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A B S T R A C T 

A large flash tube chamber has been used at Durham to search 

fo r e/3 charged particles (quarks) i n extensive a i r showers 

where, the local electron density is greater than 40m ~. The 

response of the detector to r e l a t i v i s t i c muo.ns was measured 

and the equivalent characteristics fo r re la t iv ' i s t ic e/3 quarks 

calculated. The response fo r the more energetic muons i n a i r 

showers was also measured. In a running time of 2,570 hours 

no def ini te quark' tracks have been detected and the l i m i t on 

the charge e/3 quark f l u x was set as: 

I< 8.0 1 0 " U cm"2 sec"1 s t " 1 . 

No non r e l a t i v i s t i c heavy mass part ic les , irrespective of their 

charge, were detected in the chamber from measurements on two 

body elastic collisions of EAS particles with essentially 

free protonso 
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C H A P T E R ON.E 

INTRODUCTION 

1.1 The elementary particles and the quark model 

Before 1930 a l l physical .phenomena, ignoring the structure of 

atomic nuclei , were explained i n terms of three elementary par t ic les , 

the proton^ electron and photon, interacting through two basic types 

of force, electromagnetic and gravitat ional . In 1932 the neutron 

was discovered and iri order to account for the mass to charge ra t io 

of the nuclei i t was assumed they were composed of approximately 

equal numbers of protons and neutrons. The above picture was not 

complete because no .explanation was given of how the protons and 

neutrons bind together inside atomic nuclei. To explain the 

s t a b i l i t y of nuclei Yukawa in 1935, postulated the existence of a 

new nuclear force acting between nuclepns i n the nucleus which must 

be of a short range, and be some hundred times greater i n strength 

than the Coulomb force to overcome the large Coulomb repulsion 

between protons. From the range of th is force (^10 C m ) n e 

deduced that i t was due to the v i r t u a l exchange of a part icle 

between the nucleons which had a mass ^ 200 times that of the 

electron.' This part icle was subsequently discovered, the ff-meson, 

by Lattes et a l . 1947, i n nuclear emulsion exposed to cosmic rays 

at mountain a l t i tude . 

Cosmic rays and later high energy accelerators soon showed 

a large number of particles to exis t . The understanding and 

c lass i f ica t ion of these particles has become one of the major 

problems of nuclear physics. 

2 3 OCTI973 
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Considerable advances i n c lass i f ica t ion have been made by 

studying the conservation laws which govern part icle interactions. 

I t has been found that the strong interaction particles (hadrons) 

are distinguished by two groiipso Those with spin 0,1,2. . . .e tc i n 
3 

units of h and those with half-odd-integral spin ^ j ^ * . . . * etc, the 

former are called mesons and the la t te r baryons. 

In the strong interactions of the barybn group, fo r example, 

three conservation laws are obeyed: 

The f i r s t : the conservation.of electr ic charge 'Q ' , which is 

thought to be absolute. 

The second: the conservation of baryonic charge ' B ' , to. account 

f o r the abundance and s t a b i l i t y of the proton* 

The t h i r d : the conservation of hypercharge ' Y ' , to account 

for the associated production of the K-meson 

with A or ehyprons i n strong interactions* 

The most successful model to explain these observed regulari t ies 

i s based on the theories of unitary symmetry (su(3) etc) and the possible 

existence of three fundamental particles (p,n,X)as proposed by 

Ge11-Mann (1964) and by Zweig (1964). 

These particles are called "quarks" (q) and this name was 

given by Gell-Mann and is how i n general use* In th is model three 

quarks make baryons (qqq) and a quark and antiquark make mesons 

(qq), each w i l l have baryon number (charge) B = ^ and spin 

The hypercharge has been defined by Y = S+B, Y = fo r p and 

n par t ic les , and -••§• fo r X par t ic le . 

From the Gell-Mann, Nishijima re la t ion: 



the charge carried by these hypothetical particles (quarks.) i s 

deducedi the quantum numbers of quarks being given i n table 1»1» 

^he corresponding antiquarks have quantum numbers of opposite 

sign. 

Table 1.1 Quantum numbers of quarks 

Tr io le t part icle h B s Y=B+S ( £ J 3 + Y / 2 SDin . Mass 

P i 
2 

i 
~3 0 i 

3 +§e M 

n . 1 
~2~ 

1 
3 0 1 

3 4e . ft M 

X 0 f ' -1 -3-e * . M+146MeV/c2 

where M 
several GeV/c 

P 
1 

~2 •4 d -§* M 

n 1 
2 - 3 - 0 -4 M 

X 0 + i 2 3 . M+146 MeV/c2 

where! T 3 is the t h i r d component of isospin 

B i s the baryon number 

S is the strangeness 

Y i s the hypercharge 

Q is the electr ic charge. 

The values of the charge of p,n,Xare + , " 3 > ~ 3 * Of these, 
2e / the + is expected to be stable while the -e/3 components are 

expected to have l ifet imes of the order of minutes and about 10 ^sec. 

respectively against decay into the stable quark. According to Adair 

et a l . (1964) the expected decay schemes are: 

n-particle q(-e/3)-*- q ( + 2 e / 3 ) + e" + V g ^ minutes. 

X-part ic le q ( - e / 3 ) - > q ( + 2 e / 3 ) + T T " * 10" 1 0sec. ' . 

I t should be noted that although the simplest interpretation of the 

SU3 symmetry i s that the fundamental t r i p l e t particles should carry 
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f rac t ional charge i t i s possible that the basic t r i p l e t particles 

could have integral charge. In th is case the predicted properties 

of the t r i p l e t particle is not unique and there are several possible 

representations, Lee (1965). Bacry et a l . (1964) proposed the 

existence of two sets of t r i p l e t par t ic les , t - trions and Q - t r i ons , 

where a l l members have baryon number 1 and integral chargeo The two', 

t r i p l e t s are distinquished by a new additive quantum number D and 

a- generalisation of the Gell-Mann, Nishij.ima formula is required, 

Q = TQ + £Y + i D 

Then t - t r ions and 9 -trions are a l l possible t r i p l e t s with charge 

6, + 1. such that D> C-6 . 
However, the question remains whether the quark actually 

exists or whether i t is jus t a useful mathematical model. The f u l l 

details of the model are s t i l l not completely understood, Kokkedee (l969)'6 

1.2 Search fo r quarks i n Cosmic Rays 

Since the theory of the quark was f i r s t produced a large number 

of experiments have been performed to search fo r quarks i n cosmic rays 

and the progress made has been reviewed by Jones (1970, 1971) and Si t te 

(1970),. A l l experiments which have attempted to detect the quark have 

so fa r been unsuccessful, and the f l u x l i m i t obtained on'the unaccompanied 
—2 

Oslm ) quark f l u x arr iving at sea level by a number of workers i s 
. i r - l C -2 -1 -1 <10 cm sec st . 

Experiments to search fo r quarks i n a i r showers are less numerous 

and so fa r have produced conf l ic t ing results. 

Some experiments have reported positive results from quark searches 

and these deserve careful at tention. The Sydney group (Cairns et a l . 

1969; .McCusker et a l . 1969) have reported evidence for- quarks with 

charge- 2e/3 being present close to the cores of extensive a i r shower's 
1* 

i n i t i a t ed by primary cosmic rays of energy >4.10 ~eV» The detectors 
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used, by th is group were four delayed-expansion cloud chambers each 

of 30 cm diameter and illuminated depth 5cnio Three of the chambers 

were shielded by 15cm lead while the fourth was unshielded,, A i r 

showers were selected by the coincidence of three small geiger counters* 

Four i i g h t l y ionising tracks were reported by Cairns et a l (1969) 

af ter one years running time and a f i f t h l i g h t l y ionising track by 

McCusker et a l (1969). Tine f ive quark candidates were obtained 

from the observation of ^20,000 showers which were selected by 

a local electron density requirement of >154m ~. The f lux of 2e/3 

quarks obtained i n this work was ^5 10 ^cm ^sec "''st ^ at sea level . 

The claim of the Sydney group that the events observed were 

genuine quarks was c r i t i c i sed by a number of authors (Wilson, 1970; 

Kiraly and Wolfendale, 1970; Adair and Kasha, 1969, Rahm and 

Sternheimer, 1969: Rahm and L o u t t i t , 1970; Frauenfelder et a l , 1970). 

The main point of c r i t i c i sm was that the Sydney group had not adequately 

demonstrated that the f ive events were well separated in ionisation 

density from the dis t r ibut ion due to plateau or minimum ionising 

charge e part icles. . 

Chu et a l (1970) claimed that from the observation of cosmic 

ray tracks occurring randomly i n a bubble chamber, one track had 

a low ionisation as expected for a charge 2e/3 particle i f the 

particle mass was <6.5 GeV/c^ or a charge e/3 part icle of mass 
/ 2 

(8.0 + 3.0) GeV/c . However, th is result has been c r i t i c i sed by 

Al l ison et a l (1970). 

Other searches.in a i r shower cores depend on the fact that the 

large mass of the quark w i l l cause i t to be delayed by some nanoseconds 

with respect to the bulk of the shower part icles. Experiments have 

been performed to search f o r delayed particles in a i r showers and 
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interesting results have been reported by Dardo et a l (1972) working 

at 70mwe underground and Tonwar et a l (1971) working at 2,150m above 

sea level . 

Both groups f i n d evidence which may be interpreted as indicating 

that a massive particle (10-20 GeV/c ) has been detected and they 
-8 -Q -2 -1 -1 

claim def in i te signals at f l u x levels of 10 and 10 cm sec ^st 

respectively. I f th is interesting result i s substantiated by 

further work that the signals observed are indeed due to heavy mass 

delayed particles i t would seem certain.they w i l l be found to have 

integral charge and therefore they .may possibly correspond to integral 

charge fundamental t r i p l e t part icles . 

1,3 The search for e/3 quarks ciose to the extensive a i r shower cores 

An experiment has been constructed with the object of searching 

fo r r e l a t i v i s t i c e/3 quarks i n extensive a i r showers (EAS). The 

principle of th is experiment is essentially to select an" a i r shower 

with core close, to a flash tube chamber and to look forthe track 

eff ic iency which corresponds to the e/3 charged par t ic le . This 

experiment has the advantage over other visual detectors, for example 

cloud chamber, of having a considerably larger sensitive volume. 

The design of the experiment and the properties of neon flash 

tubes which have been used are given i n chapter 2 and the quark 

search i t s e l f is discussed i n chapter 3 0 
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C H A P T E R TWO 

THE NEON FLASH TUBE CHAMBER . 

2.1 The Quark telescope 

2.1.1 Design of the telescope 

A large array of neon f lash tubes has been constructed and used 

to search fo r quarks i n extensive a i r showers. 

Any search fo r quarks produced i n extensive a i r showers (EAS) 

is influenced by the properties peculiar to quarks» namely the very 

high rest mass expected, and the f ract ional charge., predicted by 

theory. 

To look fo r quarks i n (EAS) one must be able to distinquish 

the quark of charge e/3 from charge e particles and select a i r 

showers with cores near the chamber and to absorb out the•electronic 

component of EAS but allow mu'ons* quarks etc. to penetrate and be 

observed. The chamber uses 10,473 flash.tubes distributed i n 124. 

layers, and shielded above with 15cm of lead absorber. Three 

l i qu id sc in t i l l a to r s i . e . North ( N ) , Middle (M), South (S), were 

used to select a i r showers and were placed above the lead as shown, 

i n f igure 2 . 1 . Two plastic sc in t i l l a to r s A and B were positioned 

inside the chamber and were used to select single incoherent particles 

for calibration purposes. The chamber is situated in a tunnel of 

rectangular cross-section..with 30cm thick barytes concrete walls. Also 

15 cm of iron absorber was placed near the top of the chamber to assist 

in.recognizing penetrating particles and also fo r indicating neutral 

nuclear active part icles. 

2*1.2 The neon flash tubes ' 

The chamber uses flash tubes of. internal diameter 1.58cm, 
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external diameter 1.78cm each f i l l e d with gas (98$ Ne, 2% He) to a 
pressure of 60cm mercury and every f lash tube i s covered with 
a black polythene sleeveo Alternately , the layers contain 8 4 
and 85 tubes stacked side by side and between every two layers 
there i s a sheet of aluminium (0.122 cm t h i c k ) . This covers the 
whole of the. tubes. 

The f r o n t view contains six blocks of tubes, F1A (8 layers) 

FIB (6 layers) , F2 (52 layers), F3 (44 layers), F4A (6 layers) and 

F4B ( Blayers). There is a prism in - f ron t of each of F1A, FIB and 

F4B. The- defining layers F l and F4 are made shorter by 15cm at the 

f ron t and back than i n the blocks F2 and F3„ The electrodes 

are connected a l ternate ly to earth and to a high voltage pulsing 
L 

uni t . The pulsing un i t consists of a monostable and a thyr is tor 

to trigger a spark gap as shown in figure 2 . 2 . i i . *he capacitance 

of the f lash tube stack was 0.0866^Fo 

2.1.3 The plastic sc in t i l l a to r s . 
The plast ic s c i n t i l l a t i o n counters A and B (figure 2*1) were 

2 

each of area 1.05m and were used to select single muons traversing 

the chamber by a two f o l d coincidence. The phosphor of each counter 

was a large slab of 2inch thick NE 102A. The photomultipliers 

(Mullard 53 AVP) viewed the phosphor by. l i gh t guides of sol id perspex 

A positive high tension was applied to each photomultiplier and 

negative output pulses were taken from the anode. The output pulses 

from each side of the phosphor were fed into an emitter fol lower, . 

the outputs from..these emitter followers were then added for each 

counter before feeding into the selection electronics figure 2 . 2 . i . 



Key: EF = emitter follower• F.O = Fan out 
A = Amplifier 
D = Discriminator 
Co = Coincidence 
TH = Thyristor Unit 
F / T - Flash tube chamber 

G y 1 minute delay generator 
C.S = cycling system. 

= mono stable 
P.G.= pulse generator 

B 

IT 
m/s As: 

( i i ) 

P.G F / T 

North 

Middle 

South 

Figure 2.2 

——1 i 1 K 
Co.| 1 F 'Obr"* 

Block diagram of the electronics used .in 
the flash tube chamber. . 
( i ) two fo ld coincidence, (plastic sc in t i l l a to rs ) ' . 
( i i ) High voltage pulsing un i t . 
( i i i ) three fo ld coincidence, ( l iqu id s c in t i l l a t o r s ) . 
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2.1.4 The Liquid Sc in t i l la tors 

Three large arsti (l.24irP) l i qu id sc in t i l l a to r s were used to 

select extensive a i r showers* The construction of these counters 

has been described by Ashton et a l 1965o Each s c i n t i l l a t o r employed 

two photomultipliers (EMI 9583B) viewing the phosphor through 

rectangular holes i n the l i gh t quide mirrprso A positive high tension 

was applied to each photomultiplier and negative pulses were taken 

from the. anode and were each fed into a separate emitter follower' 

head'unito The output pulses from these head Units were then added 

fo r each .counter before feeding into the selection electronics 

figure 2«»2oiiio 

2.2. Eff ic iency of the Neon Flash Tube 

2o2ol Single particle tr igger 

A single muon can be selected' by a two-fold coincidence between 

the plastic sc int i l la tors A and Bd The rate of the single particles 

through the telescope was measured to be ( l l « 5 + 0»4)sec ^ compared 
-1 2 

with 12 sec calculated from 1.05 m s c i n t i l l a t o r area and the 

250 cm distance between the centre of.A and B. Due to th i s high 

rate , an anticoincidence gate was used which basically paralysed 

the electronics f o r 300 msec a f te r one particle had passed the 

telescopea The pulse from the coincidence between A and 3 was 

fed f i r s t l y through the anti-coincidenee gate and then allowed to 

tr igger the spark gap applying the high voltage pulse to the flash • 

tubes and to s tar t the cycling system.*. In the mean time the • 

paralysed electronics gave time to wind on the camera and allows 

the high voltage- capacitor to get charged., Approximately this 

cycle takes 7 seconds to make the experiment sensitive againo 
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2.2.2 The measurement of the efficiency-time- delay curve 

As with many particle detectors the flash-tube rel ies fo r i t s 

operation on the ionisation l e f t by an ionising par t ic le 0 In view 

of the fac t that i t s sens i t iv i ty to the ionisation can be varied 

by varying the" time delay between the passage of the part icle 

and the application of the high voltage pulse to the chamber. The 

most important characteristic fo r the present application is the . 

efficiency-time delay var ia t ion. The eff ic iency i s measured- i n 

practice by counting the number of tubes flashed i n successive . 

layers along the length of the track. Measurements of the number 

of flashes along the track i n F2+F3 were taken f o r various 

time delays and are shown i n figure 2o3„ The means of these 

distr ibutions were plotted on the efficiency-time delay curve 

figure 2.4. 

The time delay used to operate the chamber was 20ps» because 

i t gave a good separation between the d is t r ibut ion of the number 

of flashes on a track fo r e and e/3 particles respectively. 

2.2.3 The theory of the eff iciency of neon -flash tubes 

Lloyd (1960) has produced universal curves for the expected 

variat ion 'of eff iciency with time delay ' * n i - e r m s °^ 

parameter af^Q^, where D, is the diffusion- coeff ic ient of a thermal 

electron i n neon at the relevent pressure> a is the tube radius» 

f^ is the average probability that a single electron is capable of 

producing' a f lash when a high voltage pulse is applied and. Q i s the 

average number.of i n i t i a l electrons produced per uni t length i n the 

neon gas.. 

. He gives a plot of expected eff iciency against Dt/a~ where 
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Dt / 2 < 0»2. with af,Q, as parametero 
a i i 

For time delays so long that Dt/a~ exceeds 0.2, the eff ic iency 
2 / ^ 

•depends only on af^Qj/exp (-6^ Dt/a~) and a universal curve has been 

produced for a l l af^Q^. 

A curve with afjQ-^ = (?±l) has been found to give the best f i t 

to the measurements fo r single muons with charge ef igure 2.4. 

The f a l l - o f f of the efficiency-time delay curve arises from the 

loss of the i n i t i a l electrons by d i f fus ion to the walls of the glass 

tube i n the time interval between the passage of the particle and the 

application of the high voltage pulse to the chambero. The process 

has been studied empirically by Cbxell and Wolfendale (1960). 

Also shown i n figure 2.4 is the efficiency-time delay curve 

expected fo r e/3 quarks. This has been calculated from the curve 

fo r unit charge using the Lloyd theory. Since f^ is independent of 

the number of electrons present, so that the theory should be applicable 

to a quark as i t is to a muon provided that Q is mult ipl ied by the 

square of the quark charge e/3. The.expected efficiency-time delay 

curve fo r e/3 quarks having the same value ofY = E/mc^ (Lorentz 

f a c t o r ) j as the single muons is thus given by Lloyd curve with 

a f ^ = (^) X (9±1) = (1.0 ± 0.1) , 

2.3 The single particle calibration run 

The dis t r ibut ion of the number'of tubes flashed along the 

track fo r 1,046 particles was measured at 20us time delay and i s 

shown in f igure 2.5. The mean' number of flashed tubes along the 

track of a single part icle (muon) passing through the chamber i s 

74.77 +.0.14 with standard deviation, of the dis t r ibut ion of a =4.6, 

The median momentum of muohs producing calibration triggers is 

2.1 GeV/c, at the centre of F2 and F3. Later* another calibration run 
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was made so that the t o t a l number of single particles observed i n 
the chamber is 5,283. 
2o4. The A i r Shower Run 

2 0 4 . 1 The a i r shower trigger• 

Air showers were selected by a threefold coincidence between 

the l iqu id s c i n t i l l a t o r s , N, M and s, as shown i n figure 2 . 1 . The. 

discriminator threshold .on each sc in t i l l a to r corresponded to an 

electron density of greater than 40m"2. With th is master selection, 

the tr igger rate" was 4.4' showers per hour and the minimum shower 
14 

energy to' produce a trigger was 3 x 10 eV. 
2.4.2 The position of the core' and Size of the shower 

• The range of the shower size that tr igger the selection system, 

vary from small showers whose axes f a l l close-to the. chamber,' to 

large showers whose axes f a l l a long distance away. The d is t r ibu t ion 

of shower size and core distance have been calculated for EAS which 
-2 

produce local electron density of>40m . The calculations have 

been carried out numerically using the accepted values of the number 

spectrum and la tera l d is t r ibut ion of electrons and nuclear active . 

part icle at sea level given by Cocconi ( l 9 6 l ) . 

For muons the analytical expression fo r the la teral d i s t r ibu t ion 

given by Greisen (1960) has been used, 
A. 

\ ( N e , r ) = 18 r " M l + r / 3 2 0 ) - 2 ' 5 n f 2 

where N i s the electrons size'and r .is the rad ia l distance i n metres© e 
The result obtained by Cooper arid Parvaresh (private communication 

shown i n figure 2.6 and. figure 2.7. From figure 2.6 and figure 2.7 i t 

can be seen that the.- median electron shower "size producing a local 
-2 5 

density > 40m is 4.5 10 particles -and the median core distance of 
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of the shower producing such triggers is 12 meter with a median 
15 

shower energy Job x 10 eV, 

2.4o3 Variation of shower rate with barometric pressure 

The variat ion i n the rate of showers of a given size with 

barometric pressure is of interest because i t affords a measurement 

of the attenuation of the showers i n the atmosphere-. The variat ion • 

i s shown i n f igure 2.8. The solid l ine i s the f i t using the weighted 

least squares method. The pressure reading of the barometer used 

was systematically 12.5mm Hg higher than the true pressure? The 

value of the barometric coeff ic ient has been evaluated as . 

( l l . 6 + 0.86)^em".1Hg from figure 2.8. The triggering .shower size 

has been found approximately to be ( l6 - 10 ) particles by using 

the re la t ion between the barometric coeff ic ient and shower, size 

which has been given by Galbraith (l958)o 
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. . C H A P T E R T H R E E 
Extensive a i r shower experiment to search for quarks' 

3.1 Introduction 

Since Gell-Mann (1964) and Zweig (1964) predicted the 

existance of f rac t iona l ly charged particles (quarks'), many 

experiments have been carried out i n an attempt to detect these 

particles among secondary cosmic rays. The main area i n which • 

the search has taken place are at the accelerators and i n the 

cosmic radiat ion, and as yet none has proved successful. The 

flash tube chamber which' has been described i n chapter two was 

used to look for quarks i n EAS close to the. core. B r i e f l y , a 

f rac t ional charge e/3 quark is expected to have s igni f icant ly 

fewer flashes along i t s track than a charge e part icle and this 

property i s looked for i n the quark search. 

3.2 Quark results 

3.2.1 Analysis of data 

Analysis of individual events was achieved by projection of 

the extensive a i r shower run fi lms on the scanning tables. A l l . 

the f i lms have been scanned careful ly and the events c lass i f ied . 

The selection c r i t e r i a fo r measurable events from the f i l m were 

based solely on the flash tube information. 

The number of flashes.was counted for trays.F2 and F3 and the 

angle of the track to the ver t i ca l was measured and a small scale 

diagram of each event was drawno A l l the interesting events 

observed-in-the chamber were recorded, drawn and studied. ' The 

tracks, with F2 + F3 > 60 flash .tubes were only measured i n the 

scanning i f they had at least one shower track of length greater 
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than 60cm i n the chamber and were paral lel to i t , to + 5U and 
produced at least one flash i n each-of the defining layers 
F l and F4,' A l l the tracks with F2 + F3 i n the range 20-60 were 
measured irrespective of the angle they made to shower tracks 
i n a pictureo 

3 0 2 o 2 . Basic.experimental data 

The summary of the basic experimental data referr ing to the 

E-series f i lms measurement i s shown in table 3„1. A l l this data 
• -2 

was obtained using a local electron density of >40m - as a 

.master triggero 
Film Running Total ho Total.number Percentage of Total number, 
Numbers time (hr) of of measurable photos that of measurable 

photographs photographs give at least tracks. 
one. measurable 

r — -- - - • -• track (%) * 
E1-E69 2i570hrs 12,057 2,753 23$ 4*501 

Table 3.1 Basic experimental data 

The frequency dis t r ibut ion of the number of measurable tracks per 

photograph is shown i n table 3»2. 

The-frequency dis t r ibut ion of the number of flashes i n F2 + F3 

fo r 4501 measured tracks i n the chamber is shown i n figure 3 . 1 . The . 

mean number of flashes along the track f o r shower particles passing 

through the chamber i s 78.11 ± 0.07 and the standard deviation on 

the d is t r ibut ion i s 4.73. The expected number of flashes f o r minimum 

and plateau ionizing charge e particles and quarks of charge e/3 and 

2e/3 are shown i n figure 3.1 by arrows, the small bars indicate the 

uncertainty i n the position of the arrow and the large bars the 

expected standard deviation of the d is t r ibu t ion . ' I t i s clear from 

this figure that the chamber should register the passage of quarks 

with charge e/3 but those with charge 2e/3 w i l l not be distinguished 
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from charge e particles and the quarks are expected to have a value 

of F2 + F3 i n tile range 28^50 flashes.' As can be seen from figure 

3 0 1 , 20 tracks with F2 + F3 i n the region 28-50 were observed during 

the .running time 2,570 hours. A small scale diagram f o r each of these 

20 events is shown in figure 3.2 (a-e). No events were observed with 

F2 + F3 i n the range 20-26. 

Number of measurable 
tracks per photograph,n 

Number - of photographs , N N x n 

1 1604 1604 
•2 758 • 1516 
3 254 762 
4 84 336 
5 • 42 210 
6 7 42 
7 3 21 
8 0 0 
9 :0 • 0 

10 1 10 

SUM 2,753 4£01 

Table 3.2: The frequency dis t r ibut ion of the number 
of triggers N having n measurable tracks. 

3.3 Examination of the Quark Candidates. 

3.3.1 Background .effect 

From the measured efficiency-time delay curve shown .in f igure 

2.4 the. tracks with F2 t F3: i n the range 28 '- 50 could be produced " 

. by incoherent muons which traversed the chamber i n the.period 103us 

to 144us preceding the a i r shower t r igger . Also from the same curve, 

i t can be shown that the d is t r ibut ion of F2 + F3 fo r incoherent muon 

tracks should be f l a t over the range 28 -> 50 flashes. The rate 



Figure 3,2 (a-e) Flash tube diagrams of the 20 

quark candidate events observed 
in EAS runs (El - E69). 

Each event is indicated by the 
f i l m (E) and event number. 
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of the incoherent muons through the chamber sensitive volume was 
104.2 sec * and the to t a l time available fo r incoherent muon tracks 
to simulate quarks is 0.154 sec. Thus the expected number of the 
incoherent muons simulating quarks with F2 +• F3 i n the range 23-50 
was calculated as .16. This should be Compared with the observed 
number of tracks of 20 with F2 + F3 i n the range 28-50 indicating 
rough agreement, which may not rule out the presence of a few 
genuine quarks. . 

3 03.2 The angular separation, of tracks 

An experimental test was done on these quark candidates i n 

which to iden t i fy the possible quarkso I t was assumed that the 

quark tracks should be essentially paral lel to shower tracks and 

a l i m i t of + 5° has been imposed. The 20 tracks-which have been 

observed with F2 + F3 i n the range 20-50 reduced to 6.0 and.this 

should be compared with an expected number of incoherent muons of 

2.2 • Figure 3.3 shows the same dis t r ibut ion which has been produced 

i n figure 3.1 except that only tracks with F2 + F3 i n the range 

20 - 60 are plotted i f they are paral lel to shower tracks within 

± 5 ° . 

3.3.3 The knock-on electron tes t . 

The second experimental test that can be applied is an 

examination of the number of knock-on electrons ( 6-rays.) produced" 

by the particleso• The 6 tracks, quark candidates, have, been 

examined careful ly and i n deta i l f o r the occurrence of extra flashe 

due to knock-on electrons,, a knock-on being defined as two adjacent' 

flashes occurring i n one layer of flash tubes. The mean number of 

knock-on electrons (KO's) on the 14 non paral lel quark candidate 

tracks which were taken to be due to incoherent muo.ns was found to 
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be 1.79 and three of these tracks had no KO's along i t . . We 

expected the quark with charge e/3 would produce l /9 th the number 

of KO's that a charge particle e rhud.n would produce. According 

to this the quark track should be v i r t u a l l y free of knock-on 

electrons. Of the 6 quark candidates, two have no observable' 

KO's. The expected number of the" incoherent muons simulating 
3 

quarks, w i l l be 2.2 X — = 0.47. 

. This should be compared with the observed number of two tracks 

which sa t i s fy a l l above cri ter ia .- The basic information of these 

6 events is given i n table 3.3. The event E19-45 Which shows a 

possible e/3 quark track is shown i n plate 3 . 1 . 

3.4 Discussion 

This experiment is therefore quite capable of detecting e/3 

charge particles (but not quarks with 2e/3 charge) close to a i r 

shower cores and i n observing 12,057 of these showers, two tracks 

were observed i n the expected quark region and both were consistent 

with zero knock-on electron flashes associated with them* The most 

l i k e l y interpretation is that they are background incoherent muon 

tracks but i t i s possible that they are genuine quarks.- • The 

probabili ty of observing two pseudoquarks is therefore 8%. Based 

on two possible event's the upper l i m i t to the f lux of e/3 quarks i n 
-2 

a i r showers where the electron density i s> 40m is less than 1.4 10 
- 2 - 1 - 1 

cm • sec st . This l i m i t i s calculated using an aperture of 

1.57m st (defined by the middle of FIB and the middle of F4A shown 

i n figure 2 i ) and neglects the loss of quark due to inelastic interactions 

i n the chamber materiaL' Assuming a quark-nucleon inelast ic cross 

section of if the nucleon-nucleon inelastic cross section, the probabili ty 

of a quark traversing the chamber without interacting has been calculated. 
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Plate 3.1 Event (£19-45) 
A po S S 1 ble e/3 quark is indicated 
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to be 0.165, Taking this e f fec t into account raises the upper 
-11 -° -1 -1 

l i m i t quoted above to < 8.0. 10 cm "sec st o 

3.5 The Elast ic-Coll is ion of Extensive A i r Shower Particles 

3.5.1 Introduction 

The main interest i n th is problem is. concerned with the equation 

of the existance of fundamental t r i p l e t particles carrying integral 

charge and a new quantum number Bacry et a l . 1964, . Kan and Nambu. 

1965, Lee, T.D. , 1965o The experimental problem of detecting heavy 

mass (slCMp) integral charge particles is more d i f f i c u l t than 

detecting particles with f rac t ional charge as the i r ionising power 

i s no longer a unique signature, fo r them. In fac t i t is necessary 

to measure the i r mass i n some way to uniquely iden t i fy them and the 

method discussed below provides one possible way of doing t h i s . 

A co l l i s ion between two particles i n which energy and momentum 

are conserved is called elastic co l l i s ion . Consider a particle of 

mass M scattered through an angle 0 i n an elastic co l l i s ion with 

a proton (Mass Mp) and suppose the proton recoils making an angle 

f6 with respect to the incident part icle direct ion. In the non-

. r e l a t i v i s t i c approximation the ra t io v/u depends only °n e and f6 

and i s given by: 
M/M = 2 f sin 6 cos 9 ^ . j&nJl \ Sinl) 

p L sin 8 • • " sin 8 J L sin 8 J 

Thus i f non-relat ivis t ic elastic collisions of extensive a i r shower 

particles on protons are detected experimentally, the above equation 

provides a method of determining their mass d i s t r ibu t ion . 

3.5.2. The Basic- results 

Scanning the. f i lms has revealed 84 events showing EAS particles 

. scattered'through an angle >4° i n elastic coll isions with protons. 

I t i s believed that these coll isions represent essentially free 
28 

coll isions with peripheral protons i n glass nuclei (mainly S. and 
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0 ^ ) as no evidence for low energy evaporation protons is seen at the 

scattering vertex«• The analysis was carried out using the expression j 

given in section 3.5.1 assuming the smallest angle corresponds to the 

scattering particles and the largest angle to the recoi l proton. The 

value of H/M^ was evaluated for each event and the frequency dis t r ibut ion 

of these events is shown, figure 3.4. I t i s seen that i t has a-most 

probable Value 1.35 M A I suggesting that most of the coll isions observed 

are proton-proton at such an energy (^OOMeV) that the non re la t iv i s t i c ; 

approximation is beginning to breakdown. The type of co l l i s ion is shown. 

i n plate 3.2. This event E50-18 shows two'successive elastic scatters , 

for a part icle emerging from a local interaction in lead. The. mass ra t io 

calculated i n the f i r s t co l l i s ion and the second are 1.9, 1.5 respectively. 

The scatter plot of opening anole (6 + 0) as a function of Ui/u. i s shown . 
p 

i n f iaure 3.5, and i t is seen-thatte + )Zf)is close tc 90° for M/M close , 
P 

to 1.0 as is expected for p-p col l is ions . 

The re la t ion between the scattering angle 9 and the recoi l angle 

f6 was plotted for d i f fe ren t primary energies, and reco i l energies using 

the Oxford Kinematical Tables (Volumes 1 and 2 , 1961). The f i t t i n g of 

the measured 6 and $ on the above plots . i s shown i n figure 3.6 fo r pp 

coll isions and figure 3.7 for T T p col l i s ions . The solid'curves shows the 

d i f fe ren t primary energies and the dashed l ine shows the d i f ferent 

recoi l energies. In pp co l l i s ion the maximum scattering angle is 45° 

but the curves for d i f fe ren t primary energies (see figure 3.6) have beer 

reversed only fo r 0 and jtf. I t can be seen from figure 3.6 also that 

a l l the measured points f i t t e d well and the points outside the 100 MeV 

primary energy curve have a low mass rat io and these might be due to 

lip or iTp col l i s ions . 

I t could be explained that the increase i n the width, of the mass 

dis t r ibut ion shown- i n figure 3..4 for high mass ratios is due to 
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P l a t e 3 . 2 Even t (E!iO-18) 

Example o f an EAS p a r t i c l e u n d e r g o i n g 2 s u c c e s s i v e 
e l a s t i c c o l l i s i o n s on p r o t o n s . The a n a l y s i s d e s c r i b e d 
i n t h e t e x t shows t h e EAS p a r t i c l e t o be a p r o t o n . 
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r e l a t i v i s t i c primary particles which begin to break down the non-

r e l a t i v i s t i c approximation. The relat ion between the mass ra t io 

( M / m ) and the Kinetic energy of the primary part icle for pp co l l i s ion 
P 

and IT p co l l i s ion is shown i n figure' 3.8 and figure 3.9« 

I t shows that M/Mp increases rapidly with the increase of the 

primary energy. 

A single event E50-23 at high apparent mass» M/Mp = 11.1» 

was observed as a heavy mass candidate par t ic le . The most l i k e l y 

interpretation is that i t is due to a primary proton having energy 

^ 0 Ge.V and scattering-through a small angle. This is shown i n plate 

3.3. I t could also be explained that the increase i n the width of 

the mass d is t r ibut ion is due to the error involved i n using projected 

angles rather than true spatial angles. The heavy mass candidate has 

a geometry such that the plane of the scattered part icle and recoi l 

proton could be at a maximum angle of 70° to the axis of the f lash tubeso 

Taking this to be so means that the spat ial value, of 0 and $ are ^3 

times the measured projected value. Using these extreme.values to 
f i n d M /M gives = 1.15 which is consistent with a pp.col l i s ion. 

•P P 

3.5.3 Conclusion. 

Obviously the measurements should be repeated using"a chamber 

constructed of alternate layers of crossed flash tubes so thattrue 

spatial angle of elastic scatters can be measured. In this case the 

test that the incident track» scattered track and recoi l proton a l l 

l i e i n one plane could be used as ah additional iden t i f i ca t ion teist f o r 

elastic scatters on essentially free protons. 

Basing the result on one possible event the present.resuit shows -

thatthe f l u x of heavy mass particles (irrespective of their charge), 

with B<0.8 i n regions of EAS of .electron density >40m"2 i s <3,3 10" l 4 i 

cm ''sec st 0 This l i m i t refers to particles capable of penetrating 
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P l a t e 3 .3 E v e n t E5Q-23 

A p o s s i b l e heavy mass p a r t i c l e i n d i c a t e d 
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15cm of lead, 15cm of .iron and producing elastic co l l i s ion on proton 
in/v 15cm glass* 

306 Mass determination of stopping cosmic ray particles i n EAS 

3.6.1 Introduction 

This method provides another possible way to measure the mass• 

of heavy particles having integral charge and is discussed'below. 

Suppose the measured root mean square (rms) angle of scattering 

of a part icle with residual range R is < 9> . I f the rms angle of 

scattering i s determined from sampling the scattering in elements[of 

path of length t radiation lengths ( t « R),pBc can be found from 

(Rossi 1952). 

<6> = ~ t , where K = 21 MeV ppc 

The rest mass of a particle can be determined from the residual range 

measurement R and the pBc determination. 

Low energy particles lose kinetic energy only by ionisation in . 

t rave l l ing to the e.nd of the i r range fcr. which 

-dE = i _ f(B ) 
dx 6 2 

This equation is independent of zhe mass of zhe ionising par t ic le . 
2 

Writing E = Mc (Y- l ) and integrating,, the range of a particle of rest 

mass Mc~ can be shown to be R = AMc F(3), where A i s a constant, Using 

these results gives ' 
pBc ~ 2,2 " P 

p P . Y Mc P 

This expression is independent of the particle mass and depends only 

on 3. ' 

3.6.2 . Experimental technique . . . 

The trajectory of a l l the stopping particles is observed to be • 

eie-se-l-y circular except very close to the end of i t s range. For a 
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chord of length £ (& is the line joining the points where the 
t rajectory started in a circular path to the stopping point . ) 
"the angular deflection of the trajectory is related to the sagitta 
by A= 1/8 G. Where A is the maximum perpendicular distance 
from the chord to the scattered t rajectory. By measuring A 
and & experimentally the value of 0 is found. 

Using the maximum track length available to do this the 

resulting value of © is iden t i f i ed with <0> and p gc was found 

from: i 
<©> = —3- (K = 21 MeV) 

where t = 3.28, the amount of material contained i n F2 and F3 i n 

radiation lengths. The factor if t/2 accounts f o r the fac t that 

projected angles rather than spat ial angles are measured. The 

residual range associated with th is value of p Be i s taken from.the 

mid point of the trajectory over which the sagitta is measured to the 

stopping point. Using the measured value of the range R and the 

momentum pSc the value of B can be found from the universal curve 

shown in figure 3.10 which is independent of the mass of the par t ic le . 

This curve, has been calculated for an aluminium absorber, (note that 

the curve is closely va l id for glass which has a similar average 

Z and A to aluminium), using the range - energy tables of Serre 

(1967). 

Once 3 i s measured, the mass can be found 

B : 

M c 2 . = ( P B C H I - S 2 ) 1 

3.6.3 The results 

The types of decay events which have been observed i n regions 
• -2 

of extensive a i r showers of a local electron density > 40m are 

shown in plates 3.4, 3.5 and 3.6 and the i r frequency of occurrence 



R ft 
—— - p curve, calculated fo r aluminium 
(The curve is valid, fo r any particle rest mass 
and also closely val id for glass which has a 
.similar, average Z and A to aluminium-.) 



P l a t e 3 . 4 E v e n t (E33 -155 ) 

Type 1 . P o s s i b l e p e decay o r up e decay 



P l a t e 3 . 5 E v o n t (E24-2Q4J 

Type 2 . K ->-y-* e decay . 



P l a t e 3 .6 Eve l i t (E3Q-72) 

Type 3 . E l e c t r o p r o d u c t i o n o f a p i o n by a muon 
o r decay o f a heavy mass p a r t i c l e . 
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i n the sample of 12,057 photos is shown in table 3.4. The scatter 
plot of the range R as a function of the .momentum p3c is shown, 
figure 3.11, The curves of muons, pions, kaons and protons are 
calculated from Serre tables (1967). The curves for 10 electron 
masses and 10 proton masses are calculated from, Rossi (l952)o I t 
can be seen} from figure 3oll that the maximum value of p $c 
measurable i n th i s work was 710 MeV and. th is .corresponds to a sagitta 
(A) cm measurement (precision 1 cm) for the trajectory, from the top 
of F2 to the bottom of F3„ 

Event 
type 

Description Number of 
events 
observed 

(*) of photos 
showing events 
tvpe 

1 
Multiply scattered 
particle produces 
1 (or 2) (or 3) 
charged secondaries 

200 (24) 
(9) 
Total=233 

1.7# (0.2*) 
(0.08*) 

2 K •*• u e decay 
. signature 

2 0.C2* 

3 
Electroprpduction of 
a pion by a muon» 
or decay of a heavy 
mass part icle 

1 0.01* 

Table 3.4 The observed frequency of occurrence of 
decay events i n a sample of 12,057 photos. 

The rest mass of each primary particle was estimated by measuring 

multiple scattering and residual range and the resulting mass 

dis t r ibut ion f o r 233 primary particles decays i n the' chamber and 

produced secondaries is shown in figure 3,12. In this figure also 

the mass d is t r ibut ion of 140 particles (from 233) entering the chamber 

paral le l to the shower tracks and the mass dis t r ibut ion of 93 

particles (from 233) emerging from a local interaction i n the 15cm - • 

lead or 15 cm iron absorber.' The following values of density p and 
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Figure 3.11 The scatter plot of Range - pgc of 
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radiation lenath x were used in the calculation: 
o 

-3 -2 "3 
glass Cp= 2.5 g cm , X q = 28.4 g cm ) , aluminium (p =2.7 g cm , 

_ o • x = 26.3 g cm ) . o s 

3.6.4 Discussion 

The result from the mass dis t r ibut ion shows that most of the 

decays observed i n the chamber., were muons, pions and a few kaons. 

No heavy mass particle ^lOiAfc)) has been observed using this 

method, because the minimum sagitta (A) which can be measured' i n 

this technique on the chamber is 1 cm and this gives a mass part icle 

'u^m ) which have a maximum pBc = 710 MeV i n the middle of F2 and F3. • 
P 

The low mass values (<10me) aire probably due to IT mesons which 

suffer nuclear as well as Coulomb scattering and th is e f fec t would 

underestimate p Be and give spuriously low mass values. The most 

l i k e l y interpretation for the events of type 1 (plate 3.4) which 

show a single secondary charged decay particle are either ye or 
i 

Try e decays. The muon from pion decay at rest has a range .1 f lash 

tube, th is corresponding to 4 MeV muon kinetic energy, and the muon 

would not be resolvedp The type 1 events showing 2 chargedsecondaries 

are presumably not decays but i t could be K +n -*TT + A ( •> p+ TT ) i n 

which the recoi l proton i s not observed. The type 1 events showing 
+ + - + 

3 charged secondaries could be kaon decays, e.g. K-^- TT ~ TT IT with 

branching ra t io 6%„ 

Two events of type '2 (plate 3.5)' were observed and these are 

consistent with kaon decay as K->- yv with branching rat io 64$ 

followed by muon decay as y +e 'v g v • The range of the muon from 

kapn decay at rest is 68 g m , th is corresponding to 153 MeV 

muori kinetic energy. 

One event only of type 3 has been found, and th i s i s of particular 

interest as such an event signature would be produced by M/*- M_ + T T + 
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where and are heavy mass part icles . The more l i ke ly explanation 

of this .event is electroproduction- of a pion by a muon (vIP->y H I T + ) » 

I t can be seen from the event (plate 3.6) that the pion stopped i n 

the chamber af ter undergoing multiple scattering and the decay 

electron from muon decay is observed to cross the chamber horizontally. 

As'explained above the muon f rom TTU decay at rest would not be-observed* 

3.7 the neutral particles i n EAS 

The decay and interaction of a number of neutral particles i n 

regions of EAS have- been observed and an attempt has been made to 

interpret the observarions in terms of known elementary part icles. 

Scanning the fi lms showed 65 events i n which a neutral primary part icle 

produced two charged secondary part icles . This type of event is shown 

i n plate 3.7, the direction of the neutral part icle being paral le l to 

the shower direct ion. • 

The visible kinetic energies of the secondary particleswere 

calculated assuming their ionisation loss was 2 MeV/g cm~^. The 

scatter plot of the opening angle between the two.charged secondary 

particles emerging from neutral particle decay or interaction versus 

the sum of the visible kinetic energy of the secondary particleshas been 

shown in figure 3.13. 

The theoretical curves are drawn fo r comparison and refer to the 

rms angle <S> between the t rajectory of a secondary electron (muon) 

of energy E' and that of the primary photon of energy E i n the electron 

(muon) pair production process where <S> i s given by an expression 

of the form: 

= q ' M , Z) f 2 in ( ^ ) 
mc 

2 
where mc i s the mass of the electron (muon) and the function 

q'(E,E', z) i s the order of unity (Rossi, 1952). 



r r m 

1 

1 (0 I 

(0 
(0 

I 
I ! • > ! 1 0.01 I I I ! i . I . J . I I I I • t I 

1 10 1Q2 10 3 10' 

Minimum kinetic energy of theprimary part icle (MeV) 
(sum of visible. K.E of both secondary part icles) 

Figure 3.13. The scatter plot of 65 neutral part icle 
events showing the correlation between 
the opening angle and the minimum kinetic 
energy (K.E) of the primary. 



I 

I 

Plate 3 Event (E54-141) 

Neutral pa r t i c l e decay i n same shower d i rec t ion 
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I t could be-explained, that the events with opening angle close 
to 90° are produced by low energy neutrons (^1 GeV) which knock on 
a proton which then collides with a proton i n the same nucleus so 
that two charged secondaries are observed with the characteristic 
non-rela t ivis t ic pp elastic scattering opening angle of 90°. However 
the events with smaller opening angles may well be neutral kaon 
decay to two charged pionso 

A comparison has been made between the prong-number frequencies 

produced by low energy (multiple scattered), charged (see table 3.4 

section 3.6.3) and neutral primary part icles. Table 3.5 shows the 

data obtained from scanning 12,057 photos. 

Number of 
prongs 

Charged primary 
particle 

Neutral primary 
'par t ic le 

1 200 . Not measurable 

2 24 65 

3 9 3 

4 0 8 

5 0 2 

Table 3.5. Comparison between the prong number distr ibutions 
produced by charged and neutral primary part icles . 

3.8 The iow eneroy particles i n EAS 

. From scanning the f i l m s , 57 low energy EAS particles were found 

showing a multiple scattering shape in traversing F2 and F3 through 

the chamber i n the.same direction as the other shower tracks. The 

sagitta (A >1 cm)-was measured as-a maximum.perpendicular distance 

from the ctord formed by the line joining the points where the t rajectory 

crossed the top of F2 and the bottom-of F3 to the scattered t rajectory 

figure 3.14.. 
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Particles of low.velocity lose energy by ionisation only 

and the rate of energy loss by a particle of charge (Ze) i n material 

of atomic number Z can be wri t ten as (Rossi, 1952): 

dE _ 20 m G 2 Z 2 

'to " * In 
D A A 

4 m / C 4 6 4 

g 

where l ( Z ) i s the average ionisation potential and C = 0..150 Z / A 

cm 2/ g. 

The number of flashes i n F2 and F3 were counted fo r each 

multiply' '. scattered EAS track and the dis t r ibut ion of the number of 

flashes- i n F2 and F3 for 57 tracks.is shown, f igure 3.15. ' 

One can expect that these might be due to low energy background 

• incoherent muons which are multiply scattered i n traversing the 

chamber. 12$ multiply scattered tracks with sagitta (A>-1 cm) have 

been observed from a sample of 5,233 incoherent muons passing 

through the chamber* 

Calculation shows that the expected number of the multiply 

scattered background tracks paral lel (+5°) to the shower direction 

and i n the region F2 + F3 between 60-77 flashes was 16. This figure 

is to be compared with observed number of 40 i n the same range. Thus 

these results suggest that most of the particles in an a i r shower 

core are on the plateau of the ionisation curve. Some, however,may 

be on the minimum of the curve. 

3.9 The recovery time of the neon flash tubes 

A number of events were observed i n which a dense shower caused 

flashes i n most of the tubes and this was followed later by an event 

. showing low eff ic iency muon tracks. 

The' interesting point i n th is problem is tha t , the e f f ic ienc ies , 

of these muons is similar to the eff ic iencies which can be caused by 

f rac t ional charge particles (quarks). When a single r e l a t i v i s t i c 
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part icle traverses a tube some ion. pairs are produced along i t s • 

track and during the application of the high voltage pulse the 

electrons are accelerated towards the positive electrode and 

mult ip l icat ion produces breakdown. Photons cause the discharge 

to be propagated rapidly along the f u l l length of the tube,, The 

positive ions move more slowly towards the negative electrode- and, 

i f the applied pulse is long enough, some w i l l reach the wallo After 

the cessation of the/ pulse there w i l l be many electrons and positive 

ions, adhering to the glass, and i t . i s considered that i t i s these which, 

are mainly responsible fo r a remnant clearing fieldo The magnitude 

of this f i e l d w i l l f a l l with time because of neutralization of 

electrons by positive neon ions from the gas and conduction of 

electrons along the inside surface of the glass to neutralize those 

positive ions which reached the wall during the pulse« 

The eff ic iency of these muons was measured, with the result 

shown in f igure 3.16. In th is figure the internal eff iciency (r i j ) 

is given, that i s , the layer eff iciency ( i . e . the number of tubes 

flashed along the length of the track divided by a number of layers) 

multiplied by the mean separation of the tube centres and divided 

by internal diametero 

The curve fo r T^= 40us has been given by Ashton et al (1971), 
i 

and a comparison is made between this and the present experimental 

data E1-E69 for T D = 20u s . 

I t can be seen that fo r T Q = 20us a flash tube has a recovery 

time to f u l l eff iciency of ^ 3 minuteso The time f o r each event was 

recorded andthe d is t r ibut ion of time, separation of the shower events 

i n f i lms E1-E16 was drawn, figure 3<,17. The mean time separation 
- t / x 

is given by y = y Q e ' . T was found equal to 17.8 minutes. The 

rate of the shower corresponds to the value of (x) i s 3„4 hrs * 

and the straight l ine was drawn to give a b e s t . f i t to the measured 

events* 
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3.10 The angular d is t r ibut ion of accepted particles 

The dis t r ibut ion of the projected zenith angle in the f ront 

view .of the chamber was drawn for a l l measured a i r shower triggered 

tracks and is shown in figure 3.18. In this case a symmetrical 

d is t r ibut ion about zero angle was obtained and a maximum zenith 

angle which can be measured for a track passing the top of FIB 

and the bottom of F4A and produce at least one flashed tube i n 

them is 37°. 

A single event E38-98 has been observed during the shower 

run showing horizontal EAS triggering the chamber and this made 

an angle about 78° to the ve r t i c a l . 

One can expect an increase i n eff iciency for tracks of 

increasing zenith angle, because of the increased track length 

of the part icle i n the flash tubes, but this effect is small. 
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C H A P T E R F O U R 
The Characteristic Interactions of. Incoherent Particles i n 

Cosmic Rays Observed i n the Flash Tube Chamber 

4 . 1 . Introduction 

The flash tube chamber is a powerful visual technique for 

studying the properties of cosmic ray part icles . The types of 

interaction when the incoherent component of cosmic rays at sea 

level traverses the chamber have been measured and studied. The 

incoherent muons, muons which arrive at the sea level with neither 

electronic or muonic accompaniment, are selected by a two-fold 

coincidence between sc in t i l l a to r s A and B with resolving time 0.1 u s. 

As the measured two fo ld rate was 11.5 + O.U sec * a dead time of one 

minute was imposed between coincidences that triggered the chamber. 

A l l the single part icle cal ibrat ion runs, 5,283 single part icle events 

were taken with time delay of.20ys between the occurrence of the single 

part icle and the application of the high voltage pulse to the chamber. 

4.2. Classif ication of the observed events 

The interactions produced by incoherent cosmic ray particles 

traversing the chamber are c lass i f ied .and their frequency of occurrence 

given. The d i f fe ren t types of event observed are shown i n figure 4.1 and 

their frequency of occurrence are shown i n table 4 . 1 . I t i s seen from the 

table that the most frequent type of events are recoi l electron production 

37% and s ignif icant multiple scattering i n F2 and F3 6%.The event types 

shown i n figures 4 .1 .1 , 4.1.2 and 4.1.3 have been studied i n de ta i l (next-

sections) and the remaining event types.except those shown i n figures 4.1.5 

4.1.6 and 4.1.12 can be understood in terms- of either the electro­

magnetic interactions of muons or nuclear active par t ic les . The 
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Event 
type 
(see 

?.v> 
Description 

No. of 
events 
observed 

No. cf 
photos 
scanned 

% -of 
photos 
showing 
event 
type 

1 Straight track with recoi l electron 
of energy > 3 MeV (3 flash tubes) 

388 1,046 31% 

2 

C shaped multiple scattering i n 
traversing F2 and F3 (3.28 radiation 
lengths)with sagitta > 2cm 
S shaped multiple scattering i n 
traversing F2 and F3 with sagittas 

> 1 cm 

330 

3 

5,283 -

'5,283 

6% 

3 Mult iply scattered u with decay 
electron i n F4 

27 5,283 0o5% 

4 Interaction in flash tubes from which 
2 secondaries emerge from same point. 

25 5,283 0,5# 

5 

Penetrating part icle which produces 
single backward secondary of range 
> 5 f lash tubes 
Penetrating particle produces single 
backward secondary which penetrates 
15 cm iron 

27 

2 

5,283 

.5,283 

0.5$ 

^0.04# 

6 Stopping part icle produces 3 charged 
secondaries 

0 5,283 -

7 Track with close electron accompaniment 4 5,283 ^0.08% 

8. Nuclear interaction in . f la.sh tubes 13 5,283 0.25& 

9 Narrow angle cascade developing from 
interaction in flash tubes 

17 5,283 0 c 3 % 

1 0 Interaction i n iron (15 cm thick) 17 5,2.83 0 o 3 # 

11 Interaction i n lead (15 cm thick) 1 ' 5,283 0.1$ • 

• 12 

Two penetrating particles© These events 
include genuine two time coincident 
particles (resolving time 0 . 1 u s ) and 
events i n which a single mu'cn produced 

• the tr igger and a background muon 
traversed the chamber i n i t s 
sensitive time (^150us) 

18 1,046 .107% 

TABLE 4 o 1 The observed frequency of events 
of the type i l lus t ra ted i n f igure 4.1. 



34 

event types shown i n figure 4.1.5. are probably produced by muon 
electro production of a nuclear resonance followed by decay to the 
ground state i n which a backward pion is emitted, the overall 
reaction being up+ un i r +

0 27 events of this type were observed 
i n which the range of the secondary was >5 flash tubes. Two events 
C9-111 and C14-95 of this type show that the penetrating particle 
produces a single backward secondary which penetrates 15 cm i ron . 

No events of the type shown i n figure 4.1.6 have been observed 

i n the present work. Only one event of th is type has been observed 

i n the previous work (J. King, 1970, Ph.D Thesis) from 1,000 single 

particles measured. This' event shows a stopping particle which 

produces 3 charged secondaries. This type of event is possibly 

K--»- TT— + T T * + T T with branching ra t io 6%. 

Figure 4.1.12 shows two penetrating particles i n which a single 
i 

muon produced the trigger and a second muon traversed the chamber 

i n i t s sensitive time "V lSOus. The track with higher eff ic iency was 

presumably the tr igger part icle and the less e f f i c i e n t one a back­

ground track. The mean number of flashed tubes on these 18 tracks 

was 69o4 i n F2 and F3 compared with the triggered particles which 

have a mean of 74.77 i n F2 and F3. • 

4.3. Knock-on electrons 

The interaction of u-mesons i n the glass of the f lash tubes 

producing a. knock-on electron with suff ic ient energy, to traverse 

into the gas of the flash tube was observed. I t was assumed that 

the co l l i s ion takes place i n the centre of the glass which has a 

mean thickness 0.32 cm. The high energy knock-on electron i s 

ejected at a very small angle to the primary, and in consequence 

both the primary and the knock-on electron travel together for a 

re la t ive ly large distance,. As the energy of the knock-on electron 

i s reduced i t s angle of ejection and i t s scattering increase. 
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The d i f f e r e n t i a l co l l i s ion probability for a part icle of mass, m, and 

spin has been calculated by Ehabha (193S) and by Massey and Corben 

(1939), and i s as fellows: 

co l l 
2 C m ĉ  

(E ,E») dE ' = & 

8' 
d i ' [ m ; , 

(E * ) I F 

m 

E' 
2 

E+mc 
• « 

-
-1 2 

9 g cm . 

where C =0.15 l/k 

8. is the velocity of the incident particle of energy E 
• 2 m c is the rest mass of the electron e 
E ' is the energy of the recoi l electron. 

E* i s the maximum transferable energy to the electron 
by a primary .particle. 

The probability of production of a knock-on of. kinetic energy i n the 

range from E R minimum to E* maximum by a muon of energy E is given 

by: 
*"m / 2C m c^ , 

y m B a I ^ )ZJ ( E ^ E - ) = co l l min 
3 ' ( E « ) 

E» • 2 

" m t+ir.c 
m m 

The. kinetic energy of knock-ens were estimated by the number of flash 

tubes and electrodes they traversed in.F2 and F3. The plot of projected 

recoi l angle as a function of range fo r a sample of recoi l tracks of 

range>3 flash tubes is shown i n figure 4.2 and the observed range has 

been converted into electron energy assuming an energy loss of 1 MeV 

per flash tube and 0„6 MeV per electrode traversed. I n t h i s . f i g u r e , 

only the knock-ons which have at least 3 flashed tubes on.knock-on 

track are plottedo The expected spatial recoi l angles fo r d i f fe ren t 

electron energies' calculated from the kinematics of ue.col l is ion fo r 

different-muon energies is :also shown in . f igure 4.2» 

I f ot.is the angle of emission of the electron with respect to the 

primary and E ' the electron kinetic energy produced by a muon of 

momentum p. (Kannangara and Zivkovic, 1953), then, 
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Figure 4.2 Scatter plot showing the correlation between the 
electron recoi l angleand .the electron-energy f o r a 
sample of 295 events of the type shown i n figure 4.1.1 
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Figure 4.3 The d i f f e r e n t i a l energy spectrum of. 388' 
knock on electron tracks observed i n F2 
and F3 on the. passage of .1046 incoherent' 
muons.. 
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2ni p cos2a pi _ _ £ l •. , 
~~ / 2" 2̂ 2 2 2 (m + /p ~hn ) - p eos a e ^ u r 

for a given. primary energy© E 1 is a maximum when a = 0«. The maximum 

transferable energy for a muon of median energy 2.1 GeV is 300 MeV.» 

I t is seen in figure 4 a 2 that about half the events are consistent 

with ye collision dynamics but that about half also lie above the curve 

corresponding to infinite energy muons. This can be understood in 

terms of the strong multiple scattering of low energy electrons in the 

flash tubes© At low energies 3-6 MeV, more events lie above the curve 

than below i t and this is attributed to low energy electrons recoiling 

close to the forward direction not being resolvable from the track 

i tse l f . 

The differential energy spectrum of a l l the knock-on electron 

tracks of energy >3 MeV (3 flash tube) were observed in F2 and F3 

on the passage of 1046 muons is shown in figure 4o3. The fu l l line 

shows a f i t corresponding to a law of the form N(E ' )dE *«C dE'/.(E * 

The histogram of the differential energy spectrum of the 388 

knock-cn electrons of energy >3 MeV were observed in F2 and F 3 . 
•*2 

(93 g cm ) is shown in figure 4<»4o The dotted curve corresponds 

tothe f i t using the probability of production of a knock-on of a 

kinetic energy in the range E ' minimum - E" maximum per single 

particle track. 

A normalization to the theoretical curve was made at the total 

number of knock-cn electrons observed, and i t may be seen that the 

agreement between experiment and theory is good. 

A typical measured knock-on electron ejected by a single charged 

particle, muon/is shown in figure 4 .1 .1 and plate 4 . 1 . 
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Figure 4.4 The differential energy.spectium of 388 knock-on 
electrons' observed in the regions F.2 and F3 of the 
chamber on the passage of 1C46 incoherent muons.' The 

• dotted curve represents the theoretical f i t to the 
probability of' production of a K.O of energy, between 
E . . and E . and assuming the primary particle is a mm* max ' • *\ 1 v 

muon of kinetic energy 3 GeV. 3 GeV is the median 
energy of incoherent muo'ns traversing the chamber 
at the centre of F2 and F3. 
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PlaLe 4.1 j Event (C5-29) 

A knock-on electron of about 22 MeV k ine t ic 
energy is produced by a single pa r t i c l e 
t raversing the f l a sh tube chairber. 
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4.4. The Multiply Scattered particles 

I t was noticed during the single particle calibration run that 

6% of the observed 5,283 single calibration particles showed C -

shape multiple scattering in traversing the chamber (sagittaA>2 cm). 

The events measured were of the type shown in figure 4.1.2. The. 

sagitta A cm was measured as a maximum perpendicular distance from 

the chord formed by the line joining the points where the trajectory 

crossed the top of F2 and the bottom of F3 to the scattered trajectory. 

The integral scattering distribution for 5,283 penetrating particles 

in the chamber' is shown in figure 4.5. The expected multiple scattering 

distribution of single muons was calculated assuming the .rms . projected 

angle of scatter of a particle in traversing t radiation length iss' 

<e>= — ^ T " , where K = 21 MeV. I f Jl is the linear distance 

between the top of F2 and the bottom of F3 then <A> = H/8<0> 

and (Rossi 1952), 

for a particle of a given pBc* 

Identifying p Be with the value at the center of F2 and F3 the 

above expression has been weighted over the momentum spectrum of muons 

in the middle of the chamber and capable of production coincidences 

and the final result whirch__has be§n broadened for an rms error in 

measuring A of 1*1" cm is shown also in f igure 4.5.' Three events 

were observed during the scanning showing S-shape multiple scattering 

in traversing F2 and F3 with sagittas A> 1 cm. T-hê e-event-s-mi-ght—be 

doe:-<fc(>--a-4ajge--aBg-le. •S€a±tejdflg-4)^4cfe--^iajaged tho-diroo'M^ft-e-iM^ha: 

%-ra^s4«^-of^-G-s^pe-mu-l-t-i-p-l-e—scattering_p,ar.tixx-le..'. 
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4.5 The Mass Estimation of Stopping Incoherent Particles 

4o5olo Introduction. 

From measuring the multiple scattering and residual ranges of. 

the particles that stop in a flash tube chamber mass estimates of 

. stopping particleshave been made. In. a sample of 59283 photographs-

of incoherent cosmic ray particles, traversing the chamber, 27 

-photographs showed a significantly scattered stopping muon with a 

decay electron produced at the end of i ts range. The same method 

which has been described in section 3.6 was applied to determine the 

momentum at the mid point of the trajectory and the mass of the 

stopping particle. 

4 .5 .2 . The mass dis.tribtuion 

The scatter plot of the range R as a function of the momentum , 

pfc for 27 stopping single particle is shown in figure 4.6. The curves 

of muon, pion, kaon, and proton are calculated from Serre (1967) 

range-energy tables. The curves for 10 hi and 10m are calculated 
® P . 

from Rossi (1952). The maximum value of pfc which can be measured 

was 710 MeV and this corresponds to a sagitta A cm measured 

(precision 1 cm) for the trajectory from the top of F2 to the bottom 

of F 3 . 

Thus once R / pfc is measured 6 can be found, frcm the curve which 

has been shown in figure 3.10 and M. (mass) can be. found: 
MC 2 = P B c (l. - e 2 ) " ^ 

The mass distribution for the 27 scattered stopping muons in the chamber 

with an electron produced at the end of its range is shown in figure 4„7. 

A typical y-e decay is shown in figure 4.1.3 and plate 4.2o 
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ray particles obtained from measuring multiple .scattering 
and residual range. 
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4 . 5 . 3 Discussion 

I t i s seen from the mass distribution that the most probable 

mass is consistent with the muon mass as expected. Of the 2 7 

events» 4 events, stopped at the bottom of F3 or F4A and the decay .; 

electron traversed scintillator B producing the necessary coincidence' 

and the remaining 23 events stopped in either scintillator B or F4B>. 

I t is noticed that fewer decay events are observed to stop at the 

bottom of F3 or in F4A, than in scintillator B or F4B- in spite of 

the fact that there is more stopping ..material at the bottom of F3 

and in F4A„ The reason i s .that a resolving time of O.lus for the 

coincidence time between A and B scintillators was used, so only 

4„6% of muons stopping at the bottom of F3 and in F4A produced 

a decay electron in time to satisfy the coincidence requirement. 

Three events: were observed with low mass value < 10m . These 
e 

events can be explained as due to T T + mesons which would suffer 

nuclear as well as Coulomb scattering and this effect would under-, 

estimate p3c and give a low mass.value. 

i 
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C H A P T E R F I V E 

COLLUSION 

The theory of the possible existence of three elementary 

particles (quarks) arose from an attempt to understand the 

observed mu'ltiplet structure of elementary particles. To date ; 

there is no strong positive experimental evidence for the 

existence of quarks and its well known that a considerable 

number of attempts have been made to detect the production of 

quarks at high energy accelerators. In cosmic rays, there is 

a wide variety of experimental techniques that have been used ' 

to search for quarks and of the searches so far reported, most 

have used the fractional charge as the identifying feature. 

However, some charge-independent searches have been conducted. 

In this work flash tubes have been used as a visual detector : 

to search for quarks and study the characteristics of cosmic ray 

particles at sea level. The flash tube depends for its operation 

on the ionisation left by an ionising particle. The position of the 

quark charges e/3., 2e/3 and the charge e particle on the ionisatio.n 

curve was calculated. The experiment was run for 2,570 hours'using 
-2 

as a master trigger EAS producing a local electron density > 40m • 

Two candidates were observed in the ionisation region expected for 

e/3 quarks and- they 1 satisfied a l l the conditions applied . However 

the most likely explanation is that they are background incoherent 

muons. Charge 2e/3 quarks will not be distinquished from charge 

e particles in the flash tube chamber. 

The upper limit to the flux of e/3 quarks, based on two possible 

events is <L.4 10 ^cm ^sec "̂st ^. Assuming a quark-nucleon inelastic 
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cross-section of 3 the nucleon-nucleon inelastic cross-section 

the probability of a quark traversing the chamber without 

interacting has been calculated to be Ot165. 

Taking this effect into account raises the upper limit to 
-11 - 2 - 1 - 1 <8„0.10 cm sec st . 

In future there is a plan to modify the chamber by increasing 

the number of plastic scintillators'so as to cover the whole 

sensitive area of flash tubeso Figure .Solo shows a side view 

of the flash tube chamber with this proposed modificationo 

A, previous particle indicator wil l be used to detect-whether. 

incoherent muons traverse the chamber sensitive volume in the 

2O0us period preceeding the occurrence of the master air shower 

trigger thus eliminating the background problem completely© 

1 1 

1 
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Zv;ieg, G . , 1964, CERN preprints TH401 and TH412, (unpublished). 1 

http://Ki.nematic.al
http://Hal.lv


45 

A P P E N 'D.J X 

The Mass Ratio of Two Body Elas t ic Collisions in 

the Non-relativistic. Approximation 

h * 2 

M 

E:« , P ^ 

A derivation of the general formula used in section 3„5 for i 

determining the mass ratio of two body elastic collisions in the 

non-relativistic approximation is given below. 

Consider a particle of mass M with kinetic energy E^ and 

momentum p̂  scattered through an angle 9 in an elastic collision 

with a particle of mass M*, assumed to be in i t ia l ly at rest, 

and suppose the particle recoils making an angle j6 with respect 

to the incident particle direction. 

Let (E^, p^Jj (E'JP ' ) be the energy and the momentum of the 

scattered and recoil particles respectively after the collision. 

In an elastic collision the total energies and momenta of a 

particle wil l be conserved: 

i y * > E x = E 2 + E ' (1) 

*1 ^ 2 + ^ (2> . 
The momentum can be written in form: 

p» sin & p 2 sin 6 ( 3 ) 

p~ = p 2 cos 6 + p* cos 0 (4) 
2 

Assume the kinetic energy of the incident particle is E, = Mc [ - f - l ) 

and the particle in nonrrelativistic region (this approximation is 

valid when 8 is-f inite and measurable). 
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Thus equation ( l ) can be written! 

2 2 
£ i JP2-
2M = 2M + E 

2M ( P i - P s J ^ P i ^ ) - E " (B> 

From e q u a t i o n (3 ) we have: 

p ' . s i ri 6 
P 2 ~ s i n 6 (6 ) 

S u b s t i t u t i n g t h i s i n t o equa t ion (4) we g e t : 

q = P ' s i n 6 cos 8 + p« c o s ^ ( y ) 
• 1 s i n © 

• . i 

By simple- c a l c u l a t i o n , assuming p^y p^ f o r heavy mass p a r t i c l e s , 

we o b t a i n f r o m equat ions (5 ) , (6) and (7): ' 

1 f p . ( S in 0 cos 8 v . l i r L i v l [ p ' s i n ^1 ^ 
• 2M \_* K s i n 6 + C 0 S P s i n 6 J J [ / s i n 8 J 

• • " ' ! ' 

„ Z , X r^ in i_co . 5 _e J _ jBioi'1 f s i n j i ~| = E . / 8 k 
" I M L s i r i 8 T . c o s JO s i n a J |_ s i n 8 J A ^ 7 

However» i f t h e r e c o i l p a r t i c l e i s a l so n o n - r e i a t i v i s t i c then.: 

' ' " 2M'' 

S u b s t i t u t i n g t h i s i n t o equa t ion ( 8 ) , we g e t : 

. M ' ^ [_ - s i n 6... ... c o s / J s i n 8 J. | _ s i n 8 J ' ^ 
Equa t ion (9 ) shows t h a t i n the n c n - r e l a t i v i s i t i c app rox ima t ion the 

r a t i o between the mass of i n c i d e n t p a r t i c l e and r e c o i l p a r t i c l e ; 

{iv/ft'I-') depends o n l y on the s c a t t e r i n g • angle 8 and the r e c o i l 

angle jD. ' . 


