Computer analysis of longitudinal strength of ships

Selby, B. A.

How to cite:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
COMPUTER ANALYSIS OF LONGITUDINAL STRENGTH OF SHIPS.

by

R. A. SELBY, B.Sc.

Thesis submitted to the
University of Durham, August 1967,
for the award of M.Sc.
ABSTRACT OF THESIS ON

COMPUTER ANALYSIS OF LONGITUDINAL STRENGTH OF SHIPS

The purpose of the work was to produce a programme to calculate as accurately as possible the distributions of weight and buoyancy of a vessel, leading to the determination of shear force and bending moment at each of 101 equally spaced ordinates overall.

Calculations may be performed for still water or sine wave conditions.

The programme, which provides tabular and/or graphical output, is written in Elliott Autocode and is in the Applications Group library of Elliott Automation Limited. It is extensively labelled and is flow charted throughout, the symbols used being those of the British Standards Institution, and illustrated in the glossary.

A fairly detailed look into the 'end lengths' suggested by Lloyd's (their Rpt. SR 64/15) has been undertaken in connection with the distribution of the continuous material.

Ordinate tilting has been used, in the main, as opposed to 'base swinging' techniques, the reasons being fully explained in the text.

The programme was approved by Lloyd's Register of Shipping in August 1966, (except for those parts relating to (i) the coffin method for the continuous material and (ii) the application in a sine wave -
which parts Lloyd's did not check). It has also been further successfully tested by them in November, 1966.

Comparisons with programmes written by Vickers Armstrongs Limited, Barrow in Furness, B.S.R.A., Wallsend, and the Naval Architecture Department of Glasgow University, on the same topic are included as an Appendix. Graphical results obtained by Lloyd's, B.S.R.A's and by this programme for one locally built vessel are included, for purposes of comparison.

Results illustrated in the thesis are in both tabular and graphical form throughout.
CONTENTS

Introduction. i
Glossary and key to flow charts. ix
List of Subroutines. xiv
Overall Flowchart. xv

Part 1. Local Weights Distribution. 1
2. Continuous Weight Distribution
 (a) Biles Coffin Method, 32
 (b) Lloyd's Method - SR 64/15. 39
Comparison graphs. 62
3. Total Weight Distribution and adjustment for correct L.C.G. 63
4. Computation of Trim, and Draught at Stern. 74
5. Calculation and storage of Immersed Sectional Areas to each Even Waterline. 76
6. Determination of Draughts and Immersed Areas at each Station. 81
7. Muckle's method for superimposed sine wave: adjustment of buoyancy ordinates for correct displacement and L.C.B. 85
8. Load Curve. 95
9. Shear Force Curve. 98
10. Bending Moment Curve. 102

Appendix 1. Some comparisons with other programmes. 106

Glasgow University, N.A. Department. 106
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vickers Armstrongs (Shipbuilders) Limited. B.S.R.A., Wallsend-on-Tyne.</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Results - 15 Sections programme - A827.</td>
<td>116</td>
</tr>
<tr>
<td>3</td>
<td>Subroutines 30, 86, and Programme.</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>Operating Instructions and Presentation of Data, as provided for Elliott Application Group.</td>
<td>157</td>
</tr>
</tbody>
</table>
INTRODUCTION

The structure of a ship is subjected to a variety of forces, which may be split into two main types: statitical and dynamical. One of the effects of such forces is to cause the vessel to bend in a longitudinal vertical plane. The following thesis deals with this aspect only; i.e. it is an analysis of the longitudinal strength of vessels.

The vessel may be treated as a beam, subjected to forces which consist of:

(i) its own weight
(ii) cargo, fuel, machinery, etc.) Total Weight.
(iii) buoyancy - (to equal Total Weight).

Bending occurs because weight and buoyancy are not, in general, equal at all points along the length of the vessel. There may be an excess of weight over buoyancy at some points (especially the ends), and an excess of buoyancy over weight at other points along the length.

The calculations are carried out by determining the weight and buoyancy distributions (curves) along the ship's length, and from these two the determination of LOAD curve which is the difference (with sign) between these curves.

Integration of the load curve gives the SHEAR FORCE curve, and a second integration gives the BENDING MOMENT curve.

Page (ii) shows the various curves for the ship considered in the thesis with vertical scales half of those of the separate graphs in the body of the thesis.
The programme calculates and prints out, if desired, ordinate values for Local Weights, Continuous Hull Weight, Total Weight, Buoyancy, Load Curve, Shear Force Curve and Bending Moment Curve over each of 100 equal divisions of the ship's overall length.

Weight, buoyancy and load curve ordinate values are averaged over every pair, progressively, throughout the whole length; ordinate values output are, therefore, projected forward over the appropriate division, in the first five tables mentioned above.

There are checks in the programme to ensure that extreme ends of local weights lie within the overall length of the vessel and also that the centre of gravity of each local weight lies within the centre $33\frac{1}{3}\%$ of the length of the item. The programme waits if any item offends and may be continued if desired.

The graphs of the Weight, Buoyancy and Load Curves consist of a series of straight horizontal lines drawn forward from each ordinate in turn (in agreement with the tables mentioned above). In the case of the Shear Force and Bending Moment, however, continuous polygons are drawn.

If it is necessary to produce Shear Force graphs for several conditions, to a common scale (and similarly for Bending Moment curves), then an initial run of the conditions must be made to obtain the maximum positive and maximum negative values overall. Re-running the data with these values inserted will enable a common scale to be set for all conditions. See appendix 4, Page 183.
Since a large amount of output tape is required to draw axes and insert scales, it is left to the design office to insert the axes manually, and to write the scales in. (The size of scale is automatically output if the graphs are required).

The time taken to output all of the above listed tables is approximately 8 - 10 minutes. Output for the graph-plotter only, takes approximately two minutes per graph. Full output of all tables and graphs takes, therefore, approximately 22 minutes.

(A preliminary programme was first written, using as a basis a ship from a local yard for which results had already been calculated - using Biles' Coffin continuous weight distribution - and for which graphs had been plotted, by hand. This ship is referred to as Ship No. A827. The effects of buoyancy due to the stern and bow sections were ignored in this programme; the length between the perpendiculars was divided into ten equal parts, numbers 1, 2, 9 and 10 being further halved giving, in all, 15 stations. The programme uses the Biles' Coffin method to distribute the continuous weight.

Results output by this shorter programme have been superimposed on the graphs provided by the yard, for the still water calculations. See Appendix 2).
The main programme includes the stern and bow portions. Thirty one stations are used over all, of which 23 are within and include the perpendiculars, with 4 aft and 4 forward.

Since the work started Lloyd's have published their method for the distribution of the continuous weight entitled:

CARGO SHIPS
DISTRIBUTION OF LIGHTWEIGHT
FOR STILL WATER BENDING
MOMENT CALCULATIONS
RPT. SR 64/15.

This method is included in the main programme, and the choice of distribution is left to the builder.

(It may be pointed out that for the present the report may be taken as applying to bulk carriers and tankers, though it is expected that a separate work will be published concerning these types of vessels).

Some interesting points arose in the choice of the stern and bow overhangs (and their respective weights) when considering the continuous weight distribution by both Lloyd's and Biles Coffin methods. Since the programme is to cater for the builder in the design stages, when such values are not known with certainty, Lloyd's suggest possible end values for their method. These were investigated, and the results may be examined on pages 57/61. Page 34 deals with the Biles Coffin aspect.
Checks are made in the resultant total weight curve for correct weight and L.C.G. position, and if any final error is present, it is ultimately corrected by the axis swinging technique known as 'swinging the base'. It is expected that such errors will be negligible, if Lloyd's method is used for the continuous weight. Checks included print out the errors and hold up the programme if the weight error is greater than $\pm 0.1\%$ or if the L.C.G. error is greater than $\pm 1\%$, before 'swinging the base'.

Data from a second ship has been used to illustrate this main programme. This ship is referred to as Ship No. A.842.

Comparisons of outputs, in tabular and graphical forms, of the Continuous Weight distributions for A842, and consequent Total Weight, Load, Shear and Bending Moment curves, using Biles Coffin method and Lloyd's method are included.

Graphs of results using the former are shown in red, and those using Lloyd's method are in green.

Since finishing this work, the author has seen and examined three other programmes of a similar nature. One is from the Naval Architecture Department of the University of Glasgow and is entitled:

RESEARCH REPORT NO. 10
A NOTE ON STILL WATER BENDING MOMENT CALCULATIONS
BY A DIGITAL COMPUTER.
BY C. KUO AND N.S. MILLER.
The report is not for publication.

The second programme is from Vickers Armstrong (Shipbuilders) Limited, Barrow-in-Furness, entitled:-

DETAILS OF
LONGITUDINAL STRENGTH PROGRAMME NA/4
WRITTEN IN MERCURY AUTOCODE.

The third is a report from B.S.R.A., Wallsend-on-Tyne, describing a Longitudinal Strength programme BSRA/NA/W5. Their programme is a modified version of the Vickers programme, made to satisfy Lloyd's Register requirements.

Comparisons of these three programmes with the Sunderland programme are set out in Appendix I of this thesis.

An outline flow chart for the whole of the programme follows on page xv. Separate flow charts, one for each part of the programme, will be found preceding the first pages of their respective chapters, with those for Subroutines 30 and 86 preceding the print-up of the programme, in Appendix 3.

Subroutines 29 (moments), 58 (Lagrange's 3 point interpolation) and 109, 110 (graph output), are elementary and have not been flowcharted.

Presentation of data, and methods of operating the programme are set out in Appendix 4, and is a copy of the write-up now sent to Elliott's Application Group for general distribution.
Thanks are due to Mr. W. Tate, Senior Lecturer in Naval Architecture, Sunderland Technical College, for many valuable comments and help generally. Also to Mr. T. Case, until recently on the design staff of Messrs. Austin and Pickersgill Limited, Shipbuilders, Sunderland, and at present in the Research Department, Lloyd's Register of Shipping, for much valuable help and encouragement. I must also thank the design staffs of the several yards on the River Wear for their unstinted help in providing data as required. They have been extremely accommodating and encouraging. The cooperation of B.S.R.A., Wallsend, in providing results for comparison is greatly appreciated.

Finally my thanks to Lloyd's Register of Shipping for checking the results of this programme with their own programme for Longitudinal Strength. Lloyd's have accepted the programme for use in the initial design stages. Check computations must be performed by Lloyd's where Bending Moment results are required for plan approval, but where figures are supplied from this approved programme, no fee will be charged by Lloyd's.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>"a"</td>
<td>multipliers which enable the ordinates of the continuous weight curve to be obtained at each of 21 positions along the length of the vessel. These values are dependent upon the block coefficient at the appropriate load draught and they are given in graphical form in Lloyd's "Rpt. SR 64/15", Figures 3 and 4. Copies of these figures are on pages 42-43.</td>
</tr>
<tr>
<td>base plane</td>
<td>horizontal plane through the origin.</td>
</tr>
<tr>
<td>block coefficient (C_B)</td>
<td>ratio of submerged volume at a given draught (d), to the volume of the enclosing rectangular prism having dimensions length (LBP), breadth (2xGI) and draught (d).</td>
</tr>
<tr>
<td>Bonjean curve</td>
<td>curve of immersed areas for a given section, or station.</td>
</tr>
<tr>
<td>bow (and overhang of)</td>
<td>that portion of the vessel forward of the forward perpendicular. The horizontal distance between the forward perpendicular and the extreme forward point of the vessel is referred to as the "overhang of bow".</td>
</tr>
<tr>
<td>buttock heights</td>
<td>heights from the horizontal base plane to the moulded shell line.</td>
</tr>
<tr>
<td>centre of buoyancy</td>
<td>point through which the resultant of the buoyancy forces acts.</td>
</tr>
<tr>
<td>centre of flotation</td>
<td>centroid of the area of any given waterplane; when a vessel, floating at a waterline, is trimmed by a re-distribution of weights on board, the final and original waterplanes intersect in a line which passes through the centre of flotation.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>centre of length (C/L)</td>
<td>centre point in the length of a local weight item.</td>
</tr>
<tr>
<td>continuous weight</td>
<td>weight of the ship structure when all concentrated items of structure and equipment are removed.</td>
</tr>
<tr>
<td>deadweight</td>
<td>total weight of all concentrated items (local items) additional to lightweight.</td>
</tr>
<tr>
<td>displacement</td>
<td>tonnage of sea water displaced for a given loading condition.</td>
</tr>
<tr>
<td>draught</td>
<td>vertical distance between the water surface and the moulded base line.</td>
</tr>
<tr>
<td>floating point</td>
<td>refers to a method of storage of numbers within the computer.</td>
</tr>
<tr>
<td>half breadth</td>
<td>horizontal distance from the longitudinal centre line plane to the moulded shell line.</td>
</tr>
<tr>
<td>hogging</td>
<td>a condition of the vessel wherein the buoyancy is more than the weight over approximately the midship half length with less buoyancy than weight at both ends, so that the tendency of the vessel is to arch up or hog amidships.</td>
</tr>
<tr>
<td>integer</td>
<td>refers to a method of storage of numbers within the computer.</td>
</tr>
<tr>
<td>L.B.P. (or LBP)</td>
<td>horizontal length between the perpendiculars.</td>
</tr>
<tr>
<td>L.O.A. (or LOA)</td>
<td>extreme overall length of the vessel.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>lightweight (lightship)</td>
<td>continuous weight plus such concentrated items as engines, deckhouses, etc. (i.e. weight of unloaded vessel).</td>
</tr>
<tr>
<td>local weight</td>
<td>weight of any item of structure, equipment or deadweight which is distributed over only a part of the length of the ship.</td>
</tr>
<tr>
<td>L.C.B. (LCB)</td>
<td>longitudinal centre of buoyancy (measured longitudinally from the origin).</td>
</tr>
<tr>
<td>L.C.F. (or LCF)</td>
<td>longitudinal centre of flotation (measured longitudinally from the origin).</td>
</tr>
<tr>
<td>L.C.G. (or LCG)</td>
<td>longitudinal centre of gravity (measured longitudinally from the origin).</td>
</tr>
<tr>
<td>"m" value</td>
<td>weight per foot of the ship structure over the midship section. (Refer to Lloyd's Rpt. SR 64/15)</td>
</tr>
<tr>
<td>midships</td>
<td>centre of the distance between the perpendiculars.</td>
</tr>
<tr>
<td>moulded lines</td>
<td>lines to which the ship is designed; the shell plating falls outside these lines. (See diagram - General Hull Terms : p.xiii)</td>
</tr>
<tr>
<td>origin</td>
<td>vertical projection of the extreme aft point of stern onto the base line.</td>
</tr>
<tr>
<td>perpendicular (aft)</td>
<td>vertical line through the after side of the rudder post, or if no rudder post is fitted, through the centre-line of the rudder stock.</td>
</tr>
<tr>
<td>perpendicular (fore)</td>
<td>vertical line through the point where the stem of the vessel cuts the still waterline at the design draught.</td>
</tr>
</tbody>
</table>
rudder stock - vertical axis about which the rudder turns.
sagging - the condition opposite to hogging wherein the excess of weight over buoyancy amidships with a corresponding excess of buoyancy over-weight at the ends causes a tendency to arch down or sag at mid-length.
still water - surface of water is a horizontal plane.
swinging the base - adding (or subtracting) a trapezoid of area to the base of the curve to adjust the area and centroid, thereby producing a new (tilted) base. Such areas represent weight.
trim - difference in draughts between the extreme ends of the vessel.
waterlines - intersections between the hull and horizontal planes (waterplanes) at draughts "d."

Flow Chart Symbols

- Any kind of processing function.
- Input/Output.
- Decision or switching type operation.
- Connector. An exit to or entry from another part of the flowchart.
LIST OF SUBROUTINES

29 - Summation of Moments of Weight, or Buoyancy, ordinates about the extreme end of stern.

30 - Calculates the area submerged up to the water surface for the section being considered.

58 - Lagranges 3-point interpolation routine, to produce 100 equally spaced values. Finds values within the first interval over the first half of the range, and changes to the second interval for the remainder of the range.

86 - Calculates and prints out:
 (i) maximum positive and maximum negative values of ordinates
 (ii) range for Y-axis
 (iii) X-axis distance from base of graph paper
 (iv) vertical scale.
 It also prints out the horizontal scale from the value previously read in.

109 - Produces a tape for the Benson-Lehner graph plotter for those 'curves' which are continuous polygons.

110 - Produces a tape for the Benson-Lehner graph plotter for those 'curves' which show the ordinate values projected forward.

124 - (inc. 34, 35, 36, 46, 64) Distributes the local weights over 100 equally spaced ordinates between the extreme ends of the vessel. Prints out error indications where the item lies outside the overall length (Q2 if to rear of stern, Q3 if forward of point of bow), and where L.C.G's of items are greater than one sixth the length of the item (indicated by the letter B), in both cases also giving the number of the item.
LOCAL WEIGHTS SECTION (Subroutine 124)

- Set sum of wts., sum of moments and all Local Wts. ords. to zero

Read Coord. No. and number of Local Wts.

Final weight read

Read particulars of item

Item NO is zero?

Print particulars

WAIT

Yes

Wait. end within bow

Print particulars

WAIT

Yes

Wait. end within stern

Form sum total of wts. read and form total moment about stern

Determine the ordinate immediately preceding the item (J2)

Determine the most forward ordinate (J3), within the item length

Determine fractional end lengths of item, F(2) and F(3)

Calc. end ords. of Trapezium and upper edge slope

Calculate weight/foot
FLOW CHART

(Section 1).

LOCAL WEIGHTS SECTION

(Subroutine 12k)

- FOLD -

- DOWN -
LONGITUDINAL STRENGTH
BENDING MOMENT CALCULATIONS

OVERALL FLOW-CHART

START

Read Lengths overall, Stern and Bow.

Calculate L.B.P., and L.O.A./100

Reserve storage for Local Weights Distribution.

Print details of Overall-Length, and Weights read.

Calculate total distributed weight and total moment about stem.

Print calculated Sum of Weights.

Determine the true position of L.C.G. of Continuous Wt.

Read 'a' values from Lloyd's curves and calculate X - distances.

Calculate true ordinate values and required shift of L.C.G.

Average readings over each successive pair, to project forward.

Print out Continuous Weight, 'a' value, and true L.C.G.

Read Stern and Bow overhang/weights and L.C.Gs

Calculate the Continuous Wt., and its distribution over 100 ordinates and project forward

Print weights of Stern and Bow, and Continuous weight.
PART 1
LOCAL WEIGHTS DISTRIBUTION

Local Weights are all the additions to the basic hull and include such items as cargo, masts, ballast, deckhouses, winches, wheelhouse, hatch-covers, engines, etc.

For the distribution of local weights the overall length of the ship (L.O.A) is divided into 100 equal parts, and the division marks, or ordinates numbered from 0 (the stern) to 100 (the bow). Each weight item is then distributed over those divisions in which it lies, as a series of weight ordinates. The distribution of the actual weight in any particular case may be uniform over its length, or it may vary over its length either linearly or befitting some curve. The latter method was considered and rejected, it being decided that such distributions may be split into smaller portions which may be assumed to vary linearly. The actual weight distribution in a particular case, therefore, may be rectangular or trapezoidal. Each type is dealt within the programme.

A series of test weights were used initially, and the details relating to them are set out on pages 13 to 22.

The weights relating to the actual ship under test (Ship A.842), were then used in the programme and these items are set out on pages 24 to 28. The ordinate values as output from the programme are on page 30 and the appropriate graph on page 31.
Note that ordinate values are averaged over every pair progressively throughout the whole length, the value being attributed to the rearmost ordinate; ordinate values output are, therefore, projected forward over the appropriate division.

Output of the table of values is optional, on the desire of the builder.

Fig. 1. Showing how the L.O.A.is divided into 100 equal parts (b), and the relationship to the normal 10 displacement stations (a).
L1 - overhang of stern. L2 - overhang of bow.

The relevant information for each weight is read in and consists of (a) the weight, (b) its length, (c) the distance of its centre of gravity from its centre of length (C/L) and (d) the distance of its centre of gravity from the Z axis through the extreme point of stern.
F. Pt. variables are M, S, B and X respectively. B may be zero, positive or negative according as the weight plan is rectangular or otherwise. See fig. 2. (In this thesis W is used for local weights instead of M).
The calculations are performed within a VARY loop which covers the number of local weights to be dealt with (Int. variable N). Local weights read in are summed immediately (F. Pt. variable S1), as are their moments about the Z axis through the extreme point of stern. (F. Pt. variables Ml - individual, and T5 - sum).

Vertical ordinates: tons/ft. of length.
Horizontal " : length (ft.)

(Fig. 2).

With each weight it is necessary to determine the distances of its fore and aft ends from the Z axis through the stern in terms of the number of ship divisions (i.e. L.O.A./100). Fractional parts of such divisions at each end of the weight are calculated and in each case the relevant portion of the weight is then distributed over the whole of the division in which the fractional part lies. See fig. 3. Portions of weight lying wholly across a division are adjusted to be uniform in distribution if not already so, and the weight per foot of length is added to the rearmost ordinate. Since the horizontal lines
drawn between the ordinates of the Weight Distribution Curves are drawn forward from each ordinate respectively, only the rear ordinate of each division is affected by the addition of the weight portion for that division. Ordinate values are a measure of the weight per foot length over that division.

Fig. 3. ABCD - given form for weight item. RED lines show the various portions distributed. Product of ordinate value and ordinate separation for any division gives the weight distributed over that division.

It has already been mentioned that two types of weight distributions have been considered; (a) rectangular, (b) trapezoidal, details of which are on pages 13-22. There are thirty possible variations which must be taken into account in programming their distributions. For ease of checking, it has been assumed that each of the test weights lies within and between ordinate numbers 50 and 55, the lengths of the items varying between five full divisions down to part
of one division. Rectangular and trapezoidal distributions are treated separately:

(1) Rectangular; typical item:
 i) Initial weight, position and length.
 ii) Programmed distribution of weight.

(2) Trapezoidal (Positive and negative slopes)
 i) Initial weights, positions and lengths.
 ii) Programmed distributions of weights.

(Fig. 4)
Weights which lie wholly between two adjacent ordinates, no matter what type of distribution, affect only the rearmost ordinate of that division. See pages 13 and 15.

As an example of the manner in which the calculations are performed let us assume two local weights with the following particulars, on a ship whose L.O.A. is 500 ft.

1. Rectangular distribution:

<table>
<thead>
<tr>
<th>Tons</th>
<th>Ft.</th>
<th>Ft.</th>
<th>Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = 36</td>
<td>S = 18</td>
<td>B = 0</td>
<td>X = 262</td>
</tr>
</tbody>
</table>

(See ex. 30 page 22)

L.O.A. = 500 ft. L/100 = 5 ft.

Since the distribution is rectangular (B = 0), each end of the item is 9 ft. from its centre, which is itself 262 ft. from the stern. Therefore

Dist. of aft end of item from stern = 253 ft.

(i.e. $\frac{253}{5}$ divs. from stern: i.e. between ordinates 50 and 51)

Dist. of fore end of item from stern = 271 ft.

(i.e. $\frac{271}{5}$ divs. from stern: i.e. between ordinates 54 and 55).
The portion AB of the weight occupies the foremost 2 ft. of division 50-51. Therefore 4 tons weight lies in this division. (i.e. 2 tons/ft. - original ordinate - over a dist. of 2 ft.) 4 tons spread evenly over the division gives an ordinate value \(\frac{4}{5} \) tons/ft. for division No. 50 - 51.

Ordinates 51, 52, 53 each have a value of 2 tons/ft.

The forward end E of the weight occupies \(\frac{1}{5} \) of the division 54 - 55. The portion of weight in this division is, therefore, 2 tons.
This weight spread over the whole division gives an ordinate value 2/5 tons/ft. for division No. 54 - 55.

In each case only the rearmost ordinate of the division is affected since values are 'projected forward'.

Results output would be of the form:

<table>
<thead>
<tr>
<th>ORD. NO.</th>
<th>WEIGHT</th>
<th>ORD. NO.</th>
<th>WEIGHT</th>
<th>ORD. NO.</th>
<th>WEIGHT</th>
<th>ORD. NO.</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TON/FT</td>
<td></td>
<td>TON/FT</td>
<td></td>
<td>TON/FT</td>
<td></td>
<td>TON/FT</td>
</tr>
<tr>
<td>50</td>
<td>0.800</td>
<td>51</td>
<td>2.000</td>
<td>52</td>
<td>2.000</td>
<td>53</td>
<td>2.000</td>
</tr>
</tbody>
</table>

2. Trapezoidal distribution:

\[
\begin{align*}
W &= 48 \\
S &= 24 \\
B &= +1 \\
X &= 264
\end{align*}
\]

(See ex. 19, page 21)

L.O.A. = 500 ft. --- L/100 = 5 ft.

The two end ordinates are found from the formulae:

\[
\begin{align*}
\text{Fwd. end } F &= \left(\frac{6B}{S} + 1 \right) \frac{W}{S} \\
\text{Aft. end } A &= \left(\frac{2W}{S} - F \right)
\end{align*}
\]

See page 12 for derivation of formulae.

In the cases where B is negative, F is less than A.
The slope \(H \) of the upper edge is given by:

\[
H = \frac{(F - A)}{S}
\]

In our example, \[
F = \left(\frac{6 \times 1 + 1}{24} \right) \frac{48}{24} \quad \text{and} \quad A = \left(\frac{2 \times 48}{24} - F \right)
\]

i.e. \[
F = \left[\frac{1}{4} + 1 \right] \times 2 = 2.5 \text{ tons/ft.}
\]

and \[
A = (4 - 2.5) = 1.5 \text{ tons/ft.}
\]

and slope \(H = \frac{(2.5 - 1.5)}{24} = \frac{1}{24} \text{ tons/ft/ft.} \)

The centre of length of the item is \((264 - 1)\) ft. from the stern.

Therefore, end A is \((263 - 12)\) ft = 251 ft. from the stern, and fore end F is \((263 + 12)\) ft. = 275 ft. from the stern.

End F is, therefore, coincident with ordinate No. 55, and end A is 1 ft. forward of ordinate No. 50.

Since end A ord. value is 1.5 units, lying \(\frac{1}{4} \) ft. aft of ord. 51, the value of ord. 51 is given by \((1.5 + \frac{1}{4}/24) = 1.66\) units.

\[
\begin{align*}
\text{Ord. 52} & = 1.66 + \frac{5}{24} = 1.875 \\
\text{Ord. 53} & = 1.875 + \frac{5}{24} = 2.0833 \\
\text{Ord. 54} & = 2.0833 + \frac{5}{24} = 2.29166
\end{align*}
\]
Portion of weight lying in div. 50 - 51 = \frac{4}{2} \times (1.5 + 1.66) = 6.33 \text{ ton.}

Spread over the whole division, this gives a value for ord. 50 of 1.266 t/ft. (which is, of course, projected forward).

Similarly, ordinate 51 has a value (projected forward) of 1.770833 t/ft., ord. 52 1.979166 t/ft., ord. 53 2.1874966 t/ft., and ord. 54 2.396 t/ft.

Results output are as in (1) above for the rectangle.
F.Pt. variable YE (R has all values 0 to 100) is used for ordinate values. On completion, ordinate values are summed (F. Pt. variable S), and the total weight distributed (again S) found by multiplying the sum value by a division length. Summing S in this fashion is effectively the same as producing one total ordinate (units - ton/ft); the product of this ordinate value and the ordinate separation (in feet) gives the total weight. This is printed out under the title

"Calculated Sum of Distributed Local Weights".

There follows now all the possibilities of weight distributions, both rectangular and trapezoidal (limited to a maximum size of five divisions purely for the sake of checking - the same principles apply to an item of any larger size.)

As mentioned on page 8, the end ordinates of trapezoidal distributions are given by:

\[F = \frac{W}{S} \left(\frac{6B}{S} + 1 \right) \]

and

\[A = \frac{2W}{S} - F = \frac{2W}{S} - \frac{W}{S} \left(\frac{6B}{S} + 1 \right) = \frac{W}{S} \left(1 - \frac{6B}{S} \right). \]

These formulae are derived as follows:
(Using W as a measure of the area)

C.G. of the area is given by

$$D = \frac{S}{3} \left[\frac{A + 2F}{A + F} \right] \text{ from end } A.$$

i.e. $\frac{S}{2} + B = \frac{S}{3} \left[\frac{A + 2F}{A + F} \right] \ldots \ldots \ldots (a)$

Also $W = \left(\frac{A + F}{2} \right) S \ldots \ldots \ldots \ldots \ldots (b)$

From (b) $A = \frac{2W}{S} - F$ and

substituting this in (a) gives

$$F = \frac{W}{S} \left(\frac{6B}{S} + 1 \right).$$

The ordinate immediately preceding, or coincident with the aft end of the item is called J_2 (both in the programme and in this exposition). The ordinate coincident with, or immediately aft of the fore end of the item is called J_3. In certain instances it will be seen that J_2 and J_3 are one and the same ordinate. The following are the weight particulars with which the programme was tested. L.O.A. was taken as 500 ft., so that ordinates are 5 ft. apart throughout.

Ordinate values are summed, assuming each weight is added in turn.

Details of Local Weights Data, (showing the resultant values on the various ordinates and the graphical interpretation of the distribution. (as given - black; redistributed - red). Values of A and F given overleaf are not calculated when $J_2 = J_3$.)
TYPE I

ITEMS FOR WHICH J2 = J3 (ASSUMED = 50)

<table>
<thead>
<tr>
<th>Ex (i)</th>
<th>J2</th>
<th>J3</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>W</th>
<th>S</th>
<th>B</th>
<th>X</th>
<th>Resultant Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>9</td>
<td>3</td>
<td>0.166</td>
<td>252</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 2 ; F = 4</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>9</td>
<td>3</td>
<td>-0.166</td>
<td>252</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 4 ; F = 2</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>9</td>
<td>3</td>
<td>-0.166</td>
<td>251.33</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 4 ; F = 2</td>
<td></td>
</tr>
<tr>
<td>(iv)</td>
<td>9</td>
<td>3</td>
<td>0.166</td>
<td>251.66</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 2 ; F = 4</td>
<td></td>
</tr>
<tr>
<td>(v)</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>252.5</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = F = 3</td>
<td></td>
</tr>
<tr>
<td>(vi)</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>251.5</td>
<td></td>
<td></td>
<td>1.8</td>
<td>S1 = 10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = F = 3</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.
In the cases listed on page 13, J2 and J3 (which are the integral parts of the numbers of divisions of their fore and aft boundary lines from the stern) are the same, as it can be seen that the whole of each item of weight lies within two adjacent ordinates. It is necessary only to average the weight over the enclosing division. End ordinates A and F are not calculated. These cases are dealt with under Ref. 3 in the programme.

The measure \(w \) to be added to the rearmost ordinate of the two (for local weight item No. 1) is given by \(w = \frac{W}{L_6} \) (where \(L_6 = \frac{L.O.A}{100} \)). If J2 be ordinate number R in this case, then the new value of ordinate R is given by:

\[
Y_R = Y_R + w \quad \text{where } Y_R \text{ is the resultant ordinate value at any time.}
\]

(new value = old value + addition).

e.g. if each of the above items were read into the programme in turn, the final value for ordinate number 50 would be 10.8 ton/ft.

TYPE 2

(a) Items for which \(J_3 = J_2 + 1 \), where \(J_3 \) is coincident with the fore end F of the item.

In these cases too, the whole of the weight lies between two adjacent ordinates: again if \(w \) is the measure to be added to the rear-
TYPE 2

(a) **ITEMS FOR WHICH J₃ = J₂ + 1, WHERE J₃ IS COINCIDENT WITH THE FORE END B OF THE ITEM**

<table>
<thead>
<tr>
<th></th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>W</th>
<th>S</th>
<th>B</th>
<th>X</th>
<th></th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex(vii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td>0.166</td>
<td>253.66</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(viii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td>-0.166</td>
<td>253.33</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>253.5</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5</td>
<td>0.5</td>
<td>253</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5</td>
<td>-0.5</td>
<td>252</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>252.5</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
most ordiante, where \(w = W/L6 \) we have, for ordinate J2

\[
Y_R = Y_R + w \quad \text{i.e.} \quad Y_{50} = Y_{50} + w
\]

as before.

Again, values of A and F given overleaf are not calculated in
the programme. If \(w \) is the measure to be added to the rearmost
ordinate, where \(w = W/L6 \) we have, for ordinate J2 (ordinate number R):

\[
Y_R = Y_R + w \quad \text{i.e.} \quad Y_{50} = Y_{50} + w
\]

as before.

Adding each of the above items in turn into the programme would
now give a resultant value for ordinate 50 of 22.2 ton/ft.

(b) \textbf{Items for which } J3 = J2 + 1, where J3 is not coincident
with the fore end of the item.

In these cases, the weight does not lie wholly between two
ordinates. In examples 13, 14 and 15 there is a fractional part at
the fore end, but the aft end coincides with the ordinate J2. In cases
16, 17 and 18 there are fractional parts both fore and aft. Forward
fractional parts are labelled F3 and rear fractional parts F2 (both
here and in the programme). Ends A and F have to be calculated for
this and following types.
(b) **ITEMS FOR WHICH J3 = J2 + 1, WHERE J3 IS NOT COINCIDENT WITH THE FORE END OF THE ITEM**

<table>
<thead>
<tr>
<th>(xiii)</th>
<th>49</th>
<th>J2</th>
<th>J3</th>
<th>W</th>
<th>S</th>
<th>B</th>
<th>X</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>6</td>
<td>0.5</td>
<td>253.5</td>
<td>3.668</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A = 2; F = 6</td>
<td>S1 = 25.868</td>
<td>S1 = 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| (xiv) | 24 | 6 | -0.5| 252.5 | 4.332 | 0.464 |
| | A = 6; F = 2 | S1 = 30.200 | S1 = 1.604 |

| (xv) | 24 | 6 | 0 | 253 | 4.000 | 0.800 |
| | A = F = 4 | S1 = 34.200 | S1 = 2.404 |

| (xvi) | 24 | 6 | 0.5 | 255.5 | 1.800 | 3.000 |
| | A = 2; F = 6 | S1 = 36.000 | S1 = 5.404 |

| (xvii) | 24 | 6 | -0.5 | 254.5 | 3.000 | 1.800 |
| | A = 6; F = 2 | S1 = 39.000 | S1 = 7.204 |

| (xviii) | 24 | 6 | 0 | 255 | 2.400 | 2.400 |
| | A = F = 4 | S1 = 41.400 | S1 = 9.604 |

TABLE 3.
In rectangular distributions where $J_3 = J_2 + 1$:

The original height of the rectangle is given by $A = W/S$.

The weight spread over the fractional distance F_3 is, therefore, $F_3 \times A$, and the measure to be added to the J_3 ordinate is given by $A_3 = (F_3 \times A)/L_6$.

If R then, is the ordinate number of J_3 we have, by the addition of this weight

$$Y_R = Y_R + A_3.$$ e.g. $Y_{51} = Y_{51} + A_3$.

Where $F_2 = 0$ (Fig. 8), and the ordinate J_2 has number R, then the new value for ordinate J_2 is given by

$$Y_R = Y_R + A.$$ e.g. $Y_{50} = Y_{50} + A$.

Where $F_2 \neq 0$ (Fig. 9), then the portion of weight over F_2 is given by $A_2 = F_2 \times A$, and this spread over the whole division gives a final value A_2 where

$$A_2 = (F_2 \times A)/L_6.$$

Again if R is the number of ordinate J_2 then the new value of the ordinate is given by

$$Y_R = Y_R + A_2.$$ e.g. $Y_{50} = Y_{50} + A_2$.

Fig. 8.
Where the weight distribution is a trapezium, A may be greater or less than F. The slope of the upper edge is always H in the programme, whether positive (A less than F) or negative (A greater than F). In examples 13, 14, 16 and 17 above the height H1 can be found from end F, the slope of the upper edge H, and the distance F3.

Fig. 10.

The weight of the fractional part forward of J3 is now given by

\[A_3 = (H_3 + H_1) \cdot \frac{F_3}{2} \]

and spread over the whole division we have the value to be added to ordinate J3 given by A3 where A3 now has a new value:

\[A_3 = \frac{H_3 + H_1}{L_6} \cdot \frac{F_3}{2} \]
If \(J3 \) is number \(R \), then the new value of \(YR \) is given by

\[
YR = YR + A3.
\]

\[\text{e.g. } Y51 = Y51 + A3. \]

TYPE 3

Items for which \(J3 - J2 \) is greater than 1.

The method above is used to find the fractional areas adjacent to \(J2 \) and \(J3 \). The remaining area which extends over one or more full divisions is treated as in the examples given on pages 21, 22. In the following examples \(J3 - J2 \) is taken to be 5, for the sake of uniformity. All possible cases are dealt with. (Figs. showing graphical output will now be discontinued).

* * * *

Page 24 to 28 shows the completed data sheets giving details of local weights for A.842.

Page 29 indicates the type of heading output before the tabulated results for weight, buoyancy, etc. Offending items, if any, in Local Weights lists (see page (iii) intro.) are output before all other headings.

Page 30 shows the tabulated output for the data of pages 24 to 28 and page 31 shows the output on the Benson-Lehner graph plotter for these results.
TYPE 3

ITEMS FOR WHICH J3 - J2 IS GREATER THAN 1

| | | | | | | | | | | W | S | B | X | 50 | 51 | 52 | 53 | 54 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| Ex (xix) | | | | | | | | | | 48 | 24 | 1 | 264 | 1.267 | 1.771 | 1.980 | 2.188 | 2.396 |
| | | | | | | | | | | A = 1.5 ; F = 2.5 | | | | | | | | |
| (xx) | | | | | | | | | | 28 | 24 | -1 | 262 | 1.933 | 2.229 | 2.021 | 1.812 | 1.604 |
| | | | | | | | | | | A = 2.5 ; F = 1.5 | | | | | | | | |
| (xxi) | | | | | | | | | | 48 | 24 | 0 | 263 | 1.600 | 2.000 | 2.000 | 2.000 | 2.000 |
| | | | | | | | | | | A = F = 2 | | | | | | | | |
| (xxii) | | | | | | | | | | 48 | 24 | 1 | 263 | 1.604 | 1.812 | 2.021 | 2.229 | 1.933 |
| | | | | | | | | | | A = 1.5 ; F = 2.5 | | | | | | | | |
| (xxiii) | | | | | | | | | | 48 | 24 | -1 | 261 | 2.396 | 2.188 | 1.980 | 1.771 | 1.267 |
| | | | | | | | | | | A = 2.5 ; F = 1.5 | | | | | | | | |
| (xxiv) | | | | | | | | | | 48 | 24 | 0 | 262 | 2.000 | 2.000 | 2.000 | 2.000 | 1.600 |
| | | | | | | | | | | A = F = 2 | | | | | | | | |

TABLE 4.
TYPE 3 (contd)

ITEMS FOR WHICH J₃ - J₂ IS GREATER THAN 1.

<table>
<thead>
<tr>
<th></th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>W</th>
<th>S</th>
<th>B</th>
<th>X</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex (xxv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>25</td>
<td>1.5</td>
<td>264</td>
<td>1.424</td>
<td>1.712</td>
<td>2.000</td>
<td>2.288</td>
<td>2.576</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(xxvi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>25</td>
<td>-1.5</td>
<td>261</td>
<td>2.576</td>
<td>2.288</td>
<td>2.000</td>
<td>1.712</td>
<td>1.424</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(xxvii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>262.5</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(xxviii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>18</td>
<td>1.5</td>
<td>263.5</td>
<td>0.444</td>
<td>1.499</td>
<td>2.056</td>
<td>2.611</td>
<td>0.589</td>
</tr>
<tr>
<td>(J2)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(xxix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>18</td>
<td>-1.5</td>
<td>260.5</td>
<td>1.156</td>
<td>2.500</td>
<td>1.944</td>
<td>1.389</td>
<td>0.211</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(xxx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>18</td>
<td>0</td>
<td>262</td>
<td>0.800</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0.400</td>
</tr>
</tbody>
</table>

TABLE 5.
Tape 1. (Required for FIRST data run only).

If some (or all) conditions are to be re-run in order to graph all Shear Force curves to the same scale (and similarly the Bending Moment curves), from the maximum values determined on a previous run, PUT 13 = 1.
In all other cases, PUT 13 = 0.

If 13 = 0, omit this section, and go on to the next section.
If 13 = 1, enter the appropriate maximum values from the previous runs. (If either one is not required, enter two zeros for that curve).

<table>
<thead>
<tr>
<th>Maximum Shear Force (+ve) tons</th>
<th>S25</th>
</tr>
</thead>
<tbody>
<tr>
<td>" " " " (-ve) " "</td>
<td>S26</td>
</tr>
<tr>
<td>Maximum Bending Moment (+ve) tons/ft.</td>
<td>M6</td>
</tr>
<tr>
<td>" " " " (-ve) " "</td>
<td>M7</td>
</tr>
</tbody>
</table>

(Programe WAITE HERE)

<table>
<thead>
<tr>
<th>0 for Lloyd's method: 1 for Biles Coffin</th>
<th>0</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Overall</td>
<td>ft.</td>
<td>617</td>
</tr>
<tr>
<td>Length of Stern Overhang</td>
<td>"</td>
<td>23</td>
</tr>
<tr>
<td>Length of Bow Overhang</td>
<td>"</td>
<td>14</td>
</tr>
</tbody>
</table>

Enter 1 for full width graph,
0.5 for half width graph or
0 for no graph

<table>
<thead>
<tr>
<th>Horizontal Scale required (Convenient choice: 10, 20 or 40 - ft/cm.) Enter 0 if no graph required.</th>
<th>20</th>
<th>S27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code Number for Lightship Concentrated Items</th>
<th>0</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Concentrated Lightship Items</td>
<td>71</td>
<td>N</td>
</tr>
<tr>
<td>ITEM</td>
<td>Weight (tons) (M)</td>
<td>Length (ft) (B)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lower Bridge & Hse Below</td>
<td>75.17</td>
<td>94.50</td>
</tr>
<tr>
<td>Upper ""</td>
<td>58.96</td>
<td>90.00</td>
</tr>
<tr>
<td>Boat ""</td>
<td>47.09</td>
<td>78.50</td>
</tr>
<tr>
<td>Nav.Bridge ""</td>
<td>15.65</td>
<td>32.75</td>
</tr>
<tr>
<td>Wheel House</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>No. 1 Hatch</td>
<td>26.21</td>
<td>36.00</td>
</tr>
<tr>
<td>" 2 "</td>
<td>26.30</td>
<td>36.50</td>
</tr>
<tr>
<td>" 3 "</td>
<td>12.76</td>
<td>17.50</td>
</tr>
<tr>
<td>" 4 "</td>
<td>27.35</td>
<td>37.50</td>
</tr>
<tr>
<td>" 5 "</td>
<td>27.35</td>
<td>37.50</td>
</tr>
<tr>
<td>" 6 "</td>
<td>12.76</td>
<td>17.50</td>
</tr>
<tr>
<td>" 7 "</td>
<td>27.35</td>
<td>37.50</td>
</tr>
<tr>
<td>" 8 "</td>
<td>27.35</td>
<td>37.50</td>
</tr>
<tr>
<td>" 1 Hatch Cover Tracks</td>
<td>2.42</td>
<td>6.00</td>
</tr>
<tr>
<td>" 2/3 " " Post & Tracks</td>
<td>4.65</td>
<td>17.50</td>
</tr>
<tr>
<td>" 4/5 " " "</td>
<td>5.87</td>
<td>25.00</td>
</tr>
<tr>
<td>" 6/7 " " "</td>
<td>4.65</td>
<td>17.50</td>
</tr>
<tr>
<td>" 8 " " Tracks</td>
<td>2.42</td>
<td>6.00</td>
</tr>
<tr>
<td>" 1 Masthouse, Winches, etc.</td>
<td>28.30</td>
<td>15.75</td>
</tr>
<tr>
<td>" 2 " " "</td>
<td>27.90</td>
<td>15.00</td>
</tr>
<tr>
<td>" 3 " " "</td>
<td>27.90</td>
<td>15.00</td>
</tr>
<tr>
<td>" 4 " " "</td>
<td>27.90</td>
<td>15.00</td>
</tr>
<tr>
<td>" 1 Masthouse, Derrick Posts,Derricks etc.</td>
<td>15.50</td>
<td>2.50</td>
</tr>
<tr>
<td>" 2 " " "</td>
<td>15.50</td>
<td>2.50</td>
</tr>
<tr>
<td>" 3 " " "</td>
<td>15.50</td>
<td>2.50</td>
</tr>
<tr>
<td>" 4 " " "</td>
<td>15.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Windlass</td>
<td>12.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Anchors</td>
<td>11.63</td>
<td>6.00</td>
</tr>
<tr>
<td>Anchor Chain</td>
<td>59.95</td>
<td>8.00</td>
</tr>
<tr>
<td>Eclave,Dk,Ftgs,Bollards etc.</td>
<td>6.10</td>
<td>51.00</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight (tons) (m)</th>
<th>Length (ft) (s)</th>
<th>Dist. of L.C.G. * from C/L of Item. (B)</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up.Dk.Aft. Fittings, Winch, etc.</td>
<td>16.00</td>
<td>34.50</td>
<td>5.75</td>
<td>23.00</td>
</tr>
<tr>
<td>Funnel</td>
<td>19.61</td>
<td>28.00</td>
<td>1.00</td>
<td>84.50</td>
</tr>
<tr>
<td>Lifeboats and Davits</td>
<td>7.50</td>
<td>26.00</td>
<td>-</td>
<td>87.50</td>
</tr>
<tr>
<td>Sternframe</td>
<td>22.40</td>
<td>19.00</td>
<td>2.00</td>
<td>33.00</td>
</tr>
<tr>
<td>Propeller</td>
<td>16.30</td>
<td>6.00</td>
<td>-</td>
<td>30.50</td>
</tr>
<tr>
<td>Rudder and fittings</td>
<td>10.20</td>
<td>12.25</td>
<td>-</td>
<td>20.38</td>
</tr>
<tr>
<td>Steering Gear</td>
<td>6.50</td>
<td>7.25</td>
<td>-</td>
<td>23.00</td>
</tr>
<tr>
<td>Upholstery</td>
<td>3.10</td>
<td>91.00</td>
<td>-</td>
<td>83.75</td>
</tr>
<tr>
<td>Deck Coverings etc.</td>
<td>30.00</td>
<td>91.00</td>
<td>-</td>
<td>83.75</td>
</tr>
<tr>
<td>Refrig. Machinery</td>
<td>3.50</td>
<td>6.00</td>
<td>-</td>
<td>48.00</td>
</tr>
<tr>
<td>Domestic Refrig. Insulation</td>
<td>13.00</td>
<td>19.50</td>
<td>1.75</td>
<td>46.00</td>
</tr>
<tr>
<td>Windows and Doors (Accom.)</td>
<td>10.00</td>
<td>91.00</td>
<td>-</td>
<td>83.75</td>
</tr>
<tr>
<td>Piping (Accom.)</td>
<td>12.00</td>
<td>91.00</td>
<td>-</td>
<td>83.75</td>
</tr>
<tr>
<td>Smithwork and Rivs.</td>
<td>35.00</td>
<td>580.00</td>
<td>-</td>
<td>313.00</td>
</tr>
<tr>
<td>Electrodes</td>
<td>85.75</td>
<td>580.00</td>
<td>-</td>
<td>313.00</td>
</tr>
<tr>
<td>Paint</td>
<td>20.00</td>
<td>580.00</td>
<td>-</td>
<td>313.00</td>
</tr>
<tr>
<td>Piping (Holds)</td>
<td>45.00</td>
<td>448.00</td>
<td>-</td>
<td>348.00</td>
</tr>
<tr>
<td>Main Engine</td>
<td>376.00</td>
<td>28.50</td>
<td>-1.33</td>
<td>95.42</td>
</tr>
<tr>
<td>Generators</td>
<td>42.60</td>
<td>16.33</td>
<td>-</td>
<td>61.50</td>
</tr>
<tr>
<td>Auxiliaries Incl. Seats.</td>
<td>258.47</td>
<td>80.00</td>
<td>12.43</td>
<td>96.43</td>
</tr>
<tr>
<td>Shafting and Bearings</td>
<td>26.43</td>
<td>40.00</td>
<td>-</td>
<td>54.00</td>
</tr>
<tr>
<td>Sterntube</td>
<td>6.00</td>
<td>10.00</td>
<td>-</td>
<td>39.00</td>
</tr>
<tr>
<td>E.R. Flat 25'-0" A.B.</td>
<td>42.36</td>
<td>80.00</td>
<td>-</td>
<td>84.00</td>
</tr>
<tr>
<td>" " 38'-3" "</td>
<td>40.80</td>
<td>80.00</td>
<td>-</td>
<td>84.00</td>
</tr>
<tr>
<td>House Front and Side Screens</td>
<td>69.18</td>
<td>98.50</td>
<td>34.00</td>
<td>113.25</td>
</tr>
<tr>
<td>Fc/e. Dk. Stores & Fore End Bulw.</td>
<td>34.00</td>
<td>51.00</td>
<td>-8.50</td>
<td>580.00</td>
</tr>
<tr>
<td>Radar Mast and Fittings</td>
<td>1.50</td>
<td>4.00</td>
<td>1.00</td>
<td>110.50</td>
</tr>
<tr>
<td>Spare Prop.</td>
<td>15.45</td>
<td>18.25</td>
<td>-</td>
<td>60.00</td>
</tr>
<tr>
<td>" Tailshaft</td>
<td>11.50</td>
<td>16.75</td>
<td>-</td>
<td>59.00</td>
</tr>
<tr>
<td>" Anchor</td>
<td>5.81</td>
<td>8.00</td>
<td>2.50</td>
<td>416.50</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight (tons) (W)</th>
<th>Length (ft) (L)</th>
<th>Dist. of L.C.G. # from C/I of Item. (B)</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.T. Bhd. 10</td>
<td>8.00</td>
<td>1</td>
<td></td>
<td>44.00</td>
</tr>
<tr>
<td></td>
<td>27.13</td>
<td>1.68</td>
<td></td>
<td>124.54</td>
</tr>
<tr>
<td></td>
<td>45.77</td>
<td>2.17</td>
<td></td>
<td>187.92</td>
</tr>
<tr>
<td></td>
<td>77.84</td>
<td>1.00</td>
<td></td>
<td>254.50</td>
</tr>
<tr>
<td></td>
<td>77.84</td>
<td>1.00</td>
<td></td>
<td>283.50</td>
</tr>
<tr>
<td></td>
<td>47.49</td>
<td>2.17</td>
<td></td>
<td>350.08</td>
</tr>
<tr>
<td></td>
<td>77.84</td>
<td>1.00</td>
<td></td>
<td>414.50</td>
</tr>
<tr>
<td></td>
<td>77.84</td>
<td>1.00</td>
<td></td>
<td>443.50</td>
</tr>
<tr>
<td></td>
<td>45.18</td>
<td>2.25</td>
<td></td>
<td>510.12</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>1.00</td>
<td></td>
<td>572.90</td>
</tr>
<tr>
<td>Capstans</td>
<td>5.48</td>
<td>4.00</td>
<td></td>
<td>284.00</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
TAPE 2

<table>
<thead>
<tr>
<th>Programme Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code number for this Sheet - i.e. Condition Number. (1, 2, 3, ... etc.)</td>
</tr>
<tr>
<td>Number of DEADWEIGHT Items for this condition</td>
</tr>
</tbody>
</table>

DEADWEIGHT ITEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight (tons) ((\text{W}))</th>
<th>Length (ft) ((\text{L}))</th>
<th>Dist. of L.C.G. * from C/L of Item. ((\text{B}))</th>
<th>L.C.G. from stern ((\text{X}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.B. in No. 1 D.B. Tank (Across)</td>
<td>436.00</td>
<td>63.00</td>
<td>-3.87</td>
<td>536.63</td>
</tr>
<tr>
<td>" " 2 " " P & S</td>
<td>726.00</td>
<td>65.00</td>
<td>-1.34</td>
<td>475.16</td>
</tr>
<tr>
<td>" " 3 " " P & S</td>
<td>1162.00</td>
<td>95.00</td>
<td>0.13</td>
<td>396.63</td>
</tr>
<tr>
<td>" " 4 " " P & S Outer</td>
<td>668.00</td>
<td>95.00</td>
<td>1.12</td>
<td>302.62</td>
</tr>
<tr>
<td>" " 4 " " P & S Inner</td>
<td>486.00</td>
<td>95.00</td>
<td>-0.01</td>
<td>301.49</td>
</tr>
<tr>
<td>" " 1 Saddle Tank P & S</td>
<td>824.00</td>
<td>112.25</td>
<td>-5.00</td>
<td>495.12</td>
</tr>
<tr>
<td>" " 2 " " P & S</td>
<td>700.00</td>
<td>95.00</td>
<td>-</td>
<td>396.50</td>
</tr>
<tr>
<td>" " 3 " " P & S</td>
<td>700.00</td>
<td>95.00</td>
<td>-</td>
<td>301.50</td>
</tr>
<tr>
<td>" " 4 " " P & S</td>
<td>478.00</td>
<td>65.00</td>
<td>-</td>
<td>221.50</td>
</tr>
<tr>
<td>" " Fore Peak</td>
<td>454.00</td>
<td>31.70</td>
<td>-5.43</td>
<td>582.42</td>
</tr>
<tr>
<td>" " After Peak</td>
<td>290.00</td>
<td>20.00</td>
<td>2.16</td>
<td>35.16</td>
</tr>
<tr>
<td>" " No.3 Hold (Deep: Tk.)</td>
<td>2738.00</td>
<td>30.00</td>
<td>-0.08</td>
<td>429.08</td>
</tr>
<tr>
<td>" " No.6 Hold (""""""""""""""""")</td>
<td>2738.00</td>
<td>30.00</td>
<td>-0.08</td>
<td>268.92</td>
</tr>
<tr>
<td>Heavy Oil in No.5 D.B.Tk.P&S Inner</td>
<td>233.24</td>
<td>65.00</td>
<td>-</td>
<td>221.50</td>
</tr>
<tr>
<td>" " " " 5 " " " " Outer</td>
<td>348.88</td>
<td>65.00</td>
<td>2.62</td>
<td>224.12</td>
</tr>
<tr>
<td>" " " " 6 " " " " Port</td>
<td>194.04</td>
<td>67.50</td>
<td>3.60</td>
<td>158.85</td>
</tr>
<tr>
<td>" " " " 6 " " " " Starb.Outer</td>
<td>133.28</td>
<td>67.50</td>
<td>5.47</td>
<td>160.72</td>
</tr>
<tr>
<td>" " " " 5 Saddle Tk. P & S</td>
<td>415.52</td>
<td>65.00</td>
<td>0.31</td>
<td>156.81</td>
</tr>
<tr>
<td>" " " " Tank Aft. Clean Sett.</td>
<td>20.58</td>
<td>6.25</td>
<td>-</td>
<td>89.63</td>
</tr>
<tr>
<td>" " " " " " " " Fwd.</td>
<td>20.58</td>
<td>6.25</td>
<td>-</td>
<td>95.88</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight (tons)</th>
<th>Length (ft)</th>
<th>Dist. of L.C.G. * from C/I. of Item. (B)</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Oil in Dirty Sett. Tk.</td>
<td>41.16</td>
<td>12.50</td>
<td>-</td>
<td>105.25</td>
</tr>
<tr>
<td>Diesel Oil in No. 6 D.B. Tk. Stard. Inner</td>
<td>60.27</td>
<td>67.50</td>
<td>.37</td>
<td>154.88</td>
</tr>
<tr>
<td>" " " " " " " " Port</td>
<td>23.28</td>
<td>32.50</td>
<td>3.42</td>
<td>103.67</td>
</tr>
<tr>
<td>" " " " " " " " Star.</td>
<td>14.45</td>
<td>15.00</td>
<td>.60</td>
<td>109.60</td>
</tr>
<tr>
<td>" " " Clean Sett. Tank</td>
<td>12.00</td>
<td>3.75</td>
<td>-</td>
<td>113.38</td>
</tr>
<tr>
<td>" " " Dirty</td>
<td>11.52</td>
<td>3.75</td>
<td>-</td>
<td>117.13</td>
</tr>
<tr>
<td>Lub. Oil in D.B. Drain Tank</td>
<td>12.25</td>
<td>27.50</td>
<td>-</td>
<td>85.25</td>
</tr>
<tr>
<td>" " " Reserve Tank</td>
<td>5.88</td>
<td>3.33</td>
<td>-</td>
<td>65.67</td>
</tr>
<tr>
<td>" " " Cyl. Oil Tank</td>
<td>6.13</td>
<td>3.33</td>
<td>-</td>
<td>69.00</td>
</tr>
<tr>
<td>" " " " " "</td>
<td>6.13</td>
<td>3.33</td>
<td>-</td>
<td>72.33</td>
</tr>
<tr>
<td>" " " Clean L.O. Tank</td>
<td>13.96</td>
<td>7.50</td>
<td>-</td>
<td>77.75</td>
</tr>
<tr>
<td>" " " Renovating Tank</td>
<td>12.25</td>
<td>5.00</td>
<td>-</td>
<td>81.50</td>
</tr>
<tr>
<td>Fresh Water in No. 8 D.B. Tk. Across</td>
<td>29.25</td>
<td>22.50</td>
<td>1.55</td>
<td>59.30</td>
</tr>
<tr>
<td>" " " Tanks Aft. P & S</td>
<td>55.00</td>
<td>14.00</td>
<td>-</td>
<td>37.00</td>
</tr>
<tr>
<td>Stores, Crew and Effects</td>
<td>100.00</td>
<td>80.00</td>
<td>-</td>
<td>88.00</td>
</tr>
<tr>
<td>Engineers, Spare Gear</td>
<td>40.00</td>
<td>80.00</td>
<td>-</td>
<td>72.45</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
LONGITUDINAL STRENGTH CALCULATIONS

CONDITION 1. BALLAST DEPARTURE
FULL BUNKERS.
STILL WATER.

LENGTH OVERALL : 617.00 FT
SUM OF LIGHTSHIP LOCAL WEIGHTS READ IN = 2476.86 TONS
SUM OF EXTRA LOCAL WTS. FOR THIS CONDITION, READ IN = 14209.65 TONS

CALCULATED SUM OF DISTRIBUTED LOCAL WEIGHTS = 16686.51 TONS
CONTINUOUS WEIGHT TOTAL FOR LLOYDS' DISTRIBUTION = 4632.14 TONS
CALCULATED "M" =TONS/FT = 9.359
CALCULATED L.C.G. OF CONTINUOUS WEIGHT = 311.32 FT.

NOTE: ORDINATES IN THE FOLLOWING TABLES ARE NUMBERED FROM THE STERN (ORDINATE NO. 0) TO THE BOW (ORDINATE NO. 100).
<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>WEIGHT</th>
<th>ORD NO.</th>
<th>WEIGHT</th>
<th>ORD NO.</th>
<th>WEIGHT</th>
<th>ORD NO.</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.08</td>
<td>1</td>
<td>0.25</td>
<td>2</td>
<td>0.99</td>
<td>3</td>
<td>4.14</td>
</tr>
<tr>
<td>4</td>
<td>14.04</td>
<td>5</td>
<td>24.10</td>
<td>6</td>
<td>29.72</td>
<td>7</td>
<td>8.47</td>
</tr>
<tr>
<td>8</td>
<td>11.29</td>
<td>9</td>
<td>13.31</td>
<td>10</td>
<td>15.21</td>
<td>11</td>
<td>12.63</td>
</tr>
<tr>
<td>12</td>
<td>12.51</td>
<td>13</td>
<td>23.12</td>
<td>14</td>
<td>30.15</td>
<td>15</td>
<td>29.60</td>
</tr>
<tr>
<td>16</td>
<td>28.05</td>
<td>17</td>
<td>28.07</td>
<td>18</td>
<td>17.92</td>
<td>19</td>
<td>15.27</td>
</tr>
<tr>
<td>20</td>
<td>20.18</td>
<td>21</td>
<td>12.50</td>
<td>22</td>
<td>13.34</td>
<td>23</td>
<td>13.51</td>
</tr>
<tr>
<td>24</td>
<td>12.95</td>
<td>25</td>
<td>13.33</td>
<td>26</td>
<td>13.70</td>
<td>27</td>
<td>14.07</td>
</tr>
<tr>
<td>28</td>
<td>14.16</td>
<td>29</td>
<td>15.17</td>
<td>30</td>
<td>26.55</td>
<td>31</td>
<td>17.15</td>
</tr>
<tr>
<td>32</td>
<td>16.06</td>
<td>33</td>
<td>16.79</td>
<td>34</td>
<td>17.04</td>
<td>35</td>
<td>17.28</td>
</tr>
<tr>
<td>36</td>
<td>17.53</td>
<td>37</td>
<td>17.78</td>
<td>38</td>
<td>17.90</td>
<td>39</td>
<td>17.81</td>
</tr>
<tr>
<td>40</td>
<td>18.05</td>
<td>41</td>
<td>109.27</td>
<td>42</td>
<td>112.11</td>
<td>43</td>
<td>111.57</td>
</tr>
<tr>
<td>44</td>
<td>110.60</td>
<td>45</td>
<td>121.97</td>
<td>46</td>
<td>29.45</td>
<td>47</td>
<td>20.98</td>
</tr>
<tr>
<td>48</td>
<td>20.23</td>
<td>49</td>
<td>20.63</td>
<td>50</td>
<td>20.69</td>
<td>51</td>
<td>20.76</td>
</tr>
<tr>
<td>52</td>
<td>20.82</td>
<td>53</td>
<td>20.39</td>
<td>54</td>
<td>20.72</td>
<td>55</td>
<td>20.52</td>
</tr>
<tr>
<td>56</td>
<td>28.05</td>
<td>57</td>
<td>20.09</td>
<td>58</td>
<td>20.31</td>
<td>59</td>
<td>20.61</td>
</tr>
<tr>
<td>60</td>
<td>20.62</td>
<td>61</td>
<td>20.54</td>
<td>62</td>
<td>20.65</td>
<td>63</td>
<td>20.66</td>
</tr>
<tr>
<td>64</td>
<td>20.43</td>
<td>65</td>
<td>20.93</td>
<td>66</td>
<td>24.42</td>
<td>67</td>
<td>116.09</td>
</tr>
<tr>
<td>68</td>
<td>112.10</td>
<td>69</td>
<td>112.04</td>
<td>70</td>
<td>111.45</td>
<td>71</td>
<td>122.17</td>
</tr>
<tr>
<td>72</td>
<td>22.20</td>
<td>73</td>
<td>21.73</td>
<td>74</td>
<td>21.12</td>
<td>75</td>
<td>20.50</td>
</tr>
<tr>
<td>76</td>
<td>20.71</td>
<td>77</td>
<td>20.27</td>
<td>78</td>
<td>9.79</td>
<td>79</td>
<td>19.31</td>
</tr>
<tr>
<td>80</td>
<td>18.84</td>
<td>81</td>
<td>19.99</td>
<td>82</td>
<td>28.60</td>
<td>83</td>
<td>17.26</td>
</tr>
<tr>
<td>88</td>
<td>13.28</td>
<td>89</td>
<td>12.44</td>
<td>90</td>
<td>6.98</td>
<td>91</td>
<td>6.50</td>
</tr>
<tr>
<td>92</td>
<td>19.23</td>
<td>93</td>
<td>34.30</td>
<td>94</td>
<td>20.22</td>
<td>95</td>
<td>14.83</td>
</tr>
<tr>
<td>96</td>
<td>9.18</td>
<td>98</td>
<td>2.44</td>
<td>98</td>
<td>0.19</td>
<td>99</td>
<td>0.03</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOCAL WEIGHT ORDINATES (PROJECTED FORWARD)

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 0
HEIGHT OF Y-AXIS = 30

HORIZONTAL SCALE OF GRAPH —— 1 CM = 20 FT
VERTICAL SCALE OF GRAPH —— UNITS/CM: — 5.0

LOCAL WIGHT ORDNATES (PROJECTED FORWARD)

HORIZONTAL SCALE : 1 CH. = 20 FT.
VERTICAL SCALE : 1 CH. = 5 TON/FT.
FLOW CHART

CONTINUOUS WEIGHT SECTION

FOLD DOWN
PART 2

(a) BILES' COFFIN CONTINUOUS

WEIGHT DISTRIBUTION

The continuous weight of that portion of the ship which lies between the perpendiculars (i.e. the full weight less the sum of the local weights and less the weights of stern and bow overhangs - programmed W32) is distributed over three equal divisions of the length between the perpendiculars (LBP), such that end ordinates A and B are given by the formule:

\[
\frac{W_{32}}{L_{BP}} \left(0.6 + \frac{54.4k}{7L_{BP}} \right)
\]

such that B takes the + sign, and where k is the distance of the L.C.G. of the continuous weight from midships. A is the rearmost ordinate and B the forward ord. in all cases.

If the L.C.G. is forward of midships, k is positive, and the forward ordinate (that at the F.P.) is the larger. If, however, k is to the rear of the midships, then k is itself negative, and A (the ordinate at the A.P.) is the larger. (See fig. 11)

C' and D' divide the length between the perpendiculars into three equal parts. CD is a horizontal line joining the ordinates at C' and D', each having a value given by:

\[
CC' = DD' = 1.2 \left(\frac{W_{32}}{L_{BP}} \right)
\]
The stern and bow sections are represented by the triangular ends to the figure.

The total length of the ship (L.O.A.) is divided as before into 100 equal parts, and the weight ordinate at each division mark is calculated using straight line equations.

Ordinate values are amended by taking averages, as before, so that the weight distribution over each division (L6) may be represented by horizontal lines drawn forward from the rear ordinate of each division. No. 99 is the last ordinate with a value.

Floating point variables VR - (0 to 100) are used for ordinate values in this part of the programme.

Output of the table of values is again optional, as in part one; graph output is also optional.

Fig. 11.
Biles Coffin distribution of Continuous Weight.
Note: \(k \) -ve and A greater than B.
Page 36 shows the input data when using Biles Coffin method for the distribution of the continuous material of A.842.

Tabulated output for this method is shown on page 37 and the corresponding graph output on page 38.

The use of Biles Coffin method may produce errors in the calculated weights of the overhangs of the bow and stern. In the initial design stages, at which time the actual end values may not be known, this is acceptable.

These errors (as with those which would occur using Lloyd's suggested end lengths - See Table 10, page 61) are corrected in the total weight section, by the technique known as "swinging the base" - See page 63.
TITLE output at Head of Results

Name of firm

SHIPYARD A.

Ship No. 842

LONGITUDINAL STRENGTH CALCULATIONS

CONDITION No. 1.
BALLAST DEPARTURE
FULL BUNKERS

*STILL WATER
*SINE/WAVE SAGGING
*SINE/WAVE HOGGING

(delete those * not Required).

Programme
Variable.

<table>
<thead>
<tr>
<th>Programme Variable</th>
<th>Displacement</th>
<th>21318.65</th>
<th>L.C.G. forward of Stern</th>
<th>321.79</th>
</tr>
</thead>
<tbody>
<tr>
<td>W31</td>
<td>L.C.G. forward of Stern</td>
<td>321.79</td>
<td>K3</td>
<td></td>
</tr>
</tbody>
</table>
Tape 2 (Contd). (This part of Tape 2 not required after the first data run).

If Continuous Weight is to be distributed by Biles Coffin method, complete lines (a), (b), (c), (d) below, otherwise complete (e) from Lloyds tables SR 64/15.

For FIRST data run only:

<table>
<thead>
<tr>
<th>(a) Weight of Overhang of Stern. (tons)</th>
<th>49.37</th>
<th>W33</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Weight of Overhang of Bow. (tons)</td>
<td>7.67</td>
<td>W34</td>
</tr>
<tr>
<td>(c) L.C.G. of Overhang of Stern, from Stern. (ft)</td>
<td>17.5</td>
<td>L4</td>
</tr>
<tr>
<td>(d) L.C.G. of Overhang of Bow, from Stern. (ft)</td>
<td>608.5</td>
<td>L5</td>
</tr>
</tbody>
</table>

(e) For FIRST data run only:

<table>
<thead>
<tr>
<th>Stn. 0</th>
<th>Stn. 1</th>
<th>Stn. 2</th>
<th>Stn. 3</th>
<th>Stn. 4</th>
<th>Stn. 5</th>
<th>Stn. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 7</td>
<td>Stn. 8</td>
<td>Stn. 9</td>
<td>Stn. 10</td>
<td>Stn. 11</td>
<td>Stn. 12</td>
<td>Stn. 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 15</td>
<td>Stn. 16</td>
<td>Stn. 17</td>
<td>Stn. 18</td>
<td>Stn. 19</td>
<td>Stn. 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORD NO.</td>
<td>WEIGHT TON/FT</td>
<td>ORD NO.</td>
<td>WEIGHT TON/FT</td>
<td>ORD NO.</td>
<td>WEIGHT TON/FT</td>
<td>ORD NO.</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0.75</td>
<td>1</td>
<td>2.25</td>
<td>2</td>
<td>3.75</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5.69</td>
<td>5</td>
<td>5.81</td>
<td>6</td>
<td>5.93</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>6.18</td>
<td>9</td>
<td>6.31</td>
<td>10</td>
<td>6.43</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>6.68</td>
<td>13</td>
<td>6.80</td>
<td>14</td>
<td>6.92</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>7.17</td>
<td>17</td>
<td>7.29</td>
<td>18</td>
<td>7.42</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>7.67</td>
<td>21</td>
<td>7.79</td>
<td>22</td>
<td>7.91</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>8.16</td>
<td>25</td>
<td>8.28</td>
<td>26</td>
<td>8.41</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>8.65</td>
<td>29</td>
<td>8.78</td>
<td>30</td>
<td>8.90</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>9.15</td>
<td>33</td>
<td>9.27</td>
<td>34</td>
<td>9.40</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>9.47</td>
<td>41</td>
<td>9.47</td>
<td>42</td>
<td>9.47</td>
<td>43</td>
</tr>
<tr>
<td>68</td>
<td>9.09</td>
<td>69</td>
<td>8.91</td>
<td>70</td>
<td>8.73</td>
<td>71</td>
</tr>
<tr>
<td>72</td>
<td>8.38</td>
<td>73</td>
<td>8.20</td>
<td>74</td>
<td>8.02</td>
<td>75</td>
</tr>
<tr>
<td>76</td>
<td>7.66</td>
<td>77</td>
<td>7.48</td>
<td>78</td>
<td>7.31</td>
<td>79</td>
</tr>
<tr>
<td>80</td>
<td>6.95</td>
<td>81</td>
<td>6.77</td>
<td>82</td>
<td>6.59</td>
<td>83</td>
</tr>
<tr>
<td>84</td>
<td>6.23</td>
<td>85</td>
<td>6.06</td>
<td>86</td>
<td>5.88</td>
<td>87</td>
</tr>
<tr>
<td>88</td>
<td>5.52</td>
<td>89</td>
<td>5.34</td>
<td>90</td>
<td>5.16</td>
<td>91</td>
</tr>
<tr>
<td>92</td>
<td>4.81</td>
<td>93</td>
<td>4.63</td>
<td>94</td>
<td>4.45</td>
<td>95</td>
</tr>
<tr>
<td>96</td>
<td>4.09</td>
<td>97</td>
<td>3.86</td>
<td>98</td>
<td>2.56</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 7.
CONTINUOUS WEIGHT CURVE ORDINATES (PROJECTED FORWARD).

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 0
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH --- 1 CM = 20 FT
VERTICAL SCALE OF GRAPH --- UNITS/CM: - 0.5
PART 2

(b) CONTINUOUS WEIGHT DISTRIBUTION

ACCORDING TO LLOYD'S REPORT SR 64/15

This is not the same continuous weight as is used in the Biles Coffin distribution; in this instance it includes the stern and bow sections. It is programmed as W32, and is obtained immediately after reading in the displacement (W31) by subtracting from it the calculated sum of the distributed local weights (S).

The distribution of this weight is considered to be a continuous curve over the whole length of the ship. The curve depends on the block coefficient at the load draught, and has the form shown below, fig.12a, where ordinates 0 to 20 are read from a set of curves produced by Lloyd's Register of Shipping.

These ordinates are called 'a' values, where a has a maximum value of unity. The true ordinate values for the weight curve are given by \(a_i \times m \) ton/ft., where \(m \) is the measure in tons/ft. of the midship section, and \(i \) has values 0 - 20.

Lloyd's curves are reproduced on pages 42 and 43.

Note the end value suggested by Lloyd's and indicated in Fig. 12 (a).
Consider the ship under review. Block coefficient \((C_B)\) given by the builder as 0.776. Reading from the given curves obtain the \('a'\) values as follows:

<table>
<thead>
<tr>
<th>Section</th>
<th>('a') reading</th>
<th>Section</th>
<th>('a') reading</th>
<th>Section</th>
<th>('a') reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.340</td>
<td>1</td>
<td>0.495</td>
<td>2</td>
<td>0.625</td>
</tr>
<tr>
<td>3</td>
<td>0.727</td>
<td>4</td>
<td>0.815</td>
<td>5</td>
<td>0.884</td>
</tr>
<tr>
<td>6</td>
<td>0.940</td>
<td>7</td>
<td>0.976</td>
<td>8</td>
<td>0.998</td>
</tr>
<tr>
<td>9</td>
<td>1.000</td>
<td>10</td>
<td>1.000</td>
<td>11</td>
<td>1.000</td>
</tr>
<tr>
<td>12</td>
<td>1.000</td>
<td>13</td>
<td>1.000</td>
<td>14</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>1.000</td>
<td>16</td>
<td>0.975</td>
<td>17</td>
<td>0.903</td>
</tr>
<tr>
<td>18</td>
<td>0.766</td>
<td>19</td>
<td>0.505</td>
<td>20</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Each of these ordinates must be multiplied by m such that the total weight found by integrating the curve is equal to the continuous weight. This is done by first of all integrating the curve in terms of 'm', and dividing this value into the known continuous weight (W_{32}). This gives the value of m, and ordinate values 'a*' are then multiplied throughout by m, to give the true weight/ft. ordinates. (The term 'a*' values now incorporates 'm').

The curve is now true so far as weight representation is concerned but does not necessarily yield the true position of the L.C.G. of the continuous weight. The L.C.G. of the vessel for any given loaded condition having been given by the builder, together with the various values of weight and L.C.G. for each of the local weights, it is a simple matter to determine the L.C.G. of the continuous weight by addition and subtraction of moments. This done, it is unlikely that its position will coincide with the calculated L.C.G. of the given curve.

Before further analysis, correction must be made for any discrepancy between calculated and given L.C.G.'s. If the curve had been incorrect for both weight and L.C.G. it could have been corrected by raising (or lowering) the base - known as 'swinging the base'. However, this causes non-zero readings, in general, for ordinates 0 and 100, which may be either positive or negative.
Values of c for After Body

<table>
<thead>
<tr>
<th>Station</th>
<th>No. 9</th>
<th>No. 8</th>
<th>No. 7</th>
<th>No. 6</th>
<th>No. 5</th>
<th>No. 4</th>
<th>No. 3</th>
<th>No. 2</th>
<th>No. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Block coefficient of load draught C_b
Values of a for Pore Body

- \(a \) vs. Station No. for various Pore Bodies.

- Block coefficient at load draught C_b.

Fig. 4
Further, it causes the greatest change in those ordinate values towards the ends, see fig. 12b (or at the least, in the ordinates towards one end, see fig. 12c), when in fact it would seem more reasonable to make the bulk of the change in those ordinates which contribute most to the total reading, namely the ordinates towards the centre.

Since the resultant ordinate values for Lloyd's curve are determined for the continuous material weight provided, the curve
is correct for weight. But the shape of the basic weight curve in the first place is dependent upon the coefficients "a", coefficients which are derived using the assumption that certain standard relationships exist between block coefficient and the extent and position of the parallel mid-body. These relationships may be departed from in any given design, and it is logical to deduce that the L.C.G. derived from the continuous weight distribution curve will not, in general, be the same as that calculated by the programme using the addition and subtraction of moments in the usual way, and using the L.C.G. for the TOTAL weight distribution as given by the builder. An incorrect L.C.G. is the only measure to be corrected, therefore, as far as the distribution of the continuous material is concerned.

The above method of 'swinging the base' at this stage was, therefore, discarded in favour of a method of tilting (or displacing) the ordinates. By this method end ordinates remain of zero value, the weight under the curve is unaffected, (See page 47), and those ordinates which contribute most to the calculation of the L.C.G. (the larger, more central ordinates) are displaced most. Ordinates are, therefore, swung about their base line in the following manner:

From the curve, the vertical and horizontal measures of the centroid are computed. Let the position of the calculated centroid be \(G_1 \), and the known true position, for the continuous weight be
G. The horizontal movement required of the L.C.G. is, therefore, \(GG_1 \) ft. Let \(H \) be the vertical measure of \(G_1 \) from the base line of the curve. (Units for \(H \) are ton/ft) Let the ratio \(GG_1/H \) be called \(M \), with units \(ft^2/ton \).

![Diagram](image)

Fig. 13.

Multiplication of each ordinate of the curve by this ratio (in the same manner as a tangent ratio) gives the distance in feet, through which each ordinate respectively has to be moved horizontally. In the case of ordinate \(i \), whose value is \(a_i \) ton/ft.,
we have:

\[a_i \text{ ton/ft.} \times M_i^2 \text{ ft}^2/\text{ton} = (\text{say}) z_i \text{ ft.} \]

where \(z_i \) is the horizontal shift required of \(a_i \), in order that recalculation of the weight gives the same value as before, but now provides the correct L.C.G. position. (See fig. 13)

It can be seen from the following diagrams (fig. 14) that the "pushing over" of the weight curve does not alter the weight represented. Consider any element of area PQ.
Since all points of the element are equidistant from the base line, the distance PP' must equal the distance QQ', and the distances PQ and P'Q' are equal. The area of the strip is, therefore, unchanged. Similarly for all strips.

An alternative method is to consider the element ABCD of fig. 15 - (a) triangular end and (b) any portion between the perpendiculars. The ordinates are sufficiently close to assume CB is a straight line fig. 15 (b); in fig. 15 (a) B and C are coincident.
Treating M in the same way as a tangent ratio, we have e.g. $a_i \times M = z_i$, and $a_i \times M = z_i$. In (b), E and F are the points on the new curve corresponding to B and C. Area $EGDA$ equals area $BHDA$ (since $EG = BH = AD$; parallel lines AE, DG and AB, DH). Also triangles BHC and EGF are equal. Therefore the new area equals the old area. Similarly for an end triangle as in (a). Considering the whole ordinate as moving across, we now have the new ordinate positions at A' and D' in (b), and at D' in (a).

At this stage in the programme the interpolation routine is entered to obtain ordinate values at every one-hundredth of the ship length overall. Again ordinates are summed in pairs progressively throughout the whole length and the averages projected forward from the rearmost ordinate of each division.
Reference to fig. 16 will make it clear that the horizontal movements z_i of the ordinates of the curve cause the L.C.G. to be moved to the correct position.

Fig. 16. (i) Showing Lloyds Station Numbers (upper) and the corresponding Programme Station Numbers (lower).

(ii) Indicating movement of L.C.G.

Let PQ be an element of area a_i and height y_i, and let it be tilted through angle θ about the base line.

The increase of moment about $x = 0$ is $a_i \frac{\delta x_i}{2}$, and the sum of all such moments is $\sum a_i \frac{\delta x_i}{2} = \sum a_i \frac{y_i}{2} \tan \theta = \tan \theta A y$.
Also increase in moment of total area

\[= A\bar{x} = A\bar{y}\tan\phi \]

\[\therefore \theta = \phi \]

The graph on page 53 shows the initial points on the continuous weight distribution curve (shown as triangles), the displaced position as determined by the above theory (shown as squares), and the final smooth curve drawn through the points obtained through the interpolation routine.

Page 54 shows the relevant input data for A.842 using Lloyd's method for the distribution of the Continuous Material, and on page 55 may be seen the tabulated values for this distribution. Page 56 shows the corresponding graph output.

* * * * * * *

Since we are concerned with obtaining values every one-hundredth of the overall actual, or estimated, length, it is better to consider such lengths throughout. When the interpolation routine is entered, 23 values of \(x_i \) and \(y_i \) (actually \(x_i \) and \(a_i \)) are used from store, in order to determine the 101 equally spaced ordinates (including two end ordinates in each case, whose values are 0, 0). Lloyd's 'a' values are renumbered for this purpose as illustrated in fig. 16. The distance \(X_0 \) is the actual, or estimated, length of the overhang of the stern.
Similarly, the distance $X_{21} X_{22}$ is the actual, or estimated, length of the bow overhang.

The interpolation routine entered is a three point Lagrange method, which is also used for the Buoyancy Section.

101 ordinates are determined for absisca at regular intervals along the ship length. For the first three points input, x_0, x_1, x_2, ordinates are determined for those absisca, if any, which lie in the first portion, $x_0 - x_1$. If the absisca lie in the second portion, $x_1 - x_2$, the first value input is dropped, and a fourth value is picked up, x_3. The three points used are now x_1, x_2, x_3 (which are renamed x_0, x_1, x_2 in the programme) and the ordinates required have absisca lying in the new range $x_0 - x_1$, i.e. the leading portion. Each time a new input ordinate is adopted the new set become x_0, x_1, x_2.

This process is repeated until ordinate number 50 is reached, then the process is changed slightly to find ordinates in the second portion of each set. This ensures that ordinates are found up to the extreme fore end.

* * * * * * * * *

A comparison of graph output for A.842 using both Biles Coffin method and Lloyd's method is shown on page 62; Biles Coffin curve is in red and Lloyd's curve in green. Reference will be made to this again in the Bending Moment Section, and in the Load Curve and Shear Force Curve Sections which lead up to it.
Tape 2 (Contd). (This part of Tape 2 not required after the first data run).

If Continuous Weight is to be distributed by Biles Coffin method, complete lines (a), (b), (c), (d) below, otherwise complete (e) from Lloyds tables SR 64/15.

For FIRST data run only:

(a) Weight of Overhang of Stern.

(b) Weight of Overhang of Bow.

(c) L.C.G. of Overhang of Stern, from Stern.

(d) L.C.G. of Overhang of Bow, from Stern.

(e) For FIRST data run only:

<table>
<thead>
<tr>
<th>Stn.</th>
<th>0</th>
<th>0.340</th>
<th>0.495</th>
<th>0.625</th>
<th>0.727</th>
<th>0.815</th>
<th>0.884</th>
<th>0.940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stn. 7</td>
<td>0.976</td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Stn. 15</td>
<td>1.000</td>
<td>0.975</td>
<td>0.903</td>
<td>0.766</td>
<td>0.505</td>
<td>0.140</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
CONTINUOUS WEIGHT CURVE ORDINATES (PROJECTED FORWARD).

(LLOYD'S DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>TON/FT</th>
<th>ORD NO.</th>
<th>TON/FT</th>
<th>ORD NO.</th>
<th>TON/FT</th>
<th>ORD NO.</th>
<th>TON/FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.63</td>
<td>1</td>
<td>1.79</td>
<td>2</td>
<td>2.75</td>
<td>3</td>
<td>3.36</td>
</tr>
<tr>
<td>4</td>
<td>3.71</td>
<td>5</td>
<td>4.04</td>
<td>6</td>
<td>4.36</td>
<td>7</td>
<td>4.67</td>
</tr>
<tr>
<td>8</td>
<td>4.97</td>
<td>9</td>
<td>5.25</td>
<td>10</td>
<td>5.52</td>
<td>11</td>
<td>5.78</td>
</tr>
<tr>
<td>12</td>
<td>6.02</td>
<td>13</td>
<td>6.25</td>
<td>14</td>
<td>6.47</td>
<td>15</td>
<td>6.68</td>
</tr>
<tr>
<td>16</td>
<td>6.88</td>
<td>17</td>
<td>7.06</td>
<td>18</td>
<td>7.24</td>
<td>19</td>
<td>7.42</td>
</tr>
<tr>
<td>20</td>
<td>7.58</td>
<td>21</td>
<td>7.74</td>
<td>22</td>
<td>7.89</td>
<td>23</td>
<td>8.04</td>
</tr>
<tr>
<td>24</td>
<td>8.17</td>
<td>25</td>
<td>8.31</td>
<td>26</td>
<td>8.43</td>
<td>27</td>
<td>8.55</td>
</tr>
<tr>
<td>28</td>
<td>8.66</td>
<td>29</td>
<td>8.76</td>
<td>30</td>
<td>8.85</td>
<td>31</td>
<td>8.92</td>
</tr>
<tr>
<td>32</td>
<td>8.99</td>
<td>33</td>
<td>9.06</td>
<td>34</td>
<td>9.12</td>
<td>35</td>
<td>9.18</td>
</tr>
<tr>
<td>36</td>
<td>9.24</td>
<td>37</td>
<td>9.28</td>
<td>38</td>
<td>9.32</td>
<td>39</td>
<td>9.34</td>
</tr>
<tr>
<td>40</td>
<td>9.35</td>
<td>39</td>
<td>9.35</td>
<td>40</td>
<td>9.36</td>
<td>41</td>
<td>9.36</td>
</tr>
<tr>
<td>44</td>
<td>9.36</td>
<td>41</td>
<td>9.36</td>
<td>42</td>
<td>9.36</td>
<td>43</td>
<td>9.36</td>
</tr>
<tr>
<td>48</td>
<td>9.36</td>
<td>43</td>
<td>9.36</td>
<td>44</td>
<td>9.36</td>
<td>45</td>
<td>9.36</td>
</tr>
<tr>
<td>52</td>
<td>9.36</td>
<td>45</td>
<td>9.36</td>
<td>46</td>
<td>9.36</td>
<td>47</td>
<td>9.36</td>
</tr>
<tr>
<td>56</td>
<td>9.36</td>
<td>47</td>
<td>9.36</td>
<td>48</td>
<td>9.36</td>
<td>49</td>
<td>9.36</td>
</tr>
<tr>
<td>60</td>
<td>9.36</td>
<td>49</td>
<td>9.36</td>
<td>50</td>
<td>9.36</td>
<td>51</td>
<td>9.36</td>
</tr>
<tr>
<td>64</td>
<td>9.36</td>
<td>51</td>
<td>9.36</td>
<td>52</td>
<td>9.36</td>
<td>53</td>
<td>9.36</td>
</tr>
<tr>
<td>68</td>
<td>9.36</td>
<td>53</td>
<td>9.36</td>
<td>54</td>
<td>9.36</td>
<td>55</td>
<td>9.36</td>
</tr>
<tr>
<td>72</td>
<td>9.35</td>
<td>55</td>
<td>9.36</td>
<td>56</td>
<td>9.36</td>
<td>57</td>
<td>9.36</td>
</tr>
<tr>
<td>76</td>
<td>9.15</td>
<td>57</td>
<td>9.36</td>
<td>58</td>
<td>9.36</td>
<td>59</td>
<td>9.36</td>
</tr>
<tr>
<td>80</td>
<td>8.67</td>
<td>59</td>
<td>9.36</td>
<td>60</td>
<td>9.36</td>
<td>61</td>
<td>9.36</td>
</tr>
<tr>
<td>84</td>
<td>7.81</td>
<td>61</td>
<td>9.36</td>
<td>62</td>
<td>9.36</td>
<td>63</td>
<td>9.36</td>
</tr>
<tr>
<td>88</td>
<td>6.44</td>
<td>63</td>
<td>9.36</td>
<td>64</td>
<td>9.36</td>
<td>65</td>
<td>9.36</td>
</tr>
<tr>
<td>96</td>
<td>1.95</td>
<td>67</td>
<td>9.36</td>
<td>68</td>
<td>9.36</td>
<td>69</td>
<td>9.36</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td>69</td>
<td>9.36</td>
<td>70</td>
<td>9.36</td>
<td>71</td>
<td>9.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
<td>9.36</td>
<td>72</td>
<td>9.36</td>
<td>73</td>
<td>9.36</td>
</tr>
</tbody>
</table>

Table 8.
CONTINUOUS WEIGHT CURVE ORDINATES (PROJECTED FORWARD).

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 0
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH —— 1. CM = 20 FT
VERTICAL SCALE OF GRAPH —— UNITS/CM:— 0.5
As mentioned on page (\textit{v}) of the introduction, and remembering that the programme is to cater for the builder in the initial design stages, when end values may not be decided upon, Lloyd's suggest that the areas aft of their Station No. 0 and forward of Station No. 20 may be taken as \(0.01133 \times m \times L_{BP}\), and \(0.00175 \times m \times L_{BP}\) respectively, i.e. a total end area of \(0.01308 \times m \times L_{BP}\).

Again, Lloyd's indicate that the overhangs of stern and bow may be taken as \(0.05 \times L_{BP}\) and \(0.025 \times L_{BP}\) respectively. The end areas calculated on these latter measures would be:

- Stern \(\frac{1}{2} \times 0.05 \times L_{BP} \times a_0\).
- Bow \(\frac{1}{2} \times 0.025 \times L_{BP} \times a_{20}\).

However, if we take the true lengths of the overhangs, if known we have the end areas equal to:

- Stern \(\frac{1}{2} \times L_1 \times a_0\).
- Bow \(\frac{1}{2} \times L_2 \times a_{20}\).

The effect on \('m'\) using these various values was investigated.

The following table of values has been drawn up, using these various formulae, for a number of different ships from four different shipyards on the River Wear. It will be noticed that the differences are of the order 0.04 to 0.05 ton/ft. for cont. wts. of 4000-5000 tons.
1. **YARD A.**

<table>
<thead>
<tr>
<th>SHIP NO.</th>
<th>"M" Values as calculated from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Lloyds Areas)</td>
</tr>
<tr>
<td>842</td>
<td>9.31</td>
</tr>
<tr>
<td>844</td>
<td>8.49</td>
</tr>
<tr>
<td>849</td>
<td>7.67</td>
</tr>
<tr>
<td>850</td>
<td>8.01</td>
</tr>
<tr>
<td>SD.14</td>
<td>6.94</td>
</tr>
</tbody>
</table>

2. **YARD B.**

| 408 | 7.19 | 7.22 | 7.24 |
| 409 | 7.61 | 7.64 | 7.67 |

3. **YARD C.**

| 721 | 15.11 | 15.16 | 15.21 |

4. **YARD D.**

873	7.29	7.32	7.33
837	4.81	4.83	4.85
843	6.29	6.31	6.31
849	6.14	6.16	6.16
850	6.17	6.19	6.19
889	5.52	5.54	5.54
Using \(0.01133 \times L_{BP} \times m\) as the weight of overhang of stern, and \(0.00175 \times L_{BP} \times m\) as that of the bow section, and since Lloyd's measures \(a_0\) and \(a_{20}\) are fixed, we can find the equivalent lengths of stern and bow from the two triangular ends. Calling the lengths \(X_1\) and \(X_2\) respectively we have, for ship No. A.842.

Stern:

\[
\frac{X_1 \times a_0 \times m}{2} = 0.01133 \times L_{BP} \times m
\]

\[
X_1 = \frac{0.02266 \times L_{BP}}{a_0} \quad \text{where} \quad L_{BP} = 580 \text{ ft.}, \quad \text{and} \quad a_0 = 0.34.
\]

\[
X_1 = \frac{0.02266 \times 580}{0.34} = 38.66 \text{ ft.}
\]

In fact, the length \(X_1\) is 23 ft.

Bow:

\[
\frac{X_2 \times a_{20} \times m}{2} = 0.00175 \times L_{BP} \times m
\]

\[
X_2 = \frac{0.00175 \times 580 \times 2}{0.14} = 14.5 \text{ ft.}
\]

In fact, \(X_2\) is 14 ft.
Again, taking Lloyd's suggestion for the length of the overhangs as $0.05 \times L_{BP}$, and $0.025 \times L_{BP}$ for the stern and bow, we have a stern overhang of 29 ft., and a bow overhang of 14.5 ft., against actual length of 23 ft. and 14 ft.

A check on the results for a number of ships, using these measures showed possible wide discrepancies in implied lengths of sterns (see Table 10). It was decided, therefore, not to use the recommended values, but to use estimated values (which are quite likely to be very near the actual final value). It was felt that such estimations would be much nearer the mark in each individual case and give a distribution more in line with that of the final plans. The last column in table 10 indicates the expected or estimated lengths, which in these instances are also the final actual lengths.
<table>
<thead>
<tr>
<th>Ship</th>
<th>End Areas</th>
<th></th>
<th></th>
<th>Actual (or estimated) Lengths</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stern</td>
<td>Bow</td>
<td>Stern</td>
<td>Bow</td>
<td>Stern</td>
</tr>
<tr>
<td>A. 842</td>
<td>38.655</td>
<td>14.50</td>
<td>29.00</td>
<td>14.50</td>
<td>23.00</td>
</tr>
<tr>
<td>A. 844</td>
<td>38.655</td>
<td>14.50</td>
<td>29.00</td>
<td>14.50</td>
<td>23.00</td>
</tr>
<tr>
<td>A. 849</td>
<td>37.322</td>
<td>14.00</td>
<td>28.00</td>
<td>14.00</td>
<td>22.00</td>
</tr>
<tr>
<td>A. 850</td>
<td>36.656</td>
<td>13.75</td>
<td>27.50</td>
<td>13.75</td>
<td>22.00</td>
</tr>
<tr>
<td>SD. 14</td>
<td>29.325</td>
<td>11.00</td>
<td>22.00</td>
<td>11.00</td>
<td>12.50</td>
</tr>
<tr>
<td>B. 408</td>
<td>30.324</td>
<td>11.375</td>
<td>22.750</td>
<td>11.375</td>
<td>15.85</td>
</tr>
<tr>
<td>B. 409</td>
<td>32.257</td>
<td>12.100</td>
<td>24.200</td>
<td>12.100</td>
<td>16.73</td>
</tr>
<tr>
<td>C. 721</td>
<td>50.652</td>
<td>18.865</td>
<td>38.00</td>
<td>19.000</td>
<td>27.36</td>
</tr>
<tr>
<td>D. 837</td>
<td>27.992</td>
<td>10.500</td>
<td>21.000</td>
<td>10.500</td>
<td>13.00</td>
</tr>
<tr>
<td>D. 843</td>
<td>33.324</td>
<td>12.500</td>
<td>25.000</td>
<td>12.500</td>
<td>21.59</td>
</tr>
<tr>
<td>D. 849</td>
<td>32.657</td>
<td>12.250</td>
<td>24.500</td>
<td>12.250</td>
<td>21.00</td>
</tr>
<tr>
<td>D. 850</td>
<td>31.991</td>
<td>12.000</td>
<td>24.000</td>
<td>12.000</td>
<td>22.79</td>
</tr>
<tr>
<td>D. 889</td>
<td>29.991</td>
<td>11.250</td>
<td>22.500</td>
<td>11.250</td>
<td>20.42</td>
</tr>
</tbody>
</table>
TOTAL WEIGHT SECTION

2

Set weight sum to zero

Sum Local wt. & Cont. wt. ordinates respectively, and form sum total.

Computed total in error by more than 0.1% No

Print resultant computed weight, with error & percentage error.

WAIT

(to obtain provisional L.G.C.)

Computed total in error by more than 1% No

Print resultant computed position with error, and percentage error.

WAIT

Form trapezium to be added algebraically to base of weight curve, to "swing the base" for correct weight and L.C.G.

Calculate ords. of this trapezium, and correct the weight curve ordinates

Total weight table reqd. No

Print table

Form sum total of ordinates

(Print Total Weight and L.C.G.)

Total weight table reqd. No

Print graph tape

Sect.
PART 3

LOCAL WEIGHTS AND CONTINUOUS WEIGHT

COMBINED RESULTS

Ordinate values from the previous two parts of the programme (YR - local weights; VR - continuous weight) are now respectively summed in order, to produce Total Weight Curve ordinates, for all ordinates 0 - 99. (F. Pt. variables YR are used again for these summed ordinates). Calculation of total weight under this curve (which is computed as the product of the sum of the ordinates and their distance apart) yields a result which may differ slightly from the real displacement. Calculation of the longitudinal L.C.G. may differ very slightly from the actual value read in, especially if Biles Coffin method has been used. Before these Total Weight Curve ordinates are printed out, therefore, they are amended to ensure the correct positioning of the L.C.G., and to give a correct (or very nearly so) displacement. This is done by 'Swinging the Base'. If the weight value before swinging is in error by more than 0.1% it is output and the programme WAITS. A similar indication is made if the L.C.G. is out by 1%. The programme may be continued if so desired.

Swinging the Base

As mentioned above, the weight ordinates are summed and multiplied by the common interval (L6). This computes the total weight under the curve.
The longitudinal moment of weight about the stern is found by multiplying each ordinate in turn by its (forward) common interval (L6) and again by the distance from the stern to the centre of that common interval, and summing. These computed figures must be corrected, and this is done by raising or lowering, and tilting the base of the weight curve. This combined movement of the base line adjusts the weight (for each ordinate) and also adjusts the position of the L.C.G.

See below for method and formulae applied.

We now have in store the original weight ordinates and the corrections to be applied. These are respectively summed algebraically to obtain the corrected weight curve ordinates which are now printed out under the title:-

TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD)

Ord. Weight Ord. Weight Ord. Weight Ord. Weight

See page 72 for the complete table of results.
After the 100 ordinate values are printed they are again summed (using F.Pt. variable S again) and their moments about the stern again calculated. From these two, the position of the L.C.G. is determined by division, and printed out together with the total weight. This allows checking with the read-in values of weight and L.C.G.

Method Used

Fig. 18.

W_1 is the difference between the true and the computed weights.

(W_1 in these notes is programmed as $W32$).

i.e. MNOP is the trapezium to be added (algebraically) to the base of
the original weight curve. \(a \) and \(b \) are found using the formulae:

\[
a = \frac{Wl}{L^2} (6y - 2L), \quad b = \frac{2(Wl)}{L} - a.
\]

where \(a \) is the smaller end.

Note: \(y \) is always measured from the larger end, and therefore always less than \(L/2 \). In any given case, \(a \) may equal \(b \). The programme provides for the aft ordinate of the trapezium to be called \(D \) and the forward end \(A \) in all cases, the difference giving a positive or negative slope as the case may be.

Each condition with its resultant corrective effect is listed below, where \(S \) is the computed weight and \(Wl \) is the correction to be added. (i.e. \(W = Wl + S \)).

In all cases, values of \(DR \) obtained below are averaged for each pair of readings in turn, since values on the weight curve, etc., are projected forward.

Case I \(Wl \) positive. Both \(D \) and \(A \) positive. Also \((D - A) \) positive.

\[
B = D - A. \quad \text{(These are also the F.Pt. variables used).}
\]

\[
B = B/100 \quad \text{(B is now the step per division length - L6).}
\]

Fig. 19 shows \((D - A) \) positive, i.e. +ve slope for side \(OP \). Any ordinate \(DR \) is now given by

\[
DR = D - (R \times B) \quad \text{where R takes all values 0 to 99 in turn.}
\]
DR decreases with increasing R. \(D100 = A \).

\[\text{LOG moves aft; weight increases, since } \omega_i > 0. \]

Fig. 19.

In fig. (19), fig. (20), etc., \(S \) is the computed sum of weights and the trapezium MNOP represents the weight \(W_i \) to be 'added'.

Case II \(W_i \) positive. Both D and A positive. But \((D - A)\) negative.

\(B \) is again the step per division length - \(L6 \).

Fig. (20) shows \((D - A)\) negative. i.e. -ve slope for side OP.

Any ordinate is now given by

\[\text{DR} = D - (R \times B), \]

where \(B \) is -ve., so that DR increases with increasing R.
L.C.G. moves forward; weight increases since W_1 +ve.

Fig. 20.

Case III W_1 negative. Both D and A negative. Also $(D - A)$ -ve. B (i.e. step division) negative. Fig. (21) shows this.

Any ordinate is now given by

$$DR = D - (R \times B),$$

where B is -ve, so that DR is decreasing numerically (or becoming less negative) with increasing R.

L.C.G. moves forward; weight decreases since W_1 -ve.

Fig. 21.
Case IV \(W_1 \) negative. Both \(D \) and \(A \) negative. But \((D - A) \) positive. \(B \) is now positive. Fig. (22):

Any ordinate is now given by

\[DR = D - (R \times B), \]

so that \(DR \) is increasing numerically (negatively) with increasing \(R \).

\[\text{LCG moves aft;} \text{ weight decreases since } W_1 \text{ -ve.} \]

Fig. 22.

Case V \(D \) computed negative \(A = -D \) if \(W_1 = 0 \).
\(A \) computed positive

\((D - A) \) negative in this case. OP has -ve slope; i.e. \(B \) -ve.

Any ordinate \(DR \) is given by

\[DR = D - (R \times B), \]

so that \(DR \) is becoming less negative with increasing \(R \).

\[\text{LCG moves forward.} \]

Fig. 23.
(i) Weight unchanged if $A = -D$.

(ii) If W_l -ve, then $|D| > |A|$.

(iii) If W_l positive, then $|D|$ less than $|A|$.

Case VI

D computed positive) $A = -D$ if $W_l = 0$.

A computed negative) D computed positive in this case. OP has positive slope. i.e. B +ve.

Any ordinate DR is given by

$$DR = D - (R \times B),$$

so that DR decreases with increasing R.

Fig. 24.

(i) Weight unchanged if $A = -D$. (ii) If W_l negative, then $|A| > |D|$. (iii) If W_l positive, then $|A|$ less than $|D|$.
Note: In cases (v) and (vi), if the computed weight and the actual weight are the same, but the L.C.G. is incorrect, then A and D are equal in magnitude, but opposite in sign.

Page 72 shows the tabulated results for A842 (using Lloyd's method for the distribution of the Continuous material), and page 73 contains the corresponding graph output, in green.

Superimposed on page 73 is the graph output using Biles Coffin method for the Continuous Weight. This graph is shown in red, and the corresponding table is on page 72(a).
RESULTANT COMPUTED TOTAL WEIGHT = 21358.56 TONS
ERROR = 39.91 TONS
% ERROR = 0.19

TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD)
(BILES COFFIN DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.78</td>
<td>1</td>
<td>2.18</td>
<td>2</td>
<td>4.16</td>
<td>3</td>
<td>8.52</td>
</tr>
<tr>
<td>4</td>
<td>18.65</td>
<td>5</td>
<td>29.07</td>
<td>6</td>
<td>34.84</td>
<td>7</td>
<td>13.74</td>
</tr>
<tr>
<td>8</td>
<td>16.71</td>
<td>9</td>
<td>18.88</td>
<td>10</td>
<td>20.93</td>
<td>11</td>
<td>18.51</td>
</tr>
<tr>
<td>12</td>
<td>18.53</td>
<td>13</td>
<td>29.29</td>
<td>14</td>
<td>36.48</td>
<td>15</td>
<td>36.08</td>
</tr>
<tr>
<td>16</td>
<td>34.69</td>
<td>17</td>
<td>34.85</td>
<td>18</td>
<td>24.85</td>
<td>19</td>
<td>22.35</td>
</tr>
<tr>
<td>20</td>
<td>27.41</td>
<td>21</td>
<td>19.89</td>
<td>22</td>
<td>20.88</td>
<td>23</td>
<td>21.20</td>
</tr>
<tr>
<td>28</td>
<td>22.61</td>
<td>29</td>
<td>23.77</td>
<td>30</td>
<td>35.31</td>
<td>31</td>
<td>26.05</td>
</tr>
<tr>
<td>32</td>
<td>25.12</td>
<td>33</td>
<td>26.00</td>
<td>34</td>
<td>26.40</td>
<td>35</td>
<td>26.73</td>
</tr>
<tr>
<td>36</td>
<td>26.97</td>
<td>37</td>
<td>27.21</td>
<td>38</td>
<td>27.33</td>
<td>39</td>
<td>27.24</td>
</tr>
<tr>
<td>40</td>
<td>27.48</td>
<td>41</td>
<td>118.69</td>
<td>42</td>
<td>121.53</td>
<td>43</td>
<td>120.99</td>
</tr>
<tr>
<td>44</td>
<td>120.02</td>
<td>45</td>
<td>131.38</td>
<td>46</td>
<td>38.87</td>
<td>47</td>
<td>30.39</td>
</tr>
<tr>
<td>48</td>
<td>29.63</td>
<td>49</td>
<td>30.03</td>
<td>50</td>
<td>30.09</td>
<td>51</td>
<td>30.15</td>
</tr>
<tr>
<td>52</td>
<td>30.22</td>
<td>53</td>
<td>30.28</td>
<td>54</td>
<td>30.11</td>
<td>55</td>
<td>29.91</td>
</tr>
<tr>
<td>56</td>
<td>37.44</td>
<td>57</td>
<td>29.47</td>
<td>58</td>
<td>29.68</td>
<td>59</td>
<td>29.98</td>
</tr>
<tr>
<td>60</td>
<td>29.99</td>
<td>61</td>
<td>30.00</td>
<td>62</td>
<td>30.02</td>
<td>63</td>
<td>30.03</td>
</tr>
<tr>
<td>64</td>
<td>29.79</td>
<td>65</td>
<td>30.29</td>
<td>66</td>
<td>33.74</td>
<td>67</td>
<td>125.27</td>
</tr>
<tr>
<td>68</td>
<td>121.14</td>
<td>69</td>
<td>120.93</td>
<td>70</td>
<td>120.19</td>
<td>71</td>
<td>130.76</td>
</tr>
<tr>
<td>72</td>
<td>30.64</td>
<td>73</td>
<td>30.01</td>
<td>74</td>
<td>29.25</td>
<td>75</td>
<td>28.49</td>
</tr>
<tr>
<td>76</td>
<td>28.54</td>
<td>77</td>
<td>27.95</td>
<td>78</td>
<td>27.32</td>
<td>79</td>
<td>26.70</td>
</tr>
<tr>
<td>80</td>
<td>26.07</td>
<td>81</td>
<td>27.07</td>
<td>82</td>
<td>35.53</td>
<td>83</td>
<td>24.04</td>
</tr>
<tr>
<td>84</td>
<td>22.77</td>
<td>85</td>
<td>21.90</td>
<td>86</td>
<td>21.04</td>
<td>87</td>
<td>20.17</td>
</tr>
<tr>
<td>88</td>
<td>19.31</td>
<td>89</td>
<td>18.32</td>
<td>90</td>
<td>12.71</td>
<td>91</td>
<td>12.07</td>
</tr>
<tr>
<td>92</td>
<td>24.65</td>
<td>93</td>
<td>39.58</td>
<td>94</td>
<td>25.35</td>
<td>95</td>
<td>19.80</td>
</tr>
<tr>
<td>96</td>
<td>14.00</td>
<td>97</td>
<td>7.04</td>
<td>98</td>
<td>3.19</td>
<td>99</td>
<td>2.48</td>
</tr>
</tbody>
</table>

WEIGHT L.C.G. FWD. A.E.

21318.65 321.79

Table 11(a).
TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD)
(LLOYD'S DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>WEIGHT (TON/FT)</th>
<th>ORD NO.</th>
<th>WEIGHT (TON/FT)</th>
<th>ORD NO.</th>
<th>WEIGHT (TON/FT)</th>
<th>ORD NO.</th>
<th>WEIGHT (TON/FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.69</td>
<td>1</td>
<td>2.01</td>
<td>2</td>
<td>3.72</td>
<td>3</td>
<td>7.48</td>
</tr>
<tr>
<td>4</td>
<td>17.72</td>
<td>5</td>
<td>28.12</td>
<td>6</td>
<td>34.06</td>
<td>7</td>
<td>13.12</td>
</tr>
<tr>
<td>8</td>
<td>18.24</td>
<td>9</td>
<td>18.54</td>
<td>10</td>
<td>20.71</td>
<td>11</td>
<td>18.39</td>
</tr>
<tr>
<td>12</td>
<td>18.51</td>
<td>13</td>
<td>29.35</td>
<td>14</td>
<td>36.60</td>
<td>15</td>
<td>36.26</td>
</tr>
<tr>
<td>16</td>
<td>34.91</td>
<td>17</td>
<td>35.11</td>
<td>18</td>
<td>25.15</td>
<td>19</td>
<td>22.67</td>
</tr>
<tr>
<td>20</td>
<td>27.74</td>
<td>21</td>
<td>20.22</td>
<td>22</td>
<td>21.21</td>
<td>23</td>
<td>21.53</td>
</tr>
<tr>
<td>28</td>
<td>22.80</td>
<td>29</td>
<td>23.92</td>
<td>30</td>
<td>35.39</td>
<td>31</td>
<td>26.06</td>
</tr>
<tr>
<td>32</td>
<td>25.05</td>
<td>33</td>
<td>25.84</td>
<td>34</td>
<td>26.15</td>
<td>35</td>
<td>26.46</td>
</tr>
<tr>
<td>36</td>
<td>26.76</td>
<td>37</td>
<td>27.05</td>
<td>38</td>
<td>27.21</td>
<td>39</td>
<td>27.14</td>
</tr>
<tr>
<td>40</td>
<td>27.39</td>
<td>41</td>
<td>118.61</td>
<td>42</td>
<td>121.45</td>
<td>43</td>
<td>120.92</td>
</tr>
<tr>
<td>44</td>
<td>119.95</td>
<td>45</td>
<td>131.32</td>
<td>46</td>
<td>38.81</td>
<td>47</td>
<td>30.34</td>
</tr>
<tr>
<td>48</td>
<td>29.58</td>
<td>49</td>
<td>29.98</td>
<td>50</td>
<td>30.05</td>
<td>51</td>
<td>30.11</td>
</tr>
<tr>
<td>52</td>
<td>30.18</td>
<td>53</td>
<td>30.24</td>
<td>54</td>
<td>30.08</td>
<td>55</td>
<td>29.88</td>
</tr>
<tr>
<td>56</td>
<td>37.41</td>
<td>57</td>
<td>29.45</td>
<td>58</td>
<td>29.67</td>
<td>59</td>
<td>29.97</td>
</tr>
<tr>
<td>60</td>
<td>29.98</td>
<td>61</td>
<td>30.00</td>
<td>62</td>
<td>30.01</td>
<td>63</td>
<td>30.03</td>
</tr>
<tr>
<td>64</td>
<td>29.80</td>
<td>65</td>
<td>30.29</td>
<td>66</td>
<td>33.78</td>
<td>67</td>
<td>125.45</td>
</tr>
<tr>
<td>68</td>
<td>121.47</td>
<td>69</td>
<td>121.41</td>
<td>70</td>
<td>120.82</td>
<td>71</td>
<td>131.54</td>
</tr>
<tr>
<td>72</td>
<td>31.56</td>
<td>73</td>
<td>31.05</td>
<td>74</td>
<td>30.40</td>
<td>75</td>
<td>29.73</td>
</tr>
<tr>
<td>76</td>
<td>29.87</td>
<td>77</td>
<td>29.34</td>
<td>78</td>
<td>28.75</td>
<td>79</td>
<td>28.14</td>
</tr>
<tr>
<td>80</td>
<td>27.51</td>
<td>81</td>
<td>28.50</td>
<td>82</td>
<td>36.91</td>
<td>83</td>
<td>25.34</td>
</tr>
<tr>
<td>84</td>
<td>23.96</td>
<td>85</td>
<td>22.96</td>
<td>86</td>
<td>21.93</td>
<td>87</td>
<td>20.86</td>
</tr>
<tr>
<td>88</td>
<td>19.73</td>
<td>89</td>
<td>18.44</td>
<td>90</td>
<td>12.50</td>
<td>91</td>
<td>11.48</td>
</tr>
<tr>
<td>92</td>
<td>23.66</td>
<td>93</td>
<td>38.16</td>
<td>94</td>
<td>23.49</td>
<td>95</td>
<td>17.46</td>
</tr>
<tr>
<td>96</td>
<td>11.15</td>
<td>97</td>
<td>3.77</td>
<td>98</td>
<td>0.96</td>
<td>99</td>
<td>0.29</td>
</tr>
</tbody>
</table>

WEIGHT L.C.G. FWD. A.F.E.
21318.65 321.79

Table 11.
TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD)

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 0
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH --- 1 CM = 20 FT
VERTICAL SCALE OF GRAPH --- UNITS/CM: - 5.0
TOTAL WEIGHT ORDINATES (PROJECTED FORWARD)

HORIZONTAL SCALE : 1 CM = 20 FT.

VERTICAL SCALE : 1 CM. = 5 TON/FT.

Note: Results using Lloyd’s method — green.
Results using Biles Coffin — red.
- 74(a) -
FLOW CHART (Programme Page 14)

(Section 4).

COMPUTATION OF TRIM, AND DRAUGHT AT
STERN.

Sect. 3

Read Mean Draught, MCT 1°
LGB, LCF, Wavelength.

Read whether Sagging or Hogging, and
position of Crest or Trough.

Calculate Trim in feet, and
draught at the stern.

Sect. 5
PART 4

COMPUTATION OF TRIM AND DRAUGHT AT STERN

Computing Trim

(Note: the vessel trims about its L.C.F. at the draught considered).

Consider the situation where the L.C.G. and L.C.B. are not coincident. There will be a moment tending to tilt (known as trimming) the ship lengthwise about the L.C.F. Fig. 25. Let the distance between the L.C.G. and L.C.B. be \(d \), and let the displacement of the vessel be \(\Delta \). Then the moment above will be \(\Delta \cdot d \). This will trim the ship until the two centres are coincident, and there will be some measure (in inches) by which the vessel at the after-perpendicular is more (or less) submerged than at the fore-perpendicular. Fig. 26. This is known as the trim in inches. Now the moment to change this trim by 1 inch is known as the MCT 1". Dividing the above moment by \(12 \times \text{MCT 1"} \) we obtain the trim in feet over the \(L_{BP} \).

\[
i.e. \text{Trim (in feet)} = \frac{\Delta \cdot d}{12 \times \text{MCT 1"}}
\]

Further division by \(L_{BP} \) gives the trim in ft. per foot, and since it trims about the L.C.F. we find:

\[
\text{Draught at stern} = \text{Mean Draught} + \frac{\left(\text{Trim x L.C.F. fwd. of A.E} \right)}{\text{Length}_{BP}}
\]

The draught at any position along the length of the vessel is easily
determined from its distance from the stern, in conjunction with the trim per ft.

Fig. 25.

Fig. 26.
FLOW CHART

(SEction 5).

SECTIONAL AREAS

FOLD

DOWN
FLOW CHART
(Section 5).
CALCULATION AND STORAGE OF IMMERSED
SECTIONAL AREAS.

Read waterline spacing:
N1 full pairs, N2 half pairs

Set \(N = N1 + N2 \)

Determine No. of waterline pairs and calculate spacings for every pair up to main deck

Determine number of waterline pairs and calculate spacings for every pair up to main deck.

\(N2 = 0 \)

Calculate spacings for further pairs above main deck

Calculate heights to each waterline up to \(Z_{\text{max}} \)

Set Section No. (1) to zero

Read Section number

Readings all zero

Increase Section Count by 1

Read \(Z_{\text{min}} \) and \(Z_{\text{max}} \)
N3 half widths, and half-width at \(Z_{\text{max}} \)

Set waterline count (1), and base area (1) both zero

Yes

Read \(y \) at \(Z_{\text{mid}} \)

Increase waterline count (1) by 1

Yes

Set Area (1) to zero

No

Main less than \(Z(2i) \)

Read data run

Yes

No

Set Section No. (j) to zero

Yes
PART 5

CALCULATION AND STORAGE OF IMMERSED SECTIONAL AREAS
TO EACH EVEN WATERLINE

This portion of the programme is an adaptation of Elliott Application programme LSB 3A. LSB 3A was sent to the computing laboratory of Sunderland Technical College in June 1963, for comments, and possible improvements. The writer amended the programme to produce more accurate results from lower waterline data, and the small portion of the programme affected is now used as a basis in this Longitudinal Strength programme to compute and store immersed sectional areas to each even waterline.

Process Used

The ship is divided as follows: Horizontal waterlines are taken, spaced at distance 'h' apart, and arranged so that an even number of spaces \((2n)\) from the base reaches either to the upper deck at side or to a point just below the upper deck, at its lowest point.

\[(2n)h \leq \text{Height to main deck} < (2n + 1)h. \]

The two lowest divisions may be subdivided in two ways, by setting a control constant, according to the shape of the bottom of the ship. For ships with flat (horizontal) bottoms, the waterlines should be, from the base upwards; 4 spacings of \(h/4\) and 2 spacings of \(h/2\). The alternative is 4 spacings of \(h/8\), 2 of \(h/4\) and 2 of \(h/2\).
Above the \((2n)\)th waterline further waterlines are taken with spacings of \(h/2\) until the maximum height of the ship is included in the last pair. See Fig. 27(a).

All waterlines (lettered \(i\)) are now grouped in pairs lettered \(g\) starting from the base line. We have, therefore:

1 pair (subdivided as above),

\(N_1\) pairs (of width \(2h\)) taking us up to the upper deck at side,

\(N_2\) pairs (of width \(h\)) taking us to the maximum height of the vessel.

The maximum value of \(q\) for the whole ship is \(N\).

<table>
<thead>
<tr>
<th>Spacings of waterlines</th>
<th>Waterline number, (i)</th>
<th>Group number, (q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((from i = 0 to i = 2N))</td>
<td>((from base upwards))</td>
<td>((from base upwards))</td>
</tr>
</tbody>
</table>

Method 1. \(N = N_1 + N_2 + 3\)

- \(h/4\) 1, 2, 3, 4, 1, 2.
- \(h/2\) 5, 6. 3
- \(h\) 7, 8 \((2N_1+6)\) 4, 5 \(\ldots\) \((N_1+3)\)
- \(h/2\) \((2N_1+7),(2N_1+8)\) \(...\) \(2N\) \((N_1+4)\) \(...\) \(N\)

Method 2. \(N = N_1 + N_2 + 4\)

- \(h/8\) 1, 2, 3, 4. 1, 2.
- \(h/4\) 5, 6. 3
- \(h/2\) 7, 8. 4
- \(h\) 9, 10 \((2N_1+8)\) 5, 6 \(\ldots\) \((N_1+4)\)
- \(h/2\) \((2N_1+9),(2N_1+10)\) \(...\) \(2N\) \((N_1+5),(N_1+6)\) \(...\) \(N\)
Values of h, $N1$, $N2$ and the control for choice of Method 1, or Method 2 ($Q1$) are read in. Using Vary loops, heights to all waterlines (i values) are computed, using F.Pt. variable Z, and areas to all even waterlines computed and stored. $O(25J + P)$, ($P = q$), where J takes values 0 - 30 in the Loop.

The calculations are performed as follows:--

The shape of the vessel is defined by the ordinate g_{xz}, (the half width) given for each waterline (i). The integrals are calculated using Simpson's Rule and trapeziums. At the upper and lower edges, however, a slight variation is necessary. The half-width g_{max} must be given at the value of z_{max}. It is then assumed that the section curve is replaced by a straight line, and the area is obtained by treating the top part as a trapezium between the limits z_{q} and z_{max} ($z_{q} < z_{max} < z_{q+1}$). At the lower edge, for $z_{min} > 0$, a half width g_{mid} is required such that

$$g_{mid} = g \left(\frac{z_{q} + z_{min}}{2} \right)$$

where

$$z_{q} - 1 < z_{min} < z_{q}$$

(See fig. 27b)

The integration of this portion is made between the limits z_{min} and z_{q}.

The areas are calculated according to the formulae:--
For a given q,

$$0(25J + P) =$$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_{\text{min}} \geq z_q$</td>
<td>0</td>
</tr>
<tr>
<td>$z_{q-1} < z_{\text{min}} < z_q$</td>
<td>$2 \left[\frac{1}{3} \frac{z_q - z_{\text{min}}}{2} \left(4y_{\text{mid}} + y_q \right) \right]$</td>
</tr>
<tr>
<td>$z_{\text{min}} < z_{q-1}$ and $z_q \leq z_{\text{max}}$</td>
<td>$0_{q-1} + 2 \left[\frac{1}{3} \delta z_i \left(y_{q-1} + 4y_{q-\frac{1}{2}} + y_q \right) \right]$</td>
</tr>
<tr>
<td>$z_q < z_{\text{max}} < z_{q+1}$</td>
<td>$0_q + \left[2(z_{\text{max}} - z_q) \left(\frac{y_{\text{max}} + y_q}{2} \right) \right]$</td>
</tr>
</tbody>
</table>

Areas are thus calculated to every even waterline for every section, where P is the waterline count in pairs.

E.g. $0(25J + P)$ where J is 3 and P is 7 is the area at Section 3 up to $q = 7$ (or $i = 14$).

(The use of P in these notes is purely for clarity, but the programme, in fact, overwrites I as the count variable for the waterline pairs).
DRAUGHTS AND IMMERSION SECTIONAL AREAS

Section 5

Reset Section no. (J) to zero

Read Sect. no.

Heading all zero

Set waterline count (J) and waveheight to zero

Yes

Set area to zero

No

Wave length = 0

Calculate cosine of angle corresponding to X-position of section

Sagging

Yes

Reverse sign of cosine

No

Calculate ordinate increase due to wave height

Calculate trim at this section and total draught

Set area to max. from Sect. 5 results for initial condition in Subr. 30

30

Store calculated submerged area for Sect. J as WJ

Wave length = 0

Yes

Sagging

No

Increase draught by 4 ft.

Decrease draught by 4 ft.

Set area to max. from Sect. 5 results for initial condition in Subr. 30

30 Sec. 30 has been dealt with

Yes

Sect. 7

Increase Section Count by 1
PART 6
DETERMINATION OF DRAUGHTS AND CONSEQUENT IMMERSED SECTIONAL AREAS AT EACH STATION

Stations are taken in order, and the calculation for each station completed before dealing with the next station.

The draught to the still water level is determined (so far as Trim is concerned) as mentioned in Part 4. The programme provides, however, for the vessel to be in a sine wave, and the amended draughts to the water surface are now determined if this condition applies. For each station in turn, the draught is found by adding to the still water draught the corresponding ordinate of the sine wave.

The appropriate ordinate for a particular distance \(x \) from the stern is given by the formula:

\[
\text{Ordinate} = \pm a \cos \left(\frac{2\pi(x - x')}{\lambda} \right)
\]

where \(a \) is the amplitude and \(x' \) the distance from the rearmost point of stern to the position of the first trough or crest.

Wave height, \(a \), length, \(\lambda \), and position relative to the ship, \(x' \), may be varied as required, but in these following examples, only two conditions have been taken, i.e. wavelength equal to \(L_{BP} \) and (i) first wave crest at the A.P., and (ii) first wave trough at the A.P.

Referring to Fig. 28 (a) and (b), and taking the wavelength to be \(L_{BP} \) the angular measure \(\theta^\circ \) at any distance \(x \) is \(\frac{2\pi(x - L_{BP})}{L_{BP}} \).
Since zero angle corresponds to the position of the crest (if in 'sagging' condition, or the trough in the 'hogging' condition), then in this example zero angle is at the A.P. The angle corresponding to the extreme stern will be found from the following steps:

\[\chi = XJ - L_1 \text{ i.e. } 0 - L_1 \text{ or } -L_1 \]

Therefore \[\theta^C = \frac{2\pi(-L_1)}{\lambda} \]

and the ordinate to be added to the still-water height is

\[\frac{2\pi(-L_1)}{\lambda} \cos \frac{\chi}{(\text{Amplitude})} \]

Similarly the ordinate at any position XJ is given by

\[\frac{2\pi(XJ - L_1)}{\lambda} \cos \frac{\chi}{(\text{Amplitude})} \]

The sectional area cut off at this total draught is calculated for each station respectively, and will be understood from fig. 29. Submerged areas are stored using F.Pt. variable WJ, where J is the station number.

Again, where a sine wave is considered, and not just the still-water line, the above procedure (for finding immersed areas) is repeated for positions of the wave \(\pm \frac{1}{4} \) ft. from the basic position (for use in Muckle's method) the plus sign being operative where the 'sagging' condition is being considered, and the minus where we have 'hogging'. Such areas are stored as F.Pt. variable UJ.
We are now ready to calculate the volume displaced and where the sine wave is encountered, the first and second moment functions, for use in Muckle's method. The volume of displacement is very simply found at each station, by considering unit length at each station. The immersed area is now a measure of this volume and division by 35 gives the Buoyancy in ton/ft. at the point. This is repeated at each of the 31 stations, and where there is no sine wave, the interpolation routine is entered to obtain the buoyancy values at each one-hundredth of the ships length.

Sagging Condition

![Fig. 28 (a)](image)

Hogging Condition

![Fig. 28 (b)](image)
Three point Lagrange interpolation is used. The first and last of the 31 stations which have a reading greater than zero are found, and these are numbered I and J. The interpolation is then carried out between stations \((I - 1)\) and \((J + 1)\).

After interpolation the total displacement is found (using Simpson's method). The value obtained may differ slightly from the known total buoyancy and if so, the calculated value is adjusted by adding, algebraically, small equal amounts to each ordinate. This may still leave the calculated L.C.G. in error (marginally) so ordinates are adjusted in the same manner as that employed in Lloyd's continuous weight distribution. See page 45.
Determine horizontal shift (if any) of L.C.G.
Name L8

Determine the horizontal shift of each ordinate of buoyancy, from the ratio L8/H

Calculate the new X values for each ordinate after shifting.

(Obtain 100 new D values, at steps /100 L.O.A.)

Sum corrected ordinates in pairs, and project forward, progressively, as final D values.

Table required

Yes

Print Title and output table of values

Sum ordinates and calculate total displacement, on the final D values.

(Final calculated L.C.B. position)

Print Titles and values for displacement and L.C.B.

Graphs required

No

Yes

Output graph tape.
ADJUSTMENT OF SUBMERGED AREAS USING MUELLER'S METHOD
AND DETERMINATION OF BUOYANCY ORDINATES.

Set all volumes and moments for this section to zero, and I = 1.

Form volume of displacement for Sections 21, 21-1, and 21-2 (Simpson's), using submerged areas WJ as ordinates; also sum moments of these areas about the stern, and sum the 2nd moments of these areas about the stern.

Sum names: Q1, M and M3 respectively.

Repeat above calculations, using submerged areas WJ, and name sums: Q3, M and M3.

Increase Ho 1 by 1.

Solve simultaneous equations from above coefficients to find rise and tilt, a and b.

Calculate adjustments to each prdlnate; according to the formula:

\[y = a + bx \]

Convert measures of area (WJ), to tons upthrust (AJ).

Set DR = 0, for R = O=1:00.

Determine the ordinates within which the Buoyancy values AJ are greater than zero. Lower and upper names I and J respectively.

Set the first three values of Buoyancy ordinates and corresponding X-distances, (for Subr.58), using value of I determined above.

(Interpolate 100 D values from origin)

Integrate the buoyancy curve produced to determine the resultant displacement.

Calculate the difference from the true displacement, and distribute this difference uniformly over those of the 100 ordinates which already have values, other than zero.

Re-integrate, (and check, if required).

Calculate semi-sum of ordinates in pairs and store as B-values projected forward.

(OBTAIN provisional I.C.G.)

Calculate vertical position of centroid of curve, using above 100, 0-values.

Name: E.
MUCKLE'S METHOD FOR SUPERIMPOSED SINE WAVE:
ADJUSTMENT OF BUOYANCY ORDINATES FOR CORRECT DISPLACEMENT AND L.C.F.

If the waterline is not a straight one, a further calculation must be performed to find the true buoyancy at each station. When a sine-wave is superimposed upon the still-water line in this fashion, the displacement cut off by the wave is not the required displacement. The wave must be adjusted for the required displacement, and so that the centre of buoyancy is in the same vertical line as the centre of gravity. The method used in the programme is one described by W. Muckle in "The Ship Builder and Marine Engine-Builder", February 1954 from which the following notes are taken.

If 'sagging' is being considered, then the wave must be raised and tilted. The amount which the wave must be raised at any position in the length of the ship may be written:

\[y = a + \frac{bx}{L}, \]

where 'a' and 'b' are constants and x is measured from the rearmost point of the stern; L is the length overall of the vessel.

For any given station, let the area cut off by the wave, before adjustment, be \(A_0 \), and let the area at a position 4 ft. above that be \(A_4 \). An examination of the Bonjean curves shows that the curve between these two positions could well be represented by a straight line, so
that the area at any point \(y \) above the initial wave position will be: (See fig. 29)

\[
Ao + y \left(\frac{Ah - Ao}{4} \right) = Ao + \left[a + \frac{bx}{L} \right] \left(\frac{Ah - Ao}{4} \right)
\]

The total volume after the wave has been shifted must be equal to the required volume \(V \) corresponding to the loading condition.

\[
i.e. \int Ao \, dx + \int \left[\left(a + \frac{bx}{L} \right) \left(\frac{Ah - Ao}{4} \right) \right] \, dx = V.
\]

This may be written:

\[
\int Ao \, dx + a \int \left(\frac{Ah - Ao}{4} \right) \, dx + b \int \frac{x}{L} \left(\frac{Ah - Ao}{4} \right) \, dx = V \quad(i)
\]

Similarly the Moment of the area about the stern is given by:

\[
Ao \cdot x + \left[a + \frac{bx}{L} \right] \left(\frac{Ah - Ao}{4} \right) \cdot x,
\]

and the Moment of the Volume must equal \(V \bar{x} \) where \(\bar{x} \) is the distance of the centre of buoyancy from the stern.

Therefore,

\[
\int Ao \cdot x \, dx + \int \left[\left(a + \frac{bx}{L} \right) \left(\frac{Ah - Ao}{4} \right) \cdot x \right] \, dx = V \bar{x}
\]

which may be written:

\[
\int Ao \cdot x \, dx + a \int x \left(\frac{Ah - Ao}{4} \right) \, dx + b \int \frac{x^2}{L} \left(\frac{Ah - Ao}{4} \right) \, dx = V \bar{x} \quad(ii)
\]
Equations (i) and (ii) will provide the solutions to the two unknowns 'a' and 'b'. \(\int A_0 \, dx \) is the volume function and in the programming of (i) and (ii) above is the F.Pt. variable Q1.

\[
\int A_0 \, x \, dx \quad \text{is the 1st moment} \quad M.
\]

\[
\int \left(\frac{A_h - A_0}{4} \right) \, dx \quad \text{is the volume function of the differences} \quad Q_3.
\]

\[
x \left(\frac{A_h - A_0}{4} \right) \, dx \quad \text{is the difference in 1st moment functions} \quad Q_2.
\]

\[
x^2 \left(\frac{A_h - A_0}{4} \right) \, dx \quad \text{is the difference in 2nd moment functions} \quad Q_5.
\]

If 'hogging' is being considered, then the wave must be lowered and tilted. The amount by which the wave must be lowered at any point in the length of the ship is, as before, given by \(y = a + \frac{bx}{L} \), and the same equations hold as for 'sagging'. Of course, \(A_h - A_0 \) will be negative, since \(A_h \) is determined when the wave form is taken 4 ft. below the original position.

Having now found the true areas for the wave form condition, the buoyancy is found as previously mentioned (page 83) and the interpolation routine entered to find the buoyancy at every one-hundredth division of the ship's length.
In spite of Muckle's method being applied to the displacement and L.C.B. position, it is quite likely to leave the final results in slight error. This slight error, if any, is finally corrected by the method outlined on pages 84 and 45.

Buoyancy ordinates are now stored as DR and are printed out if required. (Ordinates are Projected forward as before). Graph output is optional.

Pages 89-92 show the Bonjean input data extracted from the complete Hull Definition Data Sheet as shown on page [162]. After the initial BONJEAN head data, data is read vertically, column by column.

Page 93 shows the tabulated output for A842 and on page 94 may be seen the corresponding graph.

Fig. 29.
<table>
<thead>
<tr>
<th>Station Number</th>
<th>Half-widths:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.25 5.167 7.583 9.75 11.646 0 0 0 0 0 0 1.573 4.88 7.965 10.677 13.031 15.063 16.813 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 in this case.</td>
</tr>
</tbody>
</table>
BUOYANCY CURVES ORDINATES (PROJECTED FORWARD).

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 0
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH --- 1 CM = 20 FT
VERTICAL SCALE OF GRAPH --- UNITS/CM: - 5.0
BUOYANCY CURVE ORDINATES

HORIZONTAL SCALE : 1 CM.

VERTICAL SCALE : 1 CM.
(FORMS OF CULTIVATION)
LOAD CURVE SECTION.

Form Load curve ordinates;
\[YR = YR + DR \]

Table required?

Yes → Print Title and output table

Graph required?

Yes → Output graph tape

No → Sect. 9
PART 8

LOAD CURVE

Load Curve ordinates are obtained by subtracting respectively the Total Weight ordinates from the Buoyancy ordinates. (These ordinates are projected forward like the Weight and Buoyancy ordinates). F.Pt. variable YR was used for Weight ordinates and DR for Buoyancy ordinates. The Load Curve ordinates are now held as YR(YR = YR - DR) and printed out if required. Graph output of the Load Curve is available if required.

The Load Curve tables for A842 are on pages 96 (using Lloyd's method) and 96(a) (using Biles Coffin), and the corresponding graphs (green for Lloyd's method - red for Biles Coffin) are on page 97.
LOAD CURVE ORDINATES (PROJECTED FORWARD)

(BILES COFFIN DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.16</td>
<td>1</td>
<td>-1.84</td>
<td>2</td>
<td>-4.09</td>
<td>3</td>
<td>-8.70</td>
</tr>
<tr>
<td>4</td>
<td>-19.00</td>
<td>5</td>
<td>-28.01</td>
<td>6</td>
<td>-31.59</td>
<td>7</td>
<td>-8.01</td>
</tr>
<tr>
<td>8</td>
<td>-8.54</td>
<td>9</td>
<td>-8.31</td>
<td>10</td>
<td>-9.60</td>
<td>11</td>
<td>-3.31</td>
</tr>
<tr>
<td>12</td>
<td>-1.10</td>
<td>13</td>
<td>-9.66</td>
<td>14</td>
<td>-14.67</td>
<td>15</td>
<td>-12.19</td>
</tr>
<tr>
<td>16</td>
<td>-8.79</td>
<td>17</td>
<td>-7.03</td>
<td>18</td>
<td>4.80</td>
<td>19</td>
<td>9.05</td>
</tr>
<tr>
<td>20</td>
<td>5.67</td>
<td>21</td>
<td>14.79</td>
<td>22</td>
<td>15.31</td>
<td>23</td>
<td>16.42</td>
</tr>
<tr>
<td>24</td>
<td>18.18</td>
<td>25</td>
<td>18.93</td>
<td>26</td>
<td>19.60</td>
<td>27</td>
<td>20.20</td>
</tr>
<tr>
<td>28</td>
<td>21.01</td>
<td>29</td>
<td>20.82</td>
<td>30</td>
<td>10.18</td>
<td>31</td>
<td>20.25</td>
</tr>
<tr>
<td>36</td>
<td>21.87</td>
<td>37</td>
<td>21.96</td>
<td>38</td>
<td>22.13</td>
<td>39</td>
<td>22.48</td>
</tr>
<tr>
<td>40</td>
<td>22.44</td>
<td>41</td>
<td>-68.66</td>
<td>42</td>
<td>-71.49</td>
<td>43</td>
<td>-70.99</td>
</tr>
<tr>
<td>44</td>
<td>-70.08</td>
<td>45</td>
<td>-81.50</td>
<td>46</td>
<td>10.95</td>
<td>47</td>
<td>19.35</td>
</tr>
<tr>
<td>48</td>
<td>20.02</td>
<td>49</td>
<td>19.52</td>
<td>50</td>
<td>19.36</td>
<td>51</td>
<td>19.19</td>
</tr>
<tr>
<td>52</td>
<td>19.01</td>
<td>53</td>
<td>18.82</td>
<td>54</td>
<td>18.85</td>
<td>55</td>
<td>18.91</td>
</tr>
<tr>
<td>56</td>
<td>11.22</td>
<td>57</td>
<td>19.02</td>
<td>58</td>
<td>18.64</td>
<td>59</td>
<td>18.16</td>
</tr>
<tr>
<td>60</td>
<td>17.98</td>
<td>61</td>
<td>17.81</td>
<td>62</td>
<td>17.65</td>
<td>63</td>
<td>17.49</td>
</tr>
<tr>
<td>64</td>
<td>17.57</td>
<td>65</td>
<td>16.93</td>
<td>66</td>
<td>13.32</td>
<td>67</td>
<td>78.33</td>
</tr>
<tr>
<td>68</td>
<td>-74.32</td>
<td>69</td>
<td>-74.25</td>
<td>70</td>
<td>-73.72</td>
<td>71</td>
<td>-84.57</td>
</tr>
<tr>
<td>72</td>
<td>-5.24</td>
<td>73</td>
<td>15.54</td>
<td>74</td>
<td>15.93</td>
<td>75</td>
<td>16.31</td>
</tr>
<tr>
<td>76</td>
<td>15.84</td>
<td>77</td>
<td>15.99</td>
<td>78</td>
<td>16.14</td>
<td>79</td>
<td>16.01</td>
</tr>
<tr>
<td>80</td>
<td>15.51</td>
<td>81</td>
<td>13.21</td>
<td>82</td>
<td>3.31</td>
<td>83</td>
<td>13.21</td>
</tr>
<tr>
<td>84</td>
<td>12.70</td>
<td>85</td>
<td>11.57</td>
<td>86</td>
<td>10.26</td>
<td>87</td>
<td>8.77</td>
</tr>
<tr>
<td>88</td>
<td>7.11</td>
<td>89</td>
<td>5.42</td>
<td>90</td>
<td>8.20</td>
<td>91</td>
<td>5.88</td>
</tr>
<tr>
<td>92</td>
<td>-9.77</td>
<td>93</td>
<td>-27.85</td>
<td>94</td>
<td>-16.83</td>
<td>95</td>
<td>-14.49</td>
</tr>
<tr>
<td>96</td>
<td>-12.02</td>
<td>97</td>
<td>-6.81</td>
<td>98</td>
<td>-3.28</td>
<td>99</td>
<td>-2.70</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13(a).
LOAD CURVE ORDINATES (PROJECTED FORWARD)

(LLOYD'S DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.69</td>
<td>1</td>
<td>-2.01</td>
<td>2</td>
<td>-3.72</td>
<td>3</td>
<td>-7.48</td>
</tr>
<tr>
<td>4</td>
<td>-17.62</td>
<td>5</td>
<td>-26.84</td>
<td>6</td>
<td>-30.60</td>
<td>7</td>
<td>-7.19</td>
</tr>
<tr>
<td>8</td>
<td>-7.88</td>
<td>9</td>
<td>-7.80</td>
<td>10</td>
<td>-7.65</td>
<td>11</td>
<td>-3.06</td>
</tr>
<tr>
<td>12</td>
<td>-0.95</td>
<td>13</td>
<td>-9.60</td>
<td>14</td>
<td>-14.70</td>
<td>15</td>
<td>-12.29</td>
</tr>
<tr>
<td>16</td>
<td>-8.95</td>
<td>17</td>
<td>-7.25</td>
<td>18</td>
<td>4.54</td>
<td>19</td>
<td>8.76</td>
</tr>
<tr>
<td>20</td>
<td>5.34</td>
<td>21</td>
<td>14.44</td>
<td>22</td>
<td>14.94</td>
<td>23</td>
<td>16.04</td>
</tr>
<tr>
<td>24</td>
<td>17.80</td>
<td>25</td>
<td>18.55</td>
<td>26</td>
<td>19.24</td>
<td>27</td>
<td>19.85</td>
</tr>
<tr>
<td>28</td>
<td>20.69</td>
<td>29</td>
<td>20.53</td>
<td>30</td>
<td>9.94</td>
<td>31</td>
<td>20.07</td>
</tr>
<tr>
<td>32</td>
<td>21.74</td>
<td>33</td>
<td>21.48</td>
<td>34</td>
<td>21.65</td>
<td>35</td>
<td>21.78</td>
</tr>
<tr>
<td>36</td>
<td>21.87</td>
<td>37</td>
<td>21.93</td>
<td>38</td>
<td>22.08</td>
<td>39</td>
<td>22.41</td>
</tr>
<tr>
<td>40</td>
<td>22.38</td>
<td>41</td>
<td>-68.71</td>
<td>42</td>
<td>-71.54</td>
<td>43</td>
<td>-71.03</td>
</tr>
<tr>
<td>44</td>
<td>-70.10</td>
<td>45</td>
<td>-81.51</td>
<td>46</td>
<td>10.95</td>
<td>47</td>
<td>19.36</td>
</tr>
<tr>
<td>48</td>
<td>20.04</td>
<td>49</td>
<td>19.56</td>
<td>50</td>
<td>19.41</td>
<td>51</td>
<td>19.25</td>
</tr>
<tr>
<td>52</td>
<td>19.08</td>
<td>53</td>
<td>18.90</td>
<td>54</td>
<td>18.94</td>
<td>55</td>
<td>19.01</td>
</tr>
<tr>
<td>56</td>
<td>11.34</td>
<td>57</td>
<td>19.15</td>
<td>58</td>
<td>18.78</td>
<td>59</td>
<td>18.31</td>
</tr>
<tr>
<td>60</td>
<td>18.14</td>
<td>61</td>
<td>17.99</td>
<td>62</td>
<td>17.84</td>
<td>63</td>
<td>17.69</td>
</tr>
<tr>
<td>64</td>
<td>17.78</td>
<td>65</td>
<td>17.15</td>
<td>66</td>
<td>13.53</td>
<td>67</td>
<td>78.28</td>
</tr>
<tr>
<td>68</td>
<td>-74.43</td>
<td>69</td>
<td>-74.53</td>
<td>70</td>
<td>-74.17</td>
<td>71</td>
<td>-85.18</td>
</tr>
<tr>
<td>72</td>
<td>14.47</td>
<td>73</td>
<td>14.63</td>
<td>74</td>
<td>14.91</td>
<td>75</td>
<td>15.17</td>
</tr>
<tr>
<td>76</td>
<td>14.61</td>
<td>77</td>
<td>14.68</td>
<td>78</td>
<td>14.77</td>
<td>79</td>
<td>14.60</td>
</tr>
<tr>
<td>80</td>
<td>14.09</td>
<td>81</td>
<td>11.78</td>
<td>82</td>
<td>1.93</td>
<td>83</td>
<td>11.89</td>
</tr>
<tr>
<td>84</td>
<td>11.47</td>
<td>85</td>
<td>10.46</td>
<td>86</td>
<td>9.29</td>
<td>87</td>
<td>7.99</td>
</tr>
<tr>
<td>88</td>
<td>6.58</td>
<td>89</td>
<td>5.17</td>
<td>90</td>
<td>8.27</td>
<td>91</td>
<td>6.32</td>
</tr>
<tr>
<td>96</td>
<td>-9.40</td>
<td>97</td>
<td>-3.77</td>
<td>98</td>
<td>-0.96</td>
<td>99</td>
<td>-0.29</td>
</tr>
</tbody>
</table>

Table 13.
LOAD CURVE ORDINATES (PROJECTED FORWARD)

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 23
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH —- 1 CM = 20 FT
VERTICAL SCALE OF GRAPH --- UNITS/CM:— 5.0
LOAD CURVE ORDINATES (PRO)

HORIZONTAL SCALE : 1 CM

VERTICAL SCALE : 1 CM

Note: Results using Lloy
Results using Bile
- 98(a) -
FLOW CHART (Programme Page 25)
(Section 9).

SHEAR FORCE CURVE SECTION.

Integrate Load curve ordinates, progressively summing to obtain Shear Force ordinates.

Find the overall uniform change per ordinate, corresponding to the final ordinate value above. I.e. Straight line base correction.

Obtain corrected ordinates, (and thus new base to the curve).

Table required

No

Yes

Print Title and output table

Graph required

No

Yes:

Output graph tape

Sect. 10
PART 9

SHEAR FORCE (AND STRAIGHT LINE CORRECTION)

The shear force at any point (again held as YR) is the total weight to the left (or right) of the ordinate considered. The shear forces at the ends must be zero. Starting with zero shear force at ordinate number zero, the shear force at ordinate number one is the product of the Load at ordinate zero and the distance between the ordinates. The shear force at ordinate number two is the sum of that at ordinate number one together with the product of the load at ordinate number one and the distance between ordinates; and so on. To allow for any possible accumulation of error, any difference which may exist at ordinate No. 100, between the calculated shear force and zero, is made zero here and the remaining ordinates proportionately increased or reduced as the case may be. This means, in effect, tilting the base of the shear curve linearly, to obtain the true base.

On the ship under test, the error at the fore end (S100) was .39 tons, (by both methods), the maximum reading throughout the length of the vessel being of the order of 1400 tons.

Output of shear force tables is optional. The graph output for shear force is a continuous polygon, joining ordinate values by straight lines, and like the table is optional.

The Shear Force Curve table (using Lloyd's method) is on page 100.
and the corresponding graph is on page 101, again in green. Results using Biles Coffin method are tabulated on page 100(a) and the appropriate graph superimposed in red on page 101.
Shear Force Curve Ordinates
(Biles Coffin Distribution)

<table>
<thead>
<tr>
<th>NO. S.F.</th>
<th>TONS</th>
<th>NO. S.F.</th>
<th>TONS</th>
<th>NO. S.F.</th>
<th>TONS</th>
<th>NO. S.F.</th>
<th>TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-12</td>
<td>3</td>
<td>-38</td>
</tr>
<tr>
<td>4</td>
<td>-91</td>
<td>5</td>
<td>-208</td>
<td>6</td>
<td>-381</td>
<td>7</td>
<td>-576</td>
</tr>
<tr>
<td>8</td>
<td>-626</td>
<td>9</td>
<td>-678</td>
<td>10</td>
<td>-730</td>
<td>11</td>
<td>-779</td>
</tr>
<tr>
<td>12</td>
<td>-800</td>
<td>13</td>
<td>-806</td>
<td>14</td>
<td>-866</td>
<td>15</td>
<td>-957</td>
</tr>
<tr>
<td>16</td>
<td>-1032</td>
<td>17</td>
<td>-1086</td>
<td>18</td>
<td>-1129</td>
<td>19</td>
<td>-1100</td>
</tr>
<tr>
<td>20</td>
<td>-1044</td>
<td>21</td>
<td>-1009</td>
<td>22</td>
<td>-918</td>
<td>23</td>
<td>-823</td>
</tr>
<tr>
<td>24</td>
<td>-722</td>
<td>25</td>
<td>-610</td>
<td>26</td>
<td>-493</td>
<td>27</td>
<td>-372</td>
</tr>
<tr>
<td>28</td>
<td>-247</td>
<td>29</td>
<td>-118</td>
<td>30</td>
<td>11</td>
<td>31</td>
<td>74</td>
</tr>
<tr>
<td>32</td>
<td>199</td>
<td>33</td>
<td>333</td>
<td>34</td>
<td>466</td>
<td>35</td>
<td>600</td>
</tr>
<tr>
<td>36</td>
<td>734</td>
<td>37</td>
<td>869</td>
<td>38</td>
<td>1004</td>
<td>39</td>
<td>1141</td>
</tr>
<tr>
<td>40</td>
<td>1279</td>
<td>41</td>
<td>1418</td>
<td>42</td>
<td>994</td>
<td>43</td>
<td>553</td>
</tr>
<tr>
<td>44</td>
<td>115</td>
<td>45</td>
<td>-317</td>
<td>46</td>
<td>-820</td>
<td>47</td>
<td>-753</td>
</tr>
<tr>
<td>48</td>
<td>-633</td>
<td>49</td>
<td>-510</td>
<td>50</td>
<td>-389</td>
<td>51</td>
<td>-270</td>
</tr>
<tr>
<td>52</td>
<td>-151</td>
<td>53</td>
<td>-34</td>
<td>54</td>
<td>82</td>
<td>55</td>
<td>198</td>
</tr>
<tr>
<td>56</td>
<td>315</td>
<td>57</td>
<td>384</td>
<td>58</td>
<td>501</td>
<td>59</td>
<td>616</td>
</tr>
<tr>
<td>60</td>
<td>728</td>
<td>61</td>
<td>839</td>
<td>62</td>
<td>949</td>
<td>63</td>
<td>1058</td>
</tr>
<tr>
<td>64</td>
<td>1166</td>
<td>65</td>
<td>1274</td>
<td>66</td>
<td>1379</td>
<td>67</td>
<td>1461</td>
</tr>
<tr>
<td>68</td>
<td>978</td>
<td>69</td>
<td>519</td>
<td>70</td>
<td>61</td>
<td>71</td>
<td>394</td>
</tr>
<tr>
<td>72</td>
<td>-915</td>
<td>73</td>
<td>-821</td>
<td>74</td>
<td>-726</td>
<td>75</td>
<td>-627</td>
</tr>
<tr>
<td>76</td>
<td>-527</td>
<td>77</td>
<td>-429</td>
<td>78</td>
<td>-330</td>
<td>79</td>
<td>-231</td>
</tr>
<tr>
<td>80</td>
<td>-132</td>
<td>81</td>
<td>-36</td>
<td>82</td>
<td>45</td>
<td>83</td>
<td>66</td>
</tr>
<tr>
<td>84</td>
<td>147</td>
<td>85</td>
<td>226</td>
<td>86</td>
<td>297</td>
<td>87</td>
<td>360</td>
</tr>
<tr>
<td>88</td>
<td>414</td>
<td>89</td>
<td>458</td>
<td>90</td>
<td>492</td>
<td>91</td>
<td>542</td>
</tr>
<tr>
<td>92</td>
<td>579</td>
<td>93</td>
<td>518</td>
<td>94</td>
<td>346</td>
<td>95</td>
<td>243</td>
</tr>
<tr>
<td>96</td>
<td>153</td>
<td>97</td>
<td>79</td>
<td>98</td>
<td>37</td>
<td>99</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 14(a).
SHEAR FORCE CURVE ORDINATES.

(LLOYD'S DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-4</td>
<td>2</td>
<td>-17</td>
<td>3</td>
<td>-40</td>
</tr>
<tr>
<td>4</td>
<td>-86</td>
<td>5</td>
<td>-194</td>
<td>6</td>
<td>-360</td>
<td>7</td>
<td>-549</td>
</tr>
<tr>
<td>8</td>
<td>-593</td>
<td>9</td>
<td>-642</td>
<td>10</td>
<td>-690</td>
<td>11</td>
<td>-737</td>
</tr>
<tr>
<td>12</td>
<td>-756</td>
<td>13</td>
<td>-762</td>
<td>14</td>
<td>-821</td>
<td>15</td>
<td>-912</td>
</tr>
<tr>
<td>16</td>
<td>-988</td>
<td>17</td>
<td>-1043</td>
<td>18</td>
<td>-1088</td>
<td>19</td>
<td>-1060</td>
</tr>
<tr>
<td>20</td>
<td>-1006</td>
<td>21</td>
<td>-973</td>
<td>22</td>
<td>-884</td>
<td>23</td>
<td>-791</td>
</tr>
<tr>
<td>24</td>
<td>-692</td>
<td>25</td>
<td>-583</td>
<td>26</td>
<td>-468</td>
<td>27</td>
<td>-349</td>
</tr>
<tr>
<td>28</td>
<td>-227</td>
<td>29</td>
<td>-99</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>89</td>
</tr>
<tr>
<td>32</td>
<td>213</td>
<td>33</td>
<td>347</td>
<td>34</td>
<td>479</td>
<td>35</td>
<td>613</td>
</tr>
<tr>
<td>36</td>
<td>747</td>
<td>37</td>
<td>882</td>
<td>38</td>
<td>1017</td>
<td>39</td>
<td>1154</td>
</tr>
<tr>
<td>40</td>
<td>1292</td>
<td>41</td>
<td>1430</td>
<td>42</td>
<td>1006</td>
<td>43</td>
<td>565</td>
</tr>
<tr>
<td>44</td>
<td>126</td>
<td>45</td>
<td>-306</td>
<td>46</td>
<td>-809</td>
<td>47</td>
<td>-741</td>
</tr>
<tr>
<td>48</td>
<td>-622</td>
<td>49</td>
<td>-498</td>
<td>50</td>
<td>-378</td>
<td>51</td>
<td>-258</td>
</tr>
<tr>
<td>52</td>
<td>-139</td>
<td>53</td>
<td>-22</td>
<td>54</td>
<td>95</td>
<td>55</td>
<td>212</td>
</tr>
<tr>
<td>56</td>
<td>329</td>
<td>57</td>
<td>399</td>
<td>58</td>
<td>517</td>
<td>59</td>
<td>635</td>
</tr>
<tr>
<td>60</td>
<td>746</td>
<td>61</td>
<td>858</td>
<td>62</td>
<td>969</td>
<td>63</td>
<td>1079</td>
</tr>
<tr>
<td>64</td>
<td>1188</td>
<td>65</td>
<td>1298</td>
<td>66</td>
<td>1404</td>
<td>67</td>
<td>1487</td>
</tr>
<tr>
<td>68</td>
<td>1004</td>
<td>69</td>
<td>545</td>
<td>70</td>
<td>85</td>
<td>71</td>
<td>-372</td>
</tr>
<tr>
<td>72</td>
<td>-898</td>
<td>73</td>
<td>-809</td>
<td>74</td>
<td>-719</td>
<td>75</td>
<td>-627</td>
</tr>
<tr>
<td>76</td>
<td>-533</td>
<td>77</td>
<td>-443</td>
<td>78</td>
<td>-352</td>
<td>79</td>
<td>-251</td>
</tr>
<tr>
<td>80</td>
<td>-171</td>
<td>81</td>
<td>-84</td>
<td>82</td>
<td>-11</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>74</td>
<td>85</td>
<td>145</td>
<td>86</td>
<td>209</td>
<td>87</td>
<td>266</td>
</tr>
<tr>
<td>88</td>
<td>316</td>
<td>89</td>
<td>356</td>
<td>90</td>
<td>388</td>
<td>91</td>
<td>439</td>
</tr>
<tr>
<td>92</td>
<td>478</td>
<td>93</td>
<td>423</td>
<td>94</td>
<td>259</td>
<td>95</td>
<td>165</td>
</tr>
<tr>
<td>96</td>
<td>89</td>
<td>97</td>
<td>31</td>
<td>98</td>
<td>8</td>
<td>99</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 14.
SHEAR FORCE CURVE
--
X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 12
HEIGHT OF Y-AXIS = 30
HORIZONTAL SCALE OF GRAPH —— 1 CM = 20 FT
VERTICAL SCALE OF GRAPH —— UNITS/CM:— 100.0
--
BENDING MOMENT CURVE SECTION.

- Reset correct X-values for every 1/100 L.O.A.
- Integrate Shear Force curve ordinates progressively summing, to form Bending Moment curve ordinates.
- Form parabola base correction from the value of the final ordinate.

Decision Tree:
- Table required:
 - Yes: Print Title and output table.
 - No:
 - Graph required:
 - Yes: Output graph tape.
 - No: STOP.
The bending moment at any point (stored as BR) is the total area to the left (or right) under the shear force curve, up to the ordinate considered. That is, it is a second integration of the load curve.

The bending moments at the ends must be zero. Starting with zero bending moment at ordinate number zero, the bending moment at ordinate number one is the product of the mean shear force over the first division and the length of the division. The bending moment at ordinate number two is the sum of that at ordinate number one and the product of the mean shear over the second division and the length of the division; and so on.

Like the shear force curve the ordinate value at the forward end \((R = 100)\) should be zero. Corrections to make this so are performed using a parabola base correction. See Fig. 30, where \(YR\) is the correction for ordinate No. \(R\).

On the ship under test, the error at the reading \(R = 100\) was 135 tons ft., the maximum reading throughout the length of the vessel being of the order of 110000 tons ft. (Percentage error 0.12%).

The bending moment graph is a continuous polygon.
The Bending Moment table using Lloyd's method is on page 104, with the graph output on page 105 (in green). Page 104 (a) shows results using Biles Coffin method, and the appropriate graph is in red on page 105.

\[
\frac{YR}{x^2} = \frac{B(100)}{L^2} \\
\therefore YR = \frac{B(100) \cdot x^2}{L^2}
\]

Fig. 30.
BENDING MOMENT CURVE. ORDINATES.

(BILES COFFIN DISTRIBUTION)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>B.M. TON FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td>-44</td>
<td>3</td>
<td>-198</td>
</tr>
<tr>
<td>4</td>
<td>-595</td>
<td>5</td>
<td>-1520</td>
<td>6</td>
<td>-3340</td>
<td>7</td>
<td>-6294</td>
</tr>
<tr>
<td>8</td>
<td>-10002</td>
<td>9</td>
<td>-14025</td>
<td>10</td>
<td>-18369</td>
<td>11</td>
<td>-23024</td>
</tr>
<tr>
<td>12</td>
<td>-27895</td>
<td>13</td>
<td>-32850</td>
<td>14</td>
<td>-38010</td>
<td>15</td>
<td>-43633</td>
</tr>
<tr>
<td>16</td>
<td>-49767</td>
<td>17</td>
<td>-56300</td>
<td>18</td>
<td>-63135</td>
<td>19</td>
<td>-70012</td>
</tr>
<tr>
<td>20</td>
<td>-76625</td>
<td>21</td>
<td>-82959</td>
<td>22</td>
<td>-88902</td>
<td>23</td>
<td>-94273</td>
</tr>
<tr>
<td>24</td>
<td>-99040</td>
<td>25</td>
<td>-103149</td>
<td>26</td>
<td>-106551</td>
<td>27</td>
<td>-109220</td>
</tr>
<tr>
<td>28</td>
<td>-111132</td>
<td>29</td>
<td>-112259</td>
<td>30</td>
<td>-112589</td>
<td>31</td>
<td>-112330</td>
</tr>
<tr>
<td>32</td>
<td>-111492</td>
<td>33</td>
<td>-109852</td>
<td>34</td>
<td>-107386</td>
<td>35</td>
<td>-104099</td>
</tr>
<tr>
<td>36</td>
<td>-99986</td>
<td>37</td>
<td>-95043</td>
<td>38</td>
<td>-89266</td>
<td>39</td>
<td>-82650</td>
</tr>
<tr>
<td>40</td>
<td>-75185</td>
<td>41</td>
<td>-66865</td>
<td>42</td>
<td>-59425</td>
<td>43</td>
<td>-54652</td>
</tr>
<tr>
<td>44</td>
<td>-52592</td>
<td>45</td>
<td>-53217</td>
<td>46</td>
<td>-57672</td>
<td>47</td>
<td>-61580</td>
</tr>
<tr>
<td>48</td>
<td>-59857</td>
<td>49</td>
<td>-59384</td>
<td>50</td>
<td>-72159</td>
<td>51</td>
<td>-74193</td>
</tr>
<tr>
<td>52</td>
<td>-75494</td>
<td>53</td>
<td>-76068</td>
<td>54</td>
<td>-75923</td>
<td>55</td>
<td>-75060</td>
</tr>
<tr>
<td>56</td>
<td>-73479</td>
<td>57</td>
<td>-71324</td>
<td>58</td>
<td>-68594</td>
<td>59</td>
<td>-65147</td>
</tr>
<tr>
<td>60</td>
<td>-61000</td>
<td>61</td>
<td>-56165</td>
<td>62</td>
<td>-50649</td>
<td>63</td>
<td>-44458</td>
</tr>
<tr>
<td>64</td>
<td>-37598</td>
<td>65</td>
<td>-30071</td>
<td>66</td>
<td>-21887</td>
<td>67</td>
<td>-13127</td>
</tr>
<tr>
<td>68</td>
<td>-5605</td>
<td>69</td>
<td>-989</td>
<td>70</td>
<td>800</td>
<td>71</td>
<td>-228</td>
</tr>
<tr>
<td>72</td>
<td>-4269</td>
<td>73</td>
<td>-9629</td>
<td>74</td>
<td>-14404</td>
<td>75</td>
<td>-18580</td>
</tr>
<tr>
<td>76</td>
<td>-22142</td>
<td>77</td>
<td>-25092</td>
<td>78</td>
<td>-27436</td>
<td>79</td>
<td>-29168</td>
</tr>
<tr>
<td>80</td>
<td>-30289</td>
<td>81</td>
<td>-30810</td>
<td>82</td>
<td>-30784</td>
<td>83</td>
<td>-30444</td>
</tr>
<tr>
<td>84</td>
<td>-29789</td>
<td>85</td>
<td>-28641</td>
<td>86</td>
<td>-27031</td>
<td>87</td>
<td>-25006</td>
</tr>
<tr>
<td>88</td>
<td>-22618</td>
<td>89</td>
<td>-19928</td>
<td>90</td>
<td>-17000</td>
<td>91</td>
<td>-13813</td>
</tr>
<tr>
<td>92</td>
<td>-10358</td>
<td>93</td>
<td>-69777</td>
<td>94</td>
<td>-4312</td>
<td>95</td>
<td>-2497</td>
</tr>
<tr>
<td>96</td>
<td>-1279</td>
<td>97</td>
<td>-566</td>
<td>98</td>
<td>-211</td>
<td>99</td>
<td>-49</td>
</tr>
</tbody>
</table>

Table 15(a)
Bending Moment Curve Ordinates

(Lloyd's Distribution)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6638</td>
<td>1</td>
<td>-13</td>
<td>2</td>
<td>-78</td>
<td>3</td>
<td>-251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-9540</td>
<td>5</td>
<td>-1502</td>
<td>6</td>
<td>-3213</td>
<td>7</td>
<td>-6017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-26468</td>
<td>9</td>
<td>-13350</td>
<td>10</td>
<td>-17459</td>
<td>11</td>
<td>-21861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-47241</td>
<td>13</td>
<td>-31151</td>
<td>14</td>
<td>-36034</td>
<td>15</td>
<td>-41381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-73074</td>
<td>17</td>
<td>-53505</td>
<td>18</td>
<td>-60078</td>
<td>19</td>
<td>-66702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-94649</td>
<td>21</td>
<td>-79177</td>
<td>22</td>
<td>-84904</td>
<td>23</td>
<td>-90071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-105127</td>
<td>25</td>
<td>-98583</td>
<td>26</td>
<td>-101825</td>
<td>27</td>
<td>-104348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-106071</td>
<td>29</td>
<td>-107134</td>
<td>30</td>
<td>-107357</td>
<td>31</td>
<td>-106999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-94236</td>
<td>33</td>
<td>-104346</td>
<td>34</td>
<td>-101799</td>
<td>35</td>
<td>-98431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-94236</td>
<td>37</td>
<td>-89210</td>
<td>38</td>
<td>-83351</td>
<td>39</td>
<td>-76654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-69110</td>
<td>41</td>
<td>-60714</td>
<td>42</td>
<td>-53199</td>
<td>43</td>
<td>-48354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-46223</td>
<td>45</td>
<td>-46778</td>
<td>46</td>
<td>-50219</td>
<td>47</td>
<td>-55004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>-59211</td>
<td>49</td>
<td>-62569</td>
<td>50</td>
<td>-65373</td>
<td>51</td>
<td>-67355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>-68562</td>
<td>53</td>
<td>-69059</td>
<td>54</td>
<td>-68333</td>
<td>55</td>
<td>-67888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-66219</td>
<td>57</td>
<td>-63974</td>
<td>58</td>
<td>-61148</td>
<td>59</td>
<td>-57600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>-53346</td>
<td>61</td>
<td>-48398</td>
<td>62</td>
<td>-42763</td>
<td>63</td>
<td>-36446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>-29452</td>
<td>65</td>
<td>-21784</td>
<td>66</td>
<td>-13451</td>
<td>67</td>
<td>-4534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>-3151</td>
<td>69</td>
<td>7928</td>
<td>70</td>
<td>9871</td>
<td>71</td>
<td>9828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>-5061</td>
<td>73</td>
<td>-207</td>
<td>74</td>
<td>-4920</td>
<td>75</td>
<td>-9072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>-12651</td>
<td>77</td>
<td>-15663</td>
<td>78</td>
<td>-18118</td>
<td>79</td>
<td>-20012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>-42348</td>
<td>81</td>
<td>-22137</td>
<td>82</td>
<td>-22434</td>
<td>83</td>
<td>-22470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>-22243</td>
<td>85</td>
<td>-21572</td>
<td>86</td>
<td>-20483</td>
<td>87</td>
<td>-19018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-17224</td>
<td>89</td>
<td>-15153</td>
<td>90</td>
<td>-12859</td>
<td>91</td>
<td>-10308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-7480</td>
<td>93</td>
<td>-4702</td>
<td>94</td>
<td>-2601</td>
<td>95</td>
<td>-1295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>-514</td>
<td>97</td>
<td>-146</td>
<td>98</td>
<td>-30</td>
<td>99</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15.
BENDING MOMENT CURVES.

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAPER = 27
HEIGHT OF Y-AXIS KF = 29
HORIZONTAL SCALE OF GRAPH --- 1 CM = 20 FT
VERTICAL SCALE OF GRAPH --- UNITS/CM: - 5000.0
APPENDIX I

Set out below are details of the differences between the Sunderland Technical College programme and the programmes which are the subjects of the three reports mentioned on page vi of the Introduction.

Considering the Glasgow Programme first:

The first obvious point of difference is that Glasgow offers FIVE methods of continuous weight distribution (including the two offered in this programme). Since the author understands (unofficially) that Lloyd's are in the process of determining other types of distribution in certain cases, and since Lloyd's must eventually pass judgement on the programme, there seems no point in including what may eventually have to be discarded. The understanding (by the author) is that in certain cases Biles Coffin may have to be used. I have, therefore, satisfied myself with providing the one coffin method, besides Lloyd's method.

The three extra methods in Glasgow's programme are:

(i) Cole or American Coffin diagram
(ii) Robb Dry Cargo Ship
(iii) Robb Tanker

Glasgow uses Coffin diagrams where the end ordinates are not zero. Biles end ordinates are taken to be $0.6 \frac{W}{L_{OA}}$. The alternative, used in the Sunderland programme, is to work with the weight between the
perpendiculars, and to fit triangular ends, for stern and bow sections.

Glasgow makes a point that comparison of the results using their different methods suggests that the error in bending-moment will not exceed $0.01 \times W \times L_{OA}$. In the case of Ship No. A842 considered in this thesis, this could be a matter of:

$$0.01 \times 4575 \times 580 = 26,535 \text{ ton ft.}$$

against a maximum value of about 110,000 ton ft. for Condition 1. A comparison of Biles Coffin results and Lloyd's results is made on page 105 of this thesis, in respect of Ship No. A842, where it will be seen that the difference is of the order of 5000 ton ft.

It would appear from Glasgow's write-up that with the one exception of the Robb Tanker method, end ordinates of the coffins are made equal (non zero). In our formula the ordinates at the perpendiculars are calculated, having been given the final position of L.C.G. (See page 32).

Also concerning local weights, Glasgow say they check that the C.G. of any item is within the centre 50% of the extent of the item, since trapezoidal distributions are assumed. In fact, looking at the formulae on page 12 of this thesis, it is seen that the C.G. must be within the centre $33^{1/3}\%$. Our programme checks this and rejects the item if the condition is not fulfilled. It also prints out the offending
item, and waits for further action by the operator. If the error may be ignored, the programme may be allowed to carry on. Otherwise the tape is removed and corrected.

Data for the Glasgow programme is presented in a somewhat different form from that for our programme, and the formulae used for the local weights, for example, are in a completely different style. However, the number of output stations is, like this programme, 100.

One other difference is that immersed sectional areas are given (21 in number) for each loading condition being considered, whereas in our programme areas are calculated from the position of the waterline which is itself calculated from the mean draught and trim. Thirty one stations are considered in the Sunderland programme.

The three main differences in the two programmes are:

(i) Glasgow required immersed sectional areas at 21 stations for every loading condition, whereas the Sunderland programme calculates and stores areas to every even waterline once only and calculates the required areas for any number of conditions.

(ii) In the Lloyd's method for continuous weight distribution, Glasgow uses polynomial equations to represent the curved portions of the fore and aft bodies and the equations are expressed as a function of block coefficient and distances along the length from midship. Various other items of data are required such as L.C.G. position, and the computer
varies the lengths of the end curves to ensure correct L.C.G. position. In the Sunderland programme the yard provides the appropriate 'a' values for a known block coefficient at the load draught. This means one set of figures only. Everything else, such as the 'm' value, and the true and calculated positions of the L.C.G. of the continuous weight, together with the adjustment of the curve for correct L.C.G. and weight, is performed by the programme.

(iii) Glasgow do not include calculations in wave conditions.

There is no comparison of results using the two programmes; Glasgow do not say whether their programme satisfies Lloyd's Register of Shipping.

The Glasgow programme is written in KDF 9 Algol.
Comparison with the Vickers programme.

Vickers' programme performs the calculations for both still-water and for trochoidal wave forms.

Ordinates are calculated at intervals of L.B.P/100, as against the Sunderland programme using intervals of L.O.A/100. However, the three main differences in the programmes are:

(i) Vickers split up the continuous weight into separate blocks of volume called portions, and do not use Biles Coffin or Lloyd's method. The number of such portions may be unlimited, and basic data for each portion, such as length and weight are read in. The lower part of some hull sections is defined by the use of buttock heights rather than half breadths. The Sunderland programme does not use this system - half breadths are used throughout.

(ii) Complete hull definition data is read in, in the Vickers programme at the beginning, and this data, being stored, may be used for other programmes such as Hydrostatic and Bonjean calculations. The Sunderland programme stores the half-breadths for the station being considered and uses these to calculate immersed sectional areas to all even waterlines for that station, and stores this information for use in any number of loading conditions. Hydrostatics and Bonjean results can not be output.

One other small difference in the programme is that bossings are provided for in the Vickers programme, but not in the Sunderland programme.
(iii) For Bending Moments in wave forms, Vickers uses Trochoidal wave forms, whereas Sunderland uses Sine Wave.

There is no comparison of results using the two programmes (But see next section on B.S.R.A. notes).
Differences from the B.S.R.A. Programme.

The introduction to the B.S.R.A. notes says that the programme is a modification of that prepared by Vickers, (see last section). The modifications were made to satisfy Lloyd's Register of Shipping, to insert several checks thought necessary, and to provide graphical output.

The programme is written in Mercury Autocode, as was the Vickers' programme.

Lloyd's continuous weight distribution is performed by means of polynomials, as is the Glasgow programme, by feeding in the block coefficient and the station position along the ship length.

Equations used are of the form:

\[A = Y_0 + (Y_1 - Y_0)X^2 + M = 4 \sum_{M = 0}^{4} N = 4 \sum_{N = 0}^{4} A_{mn} T_m(X) T_n(Z) \]

where \(T_m(X) \) and \(T_n(Z) \) are Chebyshev Polynomials, \(Y_0 \) is a function of block coefficient, \(Y_1 \) is constant, \(X \) and \(Z \) are functions of block coefficient and station. The coefficients \(A_{mn} \) are different for the fore and after bodies.

It is considered that the amount of effort involved in reading-off one set of 20 'a' values from Lloyd's tables does not warrant the introduction of such methods as the above into the programme (especially as they are read in once only, no matter how many conditions are to be programmed). Reference to page 39 of this thesis will clarify the simpler method used in the Sunderland programme.
B.S.R.A. have provided the tabular outputs from their programme, as have Lloyd's, for purposes of comparison with those from the Sunderland programme.

Results from the three programmes may be compared from the graphs drawn on pages 114, 115. Page 114 shows the Shear Force curves and page 115 the Bending Moment curves. In both cases, Lloyd's results are in green, B.S.R.A's in red and Sunderland's in black.
APPENDIX II

Page 117 shows the graphs drawn by the yard, from their own calculations, for ship No. A827. Superimposed on the graphs are the values produced by the 15 sections programme, mentioned on page iv of the introduction.

Since the latter half of 1966, the yard have accepted graphs drawn on the Benson Lehner graph plotter from tape produced by the Sunderland programme.
FLOW CHART

(Subr. 30, Programme p36)

1. Water surface less than Z max
 - Yes
 - Set area to zero
 - Water surface gr. than zero
 - Yes
 - Set waterline count to zero
 - Increase waterline count by 1
2. Water surface gr. than Z(21)
 - No
 - Z max gr. than Z(21)
 - Yes
 - Calc. distance between Z max. and Z(21-2)
 - Calc. distance between Z(21-2) and Z(21-4)
 - Calc. distance between water surface and Z(21-2)
 - Obtain this as a fraction of the distance between the above limits
 - Calculate area difference corres. to the above limits
 - Calc. frac. of this area submerged, and add to areas up to previous even waterline
 - Calc. distance between Z(21) and Z min.
 - Calc. distance between water surface and Z min.
 - Obtain this as a fraction of the distance between the above limits
F L O W C H A R T

S U B R O U T I N E 3 0

F F L E D D O W N
Mean

To max. or zero calculated, or previewly set
Check area submerged/either

Surface
Between Z min and water
Calculate area submerged
FLOW CHART

(Subr. 86, Programme 30)

Main Prog.

Increase \(W \) by \(t \)

Yes

Dealing with \(W \)

No

Compute maximum positive and maximum negative of the values now being considered.

Print these values

Set max. values of Shear Force to those read in at the beginning of the programme

Yes

Set max. values of Bending Moment to those read in at the beginning of the programme

No

Determine the range from the maximum values.

\(W \) greater than 2

Yes

Determine distance of X-axis from base of graph paper, and find height of Y axis.

Print position of X axis (which depends on whether graph is full or half size)

Print Height of Y axis

Determine scale.

\(W \) greater than 2

Yes

Print Horizontal and Vertical scales of graph.

Main Prog.
LONGITUDINAL STRENGTH

PROGRAMME TO CALCULATE BENDING MOMENTS

(STILL-WATER/SINE-WAVE)

SETS I(6)NC(4)JC(4)RC(2)PC(35)
SETV SC(27)TC(6)WC(65)LC(15)BC(100)XC(100)MC(7)QC(9)FC(6)AC(100)KC(7)YC(100)
HC(30)DC(100)EC(100)VC(100)GC(4)UC(30)ZC(112)OC(774)GC(52)
SETF INT FRAC TRIG GRAPH PLOT.
SETR 143

1)READ I3:: IF CONDITIONS HAVE NOT BEEN RUN, PUT I3 = 0. IF ALL
14=0:: CONDITIONS HAVE BEEN RUN, AND SHEAR FORCE CURVES FOR
JUMP IF I3=0@8:: ALL CONDITIONS ARE TO BE REDRAWN ON SAME AXIS. TO THE
READ S25:: SAME SCALE (AND SIMILARLY FOR B.MMT. CURVES). I3 = 1.
READ S26:: THESE TWO MAX. +VE AND MAX. -VE SHEAR OVER ALL CONDS.
READ M6
READ M7:: '' '' '' '' '' B.MMT. '' '' ''

8)WAIT:: FOR LIGHTSHIP LOCAL WEIGHTS TAPE
READ I1:: 1 FOR BILES COFFIN, 0 FOR LLOYD'S METHOD
READ L:: LENGTH OVERALL
READ L1
READ L2
L3=L-L1
L3=L3-L2
L6=L/100
READ S22:: 1 FOR FULL WIDTH GRAPH, 0.5 HALF WIDTH, 0 IF NO GRAPH
READ S27:: 10, 20 OR 40 (FT. PER CM. HORIZONTAL SCALE). 0 IF NO GRAPH
JUMP IF S27=0@143
S24=100/S27
143>SUBR 124

S21=S1
VARY R=0:1:101
ER=YR
REPEAT R
T6=T5

WAIT:: FOR 2ND DATA TAPE

126>SUBR 124:: ENTRY POINT FOR ALL CONDITIONS AFTER THE FIRST
READ W31
READ K3
LENGTH OVERALL:
PRINT L, 4:2
TITLE FT

SUM OF LIGHTSHIP LOCAL WEIGHTS READ IN =
PRINT S21, 5:2
TITLE TONS

SUM OF EXTRA LOCAL WTS. FOR THIS CONDITION, READ IN =
PRINT S1, 5:2
TITLE TONS

S=0
VARY R=0:1:101
YR=YR+ER
S=S+YR
REPEAT R
S=S*L6

TITLE

CALCULATED SUM OF DISTRIBUTED LOCAL WEIGHTS =
PRINT S, 5:2
S3=S1+S21::ACTUAL SUM OF WEIGHTS INPUT
T5=T6+T5
Q6=W31*35:: FOR MUCKLE'S METHOD BELOW
JUMP IF I(1)=1@83:: FOR BC CONT. WT. DISTRIBUTION
W32=W31-S3::CONTINUOUS WEIGHT - CHECKED EACH TIME ROUND
K6=W31*K3 -
K6=K6/T5
K6=K6/W32::LCG CONT. WT - CHECKED EACH TIME ROUND.
JUMP IF P4%1@54
VARY I=0:1:23
READ A1::A VALUES FROM LLOYDS GRAPHS
REPEAT I
L4=L3/20
L5=L4/3
X1=L1
X=0
VARY I=2:1:20
X1=X(1-1)+L4
REPEAT I
X22=X21+L2:: X - DISTANCES TO LLOYDS ORDNATES
Q=0::

VARY I=1:1:10
Q1=4*A(C2I)
Q2=Q1+AC(2I+1)
Q2=Q2+AC(2I-1)
Q2=Q2*L5
Q=Q+Q2

REPEAT I
Q1=L1*A1
Q1=Q1/2
Q=Q+Q1
Q2=L2*A2:
Q2=Q2/2:
Q=Q+Q2::VALUE UNDER WEIGHT CURVE IN TERMS OF 'M'.
M5=W32/Q

VARY I=0:1:23
A1=A1*M5::ACTUAL ORDINATE VALUES

REPEAT I

M4=0

VARY I=1:1:10
M1=4*A(C2I)
M1=M1*X(C2I)
M2=AC(2I+1)*X(2I+1)
M3=AC(2I-1)*X(2I-1)
M1=M1+M2
M1=M1+M3
M1=M1*L5
M4=M4+M1

REPEAT I

Q1=Q1*M5
M1=Q1*L1
M1=M1*0.666666666
M4=M4+M1
Q2=Q2*M5
L7=L2*0.333333333
L7=L7+L1
L7=L7+L3
M1=Q2*L7
M4=M4+M1

L8=M4/W32::L.C.G. OF CONTINUOUS WEIGHT CURVE (HORIZONTAL).
L8=L8-K6::REQUIRED MOVEMENT OF L.C.G. TO BRING TO CORRECT POSITION.
CHECK L8
M4=0:
VARY I=1:1:20
JUMP IF AC(I+1)@AI@117
K=AC(I+1)
M1=AI-A1
JUMP @118
117)K=AI-A(CI+1)
M1=AC(I+1)*AC(I+1)
118)M1=M1*L4
M1=M1/2
M2=K*L4
M2=M2/2
K=K/3
JUMP IF AC(I+1)@AI@49
K=K+AI
JUMP @50
49)K=K+AC(I+1)
50)M2=M2*K
M4=M4+M1
M4=M4+M2
REPEAT I

H=M4/W32:CENTRE OF AREA OF CONT. WT. CURVE (VERT).
CHECK H
M=L8/H:RATIO TO AFFECT ALL AI VALUES
CHECK M
VARY I=0:1:23
K=AI*M
XI=XI-K
REPEAT I

VARY R=0:1:101
DR=0
REPEAT R
N1=1
J1=100
I=0: THESE 3 FOR SUBR 58. I FOR EXTRA COUNT FOR XJ VALUES.

SUBR 58: INTERPOLATE 100 A VALUES - TO GIVE D VALUES

VARY R=0:1:100
J=R+1
S=DJ+DR
DR=S/2
VR=DR
REPEAT R
CONTINUOUS WEIGHT TOTAL FOR LLOYD'S DISTRIBUTION =
PRINT W32,5:2

CALCULATED "M" - TONS/FT =
PRINT M5,2:3

CALCULATED L.C.G. OF CONTINUOUS WEIGHT =
PRINT K6,3:2

JUMP @84
83)JUMP IF P4%1@125
READ W33:: WEIGHT OF OVERHANG OF Stern
READ W34:: BOW
READ L4:: LCG OF W33.
READ L5:: W34
T1=W33*L4
T2=W34*L5
W32=W31-S*
W32=W32-W33
W32=W32-W34

K=W31*K3
K1=K
K=K-T5
K=K-T1
K=K-T2
K=K/W32
K=K-L1
L7=L3/2
K=K-L7
H=W32/L3
A1=W32*K
A1=54*A1
A1=A1/7
A1=A1/L3
A1=A1/L3
A2=H*0.6
B=A2+A1
A=A2-A1
H1=1.2*A
CHECK A.
CHECK B
CHECK H1
J=0::
VJ=0
JUMP IF L1=0@140::TRANSOM STERN
H2=H1-A
L10=L1/L6
J=INT L10
H3=A/L1
CHECK J
CHECK H3
CYCLE I=0:1:J
C=STAND I
C=C*L6
VI=H3*C
REPEAT I
CYCLE I=1:1:J
R=I-1
S=VR+VI
VR=S/2
REPEAT I
140)L11=L3/3
R=J+1
C=STAND R
C=C*L6
C=C-L1
H3=H2/L11::RISE PER FT
CHECK H3
C1=C*H3::RISE TO R
VR=A+C1
S=A+VR
S=S*C
S=S/2
C=L6-C
S1=VI+A
S1=S1/2
S1=S1+C
VI=VI+S1
VJ=VJ/L6
L12=L11+L1
L13=L12/L6
J2=INT L13
CHECK J2
J1=R+1
CYCLE I=J1:1:J2
R2=I-R
C=STAND R2
C=C*L6
C=C*H3
VI=VR+C
REPEAT I
CYCLE I=J1:1:J2
J=I-1
S=VI+VJ
VJ=S/2
REPEAT I
R=J2+1
C=STAND J2
C=C*L6
C=L12-C
S=VR+H1
S=S/2:
S=S*C
R1=R+1
C=L6-C
S1=C*H1
S=S+S1
VR=S/L6
L13=2*L11
L13=L13+L1
L14=L13/L6
J3=INT L14
CHECK J3
CYCLE I=R1:1:J3
VI=H1
REPEAT I
H2=H1-B
H3=H2/L11
CHECK :H3
C=STAND J3
C=C*L6
C=L13-C
S=H1-C
C=L6-C
C1=C*H3
R=J3+1
VR=H1-C1
S1=H1+VR
S1=S1*C
S1=S1/2:
R=J3
VR=S+S1
VR=VR/L6
R=J3+1
L14=3*L11
L14=L14+L1
L15=L14/L6
J4=INT L15
R1=R+1
CHECK J4
CYCLE I=R1:1:J4
R2=1-R:
C=STAND R2:
C=C*L6
C=C*H3
VI=VR-C
REPEAT I
CYCLE I=R1:1:J4::
J=J+1
S=VR+VJ
VJ=S/2
REPEAT I
V100=0
JUMP IF J4=99@127
R=R+1
H3=B/L2
CHECK H3
C1=H3*L6
CYCLE I=99:-1:R
J=100-I
C=STAND J
C=C*C1
VI=V100+C
REPEAT I
C=STAND :J4
C=C*L6
C=L14-C
R=R
S=VR+B
S=S/2
S=S*C
R=R+1
S1=VR+B
S1=S1/2
C=L6-C
S1=S1*C
S=S+S1
R=R
VR=S/L6
R=R+1
CYCLE I=R:1:99
J=R+1
S=VR+VJ
VJ=S/2
REPEAT I
JUMP @125
127)R=J4
C=99*L6
C=L14-C
S=V99+B
S=S*C
S=S/2
C=L6-C
S1=B*C
S1=S1/2
S=S+S1
V99=S/L6
125)W32=W31-S3
W32=W32-W33
W32=W32-W34
NOTE: ORDINATES IN THE FOLLOWING OUTPUT ARE NUMBERED FROM THE EXTREME POINT OF STERN (ORDINATE NO. 0), TO THE POINT OF BOW (ORDINATE NO. 100), AND ARE UNIFORMLy SPACED.

READ P1::1 FOR L. WEIGHTS TABLE, 0 IF TABLE NOT REQD.
JUMP IF P1=0@67
VARY I=1:1:50
OUTPUT 0
REPEAT I
TITLE

LOCAL WEIGHT ORDINATES (PROJECTED FORWARD).

<table>
<thead>
<tr>
<th>ORDINATION NO.</th>
<th>LOCAL WEIGHT/TON/FT</th>
</tr>
</thead>
</table>

VARY R=0:1:101
K=STAND R
K=K/4
K=FRAC K
JUMP UNLESS K=0@65
LINE
65) PRINT R
PRINT YR*3:2
REPEAT R
67) READ P2:;
JUMP: IF P2=0@87:GRAPH NOT REQD.-<1 IF GRAPH REQD.>
VARY: R=0:1:101
BR=YN
REPEAT R
VARY I=1:1:25
OUTPUT 0
REPEAT I

TITLE

LOCAL WEIGHT ORDINATES (PROJECTED FORWARD)

SUBR 86: GRAPH SCALES
SUBR 110: GRAPH OUTPUT
87) READ P1: FOR CONT. WEIGHT TABLE: 0 IF OTHERWISE
JUMP: IF P1=0@74
VARY: I=1:1:50
OUTPUT 0
REPEAT I

TITLE

CONTINUOUS WEIGHT CURVE ORDINATES (PROJECTED FORWARD).

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
<th>ORD NO.</th>
<th>WEIGHT TON/FT</th>
</tr>
</thead>
</table>

S=0
VARY R=0:1:101
K=STAND R
K=K/4
K=FRAC K
JUMP UNLESS K=0@27
LINE
27) PRINT .R
PRINT: VR•3:2
S=S+VR
REPEAT R
S=S*L6
LINE
CHECK S
READ P2:
JUMP IF P2=0@73::0 IF GRAPH NOT REQD - (1 IF GRAPH REQD)
VARY R=0:1:101 -
BR=VR
REPEAT R
VARY I=1:1:25
OUTPUT 0
REPEAT I

CONTINUOUS WEIGHT CURVE ORDINATES (PROJECTED FORWARD).

SUBR 86:: GRAPH SCALES
SUBR 110:: GRAPH OUTPUT

73) S=0
VARY R=0:1:101
YR=YR+VR
BR=YR:: FOR SUBR 29 BELOW (LCG POSITION).
S=S+YR
REPEAT R
S=S*L6
LINE
CHECK S
W32=W31-S
W3=MOD.W32
JUMP UNLESS W3%W31/1000@51
TITLE

RESULTANT COMPUTED TOTAL WEIGHT =
PRINT S,5:2
TITLE TONS
ERROR =
W3=-W32
PRINT W3,2:2
TITLE TONS - % ERROR =
W3=W3/W31
W3=W3*100
PRINT W3,2:2
LINES 2
VARY I=0:1:50
OUTPUT 5
REPEAT I:: INDICATES BY OUTPUT OF $$$$$$$$$$$ WHEN ERROR GR THAN 0.1%
LINE

WAIT:: IF ERROR IS ACCEPTABLE, PROGRAMME MAY BE CONTINUED.

51) SUBR 29:: TO OBTAIN PROVISIONAL LCG.
T2=T1-K3:
T3=MOD T2:
JUMP UNLESS T3%3/100<25
TITLE
RESULTANT COMPUTED LCG POSITION =
PRINT T1,3:2:
TITLE FT FWD OF A.E.
ERROR =
PRINT T2*2*2:
TITLE FT % ERROR =
T3=T3/K3
T3=T3*100
PRINT T3,2:2:
LINES 2:
VARY I=0:1:50
OUTPUT 24
REPEAT I::INDICATES BY OUTPUT OF 000000000 WHEN ERROR GR THAN 1%
LINES 2:
WAIT::IF ERROR IS ACCEPTABLE, PROGRAMME MAY BE CONTINUED.

25) L8=L/2:
K2=W31*K3
K2=K2->T
K2=K2/W32:
K1=K2:
A=W32/L
A=A/L
JUMP IF K2$L8<20
K2=L-K2:
20) K2=K2*6
K2=K2-L
K2=K2-L
A=A*K2:
B=2*W32:
B=B/L
B=B-A
JUMP IF K1$L8<23
F=A:
A=B:
B=F:
23) D=B:
B=D-A:
CHECK D:
CHECK A:
CHECK B:
F=B/100:
VARY R=0:1:101:
S=STAND R:
BR=S*F:
BR=D-BR:
REPEAT R:
VARY R=0:1:100:
J=R+1:
S=BR+B
S=S/2:
BR=S:
REPEAT R:

READ P1::1 FOR WEIGHT CURVE ORDINATES: 0 IF OTHERWISE
JUMP IF P1=0@75:
VARY I=1:1:50:
OUTPUT 0:
REPEAT 1:

TITLE

TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD):

<table>
<thead>
<tr>
<th>ORD</th>
<th>WEIGHT</th>
<th>ORD</th>
<th>WEIGHT</th>
<th>ORD</th>
<th>WEIGHT</th>
<th>ORD</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>TON/FT</td>
<td>NO.</td>
<td>TON/FT</td>
<td>NO.</td>
<td>TON/FT</td>
<td>NO.</td>
<td>TON/FT</td>
</tr>
</tbody>
</table>

75) S=0:
VARY R=0:1:100:
YR=YR+BR:
JUMP IF P1=0@76:
K=STAND R:
K=K/4:
K=RAC K:
JUMP: UNLESS K=0@28:
LINE:
28) PRINT R:
PRINT YR::3::2:
76) BR=YR:: FOR GRAPH OUTPUT AND FOR SUBR 29 (FOR LCG POSITION):
S=S+YR:
REPEAT R:
S=S*6:

SUBR 29:: TO OBTAIN LCG:

VARY I=1:1:25:
OUTPUT 0:
REPEAT 1:
READ P2:

TITLE

WEIGHT L.C.G. FWD. A.E.

SPACES 4
PRINT S,6:2
SPACES 9
PRINT T1,3:2

JUMP IF P2=0@90::0 IF GRAPH NOT REQD.

VARY I=1:1:25
OUTPUT 0
REPEAT I

TITLE

TOTAL WEIGHT CURVE ORDINATES (PROJECTED FORWARD)

--

SUBR 86:: GRAPH SCALES
SUBR 110:: GRAPH OUTPUT

90)READ S17:: MEAN DRAUGHT
READ M2:: MCT.1
READ L10:: L.C.B. FWD. OF A.E.
READ L11:: L.C.F. FWD. OF A.E.
READ S16:: WAVE HEIGHT (CREST TO TROUGH)
READ L9:: WAVELENGTH - DATA SHEET 0 IF STILL WATER
READ P3:: 1 IF SAGGING, 0 IF HOGGING OR STILL WATER
READ S18:: FT. FROM Stern WHERE CREST OR TROUGH OF WAVE FALLS

X1=L3/10
S1=L1/4
S2=S1
CYCLE I=3,4,12,13
S1=0.125*X1
REPEAT I
S5=0.25*X1
S11=S5
S6=0.5*X1
S10=0.5*X1
VARY I=7:1:3
S1=X1
REPEAT I
S14=L2/4
S15=S14
X=0
CHECK X
VARY J=1:1:15
X(2J-1)=X(2J-2)+SJ
X(2J)=X(2J-1)+SJ
CHECK X(2J-1)
CHECK X(2J)
REPEAT J::X - VALUES TO 31 STATION POSITIONS.

L12=L10-K3::(LGB-LCG)
B2=W91-L12
B3=B2/M2::TRIMMING MOMENT / MCT1 = TRIM IN INCHES
B3=B3/12::TRIM IN FEET
F1=B3/L3::TRIM IN FT PER FT LENGTH
F6=F1-L11::TRIM IN FT OVER DISTANCE OF LCF FROM AE.
F6=S17+F6::DRAUGHT AT Stern - STILL WATER.

WAIT:: FOR TAPE 4 - BONJEAN DATA:

JUMP· IF P4%1@19

123)READ H::WATERLINE SPACING.
READ Q1:: FOR CHOICE OF 1/8THS OR 1/4S
READ N1
READ N2
N=N1+N2
JUMP· IF Q1=0.125@10
N=N+3
N3=2* N
Z=0
H1=H/4
H2=H/4
H3=H/2
VARY I=4:1:N1
HI=H
REPEAT I
N4=N1+4
JUMP @16
10)N=N+4
N3=2* N
Z=0
H1=H/8
H2=H/8
H3=H/4
H4=H/2
VARY \(I=5:1:N1:: \)
HI\(=H \)
REPEAT I
N4\(=N1+5 \)
16)JUMP IF \(N2=0@6 \)
VARY \(I=N4:1:N2 \)
HI\(=H/2 \)
REPEAT I
63)VARY \(I=1:1:N \)
Z(2I-1)=Z(2I-2)+HI
Z(2I)=Z(2I-1)+HI
CHECK Z(2I-1)
CHECK Z(2I)
REPEAT I
VARY \(J=0:1:31 \)
READ S19:: SECTIO NUMBER
CHECK S19
READ P(J+5):: 0 IF NO READINGS IN COLUMN, 1 OTHERWISE
JUMP IF P(J+5)=0@62
READ Z(51+J):: Z MIN
READ Z(82+J):: Z MAX
CYCLE I=0:1:N3
READ QI
REPEAT I:: ALF-WIDTHS
READ G52:: Y AT Z MAX
I=0
OC25J+I)=0
CHECK I
CHECK OC25J+I)
JUMP IF Z(51+J)=0@33
READ G51
31J=I+1
M=Z(51+J)-Z(2I)
M=MOD M
JUMP IF M$0.0001@42:: ENSURES ZERO RESULT IF Z MIN SHOULD 'EQUAL'
JUMP IF Z(51+J)$Z(2I)$0@32:: Z(2I), IN FL. PT. MODE.
OC25J+I)=OC25J)
CHECK I
CHECK OC25J+I)
JUMP @31
42)Z(51+J)=Z(2I)
32)T=Z(2I)-Z(51+J)
T=T/3
T1=4*G51
T2=T1+G(2I)
S20=T2*T
R=I-1
OC25J+I)=OC25J+R)+S20
CHECK I
CHECK OC25J+I)
JUMP IF Z(82+J)$Z(2I+2)$120
I = I + 1 ::
T = H1 / 1.5
T1 = 4 * G(2I - 1)
T2 = T1 + G(2I - 2)
T2 = T2 + G(2I)
T2 = T2 * T
R = I - 1
OC25J + I) = OC25J + R) + T2
CHECK I
CHECK OC25J + I)
JUMP IF Z(82 + J) % Z(2I + 2) @ 33
120) T = Z(82 + J) - Z(2I)
T1 = G(2I) + G51
T1 = T1 * T
R = I
I = I + 1
OC25J + I) = OC25J + R) + T1
CHECK I
CHECK OC25J + I)
WC35 + J) = OC25J + I) :: MAX. AREA
629 REPEAT J

195 VARY J = 0:1:31
JUMP IF P(J + 5) = 0 @ 38
I = 0
HJ = 0
JUMP IF L9 = 0 @ 39
C = XJ - S18
C = 2 * C
C = C / L9
C = COS C
JUMP IF P3 = 1 @ 26
C = - C
263 HJ = S16 / 2
HJ = HJ * C
39) B = F1 * XJ
B = - B + F6
HJ = HJ + B
CHECK HJ :: WAVE HEIGHT ABOVE KEEL
UJ=W(C35+J)

SUBR 30
WJ=UJ

JUMP IF L9=0@41
JUMP IF P3=0@71

HJ=HJ+4
JUMP @72
71)HJ=HJ-4
72)UJ=W(C35+J)

SUBR 30

JUMP @41
38)WJ=0
UJ=0
CHECK:WJ
CHECK :UJ
41)REPEAT J

JUMP IF L9=0@56
M=0
M1=0
M3=0
M4=0
Q1=0
Q3=0

VARY:1=1:1:15
T=S1/3,
T1=W(C2I-1)
T2=T1+W(C2I)
T2=T2+W(C2I-2)
T2=T2*T
Q1=Q1+T2

T1=T1*X(C2I-1)
T2=W(C2I)*X(C2I)
T3=W(C2I-2)*X(C2I-2)
T4=T1+T2
T4=T4+T3
T4=T4*T
M=M+T4
T1 = T1 \times (2 \mathbf{I} - 1)
T2 = T2 \times (2 \mathbf{I})
T3 = T3 \times (2 \mathbf{I} - 2)
T4 = T4 + T2
T4 = T4 + T3
T4 = T4 \times T
M3 = M3 + T4

T1 = 4 \times (2 \mathbf{I} - 1)
T2 = T1 + (2 \mathbf{I})
T2 = T2 + (2 \mathbf{I} - 2)
Q3 = Q3 + T2

T1 = T1 \times (2 \mathbf{I} - 1)
T2 = T2 \times (2 \mathbf{I})
T2 = T2 \times (2 \mathbf{I} - 2)
T4 = T1 + T2
T4 = T4 + T3
T4 = T4 \times T
M4 = M4 + T4

REPEAT 1
Q3 = Q3 - Q1
Q3 = Q3 / 4
Q2 = M1 - M
Q2 = Q2 / 4
Q4 = Q2 / L
Q5 = M4 - M3
Q5 = Q5 / 4
Q5 = Q5 / L
Q7 = Q6 \times K3
Q8 = Q6 - Q1
Q9 = Q7 - M
F2 = Q4 \times Q2
F3 = Q8 \times Q2
F4 = Q3 \times Q5
F5 = Q9 \times Q3
F2 = F2 - F4
F3 = F3 - F5
B = F3 / F2
F1 = Q4 \times B
Q8 = Q8 - F1
A = Q8 / Q3
CHECK A::
CHECK B
VARY J=0:1:31
S=XJ*B
S=S/L
S=S+A
UJ=UJ-WJ
UJ=UJ/4
S=S*UJ
WJ=WJ+S
REPEAT J

56) VARY J=0:1:31
AJ=WJ/35
REPEAT J

VARY R=0:1:101
DR=0
REPEAT R

I=0: EXTRA COUNT FOR XJ IN SUBR 58
JUMP IF A%0@131
N=0
VARY R=1:1:10
JUMP IF N%0@132
S=AR-A(R-1)
JUMP IF S=0@132
N=R
I=N-1
132) REPEAT R
131) J=30
JUMP IF A30%0@133
VARY R=29:-1:10
JUMP IF J$30@134
S=AR-A(R+1)
JUMP IF S=0@134
J=R
134) REPEAT R

133) X=XI
X1=X(I+1)
X2=X(I+2)
A=AI
A1=A(I+1)
A2=A(I+2)
S=X1/L6
N1=INT S
N1=N1+1
S=XJ/L6
J=INT S
J1=J+1
I = 0
138) S = 0
VARY R = 1:1:100
M1 = DR + DC(R = 1)
M1 = M1/2
S = S + M1
REPEAT R
S = S • L6
CHECK S
JUMP IF I = 1@139
W32 = W31 - S
N2 = J1 - N1
CHECK N2
K = STAND N2
K = W32/K
K = K/L6
VARY R = N1:1:N2
DR = DR + K
REPEAT R
I = I + 1
JUMP @138
139) VARY I = 0:1:100
M1 = DI + DC(I + 1)
B1 = M1/2
REPEAT I

SUBR 29
M4 = 0
VARY I = 0:1:100
JUMP IF DC(I + 1) •@12
K = DC(I + 1) - DI
M1 = DI • DC
JUMP @142
12) K = DI - DC(I + 1)
M1 = DC(I + 1) • DC(I + 1)
142) M1 = H1 • L6
M1 = M1/2
M2 = K • L6
M2 = M2/2
K = K/3
JUMP IF DC(I + 1) •@141
K=K+DI
JUMP @135
135)K=K+D(I+1)
135)M2=M2+K
M4=M4+M1
M4=M4+M2
REPEAT 1

VERTICAL MOMENTS

VARY R=0:1:101
AR=DR
DR=0
REPEAT R

H=M4/S

CENTRE OF AREA OF BUOYANCY CURVE (VERT).
CHECK H

L8=T1-K3
M=L8/H

RATIO TO AFFECT ALL AI VALUES
CHECK M

X=0
VARY : J=1:1:50
X(2J-1)=X(2J-2)+L6
X(2J)=X(2J-1)+L6
REPEAT J

VARY : I=0:1:101
S=AI*M
XI=XI-S
REPEAT I

I=N1-1
X=XI
X1=X(I+1)
X2=X(I+2)
A=AI
A2=AC(I+2)

SUBR 58

VARY R=0:1:100
J=R+1
S=DJ+DR
DR=S/2
REPEAT R
WAIT::FOR TAPE 5 - CHOICE OF REMAINING TABLES/GRAPHS. PAGE 23

READ P1::1 FOR BUOYANCY:TABLE REQD., - 0 OTHERWISE.
JUMP:IF P1=0@77

VARY .I=1:1:50
OUTPUT 0
REPEAT I

TITLE

BUOYANCY CURVE ORDINATES (PROJECTED FORWARD).

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>BUOY TON/FT</th>
<th>ORD NO.</th>
<th>BUOY TON/FT</th>
<th>ORD NO.</th>
<th>BUOY TON/FT</th>
<th>ORD NO.</th>
<th>BUOY TON/FT</th>
</tr>
</thead>
</table>

77) S=0
VARY:R=0:1:100
JUMP:IF P1=0@119
K1=STAND R
K1=K1/4
K1=FRAC K1
JUMP:UNLESS K1=0@61
LINE
61)PRINT R
119)JUMP:IF DR$0@44
JUMP @43
44)DR=0
43)JUMP:IF P1=0@78
PRINT DR; 3:2;
78) BR=DR::FOR GRAPH
S=S+DR
REPEAT R

S=S*L6
CHECK S
SUBR 29:: TO OBTAIN LCB.
VARY .I=1:1:25
OUTPUT 0
REPEAT I
DISPLACEMENT

L.C.B.
FWD.A.E.

SPACES 3
PRINT S,7:2
SPACES 7
PRINT T,4:2
LINE
READ P2
JUMP IF P2=0@91
VARY I=1:1:25
OUTPUT 0
REPEAT I
TITLE

BUOYANCY CURVES ORDINATES (PROJECTED FORWARD).

SUBR 86::: GRAPH SCALES
SUBR 110::: GRAPH OUTPUT

91) VARY R=0:1:101
YR=DR-YR
BR=YR
REPEAT R

READ P1:: 1 IF LOAD CURVE TABLE REQD. - 0 OTHERWISE.
JUMP IF P1=0@79
VARY I=1:1:50
OUTPUT 0
REPEAT I
TITLE

LOAD CURVE ORDINATES (PROJECTED FORWARD)

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
<th>ORD NO.</th>
<th>LOAD TON/FT</th>
</tr>
</thead>
</table>

- 143 -
VARY R = 0: 1: 101:
K1 = STAND R
K1 = K1/4
K1 = FRAC K1
JUMP UNLESS K1 = 0@17
LINE 17) PRINT R
PRINT YR, 3: 2:
REPEAT R

79) READ P2:
JUMP IF P2 = 0@112:

VARY I = 1: 1: 25
OUTPUT 0
REPEAT I

TITLE

LOAD CURVE ORDINATES (PROJECTED FORWARD)

SUBR 86:: GRAPH SCALES
SUBR 110:: GRAPH OUTPUT
112) D = 0
VARY J = 0: 1: 100
R = J + 1
A = YJ * L6
D R = DJ + A
REPEAT J
CHECK: D100
F = D100/100
VARY J = 0: 1: 101
JUMP IF J = 0@21
K1 = STAND J
YJ = K1 * F
YJ = DJ - YJ
JUMP @113
21) Y = 0
113) B J = YJ
REPEAT J

READ P1:: 1 IF SHEAR FORCE TABLE REQU. = 0 OTHERWISE
JUMP IF P1 = 0@92:
VARY I = 1: 1: 50
OUTPUT 0
REPEAT I
SHEAR FORCE CURVE ORDINATES.

<table>
<thead>
<tr>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
<th>ORD NO.</th>
<th>S.F. TONS</th>
</tr>
</thead>
</table>

VARY J=0:1:101
K1=STAND J
K1=K1/4
K1=FRAC K1
JUMP UNLESS K1=0@40
LINE
40)PRINT J
PRINT YJ,5:0
REPEAT J

92)READ P2
READ I5:: FOR CONTROL IN SUBR 86 - (FIRST SET TO ZERO ON PAGE 9, FOR ALL PREVIOUS CURVES.
JUMP IF P2=1@114::
JUMP IF 15=0@15
114)VARY I=1:1:25
OUTPUT 0
REPEAT I
TITLE

SHEAR FORCE CURVE

SUBR 86:: GRAPH SCALES
JUMP IF P2=0@15
SUBR 109:: GRAPH OUTPUT

15)X=0
VARY J=1:1:50
X(2J-1)=X(2J-2)+L6
X(2J)=X(2J-1)+L6
REPEAT J

B=0
VARY J=0:1:100:
R=J+1
A=YR+YJ
A=A*L6
A=A/2
BR=BJ+A
REPEAT J
CHECK : B100
VARY J=0:1:101
JUMP IF J=0@55
K1=STAND J
YJ=L*L
YJ=B100/YJ
K2=XJ*XJ
YJ=YJ*K2
BJ=BJ-YJ
JUMP @115
55>B=0
115>REPEAT J

READ P1::1 FOR BENDING MOMENTS TABLE -0 OTHERWISE
JUMP IF P1=0@68
VARY J=1:1:50
OUTPUT 0
REPEAT I

TITLE

<table>
<thead>
<tr>
<th>ORD</th>
<th>B.M.</th>
<th>ORD</th>
<th>B.M.</th>
<th>ORD</th>
<th>B.M.</th>
<th>ORD</th>
<th>B.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>TON FT</td>
<td>NO.</td>
<td>TON FT</td>
<td>NO.</td>
<td>TON FT</td>
<td>NO.</td>
<td>TON FT</td>
</tr>
</tbody>
</table>

VARY J=0:1:101
K1=STAND J
K7K1/4
K1=FRAC K1
JUMP UNLESS K1=0@66
LINE
66>PRINT J
PRINT BJ, 6:0
REPEAT J

BENDING MOMENT CURVE ORDINATES.
READ P2.
READ I6::: FOR CONTROL IN SUBR 86 - PREVIOUSLY SET TO ZERO ON
JUMP IF P2=1@93:::GRAPH REQUIRED
JUMP IF I6=0@121
93) VARY I=1:1:25
OUTPUT 0.
REPEAT I:

TITLE

BENDING MOMENT CURVES

SUBR 86::: GRAPH SCALES
JUMP IF P2=0@121
SUBR 109::: GRAPH OUTPUT
121) STOP::: END OF PROGRAMME.

29) X=L6/2
 T=0
 VARY R=0:1:100
 M=BR*L6
 M=M*X
 T=T+M
 X=X+L6
 REPEAT R
 T1=T/S
 EXIT
58) R=N1
S=STAND N1
S=S+L6
N=N+1
85) Q6=S-X0
Q7=S-X1
Q8=S-X2
F0=Q6*Q7
F1=Q6*Q8
F2=Q7*Q8
Q=X2-X0
Q1=X2-X1
Q2=X1-X0
Q3=X1-X2
Q4=X0-X1
Q5=X0-X2
Q6=Q*Q1
Q7=Q2*Q3
Q8=Q4*Q5
F0=F0/Q6
F1=F1/Q7
F2=F2/Q8
F0=F0*A2
F1=F1*A1
F2=F2*A0
F=F+F1
F=F+F2
DR=F
CHECK DR
CHECK R
S=S+L6
R=R+1
JUMP IF R=J1@82
JUMP IF R%50@60
59) JUMP IF S%X1@81
60) JUMP IF S%X2@81
JUMP @85
81) X0=X1
X1=X2
A0=A1
A1=A2
N=N+1
X2=XN
A2=AN
JUMP IF R%50@60
JUMP @59
82) EXIT
86) JUMP IF 13%0@48 ::
K4 = 0
K5 = 0
VARY R = 1:1:100
JUMP UNLESS BR%K5@88
K5 = BR
88) JUMP UNLESS BR$K4@89
K4 = BR
89) REPEAT R
TITLE

MAXIMUM POSITIVE VALUE =
PRINT K5, 7:2
TITLE
MAXIMUM NEGATIVE VALUE =
PRINT K4
JUMP IF 15=1@45
JUMP IF 16=1@45
JUMP @57
48) I4 = I4+1
JUMP IF 15=0@24
K5 = S25
K4 = S26
JUMP @57
24) K5 = M6
K4 = M7
57) K5 = K5 - K4 :: RANGE
JUMP IF 14%2@53 :: AVOIDS RE-PRINTING THE FOLLOWING TITLES
K4 = -K4/K5 :: FRACTION OF RANGE
K7 = 1 - K4
K4 = K4@30
K4 = K4@S22 :: DIST (IN CMS) OF X-AXIS FROM BASE OF GRAPH PAGE
K7 = K7@30
K7 = K7@S22
K7 = K7 + K4 :: HEIGHT OF Y-AXIS
TITLE

X-AXIS DISTANCE (CMS) FROM BASE OF GRAPH PAGE =
JUMP IF S22=1@136 :: IF S22=0.5 ALL X-AXES MAY BE CENTRAL.
TITLE: 16
JUMP @137
136) R = INT K4
PRINT R

137) TITLE
HEIGHT OF Y-AXIS =

R = INT K7
PRINT R
HORIZONTAL SCALE OF GRAPH —— 1 CM = 27.2 IN
PRINT S2,2 FT

VERTICAL SCALE OF GRAPH —— UNITS/CM: 1
S1 = 100/S
PRINT S1,5:1
VARY \texttt{R}=0:1:200:

\texttt{OUTPUT 0}

\texttt{REPEAT R}

\texttt{45)EXIT}

\texttt{109)C3=0}
\texttt{C4=0}
\texttt{C1=0}
\texttt{C2=0}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{CYCLE \texttt{R}=0:1:99}
\texttt{C1=L6*S24}
\texttt{C1=C1+C4}
\texttt{C2=B(R+1)-BR}
\texttt{C2=C2*S}
\texttt{C2=C2+C3}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{C4=C1}
\texttt{C3=C2}
\texttt{REPEAT R}

\texttt{VARY \texttt{R}=1:1:200}
\texttt{OUTPUT 0}
\texttt{REPEAT R}
\texttt{EXIT}

\texttt{110)C1=0}
\texttt{C2=0}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{C2=B*S}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{C1=L6*S24}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{C4=C1}
\texttt{C3=C2}
\texttt{VARY \texttt{R}=1:1:100}
\texttt{C2=BR-B(R-1)}
\texttt{C2=C2*S}
\texttt{C2=C2+C3}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{JUMP IF \texttt{R}=100@111}
\texttt{C1=L6*S24}
\texttt{C1=C1+C4}
\texttt{F=GRAPH C1}, \texttt{C2}
\texttt{C4=C1}
\texttt{C3=C2}
\texttt{111)REPEAT R}
\texttt{VARY \texttt{R}=1:1:200}
\texttt{OUTPUT 0}
\texttt{REPEAT R}
\texttt{EXIT}
\(S_1 = 0\):
\(T_5 = 0\)

VARY \(R = 0:1:101\)
\(XR = 0\)

REPEAT \(R\)
READ \(P_4 = 0\) FOR COMMON LOCAL WTS. TAPE: 1, 2, 3, 4 ETC FOR REST.
READ \(N:\) NUMBER OF WEIGHTS
VARY \(I = 1:1:N\)
READ \(M\)
READ \(S\)
READ \(B\)
READ \(X\)
\(B_2 = S/6\)
\(B_1 = \text{MOD} \ B\)
JUMP \<UNLESS \(B_1 \neq 2\)
TITLE
OFFENDING ITEM - \(B\) -
PRINT \(I\)
LINE
VARY \(R = 0:1:30\)
OUTPUT 23
REPEAT \(R:\) \(<\:\\)
Q2 = Q2/L6;
Q3 = Q3/L6
J2 = INT Q2;
J3 = INT Q3
JUMP IF J2 = J3 + 3:: ALL SHAPES.

F2 = FRAC Q2
F2 = 1 - F2;
F2 = F2 * L6
F3 = FRAC Q3
F3 = F3 * L6
JUMP UNLESS B = 0@9

A = M/S:: RECTANGLE CALCULATIONS:
JUMP UNLESS J3 = J2 + 1@5
JUMP IF F3 = 0@3: CALCUATION WHEN RECTANGLE LENGTH LESS THAN 2L/100

SUBR 46
JUMP IF F2 = 0@4
SUBR 36
JUMP @22

1) A = M/L6
2) R = J2
3) YR = YR + A
JUMP @22

5) JUMP IF F3 = 0@2
SUBR 46
2) JUMP IF F2 = 0@7
SUBR 36
J2 = J2 + 1
7) N1 = J3 - J2
VARY P = 0:1: N1
R = J2 + P
YR = YR + A
REPEAT P
JUMP @22

9) H3 = 6@8:: TRAPEZIUM CALCULATIONS;
H3 = H3/S
H3 = H3 + 1
H3 = H3 * M
H3 = H3/S:: FORE ORD.
H2 = M@2
H2 = H2/S
H2 = H2 - H3:: REAR ORD.
H = H3 - H2
H = H/S:: SLOPE (PER FOOT)
JUMP UNLESS J3 = J2 + 1@13
JUMP IF F3 = 0@3
SUBR 64:

JUMP IF F2=0@11

A2=H1+H2
A2=A2/2

SUBR 34

JUMP @22

11) A=H2+H1
A=A/2
R=J2
YR=YR+A
JUMP @22

13) A3=0
JUMP IF F3=0@14

SUBR 64

14) JUMP IF F2=0@18
H1=H*F2
H1=H2+H1
A2=H1+H2
A2=A2/2

SUBR 34

H2=H1
N1=J3-J2
N1=N1-1
N2=1

SUBR 35

JUMP @22
18) N1=J3-J2
N2=0

SUBR 35
22) REPEAT 1

EXIT

46) A3=A*F3
A3=A3/L6
R=J3
YR=YR+A3
EXIT
36) \[A_2 = \frac{A_2}{L_6} \]
\[R = J_2 \]
\[Y = Y + A_2 \]
EXIT

34) \[H = H \cdot L_6 \]
\[A_2 = \frac{A_2}{L_6} \]
\[R = J_2 \]
\[Y = Y + A_2 \]
EXIT

35) \[H = H \cdot L_6 \]
\[\text{VARY } P = N_2 \cdot 1 + N_1 \]
\[R = J_2 \]
\[R = R + P \]
\[H = H + H \]
\[A = H + H \]
\[A = A / 2 \]
\[H = H \]
\[Y = Y + A \]
REPEAT P
EXIT

30) JUMP \(\text{UNLESS } HJ$Z(82+J)@47 \]
\[UJ = 0 \]
JUMP \(\text{UNLESS } HJ%0@47 \]
JUMP \(\text{UNLESS } HJ%Z(51+J)@47 \]
\[I = 0 \]
37) \[I = I + 1 \]
JUMP \(\text{IF } HJ%Z(21+J)@37 \]
JUMP \(\text{IF } (82+J)%Z(21+J)@69 \]
JUMP \(\text{IF } (51+J)%Z(21+2)@128 \]
\[UJ = Z(82+J) - Z(21+2) \]
JUMP \(@70 \]
128) \[UJ = Z(82+J) - Z(51+J) \]
JUMP \(@129 \]
69) JUMP IF Z(51+J)\%Z(2i-2)@130:156 -
UJ=Z(2i)-Z(2i-2)
70) B=HJ-Z(2i-2)
B=B/UJ
R=I-1
UJ=0(25J+1)-0(25J+R)
UJ=UJ*B
UJ=0(25J+R)+UJ
JUMP @47
129) B=HJ-Z(51+J)
B=B/UJ
UJ=0(25J+1)*B
47) CHECK UJ::AREA TO WAVE HEIGHT
EXIT

START 1
LONGITUDINAL STRENGTH OF SHIPS

BENDING MOMENT CALCULATIONS

(Programmed in Elliott Autocode for use on the
Elliott 803 Digital Computer)

The programme calculates and outputs any or all of the following
tables and/or graphs:--

(i) Local Weights distribution.

(ii) Continuous Weight distribution
 (a) Lloyd's method, (b) Biles Coffin method.

(iii) Total Weight distribution.

(iv) Buoyancy.

(v) Load curve.

(vi) Shear Force curve.

(viii) Bending Moment curve.

Ordinate values are given over each of 100 equal divisions of the
ship's length overall. Values are averaged over every pair progressively
and are projected forward over the appropriate division in the first five
of the above tables.

Graph output on the Benson Lehner plotter is provided, if desired.
Graphs of Shear Force and Bending Moment are continuous polygons, whereas
the five other graphs consist of a series of straight horizontal lines
drawn forward from each ordinate in turn.
In the case of Shear Force and Bending Moment, maximum positive and maximum negative values only may be output if required, in order that the data for several loading conditions may be re-run to produce, respectively, all graphs to fixed (preset) scales, dependent on these values.

Output of all of the above tables for one loading condition takes 8 – 10 minutes. Graph output averages about 2 mins. per graph.

Distribution of the Continuous Weight may be performed by either of two methods available: Biles Coffin or Lloyd's (see their RPT. SR 64/15).

31 sections are used overall in the Buoyancy calculations, of which 23 are within and include the perpendicuラars, with four aft and four forward.

After the complete set of data has been read in for the first condition, it is only necessary to read in the relevant changes of data for subsequent conditions. The Lightship concentrated items are distributed and permanently stored, as are the calculated Bonjean areas to each even waterline, which follows the initial input of the buoyancy data. Subsequent buoyancy ordinates are determined by calculation from such items as mean draught, and MCT 1", items peculiar to each loading condition.
Programme and Data Tapes - Operating Instructions.

(Programme)

Enter Binary programme tape 4 0 0
0 0 0

Follow with Autocode Plotter Tape 2, entered -4 0 0
0 0 0

(Data)

Enter tape for first condition 4 0 1 6
0 0 0

All subsequent tapes, enter 4 0 1 6
0 0 1 2 6

Notes on Data Tapes

It is advisable to have one complete tape for the first condition, consisting of:

Scales and Lightship concentrated items (Tape 1)

Deadweight items, displacement, L.C.G., Lloyd's 'a' values (or Biles information) (Tape 2)

Tables/Graphs output constants; Trim data (Tape 3)

Bonjean data (Tape 4)

Tables/Graphs/Max. values output constants (Tape 5)

each tape separated by several inches of blank tape.
Subsequent conditions require to have entered only the changed data of the deadweight items with the appropriate displacement and L.C.G. (Tape 2); Tables/Graphs constants, trim data (Tape 3); and Tables/Graphs/Max. values constants (Tape 5); it is advisable to have these three tapes again as one complete tape. Thus instead of many small tapes, there is one complete tape per condition.

There are programme WAITS after each part of the above compound tapes, for greater control of the data. There is also an immediate WAIT at the beginning, just before the lightship data is fed in, to allow use of an amended tape for a graph re-run. WAIT will also be encountered, apart from those between the 'part tapes' of the subsequent conditions, at the stage when Tape 4 would be expected.

Presentation of Data

The following pages show the style and presentations of the data (partially completed), as submitted by the shipyard, and the same data when typed/punched for input to the computer.

Note: (i) Waterline spacings variable H in the Longitudinal Strength programme replaces variable D in the Bonjean data sheet.

(ii) Half-widths "Yi" in the Bonjean data, are known as "GI" in this programme.
If some (or all) conditions are to be re-run in order to graph all Shear Force curves to the same scale (and similarly the Bending Moment curves), from the maximum values determined on a previous run, PUT 13 = 1. IN ALL OTHER CASES, PUT 13 = 0.

<table>
<thead>
<tr>
<th>Programme Variable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

If 13 = 0, omit this section, and go on to the next section.
If 13 = 1, enter the appropriate maximum values from the previous runs. (If either one is not required, enter two zeros for that curve).

<table>
<thead>
<tr>
<th>Maximum Shear Force (+ve) tons</th>
<th>S25</th>
</tr>
</thead>
<tbody>
<tr>
<td>" " " (−ve) " "</td>
<td>S26</td>
</tr>
<tr>
<td>Maximum Bending Moment (+ve) tons/ft.</td>
<td>W6</td>
</tr>
<tr>
<td>" " " (−ve) " "</td>
<td>W7</td>
</tr>
</tbody>
</table>

(PROGRAMME WAIT HERE)

<table>
<thead>
<tr>
<th>0 for Lloyd's method: 1 for Biles Coffin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>Length Overall ft. 617</td>
</tr>
<tr>
<td>Length of Stern Overhang " 23</td>
</tr>
<tr>
<td>Length of Bow Overhang " 14</td>
</tr>
</tbody>
</table>

Enter 1 for full width graph,
0.5 for half width graph or
0 for no graph

| Horizontal Scale required (Convenient choice : 10, 20 or 40 - ft/cm.) Enter 0 if no graph required. |
| 20 | S27 |

<p>| Code Number for Lightship Concentrated Items |
| 0 | P4 |
| Number of Concentrated Lightship Items |
| 71 | N |</p>
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight (tons) (M)</th>
<th>Length (ft) (S)</th>
<th>Dist. of L.C.G. * from C/L of Item. (B)</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lower Edge Dk & Hse below</td>
<td>75.17</td>
<td>94.50</td>
<td>0</td>
<td>81.75</td>
</tr>
<tr>
<td>2. Upper " " " "</td>
<td>58.96</td>
<td>90.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3. Boat " " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. etc. etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Capstans</td>
<td>5.48</td>
<td>4.00</td>
<td>0</td>
<td>284.00</td>
</tr>
<tr>
<td>6. " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. " " "</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
Code number for this Sheet - i.e. Condition Number. (1, 2, 3, ... etc.)

<table>
<thead>
<tr>
<th>Code number</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Number of DEADWEIGHT Items for this condition

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Weight (tms)</th>
<th>Length (ft)</th>
<th>Dist. of L.C.G. * from C/L of Item</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.B. in No. 1 D.B. Tank</td>
<td>436.00</td>
<td>63.00</td>
<td>-3.87</td>
<td>536.63</td>
</tr>
<tr>
<td>" " 2 " "</td>
<td>726.00</td>
<td>65.00</td>
<td>-1.34</td>
<td>475.16</td>
</tr>
<tr>
<td>" " 3 " "</td>
<td>1162.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

etc. etc.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Weight (tms)</th>
<th>Length (ft)</th>
<th>Dist. of L.C.G. * from C/L of Item</th>
<th>L.C.G. from stern (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineers Spare Gear</td>
<td>100.00</td>
<td>80.00</td>
<td>0</td>
<td>88.00</td>
</tr>
<tr>
<td>36. Engineers Spare Gear</td>
<td>40.00</td>
<td>80.00</td>
<td>0</td>
<td>72.45</td>
</tr>
</tbody>
</table>

* -ve if aft of Centre of Length.
TITLE output at Head of Results

Name of firm
SHIPYARD A.
Ship No. X

LONGITUDINAL STRENGTH CALCULATIONS

CONDITION No. 1
BALLAST DEPARTURE
FULL BUNKERS.

*STILL WATER
*SINE-WAVE SAGGING
*SINE-WAVE HOGGING
(delete those
* not
Required).

Programme Variable.

<table>
<thead>
<tr>
<th>Displacement</th>
<th>(tons)</th>
<th>21318.65</th>
<th>W31</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.C.G. forward of Stern</td>
<td>(ft)</td>
<td>321.79</td>
<td>K3</td>
</tr>
</tbody>
</table>
Tape 2 (Contd). (This part of Tape 2 not required after the first data run).

If Continuous Weight is to be distributed by Biles Coffin method, complete lines (a), (b), (c), (d) below, otherwise complete (e) from Lloyds tables SR 64/15.

For FIRST data run only:

<table>
<thead>
<tr>
<th>Programme Variable</th>
<th>(a) Weight of Overhang of Stern.</th>
<th>W33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) Weight of Overhang of Bow.</td>
<td>W34</td>
</tr>
<tr>
<td></td>
<td>(c) L.C.G. of Overhang of Stern, from Stern.</td>
<td>L4</td>
</tr>
<tr>
<td></td>
<td>(d) L.C.G. of Overhang of Bow, from Stern.</td>
<td>L5</td>
</tr>
<tr>
<td>(e) For FIRST data run only:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stn. 0</th>
<th>Stn. 1</th>
<th>Stn. 2</th>
<th>Stn. 3</th>
<th>Stn. 4</th>
<th>Stn. 5</th>
<th>Stn. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.34</td>
<td>.495</td>
<td>.625</td>
<td>.73</td>
<td>.815</td>
<td>.885</td>
<td>.94</td>
</tr>
<tr>
<td>Stn. 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 8</td>
<td>.975</td>
<td>.998</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stn. 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 11</td>
<td>.975</td>
<td>.905</td>
<td>.765</td>
<td>.505</td>
<td>.14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stn. 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stn. 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choice of Output

<table>
<thead>
<tr>
<th>Control Programme</th>
<th>Constant</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 if Local Weights Table required : 1 otherwise</td>
<td>1</td>
<td>P1</td>
</tr>
<tr>
<td>1 " " " . Graph " : 0 otherwise</td>
<td>0</td>
<td>P2</td>
</tr>
<tr>
<td>1 " Cont. Weight Table " : 0 otherwise</td>
<td>1</td>
<td>P1</td>
</tr>
<tr>
<td>1 " " " " : 0. otherwise</td>
<td>0</td>
<td>P2</td>
</tr>
<tr>
<td>1 " Total " " " : 0 otherwise</td>
<td>1</td>
<td>P1</td>
</tr>
<tr>
<td>1 " " " Graph " : 0'• otherwise</td>
<td>0</td>
<td>P2</td>
</tr>
</tbody>
</table>

Mean Draught

<table>
<thead>
<tr>
<th>(ft)</th>
<th>S17</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.245</td>
<td></td>
</tr>
</tbody>
</table>

MCT 1"

<table>
<thead>
<tr>
<th>ton.ft.</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3087</td>
<td></td>
</tr>
</tbody>
</table>

L.C.B. fwd A.B.

<table>
<thead>
<tr>
<th>(ft)</th>
<th>L10</th>
</tr>
</thead>
<tbody>
<tr>
<td>331.22</td>
<td></td>
</tr>
</tbody>
</table>

L.C.F. fwd A.B.

<table>
<thead>
<tr>
<th>(ft)</th>
<th>L11</th>
</tr>
</thead>
<tbody>
<tr>
<td>321.63</td>
<td></td>
</tr>
</tbody>
</table>

Wave height (0 if still water)

<table>
<thead>
<tr>
<th>(ft)</th>
<th>S16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Wavelength (0 if still water)

<table>
<thead>
<tr>
<th>"</th>
<th>L19</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Enter 1 if Sagging; 0 if hogging or still water

<table>
<thead>
<tr>
<th>0</th>
<th>P3</th>
</tr>
</thead>
</table>

Distance (ft) from extreme stern to FIRST crest or trough

<table>
<thead>
<tr>
<th>0</th>
<th>S18</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
There now follows the data from the Hull Definition Sheet: (See p. 13 and refer to Applications Group Programme LSB 3A)

(i) There now follows the data from the Hull Definition Sheet: (See p. 13 and refer to Applications Group Programme LSB 3A)

<table>
<thead>
<tr>
<th>D</th>
<th>Ql</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.25</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

(Bonjean headings Data item K is not required)

(ii) followed by the data for each Section in turn, as under:

<table>
<thead>
<tr>
<th>Section No.</th>
<th>P(J + 5) (1 or 0)</th>
<th>Z min</th>
<th>Z max</th>
</tr>
</thead>
</table>

NOTE: Where P(J + 5) = ZERO, no further values of Z or half-widths (y) are entered. (LSB 3A does not show this variable)

(iii) Appropriate number of half-widths (vertical columns)

i.e. if Q1 = 0.25: - 2N + 1 Values where N = (N1 + N2 + 3)

if Q1 = 0.125: - 2N + 1 Values where N = (N1 + N2 + 4)

(iv) Y max Y mid

(NOTE: Y mid only when Z min ≠ 0)
Choice of Output

<table>
<thead>
<tr>
<th>Control Constant</th>
<th>Programme Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Programme</td>
</tr>
<tr>
<td>Constant</td>
<td>Variable</td>
</tr>
</tbody>
</table>

1 if Buoyancy Table required: 0 otherwise

- **Graph**: 0

1 if Load Table required: 0 otherwise

- **Graph**: 0

1 if Shear Table required: 0 otherwise

- **Graph**: 0

If \(P2 = 0 \), but maximum positive and maximum negative values are to be output, PUT 15 = 1:

- **Graph**: 0

If \(P2 = 1 \), and this is a re-run to obtain all graphs to a preset scale, PUT 15 = 1:

- **Graph**: 0

Otherwise PUT 15 = 0

1 if Bending Moment Table required: 0 otherwise

- **Graph**: 0

If \(P2 = 0 \), but maximum positive and maximum negative values are to be output, PUT 16 = 1:

- **Graph**: 0

If \(P2 = 1 \), and this is a re-run to obtain all graphs to a preset scale, PUT 16 = 1:

- **Graph**: 0

Otherwise PUT 16 = 0
The overall pattern of the data is as follows:

1st Condition. (Enter 40 16 00 0)

Tape 1. 13, (with S25, S26, W6, W7 only if I3 = 1).

WAIT

I1, L1, L2, S22, S27.

P4 (=0), N followed by M, S, B, X (N times).

WAIT

Tape 2.

P4 (=1), N followed by M, S, B, X (N times).

TITLE

W3I, K3 followed by 23 "a" values (Lloyd's method) OR

W33, W34, L4, L5 (Biles Coffin method).

WAIT

Tape 3.

P1, P2, P1, P2, P1, P2. (1s or 0s)**

S17, M2, L10, L11, S16, L9, P3, S18.

(If tape misreads after
** it may be re-entered
on 40 16 00 90)

WAIT

Tape 4. (In case of misread, re-enter 40 16 00 123)

H, Q1, N1, N2 followed, for each Section in turn, by:

S19, P(J+5), Z(51+J), Z(82+J)

(Note: If, for any section,
P(J+5) = 0, no more
appropriate number of half widths (G1)
G52, (with G51 if Z(51+J) # 0)

WAIT

Tape 5.

P1, P2, P1, P2, P1, P2, I5, P1, P2, I6.

WAIT

2nd (and subsequent) Conditions.

Tape 1. Not required.

Tape 2. (Enter 40 0 00 126)

P4 (=2, 3, 4 etc., depending on Condition), N followed by:-

TITLE

M, S, B, X (N times).

WAIT

Tape 3.

P1, P2, P1, P2, P1, P2. (1s or 0s)**

S17, M2, L10, L11, S16, L9, P3, S18.

(If tape misreads after
** it may be re-entered
on 40 16 00 90)

WAIT

Tape 4. Not required.

WAIT

Tape 5.

P1, P2, P1, P2, P1, P2, I5, P1, P2, I6.
-171-

(Tape 1) Condition 1.

I3 (No max. values if zero)

I, L, L1, L2, S22, S27.

P4, N.

M, S, B, X........(N times)
End of Tape 1.

<table>
<thead>
<tr>
<th>3.1</th>
<th>91</th>
<th>0</th>
<th>83.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>91</td>
<td>0</td>
<td>83.75</td>
</tr>
<tr>
<td>3.5</td>
<td>6</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>19.5</td>
<td>+1.75</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>91</td>
<td>0</td>
<td>83.75</td>
</tr>
<tr>
<td>12</td>
<td>91</td>
<td>0</td>
<td>83.75</td>
</tr>
<tr>
<td>35</td>
<td>580</td>
<td>0</td>
<td>313</td>
</tr>
<tr>
<td>85.75</td>
<td>580</td>
<td>0</td>
<td>313</td>
</tr>
<tr>
<td>20</td>
<td>580</td>
<td>0</td>
<td>313</td>
</tr>
<tr>
<td>45</td>
<td>448</td>
<td>0</td>
<td>348</td>
</tr>
<tr>
<td>376</td>
<td>28.5</td>
<td>-1.33</td>
<td>95.42</td>
</tr>
<tr>
<td>42.6</td>
<td>16.33</td>
<td>0</td>
<td>51.5</td>
</tr>
<tr>
<td>25.8</td>
<td>47</td>
<td>80</td>
<td>+12.43</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>42.36</td>
<td>80</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>40.8</td>
<td>80</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>69.18</td>
<td>98.5</td>
<td>16.416</td>
<td>113.25</td>
</tr>
<tr>
<td>34</td>
<td>51</td>
<td>-8.5</td>
<td>580</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
<td>0.6666</td>
<td>110.5</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>18.25</td>
<td>0.60</td>
</tr>
<tr>
<td>11.5</td>
<td>16.75</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>5.81</td>
<td>8</td>
<td>1.3333</td>
<td>416.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>27.13</td>
<td>1.08</td>
<td>0</td>
<td>124.54</td>
</tr>
<tr>
<td>45.77</td>
<td>2.17</td>
<td>0</td>
<td>187.92</td>
</tr>
<tr>
<td>77.84</td>
<td>1</td>
<td>0</td>
<td>254.5</td>
</tr>
<tr>
<td>77.84</td>
<td>1</td>
<td>0</td>
<td>283.5</td>
</tr>
<tr>
<td>47.49</td>
<td>2.17</td>
<td>0</td>
<td>350.08</td>
</tr>
<tr>
<td>77.84</td>
<td>1</td>
<td>0</td>
<td>414.5</td>
</tr>
<tr>
<td>77.84</td>
<td>1</td>
<td>0</td>
<td>443.5</td>
</tr>
<tr>
<td>45.18</td>
<td>2.25</td>
<td>0</td>
<td>510.12</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>572</td>
</tr>
<tr>
<td>5.48</td>
<td>4</td>
<td>0</td>
<td>284</td>
</tr>
</tbody>
</table>

(Tape 1 Cont.)
(Tape 2).

$\text{P}_4, \text{N.}$

<table>
<thead>
<tr>
<th></th>
<th>36</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>436</td>
<td>63</td>
<td>-3.87</td>
<td>596.63</td>
<td></td>
</tr>
<tr>
<td>726</td>
<td>65</td>
<td>-1.34</td>
<td>475.16</td>
<td></td>
</tr>
<tr>
<td>1162</td>
<td>95</td>
<td>+0.13</td>
<td>396.63</td>
<td></td>
</tr>
<tr>
<td>668</td>
<td>95</td>
<td>+1.12</td>
<td>302.62</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>95</td>
<td>-0.01</td>
<td>301.49</td>
<td></td>
</tr>
<tr>
<td>824</td>
<td>112.25</td>
<td>-5</td>
<td>495.12</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>95</td>
<td>0</td>
<td>396.5</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>95</td>
<td>0</td>
<td>301.5</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>65</td>
<td>0</td>
<td>221.5</td>
<td></td>
</tr>
<tr>
<td>45.4</td>
<td>31.7</td>
<td>-5</td>
<td>283</td>
<td>582.42</td>
</tr>
<tr>
<td>290</td>
<td>20</td>
<td>+2.16</td>
<td>35.16</td>
<td></td>
</tr>
<tr>
<td>2738</td>
<td>30</td>
<td>-0.08</td>
<td>429.08</td>
<td></td>
</tr>
<tr>
<td>2738</td>
<td>30</td>
<td>-0.08</td>
<td>268.92</td>
<td></td>
</tr>
<tr>
<td>233.24</td>
<td>65</td>
<td>0</td>
<td>221.5</td>
<td></td>
</tr>
<tr>
<td>348.88</td>
<td>65</td>
<td>+2.62</td>
<td>224.12</td>
<td></td>
</tr>
<tr>
<td>194.04</td>
<td>67.5</td>
<td>+3.6</td>
<td>158.85</td>
<td></td>
</tr>
<tr>
<td>133.28</td>
<td>67.5</td>
<td>+5.47</td>
<td>160.72</td>
<td></td>
</tr>
<tr>
<td>415.52</td>
<td>65</td>
<td>+0.31</td>
<td>156.81</td>
<td></td>
</tr>
<tr>
<td>20.58</td>
<td>6.25</td>
<td>0</td>
<td>89.63</td>
<td></td>
</tr>
<tr>
<td>20.58</td>
<td>6.25</td>
<td>0</td>
<td>95.88</td>
<td></td>
</tr>
<tr>
<td>41.16</td>
<td>12.5</td>
<td>0</td>
<td>105.25</td>
<td></td>
</tr>
<tr>
<td>60.27</td>
<td>67.5</td>
<td>-0.37</td>
<td>154.88</td>
<td></td>
</tr>
<tr>
<td>23.28</td>
<td>32.5</td>
<td>+3.42</td>
<td>103.67</td>
<td></td>
</tr>
<tr>
<td>14.45</td>
<td>15</td>
<td>+0.6</td>
<td>109.6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.75</td>
<td>0</td>
<td>113.38</td>
<td></td>
</tr>
<tr>
<td>11.52</td>
<td>3.75</td>
<td>0</td>
<td>117.13</td>
<td></td>
</tr>
<tr>
<td>12.25</td>
<td>27.5</td>
<td>0</td>
<td>85.25</td>
<td></td>
</tr>
<tr>
<td>5.88</td>
<td>3.33</td>
<td>0</td>
<td>65.67</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>3.33</td>
<td>0</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>3.33</td>
<td>0</td>
<td>72.33</td>
<td></td>
</tr>
<tr>
<td>13.96</td>
<td>7.5</td>
<td>0</td>
<td>77.75</td>
<td></td>
</tr>
<tr>
<td>12.25</td>
<td>5</td>
<td>0</td>
<td>81.5</td>
<td></td>
</tr>
<tr>
<td>29.25</td>
<td>22.5</td>
<td>+1.55</td>
<td>59.3</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>0</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>0</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>0</td>
<td>72.45</td>
<td></td>
</tr>
</tbody>
</table>
SHIPYARD A.
SHIP NO. X
LONGITUDINAL STRENGTH CALCULATIONS
CONDITION 1, BALLAST DEPARTURE
FULL BUNKERS.
STILL WATER.

21318.65 321.79 W31, K3.

0 0.34 0.495 0.625 0.73 0.815 0.885 0.94 0.975 0.998 1 1 1
1 1 1 0.975 0.905 0.765 0.505 0.14 0

(23 Lloyd's "a" values)

End of Tape 2.

(Tape 3)

1 0 1 0 1 0
P1, P2, P1, P2, P1, P2.

21.245 3087 331.22 321.63 0 0 0 0
S17, M2, L10, L11, S16, L9,
P3, S18.

End of Tape 3.
(Tape 4)

H, Q1, N1, N2.

S19, P(J+5), No further rdgs.

if P(J+5) = 0

Z(51+J), Z(82+J)

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>H</th>
<th>Q1</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tape 4 Cont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 0 48.394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>406 2.063 2.537 2.880 3.172 3.625 4.005 4.651 5.354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.646 30.641 32.281 33.656</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.818</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 0 48.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.255 33.932 35.255 36.313</td>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.391</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 0 48.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.083 36.344 37.333 38.115</td>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 0 48.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.339 24.974 27.531 29.948 32.099 34.35.630 36.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.104 38.927 39.526 39.969</td>
<td>40.276 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.273</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1 0 48.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.182 31.488 33.531 35.328 36.818 38.068 39.068 39.828</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.354 40.693 40.875 40.974</td>
<td>41.000 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1 0 48.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.552 26.24 28.281 29.807 31.037 32.969 34.479 36.693</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.198 39.24 39.964 40.448 40.766 40.938 41 41 41 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 41 41 0 0</td>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1 0 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.813 34.547 36.12 37.24 38.109 39.349 40.146 40.88</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 41 41</td>
<td>41 41 41 41 41 41 41 41 41</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>37.537</td>
<td>38.656</td>
<td>39.427</td>
<td>39.979</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

(Tape 4 Cont.)

<table>
<thead>
<tr>
<th>16</th>
<th>1</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.5</td>
<td>37.537</td>
<td>38.656</td>
<td>39.427</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>1</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.5</td>
<td>37.537</td>
<td>38.656</td>
<td>39.427</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18</th>
<th>1</th>
<th>0</th>
<th>49</th>
<th>666</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.76</td>
<td>32.776</td>
<td>34.307</td>
<td>35.370</td>
<td>36.188</td>
</tr>
<tr>
<td>39.781</td>
<td>40.042</td>
<td>40.188</td>
<td>40.281</td>
<td>40.339</td>
</tr>
<tr>
<td>40.552</td>
<td>40.604</td>
<td>40.656</td>
<td>40.714</td>
<td>40.760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19</th>
<th>1</th>
<th>0</th>
<th>51</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.193</td>
<td>35.901</td>
<td>36.412</td>
<td>36.792</td>
<td>37.104</td>
</tr>
<tr>
<td>37.932</td>
<td>38.12</td>
<td>38.292</td>
<td>38.464</td>
<td>38.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>1</th>
<th>0</th>
<th>52</th>
<th>865</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.469</td>
<td>15.958</td>
<td>17.74</td>
<td>19.078</td>
<td>20.188</td>
</tr>
<tr>
<td>30.896</td>
<td>31.302</td>
<td>31.719</td>
<td>32.135</td>
<td>32.583</td>
</tr>
<tr>
<td>33.31</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21</th>
<th>1</th>
<th>0</th>
<th>53</th>
<th>809</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28.851</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22</th>
<th>1</th>
<th>0</th>
<th>54</th>
<th>828</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.74</td>
<td>5.656</td>
<td>7.031</td>
<td>8.052</td>
<td>8.88</td>
</tr>
<tr>
<td>14.443</td>
<td>15.047</td>
<td>15.552</td>
<td>16</td>
<td>16.438</td>
</tr>
<tr>
<td>22.875</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- 178 -
(Tape 4 Cont.)

23 1.0 55.197
0 0 0 19.198
24 1. 135 55.25
0 11 1-505 2-162 2.734 3.708 4.448 5.542 6.297 6.83
15.093 .823
25 1. 3.958 55.3
0 0 0 0 0 0 302 .896 1.813 2.453 2.865 3.188 3.479
8.240 8.729 9.25 9.849 10.469 0
10.648 .321
26 1. 33 56.25
0 0
83 1.063
1.572 2.182 2.917 3.349 3.807 4.932 4.475 5.047 0
5.766 0.427
27 1. 42 96.334
0 0
1.714 2.12 2.573 3.083 3.615 4.208 0
4.519 1.01
28 1. 48.281 56.421
0 0
3.326 .906
29 1. 53.188 56.507
0 0
2.132 .687
30 0
End of Tape 4.

(Tape 5)

P1, P2, P1, P2,

1 0 1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 1 0 0

End of Tape 5 and Condition 3.
SHIPYARD A

SHIP NO. X

LONGITUDINAL STRENGTH CALCULATIONS
STILL WATER

CONDITION 5. LOADED DEPARTURE
HEAVY CARGO IN NOS. 1, 4, 5 AND 8 HOLDS.
FULL BUNKERS

3495 8.65
317.43

End of Tape 2.

0 0 0 0 0 0 0

(Tape 3).

33.083 3839 324.52 306.72 0 0 0 0

End of Tape 3.

(Tape 5).

0 0 0 0 0 0 1 0 0 1

End of Tape 5 and Condition 5.
Note concerning Shear Force and Bending Moment curves.

The programme will normally choose the scale to give the largest graph possible. This means that each Shear Force graph (for a set of conditions) will have its own scale. Similarly with the Bending Moment graphs.

It has been found convenient in the case of these two graphs to fix the scale, from previously output maximum positive and maximum negative shear force values.

To obtain these maximum values only, for each condition run, put I3 = 0, and I5 (for Shear Force) and I6 (for Bending Moment) both equal to 1, while P2 (for graph output) = 0 (no graph). This does not affect output of any of the tables (P1 = 1 for tables, 0 for no table), or any of the graphs preceding Shear Force (for which P2 = 1 for graphs, or 0 for no graph). The overall maximum values are noted.

On the re-run it is necessary to alter Tape 1; I3 is now made = 1, and the four maximum values follow this. (If ONLY Shear Force OR Bending Moment is wanted, the other two values must be put = 0). There is a programme WAIT here to allow the remainder of the original Tape 1 to be entered. It is now necessary to alter Tape 5, so that P2 for the required graphs = 1, with I5 = 1 for the Shear Force graph, and I6 = 1 for the Bending Moment graph. Subsequent conditions are entered as before, i.e. 40 16: 00 126. The new altered Tape 5 may be used as a common tape now for all conditions.
Only the output for Condition 1 will have the scales, etc., indicated in the print-up to the graph tape. All other conditions will merely have the words "Shear Force Curve" (or "Bending Moment Curve"), prior to the graph tape, as a record for future reference that the graph has been output to a preset scale.