 

These are given for selected nodes along the top surface 

of the grid, which are the numbered nodes, in Appendix B, 

Fig. Bl and Fig. B.3. These give displacements in meters 

due to the progagating wave (but not including the stat ic 

displacements) both in the x and y directions for the 

complete length of the run. I t should be noted when comparing 

one with another that the displacement scale has been adjusted 

so that the maximum displacement has always the same dimension 

on the graph. 
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Designation Wave 
Type 

Frequency 
Hz. 

Angle of 
incidence 

Amplitude 
at base 

m. 

Max. accel . 
at base 

m.s ^ 

Times tep 
s 

Rin-time 
s 

Dl n P 10 0° 0.0024 9 0.002 0.3 

P 10 20° 0.0024 g 0.002 0.4 

Dl/3 S 6 0° 0.0069 g 0.0025 0.4 

Dl /4 S 6 20° 0.0069 g 0.0025 0.525 

. D2/1 P 10 0° 0.0024 g 0.002 0.3 

D2/2 P 10 0° 0.0012 £g 0.002 0.3 

D2/3 P 10 10° 0.0024 g 0.002 0.3 

D2/4 P 10 20° 0.0024 g 0.002 0.4 

D2/5 P 10 20° 0.0012 £g 0.002 0.4 

, D2/6 S 6 0° 0.0069 g 0.0025 0.375 

D2/7 S 6 0° 0.00345 Jg 0.0025 0.4 

D2/6 S 6 10° 0.0069 g 0.0025 0.4875 

D2/9 S 6 20° 0.0069 g 0.0025 0.6 

D2/10 S 6 20° 0.00345 Jg 0.0025 0.6 

D2/11 
s 

6 30° 0.0069 g 0.0025 0.6 

Fig. 7.6. Table of parameters for different models. 
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(b) Stress distributions 

These are given for only a section of the complete grid. 

This section is i l lustrated in Appendix B. Fig. B.3. On 

each stress plot only an outline of the section is given, 

with, in the case of D2 examples the interface drawn between 

layers 2 and 3. The plot consists of two orthogonal vectors 

intersecting at the centroid of each element having the 

magnitude and direction of the principal stresses of that 

element, for compressive stresses the vector is given by a 

solid l ine, whereas for tensional stresses the vector i s 

represented by dots at i ts ends. The plots are given for a 

selection of times from the length of the run, usually ten 

time-steps apart, for these plots the stresses include the 

stress distribution due to the body forces. 

7.4. Discussion of the time-displacement graphs 

The smooth shape of the time-displacement graphs without the appearance 

of extraneous ripples except possibly towards the end of the run confirms 

the use of the cr i ter ia established in chapter 5. There are two features 

of these graphs that are worth noticing. 

(a) In a l l cases there is an amplification of the displacement between 

the ground level and the crest , which confirms the conclusions of 

Bouchon (1973) e t c . , already cited in chapter 1. The table of 

Fig. 7.7. gives the amplification factors for the examples. The 

ground level displacement was measured at node 100 in each case. 
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Designation Type Angle of 
incidence 

Ampli fi cation factors 
displacement at crest/displacement at ground 

Designation Type Angle of 
incidence 

a;-components y-components 

Dl/1 P 0° - 1.1 

Dl/2 P 20° 1.6 1.1 

Dl /3 S 0° 1.8 -

Dl /4 S 20° 1.9 1.5 

D2/1 P 0° - 1.5 

D2y2 P 0° - • 1.5 

D2/3 P 10° 1-.5 1.6 

D2/4 P 20° 2.0 1.7 

D2/5 P 20° 2.0 1.7 

D2/6 S 0° 3.0 -

D2/7 S 0° 3.0 -

D2/8 S 10° 3.0 3.0 

D2/9 S 20° 3.1 3.0 

D2/10 S 20° 3.1 3.0 

D2/11 S 30° 3.3 2.1 

Fig. 7.7. Amplification factors 
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These magnification factors point to a conclusion which wi l l be 

evident also from a study of the stressplots, namely that the 

effect of the seismic disturbance is greater for any, or a l l , of 

the following conditions, ( i ) S-waves, ( i i ) layered model, 

( i i i ) non-vertical incidence. 

(b) For examples Dl /2 and Dl/4 which are at 20° incidence the 

disturbance starts later and later as we traverse the 

surface from lef t to right. The ground level nodes on the 

L.H. side are the f i r s t to move, followed by those nodes of 

the dam, and f inal ly the R.H. side nodes at ground level'. 

For a l l the examples of angled waves in D2 models there is a 

marked contrast. In these examples the R.H. side ground nodes 

(numbers 987 and 1077), far from being the l a s t , in fact start 

moving only shortly after the wave has entered the dam at the 

L.H. side. Furthermore the disturbances at nodes 987 and 1077 

start at almost the same time. This effect is due in part to 

the low velocity of the dam material, slowing down the progress 

of the wave when i t enters the dam. However, the almost simultaneous 

start to the displacements at nodes 987 and 1077 (and the same is 

observed of the L.H. side ground nodes, numbers 100 and 190), 

indicates that the wave is travelling close to vertical incidence. 

This must be due to the refraction at the interface between the 

two layers that make up the substructure in model D2. Since the 

velocity across this interface is halved, the angle of incidence is 

approximately halved for waves that are refracted without mode 

conversion. For a conversion from P to S-waves at the interface 

the angle of refraction is approximately a quarter of the angle 

of incidence; but for an S to P conversion the reduction in angle 

is by a factor of approximately 0.8. 
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7.5. Discussion of the stress distributions 

The stress plots are i l lustrated from the time when the disturbance 

begins to modify the body force stress distribution, and in al l 

cases the progression of a wave through the dam can be clearly seen 

tether than give a description of each of the examples, this 

discussion will centre round certain points which they bring out. 

(a) Regions of tension and regions of shear appear in nearly a l l 

the examples, sometimes to a considerable extent. The only 

examples which are tension free are D2/2; P; 0; \q and 

D2/5; P; 20; £g. D l / l ; P; 0; g has only a small region of tension 

near the crest at 0.18s. It could be argued that the tensions 

are produced only because of the high accelerations at the base, 

but i t must be noted that D2/7; S; 0; Jg and D2/10; S; 20; £g, 

both develop tensions parallel to the slopes of the dam, even 

though they have the lower acceleration. 

There are thus many examples which we could consider as potential 

places for tensional cracking; e.g. D2/4; P; 20; g at 0.2-0.225, 

D2 /8; S; 10; g at 0.325-0.35. 

(b) The rotation of principle stress of the kind i l lustrated on 

Fig. 7.3. and characteristic of slumping failure can be seen 

in several examples, especially in those involving D2 and 3-waves. 

The example D2/8; S; 10; g at 0.35s, already mentioned may serve 

as an i l lustrat ion. As already explained in section 7 .2 . , slumping 
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fai lure does not require tensional stresses. An example 

of a rotation of stress along a possible slumping surface, 

without tensions, is D2/10; S; 20; \q at 0.35-0.4s at the 

lower le f t side of the dam. 

The effect of S-waves is certainly more dramatic. This is 

seen by comparing any two examples at which one is P and the 

other S, and the other parameters the same. For example 

Dl/2; P; 20; g produces some quite large changes to the s ta t ic 

compressional st resses, but barely produces any regions of tension 

or shear, whereas Dl/4; S; 20; g i s characterised by a large 

region of shear which travels across and up the embankment, with 

the shear stresses quite deep into the structure. 

Perhaps the most significant gleaning from these results are 

the differences between the homogeneous and layered models. 

A comparison of Dl / I ; P; 0; g and D2/1; P; 0; g makes this very 

clear. In Dl/l a compression followed by a rarefraction moves 

up the dam, just producing tensions at 0.18s at the crest. The 

wave is reflected from the surface of the dam and passes down 

and out from the region of the dam at 0.3s, when the stresses are 

returning to the stat ic distribution. For D2/1 near vertical 

tensions f i r s t appear at the toes of the dam at 0.08s, which then 

travel up the slopes behind a compression producing a considerable 

region of tension at the crest at 0.16s. The history then departs 

even more from i ts counterpart Dl/1, with the dam region dividing 

up into regions of compression and tension. A similar comparison 

can be made between Dl/3; S; 0; g and D2/6; S; 0; g. Here again 
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the patterns begin broadly the same, but with more 

exaggerated distortions of the s tat ic stress distribution in 

the D2 example. Towards the end of the run the D2 example 

divides into regions of tension and compression. 

As already observed from the time-displacement graphs there 

is a marked difference between the angled waves when comparing 

Dl models with D2 models. This was because the layering of 

the substructure tends to bring the wave closer to vertical 

incidence. A comparison of Dl/4; S; 20; g and D2/9; S; 20; g 

shows that the effects of layering for the angled S-waves is 

quite considerable. In the Dl model a wave is seen to enter 

from the L.H. side and progress across and up the dam, giving 

quite a large region of shear near the crest at 0.5s. At no 

point is the R.H. side ever in tension, for the D2 model regions 

of shear enter both the le f t and right toes of the dam at about 

the same time, (indeed, for D2/8 model which is at 10° the shears 

begin at the R.H. s ide) . These two ttegions of shear both reach 

the crest around 0.4s, giving substantial tensions deep into 

the dam structure. The dam then, as in the other D2 models 

discussed, divides up into smaller regions of compression and 

tension, as the energy is reflected from the base interface 

back into the dam. 

7.6. The stress distributions and their physical explanation 

The considerable variety of stress distributions that are produced by 

the variations in wave type, angle of incidence and embankment model , 
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that make up examples of this study, are as a result of certain 

well known physical properties of e last ic wave propagation, namely 

reflection, refraction, mode conversion and diffraction. At each 

interface a propagating wave wil l suffer one or more of these 

properties, which even with a quite simple geometry, rapidly 

increases the number of wavefronts. As these wavefronts begin to 

interfere with each other the nature of the displacement pattern 

takes on an increasingly complex form. 

The kind of complexities that we might expect with the models Dl 

and D2 are i l lustrated in Fig. 7.8 and Fig. 7.9. Rg 7.8. i l lustrates 

an S-wave, incident to the ver t ica l , entering the homogeneous model 

Dl, and gives the types of wave that wi l l be produced after one 

reflection from the top surface. The angles of the rays are only 

suggestive, and are not drawn to scale, but they are easily calculated 

using Snel l 's law. The amplitude ratios of each component to the 

incident amplitude are not given, but could be calculated from formulas 

derived in seismological texts (e.g. Aki and Richards (1980) pp 144-151). 

Also, indicated in Rg. 7.8., by circular wave fronts, are the 

diffracted waves that would originate at the discontinuities in slope. 

Fig. 7.9 i s a similar diagram for part of model D2. It wi l l be seen 

that the introduction of two interfaces increases very considerably 

the number of wave fronts that wil l be produced in a given time. 
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The fact that the incident wave in these diagrams is S is not 

signif icant; the same sort of splitt ing of the wave into a variety 

of types would occur with an incident P-wave, but with differences 

in some of the angles. 

It is not easy to disentangle these different wave fronts from 

each other in the stress distributions in Appendix B. However 

there are some examples where we can see these processes taking place. 

(a) Reflection 

This i s wel l issustrated by the examples Dl / l ; P; 0; g and 

Dl/2; 20; g; A sketch of the expected P wavefront for Dl/l 

is given in Fig. 7.10. The reflected compression waves from 

the dam slopes are clearly identif iable, coinciding in the central 

region of the dam at about 0.24s, and having passed through each 

other by 0.3s. 

A similar series of sketches is given in Fig. 7.11 which give 

the progress of a compression wave incident at 20° as in Dl/2. 

The same effect is not so easily seen in the cases of Dl /3 and 

Dl/4 since these are S-waves, and the exact position of an 

Ŝ -wave is not readily seen when i t is overlain (as in a l l the 

examples) with the compressive stresses of the stat ic forces. 

However in Dl/3; S; 0; g there are clear regions of shear which 
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0-12s 

0 18s 

0-22s 

0-24s 

0 3 s 
Fig.7.10 Progression of a compression wave in D1/1. 



0 22s 

0-2 8s 

0-34s 

Fig. 7.11 Progression of a compression wave in D1/2. 
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move from the slopes towards the centre (e.g. at 0.25s 

on the R.H. s ide) , which wil l be the result of interference 

of the reflected wave with the la t ter portion of the upgoing 

wave. In a similar way in D1/4;S; 20; g, a region of shear 

is observed to travel from left to right across the body of 

the embankement from 0.3s to 0.5s, being the result of 

reflection from the left slope. 

(b) Refraction 

This has already been inferred from the time displacement 

graphs, where i t was observed that the waves incident at an 

angle arrive at the ground surface almost at the same time 

along i ts whole length. The effect of this refraction becomes 

evident in the stress plots with the early arr iva l of a wave 

at the R.H. toe of the embankment. In the case of D2/4; P; 20; g 

this is seen at 0.12s and 0.14s., an'ti is sketched in Fig. 7.12, 

showing the position of maximum compression at these times. 

(c) Mode conversion 

The stress distributions do not give any direct evidence of 

mode conversion, but we have no reason to doubt i ts importance. 

Perhaps the best evidence they give for i ts cumulative effect is 

a comparison of D2/1; P; 0; g and D2/6; S; 0; g. The early 
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0 12s 

O-Us 

Fig.7.12 Bending of a compression wave due fo refraction in D2/4. 
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parts of the examples show distinctly the patterns of 

P and S waves respectively, but by the end of their runs, 

they begin to show s imi la r i t ies , particularly in the 

breaking up of the embankment into regions of compression 

and tension. The eventual similarity is to be expected from 

the continual spl i t t ing into P and S waves at each reflection 

within the region of the embankment. 

Pi f fraction 

Diffraction wi l l occur at any discontinuity in a free surface 

or of an interface. Any plane wave reflected by a surface 

with a break in slope wil l be sp l i t into sections; the "shadow" 

zone between these sections will not be free from disturbances, 

but wil l contain circular wave fronts of both P and S types 

originating at the discontinuity. This is i l lustrated in the 

sketch Fig. 7.13. 

The position i l lustrated in Fig. 7.13 would occur on Dl/l at 

about 0.18s (using the compressive part of the wave as indicator). 

There is no clear evidence of a circular wave front in the region 

of the corner, suggesting that the diffraction effect is small. 

In a similar way, in none of the examples are there obvious 

indications of circular wavefronts propagating from the crest . 



(a) Vertically incident P-wave approaching slope corner. 

reflected P-wave diffracted S-wave 

5 diffracted P-wave 

(b) Reflected and diffracted waves after incidence. 

Fig. 7.13 
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In D2 examples the junction of an interface (which is i t s e l f 

somewhat irregular) with the break of slope at the toe of 

the embankment could be expected to enhance diffraction ef fects; 

and this region does develop into one of high stresses with 

considerable variation in stress in time. However i t is also 

the region where ref lection, refraction, and mode conversion 

are occurring most frequently. I t is not, therefore, possible 

to ascribe the detail of this region to diffraction in particular, 

and in view of lack of evidence of i t elsewhere i t can be 

concluded that i t is most l ikely a subsidiary factor in determining 

the stress distributions. 

The above discussions'.show that the well known physical properties 

of reflection, refraction, mode conversion, and, to a lesser extent, 

diffraction, are able to qualitatively explain some of the more simple 

stress patterns; and that they are not able to explain immediately 

the more complex stress distributions is only because the observed 

effect is a sum of so many different components. This raises the 

possibi l i ty that a straightforward ray theory approach carried through 

systematically might be able to give as good predictions of stress 

patterns as are given here. This approach would require not only a 

careful accounting of a l l the generated wave fronts, but also the 

calculation of the amplitude and phase of each wave. The total 

displacement at each point would be then found by summing the displacements 

of a l l the generated waves that pass that point at each moment in time. 

It would seem feasible that such a programme could be carried out. 
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for incident plane waves, at least for geometries of the 

complexity of Dl and D2. The great advantage of this approach, 

i f i t were successful , i s that there would be no need to 

introduce the a r t i f i c i a l boundaries that are needed by the 

f inite element method. The calculations could be carried out 

over a genuine half-space. The di f f icul t ies would, seem largely 

to be computing ones, in which a system of book-keeping would be 

needed to keep account of the history of each wave from the 

time that i t is generated. 

7.7. The Stress distributions and natural modes of vibration 

The evidence of the stress distributions for the layered model is 

that much of the incident energy becomes trapped in the embankment. 

I f this trapping of energy were total then the form of model used 

in a mode superposition analysis, which has a rigid base, would be 

valid. In the present model some re-radiation of energy to the 

substructure takes place. The question may be asked whether the need 

to model this re-radiation is signif icant, particularly i f there is 

a large velocity contrast between the embankment and i ts substructure. 

It might be argued that the embankment as a result of the inhomogeneities 

is largely isolated from the substructure, and that, even though some 

of the input energy wil l be re-radiated, the form of vibration will 

be essential ly that of the natural modes of vibration of the embankment 

fixed to a rigid base. Such an argument is implicit in some methods 

of design, for example the "Simplified Approach", proposed as a 

preliminary design method by Chopra and Corns (1979) for concrete 
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gravity dams and which is discussed by .Alitnisk and Severn (1931) 

An evaluation of this hypothesis can be had from an examination 

of the stress distributions. 

Fig. 7.14 gives the f i r s t s ix mode shapes for an idealised embankment. 

They were derived by Clough and Chopra (1966) for the dam section 

already i l lustrated in Fig. 6.11.The embankment of the grid of this 

study would have different frequencies, but the order of magnitude 

would be similar (1-4 Hz), and the pattern of the mode shapes would 

be almost the same. Certain of these shapes may be seen in the 

stressplots, albeit only for a short period of time. For example 

D2/6; S; 0; g at 0.3s has an antisynmetric distribution about the 

central vertical with each slope divided into a region of compression 

and one of tension. Mode 3 of Fig 7.14 would correspond to this. 

However this mode shape is certainly not maintained, for by 0.375s 

the slopes are divided into four distinct regions alternating between 

compression and tension. However this may be the shape of mode 4 

of Fig. 7.14 (or possible, a mode higher than those i l lustrated) . 

Likewise, for D2/1; P; 0; g, the position at 0.18s corresponds to 

the shape of mode 2, and later at 0.3s we have a distribution that 

would f i t mode 6. 

The examples with vertical incidence do not therefore contradict 

the hypoth|is that, the forms of stress distribution could be 

obtained by a consideration of the natural modes of vibration, but 

using higher modes with increase in time. However this hypothesis 

can no longer be held in the case of the stress distributions produced 

by waves incident to the ver t ica l . In a l l the 02 models which have 
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3^ Mode 1 
7.71 r o d s / s t c 

i 
ri 

Mode 2 
12.52 r o d s / s e c 

Mode 3 

14 .60 r o d s / s e c 

Mode 4 
19.31 r o d s / s e c 

Mode 5 
20.12 r o d s / s e c 

Mode 6 
23.10 r o d s / s e c 

Fig. 7.14 Natural mode shapes and frequencies for fhe f in i te 

element grid of Fig. 6.11. From Clough and Chopra (1966). 
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waves incident at an angle there is a tendency as time progresses 

for the stresses to break into smaller regions of either tension 

or compression. An important feature of these examples is that 

the number of regions is always more on the le f t side. For 

example in 02/11; S; 30; g at 0.525 we can count 5 alternative 

regions of compression and tension on the le f t side as opposed 

to 3 on the right. The same is equally true of P-wave examples, 

e.g. D2/4; 20; g which has at 0.4s a similar 5 regions on the 

le f t and 3 on the right. This is a feature which is clearly dependent 

on the side from which the wave approaches and so cannot be explained 

by a suitable combination of natural modes. The mode shapes for a 

symmetric body must be either symmetric or antisymmetric - that is 

i f an origin is placed on the line of symmetry, the displacement 

at the point {-x,y) will have the same components as that at { x , y ) , 

but with possibly a change of sign in either or both of the components. 

This behaviour is seen in a l l the i l lustrated modes of fig. 7.14, and 

means that the numbers of alternating regions of compression and 

tension down each slope wi l l be the same. A combination of mode shapes 

could possible destroy this symmetry, but we should then see an alternation 

of the stresses from one side of the embankment to the other. 

It must be concluded that the persistent division of the left slope 

into more regions of alternating, tension and compression than on the 

right slope is a reflection of the side from which the wave enters. 

Such stress patterns as these, cannot, therefore be even approximated 

by a combination of natural modes, but must be formed by a consideration 

of the original nature of the forcing function, as has been done in 

this study. 
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7.8. Conclusion 

The idealised seismic inputs used in the examples have shown that 

considerable distortions of the s tat ic stress distribution may be 

produced, and that this may be done with considerable variety by 

a variation of the input parameters and whether the model is 

homogeneous or layered. This variety is not surprising when the 

physical processes of ref lection, refraction, mode-conversion and 

diffraction are considered. Indeed, on the stress plots i t is 

possible to discern some of these processes, though this is not so 

readily done as time progresses and the stress distribution becomes 

a summation of the many waves that have been generated. 

Both the time-displacement graphs and the stress plots confirm that 

the displacement amplitudes and stress distortions are greater in 

the cases of (a) S-waves, (b) layered model (c) angled incidence. 

Of these, perhaps, the inhomogeneity is the most important factor. 

The trapping of energy in the low-velocity embankment is quite 

evident and even in the case of a P-wave the mode conversion at each 

reflection and refraction produces in time a stress distribution with 

simi lar i t ies to that from an S-wave. 

Many of the stress distributions, even with the lower base acceleration, 

are suggestive of fa i lure. In addition to the possibi l i ty of slumping 

surfaces, there are many instances that would suggest tension fracture, 

notably near the crest. 



The stress patterns from waves incident at an angle contain 

permanent features that clearly are consequences of the 

directional nature of the wave. It is therefore not possible 

to construct a simplified model in these cases based on natural 

modes. An analysis in terms of only natural modes would imply 

source independence. The examples of angled incidence show 

that this is not tenable. 
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Chapter 8- Summary 

The object of this study has been to study the effect of e last ic 

waves from a seismic source on an embankment dam. The concern 

has been to evaluate the displacements and Stresses generated in 

an embankment when i t i s subjected to waves which have the 

characteristics of seismic waves. Since there is ample f ield 

evidence of the effect of the surrounding topography and geology 

of the substructure on seismic waves, this study takes as a starting 

point that the embankment should not be considered in isolat ion, but 

that any proposed model should include as much of the underlying 

substructure as possible. 

Of the possible numerical approaches to this problem the f inite 

element method is one that has much to commend i t , and to a great 

extent this study is >.an evaluation of i ts applicabil ity. The feature 

of the f ini te element method that is so attractive is i ts great 

f lex ib i l i ty in modelling regions of both geometric complexity and 

variation in material properties. Since these were the sort of 

features to be modelled the f ini te element method was selected rather 

than a f inite difference approach. 

The use of f ini te elements for dynamics problems consist of two 

distinct phases. F i rst there i s the formulation of the equations of 

motion, which consist of a coupled set of second order differential 

equations. This formulation involves the construction of matrices 
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which reflect the ine r t i a l , e las t ic and damping properties of 

the whole region being studied, together with a time varying 

vector that records the history of any external forces or displacements 

that are applied to the region. The assembly of these matrices is 

a standard procedure. The theoretical details are given in chapter 2, 

based substantially on the text of Desai and Abel (1972). For this 

assembly the user has the choice of a variety of element types, but 

the simplicity of the constant strain triangle s t i l l makes i t very 

popular. Its shortcomings may not always be fully real ised, especially 

when used for the calculations of stresses where i t appears that the 

orientation of the triangle can affect the orientation of the stress 

vectors. The quadrilateral elements, which were the main elements 

used in this study, each formed out of four CST's, do not show this 

defect. An area which could be investigated is the performance of 

higher order elements. It i s known that for stat ic problems higher 

order elements can signif icantly reduce the number of nodes needed 

to obtain a certain accuracy. Whether such elements give similar 

advantages to dynamics problems could be determined, but there would 

appear to be some doubt about this in view of the c r i t i ca l nature of 

the internodal distance for the propagation problems which is 

emphasised in this study. 

The second phase of a f ini te element solution to a dynamics problem 

is the solution of the equations of motion. For this there are 

currently two quite different approaches - mode superposition and 

direct integration. Mode superposition is effective for a dynamical 
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system which is governed predominantly by the lower modes of 

vibration. This may be reasonable for a structure attached to 

a rigid base, but not for the study of the displacements (and 

even more so stresses) in a structure which is attached to a 

substructure which is i t s e l f vibrating. It was therefore neccesary 

for this study to use a method of direct integration. 

There are many methods of integration that can be used. Methods 

which are expl ic i t and sel f -start ing have great computational 

advantages. Of these a Rjnge-Kutta fourth order algorithm was 

chosen and extensively tested. Its accuracy is greatly superior to 

some other methods recommended in the literature and i t gave good 

results even after 200 time-steps. It is straightforward to program, 

since i t involves only addition and multiplication of vectors and 

matrices. To advance a set of almost 2400 equations forward by 

1 time-step required approximately 3 c.p.u. seconds. Whether any 

other methods are significantly faster than this is not known.; but 

the length of time for computation was not the most restr ict ive of 

the limitations encountered in this study. The main disadvantage of 

the Runge-Kutta algorithm is i ts instabi l i ty i f too large a time-step 

is used. It was discovered empirically that this instabi l i ty was more 

l ikely to occur i f the equations contained damping coeff icients, and 

this observation was confirmed theoretically for some simple cases. 

The determination of the c r i t i c a l time-step for a given set of equations 

is theoretically possible, but for large systems presents a formidable 

computing task in i t se l f . Fortunately, i f in practice too large a time-step 

is chosen, the instabi l i ty is dramatic leaving the user in no doubt 
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that a smaller step must be used. A time-step of half the 

c r i t i ca l value gave, for the test example, a good result . The 

Runge-Kutta algorithm therefore proved to be a very satisfactory 

integration method for problems without damping. 

A series of tests on some simple wave propagation problems revealed 

the capability of a f in i te element mesh to give accurate predictions 

for both displacement, stresses and speed of propagation. As would 

be expected, i t was found that for satisfactory predictions there 

had to be both limitations on both the time-step of integration and the 

size of the elements. From the tests a value of six time-steps in 

each period of the propagating wave was found as a lower l imit . The 

restriction on mesh size was fixed by the tests at eight elements 

per wavelength. 

This latter restrict ion is of fundamental importance. I t implies 

for a certain material, and hence a known propagating velocity, 

that there is a relation between the element size and the maximum 

frequency that can be modelled by that grid. I t is therefore no 

use activating a f ini te element grid with anything l ike an impulse. 

For earthquake studies we can rationally sett le on a cut-off frequency 

for our input. Given the material properties of the dam this fixes 

our element s i ze , and the grid must be designed accordingly. I t 

would appear from some of the published grids that this fact has 

not always been real ised. Failure to meet the grid size requirement 

will lead to poor predictions of displacement but after only 

a few time-steps useless predictions of s t ress. I t is 



worth emphasising that this is a limitation of the f inite element 

model, and not the method of solving the equations of motion. It 

therefore applies equally to other integration algorithms, and to 

the method of mode superposition. 

Care was taken in this study to design a grid that meets with the 

mesh size limitation. An unwanted feature of a f inite element grid 

when used to model an infinite space is the reflective nature of i ts 

a r t i f i c i a l boundaries. Whether this defect can be eliminated is not 

certain, but the grid used in this study overcame the problem only 

to the extent that i ts boundaries were placed as far away as possible 

The size of grid was f inal ly determined by the limitations of the 

computer storage available. 

Again, i t is worth pointing out that mode superposition does not 

escape from unwanted reflections. Since i t is used with the input 

given along the base of the embankment, the predictions i t gives 

are those that result from waves originating at the base which wi l l 

be internally reflected in the embankment back to the base again, at 

which point they wil l be reflected from the base. At least in the 

model of this study the f i r s t f ict i t ious surface that may act as a 

reflector is placed some way down into the half-space beneath the 

embankment. 

The fact that a f inite element model can only cope with frequencies 

below a certain level means that i t is not possible to use an actual 

strong motion record as an input. This study used single pulses at 

a known frequency. These have the advantage of simplicity, and are 
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suitable for a study whose aim is insight into the broad features 

of wave propagation in embankments. A more rea l is t i c source would 

be to use a strong motion record f i l tered at the cut-off frequency. 

However the use of such an input would require a solution to the 

problem of reflections from the a r t i f i c i a l boundaries, so that the 

model could be run for the full duration of the seismic record. 

Certain other limitations of the model used in this study should 

be noted. 

(a) The model is two dimensional. This is a serious weakness, 

since modes of vibration along the length of an embankment 

dam, which have been observed, fa i l to be modelled. However 

the extension of three dimensions of the method as formulated 

here, whilst posing no new theoretical problems, would require 

a large increase in the number of nodes. A two dimensional 

model with N nodes,if extended to a three dimensional model of 
1 5 

similar extent would require of order N " nodes. For the 2400 

degrees of freedom of the model of this study, this becomes 

approximately 125,000 degrees of freedom. 

(b) The materials are assumed to be linearly e l a s t i c , The 

visco-elast ic properties of the embankment materials wil l 

produce a modification of the s tat ic stress distribution due 

to the body forces, but their effect on short term events such 

as seismic waves might not be large. However i t would be possible 

to extend the method used in this study to investigate th is . 
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The effects of any impounded water have been ignored. The 

stat ic stresses due to the weight of impounded water on 

one side was calculated, and is i l lustrated in Appendix B, 

but this is not included in any of the dynamic examples, 

except in some t r ia l examples that have not been included in 

this study. However the weight of water is not a large 

addition to the body forces, and so would not give a radically 

different stress pattern for dynamic problems, There are 

however other effects that the impounded water may have, which 

have not been considered at a l l . First the boundary on the 

upstream side wil l be an interface between an e last ic medium 

and an acoustic medium, with transmission of energy across i t . 

To include this in a f inite element model would require dividing 

the water up into elements with the appropriate properties 

(Saini et a l . (1978)). Second the presence of water wi l l affect 

the properties of the embankment materials by the addition of 

a pore pressure. This relates to the limitation (b) already 

discussed. A third effect that impounded water might have is 

the generation of water waves on the surface of the resevoir as 

a result of an earthquake. This is a different kind of problem 

to that considered in this study, and would require a separate 

analysis. 
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The models used for the examples of chapter 7 were based on a 

grid which was designed to meet the requirements of mesh s ize . 

The predicted stress distributions are therefore rel iable. 3 rids 

which have been used in the past, such as those given in chapter 6, 

which fai l to meet the mesh requirement can only be regarded 

as poor predictors of displacement and worthless predictors of 

stress distribution. 

The examples of chapter 7 i l lustrate the variety of stress distributions 

that are possible, and they emphasise the importance of S-waves, 

angled incidence and inhomogenity. terious forms of failure are 

indicated as poss ib i l i t i es , especially slumping failures and tensional 

cracking near the crest. 

The physical nature of the wave propagation can be seen to give a 

qualitative explanation of the predicted stress patterns. Inflection, 

refraction and mode conversion play important parts in determining the 

stress distributions, but diffraction effects, at least in the examples 

presented, are not noticeable. There seems to be the possibi l i ty that 

results comparable to those of this study could be obtained by a 

quantitive application of ray theory. I f successful , this may provide 

a means of avoiding the problem of f ict i t ious boundaries which is 

inherent in f inite element methods. 

The examples with angled incidence show that an analysis based on 

natural modes can never be suff icient . The form of the forcing 

function, in particular the direction of the incident energy, has 
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a persistent ef fect , showing that the stress distributions 

are not independent of the nature of the source. This indicates 

that the use of art actual strong motion record as input for a 

test has a further l imitation, since i t is the record at a point 

which has a specif ic directional relationship to the source; a 

dam under design may be more l ikely to receive seismic waves from 

a different direction. For dams which are built close to faults 

which may be the s i te of an earthquake, no single record would be 

suff icient . This is because, even i f the seismic waves could be 

approximated by plane waves, the movement along the fault producing 

the earthquake implies that we should, at least , have to consider 

these waves as approaching from different directions. 

This last point reinforces the need for an integrated model which 

includes both the seismic source and the embankment, as mentioned 

in section 1.7. However, the overriding requirement of a suff iciently 

small mesh size that i s established in this study, suggests that a 

straightforward extension of the f inite element method as used here, 

to acKdeve such a model, would be impracticable. 
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Appendix A. Computer Programs 
1. Function 

The computer programs l isted at the end of this appendix have 

been written to perform the f in i te element fomulation given in 

chapters 2 and 3. There are three main programs:-

(a) ASSEMBLY. 

This reads in the grid data and forms the s t i f fness , 

mass and damping matrices of the equation of motion 2.4.1. 

For a stat ic problem i t calculates the displacements 

as a result of given loads. 

(b) TIMESTEP. 

This advances the displacements and velocities by a set 

number of time-steps using the Runge-Kutta algorithm. 

(c) PLOTS. 

This produces graphical displays of displacement with 

time for selected nodes, and distripution of stress at 

selected times. 

These programs are run with the help of four minor programs:-

(d) REDUCE. 

This reduces the bandwidth of a grid. 
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(e) INPUT. 

This forms the input data for TIMESTEP for different 

plane waves. 

(f) FILESUM. 

This adds the displacements due to stat ic forces to those 

from the dynamic problem. 

(g) DISPLAY. 

This allows the user to select the required display options 

of PLOTS. 

The program ASSEMBLY is based on the published code in Desai 

and Abel (1972) pp. 447-457, though i t has undergone considerable 

modification and extension. 

Some of the subroutines of PLOTS which perform the plotting 

of the stress vectors are based on routines contained in Park (1981). 

2. Structure 

Each program reads from and writes to devices, labelled in the 

program by numbers. Numbers 1 to 5 are used for input devices and 

6 to 10 for output. Some of the programs have a small degree of 

user interaction via a terminal, in which case 5 and 6 are used for 

input and output and must therefore be attached to the terminal rather 

than a f i l e . A flow diagram i l lustrat ing the relation of each program 

to i ts input and output f i l e s is given in F ig , A.T. 
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The main programs, ASSEMBLY, TIMESTEP and PLOTS, are composed 

of many subroutines. Figs A2, A3 and A4 give flow charts for 

the order in which the subroutines are called by the main program 

(which in a l l cases is just a cal l ing program). Subroutines 

which input or output data are indicated by lines to device numbers, 

which are the same as those in Fig. A . l . The function of each 

subroutine is described in the comment cards of the program l i s t ings , 

given at the end of this appendix. 
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( grid data") 

REDUCE 
8 

improved 
topology 

ASSEMBLY 

10 

grid 
.geometry 

tables 

Key; 
PROGRAM 

Qui) 
so - source 

si - sink 

nodes 
v 3 

8 

INPUT 

TIMESTEP loads 

10 I© 
stat ic \ 

displacements) 
displace merits] 

FILESUM 

combined 
displacements 

PLOTS 

(plotfile) 

13 nodes, 

DISPLAY 

sj 
ffobfes) 

Fig. A1 Interrelation of programs. Numbers are device numbers 
for the adjoining files. 
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6«-
7«-

DATAIN 

6«-

-»3 
-•4 

TEST 

CENT 

I NITIA 

6*-
8 ^ 

6<-
7*-

ASEMBL 
—» 
— * QUAD 

—-* — 
4 CST 

LOAD1 
-«5 
-«4 

RVEC 

6«-i 

7* 
DAMP MOD IF2 

—*— 
4 GEBC 

MO DIF1 
—»• 
—« GEOMBC 10«- BAN SOL 

9«- DUMP 

stop stop 

Fig. A2 Subrout ines of ASSEMBLY with input/output device numbers. 
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6 4-

GET 

TIM 

-«3 

- • 5 

LOAD2 

10*- TMSTEP RUNG 

-<4 

« SCALE 
ft 
4 ADSUB 
» 
4 PROD 
1> 
4 MULT1 
» « • 

MULT2 

8 4 - DUMP 

it 
stop 

Fig. A.3 Subrout ines of TIMESTEP 

wi th i n p u t / o u t p u t device numbers. 
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6*- RECOVR 

1 V 

-«2 
- 4 

PLTPAR 

9< DISGRD 

•stop 

7*- DISPLS 

stop--

> 
4 STRSTR 
» 
O OUTLIN — " 9 
k> 

4 VECPLT I TRIG 

PSCALE 
RAMAX 

RAMIN 

GRDPLT s top 

DISPL -»3 

9«-
GH OS 

:—• 
» RENUM 

stop 

Fig. A.4 SubroutinGs of PLOTS 

wi th i n p u t / o u t p u t device numbers. 
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3. Some notes 

(a) ASSEMBLY 

The main task of data preparation has to be carried out 

for this program, which is read in the subroutines DATAIN 

and L0AD1. A useful subroutine, TEST, was devised to help 

in eliminating errors from the grid data f i l e . An error 

in a co-ordinate of a node or in a node number is very 

l ikely to lead to a non-convex quadrilateral element. Ising 

the notation of Fig. A.5 the component along the Z-axis 

of the vector (r_3 - r 2 ) x (r2 - r_2) wil l have the same sign 

as that of sin e„. 

1 

Fig. A.5 

This component i s , i n terms of the co-ordinates of the nodes 

of the element,given by 

f 2 = (x2 yg + x 2 y 3 + x3 y2) - r * 2 y2 + x3 y2 + Xj y3) 
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and so-0 < e 2 < ir requires f 2 > ° -This function is 

evaluated at each node of the quadrilateral. I f the element 

is either numbered clockwise, is concave, or is crossed 

then at least one f2, f3> f4 will be negative. This is 

i l lustrated in Fig. A.6. 

1 

1 

!Rg. A.6. Sign of / at each node for different quadrilaterals. 

Certain options are available in the program which are 

prompted when run at a terminal. In particular the program 

can either be used to find the stat ic displacements due to 
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an in i t ia l loading (which may include body forces), or 

as the f i r s t stage in a time-stepping problem, for a 

grid with 2400 degrees of freedom this program uses 

around 15 c.p.u. 

(b) TIMESTEP 

Each time the routine TIMESTEP i s called the displacements 

and velocities are advanced by 1 time-step. The Runge-Kutta 

algorithm i s contained in RINS and i ts subsidiary routines 

which perform various additions and multiplications of vectors 

and matrices. As i t stands the program executes 15 time-steps, 

and has to be reloaded for more time-steps, for a grid of 

2400 degrees of freedom 15 time-steps uses around 50 c.p.u. 

(the majority of which is used by the subroutine PROD). 

(c) PLOTS 

The output from ASSEMBLY and TIMESTEP, together with options 

that have been determined by the interactive program DISPLAY, 

from the input to this program. It produces a plotf i le using 

the library*GHOST, which gives the graphical output. To produce 

the plots that are given for each example in Appendix B required 

around 60 c.p.u. 

(d) REDUCE 

The bandwidth b3 of the sti f fness matrix is related to the 

maximum nodal difference, of any element by 

b = 4d + 3 
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i f each node has two degrees of freedom (Desai and Abel (1972), 

p. 162). This program, using the algorithm ofGrooms (1972), 

reduces the value of d for a grid. The program is interactive 

and to be used successfully requires a judicious choice of 

the input parameters. The output i s in the form of a renumbering 

of the nodes, which is input into ASSEMBLY. I t is not necessary 

for the user to know the renumbering. 

4. Input f i l es 

Input f i les for the programs below must be prepared with the formats 

l is ted . In addition, for most programs, device 5 is attached to a 

terminal. 

(a) ASSEMBLY 

( i ) File of grid data, attached to device 4. It i s divided into 

sections. Below each named quantity is i ts program name and 

the format. 

Section 1. Basic parameters. 

No. of nodes No. of elements No. of materials Scale option 

NNP NEL WAT 

15 15 15 15 

Scale option 1 i f co-ordinates are in km. 

0 i f co-ordinates are in m. 



210 

Section 2. Material data. 

Young's Modulus Poisson's ratio Density Thickness 

E ( I ) PR(I) R0(I) TH(I) 

E10.3 E10.3 E10.3 E10.3 

1 line for each material type 

Thickness is usually 1.0 

Section 3. Nodal co-ordinates 

Node number x co-ord. y co-ord. 

M X (M) Y (M) 

15 E10.3 E10.3 

1 l ine for each node, except when successive nodes are 

equally spaced along a straight l ine , in which case only 

the f i r s t and last need be entered. 

Section 4. Element topology 

Element no. node 1 node 2 node 3 node 4 

M IE(M,1) IE(M,2) IE(M,3) IE(M ,4) 

15 15 15 15 15 

For a triangular element set IE(M,4) = IE(M ,3) 

Axes are assumed with y vert ical ly up. Nodes must be entered 

anti-clockwise. 



211 

1 l ine for each element, except when successive elements 

are such that numbers of corresponding nodes increase by 1 

( i . e . IE(M+1,J) = IE(M,J) + 1 ) , in which case only the 

f i r s t of such a chain has to be entered, but the last 

element must always be entered. 

Section 5. Element materials 

Element no. Material no. 

M IE(M,5) 

15 15 

1 line for each element, except when successive elements 

have the same material, in which case only the f i r s t of such 

a chain has to be entered, but the last element must always 

be entered. 

Section 6. Node type and in i t ia l loads and displacements 

Node no. Type code In i t ia l In i t ia l 
ar-load/disp. z/- load/disp. 

M KODE(M) XLOAD(M) YLOAD(M) 

15 15 E10.3 E10.3 

1 line for each node, except when successive nodes have same 

value for type code, x-load/disp. and y-load/disp; in which 

case only the f i r s t of such a chain has to be entered, but 

the last element must always be entered. 
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The type code indicates i f the node has a prescribed load 

or displacement in the x and y directions. Free nodes have 

zero load. The code is given by the following table. 

Type code Nature of prescription Type code 
£-direction Z/-direction 

1 load load 

2 displacement load 

3 load displacement 

4 displacement displacement 

( i i ) F i le of improved topology in unformatted form attached to 

device 3. This f i l e is the output f i l e to REDUCE. 

(b) TIMESTEP 

( i ) Dumpfile of unformatted data, attached to device 3. This 

f i l e is an output f i l e to ASSEMBLY. 

( i i ) F i le of load changes at each time-step, attached to device 4. 

Node no. ar-load/disp. j/-load/disp. 

N XLOAD(N) YLOAD(N) 

15 3X E10.4 3X E10.4 

Each time-step requires one line for each change in prescribed 

loads/displacements from previous time-ste'p, but a l ine for 

last node must be entered for every time-step. 
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For plane wave excitation of the base nodes of a grid a 

f i l e of this format is prepared by INPUT. 

(c) PLOTS 

( i ) F i le of grid geometry in unformatted form attached to 

device 4. This f i l e is an output f i l e to ASSEMBLY. 

( i i ) F i le of displacements in unformatted form attached to 

device 3. This f i l e is an output f i l e from either ASSEMBLY 

(in the case of stat ic displacemnets) TIMESTEP or FILESUM. 

( i i i ) F i le of options in unformatted form attached to device 2 

prepared by the interactive program DISPLAY. 

(d) REDUCE 

F i le of element topology attached to device 4, which is 

Section 4"of grid data f i l e used by ASSEMBLY. 

(e) INPUT 

F i le of base nodes of the grid attached to device 3, in 

format 515. 

(f) FILESUM 

( i ) F i le of stat ic displacements in unformatted form attached 

to device 3. This is an output f i l e of ASSEMBLY. 

( i i ) F i le of time-step displacements in unformatted form attached 

to device 4. This is an output f i l e of TIMESTEP. 

(g) DISPLAY 

The input for this f i l e is primarily in response to prompts 
« 

at a terminal. However i t is possible to attach to device 3 
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a l i s t of the elements and nodes required in the displays. 

Also, i f the stress plot for a stat ic distribution is 

required, timestep 1 should be chosen. 

5. Output f i l es 

As well as the output f i l e s l isted below most programs are attached 

through device 6 to a terminal for messages and prompts. 

(a) ASSEMBLY 

( i ) F i l e of input data in tabular form (optional), attached 

to device 7. 

( i i ) Unformatted f i l e of grid geometry, attached to device 8. 

( i i i ) Unformatted f i l e of stat ic displacements attahced to device 10. 

( iv) Unformatted f i l e of data attached to device 9, used as input 

to TIMESTEP. 

(b) TIMESTEP 

( i ) Unformatted f i l e of data, attached to device 8, used as input 

for next time-steps. 

( i i ) Unformatted f i l e of time-step displacements attached to device 10. 
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PLOTS 

F i le of stresses in tabular form (optional), attached 

to device 7. 

) Plot f i l e , attached to device 9. 

REDUCE 

Unformatted f i l e of improved topology, attached to device 8. 

INPUT 

F i le of loadchanges, attached to device 7, in format required 

by TIMESTEP. 

FILESUM 

Unformatted f i l e of sum of two displacement f i l e s , attached 

to device 7. 

DISPLAY 

Unformatted f i l e of options attached to device 7. 
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c 
c 
C P R O G R A M A S S E M B L Y 
C = = = = = = = === = = = = =: = = 
C 
C 
C P R O G R A M R E A D S I N D A T A F O R G R I D t A S S E M B L E S S T I F F N E S S A N D M A S S 
C M A T R I C E S » F O R M S I N I T I A L L O A D V E C T O R F M O D I F I E S M A T R I C E S A S 
C A P P R O P R I A T E T O T A K E I N T O A C C O U N T T H E B O U N D A R Y C O N D I T I O N S * 
C T H E N F E I T H E R F. E V A L U A T E S T H E D I S P L A C E M E N T S F O R T H E S T A T I C F O R C E S i 
C 0 R F R E A D S I N D A M P I N G C 0 E F F I C I E N T S < I F A N Y ) F AN D D U M P S A I... I... 
C N E C E S S A R Y D A T A I N U N F O R M A T T E D F O R M N E E D E D F O R T I M E S T E P 
C C A L C U L A T I O N S « F U L L P R I N T O U T O F I N P U T D A T A C A N B E R E Q U E S T E D • . 
C 
C 

COMMON T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P , I S T E P F I S B A N D 
COMMON / O N E / E ( 1 0 ) F P R < 1 0 ) F R O ( 1 0 ) v T H ( 1 0 ) r I E ( 1 2 0 0 F 5 ) F X ( 1 1 8 A ) v 

+ Y ( . 1 . 1 8 4 ) F X C E N ( 1 2 0 0 ) r Y C E N ( 1 2 0 0 ) , NMAT F N S T A T F M T Y P 
COMMON / T W O / B T ( 3 F 6 ) P D< 3 F 3 ) F B ( 3 r 1 0 ) r Q K < 1 0 1 1 0 ) t Q(10)? 

+ X Q ( 5 ) i Y Q ( 5 ) 
C0MMON / T H R E E / B K < 2 3 6 8 » 1 0 7 ) i C A ( 2 3 6 8 ) v . R M A S S ( 2 3 6 8 > i B 0 D Y ( 2 3 6 Q > 
C 0 M M 0 N / F- 0 U R / X L 0 A D ( 1 1 8 A ) v YI... 0 A D ( .1.18 A ) y K" 0 D E ( 1 1 8 4 ) 
COMMON / F I V E / D I S P ( 2 3 6 8 ) F V E L . ( 2 3 6 8 ) F R ( 2 3 6 8 ) F R 1 ( 2 3 6 S ) F 

+ R 2 < 2 3 6 8 ) F R 3 ( 2 3 6 8 ) 
COMMON / S I X / N O D E ( 1 2 0 0 ) r I F O R M 

C 
C 

C A L L D A T A I N 
C A L L T E S T 
C A L L C E N T 
C A L L I N I T I A 
C A L L ASEMBI.. . 
C A L L L 0 A D 1 
C A L L R V E C 
I F ( N S T A T , E Q ( 0 ) GO T O 1 0 
C A L L M O D I F 2 
C A L L B A N S O L 
S T O P 

1 0 C O N T I N U E 
C A L L DAMP 
C A L L M 0 D I F 1 
I S T E P = 0 
C A L L DUMP 
S T O P 
E N D 

S U B R O U T I N E D A T A I N 

COMMON T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F - I S T E P F I S B A N D 
COMMON / O N E / E ( 1 0 ) F P R C 1 0 ) * R 0 ( 1 0 ) F T H ( 1 0 . ) F I E ( 1 2 0 0 F 5 ) F X ( 1 1 8 4 ) F 

.+ Y ( 1 1 8 4 ) F X C E N ( 1 2 0 0 ) , Y C E N ( 1 2 0 0 ) y N M A J F N S T A T F M T Y P 
C 0 M M 0 N / S I X / N 0 D E ( 1 2 0 0 ) F I F ' 0 R M 
D I M E N S 1 0 N T I T I... E ( 9 ) > X 1 ( 1 1 8 4 ) F Y 1 ( 1 1 8 4 ) 

D A T A M A X E L F M A X N P F M A X M A T F MAXEW 
+ / 1 2 0 O F 1 1 8 4 F 1 0 F 3 4 / 

P R O B L E M I D E N T I F I C A T I O N A N D D E S C R I P T I O N . 
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W R I T E ( 6 * 1 9 0 ) 

RI::.' AI.i ( 5 * 1 6 5 ) ( T I T L E ( I ) * I = 1 * 9 ) 
WRITE:: ( 7 * 1 9 5 ) ( T I T L E ( i ) » 1 = 1 r 9 ) 
W R I T E ( 6 * 2 0 0 ) 
R E A D ( 5 * 1 0 0 ) N S T A T 
I S T O P 0 
R E A D ( 4 * 1 7 0 ) N N P * N E L * N M A T * KM 
W R I T E ( 7 * 2 0 5 ) NNPr .NEL . * N M A T 

C 
C C H E C K S ' TO BE S U R E INPUT D A T A D O E S N O T E X C E E D S T O R A G E C A P A C I T Y . 
C 

I F ( N N P . L E . M A X N P ) GO TO 1 0 
I S T O P = I S T O P 1 1 
W R I T E ( 6 * 2 1 0 ) M A X N P 

1.0 I F ( N E L . L E . M A X E L ) GO TO 1 5 . 
I S T O P = I S T O P •!• 1 
W R I T E ( 6 * 2 1 5 ) M A X E L 

1 5 I F ( N M A T . L E . M A X M A T ) GO TO 2 0 
I S T O P = I S T O P + 1 
W R I T E ( 6 * 2 2 0 ) M A X M A T 

2 0 I F ( I S T O P . E Q . 0 ) GO T O 2 5 
W R I T E ( 6 * 2 2 5 ) I S T O P 
S T O P 

2 5 R E A D ( 4 * 1 7 5 ) ( E ( I ) * P R ( I ) * R O ( I ) * T H ( I ) t 1 = 1 t N M A T ) 
W R I T E ( 7 - 2 3 0 ) 
W R I T E ( 7 * 2 3 5 ) ( I * E ( I ) * P R ( I ) * RO ( I ) » T H ( I ) * I 1 * N M A T ) 

C 
C R E A D A N D P R I N T N O D A L D A T A . 
C 

W R I T E ( 7 * 2 4 0 ) 
W R I T E ( 6 * 2 4 5 ) 
R E A D ( 5 * : l . 3 0 ) K 
N = 1 

3 0 R E A D ( 4 * 1 8 5 ) M * X ( M ) * Y ( M ) 
I F ( M - N ) 3 5 * 5 0 * 4 0 

3 5 W R I T E ( 6 * 2 5 0 ) M 
I S T O P = I S T O P + 1 
GO TO 3 0 

4 0 D F = M •:• 1 - N 
RX = ( X ( M ) - X ( N - 1 ) ) / D F 
RY = ( Y ( M ) •-• Y ( N -• 1 ) ) / D F 

4 5 X ( N ) = X ( N - 1 ) + R X 
Y ( N ) = Y ( N •••• 1 ) •}• RY 

5 0 I F ( K i- N E <, 1 ) GO TO 5 5 
W R I T E ( 7 * 2 5 5 ) N * X ( N ) * Y ( N ) 

5 5 N = N + 1 
I F ( M - N ) 6 0 * 5 0 * 4 5 

6 0 I F ( N . L E . N N P ) GO TO 3 0 
I F ( K M . N E . 1 ) GO TO 7 0 
DO 6 5 I = 1 * N N P 

X ( I ) = X ( I ) * 1 0 0 0 . 0 
Y ( I ) ••= Y ( I ) # 1 0 0 0 . 0 

6 5 C O N T I N U E 
7 0 C O N T I N U E 

C 
C R E A D N O D A L N U M B E R I N G O F E L E M E N T S . 
C 

W R I T E ( 7 * 2 6 0 ) 
7 5 I... - 0 
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: I : E(L 1 »l) + 1 
IE<L - 1 F2) +" l 
IE<L - i F3> + l 
I E ( L - l ,4) + 1 
: I :E(L. •••• l F5) 

SO R E A D (4,170) Mf ( I E ( M F 1 ) F I = 1 F 4 ) 
85 L = L. •(• :l. 

I F (M - L > 90t 100t 95 
90 WRITE. <6F-265> M 

I S T O P = I S T O P + 1 
GO T O 80 

95 I E ( L f l ) 
I E ( L F 2 ) 
I E < L F 3 ) 
I E ( L F 4 ) 
I E ( L F 5 ) 
GO T O 85 

100 I F < N E L . G T . I...) GO T O 30 

R E A D E L E M E N T M A T E R I A L T Y P E • 

I... = 0 
105 R E A D (4F170) MF I E < M F5> 
110 L. : : : : L + 1 

I F (M L ) 115F 125F 120 
115 W R I T E <6F270) M 

I S T O P = I S T O P + 1 
GO TO 105 

120 I E ( L F 5 ) = I E ( L - I F 5) 
GO T O 110 

125 I F ( N E L . G T . L ) GO T O 105 

W R I T E E L E M E N T P R O P E R T I E S . 

I F <K . N E . 1 ) . G O TO 135 
DO 130 L = i F N E L . 

W R I T E (7F275) L F ( I E ( L F I ) F I = 1 F 5 ) 
130 C O N T I N U E 
135 I F ( I S T O P . E G . 0) GO T O 140 

W R I T E <6F280) I S T O P 

R E A D S I N I M P R O V E D T O P O L O G Y A N D R E N U M B E R S N O D E CO-

140 W R I T E (6F285) 
R E A D (5F180) I F O R M . 
I F ( I F O R M . N E , 1) GO T O 155 
R E A D ( 3 ) ( ( I E ( I F J ) > I = 1 F 1200 ) t J = 1 F 4 ) t N O D E 
DO 145 M - I F N N P 

X I ( N O D E ( M > ) = X ( M ) 
Y l ( N O D E ( M ) ) = Y ( M ) 

145 C O N T I N U E 
DO 150 M = I F N N P 

X ( M ) : : : : X1 ( M ) 
Y ( M ) = Y1 ( M ) 

150 C O N T I N U E 

C 0 M P U T E MAX I MUM N 0 D AI... D I F F E R E N C E A N D S E M I B A N D W I D T H , 

155 M A X D I F = 0 
I El...EM = 1 
DO 160 I = I F N E L 

DO 160 J I F 4 
DO 160 K = I F 4 

LI... = I A B S ( I E < I F J ) • I E ( I F K ) ) 
I F (I...L . L E . M A X D I F ) G O T O 160 
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M A X D I F = L L 
I E L EM I 

1 6 0 C O N T I N U E 
I S B A N D 2 * ( M A X D I F - + 1 ) 
NEC! = 2 * N N P 
W R I T E ( 6 * 2 9 0 ) I E L E M r I S B A N D r MAXBW 
I F ( I S B A N D . L E . M A X B U ) R E T U R N 
I S T O P = I S T O P + 1 
R E T U R N 

1 6 5 F O R M A T ( 9 A 4 ) 

1 7 0 F O R M A T ( 5 1 5 ) 
1 7 5 F O R M A T ( 4 E 1 0 . 3 ) 
1 8 0 FORMAT- (:i: 5 > 
1 8 5 F O R M A T < I 5 » 2 E 1 0 . 3 ) 
1 9 0 ' F O R M A T ( ' O E N T E R T I T L E ' ) 
1 9 5 F O R M A T f ' l ' i 9 A 4 / ) 
2 0 0 F O R M A T ( ' O I F Y O U A R E F I N D I N G 

2 1 5 
2 2 0 

i 
+ 
+ 
+ 

2 0 5 F O R M A T 
+ 
+ 
+ 

2 1 0 F O R M A T 
F O R M A T 
F O R M A T 

2 2 5 F O R M A T 
2 3 0 F O R M A T 

+ 
+ 
1 

} • 

2 3 5 F O R M A T 
2 4 0 F O R M A T 

+ 
2 4 5 F O R M A T 

}• 
+ 

2 5 0 F O R M A T 
2 5 5 F O R M A T 
2 6 0 F O R M A T 

+ 
+ 

2 6 5 F O R M A T 
2 7 0 F O R M A T 
2 7 5 F O R M A T 
2 8 0 F O R M A T 

+ 
2 8 5 F O R M A T 
2 9 0 F O R M A T 

+ 
+ 

E N D 

( 

r A T I C D I S P L A C E M E N T S D U E T O ' 
I N I T I A L L O A D S A N D B O D Y F O R C E S t T Y P E " 1 " J ' / 
I F YOU A R E F I N D I N G S T A T I C D I S P L A C E M E N T S DUE TO 
I N I T I A L L O A D S O N L Y » T Y P E " 2 " ? ' / 
O T H E R W I S E P R E S S " R E T U R N " . ' / ' ' ) 

0 1 N P U T TABI...E 1 . . D A S I C P A R A M E T E R S ' / / t 
5 X y • ' N U M B E R OF N O D A L P O I N T S • . . . . . . . . . . . ' F 1 5 / 
5 X y ' N U M B E R OF E L E M E N T S r 1 5 / 
5 X » ' N U M B E R O F D I F F E R E N T M A T E R I A L S ' ? 1 5 / ) 

C O T O O MANY N O D A L P O I N T S » M A X I M U M = ' •* 1 5 ) 
C O T O O MANY E L E M E N T S « M A X I M U M = ' , 1 5 ) 
C O T O O M A N Y M A T E R I A L S »• M A X I M U M = ' » 1 5 ) 
( ' 0 E X E C U T I O N H A L T E D BECALJSE OF ' J 1 5 ? ' F A T A L E R R 0 R S ' / ) 
C O I N P U T T A B L E 2 . . M A T E R I A L P R O P E R T I E S ' / / 

' M A T E R I A L ' > 5 X r ' M O D U L U S OF ' r 6 X y ' PC) I S S O N " S ' t 
7 X r ' M A T E R I A L ' r 7 X » ' M A T E R I A L ' / 
4 X y ' N U M B E R ' r 5 X r ' E L A S T I C I T Y ' » 8 X r ' R A T I O ' J 8Xr 
' D E N S I T Y ' v 6X> ' T H I C K N E S S ' ) 

( ( I l O f 4 ( 1 P E 1 5 . 3 ) ) ) 
( ' 0 1 N P LJ T T A B L E 3 . . N O D A L P 0 1 N T D A T A ' / / 

5 X r ' N 0 D A L ' / 5 X v 'P0INT'v 8 X r ' X - C 0 0 R D ' t 8 X , ' Y - C 0 0 R D ' ) 
C O D O YOU WANT T H E N O D A L A N D E L E M E N T P R O P E R T I E S L I S T E D ? V 

' T Y P E " 1 " FOR Y E S i P R E S S " R E T U R N " FOR N O * ' / 
) 

N U M B E R E D ' t 1 5 / ) ( 5 X ? ' E R R O R I N N O D E 
( 1 1 0 * 2 C I . P E 1 5 . 3 ) ) 
( ' 0 1 N P U T T A B L E 4 . * E L E M E N T D A T A ' / / 

1 I X ? ' G L 0 B A L I N D I C E S 0 F EI.. .EMENT N 0 D E S V 3 X » ' E L E M E N T ' , 
7Xv ' I ' t 7Xy ' 2 ' r 7Xr ' 3 ' » 7 X * ' 4 ' r 2X> ' M A T E R I A L ' ) 

( S X f ' E R R O R I N N O D A L N U M B E R I N G OF E L E M E N T ' ? 1 5 / ) 
( 5 X r ' E R R O R I N M A T E R I A L . N U M B E R O F E L E M E N T ' t 1 5 / ) 
( l : l . ( ) y 4 1 8 r 1 1 0 ) 
( ' 0 A S S E M B I... Y A N D S 01... I I T I O N W11... I... N 0 T B E P E R F 0 R M E D » ' » 

1 5 v ' F A T A L E R R O R S ' ) 
( ' 0 1 F U S I N G N E W NOD AI... N U M B E R I N 6 t T Y P E ' ' 1 ' " / ' - - - ' ) 
( ' 0 S E M I B A N D W I D T H 0 F E I... E M E N T ' y 1 5 r ' • = ' y 1 4 / 

' M A X I M U M A L L O W E D = ' t 1 4 / 
' T H E R E MAY B E O T H E R E L E M E N T S W I T H T H I S B A N D W I D T H A L S O , 
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s u n R O U T I N E : T E S T 

c = = = = = = = = = = = == = = = 

C O M M O N T F T M A X F N E L F N N P F N E G F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / O N E / E ( 1 0 ) F P R C 1 0 ) F R O ( 1 0 ) F T H ( 1 0 ) F I E ( . 1 . 2 0 0 » 5 ) t X ( 1 1 8 4 ) F 

+ Y ( 1 1 8 4 ) F X C E N ( 1 2 0 0 ) F Y C E N ( 1 2 0 0 ) F N M A T F N S T A T F M T Y P 

D I M E N S I O N F < 4 ) 

C 

C T E S T S G R I D F O R P O S S I B L E I N C O R R E C T N U M B E R I N G O F E L E M E N T S • 

C T H I S T E S T I D E N T I F I E S A N Y E L E M E N T S T H A T A R E N O T C O N C A V E F O R A R E 

C N U M B E R E D I N T H E W R O N G D I R E C T I O N . 

C 

D O 3 5 M = I F N E L 

I C O U N T = 0 

D O 2 0 I = I F 4 
J = I 

K = I + 1 
I F ( I E ( M F 3 ) . E G . I E ( M r 4 > > G O T O 1 0 

J = M 0 D < J F 4 > + 1 

K = M 0 D ( K F 4 ) {• 1 

G O T O 1 5 
1.0 I F ( I . E Q . 4 ) G O T O 2 0 

J = M 0 D < J F 3 ) + 1 

K = M 0 D ( K F 3 > + 1 

1 5 F ( I > = ( X ( I E ( M F I ) ) * Y < I E ( M F ' J ) > + X < I E ( M t J ) ) # Y ( I E ( M F K ) ) 

•}• i X ( I E ( M F K ) ) * Y ( I E < M F I ) > ) - < X ( I E ( M F J ) ) * Y < I E < M F D ) 

+ + X ( I E ( M F K ) ) * Y ( I E ( M F J ) ) t X ( I E ( M ' F I ) ) * Y ( I E ( M F K ) ) ) 

I F ( F C I . ) . G T . 0 ) I C O U N T = I C O U N T + 1 

2 0 C O N T I N U E 

I F ( I C O U N T . E Q . 0 ) G O T O 3 0 

I F ( I C O U N T . E Q . 4 ) G O T O 3 5 

I F ( I C O U N T . N E . 3 ) G O T O 2 5 

I F ( I E < M F 3 ) . E Q . I E ( M F 4 ) ) G O T O 3 5 

2 5 W R I T E ( 6 F 4 0 ) M 

. I S T O P = I S T O P + 1 

G O T O 3 5 

3 0 W R I T E ( 6 F 4 5 ) M 

I S T O P = I S T O P + 1 

3 5 C O N T I N U E 

. I F ( I S T O P . E Q . 0 ) R E T U R N 

S T O P 

4 0 F O R M A T ( ' E L E M E N T ' . I 5 F ' I S N O T C O N C A V E ' ) 

4 5 F O R M A T C O E L E M E N T ' F 1 5 F ' I S N U M B E R E D I N T H E W R O N G D I R F C T O N ' ) 

E N D 

C 

C 

S U B R O U T I N E C E N T 
C = = = = = = = ==== = = = = = = 

C 
C O M M O N T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / O N E / E C U ) ) - P R ( 1 0 ) F R 0 ( 1 0 ) F T H ( 1 0 ) F I E ( 1 2 0 0 ? 5 ) ? X ( 1 1 8 4 ) F 

f Y < 1 1 S 4 ) F X C E N . ( 1 2 0 0 ) F Y C E N ( 1 2 0 0 ) F N M A T F N S T A T t M T Y P 

C 0 M M 0 N / T W 0 / B T ( 3 F 6 ) F D ( 3 F 3 ) F B < 3 F 1 0 ) F Q K ( 1 0 F 1 0 ) r G i 1.0 ) F 

+ X Q C 5 ) F Y Q < 5 ) 

c 
C C A L C U L A T E S T H E C E N T R O I D O F E A C H E L E M E N T . 

C 

D O 2 0 M = I F NEI . . . 
R 3 = = 0 . 0 
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1 o 

R 4 = 0 * 0 
5 3 = 0 . 0 
5 4 = 0 , 0 
D O 1 0 iS! = 1 » A 

N N = I E ( M » N > 

X O ( N ) = X ( N N ) 

Y Q ( N ) = Y ( N N ) 

C O N T I N U E 

D O 1 5 I = h A 
J : : : : M 0 D ( I » 4 > + 1 

M 0 D ( J F 4 > 1 1 

M O D ( K f A ) + 1 
Y Q ( I ) * < X Q ( J > - X C K D ) 

R 1 * ( X Q ( L ) + X Q ( I ) + X Q ( J ) ) 

R 3 1 R l 
R 4 + R 2 

X Q ( I > * < Y Q ( J ) - Y Q ( D ) 

S I * ( Y Q ( L ) }• Y Q ( I ' ) + Y Q < J > > 

S 3 + S I 
8 4 + S 2 

K = 
L. = 
R l 

R 2 
R 3 
R 4 

S I 
S 2 
S 3 
S 4 

2 0 

C O N T I N U E 
X C E N ( M ) =•• R 4 / 
Y C E N ( M ) = S 4 / 

C O N T I N U E 

< R 3 * 3 . 0 ) 

< S 3 * 3 . 0 ) 

C 

C 

C 

C 

C 

C TO 
C 

1 0 

2 0 

R E T U R N 
E N D 

S U B R O U T I N E I N I T I A 

COMMON T» T M A X i N E L » N N P f N E Q » I M A X * I S T O P * I S T E P ? I S B A N D 
COMMON / T W O / B T ( 3 t 6 ) > D < 3 r 3 ) r B ( 3 t 1 0 ) •> QK ( 1 0 , :L 0 ) t Q ( 1 0 > t 

X Q ( 5 ) » Y Q ( 5 ) 
COMMON / T H R E E / B K ( 2 3 6 8 1 1 0 7 ) r C A ( 2 3 6 8 > * R M A S S ( 2 3 6 8 ) t B 0 D Y C 2 3 6 8 ) 
C 0 M M 0 N / F I V E / D I S P < 2 3 6 8 ) » V E L ( 2 3 6 8 ) y R ( 2 3 6 8 ) * R 1 ( 2 3 6 8 ) > 

' R 2 < 2 3 6 8 ) F R 3 ( 2 3 6 8 ) 

S E T TO Z E R O A R R A Y S A S R E Q U I R E D • 

DO 1 5 I = 1» 3 
DO 1 0 J = I f 6 

B T ( I F J ) : : : : 0 , 0 

C O N T I N U E 
DO 1 5 J = 1 r 3 

D ( I v J > ~ 0 . 0 
C O N T I N U E 
DO 2 0 I = l f N E B 

D I S P ( I ) = 0 . 0 
V E L ( I ) = 0 , 0 
R M A S S ( I ) ••= 0 . 0 
B O D Y ( I ) = 0 . 0 
R ( I ) : : : : 0 , 0 
C A ( I ) = 0 . 0 
DO 2 0 J = I F I S B A N D 

B K ( I F J > = 0 . 0 

C O N T I N U E 
R E T U R N 
E N D 
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c 
c 

S U B R O U T I N E A S E M B L 

C =.- = = = = = =:=:: = = = = = = = = = 

c 
C O M M O N I t T M A X F N E L r N N P y N E G r I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / O N E / E ( 1 0 ) F P R < 1 Q > » R O < 1 0 ) F T H ( 1 0 ) F I E ( . 1 . 2 0 0 » 5 ) » X ( 1 1 8 4 ) F 
1 Y ( 1 1 8 4 ) F X C E N < 1 2 0 0 ) F Y C E N ( 1 2 0 0 ) F N M A T F N S T A T F M T Y P 

C O M M O N / T W O / B T ( 3 F 6 ) F D ( 3 F 3 ) F B ( 3 F 1 0 ) F Q K ( 1 0 F 1 0 ) F 0 ( 1 0 ) F 

+ X Q ( 5 ) F Y 0 < 5 ) 

C O M M O N / T H R E E / B K ( 2 3 6 8 F 1 0 7 > F C A ( 2 3 6 8 ) F R M A ' S S < 2 3 6 8 ) F B 0 D Y < 2 3 6 8 ) 

C 0 M M 0 N / S I X / N 0 D E ( 1 2 0 0 ) F I F 0 R M 

D I M E N S I O N L P ( S ) v Q S T < 2 F 8 > F 0 A ( 2 F 2 ) 

C 

C 

C S T O R E E L E M E N T C O - O R D I N A T E S A N D N O D A L . N U M B E R S F O R 

C S T R E S S / S I" R A I N C A L C U I... A T 1 0 N S . 

C 
W R I T E ( 8 ) X F Y - X C E N F Y C E N F I E F N O D E F I F O R M F N E L F N N P F N S T A T 

C 

C C O M P U T E E L E M E N T S T I F F N E S S E S A N D L O A D S O N E B Y O N E . 

C 
1 0 D O 7 0 M = i r N E L 

I F ( I E ( h F 5 ) . G T . 0 ) G O T O 1 5 

I S T O P = I S T O P •{• 1 

G O T O S O 

1 5 C A L L Q U A I M M F A R E A ) 

I F ( A R E A . G T * 0 . 0 ) G O T O 2 0 

I S T O P = I S T O P •!• 1 

W R I T E ( 6 * 9 0 ) M 

C 

C F O R M M A T R I X N E E D E D T O R E C O V E R I N T E R N A L D I S P L A C E M E N T 

C I N S T R E S S / S T R A I N C A L C U L A T I O N , 

C 

2 0 D O 2 5 I = .1 F 2 

D O 2 5 J = I F 8 

Q S T ( I F J ) = 0 . 0 

2 5 C O N T I N U E 

I F ( I E ( M F 3 ) . E Q . I E ( M F 4 ) > G O T O 5 0 

D E T = Q K ( 1 0 v 9 ) * O K ( 9 1 1 0 ) - Q K ( 9 F 9 ) * O K ( 1 0 F 1 0 ) 

D A ( I F I ) = O K ( 1 0 F . 1 . 0 ) / D E T 

D A < 1 F 2 ) = - Q K ( 9 F 1 0 ) / D E T 

D A < 2 F 1 ) = D A < l r 2 ) 

D A ( 2 F 2 ) = 0 K ( 9 F 9 ) / D E T 

D O 3 0 I = Is - 2 

D O 3 0 J = I F 8 

D O 3 0 K = I F 2 

K K = K + 8 

Q S T ( I F J ) = O S T ( I F J ) + D A ( I F K ) * Q K ( K K F J ) 

3 0 C O N T I N U E 

C 

C C O N D E N S E E L E M E N T S T I F F N E S S M A T R I X F R O M 1 0 X 1 0 T O S X 8 F 

C A N D E L E M E N T L O A D S F R O M 1 0 X 1 T O 8 X 1 . 

C 

D O 4 5 J = 1 F 2 

I J = 1 0 - J 

I K = I J •}• 1 

P I V O T = Q K ( I K F I K ) 

D O . 4 0 K = 1 v I J 

F •- Q K ( I K F K ) / P I V O T 



O K ( I K c K j = f-

D O 3 5 I = K F I J 
Q K ( I F K ) = : ; Q K ( I r K ) - F * Q K ( I F I K ) 

Q K ( K F I ) = Q K ( I F K ) 

3 5 C O N T I N U E 

O ( K ) = Q ( K > - Q K ( I K S K ) * Q ( I K > 

4 0 C O N T I N U E . . . 

CI ( I K ) =:: G ( I K > / P I V O T 

4 5 C O N T I N U E 

S T 0 R E E I... E M E N T P R 0 P E R T I E S F 0 R S T R E S S / S T R A I N C A I... C U L A T 1 0 N S . 

5 0 W R I T E ( 8 ) Q S T F B F D 

A S S E M B L E S T I F F N E S S M A T R I X A N D B O D Y F O R C E V E C T O R » 

5 5 L I M =:: 8 
I F < I E ( M r 3 ) . E Q . I E < M r 4 > > L I M = : 6 
D O 6 0 I = 2.F L I M F 2 

I J : : : : 1 / 2 

L P ( I 1 ) =:: 2 * I E ( M F U ) - 1 

L P ( I ) = 2 * I E ( M F I J ) 

6 0 C O N T I N U E 

D O 6 5 LI... = I F L I M 

I L P ( L I . . . ) 

B O D Y d . ) = B O D Y ( I ) + Q < L L ) 

D O 6 5 M M = I F L I M 

J L P ( M M ) - I + 1 

I F ( J . L E . 0 ) G O T O 6 5 

B K ( I F J ) --=• B K ( I F J ) 1 Q K ( L L F M M ) 

6 5 C O N T I N U E 

A S S E M B L E M A S S M A T R I X . 

L I M ^ L I M / 2 

A M A S S = R O ( M T Y P ) * T H ( M T Y P ) * A R E A / F L O A T ( L I M ) 

D O 7 0 J = I F L I M 

K = 2 * I E ( M F J ) 

L = K • 1 

R M A S S ( K ) ==: R M A S S ( K > + A M A S S 

R M A S S ( L ) = R M A S S ( K ) 

7 0 C O N T I N U E 

. F O R M T H E R E C I P R O C A L M A S S M A T R I X . 

D O 7 5 I = I F N E Q 

R M A S S ( I ) = 1 . 0 / R M A S S ( I ) 

7 5 C O N T I N U E 

8 0 I F ( I S T O P . E Q . 0 ) G O T O 8 5 

W R I T E ( 6 F 9 5 > I S T O P 

S T O P 

8 5 W R I T E ( 6 F 1 0 0 ) 

R E T U R N 

9 0 F 0 R M A T ( 5 X r ' O A R E A 0 F E L E M E N T S 1 5 F ' I S N E G A T I V E ' / ) 

9 5 F O R M A T C O S O L U T I O N W I L L N O T B E P E R F O R M E D B E C A U S E O F S 

+ 1 5 F ' D A T A E R R O R S ' / ) 

1 0 0 F O R M A T ( ' 0 A S S E M B L Y O F S T I F F N E S S A N D M A S S M A T R I C E S C O M P L E T E 

E N D 
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S U B R 0 L J T I N E 0 U A D ( M t T 0 T A L A ) 

COMMON / O N E / E < 1 0 > p P R ( 1 0 ) , R O ( 1 0 ) r T H ( 1 0 ) v I E < 1 2 0 0 , 5 ) , X ( 1 1 8 4 > > 
+ Y ( 1 1 8 4 ) f X C E N < 1 2 0 0 ) , Y C E N ( 1 2 0 0 ) f N M A T » N S T A T v M T Y P 

COMMON / T W O / B T ( 3 F 6 ) i D ( 3 r 3 > r B ( 3 r 1 0 ) F OK ( 1 0 F 1 0 ) F 0 < 1 0 ) t 
+ X Q ( 5 ) F Y Q ( 5 ) ' 

M T Y P = 

T O T A L A 

I E ( M r 5 ) 

= - 0 . 0 

C 0 N S T R 0 C T S T R E S S - S T R A I N M A T R I X 0 F E L A S T I C C O N S T A N T S . 

I F ( N M A T . E Q . 1 . A N D . M . G T . 1 ) G O T O 1 0 

C F E ( M T Y P ) / ( ( 1 . 0 + P R ( M T Y P > ) * ( 1 . 0 - 2 . 0 * P R ( M T Y P ) ) ) 

( 1 ? 1 ) = C F * ( 1 . 0 - P R ( M T Y P ) ) 

( 1 * 2 ) = C F * P R ( M T Y P ) 

( 2 F 1 ) = D ( 1 F 2 ) 
( 2 F 2 ) = D C L F I ) 

( 3 F 3 ) = C F * ( 1 . 0 - 2 . 0 * P R ( M T Y P ) ) / 2 . 0 

C O N S T R U C T V E C T O R S O F T H E C O - O R D I N A T E S O F A N E L E M E N T . 

1 0 D O 1 5 N = 1 F 4 

N N = I E ( M F N ) 

X Q ( N ) = : : X ( N N ) 

Y Q ( N ) = Y ( N N ) 

1 5 C O N T I N U E 

X Q ( 5 ) = X C E N ( M ) 

Y Q ( 5 > : : : : Y C E N ( M ) 

:: I N I T I A L I S E Q U A D R I L A T E R A L S T I F F N E S S M A T R I X * L O A D V E C T O R v 

A N D S T R A I N D I S P L A C E M E N T M A T R I X . 

2 0 

D O 2 5 I I = I F 1 0 
Q ( I I ) = 0 . 0 
D O 2 0 J J = I F 1 0 

Q K ( I I F J J ) ^ 0 . 0 

C O N T I N U E 

D O 2 5 J J = 1 F 3 
B ( J J F I I ) : : : : 0 . 0 

C O N T I N U E 

F O R M S T I F F N E S S M A T R I X O F Q U A D R I L A T E R A L E L E M E N T * 

I F ( I E ( M F 4 ) . N E . I E ( M F 3 ) ) 
C A L L C S ' I ' C I . F 2 v 3 F T O T A I... A ) 

G O T O 3 5 
C A L L 0 S T ( 1 F 2 F 5 - A R E A ) 

T O T A L A = T O T A I... A f A R E A 

C A L L C S T ( 2 F 3 F 5 F A R E A ) 

T O T A L A = T O T A L A •{• A R E A 

C A L L C S T ( 3 F 4 F 5 F A R E A ) 

T O T A L A = T O T A I... A + A R E A 

C A L L C S T ( 4 P I F 5 F A R E A ) 

T O T A L A = T O T A L A 1 A R E A 

R E T U R N 

E N D 

G O T O 3 0 
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S U B R O U T I N E C S T d f J » K v A R E A ) 

C 0 M M O N / 0 N E / E ( 1 0 ) y PR ( 1 0 ) F R 0 ( 1 0 ) r T H ( 1 0 ) r I E ( 1 2 0 0 ? 5 ) r X < 1 1 8 4 ) F 

+ Y ( 1 . 1 . 8 4 > F X C E N ( . 1 . 2 0 0 ) f Y C E N ( 1 2 0 0 ) F N M A T t N S T A T F M T Y P 

C O M M O N / T W O / B T ( 3 F 6 ) F D ( 3 t 3 ) y B < 3 F 1 0 ) y O K ( 1 0 F 1 0 ) y 0 < 1 0 ) y 

+ X G ( 5 ) y Y G K 5 ) 

D I M E N S 1 0 N C B ( 3 t 6 ) » I...C ( 6 ) r L T ( 3 ) y T K ( 6 * 6 ) 

L T ( 1 ) = I 

L T ( 2 ) = J 

L T ( 3 ) = K 

C O M P U T E S T R A I N - D I S P L A C E M E N T M A T R I X F O R T R I A N G L E . 

B T ( :l. t 1 ) = •= Y G ( J ) -- Y O ( K ) 

B T ( 1 F 3 ) = • Y Q ( K ) - Y O ( I ) 

B T ( . l F 5 ) : : • Y C K I ) - Y O ( J ) 

B T ( 2 F 2 ) : : = X O ( K ) - XO ( J ) 

B T ( 2 F 4 ) ••• = X Q ( I ) - X O ( K ) 

B T ( 2 F 6 ) -= X C K J ) - XQ ( I ) 

B T ( 3 F : ! .) : = B T ( 2 F 2 ) 

B T ( 3 y 3 ) : • B T ( 2 F 4 ) 

B T ( 3 F 5 ) --- B T < 2 F 6 ) 

B T ( 3 F 2 ) -= B T C I . F 1 > 

B T ( 3 F 4 > ^ B T C I . F 3 ) 

B T ( 3 t 6 ) -= B T ( J . F 5 ) 

A R E A = < B T ( 2 F 2 ) * B T ( 1 F 5 ) 

F K : : : : 1 . 0 / ( 4 . 0 * A R E A ) 

- B T ( 2 F 6 ) * B T ( 1 F 1 ) ) / 2 . 0 

C O M P U T E B * h 

D O 1 0 I I = I F 3 

D O 1 0 J J = I F 6 

C B ( I I F J J ) 0 . 0 

D O 1 0 K K = I F 3 

C B ( U V J J ) = C B ( I I F J J ) + D ( U F K K ) * B T ( K K F J J ) 

1 0 C O N T I N U E 

C O M P U T E < B * * T > * D * B 

D O 1 5 I I I F 6 

D O 1 5 J J = I F 6 

T K ( I I F J J ) : : : : 0 . 0 

D O i 5 K K = I F 3 

T K ( I I F J J ) = T K ( I I F J J ) + B T ( K K F I I ) * C B ( K K F J J ) 

1 5 C O N T I N U E 

A D D T R I A N 61... E S T I F F N E S S T 0 Q U A D R I L A T E R A L S T I F F N E S S . 

A D D T R I A N G L E S T R A I N - D I S P L A C E M E N T M A T R I X T O Q U A D R I L A T E R A L 

S T R A I N - D I S P I... A C E M E N T M A T R I X . 

DO 2 0 I I = I F 3 

L C ( 2 * I I :• •••••••• 2 * L T d l ) 

L C < 2 * I I • 1 ) - 2 * L T ( I I ) - 1 

2 0 C O N T I N U E 

DO 3 0 I I = I F 6 

LI... = L C < I I ) 

DO 2 5 J J - 1 v 6 • 
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MM = L C ( J J ) 
QIv ( L L » M M ) = QK ( L L r MM ) + T K < 1 1 r J J ) * T I I < M T Y P ) * I••' K 

2 5 C O N T I N U E 
HO 3 0 J J = I f . 3 

B ( J J f L L ) =:: B ( J J f L L ) + B T ( J J f l l ) * F K * 2 . 0 
3 0 C O N T I N U E 

D E V E L O P B O D Y F O R C E F O R E L E M E N T . 

I F ( N S T A T . N E . 1 ) R E T U R N 

B O D Y F -•• - A R E A * R O ( M T Y P ) * T H ( M T Y P > * 9 . 8 1 / 3 . 0 
DO 3 5 I I •» I f 3 

J J = 2 * L T ( I I ) 
Q ( J J ) ::= O ( J J ) + B O D Y F 

3 5 C O N T I N U E 
R E T U R N 
END 

S U B R O U T I N E L 0 A D 1 

COMMON T f T M A X f N E L f N N P f N E Q r I M A X f I S T O P f I S T E P f I S B A N D 
C 0 M M 0 N / F 0 U R / X L 0 A D ( 1 1 8 4 ) t Y L 0 A D ( 1 1 8 4 ) F K 0 D E ( 1 1 8 4 > 
C 0 M M 0 N / S I X / N 0 D E ( 1 2 0 0 ) r I F 0 R M 
D I M E N S 1 0 N X I... 0 A D 1 < 1 1 8 4 ) f Y L 0 A D 1 < .1.18 4 ) » K 0 D E 1 ( 1 1 8 4 ) 

R E A D S T H E I N I T I A L V A L U E S OF T H E A P P L I E D L O A D S y 
A N D B O U N D A R Y C O N S T R A I N T S . 

W R I T E ( 7 f 7 0 > 
W R I T E ( 6 F 7 5 ) 
R E A D ( 5 P A 0 > I I 
N - 1 

1 0 RE AD ( 4 f 65 > M » K 0 D E ( M ) r X L 0 A D ( M ) t YI...0 AD ( M ) 
I F ( K O D E ( M ) . G E . 1 . A N D . K O D E ( M ) . L E . 4 ) GO TO 1 5 

W R I T E < 6 P B 0 ) M 
I S T O P •= 1 
GO TO 1 0 

1 5 K = 2 * N 
J = K - 1 
I F ( M . E Q . N ) GO TO 2 5 

2 0 K O D E ( N ) :;= K O D E ( N - 1 ) 
X L GAD ( N ) = X L O A I . K N - 1 ) 
Y L O A D ( N ) Y L O A D ( N - 1 ) 

2 5 I F ( I I . E C ) . 0 > GO TO 5 0 
C 
C P R I N T S T A B L E OF I N I T I A L L O A D S A N D C O N S T R A I N T S . 
C 

I : : : : K O D E ( N ) 
GO TO ( 3 0 f 3 5 1 4 0 f 4 5 ) f I 

3 0 W R I T E ( 7 f 8 5 ) N :• Y L O A D ( N ) r X L O A D ( N ) 

GO TO 5 0 
3 5 W R I T E ( 7 v 9 0 ) N r XI... 0 A D ( N ) t Y I... 0 A D ( N ) 

GO TO 5 0 
4 0 W R I T E C 7 y 9 5 ) N r X L O A D ( N ) , Y L O A D ( N ) 

GO TO 5 0 
4 5 W R I T E ( 7 f l 0 0 ) N ? X L O A D ( N ) F Y L O A D ( N ) 
5 0 N = N + 1 

I F ( M - N ) 5 5 f 2 5 v 2 0 
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5 5 IF ( N . L E . N N P ) G O T O 1 0 

R E N U M B E R L 0 A D S E T C . I F U S I N G I M P R O V E D N 0 D A L N U M B E R I N G . 

5? 
58 

I F ( I F O R M 4 N E • 1 ) G O T O 5 8 

D O 5 6 M = .1. F N N P 

X L 0 A D 1 ( N O D E ( M ) ) = X L Q A D . < M ) 

Y L 0 A D 1 ( N 0 D E < M > > Y L 0 A D ( M ) 

K ' O D E 1 ( N O D E ( M > ) = K O D E < M ) 

C O N T I N U E 

D O 5 7 M = I f N N P 

X L O A D ( M ) = X L O A D K M ) 

Y L O A D ( M ) = Y L O A D K M ) 

K O D E ( M ) = K G D E K M ) 

C O N T I N U E 

I F ( I S T O P . E Q « • 0 ) R E T U R N 

S T O P 

6 0 F O R M A T ( 1 5 ) 

6 5 F O R M A T ( 2 I 5 f 2 E 1 0 . 3 ) 

7 0 F 0 R M A T C O I N P U T T A B L E 6 . • I N I T I A L L O A D S A N D D I S P L A C E M E N T S ' / / 

+ 5 X f ' N O D A L ' / 5 X f ' P O I N T ' * 9 X F ' X - L O A D ' F 9 X » 

•!• •' Y - L 0 A D ' f 8 X f ' X •••• D I S P . ' r 8 X » ' Y - D I S P . ' ) 

( ' 0 D 0 Y 0 U W A N T T 0 0 U T P U T A L L T H E I N I T I A L L 0 A D S ? ' / 

' T Y P E " 1 " F O R Y E S t P R E S S " R E T U R N " F O R N O ' . / 

7 5 F O R M A T 

+ 

+ 

8 0 F O R M A T -

F O R M A T 

F O R M A T 

F O R M A T 

F O R M A T 

E N D 

8 5 

9 0 

9 5 

1 0 0 

) 
C O N O D E ' f 1 5 f ' H A S 
( I I O f 2 C I . P E 1 5 . 3 ) ) 

( 1 1 0 * 1 5 X f 2 ( 1 P E 1 5 . 3 ) ) 

< I 1 0 f l P E 1 5 . 3 f 3 0 X » 1 P E 1 5 . 3 ) 
( I l O f 3 0 X f 2 ( 1 P E 1 5 . 3 ) ) 

A N I L L E G A L V A L U E F 0 R K 0 D E ' ) 

S U B R O U T I N E R V E C 

C O M M O N T f T M A X f N E L v N N P r N E Q t I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / T H R E E / B K ( 2 3 6 8 F 1 0 7 ) F C A ( 2 3 6 8 ) F R M A S S ( 2 3 6 8 ) t B O D Y ( 2 3 6 8 ) 

C 0 M M 0 N / F 0 1 J R / X L 0 A D ( 1 1 8 4 ) v Y L 0 A D ( 1 1 8 4 ) F K 0 D E ( 1 1 8 4 ) 

C O M M O N / F I V E / D I S P ( 2 3 6 8 > v V E L ( 2 3 6 S ) F R ( 2 3 6 8 ) F R 1 ( 2 3 6 8 ) F 

R 2 ( 2 3 6 8 ) F R 3 < 2 3 6 8 ) 

F O R M S T H E I N I T I A L L O A D V E C T O R R . 

D O 3 0 N --= I f N N P 

I : : : : K O B E ( N ) 

G O T O < 1 0 f 1 5 f 1 0 f 2 0 ) F I 

1 0 R ( 2 * N - 1 ) =:: B 0 D Y ( 2 * N - 1 ) 

I F ( I . E Q . 3 ) G O TO 2 5 

1 5 R ( 2 * N ) = B 0 D Y ( 2 * N ) + Y L O A D ( N ) 

I F ( I . E Q . 1 ) G O TO 3 0 

2 0 R ( 2 * N - 1 ) = X L O A D ( N ) 

I F ( I . E Q . 2 ) G O T O 3 0 

2 5 R < 2 * N ) = Y L O A D ( N ) 

3 0 C O N T I N U E 

R E T U R N 

' E N D 

+ X L O A D ( N ) 
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S U B R O U T I N E ' M 0 D I F 2 

C === = :=: = = = = = = = = = = = =: = 

c 
C O M M O N T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C 0 M M 0 N / F 0 U R / X L G A D ( 1 1 8 4 ) v Y L 0 A D < 1 1 8 4 ) F K 0 D E < 1 1 8 4 ) 

C 

C C A L L S ' G E B C ' F O R T H O S E N O D E S W H I C H H A V E P R E S C R I B E D D I S P L A C E M E N T S * 

C 

D O .1.5 M = .1. F N N P 

I F ( K O D E ( M ) • E Q • 1 ) G O T O 1 5 

I F ( K O D E ( M ) . E Q . 3 ) G O T O 1 0 

C A L L G E B C ( X L 0 A D ( M ) t 2 * M - 1 ) 

I F ( K O D E ( M ) . E Q . 2 ) G O T O 1 5 

1 0 C A L L G E B C ( Y L O A D ( M ) F 2 * M ) 

1 5 C O N T I N U E 

R E T U R N 

E N D 

C 

C 

S U B R O U T I N E G E B C ( U F N ) 

C = = = = = = = = = = = = = = = = = : = = = = 

C 

C O M M O N T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / T H R E E / B K < 2 3 6 8 F 1 0 7 > F C A ( 2 3 6 8 ) F R M A S S < 2 3 6 8 ) F B 0 D Y < 2 3 6 8 ) 

C O M M O N / F I V E / D I S P ( 2 3 6 8 ) ? V E L ( 2 3 6 8 ) F R ( 2 3 6 8 ) F R 1 ( 2 3 6 8 ) F 

+ R 2 ( 2 3 6 8 ) F R 3 ( 2 3 6 8 ) 

C 

C M 0 D I F I E S S T I F F N E S S M A T R I X F I N S E M I B A N D E D F 0 R M F A N D L 0 A D V E C T 0 R 

C F 0 R P R E S C R I B E D D I S P I . . . A C E M E N T ' U ' A T D E G R E E 0 F F R E E D 0 M ' N ' . 

C 

D O 1 5 M = 2 F I S B A N D 

K = N - M + 1 

I F ( K . L E . 0 ) G O T O 1 0 

R ( K ) R ( K ) B K ( K F M ) * U 

B K ( K F M ) = 0 . 0 

1 0 K : : : : N + M •• 1 

I F ( K , G T . N E Q ) G O T O 1 5 

R ( K ) = R ( K ) • - B K ( N F M ) * U 

B K ( N v M ) = 0 . 0 
1 5 C O N T I N U E 

B K ( N F I ) = : 1 . 0 

R ( N ) ^ U 

R E T U R N 

E N D 

C 

C 

S U B R O U T I N E B A N S 0 1 . . . 

C 

C 

C O M M O N T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / T H R E E / B K ( 2 3 4 8 F 1 0 7 ) » C A ( 2 3 6 8 ) F R M A S S ( 2 3 6 8 ) F B 0 D Y ( 2 3 6 8 ) 

C O M M O N / F I V E / D I S P ( 2 3 6 8 ) F VEI . . . ( 2 3 6 8 ) F R ( 2 3 6 8 ) F R 1 ( 2 3 6 S ) F 

+ R 2 ( 2 3 6 8 ) ? R 3 ( 2 3 6 8 ) 

C 

C S Y M M E T R I C B A N D M A T R I X S O L V E R , 

C C O M P U T E D D I S P L A C E M E N T S A R E S T O R E D I N R . 

C 

N R S = N E Q •- 1 

D O 1 5 N = I F N R S 

M = N •••• 1 
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M R = M I N O ( I S B A N D F N E G - M ) 

P I V O T = B K ( N r l ) 

DO 1 3 I... - 2 F M R 

CP = B K ( N F L ) / P I V O T 

I = M + L 

J = 0 

D O 1 0 K = L r M R 

J = J i 1 

B K ( I f J ) = B K ( I f J ) - C P * B K ( N r K ) 

1 0 C O N T I N U E 

B K ( N r L ) = C P 

1 5 C O N T I N U E 

BO 20 N = I t N R S 

M = N - 1 

M R = M I N 0 ( I S B A N D F N E G - M ) 

CP = R < N ) 

R ( N ) ::= CP / B K ( N F I ) 

DO 2 0 L = 2 » M R 

I ~ M + L 

R ( I ) = R ( I ) - B K ( N F L ) * C P 

R ( N E Q ) = R ( N E O ) / B K ( N E Q v l ) 

2 0 C O N T I N U E 

D O 2 5 I = I F N R S 

N = N E O •••• I 

M = N •- 1 

M R = M I N O ( I S B A N D F N E O - M ) 

DO 2 5 K = 2 y M R 

I... = M + K 

R ( N ) R ( N ) - B K ( N r K ) * R ( L ) 

2 5 C O N T I N U E 

C 

C S T O R E D I S P L A C E M E N T S F O R S T R E S S / S T R A I N D I S P L A Y * 

C 

W R I T E ( 1 0 ) R 

R E T U R N 

E N D 

C 

C 
S U B R O U T I N E D A M P 

C = = = = = = == = = =:: = = = = = 

C 

C O M M O N Jr T M A X F N E L r N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / T H R E E / B K ( 2 3 6 8 F 1 0 7 ) » C A ( 2 3 6 8 ) F R M A S S ( 2 3 6 8 ) F B O D Y ( 2 3 6 8 ) 

C 

C T 0 R E A D I N D A M P I N G C 0 E F F I C I E N T S F A N D A S S E M B I . . . E T H E D A M P I N G M A T R I X . 

C 

W R I T E ( 7 F 2 0 ) 

W R I T E < 6 F 2 5 ) N N P 

1 0 W R I T E ( 6 F 3 0 ) 
R E A D ( 5 v l 5 ) N F C O E F 

I F ( N . E G . N N P . A N D . C O E F . E Q . 0 . 0 ) R E T U R N 

W R I T E ( 7 F 3 5 ) N F C O E F 

:i: ==: 2 * N •••• i 

C A ( I ) = C O E F 

C A ( I f 1 ) = C O E F 

I F ( N . L T . N N P ) GO TO 1 0 

R E T U R N 

C 

1 5 F O R M A T ( I 5 y E 1 0 . 4 ) 

2 0 F 0 R M A T < ' 0 1 N P U T T A BI... E 5 . . D A M PIN G C 0 E F F I C I E N T S . ' / / 
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} 5 X v ' N O D A L * B X v ' 11A r'i I • I li G V 

•{• 5 x v ' P O I N T • <• '!>.!• - co t ; : i i- i c i E N T ' > 
25 F O R M A T ( ' C E N T E R N O D E A N D D A M P I N G C O E F F I C I E N T 

•!• •' F O R A I...!, N 0 D E S W I I I I D A M p I N G . ' / 

•{ ' L I S T M U S T E N D W I T H L A S T N O D E ' F 

+ ' E V E N I F I T I S U N D A M P E D ' / 

+ ' L A S T N O D E I S N U M D E R ' • 1 5 ) 

3 0 F O R M A T ( ' - ' - ' ) 

3 5 F O R M A T ( 1 : 1 . O F 1 P E 1 5 . 3 ) 

E N D 

S U B R O U T I N E M O D I F 1 

C O M M O N T F T M A X F N E L F N N P F N E Q F I M A X F I S T O P F I S T E P F I S B A N D 

C O M M O N / T H R E E / B K ( 2 3 6 8 F 1 0 7 ) « C A ( 2 3 6 8 ) F R M A S S . < 2 3 6 8 ) F B O D Y ( 2 3 6 8 ) 

C 0 M M 0 N / F 0 U R / X L O A D ( 1 1 8 4 ) F Y L . 0 A D ( 1 1 8 4 ) t K 0 B E ( 1 1 8 4 ) 

C 0 M M 0 N / F I V E / D I S P ( 2 3 6 8 ) F V E L < 2 3 6 8 ) F R ( 2 3 6 8 ) r R 1 ( 2 3 6 8 ) F 

•{• R 2 ( 2 3 6 8 ) F R 3 ( 2 3 6 8 ) 

A S S E M B L E S T H E I N I T I A L F O R C E V E C T O R A N D M O D I F I E S T H E S T I F F N E S S A N D 

D A M P I N G M A T R I C E S T O A C C O U N T F O R T H E G E O M E T R I C B O U N D A R Y C O N D I T I O N S . 

C O N V E R T S E M I - B A N D E D M A T R I C E S T O B A N D E D F O R M . 

D O 1 0 I = 1 F N E O 

D O 1 0 ..J = I F I S B A N D 

B K ( I y 2 * I S B A N D - J ) - : : B K ( I F I S B A N D + 1 - J ? 

1 0 C O N T I N U E 

L = I S B A N D - 1 

DC) 1 5 J = I F L 

M = N E Q - J 

D O 1 5 I = 1 v M 

B K ( I + J t I S B A N D - J ) = B K ( I F I S B A N D •!• J ) 

1 5 C O N T I N U E 

D O 2 0 I = 1 » L 

K = L + 1 - I 

D O 2 0 J = I F K 

B K ( I F J ) = 0 . 0 

2 0 C O N T I N U E 

M O D I F Y D A M P I N G A N D S T I F F N E S S M A T R I C E S * A N D F O R M I N I T I A L 

D I S P L A C E M E N T V E C T O R . 

D O 4 0 N = I F N N P 

I K O D E ( N ) 

G O T O ( 4 0 ? 2 5 F 3 0 •> 3 5 ) v I 

2 5 D I S P ( 2 # N -• 1 ) = X L O A D ( N ) 

C A L L G E 0 M B C ( 2 * N - 1 ) 

G O T O 4 0 

3 0 D I S P ( 2 * N ) ~ Y L O A D ( N ) 

C A L L G E 0 M B C < 2 * N ) 

G O 1 0 4 0 

3 5 D I S P ( 2 * N •••• 1 ) X L O A D ( N ) 
D I S P ( 2 * N ) ' = Y L O A D ( N ) 

C A L L G E O M B C ( 2 $ N - 1 ) 

C A L L G E O M B C ( 2 * N ) 

4 0 C O N T I N U E 
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R E T U R N 
END 

C 
C 

S U B R O U T I N E - G E O M B C ( N ) 

C 
COMMON T F T M A X F N E L F N N P F N E Q r I M A X F I S T O P F I S T E P F I S B A N D 

C 0 M M O N / T H R E E / B K ( 2 3 6 8 F . 1 . 0 7 ) ? CA ( 2 3 6 8 ) y R M A S S ( 2 3 6 8 ) F B 0 D Y ( 2 3 6 8 ) 

C 
C M O D I F I E S D A M P I N G A N D S T I F F N E S S M A T R I C E S F O R T H E 
C P R E S C R I B E D D I S P L A C E M E N T A T D E G R E E O F F R E E D O M N . 
C 

I B A N D = 2 * I S B A N D - 1 
DO 1 0 M = 1 v I B A N D 

B K ( N F M ) = 0 . 0 

1 0 C O N T I N U E 
C A ( N ) = 0 . 0 
B K ( N » I S B A N D ) = 1 . 0 
R E T U R N 
E N D 

C 
C 

S U B R O U T I N E DUMP 

C 
COMMON T F T M A X F N E L F N N P F N E . Q y I M A X F I S T O P F I S T E P F I S B A N D 

COMMON / T H R E E / B K ( 2 3 6 8 y 1 0 7 ) y C A < 2 3 6 8 > y R M A S S ( 2 3 6 8 ) F B O D Y ( 2 3 6 8 ) 
C 0 M M 0 N / F 0 U R / XI...0AD < 1 1 8 4 ) y Y L 0 A D ( 1 1 8 4 ) y K 0 D E ( 1 1 8 A ) 
C0MMON / F I V E / D I S P ( 2 3 6 8 > r V E L ( 2 3 6 3 ) F R < 2 3 6 8 ) F R 1 ( 2 3 6 8 > y 

+ R 2 ( 2 3 6 8 ) » R 3 ( 2 3 6 8 ) 
COMMON / S I X / N O D E ( 1 2 0 0 ) r I F O R M 

C 
C U N F O R M A T T E D W R I T E OF D A T A O N T O D E V I C E A T T A T C H E D TO 9 . 
C 

W R I T E < 9 ) T F T M A X y N E L F N N P y N E O F I M A X F I S T O P F I S T E P y 

+ I S B A N D « L N U M 
W R I T E ( 9 ) B K t C A F R M A S S y B O D Y 
W R I T E ( 9 ) X L O A D F Y L O A D F K O B E 
W R I T E ( 9 ) D I S P y V E L y Rv R I F R 2 F R 3 
W R I T E ( 9 ) N O D E F I F O R M 
R E T U R N 
E N D 
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P R O G R A M T I M E S T E P 

R E A D S U N F O R M A T T E D A S S E M B L Y D A T A A N D T I M E S T E P D A T A , 

T I I E N C A L C U I . . . A T E S D I S P L A 0 E M E N T S F 0 R F I F T E E N T I M E S T E P S . 

C O M M O N T F T M A X F N E L » N N P * N E Q r I M A X F I S T O P F I S T E P f 

+ I S B A N D y L N U M 

C O M M O N / O N E / B K < 2 3 6 8 f 1 0 7 ) r C A ( 2 3 6 8 ) r R M A S S < 2 3 6 8 ) f B 0 D Y ( 2 3 6 8 ) 

C O M M O N / T W O / X L 0 A D < 1 1 8 4 ) f Y L O A D ( 1 1 8 4 ) » K O B E ( 1 1 8 4 ) 
C 0 M M O N / T H R E E / D I S P ( 2 3 6 8 ) . V E L ( 2 3 6 8 ) t R ( 2 3 6 8 ) r R 1 ( 2 3 6 8 ) r 

•!• R 2 ( 2 3 6 S ) F R 3 ( 2 3 6 8 ) 

C 0 M M 0 N / F 0 U R / N O D E ( 1 2 0 0 ) . I F 0 R M 

C A L L G E T 

I F ( I S T E P • G E • 1 ) G O T O 1 0 

C A L L T I M 

1 0 DO 1 5 I = I f 1 5 
C A L L T M S T E P 

I F ( I S T E P . G E . I M A X ) 6 0 TO 2 0 

1 5 C O N T I N U E 

C A L L D U M P 

2 0 S T O P 
E N D 

S U B R O U T I N E G E T 

COMMON T f T M A X y N E L v N N P f N E Q y I M A X y I S T O P " I S T E P f 
+ I S B A N D ? L N U M 

COMMON / O N E / B K ( 2 3 6 8 t 1 0 7 ) r C A ( 2 3 6 8 ) f R M A S S ( 2 3 6 8 ) f B O D Y ( 2 3 6 8 ) 
C 0 M M 0 N / T W 0 / X L. 0 A D ( 1 1 8 4 ) t Y L 0 A D < 1 1 8 4 ) f K.O D E ( 1 1 8 4 ) 
COMMON / T H R E E / D I S P ( 2 3 6 8 ) f V E L ( 2 3 6 S ) * R < 2 3 6 8 ) f R K 2 3 6 8 ) f 

+ R 2 ( 2 3 6 8 ) » R 3 < 2 3 6 8 ) 
C0MMON / F 0 U R / N 0 D E ( 1 2 0 0 ) F I F 0 R M 

U N F O R M A T T E D R E A D O F D A T A F R O M D E V I C E A T T A T C H E D TO 3 . 

R E A D ( 3 ) T f T M A X y N E L y N N P f NEQ y I M A X f I S T O P f I S T E P y 
+ I S B A N D f L N U M 

R E A D ( 3 ) B K f C A f R M A S S f B O D Y 
R E A D ( 3 ) X L G A D ? Y L O A D y K O B E 
R E A D ( 3 ) D I S P f V E L f Rv R l t R2r R 3 
R E A D ( 3 ) N O D E F I F O R M 
R E T U R N 
E N D 

S U B R O U T I N E T I M 

C O M M O N T f T M A X ? N E L » N N P f N E Q <• I M A X F I S T O P f I S T E P , 

+ I S B A N D f L N U M 

C O M M O N / T H R E E / D I S P ( 2 3 6 8 ) v V E L ( 2 3 6 8 ) v R ( 2 3 6 8 ) v R K 2 3 6 8 ) f 

+ R 2 ( 2 3 6 8 ) f R 3 ( 2 3 6 8 ) 
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C R E A D S T I M E S T E P F M A X I M U M T I M E v A N D I N I T I A L I S E S R 3 . 

C 
W R I T E < 6 F 2 0 ) 
R E A D < 5 y l 5 ) Tv T M A X 
I M A X = I F I X ( T M A X / T + 0 . 1 ) 
DO 1 0 I = I f NEQ 

R 3 < I ) = R < I ) • • 
1 0 C O N T I N U E 

C 

C S T O R E T I M E S T E P V A L U E S F O R U S E I N S T R E S S / S T R A I N C A L C U L A T I O N S . 

C 
W R I T E ( 1 0 ) T v T M A X y I M A X 

C 
C S E T L I N E C O U N T E R F O R F I L E A T T A T C H E D TO 4 T O / 1 0 0 0 ' . 
C 

L N U M = 1 0 0 0 

R E T U R N 
C 

1 5 F O R M A T ( 2 E 1 0 . 4 ) 
2 0 F 0 R MAT C O EL N T E R T I M E - S T E P A N D MAX I M U M T I M E ' / 

+ ' - - • * * * * * * * * * * ' ) • 
. E N D 

C 
C 

C 
S U B R O U T I N E T M S T E P 

COMMON T F T M A X y N E L » N N P y NEQ y I M A X y I S T O P P I S T E P y 
+ I S B A N D y L N U M 

C 0 M M 0 N / T W 0 / X I... 0 A D ( 1 1 8 A ) y Y L 0 A D ( 1 1 8 4 ) r K 0 D E ( 1 1 8 4 ) 
COMMON / T H R E E / D I S P ( 2 3 6 8 ) F V E L < 2 3 6 8 ) » R ( 2 3 6 8 ) F R l ( 2 3 6 8 ) r 

•{• R 2 ( 2 3 6 B ) t R 3 ( 2 3 6 8 ) 
C 
C S E T S UP T H E V E C T O R S R l y R 2 f R 3 f V E L A N D C A L L S T H E R U N G E - K U T T A R 0 U T 1 
c; 

I S T E P " I S T E P + 1 
DO 1 0 I == I F NEO 

R 1 ( 1 ) = R 3 ( I ) 
1 0 C O N T I N U E 

C A L L L 0 A D 2 
DO 1 5 I = I F NEQ 

R 3 ( I ) = R ( I ) 
R 2 ( I ) = ( R l ( I ) + R 3 ( D ) / 2 . 0 

1 5 C O N T I N U E 

DO 3 5 N - 1 y NNP 
M = K O B E <N > 
GO TO ( 3 5 F 2 0 F 2 5 y 2 0 ) F M 

2 0 I = 2 * N •- 1 
GO TO 3 0 

2 5 I = 2 * N 
3 0 V E L ( I ) = ( R 3 ( I ) - R l ( I ) ) / T 

M = M + 1 
I F ( M . E G . 5 ) GO TO 2 5 

3 5 C O N T I N U E 
C A L L RUNG 

C 
C S T 0 R E D I S P I . . . A C E M E N T S F 0 R S T F ? E S S / S T R A I N C A I . . . C U L A T 1 0 N S . 
C 

W R I T E ( 1 0 ) D I S P 
R E T U R N 
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E N D 

S U B R O U T I N E L 0 A D 2 

COMMON T F T M A X y N E L y N N P y NEQ y I M A X y I S T O P y . I S T E P y 
+ I S B A N D y L N U M 

COMMON / O N E / B K ( 2 3 6 0 t107)y C A < 2 3 6 0 ) y R M A S S ( 2 3 6 8 ) y B O D Y ( 2 3 6 8 ) 
COMMON / T W O / X L O A D ( 1 1 8 4 ) y Y L O A D < 1 1 8 4 > y K O D E < 1 1 8 4 ) 
C 0 M M 0 N / TI-IR E E / D I S P ( 2 3 6 8 > y V E L < 2 3 6 8 ) y R ( 2 3 6 8 ) y R 1 ( 2 3 6 8 ) y 

! R 2 ( 2 3 6 B ) y R 3 ( 2 3 6 8 > 
COMMON / 1 " 0 U R / N 0 D E ( 1 2 0 0 ) t I F 0 R M 

A L T E R S T H E L O A D V E C T O R A T E A C H T I M E S T E P . R E A D S ONE C A R D F O R 
E A C H C H A N G E . M U S T H A V E A C A R D F O R T H E L A S T NODE P O I N T . 

.1.0 R E A D < 4 ' L N U M y 5 5 > My X » Y 

R E N U M B E R S N O D E I F I M P R O V E D T O P O L O G Y I N U S E . 

I F ( I F O R M . N E . 1 ) GO TO 1 5 
N = N O D E ( M ) 
GO TO 2 0 

1 5 N ~- M 

F O R M S NEW L O A D V E C T O R . 

2 0 X L G A D ( N ) = X 
Y L O A D ( N ) = Y 
L N U M = L N U M + 1 0 0 0 
I =:: K C ) D E ' ( N ) 
GO TO ( 2 5 y 3 0 y 2 5 y 3 5 ) y I. 

2 5 R ( 2 * N -• 1 ) = B 0 D Y ( 2 * N - 1 ) + X L O A D ( N ) 
I F ( I . E Q . 3 ) GO T O 4 0 

3 0 R ( 2 * N ) : : : : B 0 D Y ( 2 * N ) + Y L O A D ( N ) 
I F ( I . E Q . 1 ) GO TO 4 5 

3 5 R < 2 * N • • 1 ) = X L O A D ( N ) 
I F ( I . E Q . 2 ) GO TO 4 5 

4 0 R ( 2 * N ) = Y L O A D ( N ) 
4 5 I F ( M . I . . . T . N N P ) GO TO 1 0 

R E T U R N 

5 0 F O R M A T ( 1 5 ) 
5 5 F O R M A T ( I 5 y 2 ( 3 X y E 1 0 . 4 ) ) 

E N D 

S U B R O U T I N E RUNG 

COMMON T y T M A X y N E L y N N P y NEQ r I M A X y I S T O P y I S T E P y 
i I S B A N D y L N U M 

COMMON / O N E / B K ( 2 3 6 8 y 1 0 7 ) y C A ( 2 3 6 8 ) y R M A S S ( 2 3 6 8 ) y B O D Y ( 2 3 6 8 ) 
COMMON / T H R E E / D I S P ( 2 3 6 8 ) y VEI... ( 2 3 6 8 ) y R ( 2 3 6 8 ) y R l ( 2 3 6 8 ) y 

+ R 2 ( 2 3 6 8 ) y R 3 ( 2 3 6 8 ) 
D I M E N S I O N S T 0 1 ( 2 3 6 8 ) , S T 0 2 ( 2 3 6 8 ) y D E L I ( 2 3 6 8 ) y DEI...2 ( 2 3 6 8 ) y 

+ D E L 3 ( 2 3 6 8 . ) y D E L 4 ( 2 3 6 8 ) y GAM 1 ( 2 3 6 8 ) y G A M 2 ( 2 3 6 8 ) y 
+ 0 A M 3 ( 2 3 6 8 ) r G A M 4 ( 2 3 6 8 ) 
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CALL. ADSUB(GAM4 t R3r NEQ.f 0) 
CALL SCALE(GAM4 > NEQy -T) . 
CALL MUI.T1 (RMASf >y GAM 4 y NEQ) 

CALL ADSUB(DEL2i DEL 3 NEQ t 1 ) 
CALL SCALE(DEL2 NEQy 2,0) 
CALL ADSUB(DEL2> DEL J. f NEQ y 1 ) 
CALL- ADSUB <DEL2, DEL 4 y NEQ y 1) 
CALL SCALE (DEI... 2! NEW t 1/6.0) 
CALL ADSUB (DISP i DEI... 2 y NEQ y 1 ) 

CALL ADSUB(GAM2 s GAM3 y NEQ i 1 ) 
CALL SCALE(GAM2> NEQ .<• 2 • 0) 
CALL ADSUB(GAM2i G AMI NEQ y 1) 
CALL ADSUB(GAM2 > GAM4 V NEQ t 1 ) 
CALL SCALE(GAM2: NEQ f 1/6.0) 
CALL ADSUB(UEL y GAM2 c NEQ y 1) 
RETURN 
END 

C 
C 

SUBROUTINE SCALE(At Hr SCAD 
C 
C ' 

DIMENSION A(2368) 
C 
C TO MULTIPLY A VECTIOR 'A' BY A SCALAR 'SCAL' AND STORE IN 'A'? 

I C N = DIMENSION OF ' A' . 
C 

DO 10 I = 1v N 
A ( I ) = SCAL * A ( I ) 

1 10 CONTINUE 
J RETURN 
' END 
C 
C 

SUBROUTINE ADSUB(A» By Ny L) 
C :::::::::::::::::::: r, ::::= :::::::: ,:::::: ;,.= ,r.=::::=:::::r, ,:::::::::::::::::: ,:::::: 
C 

DIMENSION A(2368)y B(2368) 
C 
C TO ADD OR SUBTRACT FROM A VECTOR 'A' A VECTOR 'B' AND 
C STORE IN 'A'J N = DIMENSION OF ' A' AND '' B '•. 
C WHEN L=l A + B IS FORMED. 
C WHEN L = 0 A -• B IS FORMED. 
C 

IF (L .EG. 0> GO TO 15 
DO 10 I = 1 v N 

A ( I ) = A ( I ) !• B ( I > 
10 CONTINUE 

RETURN 
15 DO 20 I = I F N 

A ( I > = A ( I ) •••• B ( I > 
"20 CONTINUE 

RETURN 
END 

C 
C 
C 
C 
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c 
c 

SUBROUTINE PROD(Ar Br C'F NF L> 
C 

DIMENSION A<2368F107>F B ( 2 3 A 8 ) F C(2368> 
C 
C TO FIND THE PRODUCT OF A BANDED MATRIX STORED IN CONDENSED 
C FORM ' A ( I F J ) ' WITH A COLUMN VECTOR ' B ( I ) ' . 
C THE RESULT IS STORED IN ' C ( I ) ' . 
C N = DIMENSION OF. 'B' AND 'C. 
C L. = SEMIBANDWIDTH OF'A'. THUS 'A' IS N X. <2*L - 1 ) . 
C 

LL = 2 * L - 1 
DO 1 0 I = I f N 

C<I) = 0.0 
1 0 CONTINUE 

DO 1 5 J =:: I F LI­
DO 1 5 I = l r N 

M I + J - L 
I F <M *LE. 0 ) 00 TO 1 5 
I F (M ,GT. N) GO TO 1 5 
C ( I ) :::: C ( I ) + A < I F J ) * B ( M ) 

1 5 CONTINUE 
RETURN 
END 

C 
C 

SUBROUTINE MULTKAv Br N) 

c 
DIMENSION A ( 2 3 6 8 > F B<2368) 

C 
C TO FIND THE PRODUCT OF A DIAGONAL MATRIX 'A' STORED IN CONDENSED 
C FORM WITH A COLUMN VECTOR 'B'F AND STORE IN 'B'• 
C N = DIMENSION OF 'B'. 
C 

DO 1 0 I = I F N 
B<I> = A ( I ) * B ( I ) 

1 0 CONTINUE 
RETURN 
END 

C 
C 

SUBROUTINE MULT2(AF BF CF N) 
C 

DIMENSION A(236S>v B(2368)J> C ( 2 3 6 8 ) 
C 
C TO F I N D THE PRODUCT OF A DIAGONAL MATRIX 'A' STORED IN CONDENSED 
C FORM WITH A COLUMN VECTOR 'B'F AND STORE IN ' C . 
C N = DIMENSION OF 'B'• 
C 

DO .1.0 I l r N 
C ( I ) = A ( I ) * B ( I ) 

1.0 CONTINUE 
RETURN 
END 

0 
C 
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PROGRAM PLOTS 

PR0GRAM REC0VERS 0PTION PARAMETERSr 
THE REQUIRED DISPLAY PLOTS. 

AND ACCORDINGLY PRODUCES 

COMMON QST<600F2FB>F 
D I S P ( 2 3 6 8 ) F TF 

B ( 6 0 0 F 3 F 1 0 > F C ( 6 0 0 F 3 F 3 ) F 
TMAXF NELEM(600)F I 7 I M ( 1 0 ) F 

NSTAT • IMAXF NNPF NELF NELDISF 
COMMON /ONE/ X ( 1 1 8 4 ) F Y ( 1 1 8 4 ) » X C E N ( 1 2 0 0 ) F YCEN(1200)F 
COMMON /TWO/ S T R A I N ( 3 ) F STRESS<6)F PRINC<600T3) 
COMMON /THREE/ T I T L E < 8 ) » XMAXF XMINF YMAXF YMINF XSPF 

XMAPIF XMAP2F YMAPIF YMAP2F STMAX 
COMMON /POUR/ STHETAF CTHETA 
COMMON / F I V E / I 0 U T L N ( 5 0 ) F NNOD 
COMMON / S I X / IGRIDF ISECTF IS" 
COMMON /SEVEN/ X D I S P < 3 0 0 F 1 0 ) r 

I E ( 1 2 0 0 F 5 ) 

YSPI 

RSF I D I S P L F IFRM 
Y D I S P ( 3 0 0 F 1 0 ) F I X ( 1 0 ) F I Y ( 1 0 ) F 

L I F L2» NODE(1200)F IFORM 

CALL RECOVR 
CALL PAPER(l) 
IF (ISECT .NE. 
IF (ISTRS »EQ. 

1 0 CALL PLTPAR 
IF (ISECT • EQ« 

0 ) GO TO 1 0 
0 ) GO TO 2 0 

0 ) GO TO 1 5 

PLOT GRID SECTION* 
CALL DISGRD 
IFRM = IFRM - 1 
IF (IFRM .GE. 1) CALL FRAME 

15 IF (ISTRS .EQ. 0 ) GO TO 2 0 

PLOT STRESS PLOTS. 

CALL DISPLS 
IFRM = IFRM - 1 
IF (IFRM .GE. 1) CALL FRAME 

20 IF (IGRID .EQ. 0 ) GO TO 25 
PLOT WHOLE GRID. 

CALL PSCALE 
CALL GRDPLT 
IFRM = i'FRM - 1 
IF (IFRM .GE. 1) CALL FRAME 

25 IF (IDISPL .NE. 1) GO TO 30 

PL.0 T DISPL ACEMEN T/TI ME GRAPHS . 

CALL DISPL 
CALL GHOS 

30 CALL GREND 
STOP. 
END 
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SUBROUTINE RECOVR 
C 
C 

COMMON QST(600F2F8>F B C 6 0 0 F 3 F 1 0 ) F CC600F3F3)F 
+ D I S P ( 2 3 6 8 ) i Ti TMAXF NELEMC600)F I T I M ( 1 0 ) F 
+ IMAXF NNPF NELF NELDISF NFRMSF N S T A T 
COMMON /ONE/ XC1 1 8 4 ) F Y ( 1 1 B 4 ) F X CEN(1200)F Y C E N ( 1 2 0 0 ) F I E ( 1 2 0 0 F 5 > 
COMMON /THREE/ TITLE<8)'F XMAXF XMINF YMAXF YMINF XSPF YSPF 

+ XMAPIF XMAP2F YMAPIF YMAP2F STMAX 
COMMON / F I V E / I 0 U T L N ( 5 0 ) F NNOD 
COMMON / S I X / IGRIDF ISECTF ISTRSF I D I S P L F IFRM 
COMMON /SEVEN/ XDISP ( 3 0 0 r 1 0 ) F YDISP ( 30 0 F .10 ) F IXC 1 0 ) F I Y ( 1 0 ) F 

+ L I F L2F N0DEC1200)F IFORM 
DIMENSION D 1 ( 2 F B ) F D 2 ( 3 F 1 0 ) F D3(3F3> 

C 
C RECOVERS OPTION PARAMETERS AND GRID GEOMETRY. 
C 
C RECOVER PARAMETERS. 
C 

READ ( 2 ) STMAXF T I T L E F NELEMF NELDISF I T I M F IXF IYF IGRIDF ISECTF 
+ ISTRSF I D I S P L F IFRMF NFRMSF IOUTLNF NNODF L I F L2 
READ C4> XF YF XCENF YCENF IEF NODEF IFORM» NELF NNPF NSTAT 

C 
C RENUMBER OUTLINE AND DISPLAY NODES I F IMPROVED TOPOLOGY I N USE. 
C 

I F (IFORM .NE. 1 ) GO TO 35 
I F ( I S TRS .EQ. 0 ) GO TO 1 5 
DO 1 0 I = I F NNOD 

N = I O U T L N C I ) 
I O U T L N ( I ) = NODE(N) 

1 0 CONTINUE 
1 5 I F ( I D I S P L .EG* 0 ) GO TO 35 

I F ( L I .EQ. 0 ) GO TO 2 5 
DO 20 I = I F L I 

N = I X ( I > 
IXC I ) = NODE(N) 

20 CONTINUE 
25 I F CL2 .EQ. 0 ) GO TO 35 

DO 30 I = I F L2 
N = I Y CI ) 
I Y C I ) = NODE(N) 

30 CONTINUE 
35 I F (ISTRS .EQ. 0 ) RETURN 

•C 
C FORM MATRICES FOR STRESS/STRAIN CALCULATIONS. 
C 

40 K = 1 
DO 60 I = I F NEL 

READ ( 4 ) D I F D2F D3 
I F ( I .NE. N E L E M ( K ) ) GO TO 60 
DO 45 M = I F 2 

DO 45 N = I F 8 
QST(KFMFN) = DICMFN) 

45 CONTINUE 
DO 50 M = 1F 3 

DO 5 0 N = I F 1 0 
B(KFMFN) = D2(MFN) 

50 CONTINUE 
DO 55 M = I F 3 

DO 5 5 N = 1F 3 
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c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

C(KFMFN) = D3(MrN> 
55 CONTINUE 

I F (K .EG. N EL Ei I S ) RETURN 
K = K + 1 

60 CONTINUE 
WRITE <6F65) NELDISF NEL 
STOP . . 

65 FORMAT ('OERROR:~ NUMBER OF DISPLAY ELEMENTS C F 1 5 F 
+ ') EXCEEDS GRID ELEMENTS <'F I S r ' ) . ' ) 
END 

SUBROUTINE PLTPAR 

COMMON 
+ 

COMMON 
COMMON 

0 S T ( 6 0 0 F 2 F 8 ) F B ( 6 0 0 F 3 F 1 0 ) F C ( 6 0 0 F 3 F 3 ) F 
D I S P ( 2 3 6 8 ) f TF TMAXF NELEM(600)F I T I M ( 1 0 ) F . 
IMAXF NNPF NELF NELDISF NFRMSF NSTAT 
/ONE/ X ( 1 1 8 4 ) F Y ( 1 1 8 4 ) F XCEN<1200)F YCEN(1200)F 

+ 
/THREE/ T I T L E ( 8 ) F XMAXF XMINF YMAXF 

XMAPIF XMAP2» YMAF'l F YMAP2F 
YMINF XSPF 
STMAX 

I E ( 1 2 0 0 » 5 ) 
YSPF 

TO DETERMINE THE PLOT PARAMETERS OF THE SECTION OF GRID 
CHOSEN FOR DISPLAY. 

DETERMINE MAXIMUM AND MINIMUM VALUES OF X AND Y CO-ORDINATES• 

XMAX = -;1.0E10 
YMAX = - 1 . 0 E 1 0 
XMIN = l.OE.1.0 
YMIN = 1.0E10 
DO 1 0 I = I F NELDIS 

K = N E L E M ( I ) 

1 0 

DO 1 0 J = I F A 
I F < X < I E ( K F J > ) . G T . XMAX) 
I F ( X ( I E ( K F J ) ) .LT. XMIN) 
I F < Y ( I E ( K F J ) ) .GT. YMAX) 
I F < Y ( I E ( K F J ) ) .LT. YMIN) 

CONTINUE 

XMAX 
XMIN 
YMAX 
YMIN 

X ( I E < K F J ) ) 
X ( I E (K F J ) ) 
Y ( I E < K F J ) ) 
Y ( I E (K F J ) ) 

C A L C LJ L ATE P L 0 T S C AI... E S . 

BORDER 
YMAP1 
YMAP2 
XMAP1 
XMAP2 
YSP = 
XSP = 
RETURN 
END 

0 

= (YMAX 
YMIN -
YMAX + 
XMIN -
XMAX •{• 
.9 

-- YMIN) 
BORDER 
BORDER 
BORDER 
BORDER 

/ 16.0 

YSP * (XMAP2 XMAPl ) / (YMAP YMAP1) 
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SUBROUTINE DISGRD 

C 
COMMON QST(60()F2F8) F B ( 6 0 0 F 3 F 1 0 ) F C<600 F 3 F 3 ) F 

+ DISP<2368>i TF TMAXF NEL..EM(600)» I T I M ( 1 0 ) f 
+ IMAXF NNP» NELF NELDISF NFRMSr NSTAT 
COMMON /ONE/ X ( 1 1 8 4 ) F Y ( 1 1 8 4 ) F X C E N ( 1 2 0 0 ) F YCEN(1200)F IE<1200r5) 
COMMON /THREE/ T I T L E (8 ) F XMAXF XMINF YMAXF YMINF XSPF YSPF 

+ XMAPIF XMAP2F YMAPIF YMAP2F STMAX 
COMMON / S I X / IGRIDF ISECTF ISTRSF I D I S P L F IFRM 

C 
C PLOT THE GRID OF ELEMENTS FOR STRESS/STRAIN DISPLAY. 
C 
C DRAUI BORDER ROUND THE DISPLAY. 
C 

CALL CSPACE<0,OF XSPF O.OF 1. 0 ) 
CALL PSPACE(O.OF XSPF O.OF 1.0) 
CALL MAP(O.OF I.OF O.OF 1.0) 
CALL BORDER 
CALL PSPACE(O.OF XSPF O.OF YSP) 
CALL MAP(XMAPIF XMAP2F YMAPIF YMAP2) 

C 
C DRAW ELEMENTS. 
C 

DO 2 0 I = I F NELDIS 
K = N E L E M ( I ) 
IF ( I .EQ. 1 ) GO TO 1 0 
I F ( I E ( K F I ) ,EQ. I E ( N E L E M ( I - D F D ) GO TO 1 5 

1 0 CALL P O S I T N ( X ( I E ( K F 1 ) ) F Y(IE(KF1>>> 
1 5 CALL J 0 I N ( X ( I E ( K F 2 ) ) F Y ( I E ( K F 2 ) > ) 

CALL J O I N ( X ( I E ( K F 3 ) ) F Y ( I E ( K F 3 ) ) ) 
CALL J 0 I N ( X ( I E ( K F 4 ) ) F Y ( I E ( K r 4 ) ) ) 
CALL J 0 I N ( X ( I E ( K F 1 ) ) v Y ( I E ( K F 1 ) ) ) 

20 CONTINUE 
C 
C WRITE ELEMENT NUMBERS. 
C 

I F ( I S E CT .EQ. 2 ) GO TO 40 
CALL CTRMAG(5) 
I F ( I S E CT .EQ. 3 ) GO TO 30 
DO 25 I = I F NELDIS 

K = N E L E M ( I ) 
CALL PLOTNI(XCEN < K)F Y C E N ( K ) r K) 

25 CONTINUE 
GO TO 40 

3 0 DO 35 I = I F NELDIS 
K = N E L E M ( I ) 
CALL PLOTNKXCEN(K) F YCEN(K)F IE(KF5>> 

35 CONTINUE 
C 
C ANNOTATE PLOT. 
C 

40 CALL CTRMAG(15) 
IPLACE = <XSP*77.0) - 20 
CALL PLACE(IPLACEF 4 ) 
CALL TYPECS("ELEMENT MESH'F 1 2 ) 
I F ( I S E C T .EQ. 2 ) GO TO 50 
CALL LI N E F D ( 2 ) 
CALL SPACE(-17) 
I F ( I S E C T .EQ. 3 ) GO TO 45 



2U3 
CALL TYPECS('(WITH ELEMENT NUMBERS)'r 22) 
GO TO 50 

45 CALL TYPECS('< WITH MATERIAL NUMBERS)'F 23) 
C 
C WRITE OUT T I T L E . 
C 

50 CALL CTRMAG<30) 
CALL PLACE(4F 2) 
CALL I T A L I C ( l ) 
CALL TYPECS<TITLE» 32) 
CALL I T A L I C < 0 ) 

C 
RETURN 

C 
END 

C 
C 

SUBROUTINE DISPLS 

C 
COMMON QST(600F2F8)F B ( 6 0 0 f 3 r l 0 ) r C(600F3F3)F 

+ DISP(2368)F Tf TMAXF NELEM(600)F ITIM(10)r 
+ IMAXF NNP» NELF NELDISf NFRMSF NSTAT 
COMMON /TWO/ STRAIN(3)F STRESS<6)F PRINC(600,3) 

C 
C RECOVERS DISPLACEMENTS OF EACH ELEMENT. 
C CALLS STRSTR TO CALCULATE THE STRESSES AND STRAINS. 
C CALLS VECPLT TO PLOT PRINCIPAL STRESSES. 
C 

REWIND 3 
I F (NSTAT .NE. 0) GO TO 10 
READ (3) TF TMAXF IMAX " 

10 WRITE (7F35) 
J --= 1 
DO 30 I = I F IMAX 

READ (3) DISP 
I F ( I .NE. I T I M ( J ) ) GO TO 30 
TI M = F L O A T ( I ) * T 
I F (NSTAT .NE. 0) GO TO 15 
WRITE (7v45) I F T I M 

15 WRITE (7F40) 
DO 25 K = I F NELDIS 

CALL STRSTR(K) 
DO 20 J J = I F 3 

P R I N C ( K F J J ) = STRESS(JJ + 3) 
20 CONTINUE 

M = NELEM(K) 
C WRITE (7F40) MF STRESS 

25 CONTINUE 
CALL OUTLIN 
CALL VECPLT(TIM) 
I F ( J .EQ. NFRMS) RETURN 
J = J + 1 
CALL FRAME 

30 CONTINUE 
RETURN 

35 FORMAT ( ' 1 " F IOXF "STRESSES AT ELEMENT CENTROIDS') 
40 FORMAT COELEMENT'i 6XF 'X-STRESS'F 7XF 'Y-STRESS'F OXF 

f- 'TAU-XY'F I I X F 
+ 'PRINCIPAL STRESSES'»BX»'ANGLE OF 1'/ 
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PLOTS THE PRINCIPAL STRESSES AT THE CEN7ROIDS OF THE 
HISPLAY ELEMENTS• 
TO FIND MAXIMUM VALUE OF STRESSES TO BE PLOTTED« 

IF (STMAX * GT. 1.0E-7) GO TO 15 
STMAX = ABS(PRINC( 1 » 1 ) ) 
IF <ABS(PRINC(1t2)) . GT. STMAX) STMAX = ABS(PRINO(1 r 2 ) ) 
DO 10 I = 2F NELDIS 

IF (ABS(PRINC(I»1 > ) .GT. STMAX) STMAX = ABS(PRINC(1*1)) 
IF (ABS(PRINC(I»2) ) .GT. STMAX) STMAX = ABS(PRINC(112>) 

10 CONTINUE 

FORM SCALE FACTOR. 
15 SCALE = (YMAP2 - YMAP1) / (10.OfcSTMAX) 
START PLOT OF STRESSES• 

DO 25 I = 1» NELDIS 
FIND SINE AND COSINE OF ANGLE WITH X=AXISf WITH SCALE FACTOR. 

STHET A SIN ( PR I NC ( I * 3 ) ) * SCALE 
CTHETA COS ( PRINC ( I * 3 ) ) * SCALE 

PLOT STRESSES, 

C 
C 
C 

C 
C 
C 

K = NELEM(I) 
DO 25 J = 1 , 2 
XPLT XCEN(K) + FLOAT ( (-1 )*#( J 

+ * TRIG(J + 1) 
YPLT = YCEN(K) + PRINC(IrJ) * 
IF (ISIRS .EG. 1) GO TO 20 
IF (PRINC(IfJ) «LE. 0.0) CALL 
IF (PRINC(Iv J) .GT. 0.0) CALL 
XPLT = 2.0 * XCEN(K) - XPLT 
YPLT = 2.0 * YCEN(K) •- YPLT 
IF (PRINC(I sJ) .LE. 0.0) CALL 
IF (PRINC(I* J) .GT. 0.0) CALL 
GO TO 25 

20 CALL POSITN(XPLT» YPLT) 
XPLT = 2.0 * XCEN(K) - XPLT 
YPLT = 2.0 * YCEN(K) - YPLT 
IF (PRINC(Ir J) .GT. 0.0) CALL 
CALI JOIN ( XPLT v YPLT) 
CALL FULL 

25 CONTINUE 

ANNOTATE PLOT. 

CALL CTRMAG(IS) 
IPLACE = (XSP#64.0) - 42 
CALI... PLACE ( I PL ACE ? 6) 
C A I... L T Y P E C S ( ' ( D 0 T T E D I... IN E S 
CALL LINEFD(-2) 
CALL SPACE(-28) 

+ 1 ) ) * PRINC(IrJ) 
TRIG(J) 

POSITN(XPLTf 
GPOINT(XPLT» 

YPLT) 
YPLT) 

JOIN(XPLT» YPLT) 
GPOINT(XPLTF YPLT) 

BROKEN (! 

TENSIONAD't 24) 

HEADINGS FOR STRESS VECTORS. 
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3 0 

I F (NSTAT .NE. 0 ) GO TO 3 0 
CALL TYPEOS C'STRESS VECT0RS AFTER 

TYPENF ( T I M t 4) 
CTRSET(2) 

CALL. 
CALL-
CALL 
CALL 
CALL 
CALL. 
CALL 
CALL 
CALL 
CALL 
CALL 

TYPECSC S.'F 3 ) 
CTRSETCI. > 
PLACE(7 r 6 ) 
TYPECS('MAXIMUM STRESS = 
TYPENE(STMAXF 2 ) 
TYPECS(' P'F 2 ) 
C T R S E K 2 ) 
TYPECSC A.'r 2 ) 
CTRSETCI.) 

1 7 ) 

XLABEL = XMAP1 + (YMAP2 ~ YMAP1) / 
YLABEL YMAP2 - (YMAP2 - YMAP1) / 
CAL.L P0SITN ( XLABEL r YL.ABEL ) 
N I N T (ALOGKM STMAX) ) 
E :::: 10.0 ** N 
XL. A BEL = XL. A BEL •{• 2.0 * E * SCALE 
CALL JOIN(XLABELF 

SPACE(2) 
TYPENE(E? 1 ) 
TYPECSC P'F 
CTRSET(2) 

6.0 
6.0 

CALL 
CALL 
CALL-
CALL 
CALL 
CALL 
RETURN 
END 

2.0 * E 
YLABEL) 

2 ) 

TYPECS('A 
CTRSETCI. ) 

2 ) 

FUNCTION T R I G ( J ) 

COMMON /FOUR/ STHETAF CTHETA 

T R I G ( J ) EQUALS CTHETA OR STHETA ACCORDING AS J I S EVEN OR ODD, 

T RIG = ( ( C TIIE T A + S T H ETA) + F L 0 A T ( ( -1 ) * * J ) 
+ *(CTHETA - STHETA)) / 2.0 
RETURN 
END 

SUBROUTINE PSCALL 

C 
C 
C 
C 
C 
C 

COMMON QST(600F2FB)F B ( 6 0 0 » 3 » 1 0 ) v C ( 6 0 0 F 3 F 3 ) F 
!• D I S P ( 2 3 6 8 ) F Jr TMAXF NELEM(60'0)F I T I M C L O F 
+ IMAXF NNPF NELF NELDISF NFRMSF NSTAT 
COMMON /ONE/ X ( 1 1 8 4 ) F Y CI. 184 ) F XCEN ( 1 2 0 0 ) F YCEN ( 1 2 0 0 ) F 
COMMON /THREE/ T I T L E ( 8 ) F XMAXF XMINF YMAXF YMINF XSPF 

+ XMAPIF XMAP2F YMAPIF YMAP2F STMAX 

TO CALCULATE PLOT SCALES AND PARAMETERS. 

ASSIGN MAXIMUM AND MINIMUM VALUES OF X AND YF 
YMAX BEING THE GREATEST DEPTH (WHETHER +VE OR --VE) * 

IE( 1 2 0 0FS 
YSPF 

XMAJ RAMAX(XFNNP) 
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c 
c 
c 

c 
c 

c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

YMAX RAMAX(YFNNP) 
XMIN :::: RAMIN(XFNNP) 
YMIN = RAMIN(YFNNP) 

CALCULATE PLOT SCALES. 

BORDER 
YMAP1 :::: 

YMAP2 = 
XMAP1 :::: 

XMAP2 = 
YSP = 0 
XSP = YSP 
RETURN 
END 

(YMAX - YMIN) ./ .1.6.0 
YMIN - BORDER 

+ BORDER 
- BORDER 
+ BORDER 

YMAX 
XMIN 
XMAX 
9 

'* (XMAP2 -- XMAPl) / (YMAP2 - YMAP1) 

SUBROUTINE GRDPLT 

+ 

COMMON OS T ( 6 0 0 F 2 F 8 ) F B ( 6 0 0 F 3 F 1 0 ) F C ( 6 0 0 F 3 F 3 ) F 
DISP(2368)y T r TMAX F NELEM(600)F I T I M ( 1 0 ) r 
IMAXF NNPF NELF NELDISF NFRMSF NSTAT 

COMMON /ONE/ X ( 1 1 8 4 ) F Y ( 1 1 8 4 ) F XCEN(1200)t YCEN(1200)t IE( 1200 v5) 
COMMON /THREE/ TITLE(8)F XMAXF XMINF YMAXF YMINF XSPF YSPF 

XMAPlF XMAP2F YMAPIF YMAP2F STMAX 
COMMON / S I X / IGRIDF ISECTF ISTRSF I D I S P L F IFRM 

TO PLOT GRID FOR REFERENCE WITH ELEMENT NUMBERS. 

DRAW A BORDER AND A BOX ROUND THE MODEL. 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

CSPACE(0 
PSPACE(0 
MAP(0.OF 
BORDER 
PSPACE(0 

•OF XSPF O.OF 1.0) 
OF XSPF O.OF 1.0) 
I.OF O.OF 1.0) 

OF XSPF O.OF YSP) 
MAP(XMAPlF XMAP2F YMAPIF YMAP2) 

DRAW ELEMENTS. 

DO 20 I = I F NEL 
I F ( I .EQ. 1) GO TO 10 
I F ( I E ( I F ! ) . EQ. I E ( ( I - 1 ) F 1 ) ) GO TO 

10 C A I... I... P 0 S I T N ( X ( I E ( I F 1 ) ) F Y d E ( I F 1 ) ) ) 
15 CALL ...101N ( X ( I E ( I F 2 ) ) F Y < I E < I F 2 ) ) > 

CALI J 0 I N ( X ( I E ( I F 3 ) ) F 
CALL J 0 I N ( X ( I E ( I F 4 ) ) F 
CALL J O I N ( X ( I E ( I F 1 ) ) F 

1 5 

Y ( I E ( I F 3 ) ) ) 
Y ( I E < I F 4 ) ) ) 
Y (IE ( I F 1 ) ) ) 

20 CONTINUE 

WRITE ELEMENT NUMBERS 

I F (IGRID .EQ. 2) GO TO 40 
CALL CTRMAG(5) 
IF (IGRID .EQ. 3) GO TO 30 
DO 25 I = I F NEL 
C A I... I... P L 0 7 NI ( X C E N ( I ) r Y C E N ( I ) F I ) 

25 CONTINUE 
GO TO 40 
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30 DO 35 I = 1, NEL 
CALL PLOTNI(XCEN(I)» YCENd)* IE(I»5)) 

35 CONTINUE 
C 
C ANNOTATE PLOT. 
C 

40 CALL CTRMAG ( 15) . . 
IPLACE = (XSPK77.0) - 20 
CALL PLACE(IPLACEt 4) 
CALL TYPECS("ELEMENT MESH'r 12) 
IF aORID .EQ. 2) GO TO 50 
CALL LINEFD<2) 
CALL SPACE(-17) 
IF (IGRID ,EQ. 3) GO TO 45 
CALL TYPECS('(WITH ELEMENT NUMBERS)'» 22) 
GO TO 50 

45 CALL TYPECS('(WITH MATERIAL NUMBERS)'r 23) 
C 
C WRITE OUT TITLE• 
C 
C C A I... I... C T R M A G ( 3 0 ) 
C CALL PLACE(4v2) 
C CALL ITALIC(1) 
C CALL TYPECS(TITLEv36) 
C CALI... ITALIC(O) 
C 

50 RETURN 
END 

C 
C 

FUNCTION RAMAX(X ? N) 
C ======.•============== 
C 

DIMENSION X(N) 
C 
C TO FIND THE MAXIMUM VALUE OF AN ARRAY * 
C 

RAMAX = X ( l ) 
DO 10 IMAX = 2t N 
RAMAX = AMAX1(RAMAX » X(IMAX)) 

10 CONTINUE 
C 

RETURN 
END 

C 
C 

FUNCTION RAM.IN(X r N) 
C ==: = = =: = = =: = .•= = = = = = = =: = = = 
C 

DIMENSION X(N) 
C 
C TO FIND THE MINIMUM VALUE OF AN ARRAY• 
C 

RAM IN = XCI. ) 
DO 10 IMIN = 2» N 
R A MIN = A MIN1 ( R A MIN v X (IMIN ) ) 

10 CONTINUE 
C 

RETURN 
END 
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N = IXC J ) 
I F (IFORM . NE. 1 ) GO TO 20 
CALL RENUM(N) 

2 0 DO 25 I J= I f I MAX 
Y ( I ) :::: X D I S P ( I F J ) 

2 5 CONTINUE 
CALL PLGTCS(0.01v 0.05 - 0.2*IPAGEF 'X-DISP. NODE'* 12) 
GO TO 45 

30 K = J - L.1. 
N :::: I Y ( K ) 
I F (IFORM .NE. 1) GO TO 35 
CALL RENUM(N) 

35 DO 40 I = I F IMAX 
Y < I > = YDISPdvIO 

40 . CONTINUE 
C A L L PL 0 TCS(0.011 0.8 5 - 0 . 2 * I P A GEt 'Y-DISP. N 0DE'? 1 2 ) 

45 CALL SP A C E ( 1 ) 
CALL T Y P E N K N ) 
CALL CTRORI(O.O) 
YMAX = A B S ( Y ( 1 ) ) 
DO 50 I = 2F IMAX 

I F (ADS < Y ( I ) ) .LE. YMAX) GO TO 50 
YMAX = A D S ( Y ( I ) ) 

50 CONTINUE 
I F (YMAX .EG. 0 ) YMAX = 1.0 
YMAX = YMAX * 1.01 
CALL PSPACE(0.1J 0.97* 0.S2 - 0.2*IPAGEF 0.98 - 0.2*IPAGE>-
CALL MAP(0.OF TMAXF -YMAXv YMAX) 
CALL AXES 
CALL NSCURV(X» YF I F IMAX) 
IPAGE = IPAGE + 1 
I F (IPAGE .LT. 5 ) GO TO 55 
I F ( J .EG. L ) GO TO 55 
CALL FRAME 
IPAGE = 0 

55 CONTINUE 
RETURN 

C 
6 0 F 0 R M A T ( 1 7 H 0 U R I T E A N N 0 T A T10 N ) 

• 65 FORMAT ( 2 4 A 4 ) 
END 

C 
C 

SUBROUTINE RENUM(N) 
C == == = = == =~ =r =:: ::= := = = =:: =r:::: =:: 

C 
COMMON GST(600 t2F 8 ) , B(600 r3 r10>r C(600 r3t3> t 

•{ DISP ( 2 3 6 8 ) F T F TMAX r NELEM ( 600) v I T I M ( 1 0 ) » 
+ IMAXF NNPF NELF NELDISF NFRMSF NSTAT 
C 0 M M 0 N / S E V E N / X D I S P ( 300 r 10 ) t Y D I S P ( 3 00 r 10 ) t IX ( 1 0 ) , IY ( 10 ) t 

f L .1 F L 2 F N 0 D E ( 12 0 0) r I F 0 R M 
C 
C RENUMBERS DISPLAY NODES I F IMPROVED TOPOLOGY I N USE. 
C 

DO 1 0 I = I F NNP 
I F ( N O D E ( I ) .EG. N) GO TO 1 5 

1 0 CONTINUE 
1 5 N I 

RETURN 
END 
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c; 
C PROGRAM REDUCE 
C = = = = = = = == = = = = = = 
c 
c 
c 
C REDUCES THE NODAL DIFFERENCE OF A GRID. 
C • • 

DIMENSION IE(1200*4)* N0DECL200) 
C 
C READ IN PROBLEM PARAMETERS, 
C 

WRITE (6vf:!0) 
READ (5?85) C 
WRITE (6? 90) 
READ (5*100) ITNUM 
WRITE (6*95) 
READ (5*100) NEL 
WRITE (6*105) 
READ (6*100) NNP 
WRITE (6*110) 
READ (5*100) NODIF 
WRITE (6*115) 
READ (6*100) IREC 
WRITE (6f120) 
READ (5*100) MAX IT 
WRITE (6*125) 
READ (5*100) IFORM 
IF (IFORM .EQ. 1) 00 TO 15 

C 
C READ ELEMENT TOPOLOGY * 
C 

READ (4*130) (I*<IE(I*J)*J=l?4)*1=1*NEL) 
C 
C INITIALISE NODE VECTOR. 
C 

DO 10 I = 1* NNP 
NODE(I) " I 

10 CONTINUE 
GO TO 20 

C 
C READ ELEMENT TOPOLOGY AND NODE NUMBERING IN FREE FORMAT. 
C 

15 READ (4) IE? NODE 
C 
C START ITERATION. 
C 

20 WRITE (6*135) 
ITER = 0 
INC = 0 

25 ITER = ITER + 1 
C 
C COMPUTE MAXIMUM NODAL DIFFERENCE. 
C 

MAXDIF = 0 
DO 30 I = 1* NEL 
DO 30 J .1. * 3 

J J = J i 1 
DO 30 K = JJr 4 
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LL = I A B S ( I E ( I F J ) - I E ( I F K ) ) 
I F ( L L .LE. MAXDIF) GO TO 30 
MAXDIF = LL 
IELEM = I 
M ":: MINO ( I E ( I F J > F I E < I F K ) > 
N = M A X O ( I E ( I F J ) F I E ( I F K ) ) 

30 CONTINUE • • 
C 

WRITE ( 6 F 1 4 0 ) I T E R t IELEMF MAXDIF 
C 
C STORE BEST RESULT SO-FAR. 
C 

I F ( I T E R .EQ. 1 ) M I N D I F = MAXDIF 
I F (MAX D I I- .GE. M I Nil I F ) GO TO 35 
MINDIF = MAXDIF 
I F ( M I N D I F •GT. IREC) GO TO 35 
REWIND 8 
WRITE <8) IEF NODEF NEL» NNPF ITERF IELEMF • i iAXIUF 

3 5 CONTINUE 
I F (MAXDIF .LE. NODIF) STOP 
I F ( I T E R .EQ. MAXIT) STOP 
I F (MOD(ITERFITNUM) .EQ. 0) INC = INC + 1 

C 
C COMPUTE SHIFT. 
C 

I S :::: I F I X ( ( M A X D I F / C ) + 0.5) - INC 
I I S = 2 * I S 
I F ( I I S .EQ. MAXDIF) I S = I S - 1 
I F ( I S .LT. 1 ) I S = 1 
MS = M + I S 
NS = N I S 

C 
C RE-LABEL NODES. 
C 

DO 55 I = 1 , NEL 
DO 55 J = I F 4 

I F ( I E ( I F J ) .LT. M) GO TO 55 
I F ( I E ( I > J ) .GT. M) GO TO 40 
I E dr..J) = MS 
GO TO 55 

40 I F ( I E ( I V J ) .GT. MS) GO TO 45 
I E ( I F J ) =:: I E ( I F J ) - 1 
'GO TO 55 

45 I F ( I E ( I F J ) .LT. NS) GO TO 55 
I F ( I E ( I F , J ) .GE. N) GO TO 50 
I E ( I F J ) = I E ( I F J ) }• 1 
GO TO 55 

50 I F ( I E ( I F J ) .EQ. N) I E ( I F J ) = NS 
55 CONTINUE 

C 
C RESET NODE VECTOR. 
C 

DO 75 I = :l. F NEL 
I F ( N O D E ( I ) .LT. M) GO TO 75 
I F (NODE CI.) .GT. M) GO TO 6 0 
N O D E ( I ) = MS 
GO TO 75 

60 I F ( N O D E ( I ) .GT. MS) GO TO 65 
N O D E ( I ) = N O D E ( I ) - 1 
GO TO 75 
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c 
c 
C PROGRAM INPUT 
C ============= 
C 
C 
C TO PREPARE INPUT FILE OF LOAD CHANGES AT EACH TIMESTEP• 
C EVALUATES DISPLACEMENTS ALONG 'BASE NODES OF A PLANE 
C WAVE AT VARIOUS ANGLES. 
C 

DIM E N S10 N N 0 D E (100)* S 7 A R 7' < 10 0 ) * FIN (100) . 
C 
C READS IN PARAMETERS. 
C 

WRITE (6*75) 
WRITE (6*80) 
READ (5*B5) NNOD 
READ (3*90) .(NODE(I)* I = 1 *NNOD) 
WRITE (6*65) 
READ (5*100) SPACE 
WRITE (6*95) 
READ (5*100) E 
WRITE (6*105) 
READ (5*100) PR 
WRITE (6*110) 
READ (5*100) RHO 
WRITE (6*115) 
READ (5*100). PER 
WRITE (6*120) 
READ (5*100) STEP 
WRITE (6*125) 
READ (5*100) AMP 
WRITE (6*130) 
READ (5*100) ANG 
WRITE (6*70) 
READ (5*85) I TYPE 

C 
C CALCULATES PLANE WAVE VELOCITY* AND PULSE START AMD FINISH 
C TIMES AT EACH NODE . 
C 

PI = 4.0 * ATAN(1.0) 
IF (ITYPE .EG. 2) GO TO 10 
VEL = SORT (E*( 1.0 - PR)/((1.0 + PR )* ( ! . ( ) - 2. 0*PR > *RHO ) ) 
GO TO 15 

10 VEL = SORT(E/(2.0*(1.0 +'PR)*RHO)) 
15 ANG " ANG * PI / 180.0 

DO 20 I = l i NNOD 
STARK I ) =•• ( I - 1) * SPACE * SIN (ANG) / VEL 
FIN ( I ) = STARK I ) + PER 

20 CONTINUE 
C 
C CALCULATES NODAL DISPLACEMENTS * AND WRITES IN REQUIRED FORMAT. 
C 

TIM = STEP + 1.0E-6 
25 DO 50 I 1? NNOD 

IF ( TIM . I... E . S T A R T ( I ) ) G 0 T 0 4 0 
IF (TIM .GE. F I N ( D ) GO TO 40 
I" = TIM - START ( I ) 
DISP = AMP * (1.0 -~ C0S(2.0#PI#T/PER)) 
IF (ITYPE .EQ, 2) GO TO 30 



UISPX DISP * SIN(ANG) 
DISPY = DISP * COS(ANG) 
Gil TO 35 

30 DISPX =:: DISP * COS(ANG) 
DISPY = DISP * SIN(ANG) 

35 WRITE (7»135> NODE (J.)r DISPX» DISPY 
GO TO 50 . . . 

40 IF ( I .NE. NNOD) GO TO 45 
WRITE <7rB5) NODE(I) 
GO TO 50 

45 IF (TIM .LE. START(I)) GO TO 50 
IF (TIM .LT. F I N ( I ) + STEP) WRITE (7»85) NODE(I) 

50 CONTINUE 
1F (TIM .GE. FIN(NNOD)) G0 T0 55 
TIM = TIM + STEP 
GO TO 25 

55 DO 60 I = It'200 
WRITE (7»85) NODE(NNOD) 

60 CONTINUE 

CO********** NODE SPACING' ) 
COFOR P-WAVES TYPE " 1 " ? FOR S-WAVES TYPE 
' - ') 
("OENTER DATA') 
( '0 NUMBER OF NODES') 
(15) 
(515) 
('0********** YOUNG''S MODULUS') 
(E10.4) 
( •' 0 * * * * * * * * * * POISSOW'S RATIO'). 
CO********** DENSITY') 
CO********** PERIOD' ) 
CO********** TIME STEP ' ) 
CO********** AMPLITUDE') 
('0********** ANGLE (IN DEG.)') 
(I5» 2(3X-»E10.4)) 

STOP 
65 FORMAT 
70 FORMAT 

{• 
75 FORMAT 
SO FORMAT 
05 FORMAT 
90 FORMAT 
95 FORMAT 
100 FORMAT 
105 FORMAT 
110 FORMAT 
115 FORMAT 
120 FORMAT 
125 FORMAT 
130 FORMAT 
135 FORMAT 

END 
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C PROGRAM DISPLAY 
C =============== 
C 
C 
C 
C PROGRAM TO IjETERHINE UHICH DISPLAY 0PTIONS ARE REQUIRED. 
C 

DIM E N S10 N N E I... EM ( 600 ) r I T IM (.10 ) i IX < .1.0 ) i I Y ( 1.0 ) t 10 U 7' I... N ( 5 0 ) r 
+ TITLE<8> 

C 
C DETERMINES I F PLOT OF WHOLE GRID I S REQUIRED.' 
C 

10 ISTRS = 0 
WRITE (6F145) 
READ (5F120> I G R I D 

C 
C I F GRID SECTION I S REQUIRED READS IN SECTION ELEMENTS > AND 
C DETERMINES I F PLOT SECTION AND/OR STRESS PLOTS ARE REQUIRED, 
C 

WRITE (61-150) 
READ (5yl20) I SECT 
IF ( I S E C T ,NE. 1) GO TO 85 

C 
C READS I N SECTION ELEMENTS. 
C 

WRITE (6F155) 
READ ( 5 r l 2 0 ) J 
K = 1 
IF (J .EQ * 3) GO TO 15 
WRITE (6F160) 

1.5 I F (J .EQ. 3) GO TO 20 
WRITE (6F175) 
READ (5F125) NEL1F NEL2 
GO TO 25 

20 READ <3F125) NELIF NEL2 
25 I F (NEL1 .EQ. 0) GO TO 40 

IF (NEL2 .EQ. 0) GO TO 35 
ID IFF - NEL2 - NEL.1. + .1. 
DO 30 N = I F I D I F F 

NELEMCK) = NEL1 1 N - 1 
K = K + 1 

30 CONTINUE 
GO TO 15 

35 NELEM(K) = NEL1 
K = K {• 1 
GO TO 15 

40 NEEDIS = K - 1 
WRITE (6F165) 
READ (5,120) ISECT 
IF ( I S E C T v NE. 1) GO TO 45 
WRITE (6.170) 
READ (5*130) ( T I T L E ( I ) , 1 = 1 r 8 ) 

4 5 WRITE (6F1S0) 
READ (5,120) ISTRS 
IF ( I S T R S .EQ. 0) GO TO 35 

C 
C READS IN THE OUTLINE NODES. 
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WRITE (6-185) 
READ (5*1.20) J 
K = 1 
IF (J .EQ. 3) GO TO 50 
WRITE (6*190) 

50 IF (J .EQ.. 3) GO TO 55 
WRITE (6**175) 
READ (5*1.25) NODE! * N0DE2 
GO TO 60 

55 READ (3*125) N0DE1* NODE2 
60 IF (NODE! .EQ.- 0) GO TO 75 

IF (N0DE2 .EQ. 0) GO TO 70 
ID.IFF = N0DE2 - N0DE1 + 1 
DO 65 N = 1* IDIFF 

lOUTLN(K) :::: NODE! + N - 1 
K K + 1 

65 CONTINUE 
GO TO 50 

70 IOUTLN(K), = N0DE1 
K = K + 1 
GO TO 50 

75 NNOD = K - 1 
C 
C READ THE TIMESTEP NUMBERS AT WHICH DISPLAY IS REQUIRED. 
C 

WRITE (6*195) 
READ (5*135) ( I T I M ( I ) 1 1 = 1 *5) 
WRITE (6*200) 
READ (5*135) ( I T I M ( I ) * 1=6r10) 
NFRMS = 0 
DO 80 I = 1* 10 

IF ( I T I M ( I ) .NE* 0) NFRMS = NFRMS + 1 
80 CONTINUE 

C 
C READ IN VALUE OF MAXIMUM STRESS. 
C 

WRITE (6*205) 
READ (5*140) STMAX 

C 
85 CONTINUE 

WRITE (6*210) 
READ (5*120) IDISPL 
IF. (IDISPL .NE. 1) GO TO 110 

0 
C READ IN DISPLAY NODES. 
C 

DO 90 I = 1* .1.0 
IX ( I ) = 0 
I Y ( I ) = 0 

90 CONTINUE 
I...1 = 0 
L2 = 0 
WRITE (6*215) 
DO 95 I = 1* 1.0 
WRITE (6*220) 
READ (5*1.20) K 
IF (K . EQ * 0) GO TO 10.0 
IX CI. ;' = K 
LI = LI + 1 

95 CONTINUE 
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c 
c 

100 

105 
.1.10 
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WRITE ( 6 j-225) 
DO 105 I = I T 1 0 

WRITE ( 6 * 2 2 0 ) 
READ ( 5 * 1 2 0 ) K 
I F <K '.EG. 0 ) 00 
I Y ( I ) = K 
I..2 = L2 + 1 

CONTINUE 
CONTINUE . 

TO 1 1 0 

I S 
I G 
I T 
I F 
I F 
I F 

= 0 
= 0 
= 0 
(IS T R S 
( I G R I D 
( I S E C T 

IFRM = I S 
I F (IFRM . 

.NE. 0 ) 

.NE. 0 ) 

.NE. 0 ) 
!• I T + 
NE. 0 ) GO TO 1 1 5 

I T = 1 
I G 1 
i s 1 

I G + I D I S P L 

WRITE 
GO TO 

(6s-230) 
1 0 

DUMp 0PT10N PARAMETERS. 
1 1 5 WRITE 

+ 
STOP 

(7) S I'MAX * T I T L E * NELEM * NELDIS * I TIM* I X r I Y * IGRID? 
ISTRS * I D I S P L * IFRM* NFRMS* IOUTLN* NNOD * I... 1 ? L2 

I SEC 

120 
125 
130 
135 
140 
145 

FORMAT-
FORMAT 
FORMAT 
FORMAT-
FORMAT 
FORMAT 

+ 
+ 
+ 
{• 

150 FORMAT 
+ 
}• 

155 FORMAT 
{• 
}• 

160 FORMAT 
{• 

..}. 

f 
165 FORMAT 

+ 
+ 
+ 
•{• 

170 FORMAT 
175 FORMAT 
180 FORMAT 

.}. 

.... 

+ 
J-
+ 
i 

( 1 5 ) 
( 2 1 5 ) 
( 8 A 4 ) 
( 5 1 5 ) 
( E 1 0 . 4 ) 
( ODO YOU WANT A 

FOR GRID WITH 
PLOT OF THE WHOLE GRID?'/ 
ELEMENT NUMBERS TYPE " 1 ' 

FOR GRID WITHOUT ELEMENT NUMBERS TYPE " 2 " * ' / 
FOR GRID WITH MATERIAL TYPE OF EACH ELEMENT TYPE'? 
" 3 " f ' / ' OTHERWISE PRESS ' ' RETURN ' ' .' ' / ' ' ) 

ODO YOU WANT A SECTION OF THE GRID?'/ 
I F YES * TYPE " 1 " ? OTHERWISE PRESS "RETURN / 

) 
BE READ FROM 
TYPE " 3 
. '/•- ') 

THE 

STRING * 

('OIF SECTION ELEMENTS ARE TO 
'FILE ATTATCHED TO 3'/' THEN 
' 0 T H E R WIS E P R E S S " R E T U R N " * 

('OENTER SECTION ELEMENTS'/ 
' FIRST AND LAST ELEMENTS OF 
' OR INDIVIDUAL ELEMENTS MAY 
' PRESS RETURN AT END OF L I S T . ' ) 

('ODO YOU WANT A PLOT OF THE SECTION OF THE 
' FOR SECTION WITH ELEMENT NUMBERS TYPE " . 1 
' F 0 R S E C T 1 0 N WIT H 0 U T E L E MEN T NUMB E R S T Y P E " 2 " y •' / 
' FOR SECTION WITH MATERIAL TYPE OF EACH ELEMENT TYPE 

A CONSECUTIVE 
BE ENTERED, '/ 

GRID? 
' t •- / 

/ 

' " 3 " * ' / ' 0 T l-l E R WIS E P R E S S ' ' R E T URN''.'/' 
COW R I T E T I T I... E F 0 R G R I D S E C T I ON.') 
( 11H ) 
('0D0 YOU WANT STRESS PL0TS 0F SECT10N AT'v 
' S P E C I F I E D T I M E S T E P S ? ' / 
' FOR PLOTS WITH TENSIONS REPRESENTED', 
' BY BROKEN L I N E S TYPE " 1 " * ' / 
' FOR PLOTS WITH TENSIONS REPRESENTED'* 
' BY TWO DOTS TYPE " 2 " * ' / . 

) 

OTHERWISE PRESS RETURN / 
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185 FORMAT C O I F OUTLINE NODES ARE TO BE READ FROM THE F I L E 

i ' ATTATCHED TO 3F THEN TYPE " 3 " J ' / 
+ ' OTHERWISE PRESS "RETURN".'/' - — ' ) 

.1.90 FORMAT ( 'CENTER OUTLINE NODES'/ 
+ ' F I R S T AND LAST NODES OF A CONSECUTIVE STRING*'/ 
+ ' OR I N D I V I D U A L NODES MAY BE ENTERED.'/ 
+ '"PRESS " R E T U R N " AT END OF L I S T . ' ) 

195 FORMAT COENTER TIMESTEP NUMBERS FOR WHICH DISPLAY I S REQUIRED'/ 
+ ' ENTER 5 NUMBERS PER L I N E ' / ' 10 ENTRIES MAXIMUM'/ 
+ ' *****.....***#*.....'> 

200 FORMAT ( ' ...... *****..... ***** . . . . , ' ) 
205 FORMAT C'OENTER VALUE OF MAXIMUM STRESS EXPECTED'y 

+ ' FOR A SERIES OF P L O T S . V I F CALCULATION OF MAXIMUM'* 
+ 'STRESS FOR EACH PLOTF I S PREFERRED r PRESS "RETURN".'/ 
+ ' **********') 

210 FORMAT CODO YOU WANT DISPLACEMENT/TIME GRAPHS'F 
+ ' OF SPECIFIED NODES?'/ 
+ ' I F YES t TYPE " 1 " J OTHERWISE PRESS ''RETURN" .'/ 
+ ' - ') 

2 1 5 FORMAT ("0ENTER X DISPLAY NODESF ENDING L I S T WITH 0') 
220 FORMAT (' . . . . . ' ) 
225 FORMAT COENTER Y DISPLAY NODESF ENDING L I S T WITH 0') 
230 FORMAT COWHAT THE HELL DO YOU WANT?'/' LET''S TRY AGAIN') 

END 


