

Durham E-Theses

> The development, of the mining, of lead in the Iberian, Peninsula and Britain under the Roman Empire until the end of the Second Century A.D

Elkington, H. D. H.

How to cite:

Elkington, H. D. H. (1968) The development, of the mining, of lead in the Iberian, Peninsula and Britain under the Roman Empire until the end of the Second Century A.D, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10260/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details

The Development of the Mining, of Lead in the Iberian Peninsula and Britain under the Roman Empire until the end of the Second Century A.D.

THe devertopnent of the MINING OF Ifad

 IN THE TBERTANY PENINSUIA AND BRITATN! UNDER THE RONAN EMPIRE UNTIL THE END OF THE SECOND CENTURI A.D.By
H.D. H. FTKKIIGENON:
St. John's: College, Durham

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
(C) II.D.H.Elkington, 1968

PREFACE

The course of study for this work began in the summer of 1964, and has taken three and a half years to complete. In the course of that time, I have visited many of the pigs in the South of England.I have also paid frequent vi.sits to the Roman lead mining centre at Charterhouse on Mendip, and would have visited the Shropshire area as well towards the end of my study had not the disastrous epidemic of foot-and-mouth disease struck the area in the autumn and winter of 1967-8.

Throughout the who ee of this period of time, I have received continuel help and guidance from my supervisor of studies, MR.R.E.Wright, Reader in Epigraphy, and Senior Iecturer in Classics in the University of Dyrham. It is to him that my great debt of gratitude must be paid for his encouragement and patient counsel. It was most fortunatie for me that the first volume of his Roman Inscriptions of Britain (Inscriptions in stone)was published in 1965,for I was able to use this as a guide for my list of pigs at the end of this work.

Whenever I was in doubt about an inscription, Mr. Wright was always ready to supply the solution and to guide me with the presentation and interpretation. I am grateful also for his strictness with regard to the presentation of this theses. His thorough methods and scrutiny are the only ones possible, hard though they are to follow, and such mistakes as exist are due entirely to my own failings in this respect.

A special note of thanks is due too to the Bristol Archaeological Group, to Mr.I.V.Grinsell., Mr. M. Hebditch, and Mr.J.Cross of the City Museum, Bristoll, and to Mr.P. Fowler of the University of Bristol, who have shown continual interest in, and helped,my research. In October 1967, they organized a weekend course on 'Lead mining in Mendip' dealing wi.th the geology, and with the history from Roman to modern times, a course which I was honoured to address on 'Roman lead mining'.
I. gratefully record also my thanks to Dr.F.S.Wallis, of the Wells Museum, and to Mr.H.W.W.Ashworth for their help wi th the pigs and site of Green Ore, and to Mr. G.C.Boon, of the National Museum of Wales for his assistance with the pigs and equipment from Wales.

Miy thanks are due also to the curators of the Castle Nuseum, Taunton and the Coriniom Museum, Cirencester,for permission to examine and photograph their pigs.

I am extremely grateful to the mrustees of the British Museum, and to the Keepers and staff of the Departments of Greek and Roman, and of British and Miediaeval antiquities, for their help in examining; and photographing the pigs of le ad whose total weight is just short of one ton.

My thanks are also gratefully recorded to my colleagues Mr.B.D.W.Chacksfield, and Mr.R.W.A.Rhodes for their assistance, the former in translating from German texts, and the latter in reading and advising my treatment of the omical chapter.

Finally, I record my gratitude to the librarian of the Bristol Universi.ty Library for the facilities granted me there, and to the librarians of the Wellington public library, Somerset for their great assistance.

Wellington, Somerset.
H.D.H.EIkington Shirehampton, Bristol.

St. David's Day, 1968
Iist of illustrations vii
Introduction ix
Abbreviations and Bibliographies, xii.
I. The Development of the Mining of Iread in. the Iberian Peninsula and Britain under the Roman Einpire until the end of the Second Century, A.D. 1.
II. The Ownership and Organization of the Hines 28
II.Roman Mining Technique 71
IV. Smelting and Cupelling 104
V. The Pigs of Iread from Roman Mines in Spain and Britain 121
Introduction to the list of pigs 144
Critical signs 146
The List of Pigs (nos. 1 - 192) 14.7
Concordance Tables 237
Glossary of technical terms and translations from other: languages 248
List of Texts and Translations 249
Index 250

TABTE OF IITUSSTRATIONS

Pig; no. 89.prefceding, page4
A. Map of Spain 10
A Map of Britain 13
The Aiphitheatre at Charterhouse 14
Pig; no. 93 15
A Map of Wales: 17
The Lex Vipasca 32
Pig; no. 90 38
Pig no. 91 38
Pig: no. 116 39
Pig no. 115 41
A. lamp-holder from Charterhouse 44
An exposed shaft at Rio Tinto 7.9
An entrance to an adit at Rio Tinto 85.
The pump from Bolsena 92
The cochlea: 94
The Water wheel from Dolaucothi 95
The Water wheel from Rio Tinto 96
The spade from Charterhouse 98
The Iinares bas-relief 100
A reconstruction of a Roman smelting hearth 109
The numerals on pig. 116 129
Pig; no. 3 preceding page 131
The palm branch on pig 137 133
The palm branch, hammer and circle on pig, 166 134
The inscription IMP on pig 117 134.
BRIT EX ARG VEB on pig; 115 135
The \mathbb{F} of BRIG on pig 119 135
pig; 142 137
Pig: no. 143 137
Pig no. 108 138
Pig: no. 109 139
Pig no. 3 149
Pig no. 90 175
Pig no. 108 183
Pig no. 117 192
Pig no. 137 199
Pig. no. 141 204.
Pig no. 166 219
Pig: no. 167 220
Pig: no. 168 221
Pigs nos.171-2 223

INTRODUCTION

The first chapter of this work discusses the history of lead mining in Spain and Britain during the Roman period, and lists the known sites in the two provinces. I have found it necessary to cover part of the Republican period for this survey, and not merely to restrict it to the Empire as would be suggested by the title.

This chapter is followed by chapters on ownership and labour, Roman mining techniques - dealing with the prospecting methods and extraction of the ore, and then smelting and cupelling, the processes whereby first lead and then silver were extracted from the ore.

I have included the whole text and its translation of the Lex Vipasca and the Aljustrel Tablet, since it is relevant to so much of chapter on organization and ownership, not only in Spain, but also in Britain.

The final chapter deals with the evidence and problems given by the two hundred lead pigs that exist,or are recorded. It soon became evident, when writing. this last chapter, that there were so many references to the texts of these pigs,including many that are not recorded in the lists that have been compiled by other authors due to their redent discovery, or to their being; from another
province, that: it would be an advantage to my readers if I appended a comprehensive list. There is ondy one other such list - that compiled by Maurice Besnier in 1921, which I have used extensively for the Spanish examples. The British pigs will, of course, be covered by the second volume θf Roman Inscriptions of Britain, which is now in the course of publication. The joint editor, Mr. R.P2Wright,my supervisor of studies,kindly guided my compilation of this list.

The list of Spanish and British pigs, together with relevant examples from Gaul, Germany and Sardinia appears at the end of this volume together with tables of concordance.Doubtful pigs and falsa have been included in this list and are so indicated in the initial notes of their entry.

The list closed on: December 3lst 1967, shortly after the discovery of the pig. I have numbered 159 b , which appears in the list of pigs, but which has not been included in the tables of weights, nor are its references complete in the index, since the details reached me in February 1968, just: two days before completing this thesis.

The Index contains references to pages numbers 1 to 141.

Thereafter, to avoid confusion, references are to pig numbers, and these are underlined. The references to the list of pigs includes their place of discovery,present location, and their mine of origin. The names of Emperors, lessees,legions, voting-tribes and the marks of origin are included in the index

A separate introduction to the list of pigs can be found below on pages 144: and 145, together with the critical apparatus on page 146.

ABBREVIATTONS AND BIBIIOGRAPHY

A.Abbreviations of Periodical and Serial Works

AA	Archaeologia Aeliana (Society of
AC.	Antiquaries of Newcastle-upon-Tyne). ser.i.I-IV,1822,1832,1844,1850.Ser.ii. I - XXV, 1857 - 1903.,Ser.iii, I - XXI, 1904-24. Ser.iv.I - ,1925 - Archaeologia Cambrensis. Ber.i.I-IV,
	$\begin{aligned} & \text { 1846-9. Ser.ii, I-V,1850-4.Ser.iii,I-XV, } \\ & \text { 1855-69. Ser.iv,I-XIV,1870-83.Ser.V. } \\ & \text { I-XVII, I884-1900. Ser.Vi.I-XX,1901-20. } \\ & \text { Ser.vii, I-VIII,1921-8, and from IXXXIV } \\ & \text { (1929) adopting consecutive numbering. } \\ & \text { Anaée Epigraphique, I'. } 1888-\text {. Also } \end{aligned}$
AJI	included in Revue Archéologique. Archaeological Journal. 1845 -
AJ.	American Journal of Archaeology. (Journal
Antig.	of the Archaeological Institute of America. Ser.ii. I - . 1897 - Antiquity. 1927 -
Ant. J.	Antiquaries Journal, The. 1921 -
Arch.	Archaeologia. 1770 - ,
Arch.Zeit.	Archäologische Zeitung. $1843-85$.
BAAJ	British Archaeological Association,
	Journal of.Ser.i.I-I, 1846-94. Ser.İ,
	1895-6936. Ser.iii, - , 1937- .
BARG Buall.	Bristol Archaeological Research Group,
	Bulletin of. 1962 - .
Bull. Ant.	Bulletin des Antiquités de France. 1897

CASJ
CII.

CW:
Chester Architectural and Archaeological Society, Journal of. Ser.iaI-III, 1850 1885. Ser.ii, I - ,1887 Corpus Inscriptionum Iatinarum. 1863 - . Cumberland and Westmorland Antiquarian And Archaeological Society, Transactions of. Ser.i.I-XVI,1874-1900.Ser.ii,I- ,1901-
Deribs.AJ or Derbyshire Archaeological and Natural Deribys.ASJ
Dessau
Dorset NHAFCP Dorset Natural History and Antiquarian or Dorset NHASP Field Glub, I-XUIX, 1877-1928.Continued as Dorset Natural History and Antiquarian Society, Proceedings of. I - . 1928.
EE
Flints. Hist. Soc. Publ.

TII. Iond. News.
IIS or
Dessau THS
J.RS.

Metallurgia Montgom. Coll.

Newc̈omen
Soc.Trans.

Ephemeris Epigraphica I-IX,1872-1913. Flintshire Historical Society, Transactions of. 1911 - -

Illustrated Iondon News.184.2- .
Inscriptiones Latinae Selectae. Ed. H.Dessau.
3 vols. in 5 parts, 1892-1916.
Journal of Roman Studies. 1911 - . British Journal of Met虹s. I - ,1930- . Historical and Archaeological collections relating to Hontgomeryshire,issued by the Powys-Iand Club,Ser.i.I-XIVII, 1868 1942. Continued as Montggmeryshire Collections.XIVIII - . 1944 Newcomer Society for the Study of the History of Engineering and Technology, Transactions of.I - ,1922-

Num.Chron.	Numismatic Chronicle. In 6: series,1836-
Phil.Trans.	Philosophical Transactions. 1665 -
PW	Pauly-Wissowa Realencyclopädie. 1894 -
RCAM	The Royal Commission on the Ancient
	find Historical Monuments... in Wales
	and Monmouthshire (arranged by counties)
	1911-
RCHM	The Royal Commission on Historical
	Monuments (England) (arranged by counties).
	1910 -
Rev. Arch.	Revue Archéologique .1884. -
Salop AST	Shropshire Archaeological and Natural
	History Society, Transactions of. 1878 -
Salop News	Shropshire Newsletter
Shropshire AST	see Salop AST
Som. ASP	Somersetshire Archaeological and Natural
	History Society, Proceedings of. 1851 -
Som.8 Dorset $\mathbb{N Q}$	Somerset and Dorset Notes and Queries
	1889 -
	Institute of Mining and Metallurgy,
	Transactions of.I - ,1891-
TT.	Thesaurus Linguae Latinae. Ieipzig, 1900
VCH:	Victoria County History (arranged by
	counties). 1900 -
Wells NHASP.	Wells Natural History and Archaeological
	Society, Proceedings of.*
YAJ	Yorkshire Archaeological Journal. 1870 -
Yorks. Phil.	Yorlishire Philosophical Society, Proceedings.
Soc. Proc.	Ser.i.1847-1854. Ser.ii. 1855 - .

B. Manascript Sources

B. M. is the abbreviation used for the British Museuri.

Ieland, J. B.M.MS. Cotton Julius C.VI
Skinner;, J. B.M. MSS.ADD.
C.Separate Works,including
important articles in joumals.

Bailey Pliny's Chemicals Bailey, K.C.The Elder Pliny's Chapters on Chemical Subjects. Iondon,1929-32.

Besnier Rev.Arch.

Brill and Wampler AJA.

Bmans Fontes

Cagnat. Cours épig. lat.
$\mathrm{Ca}_{\text {m }}$ den Britannia

Camden

Collingwood
Archaeology of
Roman Britain

Besnier, M. in Rev. Arch. XII (19207 211214, XIII(1921)36-76,98-130. Le commerce du plomb $\stackrel{\text { à }}{\text { I'époque }}$ Romaine. Brill,R.H. and Wampler, J. H. in AJA IXXI(1967)64-77. The Isotope Studies of Ancient Lead. Bruns, C.G. Fontes iuris Romani無tiqui. Ed.5. Freiburg, 1887 Cagnat,R.I.V. Cours d'épigraphie. latine, Ed:4. Fontemoing,1914. Camden,W. Britanniai. 1586; ed.2,1587; ed.3,1590;ed.4.1594;ed.5,1600; ed.6,1607.
Camden, W. , ed.G:ough, R.Camden's Britannia translated by R.Gough. 3 vols.,1789; 4 vols., ed.2,1806. Collingwood,R.G. The Archaeology of Roman Britain, 1930.

Collingwood Britain Collingwood,R.G. Britain in Tenney Frank ESAR III, Baltimore, 1937
Cox AJ Cox,J.C. The mining operations and metallurgy of the Romans in England and Wales in AJ III(1895) 25-42.
Cyprian
Cyprianus,Thascius Caecilius,Saint, Bishop of Carthage, Epistulae
Davies Roman Mines Davies, 0. Roman Mines in Burope.
Oxford,1935.
Dessau
see IIS
Diodorys or
Diodorus Siculus, Bibliothecae
Diod.Sic. historicae
Forbes Technology Forbes, ReJ. Studies in ANCIENT Technology Vols.VII-VIII, Ieiden, 1964 . See Camden
Gough Mendip
Gough, J.W. The mines of Mendip ed.2. Newton Abbot,1967.

Gowland Arch.
Gowland, M. The early metallurgy of silver and lead in Arch. IVII(1901)ii, 359-422.
Grinsell Wessex Grinsell, I.V. The archaeology of Wessex, Iondon, 1958.
Hill and Sandars Hill,G.F. and Sandars?H.W.Coins from JRS:

Holder the neighbourhood of a mine in Southerm Spain in JRS I(1911)100-106. Holder, A. Alt-celtischer Sprachschatz Ieipzig,1896-
Hoppensack Bergbau Hoppensack,J.H. Eber den Bergbau in Spanien, Weimär, 1796.

Hudson Metallurgia Hudson,D.R. Early mining in Spain in Metallurgia XXXIII(1945-6)293-300.
Fuebner
in Corpus Inscriptionum Iatinarum VII
It. Ant.
Itineraria Romana, vol.I, Itinerarium Antonini Augusti.Ed.O.Cuntz, .
Leipzig,1929.
Justinian
Justinianus Flavius Petrus Sabbatus, Codex Theodosianus, canon metallicus
Kubi.tschek Imp. Rom.trib. discr. Kubitschek, J.W. Imperium Romanum tributim discriptum. Vienna,1859.
Ieland Itinerary Ieland,J.,ed. Hearne,T. The itinérary of John Ieland the antiquary, published from the original manuscript in the Bodleien Library, 9 vols.Oxford,171012; 9 vols,ed.2,1745; 9 vols.ed.3. 1768-9.
Ieland Collect. Leland,J.De Rebus Britannicis collectanea... ed.Hearne.T. 6i vols. Oxford,1715; 6 एols.,ed.2, Iondon,1774.
Levy West Roman Vulgar Iaw Ievy, E. , West Roman Vulgar Law, the law of property. Memoirs of The American Philosophical Society XXIX,1951.
Tewis Wales Lewis,W.J., Iead Mining in Wales, 1967
Iysons reliq. Brit. Rom. Iysons, B. Reliquiae BritannicoRomanae. 3 vols. 1801-17
Mason the Mendips Mason,E.J. with Coysh,A. H., and Waite,V. The Mendips, Iondon 1954.
Merlin Mel.Cagnat Merlim, A. , Iingots et anores trouvés en mer près de Mahdia. in Gagnat,R. Mélanges Paris,1912.

Nash-Williams Roman Wales Nash-Williams,V.E., The
Roman Frontier in Wales, Cardiff, 1954

North, Mining	North, F.J., Mining for metals in Wale
Orth EW	Orth, s.v. Bergbau PW supplbd.IV. שols.120-155.
Palmer TTMM	Palmer,R.E., Notes on ancient mine equipments and systems in TMM XXXVI (1927) 299-336.

Palmer and AshworthSASP Palmex,I.S., and Ashworth,H.W.W., Four lead pigs from Green Ore in SASP CI-CII (1956-7)
Pennant Wales Pennant, T., A tour in Wales 1781 ed .
Pidal España: Pidal,F.M., Historia de Espana,Vol.II España Romana ,Madrid,1935.
Pliny NGI Plinius,Gaius Plinius Secundus, Maturalis Historia; libri XXXVII
Polybius Polybius Historiae
RIB Collingwood,R.G., and Wright,R.P., The Roman Inscriptions of Britain, vol.I, Inscriptions on stone, Oxford, 1965
Raistrick Newcomen Soc.Trans. Raistrick,A., Notis on
lead mining and smelting in West
Yorkshire in Newcomen Soc. Trams.VII (1926) 81-96

Raistrick and Hennings Pennines Raistrick, A., and Jennings, B. Hiistory of Lead Mining. in the Pennines, Iondon, 1965
Rav.
Rawennas ANONYMUS, Cosmographia in Richmond and Crawford Arch.XCIII (1949)I
'The British section of the Ravenna Cosmography.'

Tylecote Roman lead Iylecote, R.E., Roman lead working in Britain in British Journal for the History of Science II.i.no. 5 (June 1964) 25-43.

Van Norstrand Spain Van Norstrand,J.J., Spain in Tenney Frank ESAR III Baltimore, 1937
Way AJ Way, A., The enumeration of blocks or pigs of lead in AJ XVI(1859) 22-42.
Webster Flints.Hist. Soc. Publ. Webster, G., The lead mining industry in North Wales in Roman times in Flints. Hist. Soc. Publ. XIII(1952-3) 5-53.
West Spain West,I.C., Imperial Roman Spain ,1929
Wheeler Prehist. Rn. Wales Wheeler,R.E.M., Prehistoric and Roman Wales, 1925
Whittick JRS Whittick, G.C. , Notes on some RomanoBritish pigs of lead in JRS XXI(1931) 256-264
Whittick Newcomen Soc. Trans. Whittick, G.C., Roman mining in Britain in Newcomen Soc. Trans. XII(1932) 57-84.
Wright Uriconium Wright, T., Uriconium, a historical account of the ancient city, 1872

Throughout this work I have abbreviated the name of my supervisor of studies,following RIB to R.P.W(right), and my own name to H.D.H.E(Ikington).

The Development of the Mining of Lead.
in the Iberian Peningula and Britain under the Roman Fmpire until the endi of the Second Century/ A.D.

It is easential in beginning the study; of the: development of Roman legd-mining to go back to about 100 B.C.,for it was in the first Century before the Christian era and in the two sucessive centuries that Roman lead-mining was most flourishing and auccesful. During the first Century A.D. the mining of lead in. Spain dwindled as a new field was opened up in the: exploitation of the mineral in the newly acquired: province of Britain a alace which, according to Pling, possessed lead in abundance (1).Then in Britazin too, the evidence for mining activity decreases towards the ond of the second Century, and although numismatic ovidence. suggests that the mines were still operated until the: end of the Roman acoupation of the province (O.A.D.410), the exploitation must have been on a small scale.

Orur main source of evidence for mining activity; are: the 200 or: so inscriptions which occur on pigs of lead manufactured by, the Romans, and whioh are treated at. length in my final chapter. But it will be seen quite casily fram glance at the chronolegioal tables: an page:

123 that lead mining was at its height in Spain in the lat Century B.C. These pigs of lead are unfortunately undated, but, from the style of lettering and from the absence of cognomina in the titles of the mining lessees moulded on the faces, the upper surfaces of the pigs,it is at least passible to date moat of them to before the abdication of Suila in 79 B.C.

In Spain the exploitation of the lead mines was most remunerative.The ore was rich, containing approximately; twenty to thirty ounces of silver for every ton of lead ($0.05-0.09 \%$), which is a high proportion ; and it. was from these lead ores; that the Romans gleaned much of their silver.Even so, some authorities hold that it was the vast. extent of the mining operations in Spain rather than the richness of the ore that led to the success: of the Romana in this Pield.

The labour: force was cheap to maintain - slaves and prisoners were used at first at minimal costs. 40;000 slaves were used: in one mine, according to Strabo, which? Ref? yielded 25,000 drachmae a diay. The methods of mining, gradually became more proficient. By the time of Hadrian, elaborate laws were enforced to protect the mining rights:

The incuse inscription $V \cdot E T P \cdot C$ on pig no. 89 of Claudius' reign, which allows us to date the pig to A.D. 49.This pig,from Somerset is the earliest extant example from Britain.
and to ensure that the ore was not wasted. The mines were: also to be: run in as safe a manner as possible.Pains were taken: too to ensure the smooth running of the pithead settlements.

The Romans amelted the lead ore in the vioinity of the mine, as is attested by; the slag, and by the numerous smelting hearths that have been foumd in Spain. The Roman methods of cupellation - that is, the demailverizing of leadwere extremely efficient, and compare favourably with those. in use today.

There was little competition for the Spanish mines from those in Gaul and Germeny, but in A.D. 43, came the Claudian invasion of Britatin, where mineral resources were reputed to be high. We have evidence that within aix years of the invasion the lead mines on the Mendip hills in Somerset, which had probably been operating on a small and inefficient scale by the Celts, had been taken over by the Romans who were now producing their own lead there in the forms of pigs bearing the name and titles of the Bimperor Claudiug.

Thus, ess the conquest of Britain continued, so did the aoquisition of the lead mines and the exploitation of the

Lead ores. From Somerset, the Romans mined lead in: Weles, Plintshire, Shropshire, Derbyshire, Forkshire and Cumbertend. Throughout. the province, and particularly in Derbyshire, the ore was poor in silver, yielding perhaps just two to five ounces of silver for every ton of lead ($0.006-0.018$), but the ease with which the ore could be gleaned fromij the earth, - by opencast methods and by simple workings - , compared with the complicated network of shafts, and the honeyoombing of hills and mountains with geilleries in Spain, naturally led to the decline of the Iberian peninsula as a leadesilver producing province, and to the increase of productivity in Britain. This is borne out agatin by the evidence: shown by the pigs of lead whioh auddenly; almost cease to exist after the conquest of Britain, whereas in this province,lead production appears to have reached its peak by A.D. 69 , and again during the reign of Hadrian, from A.D.. 117 to 138.

Such was the concern in Spain over the increased output of lead and silver from Britain, Plingf tells us, that it became necessary for legislation to be enforced. restricting the productivity of the mineral mines,implying that at this time some British mines were in the hands of
lessees, and it was at this time too (in the Flavian era) that there was a resurgence of mining; in Spain, for Pliny again informs us of increased revenues from the workings.

Then during the second century, A.D. the evidence from the pige of lead in Britain begins to fade also, and the last dateble pig; belongs to the last decade of that centurg. However, lead continued to be mined and was used amongst other things in the manufacture of pewter.

Iet us; now examine the literary exidence for the mining of lead in these two provinces, and also the location of the principal mines and mining areasis

Pliny, NH III, 30 metallis plumbi,ferri, aeris, argenti, auri tots ferme: Hispania scatet.

- -almost all Spain abounds in mines of lead,iron, tin, silver and gold.'

Our main: literary authority for Roman lead mining methods is Pliny,who,having desoribed the Roman methods of sinking shafts, and driving adits (whichiare discussed later) goes on to describe the methods of acquiring

silvers

Pliny, NH XXXIII.95-97
: Over next surgect is; the mining of silver - a second manifestation of madness. It is found only in sheift mines and there is no previous indioation of its presence, for there are no glinting aparks: as in the case of gold; the earth is red in places: and ash-coloured: in others. The method of refining universslly employed isi heating With lead or lead ore: called galena ...

- Silver is found in almost all the provinces, but the best comes from Spain. Iike gold,it oocurs in barren soil and even among; mountains; and wherever one vein is found, anotier is not hard to seek.This is the case with almost all the other ores, and seems to be the source of the Greek name metalla. It is wonderful that the mines opened by Hanniba in Spain are atill productive. - They are named after the original discoverers,and one,which furnishedi Hennibal with three hundred pounds daily is called Baebelo unto this day.The excavations; now: exceed: 1500 paces into the mountains and throughout the whole distance, the Aquitaniang atand and bale out water in lamp-measured watches night and day until a river is made. The vein of ailver that is found nearest,
the surface is called crudaria. ${ }^{\circ}$
On the properties of lead, of plumbum nigrum, as opposed to plumbum alkum, which is tin, Pliny atatess

Pling, NHi XXXIV ,156-158

- Iet us now consider the properties of lead, of which. there are two species - blwok lead and whilte lead. The latter is more valuable
- Black lead is not produced in Gallaecia in spite of the faot that the neighbouring Cantabri possessit in abundance.silver, which is obtained from blaak lead, is absent in white lead. Black lead cannot be welded without oil, and even two pieces of white lead cannot be united without black lead....'

Concerning; the areas in: which lead could be foud, Pliny writest

Pliny, NHH XXXIV:,164-5

- We makerpipes and plates from black lead, which is mined with great toil in Spain and in all the divisions of. Gaul, but occurs in Britain in the surface sitratum of the ground and in such abondance that the amount refined is actually limited: by law. The following names 8
are given to varieties of black lead - Iovetanum Caprariense - Oleastrense - but there is no difference between them, provided that, in the roasting the slag; is carefully separated. A phenomenon peculiar to mines of this metal onily is that, if abandoned for a time, they: recover their fertility.
" This result; is aohieved by leaving the air shafte openeand allowing the air to stream in to saturation and may; be compared with the fact that some women are. rendered more fertile by miscarriage. Such revival is known to have happened recently in the Samarian mine in Baetica, which used to be rented at. 200,000 denaril per year, and gifter a period of neglect was let once more at 45;,000 denarii.Similarly the Antonian mine in the same: province whiok had been let for a similar sum, subsequently brought; in a rent of 400,000 sesterces: " Sitrabo too assists us with his evidence, and when describing the mineral wealth of Spain saysit
- Up to the present moment, neither gold,nor silver,nor yet copper,nor iron has been found anywhere in the world in a natural state, either in such quantity; or of such good quality.

$$
\text { -Sitrabo, III. } 2.8
$$

A Map of Spain, showing the principal mining sites

Strabo, III.2.3.

- On the Horth(above Cordova) there are some mountain ridges which extend parallel to the river, approaching it closely, sometimes more so, sometimes less, and they are fuil of mines.Silver, however, is most. plentiful in the region about Ilipa, and in those about Sisapo.

Strabo, III.2.10.
'Poilybius, in mentioning the silver mines of Carthagena, says they are very large that they are distant from the: city about twenty stades and embrace an area 400 stades in circuit, and that 40,000 worknen stay there who bring: unto the Roman exchequer a daily revenue of 25,000 drachmae.
-...the silver mines are still (under Augustus) being < worked; they are not atate property , howevez, either at Carthagena or anywhere else, but have passed over to private ownership.But the majority of gold mines are. state-ownedi.'

If we look now at the map showing the locations of the Roman lead mines in Spain, it can clearly be seen that the greatest concentration of mines is in the Southi and in the South-East. Significantly, it is Irom this area that the
greatest number: of extant pigs oxiginated.

In Insitania, in the South-west of the Iberian peninsula, a Roman lead mine was located at Santaren (2).

In Baetica and Andalusia, the prinoipal lead minea were at Ifnares and Alcaracejoa, both of which have yielded evidence. in the form of lead pigs (3) Iread pigs have also been: found at Rio Tinto, but these were all imported from other mines, leading us to suppose that here was a centre for cupellation (4), for tongs used for handling crucibles have also been discovered (5). Rio Tinto may also have been a sohool for miners (6). The workings at La Carolina have yielded coins dating to the year A.D. 383 (7). The ores at the Roman mines at Sierra de Cordoba and at El Centenillo were noted for their rioh quaiity, the latter yielding twenty ounces of silver in each ton of lead (0.05%) (8). The mine at Cerro Miriano, on the other hend, Fielded onily poor ores, containing but 42.13\% lead and no silver (9). There were also mines at Sisapo (10), at Sotiel Coronada(11) and near Castulo(12).

In Huelva there was a mine at Hipa where mach Roman slag has been discovered: (13). In Turdetania there: was a mine at Orongis (14). Fifty-two furnaces hre been recorded
by Gowland (15) in Almeria, which has ealso produced pigs of lead.Ffere, the maini mine was at Cabo de Gatai (16), and in the Sierra Morena district,pigs have been found at Plumbaria (17), Iorca (18), Mazarron (19), Orihuela (20), and at Carthagena. (21).Plumbaria and Carthagena were obviously the main harbours for exporting lead from the mines in this highly productive area (22).At Coto. Fortina, Roman workings have been found to extend for two kilometers (23), and coins attest to the mine's occupation from the second century A.D. up to the beginaing of the fifth (24).

In the East of the province there was a mine at Dianium (25) and in Tarraeonensis, amongst the Celtiberi, there were possibly lead mines at Osca, Venasque, Plan, Bietsa, and Lerida (26). Barcelona was probably usedilike Rio; Tinto, as a cupelling oentre: (27).

In the North, in Asturias, slag has been found at Pravia: (28) and further West, amongst the Artabri, and the Cantabri, Pliny mentions a mine at Ovetum (plumbum Iovetanum). Pliny's plumbum Caprariense and plumbum Oleastrense are from unknown locations.The latter, however, may be from the Oleastrum, near the mouth of the Fbro, but here no mines are known (29).

A Map of Britain, showing the principal mining areas and ports.

Thoitus, Agricola XII,6.

* Britain yields gold, silver, and other minerals the prize of vietory.

In Britain the areas of mining activity were on the Hendip hills,in Somerset, in Wales, in Flintshire, Shropshire, Derbyshire, Forkshire, and Cumberland.

The traces of the Boman workings are not always easy to find. In the case of the Mendip mines, activity continued until the nineteenth century, and in most of the mining areas It is almost impossible to distinguish between Roman,on: the one hand, and mediaeval and modern workings, on the other. The workings too, being of a mach simpler nature than those of Spain, have not been able to produce so much evidence for the archaeologist.Nevertheless, their importance was such that the output was restrictedin Pliny's day; as we have: seen above.

It is interesting to see also that the pigs were exported to the dontinent, and that many of the lead pigs that have been found,were in fact lost en route to the ports. Mendip. pigs have been taken from the river Frome in Bristol, and Clausentum (Bitterne) near Southampton must have served as a port for Flintshire and Derbyshire, as well as for Somer set.

Two photographs showing the amphitheatre at Charterhouse-on-Mendip.

Derbyshire, together with: Forkshire, also exported lead pigs through Brough oon-Humber, for there number of pigs have been found.

From the Mendips, a total of twenty-four pigs have: survived showing: continued occupation: under the Romans from A.D. 49 until c.169. There is some evidence that the mines. were operated before the Roman arrival by the Celts, but that their: output was small (30). Niumismatic evidence, together with the remains nearby of a pewter industry show that; the Roman oocupation of the Mendip lead mines lasted. watil the end of the fourth Century A.D. (31).

Simelting of the lead ore took place of the site, as is attested by the slag that is still visible, difficult though it is to distinguish between Roman and later slag. It also appears, from hearths that have been found (32) that cupellation took place near the site as well.

The workings on the Mendips centred around Charterhouse. Here, first and second Century coins have beeni found together with fibulae and pottery showing occupation. throughout the first two centuries (33). It. was a large: settlement with an earthwork which is almost definitely an amphitheatre (34). In the adjacent fields,aerial photo-

The inscription TEG II AVG on pig no. 93

140
graphs reveal ground patterns resembling streets of a Roman town. A coin hoard has been found here, and recent discoveries on the site of a possible fort include pottery dated to the first thirty years of the Roman occupation. (3). The aotual workings appear all to have been opencast, but, once again,later exploitation has confused the Roman woricings.

Across the Bristol Channel, in South Wales, there were lead mines at Hower ${ }_{M a c h e n, ~ n e a r ~ C a e r l e o n . T h e s e, ~ l i k e ~ t h o s e ~}^{\text {, }}$ of the Mendips,may well have been controlled by the Second Iegion, which had established itself at Caerleon about A.D.I5. (36). Galena ore found at the fort, and containing 0.001% silver, may possibly/ have been from the same mine (37). Several Roman coins of Domitian's reign have been found here, and other finds indicate its occupation up to the end of the second Century A.D.(38). The pig no. 93 inscribed (I)EG: II AVG ,from Caerwent is presumably from the Lower Madhen mine.

Cerussite found in the Roman svilla at. Mlantwit Major, Glamorgan, contains 170 ounces of silver for each ton of lead (0.52%) one of the richest silver ores in the country (39). In the North-west of Wales, in Caernarronshire, there were
probably Roman lead workings at Pont-ty-Hyil, one isile to the East of Bryn-y-Gefeilau (Caer Illugwy) by Capel Curig; (40).

In Shropshire and Montgomeryshire, the workings were opencast, and use was made also of shafts and galleries(4i). The mines; were at Shelve, Snailbeach, and Minsterley (42). Here, workings underground can be traced following a $\mathbf{2}^{* / 6}$ lode for 200 yards at a depth of twenty to fifty feet. The lead ore has been found as far as Llandidloes and Trefeglws in the Upper Severn Valley (43).Smelting; was; carried out here too (44), and pigs of lead span a period of time from the reign of Hadrian right up to the end of the seoond Century A.D. Himismatic evidence attests to Roman occupation at Ilanymynech during the first two Centuries (45), and amongst other finds, a wooden spade of Roman date: is recorded, although Prof.Haverfield and Miss M. T.Taylor consider that it may not be Roman (46).

Oliver Davies (47) reported in 1938 that at Newtown there were cave and gallery workings like the Roman ones at. Ilanymynech , but that these were not necessarily as early as,or exclusively, Roman. He does,however, point. out that a Roman road passed within half a mile of the mine, and that the slag there is certainly earlier than the sixteenth

A Map of Wales, showing the mining sites
century.
There were works for lead and copper near Plynilmon, where workings several hundred yards long are reported (48).At Caedisws occur pieces of galena, clay and orucible the galena containing silver to a proportion that caused Davies to comment that the Romans failed to exploit the lead mines of a isvery attractive district (49).From Caersws runs a Roman road through: am area where a number of Roman remains have beeni discovered. (50).

Roman workings are seid to exist at Nantymwn (51), end Rasian and pre-Roman woricings at Nant-yr-eira and on the left bank of the Severn (52). Smelting hearths of Roman date have been founc on Dol y felin Blwm at Hlanfyllin, and mines on the hills surrowding Ilangynog (53).

Wheeler also mentions the alleged discovery of a bronze vessel containing Roman remains at the Goginian lead mine near Aberystwyth (54).

The date of the beginning of the lead mines in Flintshire iaj uncertain, but the earliest lead pigs that can definitely be attributed to these mines are of Vespasianic date.The mines were on the Halkin mountains (55), twelve miles west of Chester, at Pentre, where smelting was carried out, and where furnaces and pottery show Roman
occupation until the second Century, and possibly the third (56). There are also remains at the mines of Ffosulbleiddiaid near Abergele (57), and Talargoch, where coins prove Roman occupation until the middle of the third century (58); at Dinorben, and Braid y Dinas (59).

The pige from the Derbyshire mines cause a problem, since it is not easy to date them to an exact period before or after the reign of Hadrian, but this problem is discussed later.Certainly Roman finds in the area suggest oocupation from Hadrian's reign watil the fourth Century (60). Here, opencast workings are found together with the primitive pits (61). The area: was known as Iutudaron (62), and mines existed at Matlock, Wirksworth, and Dovedale (63), though traces of them are hard to find. More workings were discovered by engineers at Staricholmes which were thought to be Roman. This consisted of a svertical shaft, ${ }^{\prime \prime} 6^{\prime \prime}$ wide with neatly squared corners (64). The lead content of the ore in Derbyshire is very high - almost the maximum, whereas the silver content is extremely poor (65).

In Yorkshire, there were a number of lead mines. From Nidderdale, two pigs show. that the mines there were in operation during Agricola's governorship in A.D. 81 (nos. 118-119).

In Swaledale, the "Hurst" mine has yielded evidence of Roman occupation (66)).

At. Greenhow Hill, West of PateleymBridge (67), there is evidence of "hushing", a process of washing the ore from the ground, and which is discussed in the chapter on mining technique, and of adits and surfitioe workings (68). Here, pottery was said to have been found, but none was kept (69)

At Grassington, in Wharfedale, there are sherds of Roman pottery to be found (70), which Dr. Raistrick says were dumped there from a nearby Romano-British site, but these should not be connected with the mine (71).There is no definite evidence of occupation after Hadrian's reign, and Jet coins suggest that mining was continued for some time afterwards (72).

The possibility of Roman lead mining; on Alston Moor, in Cumberland,has been disoussed on various occasions (73). Certainly, lead ore, very rich in silver content from Alston Moor has appeared at Corstopitum (74), and lead ore and slag,found in Whitley/ Castle, a fort on the Maiden Way, near Alston, seem to prove that there was some activity there (75). The fort at Braboniacum, Kirkby Thore, is thought to heve served as a control point for lead passing South from the various mines (76).

The ladle , said to be Roman, and for pouring lead, which was foumd on Wolsingham Sarth Moor, together with slag, charcoal and furnace olay is now considered to be postRoman (77).

References

1.Pliny NEH XXIV,164.
2. West Spain 45.

Hoppensack Bergbau 2.
see too Besnier Revi.Arch. XII(1920)224.
3. Gowland Arch.UVII(1901)ii,377.

Davies Roman Mines 115
Rickard Metals 446-7.
Van Noretrand Spain in Ténney Frank ESAR III 140.
West Spain 43.
4.Gowland Arch.IVII(1901)ii, 378.

Rickard Metáls 4.28-9.
5.Davies Roman Mines 22.
6.Davies Roman Mines 10,130.
see too Rickard JRS XVIII(1928) 132.
7.Gowland Arch.IVII(1901)ii,377.

Besnier Rev.Arch. XII(1920) 229-230.
West Spain 4.4.
8. Hill and Sandars JRS I(1911) 100.

Besnier Rev.Arch.XII(1920) 229.
Davies Roman Mines 137.
Rickard JRS XVIII(1928) 1401.
9,Davies Roman Mines 133 fn.
10.0rth P-W Supplbd.IV col.121.

Besnier Rev.Arch.XII.(1920) 226,
Strabo III 2,3.
1l. Davies Roman Mines 10.
12. Gowland, Arch. IVII(1901)ii, 377.

Besnier Rev.Arch.XII (1920) 229.
Rickard JRS XVIIII(1928) 139. Metals 44.7.
West Spain 43-45.
13.Davies Roman Mines 111.

Besnier Rev.Arch.XII(19207 226.
Rickard Metals 428.
14. Davies Roman Mines 108

Besnier Rev. Arch.XII(1920) 226.
15. Gowland Arch.IVII(1901)ii, 377.
16.Gówland Arch.IVII(1901) $11,377$.

- Davies Roman Mines 110.

Besnier Rev.Arch. $\mathrm{BII}(1920) 229$.
Hoppensack Bergbau 15.
Rickard JRS XVIII(1928) 141.
West Spain 45.
17. Rickard JRS XVIII(1928) 140. Metals 446.
18. Van Norstrand Spain in Tenney Frank ESAR III 140.
19. Besnier Rev. Arch. XII (1920) 228.

Davies Roman Mines $9,107,109$.
Van Norstrand Spain in Tenney Frank ESAR III 140.
Rickard JRS XVIII(1928) 140. Metals 44.6.
20.Gowland Aikch.IVII(1901)ii,378.

Besnier Rev. Arch. XII(1920) 228.
Van Norstrand Spain in Tenney Frank ESAR III 140.
Rickard JRS XVIII(1928) 140,142. Metals 446.
21.Gowland Arch.IVII(1901)ii, 377.

Besnier Rev.Arch.XII(1920) 228.
Davies Roman Mines 9,107f.
Rickard JRS XVIII(1928)140, Metals 446.
22.Gowland Arch.IVII(1901)ii, 377 .
. Besnier Rev.Arch. XII (1920) 224-5.
Davies Roman Mines 107.
Van Norstrand Spain in Tenney Frank ESAR III 140.
Rickard JRS XVIII(1928) 140.
West Spain 45.
23.Rev.Arch. ser.iv. IX (1907) 60.

Besnier Rev.Arch.XII(1920) 23.
Van Norstrand Spain in Tenney Frank ESAR III 157.
Rickard JRS XVIII(1928) 140. Metals 446.
24.Davies Roman Nines 109.

Rickard JRS XVIII(1928) 140. Metals 446.
25. Besnier Rev. Arch. XII (1920) 225.
26.Davies Roman Mines 97.

Hoppensack Bergbau 14.
27. Rev. Arch. I(1868) 299.

Gowland Arch. IVII(1901)ii,378.
Davies Roman Mines 97.
West Spain 45.
28. Davies Roman Mines 98.

Hoppensack Bergbau 17.
29.Davies Roman Mines 115. see too Besnier Rev.Arch.XII(1920)224-225.
30. VCHi Som.i. 338
A.Bulleid and H.St. G.Gray Glastonbury Lake Village I (1911)241-253.
H.St.G.Gray and A. Bulleid Meare Lake Village II (1948) 24.9-252
D.P.Dobson Archaeology of Somerset (1930) 130. Grinsell Wessex 237f. 31. VCH Som. i. 334-341,354-355.

- Gough Mendip 31.

Evans Num. Chron. ser.iv.XV(1915) -499.
Cololingwood Britain in Tenney Frank ESAR III 4.2.
Sutherland Coinage 901. 32.JIRS XIIV(1954) 99.

Ashworth Wells NHASP XIVIII-XUIX(1957-8) 10ff. 33. VCH Som. i. 334-341.

Sutherland Coinage 90f.
see too Mason The Mendips 45-46.
34. VCHI Som. i. 336 .

Collingwood Archaeology of Roman Britain 105, £ig. 26. Collingwood Britain in Tenney Frank ESAR III 42.
-Whittick Newcomen Soc.Trans.XII(1932) 68.

- Som. ASP IV(190.9) 118-137.

35. VCHE S6m.i. 338.

BARG: Bull.December 1967132.
Brill and Wampler AJA IXXI(1967) 7.0. 36.Randall AC C(1949) 95.

Nash-Williams Roman Wales 105.
37. Brill and Wampler AJA LXXI(1967) 74, sample 82.
38.Nash-Williams AC XCI(1936) 379.
-AC. XCIV(1939) 108.
39.Nash-Williams ACS CII(1952-5)89-163.
4.0. Randall AC C(1949) 100.

Nash-Williams Roman Wales 42.
41. VCH Salop i,263.

Collingwood Britain in Tenney Frank ESAR III 43.
42.Cox AJ LII (1895) 31.

Gowland Arch. IVII(1901)ii,383.
VCH Salop i,263.
Collingwood Britain in Tenney Frank ESAR III 43. Whittick Newcomen Soc. Trans. XII(1932) 72. 4.3. Montgom.Coll. V(1872) 24ff.

Collingwood Britain in Tenney Frank ESAR III 43. 44.Collingwood Bri主㐫in in Tenney Frank ESAR III 43. 45. Pennant Wales II 381-2.

Montgom.Coll. XIII(1932) 99f.
Collingwood Britain in Tenney Frank ESAR III 43.
Davies Roman Mines 160.
Wheeler Prehist. Pn. Wales 270.
Salop Mews. July 1966.
46.Cox AJ III (1895) 31.

VCH Salop i. 263.
Whittick Newcomen Soc. Trans.XII(1932) 59.
4.7.Montgom. Coll. XIV (1938) 154.
see too Lewis: Wales 25.
48. Montgom. Coll. III(1870) 289.

Davies Roman Mines 155.
Nash-Williams Roman Wales 57.
North Mining 28.
49. AC (1857) 172.

Montgom.Col1. XIV(1938) 157.
50. Hontgom. Coll. XXXVII (1915) 24.

Nash-Williams Roman Wales 48,54.
51. Montgom.Coll.VI(1873) 339.
52. Montgom. Coll. III (1870) 289,429f. V(1872) 24.
53. Montgom. Coll. XVIII (1885) 38.
54. Wheeler Prehist. Rn. Wales 27.0.
55. Collingwood Britain in Tenney Frank ESAR III 43.

Flints. Hi.st. Soc. Publ. IX(1922)10.
North Mining 27.
56. CollingwoodBritain in Tenney Frank ESAR III 43-4. RCAM Wales and Flints XCV 31.
Whittick Newcomen Soc. Trans.XII(1932) 70.
Atkincon and Taylor Flints. Hi.st.Soc. Publ. IX(1922)
10, X,i..(1923) 5ff. X,ii. (1924) 6ff.
Webster Flints. Hist. Soc. Publ. XIII(1952-3) 14-16.
57. Wheeler Prehist. Pn. Wales 270.

Webster Flints. Hist. Soc. Publ. XIII(1952-3) 15.
AC IXXXVIII(19.32) 34 .
Lewis Wales 24.
North Mining 12,26.
58. Wheeler Prehist. Pn. Wales 270.

Taylor Flints Hist. Soc. Publ IX(1922) 10.
but see North Mining 26.
see also Nash-Williams Roman Wales 21.
Chester AHSP new ser. I(1887) 136-138.
59:Roman Mines 155.
Collingwood Britain in Tenney Frank ESAR III 44. 60.Davies Roman Mines 155.

Collingwood Britain in Tenney Frawk ESAR III 44. 61. Davie@ Roman Mines 155.
62.Collingwood Britain in wenney Frank ESAR III 45.

Richmond Newcomen Soc.Trans.XX(1940) 144.
Richmond and Crawford Arch.XCIII(1949) 38.
63.Collingwood Britain in Tenney Frank ESAR III 44.
64. Derbys. ASJ IXXII(1952)106-7.
see too Tylecote Roman Lead 28.
65.Derbys.ASJ IIX(1938) 61.
66. Whittick Newcomen Soc.Trans: XII(1932) 72.

Raistrick and Jennings Pennines 3,7.
67. Collingwood Britain in Tenney Frank ESAR III 45. R.Clough The Lead Smelting Mills of the Yorkshire Dales (1962) 10.
68. Way AJ XVI(1859) 22-40.

YAJ XXX (1931) 181f.
Whittick "Newcomen Soc.Trans.XII(1932) 72.
69. Raistrick and Jennings pennines 7.
7.0. Whittick Newcomen Soc. Trans. XII (1932) 72.
collingwood Britain in Tenney Frank ESAR III 45.
71. Raistrick and Jennings Pennines 7.
72. Whittick Newcomen Soc. Trans. XII(1932) 72.
73. Gowland Arch.IVII(1901)ii, 382.
7.4.AA i, IV(1850)36.

Richmond CW ii, XXXVI(1936) 109.
Colllingwood Britain in Tenney Frank ESAR III 45.
74. Raistrick and Jennings Pennines 10.
75. Raistrick and Jennings Pennines 10.
76.Collingwood Britain in Tenney Frank ESAR III 45.

CW ii, XXXVI(1936) 104. ii, IXIV (1964.) 64.
77.Wooler YAJ XXVIII(1926) 93.

The: Ownership and Organization of the Mines:

The ownership and the organization of the mines underwent considerable changes during our period.

During the republic and at the beginning of the Fimpire, the mines in Spain were privately owned, and the owner off the land or the local ruler was ipso facto the: owner: of the subsoil, and the mining resources. The mines could be worked by the owners themselves,or by others who bad amranged to do so with the consent of the owners.Iater this agreement was not required.

During the Repablic, the mines: could be leased to publicani for tenures of five years. The leasing method saved Rome the need for a large staff of officials of whom there is no trace (1). The publicani then endeavouredi to exploit the ore as much as possible during their five pear tenancy, ai habit which continued under the early Empire, by extracting only the richest ore, withi little: regard either for the efficiency of the operation or for the health and safety of the workers of whom they employed: an enormous number. Profits were increased by rejecting ore up to a higher percentage than was required to pay the:
costs of mining and smelting (2).At Laurion, in Attica, ore containing less than ten per cent lead was thrown away or left in the supporting pillars (3).

The mines could be worked by individuals or, by the first Century A.D., by socii. Pigs of lead from Spain (nos. 81-86) tell us of the Societas Montis Ilucronensis, though more usually in Spain, mines were ron by one, two or three individuals, whose names and woting-tribes suggest that they were of Italian origin rather than Sparaish.

This system was an improvement on the former where considerable waste had been: allowed with little revenue: to the state, but Augustus began the system, continued by Tiberius and subsequent Finperors, whereby all mines came under Imperial oxitrol irrespective of whether the province: in question was Imperial or Senatorial.(4)
Strabo,III.2.10.

- The silver mines are still being worked at the present time (under Augustus); they are not state property; however either at Carthagena or anywhere else, but have: passed
over to private ownership. But the majority of the gold mines are state property .'

Under this system mining concessions were leased out to conductores (lessees) again for periods of five years, and the latter were to find it much harder to become profiteers.
By the time of Polybius (c. 145 b.c.), the right to grant mining concessions had gone to a committee of censores (5), According to Justinian (6), they received from the conductor al tithe for the fiscus, the Imperial treasury, and a tithe for the dominus, the owner of the land if the mine was on private land.

Mines were gradually acquired from the ir former owners by; one of seyeral means - usually by purchase or default (7). Some were confiscated, as were the mining : possessions of Sextus Marius by the Einperor Tiberius after the former:'s execution (8).

The head Imperial officials first appointed by Augustus were procuratores, who were either equites or, more rarely, Imperial freedmen, and these were responsible personally to the Emperor for all the mines in their province, or even in two provinces (9), again regardless of whether the province was Imperial or Senatorial.

The procurators had under them a staff of slaves who were commentarienses and tabularii - registrars and bookkeepers; ypappatels - secretaries;dispensatores treasurers;arcarii - public revenue controllers;probatores examiners of mines, together with a stgif of technicians to supervise the workings of the mines (10). If he was an equesp, the procurator would also have under him certain officers (1l). He had supremex powers ower pegple in the mining area except those of life and eath. The mining staff under him was so numerous that in provinces where the ore was poor and was not able to wbe mined profitably, the ore was abandoned. Provinces thus became known as mining and non-mining - provinces.

The procurator farmedi out the mines to the conductores, lessees, who were usually equites, and these either supervised the workings themselves or sub-let them to individuals or to companies.The procurator would enforce the collection of revenue for the fiscus.

Concession boundaries were vertical, and private. citizens had to pay a levy for the use of the ground to the lessee. The lessee could sell his portion of the mine for as great a profit as he could acquire, provided that
A
/
/
 Wheme Norly Mis

 1118
 001
(6sonosavisoll)

 ?

 (10

 NTINS

加ivamol inv
 arocol W
 IIN
 VH
re
 DVNX

va.i.!18

 H n
his own debt to the fiscus was fully paid up (12).An occupator had the right to choose a: place for prospecting, to erect a tablet in order to 'stake his claim', and then had to inform the lessee within two days. At Rio Tinto the vast size of the area and the unity of design suggest a $\%$ centralized control, but elsewhere in Spain,sub-letting is more obvious.

We are fortunate in having extant two bronze tablets found: in 1906 and 1876, approximately the same size : 0.72 m. high ; 0.52 m . wide ; 10.12 mm . thick: These are called the Lex Metallis Dicta, or , more usually, the Aljustrel tablet (13), and the Iex Territorio Metalli琵pascensis Dicta, or,more msually, the Lex Metalli Vipascensis ,or , the Iex Vipasca (14). The full text of these in Latin, together with their translation into English can be found at the end of this chapter. The Aljustrel tablet is inscribed on both sides, the second side being a isduplieate of the first.The Lex Metalli Vipascensis is inscribed on one side only.They are dated to Hadrian's reign.The Lex Metalli Vipasconsis was originally thought to be of Vespasianic date, but the reference in line fifty-nine to the lex metallis dicta, which in turn refers in line five
to the Emperor Hadrian dates this to Hadrians' reign also.
The two leges deal with the organization of the mines and the mining areas, and lay down strict laws: for the levying of taxes and the conditions under which mines were to be leased, and so on.

The whole of the mining settlement, not merely the mine came under the control of the fiscus. The lessee paid for his lease of the mine, thereby accepting strict control under the procuratorial administration both of the shaft and of the pithead settilement. The costs of the administration were met, by the rents which the lessee paid. The fiscus then claimed,as duty, one-half of the ore extracted in addition to the rent which had already been paid on the mine. So liong as production at the mine continued, the lessee was secure in his temure of the mine, but if the mine was left idle for six consecutive months, then he lost it.

Under the lex metallis dicta the lessee could have associates, and it was under this heading that societates began to spring up. Six Spanish pigs, as we have seen, bear the names of a societas.These societates can be dated to the first Century A.D. while Spain retained a monopoly in the lead industry. Societates are also known iid Britain (15).The lex also states that each socius
had to undertake expense in proportion to the amount of his share. If a socius wished to leave the societas he was entitlee to a refund of the value of his portion of the equipment. The procurator enforced this.If, on the other hand, a sooius was urable to meet his commitments, after publication of the accounts in the forum for three days, his share would be withdrawn and the mine would belong to the remaining socius or socii.

Revenues were derived in: the mining areas partly from taxes and partly from monopolies.Auctioneers, cobblers bakers and the like had to pay; the fiscus for the right to carry on their trade at the pithead settlement.

Whoever made a claim to start work in a mine had first to pay the price of occupation and within twentyfive days amass a working capital and begin work immediately. If he failed to do so,or began work immediately and then subsequently abandoned it soon afterwards for a period of ten sconsecutive days, then the occupancy of the mine was forfeit.

Once paid for, the mine was held by the lessee so long as it was worked in accordance with the regulations laid down above and so long as it was worked without respite
of: more than six months consecutively. Mines abendoned: in this manner could be occupied or confiscated by the state.Anyone had the right of occupation. Jiust as the right to the mine was forfeited: if working was discontinued for six months, so it was forfeited if the renewal fee for the right of occupation was not paid.Any new occupator who seized the mine had to inform the lessee of his seizure within two days. Likewise a lessee who sold his mining mights had to inform the procurator. (16)

The occupator obtained just half the shaft, and could then start extracting the ore, The other half,which belonged to the fiscus was set aside for bijk as soon as he paid the requisite sum, which he had to do before he smelted any of the ore. If he did smelt the ore before is having paid the purchase price, then his tenure of the mine was confiscated and the whole mine sold by the procurator, one-quarter of the procceeds going to the person who informed about the misdemeanour.

It seems likely that the procurator would have reserved the right to assess each mine on its own merits before naming the purchase price.The 4,000 sesterces mentioned in the lex metalli Vipascensis would presumably have applied: to that mine alone.

The law laid down that five shafts had to be sunk in each mine, and that once the first was suak, then the other four had to be sunk likewise and worked. (This accounts in part for the large numbers of shafts sunk on some sites.s).

As reckless exploitation had previously done serious harm. to the mines in Spain there were strict rules drawn up controlling the workings and laws enforced against the theft of: ore.For example,no ore was allowed to be moved from the mine between the hours of sunset and sunrise. Defaulters were finęd 1,000 sesterces, slaves were beaten and thereafter kept in chains, and freemen had their property confiscated and were banished from the mining area. Ore-bearing rock from other mines could be imported into a mining area for smelting or cupelling or other processing on payment of one denarius for: one handred librae. Defaulters were liable to have their ore oonfiscated.

With regard to mine safety,strict measures were enforced, for unider the law, the props of the mines were to remain untouched, old ones were to be replaced by new stifuctures and were not to be interfered with, nor was ore to be extracted from within sixty feet of the draifiage
adits.
As far as. Britain is concerned little evidence survives to tell us exactly how the mines were run. We know that at Charterhouse on Mendip,Somerset, a pithead settlement existed, but for the most part we have to rely on the evidaxee: from Spain to supply us wi.th this inform mation.

When the mines in Britain opened, which was certainly by A.D. 49 if not before; Spain began her decline as the main lead-producing province in the Empire, and as a result of this, presumably after complaints or requests from Spanish officials, by Vespasian's time a law was passed restricting the output of lead from Britain (17).

It is probable that in Britain too the mines were, in the earlier stages, under State control with private leases which may be Flavian if the 黠 on the pige nos.144-148 giov. Erom Derbyshire is to be taken as Trifernaon five of the pigs, no. 90 of Neron's reign, and nos. 108, 114, 136, 117 of Vespasian's reign, all from Somerset, the name of Imperial officials havebeen stamped, and on the faces of the majority of the pigs from Derbyshire are moulded the namesi of lessees Whocmere pipobably freedmen (18). Societates are found in the reign of Vespasian (nos.108-110) yet, by Hedrian's

The incuse inscriptions EXX ARGENT C • NTPI ASCANI and XXX on pig no. 90

The moulded inscription C • NIPI • ASCANI on pig 91 340
reign, some mines were again wader Imperial control. It would appear that the leasing of lead mines in Britain to societates if not to private lessees was practised before the end of the first Century A.D., and was resumed towards the end of Hadrian's reign after a period when the Sitate had taken control of at least some mines. The late Prof.I.A. Richmond, discussing the evidence for the leasing of mines before Hadrian, says that conclusive evidence for the leasing cannot be based on the fact that nomina and praenomina of lessees mentioned on pig inscriptions refer to Kinperors earlier than Hadrian. (19). Since the date of this statement by Prof. Richmond,however,pigs nos.91.108.114.116.117 have been discovered.Pig no. 91 bears the name of the lessee C.Nipius Ascanius, the same name as the mining official from Somerset mentioned on pig no.90., which can be dated to A.D. 60. It would not be possible for a mining official of A.D. 60 to become a lessee after the reign of Hadrian, and it would be wailikely that he could do so even during Hadrian!'s reign. Tikewise pigs nos.114.116 and 117 bear the name of the Imperial official Tiberius Claudius Triferma and are dated to between A.D. 69 and 7.9. The name of the lessee on pigs nos.1\$4 - 148 has been abbreviated to TI.CL.TR .Positive

The incuse inscription TI•CL•TRIF on pig 116
identification of the lessee as Tiberius Claudius Triferma is not possible because the abbreviation is too great, but it is attractive to think, and not unreasonable, that the two inscriptions refer to the same man.

The evidence for military control of the mines in this province is again small. The inscription IEG II AVG appears on pig no. 93 from South Wales, and I II on pig no. 92 from Somerset. LEG XX occurs on pig no.175, discovered: in: France and attribated to Shropshire or possibly Flintshire - from a mine that was within easy reach of Chester. Dr: Graham Webster has: suggested that these pigs were merely the property of the legions in question, and that the mines were not under military control,but Mr.R.P.Wright contende that the legionary atamp shows that the mines were under military control (20).

In Spain during the Republic, slaves were used to do the work in the mines - slaves; who had been: brought there as prisoners of war and who provided a cheap labour force Later on, when these became scarce through lack of border wars, the damnatio ad metalla secured for the mines workers in the persons of prisoners condemed by the courts for such orimes as robbery.with violence, transgression of boundaries,highway robbery, and the lilice (21).

These were less efficient than the slaves.The owners of the mines had compensated for the work of the slaves which had frequently been poor and lacking in technique by employing large numbers of them.Now,with the criminals, they found their mines full of men who had been: turned off the streets in Rome and whose physique was not as strong as that of their predecessors.These miners, unased. to hard labour,were more inclined to try to escape,and eventually the smallness of the numbers of workers forced ! the Romans to give up state exploitation of the mines (22).

In Britain too slaves were forced to work in the mines. Tacitus in the Agricola describes the scene before the battle of Mons: Graupius when Calgagus one of the Britong: "many leaders" exhorts his troops against the Romans. with the alleged words $:$
'... Before us is their general,here his army; behind are the tribute, the mines and all the other whips to scourge slaves. Whether you are to endure these for ever or take summary vengeance, this field must decide.'

The lessees employed mercenaril as well and when more than one lessee was operating in one area, legislation was introduced to prevent competition in the employment of workers who lived in the district. Ihe total number of workers employed in the mine was also restricted.

The moulded inscription BRIT • EXX ARG • VEB on pig no;115

The authorities required that they should be informed of the numbers of these workers in a mine that was being started up or re-started after a period of unoccupation, and a fixed sum had to be paid for each of the workers. Within two days, the occupator had to inform the procurator of the number of slaves used in all the processes of the mines.

Provincials were employed in Spain and in Britain. Davies(24), and Orth (25) take the inscription BRIG. and DECEANGI found on pigs of lead from Britain to mean that local miners were forced to worl in the mines of Forkshire and Flintshire, but as with the inscription VEB from Somerset, this should merely define the area from which the lead came, and not the identity of the miners.

Later, the local inhabitants were obliged to work in the mines. In Spain, after Trajan!s reign, the inhabitants of strallaecia were kept there to work in the mines (26) and elsewhere whole populations of efficient miners were trensported to other parts of the Empire for this purpose. Miners from Salona in Dalmatia,for example,wōre taken to Dacia to work in the gold mines there (27).

To ensure continuity in the miness, half the children of each miner had to work in the mines as well.This was later
increased to include all the children of the miners. This was not: a popular move,but an even more umpopular one came when the soldiers were forced to work in the mines - as. ? we learn from the complaints made by the legionaries to Claudius that they had to subject themselves to prospecting and inspection wo rk (28).

Great capital was required to run the mines.S.trako (29) says that 40,000 slaves worked at Carthagena. Pidal (30) and others calculate that 120 million sesterces would be needed to buy these slaves and an extra 60 million for the equipment.Expenses on food and the upkeep of the slaves amounted to 10 million sesterces.There was a death rate of twelve per cent, and with liquid assets of $127 \frac{1}{2}$ million sesterces, the state is reckoned to have had a seven per cent rewenue, since daily production was in the order of 25,000 denarii, or: $36 \frac{1}{2}$ million sesterces a year.

The workers themselves lived under varying conditions. The Aljustrel tablet gives us some idea of the life led by the slaves and mineworkers; in the second Century A.D., but at the beginning of our period, things were very different.Diodorus Siculus (31) says that life was no different than that of the xgold workers of ancient Egypt :

- The mineworkers create for their masters
unbelievable: riches. They; themselves however have to suffer unspeakable things since they have to work day and night below the surface. Recuperation and rest is unknown. Rather they are forced with blows to bend themselves to this work. Many take their own lives, preferring death to their sad fate.Only a few,possessing strong wills and bodies survive standing this hard labour.'

Most of the labour was unskilled, and expert guidance was needed. Tine workings at Rio Tinto were so uniform that they; may well have been a schooll for mining engineers. The only skilled. labour was that supplied by those who had worked the mines before the Roman conquest and who were now: forced to return. Later skilled labour was provided by those who, being experienced in mining work, were transferred to another province.

Slaves were forced to spend their time below the ground. Various devices were employed to keep them there caves below the mouths of the shafts, rocks with rings attached to them - these held the prisoners who were fettered at the waist and ankles.Cyprian, referring; to. the lot of the slaves in the third Century A.D.says: (32) - Their feet lie in fetters which not a smith,but God alone will take off them. Their bodies lack a place to

A lamp-holder from Charterhouse on Mendip
rest, and they have to lie on the bare ground. The condemned receive no water to wash off the thick dust with which they are covered. Bread is distributee meagrely as are the olothes to protect them. Their heads are half shaved, and what hair remains is stuck together with dirt.' The slaves were branded on their foreheads (33) , but by; the time of Constantine they were branded on their arms and on the calves of their legs as well. They were guarded by soldiers, and garrisons were set up to take charge of thempand of the mining settlement.

A square earthwork surrounded by a double vallum, which may well be one such garrison has been observed at Charterhouse on Mendip, Sonerset, where chains, though possibly later than the Roman period, have also been found

The soldiers of the garrison were responsible alsof for restoring order in cases of mutiny by the mineworicers, or when attacks were made on the settlement by/ hostile tribes (34).The mortality rate in the mines was high, and the correctness of this is borne out by the number of skeletons belonging to men who had died before the age of thirty.

The shifts which the mineworkers worked were regulated by oil-lamps secured in niches along the mining galleries(35).

The slaves formed themselves into guilds and fraternities under the Imperial aegis. By the time: of Hadrian, the interests of the miners were looked after, as we see in the Lex Metalli Vipascensis. The laws laid down here were not merely for the running of the mine, but were also for the organization of the mining settlement. Leases: were granted to shoemakers, bakers and fullers, and no other person was allowed to undertake this sort of work except for the benefit of himself, his master, or his fellow-slave. Pit-head baths were provided and strict laws were enforced concerning their efficienoy and cleanliness. Opening times were controlled by law as were the prices of admission. Freedmen and slaves,minors and soldiers were admitted without charge.

The only example of a pithead bath known in Britain was at the Dolavotht gold mine in Wales.

The inclusion of adequate educational facilities for the children of the settlement was ensured by; exempting schoolmasters from taxation.

IFIX MPRATTSS DICTA

From Riocobono, Fontes Iuris Romani Antejustiniani.

$$
\text { Florence (1941) I. Ieges . } 499 \text { ff. }
$$

Ulpio Aeliano suo salutem,
(1)] Aug.praesens numerato.Qui ita non fecerit et conviotus erit prius coxisse venan quam pretium, sicut | supra scriptom est, soluisse pars occupatoris commissa esto et puteum universum proo(urator) metallorum/ vendito. Is, qui probauerit ante colonum venam coxisse quam pretium partis dimidiae ad fiscum pertinen/tis numerasse, partem quartam accipito.
(2) Putei argentari ex form[a] exerceri debent quael hac lege continetur; quorum pretia secundum liberalitatem sacratissimi imp(eratoris) Hadriani Avg. obser|vabuntur, it[a]ut ad eum pertineat proprietas partis,quae ad fiscum pertinebit,qui primus pretium puteo fecerit \mid et sestertia quatuor milia nummum fisco intulerit.
(3) Qui ex numero puteorum quinque unum $/$ ad uenam perduxerit, in ceteris, sicut supra soribtum est, opus sine intermissione Facito ; ni ita fecerit, [alii] occupandi [ius] esto. Qui post dies KXV/ praeparationi impensarum datas opus quidem| statim facere coeperit, diebus autem
continuis decem postea in opere cessauerit, alii ocoupandi| ius esto. Puteum a fisco venditum continuis sex mensibus intermissum alil occupandi ius | [es] to,ita, ut ,cum uenae ex eo proferentur,ex more pars dimidia fisco salua sit.
(4) O[ccu|pa]tori puteorm socios quos uolet habere liceto,ita ut, pro ee parte , qua quis socius erit,impensasl conferat. Qui ita non fecerit, twiz is qui impensas fecerit rationem impensarum factarum a se \mid continuo triduo, in foro frequentissimo loco propositam habeto et per praeconem denuntiato $/$ sociis ut pro sua quisque portione impensas conferat. Qui non ita: contollerit, quiue quid dolol malo fecerit quominus conferat, quoue quem quosue ex socils fallat,is eius putei parteri ne l habeto, eaque pars sooii sooiorum ut qui impensas fecerit esto. 1 Et iif B] coloni[s] qui impensam fecerint in eo puteo, in quo pluris sooii fuerint, repetendi a sooiis quod bona fide erogatum apparuerit ius esto. Colonis inter se eas quoque partes puteorum, quas | a fisco emerint et pretium soluerint, vendere quanti quis potuerit liceto. Quid uendere suam partem $/$ quiue emere uolet, aput proc(uratorem), qui metallis praeerit, professionem dato;aliter emere aut uendere। ne: liceto.EH qui debito[r] fisoi erit, donare partem suaml ne liceto.
(5) Venas, quae: ad puteos prolatael [1] acebont ab ortu: solis in occasum, il quorum exunt in offioinas uehere debebunt; qui post eoca | sum sollis [us] q(ue) in
 ∞ nummos fisco inferre debeto. | Venae furem, si servos erit,procurator flagellis caedito et ea conditione vendito, ut in perpetuial uinculis sit neue in ullis metallis territorisue metalloram moreturipretium serui ad dominum | pertineto;liberum procurator confisoato et finibus metallorum in perpetu[u]] prohiteto.
(6) Putei omnes diligenter fulti destinatique sunto, proque putri materia colonus cuiusque putei noluam nil editionem sub[i] cito. Pilas aut fulturas firmamenti causa relictas attingere aut | uiolare doloue malo quid facere quominus eae pilae fulturaeue firmae et [perviae] sint ne liceto. I qui puteum uitiasse labefactasse decapitasse allutue quid dolo malo fecisse quominus is puteus / firmus sit conuictus erit, si seruos erit, flagellis arbitratu proc(uratoris) caesus ea conditione a dom[i]|no ueneat, ne in ullis metallis moretur;liberi bona proc(urator) in fiscum cogito et finibus ei metal lorum in perpetuom interdicito.
(7) qui puteos aerarios aget a cuniculo qui aquam metallis subducet recedito, et non minus quam quinos. denos pedes utroque latere relinquito.[Gul/nioulum uiolare ne liceto. Proc(urator) explorandi noui metalli causa ternagum a cuniculo agere/permittito, ita ut. ternagus non plures latitudinis et altitudinis quam quaternos pedes habeat. | [$\mathbb{Z}]$ enam infre quinos denos: pedes ex utroque latere a cunioulo quaerere caedereue ne liceto. |[Quif aliter quit in ternagis fecisse conuictus erit, servos flagellis arbitrato proc(uratoris) caesus ea condiftione [g] domino ueniet, ne in ullis metallis moretur; liberi bona proo(urator) in fiscum cogito et fini/bus ei metallorum in perpetuum interdicito.
(8) Qui puteos argentarios [aget] a ouniculo,quil aquam metallis subducet, recedito et non minus quam sexagenos pedes utroque latere relin quitol,et eos puteos quos occupauerit adsignatosue aoceperit in opere utit determinati erunt | habeto nec ultra procedito neue ecbolas coilligito neue ternagos ital agito extra fines putei adsignati, [ut]

Translation of the Lez Metallis Micte: Van from Horatrand, Roman Spain, in Tenney Frank, An Economic Surver of Ancient Rome III p. 171 fe.

To Ulpianus Aelianus, greeting.
1 In accordance with the will of the biberal and most sacred Imperator: íhdrianus Augustus, he shall make immédéate papment. He who shall not have done this and who shall be convicted of having smelted ore before the purchase price has been paid in the manner indicated above shall be deprived of the share due to him as occupier, and the entire mine shall be sold by the procurator of mines.He who shall prove that the colonus has smelted ore before le has paid the price for the half share belonging to the fiscus shall receive the fourth part.

Mines of silver shall be exploited in conformity with the regulation which is contained in this law. The price of these mines shall be maintained in accordance with the will of the liberal and most sacred Imperator Hadrianus Auguatusinamely, that the usufruct of that portion which belongs to the fiscus shall belong to him who first shall put up the price for the mine and who shall present to the fiscus four thousand sesterces.

Lis has been stated above, he who shall have reached ore in only one of five shafts ehall continue work in the: others without intermission. If he shall not do this, the right of oocupancy shall go to another.

If anyone after the twenty-five divs granted for the collection of working capital shall begin to work at once, but shall afterwards cease working; for ten consecu.tive days, the right of oocupancy shall revert to another.

If a mine solab by the fiscus shall lie unworked for six consecutive months, the right of occupying it shall be open to anyone, provided that when the ore shall be extracted therefrom, one-half shall be reserved to the fiscus, according to custom.

It is permitted that the occupier of mines shall have such partiners as he wishes, provided that each one shall undertake the expense in proportion to the amount of his share. If a partner shall not do this, then he who has undertaken the expense shall make out a statement of the expenses undertaken by himself, shaill place this statement for three consecutive days in the most frequented spot of the forum, and shall announce through the public crier that each partner mast bear his share. The partier who shallhot contribute, or who shall wilifully do: anything to
avoid his share,or who shall deceive one or more of his partners, that man shall not retain his share in the mine, and his share shall belong to the partner, or partners, in proportion to their payment. of the expenses.

And to those: colioni who have undertaken on expense in: ai mine in which many pariners are interested, there shall be the right, in law, of regaining, from their partners that whith shall appear to have been asked for in good faith.

The coloni may sell among themselves, at as great a: price as possible, those shares of mines which they have bought from the fiscus and for which they have paid the full price. He . Who wishes to sell his share, or who wishes to purchase, shall make a declaration before the procurator who is in charge of the mines. In no other way may purchase and sale be effected. It is not permit.ted him who is indebted to the fiscus to give away his share.

Those to whom the ore belongs shall convey to the smelter from sunrise to sunset that which lies extradsted at the mine head.He who shall be convictied of having caxried ore from the mines after sunset and before sunrise shall pay to the fiscus one thousand sesterces. If an ore thief be a slave, the procurator ahall beat him
and shall sell him with the condition that he be kept perpetuailly in chains and shall not reside in any mining camp or district. The price of the slave shall go to the owner. If the thief be a free man, the procurator shall confisoate his property and banish him forever from the mining districts,

All. mines shall be carefully propped and supported, and in place of old material the colonus of each mine shall substitute a new structure.

No one shall touch or injure the pillars or props left for: the purpose of strengthening (walls and roeilings), nor shall he wilfully do anything as a result of which these pillars or props shall be less firm and passable. He who shall be convicted of having injured, weakened, or having done aything wilfuing which shall render the mine unafe, if he be a slave shall be beaten with rods at the discretion of the procurator and sold from his master under the condition that he shall not reside in any mining district.The procurator shall seize the property of a freeman for the fiscus and banish him forever fram the mining diswrict.

The person who warks a copper mine shall avoid the ditoh which carries water from the shaft and leave untouched
a space not less than fifteen feet on either side. He shall not be allowed to harm the ditch in any way. The procuratar shall permit,for the purpose of discovering new deposits, a: drift from the ditch, provided that the drift be not greater in depth and in width than four feet.It, is not permitted to prospect for or to extract ore within fifteen feet on either side of the ditch. He who shall be convicted of having violated the regulations concerning the drifts, if he be a slave,shall at the discretion of the procurator be beaten with rods and sold from hils master under the condition that he shall not reside in any mining district. If a freeman transgress, his property; shall be taken by the procurator for the fiscus and he shall be banished forever from mining districts.

He who works silver mines shall avoid the tonnel which. oarries water from the mines and shall leave untouched not less than sixty feet on either side, and he ahail exploit the mines which he has occupied or received in assignment in accordance with the regulations;nor shall he. go beyond the boundaries,nor pile up crude ore, nor extend his drifts beyond the limits of the mines assigned........

IEX GERRITORIO METALTI EIPASCENSIS DICTA
Fulgo IHBX METALUI VIPASCENSIS.
from Riccobono, Fontes Iuris Romani Antejustiniani
Florence (1941) I ,Ieges, p. 503 ff.

Centeaimae argentariaestipu-
lationis. Conductor earrum stipulationum, quae ob auctiol nem intra fines metalli Vipascensia fient, exceptis iis, quas proc (urator) metallorum iu[ssu inip(eratoris:) faciet, centesimam a venditallre acoipito. Conductor ex pretio puteorrm,quos proc(urator) metallorum uendet, cen[tesimam ne exigito].l Si instituta auctione uniuersaliter omila adicta fuerint, nithilo minus uenditor ce[ntesimam conductori sooio aotollriue. eius praestare debeto.Conductori socio actoriue eius, si uolet stipulari a u[enditore,is promittito. Conductor]l sooing: actorue: eius <eius> quoque summae, quae excepta in auctione erit, centesimam exigito. [qui res sub praeconel habuerit, si eas non addixerit et intra dies decem, quam aub praecone fuerint, de condici[one vendiderit, nihilo minus conl ductori socio actoriue eius centesimam d(are) d(ebeto). Quod ex hoc capite legis conduct[ori socio actoriue eius debebitur], $/$ nisi in triduo proximo, quam debere coeptum erit,datum solutum satisue factum
exit, du[plum d(are) d(ebeto)].l
Soripturae praeconii. Qui praeconium conduxerit.praeconem intra fines praebe[to. Pro mercede ab eo qui uenditioneml 䏝 minoremue fecerit, $^{\text {en }}$ centesimas duas, ab eo qui maiorem y C fecerit, centesimam exigito. Qui mancipia: sub praecone venum $11-$ dederit, ai quinque minoremue numerum uendiderit, capitularium in uendilderit, in singula: capita. YIII conductori socio actoriue eius dare debeto.Si quas[res proc (urator). metallorum nomine] fisci uen/det. locabitue, iis rebus conductor socius actorue eius praeconem praestare debeto Q[wi inuentari] um ouiusque rei uendundae tinomine proposuerit, conductori socio actoriueeius I I d(are) d(ebeto). Puteorum, quoes proc(urator) metallorum uendiderit, em/ptor centesimam d (are) d(ebeto). Quod si in triduo non dederit, duplum d (are) d(ebeto). Conductori socioactoriue eius: pignus cape<re> liceto. Qui mulos mulas asinos asinas cabaillos equas sub praecone uendiderit in k (apita) sing(ula) X III α (are) d (eheto). Qui mencipium alliumue quam re[m sub]/ praeconem subiecertt et intra dies $X X X$ de condicione uendiderit, conductori socio actoriue eius [idem α (are) α (ebeto)] 1

Bralineifyemd. Conductor balinei sociusue eius omila sua inpensa balineum, [quod ita conductum habe] bit in l pì(idie), k (alendas) Iol(Las) primas amibus diebus oalfacere et praestare debeto a prima luce in horam septim[am diei mulleribus] et ab hora octaval in horam secundam noctis uiris arbitratu proc(uratoris) qui metallis praeerit.Aquam in [alueum usque ad]sumiam ranam hypo/ caustis et in labrum tam mulieribus quam uiris: profluentem recte praestare debeta.Conductor a uiris sing(ulis)|aeris semisses et a mulieribus singulis aeris asses exigito. Excipiuntur liberti et serui [Gaes(aris) ${ }^{\text {qui }}$ proc(uratori)] in officis erunt uel commoda percipient, item inpuberea et milites.Conductor socius actorue eius [instrumentum balinei et e] a omnia quae / ei adsignata erunt integra conductione peracta reddere debeto anisi si qua uetustate c[orrupta erunt]. Aena quibus / utetur lauare tergere unguereque adipe e recenti triceneima: quaque die recte debeto.[SI qua necessaria refectio inpedi]/erit, quo minus leuare recte possit, eius temporis pro ratai pensionem conductor reputare debe[to. Praeter] haec et siquid|aliut eiusdem balinei exeroendi causa fecerit, reputare nihil debebit. Conductori ue[ndere ligna] nisi ex recisaminilbus ramorum
quae ostill idonea non erwat ne liceto. Si adversus hoc quid fecerit, in singul[$a s$ venditiones HS] centenos $N(u m m o s)$ fisco d (are) d (ebeto). $\mid s i$ id balineum recte praebitum non erit, tum proo(uratori) metallorum maltam conductori quo[ti]ens recte praebitwo non erit usque) ad HS CC dicere liceto.IIgnum conductor repositum omni tempore habeto, quod diebus ...a....[satis siit].

Sutrini. Qui calciamentorum quid loramentorumue quae sutores tractare so(lent, fecerit clanomue oaili] galrem fixerit uenditaueritue siue quid aliut, quod sutores uendere debent, uendidis [se intra fines conuictus erit,is] conductori socio actoriue duplum α (are)d(ebeto). Conductor clauom ex lege ferrariar [um uendito Conductori socilo |actoriue eius pignus eapere liceto. Reficere caloiamenta nulli licebit nisi cu[m sua dominiue quis curauerit refece]ritilue. Conductor omne gems calciamentorum praestare debeto: ni ita fecer[it, nnicuique ubi wolet emendi]ius/esto.|

Tonstrini. Conductor frui debeto ita, ne alius in u[ico metalli Vipascensis inue]|territoris eius tonstrinum quaestus causa faciat .Qui. ita tonstrinum fecerit, in sin[gulos ferramentorum usus $\ldots \ldots$]/ conductori sooio actoriue eius d (are) d (ebeto), et ea
ferrementa commissa conductori sunto [Excipiuntur serui] quil dominos aut. consernos suos curauerint. Circitoribus quos conductor[non miserit, tondendi ius ne es] to. Con/ ductori socio actoriue eius pignoris captio esto. Qui pignus capientem prohibuerit, [in singulas prohi] bitiones $Y \mathrm{Y}$ (are) debeto. Conductor unum pluresue artifices idoneos in portionem recipito. 1

Tabernarum fullonia mumaveatimenta rudia nel recurata nemini m[ercede polire nisi cui conductor solcius actorue eius locauerit permiseritue lieeto.Quil conuictus: fuerit aduersus ea qui[d fecisse, in singulas lajcinias | YIII conductori socio actoriue eius d (are) d (ebeto). Pignus conductori socio actoriu[e. eius capere liceto]. 1

Soripturae soaurariorum et testariorum. Qui in finibus met[alli Vipascensis … soan] $]$ ri/as argentarias aerarias pulueremue ex scaureis rutramina ad mesuram pondu[sue purgare tundere ure] re expe|dire frangere cernere lauare uolet quiue lapicaedinis opus quoquo modo facien[dum suscipiet Fquos ad id]faciendum/seruos mercannariosque mittent, in triduo proxmio profiteantur et soluanlt. oonductori quol que mense $/$ intra $p r$ (idie) k (alendas)
quasquesni ita fecerint, duplum α (are) d (eberito). .Qui ex alislocis ubertumbis ae[ris argentiue ru] tramina in $/$ fines metallorum inferet, in p (ondo) CXI conductori socio actoriue eius d (are) d (ebeto). Qu[od ex hoc capitejlegis conduc/tori sooio actoriue eius debebitur neque eai die,qua deberi coeptum exit, solu:[tum satisue factum erit.], α (uplum) d (are) d (ebeto).l Conductori socio aotoriue eius pignus capere liceto et quod eius scauriae pu[rgatum tunsum uatum expeditum fracj|tum oretum lauatumque erit quiue lapides lausiae expeditae in lapicaedi[nis erunt, commissa ei sunto,nisi quid]|quid debitum erit conductori socio actoriue eius solutum erits ex[cipiuntur serui et liberti]|flatorum argentariorum aerariorum qui flaturis dominorum patron[orumque operam dant]. 1

If udimegictri.Iudi magistros an proc(uratore) metallorum immunes es[se placet].
 pittaciarium.Qui intra fi[nes metalli Wipascensis puteum locum.] que putei iuris retinendi causa usurpabit occupabitue e lege metallis: dicta, bliduo proxime quod uswrpauerit occupajluerit apud conductorem sooium aetoremue huiusce vectigalis profiteatuln.

Mranslation of the Lex Territorio Metaili Vipascensis Dicta Van
From Norstrand, Roman Spain, in Tenney Frank, An Economic Survey of Ancient Rome, III, 167 ff .
$*$

> "오 the one per cent sales tax"

The lessee of these saes by auction within the boundaries of the mining district of Vipasca shall receive one per cent. from the seller, exception being madee to those sales made: by the procurator of mines at the command of the B B peror. The leasee shall receive from the purchaser one per cent of the price: of mines whioh the proourator of mines shall sell.

If, after the auction has begun, everything; shall be purchased with one bid, the seller shall nevertheless pay one per cent to the lessee , his partner, or his agent. The seller shail announce beforehand to the lessee,his partner, os his agent if he wishes any articles witheld from auction

The lessee, his partner, or his agent shall exact also one per cent of the value of that which bas been withdrawn during the auction.

Withil reference to him. who shall have placed goods in the hands of a oriersif the crier shall not have sold them at the price agreed upon, the owner shall nevertheless
give one per cent to the lessee, his partner , or his agent.
Unless that whilah , in accordance with this section of the law, is due the lessee, his partner of his agent is paid, settled or secured, within three days after the debt shall have been contracted, the seller shall pay double.
Of the auctioneer's fee

He who has leased the auctioneering concession shall furnish an auctioneer within the boundaries of this district. From him for whom sale of one hundred denarii or less is completed, the lessee shall receive two per cent; for a sale of over one hundred denarii, one per cent.

He who shall have given slaves to the auctioneer for sale shall give to the lessee, his partner, or his agent, if five, or a gmaller number be sold, to dee denarii for each slavesif a greater number be sold,three denarii for each slave.

If the procurator of mines sheal sell, or lease, any property in the name of the fiscus,for this property the lesseghis partner, or his agent shall furnish an an axationeer.

㼛 who shall have published list with the name of
each thing to be sold shaill give to the lessee, his partner or htis agent one denarius.
0. the mines which the procurator of mines shall have sold, the purchaser shall pay to the lessee one per cent. of the price. If he shall not have paid this within three days,he shall pay double. The lessee, his partner of his agent shall have the right to take security for this.

He who shall have sold through an auctioneer mules, asses,or horses of either sex shall pay for each animal three denarii.

He who shall have offered for sale through an auctioneer: slaves,or any other property, and the latter shall have sold them at the price agreed upon within thirby days, the seller shail pay the regular fee to the lessee, his partner ,or his agent.

> of the bath management

The lessee of the baths, or his partner, shall entirely at his own expense warmand keep open the bathe, which he shall thereby hold in lease until the following June 30, from sunrise until noon for women, and from one P. M. to elght P. MZfor men, subject to the approval of the procurator who will be in charge of the mines.He shall properly
furnish water runing, into the tank over the heating chambers, up to the highest mark, and in the plunge,for the woren as well as for the men. The leasee shall charge each man hailf an as, and each woman an as.Freedimen and silaves of the emperor who shall be in the service of the procurator, or receiving pay from him, shaill be exempted; likewise minors and soldiers.The lessee:, his partner or his agent, at the termination of the lease, shaill hand over in good repair the equipment of the bath and everything: which was assigned to him, except that which has been. worm away by age. The bronze articles which he shall use he shall properly wash, dry, and coat with firesh grease a.tleast once every thirty days. If any necessary repairs should make impossible adequate use of the bath, the lessee shall deduct (from his contract price) an amount in proportion to the loss of time. Aside from this, if he does anything else in the course of administering the bath, he: shall deduct nothing.The lessee shall not be permitted to sell wood except the ends of branches which are not suitable for broming. If he violates this rule, he shall pay one hundred sesterces to the fiscus for the sale. If this bath shall not be properly open for service, the lessee shall pay to the procurator of the mines a fine of
not more than two hundred sesterces for each time it shell not be open for service. The lessee shall have wood in reserve at all times to slast (?) days.

Of the shoemaker

He who shall have made any shoes,or thongs which shoemakers are wont to make, or who shall have nailed in. shoemaker's nails, or who shall have sold thembr who. shall have been convicted of having sold within the boundaries anything else which shoemakers are wont to sell, shall pay to the lessee, his partner, or his agent double: the amount of the sale.The lessee shall sell aails in accordance with the law of iron mines. The lessee, ≤-11 his partner, or his agent may take secumity (from other shoemakers). Nonone may repair shoes save when he mend_s or repairs his own or those of his master.The lessee shall offer for sale AUL varieties of shoes. If he shall not hawe done this, anyone may have the right to purchase where he wishes.

of the barber

The lessee shall have this privilege, that no one in the village of the mining district of Vipasce, or within the district, shall practice barbering, for profit. He who
shall have practiced barbering in this manner shall pay to the leasee, his partner, or his agent,for each use of his razors (?) denarii, and his razors shall be forfeited to the lessee.Slaves who shall have served their masters, or their fellow-slaves, shall be exempted. Travelling, barbers, whom the lessee shall not have sent, have not the right to practice barbering. The lessee, his partner, or his agent may take security from them. He who shall have refused the giving of security,for each refusal shall pay five denarii. The lessee shall furnish one or more workers in proportion to the demand.
of the fullers

Ho one shall have the right to clean and press,for pay, unworn or soiled garments save him to whom the lesse, his partner, or his agent shall have leased or granted this privilege. He who shall have been convicted of having acted contrary to this regulation shall pay to the leasee, his partner, or his agent three denarii for: each garment. The lessee, his partner, or his agent may take aacurity.

> Of the tax on mining dumps and rock piles

He who within the boundaries of the mining district
of Vipasca shall wish to clean, crush, smelt, prepare, break up, separate, or wash silver, or copper dumps,ō dust from dumps, or rock fragments purchased by measure, or by weight, or who shall modertake work of any/ nature in the quarries, shall declare within a period of three days the number of slaves and free laborers whom he is sending for this work, and shall pay to the lessee on: or before the last day of each month (?). If they shall not do this, they shall make double payment. He who shall bring within the boundaries of the mines copper- or silver-bearing rock from other mineral workings shall pay to the lessee, his partner, or his agent one denarius per hundred pounds. For whatever amount, in accordance with this section of the law, he shall owe to the lessee, hiis partner, or his agent, and shall not have paid, or have given security for payment on the day on which payment shall have been due, he shall make domble payment. The lessee, his partner, or his agent may take security, and whatever part of this dump (or dross) shall have been cleaned, crushed smelted, prepared, broken up, separated, and washed, and whatever prepared stones and slabs shall have been worked. up in the quarries may be confiscated unless he shall have paid what he shall owe to the lessee, his partner, or his agent. Slaves and freedmen of operators engaged
in amelting silver of copper, who are working in the smelters of their masters or patrons, shall be exemptec from this charge,

Sohool masters

School masters shall be ontaxed by the procurator of mines.

Seizure of mines or of olaims.
He who within the boundaries of the mining district of Vipasca shall seize or hold a mine in orłer to establish legal possessitin under the terms of the law of mines,shall within two days of his seizure or occupancy report to the lessee of this tax, his partner or his agent. "

References

1.Davies Roman Mines 8. Rickard Metals 415.
2.Davies Roman Mines 5.
3.Davies Roman Mines 5.
4. Rickard Metals 405,417. see too CII II 956 and 1179.
5. Polybius VI,7.

Rickard Metals 407,415.
6.Justinian Theod.cod. de metal.XI, vi, leg. 6.
7. Lex Metallis Dicta, see below p. 50ff.

Rickard Metals 406.
8:Tacitus Annales VI,19. Rickard Metals 417.
9. CII II 956. and 1179.

Rickard 皆etals 416:
10.0rth P-W Supplibd. IV col. 153

Rickard Metals 416.
11.0rth P-W Supplbd. IV col. 153.
12. Lex Metallis Dicta, see below, p. 52 .
13. Brmns Fontes 293.

Riccobono Hontes Iuris Romani 498,no.104.
Van Norstrand Spain in Tenney Frank ESAR III 171.
see above p.46-54.
14. CII $^{\text {II }} 5181$.

IIS 6891.
Bruns Fontes 289
Riccobono Iontes Iuris Romani 502,no.105.
Van Norstrand Spain in Tenney Frank ESAR III 167.
see above p.55-68.
15.see below p.136.
16. Levy West Roman Vulgar Law 112-114.
17. "Sed in Britannia summo terrae corio adeo large, "ut lex ultro dicatur, ne plus certo modo fitt.' Pliny NH XXXIV 164.
18.R.P.W.JRS XII(1951) 142 no. 8.
R.E.W. to H.D.H.E. January 1967.
19. Richmond Newcomen Soc.Trans. XX(1940) 145.
20.Webster Flints. Hist. Soc. Publ. XIII(19.52-3) 10ff.

Ro.P.W..to H.D.H.E.April. 1967.
21.Justinian Theod.cod.de metal. XV

Orth P-W Suppl.bd. IV col.146.
Rickard Metals 4.91.
22. Forbes Technology VII 155.
23. Tacitus Agricola XXXII, see also XXX and XXXI.
24. Davies Roman Mines 14-15 fn.
25.0rth P-W Supplibd. IV col.147.
26.0rth P-W Supplbd. IV col.147.
27.0rth P-W Supplbd, IV col.147.

28:0rth. P-W Supplbd. IV col.147.
Tacitus Annales XI 20,4.
29:Strabo III, 2,10.
30:Pidal España II 340
Orth P-W Supplbd.IV col.146.
31. Diodorus Siculus V 36-38.
32. Cyprian Epistulae 77.
33.0rth P-W Supplibd. IV col.145. quotes Suetonius Caligula.

XXII which must be incorrect.
34.0rth P-W 'Supplbd.IV col.147.
35.Pliny NH XXXIII 97.

Romen Mining: Teohnique

$$
71
$$

There were a number of mining techntquee known to the Romens which they used at some time in Spain and Britain. Wherever possible they employed the open cast method which was in use in the encient world, since this was the cheafest and easiest way of obtaining the ore. Where this method was not possible, then the driving of shafts downwards and adits horizontally into the ore-bearing; rock was; tried, and this came to be the nethod most commonly used in spain. Two other techniques were also adopted - hushing, and fire-setting. Neither was common in Spain, but there is some evidence of their use in Biritain, as we see below.

The openmast: sy;stem of mining lead was the easiest. way of gleaning the ore.Capital outlay, was smaill and the mine owner would employ a large number of men to handle the ore.They would break it and pass it back by hand allong a homan chain to the point where it was gathered into sacks or buckets to be conveyed to the smelting ovens. It paid the mine owner to have a large number of workers, for these saved him time. The machinery he used was extremely primitive, which had the distinct advantage
of enabling anail workings to be exploited without much loas, whereas it would obviously not be virth the owner's while to set up large and expensive maohinery to extract a meagre amount of ore. In fact many of the mines in Spain cen have yieldedi little.

When alll the ore: had been taken from the surface, the Homans had to excavate and drive shafts and adits into. the momatain or ore-bearing rock. This necessitated the use of equipment for hoisting; the ore, and for drainage, and-a larger capital outlay;but the Romans used this system extensively for all types of mining. In fact. they soon began to prefer the excavating methods to the open-cast method even though it was more expensive. It has been reckoned that for every hundred feet that the mine increased in depth, the output of the shift was halved, and the price thereby doubled (1):As the mine left the surface, steps had to be out or spiral paths were gonstructed enabling the workers to make an easier descent. If the mine entrance was in the side of a hill, and the adit or gallery rose rather than descended, then any hollows formed were filled in with waste,or even the poorer orebearing rock to prevent a collapse (2). Props were occasionally used, possibly consisting again of the poorer
ore, left untouched as pillars whilst the rook around them:was removed (3).

The main enemy of the Roman miners was hard rock and water, and especially water below sea-level. Hard rock was attacked with picks and hamers. At El Centenillo, we can see how the Romans progressed. First, they saik small shafts in the outcrop. They then constructed an adit from the side of the hill to intercept the lode at a depth of fifty metres. The adit in this case stretched for 1,000 m. Thirdly another adit, also 1,000 m.long was dug 60 m . Iower down, and finally a fourth adit was constructed, thoughi at El Centenillo, this was never finished(4.).This was a particularly late working, and really falls outside the scope of the present stady, nevertheless, we can use it as an example of the ways in which the Romans set out to exploit the lead ore.Near Valencia it; can clearly be seen that the mine was constructed by two sets of workers using different techniques, though whether they are both of Roman period, or whether one was pre-Roman is not quite certain(5).

The Roman methods of mining were firstly open-cast stoping, that is excavating horizontally layer after layer. and extracting the ore by this process, then stoping by
subterranean excavation, and then stoping by; overhead excavertion, where the ore-body had to be taken from the roof of the eadit rather than from the walk or side. The land in which the ore fas found was sometimes totally undermined. The process could take several months to complete, and in one case Pliny describes the scene when the land above the mining area was allowed to collapse. (Pliny, Nㅐ XXXIII 72-73.)

- When the operation is finished, they, cut the Estupports close to the roof beginning with the one that is farthest from the mouth. The subsidence of the earth gives a aignal, seen only; by; ai watcher stationed on a peak of the same mountain.

Hos shouts and signals, he bids them caill out the miners while he too rushes down. Its own weight brings the shattered mountain down in widespread destruction with ai roar that can scarce be imagined by the mind of men, and causing a rush of air powerful beyond belief.Mature lies in ruins before the eyes of the conquerors."
(6)

In Britein, the Romans concerned themselves mainiy with deposits on or near the surface. The mining tended to be nearly all open-cast and adits or levels are rare.Few; traces have survived of lead workings which are undoubtedly

Roman, and certainly nothing; to compare withi the multitude of galleries atill to be found in Spain.

Where the ore was plentiful excavations were extensive and sometimes veins were followed by digging deep trenches.At Shelve, in Shropshire, where the width at the base is scarcely wide enough for a man to work in, the trench reaches a depth: of forty metres. In other elaces caverns have been built or shafts sunk from which galleries ran in varying directions. (7)

Prospecting

Diodorua, V: 36.

- They make openings in various places and go deep into the earth to search for the silvers and goldbearing strata. By means of pits which they sink they penetrate for several furlongs not only horizontally but also in depth;and, extending their subterranean. galleries in different directions, sometimes transverse s sometimes oblique,from the bowels of the earth they raise the ore which yields their gain. If one compares these mines with those of Attica, one notices a great difference.Those who work sa: the latter, in spite of the large outlay, often fail to make a: profit and even lose their capital... but those who exploit the mines
of Spain find their hopes fulfilled and pile up enormous wealth from their operations.For, succesful as were their first attempts, thanks to the mineral richness of the ground, veins even more dazzling, which teen with ailver and gold are constantly being discovered: the whole of the surrounding: soil is riddled in every direction with a network of metail. "

The Romans had little geological knowledge, but the rules and methods which they leamed at one mine they passed on to the next, and so their prospecting technique from "looking; for shing white pebbles on the surface" to the sinking of numerous shafts and the making of prospecting adits in the hillside. Frequently the adits would follow the direction of the valley, or link up a line of shafts which were sunk at regular intervals at anfthing from ten to thirty metres apart (9). Alternatively a shaft was excavated and served to link a: sequence of galleries made at regular intervals (10). Adits were driven into the hillside at fifteen to twenty-five metre intervals, the highest being a short way below the mouth of the shaft - such was the system adopted at Iinares (II). Elsewhere, the sy,stem known as "squaring" was used. By
this method, a shaft would be sunk ,from which a ginlery would be led for a number of yards, perhaps ten, as at Sotiel Coronada, in one direction, and then for en equal number of yards at right angles to it. Then it would meet another shaft sunk from the surface and calculated: to ooincide(12). In this way an areai could be exploited by ai network of shafts.

There were two main advantages in this process of squaring. First,it was much easier to cut along or across the line of the ore, than to cross it diagonally, and secondly, whereas the Romans had surveyors who were capable of making accurate measurements on the surface, the same was not true with underground calculations. Besides, the contractors were not so akilful, and the squaring made subterranean calculations less likely to be false.

Shafts

One of the most common methods of gleaning ore adopted by the Romans was to sink shafts.These shaffts varied oonsiderably in construction, depth, size and shape. The earlier shafts were square and reotangular and it was only towards the end of our period that round or even elliptical shafts were known. The mouths of these shafts

An exposed shaft at Rio Tinto, Spain, showing the footholds.
were strengthened by wooden beams in the case of the square or rectangular shaftspstone casejing was used for the round and elliptical varieties,which, by reason of their shape were safer (13). At Sotiel Coronader, there is notrace of a lining of any kind at the shaft mouth, and the walls there have, in places, oaved in (14).

The shafta, whatever their shape, were all narrownin the early mines, varying from 0.8 m . to 1.5 m . In the later mines, the shafts became a little wider, and at Coto Fortuna, many shafts were three metres wide, and examples of as muchi as ten metres in width are recoried in the Pyrenees(15).This, however, is unusuailly large. Men offen descended into the pit by means of a rope and windlass, but in the earlier mines,holes were out in the walls of the shaft at intervals of 0.6 m . on the way down. These served either as hand- or foot-holds for the miners as they climbed up and down the shaft, or else, as is more likely, where the holes appear on opposite walls, these served as mortices into which were inserted beams of wood which served as a ladder. The holes ame usually set to one side of the shaft, thereby making it easier for the raising and lowering of buckets. In some places there are just foot-holds, as at

Rio Tinto, where the miners used ropes to cilmb out of the shaft, whereas in other places, truaks of trees were placed at the mouth suitably, notched to form ladders. Later, a more sophisticated type of ladder constructed from two long spars and with connecting: rungs was introduced (16).

The shafts were by; no: means completely vertical. Twists of 10 degrees occur in twenty-one metres at Rio Minto, where the shaft also diverges from the vertical (17). At Linares, silopes oocur at a depth of eighteen metres, and by the time the shaft has reached sixty metres, a twist of twenty degrees has occurred (18). At Sotiel. Coronada, the twist is twenty degrees in twenty-five metres(19), and other twists in square shafts of ninety degrees are known. This corkscrew effect, which was common in the deeper Greek and Roman mines could easily have been obtained by miners picking with one hand. 0liver Davies even suggests that the Romans may have found it easier to steady buckets when the shaft twisted.

Shafts are found to have become constricted when they reached a depth greater than ten metres(20). When the shafts became too deep, then adits were driven in to meet them. These oocurred in the firgt place a litt le
way below the surface, then another would have to be driven in, as at El Centenillo,140 m. below, and another fifty metres below that, but here adits of $1,000 \mathrm{~m}$. in Iength were needed to reach the ore (21).

It. is interesting to note that the shaft, 210 m.deep at La Carolina, and the galleries 1,000 m.long were still in use in 1929(22).

A large number of shofts were sunk in the mining areas, as we rave already seen. These may have been built to comply with legal requirements,for many of them had been. left undeveloped. Their frequency can also be accounted for by the need for adequate ventilation in the mines. R.J. Forbes holds that the Romans seem to have preferred to sink extra vertical shafts to reduce the length of the galleries, whioh would otherwise require props(23).

At the bottom of the shaft, a hall or cavern, such as that found at Sotiel Coronada was usually constructed to house ore or rook waiting to be taken to the surface. In addition, at the base of the shaft there would be a sump from which water was baled out to the gromd level(24).

The miners seem to have extracted the ore from the shaft wall to adepth of only about 0.5 m . and did not seem concerned in gleaning, any that was beyoind their
reach (25):
In Britain, where shafts occur, they were again square or rectangular, and few round ones are found.In all cases they were small.Again there were ladders or notched tree trunks and in some places there were even steps. In the Shropshire mines a very deep square shaft followed the line of the ore down into the earth, but like the other British examples and the majority of the Spanish ones, the dimensions were very small.They were dug by: miners using pick,hammer,wedge and chisel (26).

Elliptical shafts were rare and have only been found in: Iusitania, and in Portagal.

Adits

Pliny, NH XXXIII, 70.

- The third way will be found to have surpassed the achievements of the Giants, for mountains are excavated byf lamplight by driving galleries far into their flanks Lamps also serve to measure the spellik of work and for many months together the toilers are without the light of day. These mines are called arrugiae. Miners are sometimes swallowed up by fissures that open suddenly beneath their feet, so that it seems less foolhardy now to seek pearls and purple-fish in the depths of the sea -
so muchi more dangerous have we made the land. On account of this danger, arched supports are left at frequent intervals to bear the weight of the mountain.'

It is interesting to note that in pre-Roman mines in Spain, entrance was made by means of cave-adits (28) as at Rio Rinto, roughly hewn into the side of the hill, whence passages led inside it; the Romans improved on these cave-adits and used this method in a very few mines : at IHanymynech. for example, when they, came to Britain (29).The pre-Roman mines in Spain were made by using picks of horn, stone and wood. The Romans had slightly more sophisticated tools of stone and iron, which they used both in Spain and in Britain, in conjunction with wooden wedges to split the rock, and the advancement of their mining technique in the driving of adits can clearly be seen.

The Romans adopted the adit method in the late Republic and progressed: from driving one adit to working from a number of galleries all running. from a main adit, as can be seen at Sotiel Coronada, just as they worked from galleries munning, from a central shaft, as at Garthagena. A number of Roman adits are straight, but a
great. many are confused and frequently become maze-like in their construction. When tackling the barren rock, the adit was straight, but as soon as the ore was contacted, then the adit would follow the course of the ore.At. El Centenillo, adits meet the vein at depths of 150;210, and 250 m. (307.

At the beginning; of the Roman period, the adits were Very narrow and constrioted, though their length could be considerable.One early adit found at El Centenillo, and 135 m . below the mouth of the shaft, was $1,000 \mathrm{~m}$. long. It was constructed at about 100 B.C. and was used until the end of the second Century A.D. Frequently the width of the adit was not more than 0.6 m . and the height in some places,where again Rio. Tinto agn be quoted as an example was only 1 to 1.3 m . Drivinggalleries were low, for the Romans found in cheaper to use a lot of slaves and to keep the roof low. Iater, higher galleries became the custom, and a: 2.5 m . gallery is to be found in Wales (31).At Linares, one adit is vaulted, and reaches a height of 2.3 m . for here the ore was to be found overhead.(32).

An interesting feature of these early adits was their shape. Their greatest width, often at a point two-thirds

The entrance to an adit at Rio Tinto.

$$
84 a
$$

of the way up the height, was designed to coincide with: the miners" shoulders, and in some mines where the height was particularly small,it has been suggested that boys were msed to convey the ore out of the mines in baskets placed on their showlders (33). Boys would have had to crawl on all fours in some places. The crossmseation of the adit was mainly rectangular,as at Sotiel Coroneda, from $2 \times 0.7 \mathrm{~m}$. to $1 \times 0.6 \mathrm{~m}$, but some of trapezoidal shape are found. These were usually narrower at the top than at the bottom,as at Iinares where an adit is $2 \times 0.6 \mathrm{~m}$. with $2 \times 0.7 \mathrm{~m}$. R.J. Forbes mentions that 1.1 m. x 2.2 m . sections are common in trapezoidai galleries (34):

Just as the shape of the adit varied, so did its length. Adits of up to $2,000 \mathrm{~m}$. have been found at Rio Tinto (35).Every metre allong the adit would be a small niche in which,fastened by clay, was placed a lamp. These lamps played a duall role, as Pliny mentions above, for besides provideing light, they were used to determine the length of the miners: shifts below the ground.

The entrances to the mines were nearly always steep or vertical (36).For the drainage passages, this was so that the water could be gathered belom the mouth before
being baled out.
As I have mentioned above, shafts were sunk at frequent intervals to meet the adits, thus doing away with the need for too many props. Timbering was used in preference, and this was well constructed with brushwood lagging (37.). Where props were inserted, thefi were made with two uprights, and with a cross-beam placed on top of them, examples of which: occur at Rio Tinto.(38). In other places props were made of the ore-rock which had been left uncut.

Drainage adits were common and were built with sloping floors at Sotiel Coronada, and Linares, and with near level ones at Rio Tinto.They were constructed to run parallel with the main adit and were joined to it by frequent cross-passages.Water then could run from the main adit into the drainage adit and out to the mouth (39). Drainage adits of over $1,000 \mathrm{~m}$. were common (40).

As with the shafts, caverns were sometimes built up to ten metres wide near the mouth of the adit where the orerock was stored before transportation.

Hüghing

Another method of gleaning the lead ore from the ground was that of hushing. This method appears to have been used
in Britain in Yorkshire, and possibly in Derbyshire (41), but its use in Spain seems to have been confined mainly to gold mines (42). The hushing method was of use only for the ore that lay on the surgace. A huge cistern was built on the hill-top and allowed to fill with watier. From the cistern, which was dammed, channels were dug in the direction of the ore-field. When enough water had been colleoted, the dam was broken and the water flowed over the hillside stripping the soil from the face of the rock. This was an expensive way of gleaning the ore, since it required many workers and was regarded as dangerous (43).

Fire-setting

 Pliny, NH XXXIII, 71- In both kinds of mine the miners meet with flinty rocks which they break up by heating them and pouring vinegar on them,or more often (for the steam and smoke make the air in the galleries unbreathable) they hew them out with: shattering machines fitted with iron. rams, weighing; 150 lb., and they bear out the debris on their shoulders, night and day,passing it on in the darkness to their neighbours, of whom only the last see. the daylight. If the outcrop of flint seems too thick,
the miner skirts the edge of it and circumvents it. Fet i.t is sometimes less difficult to work through the flint.

The method of fire-setting was not a common one in Spain. It consisted of heating the rock by fire, and then pouring cold water on top of it, causing it to crack. Its uses were known very early on (45), but during this period traces of its use are hard to find, though it appears to have been used in Britain, at Charterhouse on Mendip (46) and in other areas where few: signs of pick marks remain,fire-setting; seems likely to have been employed.

Livy describes the fire-se申ting method of breaking rock when Hannibal, during hiis crossing of the Alps,finds his way barred by a huge rock. This he heats and pours vinegar on top.The effect of vinegar on limestone putrefies the rock and makes i.t easier to chip away. Heat was also used in conjunction with wedges.Wedges of wood were heated in fire and then placed quickly in fissures in the rock.cold water was then poured on top, and the wedges, having swollen, cracked the rock rendering i.t easy to split.

Below the ground picks of iron. were used to break down the rock, and tongs have been foum which were used to pull the hot rock away. The method needed a great. deal of fuel however, and was unsatisfactory since it oreated a lot of smoke, which below ground caused ventilation problems.

Lighting and Ventilation

Iight was arranged, as mentioned above, by means of lamps of oil. These lamps were placed in niches 5 cm . deep every metre along the passage. The lamps had one or two spouts, and in some places, pieces of fatty; skin or twigs were used. Many examples of these lamps have been found in the mines in Spain, and in Britain lamps from Gharterhouse can be seen at the Castle Museum, Taunton, Somerset.

Pliny states that the lamps were used also to determine the length of the miners' shifts, and a reconstruction has shown that the shift was of approximately ten hours duration.

Ventilibtion was a more difficult problem. The problem became more acute the deeper the mine went, and as we have seen, a particular problem existed where fire-setting was used.

To test whether a mine was safe or not, a lamp was lowered down into it;if the air was foul and the lamp went out, then a descent was not 由ttempted.

The frequency of the shafts in Roman mines is parfly explained by the need for ventilation. The air was either allowed to circulate by means of these shafts on its own,or else it was assisted by various means. Where shafts were sunk in pairs, then a fire was of ten placed on a ledge at the base of one to ensure a good circulation, as can: be seen at Rio Tinto. In other shafts,grooves have been found into which were slotted boards which were so placed to create a draught, and in other mines, adequate ventilation was achieved by the "flapping of cloths*.

Adits were also used to help ventilation.Passages, parallel to the main adits withi frequent cut-outs, as with the drainage adits,made ai change of air possible. In Asia Minoryin the arsenic mines of Sandarakurgion, at Pompeiopolis, evidence has been found of aromatic smoke containers,which also occur at Iaurion in Attica, which were used to purify: the air after thousands had died (47)

Iucretius (48) also mentions the dangers of bad

ventilation :

* Do you not see ... when men are following up the veins of gold and silver,probing with picks deep into the hidden parts of the earth, what stenches Scaptensula breathes out underground? And what poisons gold-mines mas exhale : How strange they make men's faces,how they change their colour : Have you not seen or heard how they are wont fo die in a short time and how the powers of life fail those whom the strong force of necessity imprisons in such work ?'

Drainage

Another acute problem in any mine is that of drainage. In Biritain, however, there appears to have been less difficulty than in Spain, since little in the way of machinery for drainage purposes has been found. In Spain, however, where the level of the mine was sometimes below that of the sea, the problem was more urgent. We have already: noted the employment of drainage adits in hillsides and Iron shafts,into which the water would drain prior to its being removed. The simplest way of removal, yet at the same time, the most expensive, was by baling it by hand.This was done in buckets of various metals,

Above:The pump from Bolsena, in the British Museum. Below:The same in diagrammatic form.

$91 a$
bronze, copper, or leather or even of esparto grass, treated with pitch and set in a wooden frame. The buckets were ladge and hauled out of the mouth of the shaft by rope. Where this method was employed, the buckets could contain up to 150 litres, and were of various shapes - with pointed bases or ovoid - to allow easy filling.

Drainage adits were cut parallel to the main mining adit and were slightly below their level. The Roman government. repaired and made large adits for the concessionaires who were not allowed to touch them.

The other mechanical methods of raising watter were by: the pump,cochlea, water wheel and kaduff.

The kaduff was a high vertical pole,forked at the top into which was fitted another pole horizontally.At one end of the horizontal pole was a rope which: held the bucket, and at the other end stood the operator. This method can: be seen in use today in parts of Africa and Burope.

The pump, of which there is an example from Bolsena, in Eitruria, in the British. Museum, was a remarkable piece of equipment. It was made of bronze and it was constructed on a principle inventedi by Ktesibios of Alexandria, who probably lived in the third Centrury B.C. It was worked
by alternating plungers raised and. lawered by; a rocking beam. As the plunger was raised, the water, drawn by the vacuum created,forced the valve open and rushed in. When the plunger was pushed down, the valve fell back into place, and the water was driven out through another valve into the central discharge pipe.

Whe third method of mechanical drainage was by means of the cochlea, or Egyptian serew.or Archimedian screw. This is the method mentioned by Diodorus:

Diodorus, V. 37.3.

- They make openings in various places and go deep into the earth ... when the workings penetrate deeply, they encounter streams of water that flow underground; c but the force of these they overcome by diverting; the flow through transverse drains.Certainty of profi.t. breeds a determination to carry through their various plans to completion. Most strikeing; of all is the way in which they drain off the streams of water by using the so-called Egyptian screws - an invention made by Archimedes of Syracuse when visiting: Egypt. The water is raised by a succession of screws to the outlet of the gallery, and thus the bottom of the mine is dried and the conduct of the operation made eady. This machine,

Above:The terracotta of the slave working the oochlea, from the British Museum. Below:The oochlea, in diagrammatic form.

$93 a$
which is a masterpiece of ingenuity, with the application of moderate effort can lift an astonishing mass of water and will easily discharge on the surface the whole volume of such streams as these. :

The cochlea is atill used in Egypt. It consists of a core or hub of wood, 20 cm . in diameter around which was placed in a spiral, in sorew formation, vanes of metal 2 mm . thick attached by copper lugs and rivets. The whole was enclosed in a wooden cylinder 4 m. long and 0.5 m . in diameter. At the end of the cylinder an iron point was inserted into the core, the other end of the point rotating; in a timber socket.The sorew was laid at an angle and a slave rotated it by walking rounce the outer casing of the cylineier. Water was thereby drawn up into the cylinder by the vanes and delivered at the upper end.

The angle of the screws varied and this obviously affected the efficiency of the machine. It has been estimated that each cochlea lifted the water a distance of two metres vertically, or in effect 1.6 m . due to loss of water, and so it can be assumed that twenty were needed for a lift of forty metres.

Right:The fragment of water-wheel from Dolaucothi,

Wales; in the

National Museum of Wales.

Below:A diagram showing a waterwheel in Rio Tinto, Spain.

The cochlea was also workable by/ means of an iron crank, but this was harder and less efficient.

The cochlea was more economical than water-wheels because they needed only one man to operate them instead of two or three. They were arranged in series, and with one man on each ai steady flow of water could be produced.

The fourthi method of water-raising by mechanical means was by the water-wheel. Here again an excellent example is to be seen in the British Museum. This wheel was one of a nest of eight pairs of wheels found at the Rio Tinto mine in Spain(51).A fragment of such a wheel, this time from a British mine, the gold workings at Dolaucothi in Wales, can be seen in the National Museum of Wales,Cardiff. (52). The wheels of the Spanish mine are made of wood and are 4.5 m . in diameter. The axle is of bronze $0.9 \mathrm{~m} . \times 6 \mathrm{~cm} . \times 6 \mathrm{~cm}$., and the hubs and bearings are of oak.Around the periphery are fastened twenty-four boxes, made of pine, as are the spokes and rim of the wheel, and me asfuring; 38 om. $x 18 \mathrm{~cm} . x 13 \mathrm{~cm}$, , and fastened by wooden dowels.Iarger wheels are known with thirty boxes.Operated by a pull of 150 lb., they can raise $13 \frac{1}{2} \mathrm{lb}$. of water each minute through a

Right: The nest of eight water-wheels at Rio Tinto,Spain.

Below.The water-wheel from Rio Tinto,in the British Museum.

distance of 3.6 m. and have been found to be efficient to sixty-one per cent. (53)

The wheels were arranged in pairs, and to ensure that the flow of water was even, they were rotated in opposite directions. The water was then carried to the top of the wheels where it left the boxes,falling into a launder which transported it to the sump of the next wheel. The total lift of eight pairs of wheels at Rio Rinto was thirty metres.

There appears to be some doubt as to whether the rotation of the wheels was achieved by slaves treading downwards in treadmill fashion on the cleats which: are attached to each of the twenty-four boxes, and parallel to the axle,or whether they aat by the side of the wheels and pulled in an upwards direction on short lengths of rope which are again to be found intact by the same cleats.It seems to me however that if the slaves had to pull upwards on the lengths of rope then the effort involved would be considerably greater. There would be need for far fewer slaves if the wheels were worked in the treadmill fashion and if the ropes were used to assist them to pull the wheel round in a downwards direction. Palmer, saying; that this seems
impossible,first put forward the view of lifting the wheel in 1926 (54), though drawing notice to the fact that the cleats were worm on the uppermost surface.To support this view, he says that the chambers on which the wheels were found were all larger on the side where the water was being raised, and he therefore thinks that the workers stood on that side.Palmer admits that if this method was used, then a rachet would have been necessary, and none has been found.

Tools

Numerous examples of the tools used in mines in Spain and Britain have been found, and we are able to. judge accurately their mining methods (55).

We have already mentioned the picks of stone, wood and horn which. were used in pre-Roman times.On their arrival, the Romans took over the mines and excavated normally with iron tools.At first the picks had single blades and were straight, and then they became curved and some had double ends. The majority were twenty to twenty-four centimetres long, al though some eitamples of up to thirty-six centimetres occur. In North Wales, stone tools were used and elsewhere in Britain,picks of all types were used to split the rock after the

The spade from Charterhouse on Kendip,now in the City Museum, Bristol.

$97 a$
fire-setting process, besides their more general use in the cutting of shafts and adits. near the head where the wooden handle would have been inserted.

Besides using the pick, the Romans soon turned to using hammers and gads.The hammers, like the picks, had sockets for short wooden handles. They weighed five to ten pounds and were designed wi.thieither a double flat head,or with a flat head at one end and a pointed end at the other. The gads in cross-eection are square, whereas in long section they are V-shaped.

Rilled stones were used in Spain until the end of the first Century A.D. Hammers and gads were still being; used in the third and fourth century. Pliny also mentions a sort of battering ram weighing 150 lb. (56).

Spades were used to shovel the ore into a dust-panlike object. Ito spades of cleft oak were found at Shelve in Shropshire, others at Greenhow Hill and Hirst in Yorkshire(57) and yet another, though of doubtful date at Charterhouse on Wiendip (58).

The wedges whioh were used extensively in Britain for the firemsetting process were made of wood.

Hoes were also used to gather in the ore.These were
first made of horm, and later this material gave place to wood and iron.A number of these hoes survive. They have shanks bent over at angles of 120 degree and were attached to long handles.

The ore was gathered into flat trays of wood and ory wickerwork.At Carthagena, the ore was carried in bronze buckets to the bottom of the shaft and then hoisted to the surface by means of a windlass and a hempen rope.Buckets woven from Esparto grass twenty centimetres in diameter and seventeen centimetres high were used too, and elsewhere bags of leather, and goatskin, held open by bronze rings were in use. These would be passed from hand to hand along the mine passages, as happens in the Siberian silver mines today.

Before taking the lead ore to the smelting furnace, the workers would sieve it on dieves of hazel-wood, and then wash it. This was a most efficient process because of the high specific gravity of lead.Ore was washed as much: as five times (59).

We are fortunate in having a contemporary illustration. of a group of miners.At Linares a bas-relief was found depicting five miners.The leader, obviously the foreman is holding; an object which is variously interpreted as

The Linares bas-relief.

$99 a$
being, a bell, lantern or an oil-can.He also holds a pair of double tongs,which would have been used for raking in the ore, or else for tackling the hot rock in the fire-setting process.Another member of the group carries a piok. which is blunt at one end and pointed at the other. A third carries a lamp.All the miners have sandalled feet and are naked except for a leather strap and tunica. around their waistsinfelmets appear not to have been worn, although one, of doubtful date, has been found at Cordoba.

References

1. Forbes Technology VII,208.
2.Davies Roman Mines 29.
Orth P-W Suppl.bd. IV col.127.
3.Davies Roman Mines 29.
\therefore Orth P-W Supplibd.IV col.127.
4.Rickard Metals 448.
Hưdson Metallurgia: XXXIII(194.5-6) 294.
5.Hudson Metallurgia XXXIII(1945-6) 294.
6.Translation from Bailey Pliny's Chemicals I.
7.Whittick Newcomen Soc. Trans.XII(1932) 72.
Cox AJ III (1895) 31.
North Mining 20.
8.Translation from JRS XVIII(1928) 130.
9.Davies Roman Mines 31.
10.Forbes Technology VII (196.
11.Davies Roman Mines 137.
2. Davies Roman Mines 122.
13.Davies Roman Mines 23.
14.Davies Roman Mines 120.
15.0rth P-W Supplbd.IV col.126. Rickard Metals 446.
3. Forbes Technology VII 207.
17.Davies Roman Mines 126.
see too Rickard Metals 427.
18.Davies Roman Mines 126.
19.Davies Roman Mines 120.
20.Davies Roman Mines 121.
21.Rickard JRS XVIII(1928) 142.
22.West Spain 44.
4. Forbes Technology VII: 194f.
5. Davies Roman Hines 20.
25.Davies Roman Mines 137.
6. Whittick Newcomen Soc. Trans.XII(1932) 60.

Cox AJ III (1895) 31.
T.Wright Ill. Iond. News October 4th 1856,351-2. 27. Translation from Beiley Pliny's Chemicals I,95.
28. Rickard Metals 427.

Forbes Technology VII 196.
29.Davies Roman Mines 160.
30.Davies Roman Mines 24.

Rickard Metals 448.
Forbes Technology VII 212.
31. Orth P-W Supplbd. IV col.126.
32.Davies Roman Mines 137.
33.Hudson Metallurgia XXXIII(1945-6). 298.
34.Forbes Technology VII 195.
see too Davies Roman Mines 20.
35. Forbes Teehnology VII (196.

36:Davies Roman Mines 20°

- Forbes Technology VII 196
37.Hudson Metallurgia XXXIII(194.5-6) 298.
see too North Mining 14.
38.Davies Roman Mines 28.

Palmer TTMM XXXVI(1926-7) 299.
39.Davies Roman Mines 20.

Rickard Metals 447.
Forbes Technology VII 196.
40. Forbes Technology VII 212.
41. Raistrick Newcomen Soc.Trans.VII(1926) 82.

Whittick Newcomen Soc. Trans.XII(1932) 72.
4.2.0rth P-W Supplbd. IV 127.
43.0rth P-W Suppl.bd. IV 127.
44.Translationj from Bailey Pliny's Chemicals I 97.45. Livy Ab Urbe Condita XXI 37.
For its use at Rio Tinto see Rickard Metals 426.
46.B.M.IIS. add. 33651 f. 160.
see too North Mining 14,16.
47.0rth P-W Supplbd. IV col.133.
after S.- Ber der Archaeologischer Geselschaft der
Berlin (1887).
48. Tucretius De Rerum Natura VI,806.
491Translation from C. Bailey De Rerum Natura Oxford
(1947) 555.
50. See Egyptian figurine of a slave working the cochlea
at the British Museum,Cat.No. 37563.
5l.Davies Roman Mines 26.
Forbes Technology VII 216.
Palmer TTMM XXXVI(1926-7) 299.
52. Boon and Williams JRS IVI(1966) 122ff.
53.Palmer TIMM XXXVI(1926-7)304.
54. Palmer TIMM XXXVI (1926-7)302, from Mr. F. Bodenham, superintendent of the worle.
55.Davies Roman Mines 32 f .
Forbes Technology VII 192f.
Palmer TIMM XXXVI(1926-7)304.
Hudson Metallurgia XXXIII(1945-6) 296.
Lewis Wales 22.
56.Pliny NH XXXIII 71.
57.Whittick Newcomen Soc.Trans.XII(1932) 59.
58. VCH Som.i, 337.
59.Strabo III,2,10.

Smelting; and Cupelling:

Once the ore-bearing rock had been brought to the surface, it was treated in two main processes smelting and oupelling.Smeiting; and cupelling. Smelting produced the lead from the ore-rock, and cupelling produced the silver from the lead. The two processes require the material to be heated fthe former to a little over 300 degiees Centigrade, and the latter to over 900 degrees Centigrade. Because of the different heats, the chpelling hearths or furnaces differed from those that smelted the ore, being required to withstand aifar greater heat. It is possible that the two processes were minked in some places, since we read the following passage from Pling:

Pliny, NH XXXIII, 106-107.

- Chrysitis is made from the original ore, argy,ritis from silver, and molyjbditis from the smelting of lead itself. Molybditis is made at Puteoli - whence the name. All varieties however are made in the same way.The raw material is melted and the "silver scum" flows down from the upper vat into the one placed below, from which it is removed with iron spikes,each spike-load being revolved in the flame to make it less dense."

Other passages referring to the processes of smelting and cupelling follow:

Pliny; NH XXXIV,159

* There are two sources of blank le:ad;in the one case the ore is pure and gives rise to no other substance, in the other,lead and silver oocur together and the metal is smelted from the double mineral. In the case of the latter ore, the first material to enter into fusion in the furnace is called stagnum, and the second argentun. The residue, about one-third of the original ore, is called galena, which after another smelting, gives black lead, with a loss of two parts in every nine.'

Pling: NHH XXXIII, 95

- It is impossible to melt it (sc.silver), except in combustion with lead or with galena - this last being the name given to the vein of lead that is mostly found rumning near the veins of silver ore. In this amelting operation part of the ore separates into the lead, but the silver floats on top like oil on water."

Strabo, III. 2. 10.

- The alluvial soil is first broken up and sifted in sieves held in water. The deposit is again broken up and
and being again filtered with muning water, is broken up a thicd time. This is done five times, the fifth deposit is smelted and the lead (lead oxide) being; min off,pure silver remains."

Ulf Texcholm (5) suggests that in the upper vat, (catinus) mentioned in the first passage from Pliny on page 105, crude lead was taken from the ore, which then flowed down to the lower vat, where refinement took place in the form of cupellation.
R.J.Forbes (6) concludes that by stagnum and argentum mentioned in the second Pliny passage, on page 106. crude lead is meant, and that by galena , purified lead is meant.

Galena is,in fact, lead ore. It has the appearance of coal and clings to the rock in cubes.However, unlike coal which has a specific gravity of 1.3 , galena has a specific gravity of 7.5 . Before smelting began, the ore was repeatedly washed, to remove the excess gravel,like panning for gold,as is attested by Strabo's commentary above. In Cornwall today, tin ore: is subjected to this same continuous washing.

Having been washed and then pounded and crushed, the
ore was then smelted.Of the three methods of amelting used today, R.J..Forbes (7) suggests that the two known to the Romans were the following:

In the first, the galena, lead sulphide, PbS ,having; to be converted to lead oxide, Pbo, was heated in a furnace and subjected to a blast of air. The lead content of the furnace charge depends on the method of mining and concentrating the ore. In the Derbyshire mines, furnace charges of 100 per cent galena were probably used (8). The mlphur lead compound, being roasted, decomposed, and the sulphur escaped as sulphar dioxide gas, $\underline{S O}_{2}$. Some, however, is left in the form of lead sulphate, and some galena remains intact, but most of the lead is oxidised to lead oxide litharge. When the correct stage of desulphurisation is reachee, the litharge, lead sulphate and the galena interact to form lead.

$$
2 \mathrm{PbO}+\mathrm{PbS}=3 \mathrm{~Pb}+\mathrm{SO}_{2}
$$

The lead formedi falls to the bottom of the fire.
The other reduction process which R.j.Forbes considers Was known to the Romans entailed the roasting of the galena until almost all the galena was litharge, which was then reduced by charcoal, coke: and wood to lead.

A reconstruction (by Raistrick) of a Roman

 smelting hearth.
$108 a$

The lead obtained by smelting gallena: was called crude lead, the German Werkblei, and contained 45 to 180 ounces of eflever for every ton of lead ($0.12-0.54 \%$).

The Romans used primitive equipment which oontained a number of cracks through which a great deal of lead was lost. Experiments have been conducted,however, which show that it is passible to smelt lead galena in a brick-surroundedl fire under these primitive conditions (9). Troughs and trenches were also used on hillsides where the ore and fuel were miked together and fired by; the wind for blast.

Archaeological evidence is not very helpful with. regard to the appearance of these lead-smelting hearths. This is because a lower temperature is required to smelt the lead, and the hearths and furnaces built were not as robust as those for amelting copper and ircn, nor as those for cupelling the lead. They may have been similar to the mediaeval hearths, the wells of which held 168. 1 b., which corresponds closely with the weights of Romano-British pigs of lead (10).

An open heartio containing; usmelted and part-amelted lead galena has been found at Herict's Bridge on the

Mendips (1l), and at Pentre in Flintshire, remains of A Roman smelting furnaces of the first Century A.D. have been discovered (12).

On the Mendips, lead mining continued up until the end of the nineteenth centary and it is difficult now to distinguish between Roman and later slag,but during the nimeteenth Century, Roman slag; found to contain as muchi as twenty; to twenty-six per cent of lead still, was re-smelted(13). At. Carthagena, in Spain, slag has been found containing eight to seventeen per cent of lead. This compares unfavourably with the one per cent of lead that is left in modermislag after more efficient smelting processes.This wast wastage could have been caused by smelting the ore at too high a temperature. Overheating in this manner would cause the lead to form a vapour and some would escape completely, whillst some would be trapped in the layer of slag on top. In general, however, the simple nature of the smelting operation provided an almost pare metal, the RomanoBritish pigs that have been analysed showing a very high lead content in the order of 99.98 Pb . (14).

Once the lead had been desilverea, it was used for making;pipes,lining baths and cisterns etc., but was
nexter: further refined.

Oliver Daviess describes the development of the furnace from the hearth (15). The bowl furnace was a olay-lined hole,conical or hemispherical, 1 m. deep and $1 \frac{1}{2}$ mowide, in the ground. In time, this inereased in height, and, being built of stones, developed into the shaft furnace. In the bottom of the pit,heat resiating materials were pla ceds ten to twenty centimetres of fire-proof clay,or clinkers mixed with lime, and then kinaling woad,coal,charcoal and ore were: placed in lasyers alternately on top and ignited.

The necessary draught was achieved by positioning the hearths on mountain slopes, where too the poisonous fumes could be blown clear of the smelters,and on beaches, and an arched wind tunnel, covered with stone was dug sideways into the ground to the furnace. Bellows were also used - these were probablyj a akin, with a hole in it, closed at the heel, and with a cord, which: when pulled opened the bellowa to inflate them. Some Roman fumaces found at Carthagena have a conical blast-hole, where the wind was used instead of bellows to provide the blasta Where possible, the hearths were placed near forests where fuel was readily avadlable.

In Central Europe the neck of the furnace was contracted to conserve the heat, and a tapping-hole had to be built near the base. Its height did not come above the ground.
M. Cowland (16) says that in Britain too the hearths were below the ground, and lined with a refractory; material, but without an outer wall. ifr. Whittick (17) disagrees, calling attention to the subsequent discovery of the hearths in Flintshire, where the furnace was made of solid stone blocks, laid in and lined(though not entirely) with clay, which was also packed between the stone (18).

Shaft furnaces appear not to have been used in Britain, but they are known at Carthagena, in Spain (19) and at Tharsis (20), and are mentionedl by Strabos

Strabo,III 2.8
"They build their silver-amelting furnaces with high chimneys so that the gas from the ore may be oarried high into the air,for it is heavy and deadly.'

With the shaft furnace, ore and fuel could be added by dropping it down the chimney, thereby; enabling, a continuous process, whereas the bowl furnace with the contracted neck had to be demolished to reach the lead.

Smelting in the shaft furnace was a longer process than in the hearth, and a larger amount of material could be collected in the bottom.

The slag was usually removed by means of tongs through the same hole that had been used for the bellows to provide their blast.

The tapping-hole through whichi the molten metal flowed into the well was set at the base.

The recovery of the silver from the smolted lead was by cupellation, which involved the oxidation of lead to litharge (Pb0). The process known as liquation was not used. Melted lead, when exposed to air, oxidises freely and forms litharge. When argentiferous lead oxidises completely; silver is left behind in the hearth; the litharge was absorbed by the bone-ash hearth, or elss was akimmed off,where clay cupels were used (22).The saturated cupel could then be resmelted, and the lead recovered from the litharge by reduction with charcoal, yielding practically pure lead.
R.J. Forbes (23) believes that the 'Pattinson' process was used by the Fomans. Here, if the lead is meited and cooled again, the first, crymtals fformed consist of pure
lead, and the remaining solution is therefore richer in silver. The formation of pure lead crystals goes on until the remaining lead oontains 2.4% of silver when the remaining metal sets all at once, but by pouring off the molten metal before this happens, the silver is concentrated as far as possible, and the lead is enriched and can be deasilvered by the very old cupellation process.

The cupellation hearth had to be very shallow so that the maximum amount of lead could be exposed to the oxidising blast of air, which was again supplied by bellows through the side of the hearth.Charcoal and wood provided a heat of 1,000 to 1,100 degrees Centigrade, and were held in a dish-like cavity in the bone-ash at the base of the hearth.The hearths were lined with the bone-ash, which is refractory, porous and readily absorbs the oxides produced in the process.The furnsee was walled and roofed with clay as well. At Green Ore, near Charterhouse on Mendip,in 1956, over 1,000 pieces of oharcoal were found together with a saucer-shaped depression in the ground, 25.4 cm . in diameter, whichinad probably housed a: cupellation hearth (24). Remains of these hearths have been found at Silchester, Wroxeter, and Hengitsbury Head (25).

The extraction of silver was expensive, costing; approximately three times the cost. of producing; lead, and in Roman times it was economic to cupel lead containing 0.06% of sinver as compared with: the 0.0003 体 of the present day (26).The processes mast have been extremely efficient since the silver content of someof the Roman lead whichi has been cupelled is only 0.01 or 0,002\% which is very low, even by today"s atandards. In 1955, a amall amount of lead carbonate, cerussite PbCO_{3} was found at Ilentwit Major, (Hlamorgan, in a Roman villa. This contained 0.52% of silver - from one of the riohest: ores in the province: (27).At Rio Tinto, in Spain, some mineral yielding 0.55% silver, which is 200 ounces in every ton of lead, has been mined. A lead ore entirely devoid of silver is not known. A table showing the silver content of lead from recently mined lead ores from sources in Britain follows on page 116.

Once cupelled, the lead was recovered by re-smelting, the litharge in a similar way to that of smelting the originàl lead (28).

When the lead had been smelted and cupelled,it was cast into moulds of the right size for their intended weight. Dr. Smythe (29), having examined the pigs of lead

TABLE A
to show the silver content from recently mined lead ores - from Tylecote Roman lead 26. (adapted)
$1847 \quad 19.23$

Yorkshire	-	$0.003-0.006 \%$
Salop	0	$0.006-0.009 \%$
Derbyj.	$0.00 .7-0.018$	$0.003-0.006 \%$
Montgom.	0.018	$0.009-0.012 \%$
Flints.	0.021	$0.009-0.018 \%$
Scotland	0.024	$0.009-0.015 \%$
Cumberland	0.027	0.018%
Ireland	0.030	-
Northumb.	0.036	0.018%
Carmarth,	0.045	$0.009-0.012 \%$
Isle of Man	-	$0.090-0.120 \%$
Mendips	0.411	

found together at Birough-on-Himber, says that it is probable that three of these and two others were cast in the same mould. No moulds have survived, but they; were probably made of clay; which would withstand the five impressions, in the base of which, and on the sides of some, was the inscription, reversed and recessed, that was to appear on the face, or along the sides of the pigs.It is possible that separate letters were used to make the diefortheimoold, which would obviate the necessity of having to cut a new panel each year.

Professor Palmer (30) has suggested that the pigs were filled by lading the lead out of the well by the furnace and into the mould, suggesting that the striations which can be seen on all the pigs are the results of the different pourings.This theory is refuted by most authorities (31) who show that the striations are the natural result of cooling lead, due to surface tension effects between the metal and the mould.Dr.J.A. Smythe conducted some research into this question before his death, and Mr. Wralement Whittick expounds his explanation in JRS II (1961) 105 ff. with photographs of modern pigs.

Both Professor Palmer and Dr. Smythe have attempted
to interpret the different weights of the pigs, and their theories are discussed in the following chapter.

The pig; with the highest ailver content is no. 117 from the Mendips.This contains 0.056% silver, and it appears that this pig; must have escaped the cupelling process, since its content far exceeds that of any other pig.

References

1. Translation from Bailey Pliny's Chemicals I,127.
2.Translation from Bailey "Pliny's Chemicals II, 65.
3.Translation from Bailey Pliny's Chemicals I, 111 (adapted).
4.Translation from Van Norstrand Spain in Tenney

Frank ESAR III,157.
5.Täckholm Bergbau 34.
6.Forbes Technology VIII, 231.
7.Forbes Technology VIII 227 ff .
8.Tylecote Roman Lead 26.
9.Tylecote Metallurgy 7.6, Roman Lead 28-9. 10.Tylecote Metallurgy 77.
11. JRS XIIV(1954) 99.
12.Atkinson and Taylor Flints. Hist. Soc. Publ.X(1923)i, 7.
13.Täckholm Bergaau 44.
14. Tylecote Roman Lead 36.
15.Davies Roman Mines 4.2f.
16. Gowland Arch. IVII(1901)i,119. ii. 398.
17. Whit.tick Newcomen Soc.Trans.XII(1932) 62.
18. A 䥻inson and Taylor Plints.Hist.Soc. Publ.X,i(1923) 7. Petch and Taylor Flints. Hist.Soc. Publ. X,ii(1924) 6. see too Cox AJ III (1895) 34.
19. Monasterio Anales de minas IV(184.6) 28.
20. Schönicken Berg- und hlittenmelnnische Zeitung(186.3) 200.
21. Translation from Van Norstrand Spain in Tenney

Frank ESAR III, 157.
22. Tylecote Roman Iead 31-32,
23. Forbes Technology VIII 23.
24.Ashworth and Palmer Wells NHASP IXIX-IXX(1957-8) 12. see too Gowland Arch.IVII(1901)i,113-124.
25. Gowl and Arch. IVII(1901)i,113-124.
J. R. Bushe-Fiox Excavations at Wroxeter, Report 2 Soc. Ant. Iondon (1914) 65.
J.R. Bushe-Fox Excavations at Hengitsbury Head,1911, Report. 3 Soc. Ant. Iondon (1915) 72ff.
26.Tylecote Wetallurgy 82.
27.Nash-Williams AC CII(1952-5) 89-163.

Tylecote Roman Lead 28.
28. Tylecote. Roman Lead 32.
29. Smythe Newcomen Soc.Trans.XX(1940) 139ff.
30.Palmer and Ashworth Som.ASP CI-CII(1956-7) 71.
31. Whittick JRS II (1961) 105f.

Tylecote Metallurgy 89.

The pigs of lead
from Roman mines
in Spain and Britain:

Almost two hundred pigs of lead,made by; the Romans,have been found which can be attributed to mines in. Spain and Britain. The circumstances in which they were found vary, but the majority: were found either near the mines from which the lead was extracted, or else by the sides of roads or rivers along which they were obviously being transported. Some pigs have been found in holes in the ground,or under cairns, such as the group from Green Ore, in Somerset (nos. 114 - 117), where they had been placed intentionally.The large number of pigs found at Carthagena. shows that this was probably the principal lead-handling port for the many mines in the South-East of the Iberian peninsula. In Britain, Clausentum on Southampton Water, Brough-onHumber, and Runcorn on the river Mersey, appear to have been the major lead-exporting harbours.

Table B on page 123 shows the numbers of pigs recorded whichewere produced by mines in Spain and Britain in the later Republic and in the Empire. It is easy to see how the production of lead from Spanish mines dropped considerably once the Romans had reached

TABLE B
to show the dates of the lead pigs

TABLE C
to: show weights of pigs from Gaul, Spain and Sardinia: to the nearest kilogram.

		年	$\begin{aligned} & \frac{d}{2} \\ & \\ & \frac{1}{2} \\ & \underline{2} \\ & \hline \end{aligned}$		\%				Total	Weight. kg:
	L								1.	5.
					1.				1.	11
		2.			5	5			7.	31
		6.	3						9	32
	1	12	4						17	33
	4	1	3	1				1.	10	34
	2				1				5.	35
								1	1.	36
	1								1.	43
							1		1.	57
									1	61
	1.								1.	66
						$1+$			$1+$	92.
	1.acl								1	145
$1{ }^{1}$									1.	275

Fragments of pigs have not been included in this table.

TABLE D
to show weights of British pigs to the nearest kg. Unknown Som.S.Wales Flint. Salop Derby. York. Tbtal weight

1					1	33
	1				1	34.
			1.		1	37
			1	1	2	38
	1.				1	40
1.	1		2		2	45
			1		1	58
			1		1	60
		1.			1	61
			1		1	65
	11122	1			2	68
					1	69
		1		2	4	70
					2	73
					2	75
		1			1.	76
				1	1	77
	1		2		3	78
	2		2		4	79
		1			1	81
1.	1.				2	82
			3		3	83
	1				1	84
	1.		1		2	85
		2 or 2,2	1		6	86
		1.2	1.		4	87.
	1.		1		2	88
			1		1	89
	1.				1	90
	1				1	102

Fragments of pigs have not been included in this table.

Britain. Ilumismatic evidence, however, $\frac{G}{\text { ghows }}$ that the mines in Spain were operating at a later date (1), and so production there did not stop completely. It is also interesting to note how the opening of the mines in: Britain corresponds with the Roman advance into the province. Again numismatic evidence shows that the Britiĝ̣ mines were in use up to the fourth Century A.D., which, together wi.th the evidence of later lead and pewter objects shows that mines did not cease production at the end of the second Century, as one might be led to believe by looking at this table (2).

The virtual absence of pigs during the reigns of Nerva and Trajan may be due to the fact that in Vespasian's reign the law restricting output from the lead mines: was passem. Thiss regulation implies that some mines were in. the hands of lessees at this stage, supporting the evidence from some of the pigs discussed on page 38 above. Hadrian, on the other hand, promoted mining activity in his policy of provincial consolidation(3), and evidence of this can be seen in the large numbers of pigs recorded that are of Hadrianic date, and which make a marked contrast with the sparse evidence of activity during the reigns of his two predecessors. The pigs of
later date that bear Imperial inscriptions show that at some mines, notably those on the Mendips, the output of lead continued for some time under Imperial control.

The weights of the lead pigs
Pigs were cast in moulds of the right size for a certain weight and. Dr. Smythe has shown that i.t was possible to cast at least five pigs from the same mould.(4). The average range of weight of the pigs from Spain is thirty-two to thirty-five kilogrammes,with a few exceptions at either end of the scale. $(32.74 \mathrm{~kg}$. $=100$ librad. The average range of weight of the British speaimens is much greater - from fifty-eight to ninetyone kilogrammes, with lighter pigs weighing as little as thirty-threekilogrammes, and larger ones of as much as 102 kg . Table C gives the weightss to the nearest kilogramme of the lead pigs from Spain, and from this it would appear that the pigs were cast in moulds to give a weight of 100 librae.

The weights of most of the British pigs are known, and it is easier to attribute them to their mines of origin by means of their insoriptions,marks of origin, etc., than is the case with the specimens from Spain. The range of weights (Table D) of these pigs is so great that it
is almost impossible to say that in Britain in general, or in any particular mine in the province, lead was cast in moulds to give a standard weight, the majority weigh ing, between seventy and ninety kg. Dr. Smythe(5) has suggested that the pigs can be grouped in weights that are multiples of twenty-two pounds. Wir. Raistrick(6) suggests that the pigs were cast in accordance with a fixed scale that was probably the precursor of one-sixteenth of a fodder ($176 \frac{1}{1 / 4} \mathrm{Ib} .=240$ librae). Smythe admits, however, that the figures are only/ very approximate, with variations of up to eight pounds, and can offer no explanation for the pigs that vary by eleven pounds each.

On fourteen pigs numerals have been stamped or incised. On five of these the stamped number corresponds closely with the actual weight of the pig: in Roman librae.

$$
\text { (} 1 \text { libra }=327.45 \text { grammes }=0.721 \text { pounds) }
$$

Pig no. Mine. Weightskg. Weight:librae Inscription

161	Sardinia	35.6	108	CVII
164	Salop(?)	61.5	188	CIXXV
180.	Derby	65.3	200	CCX
181.	Britain(?) 274.6	840	DCCCIXX	
189	Gaul/Spain 145.0	443	P CCCCI	

On a further rifine pigs the stampee numerals seem to bear no relation to the actual weight in librae:

The incuse numerals IXXXIIX and the stamp IRAD on pig. 116.

Pig: no. Mine. Weightakg. Weight:librae Inscription

115	Somerset.	89.35	273		IXXIIX
116	Somerset	85.72	262		IXIIX
114	Somerset	84.81	259		IXV
109	Somerset	78.9	240		IIVI
90	Somerset	75.28	230		XXX
110	Somerset	c. 73	223		VIII.
190	Gaul (?)	66.	200		XIVII
192	Britain	*about 100 1b. ${ }^{\text {P }}$	138	or	P CCCCA P CCIIX CCXX
191.	Britain	33.1	100		CXXXXXII

Professor Palmer in his paper on the four pigs of lead from Green Ore,Somerset(nos.114-117)(7) suggested that the numerals on nos.114-116 denoted the excess weight in librae over a supposed standard weight of $141 \mathrm{lb} .(70 \mathrm{kg}$.) which. was probably the precursor of one-wixteenth of a fodder, a weight used for lead pigs at the present time.Prof. Palmer is following here Raistrick's suggestion cited above, but in order to support his theory, Palmer suggests altering, the texts of the inscriptions of pigs nos. 180 and 109 (8), a practice which we should on no account follow, and which has been described by Mr.R.P. Wright (9) as "epigraphically unsound".

When I first attempted to discover a relationship between the numerals and the weights of the pigs,I deduced that if 200 (CC) were added to the numerals the number resulting; would almost correspond with the weight in librae. I re-examined the pigs, but it is quitie clear that the two letters CC were never on the pigs, and it seems to me that they must have been intended to be taken as read.

The amended numbers for \{omerset pigs would then read:

Pig; na.	Weightslibrae	Inscription	Amended
115	273	IXXIIX	CCIXXIIX
116	262	IXIIX	CCIXIIX
114	250 期	IXV	CCIXV
109	241	IIVI	CCIIVI
90	230	XXX	CCXXX
110	223	VIII	CCVIII

It will be seen that the amended numeral corresponds closely or exactly in most cases, the notable exception being; no. 109 from Bitterne, and to a lesser extent no. 110,also from Bitterne.

The shapes and sizes of the lead pigs
The shape of the Spanish pigs of lead Was usually

Pig no.3. A typical semi-cylindrical example from Spain.

semi-cylindrical, whereas the pigs from Britain were in the form of truncaited pyramids.It is not possible to attribute the vast difference in weight between the Spanish pigs and the British pigs to their shape however, for truncated pyramids have also been found in Spain, and their weight corresponds to that of the other Spanish. pigs rather than to the British examples.

The semi-cylindrical pigs are $7 \frac{1}{2}-9 \mathrm{~cm}$.in height on average, and 43 am. long by 9 am. wide in general.

The Spanish truncated pyramids are approximately ll cm highi, with a length and breadth of $47 \times 10 \mathrm{~cm}$. at the base, and $43 \times 4 \mathrm{~cm}$. at the face. In some cases, both the Spanish and the British pigs appear to have been filled in moulds which were not level, since the height at one end of the pig differe greatly from that at the other.

The British examples of the truncated pyramids vary in size.No. 150 , which weighs 61.2 kg . is 11.4 cm . high, and measures 50.1×9.5 on the face, and 55.9×13.3 at the base. No. 155 , weighing 89.2 kg . is 13 cm . high, and 5 50×9.52 on the face and $59 \times 14.2 \mathrm{~cm}$. at the base. Marks of origin

On more than eighteen pigs, all Spanish, marks have been
moulded on the face of the pig: which have been presumed to denote the mine of origin. On nine pigs, nos. $33,55-60,61$ and 71, the mark is a dolphin. On three more, nos $35,66-67$ + , it is a caduceus. Alswan is depic由ed on no.62, and at rudder on no.71. On nos. 51 and 52, there is aidragon-serpent, and an nos 53 and 54 an anchor. On no.71, the dolphin and the rudder appear together.

In addition to the eleven inscribed pigs discovered in 1910-1912 in a: shipwreck off Mahdia, Tunisia (nos. 37 - 39,53-54,55 - 60), five uninscribed lead pigs were found. Three of these pigs bore the dolphin mark in a centre panel between two other panels which. had been left blank(10). It has been suggested that all these pigs mav have come from mines in Atticai (11), since the ship had been loaded at Athens, and it is unlikely that lead would have travelled to Mahdia from Spain via Athens. Moreover the Laurion mine in Attica had regained activity in the middle of the second century B.C. after the victory of Rome over $\mathbb{M a c e d}_{\text {a }}$ in $168 \mathrm{~b} . \mathrm{c}$. The slaves at Iaurion had massacred their guardians at the beginning of the Century, and it is possible that the pigs
date to the Sullan period. Nevertheless, Merlin admits that they are unlike all Laurion pigs which weigh only fifteen kilogrammes,nor do the Laurion pigs bear any inscriptions,but just marks. He axiskes,however, that all the Laurion pigs with which he is making comparisons are pre- Roman, whereas these are Roman pigs, and there is no reason why the Romans could not have standardised the products from Iaurion to match those from Spain. It must be pointed out however that the dolphin on pigs nos.55-60, and on the three uninscribed pigs,also appear on pig 33 found at Carthagena, and on no.71, from Castulo, and that the Iucius Planius Russinus (with anchor) on pigs 53-54 from Mahdiai allso occurs (with ©regon-serpent) on pigs $51-52$ from Pieenum,Italy, and the same praenomen and nomen and filiation; but without cognomen or further mark appear on pigs 4l-50.

The picture is al confused one and it does not seem possible yet to attribute these pigs definitely to a mine in Spain, but their shape,size, and inscriptions indicate a. Spanish origin, an absence of further exampaes of their type from Laurion would indicate that they are not from Attica.

It is not possible to attribute a mark to any particular mine in Spain. It appears that different lessees sometimes
used the same mark. For example, the dolphin is used by Publius Thrvilius, son of Marcus (no.33), be Nareus Planius Russinus: (nos.55-60), by Publius Tuxvilius Arcon (no.61), and by Titus Iuventius (no.71). The caduceus is used with the letters FER or FERM by Iucius Aetilius: (no,35) and by Marcus Raius

Pig no.137, showing the palm branch.

Riufus (no.66-67).On no..71, besides using the dolphin mark, Titus Iuventius also uses a rudder. Pig no. 33, bearing the dolphin was found at Carthagena, and is attributed to a mine there.No. 71, bearing the dolphin and the acidders was found near Linares, and is aittributed to a mine in the Sierra Merena district. (12)

The recurrence of these 'marks of origin" produces ai complicated patterm and shows that they were not restricted to a particular mine. From pig: no. 71 it appears that one mine could use two different marks, and this would also be the likely explanation for nos.51-54, where Iucius Planius Russinus uses both the serpentdragon and an anchor as his mark.

These marks, the dolphin, serpent, anchor, rudder and swan, being connected with the sea, cause me to speculate whether they indicate that the pigs were for transport by sea, and do not denote the place of origin. The caduceus is the odd mark, but if taken as being the staff of Mercury, an inveterate traveller, the transport idea: is not entirely lost.

On no British pig; can be found the mark of a dolphin, an anchor, or any other mark similar to those found on the Spanish pigs.On four examples, however, nos.137,138, 139, and 166, the first three being from Shropshire and

Left:Pig
no.166, showing
the palm-branch,
and below, the
hammer mark, and
the circle.

Below:Pig no.117,
showing the
incuse IMP
inscription.

the last from Somerset, there can be seen moulded on the surface of the pig - a palm branch, the significance of which is uncertain, although it could be the mark of an Imperial official(13).On two of these pigs,nos. 138 and 166. there is also ai reticulated pattern, as though. applied by; a hammer (presumably by an inspecting agent) and on the latter, a cirole (14).

On one of the pigs from the Mendips (no.117) is found the stamp TMP , which must indicate the Imperial check(교5).

Names of voting-tribes and places of origin
The name of the producer's voting-titibe occurs on thirty-seven Spanish pigs.

Maii (cia tribu) on no. 33
Madc (ia tribu) on nos.3-32.
Fab(ia tribu) on no. 34 a.
Mene(nia tribu) on nos.37-39
Menen(fia tribu) on nos. 36
Ae(milia tribu)(?) on no. 68
Aim(ilia tribu) on no. 7.9
The place of origin occurs on seven pigs:
Mont(is). Ilucr(onensis) on nos.81,82-86
\mathbb{H} (etalli) $\operatorname{Iu}(. .$.) on no. 71
And on three other insoriptions are the abbreviations FER and FERM which may indicate the name of the mine.

Pig no.ll5, showing the inscription BRIT•EX ARG•VEB
Below:Pig no.ll9, showing the G of BRIG on the front.

Many British pigs indicate their place of origin. The least specific of the British pigs is merely inscribed. BRITAN' (plumbum) Britan(nicum).' Nos. 87 bears the inscription De Britan(nicis argentariis), and comes from the Mendip mines.Nos.94-96, and 120-129 from the Flintshire mining area are inscribed Deceangl(icum plumbum): 'Deceanglic (lead)' from that tribal area, now part of Flintshire (16).

A number of the Somerset pigs bear the letters VEB. Whittick suggests that it may be the abbreviation of an unknown tribal district, or place-name, as does R.G.Collingwood (17). The suggestion has also been made that VEB. was a contraction for a name that has come to be UBley, the name of the parish adjoining Charterhouse (18).

On nos. 118 and 119, the abbreviation BRIG is used. This is clearly the inscription used by the Yorkshire mines, the area being the home of the Brigantes.

The inscriptions of the Derbyshire pigs are:
Met(alli) Iut(udarensis) on no. 141
Metalli Mutudare(nsi)s on no.14.2
Metal(li) Iutud(arensis) on no.. 143
Iut(udarense plumbum) mr (itannicum) on nos.144-148, 150,151,153-155.

The first of these inscriptions is used with the name of the Emperor Hfadrian, the others together with the names of the lessees: The place-name Iutudaron is known from the Ravennas Cosmography (19). Its precise location is unknown.

No mention of the locality is made on any pig attributed to the Shropshire mining area.

It is interesting to note that a pig (no.186.) found at Avignon, France, bears the inscription SEGVSIAVIC, a: reference to the Segusia tribe who inhabited the centrifal area of Gaul, and that another (no.190) from Gaul is inscribed Sociorum Plumb(ariorum) Ger(manicorum).

Lessees and Societates

The names of lessees appear on sefentymeight; of the early Spanish pigs, and the name of a societas is on seven. The fact that there are no oognoming used in the inscriptions on many of the fomer, and the archaic spelling; of certain words like Maic (iai) for Maec(iap) show that they were made in the early first Century B.C.

In Britain, the name of the Fmperor is featured on most, and shows that the mines were under Imperial control.On some pigs,like those from Green Ore, Somerset, (nos.114117) another name, presumably that of an official, has been

Above: Pig no. 142
Below:Pig no. 143

2 $t+$

$136 a$
stamped: Ti(berius) Gl(audius) Trif(erna). (20)
When: leasing: was first started is not known, but it appears from pigs nos. 90 and 91,where we find Maius Mipius Ascanius first as an official in Somerset, and then as lessee in Flintshire, that the practice must have been in operation a long time before the reign of Hadrien (see above p.38).

The pigs from Derbyshire bear the names of a number of lessees - Iucius Aruconius Verecundus (no.143), Fublius Fubrius Abascantus (no.142) and Grius Iulius Protus (150-151, 153-155), the forms of whose names suggest that they had been promoted from the status of freedmen. On nos. 144-148 the lessee is named as Ti (berius) Cl(audius) Tr(....), a name very similar to that of Tiberius Claudius Triferna, whose name appears on pigs from Somerset,mentioned above.Perhaps Tiberius Claudius Triferna was formerly an official on the Mendips and then became lessee in Derbyshire.However, the Derbyshire inscriptions are so abbreviated that a positive identification with the Somerset official is not possible(217.

References to societates appear on seven British pigs of lead. Soc(iorum) Iut(udarensium)(nos.156-7); socior(um)

Pig no. 108, showing the incuse stamp of the Novaec. societas.

$137 a$

Iut(udarensium plumbum) Bin(itannioum) on no. 159 ; and socfior (um) Iut(udarensium) on no.159a.; these all refer to the Iutudarensian partners who controlled mines in the Derbyshire area. Pigs nos.108-110 bear the inscriptioms of a societas which operated mines on the Mendips: the Novaec(...) Company.

Oliver Davies has suggested(22) that the Derbyshire mines were never run by the government directly since they were so poor in silver. He also suggests that since these were the only important mines in the province that have not yielded a legionary stamp, then they may; not have been under military control, and were leased instead. Nevertheless, only three pigs out of more than eighty exist with the legionary stamp, and this is a view whichi I would hesitate to adopt.

The legionary stamps

The three pigs on whichi legionary atamps appear are no. 93 from South Wales, an fragment bearing the inscription LEG II : no. 92 from Somerset with I II ; and no. 175 from the Shropshire, or Flintshire areas,which bears the atamp of the Twentieth Iregion.

The letters: IVICVC appear on pigeno. 174, also from

Pig no.109, showing the moulded inscription
BRIT ? EX ARG • VEB
on the front.
the Shropshire area, and this has been interpreted to mean Iegio VI, however, since the legionary tities are not given, and since the letters CVC are used in conjunction with LVI, and which are unknown wi.th Leg EL, Mr. R.P.Wright concludes that I(egionis) VI is not the correct transcription.

EX ARGENTARTIS

A number of the pigs from Britain bear the inscription EX AR ; EX ARG: or HX ARGENT . This has frequently been interpreted as meaning that the pigs in question had been: de-silverised (23). This however is incorrect. Gowland himself noted that one of the pigs so inscribed had a silver oo ntent that was the second highest of any British pig found to date (1901), and higher than many pigs not so inscribed. BraSmy;the did much work on: this particular question (24), and showed that of civ eleven Derbyshire pigs, those with the inscription FK ARG contain a greater proportion of silver than those without. He suggests that in Derbyshire the ores are poor in silver content, and the Romans would have decided not to desilver the lead.R.E.Tylecote (25) concludes that no atitempt was made to desilver the ores of Derbyshire, nor
probably those of Yorkshire and Shropshire. 01 the seven EXX ARG pigs in DroSmythe's analysis the mean silver content is 0.0068% and those without the inscription: contain 0.005\%. This theory is borne out too by the pigs from Derbyghire that have been discovered since Smythe delivered his paper. In addition, two pigs,nos. 153 and 155; atill have lumps of galena clinging to them. Whereas lumps of galens: could have survived the smelting process, they could not possibly; have survived the heat of at least 900 degrees Centigrade of the cupelling; process, so powerfil is the aotion of molten litharge on galena (26). Tests conducted on the lumps of galena: show that their lead content is 81.2 and 74.8 in the case of the first pig; which has two such lumps, and 69.7% in the case of the second pig. (The maximum. possible lead in galena is 86.6%). The silver content is: respectively $0.0022 \%, 0.0025 \%$ and 0.0025%, whereas the silver content of the pigs themselves is 0.01% and 0.005%.

EX ARW must therefore meam "from the lead-silver works and must not be interpreted as meaning; that the silver had been taken from them.

There now follows a list of all the lead pigs: reconded from Spain and Britain, together with certain relevant
pigs from Gaul and Sardinia.These have been arranged, as far is possible, in chronological order.

References

I.Bernier Rev. Arch.XII(1920) 230.

Davies Roman Mines 109.
Rickard JRS XVIII(1928) 140.
2. VCH Som. i, 334-341, 354-355.

Pennant Wales 218.
Atkisson and Taylor Flints.Hist.Soc. Publ.IX(1922) 101,
X,i(1923) 5f. X,ii(1924) 6i.
Collingwood Britain in Tenney Frank ESAR III 4.2.
Davies Roman Mines 160.
Wheeler Rn. Wales 270.
Nash-Williams AC XCI(1936.) 379. XCIV(1939) 108.
Gough Mendip 24.
Evans Num.Chron.ser.iv, XV,499.
Sutherland Coinage 90f.
Webster Flints. Hist. Soc. Publ. XIII(1952-3) 14-16.
3. Whittick Newcomen Soc.Trans.XII(1932) 71.
4.Smythe Newcomen Soc. Trans. XX (1940) 139.
5.Smythe Newcomen Soc.Trans.XX(1940) 142.
6.Raistrick Newcomen Soc.Trans.VII(1926) 82.
7.Palmer and Ashworth Som ASP CI-CII(1956-7) 52-88.
8.Palmer and Ashowrth Som Agp CI-CII(1956-7) 84-87.
9.R.P.W. to H.D.H.E. (December 1966).
10. Merlin Mel. Gagnat 383-391.

Besnier Rev.Arch. XIIF (1921) 100.
11. Merlin Mé. Cagnat 388.
12.Besnier Rev.Arch.XII(1920) 239-240.
13.JRS XXI(1931) 264.
14.JRS XXI(1931) 262.
15.JRS XIVII(1957) 231,no.20 d.
16. CASJ IV(1890-1) 68,77.

Flints. Hist. Soc. Publ. IX(1922) 10f.
17. Collingwood Britain in Tenney Frank ESAR III 43. 18. Palmer and Hunt Som. 으 Dorset NQ XXVII (Aug. 1958)197-8.
19. Richmond and Crawford Arch. XCIII (1949) 38.
20.R.P.W.JRS III (1962) 195.
21.R.P.W.Som.ASP CI-CII(1956-7) 82.
22. Davies Roman Mines 11.
23.Gowland Arch. IVII(1901)ii,399.

Davies Roman Mines 12.
24.Smythe Newcomen Soc.Trans.XX(1940) 142ff.
25.Tylecote Roman Lead 38.
26. Smy the Newcomen Soc. Trans.XX(1940) 143ff.

Introduction to the list of pigs
There follows now a list of pigs from Britain, Spain, Sardinia, Gaul and Germany. Where possible these have been arranged in chronological order.

Each entry begins with the details of the pig's discovery and its present location. Most of the information for the 'present locationss' of the pigs from Spain has come from Rev.Arch.XII and XIII, which were published in 1920 and 1921. Consequently these locations must be regarded as suspect. In general, the Spanish pigs were semi-cylindrical in shape, and the British pigs were truncated pyramids. Variations from this pattern are noted in the first paragraph of each entry. Likewise doubtful pigs and inscribed fragments of lead are so described here too.

The weight of the pig: in kilogrammes is then given. This is followed by its measurements in centimetres, in the order - height. base, face.

The height is the distance between the base and the face. The base is the part of the pig that lay uppermost in the mould when being made, but which, when turned out of the mould lies on the ground. The face, conversely, is the narrowest part of the pig that lay on the ground when being made, but which, when turned out, lies uppermost, and bears the main ingcription. The front, the back, the right and the left
are the terms used to descmibe those parts of the pig in relation to the inscription on the face.

Where known, the silver content of the pig follows the dimensions, and this in turn is followed by the name of the mine or area of its origin.

A short; bibliography for each pig is then given. This
 articles cited by Way, Gowland, Besnier, Webster, and Tyileote, as well as to other important notes. The text of the inscriptions, their expansion and translation are then given. The inscriptions were either: moulded - where the lead has been poured into a mould containing al die on which vere carved in neverse the inscriptions to appear in relief on the pig, incuse - letters or numerals stamped onto the cold pig impressed - letters,in relief,impressed onto the pig after its removal from the mould, or applied - letters cut from strips of lead and applied to the surface of the pig.

The: last notes of each entry give the datie and additional information.

References in the Index are made to pig numbers, and not page numbers, and are underlined.

1. Found in 1829 at Sarignano, Ittaly, Now at Rimini, in the Gembailunga, eollection.

Weight and measurementsaunknown. Mine of origin:(2) Spanish.

CIEd XI 6722.13. Besniex ReV.arch.XIIT(1921) 109,no. 61
Face (moulded) \Rightarrow C • Mirssil • I • ${ }^{\circ}$
G(adi) Messi I(uci) $f(111)$
"(product.) of Gadus Messius, son of Incius.
The nomen Messius: occurs in Baetica.
Datertine absence of a cognomen suggests that thins pig: dates from the early lst Century B.C.
2. Found in the river Tiber, Rome, Itaily, and now in the Diocletian Baiths Maseum,Rome.

Weights 34.8 kg . Shape: truncated pyramid
Fright: 11 an. Base: $44 \times 9.5 \mathrm{am}$. Face:40 $\times 4 \mathrm{~cm}$. Mine of origin: (?) Spanish

CII XV: 7918 Beanier Rex.aroh. XIV(1922) 110 , $n 0.63$

Side(incuse) APM
T(iti) Popilli N(umeri) $f(i l i)$ gailea(a)
"the lead (product) of Ritus Popillius, $80 n$ of Numerius.

- (not interpreted)
galena is also mentioned on pige nos.79 and 81 Date:cearly lat Century B.C.

3-32. Thirrty examples found in 1846 at Orihuela,Spain. Tive are now at the Madrid school of mines, two in the Madrid Academy; museum, one is in the Iouvre, Paris, and one is in the Bibliotheque Hationale de Paris;one is in the British Museum, Iondon, and one is at Newrastle upon-Tyne,having formerly been in the Geological

Museum, Irondon.
Weights Madrid school of mines) 32kg, and 32.5 kg .
(Iouvere) 34i.5 kg.
Heights:8am. With the exception of the Iouvre example, which is: 9 cm.

Bases:23 am. x 9, am. The Bibliotienque Nationale example measures $43 \times 9 \mathrm{am}$. The Iouvre example is $45.5 \times 10 \mathrm{~cm}$. The Madrid school examples measure 44×9 am and the Madrid Academy pig: is $45 \times 10 \mathrm{~cm}$. The pig in the

British. Museum measures $45 \times 11.4 \mathrm{~cm}$.
Silver: contents:Bibliothèque Nationale 0.002%, Louvre $0,003 \%$, British Mhseum 0.003\%, Newcastle 0.0029\%。 The weights and measurements of the other piga in thile group have not been recorded.

Mine of origin: Oxihuela

Pig no. 3

$148 a$

The Britishim Masewn example was examined by H.D.H.Fis
in 1966.
CII II 3439.4 IIS 8706. Gowland Arch. IVII(1901) ii 400. Besnier ReveArch.XII(1920) 236 no. 14

Face(movilded) M • P • ROSCIEIS • M P F • MAIC
M (arcus et.) $P($ ublius) Bosciets M (arci) $f($ ilieis $)$
Maic(ia tribu),
-Marcus and Publius Roscius, sons of Marcus, from the Maecian tribe (produced this).:

Dateqprobably early lst Century B.C. The abbreviation MAIC for MABC is the archaic spelling for the Maecian voting tribe, and the archaic Roscieis forr Roscii is also: Republican.For further examples of the archaic apellings see GIII II 3433 ,hisceis, and Plautus, 퍼dens Act II Sc.1. 10, hisce frami instead of hice. The Rosoii: Dessal conjectures that mention of this tribe made it likely that the two Roscii came from Lanuvium. P-W s.v. Ianuvium, says that it is not certain that Lanuvium belonged to the Maecian tribe.of.CII XIV 2104 The Maecian tribe is one of the Italian voting-tribes, Ilsted in Kubitschek, Imp. Rometribedisorias followss In Italy; reg. I Neapolis, reg. II Brumdisium, reg; III Paestum,

regiv Hadria, reg. IX Liberna In Macedonia:Palagonia.

33. Found at Carthagena, and now in the Guirao collection, Murcia. Weight and measurements:unknown. Mine of origin:Carthagena. EFE IX 428, 3. Besinier Rev.Arch.XII(1920) 234.no. 9 Face(moulded) $\mathbf{P} \cdot \operatorname{TVRVIII} \cdot M \bullet F \mid M A I$ delphinus $P(u b l i)$ Tuxrili $M(a r c i) f(i l i) \mid$ Mai (ciai tribu) delphimas - (product) of Publius Thurvilius, son of Marcus. "from the Maecian tribe" "dolphin"

Date:probably early lst Centwry; B.C. For the early spelling of Maicia, and for the Maecian tribe, see no.3-32 above. Fete the nomen Turvilius see nos.61-62.

Hfftioner (EE: IX 428;3) thinks that this pig, and no. 62 are identical, but this is obviously incorrect, since no. 62 bears a swan in place of the dolphin, and Publius Tharvilius has the cognomen Labeo on no.62. The dolphin also appears on pigs.n0s.55-61,71.For a comment on the dolphin see p. 131 ff.
34. Found at, Carthagena, and now in the Cuirao collection, Muroias.Weight and measurements:unknown.

Mine of origin:Carthagena:
EE IX 4.28,2. Besnier Rev.Arch.XII(1920)235,no.11.
Face(moulded) C • FONAICIENVS II • F
G(aius) Ponticienus \mathbb{M} (arci) $f(i l i u s)$
*Gailus Ponticienus, son of Marcus (produced this)'
Date:probably early lst.Century B.C. Schulze gives the nomen Pontinienus from CII IX, but EE is emphatic the Ponticienus is; the correct reading, as is borne out by, comparison with the following example.

34A. Found at Volubilis.Its weight, measurements and present location sse not known. mine of origin:Carthagena.

Rev. Arch :XXXII(1930)348,no.38.
Face (moulded) C P PONTICIENL M F FAB
G(aii) Ponticieni $\mathbb{M}(a r c i) \quad f(i l i)$ Fab(ia tribu)
'(product) of Gaius Ponticienus, son of Narcus,from the Fabian tribe.

Dat $4:$ probably, early lst.Century B.C. Carthagena belonged to the Sergia tribus.Gaius Ponticienus must have come from one of the towns assigned to the Fabia Tribus:

Ancyra, Aradus, Aventicum, Brixia, Falerio,
Heliopolis Syriae,Heraclea,Iuca, Patavium, Rudii, Trebula Mutuescae, Vol.turnum. (from ITS)
35.Found near Carthagena, and now at the College of the Four Saints,Carthagena.Weight ande height unknown. Base: 38 cm. in lnegth. Mine of origin:Carthagena district.

EE VIII 254.1. IX p.181 Besnier, Rev.Arch. XII(1920) 236, no.. 13.

Face(moulded) I • AETHI • EERM \| caduceus I(uci) Aetili Ferm(...) | caduceus "(product) of Lucius Aetilius, Ferm()*? "oaduceus'

Date: probably early lst Century B.C. The nomen Aetilius occurs in CII VI 11192. The nomen Laetilius occurs at Carthagena, of. CII II 3473,3474,5959. Ferm. may be the name of the mine, or even the town from which Aetilius came.It occurs also on pigs 66 67. It does not appear to be a cognomen, nor is it the name of a
voting-tribe. Fierm. is an incorrect reading; (R.P.W. in private conversation April 1967). The caduceus appears also on pigs nos.66-67. For comment on this marle see page 131 ff.
36. Found at Carthagena, and now in the Guirao collection, Mrurcia.Weight and measurementszunknown. Mine of originiaCarthagena.

EE IX 428,1 Besnier Rev.Arch.XII(1920) 235,no. 10
Face (movilded) C. VIRI • C • F • MENEN:
G(ai) Uti G(ai) $f(i l i)$ Menen(ia tribu)

* (product) of Gaius Utius, son of Geaius, from the Menenian tribe *

Date sprobably/ early lat.Century. B.C. Carthagena belonged to the Sergia tribus . No town outside Italy belonged to the Menenian tribe. This producer and Gnaeus Atellius of no.37 must have come from one of the towns in Italy assigned to this tribe - reg. I Herculaneum, Miaceria, Alfaterna, Pompeii, Praeneste, Stabiae, Surrentum. reg: X Feltria, Vicetia (from Kubitsehek, Imp. Rom trib. discr.)

37-39.Three examples found in 1912 in a shipwreck off

Mahdia, Thunisiay, and now in the museum at Bardo. weightss 32.18 , 0.32 , and .0 .32 kg . measurements:unrecorded.

Mine of originz (?) a mine in Attical or in Spain.
AE 1913 no. 147 Merlin MÊ1. Cagnat 385. Besnier Rev.Arch. XITI(1921) 100 n0. 55

Face (moulded) CNI - AMETLI • T • F • MENE:
Gn(ai) Atelli $T($ (ti) $f(i l i)$ Mene (nia tribu)
*(product) of Gnaeus Atellius, son of Titus ,from the Menenian tribe.".

Date:probably; early lst Centiury B.C. For the Menenian tribe, see no. 36
40. Found at Castagneto (Livourno). This is merely a fragment of inscribed lead that may not be part of ai pig. CII XI 6722,15-16. Besnier Rev.Arch. XIII(1921) 108 no. 60 (moulded) C•PLへ涭
G(aii) Plan[i.
" (product.) of Gaius Planius.'
Datezit is difficult to date this piece of lead, since only part of the inscription survives. The nomen Planius also occurs on pigs nos. $41-60$, the last ten of whichi also
beary cognomina. The nomen Planius occurs in Mäcedonia:

41-50.Ten examples were found in 1873 in Sicily, and are now in the museum at Palerma.

Weight:33-33.5 kg. Measurements:unknown. Mine of oxigin: (?) a mine in Attider or Spain

GII X 8073,3. and p.1002. Besnier Rev.Arch. XIII(1921) 108 no. 59

Face(moulded) I • PLANL.I • F
I(uci) Plani L(uci) $f(i l i)$
((product) of Iucius Planius, son of Iucius.'
Date: probably/ late. Republican.

51-52. Two examples found in 1880 at Picenum, Italy, and now in the Ripaitransone museum.
weights 35 kg . Measurements:unknown.
Mine of origin: (?) a mine in Attica or Spain

CIIEIX 6091, 8073.3. Biesnier Rev.Arch.XIII(1921) 108 no. 58

Face(moulded) I • PLANI - I • F \mid draco \mid RVSSINI I (uci) Plani I(uci) $f(i l i) \mid$ draco | Russini

- (product) of Iucius Planius Russinus, son of Iucius.
- dragon *

Date:late Republican. The same paenomen, nomen and filiation appear on pigs.nos.41-50, but here the cognomen Russinus is given.This also appears on: nos. $53-54$ where the dragon has been replaced by an: anchor, which does not separate the nomen from the ogmomen as does the position, in these examples, of the dragon.

53-54. Tivo examples found in 1912 in the shipwreck off Mahdiag.Tumisia, and now in the museum at Bardo. weight: 32 and 32.73 kg . measurements:unknown. Mine of originz (?) a mine in Atticai or Spain Merlin: Mel.Cagnat 38.5. Besnier ReveArch. XITH(1921) 101 no. 56.

Face(moulded) I • PLANI • L • F • RVSSINI \| ancora I(uci) Plani L(uci) $f(i l i)$ Russini | ancora - (product) of Iucius Planius Rusainus, son of Iucius.' "anchor"

Date:late Republican. For notes, see nos.51-52 above.

55-60.six examples foma in 1912 in the shipwreok off Mahdia, Tunisia, and now in the museum at Bardo. weights: $33.3,34.37,31.38,32.09,32.32, \mathrm{~kg}$. measurements:unknown. mine of origing(2) a mine in Attica or Spain. AE 1913 no.146. Merlin MEl Cognat 384. Cagnat Cours epig. lat. plate XXV i. Beanier Revatrch. XIII(1921) 102 no. 5.7.

Frace(moulded) M - PLaNI - I • T/ delphinus/RVSSINI M (arci) Plani I (aoi) $f(i l i) \mid$ delphinus \mid Fussini - (product) of Marcus Planius Russinus, son of Incius' 'dolphin"

On three examples: the two letters. SS of Russini are inverted, and on another example, the dolphin is upside. down.

Date:late Republican. The dolphinsalso appears on pigs nos. 33,61 and 71, besides being on five lead pigs found in the: same shipwreck and now also in the museum at Berdo. The details of these are as follows: Three are in lozenge form, weighing 1.316,1.357 and 1.383 g. One is in the form of ai truncated cone 17.2 kg . in weight. 11 am.high, 19 am.wide at the base, and 10.5 om.at the top.

One is in semi-cylindrical form, 31.3 kg .in weight, 9 am . high. 45 cm .long ati the base, and 4.1 am .10 g g at the top. These five examples have three panels, in the centre one of which is moulded a dolphin, as on these pigs, 55-60, but the outer two panels have been left blank.
61. Origin unknownow in the maseum at Madrid. weight:c. 34 kg.
heights 9 cm . base: $44 \times 10.5 \mathrm{~cm}$. mine of origing(2) a mine in Spain. Madrid Mhas.Cat. no.308. Besnier Rev.Arch. XII(1920) 232 no. 4

Face(moulded) \mathbf{P} TVRVIWII ARCONV / delphinus

 P(ubli) Turvilii Arcon(is) | delphinus *(product) of Publius Turvilius Arcon* "dolphin" Datirearly Empire. The cognomen Arcon appears Prequently in Iusitania, and it is also possible that the Publius Turvilius on pig; no. 33 is of the same family, but this is by no means certain. Schulze has a nomen Tiurullius, but has no example of a nomen Throil. It is possible: that this inscription is obscure and should read TVRVLEI and not TVRVIII . Holder has no example ofthe nomen, but say, that the nomen Tiurullius: occurs in Caxthagena, CII II 3508, Cn. Truxullio, and also at Rome, CII VI 27838 P.Tuxullius, and 27839 CnoTuxulii. The dolphin also appears on nos.33,55-60,71.
62. Found in the harbour at Carthagenaweight and measurements and present loaation unknown. mine of originz(?) a mine in the Southemast of Spain. EE VIII 254,2. Besnier Rev.Arch.XII(1920) 234,no.8. Face(moulded) P • TVRILI LABEONI

oy,cnus

P(ubli) Tur(e)lli Labeoni (s) | oycnus "(product) of Publiws Turellius Labeo" "swan"

Datesearly Fmpire. CII II 3103,3104 inform us that Threllii are known in the region, and it is possible that further examination of the pig. would reveal an E ligatured on to the first I to read IVR $\mathrm{FINI}^{\text {. Holder }}$ indexes this name as Tivellius.

The swan occuns on this pig alone.
63. Details of origin unknown, but now in the museum at Madrid.
weightzo. 34 kg.
height: 7.5 cm . bases $45 \times 10 \mathrm{~cm}$. mine of origin:(2) a mine in Spain

CII II 6247.1. Besnier Rev. Arch. XII(1920) 232 no. 3.
Face (moulded) T - AVRVNC •| I/[V]C[A]NI
T (iti) Aurunc (ulei) $I[$ [u] [ainic (?)
(product) of Titus Aurumouleius Incanus (?)
Besnier reads T AVRVNC - I CD 1
but this is not mentioned in CIE, and it seems likely that: the second panel should be linked with the first, as in my text above (R.P.W. TO H.D.H.E. April 1967)

Datesearly Empire.
64. A fragment of lead, the origin of which: is unknown, but. which is now in the museum at Tarraco.

7 am.long: and 15 am.wide. mine of origin: (2) a mine in Spain.

EE IX 4.28.4. Paris Bull. Ant.379. THU Toind fase.I s.v.Callonius. Besnier Rev.Arch.XII(1920)233no.5. (moulded) TCALTONI[Q] VINT:
I(iti) calloni [\&] uint (i)

- (product) of Titus cailonius Quintus*

Date:early Empire. This fragment of lead seems to be
part of a pig, as does no.65, bu the text is difficult, since EE, and subsequently Besnier, give
T. CALTONIOVINT. TII suggests that Callonius is possible. It. seems wise to interpret this as T. CATHONI QVINT(i)
65.Another sragment of lead, whose origin is unknown, but now with no.64 in the museum at Tarraco. The dimersions are the same as no.64:

7 cm . long x 15 cm . wide.
Mine of origin: ? a mine in Spain.

```
EE IX 4:28.5. Paris Bull.Ant.379. Besnier, Rev.Arch. XII(1920) 233,no.6.
(moulded) VIII I
```

This is a broken portion of a moulded panel resembling closley no.64. This may then be a poor moulding of the same Quknit(i) and is less likely to be the numeral :9\%. Following this suggestion by R.P.W. (to H.D. H. E.

April 1967), I prefer to read:
(moulded) Q] VINTL
Q]uint(i)
*(product) of. (?) Quintus:

Date:early Enpire.
6667.An unspecified number of pigs were found in the harbour at: Carthagena. One of these is now in the museum of the Society of Economica, Carthagena, and another in: the museum at Berlfin. The pigs all bear the same inscritptions and marks.The details of the Carthagena museum example are as follows: weight:unknown. height:83 mm base $50.3 \times 4.6 \mathrm{am}$. mine of origin: (?) a mine in the South-East of Spain. CIII II 624:7,3 Besnier Re..Arch.XII (1920) 234, no. 7 Face(moulded) M • RAI • RVFI • \mid oaduceus $/$ FER M(arcii) Rai Rufi | caduceus | Fer (...) (produc.t) of Marcus Railus Rufus" "caduceus" $\operatorname{Fer}(\ldots .$.$))$ Date:early Empire. Raius does occur as a nomen elsewhere. The caduceus is found also on pig; no. 35 which reads I.AEMIII FERM. It is not clear whether FER is an abbreviation of another name, or it may indicate the name of the mine.It. is not to be taken as an inference that Marcus Raius Rufus came from Firmum, in North Italy. By analogy with no.35, it is probably the name of the mine or the mining area.
68. Origin unknown, but now in the maseum of the Society of Economics,Carthagena:
weight:c. 34: kg.(Besnier)
height: 8.9 cm . base: $47.4 \times 10.3 \mathrm{~cm}$. mine of origin:a mine near Carthagena. CII II 6247,6\% EE IX p. 181 n. Besnier Req.Arch. XII(1920) 235,no.12.

Face (moulded) P - NON • AE • T • F • NVC
P(ubli) Non(i) Ae(miliai tribu (2)) T(iti) $f(i l i)$ Nuc (erini)
'(product) of Publius Nonius Hucerinus, son of Titus, from the Aemilian tribe (?)."

Date:early Empire. In most cases where the tribe is mentioned, it is placed after the groups of names, as in nos. 36 , and the like; the AE which is taken by Besmier, following: A. Engel in EF to be Ae(miliai tribu (?)) comes after the nomen in this example, and before the
filiation and cognomen. The transcription in CII should be disregarded. Kubitschek, Imp. Rom.trib. discr., lists the towns belonging to the Aemilian tribe in Italy, reg. I Formiae, Fundi, Suessa, Aurunca. reg.III Copia Thurii, Wibo Valentia. reg. VI Mevaniai . In Macedonia, Dobiros,

Dymrhachium, Stobi. The Aemilian tribe is also mentioned on no..79.

69-70.Several pigs and a fragment of a pig were found in 1821 at Canjajar in Northowest Almeria, Spain, all of which appear now to be lost. Their weights and measurements are unknown. Mine of origin: Almeria.
CII II 4964.1, 6247,.5, Besnier Rev.Arch. XII(1920) 239,no.16.

Face(moulded) I • S • REX
L(ucius) S(....) Rex
-Iucius S(....) Rex (produced this):
Date:early Fmpire. Httoner, CII 4964 , 1 , expands S as S(ergius) which is reasonable, but there are many nomina beginning with the letter \underline{S}.
71. Found at Castulo, near Linares, and now in the Loring collection, Malaga museum.This pig is of irregular shape, in the form of a wedge.
weight: 11.15 kg .
height: 11 cm . tapering: to 5 cm . at the other end. lengtiv: 30 cm . at the base . 26 cm . on the face.
mine of origin:an mine in the Sierra Morena district. CII II 3280a., 624.7.2. Besnier Rev.Arch.XII(1920) 239, no. 18.

Face(moulded) T • IVENTII $\left|\begin{array}{l}\text { delphinus } \\ \text { gubernaculum }\end{array}\right| \mathbb{M} \cdot \operatorname{IV[}$ T (iti) Iuventi. $\left|\begin{array}{l}\text { delphinus } \\ \text { gubernaculum }\end{array}\right| \begin{aligned} & \text { M(etalli) Iu[.... } . . .\end{aligned}$ "(product) of Titus Iuventius: $\frac{\text { dolphin }}{\text { mudder }}$ "(lead) of the Iu[....] mine." Date:early Fmpire. The dolphin appears on nos.33, and 55-61. This is the onily known example of the rudder mark, and the only pig: which bears two marks, and these of different design. It is this difference which leads me to conjecture that the mark on the pig. can not denote the mine of origin, since it is hard to explain why one pig: should have two different marks. It is similarly hard to explain why on pigs 5N-54 Iucius Planius Russinus, the son of Iucius, should have two different marks, a dragon and an anchor,unless of course he changed his tenure of mine. I prefer to think that the mark was intended to deonte that the pig was to be transported, possibly by water, in view of the links
that the marks have with the sea.
The Iu(.o.e) mine is umknown. Besnier rightly/ rejects the theory that the pig was a British one from the Derbyshire (Iutudaron) mines, on the grounds that Spain, herself a great lead-producing: province would hardly import lead from such a distance. The shape and weight do not itorrespond with other British pigs moreover, nor do the dolphin and rudder appear on British pigs,as does the former on Spanish pigs.
72. Found in the Terrenas mine at Alcaracejos, on the road from Sisapo to Cordoba, in the form of a truncated pyramid.
weight: 56.7 .5 kg.
base:51.5 $\times 15 \mathrm{~cm}$. face: $44 \times 5 \mathrm{~cm}$.
silver content:0.031 \%
mine of origin:Alcaracejos
AE 1914 no.23. Besnier Rev.Arch. XII(1920)240,no. 19
Face (moulded) C • P • T • T • CAENICORVM
$G(a i) P(\ldots .).(e t) \mathbb{T}(i t i) T(\ldots$) Caenicorum
"(product) of Gaius P(...) and Titus $T(\ldots$.$) Caenicus..$
Date:lst.Century A.D. As with the two Roscil of pigs
nosie 3-32, we have here the two Caenici working as associates, but their nomina are so contracted that they cannot be expanded with any certainty. The cognomen Caenicus also appears in Iusitania. IIS 4506.

72a. Sgveral pigs were found in 1842 in the Cerro de los Castillejos, but without inscriptions. weights:c. 92 kg . other mewsurements unknown. CII II 4964, 2 Besnier ReviaArch.XII(1920) 241.
73. Found in 1910 near Heppen, Westiphalia, (Eermany; and now in the Derrenberg oollection at Soest. The form is a truncated pyramid, of which only a fragment remains. weight: 0.13 kg . heights:11. cm. base:11. $5 \times 13 \mathrm{~cm}$. face:9.5 $\times 7.5 \mathrm{~cm}$. mine of origin:(?) a mine in Spain.
A.Schulten, Bionner Jahrbticher CXXIV (1917) 88 . Besmier Rev. Arch. XIII(1921) 72 ,no. 50.

Face(moulded) I - FLA
side(fncuse) I • F • VE
I(uci) Fla(vi)
I(ucius) $\mathbb{F}(\ldots)$ Ve(....)
*(product) of Incius Flavius' 'Iucius $F(\% . .) V e.(\ldots$.$) .$

Datesearly Empire. Schulten estimates that the pig; would oxiginally have measured 50 cm . and have weighed c. 0.32 .5 kg . whichi would bring; it into the Spanish pig category and indicate its origin in that province rather than in Gaul which he favours. Schulten transcription (Iucius Flavius Vetus) are difficult to uphold since the nomen and the cognomen in the second inscription are so abbreviated.

7:4-7.7. Found in 1858 in the harbour at: Cherohel, Algeria, and now in the museum at Cherchel.They are trucated pyxamids.
weight: 34.5 kg .
height: 9 om. base 24.7×10 om. face: 4.3 cm . long. mine of originsa mine in Spain.

CII VIII 10484 . Besnier Rev.Arch.XIII (1921) 99,no.53.
Face(moulded) Q Vari Hiberi
Q(uinti) Vari Hiiberi

Datesearly Empire. The weight of the pig and its shape findicate that it came from the Spanish mines.
7.8.Found in 1881, at Pompeit, Itaily, and now in the museum
at Naples. It is a truncated pyramid.
Weight: 35 kg;
Height:l0 cm. base:48 x 11 cm .
mine of originsa mine in Spain.
CII X 8339 . Besnier Rev.Arch. XID (1921) 109,no. 62
Face(moulded) P•ABMILI • GATHICI
P(ubli) Aemili Gailici
"(product) of Publius Aemilius Gailicus."
Datesearly Empire.
79. Found in the river Tiber, Rome, and now in the municipal museum on the Capitol.
weight: 5.3 kg .
height: 2.5 om . base: $43.5 \times 7 \mathrm{~cm}$.
mine of origin: a mine in Spain
CII. XV 7917 . Besnier Rev.Arch. XIII(1921) 111,no. 64

Face (moulded) P CORNEL LF ATM POLHION FOR/IAN/GAL
P(ubli) Comel (i) I(uci) f(ili) Aim(ilia tribu)
Pollion(is) Form(i)an(i) gal(enai)

- lead, (product) of Publius Cornelius Pollio, son of

Iucius, al Formian, from the Aemilian tribe.
Date:early Empire. The Aemilian tribe is also mentioned
om pig: no. 68, where the town belonging to the Aemilian tribe, which include Formii, ace listed. Galena is also mentioned on pigs no. 2 and 81.
80. Found in 1653, in two halves, at Basle, Switzerland, and now in the museum at Basle.
weight: 33kg.
feight: 7.5 cm . base: $52 \times 9.5 \mathrm{~cm}$. mine of origin:(?) a mine in Spain.

CII XIII 10029.26. IIS 8707 . Gowland Arch.IVII(1901) i1. 380. Besnier Rex. Arch. XIII (1921) 74.no. 52.

Face(moulded) SOCIETAT // S • T • IVC • RET Societat (is) S (exti e.t) T(iti) Iracret(iorum) "(product) of the company of Sextus and Titus Incretius." Date:early Empire. Hiere the two Iucretii, working together as the Roscii (3-32) and the Caenici(72) had formed a societas, the first that we have met. Societates are found on the following pigs from Spain also (8I 86:). The pig,from its shape and weight, would have presumably, come from Spain, as Besnier argues.
81. Found in 1887, in the river Tiber at Rome, and now in
the Diocletian Baths museum. It is a truncated pyramid. weight: 34.8 kg . height: 20 cm . base: $46 \times 10 \mathrm{~cm}$. face: $43.5 \times 4 \mathrm{~cm}$. mine of origin: Coto Fortuna,Spain.

CII XV 7916 ITS 8708 Besnier Rev.Arch.XIII(1921) 111 no. 65.

Fiace (moulded) SOCIET - ARGENT FOD - MONT • IUUCR \| GATENTA right end (inouse.) P • DR N

Societ(atis) argent(ariarum) fod (inarum) mont(is)
Iluer(onensis) |galena:
P(ubliius) Dr(....) N:(...)
lead, (product) of the company of the lead-silver mines of the Hucronensian range."
:Publius Dr(...) N(...) *
Date:early; Empire. Again, as with pigi nol80, ai societas is recorded, and like nos. 82 - 86, it is the societas which operated the lead-silver works of the Ilucronensian range.

It is not possible to expand Publius $\operatorname{Dr}(\ldots$.) $\mathbb{N}(. .$.) with any cettainty; and his significance is doulotful. He may have been an imperial official, like Tiberius Claudius Triferna: (?) on pigs from the Mendips in Britain (114-7).

82 - 86. Five identical pigs were found near a cupellation hearth in the mining district of Coto Fortuna, not far from the port of Mazarron. One example is in the Louvre, Paris. It is a truncated pyramid.
weight: 30.8 kg .
height: 8 cm . base: $47 \times 10.5 \mathrm{~cm}$. face: $43.5 \times 5.5 \mathrm{~cm}$.
silver content: 0.42%
Mine of origin: Coto Fortuna
AE 1907 no.135. Besnier Rev.Arch.XII(1920) 238,no.I5
Face (moulded) SOCIET \| MONT: ARGENTY \| IUVCRO
Societ(atis) mont(is) argent(ariarum) Hucro(nensis)

- (product) of the company of the lead-silver works of the Ilucronensian range."

Date:Ist Century A.D.
87. Found in 1544, at Wookey Hole, near Wells, Somerset, but now lost. Weight and measurements unknown. mine of originsMendip mines,Somerset.

CII VII 1201 • EEE IX p. 642 . Way, AJ XVI(1859) 24. ECH Som i , 340 Gowland, Arch. IVII(1901)ii, 402.no.17, Besnier, Rev.Arch. XIII(1921) 40,no. 21 . Webster, Flints. Hist. Soc. Fubl.XIII (1952-3) 24,no.27. Tyilecote, Metallurgy Table 34,no. 25.

Face(moulded) TI • CLAVD • CAESAR AVG • P • M • TRIB • P • VIIII • IMP • XVI DE BRITAAN Ti(beri) Claud(i) Caesar(is) Aug(usti) P(ontificis) M(aximi) trib(unicia) p(otestate) VIIII Imp(eratoris) XVI de Britan(nicis argentariis)

- (product) of Tiberius Claudius Caesar Augustus, Pontïfex Maximus, in the ninth year of his tribunician power, and sidxteen times acclaimed Imperator, from the British lead-silver works.'

Date:A.D.49. This pig is the earliest extant example from Britain, and proof that by A.D. 49, to which this pig can be dated, by reason of the Imperial titles of Claudius, the Romans were working the lead mines of the Mendips just six years after théntinasion .When a man was hailed

Imperator, he really held the Empire, and then countedhis reign as having; started as this point. It is interesting; to note that bothi Leland V(ed.II,1774)45, and. Cemden (ed.I,1589)105, thought that the "plate of lead" was ai commemorative trophy.

88A,B,C. Three pigs of lead found in 1822 by Farmer Stephens when ploughing in Raynes Baitch,Charterhouse on Mendip,Somerse.t.They were melted down almost immediately: Their measurements were not recorded. weights: "one upwards of 200 lb., one less, and one half as much.' mine of origin:Mendmps,Somerset.

Stinner B.M.MSS.Add. 33673 f.103,105,117. 33717 f.166. Webster Flints.Hist. Soc. Publ. (1952-3)26, nos.40,41, 42. Tylecote Metallurgy Table 34,nos.57,58,59.

Face(moulded) said to be DB ; or OB
DB or OB.
'(?)' not interpreted.
Date: ? .The Revd.Skinner unfortunately was slow in visiting famer Stephens after the latter had reported his finds, and so did not see the pigs, whiloh had been sent to the plumber to be melteæ down. In Ms.33673,f.105, Skinner says that they were without inscription, but in f. 117 he recurde that the farmer's son mentioned that they bore the letters OB. Skinner has altered his Ms. from DB).He draws the pigs on f. 103 as weighing $150,200,100 \mathrm{lb}$. and puts the ldtters $0 B$ on the 100 lb ,pig.
89. Found in 1853, near Blagdon, Somerset, Now in the British Museum. Weight: 73 kg .
height: 9.2 cm . Base: $60.9 \times 14.6 \mathrm{~cm}$. face: $52 \times 6.98 \mathrm{~cm}$. Silver content:0.025\%
mine of origin:Mendips, Somerset.
CII VII 1202 . EEP IX p. 64.2 . Way, AJ XVI (1859) 23.
VCH Som.i. 341 . Gowland,Arch.IVII(1901)ii, 402,no. 14 . Besnier, Rev.Arch. $\operatorname{XIII}(1921)$ 40,no. 22 . Webster, Flints. Hist. Soc. Publ.XIII (1952-3) 24,no.28. Ty志ecote, Metaillurgy, Table 33,no. 17.

Examined in 1966 by H.D.H.E.
Face(moulded) BRITANNIC[I] AVG FI
front(incuse) V •ET P•C
Britannic[i] Aug(usti) fi(1i)
∇ (eranio) et P (ompeio) c (onsulibus)
'(product) of Britannicus, true son of Augustus?
*in the consulship of Veranius and Pompeias.'
Date:A.D.4.9. Q.Veranius and C.Pompeiv:s were consuls in A.D. 4.9.Haverfield, VCH loc.cit. also dates the pig; to this year basing his reckoning on the marriage that year of Claudius to Agrippina,for it was thereafter that Nero, the son, was in the ascendancy.
90. Found in 1783, at Bossington, Stockbridge, Hants, and

Pig no. 90

now in the British Museum.
weight: 75.3 kg .
height: 12.5 cm . base: $58.1 \times 14.6 \mathrm{~cm}$. face:53.1 $\times 8.25 \mathrm{~cm}$. silver content:0.002
mine of origin:Mendips,Somerset.
CII VII 1203 . EE VII 1120 . Way; AJ XVI(1859) 26.
VCH Hants. i. 323 . Gowland, Arch. IVII(1901)ii,402,no. 27.
Besnier, Rev, Arch. XIII(1921)44,no.26; .Webster, Flints.
Hiist. Soc. Publ. XIII(1952-3)24,no.29 .Tylecote, Mefallurgy Table 33,no.21.

Examined in: 1966 by H.D.H.E.
Face (moulded) NERONIS ÂVG.EX K IAN•• IIII COS • BRIT Front(moulded) [E]X K IVL P M M COS Back(incuse) EX ARGENT: C •N[I]PI ASCA[NI] |XXX Neronis Aug(usti) ex k(alendis) ian(uariis) quartum co(n)s(ulis plumbum) Brit(annicum)

Ex k(alendis) Iul(iis) p(ontificis) m(aximi),co(n)s(ulis) EX argent(ariis) G(ai) N[i]pi Asca[ni] XXX - (product.) of Nero Augustus from the lst January in his fourth consulship, British (lead)' 'From the first of July Pontifex Maximus, consul.' From the lead-silver works of Gains Nipius Ascanius.' 30^{\prime}

Date:A.D.60. The Imperial titles of Nero date this pig
to A.D.60. He entered his fourth consulship on lst January, The lst July in the second line refers to the year 60 , and not A. D. 59 which Hetoner favours would appear to have been a mining official in Somerset (see also nos.108,114,116-7). He later appears (no.91) as the lessee of a mine in Flintshire, for the pig bears his name on the face. The significance of the numeral 30, I believe to be the number of librae in enicess of a standard weigh of 200 librae. 230 librae are the equivalent of 75.3 kg ., which corresponds exaotly with the present weight of this pig. (see above p. 127 ff.)

The weight of the pig is 166 lb . and not 156 lb . as s.tated by; Gowland.
91. Found in 1950, at. Carmel, Flints. and now in the Mational Museum of Wales,Cardiff.
weight: 61 kg .
height: 9.52 cm . base:59.6. $\times 13.9 \mathrm{~cm}$. faces: $52.3 \times 8.25 \mathrm{~cm}$. silver content: $0.0037 .5 \%$
mine of origin: Flints.
J:RS XHI(1951) 14.2 no.8. Webster, Flints. Hist. Soc. Publ. XIII (19.52-3)24,no.26. Tylecote Metallurgy Table 34 , no. 70 . Face(moulded) C - NIPI 9 ASCANI

G(ai) Nipi Ascani
"(product) of Gaius Nipius Ascanius.'
Dates(?) The Flints.mines were under direct Imperial control in the list Century A.D., and the lessee here is a private individual, who, in A.D. 60 was supposedly an Imperial official in the Somerset mines(pig.90). The date of this pig: is therefore probably late lst. Century rather than second Century, as was first favaured (JRS loc.eit.). It, also seems likely that leasing was in operation some time before the reign of Hadrian. Nipius is a rare nomen, as is the gognomen Ascanius. As in the case of Gaius Iulius Protims, alessee from the Lutudaron mines(nos.150-155) hehad probably been elevated to the status of freedman.
92. Found in 1883, at Saint Valery sur Somme, Boulogne, France, and now in the museum at Saint Germaix en Laye, negr Paris. weight: 7.5 kg . height: 10 cm . base: $61 \times 17 \mathrm{~cm}$. mine of origin:Mendips,Somerset. CII XIII 34.91 . IIS 8709 . Besnier, Rev.Arch.XIII(1921) 67,no. 45.

Face(moulded) NERONIS AVG - BRITAN: I •II Neronis Aug(usti) (plumbum) Britan(nicum) I(egio) II ((product) of Nero Augustus, British (lead)s the Second Ledion (produced it)."

Date:A.D. 54-68. This pig is one of the few examples which bear a legionary stamp, and signify that at some time during Nero*s reign, the mines on the Mendips were under military control.No.93,from South Wales, also bears the military stamp of the Second Iegion(see above p. 138 f.l
93. Fragment of a pig,found in 1947, at Caerwent, and now in the National Nuseum of Wales,Cardiff.
weight: 16.8 kg .
height: 13.3 cm . base:1l.4(the rest being cut away) $x 13.3 \mathrm{~cm}$. face:10.1 (the rest being cut away) $\times 8.9 \mathrm{~cm}$. mine of origin:South: Wales.

JRS XXXVIII(1948) 101.Webster, Flints. Hist. Soc. Publ. XIII (1952-3)28,n0.57. Tylecote, Metallurgy, Table 34,no.80. face(transverse) (mquidiedin) I] EG II AVG II egionis) II Aug(ustae)
'(product) of the Second Iegion Augustav."
Date: (?) . This is only part of a pig, the main inscr
iption of which has been lost. The Iegionary stamp signifies that at some stage, the mines of South Wales weredilike the Somerset ones, under military control of the Second Legion AUGUSTA.
94. Found in 1838 at Broughton, near Chester, and now in the Grosvenor Museum,Chester. weight:81. 2 kg . height: 10.8 om. base: $58.1 \times 13.9 \mathrm{~cm}$. face:57.1 x 7.6 cm . silver content: 0.0026% mine of originsFlintshire. CII VII 1204 - EE IX p.64.2-3. Way, AJ XVI(1859) 27. Gowland,Arch.IVII(1901)ii,402,no.28. Besnier, Rev.Arch. XIII(1921)49.no.28. Webster, Flints. Hi.st. Soc.Publ. XIII (1952-3)22,no.19. Tylecote, Metallurgy, Table.34,no. 33

Face (moulded) INP • VESP • V • T • IMP • III COS
(moulded) DE: CEANGI
Imp(eratore) Vesp(asiano) V \mathbb{T} (ito) Imp(eratore) III $\operatorname{co}(n) s$ (ulibrss)

Deceangl(icum plumbum)
'(cast) while the Emperor Viespasian was consul for the fifth time, and Titus Imperator for the third time." "Deceanglic (lead)"

Date:A.D.74. 'Deceanglic lead"identifies this pig as ai product of Flintshire, which was inhabited by the Deceangli. "
95. Found in 1886, at Roodeye, Chester, and now in the Grosvenor Museum,Chester.
weight:87 kg.
height:ll. 4 cm . base: $59.7 \times 13.9 \mathrm{~cm}$. face: $57.1 \times 7.6 \mathrm{~cm}$. silver content: 0.0027% mine of origin:Flintshire.

EE VII 1121 • IIS 8710 • JRS XII(1922) 283. Gowland, Arch. IVII(1901)ii.402,no.29. Besnier,Rev.Arch.XIII(1921) 50, no. 29. Webster, Flints. Hist.Soc. Publ. XIII (1952-3) 22, no.20. Tylecote, Metallurgy, Table 34,no.34. Face (moulded) IMP • VESP • AVG • V . T • IMP • III Front (mouided) DE CEANGI
Imp(eratore) Vesp(asiano) Aug(usto) V (et) T(i.to)
Imp(eratore) III
Deceangl(icum plumbum)
Date:A.D.7.4. "(cast) while the Emperor Vespasian Augustus (was consul) for the fifth time, and Titus Imperator for the third time.'
-Deceanglic (lead).'
No.96. Found in 1772, on Hints Common, and now in the
Bri.tish Museum.
weight: 68.9 kg .
height: 10 cm . base: $56 \times 13 \mathrm{~cm}$. face:
silver content: 0.0022%
mine of origin:Flintshire.
CII VII 1205 . EE IX 1264 .Way, AJ XVI(1859) 28. Gowland, Arch.IVII(1901)ii, 402,no.50.Besnier, Rev.Arch. XIII(1921)51,no.32a. Webster,Flints. Hist. Soc. Publ. XIII (1952-3)22,no.21. Tylecote,Metallurgy Table 33,no.22. Face(moulded) IMP • VESP • VII T• Front () DECEA G Imp(eratore) Veap(asiano) VII (et) T(ito) Imp(eratore) V: $\operatorname{co}(n) s(u l i b u s)$:...:

Deceanglicum plumbum)
"(cast) while the Emperor Vespasian was consul for the seventh time, and Titus Imperator for the fifth time." "Deceanglic (lead)."

Date:A.D. 76
97. Found in 1838, at Tamworth, and now in Tamworth Castle
museum.
weight: 68. kg.
height: 10.1 cm . base:57.1 x 14.6 cm. face:52 x 7.6 cm. mine of origin:Elintshire.

EE IV 1264: Besnier,Rev.Arch.XIII(1921)52,no.32b.
We:bster, Flints.Hist. Soc. Publ.XIII(1952-3)22,no.22.

Face (moulded) IMP • VESP • VII T • IMP • V • COS
Imp(eratore) V̇esp(asiano) VII (et) T(ito) Imp(eratore)
V cゅ(n)s(ulibus.)
(cast) while the Fmperor Vespasian was consul for the seventh time, and Titus Imperator for the fifth time."

Date:A.D.7.6.

98-107. Twenty pigs were found in the River Mersey at Runcorm, bearing either this inscription or that recorded for pigs.120-129.All twenty pigs have since been lost. Their weights and measurements were not recorded.
Mine of origin: Fliatshire. Camden, Britannia (1590)470. Webster, Flints.Hist.Soc.Publ. XIII(1952-3)22,no.24. Tylecote, Metallurgy, Table 34,no.35f. Inacription, transoription and translation as for no.97

Date:A.D.7.6.

Pig no. 108, showing the
inscription C•P•O
108. Found in 1952 at Syde, Gloucestershire, and now in the Corinium museum,Cirencester. weight: 78.9 kg . height: 10.1 cm . base:58.1. x 16.8 cm . face: $52 \times 7.6 \mathrm{~cm}$. mine of originsMendips,Somerset.

JRS IIII (1963) 162
Face(moulded) INP • VESP • AVG • VIIII BRIT • EX AR
Left end (impressed) C•P• C•PD C•PD C•P. C.PD
front(incuse) SOCNOVE.
Imp(eratiore) Vesp(asiano) Aug(usto) VIIII (plumbum)
Brit(annicum) ex ar(gentariis)
G(aius) P(ublius) C(\%'..)
Soc(ietatis) Mov(a)ec ()

- (cast while) the Emperor Vespasian Augustus was consul
for the ninth time:British(lead) from the lead-silver works.'
*Gaius Publius C(\%...) (produced this)'
'(product) of the Novaec. Company.'
Date:A.D.79. Gaius Publius C(....) was probably an official like Gaius Nipius Ascanius on pig. 90, and Tiberius Claudius Triferma oin pigs 114,116 and 117-also from Somerset. The Novaec. company is the earliest company of which. we have evidence in Britain.Companies had
operated lead mines in Spain, of.pigs nos. $80 \rightarrow 86$. The Novaec. Company operated the lead mines in Somerset, producing al sopigs nos. 109 and 110.

109. Found together wi.th pig. 110 at Clausent:um, Bitterne, Southampton, and formerly in private ownership, but now presumably: lost.
weight: 7.8 .9 kg. (in 1951, when last weighed by R.P.W.) beight: 11.4 cm . base:59.7 x 14.6 cm . face: $49.6 \times 7.7 \mathrm{~cm}$. silver content:0.000.5多
mine of origin:Mendips,Somerset.
Besnier, Rev.Arch. XIII(1921) 119,no.70.Webster, Flints.
Mist.Soc. Publ. XIII(19.52-3)28,no.55. Tylecote, Metallurgy
Table 34,no.64.
Face(moulded) IMP • VESPASIAN • AVG
Front(mouldedi) BRIT • EX ARG: • VEB
(incuse) NOVEC.SOC.NO IIVI
Imp(eratoris) Vespasian(i) :Aug(usti)
(plumbum) Brit(annicum) ex arg(entariis) Veb.
Nov(ai)ec.Soc(ietatis) No(vaec.) IIVI
"(product) of the Emperor Vespasian Augustus"
"British (lead) from the Veb.lead-silver works."
(product) of the Novaec.Company.' ' 8 '

Date:A.D.69-79. The absence of the Imperial titles makes the exact dating of this pig impossible.This pig is again the product of the Novaec.Company, and for the first time we have a pig which is inscribed with the word Veb., which must be the abbreviation for the name of the Mendip mining area. The significance of the numeral IIVI is obscure. If one takes it as ' 8 ' being; the number of librae int excess of a standard weight of 200 librae, as I have suggested above, p. $127 f f^{\prime}$, then this pig, and no. 110 fall short by a long way. For this pig weighs 7.8 .9 kg . or 240 librae. This pig; had presumably been brought to Clausentum for export to Gaul.
110. Found with no. 109 in 1918, at Clausentum, Bitterne, Southampton. It was formerly in private ownership, but is now presumably lost.
weight:in 1918, this pig was said to weigh 75.3 kg . but no. 109, then said to weigh 80.7 kg .was subsequently (1951) found to weigh 78.9 kg . We would therefore be justified in assuming that the weight of this pig would also be discrepant, making it. 0.73 kg . heightis 10.5 cm . base:58.1 $\times 13.9 \mathrm{~cm}$. face: $49.6 \times 7.7 \mathrm{~cm}$ mine of origin:Mendips,Somerset.

Besnier, Rev:Arch.XIV (1922)119,no.70. Webster, Flints. Hist. Soc. Publ. XIII (1952-3) 28, no. 56. Tylecote, Metallurgy, Table 34,no. 6.5

Face(moulded) IMP - VESPASIAN • AVG
Front(moulded) BRIT: HX ARG - VEB
Front(incuse) SOCNO.... I SOCNO...
Back(incuse) V.III
Imp(eratoris) Vespasion(i) Aug(usti)
(plumbum) Brit(annicum) ex arg(entariis) Veb. soc(ietatis) N(vaec.....)

VIII

* (product) of the Emperor Vespasian Augustus.
*Bri.tish (lead) from the Veb.lead-silver works:
* (product) of the Novaec. company."

8
Date:A.D.69-79. The significance of the numeral V.III is again obscure, the pig, weighing: 223 librae (cfi.pig. 109).
111. Found in 1876, at Charterhouse on Mendip,Somerset, and now in the City Nuseum, Bristol.
weight:82.5 kg.
height: 12.7 cm . base $: 60.9 \times 15.2 \mathrm{~cm}$. face: $50.8 \times 8.2 \mathrm{~cm}$ silver content:0.0021\%
mine of origin;Mendips, Somerset.
EE III 121b. VCH Som.i. 341 . Bésifier, Rev.Arch. XIII(1921)
41,no.23ib. Webster, Flints. Hist. Soc. Publ. XIII(1952-3)
24.no.31. Tylecote, Metallurgy Table 34.no.74

Frace(moulded) IMP • VESPASTANI • AVE
Imp(eratoris) Vespasiani Aug(usti)
"(product.) of the Emperor Vespasian Augustus."
Date*:A.D.69-79.
112. Found in 1874, at Charterhouse on Mendip; Somerset, but, now lost. Its weight was not recorded.
approximately $38 \mathrm{~cm} .10 \mathrm{ng}, 9 \mathrm{~cm}$. wide and 5 cm. thick. mine of origin: Mendips,Somerset
EE III 121c. VCH Som.i.341. Besnier, 妾ev.Arch. XIII(1921) 4.1, no. 230. Webster, Flints. Hist.Soc. Publ. XIII(1952-3) 24,no.32. Tylecote, Metallurgy Table 34,no.75.

Frace(moulded) TMP • VESPASIAL
Imp(eratoris) Vespasia[ni Aug(usti)]
"(product) of the Emperor Vespasian Augustus ."
Date:A.D.69-7.9
113. Found in 1875 at Charterhouse on Mendip, Somerset, and now at the Priory, Roehampton.
weight: 78. 1 kg .
height: 13.9 cm . base: $60 \times 15.8 \mathrm{~cm}$. face: $50.8 \times 8.2 \mathrm{~cm}$. silver content:trace.

EE III 121ai JRS XXI(1931) 256. VCH: Siom.i.341. Gqwland, Arch.IVII(1901)ii. 402,no.18. Besnier, Rev. Arch. XIII(1921) 41, no. 23a. Webster, Flints. Hist. Soc. Publ. XIII(1952-3) 24,no.30. Tylecote, Metallurgy: Table 34,no.26.

Face (moulded) IMP • VESPASIAN • AVG
Front(moulded) BRITY - EX ARG - VEB
Imp(eratoris) Vespasian(i) Aug(usti)
(plumbum) Brit(annimicum) ex arg(entariis) Veb.
"(product) of the Emperor Vespasian Augustus."
"British (lead) from the Veb.lead-silver works."
Date:A.D. 69-79

Noss. 114 - 117 . Four pigs were discovered in 1956 on Bookery; Farm, Green Ore,Somerset. (ST 55 576.511), approximately five miles east of the Charterhouse mining: centre.
mine of origin:Mendips,Somerset.
Som.Dorset NQ XXVII(Hec.1956)110-111.Som.ASP CL-CII
(1957)52-88. JRS XIVII(1957) 230 , $\operatorname{LII}(1962) 195$.
114.
weight:84.8 kg.
heights12.7. cm. base:59.7 $\times 15.2 \mathrm{~cm}$. face:51.4 $\times 8.9 \mathrm{~cm}$. silver content:nil.

Som.ASP CI-CII(1956-7)52-88, ai. Tylecote, Metallurgy Tab le 34,no.60.

Face(moulded) IMP • VESPASIAN • AVG
Front(moulded) BRIT • EX [ARG • VEB]
Back(applied)

Left end scored by plough on discovery
Right end(incuse) IXV (incuse and inverted) TI•CL•TRIF Imp(eratoris) Vespasian(i) Aug(usti)
(plumbum) Brit(annicum) ex [arg(entariis) Veb.] \wedge

IXV THi(berius) Cl(audius) Trif (erna)
"(product) of the Emperor Vespasian Augustus."
"British (lead) from the Veb. lead-silver works."
(${ }^{\prime}$)
65 "Tiberius Claudius Triferna (produced this).'
Date:A.D.69-79. The applied strip Λ occurs on this pig, and as V on pig; no.ll6. Its significance is unknown, and it does not occur elsewhere. The numeral LXV probaibly denotes the weight of the pig.Numerals occur also on
on no.s. 115 and 116.Together these reade65" (114), "78" (115) and " 68 " (116). Their respective weights are 84.8, 89.3 and $84.7 \mathrm{kg}$. , and in Roman librae, 259,273, and 262. Paimer(Sem.ASP loc.cit.) proposed that the stamped numerails. represented the weight of the pig in excess of a standard weight of $141 \mathrm{lb} .,(70 \mathrm{~kg}$.$) or 195$ librae. To support his argument he proposed that the <<X on pig. 180 (65.3 kg . or 200 librae) should be read not as CCX (210,which would correspond closely with the present weight of the pig), but as IIX, "8", This re'*arrangement however is untenable, and quite unsound epigraphically, as indicated to me by Ro.P.W. (December, 1966). It seems to me that the numerals stamped on these present pigs indicate the weighti in librae in excess of a standard weight of 200 librae, and on these examples, the inscription CC was intended to be taken as read. The numerals then comrespond closely with the present weight of the pigs.

Riberius Claudius Triferma (R.P.W.,JRS III(1962) 195. cf.CII XV 2467) was no doubt an Imperial official, whose stamp had to appear on the finished pig. It is interesting to note that a RHberius Claudius $\operatorname{Tr}(. .$.), whose cognomen is abbreviated too greatly to allow a confident translation, was later the lessee of a mine in Derbyshire (pigs
nos.144-148). It is attractive to think that Tiberius Claudius Triferna moved from his post as an official in Somerset to being; a lessee in Derbyshire, just as • Gaius Nipius Ascanius moved from Somerset(90) to Flintshire(91).The names of these lessees, together with Gaius Publius C(...) on pig: 108 suggest their promotion to the status of freedmen.

115.

weight: 69.35 kg .
height:12.7 cm. base: $60.9 \times 15.2 \mathrm{~cm}$. face: $51.4 \times 8.9 \mathrm{~cm}$ silver content:trace

Som.ASP CI-CII (1956-7).52 -88 , b. Tylecote, Metallurgy
Table 34,no.62.
Face(moulded from same die as 114)
IMP • VESPASIAN • AVG
Front(moulded) BRIT • EX ARG - VEB
Right end (incuse) IXXIIX (incuse and inverted) IRAD
Fimp(eratoris) Vespasian(i) Aug(usti)
(plumbum) Brit(annicum) ex arg(entariis) Veb.
IXXIIX IRAD
*(product) of the Emperor Vespasian Augustus.
EBritish (lead) from the Veb. lead-silver works.

${ }^{*} 78^{*}(?)$

Date:A.D.69-79. IRKD has not, been interpreted.
116.
weight:85.7. kg.
height:12. 7 cm . base: $60.9 \times 15.2 \mathrm{~cm}$. Face: $51.3 \times 8.9 \mathrm{~cm}$.
silver content: trace
Som.ASP CI-CII(1956-7) 52-88, c. Tylecote, Metallurgy
Table 34,no. 61
Face (moulded) IMP • VESPASTAN • AVG
Back(moulded) BRIT • EXX ARC - VEB
(applied) V (overlaying the A of ARG)
(incuse, transversely) TI•CI•TRIF
right end (incuse) $T I \cdot$ (qif TRIFER[INA]
left end (incuse) IXIIX
Imp(eratoris) Vespasian(i) Aug(usti)
(plumbum) Brit(annicum) ex arg(entariis) Veb.
V.

Ti (berius) Cl (audius) Trif (erna)
Ti (berius) Cl(audius) Trifer(na)
IXIIX
'(product) of the Emperor Vespasian Augustus'
"British (lead) from the Veb. leadmailver works*

Pig no. 117

(?)
*Tiberius Claudius Triferna(produced this)." * $68{ }^{*}$

Date:A.D.69-79. Two diess were used for stamping the name of Tiberius Claudius Triferna.One, reading TI•CI•TRTF, as on no. 114 and on the back of this pig,
 was used on the right end of this pig, and on the left end of no.117/.

117.

weight:84.0 kg. height: 12.7 cm . base: $60.9 \times 15.2 \mathrm{~cm}$. face: $50.8 \times 8.9 \mathrm{~cm}$ silver content: 0.056%

Som.ASP CI-CII(1957-8) 52-88, d. Tylecote, Metallurgy,
Table 34,no. 63
Face(moulded) IMP • VESPASIAN • AVG
Front(incuse and inverted) TMP
Back(incuse) TI•CL•TRTF TI•CI•TRTF
 Imp(eratoris) Vespasian(i) Aug(usti)
Imp,
Ti(berius) Cl(audius) Trif (erma)

Ti(berius) Cl(audius) Trifer(na)
*(product) of the Emperor Vespasian Augustus."
'Imp):
*Tiberius Claudius Triferna(produced this)." (twice)
Date:A.D.6.6-79. The stamp INP is presumably an Imperial checking stamp. The large silver content of this pig: compared with that of its neighbours, which contain only a trace or no silver at all, probably indicates that it escaped the cupelling process somehow. It is not likely to have been on the way to the cupelling hearth, since it was found together with three others which had already been cupelled, and it was already made up into an inscribed pig.

The four pigs 114-117 axe on permanent loan to Wells museum.
118. Found in 1734, on Heyshaw Moor, Nidderdale, Forks., and now in Ripley Castle, Forks.
weights 70.3 kg .
height:10.2 cm. base:59 $\times 13.9 \mathrm{~cm}$. faces $50.8 \times 7.7 \mathrm{~cm}$. mine of origin:Yorkshire.

GII VII 1207. EE IX p.643. WayipAJ XVI(1859) 29. Gowland, Arch.IVII(1901)ii,402,no.13. Besniex, Rev.Arch.

XIII (1921)59,no.41. Wester, Flints. Hist. Soc. Publ. XIII (1952-3)28,no.49. Tylecote, Metallurgy Table 33,no.15. Face (moulded) IMP • CAES • DONITIANO • AVG • COS • VII Front(moulded) BRIG:

Imp(eratore) Caes(are) Domitian Aug(usto) co(n)s(ule) VIII (plumbum) Brig(anticum)
(cast) during the seventh consulship of the Emperor Domitian Augustus. \mid *Brigantic lead.

Date:A.D.81. The BRIG on the front of the pig; identifies: it as having come from a mine in Yorkshire, which was inhabited by the Brigantes.
119. Found in 1735 on Heyshaw Moor,Nidderdale, and now in the British Museum. weight: 69.8 kg .
height: $\$ 0 \mathrm{~cm}$. base: $58 \times 13.3 \mathrm{~cm}$. face: $51.4 \times 8.9 \mathrm{~cm}$. silver content: 0.0066% Mine of origin Yorkshire.

CII VII,1207. EE IX p. 643. Way, AJ XVI (1859)29. Gowland Arch.IVII (1901)ii, 302,no.12. Besnier Rev. Arch. XIII (1921)59,no.41. Webster Flints. Hist. Soc. Publ.XIII(1952-3) 28,no.48. Tylacote Metallurgy, Table 33, no. 16

Inscription, expansion and translation as for no. 118 Date: A.D. 178

120-129. Twenty pigs were found in the river Mersey, at Puncorn, bearing either this inscription or that recomded for pigs 98-107. All twenty pigs have been lost. Their welghts and measurements were not recorded. mine of origin:Flintshire.
CII. VII,1206. Camden ed.3(1590)488. Gowland Arch.IVII (1901) ii, 402,no.30-49.Webster, Flints.Hist. Soc. Pu.bl. XIII(1952-3)22,no.23. Besnier Rev.Arch.XIII(1921)50, no.23.Ty\$ecote Metallurgy table 34.nos.35-54. Face (moulded) IMP • DONIT • AVG: GER

Front(moulded) DECEANG:
Imp(eratoris) Domit(iani) Aticg(usti) Ger(manici)
(plumbym) Deceang(licum)
' (product) of the Emperor Domitian Augustus Germanicus.' 'Deceanglic (lead).'

Date: A.D. 81
130. Found in 1849, at Common Hall St., Chester, and now in the Grosvenor Miuseum, Chester.
weight: 76.2 kg .
height:ll. 4 cm : base: $58 \times 13.9 \mathrm{~cm}$. face:52 x 8.9 cm .
silver content: 0.002%
mine of origin:Flintshire,
CII VII,1212. EE III p.141. Gowland Arch. $\mathrm{EVII}(1901) \mathrm{ii}$, 402,no.51. Besnier Rev.Arch.XIIT(1921)51,no.31. Webster

Flints.Hist.Soc.Publ.XIII(1952-3)22,no.25. Tylecote, Me.tallurgy, Table 34.,no. 55.

Face(moulded) CAESARI[S....] NIVADON:
Caesari[s...a] NIVADON:

- (product) of Caesar (?).

Date: ? . The transoription and translation of this pig: are obscure.
131. Found, cut in half, in 1922 or 1923, at Richborough, and now in Richborough maseum. Its weight is not recorded. height:1l. 4 cm . base:35.4 am. (cut) $\times 15.2 \mathrm{~cm}$. face: 30.4 cm (cut) $\times 9.5 \mathrm{~cm}$.
mine of origin: (2)
JRS XI(1921) 239, XII(1922) 283. Webster, Flints. Hist. Soc. Publ. XIIII(1952-3)28,no.54. Tylecote, Me.tallurgy Table 34,no.79.

Face(moulded) TMP • NERVAE CA[...]
Imp(eratoris) Nervae Ca[es(aris)]
"(product) of the Fmperor Nerva Caesar.'
DatesA.B. $96=98$. This is the one example of a pig. produced during the reign of Nerva.
132. Found near Grassington, in the West Riding of Yorkshi re,
but now lost.
weight: $c .38 \mathrm{~kg}$. Measurements unrecorded. mine of origin:Yorkshire.

JRS XXI(1931)264, n. 5. Webster Flints. Hist. Soc. Publ. XIII (1952-3) 28,no.51. Tylecote, 焣tallurgy Table 34,no. 68 The inscription was said to be a Trajanic one. Date:A.D.98-117.
133. Said to have been found in about. 1819 near the road over Claverton Hill from Bathwick; Somerset.Now presumed. lost. Its measurements are not known. Weight:68-72 kg. ofelisita the Mendips, Somerset.

Skinner B.M.Ms.Add. 33673 f. 105.
Face(moulded) INP HADRTANVS AVG
Imp(erator) Hadrianus Aug(ustus)
The Emperor Hadrian Augustus (produced this)'
DateIA.D.117-138. The only reference we have to this pig is in the Skinner manuscript cited.An inscription in the nominative on a pig of lead is not otherwise known during, Hadrian's reign, and it is possible that Skinner is referring. to pig no. 135 which was found in 1822 in Bath. That his descriptions were not always accurate can be whown by referring: to pig no.192. Skinner records this pig in B. M. Ms.Add. 33686 f. 55 as reading PCCCCL, and on $f .58$ as CCXX.
134. Found at the Hirst mines, Swaledale, bout since lost. weight:c. 77 kg . measurements:unrecorded.
mine of origin:Yorkshire.
Webster, Flints. Hist.Soc. Publ. XIII(1952-3)28,no.50.
Tylecote, Metallurgy Table 34,no. 56
nine inscription was said to be a Hadrianic one.

Date:A.D. 117 - 138 .
135. Found in 1822 at. Sidney Place, Bath, Somerset, and now in the Roman: Baths Museum, Bath.
weight:88kg.
height:1l. 4 cm . base: $59.6 \times 15.2 \mathrm{~cm}$. face: $52 \times 8.2 \mathrm{~cm}$.
silver content:0.002\%
mine of origin:Mendips, Somerse.t.
CII VII 1209d. EE IX p.643. Weyf, AJ XVI(1859)32.
V.CHY Som.i.34.2.Gowland, Arch. IVII(1901)ii. 402,no. 21

Besnier, Rev.Arch. XIII(1921)48,no.27d. Tylecote,
Metallurgy Table 34,no.29. Webster Flints. Hist. Soc. Publ. Xill(1952-3) 28, no. 52 .
Face (moulded) IMP • HADRTANI • AVG
Imp(eratoris) Hadriani Aug(usti)
*(product) of the Enperor Hadrian Augustus.'
Date:A.D. 117-138.

Pig no. 137
136. This pig is really the same as no.137, but since the details of its discovery and its weight were different,it was acceptted as a: different pig; by Way, AJ XXIII(1866) 279.n.5. and by others. The pig was said by Bagshaw, History of Shropshire 678, to have been found at Minsterley,Salop, eight miles North of the spot where 137 was discovered. Its weight was said to be 173 lb .instead of the 193 lb . of no.137. It was said to be twenty inches in length, and twenty in girth; Haverfield, VCHi Salop i. 265 , suspected the error, and this was followed by others.(R.P.W.to H.D.HF.E.April,1967) CII VII 1209f. EE XX p.643. Gowland, Arch. IVII(1901)ii, 402,no.26. Besnier, Rev.Arch. XIII(1921))4, no. 27\%. JRS XXI(1931) 264. Webster, Flints. Hist. Soc. Publ. XIII (19.52-3)26,no.47. Tyilecote, Metallurgy: Table 34,no. 32
137. Found in 17:95 on Snailbeadh: Farm, Winsterley, Salop, and now in the British Museumit weight:86.6 kg.
height:11.4 cm. base:55.9 $\times 17.7 \mathrm{~cm}$. face: $49 \frac{1}{4} 6 \times 8.9 \mathrm{~cm}$. silver content: 0.007%
mine of origineShropshire.
C.II VII 1209c.EEfIX.Po.643. Way, AJ XVI(1859) 32. JRS XXI (1931)264. VCH Salop.i.265. Gowland,Arch. IVII(1901)ii.

402,no.22. Besnier, Rev.Arch. XIII(1921)48,no.270. We.bster, Flints.Hist.Soc. Publ.XIII(1952-3)26,no.45. TyIecotegMetallurgy Table 33,no.20.

Face (moulded) IMP HADRIANI AVG
Back(moulded) palm branch
tight: end (incuse) NSI
Imp(eratoris) Hadriani Aug(usti)
palm brauch:
NSI
"(product) of the Emperor Hadrian Augustus."
palm branch
(?): stamp of an official not interpreted.
Date:A.D.117-138. The significance of the paim branch is not known. It occurs also on nos.138 and 139, and 166. It was moulded on the pig; and was not subsequently added. It is possible that this was the mark of a mint official Whittick, JRS XXI(1931)262. The paim branch cannot be a maric to denote the mine of origin, since no.166, on whichit also occurs was found at Charterhouse on Mendip. WSI must be the stamp of an official, which it is not possible to interpret.
138. Found in 176., near Aston farm-house in Aston parish,

Montgomeryshire, three miles North-West of Bishop's Castle, Shropshire. Once on loan to Birmingham Geological Museum, but now in the possession of Mr.Jasper, Ihinley Frall,Lydham,Salop.
weight:86.7 kg.
height:10.7 cm. base:55.2 $\times 17.7 \mathrm{~cm}$. face $: 48.9 \times 8.9 \mathrm{~cm}$. mine of origin:Salop
CII VII 1209b. EE IX p.643. Way, Ad XVI (1859) 32. JRS XXI(1931)263. VCHi Salop.i. 265. Gowland, Arch.IVII(1901)ii 402,no.23-4. Besnier, Rev.arch.XIII(1921)47,no.27a, b. Webster, Flints. Hist. Soc. Publ. XIII (1952-3)26,no.43.44. Tylecote, Metalluxgy Table 34,no. 30.

Eace(moulded) INP • HADRTANI • AVG
lower rim of face(incuse) MINB MINB
front(moulded) palm branch ; (incuse) hammer-mark back(moulded) palm branch
Imp(eratoris) Hadriani Aug(usti)
Minb Minb
palm branch ; hammer mark
palm branch
"(product) of the Emperor Hadrian Augustus.
'(?) stamp of an official - not interpreted.
Date:A.D. 117-138. The MINB stamp is minute, and led
one observer to read IEG XX . This has been rightly rejected by Whittick(Shropshire AST XIVI(1931-2)134.). The true significance of the stamp remains obscure. The hammer-mark seems to have been made by the blow of a reticulated hamer, hut again its significance is obscure. It was presumably the stamp of an official.
139. Found in 1851,near an earthwork called "The Roveries", Snead, two miles North of Bishop's Castle, Salop.Now in the City Museum,Iiverpool.
weight:86. 2 kg .
height: 11.4 cm. base $255.2 \times 17.7 \mathrm{~cm}$. face: $48.9 \times 8.9 \mathrm{~cm}$. mine of originaSallop.

CII VII 1209e EE EX p. 643 .Way, AJ XVI(1859)34.
JRS XXI (1931)264. VCH Salop.i.265. Fowland, Arch. IVII
(1901)ii.402.no.25. Besnier, Rev. Arch.XIII(1921)48,no.27e.

Webster, Flinte Hist. Soc. Publ. XIII(1952-3)26,no.46.
Tylecote, Metallurgy Table 34,no. 31 .
Face (moulded) INIP • HADRIANI • AVG
Back(moulded) palm branch
Imp(eratoris) Hadriani Aug(usti)
palm branch.
*(product) of the Emperor Hadrian Augustus.'
*(2) official mark not interpreted.
Date:zA.D. 117 - 138.
140. Found at Cheshunt, Hertfordshire, and now in the British Museum. weight:84.6 kg; heightsi3 cm. base 59×17 am. face: 52×8 am. mine of origin: (?) Derbyshire. EE IX.1264.a. Besnier, Ret. Arch. XIII(1921)56,no.40. Webster, Plints. Hist. Soc. Publ. XIII(1952-3)28,no. 53. Tyilecote, Me.tallurgy Table 34,no.67. Face (moulded) IIMP - CAES - HADRTANI • AVG Imp(eratoris) Caes(aris) Hadriani Aug(usti) " (preaduct) of the Emperor Hadrian Augastus." Date:A.D.117-138.
141. Found in 1777. on Cromford Moor, Wirksworth, near Matiock, Derbyshire, and now in the British Nuseum. weight: 57.6 kg.
height: 9.5 cm . base: $56.5 \times 13.7 \mathrm{~cm}$. Pace: $48.2 \times 8 \mathrm{~cm}$. mine of origin:Derbyshire.
silver content:0.006\%

Pig no. 141

CII VII 1208. EE III p.141. IX p.643. ILS 8711a.
WaV. AJ XVI(1859)31. VCHi DERBS.i.230. Gowland, Arch. IVII (1901)ii.402,no.1. Besnier,Rev. Arch.XIII(1921)54,no.36. Webster, Flints.Hist.Soc. Publ. XIII(1952-3)20,no.14. Tylecote, Metallurgy Table 33,no.14. Face (moulded) IMP • CAES • HADRIANI • AVG • MET • IVT Imp(eratoris) Caes(aris) Hadriani Aug(usti) met(alli) Iut(udarensis)
*(product.) of the Fmperor Caesar Hadrian Augustus,from the Iutudaron mine."

Date:A.D.117-138. This is the earliest pig bearing the name Iutudaron, the Roman place-name for the Derbyshire area. This pig is one of the few from Derbyshire which bears an Imperial inscription. The majority carry thie name of lessees on the face. This pigi shows that for some time during Hadrian's reign, the Derbyshire mines were under Imperial control.
142. Found in 1894, on Tansley Moor, Natlock, Derbyshire, and now in the British Haseum. weight: 79.3 kg .
height: 10.5 cm . base: $55.7 \times 11 \mathrm{~cm}$. face: $49.2 \times 8.7 \mathrm{~cm}$. silver content: 0.0025
mine of originsDerbyshire.
EE IV 1266. IUS 871le. VCHi Derbs.i.232. Gowland, Arch. IVII(1901)ii.402,no.3. Besnier, Rev. Arich. XIII(1921)53, no.33.Webster, Flints. Hist. Soc. Publ. XIII (19.52-3)20,no.1. Tylecote, Metallurgy no.12.

Face (moulded) P • RVBBI - ABASCANTI METALII LVIVDARES $P(u b l i)$ Rubri Abascanti metalli Iutudare(n)s(is). - (product.) of Publius Rubrius Abascantus, from the Iutudaron mine.:

Diate: (?)2ad.Century; A.D. Publius Rubrius Abascantus was the lessee of theDerbyshire mine from which this pig. came. The majority of the Derbyishire pigs bear the names of lessees.Little is known of them, but their names suggest that they had been promoted to the status of freedmen. The nomen Rubrius is unfown elsewhere in Britain, but is found in Spain. The cognomen Abascantus has been suggested as the expansion of G. VAJAB, G(aius) Val(erius) Ab(ascantus) for CII 1336 (1145), a patella from Camulodunum, by/ C.R.Smi.th, collect.ant.2. (1852)40. This cognomen is also found in Spain.
143. Found before 1783, at Ma.tlock Bank, Derbyshire, and now
in the Britishi Huseum. weight: 37.6 kg .
height:7 cm. base: $51.5 \times 11.7 \mathrm{~cm}$. face: $47.7 \times 8.7 \mathrm{~cm}$. siliver content: 0.0039%
mine of origin:Derbyshire.
CII VII 1214. IIS 8711b. Gowland,Arch. IVII(1901)ii.402, no.2. Besnier, Rev.Arch. XIII(1921)54,no.34. Webster, Flinte. Hist.Soc. Publ.XIII (1952-3)20,no.2. Hislecote, Me.tallurgy Table 33,no. 13.

Face (moulded) I • ARVCONI - VERECVNDI • METAL • IVIVD I(uci) Aruconi Verecundi metal(1i) Iutud(arensis)
(product) of Lucius Aruconus Verecundus,from the Iutudaron mine.

Date:second Century A.D. The nomen Aruconus is not found elsewhere in Britain. The cognomen is found thrice in Bmitain, once being on the tombstone of a centurion found at Colchester, CII VII 90. RIB i. 200.
144. Found in 1777, at Matlock, Derbyshire, but since lost. weight: 78.5 kg .
height: 11.7 om. base $50 \times 16 \mathrm{~cm}$. face: $42.7 \times 7.5 \mathrm{~cm}$. mine of origin:Derbyshire.

CII VII 1215a. Way, AJ XVI(1859)25. Gowland,Arch.IVII
(1901)ii. 402,no.10. Besnier,Rew.Arch. XIII(1921)54,no.35a: Webster, Flints. Hist. Soc. Publ. XIII (1952-3)20, no. 3. Tylecote, Metallurgy Table 33,no. 23.

Face (moulded) TI•CCI - TR • IVT: • BR • EX ARG Ti(beri) $C l$ (audi) Tr (ophimi) Iut(udarense plumbum) Tr(ifernae)
Br(itannicum) ex arg(entariis).

- (product) of Tiberius Claudius Trophimus(or Triferma) British lead,from the Iutudaron (mine), from the leadsilver works.'

Date:late lst Century, or early 2nd Century A.D.) It is attractive to think that the Tiberius Claudius $\operatorname{Tr}(. .$. on this and on the next four piigs is the Triferna from Somerset, pigs.nos.ll4,116, 1l7, who, having been an official in Somerset, has moved to Derbyshire as lessee. However, the abbreviation of the cognomen to $T R$ makes the positive identification impossible. The cognomen Trophnimus oocurs on an amphora from Iondon (CII VII 1331,115).

145-148. Tlour pigs were found in 1824 at Pulborough, Sussex. One is in the Britishi Nuseum, two are lost and one, formerly at Parham Hall, Pulborough,is now apparently lost.

The details of the British Museum example are: weightz82.9 kg.
height: 12 cm . base: $58 \times 15 \mathrm{~cm}$. face: $44.4 \times 7.6 \mathrm{~cm}$. silver content: 0.0034%
Mine of origin: Derbyshire.
CII VII 1215b. IIS 8711c. Way, AJ XVI(1859)26.
Gowland, Arch. IVII(1901)ii.402,no.6-9.Besnier, Rev.Arch. XIII(1.92ј)57.no.35. Webster, Flints.Hist.Soc. Publ. XIII (1952-3)20,nos.4-7.Tylecote, Metallurgy Table 33,nos.8-11. Face(moulded) INSCRIPTION, transcription and Translation as for no. 144.

Date:late. Is.t Century, or early and Century A.D.
149. Found in the river Tiber, at Rome, and now in the Diocletian Baths Museum. weight:83.8 kg.
feight: 10.5 cm . base: $60 \times 15 \mathrm{~cm}$. fäce $: 51 \times 8 \mathrm{~cm}$. mine of origin:(?)Derbyshire

CIII XV 7919 . Besnier, Rev.Arch.XIV(1922)113,no. 67.

(incuse) [I • IVII]
 TR[

$\mathbb{T}(i t i)$ Iuli Tr Co...

Date:?. Positive identification of this pig as a Derbyshire one is not yet possible. Tiberius Claudius

Triferna, on pigs from Green Ore, nos.114-117, and Tiberius Claudius Tr (0.0..) on pigs 144-148 cannot be identical with this man.We cannot know how to expand the Tr.here.
150. Found in 1848, at Hexgrave Park, Nottinghamshire, and now in the British Mruseum.
weight:82.6 kg.
height: 12 cm. base: $57.7 \times 13.9 \mathrm{~cm}$. face: $50.2 \times 9.5 \mathrm{~cm}$. silver content: 0.0082%
mine of origin:Derbyshire
CII VII 1216. EE IX 1265.IIS 8711d. Way, AJ XVI(1859) 36. Gowland,Arch. WVII(1901)ii.402,no.4. Besnier,Rev.Arch. XIII(1921)55,no. 38a.Webster, Fllints. Hist. Soc. Publ. XIII (1952-3)20,no.8. Tylecote, Metallurgy Table 33,no.1. Face (moulded) C • IVL - PROII • BRIT • LVI - EX ARG G(ai) Iul(i) Proti (plumbum) Brit (annicum) Irat(udarense) ex arg(entariis).

* (product) of Gaius Iulius Protus, British lead from the Iutudaron mine,from the lead-silver works.'

Date: (?) 2nd Century A.D. The cognomen Protus is not known elsewhere in Britain.
151. Found in 1890 with no. 152 at South Cave, Brough-on-

Himber, Yorkshire, and now in the museum at Hull.
weight: 60.2 kg .
height: 11.4 cm . base:55.5 $\times 13.3 \mathrm{~cm}$. face: $50.2 \times 9.5 \mathrm{~cm}$.
silver content:0.0082縕
mine of origin:Derbyshire
Gowland Arch. Lvol (1901) ii, 402, no. 5 .
EE IX 1265. Besnier, Rev. Arch.XIII(11921)55,no.38b.Webster,
Flints.Hist.Soc.Publ.XIII(1952-3)20,no.9.Tylecote,
Metallurgy Table 33,no.2.
Inscription, Transcription and Translation as for no. 150 Date:? 2nd Century A.D.
152.A lead plate. $17.7 \times 8.8 \mathrm{~cm} .$, presumably the face of
a. pig was found in 1890 at South Cave,Brough-on-Hiumber, Yorkshire, but is now lost.
mine of origin:Derbyshire
CII. VII 1217. Besnier, Rev.Arch.XIII(1921)56,no. 39

Face (moulded) [C • IVL • PROTI] \hat{C} BR[IT • IVTI] EX ARG
Expansion and translation as for no. 150
Date:? 2nd Century A.D.

153-156. Four pigs of lead, together with the rough casting no.158, were found in 1940, at Brough-on-Humber, Yorkshire.

They are now in the museum at Hull.
mine of origin:Derbyshire.
JRS XXXI (1941) 146.
153.
weight:86. 2 kg .
height: 13 cm . base: $59 \times 14.03 \mathrm{~cm}$. face:50.1 $\times 9.5 \mathrm{~cm}$. silver content:0.0104\%

Webster, Flints.Hist. Soc. Publ. XIII(1952-3)20,no.10. Tylecote, Metallurgy Table 33,no..3.

Inscription, expansion and translation as for no. 150
Date::? 2nd Century A.D. On the base of this pig, there are: adhering two Jumps of galena, approximately $2.5 \times 1.5 \mathrm{~cm}$. and 2.5 x 2.5 cm . There is also one lump of galena adhering to the base of pig.155. It was these lumps of galena which lead Smythe (學ewcomen Soc. Trans. XX (1939-40) 1 139ff.) to conclude that the inscription EX ARG on lead pigs could not mean that the pigs had been de-silverised.For, as he points out, no galena could survive the cupellation temperature of at. least 900 degrees Centigrade, whereas it could survive the smelting temperature of 327 degrees.
154.
weight:86.9. kg.
height: 13 cm . base: $59 \times 14.3 \mathrm{~cm}$. face: $50.1 \times 9.5 \mathrm{~cm}$. silver content: 0.0066%

Webster, Flints. Hist.Soo. Publ.XIII(1952-3)20,no.11. Tylecote, Metallurgy Table 33,no.4.

Inscription, expansion and translation as for no.150.
Date:? 2nd Century A.D.
155.
weight:89.2 kg.
height: 13 cm . base:59 $\times 14.3 \mathrm{~cm}$. 1ace:50.1 $\times 9.5 \mathrm{~cm}$. silver content 0.0056%

Webster, Flints. Hist. Soc. Publ. XIII(1952-3)20,no.12. Tylecote, Metallurgy: Table 33,no.5.

Inscription, expansion and translation as for no:150 Date:? 2nd Century A.D. There is a lump of galena adhering to the base of this pig, approximately 3.8 cm . in diameter. (see note on pig 153).
156.
weights87.8 kg.
height: 12.3 cm . base: $59 \times 13.9 \mathrm{~cm}$. face: $50.1 \times 8.8 \mathrm{~cm}$. silver content: 0.0068
mine of origin:Derby:shire
Webster, Flints. Hist. Soc. Publ. XIII (1952-3)20,no.13.
Tylecote, Metallurgy Table 33,no.6.
Face (moulded) SOC - LVT • BRTT • EX ARG
Soc(iorum) Iut(udarensium)plumbum) Brit(annicum)
ex arg(entariis)
(product) of the Iutudarensian partners, British lead from the lead-silver works.

Date:? 2nd Century A.D. This is the first product from a Derbyshire mine of a mining; company.
157. Found in 1957 at Ellerker, in the East Riding of Forkshire, and now in the museum: at Hull. weight\&7,9.2 kg. height:ll. 4 cm . base $: 58.4 \times 13.9 \mathrm{~cm}$. face: $50.8 \times 8.9 \mathrm{~cm}$. mine of origin:Derbyishire. JRS XIVIII(1958)152. Wylecote, Metallurgy Table 34,no.69. Inscription, expansion and translation as for no.156. Date:2 and Century: ADD.
158. A rough casting was found in 1940 at Brough-onHumber,Yorkshire, together with the four pigs 153-156. weight: 36.6 kg .
silver eontent:0.0068罟。
mine of origin:Derbyshire.
JRS XXXI(1941)146. Tylecote, Metallurgy Table 33,no.7.
No inscription.
It is possible that this was lead which had been run off into a bed of sand.
159. Found in 1910, at Belby, Forkshire, but sold for scrap. weight: (?) 51 kge measurements:unknow. mine of originsDerbyshire.

Webster Flints. Hist. Soc. Publ. XIII (1952-3) no. 18.
JRS XXXI(1941)146. Tylecote,Metallurgy Table 34,no.72.
Face(mouilded) SOCIORUFBR EX ARCF
Socior (um) L[ut(udarensium] plumbum) Br(itannicum)
ex arg(entariis)
"(product) of the Iutudarensian partners,British(lead)
from the lead-siliver works.'
Date:? 2nd Century; A.D.

ADDENDUM

159B. Found in 1967 on a Roman site, North-East of Weighton Iock, Broomfleet, in the East Riding of Yorkshire, on the North bank: of the Humber,four miles West of Brough.
weight: 79.4 kg .
height:ll. . 4 cm . Base: $60 \times 16.5 \mathrm{~cm}$. face:22.1 x 8.4 cm . mine: of origin:Derbyshire
R.P.W. to 平.D.H.E. 26.2.1968

Face (moulded) SOCIOR IVT BR • EX ARG
Socior(um) Iut(udarensium plumbum) Br(itannicum) ex arg(entariis)
(product) of the Iutudarensian partners,British (lead) from the lead silver works.

Date:? second Wentury A.D. R.P.W. states that this tallies with my 159a in lay-out and letter-heights, and in four flaws in the mould. It clearly came from the saine mould, but has suffered much more wear. The details of this pig reached me a few days before the thesis was sent to the binders. Consequently the full details are not included in tables or indexes.

159a. Found in 1966, in ai garden at Churchover, Caves Inn (Tripontium)Warwicks, and now stored by Dr.J.A.Reynolds at. the Associated Engineering Itd., Group Research Centre, Cawston, Rugby. weight: 78.2 kg . height:12.1 cm. base: $58 \times 16.1 \mathrm{~cm}$. face:44.4 $\times 7.6 \mathrm{~cm}$. mine of origin ${ }^{\text {Dembrbshire. }}$ JRS LVII(1967)206.

Face(moulded) SOCIOR - IVT • RR • EX ARG
Socior(um) Lut(udarensium plumbum) Br(itannicum) ex argoz(entariis)
"(product) of the Lutudarensian partners, British (Iead)
from the lead-silver works.
Date:? 2nd Gentury A.D.
160. Found in 1860 at San Nicolo in Sardinia, and now in the museum at Cagliari. In the form of a truncated pyramid. weight: 34 kg . heightiz 7 cm . base: $37 \times 15.5 \mathrm{~cm}$. face: $34 \times 10 \mathrm{~cm}$. mine of origin: Saxdinia
CIII X 8073,2. Besnier, Rev.Arch. XII(1920)222,no.1
Face(moulded) IMP CAES HADR AVG:
$\operatorname{Imp}($ eratoris) Caes(aris) Hadr (iani) Aug(usti)
' (product) of the Emperor Hadrian Augustus."
Date.sA.D.117-138. This piig is the earliest and one of the few examples of lead mining; activity in Sardinia.
161. Found in 1870 at San Micolo, Sardinia, and now in Berlin museum. It is a truncated pyramid. weight: 35.6 kg.
height:9; cm. base:42 $\times 11 \mathrm{~cm}$. silver content:0.004\%
mine of origin:Sardinia
CII X 8073,I. and p.1002. Besnier, Rev. Arch. XII(1920) 222,no.2.

Face(moulded) CAEZARIZ - AVG
front(incuse) CVII
Gaesaris Aug(usti)
CVII

* (product) of Caesar Augustus.'
"107*
Date:? The numerals 107 correspond almost exactly with the present weight of the pig; in librae - 108.It would appear that pigs in Sardinia,like Spain,were cast in moulds to produce specimens: of 100 librae.
162.A piece of lead which may be from a pig; of lead, found in Italy.
mine of origina? Spain.
CWIP II 6247,8. Besnier, Rev.Arch. XII(1920)241,no. 20
IMP
Imp(eratoris)
- (product) of the Eirperor.

Date:? Ist: or 2nd Century A.D.
163. Found in Rome, but now lost with no record of its weight and measurementst:
mine of origin: Sardinia.
GII XV 7914. Besnier, Rev.Arch.XIII(1921)113,n0.66
Face (moulded) CsESARTS DS AVG
front(incuse) CCCCXXI XCVIII
Caesaris Aug(usti)
CGCCXXXI XCVIII
"(product) of Caesar Augustus.
431 "98*
Date:? The significance of the numeral 431 is unknown. 98 is presumably the weight of the pig in librae.
164. Found in 1885 at. Worms, Germany, and now in the masaum a.t Worms.
weight: 61.5 kg . length: 50 cm .
mine of origin: ? probably: a mine in Gaul or Germany.
CII XIII 10029,25. Besnier Rev.Arch.XIII(1921)73,no.51. side(): DDD NNN \| CIXXI \| FCIXXV
D (ominorum) n (ostrorum trium) \mid CIXX $[V] \mid P$ CLXXV
" (product) of our three Emperors."
"17.5* by weight 175 librae."
Date:A.D.198-211. 175 is presumably the weight of the pig,its present weight being 188 librae. There were three Einperors from 198-211, from $283-284$, and from 337 - 340.We have evidence of Severan pigs(nos.173-175) and it seems likely; that this inscription refers to Severus,Caracalla and Geta.
165. FALSUM. Said to have been discovered before 1802, at, Castleton,Derbshire.

CII VII 1213. EE IX p.64.2. Way: AJ XVI(1859)36. VCFㅐ Derbys. i.232. Gowland Arch.IVII(1901)ii, 402,no.11. Besnier Rev. Arch. XIII(1921)55,no.37. Webster Flints.Hïst.Soc. Publ. XIII (1952-3)20,no.15. Ty recote Metallurgy Table 34,no.24. InP
Imp(eratoris)
"(product) of the Emperor'
J.Mawe, Mineralogy of Derbyshire (1807)6, cla imed that ${ }^{\prime} a^{*}$ bar of lead' had been found in Derbyshire, 'marked with the name of one of the Emperors'. This was stated to be

Pig no. 166

in the museum of a Mr.Greene, At Iichfield. Fhillips, Yorks. Phil. Soc. Proc.I(1849) 89 said that a pig had been. found at Castleton, on which only the letters IMP could be read distinctly. Haverfield VCHFloc.cit. rejects the pig, and there is good reason to support this.
166. Found in. 1873, at Charterhouse on Mendip, Somerset, and now at the Priory , Roehampton.
weight:101. 6 kg .
height: 12.3 cm . base: $59.7 \times 17.1 \mathrm{~cm}$. face: $49.5 \times 7 \mathrm{~cm}$. silver content:0:0029\%
mine of origin:Mendips,Somerset.
EE III 121d. JRS XXI(1931)259. VCH: Som. i.342. Gowland, Arch.IVII(1901)ii.402,no.19. Besnier, Rev.Arch.XIII(1921) 4.2,no.24a. Webster, Flints. Hist.Soc. Publ. XIII (1952-3) 24.no..33. Tylecote, Metallurgy Table 34,no.27.

Face (moulded) INP • CAES • ANMONINI • AVG • P[II] P • P right end(moulded) a circle
left end(moulded) a palm branch ; (incuse) a hammer-mark Imp(eratoris) Caes(aris) Antonini Aug(ustii) P[ii]
P (atris) P(atriae)
circle
palm branch ; hammer-mark

Pig no. 167

- (product) of the Emperor Caesar Antoninus Augustus Pius pater patriae.'
*(?) official marks not interpreted. Date:138-161. Official marks appear also on nos. 137-139 q. truncated pyramid shape.

167. Found in 1865, in the river Frome, at Bristol, and now at the City Museum, Bristol.
weight: 40.4. kg.
height:7.6 tapering to 6.3 cm .
base: $54.6 \times 13.9 \mathrm{~cm}$. face: $48.3 \times 6.9 \mathrm{~cm}$.
silver content: 0.002 落
mine of origin:Mendips,Somerset.
CIL VII 1210b. VCH Som.i.342. Gowland, Arch. IVII(1901)ii. 4.02,no.16. Besnier, Rev.Arch. XIII(1921)4.2,no.24b. Webster, Flints. Hist. Soc. Publ. XIII(1952-3)26,no.35. Tylecote, Metallurgy Table 33,no.19.

Face (moulded) IMP • CAES • A[NIO]NINI • AVGF • PII P • P
Imp(eratoris) Caes(aris) Entgnini Aug(usti) Pii p(atris) patriae.

- (product) of the Emperor Caesar Antoninus Augustus Pius pater patriae."

Pig no. 168

Date:A.D. 138 - 161. It would appear that this pig was filled in a mould that was standing on uneven ground.
168. Found in 1865, in the river Frome, at Bristol, and now in the British Museum.
weight: 34.5 kg .
height: 6.3 cm . base $: 52.7 \times 12.7 \mathrm{~cm}$. face: $49 \mathrm{t} 6 \times 6.9 \mathrm{~cm}$. silver content: 0.0034%
mine of originaMendips,Somerset.
CII VII 1210a: VCHI Som.i.342. Gowland,Arch. IVII(1901)ii. 402,no.15. Besnier, Rev. Arch. XIII(1921).42,no.24b. Webstex, Flints. Hist. Soc. Publ. XIII(1952-3)24,no.34. Tylecote, Metallurgy Table 33,no.18.

Inscription, expansion and translation as for 167. Date:A.D. 138 - 161.
169.A fragment of lead found in the eighteenth Century, ait Brution,Somerset, but since lost.
weight: 0.23 kg.
c. 2 cm. thick, $50 \mathrm{~cm} . l$ long and 8 cm. wide.
mine of origin:Mendips,Somerset.
CII VII 1211. Way, AJ XVI(1859)35. VCH Som.i.342. J.RS XII(1951)/ GFowland, Arch.IVII(1901)ii.402,no. 20

Besnier, Rev. Arch.XIII(1921)42,no.25a. Webster, Flints. \#ist.Soc. Publ.XIII(1952-3)26,no.36. Tylecote, Metallurgy Table 34,no. 28.

Face(moulded) INP • DVOR • AVG - ANIONTNII |
ETE VERI ABNENTIACORVM
Imp(eratorum) duor(um) Aug(ustorum) Antonini | e.t. Veri Armeniacorum

- (product) of the two Emperors Augustus Armeniacus, Antoninus and Verus."

Date:A.D. 164 - 169. Verus took the ti.tle Armeniacus is 163, but Marcus Aurelius took the same title in the following year. The pig must then be dated to between 164 and the death of Verus in 169.
170. Found in about 1530, at Wells, Somerset, but since lost. Its weight and measurements were not recorded. mine of origin:Mendips,Somerset. Ieland, B. M.MS.Cotton Julius C.VI f.37. JRS XII(1951)141. Webster, Plints. Hist. Soc. Publ.XIII(1952-3)26,no.37. Tylecote, Metallurgy Table 34,no.76.

By analogy, the inscription, expansion and translation are a:s for no.l69.

Date:A.D. 164-169

Pigs nos.171-172

222a

171-2. Two fragments of lead found in 1874, at Charterhouse on Mendip,Somerset, and now in the Castle Museum, Taunton They were originally thought to be from the same pig, but Whittick has shown that the metal for these two fragments was poured in from opposite sides of the mould, showing that they are not from the same pig.

Mine of origin: Mendips,Somerset.
EE III l2le, IV p.206. VCH Som.i.,342-3.Besnier, Rex.Arch. XIII(1921) 43 , nos. $25 \mathrm{~b}-\mathrm{c}$. Webster, Flints.Hist. Soc. Publ. XIII(1952-3)26,nos.38-9. Tylecote, Hetallurgy, Table 34, nos. 77-8. Whittick, JRS $\operatorname{LI}(1961) 108$.
171.

weight:

20 am.long $x 9.5$ am.wide, $x 2$ am. thick.

Face:(moulded) A] MHONIDI

JCORVM

Imp(eratorum) duor(um) Aug(ustorum) A] ntonini |
et. Veri Amenia]corum

* (product) of the two Emperors Augustus Aimeniacus, Antoninus and Verus.:

172.

14 cm . long $\times 5.7 \mathrm{~cm}$.wide $\times 0.6 \mathrm{~cm}$. thick.
Face(moulded)
AVT] $[$
AR] Mentia[corvm
$\operatorname{Imp}(e r a t o r u m)$ duor(um) Au] $E[$ (ustorum) Antonini
et Veri Ar] menia:[corum

- (product) of the two Fmperors Augustus Armeniacus, Antoninus and Verus.'

Date:A.D. 164 - 169
173. Fragment of a lead pig: found in 1840, at Lillebonne, North France, and now in Rouen Museum. weights 43.5 .5 kg .
height:13 cm. base: 29 cm.long. face:25 cm. long. mine of origin: ? presumably British from its location. CIL XIII 3222. Besnier,Rev.Arch. XIII(1921)68,no.46. Face(moulded). I [...] L[...]

MACIS • AVK • PA
$I[m p(e r a t o r i s)$ Caes(aris)] [uci Septimi Severi]) (Pertilnadis Aug(usti) Pa (rthici Adiabenici)
" (product) of the Emperor Caesar Incius Septimius Severus Pertinzx Augustus Panthicus Adiabenicus.

DatesA.D.195-211. Septimius Severus toolir the title Parthicus Adiabenicus in A.D.195, dating this pig to between then and his death in 211.

173A. Found at Chamilly and Alugi. Its present Iocation is unknown.
weight: 86 kg . measurements:unrecorded. mine of originmintshire or Shropshire ?.

Rev.Arch. (1941)no.28.
Face.(moulded) P
NACIS - AVG PARTICI ADIABENICI
() DI ${ }^{\circ}$ P IVICVC
CCXI.

Imp(eratoris) Caes(aris) I(uci) Se]p (timi) [Severi
(Perti)nacis Aug(usti) Part(h)ici Adiabenici
"(product) of the Emperor Caesar Lucius Septimius
Severus Pertinax Augustus Parthicus Adiabenicus.'
*(2)" not interpreted.
240"
Dat weighs 262 librae,twenty-two librae in excess of the stamped numerals.
174. Found in 1855, at \AA Chalon-sur-SaOne, France, and now in the Nuseum at Chalon.
weight: 86.3 kg .
lheight:12 cm. base:58 x 13 cm .
mine of origin: ? Shropshire
CII XIII 2612a. Besnier, Rev.Arch. XIII(1921)69,no.4.7.
Front (moulded) AUG PABTICI ADIABENICI
Back(incuse) DI'P IVICVC VICVC
[Imp(eratoris) Caes(aris) I(uci) Septimi Severi Pertinacis] Aug(usti) Part(h)ici Adiabenici

DEP IVICVC VICKC

- (product) of the Emperor Caesar Lucius Septimius Severus Pertinax Augustus Parthicus Adiabenicus.
*(?) not interpreted.
Date:A.D. 195 - 211. IVICVC have been taken by, some to be, the stamp of the Sixth Legion.However, since the Legionary titles are not given, and the letters CVC are used in conjunction with. IVI, which are completely unknown wi.th Ieg.VI ,R.P.W.concludes that this is not the correct interpretion (R.P.W. to H.D.H.EL) (December 1966).

175, Found in 1864 at AChalon-sur-Saône, France, and now in. $^{\text {Chen }}$. the museum at Chalon.
weight: 86.3 kg .
height: 12 cm . base: $58 \times 13 \mathrm{~cm}$.
mine of origin: possibly Flintshire or Shropshire.
CII XIII 2612b. Besnier Rev.Arch.XIII(1921)70,no.48.
Front(moulded) TEG XX
00 ander

004

000418

THEXX

Leg(ionis) XX
B(ene)f(iciarius) II Doc(cius)
Boc(cius)

* (product) of the Twentieth Iegion. :

The Beneficiarius Doccius (produced this).'
'Doccius (produced this)'
Date:Late second Century, A.D.The Twentieth Legion was based during the second and third Centuries at Chester. We should consider therefore that this was a product from the mines of Elintshire, or perhaps Shropshire,mines within easy reach of Chester. Some interpreters expand the stamp BiruIDOC as Beneficiarius Iegionis I Doc(....). It is hard to see why Leg.I should be mentioned on the same pig as Ieg. XX, and why,ff this is the Iegion, it carries the title DOC and not MINERVAE.Besides the

First Legịon was statiohed in Germany, and it is hard to understand why an official from that Legion was detáched for lead mining duties in Britain. It is unusual for rank. to come before the abbreviated name of an official,however. CII believes that 174 and 175 are two parts of the same pig, but Besnier is insistent that the second pig; is a whole one and is not fractured, and that the two are different pigs.Certainly their combined weights and measurements would be unusual.
1751. A fragment of lead found at Lidney Park, Gloucestershire, but now perished.Itw weight and measnrements are not reforded.
mine of origin ?
CII VII 1218.EE $1 x$,643. Webster Flints. Hist. Soc. Publ. xill (1952-3) 30,no.59 DOCCIVSI DOCCIVSI

Doccius
Doccius (produced this).'
Date: ? .This is first recorded in Lysons reliq. Brit.
Rom. 2. tab.29. Way AJ XVI(1859) does not record it, and it. may not be part of a lead pig.
1.76. Found in 1896, at Bradwell, Matlock, Derbyshire, and now in Sheffield Museum. weight: 50.7 kg .

HEIGHP: 7.5 cm . base: $50 \times 13.7 \mathrm{~cm}$.
silver content: 0.0034%
mine of origin:Derbyshire.
VCH Derbys.i.232. Besnier Rev.Arch. XIII(1921)ii,55.
Webster Flints. Hist. Soc. Publ. WIII(1952-3)22,no.16.
Tylecote Metallurgy Table 34, no. 71.
The inscription has perished.
1.77. Found in 1846, at Coker Hill, two miles Morth of Ma.tlock,

Derbyshire, but now apparently lost. Its weight and measurements are not; recorded.
mine of origin Derbyshire.
VCH Derbys.i,232. Besnier Rev. Arch. XIII(1921)ii.,55.
Webster, Flints. Hist. Soc. Publ.XIII(1951-2)22,no.17.
Tylecote Metallurgy Table 34,no.73.
There is no record of the inscription.
178, Found in the river Tiber at Rome, and attributed to Britain by reason of its shape and weight. weighte82.1 kg.
height: 12 cm . base: $59 \times 15 \mathrm{~cm}$. face: $50 \times 8 \mathrm{~cm}$. mine of origin: ? Britain.

CII XV 7920. Besnier Rev. Arch. XIII(1921)ii,114,no.68.
(moulded)

228
*(?) not interpreted.

Date: ?

17.9A, B, C, D. Four pigs were said to have been found. (before 1822) at Hove Abbey, in Sussex. Their weights, measurements and location were not recorded.
mine of origin: ?
SkinnerBM.Ms.Add. 33673 f. 105.

No inscription is recorded.

Date.? . Skinner, recording these pigs is merely reporting what he has heard. There is no further evidence of the existence of these pigs, which must be treated with suspicion.
180. Found in 1946, at Carsington, Derbyshire, and now at Owslow farm in Carsington ELMCu.
weight: 65.3 kg .
height:8.9 cm. base $: 58.4 \times 13.9 \mathrm{~cm}$. face:51.4 $\times 10.1 \mathrm{~cm}$. mine of origin:Derbyshire.

JRS XIIII(1953)129. Tylecote, Metallurgy Table 34,no.66. Derbys. AJ LXXIII (1953) 110 (incised) <<X

CCX
*210"

Date: ?' The numerals 210 presumably denote the weight of the pig. in librae.This would correspond. closely with the present weightof the pig, 200 librae. Palmer*s conjecture (see pig no.114) that the numerrals should read IIX of '8', was agreed with by Mr.Cockerton, Derbys. AJ IXXIX (1959) ? 9 This, however is refuted by R.P.W. JRS XHVII(1957)231. The conjecture must be regarded as incorrect,and epigraphically unsound.
181. Found in the river Tiber at Rome, and now in the Diocletian Baths Museum. It is in the form of a very large truncated pyramid.
weight:27.4. 6 kg .
height: 17.5 cm. base: $64 \times 23 \mathrm{~cm}$. face: $47 \times 17 \mathrm{~cm}$.

CII XV 7915. Besnier Rev.Arch. XIII(1921)ii,114,no.69. Basg(incuse) M. ARI \| M. ARI
CCETM ADA CCETM
TRDAVE • N
DCCOIXX $\quad \supset \times x$ دכ
M(arci) Ari
$C(. a .0 r u m) G(a i)$ et $M(a r c i)$
Ada(0.0..)
t (essera) r(ationis) d(ominicae) Aug(usti) n (ostri)
DCCCIXX $\supset \times \times \rho>c$.
*(product) of Marcus Arius."
(product) of Gaius and Harcus C(....).'
'ADA(....)' not interpreted.
'tablet of imperiall accounts of our Emperor Augustus.' *870' (?)' not interpreted.

Date: ? . The nomen Arius occurs in IIS 3153. Besnier, loc. cit. attributes this pig to Britain suggesting thát ADA is a place-name in Britain that Adansa is near Camulodunum (It.Ant.480).There is no eveidence for mining activity near Camulodunum, however, and if this does refer t. a: place-name, it was not. Adansa. The pig is twice the size of the average British specimen. It is the only one which has an inscription on the base. I am
not inclined to believe that this is a British pig.
182.A fragment of lead found at Achlum,North Holland, and now in the museum at Leeuwarden. weight: 13 kg . length: 15 cm.

CII XIII 10029.27, Besnier,Rev.Arch.XIII(1921)72,no.49
end (incuse) P XXX
P(ondo) XXX
by weight 30 ?

Date: ? . This being only ai fragment of lead, it is not possible to know i.ts true weight. It is attributed to Britain, because of its location near the coast of Holland.
183. A bar of lead found at Carthage, but now apparently lost.
weight:2.27 gr. measurements: $11 \times 8 \times 3 \mathrm{~cm}$.
CII VIII 22656,3. Besnier, Rev.Arch.XIII(1922)99,no.54.

- EX \varnothing

Ex.
"Irom"
Date: ? .
184. Ai round bun of lead, found at Fréjus,France. Its present location is not known, nor are its measurements. CII XII 5700,2\%. Besnier,Rev.Arch.XIII(1921)66,no.4.4. Mine of origin: Gaul. IIIIII:

6"
Date: ?
185.fin rectangular bar of lead found at Fréjus, France. Its present location is not known, nor are its measurements. Mine of origin: Gaul.
CII 5700, 2a. Besnier,Rev.Arch.XIII(1921)66,no.43.

IIIII

:5:
Date: ?
186. Found in 1848 at Barry, Vaucluse, France, and now in Avignon Huseum. It is a truncated pyramid. weight: 43 kg.
height: 12.5 cm . base:47. $\times 11 \mathrm{~cm}$. face: $43 \times 6.5 \mathrm{~cm}$. mine of origin: a mine in Central Gaul.

CII XII 5700,1. Besnier,Rev.Arch.XIII(1921)65,no.42.
Face(moulded) SEGVSIAVIC
(plumbum) Segusiavic(um)
"Segusiavic (lead)."

Date: ? .The Segusiavi were a tribe who inhabited a region in Central Gaul, with their capital at Iugdunum, the modern Iyons.
187. error
188. A fragment of lead, but possibly part of a pig, found at Lomas de la Urraca, Spain. Its present location and measurements are unknown.

CII II 6247,7. Besnier Rev.Arch. XII(1920) 239,no.17.

$$
Y \operatorname{ccc} \cdot-\Delta Y
$$

$\operatorname{coc}(2)$
"300" (?) not interpreted. Date: ?
189. Found at Arbon, Switaerland, and now in the museum a.t, Arbon. weight: 145 kg .
measurements:unknown.
mine of origin:a mine in Spain or Geul.
AE 1954,225. Rev.Arch.IIV 51-53.
VAL POSTVME
PGCCGL
Val(eri) Postame(i)
P(ondo) CCCCI
'(product) of Vealerius Postumas.'
"by weight 4.50°
Date: ? . The weight of this pig; is exactly 450 librae
190. Found at Flos, L
weight: 66 kg .
mine of origin:a mine in Gaul.
WR.Schweiz.XVI(1952) . Gallia XVI(1958)36. h Tr/to hev. piq
Face.(woulded) SOCIORVM FLVNBi GER
XIVII
Sociorum Plumb(ariorum) Ger(manicorum)
XIVII
*(product) of the Germanic lead partners. *
*4.7
Date: ? .The weight of the pig is 200 librae, the significance of "47" is not known.
191. An oblong bar of lead, found in 1774, on the N.orth: bank of the river Almond near its confluence with the river Tay, Perthshire, Scotland, and to the West of the site of a Roman camp. It is now lost.
weight: 33.1 kg . measurements:unknown.
mine of origint ?
CII VII 1220. EE IX p. 643. Way, AJ XVI(1859) 37.
$-\mathrm{CXJ}: 11$
CXXXXXII
"142"
Date: ?.The significance of the numerals is obscure. the alleged weight of the pig is 200 librae (see above p. 128f) The inscription is that given by D.Wilson, Prehist. Ann Ed.1(1851)392, ed.2(1863)64. In 1845, Stuart, Caledonia (1845)203, ed. $2(1852$)206;, could not trace it. Hiaverfield fege.fis it as Roman saying that numerals are not known on Roman pigs.This we now know to be inaccurate, and may accept this as genuine.
192. Found in 1826: at Kirkintilloch, Scotland. Its present location is unknown. Said to be cut in half. weight: 'nearly 100 pounds" $60.9 \mathrm{~cm} \times 15.2 \mathrm{~cm}$. mine of origin $?$.

CII VII 1219 EE 1×643 Stuart Caledonia 323.
Skinner B.M.Ms.Add. 33686 f. 55,f.58. Way AJ XVI(1859)
37.
face(moulded) PCCCCI or PCCIXXX or CCXX:
P(ondo)CCCCI or CCIXX or CCXX
*by weight 450 or 270 or 220 librae.
Date: ? .Haverfield rejects this pig(EE loc.cit.) on the same frounds as no.191, but. more pigs have been found bearing numerals and it seems fair not to accept his rejection of the pig.

CONCORDANCES.

1. CII $=$ H.D.H.E.
2. KEE: H.D.H.E.
3. IIS = H.D.H.E.
4. JRS $=\mathrm{H}_{6} \mathrm{D} . \mathrm{H} \mathrm{E}$.
5.Arch.IVII(1901)ii : H.D.H.E.
5. Rex-Arch.XII-XIII(I920-1921) : HLD .HFE.
6. Flinte. Hist. Soc. PubTh XIII (1952-3) : H.D.H.E.
7. Metallurgy Tables $33 \& 34$:H.D. H.E.

CONCORDANCE TABLES

1. CII : H.D.H.E.

C.II II	HDHE	CIII VII	HDHE	CIII VIII	Hider
3280a	71	1201	87	10484	74-77
3439	3-32	1202	89.	22656,3	183
4.964,1	6.9-70	1203	90		
4.964,2	72a	1204	94		
6247, 3	63	1205	96		
6247,2	71	1206	120-129		
6247.3	66-67	1207	118-119		
6247.5.	69-70	1208	141		
6247,6	68	1209b, a.	138		
6247,7	188.	1209c	137		
6247,8.	162	1209d	135		
		1209e	139		
		12091	136.		
		1210	167-168		
		1211	169		
		1212	130		
		1213	165		
		1214	143		
		1215a	144.		
		1215b	145-148		
		1216	150		
		1217	152		
		1218	175a		
		1219	192		
		1220	191.		

CONCORDANCE TABIES

CII IX	HDHE	CII X	HPHE	CII XI	HDHE
6091	$51-52$	8073,1	169	6722,13	1
		8073,2	160	$6722,15-$	
		8073,3	$51-52$	16	40
			and	\ddots	
			$41-50$		
		8339	78		
			0.1002	$41-50$	

CIII XII	HDHE	CII XIII	HDHE	CII XV	
5700, 1	186	2612a	17.4	7914	163
57.00;2a	185	2612b	175	7915	181
5700,2b	184.	3222	173	7916	81
		3491	92	7917	79
		10029,25	164	7918	2
		10029,26	80	7919	14.9
		10029,27	182	7920	178

CONCORDANCE TABLES
2. EE: H.D.H.E.

EE: III	HiDHE	EE IV	HDHE
121a	113	p. 201	169
121b	111	p. 206	172
121c	112		
121d	166		
121e	171		
121e	169		
p.141	130		
p.141	141		

EFE VII	HDHE	EE VIII	HDHE
1120	90	254,1	35
1121	9.5	254,2	62

EE IX	HDEE	EEE ${ }^{\text {HiX }}$	HDHE
4.28, 1	36	p. 64.2	87
428,2	34	p. 64.2	89
4.28,3	33	p.6.4.2-3	94.
428,4	64.	p. 64.3	118
4.28,5	65	p. 6.43	119
1264	96.	p. 643	135
1264	9.7	p. 643	136
1264a:	140	p. 643	137
1265	150	p. 643	138.
1265	151	p. 643	139
1266	14.2	p. 643	141
p. 181	3-32	p. 64.3	165
p. 181	35	p. 643	175 a
p.181.	66-677	p. 64.3	191
p. 181	68	p. 643	1.92

CONCORDANCE TABLES
3.INS: H.D.H.E.

IIS	HDHE
8706	$3-32$
8707	80
8708	81.
8709	92
8710	95
8711 a	141
8711 b	14.3
8.711 c	$145-148$
$8711 d$	150
8711 e	14.2

CONCORDANCE TABTES

JRS	4. JRS : H.D.H.E.		
	HDHE	JRS	Hidhe
XI(1921)239	131	XXXVIII(1948)101	93
XII(1922)283	94	XIII(19.51)141	169
	95		170
	131	142	91
XXI(1931)256	113	XIIIII(1953)129	180
259	166	XIVII (1957)230	174
263	138		115
264 n. 5	132		116
264	136		117
	137	XIVIII (1958)	157
	139	IIII(1962)195	114
XXXI(1941)146	153		115
	154		11.6
	155		117
	156.	IIIII(1963)162	108
	158	IVII(1967)206	159a
	159	IVIII(1968)	159b
		(as yet unpublish	

CONCORDANCE TABLES
5.Arch. IVII(1901)ii,340: H.D.H.E.

Arch.IVII HDHE

1	141
2	143
3	14.2
4	150
5	151

6-9 145-148
$10 \quad 144$
$11 \quad 165$
12119
13118
$14 \quad 89$
$15 \quad 168$
16.167
$17 \quad 87$
$18 \quad 113$
19166
20.169
21.135

22137
23-24 138
$25 \quad 139$
26.136
$27 \quad 90$
28.94
$29 \quad 95$
30-49 120-129
50.96
$51 \quad 130$
244.

Rev.Arch.XII -•XIII (1920-1921) : H.D.H.E.

$\frac{\text { Rev. }}{\text { Arch. }}$	HDHE	$\frac{\text { Rev. }}{\text { Arch. }} .$	H Hes	Rev. Arch.	H PHE	$\begin{aligned} & \text { Rev. } \\ & \text { Arch. } \end{aligned}$	HDHE
1	160	23b	111	34.	143	53	74-77
2	161	23 c	112	35a:	144.	54	183
3	63	$24 a$	166	35b	$\begin{aligned} & 145- \\ & 148 \end{aligned}$	55	37-39
4	61	24b	167	36	141	56.	53-54
5	64.		168	37	16.5	57	55-60
6	65	25a	169	38a	150	58.	51-52
7	6.6-67	25b	171	38b	151.	59	41-50
8	62	25 c	172	39	152	60	40
9.	33	26	90	40	140	61	1
10.	36	27a	138.	41	118	62	78
11	34.	27 b	138		119	63	2
12	68	27c	137	42	186	64	79
13	35	27d	135	43	185	65	81.
14	3-32	27.e	139	44	184	66.	163
15	82-86:	$27 \pm$	136.	45	92	67.	149
16.	69-70	28.	94.	46	173	68	178
17	188	29	95	47	174	69	181
18.	71	30	$\begin{aligned} & 120- \\ & 129 \end{aligned}$	48	175	70	109
19.	72	31	130	49	182		110
20	162	32a	9.6	50	73	$\begin{aligned} & \text { XII(1920). } \\ & \text { p. } 241 \end{aligned}$	72 a
21	87	32b	97	51	164	$\begin{aligned} & \text { XIII(I921) } \\ & \text { p. } 55 \end{aligned}$	176
22	89	33	14.2	52	80		177
23 a	113						

7. FIints.Hist. Soc. Publ. XIII(1952-3) : H.D.H.E.

Flints.	HDHE	Flints.	HDHE	FINTS.	FDHE
1	142	24	$98-107$	44	138
2	143	25	130	45	137
3	144	26	91	46	139
$4-7$	$145-148$	27	87	47	136
8	150	28	89	48	119
9	151	29	90	49	118
10	153	30	113	50	134
11.	154	31	111	51	132
12	155	32	112	52	135
13	156	33	166	53	140
14	141	34	168	54	131
15	165	35	167	55	109
16	176	36	169	56	110
17	177	37	170	57	93
18	159	38	171	58	not included
19	94	39	172	59	$17.5 a$
20	95	40	$88 c$	60	192
21	96	41	$88 b$	61	191.
22	97	42	$88 a$	62	not included
23	$120-129$	43	138		

CONCORDANCE TABTES
R.E.Tylecote Metallurgy Tables 33 \& 34 : Hi.D.H.E.

R.E.T.	HTHE	R.E.T.	Hinher	R.E.T.	HDHE
1.	150	23	144	61	116
2	151	24.	165	62	115
3	153	25	87.	63.	117
4	154	26.	113	64	109
5	155	27	166	65	110
6.	156	28.	169	66	180
7	158	29	135	67	140
8-11	145-148	30	138	68	132
12	142	31	139	69	157
13	143	32	136	70	91
1.4	141.	33	94	71.	176
15	118	34.	95.	72	159
16	119	35-54	120-129	73	177
17.	89		98-107	7.4	111
18.	168	55	130	75	112
19	167	56	134.	7.6	170
20	137	57.	88 c	77,	171
21.	90	58	88 b	78	172
22	96	59	88a	79	131.
22 a	97.	60	114	80	93

A Glossary of terms found in this volume

adit:a horizontal working made from the surface
arcarius: a public rêvenue controller
argentum: silver, but see p. 107
arrugia: a shaft, or pit
beneficiarius: a soldier seconded for special duty
bole: a place where lead ores were smelted
catinus: a vat
censor: a censor, a Roman magistrate
cerussite: leadu carbonate
cognomen: the third,family,name - Tiberius Claudius TRIFERNA colonuis: the tenant
commentariensis: the registrar
conductor: a contractor who rented the right to collect taxes damnatio ad metalla: the sentence to hard labour in mines dispensator: the treasurer
dominus: the proprietor,owner
drift: a passage driven horizontally
eques: a member of the equester ordo, the second rank of nobility in Rome
fibula: a: clasp
fiscus: the Imperial treasury
fodina: the mine
fossor: the miner
galena: lead ore
lode: a vein of metal ore
machinator: an engineer
mercenarius: a hired miner
metallum: the mine
nomen: the second name, that of the gens - Tiberius CTAUDIUS Triferna
occupator: the occupier
outcrop: the emergence of a vein at the surface praenomen: the first name,- TIBERIUS Claudius Triferna. praeses fodinae: the foreman
probator: the examiner, or superintendent of mines procurator: the Imperial agent
publicanus: the collector of taxes
scoria: dross,slag
societas: a company of two or more persons socius: a member of a societas
stagnum: crude lead, see p. 107
कtope: to excavate horizontally,layer by layer tabulariuse a book-keeper
tunica: a: short-sleeved body-garment
werkblei: crude lead.
A. list of the texts and translations to be found in this volume
Cyprian, Epistie, 77 43
Diodorus Siculus,V,36-38 42-43
Diodorus Siculus, V,36; 76
Diodomus Siculus, $\mathrm{V}, 37,3$ 9.3-94
Iex Metallis Dicta (text) 46
Iex Metallis Dicta: (translation) 50
Iex Metalli Vipascensis (text) 55
Lex Metalli Vipasdensis (translation) 61
Iucretius, De Rermin Natura, VI, 806-815 91
Pliny ;NH, III, 30 6
Pliny, NH, XXXIII, 70 82-3
Pliny, $\mathrm{NH}, X X X I I I, 71$ 87
Pliny, NHI, XXXIII, 72-73 75
Pliny, NH, XXXIII, 95-97. 106,7-8
Pliny,NH; XXXIII, 106-107 105
Pliny, NH, XXXIV, 64. 70
Pliny, NH, XXXIV, 156-158 8
Pliny, NH, XXXIV,159 106
Pliny, $\mathrm{NH}, \mathrm{XXXIV}, 164-165$ 8-9
Strabo, Geography, III, 2,3 10
Strabo, Geography, III, 2,8 9,112
Strabo, Geography, III, 2,10

$$
10,29,106-107
$$

Tacitus, Agricola, XII, 6 13

INDEX

abandonment 34,35
Publius Rubrius Abascantus 137,142
Abergele 18
Aberystwyth 17
accounts 34
Achlum 182 acquisition 30
adits 6,12,19,37,72,73,74, 77,80,82ff., 90,92,98
administration,Chapter II passim
Aelianus Ulpianus 50
Aemilia tribus $134,68,79$
Publius Aemilius Gallus 78 aerial photographs 15
Lucius Aetilius 132B, 35
Africa 92
Agricola 13,18,40
Alcaracejos 11,72
Alexdandria. 92
Algeria 74-77
Aljustrel tablet 32,42
Almeria 12,69-70
Almond, river 191
Alps 88
Alston Moor 19
Amphitheatre 14
anchor 132,133,53
Andalusia: 11
Antoniense. 9

Antoninus Pius 166, 16.7,168
Aquitanians 7
Arbon, and museum 189
arcarii 31
Archimedean screw 93
Archimedes 93
Publius Turvilius Arcon 13思61
EX ARG(entariis) 139f.,90,108,
$109,110,113,114,115,116,144$,
$150,151,152,153-156,157,159$,
159a, 159b
argentum 106,107.
Harcus Arius 181
aromatics 90
arsenic 90
Artabri 12
Lucius Aruconius Verecundus
137,143
Gaius Nipius Ascanius $38, \underline{90}, \underline{91}$
Asia Monor 90
asses 63,
assets 42
Associated Engineering Ltd. 159a
associates 33
Aston. 138
Asturias 12
Gnaeus Atellius 37
Athens 132
Attica $29,76,90,132,31,41,51,53$, 55
auctioneers 34,61,62,63
Augustus 10,29,30
Marcus Aurelius 169,170,
171,172
Titus Aurunculeius Lucanus 63.

Avignon 136,186.

Baebelo 7
Baeticä 9,11,147
bakers 33,45
baling 91
banishment 36
barbers 65,66
Barcelona 12
Bardo 37,53,55.
Barryi 186
baskets 84,99
Basle 80
Bath,\&: Roman baths museum 135
baths 4.5,63,64.
Bathwick 133
bat.tering-ram 87,98
Belby 159
bellows 111,112,114
Berlin museum 66-67,161.
Bibliothèque Nationale de France 3
Bietsa: 12

Birmingham geological museum 138
Bishops Castle 138,139
Bitterne see Clausentum black lead 8,9,106
Blagdon 89
blast 109,111,112,114
Bolsena. 92
bone-ash 113,114
book-keepers 31
Bossington 90
Boulogne 92
boundaries 31,39,54,62,66,67,68
Braboniacum 19
Bradwell 176
branded 44
breaking-up 67,72,87,97,106,107
Brigantes 135,41, 118 ,119.
Bristol 13,167,168.
Bristol, the City Museum 111,167
Britannicus 89
British Museum 92,95,3,89,90, 96,119,137,140,141,142,143, $145,1.50,168$.
bronze 64.
Brough-on-Humber 14,117,122,151.

$$
152,153-156,158
$$

Broughton 94
Bruton 169
Bryn-y-Gefeilau 16

Index
buckets 72,79,80,91,92,99
$133,33,34,34 a, 35,36,62$,
$66-67,68$

Cabo de Gata 12
Castagneto 40
caduceus 132,132B,133,35, Castillejos 72a: 6.6-67

Castleton 16.5
Gaius P... and Titus T.... Castulo 11,132A, 71
Caenicus 72
Caer Ilugwy 16
Caerleon 15
Caernarvonshire 15
Caersws 17
Caerwent. 15,93
Cagliari museum 160
Calgacus 40
Titus Callonius Quintus 64.

Canjajar 69-70
Cantabri 8,12
Capel Curig: 16
capital $34,42,72,73$,76
Capitol museum,Rome 79
Caprariemse 9,12
Caracalla 164
Carolina see Ia Carolina
Carmel 91
Carsington 180
Carthade 183
Cartha 혈 $10,12,29,42,83$, Chester $17,39,94,95,130$ $99,110,111,112,122,132 \mathrm{~A}$, children $41,42,45,64,85$

Index
chisel 82
Churchover 159a
circle $134,166$.
Cirencester,Corinium museum 108
claims 32,34 .
Claudius 4,4.2,87
Tiberius Claudius
Triferna 37,38,39,137, 114,116,117,144,145-148
Tiberius Claudius
Trophimus $144,145=148$
Clausentum 13,122,130, 109,110
Claverton Hill 133
clay $17,20,111,112,113$,
114, 107
cleanliness $63,64,66$.
clinkers 111.
coal 107,111.
cobblers $34,45,65$
cochlea $92,93,94,95$
cognomina: $3,132 \mathrm{~A}, 136,1$.
coke 108
Coker Hill 177
collapse 73,75,82
Collingwood Prof.R.G. 135.
colonus 50,52
commentarienses 31
companies 31 , see socii and societas
compensation 40
complaints 37,42
concessions 30,31
condrmned, the 44
conductores 30,31
confiscation $30,35,36,53$,
67,68
Constantine 44
control 32,33
convictions 52,53,65,66
copper 9,53,67,68,109
Gbicdova 10,72
Publius Comelius Pollio
79
Cornwall 107
Corstopitum 19
costs 29.
Coto Fortuna, 12,79, 81, 82-86
crier 61.
crimes 39
criminals 40
Cromford Moor 141
crucibles 11,17

Index

crushing 67
Cumberland 5,13,19.
cupellation $4,11,12,14,36$, ditch see drainage adit
Chapter IV passim,139, Doccius 175, 17.5a
140
cupellation hearths 105, 113,114
Cyprian 43

Dacia 41
Dalmatia 41
damnatio ad metalla 39
Davies, Oliver 16,17,41, 80,111,138
death rate $42,44,91$
debt 32,52,62
Deceangli 41,135,94,95, 96,120-129
default 30,36
Derbyshire $5 \mathrm{~F}, 13,14,18,37$, $87,108,128,135,137,138$, $139,140,140,141,142$, $143,144,145-148,149$, 150, 151-152, 153-156, earthwork 14, 44 157,158, 159, 159a; 159b, 165,176,177,180 Economics,museum, Carthagera
Dianium 12
Dinorben 18
Diocletian baths, 1,81,181.

Diodorus Siculus 42
dispensatores 31

Dol y felin Blwm 17
Dolaucothi 55,95
dolphin 132,132A,132B, 33,
55-60, 61, 71, 149
dominus 30
Domitian $15,118,119,120-$ 129
Dorrenberg Collection, Soest 73
Dovedale 18
dragon 132,132A,133,51
drainage $36,73,85,91 f$.
drainage adi.t 53,54,85,

$$
86,90,91,92
$$

dress 100
drift 54
dumps 66,67
duty 33

Ebro 12 66-67,68
education 45
Egy,pt 42,93,94.

Index

Egyptian screw 93	fines 36,64
El Centonillo 11,74,81,84 Ellerker 157	$\begin{aligned} & \text { fire-setting } 72,87 f_{0}, 89, \\ & 98,100 \end{aligned}$
Emperors 29,30,61,64,136	fiscus 30,31,32,33,34,35,
Empire 28,37,41,122	$50,51,52,53,54,62,64$
engineer 31,43	Flavian 6,37
equipment $34,42,64,73,109$	Iucius Flavius 73
see tools	Flintshire 5,13,17,39,41,
equites 30,31	110,112,135,137,138, 91,
Ftruria 92	94,95,96,97,98-107,
Europe 92	120-129, 130, 173a, 175
examiners 31	fodder,a 128.
excavations 7 sees shafts	footholds 79,82
and adits	Forbes, R.J. 81,85,107,
expenses 42,51,52	108,113
experts 43	formen, 31,99
exploitation 36	forfeiture 34,35
export 12	Formian 79
	fort 15,19, see garrisons
Fabia tribus 134,34a	Fos 190
faces of pigs 37	fossores; 31.
$\mathrm{f}_{\mathrm{a}} \mathrm{lsax}^{136}, 165$	Four Saints College, 35
fees 35,36,62	France 39,136,92,173,174,
Fer... 134,66-67	184,185,186
Ferm. ... 134, 35	freedmen 30, 37, 45,64,67,137
Ffos-y-bleiddiaid 18	freemen 36,53,54
fibulae 14	Fréjus 184,185
Fierm 35	Frome, river $13,167,168$
filiation 132A	fuel $89,108,109,111,112,114$

fullers 45,66
furnaces 11,17,20,105, 106,108,109,110,111, 112,114,117, see also smelting and cupelling.
gads 98
gatiena 15,17,106,107,108, $109,140,2,79,81,153$. 155
Gallaecia: 8,41
galleries 5,16,44,73,76, 77,78,81,82,83,84,85, 87,93 see adi.ts
Publius Aemillius Gallicus 78
Gambalunga collection 1 .
garrisons 44 see also
forts
Gaul. 4,8,128,129,141,
73,164,184, 185,186, 189,190
geological museum,London 3
Germanici socii
plumbarii 190
Germany: $4,136,7.3,164$
Geta: 164
Glamorgan 15,115

Gloucestershire 108,175a
Goginian mine 17
gold 7,9,10,13,30,41,42;
45,76,77,87,91,95,107
Gowland, M. 12,112,139
Grassington 19,132
Graupius mons 40
Green Ore 114,122,129,136
114-117
Greenhow Hill 19,98
Grosvenor museum, Chester
94,95,130
guards 44
guilds 45
Guirao collection, Wurcia 33,34, 36

Fryarian 3,5,16,18,19,32,33, 37,38,45,50,126,136,137,
$133,134,135,137,138,139$, $140,141,160$
Hialkin mountain $\$ 7$
hammer mark $134,138,166$
hammers 74,82,98
Hampshire 90
Hannibal 7,88
Haverfield, Prof, F., 16
heal.th 28.
heating; 64,87-88,105,108,

$$
109,110,114,140
$$

helmets 100
Hengitsibury Head 114
Heppen 73
Heriot*s Bridge 109
Hertfordshire 140
Hexgrave Park 150
Heyshaw Moor 118,119
Quintus Varus Hiberus 74-77
Hints Common 96.
hoes 98,99
Holland 182
horses 63
Hove ? abbey 179a-d
Huelva: 17.
Hull museum 151,1.53-156, 157,158, 159b
Hurst mine 19,98,134
hushing 19,72,861.
idle 33
Ilipa: 10,11
Ilucronensis mons 29,134, 82-86
Imperial control 29,30,38, 127,136.
Imperial officials 30,37,
134,136,137
Imperial provinces 29,30
imports 36.
incisions 128
individual ownership 29,31
inscriptions 38,39,41,117,
chapter V passim
inspection 43
Iove tanum 9,12
iron 9,65,109
Italian 29
Italy 132A, $1,2,36,51,78,162$
Gaius Iulius Protus 137,150,
1.51,152, 153-155

Titus Iulius Tr... 149
Titus Iuventius 132B,133,71

Justinian 30
kaduff 92
Kirkby Thore 19
Kirkintilloch 192
Ktesebios 92

La Carolina 11,81
labour \& labourers 3,10,28,
31,39,40,41,42,43,44,67,
72,73,74,79,80,81,82,85,
87,88,91,95,97,99,100,111
ladders 79,80,82
ladle 19,117
lamps 7,44,82,85,89,90,100

Index

Ianuvium 3
Laurion 29,90,132.
lead carbonate 115
lead content of ore 11,18, Lidney Park 175a 29,110
lead oxidel08
lead sulphate 108
lead sulphide 108
leasing: $28,30,31,33,37,38$,
$45,62,63,64,137,138$
Leeuwarden 182
legionaries 42
Iegions:II 15,39,138, 92, 93 litharge 108,113,115,140
VI 139,173a, 174 Liverpool City Museum 139 XX 39,138,1.75
legions 138
legislation $5,8,31,33,34$, Ilanidloes 16
36, 37, 40, 45,50,52,62,67, Hlanfyllin 1.7
68.81,126

Lerida: 12
Lessees 3,64,31,32,33,34, $35,37,38,39,40,61,62,63$,
64,65,66.,67,68,92,126, 132A,136,137
lettering. 3
levy 31,33
Jex Metallis Dicta 32,33
Lex Territorio Metalli
Vipascensis Dicta: (lex

Metalli. Vipascensis)(Lex
Vipasca) 32,33,35,36,45,46, 50,55,61
lighting, 85,89f.
Lillebonne 173
lime 112.
Itinares 11,77,80,84,85,86. 99,71.
Linares bas-relief 99f.
Linley Hall 138
liquation 113

Livorno 40
Tivy 88

Ilangynog 17
Illantwit Major 15,115
Llanymynech 16,83
lode 16.74
Lomas de la Urraca 188
Lorca 12
Loring collection, Malaga, 71
Louvre, Paris 3
Lower Maihen 15
Lu.... metallum 134,71
Lucretius 90

Index

Sextus et Titus: Iucretius 80
Lusitania: 11,82
Iutudarense metallum
141, 142,143
Iutudarenses socii 156, 157,159,159a,159b
Iutudaron 18,135,136,137, $138,144,150,151,152,153-$ 155
Iydham 138

Macedon 132,
Machen see Lower Machen
machinator 31
Madrie 3, 61,6.3
Maicia:(Maecia) tribus 134,136,3,33.
Maiden Way 19
Malagai 71
Sextus Marius 30
marks of origin 127,131ff.
Matlock 18,141,142,143,
144,176,177
Mazarron 12,82-86.
mediaeval workings 13
Mendips 4,13,14,37,110,
118,127,134,135,137,138,
87, 88a-c, 89, 90, 92, 108,

109,110,111,112,113,114-
$117,133,135,166,167,168$,
169,170,171,172
Menenia: tribus $134,36,37$
mercenarii 40
Mercury 133
Merlin, A. 132,132A
Mersey, river 122,98-107,
120-129
Gaius Messius 2
military control 39,138f.
miners see labourers
Minsterley 16,136,137
modern workings 13
monopolies 33,34
Montgomeryshire 16,138
moumdece 37,134
moulds 115,117,127,128,131
mules 63
Murcia 33,34,36
mutiny 44

Nant-yr-eira 17
N:antymwn 17
Naples 78
Nero 37,90, 92
Nerva 126,131
Newtown 16
Nidderdale 18,118,119
night: 43
Gaius Nipius Ascanius 137,90,91
nomina 29,38,132A,137
Publius Nonius Nucerinus 68
Norstrand,J.J.Van, 50,61
N.ottinghamshire 150

Novaec.company 138,108 , 109,110
Publius Nonius Nucerinus 68
numerals l2ф,129,130
numismatics 2,11,12,14,15, 16,18,19,126
occupation 34,35,41,51,54, 68
occupator $32,35,41,50,51$
officials 28,30,38,
chapter II passim
Oleastrense 9,12
Oleastrum 12
opencast $5,15,16,18,19$, 72,73,74,75
ore $3,4,5,14,15,18,19,28$, $29,31,33,35,36,50,51,52$, 54,67,72,73,74,75,76,78, 81,82,85,86,87,98,99, 100,105,106,107,108,109, 111,112,115,139
organization chapter II passim
Orihuela 12, 3
Orongis 11
Orth 41.
Osca 12
output 37,126,127 see productivity
ovens 72 see hearths
Ovetum 12 see Iovetanum
owners 28,30,40,53
ownership chapter II passim

Palermo 41
palm branch $134,137,138,139$,
166
Palmer, R.E. 96.97
Palmer,Prof.I..S. 117,129
Parham Hail 145-148
Paris 3, $82-86$, 92
partners see socii
Pateley Bridge 19
Pattinson process 113
Pentre 17,110
Perthshire 191
pewter 6,14,126
Picenum 132A,51.
picks 74,82,89,91,97,98,
100
Pidal,F.M. 42
pigs of lead chapter V passim

Index

pillars 29,73,74 see props
pipes 8
pithead settlements 4, 33,34,37,44,45
pits 18,76: see shafts
Plan 12
Gai.us Planius 40
Iucius Planius 41.
Iucius Planius Russinus 132A,133,51,53.
Marcus Planius Russinus I32B, 55
Pliny $2,5,6,7,8,12,13$, $75,85,89,105,107$
Plumbaria: 12
Plynlimon 17
Publius Cornelius Pollio

7.9

Polybius 10,30
Pompeii 78
Pompeiopolis 90
Pompeius 89
Pont-ty-Hy 1116
Gaius Ponticienus 34a
Titus Popillius 2
ports 122
Portugal 82
Valerius Postumus 189
pottery 14,15,17,18
powers 31
praenomen 38,132
praeses fodinae 31
Pravia 12
prisoners 3,39,43
prisoners of war 39
private ownership 28,30,31.
probatores 31.
procurator 6,30,31,33,34,35, 41,50,52,53,54,61, 62,63, 64,68
productivity 3,5,14,33,73, 122,126
profits 28,31,66,76,93
props $36,53,73,75,81,86$
prospecting 32,42,54,76ff.
Gaius Iulius Protus 137,

$$
\begin{aligned}
& 150,151,152,153-155 \\
& \text { provinces } 29,30,31,43,126, \\
& \quad 128,138
\end{aligned}
$$

provincials 41.
publicani 28,30
Gaius Publius C.... 108
Pulborough 145-148
pump 92
punishment 52,53,64
purchase $30,35,50,52,61,67$
purchaser 61,63

Puteoli 105
Pyrenees 79

Quintus 65
Titus Callonius Quintus 64.

Raistrick, A. 19,128,129.
Marcus Raius Rufus 132B, 133,66-67
Râvennas Cosmography 136
recuperation of property 52
refining 7,8 see
smelting
refund 34
registrars 31
regulations $34,36,50,54$,
64,66: see legislation
renewal. fee 35
rents 33
repairs 64,65,
Republic 28,39,83,122
rest. 44
reticulated hamer mark
$134,138,166$
revenue 3,6,7,9,10,29,
34.

Lucius S.... Rex 69-70.

Riccobono,S.46,55
Richborough \& museum 131.
Richmond, Prof. Sir I.A., 38
rilled stones 98
Rimini 1
Rio Tinto 11,12,32,43,80,83, $84,85,86,90,95,96,115$
Ripatransone museum 51
Ripley Castle 118
roasting 108
robbery 39
Roehampton Priory 113,166.
Rome $40,1,79,81,149,163$,
178,181
Roodeye 95
Marcus et Publins Roscieis 3
Rouen museum 173
Roveries, the 139
Publius Rubrius Abascantus 137,142
rudder 132,133,71.
Marcus Raius Rufus 133, 66-67.
Rugby 159a:
Runcorm 122,98-107,120-129
Lucius Planius Russinus
$132 \mathrm{~A}, 133,51,53$.
Marcus Planius Russinus $132 \mathrm{~B}, 55-60$

Index

sacks 7.2
Saint Germain en Iaye 92
Saint Valéry sur Somme 92 safety 36
shoft furnace 111,112,113
shaf.ts $5,6,7,9,16,18,33,35$,
36,43,51,53,72,73,74,76,
77,78ff. $83,84,86,90,91$,
sales $31,35,50,52,61,62, r_{2} 5^{5}+5$

63,64,65
Salona: 4l
Salop see. Shropshire
Samariense 9
San Nicolo 160, 161.
Sandarakurgion 90.
Santaren 11
Sardinia 128,141, 160,
161,163
Sassenay 174
Savignano 1.
school 43
schoolmasters 45,68
Scotland 191,192
secredaries 31.
Sogusia tribus 136,186
seizure 35
senatorial provinces 29,30
Septimius Severus 164,

$$
173,173 \mathrm{a}, 174
$$

Sergìa tribus 34a
serpent see dragon
Severn 16, 17
shapes of pigs 130,131,132A
share $34,50,51,52$
Sheffield museum 176
Shelve 16,76,98
shifts 7,44,73,82,85,89
Shropshire 5,13,16,39,76, 82,98,128,133,136,138,139, $140,136,137,138,139,173 \mathrm{a}$, 174,175
Siberia 99
Sicily 41
Sierra de Coüdoba 11
Sierra: Morenai 12,133,71.
sieving 99,106
Silchemter 114
silver $7,8,9,10,11,13,15$, 17,50,54,67,68,76,77,91, 105,106,107,109,112,113, 114,115
silver content $3,5,18,19$, 109,115,116,118,138,139, 140
Sisapo 10,11,72
size of pigs 130,131,132A

Index
skilled labour 43
slag 4,9,11,12,14,16,19, 20,110,112
slaves 3,31, 36, 39,40,41, $42,43,44,45,52,53,54$, $62,63,64,66,67,84,94$, 96,132
smelting $4,14,16,17,29$, 35,36,50, 52, 67, 68,72, 99, chapter IV passim, 140
smelting hearths 4,17 , 105,1106,109,110,111. 112,113
Smy the, J.A.115,117,127, 128,139,140
Snailbeach 16., 137
societates $29,33,34,37$, 38,1361., 80, 81, 82-86, 108; 109, 110
socii 29,33,34,51,52,
136f.., 80, 156, 157,159,
$159 \mathrm{ai}, 159 \mathrm{~b}, 190$
socii Iutudarenses 137
socii plumbarionum
Germanicorum 136
Soest 73
soldiers 42,44,64
Somerset 14, 37, 38, 39, 41.
$44,122,129,130,134,135,136$,
$137,138, \underline{87}, 88 \mathrm{a}-\mathrm{c}, \mathbf{8 9}, 90,92$,
108,109,110,111,112,113,
$114-117,133,135,166,167$,
$168,169,170,172$
Sotiel Coronada 11, 78, 79,80,
81, 83,85, 86
South Cave 151, 152
South Wales 15,39
Southampton 13,122,109,110
spades 16,98
squaring 77,78
staff 31
Staffordshire 96
stagnum 106,107
stamps 37,128,129,137,138
staddard weights 129
Starlcholmes 18
State control 37,38
State exploitation, ownership

$$
10,29 ., 30
$$

steps 73
Stockbridge 90
stoping 74
Strabe 3,9,10,42,107,112
striations 117
sub-letting, 31,32
subsidence 75
subsoil 28

Index
Sulla: 3,132
sulphur dioxide 108
supervision 31
supports 79,83 see pillars and props
surveyors 78
Sussex 144.179a-d.
Swaledale 19,134
swan 132,133,62
Switzerland 80,189
Syde 108
Syracuse 93
tabularii 31
Taci.tus 13,40
Täckholm,U. 107
Talargoch 18
Tamsworth \& museum 97
Tansley Moor 142
tapping 112,113
Tarraco 12,64,65.
Taunton Castle museum $89,171,172$
taxes 33,34,45,61,66,68
Tay, river 191
Taylor, Miss M.V. 16
techniques chapter III passim
tenure 33,35

Terrenas mine 72
Tharsis 112
theft 52,53
Tiber, river $2,79,81,149,178$,
181
Tiberius 29,30
timbering. 86
$\operatorname{tin} 8,107$
ti.the 30
Titus $94,95,96,97,98-107$
tongs 11,89,100,112
tools 83,97f.
trade 84
Trajan 41,126,132
trassport. 122,133
trays 99
treąare 31
treasury 30 see fiscus.
Trefegilwys 16
trenches 76
tribes: 44.,134.ff. ,94,95,96,
$118,119: 120-129,186$
see voting-tribes
tribute 40
Tiberius Claudius Triferna:
$37,38,39,137,114,116,117$,
144,145-148
Tripontium 159a
Tiberius Claudius Trophimus
144,145-148
266

Tunisia: $132,37,53,55$
Turdetania 11.
Publius Turellius Labeo 62
Publius Thrvilius $132 \mathrm{~B}, 33$
publius Turvilius Arcon
132B, 61
Tylecote, R.E. 139

Ubley 135
Ulpianus Aelianus 50
uses 110
Gaius Utius 36.

Valencia 74
Quintus Varus Hiberus
74-77
vat. 105,107.
Vaucluse 186
VEB $41,135,109,1110,113$,
114,115,116.
veins 7,77,91,106
Venasque 12
ventilation 81,89f.
Veranius 89
Lucius Amuconius Verecendus

94, 95.96.97.98-107, 108,
109,110,111,112,113,
114-117
vinegar 87,88.
Vipasca 61,65,67,68
see leges
Volubilis 34a
voting-tribes 29,134ff., 5 :

$$
3,33,36,68,79
$$

Wales 5,13,15,45,84,95,97, 138, $\underline{93}$
Wales, National Museum of, 95,91, 业3
Warwickshire 159a
washing 67,99,107
waste 29,73,110
water 53,54,64,74,85,86, 87, 88, 91, 93, 94,95,96,100, 107
water-wheel 92,95,96,97
Webster, G. 39
wedge 82,83,87,98
weights of pigs 109,115,118,
127ff. 114-117.
Wells 67,114-117,170 137,143.
Verus 169, 170, 17血, 172
Vespasian 17,32,37,126,

Westphalia 73
Wheeler,Sir R.E.M. 17
white lead 7. see tin

Index.

Whitley Castle 19
Whittick, G.C. 112,117.135
Wirksworth 18,141
Wolsingham South Moor 20
wood 108 see tools,fuel
Wookey Hole 87
workers see labourers.
workings 12,13,15,16,17,18,19, 31,43,67,73,74,75,93
Worms \& museum 164
Wright,R.P. 39,129,139
Wroxeter 114
Yorks 5,13,14,18,41,87,98,135, $140,118,119,132,134,151,152$, 153-156, 157,158, 159

