Durham E-Theses

The logical possibility of time travel.

Ney, Sharon Elizabeth

How to cite:
Ney, Sharon Elizabeth (1993) The logical possibility of time travel., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1025/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
VOLUME CONTAINS CLEAR OVERLAYS

OVERLAYS SCANNED SEPARATELY AND OVER THE RELEVANT PAGE.
Contents

(Volume 2)

<table>
<thead>
<tr>
<th>Chapter 6: Conclusions</th>
<th>297</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>303</td>
</tr>
<tr>
<td>Diagrams</td>
<td>317</td>
</tr>
</tbody>
</table>
Chapter 6

Conclusions

This thesis has covered a great many topics in order that it might qualify as a thorough analysis of the popular system of time travel. It would therefore be of use to briefly summarise the nature of each subject's contribution to this conclusion.

The introduction of the personal/external time frame distinction was necessary both to resolve the most immediate and obvious contradiction attributed to time travel, and to ensure that information regarding future origins could be preserved during a journey into the past. A system of identity was then specified that could accommodate for the peculiar circumstances of a time traveller entering his own causal past, enabling him to exist before his birth relative to the external time frame, and to communicate with himself should the need arise (a common feature of science fiction novels concerned with time travel). The problems of freewill and determinism introduced two distinctions that have been built on in the chapter on causality: one between the number of occurrences of a given particular event (i.e. one) and the number of experiences possible of that event using a time machine (as many as will fit into a lifetime); the other between a necessary condition and a sufficient condition for determining causal relations. It was shown that time travel need not be incommensurate with freedom of will, but a certain intuitive discomfort led to the
consideration of possible worlds. The nature of causal relations between a traveller interfering in the past, and an earlier person-stage existing in the external future relative to that event, were examined, and it was shown that the logical possibility of time travel depended on a breakdown of the causal chain generated by his initial arrival in the past: if the traveller can exist in the past without any causal consequences propagating to an earlier person stage lying in the future, time travel as defined is possible; if, on the other hand, it is a matter of fact that one cannot transmit information, in any form, into the past within one possible world without the generation of closed causal chains, then time travel cannot occur. This is because it will engender a logical contradiction in which any given event will occur once relative to the external time frame but an infinite number of times relative to the personal time frame in the same external space-time position.

Time travel within one world revealed a need for a 'higher' time dimension in order to accommodate for sequences of events whose origins lie in the future. It was indicated that possible worlds might also require additional time frames (with the potential for infinite regress), and associated with this was the question of proving that time travel itself -- and not just inter-world travel -- had occurred. A further consequence was the high improbability of a time traveller ever reappearing in his world of origin.
at any moment after his departure (external time), and the concomitant problems of proving time travel, or even inter-world travel, as opposed to the mere destruction of the traveller under such circumstances. Finally, an examination of relative time travel within one possible world proved to be restricted by the same logical and probabilistic constraints as had been previously encountered. From these results it was concluded that the popular system of time travel is at best highly improbable and, depending on the nature of causal relations, logically impossible, while the introduction of a system of possible worlds to resolve these problems requires the assumption of ever more dubious qualifications that must be resolved before such a 'solution' may be considered practical.

In the course of this thesis, however, considerably more has been achieved than the bare answer to the question posed in the Introduction. Through the manipulation of the temporal direction experienced by a hypothetical character there has been revealed the fundamental importance of an asymmetrical 'arrow of time' to our perception of our own identity, our assumptions about the nature of freedom, and our understanding of causal relations. While our inability to move through time leads us to refrain from including references to our experience of it in our conversation and thought, the fact of our experience has a powerful but subtle effect on our theorising.

A great deal has also been revealed regarding the
subconscious assumptions of those who would claim time travel into the past is possible. 'Realism' about time is essential, as is the assumption of 'higher dimensions' as dictated by the requirements of the 'Myth of Passage'. This last image must be finally laid to rest if further investigation into the nature of time is to make any progress, but its pervasive influence (witness Gödel's error) makes such a task considerably more complex than might be imagined.

The importance (and not just the fact) of those distinctions made between experience and occurrence, and between necessary and sufficient conditions for both freewill and causal relations has been highlighted. Once again, this study has indicated the propensity to assume, rather than to test, the effect of time on our understanding. It has often been suggested that time travel would be possible if freewill were abandoned, but using these distinctions it has been shown that there is no need to abandon freewill, and that whether or not it is preserved has no effect on the logical contradictions arising from the generation of closed causal chains. Human choice cannot affect whether or not a time traveller accidently crushes a plant or insect whose existence is vital to the subsequent structure of the world, nor can it hinder the absorption of light or the respiratory processes, both of which are necessary features of human existence, regardless of the individual's temporal location (breathing apparatus might be
used, but if its presence were anachronistic it might create more problems than it solved).

David Lewis's claim that possible worlds must lack spatio-temporal relations gained some measure of support from the difficulties encountered in attempting to relate different possible worlds in time and space, but generally the concept of possible worlds fared poorly. This study has helped to bring out the complexity of any attempt to analyse concepts with which we can have no direct or indirect contact -- the difficulties of providing a logical structure becoming ever more complex as ad hoc solutions were provided to the obstacles that arose.

As to the matter of further study, the nature of time, and its effect upon our thinking processes, is such that its examination cannot be exhausted in a thesis of this size. What has been provided within these pages is an examination of the problems associated with one specific aspect of time, with a view to resolving one question. Further investigation into the interaction of time and metaphysical issues, and the importance of an asymmetrical arrow of time to human perceptions, will continue, but of all the concepts studied here, it is the nature of causal relations that have revealed themselves most in need of further investigation. Such a study may also help to reveal the relationship between time and causality, and the nature of time itself.

This thesis has shown that time has effects incommensurate with claims that it is merely a concept
imposed by human beings, with no real substance or existence: reverse causation, and any other process except time, and while the world may appear strange to us -- violating all previously accepted probabilistic norms -- it will not lead to contradictions; reverse time and every other process, such that a person or object only ever reveals information appropriate to his or its temporal position, and ceases to exist when it should become necessary, and, once again, no contradictions will be generated; but reverse our passage through time while preserving information regarding our temporal origins, by keeping the causal passage positively ordered with respect to the person travelling, and very real problems develop. Time and the temporal order are neither unreal nor arbitrary, but their true nature remains to be determined.
BIBLIOGRAPHY

Book, D.L., see Benford, G.A.

Elliot, R., 'How to Travel Faster Than Light?', *Analysis,*

Gale, R.M., "'Here" and "Now'"', in Freeman and Sellars
Gallois, A., see Elliot, R.

Hawking, S. W., 'The Chronology Protection Conjecture' (provided on request by the author), January, 1992.

Highfield, R., see Coveney, P.

Jackiw, R., see Deser, S.

Kant, I., *Critique of Pure Reason*. Translated by Norman Kemp Smith, London, Macmillan Education Ltd (paperback

MacBeath, M., 'Who was Dr. Who's Father?', *Synthese* 51, 1982, pp. 397-430.

Martin, R., see Kolak, D.

Newcomb, W.A., see Benford, G.A.

Prior, A.N., 'Recent Advances in Tense Logic', in Freeman and Sellars (eds), 1971.

Redmount, I., 'Wormholes, Time Travel and Quantum Gravity', *New Scientist* No. 1714, 28 April, 1990, pp. 57-61.

Sellars, W. See Freeman, E.

Silverberg, R., Sailing to Byzantium, in Dozois, G.
(Originally published in IAsfm, February, 1985.)

Smart, J.J.C., 'Causal Theories of Time', in Freeman and Sellars (eds), 1971.

Smart, J.J.C., 'Spatialising Time', in Gale (ed.), 1968.

Travis, J., 'Could a Pair of Cosmic Strings Open a Route Into the Past?', *Science* Vol. 256, 10 April, 1992.

The copyright of this thesis rests with the author. No quotation from it should be published without her prior written consent, and information derived from it should be acknowledged.
DIAGRAMS
Fig. 1.1
Point of collision

Floor of laboratory

Time

Fig. 1.2

= Time machine

= Personal time direction
Fig. 1.3

- Crane
- Machine dropped
- Point of collision
- Floor of laboratory
- Space
- Time
- ☐ = Time machine
- ↔ = Personal time direction
Stretched section

Backward temporal movement

A = Normal
B = Time traveller
Arrows indicate direction of positive causal ordering
Fig. 3.1

A = Chronos
B = Man claiming identity
-- = Period of overlap

External time

Birth

Meeting

Time

Space
Arrows indicate direction of positive causal ordering

External time & Personal time

Space

Fig. 3.1

A = Chronos
B = Man claiming identity
-- = Period of overlap
Arrows indicate direction of positive causal ordering

&

Personal time
Identity claim made here

A = Chronos
B = Man in 1900

Fig. 3.2
Arrows indicate direction of positive causal ordering.

Identity claim made here

2000

Time

1900

External time & Personal time

Space

A = Chronos
B = Man in 1900

Fig. 3.2
Arrows indicate direction of positive causal ordering

&

Personal
time
Fig. 3.3

External time

Space

Fig. 3.3
Arrows indicate direction of positive causal ordering

Fig. 3.3
Arrows indicate direction of positive causal ordering

&

Personal time
Fig. 3.4

Birth

External time

Space

24 hours

4000 years
Arrows indicate direction of positive causal ordering.
Death

______24 hours

Birth

4000 years

Personal time

Space

Fig. 3.5

\(\bigcirc = \text{Spontaneous creation/annihilation} \)
Arrows indicate direction of positive causal ordering

&

Personal time
Transmission Begins
Enters
transmitter

Transmission Ends
Exits
transmitter

External time
New York
Space
Paris

Fig. 3.7
Arrows indicate direction of positive causal ordering

Transmission

Begins

Enters transmitter

Exits transmitter

Ends

External time & Personal time

New York

Space

Paris

Fig. 3.7
&
Personal
time
Fig. 3.8
&
Personal
Time
Fig. 3.9

Moscow | Paris | Berlin

New York

External time

Space

Time
External time & Personal time

Time

Space

Fig. 3.9

Moscow Paris Berlin

New York
Fig. 3.10

Time machine
t_2 --- Destruction

Antimatter

Matter

\[t_1 \]

Creation

External time & Personal time

Space

Fig. 3.11

\[\sim \] = Apparent temporal direction
Annihilation
Matter Anti-
existence

Moment of creation

External time &
Personal time

Space

Fig. 3.12

= Apparent temporal direction
Continued existence

t1

Annihilation

Matter

Anti-matter

Moment of creation

Anomalous existence

External time & Personal time

Space

Fig. 3.13

/= Apparent temporal direction
Book previously buried

1 Book in A's hand
2 Book found in earth
3 Book is destroyed

Identity relation

External time & Personal time

Time

Fig. 4.1
Book in A's hand

Book found in earth

Book is destroyed

Identity relation

External time & Personal time

Time

Fig. 4.2
Book buried

Book in A's hand

Book found in earth

Book is destroyed

No identity relation

External time & Personal time

Time

Fig. 4.3
Recording made

Recording viewed

Personal time &
External time

Space

Fig. 4.4
Recording made

Recording viewed

Identical spatial position

Fig. 4.5
Site of Witnesses of event A

External time &
Personal time

Space

Fig. 4.6
Lewisian Possible Worlds

W8 | W6 | W3 | W1 | W2 | W4 | W5 | W7

Fig. 4.7
Branching Possible Worlds

3000

1066

$\gamma_i = \text{Path of this world}$

Fig. 4.8
External observer Throws lever

Time travel

Space

Fig. 5.1

= Personal time

External time

2000

B

Appearance of Chronos

1066

A
Fig. 5.3
Labels file (1) ➔

Labels file (2) etc.

New file

File not labelled ➔

File handed on

Space

Fig. 5.5
Light cones

$t=0$ (present)

Propagation of causal consequences

Fig. 5.6
Begins backward time travel

W1

W2

Route of Chronos

Fig. 5.7
Begins backwards time travel

Fig. 5.8

Route of Chronos
A = 2000 AD
B = 1066 AD
C = Chronos resumes normal temporal movement

Fig. 5.9

Route of traveller
Arrows agree with external indicator

Reversal of temporal direction

Fig. 5.10
Fig. 5.12

Route of time traveller