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ELASTIC WAVE PROPAGATION IN EMBANKMENT DAMS
M.D. LINTON

Abstract

This study investigates the stresses produced in an embankment
dam as a result of excitation due to elastic plane waves. A
two dimensional finite element model is used to represent an
embankment and its substructure.

The model uses a quadrilateral element, formed from triangles
with a condensed internal node, which gives a better prediction

of stress direction than a constant strain triangle. The equations
of motion are assembled with lumped mass and damping matrices, and
solved by direct integration using a fourth order Runge-Kutta
algorithm. For time-steps in the range of stability this algorithm
is shown to be accurate and easy to use. It is shown that the
range of stability is considerably reduced with the inclusion of
damping, and so damping was not included in the models studied.

Tests show that for a finite element grid to model elastic wave
propagation it is essential for there to be at least eight
elements per wavelength. If this requirement is violated the
predicted stresses are seriously affected, and the results of
previously published studies must be judged against this condition.
The model grid is designed to meet this requirement. for the
propagation velocity typical of dam materials and the frequencies
typical of seismic events.

Two models, (a) homogeneous and (b) layered, are excited by

P and S waves at'several angles. The consequent distortions

of static stress distributions are varied, but exhibit conditions
that could lead to failure by slumping or by tensional cracking close
to the crest. The severity of the stresses was greater in the cases
of (a) S-waves, (b) angled waves, (c) 1éyered models.

The physical processes producing the stress distributions are
examined. It is concluded that the stress distributions are

dependent on the angle of incidence and are not capable of explanation
in terms of natural modes of vibration only.
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Chapter 1. Embankment dams and seismic waves : methods of study

1.1. Introduction

The prediction of the behaviour of a large dam when subjected to

an ea}thquake is clearly of concern to the civil.engineer. The
serious consequences of the failure of a dam gspecial]y if situated
close to a populated region, can hardly be exaggerated. For

example it was felt necessary to evacuate tempofari]y some 80,000
people as a result of damage to the Lower San Fernando Dam after

the earthquake there in 1971. However, considering the many thousands
of dams that exist throughout the world, the number of reported
failures of dams due to earthquake is very small (Haws and Reilly (1981)).
It would appear that the designs used for large dams are inherently
sound; but the engineer would be more confident in his decisions if
the behaviour of large dams subject to earthquake could be analysed

with some precision.

It is the aim of this study to provide some ins{aht into the dynamic
processes of seismic wave propagation on interaction with a structure
typical of an embaﬁkment dam. This, it is hoped, will contribute to
the engineers understanding of the forms of failure that might occur

in a dam subject to a severe earthquake; but, as will be made clear

in this study, in view of the many limitations fhat surround the method
of analysis, the conclusions can only be regarded as suggestive of the

nature of the processes involved and not as a definite analysis.
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1.2. A possible subject division

There are two broad aspects to the.problem of seismic interaction
with large dams; one area concerns matters that are primarily |
seismological whilst the other deals with the dynamic response of a
structure to excitation. If the problem is considered to be divided
in this way, the aim of the seismologist's deliberations is to
arrive at a record of a seismic event, which is'to be used as the
input for the structural engineer's analysis. This record might

be of the form of an actual strong motion record, or a synthetically
produced seismogram. For the engineer each of these contains its
advantages. The strong motion record hds the merit of being that

of a true earthquake, containing all the fine detail that is
characteristic of a seismic event. However it has the obvious
disadvantage of being the record of the wrong event. To suppose
that the record from another site (or even at the proposed site

of a dam) will be a close approximation to a future event is not
justified; though in the absence of other information this may be
the best that the engineer can use for hié design decisions. There
is therefore good reason for attempting to predict the form of
strong motion records directly from earthquake source models. Some

of this work is reviewed in section 1.3.

This study falls into the second of the two divisions just proposed,
in that it is an analysis of the dynamic response of a structure to
a given disturbance. The methods that have been used for this kind

of problem are reviewed in section 1.4.




1.3. Determination of strong ground motions

Attempts at finding an analytic solution for the ground motion

from a given earthquake source began with the pieneering study of

Lamb (1904). The problem is of considerable analytic difficulty,

and such solutions that have been obtained apply only to simplified
situations such as the displacement due to a moving point source

in an infinite homogeneous space. The modelling of a simple fault

was carried out by Ak{ (1968) for an infinite medium, and a comparison
of several dislocation models and their resu1tfng motions in an infinite
medium, using the method of Aki, is the subject of the paper by Anderson
and Richards (1975). An advance was made by Israel and Kovack (1977)

by deriving a solution for an elastic half space; and more detailed
numerical solutions were obtained by Bouchon (1980 a,b,) for both |

strike slip and dip slip faults.

These papers (and the many others that contribute to the same area of

of study) reveal clearly that the difficulty of analysis and the complexity
of the solutions. This complexity of grounds motions is shown on the
papers of Bouchon (1980 a,b,), with graphical illustrations of components
of displacement in three direction at the surface. In the case of a
strike s1ip fault there are large amplitudes in botﬁ horizontal directions,
whereas the dip slip fault has large amplitudes in the vertical component

and that which is horizontally along the strike line of the fault.

A further point is well brought out in these papers, and in Murphy et.al.
(1971) is the amplification of the ground motion if there is a surface
layer of low ve]ocity sediments. Also the effect of topography on surface
motion has been studied by Bouchon (1973), Boore (1973) and Rodgers et.al.
(1974), leading to the conclusion that ground amplification could also

be caused by surface features such as mounds.




These results point to the need to consider the dynamic response

of a structure in relation to its immediate surroqndings, and

indeed the papers cited above were motivated by the strong motion

record of the San Fernando earthquake of 1971 which was made at

the site of the Pacoima Dam. Besides providing one of the very

few strong motion records taken at a dam site, it was especially

notable for the high values of acceleration that were observed.

One of the horizontal components recorded a vaiue of 1.25g (Bouchon (1973)).
Bouchan etc., concluded that this high value was in part due to the
position of the seismometer which was at the top of a ridge alongside

the dam.

Prior to the Pacoima record the most commonly used strong motion
record for a standard was the E1 Centro earthquake of 1940. It
was from a study of this record that Newmark (1965) took 0.6g as
the maximum acceleration that needed to be accounted for in any design.

This is now regarded as inadequate.

1.4. Response of dams to earthquakes

The simplest form of analysis of the response-of a structure to

a seismic event is a static one, in which the acceleration of the
disturbance is replaced with an equivalent force. This method is

given by Newmark (1965), and is used by him to explain various observed
effects of earthquake, in particular the sliding of blocks along

possible 1ines of failure.



A dynamic analysis of dams was-given by Clough and Chopra (1966),
using the finite element method. Of available numerical approaches
this method has many attractions, especially {ts ability to model
arbitary geometries and variations in materials. This study, too,
uses the finite element method for those reasons, but certain workers
have used finite difference methods for the solution of elastic wave
propagation problems e.g. Ilan et al.(1979). However the finite
element method has proved the most popular approach to wave
propagation problems, whether they be seismic waves or some other

form of wave.

An important feature of the method of Clough and Chopra is that

the seismic disturbance is applied at alf the nodes along the base

of the embankment in the form of horizontal and vertical accelerations.
The base is therefore a rigid surface, and so in this model there

is no interaction between the embankment and the underlying soil or
rock. Vibration problems which consist of an elastic body attached

to a rigid surface with a prescribed motion are particularly suited to
solution by the method of "mode superposition". This method was used by
Clough and Chopra, but since it is not used in this study a description

of the method is given in the next section.




1.5. The method of mode superposition

As will be shown in chapter 2 any finite element éna]ysis of
a dynamics problem leads, as a result of the discretisation that.
is uses, to a finite set of ordinary second order differential

equations. ~These are written, using matrices, as
(M) (g (¢l [ql + [k [q] = [q)] 1.5.1.

In this equation the matrices [M], [C] and [Kk] are determined
respectively by the inertial, damping and elastic -properties of

the continuum being modelled. The vector [ q] has as its components
the displacements of certain selected nodes in thé continuum, and
[@(t)] is a vector of specified loads (or disp1écehents) acting at
some or all of the nodes. The derivation of this equation is given

in section 2.4.

Once equation 1.5.1 has been assembled the problem is to determine
[q] » the unknown displacements, as a function of time. In this
study this is done using a direct integration algorithm. The method

of mode superposition is an alternative to this.

The key to the method is that there exists a matrix [ x], called

the modal matrix, which can be used to decouple the equation set 1.5.1.




This matrix is found by solving the eigenvalue problem

2 .
[x]1[q) = o [M][q] 1.5.2.
For n degrees of freedom this will give »n eigenvalues wiz,

with corresponding eigenvectors [qi] . The modal matrix is defined

as the matrix of these eigenvectors, and so satisfies
[k} (%) = [M] [x] [A]

where [X] =[[Cl1] [a5] --: -[qn]]

n
~a

and [a]

It is then possible to show that (Desai and Abel (1972), pp 358-361,
Zienkiewicz (1977) pp 545-546)

(X7 (M) [x] = [D]
1.5.3.

and [ x]'[x] [x] = [D) [A]

where [D] is also a diagonal matrix. (Since the eigenvectors [qil
are not uniqueley determined, it is possible to normalise them in

such a way that [ D] dis the identity matrix).



In order to effect the iincoupling it is.necessary to assume that
the modal matrix diagonalises the damping matrix also. We

therefore assume that
[x]7 (el (x1 = 2 [r] [w] [D] 1.5.4.

where [w]% = [A] and e ' T

[r] = iy

The elements of .I are termed modal damping ratios, and most
experimental data gives information on these, rather than the elements

of [¢] (‘Desai and Abel (1972) p.359).
A change is now made to modal co-ordinates using
[q] = [x1[y] 1.5.5.
which, together with 1.5.3 and 1.5.4., transforms 1.5.1 to
[210y] + 20olwllpll5] + [D)[A1ly] = [x]' [ace] 1.5.6.

The coefficients of each of the terms on the left hand side are all

diagonal matrices, and so the set of equations 1.5.6., is decoupled




into a set of n equations each of the form

by ot Z'Ci we . tow. Yy = p.(t) i=1,2,...n 1.5.?.

where the d. are the elements of [DP] and p;(t) is the ith element
of the column vector [X]T { @(t)]. Each equation of 1.5.7. can

be solved by standard methods.

The eigenvalues, w:s are the natural_frequencies of vibration for
the system described by equation 1.5.1. with zero right handside,
and the corresponding eigenvectors [qi] are termed normal modes.
Each equation of 1.5.7. therefore gives the response of the system
to each normal mode. The exact solution to 1.5.1. is given by the

| solutions to 1.5.7. which are "superposed" using 1.5.5.

The primary disadvantage of this method from a numerical point of
view lies in the solving of the eigenvalue problem 1.5.2., which

can become quite prohibitive for a large number of degrees of freedom.
Th{s is partially circumvented by calculating only the normal modes
corresponding to the lTowest frequencies, and so solving only a few

of the equations of 1.5.7. For instance in the analysis of Clough
and Chopra (1966) the response of a system with 110 degrees of

freedom is modelled with only 15 modes.

The shortcomings . of truncating the number of modes is discussed
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by Hansteen and Bell (1979). They report that if only the

first few modes are used, then, even though it may be possible

to obtain reasonable values for displacemnets, the stresses
calculated from these displacements may be seriously in error.

One of the causes of error is that only the first few components

of the modal load vector, [X]T [ @(t)], enter into the calculations.
Hansteen and Bell discuss a method by which thé"Static displacement
due to the ignored components are included. They.ghow, however,
that this correction is only valid if all mode frequencies up to
and including those frequencies of the forcing loads are used in
the calculation. If this condition is not met then it is better

not to use the correction at all.

1.6. The inclusion of substructure

The principle of failing of the method of mode éuperposition as
originally applied was that it isolated the embankment dam from
the underlying substructure. This means that such effects as the
amplification of seismic waves by a layered geology, as discussed
in section 1.3., are not included in the model. Another question
that should be asked is to what problem are we really finding the
solution? Since the base of the dam, which is the source of the
motion, is kept rigid it must act as a reflecting surface for any
waves that are generated inside the embankment, and after a short
time a set of standing waves will be formed in the dam. When all

the modes are superposed what is given is primarily a steady state
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solution. This is not a fault of the mode superposition method
as such - which, after all, is just a means of 561ving the
equations 1.5.1. - but, since it is effectively a solution in

the frequency domain rather than directly in the time domain,

it does not dr&w attention to the way in which the wave initially

propagates in the structure.

It is thus clear that a strict division betweeh the seismological
and engineering aspects, as given in section 2.2., is undesirable,
and that for a better understanding of the response of a structure
to a seismic event the substructure should be included as well.
Substructure methods which analyse the motions of the structure

and the underlying soil séparately, together with certain conditions
governing compatibi]ity'along the interface, have been proposed by
Gutierrez and Chopra (1978), and Fedock and Schkeyer (1981). Certain
advantages of the mode superposition method are retained for the
study of the structure, but these methods are best used for the
study of structures which are rigid comparative to the underlying

soil, as, for example, a nuclear power station.

The approach adopted in this study is to treat the structure and
as muéﬁlg?“%;e underlying soil as a unified whole. The reflecting
base to the embankment that was implicit in Clough and Chopra's
original method is therefore transferred to a surface at some
distance beneath the embankmenf. To do this thelnumber of nodes

has to be increased considerably, as is shown in detail in chapfer 6,
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but the finite element formulation still leads to a set of

equations of the form of 1.5.1. It would be poszb]e to

solve this set by mode superposition, but there are two main

reasons for not doing so. First, the eigenvalues obtained |

would give the natural freqﬁencies of vibration_fdr the whole

region modelled, both embankment and substructure. It is to

be expected that the frequencies of vibration that are pertinent

to the motion of the embankment would be high compared to those

of the substructure, and so for mode superposition to be realistic

a large number of modes would be required. This inefficiency of
mode superposition is recognised by Gutierrez and Chopra (1978).
Second, since we are interested in the transient ﬁrocess of the
effect of a propagating wave entering and then leaving an embankment,
a method which is more directly in the time domain may make it
easier to appreciate the physical changes that are'taking place
while the wave interacts with the structure. For these reasons

the equations of motion are solved by a direct integration algorithm
which allows us to study the displacements and stresses for as

Jin chapter 3.

many time-steps as we wish. The algorithm is described/

1.7. Integrated studies

A fully integrated approach has been urged by Long (1981), in
which the division of the problem suggested in 1;2..15 not made.
This would involve modelling, not only the embankment, but the

earthquake source as well, and the interaction between the dam
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and the substructure would automatically be included. Such a
model would require, as well as knowledge of the materials of
the dam and its surrouﬁdings, parameters concerning the rupture

along a proposed fault line.

In so far as this study includes as much of the substructure

as was possible it is a step towards an integrated model. The
model used in this study has the facility to model the propagation
of plane waves of either P or S type, which may enter the structure
at various angles of incidence. In this way a'range of possible
inputs, each corresponding to different seismic events, can be
explored.. This enables conclusions to be drawn on how seismic
waves in general are likely to affect embankments, rather than

how an embankment responds to a particular earthquéke of the past.

However thfs Study does not go to the point where the source of
elastic waves is included in the model. Furthermore, the need for

a sufficient]y fine mesh of elemenfs to satisfactorily model any
wave propagation, which is discussed in chapter 5, suggests that

a finite element model which includes both the fault and its ruputre
together with the embankment would be impracticable. In order to
tie the two halves of the problem together it may be that an
integration could be made of the analytic solutions to fault rupture,
such as those discussed in 1.3., with a finite.eiement model of

the embankment and its immediate surroundings.




Chapter 2 The Finite element Method

2.1 Introduction

The contents of this chapter follow in the main the lines of

Desai and Abel (1972).

An essential of the finite element method is the division of

the region under consideration into a finite number of descrete
elements, each of which is bounded by sides and nodes. The
nodes are situated at the joins of sides, but may also be placed
at some intermediate.point of a side or somewhere.ihside the
element. The displacement of any point inside the element is
then determined from the displacements at the nodes of the element
using what have been termed the shape functions fdr the elements
and which depend only on its geometry. Thus in turn the strain
energy and kinetic energy of each é]ement may be determined from
the displacements of the nodes. In this way we can write down
an energy equation, or, as in the present case use Hamilton's
principle since we have a dynamics problem, and use this to

determine the nodal displacement-time history.

In order to show how this is put into practice we describe the
necessary properties of shape functions in general and of
the particular shape function that is required for the simple

triangular element that forms the basis of this study.

14
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If an element has nodal displacements d70 oo -+ 9y

N

then the shape functions ¥ N, are chosen so that

12 Ngs wen
the displacement » at a general point is given by

u =Wy gy tWpdg e * W g,

N,, etc. will be functions of position, so

1.’

The functions ¥ 99

N, =1, (x,Y,2)

If g, is the displacement at the node with p051t1on'(@i,yi?zi)

then in order that u (xi’yi’zi) =g, we chooge the N, such that

Ny (%55Y;02,) =1

.

and Nj (xi,yi,zi)= 0 g #

A further desirable property is that the displacements along

an edge of an element should be the same as those calculated

from the adjacent element. Such e]emeﬁts are'ca]1eﬂ conforming elements
and certainly would appear to model reality more c1o§e1y than
non-conforming elements. The elements will be conforming if the
displacement a£ any point_on a side is determined only by the nodes
which 1ie on that side (since these nodes are fn both the adjacent

elements).



Two further criteria must be satisfied to ensure convergence

(Zienkiewicz (1977), pp 32-34). These are that:

a) a rigid body displacement of the nodes should give a
rigid body displacement throughout the element, and

not produce any strain,

b) nodal displacements compatible with constant strain

should in fact produce constant strain in each element.

It can be shown that if the elements are conforming and that
the conditions (a) and (b) are met then the finite e]ehent
formulation will be convergent, in the sense that if finer
and finer subdivisions of the finite element nef afé used
then the displacements so obtained will converge on the true

solution.

2.2 Shape Functions for a triangle

In this study the basic element is the sihp]est possible of

all possible 2-dimensional elements and it certainly meets the

above convergence criterja. The element consists of .a triangle

~ with nodes at the vertices, and the disp]acementlat any point
in the triangle is found from the nodal displaceﬁénts assuming

va linear displacement model. This element is illustrated in

Fig. 2.1.




N

Fig. 21 Triangular element co-ordinates.
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Let the co-ordinates of the nodes be (xl’yl)’ (x )y (x /s

the displacements at these nodes be (uz, ”1)’ (u2,v2), (us,vs),
and the displacements at an interior point (x,y) be (u,v). Then
a linear displacement model assumes that there are constants
Qs Op,Ogs 31,82,83 such that

uw=a+a,r.tozy and v = B,* By & + Bs Y

Since we know the x-displacements at the nodes, we can determine

2 and LPe

In fact we can write

the values of @, @

u; = ey ey 2+ ooy,

ug = oy * ooy z, t og Yy

us = al + a2 xs + as y'3
or Uy @, 1 *q yﬂ

21 =[4}] %2 where [A} = [! %2 ¥

u |a 1 x,

3 3 3

) Y3
and so @y Uy
-1
a, =[A] Ug
0.3 us

Therefore the displacement of an interior point can be written

u = [1zy) [o] = l1zd (474,
a2 . u2
’

*3 Ug

18
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We are seeking shape functions, N, such that

u =Nyu, + Nyug+ Nyug =[N, N, N, ke

1u,| 2.2.2

Comparing 2.2.1 and 2.2.2, and using the fact that they must
ho1d for any values of the nodal displacements Uz, We find that
the shape functions are given by |

[w, 2 ) = (1zy][4]™ 2.2.3

It can be verified that

-] Ty ~ Tz Yy Tg¥p Ty Yz Ti¥g T To¥;
[4] = 1 '
24 b ’bz_ ‘ b3
% % 2 ]
where a; . Tz~ Ty bl =Yy ~ Yz
Ap = %17 %3 by = ¥3 = ¥y

%G .y ~x by y; -,

and A=% l[A]l = % 6a3b2 - a2b3) = area of triangle
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Thus

= 1 -
NZ (x2,y! = o7 (x2y3 T g +b1x + a,.ly)

NZ (x,y) = 2% (x3y1 - xYs * b2x + a2y) 2.2.4
Ns(x,y) = 2% Cz1y2 - Yo, +'b3x + a3‘y)‘:_.

It will be seen that

Ni(xi’yi) 1

and ”i(?j’yj) 0 1 #4 as required.

The y-displacements will yield exactly the same shape functions,
and we can combine them with the x—displacements in the single

matrix equation -

where ) " u, ] N, ON,6ON_O

[dl =) v, and 4] = ON, 0N, 0N




"2,3 Stress and strain for a finite element

The stress and strain at any point in a body are determined
by the stres§ tensor °ij and the strain tensor eij._-These are

related by Hooke's law

where A and p are Lame's constants, 6ij is the Kroneker delta
function and the summation convention is used. With this notation

the strain energy density is given by

.. Q..
i ~1d

Since 0 and eij are both symmetric, they have only six independent

components, and we can rewrite U in the form

v o=k [o] [e]

where
[0] = Poﬂ‘ and [e] = [ euq
92 |
933 33
%18 2e1p
913 213
923 | 2€93 ]

21

2.3.1



We can also write Hooke's law using [o] and [e] in the form

[o] = [D][e] 2.3.2
where
[ A+2u A A 0 0 0]
A A2 A 0 0 0
[ D] = A A M2u 0 0 0

In the 2-dimensional case of plane strain equation 2.3.2 reduces

to the form
011, A2y A 0 eZl
Too| = | X Mew 0| €22 2.3.3
012 0 0 2e12 '

The constitutive matrix [D] can be rewritten using Young's modulus,

E, and Poisson's ratio v in which case it takes the form

I-v w0

[D] = E v I-v 0 2.3.4
(1+) (1=2v) '
0 0 %(1-2v)
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The strain teﬁsor is related to the displacements by the

relation

o I

1

[y
/—\
5.8
LY EL YN

+
gl &
[ L
S— o’

[ w ]
. X
_ w
[e]= %
w o+
oY X

-— 1u, + 2u + 3u
ox ?5' 1 3-5 2 -a—x- 3
and v o= W, W, 3N v,
3x — 71 — 2 ox
ox T

with similar equatioﬁs for 3u and 3v;,
' Yy 3y

and so we have the relation

(el = [B] [ 4]

2.3.5

2.3.6
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where

N o oN

_1 0 _2 0 _3 0
ox ox ox
[ B] - 0 N 1 0 _8_1_‘{2 0 oN 2
3y oy 3y

A, 3, 3, o, N, o,

| By dx Jy odx dy Ok _

For the particular triangular element we are considéring, the
derviatives of the shape functions are particularly simple and

we arrive at, using 2.2.4

(v}
1}
L\al ’
RN
N
Q
o
Q
o
Q

We see that in this case the strain matrix [e] has constant
components, and so this element is called a constant strain
triangle (CST). However, for any element, there'wi11 be a
relationship of the form [e] = [B] [q] where [q] is the vector
of nbda] displacements, and [B] is a matrix determined by

derivatives of the shape funcfions for that element.

F rom equations 2.3.1., 2.3.2 and 2.3.6 we obtain

' ~ [e] =[D][B]lq]

2.3.7

2.3.8

24
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and U = % [q] | [B]T[D]lB]lq]
rememberina that [ D] T . [ D)

‘2.4 Finite Element Formulation of the Equations of Motion

We are now in a position to determine the equation of motion
of an element in terms of matrices [Bland [C] , which we will
do using Hamilton's principle. This requires the evaluation

of the Lagrangian.
L = K=-X+W

where ¥ is the Kinetic energy, X is the strain energy and ¥
is the work done by the applied loads. The following-analysis
is quite general and is not specific to the triangular element

we were considering above.

If the body has a density'p and occupies a volume ¥V with

displacements U throughout the body, then the Kinetic energy

where the dot denotes differentiation with respect to time,
and the integral is over the volume of the body (and the summation
convention is in effect). The strain energy will be the integral

of the strain energy density and so



X = %j cijeijdv
vV

The work done by the applied loads is made up of two parts.
The body forces F. will have a contribution jVF' u. dV' and
1 T 1

the surface tractions will have a contribution j ng .U 4g
1 7
S

where noi is the stress vector at the surface with respect to
a plane perpendicular to the normal to the surface, and the
integral is carried out over the surface S which bounds the

volume V. Thus

To rewrite this in matrix form we let

u1 Fl nGJT
(u] = Uy [F] = FZ [7] = n
oyl
u3_ F3 n, '
| 73]

and [ o] and [ e] are defined in 2.3. Then
_ T T .
L = %]Vp[it] [u] 4dv —%Xv[c] le] dv

+ SV[u]T [F] av + Xs[u]T[T] ds

26



Now [«] =([#]1{q]l,[e] =[Bllq] and[o] =[D][e]
as shown above. Substituting these in the equation for [

leads to
L = % (q)' (M][q) -%[ql'[X]11q] +1q] (@]

where [ M] SVQ[IV]T[IV] av, [k] = SV[B] T[D] ['B] av

and [ Q]

i tna « {gnnTines

Hamilton's principle requires that we miminise the functional

t
2
1 Ldt where L= L (t [q], 4] )

The theory of the calculus of variations shows that for this it

is necessary that L satisfy the Euler equation

e A ('g%zu): ’

These terms are easily evaluated from the expression for L
given above. Remembering that if « 1is a column vector, then
., T 3T
3. ([z] [A)[{=] ) =2[4]=)and 3[x] ={TI]

3fx] . 3[x]
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Thus

3L = -[k]lq] + Q] and 3z = [M]l4]
4] 4

and the Euler equation reduces to

[(¥)1g] + [xllq] = [¢Q]

This is the equation of motion for an element and so strictly

should be rewritten with a notation such as

lia] + & )e,] = e,

However if all the nodal degrees of freedom are ﬁumbered for

the whole grid then [qé] can be expanded with the ieros to a

2n x 1 eolumn vector, where ¥ is the number of nodes Wﬁth
2-degrees of freedom at each node. {&;] and[Qe]are éxpanded
similarly, and [M;] and [Ke] are expanded to 2n x 2n matrices.
The equations of motion of each element can then be added together
to give a single matrix equation of motiqn for the thie grid.

The details of this assembly process are in any textion the finite

element method, e.g. Desai and Abel (1972) pp. 183-188,

It is also possible to include in the above analysis the effect of
frictional damping forces., If it is assumed that these are of a
simple linear type proportional to velocity, then fhey produce

additional forces per unit volume of ui (where u is some constant).




It is shown by Zienkiewicz (1977) pp. 530-531 that this leads

to an additional term in the equatibn of motion leading to final form

LMl [4] + [c1la] + (K] [a]=1e] 2.4.1

The load vector [ @] is evalvated from the applied loads [ F]

and surface tractions [T] using

(@] = X [IV]T[F] av + K [N]T[T].dS. 2.4.2
4 S R

The stiffness matrix [X] is determined by the element geometry

and elastic properties by
(k] = { (8] 7 [Dp][B]dv 2.4.3
4 -
The matrices [#] and [c] have the forms
T T
[u] = ]V ol#] [N]dv and [C]=V[1V] (w)l#] dv

and are often termed the consistent mass and consistent damping

matrices respectively.

2.5 Consistent and lumped matrices for a constant strain triangle

In order to evaluate the expression | ¥] = S v P [ ¥] T[ N] av for
a constant strain triangular element it is easiest to use natural

(or areal) co-ordinates.

29
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Fig 22 Natural co-ordinates for a friange.
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The triangular element has nodes 1,2,3 with co-ordinates (xl,yz)-

(xé,yé), (xz,ys) and the co-ordinates of any interior point P

are (x,y). The natural co-ordinates(Lj,L

2,L3) of_P.are defined

where Ai is the area of the triangle made by P and the side jk, and

A is the area of the element. This is shown in Fig;'2.2.

L1'=‘1 at node 1 and L, = 0 along side 23 and so the contours
Ll = constant are lines parallel to the side 23 varying linearly
between the value 0 along 23, to the value 1 through node 1.

Similar considerations apply to the contours of L and Ls which

2
implies that the co-ordinates of P must be related to the co-ordinates

of the nodes by the relations

x = lel + L2x2 + Lsx3

y = Ly * Ly * Ly

These two relations, together with the obvious relation

31



can be written

1 1 1 1 Ll
x = xl x2 xs L2
Y ¥y Yy ¥z || Lz

Taking the transpose of both sides yields

[1 x y] = [Ll L2 L.SJ 1 :L'l y1

It is seen that this equation has exactly the same form as equation
2.2.3 and so the equality of the natural co-ordinates and the shape
functions NJ’NZ’N3 is established.

The advantage of the nétura] co-ordinates is that we can use the

following integration formula (Eisenberg™M.A. & Walvern L.E.(1973)) :-

S PP ean = 24amrer
A _—

17273
(a+b+c+2)!

where a,b,c are non-negative integers, and the integration is over

the area of the triangle.

32
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Thus for a triangle of constant density p and thickness »

(M1 = on | D0

CL. o0 |
1
0 I
= oh L, 0 L. 0 L. 0 L, O
1 2 3
A0 L 0 L.0 L.0 L “
1 2 3
L, 0
_0 sz
Using Ni = Li
Use of 2.5.1 gives
2 01 0 1 0
0 2 01 0 1
[M] = ohd
- pna 10 2 01 0
72

This, then is the consistent mass matrix for a constant strain

triangle.

An alternative approach, but without the theoretical juétification

of the above method, is to use for the N, not the true shape functions

for this element, but functions




3k

¥, which are defined as equal to 1 over a part of the element
adjacent to node Z, and equal to 0 elsewhere. If the parts

chosen are non-overlapping thirds of the trianqular element then

©
IS
(VN b Y
@
1]
X

SprzlpJ av =<

0 Y

This then leads to a mass matrix

This matrix has effectively placed 1/3 of the mass of the element
at each of its nodes, and accordingly is called the lumped mass
matrix. The fact that it is diaqonal commends if for numerical
work, but such a matrix does not seem to reflect the continuous
distribution of matter that actually e*ists. However Zienkiewicz
(1977) p. 531 writes
"™Many practitioners are today using such [i.e. lumped] matrices
exclusively showing often an improvement of accuracy"
and again on pp. 536-37 writes
"Thus any lumping which preserves the total mass will lead to
convergent results. Key... and others have experimented

successfully with various procedurés which givéAnot only acceptable
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but often improved results over those attainable with

consistent mass matrices".

Accordingly, this study uses lumped mass matrices rather than

consistent ones.

The question of how best to evaluate the damping matrix is even

more uncertain. What values should be given to the dahping
coefficients [u] are not known (Zienkiewicz (1977) p. 532).

Certain schemes, such as chosing [¢] = o[M] + B (k] with o,8
detgrmined empirically, have been tried. In this study, however,

in view of the premium on computer storage space it was decided

that provision would be made only for a lumped damping.matrix.

As will be detailed in Appendix A the stiffness matfix [X] is of
banded form and does not require the storage space that might have
been at first envisaged. Thus a grid with 1000 nodes has 2000 degrees
of freedom, and would seem to imp1yt§tiffness matrix of 2000x 2000.

In practice this needs to be only 2000 x bandwidth; where the bandwidth
might typically be 100. If the consistent forms of [M] and [C] were
to be used, then these would be banded in the same wéy'as [X] and
require identical storage space. It can thus be appreciated that
using the lumped forms,requiring as it does only a storage space of
2000, not only keeps the storage down to almost a th{rd of what it.
would have been but also in consequence reduces the time spent in any
operation involving these matrices by a factor of thé order of the

bandwidth (i.e. about 100).
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2.6 FPrmulation of stiffness matrix for grid elements

The stiffness matrix for an element is found from equafion 2.4.3,

[ 4] =]V[B]T[D][B] av

for a constant strain triangle, the matrices [B] and [D] are

both constant throughout the element, and so

[k] = 4 [B]TtD][ B] where & is the elémeht thickness

b] 0 a, b . 2.6.1
= hE I v 0 bl 0 b2 0 b3 0
JA(I+% ) (1-2] 0 a bz
' v I~ 0 0 a, 0 a, 0 a
by, 0 a, 0 0 %(1-2v) poor e
: &y
0 o b a, bl a, b2 as b3
2 2
Iz.3 0 a3
] 0 ag b'3

using equations 2.3.4 and 2.3.7.

It will be seen that since [D] is symmetric,[x] wi]]lbe a6 x 6 symmetric

matrix.

In order to provide more flexibility in the construction of the grids
the finite element program used also accepts quadrilateral elements.
These elements are however composed of four constant strain triangles
formed by the four vertices of the quadrilateral together with a common

vertex at the centroid of the quadrilateral. This added internal node




is then eliminated by a process known as condensation, which is
explained below. Another important advéntage of using quadﬁ]atera]
elements is that it_e]iminates an arbitary skew in the results
which tends to occur whén only triangles aré used, particularly if

they all slope in the same direction.

“"2.7. Condensation of an internal node

If an élement has loads [@] acting at its nodes, producing equilibrium

displacements of [q], then these will be related by

k] [4] = [@]

where [X] is the stiffness matrix. (If there are 2 degrees of freedom
at each node, and there are n nodes, then [ K] is 2n x 2z and [gq] and [.Q]

are each 2n x 1).

Let this matrix equation be partitioned as follows

[k,,) [K,,] [a]] _ [e)] 2 71
[Kggl [Kgg] [q2] [QZ] |
where [k ] is now p x p and [KZQ isrxr (p+r=2n); [qﬂ and

[Qllare p X 1; [q; and [Qg are r X 1. Also we can imagine that the
rows have been ordered so that the displacements [qg are those

belonging to the node (or nodes) that we wish to eliminate.
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It is straight forward to verify that

(% ;]0%,] - [P]_l | ‘ (7] [K12][K22] -
[k,,) [ K,,) “lky) TLRIPTTT L) “ULL) + [xy )12} Tk k07
where [ 2] =[&, ] = [K) [Ky,) 7 [K,]

assuming that all appropriate matrices are non-singular.

Thus equation 2.7.1 can be solved as

[q] = 1P1 77 1] -2 [k, ) (&, )77 [q)
[q) = -1, " [x,017] 71 [q]
# 1K HLI] + Ky P) T LRIK,,] T4y
The first of these can be written
(L) - (%2 [¥go) T kg = 0] - [KgllKgl T @)

and it will be seen that this has the form

[%113] - 3] o | 2.7.2




with [q] = [4])
(%] =18, - [k, (K0 7 [x,)]
[81=10) - 1[50 1%,0 7 (4]

These equations determine the displacements of thé nodes‘of the
element except for those at the nodes we wish to eliminate, and it
tells us how to form the appropriate modifications to the stiffness
matrix and load vector. It will be noticed that if m nodes are
eliminated by this method then, as expected, [R] is 2(n-m) X 2(n-m)

and [q] and [ Q)-are each 2(n-m) x 1.

For most app]icétions the nodes that are to be eliminated are
internal nodes and do not have any loads, and so [Q2] = 0 and the
modified load vector just consists of the vector of loads at the
nodes not eliminated. Also, when [QZ] = 0 the displacements of

the eliminated nodes are given by

- 15,0 P ix) 1217 (o)

=[xyl 7 Tk ) [ q))

[4,]

The following procedure is thus adopted to form the stiffness matrix

of a quadrilateral element.

First, its centroid is calculated from the co-ordinates of its

vertices, splitting the element into four triangles.

2.7.3

2.7.4
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Second, the stiffness matrix of each triangle ( 6 x 6) is

found using equation 2.6.1.

Third, the four matrices found so far are assembled into a
10 X 10 matrix, being the stiffness matrix of the

quadrilateral including the node at the centroid.

Fourth, the modified stiffness matrix {X], (8 x 8) is found

using equation 2.7.3.

Fifth, the modified stiffness matrices for each quadilateral
element, together with the stiffness of any triangular
elements, are all assembled to give the global stiffness

matrix of the grid.

2.8. Note on the centroid of a quadrilateral

In the computer code published in Desai & Abel (1972) p.453 the

centroid is calculated using 3 (pl + py, t+ g

position vector of vertex < is given by gi. This is however incorrect

+ 24) where the

rg =1, which should reduce to

a triangle). This error is not of great importance since there is

(as can be seen from the special case

no necessity for the internal node to be the centroid; however, by
choosing the true centroid the triangular elements formed are less

obtusé and there should be some improvement in accuracy (at least no
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loss). So the program used in this study does calculate the true

centroid, which can be shown to be given by

=18zt oz, t org T, Ty

where r_ . r are the position vectors of the vertices, and r,
is that of the intersection of the diagonals. r, is determined from

r, tor,, and a little algebra gives the following formulas, which

4,
are convenient for computation.

4 4
_ Zyi(x;j mw) (m taptay) zxi(yj “y My Yty
x = 1=1 y = =1
4 4
3 Az, - 3 Ay. -y )
e Yz xl) . x1>yj Y
where »r = (x, y), r. = (xi’yi)

and Z,7;k,7 are assumed to be in cyclic order 1,2,3,4.

2.9 Calculation of load vector for an element

The load vector is given by equation 2.4.2

[ @] =BV[N]T[F]dv + X (w17 (7] ds

S

There are four special cases which will be of use in this study, which

will now be considered separately.
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The loads consist of concentrated forces applied directly
at the nodes. The above equation is not really needed in
this case since what we are given are the components of @

that we seek.

The loads consist of the gravitational force on each element.

Thus for a CST equation 2.4.2 will have the form

[e] = X [N]T[o]dv
v
~og

VLJ 0 ]
0 I,
= - hopog Ly 0 I:g} dA
) 0 I,
Ly 0
| 9 D3]

where % is the thickness of the triangle, 4 is area, and L,

etc are the natural co-ordinates introduced in section 2.5.

The integration is performed using 2.5.1., giving

- 0 s
3
0
1
0
S




The sides of the element have a surface traction, which

varies linearly along the side.

Consider the ¢ST in Fig. 2.3 with a traction along side 23

(the other sides being free)

Using natural co-ordinates, we note that on side 23 Ll =0

and L3 = 1 - L2, with L2 = 0 at node 3 and L2 =-7 at node 2.

If 7 is measured along 23 from node 3 and s is the length of

Equation 2.4.2 thus has

this side then 7 = Lgs and d. = aiLZ .
the form
1 T
[Q] = }s [N] [T]dLg

If the stress vector at node 3 is P, and at node 2 is

Py

.| then the assumption of a linearly varying traction gives
q

Yy
(7] = | P + L, U ~ Py
Py @Y Py
Also [ )T =[0 o ]
0 0
L2 0
0 L,
L, 0
| 0 1=L,, |

2.9.1

2.9.2

2.9.3
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Fig 2.3
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Substituting 2.9.2 and 2.9.3 into 2.9.1. and carrying out

the integrations gives

(2.9.4)

The above load vector is that produced by a traction along side
23 only. If there were tractions along the other sides then
each of these would give a corresponding load vector, and the
three vectors would have to be added to give the load vector

for that element. The final contribution to the load vector for
the whole grid for a particular node will, of course, be the

sum of all the contributions to that node that any element

containing that node makes.

Hydrostatic pressure. This is just a special case of (c).

d% == - = - - - - - _water level _ _
a,
2

Fig 24




Let the side 23 be inclined at angle o (see Fiq. 2.4). The stress
vector due to the hydrostatic pressure will be normal to the side,
and let it have magnitude p at node 3 and ¢ at node 2. If the
water surface is at y=d , and the co-ordinates of nodes 2 and 3 are

(x.

2,y2), (xs,y5), then

p= (d-ygleg q = (dyyleg
px=ps1na qx=qs1na
= - cos = -q COS
P, P o 9, o
sin a = (y2 - y3)/é cosS o = (x2 - xg)/s

Thus, using 2.9.4, we obtain for the contribution to the Toad vector

for node 2 due to the hydrostatic pressure over side 23

(3d -y, - 2y,) pgh Yy = Y3

6

Similarly the contribution for node 3.3 1S

(34 =y, = 2y5) ogh Yp ™ Y3
6

2.1 Calculation of stress in a quadrilateral element

Fig. 2.5. shows a general quadrilateral element.
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Fig 2.5

Quadrilateral element:
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If the displacements at the vertex nodes; 1,2,3,4, have been
calculated by solving the equations of motion 2.4.1 then the
displacement of the "condensed" node 5 is found using equation
2.7.4. The stress of each of the four constituent CS7T's can
then be found using equation 2.3.8. Thus the stress of element

(1) is

é% 0 B; 0 B; 0 93
[01] =[ D] 0 oz§ a; 0 aé qs
_ op B o By oy 8 i ©2.10.1
_ .
<
| 20

where D is the consitutive matrix (2.3.4), and B of 2.3.7 has

been written with aé for ai/ZA and Bé for bi/EA. (The superscript
is to indicate element 1). Also the displacement of node j is given
35 1 9g5-1
qgj

The stress for the whole element is then taken to be the average

over the constituent (S7’s.

[o] = Hlo] + [o)] + [o] + [o,]) 2.10.1




-For the purpose of computation this is found by expanding the

[B] matrix of 2.10.1 into a 3 x 10 matrix, and the displacement
vector a 7 - x° 10 column vector consisting of the displacements
at all five nodes. The four stresses of 2.10.1 can now be easily

added together to give

[} = % [D][CG]lq

where
Rl+02
7.4 .12 2 .3 4 .3 "3y
B1*3, 0 B,*8, 0 B,*8 0 B7*8) o n
g3t
3"3
iz
atu_+
' 3773
_ 14 1.2 2. 3 4 3
[C] = 0 01+a2 0 a2+a1 0 02+a1 0 a}+u2 0 . 4
03"'0.3
I
i,¢ 1.4 1.2 1,2 2.3 2.3 4,3 ¢.3 32 "i°3
aytey By7Bp myter Bg?Ep optey BpvEy ety BR, L L L .
iata, 8U+3,
o v}
and [q)' = lq.4,4.4,4, 4.a,4;5 9, 3]
112 73 "¢ 75 16 7 '8 19 10

This mefhod of calculating the stresses clearly has a certain
smoothing effect, and it is found to give consistent directions for
the principle stresses over a grid, eliminating the skewness in
direction produced by a grid of triangles only (as evident for example

inMithen (1980) Figs. 4.3 and 4.4.). Some trials carried out by

L9
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G.D. Waghorn (private communication) indicate that quadrilateral
elements as used here give displacements and stresses very close
to those given by six-noded triangular elements using quadratic

shape functions.



Chapter 3. Integration of the equations of motion

3.1 Introduction

The finite element formulation of the dynamic behaviour of an
elastic continuum has the effect of reducing the solution of
a partial differential equation to the solution of a set of

ordinary second order differential equations, namely the set

2.4.1 derived in the previous chapter:-

[u]1lg)+ [cll4q] + [k1lql= [aQrt)] 3.1.1.

The matrices [#] , [c] and [K] are determined by the properties

of the grid, and [g(¢)] is.aiven time history of the applied

loads. For a static problem the first two terms of the equation
vanish and the solution consists of inverting [kx] , or some
equivalent procedure. Other than numerical rounding errors this
can be done exactly, and so with due computing care a solution

of required accuracy can be found. The errors in a static problem
thus Tie in the finite element formulation rather than its solution.
With the dynamic problem we are however faced with the difficulty
of being unable to give an exact solution to a set such as 3.1.1
(unless it happens to be a very small set and the elements of [@(t)]
are simple functions). Some numerical method, with its own inherent

inaccuracies, has to be adopted for the solution of equation 3.1.1.
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3.2. Choice of Method

There is a considerable 1iterature concerning the time integration
schemes that are in current use. See, for instance the references
at the end of chapter 21. Zienkiewicz (1977) or the bibliography
given in Zienkiewicz (19807?). An elegant method of deriving such
schemes is given by Zienkiewicz (1977) p 570-593, giving as special
cases certain well known methods such as those known by the names

of Newmark, Houbolt and Wilson-8. Methods may differ in that they
are explicit or implicit, unconditionally stable or conditionally
stable, single-step or multi-step. In an explicit algorithm the
values at the new time-step can be found by a sinqle calculation
rather than by the solution of a set of simultaneous eﬁuations as

in an implicit method. However all explicit methods are conditionally
stable (that is,if a time-step greater than a certain critical value
is used then the values diverge), but certain implicit methods are
unconditionally stable. A single-step method requires values at the
previous time value only, whereas multi-step methods require values
at several previous time-steps. It may be possible to give an
algerithm in two equivalent forms, one of which is single-step and
the other multi-step, as shown in Hood (1981) where the Newmark

method is given in both single-step and two-step forms.

Some writers consider unconditional stability all important; for
instance Brusu & Nigro (1980) state "In order to filter the high
frequency modal contributions out of the solution, unconditionally
stable methods must be used". This same paper, however, compares

the results of a new method proposed by its authors with the Wilson-8
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method, Houlbolt's method and the trapezoidal rule by testing the

single equation
Yy + y =2 y(0) =3 y(0) =o0.

Their results are given in Fig 3.1, which are for a time-step of
T/6, and show the predictions of the various methods and the exact
solution for the range 36 to 48 time-steps. It will be seen that all
the methods suffer to varying degrees amplitude loss, and, with the
exception of the method proposed by Brusu and Nigro, phase shift as
well, When the Runge-Kutta algorithm, described in section 3.3, was
used on this same initial value problem using the same time-step the
predictions of the algorithm were indistinguishable from the exact
solution of y = 2 + cos ¢ over the time-step range of Fig 3.1,

In fact the exact solution and the Rungé—Kutta prediction differed

by only 10_3 after 72 time-steps.

.In this study an explicit Runge-Kutta procedure is used, to eliminate
the long calculations that would be required with an implicit scheme.

It also has the advantage of being single step and sb only requiring
the initial values in order to start. Runge-Kutta methods do not
appear to be widely discussed in the journals covering structural
dynamics, but such a method was used by W.D. Smith (1975). This method
was selected after some pre]iminary trials, and comparisons with some
unpromising results using the version of the Wilson-6 procedure as given

by Desai and Abel (1972) pp 25-26.
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3.3. The Runge-Kutta algorithm

By letting [ 4] = [s] the set of equations 3.1.1 can be rewritten

as a set of first order equations:-

[ 5]
(w17 (Lae)] - Lel L] - [x][a])

(4]
[ &]

3.3.1

The algorithm calculates [q(t#)] and [s(t+h)] given the values
[q(t)] and [s(t)] for a given time-step of length Z. In otherwords

it advances our knowledge of position and velocity one time-step at

a time. The routine is a fourth order one (in that it is equivalent
to using a Taylor series up to terms in h4), and is téken from Fox

and Mayers (1968) p 202, except that the single variables are replaced

with the vectors [ g] and [s].
It is first necessary to compute eight subsidiary vectors:-

[a) = &ls(e)]
(] =n{m ™ Lae)) -Lclste)) - [x)are])

Lo = allscedl + 510

[r)) = w0l {lare] ~ [cNlaen) + 5 (r]) ~(k}([acs)] + % Lo}
[a = allsee] +% [1)])
[r;) = UM {Tacesp) - [ellsre] + % 0] - [xNar] * % [e2])]

[a,) = nllsce] +% [1,])

[Tal = nim e - Lelllee] + (r,] ~[xllar)] *[85))

The values of [q(t+h)] and [&(t+n)] are given by
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ela) o+ o2le) +o2la] ¢ [a))

s(on)] = lace)l + 3 ([r)) o+ 2(r,] salrg) +[r,])

Oyl +a

[q(t+n)] lqee)] +

[ &e+4)]

Although this scheme is lengthy to write out it is convenient for
purposes of computation as it involves only the addition and
multiplication of matrices, except for the evaluation of [M]—J.
But if a lumped mass matrix is used (as in this study), even that
difficulty disappears. The routine requires the knowledge of the

applied force vector [ Q] at t,(t+g), and(t+). In this study the

value at (t+§) is taken as the average of the values at ¢ and (t+h).

3.4 Stability of the Runge-Kutta algorithm

If a set of differential equations may be written in the form
(2] = [A)[=] 3.4.1

then it can be shown (Lapidus and Seinfeld (1977) pp 120-131)
that a 4th order Runge-Kutta algorithm when applied to this set
will be stable if

h3 3 1 h4 >‘4 < 1 3.4.2

1+])\+lhx+ A+
: 2 Pz

where % is the time-step employed in the routine, and A is the

eigenvalue of [4] with the greatest modulus.
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Since A may be complex, let 2 = a + ©b. The case X real then

Teads to the condition

4
1 + a + % a2 + é a3 + %4 a < ]
whith is true for -2.78< a <0
Similarly the case A purely imaginary gives o<b<2y/2 = 2.83

The nrecise values of AX which gives stability is a rather

complicated reqgion of the complex plane, but stability is assured

if the condition A|x| = < 2.6. is satisfied.
max
The homogeneous set of second order equations
(#1041 + [c)lal + [xlla]l = o

can be reduced to the type 3.4.1 by letting

97 1 Ky “nt1
= and =
qn_ L '7("71d | éIn _ L Ton

3.4.3

5T



This gives the set

551 = %
bcn = Xy,
} -,
| L+1 1 1
|
I I 07 R S I B VY I 1
LmZVl_‘ _x”_ _xgn_
or ] { 0] [ ]
[z] - s 7 _3 [ =]
-[M] “lx] -[M ~[]
which is of the form[ %] =[4][ z)

The eigenvalues are given by

(4] - a1, ]| = 0
i.e. =[] [ L]
=0
Aml Tk} -m)7Tc) - rz)
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which reduces to

Az 9]
[(M177 [ &) Al I el + 7 () o+ (MKl = 0
and hence \2 [M] + Xx[C]+[K)}= 0 3.4.4.

This is called the auxiliary of the equation set. .

An analysis of some simple cases shows that we might expect instability

if there are large damping coefficients.

The simplest possible case is

g + eq + kg=0 k>0, e¢2 0 3.4.5

which has auxiliary equation

A2 +cex + k =0
with roots
2 _ 2
Vo= ozerleiak) =k { -at/a -0}
2

_ 2
where
e = o'k {az 0)

It is easy to see that for 0 < o < 2

|)‘Imax =k




and for o> 2

This is illustrated in Fiq 3.2,

Thus for a<2 (i.e. e<2/ k ) IA'néx = vk and stability is assured

»

if h <2.8
vk

But for larger values of o, |A] max £ oY k = ¢, and so for stability

we would require the time-step to be Tess than (2.6/¢).

certain value the stability depends almost entirely on the values of

the damping coefficient and the time-step required is inversely

proportional to that coefficient.

Another case that can be analysed is

+
4

0 1 q& 0 ¢ Qz gk

We assume that e» 0, k>0 and 0<B.<1

The auxiliary equation is
Aok on + & Bk

Bk AT+ ex + k

{ A2+ on 4 k(1-8) l {Ag tex + k(1+8)) = 0

60
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Fig. 32 Magnitude of maximum eigenvcllue- against

damping for equation 34.5 « =c/vk
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avk

Again we let ¢

The first bracket of the equation 3.4.7 gives

Y k(1-8) as 2Y/(1-8)
Pl 4(1-8)
max avk { 1 +.~/<f— ———§§—> o 2/ (1-8)
2 | o

and the second bracket gives

Y k(1+8) ag 2/(1+8)

max
a_/_k_ 1+ /1— 4(1+8) a> 27 (1+B)
2 A 2

Qo

We require whichever is the greater of these two, which can be

seen to be
[V k(1+8) ag 2
V(I+R)
IA!max ) J 4(1-8) é
ok {1 u/(l 2)3 “ 771487
B

These results are illustrated in -Fig. 3.3.
The general pattern is similar to the analysis of equation 3.4.5,

but two points are worth noting.
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Fig. 3.3 Magnifude of maximum eigenvalue against
damping for equation 3.46 & =Nk

The maximum eigenvalue is given by the upper

of the two curves for | Alesx and _|>u|.m
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i) Even with no damping (a=0),the fact that the equations are
coupled (B>0) Teads to a raising of IAImax,_.and hence requiring
a smaller time-step to satisfy the condition 3.4.3, than was

required by equation 3.4.5.

ii) As before, for o greater than a certain critical value the
size of the damping is the major factor, but the coupling
makes this critical value lower, and the values of |A]ma

X
higher than they were in the first example.

It is possible to go one stage further and consider the set of

3 equations of this type:-

100 c00 k gk 0
010 (4] +|0co|[g] +|8kk Bk| [q] = 0 3.4.8
00 1 00ec 0 Bk k

This has an auxiliary equation in factored form
2 2 2 |
(A% #ex + K)(X" + X + k(1-BY2) (\"+ch + k(1+8V2)) = 0 | 3.4.9

which is similar to 3.4.7, and consequently leads to-a very similar
analysis, with all the same conclusions. The auxiliary equation of the set
of 4 equations of this type does not factor so neatly, but there seems

no reason to doubt that in this case also ‘Ahax . will be of the order

of the damping coefficient provided it is above a certain value.




FQr a set of equations with 1ittle or no damping the value of
|A[,x 1S determined by the values of [X], and, as illustrated
in the examples above and in section 3.5, will be of the order
of the value of the maximum frequency of all the components that
form the exact solution to the given set. The condition

[A] h <2.6 thus can be written

max

i) for equations with dominant damping coefficients

h< 2.6

e

where ¢ is the order of the damping coefficients
ii) for equations with little or no damping
h< 0.4T
where T is the period of the mode of highest ffequency.

3.5 An example

The method was tested on a set of 3 equations of the form of 3.4.8,
withe = 2, k = 4, and Bk = v2. Writing these equations out, with

dependent variable [y] , we have

yz + 2y1 + 4y1 + /2y2 = 0
..;2 + 292 + /2y1 + 4y2 + /2y3 = 0
= 0

- (23 4 -~
Vs * 23 HRCTIRE P
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The auxiliary equation in factored form is then

02 earz) Dlrara) ¥ it = o0
giving the possible eigenvalues

A= =1+, -1%1/3, -1%i/5

for which [A] . = 2.45

and hence the critical time-step is when 2 = 1.1

If to 3.5.1 we attach the initial conditions

y]:] y2=0 y3:—1
by = 0 Yy, = V2 Yy = 6

then it can be shown that the exact solution is

Y, = et { 2 sin Y5t + cos VY3t - 2 sin /3t + sin t}
/5 V3

Yy = e_t{ 2 sin /5t - sin t}
/5

Y = et { 2 sin V5t - cos /3t + 2 sin /3t + sin tl
/5 V3 j

In this example the value of Iklhax is determined largely by the

highest frequency component (which has a period of 2.8) rather than

the damping coefficients.




Fig. 3.4 - 3.6 gives plots of the values of Yqs Yy and y3 for different
values of time-step, together with the exact solution. For 4 = 0.05
the algorithm gives values which are indistinguishable from the

exact solution even after 100 timesteps. For 2 = 0.5 the accuracy

is still quite good. However, since in this example the amplitudes

of all the frequency components are the same order, any time-step
larger than 0.5 , no matter how accurate, hardly gives a good. picture
of the exact solution. For an example like this the critical value

of the time-step is no limitation. It is not possible to plot the
behaviour of the routine for time-steps greater than the critical value
since the instability is quite spectacular. For example, with z = 2.0,
Y,5Yg and ys.a11 have values of order 109 after only 8 time-steps.

Such extreme instability is all to the good, since if instability is
going to occur it is best that the algorithm user is given a clear
indication of it if he inadvertently selects a too large value for

the time-step.

3.6 Modification of equation of motion to include constraints.

The vector [ @(¢)] of equation 3.1.1 contains the known values
throughout time of the external loads acting at each node. Nodes
which have no applied forces, and are free to move in any direction,
simply have zero for the elements of [g(z)] that correspond to the
degrees of freedom of that node. However there will also be nodes
which are not constrained by an applied force, but by an applied

displacement. A particular case of this is a node which is fixed
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throughout time. In order that this possibility can be accommodated
it is necessary to modify the equations of motion 3.1.1. Smith (1975)
states that rigid nodes were simulated by setting to zero the
corresponding elements of [M]_l, which is equivalent -to infinite
masses at those nodes. It is not clear however how he provided

for nodes moving in time. A different, and rather more realistic

procedure, is adopted in this study.

Suppose that m degrees of freedom are constrained by applied loads,

and n are constrained by applied displacements. Thus

fm + n = number of equations = 2 x number of hodes).

The equations of motion may be partitioned

A 3
] [ ] |fiad] fioad te ] [tad  [ix) e, [te
ceq|= ' - ' - L 3.6.1
Rl RIS |G R (TR | % I [CSSRTH ) PO

Inthis equation the matrix [M] ~1 has been written as Lu”J [0]

(o] [u,)
where it is to be understood that the sub-matrices [u,] and [y, ]consist
only of non zero elements on their leading diajba]s. This is justified

since as was stated in 2.5 the mass matrix is of lumped form and so its

inverse also consists of a diagonal matrix. Clearly the non-zero elements

of [um]and [“J are simply the reciprocals of the corresponding elements

of [M] .
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Since the displacements of the last n degrees of freedom are

the given constraints, [qn] and [qn]are known. To emphasize that
these are not unknown displacements and velocities call them [rn]
and [# ] . So effectively what has to be solved is the firstm

equation of 3.6.1;
171 L) {191 - (e, 0ta) -lo,1 [#])
1k, a) - LK 1Y
However, instead of attempting to extract just this set of equations -
which would involve forming the new matrices [Kﬁm] s [Khn] etc., - it

is easier to modify the already assembled matrices { k]and [c¢] to form

the following set of equations

L] 0o ||t | | 1e ) e ] |14)

il
R N

4] 1t ]| Imad| [ Lo tod ||t

[Km] [£0d ] | [4,)
(o] (1] lq,)] 3.6.2

This modification is quite easy to do on the computer. It requires
that the load vector [@] consists of the applied disp}acements [rn]
for those degrees of freedom which are so constrained, that the rows
of the damping matrix [c] are all zeros for those deérees of freedom,
and the corresponding rows of{k] also consist of zeros ekcept the

diagonal element which is unity.




In this modified form it will be seen that the last » equations

of 3.6.2 are now uncoupled, and all have the form

g o= u {p(t) - q(t)}

If we solve this equation using the Runge-Kutta routine given in

section 3.3, and taking

Q(to) = T(tlo)
. _ - 1 - ,
q(tb) = s(t-o-) = y {r(to + h) r(t.o)}
and r(t. + A ) = 1 { r(t + h) + r(t:)}
0 2 2 [o) 0
we find that
Al = A2= A3= A4= r(to +..h) —r(to)
and
rl = r2 = rs = F4 = 0
giving
q(td+h) = r(tofh)
and
b(tb+h) = % { r(?q+h) - r(to)}= h(tb)

13
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Thus by using this linear approximation to the velocity and

displacement of the constraint nodes during the interval t, tO.(t0+h)

we get the correct value of the displacements of those nodes at

‘the end of the.interva1. "The last n equations of the modified set

of equations of motion therefore yield under the Runge-Kutta routine

the correct applied displacements, and hence when the set of equations
3.6.2 are solved using 3.6.3 for the constrained nodes the correct

values of the displacements and velocities q, and Qs of the unqonstrained

nodes will be found.

It will be noted that it was essential for this method of modifying
the equations that the mass matrix be diagonal - for otherwise the
last m equations would not have been uncoupled - but that the damping
matrix did not have to be so constrained. But, for the reasons given
in sections 2.5 and 2.3 the computer program that has been written

to carry out this Runge-Kutta solution assumes that both [ ] and [¢)

are diagonal.
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3.7. Summary

The Runge-Kutta algorithm is an accurate, efficient and easy to use
procedure for solving sets of equations of the type 3.1.1. [Its main
drawback is that it is conditionally stable. The critical time-step
condition, A{r|pax <2.6, is however better than that of some other methods
in use. For instance of the eight integration procedures illustrated by
Zienkiewicz (1977) p.583, five are conditionally stable, and of those

five only one has a better time-step condition. The poorest is a

'central explicit' method, with h|A]max_<2. The method with a more
favourable condition is unnamed, but which Zienkiewicz refers to as

a "popular scheme", and has hlAlmax. < 3.5. It is however a two step
implicit scheme, and so without the main advantages of the Runge-Kutta
algorithm. Indeed if an extension in the region of stability is required

a user might do well to consider a fifth order Runge-Kutta process, such

as that proposed by Lawson (1966) for which hlxlmax < 5.7.

The stability criterion will be most troublesome for equation sets

that have damping coefficients, or high frequency components. For

cases of high frequency components of significant ampiitudes, as in

the example of section 3.5., the ‘stability criterion is.not really a limiting
factor, since in ordér to get a solution which satisfactorily displays

such components a small enough time-step must be used. For equation sets
whose solution is dominated by low frequency components, and only comparatively
small amplitudes of the high frequency components, the Runge-Kutta method
will not be so satisfactory, as a time-step which caters for the high

frequencies will have to be used even though they are of little interest.




Such a situation will however be ideally suited to the method of
mode superposition discussed in section 1.3. In the present study,
which models a considerable extent of substructure, in addition to
the region of interest, it will be the high modes of vibration that
are the significant ones as far as determining the displacements of
the structure are concerned. The Runge-Kutta a]gorithm should be an
effective tool in these circumstances. For models containing high
damping coefficients but only significant low frequency components
the mode superposition method will also be vatid; but for models
with both high damping and significant high frequencies neither mode
superposition nor the Runge-Kutta procedure will be appfopriate. In
such a case resort would have to be to an unconditionally stable scheme,

with all the increased call on computer resources that that entails.

Although the computer program written for this study does allow for
a damping matrix in diagonal form, in view of this difficulty with
- damping coefficients, and also because little can be said about

reasonable numerical values for them, none of the models in this study

include values for damping coefficients.

76



Chapfer"4.- Testing of the finite element programs'

4.1. Introduction

Computer programs based on the theory given in chapters 2 and 3
were written, to cater for a two dimensional plane strain model.
The region to be studied is modelled by a grid of elements of
either triangular or quadrilateral shape, with a variety of
material properties. The nodes of the grid can be left free,

or can be given a time history of applied loads or displacements,
and the programs determine the displacements of all the nodes,

and the stresses in each element at each time-step. The details

of the structure of these programs, how they are used and a listing

are given in Appendix A.

That the finite element method will introduce approximations is

of its very nature, but quite what effect these approximations will
have, especially in a dynamics problem, is not so clear. In the

case of a statics problem we know that, as mentioned in Section 2.1,
for certain types of element we will have as close an approximation

to the continuum solution as we please provided small enough elements
are used. For a dynamics problem both the spatial and time dimensions
are divided into discrete sections. The use of a time-step may be
expected to lead to aliasing difficulties if too large a value is
used, whereas the division of space into regions with discontinuities

in strain along their boundaries must lead to problems of dispersion.

17
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If too coarse a mesh were to be used then we might expect each
node to behave something like a point source. A finite element
model will thus only be able to give a reasonable representation
of, say, a plane wave, if, in the manner of Huygens' principle,
we have nodes sufficiently close together so that when they are
considered as point sources their secondary wavelets do sum to

a plane wave within an acceptable tolerance.

The tests described in this chapter form a comparison between

known analytic solutions for certain propagation problems and finite
element models for these problems, so that a clear idea of the necessary
criteria for the use of the finite element method can be formed. The
formulation of these criteria and a discussion of their implications

is given in Chapter 5.

4.2. Description of test grid and pulse

For the purpose of the tests a rectangular grid of 28 x 14 elements
was used, each element being a square of side 15m. This grid is

illustrated in Fig. 4.1.

The nodes along the base were given various time disp]aéements;
and the displacements of all the nodes were calculated at all time-steps.

From these values two forms of display were examined:

a) displacement time graphs of certain selected nodes (usually

nodes on the line x = 0)
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b) plots of the principal stresses in each element at certain
selected time-steps. This was either for a selected part

of the whole grid, or for the whole grid.

To follow the propagation of a pulse the input at the base was

based on a pulse consisting of 1 period of a cosine wave

0 t<0
displacement = a(l - cos 2nt) OstsT
T .

0 t>7

Thus to simulate a P-wave progressing up the y-axis the above
displacement was applied in the y direction to all the nodes along
Y=0 simu]taneous]y, whereas for an S-wave progressing up the y-axis
the same displacement was applied to all nodes simultaneously but

in the x-direction.

For the general case of a plane wave incident at an angle 6 to the
at
y-axis, consider the x-axis and suppose that the disturbance ,x = 0
begins at ¢ = 0.
<~
The disturbance P will begin after a time t' = = sin 8, where ¢ is

c
the velocity of propagation and x is the distance of P from 0. This

is illustrated in the diaqram overleaf.




y 4
xh-
0t v
~ ~
$ O?\ ~
ArpSCFip,~
Yo,

The disturbance at P is therefore equal to

a { 1-cos 2m (t—t’)l 0<t~t'<T
T

and zero otherwise.
"Thus for a P-wave the components of displacement (u,v) at P are

u =asine { 1 - cos 2n (t—t')}

T
for O<t-t'<T
vV = acos @ {1 - Ccos 2m (t—t’)}
T
where t' =x sin ® (a = velocity of P-waves)

o
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Similarly if g is the velocity of S-waves, then for S-wave

propagation we have the displacements

u = a cose{ 1 - cos 2m (t—t’)}
T
for O<t-t'<T
v = a sine{.z - cos 2m (t-t')}
T
where t' = z sin @
' B

The program INPUT was used to create a date file based on these
formulas in the format required by the subroutine LOAD 2 in the

program TIMESTEP.

4.3. Description of tests

Test Run A

Boundary Conditions

Top surface free Sides zero x-digg}acementslﬁBase plane wave pulse
Pulse parameters Type P-wave
Period 0.06s, Timestep 0.01s, Amplitude 0.1 m,
Angle 0.0° Frequency 16.6 Hz. Timestep 6

per period
Material Properties
Young's | Poisson's | Density Velocities m s—] Wave- Elements
modulus | ratio -3 : length | per
n m-2 kg. m, P-wave | S-wave m. wavelength

8 x109| 0.25 2400 2000 1155 120 8
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The graphs of y-displacements against time are illustrated in
Fig. 4.2 for 10 nodes from base to surface along the centre of

the grid.

The form of the pulse is displayed by the graph for node 225, and

it will be noted that after t=0.06 this node is kept with zero
displacement. The progression of the wave to the surface (node 211)
is clearly seen, where it is reflected, without change of phase since
it is a free surface, back into the grid. This reflected wave returns
to the base at 0.21s.where it is again reflected, this time with a
change of phase since the base is fixed, and we can follow the wave

again to the surface.

From the graph of the time taken for the peak of the wave to travel

as it first sises through the grid an average speed of 1900m.sf] is

determined, agreeing quite well with the theoretical value of 2000m.s-].
On the other hand it can be seen from the time displacement graphs of
thenodes that the exact shape of the pulse is not preserved. The onset
of the disturbance is a Tittle earlier than it should be, the pulse

develops a little ripple in its tail and there is some loss of amplitude.

These characteristics 'of dispersion of the pulse are the sort of errors
that we would expect from a process which discretises the information.

Stress plots at various time-steps were also produced - but they are
not reproduced here, since they are similar to those of the next run.
However it is worth remarking that since stress is a function of the
spatial derivatives of displacement, any inaccuracies in the calculation

of displacements as a result of the finite element approximations is

1ikely to lead to rather worse errors in the stresses.
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Test Run B

Boundary Conditions
Top surface free Sides zero x-displacements Base plane wave pulse

Pulse parameters Type P-wave
Period 0.06 5. | Timestep 0.005 s, Amp1itude 0.1 m,
Angle 0.0° Frequency 16.7 Hz, { Timestep

per period 12

Material Properties

Young's | Poisson's! Density Velocitiesy 5-1 Wave- | Elements
modulus | ratio -3 - length | per
-2 kg. m, P-wave| S-wave| - wavelength
n.m, m,
8 x 109 | 0.25 2400 2000 1155 120 8
: 1

Graphs of y-disp1acements against time are illustrated in Fig. 4.3

for the same nodes as in A. These graphé have an:almost identical
appearance as those nodes fof run A, and measurements of the progress

of the first peak give the same velocity. However the loss in amplitude
is not so great. For instance the displacement of the node on the free
surface should be twice that at the base, i.e. 0.4m. In the case of A

the graphs give a figure of 0.35m.,whereas the B graphs give 0.39m.

Also illustrated for this run in Figs. 4.4-4.7 are plots of principal
stresses for the central section of the grid at various times. The
principal stresses are worked out for each element and plotted at the

centre of the element.
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For the case of a P-wave applied at the base one would expect the

2 and y displacements (u,v) for a generai point to be given by

ul(x,y,t) = 0

vlz,y,t) =l a {1 - C0S 2n (t - E“ y<t<T + y
T o PR o

0 for all other t until the first reflection arrives
where o is the velocity of P-waves, and provided the point is not within

half a wavelength of the free surface.

Using the relations 2.3.5 and 2.3.3.we derive for the stress at a point.

0, = AW = - A2ma sin 2m (t-y)
-3y Ty T o
Opp = (A + 20w = = (X + 2u). 27ma Sin 2n(t-y)
22 9 2ma 2mity.
oy To T a
Oig9 = 0

The principal stresses are therefore

g, =0

7 and o= 0

11 22

and directed along the = and y axes respectively.
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The ratio of the principal stresses will be at all times

. _x - v
02- A+2u 1-v
= = whenv = é
Also |o,]| = |o,,|
2 max 22 max

= (X 2u). 2ma = azp 2na
Ta Ta

2naop

With the parameter's of this trial we get

5.03 x 10’ Pa.

oyl
2" max

1.68 x 10° Pa.

XY
1]

Measurements from the plots give values

a) on the front half of the pulse maximum compressive stresses of

7 7

4.4 x 10" Pa. and 1.5 x 10" Pa. for in the y and x directions respectively,

b) on the back half of the pulse maximum tensional stresses of

4.9 x 10’ Pa. and 1.67 x 10 Pa.
It will be seen that these values, especially in the case (b), agree well
with the theoretically expected values. Also there did appear to be a slight

improvement in the stress plots of run B, compared to those of A.
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Test Run C

Boundary Conditions

Top Surface free Sides zero x-displacement Base plane wave pulse

Type P-wave
Time step 0.0025s,
Frequency 33.3 Hz,

Pulse parameters
Period 0.03s.
Angle 0.0°

Amp1itude 0.1m.

Timesteps
per period 12

Material Properties

Ve]oc1t1esm. -1

Young's| Poisson's | Density s Wave- Elements
modulus|{ ratio : length per

N kg.m:3 P-Wave | S-wave m. wavelength
8 x 109 0.25 2400 2000 1155 - 60 4

This run has the same number of time-steps in each period as run B

but has only half the number of elements per wa?e]ength.' This is

achieved on the same grid by using half the period. Froﬁtﬁraph, Fig. 4.8.,
the time taken bjf%irst peak to travel a given distance as the wave

T (s1ightly

first propagates along the y-axis gives a velocity of 1850m.s.
worse than that obtained in runs A and B). However the dispersion of
the wave is significantly worse than in either of thé previous runs. This
is shown by the loss in amplitude of the wave, even within two elements

of the base; and at the free surface the amp1itude'ﬁs 0.28 instead of

the expected 0.4. Also the pulse develops a marked ripple in its tail.
These ripples seriously affect the stress plots (which are not given).
On these the front of the wave is quite clear, but within a short time

spurious stresses appear in the wake of the pulse.
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Boundary Conditions

Top surface free sides zero y-displacement Base plane wave pulse
Pulse parameters Type S-wave
Period 0.06s. Timestep 0.005s. Amp1i tude 0.1m.
Angle  0.0° Frequency 16.7 Hz. " Timesteps

er period 12

Material Properties

Young's | Poisson's | Density Velocitiesm S! Wave- Elements
modulus | ratio . Tength per

n.mf2 ) | kg. m73 P-wave | S-wave m. wavelength
8 x 10°| 0.25 2400 2000 | 1155 69.3 4.6

The graphs of x-displacement against time Fig. 4.9 are given for the
same nodes as in previous examples. The velocity of progression of-the

the first peak is found from the graph to be 107Cm.s>

,which compares
quite well with the theoretical value of 1i55m,5,'],for the velocity

of S-waves in this medium.

Since this is an S-wave the theoretical displacements for points

not within half a wavelength of the surface are

a i? - COs 2m (t-y )} Y <t<ytl

ulxz,y,t) = T B B B
0 for other ¢, until first reflection arrives
vixz,y,t) = 0
Hence 0,7 = 032 =0
and Ogy™ M du = ulma sin 2n (t-y)

£ T8 T 8
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~ The principal stresses therefore have magnitudes

but with o_inclined at an angle 6 to the x-axis given by

2
20
tan 28 = - ig
11 -22
- - - o - - = 1['-
Since Ch 0yq™ 0 this is satisfied by 8 y

It will be seen that as the shear wave. propagates along the

y=axis, o, will initiafﬁy be negative (i.e. compressive) and

1

o, will be positive (i.e. tensional). This behaviour is observed

2

on the stress plots for the first time-steps. Furthermore the
magnitude of both o, and o, will have a maximum value

wl2ra = 2maBp
TB T

loJ!ma§

For the parameters of this run this has the value 2.9 x 108 Pa.

The graphs of the stress plots, Figs. 4.10-4.11 give a maximum
principal stress of 1.5 x 108 Pa.on the front of the pu]se, and

2.7 x 108 Pa. on the back of the pulse.

However the Tow number of elements in each wavelength produce an
unsatisfactory degree of dispersion as is readily seen on the
displacement time graphs, with a corresponding deterioration of

the stress plots with increasing time.



file:///i2-na

97

S5

0.10 0.15 0.20 o.\s/o.sb/o.s?’o.ﬁ’o.as 0.50

41 3008 “45107%

61T #0ON 410X

n n n n
" in AS A .AS A
] o o o o
[=) [=] (= o
n N AS : Y W

. . « . . -
o o oS AO o
wm w n [Ta)
vk Ak ﬁ = ]
o Vu AO o o o
o . . : o
% N B (s g . 2

A5 n n wn
M AS o ) " 9
(=] (= o o o.
o W o o o o o
2 ] " " 5] " "
L] a L] -
o o - o o o o aQ

n

g : q q Q &Q &Q <

3 a 4 -

o S vO. vo. AO o s
R » (& R & R

A » - - . . -
o c A.nv AO o o
wn wn n M y.: AS. tn
-— - w— — - —
o o o AO VO. o
o o o o W AO o
- — - p—eg o— — —

» - . » d . . -
o . o o o o Vu o
n 0 0 \n 1n n
o (=] o .na o o o

a A L] L] . . L]
o o o o o o o

o o o o o .
1 1 1 1S 1 1 1 1 1S 1 I iL-E 141 m L1 11219 3 1 L2 ™S9 o
monothom wnomoihown nomothomn nomohonm mnoumaohon cunounchomne
—_— — 00 O &~ — —— OO = -_—— 000 e~ — - r— 000 ™~ — - = m01-| N — QOO e~
S cocogdaoa cod
ccdgga cccdgqggqg cocdgga 29 g oggo ococdoggag

Fig. 4.9 Test Run D x-displacements.




STRESS VECTORS AFTER 0.1000 s.

{DOTTED LINES TENSIONAL)
0.1E08 Pa.

x x x X x x x x x x X X x X
XA XK A A AKX AKX A KK
X X KX K KX KX A KX K KX KX A K X
X X X X X X X X X X X X X X
A A E 4 4 A R A A £ A £ A £ A
STRESS VECTORS AFTER  0.2000 ‘s.
(DOTTED LINES TENSIONAL)
— _0.1E08 Pa.
XX X X X X X X X X X X X X
XXX XXXXXXXXXXX
X x X X X x X X X X X X X X
X XK X A K A KK A K A A A X
X X x X x X X x X A X x X X
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Fig. 410




STRESS VECTORS AFTER
(DOTTED LINES TENSIONAL)

0.3000 s..

— 0.1E08 Pa.
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Test Run E

Boundary Conditions

{ Top surface free Sides zero y-displacement ~ Base plane wave pulse
Pulse parameters - Type S-wave S :
Period 0.13s. Timestep 0.004s. Amp1li tude 0.1m.
Angle 0.0° Frequency 7.7 Hz. Timesteps

per period 32.5

Material Properties

Young's Poisson's| Density Ve]ocitiesm s] - Wave- Elements
modulus | ratio- : - —=—| length per

n.m; 2 kg. m>  |p-wave | S-wave|] ™ wavelength
8‘x-109 0.25 2400 2000 1155 |~ 150 10

This run is similar in nature to run D, but with a lower frequency.

The time-displacement graphs, Fig. 4.12, give 1133 ms'1 for the velocity
of the progression of the first peak, which comparés very well with
theoretical value of 1155 ms']. The amplitude of'the.pu1se is 0.2 for
all nodes near the base, and attains the expected value of 0.4 at the

free surface both at its first and second arrivals.

The graphs of the stress plots, Fig. 4,13-4.14, also agree well with theory.

7

The maximum stress is found to be 1.36 x 10" Pa.on both the front and back

part of the pulse. The theoretical value is 1.34 x-107

Pa{

The time-displacement graphs show very little dispersion, and this is
reflected in the s%ress plots, where a spurious stress cannot be found until
time 0.36 (i.e. after 90 time steps) where a small stress can be

detected in the wake of the downgoing wave after the first reflection.
Another indicator of the satisfactory nature of the rﬁns are the time-

displacement graphs for some nodes in the y-direction, Fig. 4.15.




~ These displacements should be zero, and the graphs give maximum

values of 8 X'1O—5m. comﬁared with the 0.4m. in the xz-direction.

The y-displacements are fairly random and are certainly no more
than you would expect simply from round off errors - all the

calculations are carried out in single precision,

JORAR URIVERgy

- 5 AUG 1982
SCIENCE 11gRIRY
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STRESS VECTORS AFTER  0.1000 s.
(DOTTED LINES TENSIONAL)
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STRESS VECTORS AFTER  0.3000 s.

(DOTTED LINES TENSIONAL)
— 0.1E08 Pa.
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Test Run F -
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Boundary Conditions

Top surface nodes free | Sides nodes free | Base plane wave pulse

Pulse parameters Type P-wave
Period 0.7s. Timestep  0.001s, | Amplitude 0.1m,
Angle 45° Frequency 10 Hz_ - Timesteps
. per period 100

Material properties ' 2 layers

Young's |Poisson's | Density VeTocity "~ {Wave- { Elements

Modulus |Ratio -2 length | per

-2 kg.m, P-wavej S-wave- wavelength
n-m. _-I _-‘.. . m.
m.§. [m.S. :

layer 1 1.8x101 0.25 2400 3000 |1730 300 20
layer 2/4.05x10'°] 0.25  |2400  [4500 [2600 {450 30

This run has the grid divided into two layers of different materials as

shown in Fig. 4.16.

~ In this trial the wavelength is large compared to the mesh size and
there is no detectable dispersion in the time displacement graphs,

Figs 4.18-4.19, and the stress plots, Figs 4.20-4.23, at successive
time-steps vary smoothly from one pattern to another, even though the |
pattern after 120 time-steps is quite complex. From the stress plots
the progress of the incoming P-wave at 450 is c]eéY]y seen, and then

its subsequent refraction at the boundary between the two layers, which
is half way down fhe grid. Measurements from the stress plots at

0.08s give the angle of the wave as 43° in the bottom layer, and 30°

to the vertical after refraction.
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The exact nature of the refraction is quite comp1€cated, with both
P and SV components in bbth layers. The theoretical results are
derivgd in Aki and Richards (1980) pp. 133-152. ﬁgL 4.17 gives
the expected anqles of these components and the % of energy in -

each component for the parameters of this trial.

We would thus expect to see primarily a refracted P-wave at about

30° to the vertical, which is in agreement with the results.

However, this example is not only complicated by tﬁé nature of the
refraction and reflection at the boundary between the layers, but also,
since the input wave is not parallel to the sides,it'inc1udes ref]eétions
from the sides almost as soon as the input puise'begins. Thus the
refraction at the boundary between the layers can only be observed at

the leading edge of the incoming pulse. Behind this there quickly
develops an exceedingly complicated stress pattern which is a result of
the combined displacements due to the incoming P-wave, and reflected

and /of' refracted P and SVwaves from the sides, top, bottom and interface.

If this grid were being used to model a finitevreg{on of the dimensions

of the grid subject to the boundary conditions and input which we used,

then, since the efements per wavelength and fime¥steps per period are

both very favourable there seems no reason tq suppose that the stress

plots obtained are not good representations of reality. lhfortunately,
however, the region to be model]ed in this study is not finite, but infinite
-~ in breadth and depth. In such a case all the reflections from the sides

and base are unwanted. This presenfs a severe restriction on the finite
element method for the study of transient wave propagation problems.

This is discussed at greater length in section 5.5.
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4.4. Summary

The trials described in the previous sections-are summarised

in the following table.

PN Por Timesteps Elements per Acceptability
S wave per period wave1ength
A P 6 . 8 good
B P 12 _ 8 ‘very good
c P 12 _ 4 bad
n S 12 4.6 T bad
E S 32.5 - 10 excellent
F P 100 30 . excellent

The “acceptabilify“ is a judgement based on the features discussed

in the previous section - namely the_iack of dispersion of the
time-displacement graphs, the maintenance of amplitude, the accuracy
of the velocity of prdpagation, the accuracy of the principal stresses

and the absence of artefacts from the stress plots.
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Chapter 5. .Linﬁtations 6f the finite element method

5.1. .Introduction_

The test runs previously described in chapter 4 show that it
is possible to model effectively the propagation'§f elastic waves
provided that certain criteria are met. What these criteria are,

and what their implications are, will be discussed in this chapter.

5.2. Restriction on time-step size

As explained in detail in chapter 3 there i§:critica1 time-step
size whenever a Runge-Kutta algorithm is used. This critical
value is determined solely by the left handside of the equations
of motion (3.1.1.), and is in no way affected by the nature of the

forcing term [Q(t)] . There are thus two separate questions:-

a) Is the time-step small enough to avoid instability?
b) Is the time-step ;md]] enough to give a realistic model.

for a given forcing term?

The answer to (a) is a property of the grid being used, and is found
empirically in the sense that if too large a time-step is used then

the instability will be manifest.
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The test runs revealed that 6 time-steps for each period of the
forcing function gave satisfactory results, and that if other
factors such as mesh size are kept the same, a decrease in the
time-step size produced some 1mprovemént, but not one which was
marked. Thus it is possible to adopt as a criterion for step

size, A,

. 1 : |
h < B—f-‘ | 5.2.]

where f is the frequency of the forcing term.

It is also interesting to note that fdk the test runs, whenever
this criterion was met there was no difficulty in meeting the
stabil ity condition. There is, of course, no necessity for this

to be the case as the two criteria depend on entiré]y independent
things. Howéver. this happy circumstance also prevailed in the
later modéls to be discussed in chapter 7, Alsb; in order to give
a detailed picture of the progression of an elastic wave it was
_usua]]y decided to use a. time-step size smaller than that required

by 5.2.1.

5.3. Restriction on mesh size

The test runs revealed that the mesh size compared with the
wavelength of the propagating wave is a severe restriction on the

applicability of the finite element method. It was found that for
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too coarsé a mesh the énergy of the propagation wave is
dispersed leading to both 1oss in amplitude of the wave, and, more
seriously, the development of ripples in the wake of the wave.
of briacipd stress. A cowputdon & bredicied didfucenedty

This in turn leads to quite unsatisfactory predictions, velocities,
and stress Qa]ues with theoretical values, and a visual inferpretation
of'time-disp1acement graphs suggested that for satisfactory results
there should be at least 8 elements in each wavelength of the
propagating wave. Exactly the same figure is suggested by Smith (1975),
whereas Fedock and Schreyer (1981) suggests a value of 6 elements

in each wavelength. In this study the more restrictive figure was

used in the criterion to be met, which may be stated as

1 < 5.3.1

A
8
where 7 is the element size needed to satisfactorily propagate a

wave with wavelength A.

This rule can be regarded as a Timitation on the possible waves
that can be modelled, éither in velocity or frequency. For a given

| velocity of propagation, v, 5.3.1., gives an upper limit to frequencies,
f» given by
fo< 37 5.3.2.

If the frequency is given then the rule gives a lower Timit to possible

velocities. For example, for the grid, described in chapter 6, which




is used to model.embankment dams;, the mesh size is 8m. (or less).

1

So for waves with a propagation velocity of 1000:m--§ the

maximum frequency is 15.6 Hz. Alternatively, if the frequency is

giveh as 10Hz, then the Ve]ocity must exceed 640 ms'].

5.4, Restriction on possible input signals

The 1imitations imposed by the condition 5.3.1 have quite far

reaching implications. .In a study such as this it might be thought
desirable to use as in input signal an actual strong motion record
such as the Sén Fernando record of 1971. This suffers from the
criticisms, already made in section 1.2., that the record of one
locality may not be.app1icab1e to a different locality, nor even to
the same locality at a different time. A more general approach,
suggested by Smith (1975), is to use as input an impulse function and
use the finite element method to determine. the impulse response of the
sfructufe. The response of the structure to any input function,

whether it be an actual strong motion record or a theoretically defived

" seismogram, is then found by convolving the input function with the

impulse response. But a strong motion record is an extremely complex
time series contajning a wide range of frequencies, and an impulse
function containsf§11 frequencies. So if either of these were used
as an input to a finite element model they would fall foul of the
condition 5.3.1. FHirthermore this criticism app]%es equally to all

finite element formulations, such as mode superposition, since the
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Timitation resU]ts from the finite e]ement approxfmation itself,

and not from the procedure for solving the equﬁtioﬁs of motion.

The tests of chapter 4 héve shown that if the inpﬁt function contains
frequencies greater than that permitted by 5.3.2.,»then the predicted
displacements will contain artefacts in the form of unwanted ripples.
These ripples seriously affect the calculation of stresses, and the
tests suggest that an input function that at all aﬁproached an impulse
would yield stresses so corrupted by artefacts as to render them of
little value. Indeed in the paper of Smith (1975) he remarks on a
"ringing” in the predicted displacements which he filters out before
presentation. It is perhaps significant that he does not calculate

stresses.

The approach adopted in this study is rather more simplistic. If

a hjgﬁ frequency in the output cannot be realistically modelled by

the grid, why put it in in the first place? So, instead, this study
uses idealised inputs consisting of a pulse of knoﬁn frequency which
complfes with the requirement 5.3.2 - by 'pulse' is meant, not an
1mbu1se, but one complete cycle of a sinusoid wave, as used in the
tests. Whi1§t the results obtained with such an iﬁput will be
correspondingly iQealised, at least we can be reasonably confident

that any componen# of an actual earthquake source with the frequency

of the pulse wi]f behave as predicted. The limitations of this approach

cannot be denied, but the results obtained should be meaningful.
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5.5. The finite size of grids

A Timitation to the applicability of the finite element method that

is quite different from those discussed in the previous sections of
this chapter, though which was raised in the discussion of Test Run F,
is that imposed by the finite size of the grid. This is, of course,
n§ problem when the region being modelled is itself finite. Even for
static problems which involve an infinite half-space a reasonable
representation of the boundary conditions at infinity may be simulated
by using large elements at the edges, or better still by using some

such artifice as the "infinite elements" proposed by Bettess (1977 and 1980).

In the case of dynamic problems this limitation i§ much more serious,
since the fictitious edges of the grid (that is, those edges which do
not correspond to an actual boundary in reality) will act as reflecting
boundaries, returning into the grid energy which properly should not

be there. In the early stages of this study three methods were tested
in an attempt to overcome this brob1em, for which it can only be

reported there was complete lack of success. The first attempt put

"the boundaries at a large distance by making the elements round the

edge very large; however as far as propagating waves were concerned
they did not act gﬁ though they had any greater dimension than the
conventionally sizéd elements. The same was true of the "infinite
elements" of Bettess. It has also been pointed out by Belytschko
and Mullen (1978) that variation of size of elements is undesirable anyway

in wave propagation problems because of attendent dispersive properties.



A third approach was to use damping elements around the edge.

In this case it was possible to reduce the amount of reflected

ehergy - but not to an acceptably low level. However it required
much trial and error to find suitable damping coeffiqients; even

with very simple trial grids. Furthermore, as discussed in chapter 3,
the inclusion of damping coefficients in the equations of motion

leads to instability problems with the Runge-Kutta routine.

Another method, proposed by Smitﬁ (1974), uses a summation of two
solutions with different boundary conditions along the edges which-
has the effect of cancelling out the reflected wave. For an acoustic
wave the boundary must be free for one solution, and fixed in the
other. Since the reflected waves in these two cases are 180° out of
phase they cancel each other. However the summation of several
solutions is required to eliminate any multiple reflections, and the
method fails, as pointed out in a later paper by Smith (1975), when
there are WaVes propagating parallel to a boundary. - It is also not
clear how the method can be used for any boundary which is being
forcéd in time, such as the base of all the mode]g considered in this
study. For these reasons, and in view of the more than doubling of
computer time needgd, it was decided not to use this method. A survey

of this whole prob]em is contained in Zienkiewicz, Kelly and Betteés

(1979), where they do report some progress but admit that their results

at the time of writing were inconclusive. A simple resolution of this

problem, if indeed one is possible, would be a major breakthrough for

the applicability of the finite element method for this type of dynamic

problem.
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The approach used in thi§ study is the naive one of'using a grid
large enough so that the area of interest can be studied for long
enough before the unwanted reflected waves begin to arrive. This
efther means that a very large grid has to be used or the time span
that can be studied is severely restricted. The size of the grid is
limited by the capabilities of the computer, whiéh therefore becomes

the overriding constraint.

5.6. Summary

We are now able to assess the use of the finite element method for
the solution of dynamic problems. As expected, the modelling of a
continuum by a set of ordinary differential equations (3.1.1) has
brought its limitations. These limitations are the consequences of

three separate problems.

First, given the equations of motion 3.1.1., are we able to find
an accurate solution to them? If we use a direct integration method

then this puts a limitation on the time-step that we can use. The

- tests gave the rule 5.2.1 as a condition that has to be met by a

stepsize in order to give a satisfactory modelling of a propagating
wave with frequency f. It sh§u1d be emphasised that this condition
is imposed by the forcing term of 3.1.1., and not by the particular
integration method used. In addition to this.condition on stepsize

there are the limitations inherent in the integration method, which

for the Runge-Kutta algorithm proved to be less restrictive than 5.2.1.,




when the modej contained no damping. If mode superposition is used
as a means of solving the equations of motion then the accuracy of the

solution will depend on the number of modes used.

A second, and more fundamental problem, is how well do the equations

of motion 3.1.1., model the continuum at all? That is, even if we

were able to find an analytic solution to the set 3;1.1., how close
would it be to propagation of a wave through a con;inuum? In order
that there should be a satisfactory fit the tests of chapter 4 suggested
the rule 5.3.1., relating the internoda® distance of the mesh to the
wavelength of the propagation. For given material properties this

is a condition between mesh size and freduency of the wave (5.3.2).

No ingenuity in the method of solving the equations of motion can
overcome this limitation. Fr instance, if mode superposition were
being used, and even if all modes were being calculated, the predictions
would still be in error if the mesh size was not fine enough for the
frequency of wave being propagated. The severe consequences for
possible input signals to any finite element modg] have been discussed

in section 5.4.

The third major limitation.of the finite element méthod is the
extent to which it can model an infinite, or semi-infinite, region.
As detailed in section 5.5., the reflections of waves from fictitious

boundaries make this a severe limitation for dynamics problems.

The finite element method when applied to dymamics problems must

therefore be used with full knowledge of its Timitations, and with

steps taken to ensure that those limitations are not exceeded.
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Chapter 6. The representation of an erbankment dam by

a finite element model

6.1. The forms of embankment dam

" It is hardly surprising that no two dams are the same, each

being built to meet the specific conditions of the site chosen.
It is therefore necessary to look at several examples to see

which broad features should be included in any model.

The diagrams of Fig. 6.1-6.6 illustrate some of the variety of
. embankment dams. Fig. 6.1. is an example of the simplest type,

- constructed largely from a homogeneous material. It has a height

of 45m. and slopes about 1 in 3. The E1 Isiro dam of Fig. 6.2.
has a height of about 30m, and was built with a central core.
This dam was built with a curved longitudinal axis (radius of
curvature 212m. convex upstream). A dam with a more complex

central core is illustrated in Fig. 6.3. This dam has a height

‘of about 90m. and a crest length of 400m., and its more complex

construction enables slopes of 1 in 1.6 to be used. The Mammoth
Pool Dam (Fig. 6.4), with a height of about 110m. and a crest
length of 250m, has neither a central core, nor with its variety

of material types could be termed homegeneous. The 112m. high

‘Djatiluhur Dam shown in Fig. 6.5, has a more complex structure,

with a sloping core and is built adjoining a first stage cofferdam.
Another central core dam is shown in Fig. 6.6., the Nurek Dam, U.S.S.R.,

which has a height of 312m., illustrating the kind of height that
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From Sherard (1973).
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can be-achieved by modern construction techniques. For this
dam both a cross-section longitudinal elevation are given.

The latter is a reminder to us that embankment dams are three-
djmensiona] structures with a cross-section varying throughout

their length.

A broad classification of types is given by Thomas (1976), and

is illustrated in Fig. 6.7. together with typical slopes.

A feature that is, of course, quite specific to eéch dam is the
surrounding geology. Fig. 6.8. gives a sketch in longitudinal
elevation of the geology of the Parangana Dam, Australia, and

it illustrates the probably common feature of a dam built between
the solid rock sides of a steep ravine but over a base of drift

or other loosely consolidated material.

6.2. The features of an embankment dam model

The finite element method is ideally suited to modelling most of
the features mentioned in section 6.1. Complex geometries and
differing material types are quite easily incorporated. A decision
has to be made whethef the model is to be a three-dimensional or

~ two-dimensional one. A two-dimensional plane strain model may well
be an adequate representation for the central sections of a long
embankment dam (Lefebvre et al (1973)), but the limitations of a
two-dimensional model were recently forcefully.expressed by

Prof. Severn (Dams and Earthquake (1981), p. 244). A two-dimensional

model will completely fail to represent the longitudinal vibrations

in a dam. The finite element method is suited to a 3-dimensional model
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except for the rapid increase in the number of nodes as the

size of the model is increased. Thus for the grid that was

used in this study, which had of order 1200 nodes and a base

Tength of 90 nodes, an extension to three-dimensions with a square
base would have required of order 105 nodes. Such a figure is
beyond the computing possibilities available at the moment, and

so in this study only a two-dimensional method was considered.

It is not difficult with a finite element method to take account

of the variety of material types that méy be used. This is especially
easy if the materials are elastic, but it is possible to incorporate
materials with non-linear properties also. A greater difficulty is
perhaps the determination experimentally of the best parameters that

should be used to characterise the actual materials used.

it is with these considerations in mind that this study has chosen
to concentrate on a very idealised model. If we are to gain some
understanding of how the outline geometry of an embankment affects
the propagation of elastic waves entering at various angles, perhaps
it is best,.at least initially, not to consider a model cluttered

up with the fine detail of ‘a realistic mpdel. Since what is of interest
is how the reflections from the sloping sides, and the refractions
and mode conversions at interfaces, affect the wave progression

and consequent stresses, it was decided to mode] just the broad
features of an embankment dam. For this purpose.the homogeneous

dam type was taken as a basis, such as illustrated in Fig. 6.1

and Fig. 6.7(A).
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6.3. Choice of element .size

Since our aim is to give a reasonable model for the propagation
of seismic waves we will require elements small enough for that
to be achieved. The condition that has to be met is the relation

5.3.2.,.name1y

f < 6.4.1

v
81
where 7 is the mesh size and f,v are the frequency and_ve1oc1ty

~of the propagating wave. We can therefore regard the mesh size
as being determined by the material of the reg{on, which fixes v,
and the frequency of the seismic source. From 6.4.1. we can see
that if this relation is satisfied for a certain velocity then
it is satisfied for all greater velocities; likewise if it is
satisfied for a given frequency, then all lower frequencies will
be adequate. In order to settle on the mesh size we therefore

have to determine a minimum velocity, v min® and a maximum frequency

f max; ‘Given these, the mesh size 7, must be chosen so that
o .
L 6.4.2
B max
For v .. we must choose a value sufficiently small to account

for the low velocity materials that make up the embankment. For

this study a value of 600m.s.'] has been chosen, but even this

value could be too high, especially for the speed of propagation

of S-waves in materials of high Poisson's ratio, (see Watanabe (1975),

p. 760). For this study Poisson's ratio was 0.25 throughout. Clearly,
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if this method were to be used for the seismic response of an
actual dam, the mesh size could not be decided upon until
experimental data were available for the ve1ocitiés of the

materials.

The justification for choosing a value for f . comes from

the study of the spectra of earthquakes. Fig. 6.9. is a response
spectrum for the E1 Centro earthquake, p1ottihg velocity ratios
against frequency for different damping factors. - For this spectrum
the velocity ratio is greatest in the rangé 0.3 - 3.0 Hz., with

a sharp cut off outside this range. The velocity ratio at 10 Hz.
is about 1/10th the value at 3 Hz. Fig. 6.10 is taken from the
Pacoima Dam strong motion record of the San Fernando earthquake and
gives peak velocity over a narrow band of frequencies for selected
frequencies from 0.5 Hz. to 10 Hz. A spectrum is given for each of
the horizontal records and the vertical record. For these records
the highest velocities are in the 0.5 - 2 Hz. range, and the peak

velocities fall by 1/5th from 2 to 10 Hz.

If we assume that it is the energy of a seismic disturbance that
causes the damage to a structure, then,lsince enefgy>is proportiqnal
to velocity squared, it is to the velocity spectrum that we should
look to see which frequencies are the most importaht as far as
structural damage is concerned. The sharp fall in the velobity
spectra over a certain frequency thus justifies tﬁe ideé of a cut-off
freqdency. For this study f max Was taken as 10 Hz., and the spectré

of Fig. 6.9-6.10 suggest that this is a reasonable value.
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Fig. 610 | Velocity spectra. San Fernando earthquake.
" Based on Bolt (1972)
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If it is thought that the displacement spectrum is the more
significant one, as far as structural damage ié'éoncerned,

then the cut-off with higher frequencies is even more marked,
as can be seen in Fig. 6.9, where the displacement spectrum can
be read Qsing the diagonal lines marked on thé right side of

the graph.

The values chosen here for Ymin .and f max give, using 6.4.2.,

a value of 7.5m. for Z. It should be noticed that the values used,
whilst acceptable, are not generous. The choice of a cut-off

value for the earthquake spectrum is a somewhat arbitary one;
especially since we cannot be certain that it is the appropriate one
for some future earthquake; and certainly there may be éases when

the materials of a embankment demand a lower value for v A

min*
value for the mesh size of around 8 m. is therefore a forced choice

for dynamic problems with dams subject to earthquake.

It could be argued that we need not be so restrictive on mesh

size in régions of the model which are composed of higher velocity
materials. This is true; but there are two disadvantages. First,
as has already been referred to in.section 5.5., a variation in
element size is undesirable as it tends to pfdduce dispersion of
waves (Belytshko and Mullen (1978)). Second, a-grid with'element
sizes chosen to match the material properties of each element woy]d
be inflexible, especially in a general study such as this, for
studying a variety of embankment dam models. The value of 8m. was

therefore adopted for the size of the elements throughout the grid.




6.4. Examples of finite element grids

Many finite element grids have been pub]ighéd_for dam studies.
Most of these have been for static analyses, but a number have
been proposed for dynamic studies. Qne of the earliest was that
used by Clough and Chopra . (1966), and is reproduced in Fig. 6.11.
This models an idealised dam about 91m. high with.slopes of 1 in

1.5., using elements of order 18m.

The grids illustrated in Figs. 6.12-6.13 were designed to model
actual dams. That in Fig. 6.12 was designed by Watanabe (1975)
to model the Kisenyama dam, and has a height of 95m. wifh slopes
of about 1 in 1.25. The mesh size. varies from about 5m. at the
crest to 30m. at the base. The grid of Fig. 6.13 was designed

by Seed, Duncan and Idriss (1975) for the Upper San Leandro dam.
This is a homogeneous dam with slopes of around 1 in 3, rising to

6Im., and has a mesh size of order 9m.

Another example, Fig. 6.14, due to Seed (1973) was used to analyse
the failure due to earthquake of the Sheffield dam in 1925. This
dam would not be considered a large dam, having a height of only
7.6m. The grid was designed with a mesh size of order 2.5m. This
dam is one of the few examples of a catastrophic failure as a
result of earthquake, and from his analysis Seed concluded that
the failure was most probably due to progressiQe liquefaction

along the base of the dam.
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Fig. 611 Finite element idealisation for an earth dam.
From Clough and Chopra " (1966).

Fig. 612 Finite element grid for Kiseyama dam.
From Watanabe (1975)
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Fig. 613 Finite element grid for Upper San Leandro dam. .
From Seed,Duncan and Idriss (1975).
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Smith (1975) used a finite.element grid to model, not an
embankment dam, but an idealised mountain. Furthermore this

grid (Fig. 6.15) includes a considerable amount of the underlying
halfspace. The dimensions .of: the grid:.are such that a .
horizontal extent of 6.4 km, to a depth of 1.2 km below the
ground surface, is modelled, together with a mountain of height
420 m. above ground level and slopes of 20°. The mesh size is

of order 80 m.

The parameters of these grids are summarised in the Fig. 6.16.
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Finite element Slope Height Mesh size Height/
grid ‘ m. m. - mesh size
Clough and Chopra 349 91 18 5
~ Watanabe o
Kiseyama Dam 39 95 5 - 30 6
Seed et al. :
San Leandro Dam 20° 61 .9 . 7
Seed
Sheffield Dam 22° 7.6 2.5
Smith 20° 420 80
Fig. 6.16

It will be noticed that of these grids only those by Seed meet
the mesh size requirement of 6.4.2. In the case of the grid of
Smith it could be argued that since it was to model a mountain
rather than a dém the velocity of the material WOﬁld be highgr.
However for the mesh size of 80m. to meet 6.4.2 would requiré

1

v m{n to be 6400m.s.” ' which is certainly not a realistic value.
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The fact that the ratios of height to mesh size are similar

for all these grids, despite the wide range in absolute
dimensions, suggest that their designers were 1§rge1y influenced
by the geometric shape of the region to be modelled. Whilst

it is clear that any grid must be designed so that it adequately
represents the geometric complexities of the dam, what has been
shown is that this is by no means the only cr{terion that must
be satisfied. It must be concluded that any results which use
grids that do not meet the requirement of mesh size given by
6.4.2., should be treated with caution. As the tests of chapter 4
showed this is especially true for any deductions concerning

stress rather than just displacement.

6.5 Design of a finite element grid for an embankment

The grid illustrated in Fig. 6.15 (Smith (1975)), contains

features that fitted the needs of this study, in that of

modefs an embankment with slopes of 20° together with a considerab]e
amount of the underlying half-space, and it uses uniformly sized
elements of quadrilaterals together with some triangles. For the
dimensions that Smith used it fails completely to meet the all
important mesh size requirement. However fhis requirement could

be met by a rescaling, and this would reduce the embankment height

to 40m.
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In the early stages of this study the grid of Fig. 6.15 was

used, scaled to a height of 100m. It was the ynsatisfactory

results, especially in the values of stress, that were obtained

from this grid that prompted the tests of chapter 4, leading

to the conclusions on mesh size stated in chabter 5. It was

therefore decided to design a new grid able to meet these

conditions. A further point is this. A mesh size of 8m., implies,

by the relation 5.3.1., that the wavelengths that can be modé]]ed

must be longer than 64m. If the magnitude 6f the structure is

much Tess than the wavelength of an incident seismic wave then

we would expect the structure to move as an entity without significant
produ;tion'of strains. It is only when the mégnitude of the structure
is of the same order as, or greater than, the incident wave]ength

that we would expect the production of strains déross the structure.
It is thus the larger dams that are more at rfsk from seismic
disturbance. So the grid to be designed, besides having a mesh

size of order 8m., should be as large as possible.

Fig. 6.17 is a sketch of an outline for a grid such as that used
by Smith (1975). The first problem is to determine suitable values

for the dimensions a,b,c,h.
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ground level

Fig. 617

To model a homogeneous dam the embankment s]obe should be about

1 in 3 (18%). This requires ¢ = 3h.

The values of @ and » must be chosen to minimise the problem

of unwanted reflections, as discussed in section 5.5. A minimum
requirement for g was determined by demanding fhat a vertical
incident wave originating at the base would travel to the top of
the dam and down again to ground level before the first unwanted
reflections from the base arrive back at ground level. Assuming
uniform velocity this gives

3¢ » a+2h or a 6.5.1

W
Byl
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If we further require that a diffracted wave originating at a
base corner should arrive at the bottom of the dam slope no
earlier than it takes a vertically incident wave to arrive at
ground level after a reflection from the top of the dam, we get

a condition for b,
V@ +b%) » a+om - 6.5.2.

So that the structure will be of the order of the wavelength
we take ﬁ = 60m. and ¢ = 180m. With these values 6.5.1 and
6.5.2 imply that a> 60m. and b3 170m.

If we take @ =k, and b = /8h to just meet with the requirements
of 6.5.1 and 6.5.2., then the area of the grid of Fig. 6.7 will
be 17.65 h2. For a mesh size of 8m. this would require ¥ elements

to cover it, where
2 ' .
N = 0.275h 6.5.3

The number of elements for various dam heights is given in

Fig. 6.18.
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Height of No. of elements
dam (m) needed

50 690

60 990

70 1350

80 1760

90 2230 .

100 2750

Fig. 6.18.

At this stage the choice of diMensions becomes 1imited by

the size of the Eompﬁter to be used. The major sforage réquirement
in the finite element program is the stiffness matrix, and it
requires .an array of (nb. of degfees of freedbm x.bandwidth).

The degrees of freedom are 2n, where n is the number of nodes,

and the bandwidth is (4d + 3) where d is the maximum difference

in nodal numbering for any one element throughout the grid. The
IBM 360/168 at NUMAC allows a maximum of 1 megabyte of storage

20

for any one array (i.e. 2 bytes). With single precision, 4 bytes

are required for each real number, and so we need

on(4d+3) < 18

This can be rewritten

d <[32768 i, 3] ' ' 6.5.4.
n 4

where the square brackets indicate "nearest integer to".
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We can express 6.5.4. as a table, as is done in Fig. 6.19.

Number of Maximum
nodes nodal difference
1000 32
1100 29
1200 26
1300 24
1500 21
2000 15
Fig. 6.19

Experience showed that it was difficult to achieve the nodal
difference requirement with over 1100 nodes. The number of
nodes is a little larger than the number of elements, so the
table in Fig. 6.18 suggested a maximum height of dam between
60 and 70m.

With all these factors in mind a grid was designed with

a=64m., b = 170m., ¢ = 180m., a height of dam between ground
level and crest of 60.8m., and slopes of 1 in 3. These values
just meet the requirements of 6.5.1 and 6.5.2. The large part of
the grid was divided up into 8m. squares, but with two layers éf
4m. squares along the slopes of the dam, so that MOre accurate
values would be given of the stresses close to the slope surfaces.
Some triangular and irregular quadrilateral elements were required
" to complete the grid using a total of 1140 elements and 1184 nodes.

This grid is shown in Appendix B, the accompanying portfolio.
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The numbering of a grid to achieve a small maximum nodal
difference is something of an art. In the present case a
numbering by hand achieved a value for 4 of 29, whereas the
storage requirement 6.5.4. was for a 4 of 26. The necessary
reduction in b;ndwidth was done using the bandwidth reduction
program given in Appendix A. This program is not very efficient,
and the necessary result was only achieved after many iterations
of the program, with a judicious varying of the arbitary parameters
that enter into the program. The original nqde.numbering is shown
in Appendix B, since all the input data is given with respect to
that numbering, and the improved nodal numbering obt?ined by the‘

bandwidth reduction program need never concern the user.

6.6. Summary

The design of any grid to model the dynamic behaviour of an
'embankment must first and foremost meet the mesh size requirement
6.4.2. Certainly some of the published girds do not meet this,
and so cannot be considered satisfactory for use in dynamics

problems, pérticular1y if the aim is to calculate stresses.

The problem of reflections from the fictitious boundaries imposes
further geometrical restrictions on the overall size of the grid.
When these restrictions are combined with the limitations of the

available computer storage we are left with a very small range of

satisfactory grids.
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More ingenuity of design could possibly reduce the bandwidth

of a grid, but this is a very time consuming process and would
not give a significant improvement in the grid given in Appendix
B. To achieve even larger grids would requirg another dimension
in computing ingenuity - such as storing‘the stiffness matrix

in more than one array, or, better still the elimination of

storage of all the zero elements in the matrix.
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Chapter 7. Stresses in embankments produced by P and S waves

7.7. Introduction

Our analysis has carried us to a point where we have designed

a grid (Appendix B. Fig.B.1) which we know will be.able to

model wave propagations for certain specific velocities and
frequencies. In particular we know that the ca}culated'disp1acements
will be accurate enough for stresses to be ca]ch]éted without

the introduction of artefacts. We are thus in a position to be

able to calculate the stresses in an embankment as a result of an
idealised seismic input, and see if they are of thé form likely

to cause failure. Before these stress distributions are discussed
we shall first review the stress conditions that are necessary for

failure.

7.2. Conditions for failure

The simplest, but most often used, condition for failure is the
Coulomb criteria (Jaeger and Cook (1969), pp 87-91). It states

that a shearing failure will occur in a plane if the magnitude of
the shear stress along the plane, t, is related to the normal stress
across the plane, o, by

|| > a + w | 7.2.1.

where o is called the adherence and u the coefficient of internal
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friction. (Here, as is usual in soil mechanics positive stresses
are compressional). « and u are properties of the material, which
would have to be determined experimentally. If the total stress
at any point has major and minor princ{pal stresses 9, and g

(i.e. o, > 02), then the maximum shear stress has magnitude 5(01— 02)

1
and acts along lines at 45° to the principle stresses. However

it can be shown that |t| - uc reaches its maximum value along lines
at angle g8 to the minor principle stress, where tan 28 = —l/ﬁ,

Thus by 7.2.1. these are the possible directions‘of shear fracture.
For u=0, g=45° and 135%; whereas for u>0 the two values of B lie

in the range 45° to 135° and are symmetric about the major principal

stress. This is illustrated in Fig. 7.1.

Some further analysis gives the condition for shear fracture 7.2.1. as

o, > b2 0. + 2ab

g 2 7.2.2.
where b =ut/(y° + 1)

The relation 7.2.2. will ho]d_on]y if g, is not so negative (i.e.
the minor principal stress being a tension) that the material breaks
with extension fracture. If the tensile strength'is Ty then we
can expect extension fracture for Oy > - 1T . These results are

summarised. in Fig. 7.2.

'Fig. 7.2. shows that it is necessary to know the three material

properties characterised by the constanthpo, a and u, if a prediction
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lines of shear fracture

Fig. 71 Lines of shear fracture in a soil subject to major
and minor principal, €. and &.. For internal
friction greater than zero the dngle g is

greater than 45
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Fig.72 Principal stress diagram, showing regions
- of stability and failure.
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is to be hade of the type of failure from a knowledge of the principal
stresses. However certain general points can .be made from this
diagram. First, it is not possible to obtain shear fractufe if both’
principal stresses are tensional - either the materia1 is Sfab]e, or
there is extension fracture with cracks normal to the minor principal
stress. Second, if the tensile strength 15 is.small - and this is
1ike1y'for the materia1§ of an embankment - then if the minor principal
stress %s fensiona], extension fracture is the most likely form of
failure. Third, if the internal friction, u, ié reauced - such as by

wétting of the material - the possibility of shear fracture is increased.

The static distribution of stresses of an embankﬁent does not include
any tensions (see, for example Appendix B), and so we would not expect
any extension fractures. The usual form of analysing the stability

of a slope is to look for possible shear fracturé along certain critical
surfaces. That shear failures do take place in'embankmént dams is

well documented (Newmark (1965), Seed (1970)},and they take the form

of slumping along surfaces of approximately'circujar cross-section,
stretching from some point near the top of the slope, going into the
body of the dam and emerging near the bottom of the slope. Such a

slope is illustrated in Fig. 7.3.

If values for the material properties are given, then from any stress
pattern a search can be made for any surface along which the condition

7.2.2. holds, and so would be liable to shear fracture. This may be
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embankment slope

|

possible surface

liable to shedr fracture

Fig.7.3 Possible slumping surface, fogether

with principal stresses.
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done using the generalised procedure of slices, comprehensive

details of which are given by Janbu (1973). The process is a

lengthy one since several trial surfaces may haQe to be considered
before a critical one is found. However we can see the sort of
stress pattefns that would be needed for this kindfof failure, and
‘these are drawn on Fig. 7.3. They are drawn witﬁ fhe convention

that is used for the stress:plots in Appendix B, that is with two

dots to indicate a tensional stress. However it is not necessary

for one of the stresses to be in tension and the other in compression,
only that the difference between the principal stresses is large enough to
meet the condition 7.2.2. and so would be p]ottéd in the shear
fracture region of Fig. 7.2. ‘What is important is the orientation

of the stresses. Since any shear will take place close to a line
bisecting the principal stresses (at least for low values of internal
friction), in order to get shear along the proposéd slumping surface
it is necessary for the stresses to show the variation in orientation
_that is illustrated in Fig. 7.3. whenever,'therefore, we notice a
steady rotation of the principal stresses along a curved line (and
provided they are not close to equality) we may:suspect fhis to Be

a region of possible slumping failure; but a confirmation of this

would require the analysis such as that given by Janbu (1973).

Besides the existence of slumping surfaces, sincé-we are considering
a dynamics problem, there is the possibi1ity'that for some regions
tensional stresses will appear, even if only for a limited time.
These might be in the form of one stress compressional, and the other

tensional - Tike those given in Fig. 7.3. Since these could produce
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a shear the term "region of shear" will be applied to any area
where this kind of principal stress occurs. Another possibility

is that both principal stresses might be tensidna], and such an
area will be termed a "region of tension". InAé similar way if
both principal stresses are compressional the term "region of
compression" may be used. It should be nbted'fhat these terms

are only convenient labels, and it must not be forgotten that shear
fracture is not confined to regions of shear, but might well occur
in regions of compression; likewise extension ffacture could occur

in a region of shear as well as a region of tension.

In view of the 1ikely low value for the tensile strength of the
materials used in an embankment both regions qf-ténsion and regions

of shear must be considered 1ikely areas where extension fracture
might occur. For a completely dry embankment éomposed of a material
such as sand we might expect no tensile strength at all, and the
effect of tensile stresses would be to produce a crumbling of the
embankment. However with the compacted clays that are typical of
embankments there will be some tensile strength, at least in the

short term (see Janbu (1973) p. 62) , and in this case tensile stresses

would produce cracking.

Once a crack has began to develop, the further history of the dam
would require a separate analysis. Since we shall see that tensions
that are produced are only maintained for a short.peribd of time it

might be that the succeeding period of compressibn would heal the
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crack before significant development had taken place. This might
be particularly true of the interior of the dam.l However it must
be borne in mind that if a crack does begin to develop then there
is a redistribution of stresses to account'for:the newly created
free surface. In particular this will lead to stress concentration
at the crack tip which will enhance its propagation, and the
following phase of-compression will be altered qdite significantly

if the crack has developed to some size.

7.3. Description of models

The grid developed in chapter 6, and illustrated in Appendix B
Fig..B.2., was used in two forms, (a) as a homogeneous grid of gne

material type and (b) as a layered grid of three material types.

57

The regions of each layer for case (b) are also indicated in Appendix B
Fig. B.2. The material properties for both cases are given in Fig. 7.4.
Young's Poisson's| Density | P-wave | S-wave
Model Modulus ratio -3 | velocity| velocity
-2 kg.m. i 1
N.m , m.s. m.s.
Homogeneous 9
D1 | embankment and | 2.0x10 0.25 2400 | 1000 577
| substructure
| Layer 1 1.6x10]0 0.25 2500 2771 1600
b2 [Lavered) |ayer 2| 3.84x10° | 0.25 2400 1386 800
Layer 3| 8.4x10° | 0.25 2100 693 400

Fig. 7.4. Table of material properties.
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The values of the material properties are not those of any
particular embankement dam, but are chosen as representative values.
By considering the two models, homogeneous (D1) aﬁd layered (D2),

it should be possible to differentjate between thoée effects that
are primarily due to the geometry of the embankment and the angle
of incidence of the seismic wave, and those effects that are
produced by layers of low velocity material over hfgh velocity

material.

For both D1 and D2 the static distribution of stresses due to the
body forces was calculated. To do this the same finite element
formulation as for the dynamic problem was used, except that, instead

of an equation of motion, an equilibrium equation

[x]1(q] = [Q] | 7.3.1.

is formed, where [ X] is the stiffness matrix, [ @] the vector applied

Toads and [ q] the vector of nodal disp]acements.i Equation 7.3.1. is
solved using the routine given in Desai and Abel (1972) p. 456. The

vector [ @] is formed using the results of 2.9(b). ..The stress distributions
for body forces are given in Appendix B Fig. B.4 aﬁd Fig. B.6 for

the models D1 and D2.

In addition to the body forces due to the weight of the embankment
materials it is possible to include the effect of the weight of
impounded water on one side of the dam. This is done by including

within[ @ ] components due to the effect of hydfostatic pressure along
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certain edges of the grid, using the results of 2.9(d). The
inclusion of these hydrostatic forces for model D1 is also illustrated

in Appendix B, Fig B.5.

For each of the two embankment models, D1 and D2, a number of dynamic
examples were calculated. Each of these examples consisted of an
excitation along the base of the grid in the form of a sinusoidal pulse
of one period, in exactly the same way as was used in fhe tests of
chapter 4. The pulse was applied either as a P-wave or an S-wave and
for waves entering at a variety of angles of incidnece. In order

to ﬁeet the mesh size requirement 5.3.2., the.frequency of the P-waves
were taken as 10Hz., and for S-wave as 6Hz. For these frequencies

the number of elements per wavelength for the various materials of

the models are given in Fig. 7.5.

P-waves at 10 Hz. S-waves at 6 Hz.
Model Wavelength |Elements per{ Wavelength | Elements per
m. wavelength m. wavelength
D1 - 100 12.5 96 12.0
layer 1 277 34.6 - 267 33.3
D2'| layer 2 139 17.3 _ 133 16.7
layer 3 69 8.7 67 8.3
Fig. 7.5

It will be seen that there are a number of parameters that can be
varied. A plane wave can be varied in frequency, amplitude, angle of
incidence and mode (P or S). Variations in embankment slope and

crest width could also be considered. The examples presented were
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chosen so that a study could be made of the affects of P and
S-waves at a variety of angles fairly close to the vertical.
Also two different amplitudes wefe used corresponding to base

accelerations of g and %g.

The parameters of each of the fifteen examples which are illustrated
in Appendix B are given in Fig. 7.6. Each example is given a
designation, such as D2/3. This designation is sometimes extended
to include the wave type, the angle of incidence and the base
acceleration. Thus D2/3; P 10; g shows that example D2/3 is a

P-wave at 10° to the vertical with a base acceleration of g.
For each of these examples Appendix B displays two forms of results.
(a) Time-displacement graphs.

These are given for selected nodes along the top surface

of the grid,'which are the numbered nodes. in Appendix B,

Fig. B1 and Fig. B.3. These give displacements in meters

due to the progagating wave (but not including the static
displacements) both in the x and y directions'for the

complete length of the run. It shqu1d'be noted when comparing
one with another that the displacement scale has been adjusted
so that the maximum displacement has always the same dimension

on the graph.
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gsignation | Wave | Frequency |Angle of | Amplitude {Max. accel. | Timestep | Run-time
Type Hz. incidence | at base at base S s
m. m.s~2
oA p 10 0° 0.0024 g 0.002 0.3
DI 2 p 10 20° 0.0024 g 0.002 0.4
D1 /3 S 6 0° 0. 0069 g 0.0025 | 0.4
Dl A S 6 20° 0.0069 g 0.0025 0.525
'y P 10 0° 0.0024 q - 0.002 0.3
02 /2 p 10 o° 0.0012 3q . 0.002 0.3
23 p 10 10° 0.0024 g 0.002 0.3
D2 /4 p 10 20° 0.0024 g 0.002 0.4
@ 5 p 10 20° 0.0012 3g 10.002 0.4
s S 6 0° 0.0069 g 0.0025 0.375
D2 /7 S 6 a° 0.00345 3g 0.0025 0.4
D2 /8 S 6 10° 0.0069 g 0.0025 0.4875
D2 /9 S 6 20° 0.0069 g 0.0025 0.6
® /0 S 6 20° 0.00345 iq 0.0025 0.6
RN S 6 30° 0.0069 q 0.0025 0.6

Fag.

7.6.

Table of parameters for different models.




(b)

7.4.
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Stress distributions

These are given for only a section of the complete grid.
This section is i]lustréted in Appendix B. - Fig. B.3. On
each stress plot only an outline of the section is given,
with, in the case of D2 examples the interface drawn between
layers 2 and 3. The plot consists of two orthogonal vectors
intersecting at the centroid of each e1emeht having the
magnitude and direction of the principal streéées of that
element. for compressive.stresses the vector is given by a
solid line, whereas for tensional stresses the vector is
represented by dots at its ends. The plots are given fof a
selection of times from the length of the run, usually ten
time-steps apart. For these plots the stresses include the

stress distribution due to the body forces.

Discussion of the time-displacement graphs

The smooth shape of the time-displacement graphs without the appearance

of extraneous ripples except possibly towards the end of the run confirms

the use of the criteria established in chapter 5. There are two features

~of these graphs that are worth noticing.

(a)

In all caseé there is an amplification of the displacement between
the ground level and the crest, which confirms the conclusions of
Bouchon (1973) etc., already cited in chépter 1. The table of
Fig. 7.7. gives the amplification factors for the examples. The

ground level displacement was measured at node 100 in each case.
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Designation | Type | Angle of ‘Amplification factoré
incidence displacement at crest/displacement at ground
x-components y-components
D1 /1 P 0° - 1.1
D1 /2 P 20° 1.6 1.1
o /3 S 0° 1.8 -
Dl /4 S 20° 1.9 1.5
D2 /1 P o° - 1.5
b2 2 P 0° - 1.5
D2/3 P 10° 1.5 1.6
o2 /4 p 20° 2.0 1.7
02 /5 p 20° 2.0 1.7
02 /6 S 0° 3.0 -
® /7 s 0° 3.0 -
D2 /8 S 10° 3.0 3.0
D2 /9 S 20° 3.1 3.0
/10 S 20° 3.1 3.0 -
D2/11 S 30° 3.3 2.1

Fig. 7.7.

Amplification factors




164

These magnification factors point to a conclusion which will be
evident also from a study of the stressplots, namely that the
effect of the seismic disturbance is greater,fbk any, or all, of

the following conditions. (i) S-waves, (ii) layered model,

(iii) non-vertical incidence.

(b) For eXamp]es D1/2 and D1/4 which are at- 20° incidence the
disturbance starts later and later as we traverse the
surface from left to right. The ground level nodes on the
L.H. side are the first to move, followed by'those nodes of
thg dam, and finally the R.H. side nodes at ground level:
for all the examples of angled waves in 2 models there is a
marked contrast. In these ekamp]es the I{H.ISide ground nodes
(numbers 987 and 1077), far from being the last, in fact start
moving only shortly after the wave has entered the dam at the
L.H. side. Furthermore the disturbances &t nodes 987 and 1077
start at almost the same time. This effect is due in part to
the lTow velocity of the dam material, slowing down the progress
of the wave when it enters the dam. However, the almost simultaneous
start to the displacements at nodes 987 and 1077 (and the same is
observed of the L.H. side ground nodes, numbers 100 and 190),

_ indicates that the wave is travelling close to vertical incidence.
This must be due to the refraction at the interface between the
two layers that make up the substructu?e,in_mode] 2. Since the
velocity across this interface is ha]ved,'the angle of incidence is

| approximately halved for waves that are refracted without mode
conversion. For a conversion from P to S-waves at the interface
the angle of refraction is approximately a quarter of the angle
of incidence; but for an S to P conversion the reduction in angle

is by a factor of approximately 0.8.
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Discussion of the stress distributions

The stress plots are illustrated from the time when the disturbance

begins to modify the body force stress distribution, and in all.

cases the progression of a wave through the dam can be clearly seen

Rather than give a description of each of the examples, this

discussion will centre round certain points which they bring out.

(a)

(b)

Regions of tension and regions of shear appéar in nearly all

the exahp]es, somefimes to.a considerab1e extent. The only
examples which are tension free are D2 /2; P; 0; 4g and .~

2p; P; 20; 39. DI/1; P; 05 g has only a small region of tension
near the crest at 0.18s. It could be argue& fhat the tensions

are produced only because of the high accelerations at the base,
but it must be noted that D2/7; S; 0; 39 and DR/10; S; 20; 3g,
both develop tensions parallel to the slopes of the dam, even

though they have the lower acceleration.

There are thus many examples which we could consider as potential
places for tensional cracking; e.g. 2/4; P; 20; g at 0.2-0.225,
D2 8; S; 10; g at 0.325-0.35. '

The rotation of principle stress of the kind.illustrated on.

Fig. 7.3. and characteristic of s]umping.faiiure can be seen

in severa]Iexamples, especially in those involving D2 and 5-waves.
The example D2 /@8; S; 10; g at 0.35s, already mentioned may serve

as an illustration. As already explained in section 7.2., slumping
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failure does not require tensional stresses. An example
of a rotation of stress along a possible slumping surface,
without tensions, is D2/10; S; 20; g at 0.35-0.4s at the

lower left side of the dam.

The effect of S-waves is certainly more dramatic. This is

seen by comparing any two examples at which one is P and the
other S, and the other parameters the saﬁe.{'Fbr example

D1/2; P; 20; g produces some quite large changes to the static
compressional stresses, but barely produces any regions of teﬁsion
or shear, whereas Dl /4; S; 20; g is charactekised by a large

region of shear which travels across and up the embankment, with

the shear stresses quite deep into the structure.

Perhaps the most significant gleaning from these results are

the differences between the homogeneous and Tayered models.

A comparison of Dl /1; P; 0; g and D2/1; P; O; g makes this very
clear. In D1 /1 a compression followed by a rarefraction moves

up the dam, just producing tensions at 0.18s at the crest. The
wave is reflected from the surface of the.dam and passes down

and out from the region of the dam at 0.3s, when.the stresses are
returning to the static distribution. Fr /1 near vertical
tensions first appear at the toes of the dam at 0.08s, which then
travel up the slopes behind a compression producing a considerable
region 'of tension at the crest at 0.16s. The history then departs
even more from its counterpart D1/1, with.the dam region dividing -
up into regions of compression and tension. A similar comparison

can be made between D1/3; S; 0; g and 2/6; S; 0; g. Here again
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the pattems begin bkoad]y the same, but with more
exaggerated distortions of the static stress distribution in
the D2 example. Towards the end of the run the D2 example

divides into regions of tension and compression.

As already observed from the tine-disp]acehent graphs there

is a marked difference between the angled Waves when comparing

D1 models with D2 models. This was because the 1ayeriﬁg of

the substructure tends to bring the wave -closer to vertical
incidence. A comparison of D1/4; S; 20; g. and A; S; 20; g
shows that‘the effects of layering for tﬁe angled S-waves is
quite considerable. In the Dl model a wavé-is seen to enter
from the L.H. side and progress across and up the dam, giving
quite a large region of shear near the crest at 0.5s. At no
point is the RH. side ever in tension. R;r the (2 model regions
of shear enter both the left and right toes of the dam at about
the same time, (indeed, for D2/8 model which is at 10° the shears
begin at the R.H. side). These two tegions of shear both reach
the crest around 0.4s, giving substantial tensions deep into

the dam structure. The dam then, as in the other D2 models
discussed, divides up into smaller regions of compression and
tension, as the energy is reflected from ;he base interface

back into the dam.

7.6. The stress distributions and their physical éxplanation

The considerable variety of stress distributions that are produced by

the variations in wave type, angle of incidence and embankment model,
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that make up examples of this study are as a result of certain
well known physical properties of elastic wave bropagation, namely
reflection, refraction, mode conversion and diffraction. At each
interface a propagating wave will suffer one or more of these
properties, which even with a quite simple geometry, rapidly
increases the'number of wavefronts. As these wavefronts begin to
interfere with each other the nature of the displacement pattern

takes on an increasingly complex form.

The kind of complexities that we might expect wi£h the models DI

and 02 are illustrated in Fg. 7.8 and Fig. 7.9. Fg 7.8. illustrates

an S-wave, incident to the vertical, entering'thé Homogeneous mode1

D1, and gives the types of wave that will be produced after one
reflection from the top surface. The angles of the rays are only
suggestive, and are not drawn to scale, but they are easily calculated
using Snell's law. The amplitude ratios of each component to the
incident amplitude are not given, but cuuld be calculated from formulas
derived in seismological texts (e.g. Aki and Richards (1980) pp 144-151).
Also, indicated in Fg. 7.8.., by circular wave fronts, are the

diffracted waves that would originate at the discontinuities in slope.

Fg. 7.9 is a similar diagram for part of model D2. It will be seen
that the introduction of two interfaces increases very considerably

the number of wave fronts that will be produced in a given time.
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The fact that the incident wave in these diagfams is S is not
significant; the same sort of splitting of the wave into a variety
of types would occur with an incident P-wave, but with differences

in some of the angles.

It is not easy to disentangle these different wave fronts from
each other in the stress distributions in Appendix B. However

there are some examples where we can see these processes taking place.

(a) - Reflection
This is‘Weli issustrated by the examples D]/];.P; 0; g and
D1 /2; 20; g: A sketch of the expected P wavefront for Dl /]
is given in Fg. 7.10. The reflected compression waves.from:
the dam s]opés are clearly identifiable, coinciding in the central
‘region of the dam at about 0.24s, and having passed through each

other by 0.3s.

A similar series of sketches is given in Fg. 7.11 which give

the progress of a compression wave incident at 20° as in D1/2.

The same effect is not so easily seen in thezﬁases of D13 énd
D1/4 since these are S-waves, and the exact position of an
S-wave is not readily seen when it is overlain (as in all the
examples) with the compressive stresses of the static forces.

However in D1/3; S; 0; g there are clear regions of shear which
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0-18s

0-22s

_ 0 3s
Fig.710 Progression of a compression wave in D1/1.
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had

0-22s

0-28s

0-34s

Fig. 711 Progression of a compression wave in D1/2.
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move from the slopes towards the centre (e.g. at 0.25s

on the RH. side), which will be the result of inferference

of the reflected wave with the latter portion of the ngoing"
wave. In a similar way in DI /4;S; 20; g, a region of shear

is observed to travel from left to right across the body of
the embankement from 0.3s to 0.5s, being the result of

reflection from the left slope.
(b) Refraction

This has already been inferred from the time displacement

graphs, where it was observed that the waves incident at an

angle arrive at the ground surface almost at the same time

along its whole length. The effect of this refraction becomes
evident in the stress plots with the early arrival of a wave

at the RH. toe of the embankment. In the case of D2/4; P; 205 g
this is seen at 0.12s and 0.14s., arc is sketched in Fig. 7.12,

showing the position of maximum compression at these times.

{c) Mode conversion

The stress distributions do not give any direct evidence of
mode conversion, but we have no reason to doubt its importance.
Perhaps the best evidence they give for its cumulative effect is

a comparison of D2/1; P; 0; g and 02/6; S; 0; g. The early
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0-12s

0-14s

Fig.712 Bending of a compression wave due to re'fr'acflion in D2/4.
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parts of the examples show distinctly the patterns of

P and S waves respectively, but by the end Qf'their runs,
they begin to show similarities, particularly in the

breaking up of the embankment into regions of compression

and tension. The eventual similarity is to be expected from
the continual splitting into P and S waves-at each reflection

within the region of the embankment.

bi ffraction

Diffraction will occur at any discontinuify:ih a free surface
or of an interface. Any plane wave reflected by a surface
with a break in slope will be split into sections; the “shadow"
zone between these sections will not be frée from disturbances,
but will contain circular wave fronts of both P and S types
originating at the discontinuity. This is illustrated in the

sketch Fg. 7.13.

The position illustrated in Fig. 7.13 wouid occur on D1 /1 at
about 0.18s (using the compressive part of fhé wave as indicator).
There is no clear evidence of a circular wave front in the region
of the corner, suggesting that the diffra;tion effect is small.

In a similar way, in none of the examples are there obvious

indications of circular wavefronts propagating from the crest.
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(a) Vertically incident P-wave approaching slope corner.

diffracted S-wave “reflected P-wave

)
\

{diffracted P-wave

(b) Reflected and diffracted waves after incidence.

Fig.713
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In D2 examples the junction of an interface (which is itself
somewhat irregular) with the break of slope at the toe of

the embankment could be expected to enhanceld{ffraction effects;
and this region does develop into one of high stresses with
considerab1e variation in stress in time. However it is also

the region where reflection, refraction, -and mode conversion

are occurring most frequent]y. It is not,_thérefore, possible

to ascribe the detail of this region to diffraction in particular,
and in view of lack of evidence of it elsewhere it can be
concluded that it is most likely a subsidiary faétor in determining

the stress distributions.

The above discussions:show that the well known physical properties

of reflection, refraction, mode conversion, and; to a lesser extent,
diffraction, are able to qualitatively exp1ain”some of the more simple
stress patterns; and that they are not able to explain immediately

the more complex stress distributions is only because the observed
effect is a sum of so many different components. This raises the
possibility that a straightforward ray theory approach carried through
systematically might be able to give as good predictions of stress
patterns as are given here. This approach would require not only a
careful accounting of all the generated wave fronts, but also the
calculation of the amplitude and phase of each-wavé. The total
displacement at each point would be then found by summing the displacements
of all the generated waves that pass that point at each moment in time.

It would seem feasible that such a programme could be carried out.
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for incident plane waves, at least for geometries of the
comp]exity-of D1 and D2. The great advantage of this approach,
if it were successful, is that there would be no need to
introduce the artificial boundaries.that are needed by the
finite element method. The calculations could bé carried dut
over a genuine half-space. The difficulties would seem largely
to be computing ones, in which a system of book-keeping would be
needed to keep account of the history of each wéve from the

time that it is generated.

7.7. The Stress distributions and natural modes of vibration

The evidence of the stress distributions for the layered model is

that much of the incident energy becomes trapped in the embankment.

If this trapping of energy were total then the.form of model used

in a mode superposition analysis, which has a rigid base, would be
valid. In the present model some re-radiation of energy to the
substructure takes place. The question may be asked whether the need
to model this re-radiation is significant, parfich]ar]y if there is

a large velocity contrast between the embankment and its substructure.
It might be argued that the embankment as a resﬁ]t of the inhomogeneities
is largely isolated from the substructure, and that, even though some
of the input energy will be re-radiated, the form pf vibration will

be essentially that of the natural modes of vibrétion of the embankment
fixed to a rigid base. Such an argument is implicit in some methods

of design, for example the "Simplified Approach“;-proposed as a

preliminary design method by Chopra and Corns (1979) for concrete
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gravity dams and which is discussed by Alitnisk.and Severn (1981)
An evaluation of this hypothesis can be had from aﬁ examination

of the stress distributions.

Fig. 7.14 gives the first six mode shapes for an idealised embankment.
They were derived by Clough and Chopra (1966)_for the dam section
already illustrated in Fig. 6.11.The embankment .of the grid of this

‘study wouldlhave different frequencies, but the order of magnitude

would be similar (1-4 Hz), and the pattem of:the'mode shapes would
be almost the same. Certain‘of these shapes may Be seen in the
stressplots, albeit only for a short period of tfmé. For example
R/6; Sy 05 g at 0.3s has an antisymhetric distribution about the
centra]ivertical with each slope divided into a region of compression
and one of tension. Mode 3 of Fig 7.14 wou]d'cokfespond to this.
However this mode shape is certainly not maintaingd, for by 0.375s
the slopes are divided into four distinct regibns alternating between
compression and tension. However this may be the shape of mode 4

of Fig. 7.14 (or possible, a mode higher than those illustrated).
Likewise, for I2/1; P; 0; g, the position at 0.18s corresponds to

the Shabe of mode 2, and later at 0.3s we have é distributioﬁ that

would fit mode 6.

The examples with vertical incidence do not therefore contradict

the hypoth%is that, the forms of stress distribution could be

obtained by a consideration of the natura]zmodes of vibration, but
using higher modes with increase in time. Howévér this hypothesis

can no longer be held in the case of the stress distributions produced

by waves incident to the vertical. In all the D2 models which have
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waves incident at an angle there is a tendency as time progresse§

for the stresses to break into smaller regions of either tension

or compression. An important feature of these examples is that

the number of regions is always more on the 1eft side. For

example in D2/11; S; 30; g at 0.525 we can couﬁf's alternative

regions of compression and tension on the left side as opposed

to 3 on the right. The same is equally true of P-wave examples,

e.g. 2/4; 20; g which has at 0.4s a similar 5 regions on the

left and 3 on the right. This is a feature which is clearly dependent
on the side from which thé wave approaches and so cannot be explained
by a suitable combination of natural modes. fhe mode shapes for a
symmetric body must be either symmetric or antisymmetric - that is

if an origin is placed on the line of symmetry; the displacement

at the point (-xz,y) will have the same components as that at (x,y),

but with possibly a change of sign in either or both of thé components.
This behaviour is seen in all the illustrated modes of ‘Fig. 7.14, and
means that the numbers of alternating regions of édmpression and
tension down each slope will be the same. A combination of mode shapes

could possible destroy this symmetry, but we shou1d then see an alternation

of the stresses from one side of the embankment to the other.

It must be concluded that the pefsistent division of the left slope

into more regions of alternating, tension and compression than on the
right slope is a reflection of the side from which_the wave enters.

Such stress patterns as these, cannot, therefore be even approximated

by a combination of natural modes, but must be formed by a consideration
of the original nature of the forcing function, as has been done in

this study.
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7.8. Conclusion

The idealised seismic inputs used in the examples have shown that
considerable distartions of the static stress distribution may be
produced, and that this hay be done with considerable variety by.

a variation of the input parameters and whether the model is
homogeneohs_or layered. This variety is not surprising when the
physical processes of reflection, refraction, mode-conversion and
diffraction are considered. Indeed, on the stress plots it is
possible to discern some of these processes, thOugh this is not so
readily done as tjme progresses and the stress distribution becomes

a summation of the many waves that have been generqted.

Both the time-displacement graphs and the stress plots confirm that
the displacement amplitudes and stress distortion; are greater in

the cases of (a) S-waves, (b) layered model (c) angled incidence.

Of these, perhaps, the inhomogeneily is the most important factor.
The trapping of energy in the low-velocity embankment is quite
evident and even in the case of a P-wave the mode conversion at each
reflection and refraction produces in time a stress distribution with

similarities to that from an S-wave.

Many of the stress distributions, even with the lower base acceleration,
are suggestive of failure. In addition to the possibility of slumping
surfaces, there are many instances that would éuggest tension fracture,

notably near the crest.
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The stress pattems from waves incident at an angle contain
permanent features that clearly are consequences of the
“directional nature of the wave. It is therefore not possible
to construct a simplified model in these cases based on natural
modes. An analysis in terms of only natural modes would imply
source independence. The examples of angled incidence show

that this is not tenable.
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Chapter 8- Summary

The object of this 'study has been to study the effect of elastic
waves from a seismic source on an embankment dam; The concermn

has been to evaluate the displacements and $tresses Qenerated in

‘an embankment when it is subjected to waves which have the
characteristics of seismic waves.” Since there is .ample field
evidence of the effect of the surrounding topogkaphy and geology

of the substructure on seismic waveé, this study takes as a starting
point that the embankment should not be considered in isolation, but
that any proposed model should include as much of the underlying

substructure as possible.

Of the possible numerical approaches to this problem the finite
element method is one that has much to commend it, and to a great
extent this study is-an evaluation of ifs applicability. The feature
of the finite element method that is so attractive is its great
flexibility in modelling regions of both geometric cbmp]exity and
yariation in material properties. Since these were the sort of
features to be modelled the finite element metﬁod'was selected rather

than a finite difference approach.

The use of finite elements for dynamics problems consist of two
distinct phases. First there is the formulation of the equations of
motion, which consist of a coupled set of second order differential

equations.’ This formulation involves the construction of matrices
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which reflect the inertial, elastic and damping properties of

the whole region being studied, together with a time varying

vector that records the history of any external forces or displacements
that are applied to the region. The assembly of -these matrices is

a standard procedure. Thé theoretical details are given in chapter 2,
based substantially on the text of Desai and Abel (f972). for this
assembly the user has the choice of a variety of element types, but

the simplicity of the constanf strain triangle still makes it very
popular. Its shortcomings may not always be fU11y realised, especially
when used for the calculations of stresses whére it appears that the
orientation of the triangle can affect the orientation of the stress
vectors. The quadrilateral elements, which were the main elements

used in this study, each formed out 6f four CST's, do notlshow this
defect. An area which could be investigated is the performance of
higher order elements. It is known that for étatic problems higher
order elements can significantly reduce the number of nodes needed

to obtain a certain accuracy. Whether such elements give similar
advantages to dynamics problems could be determined, but there would
appear to be some doubt about this in view of the critical nature of

the internodal distance for the propagation problems which is

emphasised in this study.

The second phase of a finite element solution to a dynamics problem
is the solution of the equations of motion. For this there are
currently two quite different approaches - mode superposition and

direct integration. Mode superposition is effective for a dynamical
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system which is governed predominantly by the lower modes of
vibration. This may be reasonable for a structure attached to

a rigid base, but not for the study of the disb]acements (and

even more so stresses) in a structure which is attached to a
substructure which is itself vibrating. It was therefore neccesary

for this study to use a method of direct integration.

There are many methods of integration that can be used. Methods

which are explicit and'self-starting have great cémputationa]

advantages. Of these a Ruinge-Kutta fourth order algorithm was

chosen and extensive]& tested. Its accuracy is greatly superior to

some other methods recommended in the literature and it gave good

results even after 200 tine-steps. It is stré{ghtforward to prdgram;
since it fnvo]ves only addition and mu]tip]ication of vectors and
matrices. To advance a set of almost 2400 equations forward by

1 time-step required approximately 3 c.p.u. seﬁondé. Whether any

other methods are significantly faster than this is not known; but

the length of time for computation was not the most restrictive of

the limitations encountered in this study. The main disadvantage of

the Runge-Kutta algorithm is its instability if too large a time-step

is used. It was discovered empirically that_this instability was more
likely to occur if the equations contained damﬁing coefficients, and
this observation was confirmed theoretically for some simple cases.

The determination of the critical time-step for a given set of equationsl
is theoretically possible, but for large systems presents a formidable
computing task in itself. Fortunately, i€ in pféttice too large a time-step

is chosen, the instability is dramatic leaving the user in no doubt
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that a smaller step must be used. A time-step of half the
critical value gave, for the test example, a good result. The
Runge-Kutta algorithm therefore proved to be a very satisfactory

integration method for prob]eﬁs without damping.

A series of tests on some simple wave propagation problems revealed

the capability of a finite element mésh to give accurate predictions
for both displacement, stresses and speed of propagation. As would

be expected, it was found that for satisfattory predictions there

had to be both 1imitations on both the time-step of integration and the
size of the elements. From the tests a value of six time-steps in

each period of the propagating wave was found as a lower limit. -The
restriction on mesh size was fixed by the tests at eight elements

per wavelength.

This latter restriction is of fundamental importance. It implies
for a certain material, and hence a known propagating velocity,

that there is a relation between the e1ément size and the maximum
frequency that can be modelled by that grid. Itlis therefore no

use activating a finite element grid with anythﬁng 1ike an impulse.
For earthquake studies we can rationally settle @n a cut-off frequency
for our input. Given the material properties of the dam this fixes
our element size, and the grid must be desigﬁed'accordingly. It
would appear from some of the published grids that this fact has

not always been realised. Failure to meet the grid size requirement
will lead to poor predictions of displacement but after only

a few time-steps useless predictions of stress. It is
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worth emphasising that this is a limitation of the finite element
mode1, and not the method of solving the equations of motion. It
therefore applies equally to other integration'a1gorithms; and to

the method of mode superposition.

Care was taken in this study to design'a grid that meets with the

mesh size limitation. An unwanted feature of a finite element grid
when used to model an infinite space is the reflective nature of its
artificial boundaries. Whether this defect can be eliminated is not
certain, but the grid used in. this study overcamélthe problem only

to the extent that its boundaries were placed as far away as possible.
The size of grid was finally déterminedvby the 1{mitations of the

computer storage available.

Again, it is worth pointing out that mode superposition does not
escape from unwanted reflections. Since it is used with the input
given along the base of.the embankment, the predictions it gives

are those that result from waves originating at the base which will
be internally reflected in the embankment back to the base again, at
which point they will be reflected from the bage. At least in the
model of this study the first fictitious surface that may act as a
reflector is placed some way down into the half-spéce beneath the

embankment.

The fact that a finite element model can only cope with frequencies
below a certain level means that it is not possible to use an actual
strong motion record as an input. This study used single pulses at

a known frequency. These have the adwantage of simplicity, and are
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suitable for a study whose aim is insight into tﬁe broad features
of wave propagation in embankments. A more realistic source would
be to use a strong motion record filtered at tﬁé-cut-off frequency.
However the use of such an input would require a solution to the
problem of reflections from the artificial boundaries, so that the

model could be run for the full duration of the seismic record.

Certain other limitations of the model used in this study should

be noted.

(a) The model is two dimensional. This js a serious weakness,
since modes of vibration along the length of an embankment
dam, which have been observed, fail to be mdde1led1 However
the eitension of three dimensions of the method as formulated
here, whilst posing no new theoretical problems, would require
a large increase in the number of nodes. A two dimensional
model with N nodes,if extended to a three dimensional model of

similar extent would require of order N]'5 nbdes."Fbr-the 2400

degrees of freedom of the model of this stddy, this becomes

approximately 125,000 degrees of freedom.

(b) The materials are assumed to be linearly e]gstic, The
visco-elastic properties of the embankment materials will
produce a modification of the static stress distribution due
to the body forces, but their effect on short term events such
as seismic waves might not be large. However it would be possible

to extend the method used in this study to investigate this.
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(c) The effects of any impounded water have been ignored. The
static stresses due to the weight of impounded water dn
one side was calculated, and is illustrated in Appendix B,
but this is not included in any of the dynamic examples,
except in some trial examples that have not been included in
this study. However the weight of water is not a large
addition to the body forces, and so would nof give a radically
different stress pattem for dynamic problems. There are
however other effects that the impounded water may have, which
have not been considered at all. First the boundary on the
upstream side will be an interface between an elastic medium
and an acoustic medium, with transmission of energy across it.
To iné]ude this in a finite element modef'wouid require dividing
the water up into elements with the appropriate properties
(Saini et al. (1978)). Second the presence of water will affect
the properties of the embankment materials by the addition of
a pore pressure. This relates to the 1imi£ation (b) already
discussed. A third effect that impounded water might have is
the generation of water waves on the-surface'of the resevoir as
a result of an earthquake. This is a different kind of problem
to that considered in this study, and would require a separate

analysis.
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The models used for the examples of chapter 7 were based on a

grid which was designed to meet the requirements of mesh size.

The predicted stress distributions are therefore reliable. 3Srids
which have been used in the past, such as those given in chapter 6,
which fail to meet the mesh requirement can only be regarded

as poor predictors of displacement and worthless predictors of

stress distribution.

The examples of chapter 7 illustrate the variety of stress distributions
that are possible, and they emphasise the importance of S-waves,

angled incidence and inhomogenity. \brioﬁs forms of failure are
indicated as possibilities, especially slumping fai]ures and tensional

cracking near the crest.

The physical nature of the wave propagation can be seen to give a
qualitative explanation of the predicted stress patterns. Reflection,
refraction and mode conversion play important parfs in determining the
stress distributions, but diffraction effects, at least in the examples
presented, are not noticeable. There seems to be the possibility that
results comparable to those of this study could be obtained by a
quantitive application of ray theory. If successful, this may provide
a means of avoiding the problem of fictitious boundaries which is

inherent in finite element methods.

The examples with angled incidence show that an analysis based on
natural modes can never be sufficient. The form of the forcing

function, in particular the direction of the incident enerqy, has
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a persistent effect, showing that the stress distributions

are nbt independent of the nature of the source. This indicates
that the use of an actual strong motidn record.as input for a
test has a further limitation, since it is the record at a point
which has a specific directional relationship to the source; a
dam under design may be more likely to receive seismic waves from
a different direction. For dams which are built close to faults
which may be the site of an earthquake, no single record would be
sufficient. Thfs is becauge, even if the seismic waves could be
approximated by plane waves, the movement a1on§ the fault producing
the earthquake implies that we should, at 1east; have to consider

these waves as approaching from different direqtions.

This last point reinforces the need for an integrated model which
includes both the seismic source and the embankment, as mentioned

in section 1.7. However, the overriding requirement of a sufficiently
small mesh size that is established in this study, suggests that a
straightforward extension of the finite element method as used here,

to achdeve'such a model, would be impracticable.
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Appendix A. Computer Programs

1. Functfon

The computer programs listed at the end of this appendix have
been written to perform the finite element fomulation given in

chapters 2 and 3. There are three main programs:-

(a) ASSEMBLY. '
This reads in the grid data and forms the stiffness,
mass and damping matrices of the equatioﬁ of motion 2.4.1.
For a static problem it calculates the dispiaéements |

as a result of given loads.

(b) TIMESTEP.
This advances the displacements and velocities by a set

number of time-steps using the Runge-Kutta algorithm.

(c) PLOTS.
This produces graphical displays of displacement with
time for selected nodes, and distripution of stress at

selected times.
These programs are run with the help of four minor programs:-

(d) REDUCE.

This reduces the bandwidth of a grid.
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(e) INPUT. .
This forms the input data for TIMESTEP for different

plane waves.

(f) FILESUM.

This adds the displacements due to static forces to those

from the dyndmic problem.

(g) DISPLAY.
This allows the user to select the required display options

of PLOTS.
The program ASSEMBLY is based on the published code in Desai
and Abel (1972) pp. 447-457, though it has undergone considerable

modification and extension.

Some of the subroutines of PLOTS which perform the plotting

of the stress vectors are based on routines contained in Park (1981).

2. Structure

Each program reads from and writes to devices, labelled in the

program by numbers. Numbers 1 to 5 are used for input devices and

6 to 10 for output. Some of the programs have a smal} degree of

user interaction via a terminal, in which case 5 and 6 are used fér
input and output and must therefore be attached to the terminal rather '
than 'a file. A flow diagram illustrating the relation of each program

to its input and output files is given in Fig. A.1l.




The main programs, ASSEMBLY, TIMESTEP and PLOTS, .are composed

of many subroutines. Figs A2, A3 and A4 give flow charts for
- the order in which the subroutines are called by the main progrém
(which in all cases is just a calling program). Subroutines
which'fnput or output data are indicated by lines to device numbers,
which are the same as fhose in Fig. A.1. The_function of each
subroutine is described in the comment cards of:the program listings,

given at the end of this appendix.
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_ Lgl‘ld dufg) Key:
PROGRAM
5’ 4
@[ ReDUCE :
8 @? | |
| 1 SO - source
A 5 P .
'mpmVEd ASSEMBLY 9 S
fopology TERCAN tables
1 ) {nodes)
57 13
‘ grid dump |[INPUT
} geometry SR
Y Y VN ) 4 |
)| ol &
TIMESTEP |*——{loads)
-' 10]¥6)
static ,(displucemenE)
displacements :
‘ 3 AR
FILESUM
# : v 1?7
combined
displacements .
nodes}
3 3 3 . 5 7 F3
: PLOTS 7 =1 DISPLAY
9 7 65 |
plotfile 2!
(tables)
: Fig A1 Interrelation of programs. Numbers are device numbers

- for the adjoining files.-
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G¢—— <5
- DATAIN [—35—
6 «—TES
CENT
=7
INITIA
<
S asemBL——Jauan " csT
84_.__4 < s
v
< <5
) LOAD! ;
Y
RVEC >
T |DAMPF—5 MODIF2[ . IGEBC
1 +
MODIF1|__,  |GEOMBC| 10+{BANSOL
9+«——IpumMp .

stop ' stop

Fig. A2 Subroutines of ASSEMBLY with input/output device .numbers.
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Fig. A.3 Subroutines of TIMESTEP

GET |3
L
TIM|—5
4 .
v
__|LOAD2[—<4
> ~|SCALE
| — ADSUB
TMSTEP RUNG [_%__{PROD
~ |MULT1
) «MULT?
1
v
DUMP
A 4
stop

with input/output device nurrjbers.
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[ .
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—3 |
«|STRSTR T
T«—DISPLS [, _|OUTLIN |9
| "~ |VECPLT[ o [TRIG
L . ‘9 ‘4
stope— * IRAMAX
PSCALE [ ‘
RAMIN |
] _i_ ¥
9 —lGROPLT > stop -
— —<
[
DISPL 3
6 1
«— >
" _GHlOS | RENUM
stop

Fig. A.4 Subroutines of PLOTS

with input/output device numbers,
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3. Some notes

(a) ASSEMBLY

| The main task of data preparation has to be cérried out
for this program, which is read in the subrdutines DATAIN
and LOADZ. A useful subroutine, TEST, wés dé?ised to help
in eliminating errors from the grid data ff]e: An error
in a co-ordinate of a nodé or in a node numbér is very
11ke1}_to lead to a non-convex quadrilateral element. Wing
the notation of Fg. A.5 the component along the Z-axis

of the vector (r, - r,) x'(r, - 2,) will have the same sign

as that of sin 62.

Y 4

Fig. A.5

This component is,in terms of the co-ordinates of the nodes

of the element,given by

fo = (®pup t@pys tazyy) ~(Tpyy o5y, * 2 Yy
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and so 0 < 8, < w requires fq20 .This function is

2
evaluated at each node of the quadrilateral. If the element
is either numbered clockwise, is concave,_bf is crossed

then at least one fps fp fp 5 will be negative. This is

illustrated in Fig. A.6.

- Fig. A.6. Sign of 7 at each node for different quadrilaterals.

Certain options are available in the program which are
prompted when run at a terminal. In particular the program

can either be used to find the static displacements due to
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an.initial loading (which may include body fbrces), or

as the first stage in a time-stepping problem. for a
| grid with 2400 degrees of freedom this program uses
| around 15 c.p.u. |

(b) TMESTEP

Each time the routine TMESTEP is called thé‘disp1acements

and velocities are advanced by 1 time-stéﬁ'._ The Ruhge-Kutta
algorithm is contained in RWNG and its sdbsidiary routines
which pérform various additions and mul ti‘.pHcétions of vectors.
and matrices. As it stands the program executes 15 time-steps,
and has to be reloaded for more time-steps. for a grid of |

2400 degrees of freedom 15 time-steps uses around 50 c.p.u.

(the majority of which is used by the subroutine PROD).

(c) PLOTS
The output from ASSEMBLY and TIMESTEP, together with options .
thaf have been determined by the interactive program DISPLAY,
from the input to this program. It produces a plotfile using
the ]ibrafy*GHOST, which gives the graphical output. To produce
the plots that are given for each example in Appendix B required

around 60 c.p.u.

(d) PREDWE
The bandwidth b, of the stiffness matrix is related to the

maximum nodal difference, d, of any element by

b= 4d + 3
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if each node has two degrees of freedom (Desai and Abel (1972);
p. 162). This program, using the algorithm of 5 rooms (1972);
reduces the value of d for a grid. The program is interactive
aﬁd to be used successfully requires a judicious choice of

the input parameters. The output is in the‘form of a renumbering
of the nodes, which is input into ASSEMBLY. It is not necessary

for the user to know the renumbering.

4. Input files

Input files for the programs below must be prepared with the formats
listed. In addition, for most programs, device 5 is attached to a

terminal.

(a) ASSEMBLY |
(i) Fle of grid data, attached to device 4. It is divided into
sections. Below each named qdantity is its program name-and

the format.

Section 1. Basic parameters.
No. of nodes No. of elements No. of materials Scale option
NNP NEL NMAT . KM
I5 I5 15 I5

Scale option =1 if co-ordinates are in km.

0 1if co-ordinates are in m.




Section 2. Material data.
Young's Modulus Poisson's ratio Density _Thickness
E(I) : PR(I) RO(I)- ~ TH(I)

£10.3 E10.3 E10.3- ~ EN0.3

1 line for each material type

Thickness is usually 1.0

Section 3. Nodal co-ordinates

Node number x co-ord. -y co-ord.
, M XM Y M)
15 E10.3 ~ E10.3

1 line for each node, except when successive nodes are
equally spaced along a straight line, in whiﬁh case only

the first and last need be entered.
Section 4. Element topology

Element no. node 1 node 2 node 3 node 4

M IEM,1) IEM,2) IEM,3) IE(M.4)
15 15 15 15 = 15

for a triangular element set IEM,4) = IEM,3)
Axes are assumed with y vertically up. Nodes must be entered

anti-clockwise.
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1 1ine for each element, except when successive elements
are such that numbers of corresponding nodes increase by 1
(i.e. IE(M#1,d) = IE(M,J) + 1), in which case only the
fifst of such a chain.has to be entered, Egilthe last

element must always be entered.

Section 5. Element méterials

Element no. Material no.
M IE(M,5)
I5 - I5

1 line for each element, except when successive elements
have the same material, in which case only the first of such
a chain has to be entered, but the last element must always

be entered.

Secfion 6. Node type and initial loads and displacements

Node no. Type code Initial Initial
x-load/disp. y-load/disp.

M KODE(M) XLOAD(M) . YLOAD (M)

I5 15 £10.3 . E10.3

1 Tine for each node, except when successive nodes have same
value for type code, x-load/disp. and y-load/disp; in which
case only the first of such a chain has to be entered, but

the last element must always be entered.



The type code indicates if the node has a prescribed load

or displacement in the x and y directions.  Free nodes have

zero load. The code is given by the following table.

Type code Nature of prescription
z-direction | ¥-direction
1 load load
2 displacement joad
3 load diép]acement _
4 displacement| displacement

(i) File of improved topology in unformatted form attached to

device 3. This file is the output file to REDUCE.

(b) TIMESTEP

(1) Dumpfile of unformatted data, attached to device 3. This

file is an output file to ASSEMBLY.

212

(ii) File of load changes at each time-step, attdched to device 4.

Node no. x-load/disp.
N XLOAD(N)
I5 3X £10.4 3X

y-load/disp.
YLOAD(N)
E10.4

Each time-step requires one line for each change in prescribed

lToads/displacements from previous time-stép, but a line for

last node must be entered for every time-step.
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For plane wave excitation of the base nodes of a grid a

file of this format is prepared by INPUT.

(c) PLOTS

(i) File of grid geometry in unformatted form attached to
device 4. This file is an output file to ASSEMBLY.

(ii) File of displacements in unformatted form attached to
device 3. This file is an output file from either ASSEMBLY
(in the case of static displacemnets) TIMESTEP or FILESUM.

(iii) File of options in unformatted form atfdéhéd to device 2

prepared by the interactive program DISPLAY.

(d) REDUCE
File of element topology attached to device'4, which is
Section 4 of grid data file used by ASSEMBLY,
(e) INPUT |
File of base nodes of the grid attached to device 3, in
format 5I5.
(f) FILESUM
(i) File of static displacements in unformatted form attached
to device 3. This is an output file of ASSEMBLY .
(11) File of time-step displacements in unformatted form attached

to device 4. This is an output file of TIMESTEP.

(g) DISPLAY

The input for this file is primarily in response to prompts
i -
at a terminal. However it.is possible to attach to device 3
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a list of the elements and nodes required in the displays.
Also, if the stress plot for a static distribution is

reduired, timestep 1 should be chosen.

5. Output files

As well as the output files Tisted below most progfams are attached

through device 6 to a terminal for messages and pr@mpts.
(a) ASSEMBLY

(1) File of input data in tabular form (option&f), attached
to device 7.
(ii) Unformatted file of grid geometry, attached to device 8.
(ii1) Unformatted file of static disp]acements‘attahced to device 10.
(iv) Unformatted file of data attached to device 9, used as input

to TIMESTEP.
(b) TIMESTEP
(i) . Unformatted file of data, attached to device 8, used as input

for next time-steps.

(ii) Unformatted file of time-step displacements attached to device 10.
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(c) PLOTS

(i) File of stresses in tabular form (optional), attached
to device 7. | |

(i1) Plot file, attached to device 9.

(d) REDUCE

Unformatted file of improved topology, attached to device 8.

(e) INPUT _
File of loadchanges, attached to device 7, in format required

by TIMESTEP.

(f) FILESUM
Unformatted file of sum of two displacement files, attached

to device 7.

(g) DISPLAY

Unformatted file of options attached to device 7.
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FROGRAM ASSEMELY

FROGRAM READS IN DATA FOR GRIDy ASSEMBLES STIFFNESS AND MALS
MATRICESy FORMS INITIAL LOAD VECTORy MODIFIES MATRICES AS
AFFROPRIATE TO TAKE INTO ACCOUNT THE ROUNDARY CONDITIONS.

THENy EITHERs EVALUATES THE DISPLACEMENTS FOR THE STATIC FORCES:
ORy READS IN DAMFING COEFFICTIENTS (IF ANY) s AND DUMFS ALl
NECESSARY DATA IN UNFORMATTED FORM NEEDED FOR TIMESTEF
CaLCULATIONS. FULL FPRINT OUT OF INFUT DATA CAN RE REQUESTED..

COMMON Ty THMAXs HNELy NNFy NEQRs IMAXy ISTOPy ISTEFy ITSEAND

COMMON ZONE/ EC10)y PR(10)y ROC1I0)y THC(10)y TECLI200+5)y X(1184)y
- Y(1184)y XCENC(1200)y YCENCI200), NMAT» NSTATs MTYF
COMMON /TWO/ BT(Zvb)r IN(353)y B(3v10)y QARKCL1IO210)y QC10)
. : XACE)y YQRCS) .

COMMON ATHREE/ BRK(2348107) CAC2368)y RMASS(2368)» RODY(2348)
COMMON ZFOUR/ XLOADCLLIBA) » YI.OADCLLIBA4) » KODEC1184)

COMMON /FIVE/ DISF(2368)y VEL(23468)y R(2368)r R1I(2368)y
+ R2C2A368)y RIC2348) '

COMMON /SIX/ NODECLI200)y IFORM

4

+

Call. DATAIN
Cal.l. TEST
Call. CENT
CALL IMITIA
CAal.l. ASEMEL
Cal.l LOAll
CAaLL RVEC
IF CNSTAT EQ. 0) GO TO 10
CAL.L MODIFZ
Cal.l. BANSOL
STOF

1O CONTINUE
CALL DAMF
Cal.l. MODIF1
ISTEF = 0
CAL.l. TIUMP
STOF
END

SUBROUTINE DATATN

COMMON Ty TMAXs NEL» MNFey NEQy IMAXe ISTOP» ISTEF. IS5EAND _

COMMON AONE/ ECLOXy PRCOLOYy ROCLOYy THCLO)y TECLZ00¢E)y X(1184)y
4+ YOL184)r XCENOLZ200)y YUENCLZ200y HMATy NETAHT» MTYVEF

COMMON Z7S1IX/ NODEC1200)y IFORM '

DIMENSTON TITLE(S)y X101184)y Y1(1184)

DATA MAXEL» MAXNFe MAXMATy MAXBW
+ S1200y 1184, 10y uds

FROBLEM TDIENTIFICATION AMD DESCRIFTION.



WRITE (&4y190)

REAL (SGe1&E) (TITLE(D) 9 I=1+9)
WRITE f”;19b‘ (TITLECLD) ¢ X=21.9)
WRITE (&6:200)

FEAD (3:180) NSTAT

ISTOF = 0 L

READI (4y170) NNFy NELy NMAT» KM
WRITE (72205) NNFy NELy NMAT

217

CHECKS TO RE SURE INFUT IIATA DOES NOT lk(l[ﬂ STORMGE CAFACITY.

IF (NNF JLE. MAXNF) GO TO 10
ISTOF = ISTOF + 1
WRITE (692100 MAXNF

10 IF (NEL JLE. MAXEL) GO TO 134
ISTOF = ISTOF + 1
WRITE (&9215) MAXEL

15 IF (NMAT LE. MAXMAT) GO TO 20
ISTOR = ISTOF + 1
WRITE (452200 MAXMAT

20 IF (ISTOF LEQ. O) GO TO 25
WRITE (6,225) ISTOF
STOF

29 READ (4 l””‘ (ECI) s PROI) s ROCTI) s THCI) s T=1 y NMAT)

WHITE "
WEITE (7923

READ AND FRINT NODAL DATA.

WRITE (7»240)
WETTE ¢60mat)
READ (5y1807 K
N o=
20 READ (4:185) My X(M)r Y(M)
IF (M - N) 35 505 40
35 WRITE (4»250) M
ISTOF = ISTOF + 1
GO TO 30
40 DF = M 4+ 1 - N _
RX = (X(M) = DN - 1)) / DF
RY = (Y{M) - Y(N - 1)) / DF
A5 X(M) = XM - 1) + RX
YON) = YON - 1) 4 RY
50 IF (K JNE. 1) GO TO 59
WRITE (72258 Ny X(N)» Y(ND
55 ON o= N4l
IF (M = M) 60¢ 50, 4%
60 IF (N LLE. NNF) GO TO 30
IF (KM .NE. 1) GO TO 70
DO 65 I = 1» NNF
X(I) = X(I) % 1000.0
| YOI = YOI) % 1000.0
&% COMTINUE
70 CONTINUE

REAl NODAL MUMEBERING OF ELEMENTS.

WERITE (7¢240)
2 ] = 0

5)Y (IsECDsPRCIY yROCTIY 2 THC(I) 5 I=1

e NMATD



C

C

8O READ (4:170) My (IE(MeLl)sI=1v4)

a5 L o= L4 1
IF (M~ L)Y 90y 100y &5

Q0 WRITE (&4¢286%5) M
ISTOF = ISTOF + 1
GO TO 80 '

9% TE(Lel) = TEC(. - 1s1)
TECLe2) TECL —~ 1:2)
IECLy3) = IFECL -~ 1¢3)
IE(Ly4) = TE(L -~ 154)
IECLyS) = TECL -~ 1+5)
GO TO 8%

100 IF (NEL GT. L) GO TO 80

4
[R SR oy

READ ELEMENT MAOTERIAL TYPE.

L= 0
103 READ (4:170) My TE(MsE)D
110 L= L + 1
IF (M ~ L) 115y 125, 120
115 WRITE (&62270) M '
ISTOF = ISTOF 4 1
GO TO 103
120 IEC(LS) = TEM — 19D
GO TO 112
125 IF (NEL GT. LY GO TO 1048

WRITE ELEMENT FROFERTIES.

IF (K WNE. 1).60 70O 1335
no 130 L = 1y NEL
WRITE ¢7»275) Ly (TE. oX)sI=1+3)
130 CONTINUE
135 IF (ISTOF CEQ. Q) GO TO 140
WRITE (&280) ISTOF

READS IN IMFPROVED TOFOLOGY AND RENUMBERS NODE CO-ORDINATES.

140 WRITE (46»285)

REATT (5.180) TFORM .
IF (IFORM ME. 1Y GO TO 1535
READ (3) ((TE(Ty D)y I=1r12000)pd=1p4)y NODE
no 145 M o= 1y NNF '
KLOHODE (MY Y = X{M)
Y1OMODE(MYY = YOM)
145 CONTINUE
DO 150 M o= 1y NMNF
XOMY = X1{M)
YoMy = Y1(M)
1350 CONTIHUE

COMFUTE MAXTMUM MODAL DIFFERENCE AND SEMI-EAMDOWIDTH.

155 MAXDIF = 0

TELEM = 1
ng 160 I = 1y HNEL
N 160 J = 1s 4
ng 160 K = 1. 4
LLo= TARSCIE(T e ) — TE(IK))
ITF (LL LE. MAXDIF) GO TO 160
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MAXDIF = L
TELEM = I
160 COMNTINUIE
ITSEAND = 2 % (MAXDIF + 1)
NEQ = 22 % NNF
WRITE (&:290) IELEMs ISHEANDy MAXEW
IF (ISRAND JLE. MAXEBW) RETURN -
ISTOR = ISTOF + 1
FETURN

165 FORMAT (9AR4)
170 FORMAT (31%)
173 FORMAT (AEL1OQ.3)
180 FORMAT (13)
18% FORMAT I3y 2E10.3)
190 FORMAT (OENTER TITLE)
19% FORMAT (717y 9A4/) _ '
200 FORMAT (“0IF YOU ARE FINDING STATIC DISPLACEﬁENTQ DUE 1O’/
2 INITIAL LOADS AND ROIY FORCESy TYFE ‘717737 /
COIF YOU ARE FINDING STATIC DISFLACEMENTS . DUE TO/
©OINITIAL LOADS ONLYs TYRE /277577 :
©OTHERWISE FRESS < RETURNY 7 .7/7 =weme )
205 IUhMﬁT C/OINFUT TARBLE 1.. BASIC FARAMETERS//»
SXy 0 NUMRER OF NODAL FOINTS. o« « ¢ o ¢ o« 79 15/
X NUMBER OF ELEMENTS. ¢ ¢ o ¢ o + o o« o 79 15/
+ 53Xy 7 NUMREFR OF DIFFERENT MATERIALS ¢ « ¢« o o759 15/
FORMAT (70T0OO0 MANY NODAL FOINTSy MAXIMUM =7» I3)
9 FORMAT (70TOD MANY ELEMENTS» MAXIMUM =’y I3)
3OFORMAT C70T0O0 MANY MATERIALSy MAXIMUM =7y I5) : '
p FORMAT (/OEXECUTION HALTED BECAUSE OF7» IS: 7 FaATAL ERRORS’ /)
FORMAT (7OINFUT TARLE 2.. MATERIAL PROFERTIES S/ '
© MATERIALZOXy “MODULUS QF 7y &X» ’IUIHUUN”T’y
¥y ‘MATERIALy 77Xy ‘MATERIALY
4Xy “NUMBER’y 5Xs ‘ELASTICITY y 8Xs ° RATIO s 8X»
- TOENSITY » 6X» “THICKNESS?) '
| 235 FORMAT ({1104 (1PE15.30))
240 FORMAT (7GINFUT TARLE 3.. NODAL FOINT DATA//
+ Xy NODAL /75Xy “FOINT y 8Xe “X~COORD‘e 8X» Y-COORD')D

+-+ﬁ-+

+ +

:
o

-~

245 FORMAT (70RO YOU WANT THE NODRAL AND ELEMENT PROFERTIES LISTEDT S

‘ i ! I\If 010 FOR YEbi FRESS “‘RETURN’‘ FOR NO."/
. s RO R—— )
250 FORMAT (35X “ERROR IN MODE NUMBERED?y I5/7)
‘ 2% FORMAT (110 201FE15.3))
260 FORMAT (/GINFUT TARLE 4.. ELEMENT DATA//
‘ + 11Xy ‘GLOBAL INDICES OF ELEMENT NODES-/3Xy “ELEMENT
+ PXe 179 FXy 279 PXe 737y 7Xy 147y 22Xy "HMATERIAL D
265 FORMAT (5Xy “ERROR IN NODAL NUMBERING OF ELEMENT . 105/7)
270 FORMAT (5Xy "ERROR IN MATERIAL NUMBER OF ELEMENT . 1570
G FORMAT (110 418y 110D
280 FORMAT (70ASSEMRELY AND SOLUTION WILL NOT BE-PERFORMED: s
- & "FaTal. ERRORS )
FORMAT (0IF USING NEW NOIAL NUMBERINGs TYFE * 7177777 womea?)
FORMAT (7OSEMI-BANDWIDTH OF ELEMENT s IHe 7 = 7y 14/
+ M MUM ALLOWED = ¢ 147
+ TTHERE MAY RBE OTHER ELEMENTS WITH THIS BAMDWIDTH ALS0, 73
END
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COMMON Ty THAXy NELy NNFy NEQs IMAXy ISTOFs ISTEFs ISRAND

COMMON ZONEY ECLO0): FPRC(10)Yy ROCL1IO)y THC10)y TECIZ200:%)y X(1184)

+ Y{(1184)y XCENC1200)y YCENCI200)y NMAT: NSTAT» MTYF
DNIMENSION F(4)

TESTS GRID FOR FOSSIBLE INCORRECT NUMBERING -OF ELEMENTS.
THIS TEST IDENTIFIES ANY ELEMENTS THAT ARE NOT CONCAVE. OR ARE
NUMBERED IN THE WRONG DIRECTION.

IO 3% M o= 1s NEL
ICOUNT = 0O
Do 20 T o= 1y 4
Jo= T
K= I + 1 ,
IF (IE(My3) JEQ. IEC(M»4)) GO TO 10
Jom MODCJr4) 4+ 1
K = MOD(Ks4) + 1
GO TO 15 :
10 IF (I JEQ. 4) GO TO 20
J o= MOD(Js3) 4+ 1
K = MOD(K»3) + 1 o
1% FOI) = (XCIE(Ms I)IRYCIE(My0)) + XCTE(MyJY )XY CIE(MsK))
+OXCIE(MeK)IRY CIEC(M I}y = (XCEE(M»J) )XY CTE(My 1))
+ XCIE(MeK)DRY CIE(MsJ)) 4 XCIE(MyI)IRYCIE(MoK) )
IF (F(I) +GT. 0) ICOUNT = ICOUNT + 1
20 CONTINUE
IF (ICOUNT JEQ. 0) GO TO 30
IF (ICOUNT .EQ. 4) GO TO 35
IF C(ICOUNT oNE. 3) GO TO 25
IF (IE(M»3) JEQ. TE(Ms4)) GO TO 3%
25 WRITE (46»40) M
CTETOF = ISTOF + 1
GO TO 35
30 WRITE (46s45) M
ISTOF = ISTOF + 1
35 CONTINUE
IF (ISTOF EQ. 0) RETURN
STOF

-+

-+

40 FORMAT (7ELEMENT e I5s 7 I8 NOT CONCAUE’)._ '
A% FORMAT (/OELEMENT » IS¢ ‘ I8 NUMBERED IN THE WRONG DIRECTON)
ENI ' '

SUBROUTINE CENT

COMMON Ty THMAXy NELy NNFPy NEQ: IMAXe ISTOFy 1STEF: ISEAND
COMMON ZFONEs E(LOYy PROLOYy ROC10)y TH(10)y TECL200:5), X{1108
+ Y{1184)y XCENCL200) s YCEN(L200)y NMAT» NSTAT» MTYF
COMMON ZTWDY BT(3xb2y D{3p3)y BIAs10)y ARCLIO¢10)y Q{10
+ KACEY e YQCH)

CALCULATES THE CENTROID OF EACH ELEMENT.

ne 20 M = 1y NEIL
R3 = 0.0

A4y
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R4 = 0.0
53 = 0.0
4 = 0.0
o 10 N = 1y 4
NN = TE(MsN)
XQH) = X (NN
YRINY = Y(NN)
10 CONTINUE
no 1% 1 o= 1y 4
Jo= MOD(Ie4) 4
K o= MODdCd«4) +
L o= MOD(K+4) +
{
(

T

¢y -~ XQdL)»?
+ XQOI) + XQCJd)

R1i = YQ<I)Y % (X
R2 = R1 % (XQ(L
R3 = R3 + R1
R4 = R4 + R2
1 = XQUI) % (YR{D) - YRL))D _
G2 = 81 % (YQOL) + YR + YQ(J))
83 = 853 + 61 :
54 = G4 + §2
1% CONTINUE
XCEN(M) = R4 / (KR3%3.0)
YCEN(M) = 84 / (83%3.0)
20 CONTINUE

S

c

| RETURN
END

G

SURROUTINE INITIA
{.‘l‘ TIITINTIINT INS NI ITIM DI LMD ORI LMD OIIN NI ONIN IS LLL I

COMMON Ty THAXs NELy NNFy NEQy IMAXs ISTOFy ISTEFy ISEAND
COMMON /TWO/ BT(3s6)y N(3¢3)r B(3510)y QAKC10+10): QCLO02»

. XQC3)» yYa(Ho :

COMMON ZTHREE/ BK(2368y107)r CA(2368)y RMASE{2368)y BODY(23468)
COMMON AFIVES DISF(2368)y VEL(2368)y R(2368) R1C2368)

+ HA(2368) RI(2368)

+

TO SET TO ZERD ARRAYS A5 REQUIRED,

[ep
LOR

ng 15 1 = 1y 3
no 16 0 = 1y &
BTClsydY = 0,0
10 CONTINUE
no 15 0 o= 1y 3
DCLeY = 0.0
15 CONTINUE
no 20 I = 1+ NEQ
DIGSFCLY = 0.0

VELCT)

RODY(I)
RCID

w00

RMASE(TY = 0.0

= Q.0

= (0,0
CACI) =

0.0

no 20 J = 1y ISEAND

BK(Iy
20 CONTINUE
RETURN
END

JY o= 0.0
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[
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UI h(JUH N[. AS 'IMI([

COMMON Tr THMAXy NELs NNFy NEQy IMAXy ISTOF» YISTEFy ISEAND

COMMON /ONE/ EC10)s FROLIQ) s ROCLOYy TH(10)y TECL20045)y X(1184)»
+ Y(1184)y XCENC1200)y YCENCLI200)s NMAT» NSTAT: MTYF

COMMON /TWO/ BT(398)y H(W!K}v B(3y10)y AK(10+10)y QC10)y
+ XQCS)» YALH) .

COMMON /THREE/ BR(2368y107)y CAR368)y RMASS(2368) RODY (23682
COMMON A51X/ NODEC(L1200)y IFORM '
DIMENSTION LFP(8)y QAST(2:8)y DAC2y2)

STORE ELEMENT CO-ORDINATES AND NODAL NUMRBERS FOR
STRESS/GTREIN CALCULATIONS .

WRITE (8) Xy Yy XCEMNs YCENy IE» NODES IFORM: NELy NNFy NSTAT
COMPUTE ELEMENT STIFFNESSES AND LOADS ONE BY ONE.

10 00 70 M = 1.7 NEL :
IF CTEA(M:S) +GT. 0) GO TO 195
ISTOR = ISTOF 4+ 1
GO TO 8O0

1 CALL QUAII{My AREA)

IF (ARE& GT. 0.0) GO TO 20
ISTOP = 1STOF + 1
WRITE (6902 M

FORM MATRIX NEEDED T0O RECOVER INTERNAL DISFLACEMENT
IN STRESE/ZSTRAIN CALCULATION.

20 no 2% 1 = 1 2
ng 28 0 = 1 8
RETCLdY = 0.0
25 CONTINUE
IF (TEM3) JEQ. TE(M«4)) GO TO 350 .
DET = QECL0:9) X QK(Py10) ~ QK(?»%?) X QRC1I0y10)
DAadley 1) = AKC10:10) 7 DET ‘
DAadle2) = ~-QRY»10) /7 DET
DAC2s1) = DACLL2)
DACA2) = QR{Y%) 7 DET
Ho 30 1 = 1. 2
no 30 0 = 1 8
L %0 K o= 1 2

sdr o= QET(Iyd) 4 DACIYRY X QRORKy DD
S0 CONTI TJl'I

COMDENE
AN FL

5E ELEMENT STIFFNESS MATRIX FROM 10X10 TO 8X8r
EMENT LOADS FROM 10X1 TO 8X1, :

I 4% J = 1 2
) o= 10 -
IK = T4 + 1
FIVOT = QROTKy TK?
nog 40 K o= 1e IJ
Fro= QARCIK«RY 2 PIVOT




G

GEIIRsK Y = F
no 3% 1 o= Ky I.J
QAE(LsRY = QK(IyK) ~ F % QK(IyIK)
ARy 1) = AR KD
3% CONTINUE
Q(KY = QCK)Y - BK(IKeK)) ¥ QCIKD
40 CONTINUE ..
: QCIRY = QCIK) / FIVOT
4% CONTINUE

STORE FELEMENT FROFERTIES FOR STRESS/STRAIN CALCULATIONS.
a0 WRITE (8) Q%Ty Ee D
ASSEMELE STIFFNESS MATRIX AND RBODY FORCE VECTOR.

5% LIM = 8
IF (TEMy3) (EQ. TE(Me4)) LIM = 6
ne &0 I o= 2 LIMy 2
IJ = 1 /7 2
LECY = L) = 2 % IE(MsIJ) —~ 1
LECL) = 2 % IE(Ms I
a0 CONTINUE
ney 6% L = 1y LIM
o= LFOLLD)
BODY LY = RODY(I) 4+ QCLL)D
ng &% MM o= 1y LIM
J o= LFMMY - 1 + 1
IF ¢J JLE. 0) GO TO 65
BECY ) = BEK(Iy ) + QK CLL MM
&G0 CONTINUE

ASHEMBLE HASES MATRIX.

LIM = LIM /7 2 .
AMASS = RO(MTYP) % TH(MTYF) % AREA / FLOAT(LIM)
o 70 J o= 1y LIM

K = 2 % IE(MsJ)

Lo= K - 1

RMASS(K) = RMASS(KY + AMASS

RMASE (L) = RMASS(K)

70 CONTINUE

.- FORM THE RECIFROCAL MASS MATRIX.

no #% T o= 1 NEQ
Reassdly = 1.0 /5 RMasscD)

PEHOCONTINUE
80 IF (ISTaF JEQ. O) 6O TO 83

WRITE (&y9%) ISTOR

STAaF
85 WRITE (&1000

RETURN

90 FORMAT (5¥y ‘OAREA OF ELEMENT , ISy ‘186 NEGATIVE’/)
PG FORMAT C(70SQLUTION WILL NOT RBE FERFORMED EBECAUSE OF v
+ TG DATA ERRORS /)

EHI
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100 FORMAT (7O0ASSEMBLY OF STIFFNESS AND MASS HﬁTHICES COMPLETE "
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SUBROUT IHE &UﬁH(M: lUIﬁlﬁ

COMMON FONE/ EC10)y PR(10)y ROCL0)y THC(10)y TE(1200:5)y X(1184),
+ Y(1184)y XCENCI200)y YCENC1200)y NMATy NSTATy MTYF
COMMON Z/TWO/ BT(3v6)y D(393)y B(3v10)y QR(L10+10)y Q10D
+ XQ(5)y YR(S)

MTYF = ITE(My3)
TOTALA =-0.0

CONSTRUCT STRESS-STRAIN MATRIX OF ELASTIC CONSTANTS.

IF (NMAT +EQ. 1 +AND. M .GT. 1) GO TO 10

CF = L(HrYI) /{10 4 PRMTYF))N(L .0 ~ 2.0%FR(MTYF)))
1.1 CF ¥ (1.0 - FR(MTYF))

C1e2)y = CF % FPR(MTYP)

H(?v1) = DCLe2d)

DC2e2) = DOl

(3, 5) = LF % (1.0 - 2L08PRMTYP)) / 2.

CONSTRUCT VECTORS OF THE CO-ORDINATES OF AN ELEMENT.

10 DO 13 N = 1s 4
NN = TE(MeM)
XQONY = X(NMN)
YOONY = Y{NMN)

15 CONTINUE '

XQO3H) = XCENCM)
YRG)Y = YOENM)

INITIALISE QUADRILATERAL STIFFNESS MATRIX» LOAN VECTORSy
AND STRATN lll‘»flf‘lELMl NT MATRIX

no 2% IT = 1y 10
QIT) = 0.0
no 20 00 = 1y 10
BRIy ) = 0.0
20 CONTINUE
oo 2% K o= 1y 3
BiddsITIY = 0.0
25 CONTIMUE

FORM STIFFNESS MATRIX OF QUADRILATERAL ELEMENT.

IF (TEMy»4) JNE. TE(M:3)Y) GO TO 30
Call CETly 2¢ Z» TOTALA) '
G TO 35
FO Call. CST(1y 2y S AREA?
TOTALA = TOTALA + AREA
CalLl. CBT{2y 3¢ 5 AREA)
TOTALA = TOTALA + AREA
Call. CBT(3y 4 5y AREA)
TOTALA = TOTALA + AREA
CaLL C8T 4y 1» &y AREA)
TOTALA = TOTALA + AREA
35 RETURN
E NI
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COMMON ZONE/ EC10)y PR(10)s ROC10)» TH(iO)v.IE(1?00r$)v X(11$4)9

+ Y(1184)y XCENC1200)y YCENC1200)» NMATy NGTATy MTYF

COMMON ZTW0O/ BT(396)y N(3y3)y B(3510)y QRC10,102y QCIO)y
+ - XQ5)s YQACSH) o

DIMENSION CR(3Fs6)y LECGAH)y LT(3)y TR(H9S)

LT(1) = 1

LTC2) = J

LT(3) = K

COMFUTE STRAIN-DISFLACEMENT MATRIX FOR TRIANGLE.

ET(1e¢1) = YQALA) — YR(K)
BT{1s3) = YQ(K) ~ YQ(I)
BTC(1-5) = YR(I) —~ YQCOD
BT(2y2) = XA(K) -~ XA
ET(2¢4) = XQA{(I) - XQA(K)
BY(2y6) = XA(J) ~ XQACD)
BT(3:1) = RT(2¢2)
BTC(Ey3) = RT(2:4)
BTCIyE) = BT(Z2e6)
BTC(E2) = RT(1:21)
CRBT(3¢4) = ET(153)
CBT(36) = BT(Le5)
AREA = (BTC(2y2)%BT(1yS) — BT(2,86)XEBT(1:1)) /7 2.0
FK = 1,0 / (4.0%¥AREA) :

COMPUTE It % R

nog 10 I1 = 1+ 3
RO 10 JJ o= 1y 6
CBOIYyJIY = 0.0
no 10 KK o= 1. 3
CE(IT«JJ) = CROITyJI) 4+ DCIIyKK) % BT(RKK»Jd)
10 CONTINUE

CORMPUTE (REXT) % I ¥ R

ny 13 I1 = 1. &
RS Jd o= 1l &
TRETLeJdy = 0.0
no 1% KK o= 1» 3
TROIT» ) = TROIIvJI) + BT(EKII) ¥ CERIRKyJL)
14 CONTINUE

ADTE TRIANGLE STIFFMESS TO QUADRILATERAL STIFFNESS.
A TRIANGLE STRAIN-DISPFLACEMENT MATRIX TO QUADRILATERAL
STRAIN-DISFLACEMENT MATRIX.

LR T 0 I A ST IR
LUC2XTLY = 2 % LTCIL
LOC2sry 1y = 2 % LTC(IIY - 1
20 CONTINLIE
o 30 11 = 1y &
L= LOCCIID
oo 2% 0J o=
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Moo= LOCCD) . o
AR LLyMMY = QROLLyMMY + TRK(IIpJdJ) % THIMTYF) ¥ FK
25 CONTINUE
Do 30 JJ o= 1 3 .
BCIJsLLY = BCOIJyLL) + BTC(JIJsII) % FK % 2.0
30 CONTINUE

DEVELOF BODY FORCE FOR ELEMENT.

IF (NSTAT .NE. 1) RETURN .
BONYF = ~AREA ¥ RO(MTYF) % TH(MTYF) ¥ 9.81 / 3.0
oo 35 I1 = 1s 3 :
JJ o= 2% LTCIT)
QA = QCJJS) + RODYF
X5 CONTINUE
RETURN
END

SUBROUTINE AD

COMMON Te TMAXs NEL» NNFy NEQs IMAXy ISTOFy ISTEFy ISEAND
COMMON /FOURS XLOADC1184)y YLOADC1184)y KODECL184)

COMMON /51X NODE(L1200)y IFORM _ :

DIMENSTON  XLOADLCL184)»YLOADL(1184)y KODELCL184)

READS THE INITIAL VALUES OF THE aAPPLIED LOADG.
ANIT BOUNIAGRY CONSTRAINTS . o

WRITE (7270
WRITE (ds?5)
READ (52600 11
Moo . : .
10 READ (4+65) Me KODE(M)y XLOADCM)s YLOADCM)
IF (KODE(M) «GE. 1 +AND. KORE(M) JLE. 4) GO TO 1%
WRITE (&280) M . S
ISTOF = 1
GO TO 10
15 K = 2 % N
Jo= Ko~ 1
IF (M (ER. NY GO TO 25
20 KODE(NY = KODE(N - 1)
XLOAD(NY = XLOAD(N - 1)
YLOAICNY = YLOAD(N - 1)
2% IF (1T LEQR. 0) GO TO %0

FRIMTS TABLE OF INITIAL LOADS AND CONSTRAINTS.

o= KODE (N
GO TO (30y 3%y 40: 45y 1
SO WRITE (7+85) My YLOAD(NY: XLOADON)
GO TO 50
3G WRITE (7y90) Ny XLOADINY» YLOAD(H)
GO TO 30 '
40 WRITE (793 Ny XLOADN)» YLOADIN)
GO TO &0
A5 WRITE (7200 Ny XLOAD(N)ry YLOAD(N)
30N o= N+ 1 :
IF (M o~ NY 355 25, 20
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S5 CIF (N JLE. NNF)Y G0 TO 10
RENUMRER LOADS ETC. IF USING IMPROVED NODAL  NUMBERING.

IF (IFORM +NE. 1) GO TO 8
no %6 M o= 1yNNF
XLOUADL (NODE(M)Y) = XLOAD(M)
YLLOADL (NODEC(M) ) = YLOAL(M)
KODEL(NODE (MY ) = KODE (M)
6 CONTINUE
no G572 M o= 1yNNF
XLOADGMY = XLOAI (M)
YLOADCM) = YLOADL (M)
KODE (M) = KODEL{M)
CONTINUE
IF (ISTOF JEQ. 0) RETURN
STOR '

R
owd

;o
PR
[xs]
LS

&0 FORMAT (I5)
a8 FORMAT (215 2E10.3)
70 FORMAT (70INPUT TARLE 6.. INITIAL LOADS AND DISFLACEMENTS'//
+ SXy NODAL Y /5Xy “FOINT sy 9Xs “X~-LOAD’ s 9Xy
+ Y-L.OAy 8Xy X-DNISF.7e 8Xy Y-DISF.’)
7% FORMAT (7000 YOU WANT TO OUTFUT ALL THE INITIAL LOADST’/
+ CTYRE L7 FOR YESS  FRESS “"RETURN’Y FOR NOT/
80 FORMAT (7ONDDE’» 15: 7 HAS AN ILLEGAL VALUE FOR KODE’)
8% FORMAT (I10y 201FE15.3))
2O FORMAT (110 135Xy 201FE15.3))
3 FORMAT (110 LFE1LS.3» 30X: 1PE1G.3)
Q0 FORMAT (I10: 30Xy 2(1IFELSH.3))
ENID

SURROUTINE RVEC

COMMON Ty THMAXy NELs NNFs NEQy IMAX» ISTOFs ISTEFs ISBAND
COMMON ATHREE/ BRK(2368+107)s CA(2368)y RMASS(23468)y BODY (23568)
COMMON AFOUR/ XLLOADC1184)y YLOADC1184)y KODEC1184)

COMMON AFIVE/S DISF{2368)y VEL(2368)y R(2368)y R1(2368)»

+ R2(2368)y RIC2358)

FORMS THE INITIAL LO&D VECTOR R.

OO 30 N = 15 NNF
I = KODE(N)
GO TO 10y 15y 10y 203y I
10 FO2EN - 1) = RODY{2%N ~ 1) 4+ XLOADC(N)
- IF (T LEQ. 3) GO OTO 25
15 ROIENDY = RBODY(2ENY 4 YLOAD(N)
IF (> JEQ. 1) GO TO 30 '
20 RE2EN — 1) = XLOADN?
IF ¢ EG. 2) GO TO 30
248 FO2aNy = YLUOADIN)
S0 COMTINUE
CRETURN
EI
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SUERROUTINE MODIF2

COMMON Ty THMAXe NELs NNFy NEQs IMAXy ISTOFy JISTEF» ITSRAND
COMMON /FOUR/ XL.OADC1184)y YLOADCL1184)y KODE(1184)

no 1% M = 1» NNF
IF (KODE(MY JEQ. 1) GO TO 13
IF (RODE(HY JEQ. 3) GO TO 10
Call. GERC(XLOADMM)y 2%M -~ 1)
IF (KOOE(M) EQ. 2) GO TO 15
10 CAall. GERCOYLOAD{M) » 2XM)
1% CONTINUE
RETURN
END

SUBROUTINE. GERC(Us N)

COMMON T» TMAXr NEL» NNFy NEQs IMAXy ISTOFs ISTEF» ISBAND

COMMON ZTHREE/ BR(2368,107)y CAC2368) RMASS(2368)y BODY(2368)

COMMOMN ZFIVES DISF(2368), VEL(2368)y R{2368)y R1C(Z2368)y

+ R2(2368), RI(2368

MODIFIES STIFFNESS HATRIXy IN SEMIBANDED FORMe AND LOAD VECTOR
FOR PRESCRIBED DISFLACEMENT ‘U7 AT DEGREE OF FREEDOM ‘N7,

oy 15 M o= 2 TSRAND
o= M- M+ 1
I'F (K LE. Q) GO TO 10
oy = ROKY - BR(KeM) % U
BRKIK»M) = Q.0
10 Ko= N+ M - 1
IF (K .GT. NEQ) GO T0 15
FORY = ROK)Y -~ BRK(NsM) ¥ U
BR{MeMY = 0.0
15 COMTINUE
BEON«1Y = 1.0
ROMY = 1)
RETLIRN
EHD

SUEROUTINE BaMNSOL

COMMON Ty TMAXs NEL: NNF: NEQe IMAXy ISTOFy ISTEFy ISBAND
COMMON /THREES RK(
COMMON /FIVE/ DISF(2368)y VEL{2368)y R(2368)y R1I{Z368)
+ R2C2368)» RIC2DIT&HE) o

SYMMETRIC BAND MATRIX SOLYVER.
COMPUTED DISPLACEMENTS ARE STORED IN R.

NRS = NEQ@ - 1
IO 1% N = 1y NRS
Mow N

Be107)y CACR388)Yy RMASS(2348)y RBODY (23468)
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P = MINOCISRANDyNEQ -~ M)
FIVOT = RK(Ny1)
Do 1% L= 2y MR
CF o= BR(NsL) / FIVOT
o= M + L :
J =0
ng 10 K o= Ly MR
Jo=g o1
BK(TIsd) = RE(IsJ) - CF ¥ BRK(NsK)
CONTINUE
RR(NsL) = CF

Bt

1% COMTINUE

20

L8 ) o
25

00 20 N = 1s NES

MR = MINOCISRANDsNEQ - M)
CF = R(ND
R(N) = CF / BK(Ns1)
o 20 L= 2y MR
Iom M4 L - .
RCI) = RCI) - BRK(NsL) % CF
RONER) = R(NEQ) / BK(NEQy1)
CONTINUE
DO 25 I = 1y NRS
N o= NEQ - 1
Mom N -l
MR = MINO(ISRANISNER - M)
DO 25 K o= 2 MR
Lo= M + K
RON) = ROND ~ BRK(NeK) % R(L)
COMTINUE '

STORE DISPLACEMENTS FOR STRESS/STRAIN DIGFLAY .

T0

1o

15

20

WRITE (10) R
FETURN
ENII

SUBRQUTINE DAMF

COMMOM Ty THMAXy NELy NNFy NEQy IMAXy ISTOF» ISTEF: ISEAND
COMMON ATHREE/ BE(234685107)y CAC2368)y RMASS(2368)y RODY(23682

REAT IN DAMPING COEFFICIENTSy AND ASSEMELE. THE DAMFING MATRIX.

WRTTE (7:20)

WRITE {&225) NMP

WRITE (62302

READ (Ge15) Ny COEF

IF (N GEQ. HHF AND. COEF EQ. 0.0) RETURN
WEITE (7+35) Ny COEF

o= 2% N -1

Cacly = COEF

Cadcl + 1) = COEF

TF N LT NNFY GO TO 10
RETURM

FORMAT (I5e E10.4) - .
FORMAT (OINFUT TARLE %S.. DAMFING COEFFICTIENTS.’//
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+ ¥ TNODAL Sy 88X TDAMPTHNGS S :
4 : TPOINT e aXe “COEFFICIENT )
20 FORMAT (O ONODE AHD DaMPIHG COEFFLICTENT

+ COFOR ALL MODES WITH DamMPING. © 7

LIST MUST END WITH LAST NODE ‘.,

COEMEN IF IT IS UNDAMFED'/

- LAaST NODE IS NUMBER? »13)
A0 FORMAT (7 eeee o= = e e )
S5 FORMAT (110 LFE15.3

NI

b

SUBROUTINE

COMMON T» THMAX» HEL» NNFy NEQs IMAXy ISTOFy ISTEFs ISBARND
COMMON ATHREE/, BE(23468+107)y CAL2368)y RMASS(2348)y RBRODY(23468)
COMMON /FOUR/ XLOAIC1184)y YLOADNC1184), KOREC(1184)

COMMON /FIVE/ DISPF(2368)y VEL(2368)y R(2368B) ¢ R1(2368)y
+ R2(23468)y RIC2368) '

ASSEMRBLES THE INITIAL FORCE VECTOR aAND MODIFIES THE STIFFNESS AR
DAMPING MATRICES TO ACCOUNT FOR THE GEOMETRIC EOUNDARY CONDITIONS.

CONVERT SEMI-RANDED MATRICES TO BAHDEDN FORM.

DO 10 .= 1» HEQR
o 10 0 o= 1y ISEAND
BROT» 2%TSEAND - J) = -BE{IISEAND 4+ 1 - I
10 CONTINUE
L = ISBAND - 1
no 1% 0 o= 1» L
Moo= NER - J
Do 195 1 = 1y M
BRCI 4+ JyISRAND — J) = BRK(I,ISBAND 4 )
1% CONTINUE
Do 20 I = 1 L
K= 1+ 1 -1
na 20 0 = 1y K
BECT vy ) = 0.0
20 CONTIRNUE

MODIFY DANMFING AND STIFFNESS MATRICES, AND FORM THITIAL
DISPLACEMENT VECTOR.

RO 40 N = 1 NHF
o= KODE (N
GO TO 40 2Ge 30« 350 I
2% DISFCZEN ~ 1) = HLOADCN)
CALL GEOMBL 2N ~ 1)
GO TO 40
30 DIGFO2ENY = YLOADON)
Call, GEOMECCIHN)
GO 10 40
B DIGPC2EN — 1) = XLOADCH)
VISP O2EN) = YLOADC(N)
CAaLL GEOMBLOZ2HEN -~ 13
Call, GEOMBOC2EN
A0 CONTINUE
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RETURN
ERD

SUBROUTINE-GEUHHC(N)

(: i S T e el i R A o

COMMON T» TMAXr NELs NNFs NEQy IMAXs ISTOFs ISTEFs ISEAND
COMMON /THREE/ BE(2368+107)s CAC2368)y RMASS(2368)y RODY(2368)

MODIFIES DAMPING AND STIFFNESS MATRICES FOR THE
FRESCRIRED DISPLACEMENT AT DEGREE OF FREEDOM N.

oo EoRw]
[P I AR O A O

IRANDN = 2 % TSRAND - 1
o 10 M o= 1y IRAND
ERK(NyM2 = 0.0

1O CONTINUE
CACNY = 0.0
BEC(Ny TSEANDDY = 1.0
RETURN
ENI

SURROUTINE IUMF

[ NN T InIn T InE I e

COMMON Ty TMAXy NELy NNFy NEQy IMAXy ISTOFs ISTEFe. ISRAND
COMMON /THREE/ BK(23485107)y CA(2368)y RMASS(2368)y RODY (2368
COMMON /FOUR/ XLOADC1184)y YLOADRCL184)y KODEC1184)

COMMON /FIVE/ DISP(2368)y VEL(2368)y R{23468)r R1(2368)y

: RAC2368)y RI(2368)

COMMON /81X/ NODEC1200)s IFORM

+4

C .

C UNFORMATTED WRITE OF DATA ONTO DEVICE ATTATCHED TO 9.

[ '
HRITE (%) Ty TMAXy NELs NNFy NEQRy IMAX» ISTOFs ISTEF»

: ISHANTIs LNUM

WRITE (9) BKy» ChAsr RMABSy RODY

WRITE (%) XL.OADLy YLOADs KODE

WRITE ¢2) DISFy VELs Ry R1s R2y R3

WRITE (2Y NODE» IFORM

RETURN

EHI

+
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FEOGRAM TIMESTER

COMMON Ty TMAX»
TSBAND

/ZONE/ EK

COMMON
COMMON
COMMON
+ R2(2368)
COMMON

CALL GET
IF (ISTEF
CALL TIM
Do 15 I = 1
CALL THMSTEF
IF (ISTEP
5 CONTINUE
CALL DUMF
STOF
END

«GE

10 15

20

SUBRKOUTINE GET

COMMON Ty TMAXy
+ ISEANI.
COMMON
COMMON
COMMON
.*.

R2(2368)

COMMON /FOUR/

TN/ XLOADCL184)
ATHREE/S TISF(2368)

ZFOURZ NODE(1200) »

1) GO TO

« GE

JONEYZ DK
STWO/ XL
JTHREE/ DISF(2368)

NODEC1200)

232

NELy NNFs NEQs IMAXy ISTOFy ISTEFs

L. NUM

CA(2368)» RMASHE(2368)y RBODY(2348)
YLOADC(1184)y KONDE(CL1184)

VEL(2368)y R(2368)y R1(2348),

(234689107) >

y R3I(2368)
IFORM

10

« IMAX) GO TO 20

NEQy IMAXy ISTOFs ISTEFSs

CAC2368)y RMASS(2368)y
YLOADCL184)y KODECLL184)
VEL(2368)y R(2368)y R1I(23681y

MEL s NNFy

LMNUM

(23689107) s BODY (Z2368)

OA(1184)y

y R3(2368)
IFORM

UNFORMATTED READ OF DATA FROM DEVICE ATTATCHED TO 3.

1
REAT
READ
REAT

(3>
(3

(3

BK v
XLOAD
nrse.
NODE »

READN (3
FETURM
ENI

JUTINE TINM

Te THMAX»
TSRAND .
COMMON A THREE S

+ R2(2348)

COMMON
+

REAI! ¢(3)° Ty THAXr NELe NNFy NEQs IMAXe ISTOF
g TSBAND Y
Char

TGTEFR
L.NUM
RMASE

Y1.OADy

VL s

IFORM

EQDY
KODE

Rl

oy [y

MEL » NEQs TMAX» ISTOF» ITSTEF,

LML
NISF(2368)y
v R3(2368)

NNF y

VEL (2368)y R{2368)» RI{2368)
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READS TIMESTEF, MAXIMUM TIME» AND INITIALISES R3.

WRITE (&y20)
READ (513> Ty TMAX
IMAX = TFIX(TMAX/T 4+ 0.1)
ng 10 I = 1» NEQ
R3(I) = R{I)
10 CONTINUE

WRITE (10) Ty TMAXy IMAX
SET LINE COUNTER FOR FILE ATTATCHED TD 4 TO “10007.

LNUM = 1000
RETURN

1% FORMAT (2E10.4) ,
20 FORMAT (/OQENTER TIME-STEF AND MAXIMUM TIME’/
$ R—— L33 S 5SS D R

ENIDI

COMMOM Ty THMAX: NEL» NNFs NEQs IMAXy ISTOFy ISTEFy
+ ISBEANIy LNUM :

COMMON /TWO/ XLOADRCL184)y YLOAD(1184): KODE(1184)

COMMON STHREE/ DISF(2368)y VEL(2368)y R{2348), RI(ZL368)
+ R2C23468)y R3(2368)

SETS UP- THE VECTORS R1ly R2y R3y VEL AND CALLS THE RUNGE-KUTTA ROUTINE

ISTEF = ISTEF + 1
00 10 I = 1» NEQ
RLICI) = RZECI)
10 CONTINUE
Cal.l LDADD
o 15 I = 1s NEQ
RI(IY = RK(I)
ROCIY = CRLCIY 4+ R3CIYY 7 2.0
15 CONTINUE
0o 3% N o= 1y NNP
M o= KODE (ND
GO TO (35, 205 25y 200 M
200 @ o= 2ok No- 1
GO TO 30
25 I = 2 0% N
30 VEL(IY = (R3(I) - RICI)) /7 T
Moo= M+ 1
IF (M ER. 5) GO TO 2%

S35 CONTINUE

CALL RUNG
STORE DISPLACEMENTS FOR STRESS/STRATIN CALCULATIONS.

WRITE (10) HIQP
RETURN
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COMMON Ts TMAXs NELy NNFy NEQs IMAXy ISTOFy ISTEF»

+ ISEANDy LNUM

COMMON /0ONE/ BRK(23685107)y CA(23468)y RMASS(2368)y RBODY{23468)
COMMON Z/TWO/ XLOADC1184)y YLOADC1184)y KODE(1184)

COMMON /THREE/ DISF(2368)y VEL(2368)>y h\; 368Yy RL(2368)

+ R2(2368) s R3I(2368)

COMMON /FOUR/ NODEC(1200)y IFORM

ALTERS THE LOAD VECTOR AT EACH TIME STEF. READS ONE CARD FOR
EACH CHANGE. MUST HAVE A CARD FOR THE LAST NODE FOINT,

10 READ (A47LNUMySE) My Xo Y
RENUMBERS NODE IF IMFROVED TOFOLOGY IN USE.

IF (IFORM +NE. 1) GO TO 15
N = NODE(M)
GO TO 20

15 N = M

FORMS NEW LOAD VECTOR.

20 XLOADCNY = X
YLOADC(NY = Y
LHUM = LNUM 4+ 1000
I = KODECN)D
GO TO (2%: 30y 25 35y I
29 RO2%XN ~ 1) = RODY(2%EN - 1) 4+ XLOADN)
IF (I JEQ. 3) GO T0 40 '
FO RO2%ENY = RODY(2ENY 4 YLOADCN)
IF (I JEQ. 1) GO TO 45
A RO2EN —- 1) = XLOADGMD
IF O oI JEQ. 2) GO TO 45
AQ RO2ENY = YLOADCND
4% IF (M LT« MNF) GO TO 10
RETURN

90 FORMAT (1350

9% FORMAT (I8 2C(3XyE1Q.4))
NI

:lJIiI\I)LJT TN

IHHh

COMMON Ty THMAXy MNELy NHFy NEQr IMAXy I8TOFs ISTEFs
+ ITSRANDy LNUM '

COMMON ZONE/ BR(ZZIEB:107)2y CACRI68Yy RMABS(23468)y BODY(Z368)
COMMON /THREE/ DISF(2368)y VEL(23468)y R2368)r R1(2368)»

+ RIC2DI6BYy RIC2368) ‘

DIMENSION STOL(2368) STO2(2368)y DELL(2368)y DEL2A ’ﬁ‘!:'i‘ v

+ DEL3IC(2368)y DELA2368)Yy GAML(2368) . GaAMZ (234G
+ GAM3IC(2368)y GAMA(2368)
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10
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Cal.l AHSUHfGﬁMQp R3y NEQy O)
cal.l. SCaAl.ECGAM4Ay NEQs ~T) .
Call. MULTI(RMASS, GAMAy NEQR)

Cal.l. ADSURCDEL2, DEL3, NEQy 12

CALL SCALECDELZ, NEQy 2.0)

CalLl. ADSURCDEL2, DELL1s NEQy 1)

CALL ADSUECDEL2, DEL4, NEQy 1)

CALL SCALE(DEL2: NEQr 1/76.0) :
CALL alSURDISFy DELZ2y NEQy 1)

Catl ADSBURIGAM2,y GAMI» NEQs 12
CALL SCALECGAM2Zy NEQ» 2.0)
CALL ADSURIGAM2» GAML, MNEQy 12
Call. AnSURIGAM2y GAMAYy NEQ: 1)
Call. SCALE(OGAM2y NEQy 1/6.0)
Call ADBURCVELy GAMZy NEQR» 1)
RETURN

END

ALECAy Ny SCAL)D

SUBROUTINE ST

DIMENSTION A(Z368)

236

MULTIFLY & VECTIDR ‘A7 BY A SCALAR ‘SCAL’ AND STORE IN ‘A’

DIMENSION OF “A°.

nog 10 I = 1» N
ACT) = HCAL X Aadl)
CONTINUE
RETURN
END

SUBROUTINE ADSUR(Ay By Ny LD

DIMENSTON A(23468), RO23468)

Al O SURTRACT FROM A4 VECTOR ‘A7 A VECTOR “E° AND

STORE TN 7478 M = DIMENSION OF 747 AND "R,
WHEMN L=l & + B I8 FORMED,
WHEMN L=0 a4 - B I8 FORMED,

IF (L Ed. Q) GO TO 135
na 10 I o= 1+ N

ACLY = ACTY 4+ BOID
CONTINUE
FRETURMN

p D020 7 = 1y N

ALY = adl) - RO
CONTIMNUE
RETURH
NI
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quur\mn lNI_F fl--.(ll.l(Av Eis f‘"r .Nv L'

DIMENSTON A(2368:107), R(2368)s C(2368)

TO FIND THE FRODUCT OF A BANDED MATRIX STORED IN CONDENSED
FORM “ACIy))’ WITH A COLUMN VECTOR ‘EBCI)’. ' :

THE RESULT IS STORED IN ‘C(I)’. '

N = DIMENSION OF “R‘ AND ‘C7.

L = SEMIBANDWIDOTH OF‘A‘. THUS “A7 IS8 N X (2%L - 1)

LL =2 % L -1
Do 10 I = 1y N
CiIy = 0,0
10 CONTINUE
no 1% 4 = 1+« LL
no 15 1 = 1y N
M=1T+4+ J-L
IF (M .LE. ) GO TO 15
IF (M .GT. WY GO TO 15
CCIy = CLIY 4+ ACIs ) % ERIM)
1% CONTINUE
RETURN
END

SUBROUTINE MULTLC(Ay Ee N)

DIMENSION A(23868)y R(2368)

TO FIND THE FRODUCT OF A DIAGONAL MATRIX ‘A’ STORED IN CONDENSED
FORM WITH A COLUMN VECTOR ‘R’ AND STORE IN “R7
N = DIMENSION OF “R‘.

no 10 I = 1» N
BCT)Y = A1) ¥ B(CI)
10 CONTINUE
RETURN
ENI

SURROUTINE MULT2C(As Ry Oy M)

DIMENSTON A(2368)y B(2368)s C(2368)

TO FIND THE FRODUCT OF A& DIAGONAL MATRIX 7A7 STORED I CONDENGED
FORM WITH A COLUMN VECTOR "By AND STORE IN 707
Moo= DIMENSION OF “B7,

no to I = 1y N
COY) = ACT) ¥ RO
10 CONTINUE
FETURM
Er
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FROGRAM FLOTS

FROGRAM RECOVERS OFTION FARAMETERSy AND ACCORIINGLY FRODUCES

THE REQUIRED DISFLAY FLOTS.

COMMON QST(600:2s8)r R(600y3+10)y C(600+y353)>
+ DISF(2368)y T TMAX»y NELEM(600)s ITIM(10)>s
+ IMAXy NNFy NELy NELNISy NFRMSs NSTAT
COMMON /ONE/ X(1184)y Y(1184)y XCEN(1200)s YCEN(1200)s
COMMON /TWO/ STRAIN(3)» STRESS(6)s FRINC(600+3)
COMMON /THREE/ TITLE(8)y XMAXy XMINy YMAXy YMINy XSFy
+ XMAF1s XMAF2y YMAF1ly YMAF2s STMAX
COMMON /FOUR/ STHETAs CTHETA '
COMMON /FIVE/ TOUTLN(S0)» NNOD
COMMON /8IX/ IGRIDy ISECT» ISTRSy IDISFLy IFRM
1 Liy L2y NODRDEC(1200)s IFORM
CaLl RECOVR
CALL FAFERCCL)
IF (ISECT .NE. 0) GO TO 10
IF (ISTRS .EQ. 0) GO TO 20
10 Call. FLTFAR
IF (ISECT EQ. 0) GO TOD 15

FLOT GRID SECTION.

CALL DISGRD

IFRM = IFRM - 1

IF (IFRM .GE. 1) CALL FRAME
15 IF (ISTRS .EQ. 0) GO TO 20

FLOT STRESS FLOTS.

CALL DISFLS

IFRM = IFRM - 1

IF (IFRM .GE. 1) CALL FRAME
20 IF (IGRID .EQ. 0) GO TO 25

FL.OT WHOLE GRID.

CaLl. FSCALE

CaLl. GRIFLT

IFRM = IFRM - 1

IF (IFRM +GE. 1) CALL FRAME
29 IF (IDISPL oNE, 1) GO TO 30

FLOT DISFLACEMENT/TIME GRAFHS.

Cal.l. DISPL

CalL GHOS
30 CaLl GREND

STOF,

END

COMMON /SEVEN/ XDISF(300510)y YDISF(300,10)y IXC10)» IYC(10)»
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SUBROUTINE R

L COVR

COMMON QST (4600+258)y B(600+y3510)y C(60093+3)
+ DISF(2368)y Ty TMAXs NELEM(600)y ITIM{10)»
+ IMAXes NNFy NELs NELIIISy NFRMSsy NSTAT

COMMON ZONE/ X(1184)y Y(1184)y XCEN(1200)y YCENC1200)s IE(1200:3)
COMMON /THREE/ TITLE(8)s XMAXs XMINy YMAXs YMINs XSFy YSFy
+ XMAF1y XMAF2y YMAF1ly YMAF2y STMAX

COMMON /FIVE/ IOUTLN(S0)s NNOD

COMMON /SIX/ IGRIDy ISECTy ISTRSy IDISFLy IFRM

COMMON /SEVEN/ XDISF(300510)y YDISF(300210), IX(10)y IY(10)s

+ .1y L2y NODEC1200)y IFORM
DIMENSION D1(2+8)y D2(3910)y DN3(353)

RECOVERS OFTION FARAMETERS AND GRID GEOMETRY.
RECOVER FARAMETERS.
READ (2) STMAXy TITLE, NELEMr NELDIS, ITIMs, IXs XYy IGRIDs ISECT»

ISTRSy IDISFLy IFRMs NFRMS» JTOUTLNs NNODy Lis L2
REAL (4) X» Yy XCENs YCENy IEr NODEy IFORM» NELy NNFy NSTAT

1

RENUMBER OUTLINE AND DISFLAY NODES IF IMFROVED TOFOLOGY IN USE.

IF (IFORM .NE. 1) GO TO 35
IF (ISTRS .EQ. 0 GO TO 13
oo 10 I = 1e NNOD
N = TOUTLNC(I)
TOUTLNCT) = NODEC(N)
10 CONTINUE
1% IF (IDISFL .EQ. 0) GO TO 35
IF (L1 .EQ. ©O0) GO TO 25
no 20 I = 1» L1
N = IX(I)
IX(I) = NODE(N)
20 COMNTINUE
25 IF (L2 E@. 0) GO TO 35
ng 30 I = 1y L2
N = IY(D)
IY(I) = NODEN)
30 CONTINUE
35 IF (ISTRS .EQ. 0) RETURNM

FORM MATRICES FOR STRESS/STRAIN CALCULATIONS.

40 K = 1 :
no &0 I = 1y NEL
READ (4) Dly D2 I3
IF (I JNE. NELEM(KY) GO TO &0
00 435 M = 1 2
o 4% N = 1y 8
QSTIRsMyNY = I1(MeN)
45 CONTINUE
no 50 M = 1y 3
DO S0 N = 1 10
BC(KeMoyHNY = N2(MyN)
S0 CONTINUE
no 55 M = 1y 3
DO 5% M = 1y 3



—
L2

C
C
C

C(ReMeHNY = DI(MyN)
55 CONTINUE
IF (K JEQ. NELDIS) RETURN
K = K + 1 :
60 CONTINUE
WRITE (6965) NELDISy NEL
STOF

45 FORMAT (‘OERROR:- NUMBRER OF DISFLAY ELEMENTS (7
+ ) EXCEEDS GRID ELEMENTS (/9ISGs’)e?)
ENII :

JUHRUUTINL ILTPAR

COMMON QS5T(600:2y8)y ER(600+3510), C(600v3;3)r

+ DISF(2368)y Ty TMAXs NELEM(600)y ITIMC1Q)».

+ - IMAX: NNFPys NEL» NELDISy NFRMSs NSTAT

COMMON /ONE/ X(1184)y Y(1184)y XCENC(1200)s YCENC1200)»
KGFy

COMMON /THREEZ TITLE(8)» XMAXs XMIN» YMAX» YMINy
+ XMAF1ls XMAF2y YMAF1s YMAFZ, STMAX

TO DETERMINE THE PLOT FARAMETERS OF THE SECTION OF
CHOSEN FOR DISFLAY. :

DETERMINE MAXTMUM AND MINIMUM VALUES OF X AND Y CO-ORDINATES

XMAX = -1.0E10
YMAX = —-1.0E10
XMIN = 1.0E10
YMIN = 1.0E10
oo 10 I = 1s NELDIS
K = NELEM(I)
no 10 J = 1+ 4
IF (XCIE(Ky»J)) GT. XMAX) XMAX
IF (XC(IE(K»J)) LT« XMIN) XMIN
IF AY(IE(Ky D)) JGT. YMAX) YMAX
IF (YCIE(KyJY) LT. YMIN) YMIN
10 CONTINUE :

X(IE(KyJ))
XCIE(KyJ))
Y(IE(K».}))
Y(IE(K»J))

CALCULATE FLOT SCALES.

BORDER = (YMAX - YMIN) / 16.0

YMaFL = YMIN ~ RORDER

YMAF2 = YMAX + RORDER

XMAF1 = XMIN - BORDER

XMAFZ = XMAX 4 RBORDER

YSF = 0.9 ,

XGF = YSF % (XMAF2 ~ XMAFL) / (YMAFZ - YMAF1)
RETURN

ENII

I

S

GRID
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COMMON QST(600:2y8)y E(600,3510)

C(600v3+3)y

+ DISF(2368)y Ty TMAXs NELEM(600)s ITIM(10)»
+ IMAXy NNFs NEL, NELDIS» NFRMSy NSTAT

COMMON /ONE/ X(1184)s Y(1184),
COMMON /THREE/ TITLE(8)y XMAX»

+ XMAF1y XMAF2y YMAF1y

COMMON /8IX/ IGRID» ISECTy ISTR
FLOT THE GRID OF ELEMENTS FOR STRES
IRAW RORDER ROUND THE DISFLAY.

CaLl CSFACE(O.0s XSFPr 0.0+¢ 1.0)
CALL FSFACE(0.0s XSFy 0.0y 1.0)
CALL MAF(0.0s 1.0y 0.0y 1.0)
Cal.l. BORDER '

CAl.L PSFACE(0.0s XSF» 0.0s YSF)

XCENC1200)y
YMAXs YMINy
YMAF2y STMAX

XMINy

Sy IDISPLyY IFRM

iS/STRAIN DISFLAY.

CALL MAP(XMAFLly XMAF2y YMAFls YMAFZ)

DRAW ELEMENTS.

DO 20 I = 1y NELIIS
K = NELEM({I)
IF (I .EQ. 1) GO TO 10
IF (IE(K»1) JEQ. TE(NELEM(I -

10 CALL FOSTTN(XC(IE(Ks1))y YC(IE(Ky1)

1)1
))

15 CALL JOIN(X(IE(K»2))y Y(IE(K+2)))
CALL JOINCX(IE(K»3))s Y(IE(KS3)))
CALL JOINC(X(IE(K:4))y Y(IE(Ky4)))

CaLl JOINCXC(IE(Ks1))y Y(IE(KY
20 CONTINUE

WRITE ELEMENT NUMEBERS.

IF (ISECT .EQ. 2) GO TO 40
CALL CTRMAG(T)
IF (ISECT .EQ. 3) GO TO 30
Do 25 I = 1y NELDIS
K = NELEM(I)
CALL FLOTNICXCEN(RYy YCEN(K)y
25 CONTINUE
GO TO 40
30 0 35 I = 1y NELDIS
K = NELEM(I)
CALL FLOTNIC(XCEN(K)y YCEN(K)
35 CONTINUE

ANNDTATE FLOT.

40 CALL CTRMAGCLS)
IFLACE = (XS8F%77.0) -~ 20
CALL PLACECIPLACE: 4)
CAl.LL TYPECSC ELEMENT MESH y 12)
IF (ISECT .EQ. 2) GO TO %0

CaLL LINEFDZ2)
Call. SFACE(-17)

IF (ISECT .EQ. 3) GO TO 4%

13))

KD

ITE(K:S

) GO TO 15

3))

YCENC1200)
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CALL TYPECS(’(WITH ELEMENT NUMBERS)‘, 22)
GO TO 50
45 CALL TYFECS(/(WITH MATERIAL NUMBERS)’»s 23)

WRITE OUT TITLE.

50 CALL CTRMAG(30)
CALL FLACEC(4y 2)
CALL ITALICC(I1)
CALL TYFECS(TITLEs 32)
CALL ITALICCO)

RETURN

ENTI

SUBROUTINE DISFLS

COMMDN QST(600s2+8)s E(600+s3910)y C(H005353)
+ DISF(2368)y Ty TMAXy NELEM(&00)s ITIM(10)y
+ IMAXy NNFs NELs NELIIISs NFRMS» NSTAT
COMMON /TWO/ STRAIN(3)y STRESS(&)y FRINC(400s3) .

RECOVERS DISFLACEMENTS OF EACH ELEMENT. :
CALLS STRSTR TO CALCULATE THE STRESSES ANDN STRAING.
CALLS VECFLT TO PLOT FRINCIPAL STRESSES.

REWIND 3
IF (NSTAT NE. 0) GO TO 10
READ (3) Ty TMAXs IMAX -
10 WRITE (7,35)
= 1
ng 30 I = 1y IMAX
READ (3) DISF
IF (I JNE. ITIMCJ)) GO TO 30
TIiM = FLOAT(I) % T
IF (NSTAT .NE. 0) GO TD 15
WRITE (754%) Iy TIM
1% WRITE (7:40)
O 235 K = 1y NELDIS
CALL STRSTR(K)
no 20 JJd = 1y 3
FRINC(KyJJ) = STRESS(JI + 3)
20 CONTINUE
M o= NELEM(K) )
WRITE (7:40) M: STRESS
25 CONTINUE
CALl OUTLIN
CALL VECPLTCTIM)
IF (J EQ. NFRMS) RETURN
SJo=od o+
CALL FRAME
30 CONTINUE
RETURN .
3% FORMAT (717 10Xs ‘STRESSES AT ELEMENT CENTROIDS )

40 FORMAT (“OELEMENT’ s 6Xy ‘X-8TRESS’y 7Xs ‘Y-STRESS”»y

+ ‘TAU-XY 'y 11Xy
+ ‘FRINCIFAL STRESSES‘»BXs ANGLE OF 17/

Xy

243
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FLOTS THE PRINCIFPAL STRESSES AT THE CEMTROIDS OF THE
DISFLAY ELEMENTS .

TO FIND MAXIMUM VALUE OF STRESSES TO RE FLOTTED.

IF (8TMAX GT. 1.0E-7) GO TO 1&
STMAX = ABS(FPRINC(1+1))
IF (ARS(PRINC(152)) JGT. STMAX) STMAX
Do 10 I = 2y NELDIS
IF (ARS(FRINC(I»1)) GT. STMAX) STMAX ABS (FRINC(L 1))
IF (ABRS(FRINCC(IZ2)) GT. STHAX) STMAX = ARSIFRINC(I«Z))
10 CONTINUE

ARS(FRINCC(12))

FORM SCALE FACTOR.
15 SCALE = (YMAF2 - YMAFL) / (10.0%STMAX)
START FLOT OF STRESSES.

no 25 I = 1y NELDIS

FINDG SINE AND COSINE OF ANGLE WITH X=AXISs WITH SCALE FACTOR.

STHETA = SIN(FRINC(I+3)) X SCALE
CTHETA = COS{FRINC(I»3)) % SCALE

FLOT STRESSES.

K = NELEMCI)
Do 25 J o= 1e 2
XPLT = XCENC(K) + FLOAT((-1)¥Cd 4 1)) % FRINCCLyJ)
¥ TRIGCS + 1)
YPLT = YCEN(KRY 4+ FRINCC(I:J) ¥ TRIGCJD
IF (ISTRS EQ. 1) GO TO 20
IF (PRINC(IsJ) JLE. 0.0) CALL FOSITN(XPLTy YFLT)
IF (FPRINCC(IyJd) GT. 0.0) CALL GFOINT(XFLTs YFLT)
XFLT = 2.0 ¥ XCEN(K) - XPLT
YFLT = 2.0 % YCEN(K) - YFLT
IF (PRINCCIJ) JLE. 0.0) CALL JOINCXFLTy YFLT)
IF (FRINCCIsJ) GT. 0.0) CALL GFOINTC(XFLTs YFLT)
GO TO 25
20 CALL FOSITN(XFLY: YPLT)
XPLT = 2.0 % XCEN(K) - XPLT
YPLT = 2.0 % YCEN(K) - YPLT
IF (FRINCC(I«Jd) +GT. 0.0) CALL BROKEN(Sy S5 Oy 0O)
CALL JOINCXPLTs YPLT)
Call. FULL
25 CONTINUE

-+

ANNOTATE FLOT .

Call. CTRMAGCLR)

TFLACE = (X5F%64.0) -~ 42

Call FLACECIFLACE: &)

CaLl TYPECSC (NOTTED LINES TENSIONAL)Y s 24)
CAll LIHEFD{-2)

Call. SFACE(-28)

HEADINGS FOR STRESS VECTORS.

246
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IF (NSTAT NE. 0) GO TO 30

Catl, TYPECS( STRESS VECTORS AFTER 7y 22

CALL i NI(TIM; 4)

CatL CTR ;

caLL T
30 Cal.L.

cal.i. :

CAl.L TYILC (“MAXIMUM STRESS = /y 17)

CALL TYPENE(STHMAX, 2)

CALL. TYPECS(” F7y 2)

CaLl CTRSET(2)

Call. TYFECSC( A7y 2)

Call. CTRSET (1)

XLAREL = XMAFL + (YMAF2 ~ YMAF1) / 6.0
YLAREL = YMAF2 - (YMAF2 - YMAF1) / 6.0
CALL FOSITNC(XLAREL s YLAREL)

N = INTC(ALOGIOC(ETMAX))

Eo= 10.0 %% N

XLAREL = XLAREL + 2.0 % E % SCALE

Cal.l. JOINCXLARELy YLAREL)

Cat.l. SFACE(2)

CALL TYPENE(E» 1)

Call. TYPECS(” Ry 2)

CaLL CTRSET(2)
calLL TYFECS
Call. CTRSET(
RETURN

ENI

FUNCTION TRIGCODD

COMMON /FOURZ STHETAr CTHETA
TRIG(S) EQUALS CTHETA OR STHETA ACCORDING AS J IS EVEN DR ODD.

TRIG = ((CTHETA + STHETAY + FLOATC{-1)¥%d)
+ ¥CCTHETA -~ STHETAY) / 2.

RETURN

ENII

LIIirxlllJ T IPJl_ } S ( (\lkl-

COMMON QST (400+298)r R(A00:32100y CC(H0053+3)y
+ DISF(2368)y Ty TMAXy NELEM(&00)y ITIMCLIG)y
+ IMAX s MNPy NELs NELDIS» NFRMSs NSTAT

COMMON ZONE/ X(1184)y YCL184)y XCEN(1200)sy YCEMC1200)y TECIZ00:3)

COMMON /THREE/ TITLE(8)y XMAXr XMINy YMAXy YMIN: XSFy YSF»
+ XMAF1y XMAF2y YMAF1y YMAF2s STMAX

TO CALCULATE FLOT SCALES AND FARAMETERS.

ASSIGN MAXIMUM AND MINIMUM VALUES OF X AND Yy
YMAX REING THE GREATEST DEFTH (WHETHER +VE OR ~VE).

XMAY = RAMAX (X yNNF)



FAMAX Y » NNFD
RAMINCXy NN
RAMINCY y NNFD

YMAX =
XMIN =
YMIN =

CALCULATE FLOT SCALES.

—

BORDER = (YMAX - YMIN) ./ .146.0

YMAF1 = YMIN - BORDER

YMAF2 = YMAX 4+ BORDER

XMAFL = XMIN - BORIDER

XMAF2 = XMAX + RORDER

Y&SF = Q.9

XGF = Y8&F % (XMAF2 - XMAFLl) / (YMAF2 -
RETURN

ENID

YMAF1)

SUBROUTINE GRDFLT

Q8T 6009298) v

+ NISF(2348)y Ty
+  IMAXy NNF» NEL>»
COMMON Z0NE/ X(1184)

COMMON ZTHREEZ TITLEC(S)y
: YXMAFLy XMAF2y
TGRIDy ISECTs ISTRG

COMMON ECS6009y3410)y CC(EQ09s 323,
TMAXy NELEM(600)y ITIMCLO)»
NELDISy NFRMSy NSTAT
Y{(1184)
XMAXs XMINy YMAXy
YHAFL1y YMAOF2y
INISFLy

YﬁINy
STMAX
IFRM

+
COMMON /78TXS

TO FLOT GRID FOR REFERENCE WITH ELEMENT NUMBERS.

DRAW A BORDER AND A BOX ROUND THE MODEL.

CaLl CSPACECO.Or XSFs 0.0r 1.0)
CaLl FSPACE(D.Qr XSFy 0.0y 1.0)
CaLl MAPCO.0y 1.0y 0.0 1.0)

CALL RORDEFR '
CaLl FSFACE(Q.O»
CaLL MaF CXMAFLy

Oi()9
YMAFLy

YSF)
YMAF2)

XGF s

AMAFZy
HRaW ELEMENTS.

ng 20 1 1y o
IF (X «EQ. 1) GO TO 10
IF (TECT»1) JEQ. IECCT - 1)391)) GO
10 CALL FOSITNOXCIEC(Iv1)) s Y(IECI1)))
15 Cabl JOINCXC(TECT 200y YC(IEC(Iv2)))
Call JOIMOXOTECT3))y YC(IECL¢3)))
CALL JOIMOXCTEC(Ly42)s YOIECIs4) )0
Call, JOINCXITECT L))y YCLE(Le1) )
CONTINUE '

NEIL.

1%

T0

20

WRITE ELEMENT NUMBERS
IF (IGRID JEQ.
Call CTRMAGCS)
IF (IGRID (EQ. 3D
o 2% 1 = 1y NEL

CALL FLOTNIC(XCENC(I).

20 CONTINUE

GO TO 40

2)Y GO TO 40

GO 70 30

YOENCIYy 1D

XCENC1200)y YCEM(1200)

269
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)

30

35

C

no 35 I = 1» NEL
Call, PLOTNI(XCEMCEYy YOENC(ID)y TEC(IS))
CONTINUE

L ANNDTATE FLOT.

C
40

45

,-.
GoOoOoOOCO0n

S0

¢ TO

10

10

CaLl. CTRMAGILS) ..

IFLACE = (XSF%¥77.0) - 20

Call. FLACEC(IFLACEy 4)

CaLL TYFECS(/ELEMENT MESH » 12)

IF (IGRID JEQ. 2) GO TO 50

CALL LINEFIDC2) '
CaLl. SFACEC-17)

IF (IGRID (EQ. 3) GO TO 45

CALL TYPECSC(/(WITH ELEMENT NUMBERS) s 22)
GO TO 50

CALL TYPECS(/ (WITH MATERIAL NUMBERS) ‘» 23)

WRITE QUT TITLE.

Call CTRMAG(30)

CaLL PLACE(4y2)

CaALL ITALICCL)

CALL TYFECS(TITLE»36)
CaLL ITALICC(O)

RETURN
END

FUNCTION RAMAX{(X: N)

OIMENSTON XIND
FIND THE MAXIMUM VALUE OF AN ARRAY.
RAMAX = X(1)
D0 10 IMAX = 29 N

RAMAX = AMAXT (RAMAX» X (ITMAX))
CONTINUE -

RETURN
ERNI

DIMENSTON X(N)

FIND THE MINIMUM VALUE OF AM ARRAY.

FRAMIN = X(1)
DO 10 IMIN = 2 N

RAMIN = AMINLI(RAMIN: X{THMINY)
CONTINUE

' RETURN

ENI
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N = IX(J)
IF (IFORM NE. 1) GO TO 20
CALL RENUM(N)
no 25 1 = 1y IMAX
YCI)Y = XDISF(Ied)
CONTINUE _
CALL FLOTCS(0.01y 0.85 - 0.2%IFAGE, ‘X~-DISF. NODIE‘y 12)
GO TO A5 B
K = J - L1
N = TY(K)
IF CIFORM NE. 1) GO TO 35
CALL RENUMIN)
00 40 I = 1y IMAX
Y(CIY = YDISF(IvK)

- CONTINUE

Cal.l. FLOTCSC(0.01Ly 0.85 — 0.2%IFAGEs “Y-DISF. NODE"y 12)
CALL SFACEC(L)
CAaLL TYFENI(N)
CALL CTRORICO.0)
YHMAX = ARG(Y (1))
no 30 I = 25 IMAX
IF (ARSC(Y(I)) .LE. YMAX) GO TO 50
YMAX = ARSCY(I)) '
CONTINUE
IF (YMaX EQ. 0) YMAX = 1.0
YMaAX = YMAX % 1.01
CaLL PSPACE(O.1y 0.97y 0.82 ~ O0.2XIFAGEy 0.98 — O0.2%IFAGE)-
CaLL MAFCO.0y THMAXs -YMAXy YMAX)
CaLl. aXES
CaLl MSCURV(Xy Ys 1y IMAX)
IFAGE = IFAGE + 1
IF (IFAGE LT. 3) GO TO 55
IF ¢ LEQ. 1) GO TO %5
LALL FRAME
IFAGE = Q-

CONTINUE
RETURN

FORMAT (17HOWRITE AMNOTATION)
FORMAT (24A4)
END

RENUM(N)

COMMON Q5TC(400:2y8)r B(H00r310)e C(H00v3+3)y

DISF(2368)y Ty TMAX: NELEM(600)y ITIM(10)y
IMAXs NNFs NELs NELDISs NFRMSy NSTAT

COMMON AFSEVENS XDISF (3000100 YNISF(300510)y IX(10)y IYC10) s

L1y L2y NODRECLI200)y IFORM

RENUMBERS DISFLAY NODES IF IMFROVED TOFOLOGY IN USE.

10 I NNF

1y
IF O ONODECTY EQ. NY GO TO 15

10 CONTINUE
1% N = 1

RETURN
ENI
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FROGRAM REDUCE

REDUCES THE NODAL DIFFERENCE OF A GRID.

DIMENSTION TEC120094)s NODEC1200)

READ IN FROBLEM FARAMETERS.

WRITE (&»80)

REAN (5.85) C

WRITE (42902

READ (59100 ITNUM
WRITE (46995
READ (5.100) NEL
WRITE (621050

READ (&65100) NN
WRITE (&6+110)

READ (55100) NODIF
WRITE (621135) '
REALN (&45100) IREC
WEITE - (&52120)

READ (5100) MAXIT
WRITE (&x1235)

READ (5:100) IFORM
IF (IFORM JEQ. 1) GO TO 15

READ ELEMENT TOFDLOGY .

FREAD (49130 (Iy (TECIs D) vd=1s4)yI=1NEL)

INITIALTSE WNODE VECTOR.
N0 10 I = 1s NNP
NODE (L) = I

10 CONTINUE

GO TO 20
READ ELEMENT -TOFOLOGY AND NODE
1% READ (4) IEs NODE
START ITERATION.

20 WRITE (&91359)
ITER = ©
ITHC = O

29 ITER = ITER 4+ 1

NUMBERING IN FREE

.....

COMFUTE MaXIMUM HODAL DIFFERENCE .

MAXDIF = 0
ng 30 I = 1y NEL
Do 3¢ J = 1s 3
JJ o= 4L
no 30 K o= JJe 4

FORMAT .
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C

(M
-

LL = TABRS(IE(IsJ) ~ IECLsK))
IF (LL JLE. MAXDIF) GO T0O 30
MAXDIF = LL :
TELEM = T
M = MINOCIE(I»J)sTECIyK))
N = MAXOC(IEC(Is D)y IEC(TK))

30 CONTINUE S

WRITE (6+140) ITERs ITELEMs MAXDIF
STORE REST RESULT S0-FAR.

IF (ITER +EQ. 1) MINDIF = MAXDIF
IF (MAXDIF +GE. MINDIF) GO TO 35
MINDIF = MAXDIF

IF (MINDIF +GT. IREC) GO TO 35
REWIND 8

WRITE (8) IEy NODEy NELy NNFPy ITER» IELEMs MAXDIF

35 CONTINUE
IF (MaxXDIF JLE. NODIF) STOR
IF (ITER EQ. -MAXIT) STOF
IF (MODCITERyITNUM) (EQ. ©) INC = INC + 1

COMFUTE SHIFT.

I8 = IFIXMAXDIF/ZCY) 4+ 0.5) - INC
ITg = 2 % 18 : B

IF (118 EQ. MAXDIF)Y IS = 1% - 1
IF (IS LT, 1) I8 = 1

MS =M + 15

NG = N ~ I

RE-LAREL NODES .

nn o35 1 o= 1» HEL
no 55 J = 1. &
IF (IECT ) LT MY GO TO &3
IF (IE(I«J0) GT. M) GO TO 40
TECT ) = MS
GO TO 54§
40 IF CTECTsdy GT. MB)Y GO TO 485
CTECLy ) = TECELsd)Y - L
GO TO 54
4% IF (ITE(IJ) LT -N&) GO TO &3
IF (IECT:J) +GE. N GO 7O 50
TE(T« ) = TE(I«Jd) + 1
GO TO 535
a0 IF (TECL»J) JEQ, N) TE(Iy.) = NS
55 CONTINUE

RESET NODE VECTOR.

ng 725 I = 1» NEL

IF (NODECTD) JLT. M) GO TO 75
IF (NODECDY GT. M) GO TO &40
NODECLY = M§
GO TO 73

&0 IF (NORECI)Y GT. MB)Y GO TO &3
NODECTL) = NODE{L)Y - 1
GO To e
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FROGRAM INFUT

TO FREFARE INFUT FILE OF LOAD CHANGES AT EACH TIMESTEFR .

FUALUATES DISFLACEMENTS ALONG BASE NODES OF
WAVE AT VARIOUS ANGLES.

NIMENSTION NODEC100)y STARTCL00Yy FINC100) _

REARS IN FARAMETERS .
WRITE
WRITE
READ
REAL
WRITE
READ
WEITE

(b 75)
(680D
(5985 NNOD
(3y90Q) (NODECIYyI=1yNNOI
(Hvb5D)
(500)
(He D52
REaGD (5+100) E
WRITE (&6210%)
READ (52100
WRITE (&2116)
READ (521000
WERITE (691155
READ (5+100)
WRITE (&6¢120)
READ (51002
WRITE (&6912%)
READ {(5100) aMP
WRITE (&4+13Q0)
BREAD (5Hy100)
WRITE (&270)
READ (585D

SEACE

FR

RHO

FER

STEF

ANG

ITYFE

CALCULATES FLANE
EACH

WAVE
NODIE .

VELOCITY» AND FULSE

FIL o= 4,0 % ATANCL.0)
IF CITYFE JEQ. 2) 60O
VEL. =
GO TO
10 VEL = SQRT(EAC2,0%(1.0 4+ FPRIYXRHO))
9 OANG = ANG ¥ FI /2 180.0
no 20 I = 1 NNOD
STARTCY Y = (1
FINCYL
CONTINUE

TO 10

13

1 %
START (1)

SFACE
+ PER

¥ SINCANG)

20

CALCULATES NODAL DISPLACEMENTSy AND WRITES IN REQUIRED FORMAT.

TIM = STEF +
ner 50 Io= 1w
IF (TIM LE.
IF (TIM «GE-.
T = TIMH - STARTC(I)
nrsE = aMi ¥ (1.0 ~ COS(2,0¥FPIXT/FPER))
IF CITYFE SEQ. 2y GO TO 30 '

1.0E~&

NNOD
ETART(I))
FINCIY)Y GO

GO TO
TO. 40

40

A

SARTEXCL. O ~ FRY/ZCCL.O + FRY¥(L.Q -

PLANE

START aMD FINISH

2. QXFRYERHOD) S

/7 VEL

255
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DISFX = DISF % SINCANG)
DISEY = DISEF % COSCANG)
Gu TO 35
30 NISPX = DISF % COSCANG)
DISFY = DISF % SINCANG) -
35 WRITE (7s135) NODE(I)Yy DISFXs DISPY
GO YO0 50 e
40 IF (I «NE. NNOD) GO TO 45
WRITE (7:8%) NODECI)
GO TO 50
4% IF (TIM JLE. STARTC(ID)) GO TO 50
IF (TIM LTe FINCI) 4+ STEF) WRITE (7,85) NODECD)
SO CONTINUE '
1F (TIM GE. FIN(NNOIDD) GO TO 59
TIM = TIM ¥+ STEF
GO TO 25

55 10 60 1 = 1, 200

&
70
4+

WRITE

CONTIMNUE

STOF

9 FORMAT

FORMAT

UhMﬁT

ORMAT
CORMAT
FORMAT
MAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
IRMAT
FORMAT
ENII

(
{

(.’

OOk POTSSON 7S RATIO )

(7985) NODEC(NNOIDD

FORBERKERERE  NODE
‘OFOR F~WAVES TYFE
L4 PR )
OENTER DATA’)

: NUMEER OF

DENST
0?#“#*3**** FERIO
PRk TIMES

COdRdokokkk ANGLE
(I5y 2(3X>E10.4))

SFACT

Illll

NG )
# FOR

NODES )

TY )
n
TEF )

(IN

’0$*$$$$$**$ AMPLITUDE )

DEG.) )

[ &4
-l

~WAVES

Adiokdsk YOUNGZ 78 MODULUS 7 )

TYFE

s ry s s
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FROGRAM DISFLAY

258

FROGRAM TO DETERMINE WHICH DISPLAY OFTIONS ARE REQUIREID,

DIMENSTOMN NELEM(&Oij TTIMC1OYy IX(1O0Yy IYC10)s TOUTLNCSO)Y

t TITLEC(E)

NETERMINES IF FLOT OF WHOLE GRID IS5 REQUIRED.

10 18TRS = O
WRITE (é6»14%) ,
READ (Ge120) TGRID

IF GRID SECTION IS REQUIRED READS IN &

WRITE C&»150)
READ (5. 120) ISECT
IF (ISECT «NE. 1) GO TO 8%

WRITE (&2155)
READ (5y 1200 J
K =1 '
IF ¢J JEQ. 3) 60 TO 15
WRITE (&4y160)
S IF (J EQ. J) GO TO 20
WRITE (&217%)
TREAD (5.125) NELLs NEL2
GO TO 25
20 READ (3:123) NEL1ly NEL2
28 IF (NEL1 EQ. Q) GD TO 40
IF (NEL2 JEQ. 0 GO TO 35
INIFF = NEL2 - NELL + 1
Do 30 N o= 1y IDIFF
NELEMOK) = NELL + N - 1
K o= K 4+ 1
30 CONTINUE
GO TO 15
O NELEMCK) = NEL1
K=K 4+ 1
GO TO 1%
40 NELDIS = K - 1
WRITE (6r165)
READ (5.120) ISECT
FCISECT oNE. 1) GO TO 435
WERITE (&e120)
READ (G130 (TITLECT)Y »X=128)
A WRITE (&He 1803
REAIN (51200 18TRS
IF (ISTRS EQ. Q) GO TO 8%

REATE IN THE OQUTLINE NODES.

CCTION ELEMENTS: ARND
ESS PLOTS ARE REQUIRED.




fep]

WRITE (&»1895)
READ (5y120) J
K o= 1
IF (4 (EQ. 3) GO TO 50
WRITE (&¢190)
S0 IF (J (EQ. 3) GO TO 53
WRITE (&651735)
READ (S¢125) NODELy NODED
GO TO &0
9% READ (3912%5) NODELs NODEZ
&0 TF (NDDEL JEQ. 0) GO TO 75
IF (NODE2 JEQ. 0) GO TO 70
TOIFF = NODE2 - WODEL 4+ 1
no 65 N = 1« IDIFF
TOUTLNCKY = NODEL + N - 1
K =K 1+ 1
&8 CONTINUE
GO TO 30 .
FOOTOUTLNCOR), = NODE1
K=K+ 1
GO T 30
75 NNODN = K - 1

READ THE TIMESTEP NUMBERS AT WHICH DISFLAY IS REQUIRED.

WRITE (&6+195)

READ (5y135) (ITIMCI)»I=1y3)

WRITE (4622000

READIN (5:135) (ITIM(I)yI=&6210)

NFRMS = O

po g0 1 = 1r 10 , .
IF (ITIM(I) JNE. 0) NFRMS = NFRMS + 1

80 CONTINUE

READ IN VALUE OF MAXIMUM STRESS.

WRITE (6+20%)
REAl (5:140) STHAX

85 CONTINUE
WRITE (&¢2102
READ (521200 TDISPL
IF. (IDISKL MNE. 1) GO TO 110

REAIN IN DISFLAY NODES.

Do %0 I = 1y 10
IXCT) = 0
IYCD) = 0
90 CONTINUE
L1 = 0
L2 = 0
WRITE (&v215)
o 95 I o= 1y 10
WRITE (6s220)
READ (5:120) K
IF (K .EQ. 0) GO TO 100
IXCI) = K '
Ll s L1 o4
9% COMTINUE

259




C

100 WRITE

nog 109

WRITE

REAT
IF

L2 =
103G
110

16 = 0
1IG = 0
IT = 0
IF
IF
IF
TFRM =
IF
WRITE
GO TD

[UMF

115 WRITE
STOF

120
125

130

FORMAT
FORMAT
FORMAT
135 FORMAT
140 FORMAT
1A% TURMAT

-

+ -+

-5

150 Iﬂhnﬁf

- -

FUlMﬁI

155

e im

L& FORMAT

_5,__.5.

+

1u: FORMAT

-??

e

l?ﬂ Iuhun1
180 FORMAT

(K
IY(n)

(ISTRS
(IGRID
(ISECT

(IFRM

(&2 22%)
I = 1¢ 10
(b 220)
(5:120) K
EQ. ) GO
) :::: |'\
L2+ 1

T 110

CONTINUE
CONTINUE |

JNE. 0) IT =
NE. 0)Y IG
MNE. O IS = 1 o
8 4+ IT 4+ I0 4+ IDISFL
NE. 0) GO TO 115
(9230

10

OFTIOM FARAMETERS.

TITLE
IFRMy

(7)
IGTRS

C"Mﬁl\y
IDISFL

(15)
(215)
(8A4)
(51%5)
(E10.4)
(£OD0 YOU WANT A FLOT
 FOR GRID
FOR GRID
* FOR GRID
£ f-':'S!fyi'/I
¢“ono You WANT &
I TYPE

fi]!!;

& na cnn nene v e )
(CQTF
‘FILE ATTATCH
© DTHERWI
C/QENTER SECTIONM
© FIRST AND LAST
COOR THOIVIDUAL

TO

CODD YOU WANT A FLOT
FOR
FOR

‘ FOR

A A
i

G

CCOWRITE TITLE FOR
CLIH 4y u e g )
CYON0 YOU WANT STRESS

NELEMs
NF

WITH ELEME
WITHOUT EL
WTTH MhTEﬁTﬂL

aLLTl

SECTION ELEMENTS

3 3.
SE FPRESS ‘R
ELEME
ELEMENTS OF
ELEME
¢ PRESS RETURN AT END OF

SECTION WITH EL
STION WITHAUT
SECTION WITH MATERIAL
P OTHERWISE
GRT

NELDISy ITIMs IXs

RiSs TOUTLMy

WHOLE GRID?/

TYFE

OF THE
NT NUMRERS
EMENT NUMEBERS TYFE

TYFE OF rﬁ(lll}ll
TRETURMS 7.7 7

GRIDT/
FRESS

FRESS
ON OF THE
OTHERWISE

J'Il

ARE TD RE
/."
ETURMN? # o7 /7 e ©)

NTS ./

A CONSE
NTS MaY BE
LIST. 7
OF THE SECTION OF
EMENT NUMBERS TYPE
ELEMENT MUMEERS
TYFF OF IﬁlHl
FPRESS CTRETURNS
I SECTION. )

FLOTS OF

IY
NHOD L.

READ FROM
THEN TYFE /3757y

CUTIVE
ENTERETD . 7/
THE
K .fl ;o v

TYEE

CIFIED

TIMESTEFS® /

P S

COFOR FLOTS WITH
CORY BROREMN LINES
FOR FLOTS WITH
BY TWO novs TYR

OTHERWISE FRESS

[ L]

TENSTONS REFRESENTED »
TYRE feqc 0y
TENSIONS REFRESENTEL »
E 1200/,

A L A —
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e L2

.-'lj.’/

e R

v S
MENT TYFE?
- [ — '\

LETURNS 7

THE 7 »

GRIDT -/
L

/;-")f/‘.

LEMEN T

SECTION ATy

IGRIDS,

STRIMNG: -

L 7
E

vy

ISEC

FE
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18% FORMAT (70IF OUTLINE NODES ARE TO BE READI FROM THE FILE ‘s
+ ‘ATTATCHED TO 3 THEN TYPE ‘3775 °/
+ 7 OTHERWISE FRESS 7/RETURMN' .7/ =—ome=m?)
190 FORMAT (“OFENTER OUTLINE NODES’/
4 © FIRST AND LLAST NODES OF A CONSECUTIVE STRINGs/
+ 7 0OR INDIVIDUAL NODES MAY RBE ENTERED. ©/
+ © PRESS “/RETURN’Z AT END OF LIST.’)
198 FORMAT (7O0ENTER TIMESTEF NUMEERS FOR WHICH DISFLAY 19 REQUIREDC/
+ 4 ENTER % NUMBERS FER LINE‘/‘ 10 ENTRIES MAXIMUM‘/
f ‘ oo'00*****00000*****00Goc’)
200 FORMAT (7 oaeeedddolke oo OB e )
2009 FORMAT (/OENTER VALUE OF MAXIMUM STRESS EXFPECTED’»
+ CFOR A SERIES OF PLOTS. /7 IF CALCULATION OF MAXIMUM'»
+ ‘ETRESS FOR EACH FLOT» I8 FREFERREX: FRESS 7 RETURN? .7/
s S dolorokojokotorokk /) '
FORMAT (/000 YOU WANT DISFLACEMENT/TIME GRAFHS»
2 0OF SPECIFIED NODEST/
COIF OYESy TYRE ‘71775 OTHERWISE: FRESS RETURN?Z. 7/
. 7 v 4 )
215 FORMAY (/QENTER X DISPLAY NODESs ENDING LIST WITH 07)
220 FORMAT (/ sevee”)
225 FORMAT (/OENTER Y DISFLAY NONES, ENDING LIST WITH 0/)
230 FORMAT (/OWHAT THE HELL DO YOU WANT?//° LET’ ‘8 TRY AGAIN’)
END '

210

-+ 4




