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Frontispiece: Spark chamber i n a magnetic f i e l d showing electron 

cascades produced by 1.3 GeV/c vT beam. 
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Preface 

The work described i n t h i s t h e s i s has been c a r r i e d out i n the 

Physics Department of the University of Durham under the supervision 

of Dr. A.W. Wolfendale during the period from October, 1961, to 

September, 1963. The author'was the re c i p i e n t of a D.S. I . R. Advanced 

Course Studentship.-

He was responsible f o r the design, construction, and operation of 

the. apparatus described i n t h i s t h e s i s . The a n a l y s i s of the data was 

the author's r e s p o n s i b i l i t y , and he a l s o contributed a major part to 

the development of the theory. The r e s p o n s i b i l i t y f o r the accuracy 

of the h i s t o r i c a l review and the survey of the different types of 

spark chamber given i n t h i s t h e s i s r e s t s with the author. 

Some of the r e s u l t s presented i n sections k.l and 4.2 of t h i s 

t h e s i s have been published by the author and h i s colleagues ("An 

analysis of the c h a r a c t e r i s t i c s of a neon-alcohol spark chamber" by 

Burnham, J.U., Rogers, I.W., Thompson, M.G., and Wolfendale, A.W.) 

in J . Sci..Instrum., 1965, ^0> 296. Further r e s u l t s on electron 

attachment are being prepared f o r submission f o r publication i n the 

same journal ("Electron attachment i n a neon spark chamber" by 

Burnham, J.U. and Thompson, M.G. ). 



Abstract 

The c h a r a c t e r i s t i c s of a spark chamber containing a. neonr-alcohol 

mixture are described with p a r t i c u l a r reference to the v a r i a t i o n of 

ef f i c i e n c y with the parameters of the pulse and the determination of 

the spark formation time. .An interpretation i s made on the b a s i s of 

a model f o r spark formation and the v a l i d i t y of the mechanism i s examined 

by an i n t e r n a l comparison of the data. 

The r e s u l t s are used to derive the electron d r i f t v e l o c i t y as a 

function of f i e l d over the range of E/p from 0.05 to k v on-1(mm H g ) - 1 

and to determine the probability of a single electron i n i t i a t i n g a 

spark. This i s found to be 0.25. 

Measurements are a l s o reported on the e f f e c t of electron attach­

ment and on the geometrical properties of the sparks. Conditions are 

studied both for minimising the angle between the direction of the 

p a r t i c l e t r a j e c t o r y and the ensuing spark> and f o r reducing the error 

i n location of the traj e c t o r y (0.2 mm). 

Conclusions on the design of spark chambers are presented and a 

h i s t o r i c a l review of the development of the spark chamber as we l l as 

a survey of the different types of spark chambers developed Up to the 

present time are given. _ • • 
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CHAPTER 1 

A h i s t o r i c a l introduction.of the.development of the 

spark chamber up to 1961 

1.1 General ••" 

Instruments f o r studying cosmic rays and nuclear p a r t i c l e s can 

generally, he divided into three main groups. 

The f i r s t of these comprises e l e c t r i c a l methods, i n which the 

passage of an ionising p a r t i c l e through the detector i n i t i a t e s , same 

f 01m of e l e c t r i c a l signal. ." Examples of t h i s group are the ionisa-" 

tion chamber and the Geiger counter. 

The second group includes such detectors as cloud chambersand 

nuclear emulsion, i n which the ac t u a l p a r t i c l e t r a j e c t o r y i s 

rendered v i s i b l e over a l i m i t e d space. 

I n the t h i r d group^ detectors such as the spark counter and 

the spark chamber are c l a s s i f i e d . These give both an e l e c t r i c a l 

s i g nal and a v i s u a l record of the p a r t i c l e t r ajectory. The spark 

chamber in. p a r t i c u l a r has become a powerful tool i n experimental 

high energy nuclear physics-. I t i s with t h i s technique that the 

present t h e s i s i s concerned; i t s development from the e a r l i e r 

spark counter i s b r i e f l y outlined below, and t h i s i s followed by a 

more detailed discussion of the technique. 



2. 

1.2 The Development of the Spark Counter 

The spark counter may. "be defined as any arrangement of electrodes 

operated i n a gas atmosphere with a high s t a t i c potential between them. 

The f i r s t working spark counter appears to have been constructed 

by Greinacher (1936). This consisted of a point-plate electrode 

system, i n a i r , to which a s t a t i c potential difference j u s t below-the 

break-down potential was applied. On the t r a v e r s a l of a heavily 

ionising a - p a r t i c l e between the electrodes a spark discharge was 

i n i t i a t e d . 

I t was not u n t i l nine years l a t e r that further work on t h i s 

type of counter was reported. Chang and Roseriblum (19^5) constructed 

an a - p a r t i c l e counting system .comprising several parallelr-wire spark 

counters. The electrodes, which were operated i n an atmosphere of 

a i r , consisted of eight very thin, tungsten wires mounted p a r a l l e l to 

a f l a t brass plate. The authors c a r e f u l l y investigated the conditions 

f o r r e l i a b l e operation of these counters, which were capable of 

counting 6b0 a - p a r t i c l e s per minute. 

Keuffel (19^8) was the f i r s t to introduce a p a r a l l e l - p l a t e 

spark counter. . This was of great i n t e r e s t to investigators then 

searching f o r a detector with a f a s t response time, because p a r a l l e l 

plate geometry provided a f i e l d everywhere uniform and consequently 

the shortest t r a n s i t times. 
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Madansky and Pidd (19^8), (19^9), (1950) showed that such a 
counter avoided the random delay errors inherent i n counters y i t h 
c y l i n d r i c a l geometry and was suitable f o r measurements of l i f e -
times as short as 10 sees. 

After i n i t i a t i o n by an ionising p a r t i c l e the discharge 

produced i n a p a r a l l e l - p l a t e spark counter would have persisted, 

unless external electronic quenching c i r c u i t s were employed. I t 

was noticed that i f the overvoltage was restored too soon, spurious 

discharges occurred. With optimum cathode material these spurious 

pulses placed a.lower l i m i t of about one millisecond on the recovery 

times. 

Keuffel (19^9) noticed that the discharge i n a p a r a l l e l - p l a t e 

spark counter was located a c t u a l l y on the t r a j e c t o r y .of the charged 

p a r t i c l e traversing the counter. He pointed out that t h i s was a 

way of determining p a r t i c l e tracks. 

B e l l a aiid F r a n z i n e t t i (1953a,b) repeated Keuffel's observations 

and pointed out that the position of an ionising p a r t i c l e could be 

located to within one cubic millimeter. B e l l a et a l . (1953) pub­

l i s h e d the f i r s t photographs of the spark discharge. 

From t h i s work Conversi and G-ozzini (1955) and Conversi et a l . 

(1956) developed the f l a s h tube hodoscope. This consisted of an 

array of small glass tubes f i l l e d with neon, and mounted between 

plane p a r a l l e l electrodes. When an ionising p a r t i c l e had passed 

through a number of tubes, a suitable high voltage pulse was 



applied across the plates, causing these tubes to f l a s h with such 

in t e n s i t y that a photographic record could e a s i l y be made. The 

major disadvantage of t h i s detector "Was i t s l i m i t e d a b i l i t y to 

resolve high p a r t i c l e densities, since a p a r t i c u l a r f l a s h tube 

gives the same record for one or more p a r t i c l e s traversing i t . 

Nevertheless, large arrays of neon f l a s h tubes were b u i i t by 

Coxell .and Wolfendale (1960) such that many, p a r t i c l e s .could be 

recorded. The flash-tube hodpscope might w e l l have found many 

applications i n high-energy physics had i t not been for the rapid 

development of the spark chamber-. 

Henning (1955) effected improvements to the spark counter 

technique by: 

1. using several parallel-opiate spark counters v e r t i c a l l y 

above each other, 

2. enhancing the spark i n t e n s i t y with a coincidence-

triggered condenser discharge through the counter 

which enabled him to o p t i c a l l y discriminate between 

selected and unselected p a r t i c l e s , 

3. taking stereo photographs. 

. Henning made the f i r s t measurements on the accuracy of track 

location and found that the error distribution.could be resolved 

into three superposed gaussian d i s t r i b u t i o n s : -

a) 78$ with standard deviation 0.8 mm. 

.b) 17$ with standard deviation 7 mm. 

c) 5$ v i t h standard deviation 25 mm. 



Group b) was ascribed to secondary avalanches and to knock-on 

electrons, and group c) to multiple avalanche discharges and 

cosmic ray showers. These counters were f i l l e d with an argon-

vapour mixture and, s i m i l a r to a i r f i l l e d counters, were not 

suitable f o r recording the passage of more than one simultaneous 

ionising p a r t i c l e , because they depend on processes of attachment 

and subsequent detachment of the i n i t i a l electrons produced by 

the ionising p a r t i c l e . 

A considerable number of additional papers by Henning's 

colleagues i n Hamburg (now at Kiel).followed up t h i s work:-

Bagge and All k o f e r (1957), A l l k o f e r et a l . (1957), Bagge and 

Schmieder (1959), All k o f e r (1959), Trumper (1960), and A l l k o f e r 

(1960). 

Cranshaw and de Beer (1957) combined the techniques of the 

flash-tube hodoscope and the spark counter by applying a high 

voltage pulse instead of a high D.C. f i e l d to the electrodes of 

a p a r a l l e l plate spark counter. • Only a small clearing potential 

was l e f t between the plates to c l e a r out any ions which may have 

been l e f t a f t e r a discharge. Cranshaw.and de Beer used a i r a t 

atmospheric pressure, thus circumventing any problems of gas-tight 

enclosures, and f a c i l i t a t i n g the use of very cheaply constructed 

multiplate assemblies. Triggered spark counter arrays of large 

area f o r experiments on very high energy cosmic, ray. p a r t i c l e s were 

used by de Beer (1960) i n South A f r i c a and by Mistry et a l . (1960) 

i n India. 
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. 1»3 The Development of the Spark Chamber 
1.3a The Contribution of. Fukui and. Miyamoto 

The major e f f o r t was now directed, towards devising methods f o r 

observing the simultaneous passage of several ionising p a r t i c l e s . 

The c r u c i a l step was taken by Fukui and Miyamoto (1959) who demon­

strated that i f , instead of a i r , a suitable mixture of neon and 

argon was used, a p a r a l l e l - p l a t e chamber would record the passage 

of more than one simultaneous p a r t i c l e providing that a high 

voltage pulse were applied immediately afterwards. .A detector -

of t h i s kind, i s now called a ."spark chamber". 

Fukui and Miyamoto were also the f i r s t t o use the chamber aso! 

a track-following device., i n which the discharge a c t u a l l y follows 

the track. Taey allowed p a r t i c l e s to pass through the chamber i n 

a d i r e c t i o n p a r a l l e l to the plane of the plates, and found that a 

discharge between the plates took place, localised along the track 

of the p a r t i c l e s i n sparks separated on the average by a few 

millimeters. . 

The developments of Fukui. and Miyamoto promoted wide-spread 

inte r e s t i n the p o t e n t i a l usefulness of the chamber i n experimental 

high energy nuclear physics. 

l.Jb The method of operation 

Before o u t l i n i n g f u r t h e r developments of the spark chamber, 

i t seems appropriate t o describe b r i e f l y i t s method of operation. 
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The passage of an ionising p a r t i c l e through the chamber i s 
detected by two s c i n t i l l a t i o n counters coupled to photo-
m u l t i p l i e r s , whose output i s fed i n t o a coincidence c i r c u i t . 
The transmitted pulse triggers a high voltage pulse generator 
which supplies a pulse of several k i l o v o l t s t o alternate plates 
of the chamber. The amplitude of t h i s pulse i s we l l above the 
D.C. breakdown p o t e n t i a l of the gas i n the chamber such that the 
electrons produced i n i t by the ionising p a r t i c l e i n i t i a t e electron 
avalanches, which f i n a l l y culminate i n a luminous spark channel 
very close t o the p a r t i c l e t r a j e c t o r y . • The chamber can be made 
to have a very short sensitive time by maintaining a steady D. C. 
clearing f i e l d between the electrodes. For example a 100 v o l t 
clearing f i e l d applied to a 1 cm' gap sweeps out the electrons" 
produced by the ionising p a r t i c l e i n approximately -1 (isec. Con­
sequently i f the chamber i s pulsed more than 1 (isec a f t e r the 
passage of the p a r t i c l e no sparks w i l l occur. This means the 
chamber can be set up i n a beam of 10 s particles/sec and a 
selective counter system may be employed to t r i g g e r the chamber 
only on those p a r t i c l e s f o r which a vi s u a l record or s p a t i a l 
information i s required. 

The number of groups working on or with spark chambers has 

now become very large and therefore a summary, of the vast amount 

of work done on spark chambers up t o 196l w i l l necessarily, be 
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sketchy. I t - w i l l be more comprehensible to the reader t o outline 
the work done on spark chambers under appropriate sub-headings 
concerning the d i f f e r e n t properties, rather than i n a chronological 
order. 

l.Jc The-Sensitive Time 

The e f f i c i e n c y per gap of a spark chamber at a specific time 

delay (the time that elapses between the passage of the t r i g g e r i n g 

p a r t i c l e through the chamber and the application of the high voltage 

pulse) depends on the magnitude of the clearing f i e l d across the 

gap. Fig. 1., given by Beall et a l . (1960), shows the e f f i c i e n c y 

of a ^ inch gap i n 1 atmosphere of argon as a function of the time 

delay f o r various values of the clearing f i e l d applied i n a direc­

t i o n opposite t o the high voltage pulse. I t can be seen that the 

sensitive time may be adjusted by the choice of suitable values of 

the clearing f i e l d . 

Croiiih and Renninger (1960) p l o t t e d a similar- curve at the 

beginning of operation of t h e i r spark chamber, which was f i l l e d w ith 

research-grade neon, and a f t e r 10 s pulses. They found that i n each 

case there existed a clearing f i e l d f o r which the sensitive time 

was a minimum, and that t h i s minimum changed from 1.3 usee to 

0.5 usee a f t e r 10 5 pulses* Ho other workers using neon or argon 

f i l l i n g s have observed a minimum i n the sensitive time. 

Culligan et a l . (I960) have demonstrated that w i t h argon 

sensitive times of 0.3 usees are obtainable. Their measurements 

were made with a k mm single gap chamber. Their curves f o r argon 
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showed a long low ef f i c i e n c y t a i l , which was found to be 

eliminated by the addition of alcohol to the argon f i l l i n g . 

An alternative way of decreasing the sensitive time i s 

to introduce small additives of electronegative • impurity t o 

the chamber f i l l i n g . The e f f e c t i s most probably due to 

attachment of the electrons, so that they are no longer able 

to i n i t i a t e avalanches. Beall et a l . (1960).found that the 

addition of oxygen or 5$ C02 did not a f f e c t the ef f i c i e n c y 

appreciably with a time delay of 0.3 jisecs, but that greater 

quantities d id reduce the efficiency. 

1.3d The. E l e c t r i c F i e l d Characteristics 

One of the basic parameters of spark chambers i s the time 

required f o r the formation of the spark measured from the 

instant of application of the high voltage pulse. Fischer and 

Zorn (1961) investigated the spark formation time as a function 

of pulse voltage under various conditions of electrode 

material, gap widths, gas f i l l i n g s , delay times and clearing 

f i e l d s . Their results are shown i n Fig. 2. The calculated 

curves are based on the theory of Dickey (1952), i.e. i t i s 

assumed that on application of the high voltage pulse the 

ionisation increases exponentially with time u n t i l 
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the voltage across the gap i s s i g n i f i c a n t l y reduced by the presence 
of the space charge. Fischer and Zorn showed that t h i s c r i t e r i o n 
leads to a relationship f o r the spark formation time given by 

m ' 29.5 +0.5 
- ? Q £ - S E C ' 

where a i s Townsend's f i r s t "ionisation c o e f f i c i e n t , which i s the 

number of electrons produced per cm path by each electron, and v i s 

the average d r i f t v e l o c i t y in,cm/sec of the electrons i n the applied 

f i e l d . The quoted uncertainty represents the maximum deviation f o r 

the three gases helium, neon and argon over the range of voltage 

used i n t h e i r experiment. . They observed variations of +10$ i n the 

ind i v i d u a l measured spark formation times. The following general 

characteristics were deduced from .Fig. 2:-

a) The spark formation time decreases ra p i d l y over 

several orders of magnitude with increasing pulse 

heights and i s d i f f e r e n t f o r each gas. 

b) The addition of alcohol results i n curves which 

are displaced towards•shorter spark formation 

times f o r argon and towards longer times f o r 

helium. 

Fischer and. Zorn also found that the introduction of delay 

times and. the application of clearing f i e l d s did not produce any 

s i g n i f i c a n t change i n spark formation.timea, and that any con­

ducting material with a r e l a t i v e l y smooth f i n i s h may be used f o r 

the plates. 
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Helium, neon, argon and mixtures of these gases have a l l been 

used i n spark chambers, [typical pulse heights f o r satisfactory-
operation at one atmosphere of pressure are ~8 kv/cm f o r neon and 
helium and ~ l 6 kv/cm f o r argon. 

. l . Je The Recovery Time 

The recovery time i s the r e l a t i v e l y long i n t e r v a l -which must 

elapse before the chamber i s ready to be used again. 

Fischer and Zorn (1961.) found that -when a chamber was a r t i ­

f i c i a l l y re-pulsed a t some time a f t e r i t had recorded the track 

of an ionising p a r t i c l e , the old track was re - i g n i t e d f o r times 

up t o O.5 msec i n neon and 1 msec i n argon. For longer delays 

sparks were s t i l l observed, but not necessarily on the old track. 

No sparks were seen when the chamber was repulsed 100 msec a f t e r 

the t r aversal of the ionising p a r t i c l e * They also showed that 

even i f an old track was re - i g n i t e d i t was possible t o see a new 

p a r t i c l e track at the same time. 

The addition of a quenching agent, such as alcohol, reduced 

the p r o b a b i l i t y of r e - i g n i t i o n ; f o r example Culligan et a l . (1960) 

found that i n an argon-alcohol mixture the recovery time was less 

then 1 msec. 

l . J f The Accuracy of Track Location 

Detailed studies of the accuracy with which the sparks define 

the path of a t r i g g e r i n g p a r t i c l e have been made by Mikhailov et a l . 

(see Alikhanian and Kozodaey, 1960) and lutherglen and Paterson ( i 9 6 l ) . 
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I t was found that the sparks tend to f o l l o w the e l e c t r i c f i e l d 
d i r e c t i o n rather than the p a r t i c l e track di r e c t i o n . . For an angled 
track i t was therefore important to know which part of the spark 
would most i i k e l y indicate the po s i t i o n of the track. Mikhailov 
et a l . found that the optimum point on the spark f o r measurement 
lay a t a distance 0.l6 d from the cathode, where d i s the gap 
width, and Rutherglen and Paterson found t h i s point t o be situated • 
at a distance 0.2 d from the cathode. These results were obtained 
with zero clearing f i e l d . When a clearing f i e i d i s applied the 
electrons moving normally t o the plates also cause t h i s alignment 
point t o move r e l a t i v e t o the track. 

The results of Rutherglen and Paterson f o r the deviations of' 

sparks from the tracks defined i n the above way are.tabulated i n 

table 1. 

TABLE,1 

Track Direction r e l a t i v e to the normal 
to the plates R.M.S. Deviation 

0 - 15° . 0.25 mm 

15 -. 30° 0.5 mm 

30 - 1̂ 5° 0.8 mm 

These results were obtained i n a mixture of 75$ He and 25$ Argon .with 

d = -jj-" and a time delay, of 0.25 usee. 
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They found that the application of a clearing f i e l d had no 
si g n i f i c a n t e f f e c t on the error d i s t r i b u t i o n , but that the errors 
increased when the time delay, T^, was increased, e.g. with a time 
delay T^ = 1.6 usee the standard deviation was + 0.5 mm f o r the 
angular range 0 -15°. • Fukui. and Miyamoto (1961) demonstrated that 
t h i s l a t e r a l displacement of sparks i s mainly due t o the d i f f u s i o n 
of primary electrons. 

1.3g The Operation of Spark Chambers i n Magnetic Fields 

The operation of a spark chamber i n a magnetic f i e l d has been 

of great interest and was successfully performed by Daion et a l . 

(1960) , Beall et a l . (1960), 0'Heill (1961), and Burleson et a l . 

(1961) . 

Beall et a l . (1960) applied a magnetic f i e l d , B, p a r a l l e l t o 

the plates and observed tha t , i f a clearing f i e l d , E, was applied 

i n the usual manner, sparks i n alternate plates were displaced by 

amounts proportional to E .x B i n a d i r e c t i o n p a r a l l e l t o the plates. 

For example with B = .13 kG, E = 80 v/cm, and time delay T^ = 1 usee 

the r e l a t i v e displacement i n successive gaps was about 1 cm. 

The E x B displacement should increase the clearing times, 

since the electrons now move p a r a l l e l t o the plates and not normal 

to them, but Burleson et a l . (1961) found clearing times of the 

order of 1 usee f o r chamber f i l l i n g s of helium and neon with and 

without alcohol additives. 

•ST/* 

1. 

Track of a 
single cosmic-ray par 
tide. 

Figure 3» 

Burleson et a l . (1961) found that part of the | x B dis­

placement was caused by the r i s i n g edge of the high voltage 

pulse, and the remainder by the D.C. clearing f i e l d . For 50$ 

Helium and 50$ Neon the l a t e r a l displacement varied between 0 

and 2 mm with E = 250 volts/cm, B=13k Gauss, and T^ = 0.20 usee. 

1.k Applications, of Spark Chambers 

Spark chambers are w e l l suited t o measurements of the 

scattering of high energy p a r t i c l e s , p a r t i c u l a r l y i f the p a r t i c l e 

f l u x i s low and poorly defined i n d i r e c t i o n , because then conven-
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t i o n a l counter equipment would y i e l d very low counting rates. 
Cork ( I 9 6 i ) , Cronin and Renninger (1960), and Cronin (1961) 

described experiments i n which spark chambers with graphite or 

aluminium plates were used to measure proton p o l a r i s a t i o n by 

measuring left-rightsymmetries f o r protons which had been scattered 

i n the plates of the chamber. 

Where i t not convenient t o use the scattering material 

f o r the plates, as f o r instance i n the case of l i q u i d hydrogen, 

an external target may easily be used. Cork (1961) described some 

work on K + + p -* K + + p and n~ + p TC~ + p scattering experiments, 

f o r which spark chambers were used to measure the directions. 

Several groups have constructed c y l i n d r i c a l spark chambers which 

have the advantage that the target can be completely surrounded by 

the chamber. 

. There are many experiments f o r measurements on scattering, 

p o l a r i z a t i o n , p a r t i c l e decay or production, f o r which the spark 

chamber i s the most useful detector. 

I n many applications the short recovery time, and the short 

sensitive time make i t possible to perform experiments which would-

be impracticable with a l t e r n a t i v e techniques. 

Perhaps the most impressive demonstration.of t h i s i s the 

Brookhaven neutrino experiment (.Danby et a l . , 1962). For t h i s a 

spark chamber of ten tons weight was constructed t o observe the 

interactions of high energy neutrinos with matter. The important 

re s u l t which followed from t h i s experiment was that there i s a difference 

i n the characteristics of the neutrinos r e s u l t i n g from n-u and u-e decay. 
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CHAPTER.2 

Theoretical Considerations 

2. i The Discharge Mechanism 

The physics of the development of a spark i s very complicated 

and has been discussed i n d e t a i l by. a number of workers, notably 

Meek and Craggs (1953)• ^he mechanism relevant t o the development, 

of a spark, discharge under the conditions normally applicable t o 

spark chamber operation i s outlined below* 

Consider a detector, consisting of two p a r a l l e l plates a 

distance d cm apart, i n a gas at pressure p mm Hg,to contain a free 

electron near the cathode. A high e l e c t r i c f i e l d of E volts/cm i s 

applied across the electrodes. If. the r a t i o E/p i s s u f f i c i e n t l y 

large, the electron w i l l ionise gas molecules during i t s acceleration 

towards the anode. The additi o n a l number of electrons created i n 

t h i s manner w i l l also be accelerated i n the applied e l e c t r i c f i e l d 

and cause f u r t h e r • ionisation'. • When the o r i g i n a l electron has moved 

a distance x towards the anode, the number of electrons created 

w i l l be exp(ax), where Of i s Townsend's f i r s t i o n i s a t i o n c o e f f i c i e n t . 

This cumulative process^ i s known as ah electron avalanche. For neon 

the r a t i o of the masses of the positive ion and the electron i s 

about kO*000:1 and therefore the ion may be considered stationaryin 

comparison to the rapidly moving electrons. Consequently the 

avalanche develops across the gap as a cloud cf electrons which 

leaves behind i t the positive space charge, as shown in. Fig. k.3.. 
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Figure 4 ;Hie Development o f the Streamer 
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The space charge produced by the electron avalanche causes a 
d i s t o r t i o n i n the f i e l d across the gap, as shown i n . f i g . 4. a. This 
d i s t o r t i o n i s greatest at the t i p of the avalanche where the ion 
density i s greatest. • At t h i s point the space- charge f i e l d , E^, 
supplements the externally, applied f i e l d E as weH as creating 
a f i e l d i n a di r e c t i o n r a d i a l t o the axis. 

•When the avalanche has crossed the gap, the electrons are 

swept i n t o the anode and the' slow positive ions remain i n a cone 

shaped volume extending across the gap as i l l u s t r a t e d i n Fig. 4^b.. 

the ion density i s s t i l l comparativelyilow except at the anode and 

breakdown does not yet occur. 

Photons are emitted from the densely ionised region i n the 

avalanche and these produce photo-electrons i n the gas surrounding 

the avalanche. The photo-electrons are thought t o develop secon­

dary avalanches, i f the space charge f i e l d E^ i s of the same, order 

of magnitude as E, they w i l l grow i n a di r e c t i o n towards the stem 

of the main avalanche.' The greatest m u l t i p l i c a t i o n of these secon­

dary avalanches w i l l occur along the axis of the main avalanche, v 

where the space charge f i e l d augments the external f i e l d E. 

Positive ions l e f t behind by these avalanches e f f e c t i v e l y 

•extend the t i p of the streamer and i n t e n s i f y the space charge of 

the main avalanche, which by.this process advances towards the 

cathode as a self-propagating streamer. When i t reaches the 

cathode a conducting filament of highly ionised gas i s formed 

across the gap between the electrodes-, and i t i s though - t h i s 
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filament that the external c i r c u i t discharges i t s e l f with a 
spark. 

The t r a n s i t i o n from avalanche to streamer i s considered to 

occur when the space charge f i e l d E ^ i s of the same order as 

the externally applied f i e l d - E, because only i n t h i s case w i l l 

the secondary avalanches be attra c t e d towards the main avalanche.• 

I t should be noted t h a t , since no secondary processes are involved, 

the characteristics of the spark are independent of the electrode 

mat e r i a l s •-

The formative time of the spark i n a uniform f i e l d consists 

mainly of the time taken by the avalanche to grow t o the size 

where avalanche?streamer t r a n s i t i o n occurs: a f t e r t h i s the streamer 

develops much more rapidly by photo-ionisatioii, so that i t s time of 

growth can be neglected, compared to that of the avalanche. 

The above analysis of spark formation was considered f o r only 

one i n i t i a l electron. Ionising p a r t i c l e s t r i g g e r i n g spark chambers 

produce a number of electrons along t h e i r tracks and the above 

treatment must be s l i g h t l y modified. This i s most easily done by 

considering the mechanism of the- slanting discharge. 

2.2 The mechanism of the slanting discharge 

Consider an ionising p a r t i c l e .to have produced three electrons 

i n the gap along i t s track, which makes an angle with the normal 

to the plates. Fig..5a shows the growth-of the corresponding 

electron avalanches i n i t i a t e d on application of the external 

e l e c t r i c f i e i d E. Fig. 5b shows the e l e c t r i c f i e i d d i s t r i b u t i o n 
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. a t a l a t e r time. I t i s proposed that when the space charge f i e l d 
E r due t o the positive ions i s of the same order as the externally 
applied f i e l d E, the l a t t e r has been di s t o r t e d to such an extent 
that the motion of any avalanche head i s towards the nearest 
v i r t u a l anode, i.e. avalanche 1- develops towards avalanche 2. 
Such a model i s easily extended to the case of 20 or so primary 
electrons. A consequence of t h i s i s that the sparks so produced 
should be concave with respect t o the.cathode, as i l l u s t r a t e d i n 
Fig. 5 C } because of the f i n i t e distance, the electron avalanches 
t r a v e l before the space charge f i e l d s are s u f f i c i e n t l y strong. 
The model also predicts a maximum angle at which a spark can 
occur because as the t r a j e c t o r y • of the primary p a r t i c l e becomes 
more oblique with respect to the external f i e l d d i r e c t i o n , the 
avalanches' w i l l develop f u r t h e r apart and w i l l eventually/be too 
distant to interact with one another. Evidence f o r t h i s i s 
presented i n Chapter k. 

2.3 The t h e o r e t i c a l e f f i c i e n c y 

The t h e o r e t i c a l efficiency.of a spark chamber i s defined as 

the p r o b a b i l i t y of a v i s i b l e spark being produced when a selected 

ionising p a r t i c l e i s followed by an applied high voltage pulse. 

The t h e o r e t i c a l e f f i c i e n c y i s suited t o analysis and w i l l be 

considered i n d e t a i l below. 
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I t i s convenient t o consider the mechanism, of operation of a 
spark chamber i n two parts. The f i r s t part concerns the time 
delay, T-p, which i s the time i n t e r v a l from the passage of the 
tr i g g e r i n g p a r t i c l e through the chamber to the instant of 
application of the high voltage pulse. The second part applies 
to the spark formation "time, i ^ . 

During the. time delay, T̂ , the electrons and positive ions 

produced by the t r i g g e r i n g p a r t i c l e diffuse. I f a D.C. clearing 

f i e l d i s applied they d r i f t towards t h e i r respective electrodes. 

Electron attachment to electro-negative impurities i n the noble 

gas i n the chamber and the recombination of electrons with 

positive ions also play a small part. 

During the spark formation time, T̂,,. only, a f r a c t i o n of the 

electrons removed by the above processes i n i t i a t e electron 

avalanches, which f i n a l l y culminate i n the breakdown of the gap 

through a spark channel close to the o r i g i n a l track of ionisation. 

The two stages can be analysed q u a n t i t a t i v e l y i n a st r a i g h t ­

forward way and w i l l now be considered i n some d e t a i l . 

Consider a detector consisting, of two p a r a l l e l plates a 

distance d' cm apart in.a noble gas a t atmospheric pressure to" 

have been traversed by ah ionising p a r t i c l e which produced n Q 

free electrons i n the gap. A f t e r the. various processes by which 

electrons are l o s t in.the time delay a mean number n , of electrons 

remain.- When the- pulse i s applied not a l l of the nj_ electrons w i l l 
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be available to i n i t i a t e electron avalanches, because a f r a c t i o n 

of them w i l l be attached during the pulse, leaving a number f n x 

remaining. Of these f n x a f u r t h e r f r a c t i o n i s swept t o the pos i t i v e 

electrode owing to the clearing done by the pulse i t s e l f . This w i l l 

leave f n g electrons i n the gap. I t i s assumed that the presence of 

any one of these i n the gap at t h i s stage i s a necessary and 

s u f f i c i e n t condition f o r a spark. The probability, of not one of the 

f n . electrons remaining i s exp(-fn ) i.e. the p r o b a b i l i t y -of obtain-

ing a spark i s then 1 - e x p ( - f n a ) , and since t h i s i s the d e f i n i t i o n 

of the eff i c i e n c y , i\, we may. w r i t e 

t\ = 1 - exp(-fng) ; 

the number, , i s derived- below as a function of the operating 

conditions. 

F i r s t , the number of electrons l o s t i n the .time delay, T^, 

i n applying the high voltage pulse i s considered. The processes 

by which electrons are l o s t are: the clearing done by the D.C. 

clearing f i e l d , d i f f u s i o n , recombination and electron attachment. 

Clearing done by the clearing f i e l d 

The e f f e c t of a s t a t i c clearing f i e l d , E , i s to drive 

electrons i n the gap towards the positive electrode during the 

time delay.'TD; n electrons w i l l be captured by the. electrode and 

•thus removed from the gap. Ttiis number i s given by 

CD('EC)YT 
n n 

where CD(E ) i s the d r i f t v e l o c i t y of an electron i n the gas i n 
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the f i e l d E . 
c 

Diffusion 

The max.. value of T D -vd3.ich.-was .normally used was = 2 .5. usee. 

I t i s shown i n Chapter if-, that the number of electrons l o s t i n t h i s 

time by d i f f u s i o n to the electrodes i s n e g l i g i b l y small compared 

with the clearing done by the clearing f i e l d . The d i f f u s i o n loss 

i s therefore neglected. 

Recombination 

The rate of loss of electrons due t o recombination with 

positive ions i s given by 

dn 2 = -a ;n 2 

dt i 

where n i s the ion concentration per u n i t volume and i s the 

reiqombinat ion c o e f f i c i e n t , given by a. = 2 . i x ICT"7 (ions/cc. sec)" 

f o r neon. For an i n i t i a l number of ion pairs, n = 20, the number,• 

. n^, of electrons l o s t due t o recombination i n 10 usees w i l l be given, 

by 
_ 2.1 x 1 0 - 7 x 20 2 x 10" 5 

• nR- 8..U x 1 0 - 1 0 

A complication arises in' t h i s calculation because of the 

r e l a t i v e l y dense iohisat-ibn produced along the track of the ionising 

particle.' Qhis gives r i s e t o an i n i t i a l s p a t i a l d i s t r i b u t i o n of 

ionisation which i s f a r from uniform. Since the recombination loss 

rate i s dependent on the square of the ion density, which i s high 

along the track of the ionising p a r t i c l e , one would expect a high 

http://-vd3.ich.-was


apparent value, of cĉ  1*111011 would become lower when the ion density-

had become uniform over say, one c. c. Sayers (1958) calculated an 

apparent change i n a of only about one order of magnitude, and con­

sequently the recombination loss may also be safely ignored. 

Attachment 

I t w i l l be shown i n Chapter K, where results of electron 

attachment t o impure gas mixtures are presented, that f o r the 

present case of low contamination, the electron attachment during 

the time delay, T̂ , may be neglected. 

A f t e r a time delay, Tp, • of not greater than about 2.5 jjsecs 

the only appreciable electron loss i s due t o the clearing f i e l d , 

leaving a mean number, n , of electrons given by 

n = n - n 1 0 c 
The instant of application of the high voltage pulse marks 

One of these i s electron attachment t o impurities i n the gas. 

These largely consist of oxygen which has a high attachment cross-

section f o r electrons of energy. 2 eV and alcohol vapour where t h i s 

i s a constituent. I t i s thought that as the electrons accelerated by 

the high voltage pulse reach energies approaching 2 eV, they incur 

the r i s k of attachment t o oxygen impurities and t h i s i s equivalent 

t o a number, f n ^ , of the electrons i n the gap immediately before 

the onset of the high voltage pulse. 

the beginning of two f u r t h e r processes of electron loss. 
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A f t e r this> a f u r t h e r f r a c t i o n , g, of these remaining electrons 

w i l l he swept out of the gap. The value of g depends on the r e l a t i v e 

magnitudes and directions of the clearing f i e l d and the high voltage 

pulse. The two r e l a t i v e f i e l d directions w i l l be considered i n turn. 

(a) F i e l d s . i n the same.direction 

I n t h i s case the f r a c t i o n , g, of the f r ^ electrons i n the gap, 

which are. captured by one of the electrodes, i s given by 
S' Faj|E(.t)|dt 

•** ' d 

where cujE(t)j- i s the d r i f t v e l o c i t y of the electrons i n the gas i n 

the f i e l d E ( t ) . Thus the t o t a l number of electrons, which are 

capable of i n i t i a t i n g avalanches, f i n a l l y remaining i n the gap i s 

f a , = f n ( l - g ) PTJ 

= f n 1' ™ 
i F 4E(t)}; 

(b) Fields in,opposite directions 

Two cases must be distinguished, depending on the r e l a t i v e 

magnitudes of the clearing done by the D.C.clearing f i e l d and the 

high voltage pulse* I f the f r a c t i o n , nJxiQ, of the clearing done by 

the clearing f i e l d i s greater than the fraction,- g, of the clearing 

done by the high voltage pulse, the number of electrons cleared out 

of the gap remains numerically equal to nc« A l t e r n a t i v e l y , i f 

g > n c/n Q, the number of electrons cleared out of the gap depends 

Only on g. 
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Setting n Q = vd, where v i s the specific iohisatioh of the 

tr i g g e r i n g p a r t i c l e s in.the gas of the chamber, the following 

expressionsfor the th e o r e t i c a l e f f i c i e n c y are obtained. 

(a) Fields i n the same di r e c t i o n : -

r ( * < e = % v l*1 " H K i 
^ ( l § - £ ) ( ! -° j j j .... 

(b) Fields i n the opposite d i r e c t i o n : -

14e(4 
^ > g Tj = 1 - exp | - f v d - j l - , ^ l\ . . . . 2 . 

^ < g T] = 1 - exp | ^ - f v d j 1 - • - j - J . . . . 3 -

Here i t should be pointed out that equation 1. d i f f e r s from 

that obtained by Burnham et a l . (1963) because they erroneously 

assumed that the number of electrons cleared out of the gap by the 

high voltage pulse was g f n Q and not g f ( n Q - n c ) . However, the 

expression was not used by Burnham et a l . (19&3) i n t h e i r analysis of 

the experimental data and therefore did not invalidate t h e i r conclu­

sions. 

There are several ways of applying these t h e o r e t i c a l expressions 

t o an analysis of the experimental data. The- method adopted i n t h i s 

thesis i s t o use the equations 1 . , 2.. and 3 . together with the 

measured v a r i a t i o n of eff i c i e n c y with clearing f i e l d and high voltage 

pulse characteristics t o derive the value of f and t o determine the 

electron m o b i l i t y and d r i f t v e l o c i t y . f o r a v a r i e t y of f i e l d s . A 



check on the v a l i d i t y of the suggested mechanism i s then effected 

by an examination of the consistency of the values of f so 

obtained. • 



CHAPTER I I I 

The Experimental Arrangement 

3 .1 The Spark Chamber 

I n the investigations a spark chamber containing six p a r a l l e l 

plate spark counters was used. The spark counters were constructed 

of Ik gauge aluminium and arranged one above another. The dimensions 

ofi-the cathode plates were k*3 x 18.5 cm2, and the.dimensions of the 

anode plates were 9 x 16.5 cm2. These yielded a sensitive area of 

x 16.5 cm2. The gap width was 1 cm. A l l the edges of the plates 

were rounded to avoid spurious breakdown. The plates were washed wi t h 

acetone and water and polished with muslin.. .Each counter comprised 

an individual u n i t mounted on a perspex base, the lower plate being 

attached t o the perspex base by. four •countersunk b o l t s . The upper 

plate of the u n i t was supported above the perspex base by four -J" 

8BA brass b o l t s , which were used to adjust the plate separation of 

each counter to 1 cm with ah accuracy of +|$. 

The complete u n i t , comprising six such spark counters arranged 

v e r t i c a l l y above one another, was contained inside a c y l i n d r i c a l 

vessel of diameter 27.5 a3?cL depth 12.5 cm- Ihe back of the 

cylinder was constructed of j j - " t h i c k brass. The high voltage pulse 

applied t o the plates was fed t o the .chamber v i a commercial spark 

plugs, which were screwed t i g h t l y i n t o the brass plate t o make a 

vacuum seal. The cylinder walls were made of Pyrex glass 5/aa" t h i c k , 
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and the f r o n t plate was a disc of -jj-" t h i c k armour-plate glass. The 
whole was held together by four -long b o l t s running the length of 
the cylinder. . A vacuum seal was maintained by-means of rubber 
gaskets and Apiezon 'grease. 

The. cylinder was evacuated using- a rotary pump only and r e f i l l e d 

v i a a . l i q u i d a i r trap with B.O.C. commercial neon to a pressure of 

1.1 atmospheres. 

TABLE 2 

Constituents of B._0, C. canmerc i a l _ neon 

Gas Concentration-($) 

•Neon 98 + 0.2 

Helium 2. f 0 .2 

Oxygen 10~ s 

Nitrogen 10~ 2 

Argon 5 x. 10~ 5 ' 

The estimated oxygen content of the chamber gas a f t e r f i l l i n g , by 

comparison with standard calibrated neon discharge tubes, was of• 

the order of 10~ a#. 

Due to the f a c t .that the, counters were photographed, from a 

distance of 112 cm, the. in d i v i d u a l counter u n i t s were arranged, fan-

wise t o the axis, of the camera lens, so that t h e i r central planes 

passed through the camera lens. As a r e s u l t of t h i s fanning arrange-



ment, which ensured that as much of each gap as possible was v i s i b l e 

to the camera lens? an insensitive'gap of varying width was created 

between adjacent counters. The spacing of -this gap was adjusted 

to be a t least 1.J cm. Fig. 6 shows the arrangement as i t appeared 

to the camera lens. 

The plates of the counter were connected d i r e c t l y i n p a r a l l e l 

so that i n each counter the.lower plate was the cathode and.the 

upper plate was the anode. 

5 .2 TheJElectronics 

The electronic c i r c u i t s which were employed i n the operation 

of t h i s spark chamber may conveniently be divided i n t o two parts:-

a) the event selection system, and b ) , the high voltage pulse generator. 

. 5 .2a The Event Selection System" 

The spark chamber was triggered by cosmic ray p a r t i c l e s . 

These were detected by two i d e n t i c a l s c i n t i l l a t i o n counters of area 

2.5 x 15 cm2 placed d i r e c t l y above and below, the.sassembly of counters. 

An E.M.I. Type 952^S photomultiplier was coupled to each s c i n t i l l a t i o n 

counter. Each photomultiplier output pulse was fed through a disc r i m i ­

nator to a coincidence c i r c u i t and then, t o a variable delay l i n e . The 

coincidence rate was 0.8/min. .Although the' d e t a i l s of these c i r c u i t s 

are not considered here, i t i s emphasised that t h e i r design was such 

as t o minimise the time delay between the passage of a charged cosmic 

ray p a r t i c l e through the two s c i n t i l l a t i o n counters and the appearance 

of the pulse which triggered the high voltage pulse generator. Fig . 7 
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shows a block diagram of the electronic c i r c u i t s . -

A coarse d i v i s i o n between p a r t i c l e s of high and low energy-

was afforded by 37»5 c m of lead and a tray of -Geiger counters 

beneath the s c i n t i l l a t i o n counters. A p a r t i c l e which had 

traversed both s c i n t i l l a t i o n counters and the lead i n i t i a t e d a 

t h i r d pulse i n one of the Geiger counters. This pulse was fed to 

a second coincidence c i r c u i t which caused a small neon indicator 

bulb beside the chamber to be l i t whenever the pulse from the 

Geiger counter and the coincident pulse from the two s c i n t i l l a t i o n 

counters were received within 5 usee. The sparks were recorded 

photographically and subsequent examination of the f i l m indicated 

which t r a j e c t o r i e s were due to high energy p a r t i c l e s . (The minimum 

energy required by a muon to penetrate the lead was 500 MeV). 

This arrangement was used to s e l e c t energetic p a r t i c l e s f o r 

measurements of the accuracy-of track location so that the e f f e c t s 

.of scattering i n the aluminium plates of the chamber should be 

. negligible. 

3.2b The High Voltage Pulse Generator 

The output pulse from the variable delay l i n e was fed to the 

g r i d of an EFP 60 secondary emission valve. This supplied a trigger­

ing pulse of amplitude 200V to a large hydrogen thyratron (Milliard 

XHl6). This i n turn discharged a condenser, charged to several 

k i l o v o l t s , through a resistance i n p a r a l l e l with the chamber. This 
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c i r c u i t , which defined a l l the constants of the pulse,amai i s shown-

i n Pig. 8. 

E. H.TT 

I 
I I i " 2ooV 

C I I I loov 
XH 16 

Ck&mber 

Fi.3. 8 "five puAs«- g*ris-rjk+oT' c&vcM.i+. 

The decay time- of the pulse i s governed by the product C^Rj^; f o r 

t y p i c a l operation of the chamber the pulse decayed with a time 

constant of 0.1 \isec (\ = 100a, Cj_ = 1000 pF); . The r i s e time of 

the pulse across the chamber depends on the product R CC C; a 

t y p i c a l value was 50 nsec as measured on a Tektronix 5^3 oscilloscope 

with a "P601k high voltage probe. 

The minimum time delay i n the a r r i v a l of the high voltage 

pulse a t the spark chamber a f t e r the t r a v e r s a l of the triggering 

cosmic ray p a r t i c l e was- 0.^5 |isec. Provision was made f o r the 

application of a steady D. C. clearing f i e l d across the spark 

chamber, and t h i s was derived from a 120V dry battery. 

file:///isec
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The sparks were recorded photographically on I l f o r d HPS 35 J m -
f i l m at an aperture of f3»5» ike camera had an open shutter and 
the electronic c i r c u i t r y was paralysed a f t e r each event f o r the winding 
period of the camera. This was set to be approximately 10 sees, more 
than ample to allow the condenser Cx to be recharged through Eg 
(60 MB), and the E.H.T. supply t o recover. This was capable of 
delivering a few milliamps at a- variable voltage up t o 15 kV. 



.CHAPTER TV 

"*i . The experimental r e s u l t s 

The experimental r e s u l t s are presented i n three sections 

appertaining to the e f f i c i e n c y , the geometrical properties of 

the sparks, and the e f f e c t of impurities.' I n what follows the 

gas f i l l i n g was a mixture of neon and alcohol (1 .1 atmospheres 

neon, k. k cm alcohol) unless otherwise stated. 

k. 1 The, .efficiency r e s u l t s . 

k*la The spark formation time 

In order to solve the equations ( l ) , (2.) and (3) (quoted on 

page 25) i t i s necessary to know the approximate values of Tp, 

the spark formation time. When the high voltage pulse i s applied 

to the plates immediately a f t e r the passage of an ionising p a r t i c l e , . 

the voltage pulse collapses very rapidly a f t e r a c e r t a i n time> 

presumably a t the instant the spark occurs. The time from the 

•beginning of the pulse to the onset of the rapid collapse of the 

pulse i s Tji. This was measured by displaying the pulse applied- to 

the plates a f t e r the passage of an ionising p a r t i c l e on a Tektronix 

51*5 oscilloscope and recording the image photographically on I l f ord 

9G9I fi l m . Approximately•200 superposed pulses were required, to 

obtain a -satisfactory record. F i g . 9 i s a t y p i c a l photograph obtained 

i n t h i s way (Pulse height. = k kV, Tj, = 280 nsec, -TR = 27 nsec, 

T, = 800 nsec). decay 
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Fig. 9* Breakdown of the high voltage pulse 

Tp was investigated as a function of the applied high voltage 

pulse f o r d i f f e r e n t r i s e and decay times. The results are p l o t t e d 

i n Fig. 10 (the r i s e and decay times are defined i n Fig. 11), which 

shows that there i s a very rapid decrease i n SL with increasing 

pulse height, and, to a lesser degree, with increasing pulse decay 

time. Such a reduction i s expected i n view of the increase of 

Townsend's ionisation c o e f f i c i e n t and of the electron m o b i l i t y 

with increasingelectric f i e l d . 

The results of Fischer and Zorn (1961), who investigated the 

e f f e c t of alcohol on the formative times i n argon and helium, 

indicate that the formative time i n a noble gas-alcohol mixture 

may d i f f e r greatly from that i n the noble gas alone. Consequently, 
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and also i n view of the r e l a t i v e l y impure nature of the neon used i n 

these experiments, a di r e c t comparison of the r e s u l t s of t h i s work 

with those of other workers would not be very meaningful. Suffice 

i t to say that the values presented in ' F i g . 10 are close to those 

f o r neon alone obtained by Fi s c h e r and Zorn. 

The v a r i a t i o n i n Tp from one spark to another was found to 

be l e s s than 10$ of the mean (see F i g . . 9). Although an accurate 

estimate of the rate of collapse of the voltage due to a spark' -

taking place could not be made, the mean rate of collapse appears 

to be about J x 1 0 1 1 volts/sec. 

4.1b The v a r i a t i o n of_the .efficiency, with, the parameters of 

the pulse 

Observations on the v a r i a t i o n of e f f i c i e n c y with applied voltage 

show that the s t r i k i n g potential for a .1 cm gap i s 3 .5 + 0.5 kV f o r 

long pulses. In. the present case of a multi-gap spark chamber the 

ef f i c i e n c y r e f e r s to the probability per gap of a spark being 

formed. The voltage c h a r a c t e r i s t i c s are shown i n Fig.. 11, from 

which i t may be seen that the s t r i k i n g p o t e n t i a l i s dependent on 

the decay time of the pulse and to a l e s s e r extent upon the r i s e 

time. 

For a given pulse height i t i s evident that the e f f i c i e n c y 

decreases with increasing r i s e time and decreasing decay time. 

For pulses with f a s t r i s e times.the e f f i c i e n c y of the chamber i s 
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about 90$ at 5 kV pulse height and 98$ above 7 kV. There i s a 

useful working region of several k i l o v o l t s throughout which the 

ef f i c i e n c y i s greater than 90%, the upper l i m i t of the voltage 

(12 kV) being set by the onset of spurious sparks. 

The.data given i n Fig..11 can be used to derive the mean 

electron mobility over the range of high voltage f i e l d s used. 

The mean mobility, of the electrons.in the neon-alcohol mixture i s 

defined by - p 

J «Le<*>l EC*)** 

0 
For the case of zero clearing f i e l d equation ( l ) can be written as: 

,.e. h(i-l) = -fo*jl- KlSFSijt 

F i g . 12 shows £n(I-Tj) plotted against J* E ( t ) d t f o r a pulse of 

r i s e time kO nsec.- The measured values l i e close to a st r a i g h t 

l i n e as expected. Assuming v = 20, a l e a s t squares f i t f o r the 

slope and the intercept y i e l d s the values f = 0.2^ + 0.02 and 

K[E(TjJ] =(.1.6 + 0 .2) x 1 0 3cm asec - 1 v - 1 over the range of applied 

voltage. 

These r e s u l t s are given in.Table 3> together with values, of 

f and K [ E ( T j , ) ] calculated i n a sim i l a r mariner f o r pulses of 

different r i s e times. 
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Table 3 

Variation of f and K[E(Tp)] with pulse r i s e time 

pulse r i s e time K[E(Tp)], x 10 3 

(nsec) . (cnrsec v - 1 ) -

kO 0.2k + 0.02 1.6 + 0.2 

80 0.28 + 0.02 2.5 + 0.3 

170 0.28 + 0.02 J.k + O.k' 

In addition to determining the o v e r a l l mean electron mobility, 

the mean electron velo c i t y has been found f o r each point i n Fi g . . 12. 

The lack of constancy of the mobility with respect to the e l e c t r i c 

f i e l d , makes i t necessary to specify an average f i e l d to which the 

value r e f e r s . This average i s taken to be the value E„ such that 
Tp " 0 " 

E Q = (l/Tp) / E ( t ) d t . The mean electron v e l o c i t y i s then given 

cn(E o) = ( l / T F ) J oc[E(t)]clt 

and follows d i r e c t l y from/the application of- equation ( l ) . . The 

values are given i n F i g . 19, where data f o r two other values of 

Tj, (80 and 170 nsec) are included. 

At t h i s stage i t i s relevant to point out that the f a c t that 

the v a r i a t i o n shown i n Fig. 12 i s l i n e a r suggests that the fac t o r f 

( § 2 . 3 ) i s s u f f i c i e n t l y constant independent of pulse height f o r the 

purposes of the present anal y s i s . 
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F i g . 13 shows the efficiency, of the chamber as a function of the 
pulse r i s e time f o r a 6 kV pulse. The r i s e time of the pulse was 
varied both by increasing the capacity of the chamber and by-varying 
the resistance i n se r i e s with the chamber, both methods giving 
s i m i l a r r e s u l t s . Assuming that the variation- of e f f i c i e n c y with . 
r i s e time i s due to the v a r i a t i o n of the clea r i n g done by the pulse 
with varying r i s e time, the v a r i a t i o n can be compared with the 
t h e o r e t i c a l l y predicted values based on the measured spark forma­
t i o n times. 

Since the spark formation time has been measured f o r pulses of 

only three different r i s e times, the comparison between the experi­

mental and th e o r e t i c a l values i s somewhat limited. However, the 

three points predicted t h e o r e t i c a l l y are i n good agreement with the 

experimental points, thus v a r i f y i n g the basic p r i n c i p l e s of the theory. 

k.lc The e f f i c i e n c y as a function of the time delay 

The measurements described here have been made using a 6 k V 

pulse with a r i s e time of kO nsee and a decay time of ' 3 0 ° nsec. 

With no clearing f i e l d the e f f i c i e n c y as a function of time delay 

i s 90$ at 7 |isec, 50% at 11 usee, and 10$ at 15 usee. This rate of 

decrease i s similar to that reported by Fukui and Miyamoto (1961), 

and i s ascribed by them to the l o s s of the i n i t i a l electrons by 

diffusion to the electrodes. 
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. Figures 1^ and 15 show the e f f i c i e n c y curves as a.function of 
time- delay f o r various clearing f i e l d s applied i n the two r e l a t i v e 
f i e l d directions. Although the minimum time'delay i n applying the 
high voltage pulse to. the plates was 0.1*5 |isec, clearing f i e l d s of 
up to 1000 v/cm were applied i n an attempt to show the presence of 
a minimum i n the curve of se n s i t i v e time against clearing f i e l d , 
the s e n s i t i v e time being defined as the time f o r the e f f i c i e n c y of 
the gap to f a l l to 5Q$ as suggested by Roberts (1961). No sparks 
were produced f o r clearing f i e l d s i n the range 2^0 v/cm to 1000 v/cm 
and no minimum i n the sensitive; time was found. This i s i n d i s ­
agreement with the r e s u l t s of - Cronin and Renninger (1960) who found 
a minimum at E c = ikO v for a gap of width 0.95 cm. 

For a constant clearing f i e l d the s e n s i t i v e time i s smaller 

when the f i e l d i s i n the same dir e c t i o n as the pulse than when the 

f i e l d . i s . i n the opposite d i r e c t i o n to the pulse. This i s consistent 

with the suggested mechanism, i n which i t i s proposed that some 

electrons are cleared but.of the gap by the pulse i t s e l f before 

the discharge occurs. 

When the clearing f i e l d i s i n opposition to the pulse, and 

the e f f i c i e n c y i s . low, i t can be assumed that the cl e a r i n g done by 

the pulse i s negligible compared with that done by the clearing 

f i e l d . Under such conditions the value of the time delay f o r 

which the e f f i c i e n c y tends to zero, T^, i s clo s e l y r e l a t e d to the 

mobility of the electrons i n the neon-alcohol mixture. The values 
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of are plotted against the re c i p r o c a l of the appropriate 

clearing f i e l d i n Fig.. 16. Defining K(E ) = fla(.E )/E equation (2) 
c c ' c 

y i e l d s the r e l a t i o n f ~ 
I — . e © 

-r / / 

The slope of the l i n e i s therefore equal to K(E ) from which 

K ( E C ) i s found to be J.8 x 1 0 3cm 2sec^ 1v" 1 f o r a range of E/P from 

0.05 to O.33 v cm - 1(rnrnHg) - 1. The electron v e l o c i t i e s corresponding 

to each of the points i n F i g . 16 are shown i n F i g . 19. 

I t i s possible to combine the r e s u l t s to give a u n i v e r s a l 

curve of e f f i c i e n c y against the product of the time delay and the. 

clearing f i e l d . The curves f o r the two cases of r e l a t i v e f i e l d 

d irection are shown i n F i g s . 1J and 18. 

When the clearing f i e l d i s acting i n the opposite di r e c t i o n 

to the pulsed f i e l d , and the f r a c t i o n of the. c l e a r i n g done by the 

former i s greater than the f r a c t i o n done by the l a t t e r , equation 

(2) may be written as 

£n(l-r\) = -fvd + f r a ( E c ) T B . 

Applying the method of l e a s t squares to a plot of £n(l-t\) against 

E c T D y i e l d s f = 0.27 and K ( E Q ) = 8 x 1 0 3cm 2sec~ 1v" 1 i n good agreement 

with the_resuits f or f (table 3 ) and K ( E C ) (above) already obtained. 
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From the results f o r the case of the clearing f i e l d i n the 

same d i r e c t i o n as the pulse f i e l d a value of 0.30 + 0.05 cm i s 

found f o r the clearing done by the 6 kV pulse before i t reaches 

i t s c r i t i c a l p o t e n t i a l , corresponding to a mean value of K[E(Tj,)] 

of ( 1 . 6 + 0 .3) x 1 0 3cm asec - 1v - 1 over the range of applied voltage 

(cf. the values of K [ E(T F)] given i n table 3 ) . 

The ef f i c i e n c y of the chamber as a function of time delay f o r 

no clearing f i e l d was measured with a similar pulse, but of pulse 

height 8.5 kV. . This showed that at a p a r t i c u l a r time delay an 

appreciable increase i n ef f i c i e n c y may be obtained by increasing 

the pulse height. A not unreasonable explanation f o r t h i s i s that 

the corresponding decrease i n T̂ , (see f i g . 10) w i l l reduce the 

clearing done by the pulse, so causing a subsequent increase i n 

efficiency. 

4.Id Discussion of the e f f i c i e n c y results 

The results show that the electron mobility, f a l l s considerably 

i n going .from the values of e /P relevant t o the usual clearing f i e l d s 

(<0.33 vcm_1(mm Hg) _ 1 ) t o those f o r the applied pulse (<8 vcm-1(mm H g ) - 1 ) . 

Some v a r i a t i o n i n the m o b i l i t y with r i s e time has been found which 

would, appear to. indicate an inconsistency i n the model, but a p a r t i a l 

examination i s advanced l a t e r . 

I n view of the v a r i a t i o n of mobility, with E/P i t i s easier to 

compare the results with more d i r e c t measurements by examining the 

values found f o r the electron d r i f t v e l o c i t y . Die v e l o c i t i e s 
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derived from the present experiments f o r the neon-alcohol mixture 

are shown i n Fig. 19« These may be compared, with the v a r i a t i o n given 

by von Ehgel (1955) f o r pure neon also shown i n the f i g u r e . The 

higher v e l o c i t i e s i n the mixture, which are p a r t i c u l a r l y marked 

at low values of E/P, are a t t r i b u t e d t o the e f f e c t of alcohol. 

Support f o r t h i s suggestion comes from experiments by other workers; 

thus, the d r i f t v e l o c i t i e s i n ah argon^alcohol mixture calculated 

from the results of Fischer and Zorn (1961) are seen to be con--

siderably higher than those found f o r pure argon by Nielsen (1936, 

reported by Brown and A l l i s , 1958)• I * must be pointed out, however, 

that the recent results of Beall et a l . (1960), f o r argon alone, 

indicate a d r i f t v e l o c i t y much greater than that found by Nielsen 

and greater even than the v e l o c i t i e s found by Fischer and Zorn. 

The grade of argon used by Beall et a l . and by Fischer and Zorn, 

namely "welders grade argon", was the same. A. possible explanation 

f o r the. discrepancy of the r e s u l t f o r argon found by Beall et a l . i s 

that the argon was contaminated with nitrogen,' since the addition of 

as l i t t l e as 1$ of nitrogen t o argon i s known to increase the 

electron d r i f t v e l o c i t y f i v e f o l d . 

Fischer and Zorn, as a r e s u l t of t h e i r measurements, concluded 

that the electron d r i f t v e l o c i t i e s i n argon-alcohol and helium-

alcohol mixtures are the same. They a t t r i b u t e d t h i s t o the over­

whelming ef f e c t of the alcohol. I t i s therefore in t e r e s t i n g to 

enquire i f alcohol has such an e f f e c t on the d r i f t v e l o c i t i e s of 



electrons i n neon* Fig. .19 shows that t h i s i s not the case, and 

that electron d r i f t v e l o c i t i e s i n a neon-alcohol mixture are 

greater than those i n either an argon-alcohol or helium-alcohol 

.mixture. 

On comparing the present results with' those f o r pure: •. -.neon 

given by von Engel (1955)> i - t i s apparent that the presence of 

alcohol (and the impurities present i n the neon used i n the present 

experiments, see table 2) caused a general increase i n the d r i f t 

v e l o c i t i e s of electrons i n neon. Hie more recent work of Bowe 

(1960) indicates d r i f t v e l o c i t i e s i n pure neon which are less than 

those of von Engel, and therefore the e f f e c t of the alcohol or 

impurities i n the neon could be even more marked than indicated 

i n . f i g . 19. 

With regard to the i n t e r n a l consistency of the present data 

and the a p p l i c a b i l i t y of the suggested model, i t i s concluded that 

a l l the characteristics except that of the v a r i a t i o n of m o b i l i t y 

. with r i s e time are i n accord withexpectation. Part of the inconsis­

tency f o r the r i s e time v a r i a t i o n can be explained i n the following 

way. • Pulses having long r i s e times generally do not reach t h e i r 

maxima before the spark occurs and as a r e s u l t the mean electron 

m o b i l i t y becomes weighted towards the value f o r small f i e l d s and 

the d r i f t v e l o c i t y i s correspondingly higher. A l l the apparent 

v a r i a t i o n of K[E(Q^,)] with r i s e time cannot be explained i n t h i s 

way, however, and i n .this respect.the proposed "model requires 

f u r t h e r improvement. 



k*2 Geometrical Properties ;of.the Sparks 

km 2a The angle between the spark and... the p a r t i c l e trajectory. 

Many workers have observed sparks tending to l i e along the 

dir e c t i o n of the p a r t i c l e t r a j e c t o r y even when t h i s i s not normal 

to the plates. The usefulness of the chamber would be increased . 

i f i t could be arranged that" the d i r e c t i o n of the spark were always 

to l i e along the'particle t r a j e c t o r y . Accordingly, measurements 

have been made t o study the "relationship between the conditions of 

operation and the i n c l i n a t i o n of the spark. 

For each event i n which one spark was produced by an ionising 

p a r t i c l e i n at least f i v e of the six sensitive gaps of the chamber 

the tangents of the angle 9 between the p a r t i c l e t r a j e c t o r y and the 

applied f i e l d , and the angle 9 i between each spark and the f i e l d were 

measured. 

To indicate the fluctuations of tan9 x f o r a f i x e d tan8 the 

frequencies of ind i v i d u a l values of tan9 x are given i n Fig. 20 f o r 

two pulse amplitudes f o r the range 0.^5 > tan8 > 0.35» Table k • 

shows the magnitudes of these fl u c t u a t i o n s . 

Table ki Fluctuations of the angle of an oblique spark due to a 

p a r t i c l e , traversing..thechamber at an angle 8, 0.1*5 > 

, tan9*> Q~, 35. 

(a> (b) . / ( c ) (d) 

7 50 O.075 + 0.005 O.lJ+ 0 . 0 1 

11.6 4-5 O.061 + O.005 O . 16+O . 01 
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(a) pulse height (kV cm" 1); (b) r i s e time (hsec); (c) standard 

deviation of tanGi from the mean; (d) mean tanS^. 

The values i n the table indicate t h a t the v a r i a t i o n of the 

angle of the spark-for a f i x e d p a r t i c l e t r a j e c t o r y probably 

decreases with increasing voltage, but that even at overvoltages 

of the order of 200$ there i s s t i l l a very large f l u c t u a t i o n i n 

the angle of the spark. 

I n view of t h i s large f l u c t u a t i o n , the mean value of tan8 1, 

tanSi, f o r the f i v e or si x sparks on each p a r t i c l e t r a j e c t o r y , 

rather than each value, of tanS^, i s p l o t t e d against tan8 i n f i g . 21, 

f o r a pulse of r i s e time k$ nse'c and amplitude 11.6' kV. From t h i s 

f i g u r e i t i s seen that there i s a maximum angle of the spark of 

about 2 3 ° f o r a t r a j e c t o r y at ~ 4 0 ° . 

In. order t o compare similar curves f o r various pulse ampli­

tudes and r i s e times, a straight l i n e has been f i t t e d t o points 

below tan0 as 0.6 with the r e s u l t that i n t h i s range the r a t i o 

(tan9^ )/(tan0) = O.39. Table 5 gives the. r a t i o f o r various pulse's, 

and counter f i l l i n g s of commercial neon alone and the usual neon-

alcohol mixture. 

On comparing the results f o r the neon and the neon-alcohol 

f i l l i n g s , f o r similar pulse characteristics, i t i s evident that 

the addition of alcohol t o neon1 does hot a f f e c t the r a t i o 

(tanS!)/(tan0) appreciably. The measurements at 7 kV cm1 indicate 
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•Cable 5* The maximum angle of the, sparks f o r ••various pulse parameters 

(a) 

Neon 7 

9-2 

Neon-alebhol 7 

7 

9*2 

11.6 

(a) pulse amplitude (kV cm" 1); (b) r i s e time (nsec); (c) (tanS^/tanG); 

(d) maximum vaiue of t a r i e ^ (e) value of tan6 at maximum value of tanG^ 

i.e. tan9 Q. 

that pulses having a long r i s e time do not favour the production of 

sparks at large angles. . Increasing the amplitude of the pulse does 

not greatly a f f e c t the r a t i o (tanSjL )/(tan8), but the maximum angle at 

which a spark can be produced i n s l i g h t l y increased. 

k.2k> The width of the spark 

The width of the spark has been investigated as a function of 

the angle between the trajectory, of the p a r t i c l e and the d i r e c t i o n 

of the applied e l e c t r i c f i e l d f o r various pulse amplitudes and r i s e 

times. . 

•The results shown i n Fig. 22 indicate that f o r a pulse of r i s e 

time 60 nsec p a r t i c l e s which pass through the chamber v e r t i c a l l y 

produce sparks whose widths are about 1-5 J™ -independent of pulse 
amplitudes. For p a r t i c l e s traversing; the chamber at longer angles, 

00 (c) (d) (e ) 

to 0.27'+ 0.05 -
50 0.37 + 0.09 - -
80 0.13 + 0.02 0.22 + 0*02 0.70 + 0.1 

50. 0.3^ + 0.03 0.31 + 0.02 0.80 + 0.1 

50 O.kl + 0.02 0.38 + 0.03 0.75 + 0.1 

0.39 '+. 0.02 O.lt-2 + 0.02 0.80 .+ 0.1 
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however, the widths- of the sparks increase with increasing applied 

voltage. 

For angles below 5 5 ° "the sparks do not usually e x h i b i t a 

multiple structure, but at greater angles two or three sparks i n 

the d i r e c t i o n of the applied f i e l d are produced i n each gap oh the 

p a r t i c l e t r a j e c t o r y . 

h.2c The accuracy with which the .spark locates the p a r t i c l e 

t r a j e c t o r y 

The accuracy of track•location was studied by • examining only 

thosephotographs corresponding to p a r t i c l e s of energy >500 MeV, 

because f o r such particles.the scattering i n the aluminium plates • 

of the chamber could be neglected. Furthermore, only those photo­

graphs which included a t least one spark i n each of the six gaps, 

and which corresponded t o p a r t i c l e s t r a v e l l i n g w i t h i n 2 0 ° of the 

f i e l d d i r e c t i o n , were accepted. For the events s a t i s f y i n g these 

c r i t e r i a the deviation, 6, of the centre of each in d i v i d u a l spark 

at i t s (pulsed) cathode end from the best str a i g h t l i n e passing 

through the six such points was recorded. Fig. 2J shows the h i s t o ­

gram so obtained. The d i s t r i b u t i o n has an r.m. s. value of 0.57 nim, 

a-median of 0.22 mm and a mean value of 0.27 -nan-. 

So that an estimate of the uncertainty i n the measurement of 

8 could be made the measurements were repeated, and the frequency 

d i s t r i b u t i o n of the difference between successive measurements was 
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drawn. This was found to have an r.m. s. value of O.Jk mm and i t i s 

estimated that the broadening of the d i s t r i b u t i o n of f i g . 2J due to 

t h i s - l a t t e r uncertainty i s of the order of that produced by a 

Gaussian d i s t r i b u t i o n of standard deviation 0.3k/<j2. Hence, the 

d i s t r i b u t i o n of the displacement of the cathode end of the spark 

from the p a r t i c l e - t r a j e c t o r y has an r.m. s* value of approximately 

0.28 "mm. 
1 

The measurements have also been repeated, by se t t i n g on the 

mid-point and anode end of the sparks with the results given i n 

Table 6. 

Table, 6. Accuracy of"location of sparks r e l a t i v e t o the apparent 

t r a j e c t o r y of the ionising p a r t i c l e 

(a) 

R.M.S. value 0.37 1.0.02 

Mean value 0.26 + 0.03 

Median value 0.22 + 0.03 

(a) cathode end of spark (mm); (b) mid-point of spark (mm); 

(c) anode end of spark (mm.). . 

(b) 

0.26 + 0.03 

0*17 + 0.02 

0.15 t 0.02 

(c) 

0.30 + O.O3 

o-. 19 + 0.03 

0.1k + 0.02 

The magnitudes of the displacements given i n the table are 

consistent with the distance ah electron diffuses during the time 

delay i n applying the high voltage pulse, ( i n 0.5 |jsec an electron 
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diffuses a mean distance of the order of 0.5 mm. Tft e p o s i t i o n of 

the spark i s , however, probably dependent upon the positio n of 

several electrons and i t s displacement i s therefore expected t o be 

less than t h i s ) . These results do not r e f e r t o the accuracy w i t h 

which the sparks define the true p o s i t i o n of the t r a j e c t o r y of a 

p a r t i c l e since there may.be a systematic displacement of the mean 

spark p o s i t i o n from the tr a j e c t o r y . There i s ho evidence f o r t h i s , 

and even i f there were, i n many experiments the systematic component 

i s unimportant. 

The present r e s u l t s , numerically consistent w i t h those of other 

workers (see gl . 3 f , page 11), indicate that the f l u c t u a t i o n of the 

mid-point of the spark about i t s mean po s i t i o n is.less than that of 

either end. Because of the inte r a c t i o n between evalanches i n the 

centre of the gap the positio n of the mid-point of the spark depends 

upon the point of production of several electrons. . At the cathode 

and anode ends the positio n of the spark depends solely on the 

point of production of a single electron. As a r e s u l t there w i l l 

be some region of the spark whose displacement from the actual p a r t i c l e 

t r a j e c t o r y i s r e l a t i v e l y more constant than that of the ends of the spark. 

This i s consistent both with the present work and that of Mikhailov 

et a l . 

.The conclusion i s , therefore, that when the d i r e c t i o n of a 

p a r t i c l e t r a j e c t o r y i s to be measured, bett e r accuracy i s obtained 

http://may.be


by recording the centre of the spark than either end, but i f the 

actual p a r t i c l e t r a j e c t o r y i s required the most accurate d i r e c t 

estimate i s obtained from the cathode end of tiie spark. 

k.2d Conclusions about the.model of the discharge 

I n t h i s section i t w i l l be shown th a t , i n the main, the experi­

mental results support the mechanism of the discharge outlined i n 

§ 2 . 1 and § 2 . 2 ; There i t was proposed that when the r a d i a l space 

charge f i e l d , E r, produced by the positive ions a t the' head of each 

avalanche attains a value of the order of the applied f i e l d , E, 

mid gap streamers can be formed and the discharge w i l l then grow by 

the streamer mechanism. 

E r can be estimated on the assumption that the positive ions 

at the head of an avalanche are contained i n a spherical volume of 

radius r. -Raether (see Meek and Craggs, 1953) gives the value of E^ 

the r a d i a l f i e l d due t o a single avalanche, as 

E =. exp (ax) 
r ' 

where e i s the electron charge and r i s the radius of the avalanche 

a f t e r i t has t r a v e l l e d a distance x; following .Baether, r i s given 

by the expression r = V3Dt, D i s the d i f f u s i o n c o e f f i c i e n t and t i s 

the time of development. Thus 

E r = exp (ax) (k) 
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The t r a n s i t i o n from an electron avalanche to a streamer occurs 
when E^ = cE; c being taken t o l i e i n the range 0.1 t o 1.0 using 
equation (k) the s t r i k i n g p o t e n t i a l f o r a p a r t i c u l a r gas canlsbe 
estimated provided that both t and a are known as a function of 
the f i e l d E. Taking x equal t o the gap width, t from f i g u r e 10, 
D from Lloyd (1960) and the value of a as measured by Kruithof and 
Penning (1937) f o r neon containing 10~ 4 # argon, E r has been calcu­
l a t e d f o r a pulse of ri s e time ^0 nsec. Values of E r are given i n 
table 7. 

Table 7. Radial f i e l d of an avalanche a f t e r t r a v e l l i n g 1 cm i n the 

applied f i e l d 

Applied f i e l d , E Radial f i e l d , E^ 

v cm - 1 v cm - 1 

3,000 3 .5 

3,500 $.k 

It, 000 . 1,200 

5,000 - 25,000 

I t i s apparent that streamers are -expected t o be produced i n 

the gas at a minimum applied f i e l d , E, i n the region of k kV cm - 1. 

This i s consistent with the d i r e c t l y measured value of ' 3 ' 5 + 0.5 

kV cm - 1, and the agreement supports the suggested mechanism. 
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k.2e Interpretation_of the geometrical properties of the sparks 
The sparks due to p a r t i c l e s traversing the chamber a t an angle 

are, i n the main, either straight or concave with respect to the 
cathode. For p a r t i c l e s traversing the chamber at an angle l e s s than 
8 Q =i k0° (figure 2-l) the great majority of the sparks are concave, 
whereas for angles greater than 8 the majority of the sparks are 
straight. The shape of the spark predicted by the reasoning of §2.2 

i s shown i n F i g . 5C» From photographs obtained with the chamber, 
' i t 

some of which are shown i n figures 25 to 32,/may. be seen that the 

general shape of the sparks i s i n agreement with the predicted one. 

I t can be shown that for a p a r t i c l e traversing the chamber at an 

angle 8(8<8 0) to the v e r t i c a l , the angle 8 2 of f i g . 2k i s given by 

tanG 

In the figure, the p a r t i c l e produces electrons along AB; these 

electrons produce avalanches which become c r i t i c a l a f t e r t r a v e l l i n g 

the distance x. Assuming that the spark l i e s i n the direction BC., 

i t i s natural to attempt to identify ^ with 8 1 of §4.2a. For a pulse 

of amplitude 7 kV and r i s e time 60 nsec, x f r a n equation (5) i s 

~6.6 mm, and t h i s i s i n good agreement with the value of 6 mm 

calculated from the measured spark formation time, Tj,, and the mean 

electron mobility K[E(Tj.)]. 



CD 

fD 

o 
*4 fD 

fD 

P i CD fD 10 
fD 

CD 
• 

fD 

fD f i 



0.3 " X " 

0.2 

P(6) 

0.1 

-L 
1.0 0.5 .0 0.5 1.0 

Fig. 23 Frequency d i s t r i b u t i o n of 6, the displacement of 

the spark discharge from the estimated p a r t i c l e 

t r a j e c t o r y 
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The presence of a maximum i n the t a n ^ vs. tan6 curve (figure 21) 

can be explained on the ba s i s of interaction between the elementary 
avalanches. For small values of 9 the avalanches interact strongly 
and the spark passes e f f e c t i v e l y through the avalanche heads ( f i g . 5G)» 
At larger .values of 8 the separation of the avalanches i s so great 
that interaction ceases and the direction of the spark tends to be 
set by the motion of the electron . i n i t i a l l y nearest the cathode, 
i . e . Q1 i s reduced. 

The electrons produced i n the neon-alcohol mixture by an 

ionising p a r t i c l e are on the average 0.5 inm apart, and so the 

maximum angle' of a spark w i l l be i n the region of s i n - 1 ' ^ ^ (where 
u. 5 

D i s measured i n mm 2sec _ 1). This neglects any retarding e f f e c t 

which the growth of one avalanche may have : ;on i t s neighbour and so ' 

the -maximum' angle could be l e s s than that given above. For the case 

of an 11.6 kV pulse of r i s e time k-5 hsec t = Tj, a 50 nsec ( f i g . 10 ), 

so that the maximum angle of the spark i s approximately s i n - 1 0.55 = 

21°. This i s i n remarkably good agreement with, the observed value 

of t a n - 1 0.42 = 25° given i n table 6. 

km 2f Photographs Stained, with the chamber 
The r e s u l t s presented so f a r have been obtained with the six-gap 

chamber described i n §5* 1. A n-ine^gap chamber was also constructed. 

This was used to obtain the r e s u l t s presented i n section k. J> I n the 

nine-gap chamber the planes of a l l plates were p a r a l l e l and alternate 

plates were connected i n p a r a l l e l so that here no in s e n s i t i v e gap was 

produced. The sen s i t i v e area and width of the gap were the same, 



i.e. x 16.5 cm2 and 1 cm respectively, and ebonite was used 

instead of perspex to support the plates. Figs. 25, 26, 27, 28 

and 29 show t y p i c a l photographs obtained with the f i r s t chamber, 

and f i g s . ^>0, 31 and 32 were obtained with the nine-gap chamber. 

Hie l a t e r a l l y inverted "L" seen i n the photographs i s a frame 

indicator. 

The concave nature of the sparks can be c l e a r l y seen on the 

angled tracks. 

Fig. 25. A single p a r t i c l e traversing the chamber. 



Fig. 26. A Single P a r t i c l e 

I 

Fig. 27. A p a r t i c l e scattered i n the aluminium plates 

of the chamber 
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Fig. 28. A knock-on electron produced by the cosmic ray p a r t i c l e 

is seen i n the lowest 2 gaps 
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Fig. 29. A knock-on electron produced i n the f i r s t electrode. 

Note the d e f i n i t i o n i n the f i r s t gap 



Fig. 30. Track of a single p a r t i c l e 

• 

1 

Fig. 31. A knock-on electron produced i n the t h i r d gap 
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i 

Fig. J2. A cosmic ray shower event i n which three p a r t i c l e s 

traversed the chamber simultaneously 

4.3 The Effect of Electron Attachment by Impurities i n the Chamber 

In t h i s section the effec t of the addition of a i r on the 

effi c i e n c y of the chamber i s considered. 

Small amounts of a i r were admitted to the nine-gap chamber 

which was f i l l e d with commercial neon only, i.e. no alcohol was 

present i n the gas. The ef f i c i e n c y of the chamber f o r recording 

single p a r t i c l e s was measured as a function of the time delay f o r 

zero clearing f i e l d . The results are shown i n Fig. 33. 

The th e o r e t i c a l efficiency i s given by 

T] = 1 - exp (-frig) 
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where H g i s the number of primary electrons capable of i n i t i a t i n g 

avalanches, which can grow to the c r i t i c a l s i z e , remaining between 

the plates at the instant the high voltage, pulse i s applied (see 

§2.3)• 3he factor f , the probability that a single electron w i l l 

escape attachment during the pulse, i s taken to be 0.25 from §4.lb. 

I n order to estimate the e f f e c t of electron attachment during 

the time delay i n applying the high voltage pulse, a i l processes by 

which electrons are removed'from the gap must be considered separa­

t e l y . 

(a) Diffusion 

I t i s assumed that the•electrons produced by the triggering 

cosmic ray p a r t i c l e s are equally spaced in. the x direction perpen­

dicular to the-plates. For an average number, n Q = 20, the distance 

between adjacent electrons w i l l be 0*05 cm* Those electrons which 

reach an electrode by diffusion are considered to be removed from 

the gap. Toe probability of an electron produced at x = 0 at time 

t =.'0 having at a l a t e r time t = t an x-component of displacement 

between x and x + dx i s given by 

D i s the diffusion c o e f f i c i e n t f o r electrons i n neon a t one 

atmosphere and i s given by Lloyd (1960) as D = 1800 cm 2sec - 1. I f 

the. positions of the electrodes r e l a t i v e to an electron.at x = 0 

are described by x = x Q and x = . x Q - l then the probability of t h i s 

electron being l o s t to e i t h e r of the electrodes i s given by 



6b. 
«0 

ct-x , 

^ l o s s 1 W a S e v a^- u a" t e^ individually for each of the 20 electrons f o r 

various values of t. The r e s u l t was t h a t the number of electrons, 

Op, removed from the gap i n a time t i s w e l l represented by the 

relationship . 

h D = 0.95 Vl0°t f o r 10-*<t<6 x 1O-0 sees 

(b) The clearing done by the pulse 

A further f r a c t i o n , g, of the electrons present a t the instant 

of application of the high voltage pulse w i l l be captured by the 

electrodes due to the clearing action of the pulse. For the pulse 

used i n t h i s experiment (pulse height, 7 kV; r i s e time, 12-nsec; 

decay time, 180 nsec) t h i s fraction,, given by 

o 
was g. = 0.3 + 0.1.. 

•[-
( c ) Attachment during the time delay 

The probability of an electron being attached during the time 

delay, Tjy depends on the number of c o l l i s i o n s i t makes with impurity 

atoms or molecules. The t*|me delay comprises two parts:- a period 

i n which the i n i t i a l electrons of average energy of about 6 eV slow 

down to thermal energies, and the remaining period i n which they 

move with thermal v e l o c i t i e s . Heyn (1961) has shown the former 
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period to be ~0.5 usee, and i t i s assumed that the number of c o l l i ­

sions an electron makes i n t h i s time i s constant and i s given by 

=£ 8.J x 10*. According to k i n e t i c theory a thermal electron i n 

neon at atmospheric pressure makes 1.J2 x 10 1 1 c o l l i s i o n s per second. 

Thus, with an impurity concentration of y$ the t o t a l number of 

c o l l i s i o n s an electron w i l l make with impurity molecules i n the 

time Tq i s 
N xy 

N t o t a l = 100 + ^ X 1 0 9 ( TD " °'5 * UT*)Y 

I f a i s the probability of attachment per c o l l i s i o n f o r thermal 

electrons and ka i s the probability of attachment per c o l l i s i o n f o r 

electrons during the slowing down period, the number of electrons, 

n^, remaining a f t e r a time Trj i s given by 
r F ^ i T i 

n A = n Q exp |-ay + 1.J2 x 109 (Ofo - 0.5 x l O " 6 ) j 

Consequently the number of electrons, i ^ , remaining i n the gap a f t e r 

a time i s 

t-6. 
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F i g . 34 shows the left-hand, side of equation (6) plotted against y 
with as parameter. The gradients, s, of the straight l i n e s 
were calculated by the method-of l e a s t squares to form s i x equations 
of the form 

F i g . 35 shows s plotted against 1.32 x 10 9 (Tp - 0.5 x 1CT 6). The 

s i x points l i e on a straight l i n e whose slope and intercept were 

calculated by the method of. l e a s t squares to y i e l d a = 6.6 x 1CH5 

and k = 0.75. This means that the probability of attachment for 

thermal electrons i s four thirds that of those slowing down from 

an average energy of about 6 eV. 

The value of a obtained i n t h i s experiment i s an order of 

magnitude greater than the value, of a = §,.5 x 1 0 - 5 f o r a i r given 

by Compton and Langmuir (1930)> and ah order of magnitude l e s s than 

that observed'by Wilson (1950) f o r electron attachment to oxygen' 

impurity in- an ionisation chamber. The r e s u l t s of Schneider and 

Hohne (1963), who measured the e f f i c i e n c y of an oxygen-contaminated 

spark chamber as a function of the electron energy f o r various 

delay times, point i n d i r e c t l y to a value of a ^ 3 x 1 0 - 4 f o r 

electron energies below about 0.2 eV, corresponding to a ?! 6 x 10~ 5 

f o r a i r , since a ( a i r ) = •ga(Qg). This l i m i t i s barely, consistent 

with the value reported here. 

The f a c t that the points i n f i g s . and 35 l i e on straight 

l i n e s supports the v a l i d i t y of the present a n a l y s i s and gives 
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added weight t o the v a l i d i t y of the discharge model postulated i n 

Chapter I I . The region of the intersections i n f i g . indicates that 

the equivalent of00.1$ a i r impurity was present i n the chamber before 

additional a i r was introduced; t h i s amount i s considered reasonable. 

J+. 1+ Conclusions from the experimental results 

The results have been used to determine the value of the electron 

d r i f t v e l o c i t y i n a neon-alcohol mixture as a function of the e l e c t r i c 

f i e l d over the range of E/p from 0.05 to k v cm - 1 (mm Hg) _ 1. 

The p r o b a b i l i t y of a single electron i n i t i a t i n g a spark has been 

measured under a variety of conditions and found t o be i n t e r n a l l y 

consistent w i t h i n the experimental error. 

The accuracy with which the spark locates the p a r t i c l e t r a j e c t o r y 

has been measured and found.to be i n agreement with that observed by 

other workers. I t i s concluded that when the d i r e c t i o n of a p a r t i c l e 

t r a j e c t o r y i s t o be measured, bett e r accuracy i s obtained by recording 

the centres of the sparks than t h e i r ends; but i f the actual p a r t i c l e 

t r a j e c t o r y i s required the most accurate d i r e c t estimate i s obtained 

from the cathode end of the spark. 

A model f o r the formation of the spark has been proposed. The 

int e r p r e t a t i o n of the v a r i a t i o n of e f f i c i e n c y with the characteristics 

of the high voltage pulse augurs w e l l f o r the v a l i d i t y of t h i s model. 

Measurements have been made t o study the relationship between the 

condition of operation of the chamber and the tendency of the spark to 

l i e along the p a r t i c l e t r a j e c t o r y i f t h i s i s in c l i n e d at an angle t o 

the normal to the plates. The presence of a maximum angle of i n c l i n a ­

t i o n of the spark, and i t s magnitude, which agrees very w e l l w i t h that 
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predicted by the model, lend f u r t h e r support t o i t s v a l i d i t y . 

The e f f e c t of electron attachment oil. the e f f i c i e n c y of the 

chamber has been measured, the results supporting the present model, 

although being barely consistent v i t h thbs'e of other workers. The 

problem of electron attachment i n spark chambers has not yet been 

examined on a sound th e o r e t i c a l basis, and there i s much scope f o r 

f u r t h e r work i n t h i s f i e l d . 

The s t a t i s t i c s of the electron avalanche leading t o spark forma­

t i o n have not yet been worked out. I t would be of int e r e s t t o study 

t h i s f o r a comparison to be made between the t h e o r e t i c a l value of the 

spark formation time and the experimental one, as measured i n these 

experiments. 

Although a p a r t i a l explanation has been advanced f o r the 

v a r i a t i o n of electron m o b i l i t y with r i s e time of the pulse f u r t h e r 

explanation i s needed and the model needs improvement with respect 

to t h i s . 

A somewhat surprisingsconclusion that may be drawn from the 

observations i s that the spark chamber i s i d e a l l y suited t o certain 

measurements of the behaviour of electrons i n gases, as the present 

measurements of electron d r i f t v e l o c i t y and electron attachment have 

shown. A f u l l e r e x p l o i t a t i o n of the spark chamber technique i s to be 

expected. 

I n the next chapter conclusions on the design of spark chambers, 

from information gathered by other workers as w e l l as the author w i l l 

be presented. 
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F i n a l l y , i n Chapter VI, the d i f f e r e n t types of spark chamber 

developed up t o the present time w i l l be reviewed. 
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CHAPTER V 

Conclusions on the design of spark chambers 

In t h i s chapter conclusions on the design of a conventional 

p a r a l l e l plate spark chamber w i l l be presented. Spark chambers 

f a c i l i t a t e a wide freedom i n general design which i s s u f f i c i e n t l y 

f l e x i b l e t o enable one to s u i t the design and construction of the 

chamber t o the p a r t i c u l a r application f o r which i t i s required. 

5-1 Construction 

I n the construction of multiplate assemblies the following 

f i v e requirements must be s a t i s f i e d : -

(1) The plates must be e l e c t r i c a l l y insulated from one another, 

(2) The gap spacing between neighbouring plates must be made 

as uniform as possible over the whole sensitive area, 

(3) Precautions must be taken to prevent breakdown of the gap 

due t o f i e l d emission i n the regions of intense f i e l d at the 

edges and corners of the plates. 

(k) The chamber must be gas-tight and capable of being f i l l e d 

with the desired operating gas, 

(5) There must be an unobstructed view i n t o at least two sides 

of the chamber t o f a c i l i t a t e stereo-photography of the 

tracks. 

Two kinds of construction are possible:-

(a) that i n which the whole multiplate assembly i s placed i n a 

single gas-tight enclosure w i t h transparent windows. 
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(b) that i n which the plates are separated by transparent gas-tight 

insulating frames which enclose the desired operating gas. 

In type (a) i t i s necessary to round o f f the edges of the plates 

to avoid spurious breakdown of the gap. I t i s thought by most 

workers that a radius of curvature of at least -g" i s required; t h i s 

means that i f s o l i d plates are to be used, they must be j j " t h ick. 

For many experiments t h i s presents an undesirable amount of absorb­

ing material between successive spark gaps. I n t h i s case two a l t e r ­

natives exis t : - either the plates may be crossed (as i n the chamber 

described i n chapter I I I ) so that the p r o b a b i l i t y of spurious break­

down i s reduced, or the plates may be made hollow (as described by 

0 * H e i l l , 1961) with a consequent complication of construction. 

I n type (b) there i s no need t o round o f f the edges of the 

plates, since the noble f i l l i n g gas invariably has a lower break­

down p o t e n t i a l than a i r . 

When a minimum cross-section of material i s required, electrodes 

of t h i n aluminium f o i l may. be used. These may be cemented to 

perspex frames acting both as spacers defining the gap width and as 

walls providing the gas-tight enclosure of the gap. Here the main 

problems are those of making a gas-tight seal between the electrodes 

and the frames, and of providing a suitable means of entry f o r the 

f i l l i n g gas. When very t h i n plate or f o i l electrodes are to be 

used, the additional problem of keeping them p e r f e c t l y f l a t must 

be solved. 
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Aluminium i s the most widely used material f o r the electrodes, 

but Fischer and Zorn (1961) found that any, r e l a t i v e l y smooth con­

ducting material may be used f o r the plates. .For instance, 

graphite plates sprayed with s i l v e r paint t o prevent the formation 

of carbon dust by the sparks have been used by. Cork (1961) and 

Cronin (1961). 

Various methods of sealing have been described, some using 

epoxy resin or some other suitable cement (Meyer and Terwillinger, 

196lj Fischer and Zorn, 196l; Lederman, 196lj Rutherglen and 

Paterson, 1961) and some using O-ring gaskets (Lederman, 1961). 

The former method has the advantage of s i m p l i c i t y of construction, 

but d i f f i c u l t i e s can arise due t o the strains produced by the 

d i f f e r e n t i a l expansion of frames and electrodes. The l a t t e r method 

has the advantage that i n d i v i d u a l units" may be added as~.desired 

and target material placed between them i f required. 

A simple O-ring method of construction has been described by 

Rutherglen (1963). I t consists of stretching four well-greased 

rubber bands over the edges of perspex frames, assembling the 

plates and frames a l t e r n a t e l y , and clamping the assembly together. 

Ho d i f f i c u l t y was experienced i n applying s u f f i c i e n t clamping 

force t o make a seal at the corners, where one band crosses over 

another. Complete chambers constructed by Rutherglen i n t h i s way 

are shown i n Fig. 36. 
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Rutherglen also found that small holes maybe d r i l l e d through 

the plates without producing any tendency to cause spurious spark­

ing. This enables the whole chamber tobe f i l l e d with gas by allow­

ing i t to flow through i n l e t and outl e t tubes sealed i n t o the edges 

of the f i r s t and l a s t perspex frames. 

Chambers with aluminium f o i l electrodes as t h i n as 0.001"'- have 

been described by Fischer and Zorn (I961) and Meyer and Terwillinger 

(1961). I t was necessary t o keep the f o i l electrodes under tension 

to ensure that they would be f l a t . Both groups found that a s a t i s ­

factory method of achieving t h i s was to cement the f o i l t o the per­

spex frames a t a reduced temperature of 55 0 - 60°$i the thermal 

c o e f f i c i e n t of expansion of perspex i s about three times that of 

aluminium, so that the d i f f e r e n t i a l expansion pulled the f o i l s f l a t 

to w i t h i n O.OOV" on returning to room temperature.' tne important 

l i m i t a t i o n of t h i n f o i l spark chambers i s that the f o i l may easily 

become damaged by the excessive energy discharged i n the spark. 

The methods of making the e l e c t r i c a l connections are considered 

i n section 5«3» 

5.2 Electronics 

The electronic c i r c u i t s which are employed i n the operation of 

a spark chamber may be divided i n t o two parts, (a) the event selec­

t i o n system and (b) the high voltage pulse generator. 

The event selection system normally consists of s c i n t i l l a t i o n 

or Cerenkov counters coupled to the appropriate pulse height dis-
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criminator and coincidence c i r c u i t s , which serve to define the event 

f o r which the spark chamber i s required to give a v i s u a l record or 

s p a t i a l information. 

The details of these c i r c u i t s w i l l not be considered here, but 

i t i s important t o emphasise that they should be so designed that 

the delay between the passage of the ionising p a r t i c l e through the 

chamber and the appearance of the pulse which triggers the high 

voltage pulse generator i s a minimum.-

The high voltage pulse i s normally obtained from a triggered 

high voltage pulse generator thus ensuring a standard pulse shape 

independent of the variations of the input pulse from the event selec 

t i o n c i r c u i t s . 
E.H.T 

2oov 
11 • locrs/ J? 

\ — 7 
Co Chamber 

1 J 
• 

Fig. • 37» Typical pulse generator c i r c u i t 
The pulse: generator c i r c u i t b r i e f l y described i n Chapter I I I 

i s t y p i c a l of i t s kind and is- reproduced above i n Fig. 37» 

A t r i g g e r i n g pulse of 200V from the event selection c i r c u i t s 

causes the thyratron t o s t r i k e , so that the anode p o t e n t i a l 

collapses rapidly from V (the E.H. T. Supply) t o earth p o t e n t i a l . 
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The condenser C X , charged t o a p o t e n t i a l V, suddenly has one terminal 
earthed via the low impedance of the thyratron causing i t t o share 

i t s charge with the spark chamber capacity C v i a the resistance R . 
c • C C i • 1 c Thus a pulse of amplitude V „ ^ with a r i s e time T R = g ^ Rc i s 

• l :c l c 
applied t o the chamber. I f ' no spark appears i n the -.chamber t h i s 

voltage w i l l decay with a time constant Tp e ? ay = R (C^+Cq), but as 

soon as a spark i s formed the voltage across the chamber w i l l collapse 

very r a p i d l y through the conduction filament of the spark channel 

(e.g. see Fig. 9). I f Cx » ^ == and T D e c a y = R^. Typical 

values of ̂  and C1 are 100Q and 6.001 pF respectively. 

I t i s essential that the r i s e time" of the high voltage pulse be 

less than the spark formation time, otherwise i t may be possible f o r 

the i n i t i a l electrons t o be cleared out of the gap by the r i s i n g edge 

of the pulse before the avalanches have a chance t o develop. This 

means that r i s e times of approximately. 20 risec are required. 

For a t y p i c a l chamber Of n gaps of electrode area 500 cm2 and gap 

width 1 cm the capacity per. gap i s ~50p?» Since the electrodes are 

connected i n p a r a l l e l C C ~ 50n pF. Thus, i f the condition 
R C ~ 20 x 10 - 9 sec i s t o be s a t i s f i e d , R ~ koo/n ohms. At an c c 7 c ' 
operating voltage of V = 10 kV, the maximum current required from 

the high voltage t r i g g e r i s therefore 10,000n/i*O0 = 25n amps. Such 

currents may be obtained only with .hydrogen, thyratrons or triggered spark 

gaps. 
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The most popular hydrogen thyratron i s the 5C22 and high voltage 

pulse generator c i r c u i t s employing t h i s valve have been described by 

Fischer and Zorn (1961), and Meyer and Terwillinger (1961). With a 

g r i d drive of kOOY amplitude obtained from an EFP60 secondary emission 

valve the above authors obtained a minimum delay time of 0.1 usee i n 

the s t r i k i n g of the thyratroh. 

Triggered spark gaps have the advantage that they are both 

fa s t e r and cheaper (the delay time i s ~0.02 (isec). The disadvantage 

i s that they require a t r i g g e r i n g voltage of ~5kV which may be obtained 

from either a pulse transformer, or a small f a s t thyratron l i k e the 

3C4-5, whose delay time i s ~0-0l+ |asec. 

5.3 The connections t o the spark chamber electrodes 

I t has been observed by many -workers that small variations i n 

gap spacing can re s u l t i n large variations i n gap e f f i c i e n c i e s and 

spark i n t e n s i t i e s . The reason f o r t h i s i s that the rapid collapse 

of the high voltage pulse occurs when the impedance of a discharge 

streamer becomes comparable wi t h the source impedance. Less ra p i d l y 

developing streamers i n s l i g h t l y bigger gaps may be so retarded 

i n t h e i r development that they are unable t o give r i s e t o a spark 

before the high voltage collapses, or, a t best, they may only give 

r i s e to a comparatively f a i n t spark. To avoid t h i s , i t i s desirable 

to have as low a source impedance as possible so that each spark has 

as long a time as possible i n which to develop. 
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. Another way of minimising t h i s e f f e c t i s t o decouple the high 

voltage plates either (a) by providing each with i t s own. storage capa­

c i t o r , or (b) by connecting each high voltage plate through a small 

decoupling impedance R_ to a single capacitor C as shown i n Fig. 37« 

I n t h i s way the high voltage plates do not have a common source 

impedance and inte r a c t i o n between them i s reduced. A f u r t h e r 

advantage of method (b) i s that Rc protects the thyratron against 

excessive currents. Since the impedance of the conducting thyratron 

i t s e l f i s very low, i t i s unnecessary to provide a separate 

thyratron f o r each gap, although Fischer and Zqrn (19&L) have used 

f ive 5C22 output thyratrons triggered simultaneously by a- thyra­

tron. 

J£ the high voltage pulse generator can be placed close t o the 

chamber, then the decoupling impedance Rc may be a re s i s t o r of 

appropriate magnitude f o r the required r i s e time, i.e. of the 

order of 10-100fl. I f i t i s hot practicable t o place the high 

voltage pulse generator beside the chamber, a low impedance cable 

may be used to connect Rc t o the chamber. I t was found i n the 

present experiment that the former method produced much "cleaner" 

pulse shapes than the l a t t e r , which- .caused a certain amount of 

o s c i l l a t i o n i n the pulse, presumably due to the stray capacitance and 

inductance of the cable. A method favoured by Rutherglen (1963) 

i s t o feed the high voltage pulse separately t o each gap through 

cables more than 2 metres long, so that the t r a n s i t time along 
them was about 10""8 sec thus providing quite adequate i s o l a t i o n of 
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the plates. 
Rutherglen found standard cables of characteristic impedenee 

i n the range 50-1008 suitable f o r t h i s purpose. 

5.k The gas f i l l i n g 

Spark chambers are n o r m a l l y ; f i l l e d with neon, helium, argon, 

or a mixture of these gases. The r e l a t i v e advantages and disad­

vantages of neon, argon and henogal (65$ Ne, 3*$ He), which are the 

f i l l i n g s most commonly used, w i l l be considered i n t h i s section. 

Neon works s a t i s f a c t o r i l y with an applied pulse i n the range 

6-10 kv"/cm. I t i s considered by most workers t o be the most 

suitable gas f o r the recording of multiple tracks. Welder's grade 

neon (98% He, 2$ He), which was used i n the experiment's described 

i n t h i s thesis, i s of quite adequate p u r i t y ; i t i s t o no r e a l advan­

tage t o use research grade neon which i s much more expensive. A 

l i q u i d nitrogen trap may be used to freeze out impurities (such as 

oxygen and water vapour) during the f i l l i n g process because neon 

l i q u e f i e s at -2k6°G* The sparks obtained w i t h neon are very b r i g h t 

and the v a r i a t i o n i n the l i g h t i n t e n s i t y of sparks i n neon i s 

r e l a t i v e l y small compared with sparks i n other gases. The spark 

formation time of neon i s s l i g h t l y less than that of. Helium, and an 

order of magnitude less than that of argon. .The only r e a l disadvantage 

of neon i s the price, which i s ten s h i l l i n g s per l i t r e i n the U.K. For 

chambers not constructed t o withstand evacuation t h i s presents a serious 
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f i n a n c i a l handicap, because they must be f i l l e d by flowing neon 

through the chambers displacing the a i r u n t i l a negligible amount 

of a i r impurity remains inside i t . For a remainder'of 0.01$ a i r 

the volume of neon which must be used i s nearly ten times that of 

the chamber. 

The main advantage of argon i s that i t i s very cheap at Jd. 

per cu. f t . , or ijd. per l i t r e . Argon i s thought t o be an 

unsatisfactory gas f o r recording multiple tracks. A t y p i c a l 

operating voltage f o r argon i s ~l6kV/cm. Argon l i q u e f i e s at -l85°C 

and oxygen at -l82°C, and therefore i t i s neb possible t o separate 

them by liquefaction. 

Henogal i s f a i r l y expensive at approximately seven s h i l l i n g s 

per l i t r e i n the U.K. I t i s used t o a large extent by the groups 

at CERN, Geneva, who can obtain i t f o r as l i t t l e as 2 d / l i t r e . I t 

has a lower operating voltage than argOh, and i s suitable f o r the 

recording of multiple tracks. The sparks, red i n colour, are not 

as b r i g h t as those obtained with argon or neon. . The CERN group 

have considered f i r s t f i l l i n g the spark chambers with C02 to avoid 

the great loss of f i l l i n g gas. The CO i s then r e l a t i v e l y easily 
2 

removed by trapping i t i n l i q u i d nitrogen, henogal replacing i t 

at the same rate as the C02 i s removed. This cannot be done with . 

argon because the ef f i c i e n c y drops below 50$ f o r A-C02 mixtures 

containing less than 1$ C02. The cost saved by t h i s method f o r argon 

i s , however, negligible because argon i s so cheap. 

Some workers use neon +0.1$ argon, which has the lowest 
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operating voltage of a l l mixtures. This i s explained by the Penning 
ef f e c t (see Druyvesteyn and Penning, l^ko). With neon alone i n the 
course of the avalanche the electrons produce ionisation which gives 
r i s e t o a m u l t i p l i c a t i o n of the electrons, but frequently the elec­
trons raise neon atoms to an excited state which does nothing t o 
reproduce electrons. I f a small amount of argon i s added the reac­
t i o n Ne* + A A + + e~ + Ne takes place, i.e. excited neon atoms 
(e x c i t a t i o n p o t e n t i a l I5.8V), which are-produced i n large numbers at 
low e l e c t r i c f i e l d s , ionise neutral argon atoms by c o l l i s i o n , thereby 
causing a greater rate of reproduction of electrons with a subsequent 
decrease i n breakdown voltage. 

I n section km I d i t has been reported that the addition of small 

amounts of alcohol or other impurity was found to cause severe increases 

i n the d r i f t v e l o c i t i e s of electrons i n neon, argon, and helium f i l l i n g s . 

Alcohol i s often introduced to the chamber f o r t h i s reason, because the 

increase of the electron d r i f t v e l o c i t y w i l l reduce the sensitive time 

i n a clearing f i e l d , although i t i s then not possible to predict 

exactly the magnitude of clearing f i e l d required to produce a specific 

sensitive time. Many workers (the author included) have also observed' 

that the addition of alcohol reduces the p r o b a b i l i t y of spurious break t 

down. 

From Fig. 33 i t may be seen that the presence of comparatively 

large amounts of electronegative impurity seriously decreases the 

eff i c i e n c y of the chamber. O'Neill (see Rutherglen, 1963) h a s 

suggested that t h i s presents an al t e r n a t i v e method of c o n t r o l l i n g the 



sensitive time of a spark chamber when the use of an e l e c t r i c f i e l d i s 

not desirable. .An example of t h i s i s a spark chamber operated i n a 

magnetic f i e l d p a r a l l e l t o the plates where a D.C. clearing f i e l d 

would cause a displacement of sparks from the p a r t i c l e t r a j e c t o r y 

proportional t o the produce | x | . 

5.5 Methods, of Photography 

Spark chamber tracks are normally recorded photographically by 

using a camera with an open shutter pointing a t the chamber i n a 

dark enclosure. 

The amount of l i g h t emitted by a spark depends on the nature of 

the f i l l i n g gas used and the operating voltage, longer over-voltages 

producing brighter sparks. Generally speaking, apertures i n the 

range of f/k t o f / l l are suitable f o r obtaining a satisfactory 

record of p a r t i c l e tracks on f a s t panchromatic f i l m such as Kodak 

Tri-X or I l f ord HPS. 

Normally i t i s arranged f o r a relay c i r c u i t t o wind the camera 

on automaticaily a f t e r each event, and the chamber i s prevented from 

functioning again u n t i l the camera has stopped winding. If. i t i s 

necessary t o make f u l l use of the f a s t recovery time of the spark 

chamber (ad.0 msec) a camera with a very f a s t f i l m transport mech­

anism i s required, such as a cine camera adapted f o r single frame 

operation. 

To determine the po s i t i o n of the track of a p a r t i c l e i n terms 

of two coordinates stereo photographs are required, the two views 
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normally being inclined at a right angle to one another. I t is 
customary, i f practicable, to record the two stereo views on the 
same negative by the use of a mirror. QJhe optical path lengths 
from the sensitive volume'of the chamber to the camera lens w i l l 
then be different for the two stereo views. If the depth of f i e l d 
of the camera lens at i t s required aperture is inadequate a multiple 
mirror system, an example of which is described by Cronin and 
Renninger (1960), must be employed. I f the coordinates of more than 
one simultaneous particle track are to be measured stereoscopically, 
a third, view is normally recorded to resolve ambiguities. For the 
measurement of tracks with respect to some experimental coordinate 
system i t is convenient to photograph reference lines with each 
track. QSiese could be accurately inscribed on the chamber walls. 

In a multi-gap parallel plate spark chamber i t is not possible 
for one camera lens to cover the entire sensitive volume of each gap. 
For a small chamber the camera, maybe placed at a long distance away 
from i t to cover as much of each gap as is required. Hjte l i m i t to 
the distance is set by the intensity of the sparks and the image size . 
on the negative. As the dimensions of the.plates are'increased i t 
becomes more and more d i f f i c u l t to arrange for a satisfactory com­
promise between the short focal length required to obtain the 
necessary depth o f - f i e l d and the long focal length required to 
obtain an adequately sized negative, image. 



focal length 
(a) 

ED 
i 

camera 7 
7 

concave 
(b mirvor 

camera 
small refracting prisms 

(c) 

Fig. 38. Three methods of photography. 



I f the chamber contains a large number of gaps they may be 
arranged fan-wise so that their central planes pass through the 
camera lens. This is particularly convenient i f the chamber has 
been constructed of individual units as described i n § 5 * 1 . 

Three possible methods are:.to place a cylindrical lens i n 
front of the chamber so that the camera lens is positioned at i t s 
focal point, as shown in Fig. 38a, to use a spherical concave mirror 
as shown in Fig. 38b, or to use small angle refracting prisms as 
shown i n Fig. 38c. The•distortion introduced by these optical 
aids may be allowed for i n accurate track measurements. 

Finally, i t is desirable for the images of the sparks to be 
as narrow as possible for accurate measurements. The use of a 
fine grain f i l m and slight underexposure with overdevelopment would 
help to achieve this, but neither method is really .'practicable. 
Fine grain films w i l l not, i n general, be sufficiently sensitive to 
record the sparks, particularly i f the camera is at a large distance 
from the chamber, and underdevelopment would cause comparatively 
f a i n t sparks to be cut off. 
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CHAPTER VI 

A Survey .of _the different types of spark chamber 
developed up to the present time 

Various types of spark chamber> differing from the conventional 
parallel plate design, have teen developed for particular purposes. 
In this chapter the relative advantages of the various types w i l l be 
br i e f l y considered. 

6.1 Wire Spark Chambers 
Hie track of a curved particle trajectory i n a parallel plate 

spark chamber w i l l be recorded with maximum accuracy when i t i s 
normal to the plates, and with minimum accuracy when i t is at small 
angles to the plates. 

Mann (see Romanowski, 196l ) suggested that a method of accommoda­
ting high curvatures accurately i n a given plane was to build a spark 
chamber whose electrodes were constructed of parallel wires or rods, 
the direction of the wires in alternate layers being at right angles 
to one another and the ends of the rods forming a rectangular l a t t i c e . 
Ramanowski (1961) reports the construction of such a chamber made of 
parallel wires in. i n diameter spaced -jj- in. apart. With alternate 
wires i n the same layer pulsed and earthed most of each wire *s 
nearest neighbours are at opposite polarity to i t . 
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Such a chamber has a preferred plane of optimum accuracy normal 
to the wires as campared'3. to a preferred axis, normal to the plates, 
in a parallel plate spark chamber. This is ah important advantage 
i n viewing the curved trajectory of a particle in a magnetic f i e l d : -
i f the wires are normal to the magnetic f i e l d direction, the -entire 
particle trajectory, even i f i t describes a complete ci r c l e , is 
equally amenable to accurate measurement. 

A further advantage is that the sparks•can be photographed 
through the electrodes. 

The biggest single advantage, however, is probably the fact 
that such a chamber can be used to obtain digitized information 
about the track position directly thus eliminating the use of 
photographic f i l m as a storage medium with obvious saving i n scanning 
time and cost. 

Aucamp et a l . (1963) have described an elegant method of con­
structing .individual spark chamber units consisting of one aluminium 
plate electrode and a wire grid machined on the copper f o i l of a 
printed c i r c u i t board. The problem of maintaining sufficient tension 
in the wires of a wire-chamber is thus eliminated. Several such 
units can be combined to form a multi-layer spark chamber. 

Some preliminary results on the use of f e r r i t e memory cores 
to provide d i g i t a l electronic read-out suitable for high speed 
electronic analysis have been reported by Krienen (1965). The 
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current pulse associated with a spark is registered by a f e r r i t e 
core threaded on the wire to which the spark jumped. This infor­
mation is stored directly i n a magnetic memory for further proces­
sing. 

Anc'amp et a l . (1963) have investigated the accuracy of track 
location. They conclude that the position of a switched core i n 
the memory determines the position of the track to an accuracy of 
better than 1 mm for a spacing between the wires of 1 mm.-

Krienen claims that i t should eventually be possible to 
achieve read-out times of the same order of magnitude as the 
recovery time of the chamber. 

2 Sonic Spark Chambers 
The fact that sparks produce a cracking sound induced Fulbright 

and Kohler (1961) to build the f i r s t sonic spark chamber. The 
. principle of operation is based on the measurement of the time delay 
between the occurrance of the spark and the receipt of the sound 
wave emitted by i t at a number of acoustic probes. 

The time of f l i g h t of the sound, as measured by two piezo- ' 
electric transducers a certain distance .•j.apart, serves to define the 
spark position uniquely. The tips of • the ..probes are hemispherical to 
ensure that the time of f l i g h t measurement is independent of the 

• angle of incidence of the sound wave. 
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Maglic (1965) reported a spatial resolution of 0 .8 mm. His 
acoustic probes had a relatively long recovery time of ~10 msec 
due to oscillations caused by internal reflections inside the 
chamber and wave-guides:leading from i t , which meant that two 
probes per gap could only resolve one single particle track. 

An important development by Whitehead (see Magli|, 1963) 

removed this limitation. By using probes without wave-guides and 
damping them with an acoustically, matched substance (tungsten 
loaded with araldite) he was able to reduce the recovery times 
to ~10 usee. With three such probes per gap any. number of sparks 
may be resolved provided that they are separated by a distance 
greater than 3 mm. With these probes an event may. be recorded 
every. 1-2 msec, and the limitations are now set by the recovery 
time of the spark chamber and the speed with which the recording 
system can assimilate the data. 

The sonic spark chamber avoids the use of lenses and mirrors, 
and eliminates the need for the taking, scanning, and measurement 
of photographs by obtaining the data i n a digitized form. 

Charpak (1962) constructed a chamber with special electrodes 
having the nature of a distributed delay-line. He was able to 
determine the i n i t i a l position of the spark by measuring the delay 
between the a r r i v a l of the signal following the spark at two 
opposite ends of the electrodes. By this method one should be 

able to locate the position of the track to within l-|mm, within 
a time shorter than 1 ^ec. Ihis fact is of particular interest 
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i f one wants to use the information provided, by such a chamber to 
trigger other spark chambers. 

The three types of digitised spark chamber described above 
combine the short time resolution and high spatial accuracy, which 
are associated with a l l types of spark chamber, with a high speed 

it 

data analysis. 

3 Cylindrical Spark Chambers 
Fig* 39 shows a cylindrical spark chamber constructed by the 

Berkeley group (Beall et a l . , 1963) for an experimental study of 
K~-p interactions i n the momentum range TOO to li*O0 MeV/c. 

Large solid angle and high angular resolution were obtained by 
surrounding the 6 in. wide l i q u i d hydrogen target with the tengap 
cylindrical chamber. The electrodes were made of 0.010 in. thick 
aluminium f o i l ocylinders 18 in. long, varying i n diameter from 10 

to 20 in. They were supported at the end in two polished perspex 
end plates. The gap width was 0.375 + 0.010 in. 

Another semi-circular chamber was placed behind the target to 
measure the range and polarisation of certain of the reaction 
products. This contained 21 two-gap spark chambers interleaved with 
12 1 in.. thick carbon absorbers at r a d i i ranging from 18 to kO in. 
The whole assembly measured 5 ? 6 x 3 f t 3 and weighed six tons. 

To define the incident momentum of the K~ meson in the Bevatron 
beam to within + 0.5% two small spark chambers with 0.0Q3 in.' thick 



Figure 39« C y l i n d r i c a l chamber constructed by the Berkeley group. 
The segmented m i r r o r i s shown a t the l e f t . 

F igure kO. T y p i c a l cosmic ray t r a c k obtained w i t h a microwave 
spark chamber. 
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f o i l electrodes were used on either side • of a bending magnet. 
The chambers were f i l l e d with a mixture of 10$ helium and 

90$ neon and operated in a clearing f i e l d of 35 V. 
Depth and angular information was aquired by the use of 

t i l t e d mirrors behind the cylindrical chamber (see f i g . 39 )• 

The mirror segments were arranged almost radially on a machined 
perspex plate and were .tilted at an angle of 5 - 7 ° to a plane 
normal to the axis of the cylindrical electrodes thereby providing 
an effective stereo veiwing angle of 11 .4°. 

Kaftanov and Liubimov (1963) k a v e described a six-gap 
cylindrical spark chamber, f i l l e d with, neon, used i n experiments 
on it*e+y and nr*3e decay modes. 

The advantage of cylindrical chambers is that they can 
completely surround the garget thus both achieving a large 
detection solid angle and minimising loss corrections for the 
decay of short-lived particles. 

6* ̂  Microwave Spark Chambers 
Microwave spark chambers, i n which a pulsed microwave f i e l d 

is applied t.oethe-.uchamber, were developed in an attempt to make 
the spark discharge follow the particle trajectory rather than the 
applied f i e l d direction. 

Work on microwave spark chambers has been reported by Fukui 

et a l . (1960), Ledermann (1961), and Fukui et a l . (1963)-
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Fukui et a l . (1960) found that i n order to obtain a visible 
track of 1 mm width, the pulsed microwave f i e l d should be applied 
within 2 usees Of the transit of the particle, and the f i e l d 
strangth should be a few times greater than that required for 
breakdown with a duration of 0.1 usee. 

Fukui et a l . inserted the sensitive volume, a glass tube, 
f i l l e d with the gas mixture (He + 1#A + O.k-% HCO 0 C 2 Hg at 500 mm Hg 
pressure), in a wave guide along which the microwave pulse was 
transmitted to be absorbed into a dummy load. Lederman used a 
resonant gas-tight cavity f i l l e d with argon. Fig. 1*0 shows a 
typical cosmic ray track obtained by Fukui et a l . (1963). The 
uniformity of.the f i e l d is an essential factor for the production 
of very fine tracks. For this reason the former method is preferable 
because a resonant cavity produces, a non-uniform f i e l d . 

6.5 Spark Chambers in Magnetic Fields 
A system of spark chambers in a magnetic f i e l d effectively 

becomes a new type of visual track detector. I t combines the advan­
tages of the magnetic f i e l d - momentum and sign determination- with 

• those of the spark chamber, namely the a b i l i t y to accurately define 
particle trajectories, to observe decays and interactions, to 
tolerate high particle fluxes, and to permit electronic selection 
of events i f desired. 

The Princeton (O'Neill et a l . , 1963) and Argonne (Burleson 

et a l . , 1963) groups have been responsible for the main part of 
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the development of magnetic f i e l d sparkchambers of high resolution. 
F u l l details of this work are reported by O'Neill et a l . (1963) and 
Burleson et al.' (1963), and an indication of the large degree of 
success with which this work has met is given by the frontispiece, 
which shows electron cascades produced in a spark chamber i n a 
magnetic f i e l d of ^13.5 
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