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ABSTRACT. 

This t h e s i s i s i n two parts. I n the f i r s t chapter 
we consider the problem of the laminar mixing of two 
d i f f e r e n t gases i n a w a l l Jet. Solutions of the boundary 
l a y e r equations governing the r a d i a l laminar f l o w of a 
mixture of two d i f f e r e n t gases forming a w a l l j e t are 
obtained., A t t e n t i o n i s centered on t h a t part of the flow 
where the concentration of one gas i n the mixture i s small. 
Further, t o i n v e s t i g a t e what e f f e c t the d i f f u s i o n of one 
gas i n t o the other has on the v e l o c i t y p r o f i l e , the 
dominant p e r t u r b a t i o n term i n the stream f u n c t i o n i s 
obtained by expanding the l a t t e r i n terms of a parameter 
whose magnitude depends upon the concentration of the 
gas from the r e s e r v o i r i n the mixture. 

The second problem, discussed i n Chapter two, i s 
t h a t of heat t r a n s f e r i n a r a d i a l l i q u i d j e t . The 
technique used t o study t h i s problem i s s i m i l a r t o t h a t 
employed by Watson i n h i s i n v e s t i g a t i o n s i n t o the v e l o c i t y 
d i s t r i b u t i o n i n a r a d i a l l i q u i d j e t . Two s p e c i f i c 
examples; are t r e a t e d i n d e t a i and the r e s u l t s obtained, 
f o r the temperature d i s t r i b u t i o n i n the j e t and heat 
t r a n s f e r across the w a l l , are presented g r a p h i c a l l y . 
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GENERAL INTRODUCTION. 

This t h e s i s i s i n two parts. I n the f i r s t chapter 
we consider the problem of the laminar mixing of two 
d i f f e r e n t gases i n a w a l l j e t . Solutions of the boundary 
la y e r equations governing the r a d i a l laminar flow of a 
mixture of two d i f f e r e n t gases forming a w a l l j e t are 
obtained.. A t t e n t i o n i s centered on t h a t part of the fl o w 
where the concentration of one gas i n the mixture i s small. 
Further, t o i n v e s t i g a t e what e f f e c t the d i f f u s i o n of one 
gas i n t o the other has on the v e l o c i t y p r o f i l e , the 
dominant p e r t u r b a t i o n term i n the stream f u n c t i o n i s 
obtained by expanding the l a t t e r i n terms of a parameter 
whose magnitude depends upon the concentration of the gas 
from the r e s e r v o i r i n the mixture.. 

The second problem, discussed i n chapter two, i s 
t h a t of heat t r a n s f e r i n a r a d i a l l i q u i d j e t . The 
technique used t o study t h i s problem i s s i m i l a r t o t h a t 
employed by Watson i n h i s i n v e s t i g a t i o n s i n t o the v e l o c i t y 
d i s t r i b u t i o n i n a r a d i a l l i q u i d j e t . Two s p e c i f i c examples 
are t r e a t e d i n d e t a i l and the r e s u l t s obtained, f o r the 
temperature d i s t r i b u t i o n i n the j e t and heat t r a n s f e r 
across the w a l l , are presented g r a p h i c a l l y . 
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CHAPTER ONE. 

LAMINAR WALL JET MIXING OF TWO DIFFERENT GASES. 

1. INTRODUCTION. 
This chapter i s concerned w i t h the laminar mixing of 

two d i f f e r e n t gases i n forming what has been described by 
Glauert as a " w a l l j e t " , namely, a j e t of gas s t r i k i n g a 
w a l l a t r i g h t angles and spreading out r a d i a l l y over i t i n 
the atmosphere of a second gas at r e s t . Glauert (1) f i r s t 
drew a t t e n t i o n t o such j e t s of incompressible f l u i d spread
in g out r a d i a l l y - and mixing w i t h a s i m i l a r f l u i d a t r e s t , 
he set up the appropriate momentum and c o n t i n u i t y equations 
and obtained exact s o l u t i o n s f o r the r a d i a l and plane flows 
i n the form of s i m i l a r i t y s o l u t i o n s . Later R i l e y (2) 
extended the concept and studied the influence of 
c o m p r e s s i b i l i t y on a laminar r a d i a l w a l l j e t . 

I n the present problem, besides the usual v a r i a b l e s 
such as the v e l o c i t y components, de n s i t y , v i s c o s i t y , 
pressure and temperature, a f u r t h e r v a r i a b l e , namely, the 
concentration of one gas i n the other must be introduced 
since the f l u i d i n the j e t i s taken t o be d i f f e r e n t from 
t h a t i n the surrounding stream.. Thus, t o the fundamental 
equations governing f l u i d motion, one has t o add a new 
equation, namely, the equation of d i f f u s i o n , Chou (3) 
f i r s t introduced t h i s a d d i t i o n a l equation i n t o the study of 
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laminar j e t mixing of two incompressible f l u i d s . I n 
a d d i t i o n t o the boundary l a y e r assumptions and t h a t of 
i n c o m p r e s s i b i l i t y of the f l u i d , c e r t a i n other assumptions 
are made about the c o n s t i t u e n t gases t h a t enable us t o 
present the d i f f u s i o n equation i n a convenient form. These 
arej-'. ( i ) t h a t the c o n s t i t u e n t gases are perfect gases, 
( i i ) t h a t there i s no chemical r e a c t i o n between them, and 
( i l l ) t h a t t h e i r mixture i s a continuous medium. Thus 
they obey Dalton's law of gas mixtures which now states 
t h a t the volume of a mixture of two or more perfect gases 
i s equal t o the sum of the volumes which they would 
separately occupy when subjected t o the same pressure. 
For our purposes, i t i s therefore s u f f i c i e n t t o use the 
r e l a t i o n s f o r the v i s c o s i t y and other properties of gases 
and gas mixtures given by simple k i n e t i c theory. 

I n t h i s chapter the appropriate equations of motion 
f o r f l o w i n a r a d i a l w a l l j e t are formulated and reduced 
t o those f o r plane f l o w by a transformation embodying the 
Howarth and Mangier transformations. We then consider a 
s o l u t i o n at a large distance from the j e t axis where the 
molecular concentration of the gas from the r e s e r v o i r i s 
small, so t h a t , as a f i r s t approximation we take the density 
of the mixture t o be equal t o t h a t of the surrounding gas • 
there. This f u r t h e r s i m p l i f i e s the equations of motion. 
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I n f a c t , the momentum equation then becomes i d e n t i c a l w i t h 
t h a t i n Glauert's paper and h i s s o l u t i o n of the momentum 
equation i s appropriate and i s made use of i n solving the 
d i f f u s i o n equation a f t e r choosing a s u i t a b l e form f o r the 
molecular concentration. 

I n order t o determine the e f f e c t of d i f f u s i o n on the 
v e l o c i t y p r o f i l e , a method s i m i l a r t o t h a t employed by 
Crane and Pack (h) f o r two-dimensional free j e t mixing of 
two d i f f e r e n t gases i s used. By t h i s method the stream 
f u n c t i o n i s expanded i n terms of a parameter which depends 
on the concentration of the gas from which the j e t i s 
i n i t i a l l y formed i n t h e n i x t u r e . Only the f i r s t term i n 
the p e r t u r b a t i o n t o the stream f u n c t i o n i s considered i n 
d e t a i l . 

Throughout t h i s chapter we assume tha t the two gases 
are incompressible, that^as i n (1) and (2),the boundary 
l a y e r equations are appropriate f o r describing w a l l - j e t 
f l o w and t h a t the pressure and temperature are everywhere 
constant. 

The type of f l o w envisaged i n t h i s chapter may be 
r e a l i s e d i n p r a c t i c e on the roof of a mine shaft when a 
stream of methane i s released from the f l o o r or w a lls of 
the s h a f t . 



2. EQUATIONS OF MOTION. 
On boundary la y e r approximations the equations of 

momentum and c o n t i n u i t y f o r a laminar r a d i a l w a l l j e t 
together w i t h the equation of s t a t e , f o r constant pressure 
and temperature, are 

P a l i ^ ^ p-,i l i ^ r ^ 1.1 h (2 1) 
^ ^^^^ -h^ -a^U i>^) ^ ^^'^^ 

^ ( ^ P ^ ' ^ + =0 ' (2.2) 

and f -z O-tAoZ-cw-̂  , (2.3) 

where are the distances measured along the w a l l from 
the j e t axis and normal t o i t r e s p e c t i v e l y ; 6c_̂ -v are the 
corresponding v e l o c i t y components; p^y^ the density and 
the v i s c o s i t y r e s p e c t i v e l y and Q. the gas constant of the 
mixture. 

We s h a l l r e f e r t o the gas issu i n g from the re s e r v o i r 
as gas "1" and t h a t occupying the surrounding space as gas 
"2". The q u a n t i t i e s / ^ and P f o r the two gases w i l l be 
denoted by appropriate s u f f i x e s . 

I f now i n the mixture the mass concentration of gas 

1 be denoted by C/ , we have f o r the equation of d i f f u s i o n 

of gas 1 'into gas 2 



Here X),^. i s the ^-wise c o - e f f i c i e n t of molecular d i f f u s i o n 
and i s taken t o be constant f o l l o w i n g Jeans (5). 

Let /V be the t o t a l number of molecules i n u n i t 
volume of the mixture under given pressure and temperature_, 
rv, , be defined s i m i l a r l y f o r the two gases and /i^^ 

be the masses of single molecules of the constituent gases 
r e s p e c t i v e l y , then 

N - N, -h . (2.5) 

The molecular concentration c of gas 1 i n the mixture i s 
now defined as 

t = /V//a/ 

so t h a t , f o r gas; 2 the molecular concentration i s given by 

The density p of the mixture i s given by 

- hJo^^(^l+ fbC ) (2.6) 

where ŷ , _ ^^j^^ _ l _ 

According t o the k i n e t i c theory of gas mixtures, 
the CO-efficient of v i s c o s i t y , o f a mixture of two 
gases i s given by (see (5) ) ^ 

where are constants associated w i t h the two gases. 

Since i n the region tinder consideration NIJn i s small, C 
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i s small there.. We can, t h e r e f o r e , w r i t e (2.7) i n the 
form 

where 

i- - /:K^n /^) - A., . 

W r i t i n g (2..6) as 

the equation of state (2,3) becomes 

H^ai - HQ! - o^u^, (2.8) 
where 0< i s Bbltzmann's constant. Equation (2.8) now 
shows t h a t i n a region of constant pressure and temperature 

N - Ctr^'l^'^^ ? 

and consequently C oC Cj . (2,9) 

Equations (2.2), (2.6) and (2.9) are now used t o 

s i m p l i f y the d i f f u s i o n equation (2..^) which becomes 

U,2S + n3^ = 'l>,^0-ffi<^) A - (2.10) 
'a^ I ^'d^^ 

The equation of c o n t i n u i t y (2.2) i s s a t i s f i e d by 

i n t r o d u c i n g a stream f u n c t i o n ^ defined by 

Using the Howarth-Mangler transformation 
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where ^ ~ f j f ^ , the momentum and the d i f f u s i o n equations 
(2.1) and (2.10) now become r e s p e c t i v e l y 

B > _ _ A» 5 / A - V l ^ ̂  (212) 

where J^/a/^z -"-̂  Schmidt number, -j^j. 
being the kinematic v i s c o s i t y of gas 2. Equations (2.12) 
and (2..13) are e f f e c t i v e l y the two-dimensional form of our 
equations of motion. 

Since there i s no d i f f u s i o n of molecules across the 
w a l l , -o at the w a l l and f o r larg e values of A^-^o 

and so, the molecular concentration c o as ^ oo . 
The boundary conditions on the v e l o c i t y and the 
concentration are, t h e r e f o r e , as f o l l o w s , 

and as ^_>,oo^ u , — , C o . 

I n terms of the new v a r i a b l e s they become 

and as Z oO ̂  o C _^ o . 
BZ 
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3.. SOLUTION OF THE EQUATIONS. 
Since the transformed equations (2.12) and (2.13) 

are now reduced t o those f o r two-dimensional f l o w and since 
C i s small i n the region under consideration, we take as a 
f i r s t approximation t o the s o l u t i o n of (2.12) Glauert's 
s o l u t i o n , where f - I ̂  which i s 

(3.1) 

where the constant g i s the f l u x of e x t e r i o r momentum 
f l u x a t i n f i n i t y . I t may be noted t h a t t h i s q u a n t i t y i s 
constant everywhere i f ̂ f^-f(u){see (1) and (2) ) . The 
f u n c t i o n ^C^) s a t i s f i e s the equation 

/ff ,^ ^ 
i - f / / - / - ° ' (3.2) 

w i t h ^(•=>a):s.i , Glauert obtained the s o l u t i o n of equation 

(3,2) i n the f o l l o w i n g form 

* = j ' , }'=iO-)'J. 

To our f i r s t approximation w i t h p the d i f f u s i o n 

equation (2.13) now becomes ^ 
^± ̂  ^211^ ^ /^<r 2S- . (3.^) 
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To solve (3.-̂ ) we seek a s i m i l a r i t y s o l u t i o n f o r the 
concentration i n the form 

where and in. are t o be determined from 
// / ' 

the primes denoting d i f f e r e n t i a t i o n w i t h respect t o >̂  • 
A l l possible values of are determined below from the 
eigenvalue problem posed i n (3»6). However, one value 
of 1 ^ i s given immediately from 

M ^O-^f^JP^^ ̂  , (3.7) 
as , equation (3,7) merely^ expressing the f a c t t h a t 
the t o t a l mass f l u x M of molecules of gas 1 i s constant. 
I t w i l l be shown subsequently t h a t the s o l u t i o n (3*5) w i t h 

- i s most important s o l u t i o n as ^ —^ od • 
With /yyu •=: ̂  equation (3«6) becomes 

w i t h s o l u t i o n . 
1 

(^-^('-rr , (3.8) 
where A i s a constant.. S o l u t i o n (3„80 i s displayed 
g r a p h i c a l l y i n Figure 1 f o r C5" = 1 . 
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T'o f i n d the general s o l u t i o n of (3.6) i t i s 

convenient t o change the independent v a r i a b l e from t o 

where 

^ = / (3.9) 

when (3..6) i s reduced t o the hypergeometric equation 

w i t h boundary conditions 

d 6r -o 
(3.11) 

The s o l u t i o n of equation (3.10) i s , using the usual 

n o t a t i o n , 

Cr = AF{c.J. i . f > 3 ipF{^^iJ^i-^^j i) , (3.12) 

where 

oi - - 1 ^ (3.13) 
/in 30-

and rTjVi are constants- t o be determined. The f i r s t of the 

boundary conditions (3.11) gives (3=o and using the 

second of (3.11) we have 

t h e r e f o r e , 
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where X -oj^ x ̂  3_, The f i r s t of the r e l a t i o n s 
(3.-13) now gives 

and hence from the remaining r e l a t i o n i n (3.13) 

S u b s t i t u t i n g i n (3.5) the value of obtained from 
(3.12) w i t h "B-o and the values of and-^ivjust 
obtained, we get^using the i d e n t i t y 

c SO-drA^K-^,i^h*hh*)&d , (3.15) 
A 

where A{^,^^ are constants. The hypergeometric f u n c t i o n 

i n (3.15) i s now a polynomial and i s r e l a t e d t o the Jacobi 

polynomials C'~^^J ^7 

The Jacobi polynomials i n (3.I6) are orthogonal i n the 
i n t e r v a l 6"'̂  Q w i t h the \i^eight f u n c t i o n (j-p^^V-z-p^^ | =/-2;^. 
Therefore, i f the concentration i s given at ̂ -^^ C^-C-C^o:,^)^ 
the constants 4^ are determined as 
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I n p a r t i c u l a r , when t=o, •yn,^ and the s o l u t i o n (3.8) 
i s recovered. This s o l u t i o n i s thus seen, from (3.^15)) t o 
provide the dominant term i n C f o r lar g e ^ . 

To make the v e l o c i t y p r o f i l e t r u l y representative of 
j e t - m i x i n g of two d i f f e r e n t gases, i n other words, t o see 
what e f f e c t the d i f f u s i o n of gas 1 i n t o gas 2 has on the 
v e l o c i t y p r o f i l e , the dominant term i n the p e r t u r b a t i o n t o 
the stream f m c t i o n i s obtained, f o l l o w i n g Crane and Pack (•+), 
by w r i t i n g ^ , 

f-C^'F^/^^fCm-^- H^isfF,(n)* j • (3.18) 

S u b s t i t u t i n g (3.-15) and (3»l8) i n t o equation (2.12) and 
equating c o - e f f i c i e n t s , F,('^) i s found t o s a t i s f y the 
d i f f e r e n t i a l equation 

where the primes denote d i f f e r e n t i a t i o n w i t h respect t o 

and -n-zp>-\-^' The boundary conditions on are 

f,L^)-^f,'Co) , f!c^)^o . (3.20) 

W r i t i n g V and changing the independent v a r i a b l e once 

more from to using (3»3) and (3.9), equation (3.19) 

becomes / / , 

^iO-i)^+i(,.i)±P+foP=-^^^-i) 0-'"t)} • (3.21) 
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Since (j-i.)U~^^) i s a complementary f u n c t i o n of 
equation (3,21), the s u b s t i t u t i o n 

reduces i t t o ^ 

which on i n t e g r a t i o n gives 

Therefore, / 

where 'B^[f>jf) ̂  •x!'^'(f~ , and ^ i s defined 
as , , 

the constant K being determined from the co n d i t i o n t h a t f, 

has continuous d e r i v a t i v e at ~ • 
I n p a r t i c u l a r , when (T =• ? , the s o l u t i o n s i m p l i f i e s 

t o 

l i t . 



At each stage of the s o l u t i o n r e s u l t s f o r the r a d i a l 
w a l l Jet may be deduced from the transformations (2.11), 

(3.1) . 
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i+. RESULTS. 

The w a l l j e t f u n c t i o n (3.3) found by Glauert i s 
shown i n Fig. 2.. I n Fig. 3 the p e r t u r b a t i o n p r o f i l e 
i s shown f o r <r = l^2-. The parameter g- i s defined as T>,z/-i}^ 

and i n t e r p r e t i n g t h i s q u a n t i t y as the r a t i o of two 
d i f f u s i v i t i e s , we would expect the j e t t o th i c k e n as <j-
increases. F i g . 3 indicates- t h a t t h i s i s so. 

I t can be shown (see r e f . 5) t h a t cr i s a decreasing 

f u n c t i o n of -T^f/^^.' Thus, as "ytv^/^^ increases,the 
v e l o c i t y p r o f i l e sharpens and we would expect the increment 
of sk i n f r i c t i o n t o increase.. To t e s t t h i s hypothesis we 
choose a s i m p l i f i e d model i n which the r a d i i of the 
molecules of the two gases are the same and i n which 

X 
l > / i - O'^i^S ^^(i -f- . (If.l) 

Equation (^.1) e x h i b i t s the corre c t dependence of P / j . on 
-ryu^^^m.^ y the numerical f a c t o r i s chosen so t h a t the 
c o - e f f i c i e n t of s e l f - d i f f u s i o n suggested by Chapman 
(see r e f . 5) i s recovered when /^^c^vu^. With these 
s i m p l i f y i n g assumptions the increment i n the skin f r i c t i o n 
i s p r o p o r t i o n a l t o A where 

For values of cr i n the neighbourhood of u n i t y i n 

which case the masses of the molecules i n the mixture do 

not d i f f e r g r e a t l y , tS. i s an increasing f i m c t i o n of ̂ ^j'^yi,^ 

as. we a n t i c i p a t e d . 
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CHAPTER TWO. 
HEAT TRANSFER IN A RADIAL LIQUID JET. 

INTRODUCTION. 

A r a d i a l l i q u i d j e t i s formed when a smooth j e t of 
l i q u i d f a l l s v e r t i c a l l y - onto a h o r i z o n t a l plane and spreads 
out r a d i a l l y over i t , as f o r example, water f a l l i n g from a 
tap t o the bottom of an empty sink. The l i q u i d spreads 
out i n a t h i n l a y e r u n t i l the depth increases suddenly 
forming a hy d r a u l i c jump. I n order t o discuss the motion 
of the f l u i d i n the t h i n l a y e r before the hydraulic jump, 
the assumptions of boimdary layer theory are applied which 
r e q u i r e t h a t the Reynold's number of the impinging j e t should 
be l a r g e . The r a d i a l l i q u i d j e t was f i r s t studied by 
Watson (1) who found a s i m i l a r i t y s o l u t i o n of the laminar 
boundary l a y e r equations governing such f l o w . He also 
considered the i n i t i a l growth of the boundary layer from 
the stagnation p o i n t where the s i m i l a r i t y s o l u t i o n does 
not hold, by approximate methods. These r e s u l t s are 
b r i e f l y discussed i n Section 2. Later i t was in v e s t i g a t e d 
by R i l e y (2) i n h i s d e t a i l e d study of r a d i a l j e t s w i t h 
s w i r l . The boundary la y e r o r i g i n a t i n g from the c e n t r a l 
stagnation p o i n t gradually grows i n thickness, as more and 
more l i q u i d i s a f f e c t e d by viscous shear stress, u n t i l i t 
absorbs the whole flow. I n studying the v e l o c i t y 
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d i s t r i b u t i o n , Watson divided the f l o w i n t o four d i f f e r e n t 
regions which pass continuously i n t o one another. 

( i ) The region near the c e n t r a l stagnation point 
where the r a d i a l distance x = OO^o) , cv„ being the 
radius of the impinging j e t . I n t h i s region the boundary 
l a y e r thickness i s 0(y(^»/U^ where U, i s the speed of the 
impinging j e t and i> i s the kinematic v i s c o s i t y . 

( i i ) When x.»> cco , "the conditions i n region ( i ) 
are not important and the boundary la y e r grows l i k e the 
Blasius boundary layer on a f l a t p l a t e . 

The approximate method used by Watson f o r t h i s region 
i s b r i e f l y discussed i n Section 2. A s i m i l a r method i s 
used i n Section h t o describe the temperature d i s t r i b u t i o n 
i n t h i s region. 

( i i i ) As x. increases, the viscous stresses a f f e c t 
more and more f l u i d across the f l o w and the boundary layer 
increases i n thickness u n t i l i t absorbs the whole layer of 
f l u i d . , . The v e l o c i t y p r o f i l e then gradually changes from 
Blasius type t o the s i m i l a r i t y p r o f i l e mentioned e a r l i e r . 

( i v ) At l a r g e distances from the stagnation p o i n t , 
the way i n which the f l o w o r i g i n a t e d becomes unimportant 
and the f i n a l s i m i l a r i t y form i s a t t a i n e d . 

The h y d r a u l i c jump associated w i t h t h i s type of f l o w 
w i l l u l t i m a t e l y terminate the region of f l o w under 
consideration. 
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The proMem of the d i s t r i b u t i o n of temperature i n 
a r a d i a l l i q u i d j e t i s studied here by conforming t o a 
s i m i l a r d i v i s i o n of the flow. I n Section 2, the equations 
of motion are stated and the s i m i l a r i t y s o l u t i o n of the 
momentum equation f i r s t found by Watson i s b r i e f l y 
discussed. I n Section 3 s i m i l a r i t y solutions of the 
energy equation appropriate t o region ( i v ) are obtained 
f o r a wide v a r i e t y of temperature conditions. 

I n the f i r s t of the two examples described i n 
Section h part of the w a l l i s assumed t o be the r m a l l y 
i n s u l a t e d , the r e s t being maintained at a constant 
temperature; a s o l u t i o n of the energy equation i s found 
f o r t h i s l a t t e r p a rt which i s chosen t o correspond t o 
region ( i v ) described above. I n the second example the 
whole w a l l i s maintained at a constant temperature so 
t h a t both the temperature and v e l o c i t y d i s t r i b u t i o n s 
have t o be studied i n a l l the four regions described 
e a r l i e r . Regions ( i ) and ( i l l ) are neglected f o l l o w i n g 
Watson and R i l e y (3) . I n region ( i i ) an approximate 
method i n v o l v i n g the heat f l u x equation and two poly
nomials; of the f o u r t h degree f o r the temperature and 
the v e l o c i t y f u n c t i o n s are employed. The neglect of 
regions ( i ) and ( i i i ) and Watson's approximate method 
f o r the v e l o c i t y d i s t r i b u t i o n i n region ( i i ) are discussed 
at the end of Section 2. 
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We assume t h a t the c o n t r i b u t i o n t o the temperature 
of t h e ' l i q u i d i n the j e t due t o viscous heating i s 
n e g l i g i b l e compared t o the applied heating and i t i s , 
there fore^ignored while c a l c u l a t i n g the temperature 
d i s t r i b u t i o n i n the l i q u i d i n the examples discussed 
above. Throughout t h i s problem the boundary layer 
equations are assumed t o be appropriate, temperature 
d i f f e r e n c e s are taken t o be small and y*̂ , the co
e f f i c i e n t of v i s c o s i t y , and p ^ the density, are assumed 
t o be constant. 
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2. EQUATIONS OF MOTION. 
Using boundary la y e r approximations the momentum, 

c o n t i n u i t y and energy equations governing the incompressible 
laminar f l o w of a l i q u i d j e t s t r i k i n g a plane h o r i z o n t a l 
w a l l a t r i g h t angles and spreading out r a d i a l l y over i t , 
are r e s p e c t i v e l y 

^ + -0^"- = V ^ - (2 1) 

and u c i r I T . 2>. i l , ^ M^S> (2.3) 

where x,^ are the distances measured along the w a l l from 
the j e t axis and normal t o i t r e s p e c t i v e l y ; u_,-x? are 
the corresponding v e l o c i t y components, and i) ,T, o~ j S 

denote r e s p e c t i v e l y the kinematic v i s c o s i t y , temperature, 
Pra n d t l number and s p e c i f i c heat at conctant procouro of 
the l i q u i d i n the j e t . The boundary conditions are 

, i2M 

and 
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other boundary conditions on T necessary t o specify the 

problem completely w i l l be introduced l a t e r . Condition 

(2.5) expresses the f a c t t h a t the shearing stress f a l l s t o 

zero at the f r e e surface ^-fC-x^) and (2.6) states t h a t 

there i s no heat t r a n s f e r across the free surface. With 

the boundary conditions (2.^-) and (2.5) Watson has shorn 

t h a t a s i m i l a r i t y s o l u t i o n of the momentum equation i s 

a v a i l a b l e . This may be w r i t t e n as 

where * f i s the stream f u n c t i o n defined as 

and a i s an a r b i t r a r y constant length which depends on 

the i n i t i a l development of the boundary l a y e r . Watson 

estimates 

where (H i s the j e t Reynolds number 2JI^ . The 

(2.7) 

con stant 6u i s given by the c o n d i t i o n of constant volume 

f l u x per r a d i a n , namely 

The f u n c t i o n -f s a t i s f i e s the ordinary d i f f e r e n t i a l 

equation 
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" ' (2.10) 

i + 3 f ' > 

the f r e e surface having been chosen t o be •y^-^ . I t i s 
convenient, f o r what f o l l o w s , t o make the transformation 

i ^ ^ i ' (2.11) 

where cX̂  i s a constant chosen so t h a t 

' (2.12) 

Thus the equation s a t i s f i e d by i s 

ft ^ T ^ i f , - ^ ' (2.13) 

w i t h the same boundary conditions as f o r f i n (2,10). 

I n t e g r a t i n g equation (2.13) once 

and so oC^T^^l^^j-cj^^cCt^ , (2.15) 

which w i t h (2.12) gives 

Also from (2.1^), 

The v e l o c i t y f u n c t i o n ^ i s displayed g r a p h i c a l l y i n 

Figure 1. 
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I f x » < 5 t e , conditions p r e v a i l i n g i n the region ( i ) 
where x = OQ^o) are not important and i n the approximate 
a n a l y s i s discussed below and i n Section h region ( i ) i s 
ignored. For h i s approximate s o l u t i o n i n region ( i i ) , 
Watson used the Karman-Pohlhausen method w i t h 

^^^oj^ii) > > (2.18) 

where j'C'*l) i s the s i m i l a r i t y p r o f i l e defined by (2,15) 

and S i s the boundary l a y e r thickness. This technique 
has the e f f e c t of suppressing region ( i i i ) i n which the 
v e l o c i t y p r o f i l e changes t o i t s f i n a l s i m i l a r i t y form. I n 
f a c t ^ R i l e y (3) has shown t h a t i n region ( i i i ) , when the 
boundary layer f i l l s the whole of the moving layer of 
f l u i d , any disturbance t o the s i m i l a r i t y v e l o c i t y p r o f i l e 
i n a r a d i a l l i q u i d j e t i s ) . thus the f i n a l 

s i m i l a r i t y form i s a t t a i n e d very r a p i d l y . S u b s t i t u t i o n 
of the approximate v e l o c i t y p r o f i l e (2.l8) i n the 
momentum i n t e g r a l equation f o r r a d i a l flow 

gives, using (2.17), -

and hence ,. ' ''• 

X^^^-A^Lii i^^C , ^2.20) 

where i s a constant. A consideration of the order 
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of magnitude shows t h a t C -^C"^} r e l a t i v e t o the 
other terms there and hence can be neglected when x,»a.o . 
Thus when x ^ > X » a . ( , 

c""- / ^ ^ f t2L3'^' , (2.21) 
^ "(;rr-/3o(,) 2.Qj 

where x., i s the s t a t i o n a t which the boundary layer j u s t 
absorbs the whole flow. Watson calculated the value of x.„ 
from the c o n d i t i o n t h a t the volume f l u x through the 
boundary l a y e r reaches the value there, and thus 
obtained on the basis of the above approximate s o l u t i o n 

Vs 
x„ = o-iigs'cL^Q . (2.23) 
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3. SIMILARITY SOLUTIONS OF THE ENERGY EQUATION. 

I n region ( i v ) where the s o l u t i o n of (2.1) and (2.2) 

i s given by (2,7) and (2 .8) , the energy equation (2,3). 

may be w r i t t e n as 

w i t h the boundary c o n d i t i o n 

-Q OU^ 71= f . (3.2) 

At the w a l l e i t h e r the w a l l temperature T&j or heat 
t r a n s f e r which i s p r o p o r t i o n a l t o , may be prescribed, 

I n the examples discussed i n Section \, we s h a l l r e s t r i c t 
ourselves t o the case of constant w a l l temperature or, i f 
the w a l l i s t h e r m a l l y i n s u l a t e d , zero heat t r a n s f e r , 

A p a r t i c u l a r i n t e g r a l of (3.1) can be found i n the 

form 
-2 

where i s the constant w a l l temperature and C© i s a 

constant.. Equation (3.1) also has complementary functions 

of the form 

w i t h Qy^ s a t i s f y i n g 

0'^-i.3o(<s-fe^^o • (3.5) 
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A complete p i c t u r e of the temperature d i s t r i b u t i o n 
p r e v a i l i n g i n a p a r t i c u l a r problem can thus be obtained 
by adding t o the p a r t i c u l a r I n t e g r a l (3»3) appropriate 
complementary f u n c t i o n s of the type (3.^). 

The e f f e c t s of viscous heating, w a l l heating and 
I n i t i a l heating w i l l now be studied separately, 
( I ) Viscous Heating. 

To study the e f f e c t s of viscous d i s s i p a t i o n on the 
temperature d i s t r i b u t i o n I n the j e t , we require a p a r t i c u l a r 
I n t e g r a l of (3.1) I n the form (3.3) where, w i t h 

BfC^j) s a t i s f i e s 

6 > ' V ^ c r A = < r / , (3.6) 

w i t h boundary conditions 

e i t h e r 0(o)=-^> w a l l I s maintained 
" at constant temperature, 

or, &'0>)~^ thermally Insulated w a l l , 
and QoO)-^ from (3.2). 

I t I s convenient t o change the Independent v a r i a b l e I n 

(3.6) and (3.7) from 7^ t o a new v a r i a b l e £ w i t h 

^ = f ' ' . (3.8) 

From (3.8) and (2.11) we have 
a/a, 1/0 , 

4^3oC,Jt(i^l) , (3.9) 
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which when s u b s t i t u t e d I n (3.6) gives, as the equation 

H^-i) - •+ f = f f ' i t'-'^) • (3.10) 

The boundary conditions (3.7) now become 

A series s o l u t i o n of equation (3»10) gives 

where 

The I n f i n i t e series Inside the square bracket on the r i g h t -
hand side of the s o l u t i o n above I s the generalised hyper-
geometrlc s e r i e s . With the usual n o t a t i o n the s o l u t i o n 
can, t h e r e f o r e , be w r i t t e n as; 

- T * * ' + i f r ' < ^ ' - '•^^^'^ 1 : t \ * ) • <3.i2) 
For (T = 1 s o l u t l o j j ^ (3.12) gives as Indicated 
by the quadratic term I n the w e l l known Crocco r e l a t i o n , 
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f o r (T=1 , 

T - ^ i | = /4 4-3tL , 3.13) 

where A and are constants. 

We expect the e f f e c t s of viscous d i s s i p a t i o n i n a 
l i q u i d j e t t o be small and indeed i n what f o l l o w s we s h a l l 
assume t h a t i t can be neglected compared w i t h the applied 
heating.. 

( I I ) Wall Heating. 

When the w a l l i s maintained at a constant temperature 
Tx J we need a complementary f u n c t i o n of the form (3.^) 

w i t h 0^-0- Thus 
T=T,+(VT,)e,(^) . 

where TJ i s the temperature of the in c i d e n t j e t . From 

(3.5), riow s a t i s f i e s 

which, w i t h the boundary conditions 

has the t r i v i a l s o l u t i o n 

This s o l u t i o n r e f l e c t s the physical s i t u a t i o n t h a t 

u l t i m a t e l y a l l the f l u i d i s rais e d t o temperature . 

The manner i n which the f l u i d a t t a i n s t h i s constant 

temperature depends upon the i n i t i a l heating.of the f l u i d 

the e f f e c t s of which we now consider. 
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( I l l ) I n i t i a l Heating. 
We now re q u i r e f u r t h e r complementary functions of 

the type (3»^). Thus when viscous d i s s i p a t i o n e f f e c t s 
are n e g l i g i b l e we may w r i t e the temperature as 

where ^zOl) s a t i s f i e s the d i f f e r e n t i a l equation (3.5). 

We may note t h a t i f the l i q u i d from which the j e t i s 

formed i s , as we s h a l l assujne, at a uniform temperature Tj 

and the w a l l over which the f l u i d flows i s thermally 

i n s u l a t e d then the f l u i d remains at constant temperature 

as no heat i s t r a n s f e r r e d t o or from the f l u i d across 

e i t h e r the w a l l or f r e e surface.. 

When the w a l l i s maintained at constant temperature T^, 

the appropriate boundary conditions f o r &^ are the f i r s t 

and t h i r d of those i n (3.7). The transformation (3.9) 

reduces (3.5) t o the hypergeometric equation 

the boundary conditions now being the f i r s t and t h i r d of 

those i n (3.11). The determination of i n equation 

(3rlU-) i s an eigenvalue problem and i n view of the form 

of the boundary c o n d i t i o n at i^=-1, i t i s convenient t o 

choose the f o l l o w i n g as the solutions of (3.1^) 
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where f>,<y are given by 
o(cr 

The boundary c o n d i t i o n at the fr e e surface determines q^^ 
as the required s o l u t i o n and t h a t at the w a l l requires 
t h a t 

rei - - iMi lL -
l''''Jt-:(.t,-%)!(-y-iA)! 

which w i t h (3^5) gives |>,(^and o( as 

ci-(i^zt)Ci-h3,-t)/a- , 

where X = o,7, 1, 5 , . Therefore 

where ^ . i ^ are constants. Thus w r i t i n g ^(x)z(xV.£^J/^^,Vi^X 

and I n c l u d i n g other constants I n we have 

T = T ^ - H / p ^ : ^ F ( - ^ , ^ 4 ; l 3 , - i ; . (3.16) 

For <r=1 the leading term I n (3.l6) i s given by the 

l i n e a r term i n lAy in the Crocco r e l a t i o n (3.13) • The 
hypergeometrlc f u n c t i o n i n (3.l6) i s a polynomial and i s 
r e l a t e d , by (3, l6) of Chapter 1, t o the Jacobi polynomials 
p which are orthogonal I n the I n t e r v a l J 
w i t h the wight f a c t o r ( l _ p ^ t - ^ J ) , | = 2;^-1 . Therefore, 
i f the temperature d i s t r i b u t i o n i s known at any s t a t i o n y.-z.-x.^. 
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the constants can be calculated from 

0 I 

The heat t r a n s f e r across the w a l l per u n i t area 
i s given by 

where i s thermal c o n d u c t i v i t y . 
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h. EXAMPLES. 
As a f i r s t ' example we take the case where part of 

the w a l l , X < X-f J i s assumed t o be thermally Insulated 
and the r e s t of i t maintained at a constant temperature T^^. 
The end-point ^ x = x, , of the thermally i n s u l a t e d part 
i s assumed t o be i n region ( i v ) as described i n the 
i n t r o d u c t i o n . Therefore, i n the regions (1), (11) and 

( i l l ) and i n p a r t i c u l a r a t the temperature i s 
uniform everywhere and equal t o 7J . Thus the constants 

/ [ ^ occuring i n (3.I6) m^y be determined from (3.17), 

>^ith j(T-TL)/<:Tt-Tjj= ̂  as ^ ^ 

A . ^ ^ i M j ^ f e o / f / ^ ^ (^.1) 

The f i r s t s i x values of are given i n Table'. 1 and 

the temperature, c a l c u l a t e d from the s o l u t i o n (3.I6) 
w i t h these values of , i s shown as a f u n c t i o n of 

i n Figure 2 f o r d i f f e r e n t Â '̂O. ̂  value ^ <r - S' , 

appropriate t o water, has been chosen f o r the Prandtl 
number. The heat t r a n s f e r across the w a l l f o r x > 
i s also displayed g r a p h i c a l l y i n Figure \ where, f o r 
convenience we have taken = at* . 

0 1 2 3 5 

+1.188 -0.280 +0.150 -0.086 +0.075 -0.059 

Table 1. Values: of the constants Ae^ calculated 

from (^.1).. 
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As a second example, we consider the case when 
the w a l l i s maintained at a constant temperature 
throughout; thus the temperature d i s t r i b u t i o n i n the 
l i q u i d passes smoothly through the stages ( i ) - ( i i i ) 
before a t t a i n i n g the s i m i l a r i t y form i n region ( i v ) . 
We have explained i n Section 2 why regions ( i ) and ( i i i ) 
may be ignored and we have also discussed there the 
method employed by Watson f o r an approximate s o l u t i o n 
i n r e g i o n ( i i ) . To determine the temperature d i s t r i b u t i o n 
i n region ( i i ) , we use here an approximate method i n 
which both the momentum i n t e g r a l equation and the heat 
f l u x equation - an i n t e g r a t e d form of the energy equation -
are used.. I n order t o s i m p l i f y the c a l c u l a t i o n , p o l y 
nomials of the f o u r t h degree are assumed f o r the v e l o c i t y 
and the temperature f u n c t i o n s . The heat f l u x equation 
may be obtained by i n t e g r a t i n g the energy equation w i t h 
respect t o ^ from ^ - o t o ^ = =0, neglecting f r i c t i o n a l 
heat. Thus 

o 

The v e l o c i t y and temperature d i s t r i b u t i o n s are assumed 

t o have the forms 
.3. - ^ 

U. = U , ( 2.>J -2^ + ^ ) , (^.3) 
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where and ^ , ̂  and being the v e l o c i t y 

and thermal boundary la y e r thicknesses r e s p e c t i v e l y . The 
r a t i o S^l^ w i l l be denoted by A . The form of the 
temjperature d i s t r i b u t i o n f u n c t i o n i n {h.k) i s so chosen 
as t o ensure i d e n t i c a l v e l o c i t y and temperature d i s t 
r i b u t i o n s r e q u i r e d f o r the case of n e g l i g i b l e f r i c t i o n a l 
heat w i t h <r =1 . I n s e r t i n g (̂ +,3) and 

(h.h) i n (^,2) we obt a i n , on performing the i n t e g r a t i o n , 

U,A"HCA)^ , (If, 5) 

where ^ L A _ 2 - ^ J-^ U/AO, 

Knowing £^ (^,.5) i s an equation f o r A. To determine £ 

we - s u b s t i t u t e (^.3) i n the momentum i n t e g r a l equation 

f o r r a d i a l f l o w (2.19) t o get 

and hence y. d = rpj ^ 3 ? 
where i s a constant which i s zero f o r the reasons 
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given i n section 2. Thus 

37 ' 
analogous t o the r e s u l t (2.21) obtained by Watson. 
Equation (^.5) w i t h (^.6) now gives 

To solve (^.7) f o r A 'we again choose <3--=5" which 
demands t h a t we use t h a t value of HC^) f o r which A < 1 , 
as ^ j < < ^ when <r>1. This gives 

A -jO'S-yo . (^.8) 

Since '^'^'^jA ^® have, from {h,h) 

where A i s given by (^..8). 

For the reasons given at the end of Section 2, 

region ( i l l ) can be ignored and the approximate r e s u l t 
obtained i n (̂ .̂ 9) may be matched w i t h the s o l u t i o n (3.I6) 
at the s t a t i o n X = where the flow a t t a i n s i t s 
s i m i l a r i t y form. Thus, i n t h i s case, x^-x,, and the 
q u a n t i t y x^, i s determined by the c o n d i t i o n t h a t the volume 
f l u x through the boundary la y e r a t t a i n s the value fio 
there.. Thus (2.9) w i t h (^,3) and (*+.6) gives 

lL^-0-zL^%-l OL.R , (^.10) 

analogous t o the r e s u l t i n (2.23) obtained by Watson. 
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To es.timate t we apply the c o n d i t i o n t h a t the j e t t h i c k 

ness i s continuous a t x •= x, Thus 

which, w i t h (^.10) and remembering t h a t Û O,̂  :i I f i u , gives 

The constants /\^ i n t h i s case are given by (3.17) where 

fJ-Tx \ i s evaluated from (^.9). The values of 

found by numerical i n t e g r a t i o n , are shown i n Table 2 and 

the temperature d i s t r i b u t i o n c a l c u l a t e d from (3.I6) \d.th 

these values of the Ai^ i s displayed g r a p h i c a l l y f o r 

d i f f e r e n t values of 2C^) i n Figure 3. 

0 1 2 3 1+ 

+1.165 -0,220 +0.072 -0.018 -0.001 

Table 2, Values of the constants obtained 

n u m e r i c a l l y from (3,17). 

The heat t r a n s f e r across the w a l l i n t h i s case i s 
also displayed g r a p h i c a l l y i n Figure k. For y, ̂  Xo 
i t i s c a l c u l a t e d from the approximate s o l u t i o n described 
above and f o r % X.̂  from equation ( 3.I8). 

The approximate method described here i s i n f e r i o r 
t o t h a t of Watson's, described i n section 2, since the 
assumed q u a r t i c p r o f i l e (^.3) does not j o i n on smoothly 
w i t h the s i m i l a r i t y s o l u t i o n at X n x ^ . However, as 
in d i c a t e d e a r l i e r , the t r a n s i t i o n region ( i i i ) i n which 
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the v e l o c i t y p r o f i l e a t t a i n s i t s f i n a l s i m i l a r i t y form 

w i l l be small and i t i s s u f f i c i e n t f o r our purposes, 

e s p e c i a l l y i n view of the enormous s i m p l i f i c a t i o n s i n 

the a n a l y s i s , t o assume the q u a r t i c p r o f i l e s (^.3) and 

The t h i n l a y e r of f l u i d i n which we have been 

i n v e s t i g a t i n g the temperature d i s t r i b u t i o n i s terminated 

by a sudden increase i n depth at a s t a t i o n x = X j _ , say. 

This i s a hyd r a u l i c jump. An estimate of x.^ has been 

made by Watson by equating the ra t e of loss of momentum 

t o the t h r u s t of the pressure. Watson also extends h i s 

an a l y s i s t o the case of t u r b u l e n t f l o w which i s outside 

the scope of the present ii^cbrk. 
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Figure 2. Temperature d i s t r i b u t i o n s f o r example 1 
f o r various :)i(x) ^^1 . 
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f o r various c^) ^ 7 . 
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