The longitudinal impact of bars with rounded ends

Prowse, W. A.

How to cite:

Prowse, W. A. (1929) The longitudinal impact of bars with rounded ends, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10323/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Fig. 1

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
Fig. 7.

Fig. 7A.

Fig. 8.
Fig. 39. $r = 1.27\text{cm}$
Ends of Bars Protected During Adjustment, to Show Effect of Repeated Impacts.
Fig. 40. End of Bar Before Series of Collisions
Fig. 39. Same after one Series of Observations.

Fig. 41. $r = 1.27\text{cm}$
$\ell = 49.6\text{cm}$
$x = 1\text{cm}$

Fig. 42. $r = 1.27\text{cm}$
$\ell = 49.6\text{cm}$
$x = 2\text{cm}$

Fig. 43. $r = 1.27\text{cm}$
$\ell = 49.6\text{cm}$
$x = 4\text{cm}$

Fig. 44. $r = 1.27\text{cm}$
$\ell = 49.6\text{cm}$
$x = 6\text{cm}$

Fig. 45. $r = 1.27\text{cm}$
$\ell = 49.6\text{cm}$
$x = 8\text{cm}$

Fig. 46. $r = 1.27\text{cm}$
$\ell = 35.6\text{cm}$
$x = 8\text{cm}$

Fig. 47. $r = 1.27\text{cm}$
$\ell = 35.0\text{cm}$
$x = 1\text{cm}$

Fig. 50. $r = 1.27\text{cm}$
$\ell = 35.0\text{cm}$
$x = 6\text{cm}$