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ABSTRACT 

The dissolution behaviour i n sulphate solutions of so-called 
non-porous anodic alumina f i l m s and f i l m s formed i n dry oxygen and i n 
a moist oxygen atmosphere on chemically polished aluminium has "been 
investigated. 

Evidence i s presented which indicates that the non-porous anodic 

f i l m s , formed at 7-30 v o l t s , consisted of two regions, a t h i n , less 

soluble region adjacent to the metal and a thicker, more soluble 

outer region i n t o which hydroxyl ions were incorporated. The 

structure might be related to the i n i t i a l method of surface prepar­

a t i o n adopted. 

I t i s suggested that f i l m s formed i n dry oxygen at 500°C consist 

of c r y s t a l l i n e y^ 1™* 1 3 8 1! whilst those formed i m t h e moist oxygen 

atmosphere at 500°C possibly consist of amorphous alumina with some 

adsorbed water and are less faulted than the c r y s t a l l i n e oxide. 

Again, there i s some indi c a t i o n that the structure of these f i l m s 

i s strongly influenced by the i n i t i a l method of surface preparation 

used. 

The dissolution behaviour of the anodic films and f i l m s formed 

i n dry oxygen at 500°C can be understood i n terms of the extent of 

sulphate ion adsorption, apparently greater under the same conditions 

fo r the former type, and i t s effect on ra t e of tranfer of protons, 

hydroxyl ions and water across the oxide/solution i n t e r f a c e . A ::»— 



reaction scheme, proposed e a r l i e r t o account f o r the "behaviour 

during d i s s o l u t i o n of the barrier layer of porous f i l m s formed 

anodically i n sulphuric acid, appears adequate to explain the d i s s o l ­

ut i o n behaviour observed i n the present studies. However, the type 

of behaviour, although rather similar f o r both' anodic non-porous and 

f i l m s formed i n dry oxygen at 500°C, was quite d i f f e r e n t from the 

barrier layer of porous f i l m s formed anodically i n sulphuric acid. 
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CHAPTER. 1 
The Present Investigation. 

1.1. Introduction. 

I t i s well known that the resistance of aluminium metal to 

oxidation and corrosion arises from the protective natural oxide 

f i l m present on the surface. I t i s the presence of t h i s f i l m which 

renders the metal useful as a s t r u c t u r a l material, and agents which 

tend to remove or disrupt i t lessen the usefulness of the metal. 

The oxide i s also of i n t e r e s t from the point of view of i t s elec­

t r i c a l properties. Thus, f i l m s of the 'barrier type (see l a t e r ) 

are widely used i n capacitors, and are known to have semiconducting 

properties. These l a t t e r properties have been discussed i n terms 
1 2 3 

of the non-stoichiometric structure of the oxide ' ' and also i n 
4 

terms of the presence of s t r u c t u r a l f a u l t s i n the f i l m . Such 

factors as non-stoichiometry and the presence of flaws are also of 

concern i n consideration of the processes of f i l m formation and 

dissolution as w i l l be discussed l a t e r . 

1.2. Types of Oxide Films on Aluminium. 
The oxide f i l m found n a t u r a l l y on aluminium metal, or that 

r e s u l t i n g from such processes as electropolishing or chemical p o l i s h -
5 

ing, i s only a few angstrom units i n thickness'. I t may be thickened 

f o r specific purposes by either oxidation i n a gaseous atmosphere or 

by anodic oxidation. The formation of a thickened f i l m by either 



process depends on ion movement through the oxide under the influence 

of the f i e l d , provided either by the applied anodising voltage or 

by a&sorbed ions at the outer surface. 

The d e t a i l s of these processes are discussed i n the next chap­

te r s , but the extent of f i l m thickening which i s possible may be 

i l l u s t r a t e d by the f a c t that the thickness of non-porous anodic 

f i l m s i s l i m i t e d by the breakdown voltage of 500-700 volts**, which 
o 

corresponds to f i l m thicknesses of 7 000 - 10 000 A. Porous anod­

i c f i l m s may be grown to many times t h i s thickness under appropriate 

conditions. 

The anodisation of aluminium i s commercially important, and 

f i l m s of two kinds nay be produced by v a r i a t i o n s of the process. 

These are ( i ) non-porous barrier f i l m s , and ( i i ) those of the porous 
7 8 

type i n which an outer layer containing discrete pores ' overlies 

an inner layer of the b a r r i e r type. The type of e l e c t r o l y t e , i t s 

concentration and temperature, decide the type of f i l m produced and 

i t s porosity. Generally speaking, porous films'are produced i n 

electrolytes which are solvents f o r alumina; 15$ w/v sulphuric 

acid solution i s a t y p i c a l example of such an e l e c t r o l y t e . Both 

porous and non-porous f i l m s have good corrosion and mechanical r e ­

sistance, and a d d i t i o n a l l y the porous types provide a good base f o r 

dyeing treatments. 

The question of the amorphous or c r y s t a l l i n e structure of oxide 
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f i l m s of a l l types i s considered i n the next two chapters. 
1.3* Behaviour of the Naturally Occurring Oxide Film on Aluminium 

i n Aqueous Solutions. 

Aspects of tiie "behaviour of the n a t u r a l l y occurring oxide f i l m 

on aluminium when immersed i n solutions have been widely studied i n 

r e l a t i o n to the corrosion of the underlying metal. Thus, corrosion 

i n h i b i t i o n of aluminium has been discussed i n terms of f i l m dis­

solution and repair processes i n solutions containing d i f f e r e n t 

9 

types of ions . The l i a b i l i t y of iiie metal to attack i n solut­

ions containing halide ions has been re l a t e d to tiie p o l a r i s a b i l i t -

ies of these ions and t h e i r ease of entry i n t o the e l e c t r i c a l double 

layer at the solution i n t e r f a c e 1 0 as we l l as to t h e i r capacity to 

form soluble compounds. I n solutions of other types the hydroxyl 

ion has been regarded as the most polarisable, and the p o s s i b i l i t y 

of f i l m repair processes discussed i n terms of i t s presence i n the 
, . 9,10,11 double layer'* ' 

Methods of investigation which have been used have included 

much work on the anodic and cathodic processes which occur on the 
12-15 

oxide-coated metal . Rather similar electrode k i n e t i c s to 

those observed f o r the metal i r o n have been reported 1^" 1^; d i f f e r ­

ences i n the catjiodic p o l a r i s a t i o n r e s u l t s f o r i r o n and aluminium 

have been interpreted i n terms of a much lower cathode to anode 
20-23 

area r a t i o f o r the l a t t e r metal . Very l i t t l e a t t e n t i o n has 
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"been paid to the chemical processes associated with dissolution of 
the oxide f i l m , although such work would of course be d i f f i c u l t i n 
view of the extremely t h i n layer present i n the natural state. A 
few investigations of these aspects of dissolution have been made 
for thickened f i l m s , as i s reported i n the next section. I t must 
be borne i n mind that i t may be d i f f i c u l t to form conclusions con­
cerning the behaviour of the natural f i l m by considering the processes 
which occur i n a r t i f i c i a l l y thickened f i l m s , because of the i n t e r n a l 
structure of the l a t t e r type. 

1.4. Dissolution of Anodic Films on Aluminium. 

U n t i l quite recently there has been l i t t l e i nvestigation of the 

chemical and k i n e t i c features of dissolution processes which occur-

when anodically formed f i l m s on aluminium are immersed i n solutions, 
24 

other than determinations of o v e r a l l thinning rates . This i s i n 
spite of the f a c t that immersion of prepared f i l m s i n solvents has 

25 

been used to enlarge the pore structure . 

General discussion of the s o l u b i l i t y of anodic f i l m s on alumin­

ium has taken place, f o r example, to account f o r the observed low 

coating r a t i o s i n the process of anodising. The coating r a t i o i s 

the r a t i o of the weight of oxide formed to the weight of aluminium 
consumed, and should have the value 1.89 i f the current e f f i c i e n c y 

26 

i s 100$ . The r a t i o should i n f a c t be higher than t h i s i f anion 

incorporation of the type discussed i n Chapter I I I i s taken i n t o 
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consideration. The low value has been discussed i n terms of 

dissolution of the outermost oxide occurring simultaneously with 
. . , . . 27,28 i t s formation. ' 

I n only a few cases.have detailed studies of the mechanism 

and k i n e t i c s of dissolution been reported. For example, the d i s s o l ­

u t i o n i n c i t r a t e solutions containing f l u o r i d e ion of sealed porous 

anodic alumina f i l m s has been investigated and found to proceed, v i a 
29 30 

fl u o r i d e complex formation " . This i s , however, a special 
e f f e c t ; f l u o r i d e ions are known to enter the oxide l a t t i c e , and 

31 

second s o l i d phases have been reported to separate . Other types 

of complex have been noted i n the course of dissolution of barrier 

type f i l m s on aluminium immersed i n ethylene glycol-anmonium pent-a-
• 4 

:borate electro l y t e s , This i s of i n t e r e s t , since t h i s process may 

be one mode of f a i l u r e of e l e c t r o l y t i c capacitors. The proposed 

mechanism included attack by the solution at weak spots i n the oxide 

f i l m , and acceleration of the attack produced by addition of water 

to the e l e c t r o l y t e was noted. Such an e f f e c t may again be a pointer 

to the significance of the hydrogen and hydroxyl ions i n dis s o l u t i o n 

processes. 

1 .5 . Dissolution of Porous Anodic Oxide. 

Although detailed studies of the mechanism and k i n e t i c s of 

oxide f i l m dissolution should be of technological i n t e r e s t , and. coujd 

aid i n deciding a.n the structure of anodic f i l m s , only recently has 



a detailed study of porous f i l m d i s s olution "been made by Nagayama 
32 

and Tamura • Films were formed on aluminium by anodising the 

metal i n aqueous sulphuric acid, and were then permitted t o dissolve 

on open c i r c u i t i n the same solution, while the potential-time 

behaviour and the loss of aluminium from f i l m t o solution were 

studied. The v a r i a t i o n of specimen p o t e n t i a l with time was rather 

similar t o decay curves observed elsewhere f o r ni c k e l oxide electrodes 
34 

and f o r passivated i r o n electrodes , and was related by Nagayama 

and Tamura to the loss of the porous layer. The r a t e of d i s s o l ­

u t i o n increased s l i g h t l y with time to a c r i t i c a l time t g , which 

corresponded to a large s h i f t i n specimen potential i n the base 

d i r e c t i o n . tR was found to be independent of the porous layer 
52 

thickness, and the process was regarde±y as ind i c a t i v e of d i s s o l ­

ution proceeding by pore widening. A rate of increase of pore 

diameter and of decrease of porous layer thickness of 0.75 A min 
was reported, which i s comparable with the value noted by Hunter 

24 
and Fowle . The whole process was discussed i n terms of 1he 

7 

Keller model of pore structure . 

Differences between the influence of chloride and sulphate 

ions on the dissolution rate of oxide f i l m s formed on aluminium by 

sulphuric acid anodising have been reported by Diggle,. Downie and 

G o u l d i n g 2 ^ 8 * ^ ? 6 . These workers investigated the dissolution 

rates of the porous and barrier parts of these films by a com-
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bina t ion of methods. 

Provided that the so lu t ion pH was less than a c r i t i c a l value 

of about 2, an increase i n capacitance w i t h time was always noted 

when the f i l m s were immersed. At the frequencies used, t h i s 

increase was associated wi th the behaviour of the har r ie r layer , 

and the state of aerat ion or de-aeration of the . solut ion had l i t t l e 

e f f e c t on the r e s u l t s . On the assumption that capacitance changes 

r e f l e c t e d changes i n f i l m thickness, there was surpr i s ing ly l i t t l e 

d i f fe rence between the rates of th inn ing i n chloride and sulphate 

solutions23,36# Graphs of rec ip roca l capacitance ( l / C ) versus 

time ( t ) were usual ly almost l inea r i n ac id solutions of high ion ic 

strength ( i = l ) , which i s consistent with-an oxide th inning process 

of zeroth order wi th respect to the f i l m thickness. Deviations 

f rom l i n e a r i t y increased however, as the so lu t ion pH increased and/or 

ion ic strength decreased, and i t was here that d i f ferences between 

the behaviour i n the presence of the two types of ion became apparent, 

since the deviations f rom l i n e a r i t y were i n opposite d i r ec t ions . I n 

d i l u t e chlor ide solutions capacitance increases were greater than 

expected on the basis of zeroth order k i n e t i c s , while i n sulphate 

solutions they were less . 

The s i t ua t i on was complicated bjc the simultaneous d i s so lu t ion 

of both bar r ie r and porous parts of the f i l m . I t was deemed possible 

to i d e n t i f y the time of removal of the porous layer since, i n sulphate 
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solut ions, s imi la r types of potent ia l - t ime curves to those reported 
"by Nagayama and Tamura were noted. The large "base s h i f t i n poten­
t i a l coincided wi th the greatest ra te o f change of capacitance,- and 
also coincided wi th the time t ^ a f t e r which the f i l m would no longer 
take up dye. t ^ was found to he independent of porous layer t h i c k ­
ness, hut was proport ional to the pore w a l l thickness, and t h i s ob­
servation led to the proposal of a model o f concurrent pore widening 
and shortening f o r the d i s so lu t ion of the porous l aye r . When the 
anodised metal was immersed i n e i ther chlor ide or sulphate solut ions 
o f pH greater than the c r i t i c a l value, the ba r r i e r layer capacitance 
at f i r s t increased and then decreased wi th t i m e . I n sulphate so lu ­
t ions both dyeing experiments and the occasional i s o l a t i o n o f cor r ­
osion product were taken t o indicate the p o s s i b i l i t y of pore sealing 
processes r e s u l t i n g i n an increase of d i e l e c t r i c thickness which 
would produce a capacitance decrease^?. 

The i n i t i a l increase i n capacitance i n these high pH sulphate 

solutions could imply an . i n i t i a l stage of t h i n n i n g . I t was noted 

that during t h i s stage a l i n e a r r e l a t ionsh ip existed between l /C 

and t t ; g , which could be ind ica t ive of a d i f f u s i o n con t ro l led pro­

cess. The indica t ions were that the d i f f u s i n g species was the 

hydroxyl i o n ; the i on could e i ther be d i f f u s i n g i n t o the oxide, or 

21 38 39 
through a zone close to the oxide surface ' ' . 

The f i r s t stage of capacitance increase i n high pH chloride 
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solutions showed s imi lar time dependence to that noted i n the l a s t 
paragraph, but the magnitude of the slope d , l /C / d : ( t ) ^ w a s consider­
ably greater . From the dependence of t h i s slope on the i o n i c strength 
of the so lu t ion and pH, i t was t e n t a t i v e l y s u g g e s t e d ^ ' ^ that ch lo r ­
ide ion d i f f u s i o n was responsible f o r t h i s e f f e c t . Since i t i s 
known that these ions may enter an alumina l a t t i c e ^ , i t i s possible 
that part o f the i n i t i a l capacitance change could be due to a change 
i n f i l m d i e l e c t r i c constant produced by chlor ide i o n en t ry . 

Prom t h e i r observations of the concentration and pH dependence 

of the rates of capacitance change, Diggle, Downie and Goul&ing^ 

suggested possible sequences o f reactions to account f o r the d i s ­

so lu t ion o f the alumina f i l m s i n low pH solutions and f o r the 

production of pore blocking material i n solut ions of higher pH. 

These reactions are discussed i n r e l a t i o n to the present inves t iga t ion 

i n Chapter V (5-7)» but i t may be noted here that i n solutions of pH 

greater than the c r i t i c a l value, some degree of competitive adsorp­

t i o n of hydroxyl and sulphate ions was postulated. 

.1.6. Present Inves t iga t ion . 

1.6.1 Relationship to the Previous Work. 

I n the work discussed i n the l a s t two sections of t h i s chapter, 

a chemical mechanism and physical models of the d i s so lu t ion process 

have been t e n t a t i v e l y presented f o r porous anodic f i l m s on aluminium. 

The process i s complex, since i n porous f i l m s , both layers o f the 
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oxide must be dissolving simultaneously. The conclusions of Diggle 
and h i s coworkers^ res t upon the measurement of ra tes of capacitance 
change, and on the':, assumption that such changes are ind ica t ive o f 
thickness. This i s probably true to a f i r s t approximation, but may 
not be an accurate measure of thickness i n the complex systems con­
sidered. The appropriate form of specimen area to use i n capacit­
ance calculation's has been discussed by Dekker and TJrquhart^ and 

42 5 Hoar and Iflbod . Lorking has concluded that when the f i l m i s 

coherent and impermeable the capacitance may be used as a measure 

o f thickness; under suitable condit ions the accuracy may be w i t h i n 

1% of the t rue value. However, when the f i l m had been rendered 

porous by corrosive solut ions , Lorking concluded tha t capacitance 

values could not be used to obtain accurate estimates of f i l m t h i c k ­

ness. 

Diggle , Downie and Goulding were aware of -these d i f f i c u l t i e s 

of i n t e r p r e t a t i o n o f capacitance r e s u l t s , and, using the proposed 

pore widening model which must r e su l t i n exposure of increasing area 

of barr ier layer to the so lu t ion , obtained an expression f o r the 

change i n ba r r i e r layer capacitance wi th t ime. The expression i s 

discussed i n Chapter V (5*7)5 i t did not take i n t o account possible 

changes i n d i e l e c t r i c constant of the oxide i n the course of d i s s o l ­

u t i o n , nor were s u f f i c i e n t r e su l t s avai lable to t e s t i t conclusively. 

These complexities are due to the presence of two oxide layers 
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of very d i f f e r e n t s tructure i n the porous f i l m s - Possibly more 
precise informat ion could be obtained f o r t h i s type of system i n the 
absence of the porous l aye r . The d i f f i c u l t y o f preparation would 
be considerable i n view of the very short period of time required 
f o r the ba r r i e r layer to be comple ted^ 4l»45 > 

1.6.2. Types o f Oxide Fi lm Used i n the Present Work. 

The present work was intended as an inves t iga t ion of the d i s ­

so lu t ion charac ter i s t ics of non-porous f i l m s i n one type of so lu t ion 

to compare the features of the process w i t h those f o r porous f i l m s . 

Ho previous work of t h i s k i n d has been reported f o r anodic f i l m s 

formed on aluminium i n t a r t r a t e solut ions, or f o r f i l m s formed on 

the metal by gaseous oxidat ion; the d i s so lu t ion of both kinds o f 

f i l m i n sulphate solutions was studied. 

Although both of these f i l m types are compact, they are r e ­

ported to have in t e rna l s t ruc ture , and to d i f f e r i n c r y s t a l l i n e 

content. To f u r t h e r inves t iga t ion of t h i s l a s t po in t , a few i n ­

vest igat ions were also made using oxide f i l m s which had been grown 

i n moist oxygen. 

1.6.3* Experimental Work. 

The points f e l t to be of pa r t i cu l a r in te res t i n the present work 

were;-

(a) the structures of these compact f i l m s , 

(b) the react ion steps involved i n d i s so lu t ion and the k i n e t i c 

features of the process, 
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(o) examination to see i f the change&in behaviour reported 
f o r porous f i l m s at pH>2 were repeated, or i f t h i s type 
o f "behaviour i s charac ter i s t ic o f the presence of pores, 

(d) co r re la t ion of potent ia l - t ime and capacitance-time 

behaviour during d i s so lu t ion , and comparison wi th the 

reported behaviour of porous f i l m s . 

I n the attempt to elucidate the d i s so lu t ion charac ter i s t ics 

of these non-porous oxide f i l m s , capacitance-time changes were 

determined when they were immersed i n sulphate solut ions . Sulphate 

solutions were chosen to avoid possible complications due to the 

suggested entry of chloride ions i n t o the oxide. Experiments were 

car r ied out i n solutions o f selected pH and ionic strength values 

both under aerated and de-aerated condi t ions . A few d i r ec t deter­

minations of the concentration of aluminium ions i n so lu t ion as a 

func t i on of time were also made. The behaviour was correlated 

wi th changes i n specimen p o t e n t i a l during immersion. 

I n order to obta in an ind ica t ion o f the complexity of s t ructure 

of the f i l m s , e l e c t r i c a l analogues 57 ^ were constructed to have the 

same frequency response to input signals as the f i l m s themselves, 

44.45 

and bar r i e r voltage determinations ' p were also used to assess 

the c r y s t a l l i n i t y of the f i l m s formed by gaseous ox ida t ion . 

Arrangement of the Thesis. 

The thesis i s arranged i n seven chapters. Before d e t a i l s o f 
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the experimental work car r ied out are given, a discussion of the 
oxide f i l m s formed on aluminium by gaseous and anodic oxidat ion i s 
presented i n Chapters I I and I I I . Chapter I I I also includes a 
b r i e f review of methods which have been used elsewhere f o r the 
determination of f i l m thickness. 

Deta i l s o f spec i f i c items of apparatus which were used i n the 

present invest igat ions have been kept to a minimum i n the body of 

the thes i s . A l i s t of the more important instruments i s contained 

i n Appendix I . A l l references are l i s t e d a t the end o f the thes i s . 

I t w i l l be noted that diagrams and graphs are l i s t e d both as 

plates and as f igu res i n the t e x t . Diagrams and graphs which 

present the r e su l t s of the present work are l abe l l ed as f i g u r e s ; 

a l l others are l abe l l ed as p la tes . 
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CHAPTER I I 

Oxidation o f Aluminium i n Dry and Moist Oxygen 

and A i r . 

2.1 Dry Oxidation of Aluminium. 

Both anodic and air - formed oxide f i l m s on aluminium have been 

considered by many inves t iga tors to have structures r e l a t ed to 

that o f y-alumina. The term 1 Y-alumina 1 i s general use i n 

the l i t e r a t u r e , and i s used to describe both h igh ly c r y s t a l l i n e 

oxide and other forms which may be amorphous. 

2.1.1 Structure o f y-Alumina. 

Several workers46,47i48 have invoked the concept of an anion 

l a t t i c e f o r amorphousy-alumina i n i n t e r p r e t i n g the i r r e s u l t s . 

Long range order cannot ex i s t i n such a s t ructure , but presumably 

elements of short range order may do so. 

The s tructure o f y-alumina i n a l l i t s modif icat ions has been 

considered to d i f f e r f rom the normal spinel s tructure only i n the 

sense that eight cations must be d i s t r i bu t ed among s i tes occupied 

by nine cations i n the spinel l a t t i c e Dignam ^ has pointed 

out that since ion ic conduction i n the amorphous oxide takes place 

by movement of aluminium ions, f r e sh amorphous oxide being deposited 

48 

a t the oxide ox id i s ing atmosphere in t e r f ace , a t ruey-alumina 

structure i s u n l i k e l y since one would expect conduction to be v i a 

cations vacancies i n t h i s s t ructure , there being one vacancy per 
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nine cation"; s i j tes . Indeed, i t yas found tha t annealed anodic and 

amorphous f i l m s formed i n dry oxygen could not he dis t inguished, 
50 

which i s consistent wi th Wi l sdor f»s model f o r amorphous alumina 

consist ing of 'randomly or iented molecular groups of y- alumina1. 
2.1.2 Crys t a l l an i ty of y-Alumina. 

Although there seems to he agreement between d i f f e r e n t i n v e s t i g ­

ators tha t , below a ce r t a in temperature of oxidat ion of aluminium, 

the oxide formed i s amorphous, the published values of t h i s l i m i t i n g 

temperature have varied wide ly . Thus Digram^ has reported that 

only amorphous oxide i s formed when electropolished aluminium i s 
6 51 oxidised i n dry oxygen below 450 C. de Broukere oxidised abraded 

v 

aluminium i n a i r and found the l i m i t i n g temperature to be 600 C, a 

52 
value which has also been reported ' f o r e lectropol ished aluminium 

53 

when oxidised i n a i r . Hass found tha t s tr ipped amorphous oxide 

f i l m s c r y s t a l l i s e d a t 680°C, whereas metal-adherent f i l m s c r y s t a l l i s e d 

at 500°C. 

2.1.3 Mechanism o f C r y s t a l l i s a t i o n and Growth. 

Although there i s disagreement as to the minimum temperature 

f o r c r y s t a l l i s a t i o n , several workers agree on the nature of the 

nucleat ion process. Above about 450°C c rys ta l s of y-alumin 3-

nucleate beneath the amorphous oxide formed o r i g i n a l l y 46T48,51 

on the metal. At 500°C i n the absence of oxygen, there i s 

apparently no conversion of the i n i t i a l l y - f o r m e d amorphous oxide 
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to the c r y s t a l l i n e form t h i s process occurring only at higher 

temperatures near to the melting point of aluminium f o r str ipped 

54 55 

oxide f i l m s . I t has been reported that at temperatures i n 

excess of 550°C, amorphous oxide i s converted to the c r y s t a l l i n e 

form a t the metal-oxide in t e r face during oxida t ion i n both wet and 
47 

dry oxygen and a i r . Dignam and Pawcett^"', although regarding the 

pos i t i on as uncertain, have suggested that conversion of amorphous 

to c r y s t a l l i n e y-alumina i s passible during the growth of c r y s t a l l ­

i t e s . They proposed -fee edges of the growing c rys t a l t o be separ­

ated from the metal by a very t h i n layer o f amorphous oxide, and 

f u r t h e r suggested that the presence of a very large electrochemical 

po ten t i a l gradient across t h i s t h i n f i l m would render possible the 

atomic reorganisat ion necessary f o r the conversion. 

Some evidence f o r the necessity of the presence of oxygen during 
48 

c r y s t a l l i s a t i o n was provided by Beck and h i s co-workers , who, 

however, used anodieally-formed f i l m s . A bar r ie r type f i l m was 

prepared on aluminium by anodising i n neut ra l t a r t r a t e so lu t ion . 

A f t e r the specimen had been heated f o r 24 hours i n a vacuum of 
-7 

5 x 10 t o r r , no c rys ta l s were detected by e lec t ron-opt ica l study. 

The process was repeated, but oxygen was admitted to the system 

a f t e r the i n i t i a l vacuum treatment; immediate c ry s t a l nucleat ion 

was observed; when the system was re-evacuated growth of the 

c rys ta l s ceased. 
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The concentration of nuc le i has "been reported to be about 109 
—2 ̂ -7 48 

cm " ' ' and to be almost independent of temperature. The nuc-

l e a t i o n process occurs very qu ick ly . C r y s t a l l i t e s reach a terminal 

thickness almost immediately, and then grow r a d i a l l y u n t i l they 

impinge on each other. Dignam and Fawcett ^ found the thickness 

of the crys ta ls to decrease wi th increasing temperature but Beck ^ 

found l i t t l e v a r i a t i o n of thickness w i t h temperature. 

2.1.4 Growth of Amorphous Oxid-ew 

The k i n e t i c features o f the process of oxidat ion of aluminium 

under dry conditions may be described i n terms of weight gain (Aw), 

as a f u n c t i o n of time ( t ) , and appear to be temperature dependent. 

From low temperatures to about 300°C the growth law i s inverse 

logari thmic i n type 46,56,57 ^ w = j g / " l o g t ) which'J3mplies that 

the ra te of oxidat ion i s ca i t ro l l ed by the ra te of migrat ion of 

aluminium ions through the oxide .under the inf luence of the elec­

t r i c f i e l d created by oxygen ions a t the outer surface I n the 

temperature range 350-450°C the oxidat ion i s best described i n 

terms of 'aparabolic law 48,58,59 m k ( t )2" ) , which i s i n t e r ­

preted i n terms of d i f f u s i o n of aluminium ions through the oxide 

being the ra te-cotdroi l ing step of the process. Beck and h i s co-

48 

workers found that the amorphous oxide formed according to a 

parabolic law a t 450-575°C, even a f t e r discrete crys ta ls o f y 

-alumina had appeared, and that t h i s amorphous growth continued 
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I n d e f i n i t e l y . The r e s u l t was that the t o t a l oxide thickness slowly 

increased even a f t e r completion of the underlying c r y s t a l l i n e l aye r . 

That the ra te a i which the amorphous oxide thickened was unaffected 

by the appearance of c r y s t a l l i n e y-alumina indicates tha t the 

d i f f u s i o n r a t e o f aluminium ions remained sensibly constant. I n 

t h i s connection i t has- been reported that the e lec t ronic r e s i s t i v -
60 

i t i e s of amorphous and c r y s t a l l i n e Y-aluroiaa a r e very s imi l a r , 

although Beck and h i s co-workers ^ 8 have found the c r y s t a l l i n e oxide 

to have the much lower i o n i c r e s i s t i v i t y of the two forms. As 

w i l l be discussed l a t e r , Beck and h i s co-workers reported that t h e i r 

c r y s t a l l i n e f i l m s were h i g h l y f a u l t e d . 

Dignam and h i s co-workers 4^»6l f o u n < i that when only amorphous 

oxide grew, the weight gain data were bet ter described i n terms of 

an inverse logari thmic law ra ther than a parabolic law a t temper­

atures at which the l a t t e r would be expected to h o l d . They also 

r epor t , i n contradic t ion to the f i n d i n g s of Beck, and h i s co­

workers, that l i m i t i n g weight gain i s achieved i n the temperature 

range 478-501°C. 

Above about 450°C during the i n i t i a l period of ox ida t ion , only 

amorphous ^-alumina forms. This i n i t i a l period decreases wi th 
AO C.O 

increasing temperature ' . A discontinuous reduct ion i n the 
parabolic ra te constant a f t e r a short period at 525°G has been 

48 
reported , the a c t i v a t i o n energy f o r the formation of amorphous 
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oxide remaining the same. This was in terpre ted i n terms of a 
change i n the 'defect s t ruc tu re ' of the amorphous oxide a t t h i s 
temperature. 

Reasons f o r the format ion of both c r y s t a l l i n e and non-crys ta l l ine 

48 
oxide have been suggested H . The r a t e of growth of the amorphous 
form was suggested to be con t ro l l ed by the ra te at which aluminium 

ions reach the oxide-gas i n t e r f a c e , while transport of oxygen ions 

through the amorphous layer was suggested to cont ro l the- r a t e of 

growth of c r y s t a l l i n e oxide. 

2.1.5 E f f e c t of the I n i t i a l Surface Preparation. 

I t i s i n t e re s t ing to compare some of the data evaluated by 

Back and h i s co-workers48 w i th the r e su l t s reported by Dignam and 

47 

Fawcett f o r a s imi la r process of oxida t ion of aluminium i n 

producing amorphous f i l m . The discrepancies i n r e su l t s can be seen 

i n Table 1. 

TABLE 1 

Comparison of Reported Data f o r the Formation of 

Amorphous Oxide Films on Aluminium. 

Reference Aw (tig c m - 2 ) 
a t 500°C 

Energy o f 
A c t i v a t i o n ^ 
(kcal mole" ) 

47 6.1 (a) 25-3 (b) 

48 12.5 ( c ) 54 
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(a) In terpola ted value f rom re su l t s a t other temperatures. 

(b) Prom data before c r y s t a l l i t e appearance. 

(c) Oxidation time of 40 hr to correspond wi th ( a ) . 

Beck and h i s co-workers prepared t h e i r specimens by etching 

the surface wi th caustic soda. They stated that t h i s treatment 

had no e f f e c t on the i on i c resistance of the oxide and tha t the 

surface produced was'reasonably smooth. Dignam and Pawcett elec-

tropol ished t h e i r specimens before ox ida t ion . The former workers 

suggested tha t the i n i t i a l surface preparation may be important, 

and that incorporat ion of anions r e s u l t i n g , f o r example, f rom 

e lec t ropol i sh ing could r e s u l t i n reduced ion ic resistance o f the 

oxide f i l m . I t should be noted that the proposed growth laws f o r 

the oxide were d i f f e r e n t i n the two cases. 

Another aspect of the importance o f i n i t i a l surface preparation 

46 
has been pointed out i n casting doubt on the theore t i ca l value o f 

studies concerned wi th the e luc ida t ion of the basic reac t ion 

mechanisms f o r the oxidat ion of aluminium i n dry oxygen from 400-

o 62 

650 C . The i n i t i a l surface preparation was by abrasion wi th 

emery, and t h i s i s suggested to r e su l t i n cracking and buckling of 

the oxide f i l m during ox ida t ion , exposing f resh metal and g i v i n g , 

as a r e s u l t , excessively high weight gains. 
2.1.6 Dimensional e f f e c t s and Oxidation Rate. 

Above about 450°C, when c ry s t a l format ion occurs, much higher 
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weight gains are found than would be expected from an extension of 
the low temperature growth laws 47f48,55,62,65^ ^ t y p i c a l p lo t 

o f weight gain versus time i s shown i n Plate I . The signed da 1 

48 

shape of the curve has been in terpre ted - i n terms of the r a d i a l 

growth of c r y s t a l l i t e s , the f i n a l reduced ra t e of increase i n 

weight r e s u l t i n g f rom the impingement of the oxide c r y s t a l s . 
64 

However, i t has been reported tha t f o r aluminium i n i t i a l l y 

bearing a na tu ra l oxide f i l m , during the e p i t a x i a l formation of the 

c r y s t a l l i n e oxide, because of small d i f ferences i n the dimensions o f 

the aluminium and c r y s t a l l i n e y-alumina l a t t i c e s , f r ac tu res between 

c r y s t a l l i n e f i l m located on metal of d i f f e r e n t c r y s t a l o r ien ta t ions 

take place. This cracking exposes bare metal and increased weight 

gains are therefore observed. This may be an important f ac to r i n 

the accelerated ra te o f f i l m formation found during c r y s t a l l i n e 

growth. 

2.1.7 Conclusions. 

Perhaps many o f the d i f ferences found between the work of Dignam 

and h i s co-workers and Beck and h i s co-workers may be ascribed t o the 

d i f f e r e n t i n i t i a l surface preparations used. The d i f fe rence between 

laws reported by these workers f o r the growth of amorphous oxide 

appears to be s i g n i f i c a n t . The composition o f the ox id i s ing 

atmosphere may have some inf luence on the minimum temperature f o r 

c r y s t a l l i t e nucleation (425-600°C) reported by the workers already 
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mentioned. For metal-adherent f i l m s the p o s s i b i l i t y of the con­
version of amorphous to c r y s t a l l i n e y alumina exists i n the temper­
ature range 45O-600°C i n the presence of oxygen. This conversion 
mechanism has not apparently "been distinguished experimentally from 
c r y s t a l l i t e nucleation involving the metal i t s e l f . 

2.2. Oxidation of Aluminium i n Moist Atmospheres. 

There i s considerable evidence that alumina f i l m s •wil l aclsorb 

water, and at high temperatures w i l l react with water vapour, 

r e s u l t i n g i n gas evolution. The influence of moist atmospheres 

used i n oxidation on the structure and properties of the r e s u l t i n g 

oxide are considered i n t h i s section. 

2.2.1 Adsorption of Water by Alumina. 

Spanriheimer and Knoezinger^ nave studied the adsorption of 

water at temperatures up to 453°G from the gas phase on to cry s t ­

a l l i n e y-alumi na i n i t i a l l y dehydrated at 800°C. At a given temper­

ature part of the water was i r r e v e r s i b l y adsorbed. These workers 

found adsorption enthalpies to be high, and concluded that even f o r 

reversible adsorption, the forces of i n t e r a c t i o n w i t h the surface 

were l a r g e l y of a chemical nature. The enthalpy of adsorption 

increased from 21.7 to 32.2 kcal mole"-1- as the temperature was i n ­

creased from 98-412°G, and had increased only to 24.0 k c a l mole"^ 

at 328°C. The extent of adsorption f e l l from 16.0 to 3.2 mg of 

water per g of alumina at 10 t o r r gaseous water pressure at 98°^ 
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and 412°C respectively. The amount of adsorbed water at a given 
temperature increased with increased gaseous water pressure f o r a l l 
temperatures. 

Idppens and de Boer^^ found that the hydrated form of alumina, 

boehmite (A100E), was converted to Y~alumina a - t a l 3out 450°C. Well-

c r y s t a l l i s e d boehmite underwent conversion only s l i g h t l y at 400°C 

whilst poorly-crystallised boehmite was transformed to Y~aluniilia a t 

less than 550°C, indicating that the temperature of the t r a n s i t i o n 

increased vdth increasing c r y s t a l l i n i t y . 
67 

Other workers have studied the oxidation of aluminium powders 

with a jfo or 15$ alumina content. ' After water removal i n a i r , 

powders were compacted either immediately or aft e r exposure to a 

humid atmosphere, to preserve the gas content. On exposure to a 

normal atmosphere, (80$ r e l a t i v e humidity), at 400°C, a layer of 

boehmite was formed. At 600° and 700°C, l i t t l e adsorption of 

water took place, the oxide being i n t h e y - form. I n a humid atmos­

phere, (100$ r e l a t i v e humidity), however, considerably more adsorp­

t i o n of water took place at 600°C, but there was s t i l l very l i t t l e 

adsorption at 700°C; t h i s was ascribed t o a decrease i n the surface 

area of the oxide and to a complex water/ y^-aXyxr^x^- i n t e r a c t i o n . I t 

i s suggested by the present author that the conversion of amorphous 

to c r y s t a l l i n e y-alnTn- iria. might be involved here. 

Based on degassing-kinetic curves at 20-700°C, L i t v i n t s e v and 
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Arbuzova^ have proposed that the following conversions take place:-

150°C • • 175-310°C 530-550°C ' • 
Al 20 3.3H 20 > A 1 2 0 5 . 2 . 5 H 2 0 > Al^.HgO iy-Al^ 

h y d r a r g i l l i t e unstable boehmite 

When the aluminium powders were, dried i n argon, readsorption 

of water was negligible even i n a very humid atmosphere, and argon 

.was found to be adsorbed on the oxide surface. This was stated t o 

be the probable cause of the loss of a c t i v i t y of the oxide surface. 

2.2.2 Hydrogen Evolution. 

I n studies of hydrogen production at elevated temperatures by 

the reaction of aluminium powders with gaseous water, the following 
67 

reactions have been proposed by L i t v i n t s e v and Arbuzova ':-

(a) 2A1+5H20 > A1 2 0 3 +3H 2 

(b) 2A1+6H20 > A 1 2 0 5 . 3 H 2 0 * 3 H 2 

The probable i n i t i a t i o n reaction at temperatures less than 210°C 

was proposed to be:-

2Al-t4H20 » A 1 2 0 5.H 2 0 +3H2 

boehmite 

These workers have reported that hydrogen evolution took place a t 

temperatures as low as 90°C, probably by reaction ( b ) . At temper­

atures greater than 210°C, (a) was suggested to be the i n i t i a t i n g 

reaction since hydrogen production was audi increased. At 490-500°C 

the rate of hydrogen production again increased and was found to 
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coincide with boehmite decomposition. The water produced was 

proposed t o r e s u l t i n more hydrogen evolution by reaction ( a ) . 
54 

I t has also been r e p o r t e d ^ that f o r the oxidation of aluminium, 

bearing a natural oxide f i l m , temperatures i n excess of 550°C i n the 

presence of wet oxygen or a i r , e p i t a x i a l growth of the c r y s t a l l i n e 

y-oxide was speeded up by d i f f u s i o n of hydrogen atoms from the metal 

to the metal-oxide interface and i n t o the oxide, Hydrogen was said 

to act as a s t a b i l i s i n g impurity i n the c r y s t a l l i n e l a t t i c e of the 

oxide making possible the formation of a defect-type spinel l a t t i c e , 

assumed t o be Y-AlOHAlgOj 

2.2 .3 Conclusions. 

Summarising, one might expect (that the oxidation of aluminium 

i n moist a i r or oxygen would lead to some h y d r a r g i l l i t e formation at 

temperatures less than about 150°C.^ From 175°C to about 500°C, 
66 67 

some boshmite might be formed ' . At temperatures i n excess of o 54 about 500 C, some c r y s t a l l i n e v-alumina might be formed with a 
« 

l i t t l e water adsorbed and the growth of c r y s t a l l i t e s would be 
54 

expected to be faster than under dry conditions . For oxidation 

at temperatures i n excess of about 9 0 ° 0 , hydrogen evolution might 

occur^, and a t a l l temperatures the amount of water adsorbed should 

increase with increasing water content of the oxidising atmosphere^. 
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CHAPTER I I I 
Anodically-Formed Oxide Films. 

Introduction. 

Anodic oxide f i l m s are prepared by making aluminium the anode• 

i n an e l e c t r o l y t i c c e l l using a suitable e l e c t r o l y t e depending on 

the type of oxide film-,, required. Two types of oxide f i l m can be 

produced by anodic oxidation, namely porous and non-porous or• 

barrier-type f i l m s . The el e c t r o l y t e used determines the type of 

oxide formed. 

Barrier-type f i l m s are formed i n electrolytes having low solvent 

power fo r alumina, including neutral boric acid solution, aqueous 

solutions of ammonium borate or t a r t r a t e , ammonium tetraborate i n 

ethylene g l y c o l , and some organic compounds including c i t r i c , malic 

and g l y c o l l i c acids. 

Porous f i l m s are produced i n el e c t r o l y t e s i n •siiich the oxide 

f i l m i s more soluble. The commercially important pore-forming 

electrolytes are sulphuric, phosphoric, chromic and oxalic acids, 

a l l of which have been used over a wide range of concentrations. 

The thickness of barrier-type f i l m s depends on the e l e c t r o l y t e 

temperature and anodising voltage, but i s independent of the ele c t r o ­

l y t e chosen. For porous-type films thickness depends on the electro­

l y t e temperature, the current density, the anodising time and the 

electrol y t e i t s e l f . The maximum thickness of barrier-type f i l m s 
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i s -restricted by the oxide breakdown voltage^, 500-700 v o l t s . 

This l i m i t a t i o n i s absent f o r porous-type f i l m s . At low temper-
o 

atures of 0-5 C, porous f i l m s are t h i c k , compact and hard, and the 

production process i s called hard-anodising. At higher temperatures 

( 6 0 ° - 7 5 ° G ) , the porous f i l m i s s o f t , t h i n and non-protective; the 

process i s approaching the condition f o r electropolishing, the oxide 

f i l m being dissolved almost as soon as i t i s formed. 

Porous f i l m s consist of a t h i c k , porous outer layer overlying 

a t h i n , compact inner layer. The thickness of t h i s inner layer i s , 

as f o r barrier-type f i l m s , dependent on formation voltage, and the 

inner layer of porous f i l m s i s normally r e f e r r e d to as barrier layer. 

Anodising Ratio. 

Barrier-type f i l m s conduct electrons at low f i e l d strengths. 

At high f i e l d strengths, ions are also conducted, and f o r a given 

metal, a minimum f i e l d strength exists below which i o n i c conductance, 

i s n e g l i g i b l e . Above t h i s minimum value ionic current leads to the 

growth of the oxide f i l m upon the metal, and, i f the oxide i s complet­

ely non-porous, growth continues as long as the i o n i c current persists. 

The reciprocal of the minimum f i e l d strength required to cause i o n i c 

conduction i s called the anodising r a t i o , which, f o r non-porous f i l m s 
0 —1 68 69 on aluminium, i s close to 14A v o l t - ' . 

During anodisation i n pore-farming electro l y t e s , the f i e l d 

strength does not f a l l to the minimum f o r i o n i c conduction, so the 
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anodising r a t i o f o r the bar r i e r layer i s less f o r porous-type than 

fo r barrier-type f i l m s . Table I I l i s t s anodising r a t i o s reported 

f o r the barrier Iayer7i31 , 43 0 f porous-type f i l m s i n various 

el e c t r o l y t e s , a l l f o r alumina f i l m s on aluminium. 

TABLE I I 

Anodising Ratios f o r Porous Oxide Films. 

E l e c t r o l y t e 
Acid 

Temperature 
°C 

Anodising .. 
Ratio, A v o l t -

15$ Sulphuric 10 10.0 

2$ Oxalic 24 .11.8 

4fo Phosphoric 24 11.9 
3$ Chromic 38 12.5 

Barrier Layer Growth i n Porous-type Films. 

Plate I l ( a ) shows the behaviour of the b a r r i e r layer thickness2^'&&*^3 

during the f i r s t 30 seconds of anodising i n 19$ w/v sulphuric acid. 

The barrier layer appears to be completed w i t h i n a few seconds 2^'^. 

Plate I I ( b ) shows the corresponding current density behaviour^. 

The dotted portion corresponds to the behaviour fo r barrier-type 

f i l m s , that i s , the behaviour fo r both types of f i l m i s i d e n t i c a l 

i n i t i a l l y . The f i n a l current densities differ^markedly, the current 

being mainly i o n i c f o r porous f i l m s and having a much larger e l e c t r ­

onic contribution f o r non-porous f i l m s . The current density be-
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haviour at A j i n Plate I l ( b ) , has been interpreted i n terms of pore 
i n i t i a t i o n . This necessitates the thinning of the b a r r i e r layer 
formed i n t h i s time leading to increased current density. Hoar 
and Yahalom have, however, suggested th a t the barrier layer 
current decreases exponentially, the increase i n current density' J 

a r i s i n g from a pore current. I t has been pointed out that these 
workers have hot specified the o r i g i n or dr i v i n g force f o r t h i s pore 
current. 

The minimum current density at A, that i s at the point of pore 

i n i t i a t i o n , occurs e a r l i e r the higher the applied voltage and the 

more acidic the e l e c t r o l y t e . The thinning of the b a r r i e r layer 

ceases a f t e r a few seconds. This may be understood i n terms of 

increasing f i e l d strength across the b a r r i e r layer as i t thins u n t i l 

the rate of bar r i e r layer production equals and then exceeds i t s 

rate of loss i n the formation of porous layer . Ultimately, these 

two processes must be balanced. 

Structural Features of Anodised Films. 
71—74 

Verwey ' has reported that barrier-type f i l m s consist of 

cr y s t a l l i n e Y~a^umina» '^•e difference between y'-and c r y s t a l l i n e 
y-alumina l i e s i n the cation arrangement; both have the same anion 

75 

l a t t i c e . Harrington and Belson reported that both porous and non-

porous f i l m s formed i n a wide v a r i e t y of electrolytes consisted of 

alumina of random structure, the structure tending t o be less random 
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76 f o r high temperatures of f i l m formation. This has been interpreted 

as being due to an increase i n the c r y s t a l l i n e proportion of the f i l m 

at higher temperature, which i s also favoured by increasing f i l m 

thickness, high formation voltages, the use of d i l u t e e l e c t r o l y t e s 

and the use of al t e r n a t i n g current. Below 100 v o l t s formation 

voltage, barrier-type f i l m s were f o u n d ^ to be amorphous, but some 

cr y s t a l l i n e y-alumina was also detected above 100 v o l t s . 
78 

Altenpohl reported that barrier-type f i l m s consist of an outer 

soluble layer and an inner insoluble layer. The inner layer was 

assumed to be c r y s t a l l i n e y^^U-nuna* the proportion of which i n ­

creased with increasing temperature and formation voltage. However, 
77 

St i r l a n d and Bicknell did not consider that the c r y s t a l l i n e and 
amorphous oxide existed i n a layer-type structure. 

79 

Franklin has investigated barrier-type f i l m s prepared i n boric 

acid-borax e l e c t r o l y t e and reported at least three types of oxide to 

be present, (a) hydrated oxide at the oxide-electrolyte interface, 

(b) i r r e g u l a r patches of crystallineY-alundna, and (c) amorphous 

oxide which i s the main constituent. The complexity of these f i l m s 

increased as the formation voltage increased, probably as a r e s u l t 
80 

of increased c r y s t a l l i n i t y . . T r i l l a t and Tertain found a similar 

structure f o r porous f i l m s formed i n 20$ w/v sulphuric acid. An 

outer layer was reported to consist of .a mixture of boehmite and 

c r y s t a l l i n e y-^lu.w±naL and an inner layer of amorphous alumina. 

An infra - r e d reflectance technique used by Dorsey^~^5 has 
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indicated that the barrier layers formed i n a l l electrolytes are 
alumina trihydrates which undergo s t r u c t u r a l changes when porous 
fi l m s are formed. The absorption band of the .barrier layer was r e ­
ported t o be between 900 and 1000 cm"l wave numbers. The position 
of t h i s absorption band f o r f i l m s formed i n boric acid was found to 
be unchanged by the length of the anodising or formation time, imply­
ing that the barrier-type f i l m i s t r u l y non-porous. I n pore-forming 
electrolytes, the band s h i f t e d to higher frequencies as porous oxide 
growth proceeded. Dorsey has proposed that i n order, to form pores, 
a cycl i c alumina trih y d r a t e e x i s t i n g i n the barrier layer decyclises, 

there i s an eff e c t i v e lowering of polymer weight and hence the a&-. 
84 • 

sorption band moves to higher frequencies. Kormany has reported 

the presence of alumina t r i h y d r a t e i n barrier layers, along with 

y-alumina, aluminium hydroxide and boehmite. 
70 

Diggle, Downie and Goulding have pointed out that since no i n ­

dication i s given by Dorsey as t o the s e n s i t i v i t y of the absorption 

band to decyclisation, there i s some doubt as to whether boric acid 

f i l m s can be said t o be t r u l y non-porous. Porous layer was detected 

by Dorsey by t h i s method f o r supposedly non-porous f i l m s formed i n 

ammonium t a r t r a t e and t a r t a r i c acid solution. The aibsorption band 

fo r porous layer was found f o r f i l m s formed i n t y p i c a l pore-forming 

electrolytes such as sulphuric and phosphoric acids. 

Some of t h i s work i s apparently contradictory but i t can be 
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said that, i n general, non-porous f i l m s are regarded as amorphous 

and porous f i l m s as c r y s t a l l i n e , "both being anhydrous ?~ '. The 

work of Dorsey indicates that the oxide f i l m s are not anhydrous. 
88 89 

The presence of water i s regarded by some workers ' as necessary 

to s t a b i l i s e the spinel-type structure of alumina, possibly by r e ­

placement of oxygen ions i n the alumina l a t t i c e by hydroxyl ions.. 

Anion Incorporation. 

The extent of the incorporation of anions of the anodising 

el e c t r o l y t e i n t o the oxide structure appears to be greatest f a r pore-

forming e l e c t r o l y t e s and least f o r those electrolytes g i v i n g r i s e to 

barrier-type f i l m s . A 1$ incorporation of boron- in t o f i l m s formed 

i n ethylene glycol-ammonium pentaborate and boric acid-borax e l e c t r ­

olyte has &een found?9»90 porous f i l m s farmed i n sulphuric 
acid have been reported to contain up to 17.$ of sulphate i o n " ^ - " ^ . 

93 
Mason has reported sulphate i o n incorporation to be higher the 
lower the anodising temperature and the higher the current density 

94 

during f i l m formation. Hoar' has suggested that t h i s i s due t o 

the increasing importance of the following reaction as the temperature 

i s increased:-
SO/" > SO (aq.) + 0*" 

FILM SURFACE ^ FILM 

In porous-type f i l m s , anions of the e l e c t r o l y t e can be incor­

porated i n t o the porous layer i n two ways, i n a "bound" form r e s u l t -
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ing from conversion of "barrier to porous layer and i n a "free" form 
95 

re s u l t i n g from the accumulation of anions i n the pores . For 
95 

sulphuric acid formed f i l m s , Ginsberg^ has reported a t o t a l sulphur 

content corresponding to 13$ sulphur t r i o x i d e which f e l l to 8$ a f t e r 

prolonged washing, so that 5$ of the t o t a l anion incorporation was 
86 

"free". Thach Lan and h i s co-workers have reported that sulphur 
96—98 

i s present as the anion, whereas other workers 7 7 have reported 
that i t i s present as a basic sulphate. 

99 

I t has been suggested^ 7 that the porous layer i s formed by con­

version of the outermost portion of the ba r r i e r layer, that i s , that 

formed by cation transport. The r e s u l t of t h i s should be a uniform 

incorporation of anions from the e l e c t r o l y t e i n the porous layer. 
27 

This has been confirmed using an electron probe microanalysis 

technique. 

Water Content of Oxide Films; 

Although non-porous f i l m s are generally regarded as anhydrous, 

some workers regard water as necessary t o s t a b i l i s e the spinel-type 
85 

structure. Lichtenberger J has indicated that 2.5$ water, present 

as boehmite, i s necessary. 

w/w water content i n porous f i l m s formed i n sulphuric and 
91 100 oxalic acid has been reported by Pull e n 7 . Edwards and Keller 

found 1-6$ i n sulphuric acid formed f i l m s and P h i l i p s ^ 2 found 

s u f f i c i e n t water i n f i l m s formed i n oxalic acid to produce 2A120^.H20 
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w i t h i n the f i l m . 

The extent to which water i s incorporated depends on the con-
70 

di t i o n s and treatment during formation . I t i s probably never i n 

the "free" form but occurs either as hydroxide or hydrated oxide or 

both. 

3.7 Properties of Barrier-type Films. 
Thus far i n t h i s chapter, matters relevant to both barrier-type 

films on aluminium and to porous parts of oxide f i l m s have been 

discussed. The two types of f i l m d i f f e r i n characteristics; t h i s 

section i s largely concerned with studies of the b a r r i e r layer. 

3 . 7.I A.C. Resistance of Barrier-type Films. 

I n an investigation of the m o b i l i t i e s of protons and hydroxyl 

ions during the anodic oxidation of aluminium i n t a r t r a t e solutions, 
38 

Brock and Wood showed that the a.c. resistance of the outer part 

of the f i l m decreased as current was allowed to decay at constant 

formation voltage. These workers related the decrease i n r e s i s t ­

ance to the formation of pores at the low current densities which 

obtained during current decay, and to increased hydration of the ."•". 

f i l m as a r e s u l t of an increase i n the hydroxyl ion content of the 

e l e c t r i c a l double layer under the same conditions. At pH 5 and 7 

i n aqueous t a r t r a t e solution under current decay conditions discrete 
38 

pores were observed, and i t was suggested that the presence of 

minute i n v i s i b l e pores under steady current conditions could account 
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f o r the observed low ion i c resistance of alumina formed i n t h i s 
manner. No pores were observed during anodi'sation of aluminium i n 
non-aqueous borate solutions, and the a.c. resistance of f i l m s 
formed i n t h i s medium was independent of the formation current 
density; i t was suggested that hydration played a part i n pore f o r ­
mation. 

39 

Brock and Wood have also discussed the ease of entry of hyd-

r o x y l ions i n t o t a r t r a t e formed f i l m s , and concluded tha t , under 

conditions i n which the a c t i v i t y of protons or hydroxyl ion i s high 

i n solution, the extent of entry i s l i t t l e affected by the rate of 

f i l m formation. The conclusionsof t h i s work are i n t e r e s t i n g since 

t a r t r a t e formed f i l m s are conventionally regarded as non-porous. 
21 

E a r l i e r , Heine and Pryor studied the a.c. electronic and io n i c 

resistance of f i l m s formed i n yf° Vv ammonium t a r t r a t e solution at 

pH7. The i n i t i a l surface treatment consisted of an etch i n sodium 

hydroxide solution, and current surges during anodising were r e ­

s t r i c t e d to 5 mA. cm~2 i n order to avoid f i l m damage due to l o c a l 
- 2 

heating. The current was allowed to decay t o 15-20/i\ cm at a 

predetermined voltage. Films were thinned uniformly i n passivating 

sodium chromate solution of pH 7 -9 . Heine and Pryor found that t h i s 

technique l e f t the metal passive and the inherent specific resistance 

of the oxide was unaffected by the d i s s o l u t i o n process. Brock and 

Wood^'^ have also used t h i s technique. 
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21 Heine and Fryor found four regions i n the oxide produced by 

anodising to 20 v o l t s i n 3$ w/v» pB7» ammonium t a r t r a t e solution. 
o 

a) A region of low electronic r e s i s t i v i t y extending to 60-80 A 

from the metal-oxide interface, the io n i c r e s i s t i v i t y increasing 

from about 4x10 ofim'cm 25A from the metal-oxide, interface to 
o 

about 2x10 ohm cm 80A from the interface. Apparently, i n 
t h i s region there i s a departure from stoichiometry. This 

21 

was considered to be due to the proximity of the metal-oxide 

interface and to represent an n-type region of excess aluminium 

ions. 
o 

b) From about 60-160 A, the electronic and ionic r e s i s t i v i t i e s were 

constant, that i s , the metal substrate no longer exerted any 

influence. 
o 

c) Beyond lay a region about 60 A th i c k having a low ion i c r e s i s t -
21 

i v i t y . This region was dif f u s e , and was believed to contain 

hydroxyl ions from the anodising e l e c t r o l y t e , a view shared by 

Brock arid Wood 5 8' 5 9* 
o 

d) The outermost region, about 20 A t h i c k had a high ionic r e s i s t ­

i v i t y . Heine and Pryor have suggested that strong euidising 

conditions could be present at the surface, r e s u l t i n g i n a 

complete anion l a t t i c e and bound pos i t i v e holes giving a p-type 

defect structure. 

Far f i l m s formed under the same conditions but anodised to 15 
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v o l t s , region (b) was absent. 
39 

Brock and Wood have found similar behaviour to the above 
following formation with maximum current surges r e s t r i c t e d to 10 ma 

—2 -2 

cm • For 100 cm maximum current surges, the outermost region 

(d) was absent and t h i s too was i n support of the findings of Heine 

and Pryor. 

3.7.2 Ionic Charge Transport i n Barrier-type Films. 

Considering a cation mobile system i n which movement of cations 

depends upon the e l e c t r i c f i e l d strength across the oxide f i l m , two-

types of i o n i c charge transport are possible. 

a) High f i e l d conduction, where i t i s assumed that the f i e l d strength 

prevents movement of cations against the f i e l d . 

b) Low f i e l d conduction, where cation movement against the f i e l d 

can no longer be assumed to be ne g l i g i b l e . 

Theories of ionic conduction assume that high f i e l d ionic con­

duction takes place during anodising since e l e c t r i c f i e l d strengths 

are 10^-10^ v o l t s cm"1, which i s regarded as s u f f i c i e n t to prevent 

movement of cations against the f i e l d . 

Efuntherchultze and B e t z 1 0 1 - 1 0 ^ have shown that under high f i e l d 

conditions, the ionic current density ( i + ) and the e l e c t r i c f i e l d 

strength(E) are related by the exponential law. 

i + = A + exp B+B (1) 

where A and B are temperature-dependent constants involving ionic 
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transport parameters. Several attempts have been made to j u s t i f y 

t h i s equation t h e o r e t i c a l l y i n terms of the possible rate determining 

step being ion transport across the metal-oxide i n t e r f a c e ^ ' 1 0 * ' , i o n 
107 

transfer through the bulk of the oxide 1 or a combination of these 
108,109 two processes ' . 

D i f f i c u l t i e s i n i n t e r p r e t a t i o n arise since these theories con­

sider the transport of ions through a c r y s t a l l i n e l a t t i c e whereas 

the filmsare known to have a high degree of amorphous nature. I t _ 

i s also d i f f i c u l t t o explain the existence of current transient 

phenomena by means of t h i s treatment. 

Dignam 1^ 1" L 2 has proposed a theory of ionic conduction leading 

to oxide growth based on an amorphous structure. This theory i s 

claimed t o account f o r steady state and transient phenomena f o r oxide 

growth on aluminium, tantalum, niobium and bismuth, and also accounts 

f o r anion migration, neglected i n the previously-mentioned theories. 

3.7•3 Determination of Thickness. 

Any method f o r determining the thickness of barrier-type f i l m s 

should preferably be rapid and non-destructive and i d e a l l y be an 

" i n - s i t u " measurement. Some of the methods which f u l f i l some of 

these requirements are now considered, but not a l l i n d e t a i l . 

3.7.3*1 Application of Faraday's Laws. 

The volume, V, of oxide l a i d down by passage of a quantity 

of e l e c t r i c i t y , assuming 100$ current e f f i c i e n c y i s given by 
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2yFp (2) 

wher£ M i s the molecular weight of the oxide A^0y of density q , 

and F i s the Faraday. The thickness can "be evaluated i f the apparent 

area of specimen surface covered i s known. The eff e c t i v e molecular 

weight depends on the p u r i t y of the oxide and the current e f f i c i e n c y 

must be known. The density can usually he found by the method 
113 

reported by Jepson . . 

Because of these d i f f i c u l t i e s , t h i s method i s seldom used, a l ­

though Bray, Jacobs and Young 1 1^ applied i t to study the anodic oxid­

ation k i n e t i c s of tantalum and found the r e s u l t s to be consistent with 
108 109 

the Dewald dual barrier theory ' 7 o f i o n i c conduction. Bernard 
115 

and Cook found that f o r barrier-type f i l m s formed on aluminium i n 

ethylene glycol/ammonium pentaborate solution, the agreement between 

the f i l m thickness determined by t h i s method and by o p t i c a l methods 

was satisfactory. 

3.7.3.2 Optical Methods. 

Spectrophotometries^" 1 2 0 and e l l i p s o m e t r i c ^ ' 1 2 1 " 1 ^ m e t h o d s 

are the most widely used methods of thickness measurement. The 

data obtained are usually the most accurate, provided that s a t i s f a c t ­

ory values of the o p t i c a l constants for the oxide and the underlying 

metal are known. Measurements can be made " i n - s i t u " provided that 

the o p t i c a l constants of the film-forming e l e c t r o l y t e d i f f e r apprec-
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i a b l y from those of the f i l m substance. 
3 .7 .3 .3 Capacitance Msthod. 

For an oxide of uniform thickness, the system metal-metal/oxide 

interface-oxide-oxide/electrolyte i n t e r f a c e - e l e c t r o l y t e which i s 

present i s analagous t o the system present i n a p a r a l l e l plate con­

denser. The capacitance C i s given by 

C = £A / 4 T T d (3) 

where £ i s the d i e l e c t r i c constant of the oxide, A the surface -

area and d the oxide thickness. 

Several precautions must be borne i n mind i n i n t e r p r e t i n g 

capacitance measurements i n terms of the oxide thickness. The el e c t ­

r i c a l double layer makes a contribution G ,, to the measured value • 
ed.1 

124 

C m . Since C e d l i s i n series with the capacitance C q x due to the 

oxide film,equation ( 4 ) must give the re l a t i o n s h i p between these 

quantities, v i z : -
1 / Cm = ^ o x -+ ^°edl (4) 

^ e n C e d l ^ ''ox t n e m a a s u r e < * capacitance C m approximates closely to 

that due to the oxide. 

The type of oxide present also a f f e c t s the v a l i d i t y of the 
5 

i n t e r p r e t a t i o n . Lorking has shown that i f the f i l m i s coherent 

and impermeable C q x may be used to estimate f i l m thickness. How­

ever, when the f i l m teas been rendered porous by corrosive solutions, 
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incorrect values are obtained. 

I f accurate thickness values are required, an accurate value 

of d i e l e c t r i c constant must be found, possibly by c a l i b r a t i o n using 

fi l m s of known thickness. Since d i e l e c t r i c constant i s often a 

function of the frequency, capacitance measurements are usually 

made at constant signal frequency. Again, extreme care must be 

used to ensure that the input signal does not a f f e c t the specimen 

potential i n cases i n which C does not d i f f e r g reatly from C ... 
•ox " edl 

since the electrode po t e n t i a l w i l l influence the double layer 
124. 

present and hence influence G , 
edl 

Many methods have been used to measure the capacitance of 

specimens, including the d.c..transient method ?~ ' which has 

been applied t o the determination of surface roughness factors^- 2?. 
128 129 Bridge techniques have also been used ; Wood, Cole and Hoar * 

developed a bridge containing the experimental c e l l as unknown im­

pedance and a balancing impedance. An amplifier and oscilloscope 

were used t o detect balance, and an accuracy of better than "+ *5fo 

was attained f o r input voltages of 1-EQO .'mV at 10-500 Hz. The 

type of signal used determines th6 extent of balance. I f sine waves 

are used, any combination of resistance and capacitance can be 

exactly balanced by one resistance and one capacitance i n series. 

I n the case of square waves, however, components of a l l frequencies 

are present, and every element of a complex impedance must be balan-
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ced i n d i v i d u a l l y . 

A t h i r d method of capacitance measurement involves the use of 

analogue c i r c u i t s , of which many have "been designed. The two 

simplest are the series and p a r a l l e l c i r c u i t s i l l u s t r a t e d i n Plate 

I I I ( a ) . R g ( and R represent non-inductive resistance boxes 

and and Cg decade condensers. The use of the simple p a r a l l e l 
124 

analogue has been demonstrated by McMullen and Hacker man who 

applied the same square wave input signal to the test electrode and 

analogue. The response voltage time curve from the t e s t electrode 

was displayed on an oscilloscope, compared with that from the anal­

ogue, and the two curves matched by selecting values of R , R and 
s p 

Ĉ . TShen Rg = 0 then ohmic drop exists through the e l e c t r o l y t e 

and/or the external c i r c u i t . Types of response curves to square 

wave inputs are shown i n Plate H I . Analogue or comparison c i r -
130-133 

c u i t s have been used by Leach and Isaacs i n 'studies of the 

capacitances of metals as functions of the electrode p o t e n t i a l , and 

complex analogues have been used by Hoar and Wood̂ "2 i n studies of 

the sealing of porous anodic oxide f i l m s on aluminium. 

3 .7»3«4 Direct weighing techniques. 

Direct v/eighing of specimens has been used by several workers^^'^'''^^ 

For example, the amount of oxide formed anodically can be found by 

weighing the specimen before and a f t e r oxide dissolution i n a r e ­

agent such as phosphoric-chromic acid mixture, which dissolves the 
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oxide and leaves the metal unattacked. Knowledge of the oxide 

density and apparent surface area of specimen covered "by oxide gives 

the oxide thickness. 

3 » 7 « 3 . 5 Miscellaneous methods. 
24 

Hunter and Powle have determined the "barrier layer thickness 

i n porous anodic oxide by a method i n which -the minimum voltage 

required to cause fur t h e r growth was used to estimate the f i l m t h i c k ­

ness. I t was assumed tha t a minimum e l e c t r i c f i e l d strength i s r e ­

quired to promote ionic conduction across a presumably f i x e d barrier 

thickness. . The barrier f i l m was immersed i n an el e c t r o l y t e having 

a negligible solvent power f o r the oxide. A slowly increasing voltage 

was applied across the f i l m and the applied voltage, 7, at which the 

current suddenly increased, indicating the flow of ionic current, was 

noted. I f E i s the minimum f i e l d strength required f o r io n i c con­

duction and d i s the f i l m thickness, from the re l a t i o n s h i p v/d = E, 

d. can be calculated i f E i s known. Using 3$ V v ammonium t a r t r a t e 
e l e c t r o l y t e at pH 7, Hunter and Fowle observed the type of behaviour 

23 

i l l u s t r a t e d i n Plate IV(b) f o r sulphuric acid formed fi^ms; Diggle 

reported the type of behaviour shown i n Plate X7(a) f o r the same 

system. 
Hunter and Fovrle assumed the anodising r a t i o f o r barrier layer 

0 -1 

on aluminium to be 14 A v o l t . This value i s somewhat suspect, 

since the ammonium t a r t r a t e solution has, apparently, a s l i g h t solvent 
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power f o r the f i l m . The evidence f o r t h i s solvent power w i l l be 
discussed l a t e r i n Section 8.1. To assume, however, that a l l of 
the applied voltage appears across the b a r r i e r layer involves greater 
error. 

Considering the p a r a l l e l plate condenser eq.(3) and assuming 

that the expression V = Ed i s v a l i d , i t follows that 

V - B. j£A_ ( 6 ) . 
4TCC 

A plot of V versus l/C should be linear and pass through the o r i g i n 

i f a l l of the applied voltage appears across the b a r r i e r layer. 

I t has been r e p o r t e d ^ 5 that t h i s p l o t i s l i n e a r f o r aluminium anod-

ised i n neutral 3$ ammonium t a r t r a t e solution, but that the intercept 
136 

on the voltage axis i s at about -2 v o l t s . Vermilyea has proposed 

that the true voltage across the barrier layer (Vj.) i s r e l a t e d to the 

applied voltage (V ) by equation 7 ! _ 

V t = V a " (Tic + aiH) + V,. (7).. 

f j c i s the cathode overpotential, a- the surface area, i the current 

density and R the t o t a l resistance of the solution and any external 

series resistance. V r i s the e. m.f. corresponding to the reaction 

2 A l + 3 H20 = A1 20 5 + 3 H 2 

which, from thermodynamic data^may be calculated to be 1 .5 v o l t . 

Using equation (6) 

V = E. £A + (71 + aiB) - V (8) 
a f f f C 'c r 
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I t i s clear that t h i s equation predicts that a graph of V versus 
a 

l/C should not pass through the o r i g i n . 
24 

Hunter and Fowle , however, have reported an accuracy of approx­

imately 3& i n t h e i r determination of harrier layer thickness i f a 

correction i s applied to allow for the expected electronic leakage 

l e v e l of IOOJJLA cm • The required voltage value i s taken to "be 

that required to increase the current density t o a value i n excess 

of 100 |aA cm - 2 as i s i l l u s t r a t e d i n Plate IV (h ) . 

Among other methods, the scattering of cH-particles has "been 

used^® to determine the thickness of oxide f i l m s on anodised alumin­

ium. Measurements were "based on determinations of the difference . 

"between the energies of o<-particles scattered from the oxide surface 

and the underlying metal. Films from 10 t o I30jj.gcm were reported 

to have "been analysed non-destructively with a r e l a t i v e standard 

deviation of 3 . 5 $ « - The average time of analysis was 30 minutes w i t h 

an incident beam current of up to about 1 |j.A. 

3.8 Porous Anodic Oxide Films on Aluminium. 

3.8.1 Solvent Action i n Pore Formation. 

The formation of porous alumina and concurrent dissolution pro­

cesses can be understood i n terms of the following:-

a) Ionic migration, forming an i n i t i a l barrier layer which w i l l 

remain as a barrier layer i f the e l e c t r o l y t e has no solvent power 

fo r the oxide. 



current, 

applied voltage, v 
la) The type of behaviour observed *for a porous alumina 

film immersed in 3% w/v ammonium tartrate solution 
during the application of a steadily increasing voltage. 

current 
ma cm 

actual 

approximate 

applied voltage, v 
. (b) The determination of the barrier thickness of a,.,porous 

alumina film by the method.of Hunter and Fowled The 
approximate and actual barrier voltages are as indicated, 
assuming an electronic leakage current value of . 

—2 
100 jx a cm , 

Plate TIT . 
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b) I n el e c t r o l y t e s with solvent power, conversion of ba r r i e r to 
porous layer takes place when the b a r r i e r layer has reached a 
c e r t a i n t h i c k n e s s 2 ^ » ^ » 4 5 . This conversion^is believed to be 
a f i e l d - a s s i s t e d electrochemical process 2 ^ » 4 ? k l 3 9 # Pore f o r ­
mation begins e a r l i e r i n 15^ sulphuric acid f i l m s than i n 4$ 
phosphoric acid f i l m s 1 ^ , i n d i c a t i n g that i n the former case, 
the conversion process i s more r a p i d . This i s borne out by 
the lower- anodising r a t i o found f o r the barrier layer of s u l ­
phuric acid-formed f i l m s (Table I I ) . I f a r p h y 1 ^ suggested that 
both protons and anions are involved i n pore formation and found 
that the pore density decreased l i n e a r l y with decreasing pK f o r 

81 

the series of e l e c t r o l y t e s 15$ sulphuric acid, 2fo oxalic acid, 

jfo chromic acid and 4$ phosphoric acid. I f aluminium i s anod-

ised i n ammonium t a r t r a t e solutions f o r long periods i n excess 

of 60 minutes, the current density-time behaviour i s similar to 

that observed during sulphuric acid a n o d i s i n g ^ 2 , b u t the f i n a l 

current density i s much lower. As i n the case of anodising i n 

pore-forming e l e c t r o l y t e s ^ the current minimum i s observed 

e a r l i e r the lower the pH of the e l e c t r o l y t e and t h i s could i n -
4 i 

dicate that pore formation i s occurring. Hoar and Yehalom * 

found that i n pore-forming el e c t r o l y t e s the minimum current den­

s i t y occurred e a r l i e r the higher the applied voltage, which i s 

evidence f o r fi e l d - a s s i s t e d dissolution. 
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'c) The porous layer thickness i s a function of current density, 

time, e l e c t r o l y t e temperature and, to a small extent, the elec­

t r o l y t e concentration. 

d) Because of external surface dissolution of the oxide by the 

e l e c t r o l y t e , porous f i l m s are found to be thinner than would be 

expected by consideration of the amount of charge passed i n f o r -
27 28 

mation ' • The process i s strongly temperature-dependent and 

i s s l i g h t l y affected by the e l e c t r o l y t e concentration. 

e) There i s considerable evidence that so-called non-porous barrier 

type f i l m s do possess some porosity. The resemblance of current 

transient phenomena during anodising f o r long periods of time i n 
ammonium t a r t r a t e solutions t o those i n formally pore-forming 
electrolytes 142 has already been mentioned. D u n n 1 ^ ' 1 ^ has 

found that anodising i n 1$ ammonium pentaborate at high f i l m 

formation rates (high current densities) produces non-porous 

f i l m s but at low formation rates porous layer i s formed. This 
39 

i s reminiscent of the findings of Brock and Wood , that f o r 

anodising i n aqueous t a r t r a t e solution,pH 6-8,the a.c. r e s i s t ­

ance of the outer part of the f i l m was much less f o r low than 

for high current densities and presumably the extent of hydrat­

ion, probably by hydroxylibn d i f f u s i o n , was much greater i n the 

former case^. Hunter and Towner^** have reported that anod­

i s i n g i n yfo, pH 5.6 ammonium t a r t r a t e solutions produces a non-
i s i n g i n Jp. pH 5.6 
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porous oxide f i l m i f the voltage i s held constant and the current 

i s allowed to decay only u n t i l i t reaches a minimum, that i s , 

the barrier f i l m i s completed. I f anodising i s continued 

beyond th i s . p o i n t , porous layer begins to form and has been 

detected by electron microscopy a f t e r long periods of anodi s i n g 1 1 8 . 

These workers have reported that 50$ of the leakage current i s 

involved in,porous layer formation at a small constant r a t e . 
81-8'3 

Dorsey has detected porous layer produced by anodising 

aluminium i n ammonium t a r t r a t e and t a r t a r i c acid by the presence 

of the porous layer i n f r a - r e d absorption band. The work of 

Dorsey was discussed e a r l i e r . Barber 1^, however, found pores 

i n oxide produced anodically i n aqueous ammonium c i t r a t e and 

c i t r i c acid but that pore formation was reduced by ultrasonic 

v i b r a t i o n of the anodising c e l l . He concluded that the pores 

probably arose from bubbles i n the anodising c e l l . 

5.8.2 Structure of Porous-type Alumina Films. 

From many electrbnoptical i n v e s t i g a t i o n s ^ ' 1 ^ ' 1 ^ " 1 ^ , both by 

the r e p l i c a t i n g and the d i r e c t transmission technique and from some 

gas adsorption studies 25>^49^ the structure of the porous anodic 
oxide f i l m would appear to be essentially that reported by Keller, 

7 

Hunter and Robinson . 

I n essence, the structure i s as follows. Each pore l i e s i n the 

centre of a hexagonal-shaped oxide c e l l , width c. The pore diameter 



i s reported to be independent of both the anodising voltage and the 

time of f i l m formation, and t o depend .only on the e l e c t r o l y t e used. 

Some ind i c a t i o n of the pore diameters i s shown i n Table H I . 

Table I I I 

Fore Diameters i n D i f f e r e n t Electrolytes. 

Electrolyte concentration and 
temperature 

Pore Diameter I. 
4$ phosphoric acid 24°C 330 

yfo chromic acid 38°C 240 

2fo oxalic acid 24°C 170 

15$ sulphuric acid 10°C 120 

The oxide c e l l width depends on the anodising voltage, and the pore 

wall thickness has a cer t a i n anodising r a t i o as has the barrier layer 

thickness. 

Table 17 

Anodising Ratios f o r the Barrier Layer 
and Pore Wall Thickness. 

Electrolyte concentration 
and temperature 

Barrier layer 
. & v o l t 

Pore wall thickness 
S v o l t ^ 1 

Afo phosphoric acid 24°C 11.9 11.0 

% chromic acid 38°C 12.5 10.9 

2$ oxalic acid 24°C 11.8 9.7 

15$ sulphuric acid 10°C 10.0 8 .0 
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As the anodising voltage increases, the width, c, of the oxide c e l l 
increases and so the pore density decreases. This i s i l l u s t r a t e d 
i n Table Y f o r 15$ sulphuric acid at 10°C 

Table 7 

Pore Densities of Films Formed by 
Anodising i n 15$ Sulphuric Acid at 10°C. 

Anodising voltage 9 -2 
Pore density, x 10'cm 

15 83 

20 56 

30 30 

The pore volume i s the f r a c t i o n a l volume of the porous layer 
7 

occupied by pores. I f these are considered to be perfect cylinders , 

the pore volume should be independent of porous layer thickness, 

current density, e l e c t r o l y t e concentration and anodising temperature. 

However, there i s evidence that the pore volume i s a function of a l l 
25 99 1 50 2 of these parameters J * The true pore shape has been proposed 

to be that of a truncated cone with the basal diameter that reported 
7 

by Keller, Hunter and Robinson , and with a pore mouth diameter 

dependent on the current density and the anodising time, that i s , 

the f i l m thickness. This i s i l l u s t r a t e d i n Table VI f a r the anod-

i s a t i o n of aluminium i n 20$ sulphuric acid. 
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Table VI 

Pore Base and Mouth Diameters Reported f o r 
Oxide Films Formed i n 20$ Sulphuric Acid 2^. 

Current density 
mA cm" 

Anodising time 
min. 

Fore bases 
diameter A* 

Pore mouth 
diameter i 

10 50 120 159 

15 50 120 182 

15 60 120 246 

25 50 120 208 

The slope of the pore wall i s very s l i g h t , since, f o r example, 
o 

i n the case of pore base diameter 120&, pore mouth diameter 159At the 

porous layer thickness i s 9(i*nu A possible l i m i t a t i o n on porous layer 

thickness might be expected, since i f anodising were continued s u f f i c ­

i e n t l y long and/or at increased current density, the pore mouth dia­

meter might equal the oxide c e l l width. Indeed any f u r t h e r anodising 

beyond t h i s point might r e s u l t i n reduced thickness by surface chem­

i c a l dissolution by the e l e c t r o l y t e . Some evidence f o r a l i m i t i n g 

maximum oxide thickness has been reported by Biggie, Downie and 

Goulding^ 0 based on the work of L i e c h t i and Treadwell^ and Sacchi 1^ 1. 
152 

G-olubev and Ignatov have also found evidence f o r t h i s type of 

behaviour. 
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3.8.3 Frequency Dependence of the Impedance of Porous-type Films. 
1 55 . 

Jason and Wood have proposed an e l e c t r i c a l analogue to 

represent the impedance of porous anodic f i l m s on aluminium. This 

i s i l l u s t r a t e d i n Plate V(b) and i s c l e a r l y i n keeping with the 

c y l i n d r i c a l pore model (Blate V(a) ) . Hoar and Wood^2 found that 

t h i s analogue adequately represented the frequency dependence of the 

impedance of f i l m s formed i n 15$ w/v sulphuric acid. They found, 

i n common with Jason and Wood, that f o r unsealed f i l m s , the measured 

series capacitance and resistance decreased as the a.c. measuring 

frequency increased. Above 1()3HZ the resistance remained approx-
-2 

imately constant at 25 ohm cm ; t h i s was i d e n t i f i e d with B^, since 

at these frequencies, was completely "by-passed by the low imped­

ance of Cg. 

Below lCrHz, the measured resistance increased as the impedance 

of increased. I t was also observed that below lO^EIz, the measured 
capacitance was the ba r r i e r layer capacitance C_ since C has a high 

d o 
impedance at such frequencies due to i t s low capacitance. S i s so 

p 

large that i t makes an i n s i g n i f i c a n t contribution to the impedance 

at a l l frequencies. Therefore, below KrHz the barrier layer 

capacitance and resistance are ;||^asured a f t e r balancing out the 

ohmic drop across the solution plus that i n the external c i r c u i t 

using square waves and t h i s requires the simple analogue represented 

fcy ̂  a n <^ 2̂ ̂ n P 3 1 8^!®! a n <* ^ 0 * l i i n series with R̂ . 
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CHAPTER 17 
Experimental. 

Preliminary Preparation of Specimens. 

The aluminium used was the B r i t i s h Aluminium Company1 s super-

p u r i t y (99»99$ Al.) grade, which was melted i n alumina crucibles 

and cast i n t o ingots i n a copper c h i l l mould. 

I n a few cases, specimens were i n the form of wire of about 

1.7 mm, diameter and 20 cm long, but the majority were cylinders 

about 1.5 <™ long, having a cross-sectional area of about 0.6 cn£. 

I n the case of wire formation, ingots were r o l l e d to size and drawn 

through dies to form wires of known diameter. The c y l i n d r i c a l 

specimens were produced by sectioning ingots and tapping a few turns 

of thread at one end so that good e l e c t r i c a l and mechanical contact 

was made with a threaded aluminium wire suspension. The untapped 

end of the cylinder was the surface f o r oxide f i l m formation; t h i s 

end was polished with emery paper using l i g h t l i q u i d p a r a f f i n as a 

lubricant, working through the grades O/O to 4/0. 

Wires, to a chosen length, and cylinders at the polished surfaces 

were degreased with acetone and then chemically polished at about 

95°G for three minutes i n a solution made up from 125 ml concentrated 

sulphuric acid, 350 ml. ortho-phosphoric acid and 25 ml. concentrated 
C 1 ? -1 C oft 

n i t r i c acid^' j - ^ * ' 0 . Specimens were then washed i n running d i s ­

t i l l e d water f o r one minute, rinsed with acetone and a i r - d r i e d . 
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5 o 
Lorking has suggested that a t 80 C, the oxide f i l m produced by t h i s 

o 
method i s about lOa thick and the r e p r o d u c i b i l i t y of f i l m character-

23 

i s t i c s i s good. Capacitance measurements made by Diggle i n d i c ­

ated a thickness a l i t t l e less than t h i s at the temperature used i n 

the present case. 

4.2 Oxide Film Preparation. 

Three methods of f i l m preparation were adopted. These were 

anodic oxidation to form f i l m s of the so-called non-porous barrier 

"type? and f i l m s produced by the oxidation of aluminium i n dry oxygen 

and i n oxygen having a known gaseous water content. 

4*2.1 Anodisation to Form Barrier-type Films. 

Where not given i n the t e x t , d e t a i l s regarding instruments used 

are given i n Appendix I . 

The anodising e l e c t r o l y t e used was jfo w/v ammonium t a r t r a t e , 

buffered with ammonia to pH 7»which produces barrier-type f i l m s on 

aluminium. The cathode was of super-purity aluminium i n the form 

of a cylinder surrounding the anode. Anodising was performed at 

25»0 +• 0.1°C i n a thermostatted water bath. A valve voltmeter - was 

used to measure the potential difference between specimen and cathode, 

and the voltage applied across these was tapped from a s t a b i l i s e d 
_2 

supply. Ionic current surge was l i m i t e d to 200 pA cm , a value 
21 39 

considerably less than those used by other workers ' 7 whose f i l m s 

were apparently coherent, to avoid f i l m damage from l o c a l heating. 
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When the desired potential drop from anode to cathode was achieved, 

t h i s value was maintained by reducing the current density to the 
—2 21 electronic leakage l e v e l of 25-40 jaA cm . Heine and Pryor found 

-2 

electronic leakage levels to be 15-20|j.A cm where the i n i t i a l sur­

face preparation was an etch with sodium hydroxide solution. I n 

the present work, anodising was regarded as completed when a low 

steady current density was maintained f o r about f i v e minutes. The 

c i r c u i t was broken by removing the applied voltage, the specimen was 

removed and washed with d i s t i l l e d water. 

Wire specimens were anodised to the length required. Before 

anodising, c y l i n d r i c a l specimens had t h e i r degreased sides covered 

with Bostik. This was applied a f t e r d i l u t i o n with acetone. The 

e l e c t r i c a l i n s u l a t i o n was tested by completely covering a specimen, 

except a t the tapped end, with d i l u t e d Bostik. After drying, the 

specimen was attached to a supporting wire and p a r t i a l l y immersed 

i n a mixture of K sulphuric acid and N sodium sulphate having a pH 

value of 1.0. This solution was one of the most aggresive to the 

oxide f i l m used i n these investigations. Over a period of twenty-

four hours, no potential was recorded f o r the specimen with respect 

to a saturated calomel electrode and t h i s demonstrated that the i n ­

sulation was satisfactory f o r the times normally used i n the present 

work. 

Since wire specimens had such a small diameter compared wi t h the 
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length immersed, errors i n , for example, capacitance studies, due 
1 

to creep of el e c t r o l y t e and edge effects should he n e g l i g i b l e . How­

ever, t h i s i s not the case f o r c y l i n d r i c a l specimens and measurements 

were therefore performed with the sides coated with Bostik and with 

the anodised surface j u s t touching the appropriate electrolyte.' I n 

the case of c y l i n d r i c a l specimens t h i s treatment with Bostik was used 

a f t e r the other types of oxide f i l m studied had been prepared. 

4.2.2 Films Formed i n Dry and Moist Oxygen at 500°C. 

4.2.2.1 Apparatus. 

The l i n e used for oxidation i n the presence of gaseous water 

i s shown i n Plate V I . Taps and j o i n t s were greased with Apiezon 

M grease whose vapour pressure i s ne g l i g i b l e up to 200°C. D i s t i l l e d 

water i n tube A was thermostatted at the chosen temperature and the 

temperature control was, at worst + 0.1°C, leading to variations i n 

water vapour pressure of not more than 1$. The gases i n the f u r ­

nace tube, during oxidation, were i n contact with the section o f ' l i n e 

isolated by taps 1 and 2. Heating tape, heating e l e c t r i c a l l y to 

about 100°C, between the water vapour source and the furnace tube, 

ensured that the p a r t i a l pressures of gases throughout the section 

were the same, since the water vapour source was always at a temper­

ature considerably less than 100°C. Also, water from the thermo­

stat was passed through the jacket surrounding the top of the furnace 

tube before entering the jacket f o r the tube A. The pressure i n the 
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furnace tube, always close to 1 atmosphere, was measured with the 
U-manometer containing Apiezon B o i l , whose vapour pressure i s neglig­
i b l e at room 'temperature. The furnace was nichrome-wound, asbestos-
lagged and the temperature was controlled by a T r a n s i t r o l Type 990 
Temperature Controller i n conjunction with a chromel/alumal thermo­
couple and by-pass resistance. The source of power was a constant 
voltage transformer which supplied the primary of a variable trans­
former and the co n t r o l l e r i t s e l f . Thus, temperature changes due 
to mains voltage fluctuations were avoided. A second calibrated 
chromel/alumel thermocouple was positioned i n an i n l e t from the bottom 
of the tube reaching to the height of the specimens and was used to 
monitor t h e i r temperatures. 

4.2.2.2 Oxidation i n moist oxygen. 

Specimens were suspended by aluminium wires i n the furnace tube, 

taking care that the prepared surfaces were not i n contact w i t h the 

glass (Pyrex) to avoid s i l i c a contamination at elevated temperatures. 

Specimens were oxidised at 500 + (k2°C. The choice of the period of 

oxidation, 49 hours, w i l l be discussed i n the followingssection on 

oxidation i n dry oxygen. I n order to reproduce specimen treatment 

as nearly as possible, a routine procedure was adopted. The section 

of the l i n e isolated by taps 1 and 2 was evacuated, flushed out twice 

with oxygen from a cylinder and was f i n a l l y f i l l e d w i t h oxygen to 

about atmospheric pressure. Tap 3 was closed, power to the heating 



tape switched on and the thermostatted water was circulated. The 

W.P.L. standard thermometer, positioned near to the tube A containing 

water, was read to check that the temperature was at the desired 

value. At thermal equilibrium, the furnace tube was introduced 

i n t o the furnace whose temperature was already 500°C,. by r a i s i n g the 

jack supporting the furnace. The top of the gap between furnace and 

tube was packed with asbestos wool to reduce heat loss and the system 

was adjusted so that specimens were positioned near to the centre of 

the furnace. When thermal equilibrium was again attained, a f t e r 

about ten minutes, tap 5 w a s opened and then tap 1 was quickly opened 

and closed to release excess pressure i n t o the l i n e beyond which con­

tained oxygen at a l i t t l e less than one atmosphere pressure. The 

pressure i n the section of the l i n e i s o l a t e d by taps 1 and 2 was 

monitored from time to time by means of the o i l - f i l l e d manometer. 

When oxidation was completed, the power source to the furnace was 

switched o f f and, when the specimen temperature had f a l l e n to about 

50°C, tap 3 was closed to avoid water condensation i n the furnace 

tube. After about i f - hours, the furnace had cooled to room temper­

ature and the tape and water c i r c u l a t i o n were switched o f f . With 

t h i s slow cooling, d i f f e r e n t i a l thermal contraction of the oxide and 

underlying metal should not r e s u l t i n cracking of the oxide f i l m . 

Tap 4 was opened to r e l i e v e the p a r t i a l vacuum and the specimens were 

removed. I t was considered unwise t o store these specimens and a l l 
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were used immediately a f t e r oxidation. 
4.2.2.3 Oxidation i n dry oxygen. 

The thermostatted tube was replaced by a simple tube, the heating 

tape removed, the furnace-tube cooled with tap water and a l i t t l e 

anhydrous copper sulphate covered with a piece of f i l t e r paper i n t r o ­

duced i n t o the specimen store B and the trap C t o detect moisture. 

The l i n e to the l e f t of tap 2 was flushed out and f i l l e d with oxygen, 

f i r s t dried i n trap D by means of l i q u i d a i r , to near atmospheric 

pressure as before. The procedure during heating and cooling of 

specimens was similar to that used before. Since the furnace tube 

was i n connection with two 2 l i t r e globes, l i t t l e increase i n pressure 

occurred during the heating of the furnace tube. 

Dignam, Pawcett and B o h n i ^ have determined l i m i t i n g weight gains 

f o r the oxidation of electropolished superpurity aluminium i n dry 

oxygen between 478° and 60l°C. The data are summarised i n Plate V I I 

and indicate that a period of 49 hours oxidation should be more than 

s u f f i c i e n t to.achieve l i m i t i n g weight gain at 500°C. This period 

was used i i n the present work sinc.e t h i s behaviour i s possibly nearer 

that obtaining i n the present work than the behaviour determined by 
48 

Beck and his co-workers . The electropolishing pre-preparation 

used by Dignam and his co-workers probably produces i n i t i a l surface 

oxide f i l m properties more l i k e those i n the present work than the 

etch i n sodium hydroxide solution used by Beck and h i s co-workers. 
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Limiting weight gains and times t o a t t a i n them as a function of.the-
61 

temperature of oxidation of aluminium i n dry oxygen^"' 
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Also the expected thickness of f i l m s i s about 165 A based on the 

l i m i t i n g weight gain at 500°C inf e r r e d from the work of Dignam and 

h i s co-workers. Specimens anodised to 14 v o l t s i n barrier-type 

film-forming electrolytes have oxide f i l m s of about t h i s thickness. 

For comparison, the same period was chosen f o r oxidation i n oxygen 

with a gaseous water content. 

Types of Measurement. 

I n order to compare the behaviour of these oxide f i l m s with the 
4 23 28 32 

porous-type examined previously ' ' ' the following types of 

measurement were made on a l l types of oxide f i l m produceds-

a) Construction of f u l l e l e c t r i c a l analogues. 

b) Impedance changes during f i l m dissolution. 

c) Specimen potential/time behaviour during f i l m dissolution. 

I n addition the following measurements were made:-

d) Barrier voltage determinations ( f i l m s formed i n oxygen at 500°Ci». 

e) Determination of aluminium ion concentrations during f i l m 

d issolution (anodically-formed f i l m s ) . 

Dissolution i n aerated and solutions deaerated with hydrogen 

was studied i n mixtures of aqueous sodium sulphate and sulphuric acid 

of known ionic strength and the pH was adjusted to that required. 

Construction of F u l l E l e c t r i c a l Analogues. 

A f u l l e l e c t r i c a l analogue has the same frequency response as 

the oxide f i l m i t s e l f . The method used here i s that previously used 
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42 lay Hoar and Wood i n t h e i r study of the construction of f u l l e l e c t r i c a l 

analogues f o r porous f i l m s formed by anodi sation i n sulphuric acid, 

"both i n the unsealed condition and during the process of sealing. 

Using the same apparatus as i n the impedance studies during 

oxide dissolution, with a sine wave signal, the impedance of f i l m s 

i n the almost non-solvent,3$w/v ammonium t a r t r a t e "buffered to pH 7» 

was studied as a function of frequency at 25°C using a simple series 

capacitance-resistance analogue. The l a t t e r was then used to a r r i v e 

at the f u l l e l e c t r i c a l analogue. The ohmic drop across the solution 
42 

was measured at high frequency* with a copper specimen whose immersed 

area was that of.the aluminium specimen. A l l types of oxide f i l m s 

were studied i n t h i s way; anodised f i l m s were studied f o r several 

anodising voltages and i n the case of 14 v o l t anodised films,' as a 

function of the time of anodisation at the lowest current density. 

4.3.2. Impedance Changes During Film Dissolution. 

4.3.2.1 Method. 

I t was anticipated that the rate of thinning of the oxide f i l m s 

would be not too dissimilar from that observed fo r porous f i l m s ^ » 3 6 . 
Accordingly the process was followed using a similar method, a modif-

124 

i c a t i o n of that due to McMullen and Hackerman . Synchronised-sine 

or square wave signals were fed simultaneously to the c e l l containing 

the specimen under, t e s t , and to a simple analogue c i r c u i t , and the 

response curves displayed on a double beam oscilloscope. Using low 
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amplitude signals the resistance and capacitance of the analogue 
were adjusted u n t i l the response curves matched. The c i r c u i t 
diagram i s shown i n Plate V I H and the dissolution c e l l i n Plate IX. 

4.3.2.2 Apparatus. 

The components of the. analogue were screened resistance and 

capacitance decade boxes and these were calibrated by means of a 

Wayne Kerr Bridge. Attentuators were also screened resistance 

boxes which were also calibrated. A l l external leads were screened, 

the c e l l was enclosed i n an aluminium box as were the switching gear 

and coaxial sockets and t h e i r leads t o complete the c i r c u i t . A l l 

screens were interconnected and earthed to minimise a.c. pick-up. 

The aluminium c e l l enclosure was lagged externally with expanded 

polystyrene and the f r o n t , made from perspex covered with aluminium 

f o i l with windows l e f t f o r observation, was attached by four screws 

i n contact with the f o i l so that the screening was complete. Both 

heating and cooling devices were necessary; cold tap water was 

circulated through glass tubes i n the enclosure. An e l e c t r i c a l l y 

screened 100 watt bulb was f i t t e d on the rear inside surface of -Hie 

aluminium enclosure, and the temperature was controlled by a bimet­

a l l i c s t r i p thermostat i n conjunction with a relay. Temperature 

control was + 0.5°C or better at 25°C; an ambient temperature of 

29°C, which was never reached i n normal practice^was necessary to 

make i t impossible to maintain a temperature of 25°C i n the box. 
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Cathode Ray Oscilloscope 

Sine and Square Wave Oscillator,the signal of which was 
applied across AB and A^B^ simultaneously 

Voltmeter 

Saturated Calomel Electrode in a s a l t bridge 

Decade Resistance Boxes attenuating Generator Signal. 
Range 0-100 k ^ i n 1 .̂ intervals,matched within 1% 

Inductance to prevent A.C.. stray into D.C. circuit 

Aluminium Specimen 
Subsidiary Platinum Gauze Electrode of 30 cm2 area 

R 8 and Rp Decade Resistance Boxes.Ranges 0-10 ijv i n 0.1^. intervals 
' and 0-100 low in l x intervals respectively 

C D Capacitance Decade Boxes Jtange 0-30n,F in 0.001 |^F intervals, 

Plate V I I I 
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A horizontal steel bar passed through the centre of the box with 
clamps to support two cells so that two runs could he done simult­
aneously. 

The c e l l was of about 500 ml capacity, and contained a platinum 

gauze subsidiary electrode of area large i n comparison with the 

specimens. The specimen potential could be monitored with respect 

to a saturated calomel electrode which was isolated from the bulk 

of the solution by a tube containing the test electrolyte. Arrange­

ments were also made to permit tests to be carried out i n deaerated 

solutions; i n these experiments a slight positive pressure of hydrogen 

gas. was maintained above the solution. 

4.3.2.3 Experimental. 

In dissolution i n deaerated solution, cylinder hydrogen was 

bubbled through the solution with the tap open (see Plate IX) for 

at least five.hours before an experiment was begun. Diggle, Downie 

and Groulding^ found that a period of deaeration of five hours was 

required to obtain reproducible behaviour for potential/time studies 

on porous alumina films on aluminium during dissolution. Before 

the gas entered the flask, i t was passed through a bubbler contain­

ing the electrolyte under examination, and the gas outlet was 

• connected to a tube dipping under about 1 cm of electrolyte so that 

there was always a small positive pressure of hydrogen i n the c e l l . 

Prior to specimen introduction into the solution, the tap was closed 



64 

so that hydrogen passed over the surface of the electrolyte. 
Wire specimens were immersed to a known depth i n the c e l l with 

the "bottom of the specimen level with the bottom of the platinum 

gauze counter electrode and the top of the l a t t e r level with the 

solution surface. For cylindrical specimens, the prepared surface 

just touched the electrolyte surface, so that i n each case the r e l ­

evant apparent specimen area was known. 

Most studies were made at constant ionic strength hut varying 
pH, or at constant pH with varying ionic strength, i n aerated sulphate 
solutions, although for comparison purposes some work was carried 
out i n deaerated solutions. Specimen preparation was anodisation 
to 7» 14 and 21 volts with the most exhaustive studies at 14 volts. 
Similar studies to those made using 14 volt anodised films were carried 
out on films formed i n dry oxygen at 500°C. Again for comparison, 
a few studies were made of specimens for iSnch oxygen containing gas­
eous water at one partial pressure only was used for oxidation. 

4.3»3 Potential-Time Behaviour During Film Dissolution. 
The potential-time "behaviour of specimens was also examined. The 

ce l l used was as for impedance measurements (Plate IX) but the plat­
inum gauze counter electrode was omitted. Specimen potential was 
measured, using a sensitive electrometer, with respect to a saturated 
calomel electrode and was continuously recorded on a chart recorder. 
A suitable -backing-off potential was sometimes applied from a standard 
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c e l l to keep values within a desired range. 
4.5«4 Barrier Voltage Determinations. 

Some experiments were performed on films produced i n oxygen at 
o 24 500 C using the technique of Hunter and Fowle discussed earlier i n 

Chapter I I I (3«7«3»5) Specimens were immersed i n 3$ w / v ammonium 
tartrate solution "buffered with ammonia to pH 7, at 25°C. By means 
of a motor-driven potentiometer a steadily increasing voltage was 
applied, across the specimen and an aluminium cathode of surface 

area large with respect to that of the specimen, and the current was 

recorded continuously. The minimum voltage drop across the f i l m to 

give ionic conduction i s proportional to the f i l m thickness. As a 

result of using a cathode of very large surface area with respect to 

the specimen, the oh"mic-. drop across the solution and the cathode 

over-potential at any of the required minimum voltages for ionic 

conduction were both negligible (See Chapter I I I (3.7.3.5) ) with 

respect to the applied voltage. Also, Vr was zero since anode and 

cathode were of the same material. Thus, nearly a l l the applied 

voltage was across the oxide f i l m . The effect of varying the rate 

of voltage increase was examined. 
45 

The method of Hart was also used, - i n which the voltage across 
the f i l m i s increased i n equal steps with constant intervals on open 
ci r c u i t . Current surges were of short duration u n t i l the f i e l d 
strength required for ionic conduction was achieved, when the current 
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transient took place over a longer period and mas completed when' 
the f i l m had ceased to thicken. Again, precautions were taken to 
ensure that nearly a l l the applied voltage was across the oxide f i l m . 
The current transients were plotted on a chart recorder and the effect 
of varying the time on open circu i t was examined. 

4.3 • 5 Aluminium Ion Concentration i n Solution. 

In an attempt to correlate the capacitance changes which were 

observed i n the present work with f i l m thinning, the rate of passage 

•of aluminium ions into solution was determined. Aluminium f o i l 

specimens, either i n the polished condition or after having been 

anodised i n tartrate solutions at 7»14, or 21 volts, were immersed 

i n sulphate solutions of pH 1.0, ionic strength 1.5. 

To ensure that the i n i t i a l concentration of aluminium i n solut­

ion should be detectable, the f o i l specimens had A/v ratios (A i s 

the apparent surface area, V the volume of solution used) of about 

1 000 times greater than did the specimens used i n impedance measure­

ments. The results of tests made using 14 volt tartrate films at 

different A/V ratios indicated that, i n the present experiments, 

saturation of the solution with respect to anhydrous alumina did 

not affect the result. This point has been discussed by Lorking 
9 

and Mayne . 

The analytical method used was developed by Gentry and Shearing-

ton"1"^, and has been used by Nagayama and Tamura^. The former 
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workers found that complete extraction of aluminium ions was possible 
over pH ranges 4*5-6.5 and 8.0-11.5 by complexing with a lfo solution 

of 8-hydroxy quinoline in acid-free chloroform. The complex i n 
o 

chloroform was found to have a peak absorption at 3900 A, and to 

obey the Beer-Lambert law at up to 3 |-lg complex ml ̂  sample extract. 

A calibration curve, shown i n Pig. 1,was established by the 

procedure given i n Appendix I I to this thesis. During the dis­

solution experiments at 25°C, i n about 500 ml. of solution, vigorous 

s t i r r i n g took place and the containing beaker was covered with a 

watch glass. 2 ml. samples were taken at known times and extracted 

as i n the calibration procedure. Concentrations of aluminium ion 

were determined using the same cells as for calibration, retaining 

the same c e l l for the blank throughout. Hence, the t o t a l weight of 

aluminium ion in the dissolution medium was determined. 



Optical density versus weight of aluminium/lO ml of chloroform extract 
for the complex of aluminium with 8-hydroxy quinoline.. 
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CHAPTER 7 
Experimental Results for Anodically farmed Films. 

Construction of Full Electrical Analogues 

for Non-porous Films. 

In a l l cases, the best correspondence with the frequency res­

ponse of the oxide f i l m -was obtained with the analogue shown i n 

Fig. 2 (a). The charging curves displayed on the oscilloscope 

were identical i n amplitude but there was a small, sensibly frequency 

independent phase difference, the voltage across the simple series 

resistance-capacitance analogue leading that across the f u l l analogue. 

No improvement i n matching was obtained by modifying the analogue to 

represent a pore contribution . Values of R (see Fig. 2(a) ) 
_2 

were identified with the measured ohmic drop, about 40 ohm cm , 

across the ammonium tartrate solution. 

The frequency responses of the components of the simple resistance-

capacitance analogue for 14 volt anodised films, where anodising was 

continued at the lowest current density after current decay at 14 

volts for 2, about 5, 30 and 172 minutes and at 7 volts for about 5 
and for 30 minutes are shown i n Figs. 3, 4 and 5 and Tables V I I -
X I I . contain a summary of the results obtained. 
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Frequency dependence of balancing series capacitance for 14 vo l t 
anodised non-porous alumina films as a function of the time of 
anodising at the lowest current density. 
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Frequency dependence of balancing series resistance for U volt 
ahodised non-porous alumina films as a function of the time of 
anodising at the lowest current density. 
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Frequency dependence of balancing series resistance and 

capacitance 1 for 7 volt anodised non-porous alumina 

films as a function of the time of anodising at 

the lowest current density. 
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TABLE VII 
Behaviour of Components of Full Analogue as a function of 

Anodising Voltage at 25°C for Anodising at lowest Current 

Density for about 5 minutes and for 50 minutes ( i n parentheses), 

R„ohm cm 

-2 cm 

R,ohm cm 

-2 
m 

7v 

,160 000 
(42 000) 

0.93 
(1.02) 

170 
(120) 

2.46 
(3.30) 

I4v 

260 000 
(120 000) 

0.51 
(0.57) 
160 
(240) 

::2.45 
(1.32) 

21v 

170 000 
(125 000) 

0.43 
(0.45) 

350 
(200) 

:o.8i 
(1.28) 

30v 

350 000 
(270 000) 

0.264 
(0.278) 

290 
(220) 

' 1.10 
(1.07) 

TABL5 V I I I 

Behaviour of Components of Full Analogue as a Function 

at 25°C of Time of Anodisation at 14 volts at Lowest Current 

Density. 

Time of anodisation 
at lowest c.d. 

2 min 30 min 172 mill 

R̂ ohm cm2 >320 000 120 000 •35 000 
_2 C2yjFcm 0.47 0.57 0.56" 

R̂ ohm cm2 270 240 260 
-2 

Ĉ jjFcm 2.22 1.32 1.51 
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At 83 Hz, the capacitative component,C , of the simple series 
s 

analogue always contributed much more than the resistive component, 

Rs» to the overall impedance. I n a l l cases, the value of the 

capacitative component increased by about 5$ during a frequency run, 

the other component changing l i t t l e . A l i t t l e dissolution of alumina 

was probably taking place and changes i n dielectric constant resulting 
21 38 39 

from f i l m hydration may be involved ' ' . The solvent power of 

amnonium tartrate for alumina has previously been discussed i n 

Chapter I I I (3.8.1). .. 

The dependence of impedance on temperature i n the range 20° -

45°0 was shown to be negligible for the decade boxes which formed 

the analogue circ u i t s . 

5.1.1 Discussion. , 
21 

In Chapter I I I (3.7»l)» work of Heine and Pryor and Brock and 
39 

Wood was discussed. These workers have reported that, for oxide 

films formed anodically on aluminium at 15 volts under current decay 

conditions with maximum permitted current surges of lOOjoft. cm , two 

regions were present i n the oxide f i l m . These were f i r s t l y a region 
o 

'of low electronic r e s i s t i v i t y ; extending 60-80 A from the metal-oxide 

interface considered by Heine and Pryor to be due to the proximity of 

the metal-oxide interface and to represent an n-type region containing 
excess aluminium, ions; the outermost region was found to be' about 

o 
60 A thick and had a low ionic r e s i s t i v i t y . This l a t t e r region was 
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TABLE IX 

Frequency.Response of Series Resistance, R , and 
s 

Capacitance, Ĉ , for Non-porous 7V Anodic Films 
as a Function of &ime of Anodising at Lowest 

Current Density. 

Anodising 
Time, min about 5 30 

Frequency 
Hz 

2 R ohm cm s C ffi?cm R ohm cm2 

s CgpF cm"2 

10 91 1.32 120 1.20 

25 114 1.05 

83 57.0 0.91 120 1.02 

500 0.0 0.74 0.0 0.87 

5 000 8.6 0.65 6.0 0.78 

50 000 13.1 0.46 9.6 0.53 

100 000 . 15.1 0.32 9.0 0.35 
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TABLE X 

Frequency Response of Series Resistance. R . and 
Capacitance. C . for 14V Non-fforous Anodic Films 
as a Function of Anodising Time at Lowest Current 

Density 
(a). 

Anodising 
Time, min '2 about 5 

Frequency 
Hz 

2 R ohm cm s 
_2 

G cm Ri ohm cm̂  s 
r -2' 
C^iP cm 

10 1 080 . 0.56 0.0 . 0.57 

83 0.0 
t 

0.50 0.0 0.52 

500 0.0 0.43 21.2 0.46 

5000 8.1 0.38 5.8 0.42 

50 000 10.5 0.32 9.5 0.33 

100 000 10.7 0.24 10.1 0.25 
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Table X continued 

Anodising 
•Time, min '30 172 

(Frequency 
H* 

R ohm cm^ 
' 3 

_2 C gjjF cm R ohm cm^ s 
_2 C sjiF cm 

10 2 700 0.83 4 770 0.86 

25 1 260 0.72 

50 720 0.64 

83 360 0.60 530 0.57 

500 78 0.48 53.0 0.45 

5 000 9.6 0.40 6.4 0.40 

50 000 10.8 0.35 9.5 0.34 

100 000 10.8 0.25 9.2 0.26 
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Table XI 

Frequency Response of Series Resistance. R . and 
Capacitance. C g f f o r 21V"Non-porous Anodic Films 
as a Function of Anodising Time at Lowest Current 

Density. 

Anodising 
Time, min atxiut 5 30 

Frequency 
HZ 

2 
R ohm cm s 

_2 C^pF cm 2 
R ohm cm s 

-2 
C^JJF cm 

10 580 0.48 1 590 0.56 

25 580 0.45 

50 232 0.43 

83 116 0.36 159 0.45 

250- 139 0.37 
-

500 93 0.34 26.5 0.40 

1 000 53.3 0.32 

5 000 12.8 0.27 6.9 0.34 

10 000 11.0 0.26 

50 000 13-3 0.24 8.5 0.27 

100 000 13.3 0.22 7.7 0.25 
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Tahle X I I 

Frequency Response of Series Resistance, R_. and 
Capacitance,- C j t f o r 50V Hon-porous Anodic Films 
as a Function of Anodising Time at Lowest Current 

Density. 

Anodising 
Time, min abouifc 5 30 

Frequency 
HZ 

2 R ohm cm s 
_2 C^JJF cm 2 R ohm cm s 

-2 
C^JF cm 

10 4 640 0.55 3 300 0.35 

25 750 0.32 

50 ' 0 .0 0.30 

83 0 .0 0.28 165 0.29 

250 11.6 0.27 

. 500 . 11.6 0.26 66 .0 0.26 

1 000 0.0 0.25 

5 000 9-5 0.25 10.4 0.23 

10 000 8 . 1 0 . 2 1 

50 000 16.2 0.19 7 . 1 0 .21 

100 000 16.2 0.18 6 . 1 0.16 
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21 39 

found to "be diffuse and was considered ' 7 to contain hydroxyl ions 

from the anodising e l e c t r o l y t e . 

The anodising conditions used i n the present work were i d e n t i c a l 

with the above, and the existence of a two layer structure i s also 

indicated here. There appears to "be no trend with respect to time 

of anodising a t the lowest current density f o r the values of either " 

Rj or Cy the region of low impedance, which could indicate, according 

to the treatment of Heine and Pryor, l i t t l e d i f f u s i o n of hydroxyl ions 

i n t o t h i s layer. Capacitance studies during dissolution, reported 

l a t e r , indicate that t h i s layer i s the one adjacent to the metal. 
6 •" 

The mean r e s i s t i v i t y of the inner layer was about 5x10 . ohm cm i n a l l 
21 

cases. Heine and Pryor have reported that the r e s i s t i v i t y of the 
g 

innermost layer for 15 v o l t f i l m s increased from about 4x10 ohm cm 
0 10 0 

25 A from the metal/oxide interface to about 2x10 ohm cm 80 A from 
48 

the interface. Beck and h i s co-workers have suggested that during 
the i n i t i a l surface preparation of the specimen, the i o n i c resistance 

of the oxide f i l m formed can be reduced by the incorporation of ions. 
21 

Heine and Pryor prepared t h e i r specimens by etching i n sodium 
48 

hydroxide solution, a procedure which, i t has been reported , does 

not a f f e c t the ionic resistance of the oxide f i l m produced. I n the 

present work, specimens were i n i t i a l l y chemically polished and the 

considerably lower ionic r e s i s t i v i t y found i n the present work f o r 

the inner layer could r e s u l t from incorporation of ions from the 
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chemical polishing solution. The present r e s u l t s indicate a thickness 
o 

of the inner layer of about 30 A f o r the 7 and 14 v o l t ffilms and 
o 

about 80 A f o r 21 and 30 v o l t f i l m s assuming a f i l m d i e l e c t r i c con­
stant of 10 Heine and P r y o r 2 1 have reported t h i s value to be 

o 
about 80 A f o r 15 and 20 v o l t anodised f i l m s . 

. I n the present work, the time of anodising at the lowest current 

density did not appear to a f f e c t g r e a t l y the capacitance of the high 

impedance layer but the resistance of t h i s layer f e l l considerably as 

t h i s time increased. The r e s i s t i v i t y was, i n a l l cases, about 10^ ohm 

ajfew minutes a f t e r current decay had ceased and f e l l to about h a l f 

t h i s value a f t e r 30 minutes. I n the case of 14 .volt f i l m s , after 

172 minutes, the r e s i s t i v i t y of the high impedance layer was about 

10 1 0 ohm cm. This behaviour could be due to d i f f u s i o n of hydroxyl 
21 39 

ions i n t o the outer region of the f i l m , ' i f i t i s assumed that 
21 21 the layer forms the outer region of the f i l m . The proposed 

diffuse nature of t h i s region may account fo r the f a c t that i d e n t i c a l 

matching of the charging curves across the f u l l analogue and across 

the simple series analogue could not be obtained. 
21 

Heine and Pryor found that f o r 20 v o l t f i l m s formed under con­

di t i o n s i d e n t i c a l with those used i n the present work, a t h i r d region 
o 

was present between the two already mentioned, about 100 A t h i c k and 

having a constant r e s i s t i v i t y of about 2xl0 1 0 ohm cm. In the present 

work, f o r 21 and 30 v o l t f i l m s , modification of the f u l l analogue t o 
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account f o r t h i s additional layer did not lead to any improvement i n 
the matching of the charging curves. This could be understood i n 
terms of f i l m s , i n the present case, having a reduced ionic resistance 
i n comparison with those f i l m s prepared by Heine and Eryor, so that 
i n the present case the rate of d i f f u s i o n of hydroxyl ions i n t o the 
f i l m would be expected to be enhanced, r e s u l t i n g i n the two layer 
structure which was apparently present. 
Impedance Measurements during Film Dissolution. 

7, 14 and 21 v o l t f i l m s were studied during immersion i n aerated 

sulphate solution of pH 1.0, i o n i c strength 1 .5 . Typical plots of 

reciprocal capacitance (l/C) versus the square root of time ( t ) s 

are shown i n Fig. 6. That t h i s p l o t , over about the f i r s t 25 minutes, 

i s more l i n e a r than a plot of l/C versus t i s demonstrated f o r 14 and 

21 v o l t f i l m s i n Fig. 7. L i n e a r i t y i n the f i r s t type of plot i s con­

sistent with a d i f f u s i o n - c o n t r o l l e d process whereas l i n e a r i t y i n the 

second type of plot i s , as w i l l be demonstrated shortly, consistent 

with a zeroth order thinning process. The f i n a l , sensibly constant 

values of l/C and the times to reach these values are shown i n the 

graphs. I n many cases, the f i n a l capacitance value was about 10 JJF cm" 

i n close agreement with that found by Diggle, Downie and Goulding^ f o r 

t h e i r studies of the erosion of porous-type f i l m s i n sulphate and 

chloride solutions below the c r i t i c a l pH. 
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By way of comparison, 14 v o l t f i l m s were studied i n deaerated 
sulphate solution, pH 1.0, io n i c strength 1 . 5 .(Fig. 8 ) . ^There the 
state of the dissolution medium, that i s aerated or deaerated, i s 
unspecified, i t should he assumed that the solution was aerated. 

The e f f e c t of varying the pH i n the range 0.3-2.0 at ionic 

strength 1.5 was studied f o r 14 v o l t f i l m s and the r e s u l t s are shown 

i n Fig. .9. Figs. 10 and 11 show the e f f e c t on the capacitance-time 

behaviour of varying the i o n i c strength a t pH values close to 2; 

Fig. 12 shows the r e s u l t s of similar studies at a solution pH of 3»5« 

The behaviour i n a solution of pH 5.0 and ionic strength 1.5 i s shown 

i n F i g . 13. 

I n every case, the slopes of the l i n e a r parts of the graphs were 

determined by the method of least mean squares. Since 

C = eA/4Ti:d (5) 

d = EA/4TCC 

d(d)/dt = feV4n;)<i(Vo)/dt 
d(l/o)/dt =. (4TI/feA)d(d)/dt- (9) 

The r a t e at which l / 6 varies with time during dissolution i s there­

fore inversely proportional to the true surface area of the f i l m as 

one factor,(Equation (9) ' ) • Therefore, i n comparing these rates, a l l 

surface areas should be corrected t o a standard value, assuming that 

the area i t s e l f i s not affected by f i l m dissolution. The true 

surface areas were not known, however, but for f i l m s formed under the 
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same conditions, i n a l l dissolution media used, the interpolated 
i n i t i a l capacitance should he proportional to the true surface area 
(Equation ( j ) ) since the i n i t i a l f i l m thickness and d i e l e c t r i c con­
stant would he expected to he the same. Thus, a l l slopes were 
corrected i n terms of standard i n i t i a l capacitance values. These 
standard values have "been taken as the ov e r a l l capacitances evaluated 
from f u l l analogues f o r 7, 14 and 21 v o l t f i l m s a f t e r about 5 minutes 
anodising at the lowest current density. This period was chosen since 
specimens anodised f o r dissolution studies were treated s i m i l a r l y . 

Equation (9) reduces to d(l/c)/dt = constant f o r zeroth order 

thinning where £ and A remain unchanged during dissolution. For a 

diffusion-contr"oiled process i n which S i s changing with time, mathem­

a t i c a l analysis i s more complex, but i n general, f o r such processes 

a p l o t of l/C versus ( t )h should be l i n e a r . 

For the simple analogue used at a f i x e d frequency (83 Hz) during 

dissolution, Rs (see Plate I I I (a) ) was negligible at the lowest pH 

values, and increased only to a few tens of ohms at a solution pH of 5»° 

For dissolution i n solutions of high pH and/or low ionic strength 

R (see Plate I I I (a) ) was always very large j u s t a f t e r specimen 
s 

immersion and interpolated values were about the same as those reported 

fo r the resistance of the outer high impedance layer of the correspond­

ing f u l l analogue. Also R g • decreased much more r a p i d l y where the l/C -

relationship was linear than i n those cases where d i f f u s i o n control was 
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indicated; values of Redetermined at the e a r l i e s t times were much 
greater f o r suggested zeroth order thinning than f o r d i f f u s i o n c o n t r o l . 
I n either case, the greater the slope, d ( l / c ) / d t or d(l/C)/d(t)^", the 
greater was the rate of f a l l of Rp . 

The following tables summarise the r e s u l t s obtained. 

Table X I I I 

I Kinetic data f o r 

Dissolution i n Sulphate Solution. pH 1.0, I =1.5. 
I 

knodising 
voltage 

Slope as per 
graphs 

Reciprocal of interpolated 
i n i t i a l capacitance 

Corrected 
slope 

Comments 

. • 2 -1 -2-It^cm yiF min 2 l/Coom2 p F - 1 
p _ i _ i 

kgCm pP min 2 

7 -0.20 
- 0.12 

1.15 
0.91 

- 0.26 
- 0.19 

Linear during 
about f i r s t ' 
25 mins. 

21 - 0.64 
- 0.36 

3-36 
2.56 

- 0.68 D i t t o 

14 - 0.32 
- 0.36 

2.41 
1.85 

- 0.32 
- 0.46 

D i t t o 

14 - 0.12 
- 0.25 

1.47 
2.56 

- 0.19 
- 0.23 

Deaerated 
sulphate solut­
ion. Linear 
during about 
f i r s t 40 mins. 
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Table XIV 
Kinetic data f o r Dissolution of 14 v o l t Anndisgd Films 

i n Sulphate Solutions I =1.5. 

lvalue 
Slope as per 

graphs 

Reciprocal of 
interpolated 
i n i t i a l 
capacitance 

Corrected 
slope 

Comments 

k^m (JF min 2 l/QoCm 2 J 4 F " 1 , 2 _ - l . -4-k 2cm |iF min 2 

0.3 - 0.41 
- 0.62 

2.54 
2.70 

- 0.38 
- 0.55, 

Linear during 
about f i r s t 
25 mins. 

1.0 - 0.32 
- 0.36 

2.41 
1.85 

^ ... 

-O.32 
- 0.46 

D i t t o 

2.0 - 0.18 
- 0.27 

1.92 
2.44 

- 0.22 
- 0.26 

D i t t o 

Table XV 
Kinetic data f o r Dissolution of 14 v o l t Anodised Films 
i n pH 2.0 Sulphate Solutions of High ionic Strength. 

Ionic 
strength 

•Slope as per 
graphs 

Reciprocal of 
interpolated 
i n i t i a l 
capacitance 

Corrected 
•slope 

Comments 

2 - 1 1 

k^cm |jF~ m i n ^ l/CoCm2 (JLF"1 2 -1 -4-
kgCm jJF min * 

1.5 - 0.18 
- 0.28 

1.92 
2.44 

- 0.22 
- 0.26 

Linear during 
about f i r s t 
25 mins. 

1.1 - 0.18 
- 0.12 

2.33 
2.26 

- 0.18 
- 0.13 

Linear during 
about f i r s t 
100 mins. 

1.0 - 0.046 
- 0.047 

2.14 
2.45 

- 0.051 
- 0.046 

Possibly zeroth 
order a f t e r 
350 mins. 
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Table XVI 
Kinetic Data f o r Dissolution of 14 v o l t Anodised Films 

i n Sulphate Solutions. pH Values'lClose to 2.0 a t 
Low,Ionic Strengths. 

Ionic 
strength 

Slope as per 
graphs 

: Reciprocal of 
interpolated 
i n i t i a l 
capacitance 

Corrected 
slope 

Comments 

2 -1 -1 k^cm j j i 1 min l/C 0cm 2 j j P " 1 2 -1 -h kgCm JJF min 8 

0,5 - 0.0016 

- 0.0018 

2.50 

2.42 

- 0.12 

- 0.14 

Possibly d i f f ­
usion controlled 
during f i r s t 40 
mins. Zeroth 
order indicated 
up to at least 
400 mins. 

0.15 —0.0008 
- 0.0012 

1.70 
2.10 

- 0,09 
- 0.11 

D i t t o 

0.075 - 0.0016 
- 0.0013 

2.04 
1.60 

- 0.146 
- 0.151 

Zeroth order 
indicated up to 
at least 
400 mins. 

0.015 - 0.0010 
0.0011 

1.41 
2.65 

- 0.15 
- 0.08 

D i t t o 
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Kinetic Data f a r Dissolution of 14 v o l t Anodised Films 
i n pH 5.5 Sulphate Solutions. 

Reciprocal Corrected 
Ionic Slope as per interpolated slope Comments 

strength graphs i n i t i a l converted to 
capacitance A rnin" 

k^cm2 loF'^min" 1 l/Cocm2 ^ P " 1 

1.5 - 0.0010 2.20 - 0.08 Indication of 
d i f f u s i o n con­

0.15 - 0.0012 2.10 - 0.11 t r o l during 0.15 2.10 - 0.11 
f i r s t ' 4 0 miss. 
Zeroth order 

0.015 - 0.00074 2.30 - 0.06 indicated up 
to at least 
400 mins. 

1 

A d d i t i o n a l l y when a specimen having a 14V' anodised f i l m was immersed 

i n sulphate solution (pH 5.0, I - 1.5), the dissolution process 

apparently followed zeroth order k i n e t i c s f o r about 5 000 minutes. 

There was some indi c a t i o n that during the f i r s t 40 minutes of d i s ­

solution d i f f u s i o n control may have been operating. The apparent 
2 —1 — I 

slope of the zeroth order l/C - t curve was - 0.00023 cm J J L P " min" ; 
2 -1 

the reciprocal of the interpolated i n i t i a l capacitance was 1.90 cm , 
0 -1 

and the corrected zeroth order slope was - 0.022 A min . 

.3 Potential-Time Studies. 

The r e s u l t s of studies of the change of specimen potential M t h 

time f o r 7, 14 and 21 v o l t f i l m s immersed i n aerated sulphate s o l u t i o n , 
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pH 1.0, ionic strength 1.5,are shown i n Pig. 14. 14 v o l t f i l m s 
were also studied i n the same medium which was deaerated; the 
results are indicated i n Fig. 15. For 14 v o l t f i l m s , the potential 
increased i n i t i a l l y to a maximum after about 20 minutes, followed by 
a minimum a f t e r about 100 minutes. A second maximum occurred a f t e r 
about 800 minutes, followed by the establishing of a f i n a l steady 
minimum value a f t e r about 1 500 minutes. Fig. 15 indicates that 
the f i r s t maximum i n po t e n t i a l f o r 14 v o l t f i l m s was absent under 
deaerated conditions although the behaviour was otherwise very -similar 
to that i n aerated solution. For 7 and 21 v o l t f i l m s (Fig. 14), 
only the second maximum and the f i n a l minimum found f o r 14 v o l t f i l m s . 
were present. An approximate correspondence f o r the time of occurrence 
of these features i s evident. 
Weight Loss Measurements. 

The weight of aluminium ions l o s t to solution during the immersion 

of 7, 14 and 21 v o l t f i l m s i n pHl.O, i o n i c strength 1.5 sulphate 

solution as a function of the time of immersion i s shown i n Fig. 16. 

The behaviour f o r 14 v o l t f i l m s did not d i f f e r much with respect to 

the rate of increase with time i n the weight of aluminium ions i n 

solution f o r two determinations i n which the apparent specimen A/v 

r a t i o s (Chapter IV (4.3•5) ) were about the same and f o r one determin­

atio n where t h i s r a t i o was twice that i n the former case. As t h i s 
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l a t t e r case corresponded to the highest value of th i s r a t i o used 

throughout these studies, i t would appear that dissolution was not 

li m i t e d , under the conditions used, by the s o l u b i l i t y of alumina 
9 

i n the solution • 

With values standardised as i n Fig. 16, i t i s estimated, based 

on the c a l i b r a t i o n curve (Fig. l ) , that the smallest t o t a l weight of 

aluminium ions detectable i n 500 ml- of solution was 0.38 mg and the 

smallest change detectable at t h i s concentration was 0.05 vog. I t 

would appear, therefore, that there was .a considerable spread of values 

even at the e a r l i e s t times but these values did not appear to f o l l o w 

any trend. I t i s i n t e r e s t i n g to note that even at these early times 

there was often a detectable concentration of aluminium ions i n 

solution i n excess of any present before specimen immersion. 

I n a l l cases where dissolution was continued f o r a s u f f i c i e n t 

length of time, the concentration of aluminium ions i n solution was 

considerably i n excess of that which would have arisen from dissolution 

of the o r i g i n a l oxide f i l m only, and when t h i s concentration began to 

increase markedly, i t appears that there was no reduction i n the rate 

of increase up to the greatest time at which samples were taken. 

Summary. 

The most detailed r e s u l t s reported here r e f e r to films formed 

anodically at 14 v o l t s ; rather less work-was carried out using f i l m s 

formed at 7 and 21 v o l t s . The r e s u l t s indicate that when 14 V f i l m s 
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were immersed i n sulphate solutions of pH 0.3-3.5 and io n i c strength 
0.015-1^5, capacitance change always ceased after about 24 hours. 
This was also the approximate time required f o r capacitance change to 
cease when 7 V and 21 V f i l m s were immersed i n sulphate solutions of 
pH 1.0, i o n i c strength 1.5. I n most cases the f i n a l capacitance 
value was about 10 J J F cm" . At a higher solution pH of 5 (1=1.5) 
a longer period of time, of about 10 days duration, was required f o r 
the capacitance to become steady. 

A period of immersion of about 24 hours was also the time required 

f o r the specimen potential to become sensibly constant when f i l m s 

formed at a l l three voltages were immersed i n a solution of pH 1.0,1=1.5. 

I n t h i s solution, (pH=1.0,I=1.5), during the i n i t i a l stages of 

immersion, l/C appeared to vary i n a l i n e a r manner with ( t ) 2 . This-

was followed by a period of deviation from l i n e a r i t y , leading to a 

stage i n which l/C was sensibly constant. The slope ( d ( l / G ) / d ( ' t ) ^ ) 

f o r the i n i t i a l period of immersion,in these low pH solutions, i n ­

creased with increasing f i l m formation voltage; f o r films formed 

at 7, 14 and 21 v o l t s respectively, the i n i t i a l slopes were approxim­

a t e l y i n the r a t i o 1:2:3. Deviations from linear l / C - ( t ) 2 behaviour 

began a f t e r about the same immersion time i n each case, namely 25 

minutes. For 14 V f i l m s , t h i s time corresponds closely to the time 

required f o r completion of the i n i t i a l d r i f t of specimen potential 

i n the positive d i r e c t i o n ; no similar r e l a t i o n s h i p was observed f o r 
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the 7 V and 21 V f i l m s . 

Only 14 V fi l m s were studied i n deaerated solution. In such 

solutions, the slope ( d ( l / c ) / d ( t ) 2 ) wa3 less than i n aerated solutions, 

deviations from l i n e a r i t y occurred a f t e r 40 minutes immersion, and 

the i n i t i a l positive d r i f t of specimen potential which was observed 

i n aerated solution was absent. 

The period of v i r t u a l capacitance arrest observed during specimen 

immersion i n low pH, high ionic strength solutions occurred at capaci­

tance values approximately the same as those reported f o r the low 

impedance part of the corresponding f u l l analogue (see Table V I I ) . 

I n a l l experiments, the time to reach the arrest was about 100 

minutes. This corresponds closely to the. time to reach the minimum 

negative value of potential f o r 14 1V f i l m s i n both aerated and 

deaerated sulphate solutions at pH 1.0, i o n i c strength 1.5« The time 

of 100 minutes also corresponds t o the point at which the concentration 

of aluminium ions i n solution began to increase (Fig. 16). 

Studies on 14 rS' • f i l m s i n solutions of pH 2 indicate that the 

slopes of the l / C - ( t ) 2 graphs were reduced as the i o n i c strength of 

solution was reduced. A much greater reduction i n slope was ob­

served f o r a change i n I from 1.1 to 1.0 than was the .case f o r a 

reduction from 1.5 to 1.1 (Table XV). Also, deviations from l i n e a r i t y 

began l a t e r as the ionic strength was reduced. At about ionic strength 

1.0, a t r a n s i t i o n from predominantly l i n e a r l / C - ( t ) 2 behaviour to 
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predominantly linear l/C-t behaviour appeared to take place. There 

i s some in d i c a t i o n that a t ionic strength 1.0, from about 350 to at 

least 650 minutes immersion, d ( l / c ) / d t was constant (see Pig. l l ) . 

Table XVI indicates that from ionic strength 0.015-0;5,d(l/C)/dt 

was independent of ionic strength at pH values close to 2 and i t s 

magnitude was about the same i n a l l cases. 

Under the same conditions as above, but at pH 3«5, the gradients 

of the linear parts of p l o t s of l/C versus t were apparently independent 

of ionic strength i n the range 0*015-1»5» and the magnitudes of these 

slopes were about the same as indicated by Table XVII. I n terms of 

a zeroth order process, which i s consistent w i t h the parts of plots 

where li n e a r l/C-t behaviour was observed, at pH 3-5, the rate of 
o 

f i l m thinning was 0.08 - 0.02 A min~ and f o r pH values close t o 2, 
o 

for ionic strengths 0.015-0.5, t h i s r a t e was 0.12 - 0.02 A min , 
0 -1 

These may be compared with a value of 0.022 A min found f o r immersion 

of a 14 v o l t f i l m i n sulphate solution, pH 5.0, ionic strength 1.5« 

Also, i n these cases, deviation from l i n e a r l/C versus t behaviour 

occurred during approximately the f i r s t 40 minutes of specimen 

immersion, except at pH values close to 2, ionic strengths 0.075 and 

0.015. 
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5.6 Significance of the Experimental Results. 

5.6.1 Capacitance Studies. 

5.6.1.1 Interpretation. 

Capacitance increase which takes place during the immersion of 

alumina f i l m s on aluminium i n sulphate solution has often been i n t e r ­

preted i n terms of f i l m thinning where the specimen pot e n t i a l becomes 
>.r\ 

more negative. Lorking and Hayne have suggested that a decrease 

i n specimen potential indicates that either increased cathodic 

reaction or f i l m thinning i s occurring. Diggle, Downie and Goulding^' 

found that the rate of capacitance increase of immersed porous-type 

films was v i r t u a l l y unaffected' when the specimen was maintained at" con­

stant potentials by the application of small cathodic currents, and 

they concluded that thinning was probably taking place. I f f i l m 

thinning i s occurring, aluminium ions should be present i n the medium 
32 

i n which the specimen i s immersed. Wagayama and Tamura have 

determined spectrophotometrically the concentEation of aluminium ions 

i n the dissolution medium during the anodising and dissolution on open 

c i r c u i t of porous-type f i l m s inmersed i n IQffo w./v. sulphuric acid. 

They found that on open c i r c u i t , the concentration of ions i n solution 

increased with time and f i n a l l y l e v e l l e d o f f to a constant value. The 

manner i n which the concentration of ions i n solution increased with 

time was almost unaffected by the application of a small cathodic 

current, indicating that thinning only was involved. 
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5.6.1.2 Reproducibility. 

I n the present studies the r e p r o d u c i b i l i t y of derived slopes was, 

i n general, -(15-20$)., possibly since true specimen surface areas were 

unknown. However, the r e p r o d u c i b i l i t y was generally s u f f i c i e n t l y 

good f o r the establishment of trends. 

5.6.2 Potential-Time studies. 

.The specimen potential depends on the r a t i o of cathodic to anodic 

areas and on the r e l a t i v e tendencies of the anodic and cathodic r e ­

actions to polarise. I n the case of alumina f i l m s on aluminium, the 

f a l l i n potential may be understood i n terms of corrosion of aluminium 

under anodic control with the area of the anodic parts of the metal 

increasing as a r e s u l t of a reduction i n the protective power of the 

overlying oxide f i l m . This i s consistent with f i l m thinning. 

Similarly, for the same system, any intermediate increase i n specimen 

p o t e n t i a l may arise from increased protection of the metal by the 

deposition of insoluble material. The establishment of a f i n a l 

steady p o t e n t i a l may arise from the e q u i l i b r a t i o n of reactions which 

increase and decrease the protective power of the oxide f i l m . 

5.7 Dissolution of Porous-type Anodic Films i n Sulphate Solutions. 

I t can be shown that f o r f i l m s anodised and then eroded on open 

c i r c u i t under similar conditions^ ' » i n sulphate" solution, the 

changes i n capacitance with time ' - calculated from weight loss 

values'.were;; similar i n behaviour to those cases i n which the 
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capacitance-time behaviour was actually determined. 

The calculated capacitance-time behaviour i s based on the 
52 

aluminium weight loss measurements of Nagayama and Tamura , assuming 

that capacitance changes arose solely from thinning of the barrier 

layer at pore bases and from the exposure of fresh barrier layer as a 

r e s u l t of simultaneous pore widening. The rate of penetration of a 

pore into the barrier layer i s assumed to be equal to the r a t e of 
25 

increase of the pore radius. Diggle, Downie and Goulding have 

derived the following expression for the time dependence of the 

capacitance of -the barrier layer under these conditions, assuming that 

the depressions at pore bases i n the barrier layer are hemispherical. 

C- CQ = 10" 1 6 n£k 2t(r Q/k + t ) 2 / 4L(l/ek 1 - t ) (10) 

C i s the capacitance i n e.m.u. at time t,C the capacitance at t=0.n 
o ' 

2 
the number of pores, each of i n i t i a l radius r Q per cm of true surface 

area, £ the d i e l e c t r i c constant of the barrier layer, k the rate of 

increase of the pore radius, k̂ " the rate of pore penetration i n t o the 

bar r i e r layer, L the i n i t i a l b a r r i e r layer thickness. c i s the r a t i o 

of the mean depth of penetration of a pore i n t o the b a r r i e r layer to 
23 

the maximum penetration at time t , and may be shown to have the 
52 

value 0.6 - 0.7. Nagayama and Tamura have determined f o r a f i l m 

formed by anodising at 11.9 v o l t s , current density 9.4 ma cm , f o r 

6 minutes i n 10$ w./v. sulphuric acid, pH value about 0.2, at 27°C, 

followed by dissolution under the same conditions but on open c i r c u i t , 
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the values of the following parameters "based on the weights of 

aluminium ions found i n solution a f t e r various times. 
11 -2 n = 1.2 x 10 cm 

o 
r = 62.2 A o 

0 _ i k = 0.75 A min 

Assuming that the anodising r a t i o f o r the barrier layer of the 
o 24 ' 70 

porous f i l m i s 10 A v o l t " and that £ = 10, the plot of l / c versus t 

shown i n Plate X was determined from the data of Nagayama aniTamura. 
23 

Diggle, Downie and Goulding have examined the capacitance-time 

behaviour of porous f i l m s anodically-formed i n 15$ w./v. sulphuric 

acid at 10.0 v o l t s , current density 13 ma cm" at 35 C, followed by 

dissolution on open c i r c u i t i n N sulphuric acid, pH 0>i3. Thus, 

af t e r anodising, the barrier layer thickness i n each case would be 

expected to be about the same as would also the oxide c e l l and pore 
wall dimensions. I t should be borne i n mind, however, that there i s 

25 99 l50 
evidence ' ' that the pore volume depends on the porous layer 

thickness, e l e c t r o l y t e concentration and anodising temperature. The 

open c i r c u i t dissolution was i n solutions d i f f e r i n g l i t t l e i n pH 
23 

value. The res u l t s of Diggle ' indicate that the rate of f i l m thinning 
should be hardly affected by t h i s change i n pH value at constant ionic 
strength. The ionic strengths d i f f e r e d by about a factor of 2 but i t 

23 

has been reported ' that the capacitance-time behaviour i s unaffected 

by changes i n solution i o n i c strength at constant pH. Capacitance-time 
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behaviour as observed would therefore be expected to be about the 

same as that inferred from weight loss measurements . Plate X also 
23 

shows the capacitance-time data of Diggle . I t i s assumed that the 

value of CQ i n equation (lO) i s that expected for a barrier layer 
o 70 ' 

i n i t i a l l y 119 A thick, £ - 10 and that the apparent surface area is 
23 

the true surface area. The data have been corrected i n terms of 
o 

similar considerations f o r a barrier layer i n i t i a l l y 100 A thick and 

the result of this i s shown i n Plate X. The zeroth order rate con­

stant (the plot of reciprocal capacitance versus time was l inear) of 
0 -1 23 ° -1 0.495 A min reported y becomes O.773 A min as a result of this 

• 0 -1 
correction, a value close to that of 0.75 A min reported fo r the 

32 

rate of increase of the pore radius reported by Nagayama and Tamura 

and assumed for the purposes of the present calculation to be the same 

as the rate of penetration of a pore into the barrier layer. This 

indicates that the rate of thinning of the barrier layer, expressed 

as a zeroth order rate constant, i s about the same as the rate of 

penetration of pores into the barrier layer. The value of c implies 

that the former might be about 60-70$ of the l a t t e r . However, i n view 

of the several assumptions and approximations made, i t may be said 

that equation (10) predicts reasonably well the capacitance-time 

behaviour of the barrier layer of porous alumina f i lms on aluminium 

during f i l m thinning i n sulphate solutions. 

I t may be concluded that s t i r r i ng of the solution did not greatly 
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32 affect the dissolution behaviour since Kagayama and Tamura st i rred 

but Diggie ^ did not s t i r the solutions. 

The specimen potential-time "behaviour was also similar i n each 

case. After an i n i t i a l rapid decrease, the rate of reduction became 

zero fo r a short time so that a plateau occurred. After th i s , the 

potential rapidly became more negative and quickly achieved a f i n a l 
23 155 

steady value. Diggie, Downie and Goulding ' have suggested, 
based on dye take-up experiments, that the f i n a l rapid f a l l i n 

potential began when the porous layer had disappeared whilst Nagayama 
32 

and Tamura considered that i t began when the pore diameter exceeded 
100 

that of the inscribed circle of the hexagonal ce l l resulting i n a 
reduced f i l m surface area. 

9 

Lorking and Ifeyne' have reported that the corrosion of oxide-

covered aluminium was inhibited over a wide pH range i n 0.1 BT solutions 

of sulphate. The c r i t i c a l pH values found by Diggie, Downie and 

Goulding^ correspond reasonably well with the lower l im i t s reported 
9 36 by Lorking and Mayne . Diggie, Downie and Goulding^ have proposed 

the following reactions, considered to take place near the oxide 

surface, to account fo r the behaviour of porous f i lms immersed i n 

sulphate and chloride solutions from pH 0-9. 

1) A1 2 0 3 + 3H20 ^ 2 A 1 ( 0 H ) 5 

2) A1(CE) 5 +H + ^=?A1(CE)2 + ^ 0 

3) AlCOH)^ A100H + H + 

boehmite 
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4) Al(0H)2 + 0 H ~ r ^ A l O O H + HgO 

5) 2M{ca)* + SO|~F^[AI(OH) 2] 2SO 4 

6) Al(OH)2 + Cl" Al(GE) CI 

7) Al(CE)g + 2H+ A l 3 + + 2H20 

Restricting considerations to specimen immersion i n sulphate solutions, 

the pH dependence observed below the c r i t i c a l pH was ascribed to r e ­

actions (2) and (7) ( i n both sulphate and chloride solutions, above 

a certain pE, Diggle, Downie and Goulding found that the capacitance 

of the barrier layer at f i r s t increased and then decreased with respect 

to time. The time required fo r the capacitance to pass through i t s 

i n i t i a l value vias termed the c r i t i c a l time by these workers, and the 

minimum pH at which this type of behaviour occurred was termed the 

c r i t i c a l pK). The v i r t u a l independence of the dissolution rate below 

the c r i t i c a l pH upon ionic strength at constant pH indicated3** that 

the dissolution reactions were unimpeded by the absorption of sulphate 

ions. Since reactions ( l ) and (2) must also occur above the c r i t i c a l 

pH, the i n i t i a l increase i n capacitance could have arisen from some 
1 

i n i t i a l f i l m dissolution; the linear plots of l/C versus ( t ) ^ may 

indicate that this dissolution was diffusion-controlled, although an 

increase i n the f i l m dielectr ic constant result ing from the d i f fus ion 
21 38 39 

of hydroxyl ions into the f i l m ' ' i s another poss ib i l i ty since' 
50 

hydroxyl i s the most polarisible ion present i n sulphate solutions*-". 

Since the c r i t i c a l time was found to be independent of pH, i t was 
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proposed that reaction ( 5 ) was more important than ( j ) and ( 4 ) . A 
white solid was isolated from specimens i n high pH solutions and was 
iden t i f ied as a hydrated aluminium sulphate. The decrease i n c r i t i c a l 
time with decreasing ionic strength at constant pH was suggested . to 
arise from a decreasing competitive absorption between sulphate and 
hydroxy! ions, favouring reaction ( 4 ) and favouring reaction ( 3 ) by 
the possibi l i ty of easier diffusion*of protons out of the f i l m . 

The complex structure of porous-type f i lms makes an exact in te r ­

pretation of the capacitance-time behaviour of thebarrier layer during 

dissolution d i f f i c u l t since one must account for barrier layer thinning 

at pore bases and the simultaneous exposure of fresh barrier layer as 

the pores widen. The rate; at which pores widen should not necessarily 
70 

be assumed to be the same as the rate at which they penetrate into 

the barrier layer. Dif fus ion of ions into and out of the barrier 

layer must also be considered. 

The poss ibi l i ty of field-assisted dissolution of the barrier 

layer to form porous layer can be seen i n terms of the current transient 

behaviour found during anodising, shown i n Plate I I (b) . The point, 

A,of minimum current density has been interpreted i n terms of pore 
24 41 41 i n i t i a t i o n ' . Hoar and Yahalom found that point A occurred 

earlier the higher the applied voltage, which i s evidence f o r f i e l d -

assisted dissolution of the in i t ia l ly- formed barrier layer. 
56 

Diggle, Downie and Goul&ing found that the capacitance-time 



91 

"behaviour of porous-type f i lms immersed i n chloride and sulphate 
solutions was identical under aerated and deaerated conditions,indic­
ating that the increased f i e l d resulting from oxygen ions present on 
the f i l m surface had no ef fec t on the dissolution rate. 

5.8 Comparison of the Dissolution of Porous and Non-porous 
Anodic Films. 

5 .8 .1 The Effect of Solution Deaeration. 

I n the present investigation on non-porous f i lms , deaeration 

resulted i n a reduced rate of capacitance increase as compared with 

the behaviour i n aerated solutions during specimen immersion i n solut­

ions of low pH. The linear plots of l/C versus (t)"3" obtained i n the 

present studies for solutions having a low pHare consistent with a 

diffusion-controlled mechanism. I t i s proposed that the dissolution 

behaviour at low pH values was consistent with the d i f fus ion of hydroxyl 

ions into the f i l m . Under the conditions of reduced f i e l d on 'deaeration 

of the solution,this rate of d i f fus ion would be less. The approx­

imately linear plots of l/C versus t reported fo r porous f i l m s ^ ' ^ , 

probably approximating to a zeroth order process, give no intimation 

of possible d i f fus ion control and results were unaffected by deaeralion. 

5 . 8 . 2 C r i t i ca l pH Values. 

In the present studies,.at up. to solution pH 5 , no c r i t i c a l solution 

pH value was observed above which the capacitance decreased with i n -

creasing immersion time . However, at pH values close to 2 . 0 , i t 
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was observed that the dissolution kinetics depended on the ionic 
strength of the solution. As the ionic strength was reduced from a 
value s l igh t ly greater than 1 . 0 to a value s l igh t ly less than 1 . 0 , 
the capacitance-time relationship changed from the predominantly linear 
l/C-(t)"2~ type to the linear l /C- t type. At pH 3 .5 the behaviour was 
completely of the la t ter type fo r the range of ionic strengths from 
0 . 0 1 5 - 1 . 5 I t i s possible that th is change i n behaviour took place 
at about pH 2 . 0 as a result of increased sulphate absorption by the 
oxide f i l m with increased ionic strength of solution such that hydroxyl 
ion d i f fus ion into the f i l m became rate controlling at a su f f i c i en t ly 
high level of sulphate ion absorption. The results reported here 
may indicate that the behaviour of porous f i lms i n high pH solutions 
is related to sealing processes i n the porous layer. 

5.8.3 Thinning of Porous and Non-porous Films. 

For a sulphate solution at a pH of about 2 . 0 , having an ionic 

strength less than about 1.0, the zeroth order rate constant f o r thinning 
0 0 - 1 of non-porous f i lms about 200 A thick was found to be about 0 . 1 2 A min 

compared with about 0 . 2 5 A min for porous f i lms formed at 10 vol ts 

for 30 minutes at a current density of 13 ma cm"^ and at 35°C. One 

would expect that i f the only difference i n the dissolution behaviour 

were caused by the barrier layer being exposed to dissolution only at 

pore bases, the rate would be smaller fo r porous f i lms but would 

approach the value for non-porous f i lms as pore-widening proceeded. 
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The apparent reversal of the expected values based on such consider­
ations indicates that the state of the barrier layer may be d i f ferent 
i n each case. For example, i t i s well known that much sulphate ion 

i s incorporated into porous-type f i lms formed anodically i n sulphuric 

a c i d 8 6 ' 9 5 . 

5 .9 Structure of Non-porous Anodic Films Formed i n the 
Present Studies. 

The discontinuity i n the plots of l/C versus ( t ) 2 during the 

immersion of f i lms i n sulphate solutions of low pH (Figs. 6 and 9 ) i s 

consistent with the two layer structure indicated by the f u l l - e l e c t r i c a l 

analogues and discussed i n Section 1.1. The capacitance (about 

0.8 -2 .5 cm" ) of the low impedance layer was always about the same 

as the capacitance of f i lms immersed i n the sulphate solutions of low 

pH when the plateau region i n Figs. 6 and 9 occurred, evidence that 

the low impedance part of the f i l m was adjacent to the metal. The 

decreasing slopes shown i n Figs. 6 , 8 and 9 which occurred could have 

arisen from the diffuse nature of the hydrated outer region as reported 

„ 21 by Heine and Pryor . 

5.10 Controlling Factors i n the Dissolution of Non-porous Films. 

I t i s suggested that reactions ( l ) , ( 2 ) , ( 3 ) , ( 4 ) and ( 7 ) , proposed 

by Diggle, Downie and Goulding^6, are involved. . Where linear plots 
i 

of l/C versus ( t ) a were obtained, consistent with a diffusion-controlled 

process,in the low pH solutions, ionic strengths 1.5 and above a 
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c r i t i c a l ionic strength at pH values close to 2, i t i s proposed that 
hydroxyl ion d i f fus ion into the oxide f i lms was rate-determining, 
resulting from reduced rat ios of hydroxyl ion a c t i v i t y i n solution to 
sulphate ion absorption at the oxide f i l m surface. 

That f i l m dissolution took place i s indicated by the increasing 

concentration of aluminium ions i n solution during immersion, af ter 

about 100 minutes, for 7 , 14 and 21 vol t f i lms i n pH 1.0, ionic 

strength 1.5 sulphate solutions (Fig. 1 6 ) . Further, for a l l three 

types of f i l m preparation, the f i n a l steady capacitance value was 
-2 ° 

about 10 pF cm , corresponding to about 10 A of oxide f i l m and, where 

determined, the time required f o r the specimen potential to decrease 

to a steady value was about the same. The tendency f o r thefinal 

capacitance value to decrease with increasing solution pHj:.may be under­

stood i n terms of increased hydroxyl ion ac t iv i t y i n the solution, 

leading to increased f i e l d strengths across the oxide layer. E q u i l i ­

bration of the rates of f i l m dissolution and repair would be expected 

to oxxur at increased f i l m thicknesses, since aluminium ion conduction 

through the oxide f i l m would occur at greater thicknesses due to the 

higher f i e l d strengths. Another factor might be an increase i n the 

rates of reactions (3) and (4) leading to the formation of insoluble 

boehmite. 

The general decrease i n the slope with increasing solution pH 

for reciprocal capacitance plots of the same type, that i s either 
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versus time or the square root of time may be viewed as arising from 
the increasing hydroxyl ion ac t iv i ty , result ing i n increasedrrates 
of reactions ( 3 ) and (4) and reduced rates of ( 2 ) and ( 7 ) . That 
boehmite formation was possible was indicated by the appearance of a 
white deposit af ter about 24 hours on a 14 vo l t anodised specimen 
immersed i n a sulphate solution, pH about 9» A positive i d e n t i f i c ­
ation of th is deposit i s desirable. 

Comparison of the specimen potential-time behaviour of 14 vo l t 

anodised non-porous f i lms during dissolution i n deaerated sulphate 

solutions, pH 1.0, ionic strength 1.5 (Fig. 15) shows that the f i r s t 

maximum i n potential i n aerated solution was absent i n deaerated 

solution. I f boehmite formation by reaction (4) took place, the 

reduced rate of hydroxyl ion di f fus ion into the f i l m result ing from 

reduced f i e ld s produced by the absence of oxygen i n the solution 

would be expected to lead *o a reduced rate of boehmite formation 

and, by reaction ( 3 ) , reduced boehmite formation result ing from a 

reduced rate of proton escape from the f i l m . The difference i n 

specimen potential-time behaviour could be understood i n terms of 

a reduced i n i t i a l increase i n protection of the f i l m by reduced 

boehmite deposition. The f i r s t minimum i n potential corresponded 

in time with the loss of the outer layer, indicated by the beginning 
1 

of the plateau region i n the l/C versus ( t ) ^ plot shown in Fig. t 6 . 

The second maximum i n specimen potential may be associated with 
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increased protection resulting from the adsorption of sulphate ions 
by the exposed inner layer, together with greater boehmite deposition 
under aerated conditions since the effect was smaller under deaerated 
conditions. 

Transition from Diffusion Control to Zeroth Order Thinning. 

For 14 vol t anodised specimens, at solution pH values close to 

2.0, the slope of the plot of l/C versus ( t ) 2 corresponding to 

dissolution of the outer layer of the f i l m , decreased when the ionic 

strength of the solution was reduced from 1.5-1»1 and this reduction 

i n slope was much greater on reducing the ionic strength from 1.1 to 

1.0 (See Table XV). I t i s suggested that sulphate ion absorption 

decreased with decreasing ionic strength, resulting i n a greater 

accessibility of the oxide surface to hydroxyl ions and greater rates 

of removal of protons from the f i l m surface, both leading to reduced 

slopes because of increased boehmite formation by reactions ( 3 ) and 

( 4 ) respectively. The transi t ion from the suggested predominantly 

diffusion-controlled to suggested predominantly zeroth order thinning 

which occurred at a solution pH value close to 2.0, ionic strength 

close to 1.0 (Fig. 11), indicates that the level of sulphate ion ad­

sorption was low enough for the rates of transfer of ions between 

oxide and solution to be suff ic ient fo r the rates of reactions ( l ) , 

( 2 )» (5)» (4) and ( 7 ) to be controlled by equilibrium levels of 

protons, hydroxyl ions and water at relevant reaction sites so that 
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predominantly diffusion-controlled thinning, where the rate of a r r iva l 
from the solution at reaction sites of reacting species was possibly 
controlled by the rate of d i f fus ion of hydroxyl ions into the f i l m , 
gave way to zeroth order thinning. There was a l i t t l e indication of 
a short period of i n i t i a l d i f fus ion control, absent at the lowest 
ionic strengths at pH values close to 2.0 (see Figs. : "-, 11 and 12), 
fo r those cases where mainly zeroth order thinning was indicated and 
this i n i t i a l period might be associated with the establishing of the 
equilibrium levels of reacting species at reaction sites. 

The independence of slopes of ionic strengths at constant pH 

where zeroth order thinning was indicated i s further evidence that 

the level of sulphate ion adsorption had no effect on the rate of 

dissolution. 

5.12 Physical Mechanism of Dissolution. 

Evidence has been presented i n Chapter I I I (5 .8 .1) fo r the exis t ­

ence .of discrete pores i n formally non-porous f i lms formed anodically 

under conditions similar to those adopted i n the present study. I t 

i s l i k e l y that their contribution to the overall impedance was small 

since a pore contribution to the f u l l analogue led to no improvement 

i n matching of the charging curves with that of the f i l m s . 

The i n i t i a l slopes of the plot of l / c versus ( t )^ fo r 7 , 14 and 

21 vol t f i lms during dissolution i n pH 1.0, ionic strength 1.5 

• sulphate solution were found to be almost i n the r a t io l :2:3 '(? e e 
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Table XTIl) and the time of the f i r s t v i r t ua l capacitance arrest, 

after about 100 minutes i n each case, was close to the times required 

f o r the rapid increase i n the concentration of aluminium ions i n the 

solution (Fig. 1 6 ) . After this time, the capacitance values were 

i n a l l cases close to those of the respective inner layers as indicated 

by the f u l l analogues. 

This indicates that the time of loss of the outer layer was 

independent of the anodising voltage and therefore of the thickness 

of the outer layer. Similar findings have been reported J for porous 

f i lms anodised at constant voltage but for different lengths of time 
23 

and i t would appear that for both cases, a pore widening mechanism 

may control the rate of loss of the outer layer. The comparatively 

low concentrations of aluminium ions in i solution (see F ig . 1 6 ) up to 

about 100 minutes for 7 , 14 , and 21 vol t f i lms immersed i n pH 1 . 0 , . 

ionic strength 1 . 5 sulphate solutions were considerably lower than 

that which could have arisen from the t o t a l outer layer. I f a pore 

widening mechanism were controll ing the removal of the outer layer, 

there would be a reduction i n the f i l m surface area as the last traces 

of the outer layer was removed which could result i n the rapid release 

into solution of aluminium ions previously adsorbed. The rapid i n ­

crease from the earliest times of the concentration of aluminium ions 

i n solution where the specimen was chemically polished only (see F ig .16) 

i s i n keeping with this interpretat ion. Both for specimens chemically 
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considerably larger concentrations of aluminium ions i n solution than 

could have arisen from the ini t ia l ly-present oxide alone, indicates 

that self-corrosion of the underlying metal was taking place. 
32 

Nagayama and Tamura have reported that for porous f i lms anodically-

formed i n sulphuric acid, the to ta l amount of ions dissolved on open 

c i r cu i t agreed well with the amount of aluminium i n i t i a l l y present i n 

the oxide f i l m , indicating that there was l i t t l e self-corrosion of the 
32 

underlying metal, . Also, confirming th i s , amounts of hydrogen 
32 

evolved during dissolution were found to be negligible . I t would 
appear, then, that the f i l m remaining af ter thinning was highly 

32 

protective , unlike that of specimens chemically polished only and 

of non-porous anodically-formed f i lms prepared i n the present investig­

ation even when only the outer layer had been removed. Since Nagayama 

and Tamura i n i t i a l l y electropolished their specimens, th is difference 

i n behaviour could arise from the d i f fe ren t i n i t i a l surface preparations 

used. That sulphate ion incorporation into each type might have been 

to a d i f fe ren t extent i s another possible fac tor . Nagayama and Tamura 

found that the amount of aluminium ions i n solution increased from 

the earliest times,indicating that the extent of absorption of these 

ions by the oxide f i l m was probably small and this might arise from 

the i n i t i a l high level of sulphate ion incorporation of the porous 

f i l m . 
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Table XVIII (a) 

Frequency Response of Balancing Series Resistance. R 
I 

and Capacitance. C^, for 2 Alumina Films Formed i n 
Dry Oxygen at 500°C. 

Film Ho 1 ,2 

Frequency 
Hz 

2 
'R ohm cm s 

_2 '.CajJF cm R ohm cm^ 
" s 

- 2 
CgjjF cm 

10 0 . 0 1 . 3 8 0 . 0 . 0 . 9 4 

85 0 . 0 1 . 3 0 0 . 0 0 . 9 0 

500 5 .3 1 . 3 2 0 . 0 0 . 9 2 

5 000 1 1 . 7 1 . 2 5 9 . 9 0.88 

50 000 1 1 . 3 O.96 1 1 . 4 0 . 7 1 . 
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Table X7IH (la) 

Frequency Response of Balancing Series Resistance. R , 
s 

and Capacitance. G , , f o r 5 Alumina Films Formed i n anfl. 
Atmosphere of Oxygen and Water (p^ Q = 4 3 . 1 mm) at 500 C 

( i ) 

Film 
1 

1 
1: 2 

Frequency 
Hz 

2 R ohm cm s 
_? 

• C ^ J F cm R ohm cm^ s 

10 1..620 1 . 3 7 0 . 0 1 . 1 0 

83 0 . 0 1 . 2 0 0 . 0 1 . 0 3 

500 0 . 0 1 . 2 2 0 . 0 1 .03 

5 000 6 . 5 1 . 1 4 8 .7 1 . 0 2 

50 ooo 7 . 6 0.56- . 1 0 . 1 0 . 6 4 

100 000 7 . 0 0 . 5 0 1 0 . 1 0 . 4 5 
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Table XVIII (tp continued 

( i i ) 

Film 3 

Frequency 
' Hz 

R ohm cm^ s Cg |jF cm ̂  

10 3 000 1.04 

85 0.0 0.P1 

500 0.0 O.96 

5 000 7.9 0.94 

50 000 9.1 0.66 
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Frequency dependence of balancing series resistance and . 
capacitance f o r alumina f i l m s formed i n dry oxygen and i n 
the moist oxygen atmosphere at 500°C , 

(a) Oxidation i n dry oxygen. 

A series resistance 
X series capacitance 

(b) Oxidation i n the moist 
oxygen atmosphere. 

• series resistance 
O series capacitance 



4Q0 
i i Frequency dependence of balancing series resistance and 

capacitance for .alumina films formed in dry oxygen and in 
the moist oxygen atmosphere at 500°C. 

Oxidation in dry oxygen* 

•series resistance 
series capacitance 

Oxidation in the moist 
oxygen atmosphere. 

• series resistance 
O series capacitance 

10 
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CHAPTER VI ' 

Experimental Results f o r Alumina Films Formed 
i n Dry and Moist Oxygen. 

Construction of f u l l e l e c t r i c a l analogue. 

The best matching of response curves that could be obtained was 

with the simple analogue shown i n Fig. 2 ( b ) . A small phase d i s ­

crepancy was present, however, which was sensibly frequency-independent. 

.This type of behaviour was also found f o r anodically-formed f i l m s and 

again may be due to f i l m hydration producing a diffuse region, although 

no improvement i n matching was obtained by modifying theanalogue to 

account f o r an additional layer i n the f i l m structure. 

Values of R (see Fig. 2(b) ) were i d e n t i f i e d with the measured 
-2 

ohmic drop of about 40 ohm cm across the ammonium t a r t r a t e solution. 

The frequency responses of the components of the simple series 

resistance-capacitance analogue f o r films' produced by oxidation i n 

dry oxygen, and oxygen containing gaseous water, Pg 0 = 43 . 1 m.m.y 

at 500°C are shown i n Figs. 17 and 18 and are summarised i n Table X V I I I . 

The following tables summarise the r e s u l t s obtained and i l l u s t r a t e 

the r e p r o d u c i b i l i t y which was not too satisfactory. 



101 

Table XIX 

E l e c t r i c a l Characteristics of Films Formed 
i n Dry Oxygen. 1 Atmosphere Pressure. 

C2|iP cm"2 ohm cm2 

(!) 1.23 210 000 

(2) 0.88 260 000 

Table XX 

E l e c t r i c a l Characteristics of Films Formed i n Oxygen 
containing gaseous Water, p^ ,Q = 4 3 . 1 m.m«lAtmosphere 

Total Pressure. 

_2 
C2pF cm Rg ohm cm2 

( 1 ) 1.17 35 000 

(2-) 1.02 87 000 

(30 0.87 42 000 

At 83 Hz, i n general, the value of the capacitative component of 

the simple series analogue increased by up to 15$ during a frequency 

run and the impedance of t h i s component was much greater than the 

r e s i s t i v e component a t t h i s frequency. This increase i n capacitance 
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might he associated with f i l m dissolution and/or changes i n the f i l m 
d i e l e c t r i c constant r e s u l t i n g from f i l m hydration. Good matching of 
the charging curves would not therefore he expected. 

The poor r e p r o d u c i b i l i t y of series resistance at low frequencies 

f o r f i lms formed i n moist oxygen might arise from the small contribution 

made by t h i s component to the overall impedance. 

Values of f o r the two types of f i l m preparation were about 

the same but Rg was considerably smaller f o r f i l m s formed i n the moist 

oxygen atmosphere. 

Impedance Measurements During Srecimen Immersion. 

The r e p r o d u c i b i l i t y of the capacitance-time behaviour was very 

poor f o r f i l m s formed i n mdst oxygen during specimen immersion i n 

aerated sulphate solution, pH 1.0, io n i c strength 1.5 but was better 

i n the same medium when deaerated. Typical l/C versus ( t ) 2 behaviour 

i n deaerated solution i s shown i n Fig. 19 where the behaviour of f i l m s 

formed i n dry oxygen during specimen immersion i n aerated and deaerated 

sulphate solution, pH 1.0, ionic strength 1.5 i s also shown. 

Pig. 20 shows t y p i c a l p l o t s of l /c versus t f o r immersion :of f i l m s 

formed i n dry oxygen i n sulphate solutions having pH values close to 

2, ionic strengths 0.015-1.5*Fig* 21 represents the r e s u l t s obtained 

i n solutions of pH 5.5, ionic strengths 0.015-1.5« 

Fig. 22 shows l/C versus ( t ) 2 " behaviour for f i l m s formed i n dry 

oxygen during immersion i n sulphate solutions, ionic strength 1.5, 
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. pH values 1.0 and 2 . 0 and Pig. 23 shows l / c versus t "behaviour for 
the same system but at pH values of 3.5 and 5*0. 

•Where predominantly linear plots of l/C versus ( t ) 2 were found, 

the values of the oxide f i l m resistance Rp, when f i r s t measured, were 

always low and f e l l quite quickly. The i n i t i a l values of Rp were . 

considerably greater f o r f i l m s formed i n moist than i n dry oxygen 

under the same conditions. The i n i t i a l values of Rp increased as 

the pH of the solution increased from 1.0 to 3 « 5 . The value 

observed i n a solution of pH 5.0 was,however, less than that at pH 3«5» 
• 

The rate at which Rp decreased with time generally f e l l with increasing 

solution pH except at pH 5.0 when the behaviour was intermediate bet­

ween pH 2 and pH 3 . 5 . Throughout these studies, where consideration 

of the li n e a r plot i s r e s t r i c t e d to the same type, that i s l/C versus 

either t or ( t ) 3 , the rate at which Rp f e l l was reduced as the ra t e 

of change of l/C was reduced. 

The following tables summarise the r e s u l t s obtained. The 

slopes are corrected i n terms of the mean values f o r capacitance from 

the f u l l analogues. 



Capacitance behaviour of alumina films formed i n dry or moist 

oxygen, immersed in ionic strength 1.5,pH 1,sulphate 

solutions, aerated and deaerated. 

0-8 1 VC cm 2^" 1 

Partial pressure 
.Ĥ P, m.m. 

O o 
O 0 . 

x 43.1 ; 

Sulphate solution 

aerated 

deaerated 

.deaerated 

• Final value s,X' 

,0.10-0.21 cm 2jaF" 1 after 500-900 min. 

(erosion time. minJ. i 

8 12 16 20 

Fig. 19 



Capacitance behaviour of alumina f i l m s formed i n dry oxygen 

at 500°C, immersed i n pH 2 sulphate solutions 
of i o n i c strength. 

erosion 
as a function time, min. 

. Ionic Strength. 
X 1.5 

Fig.. 20, 



Capacitance behaviour of alumina films formed in 
dry oxygen at 500 C, immersed in pH 3.5 sulphate 

solutions as a function of. ionic strength. 

erosion time, min 

Ionic Strength. 

0.15 

O 0.015 

e 

S AO 
p (0 CM CD 

Fig. 21 l/C cm l i F 



Capacitance behaviour of alumina f i l m s formed i n dry oxygen 

at 500*0,immersed i n ion i c strength 1.5 sulphate solutions 

as a function of r>H. 

l/C.cm2p.F-^ 

8 

pH value 

O 1.0 

X 2.0 

12 
(erosion time,min.) 
16 20 

Fig. 22 



erosion time,mih. erosion time.mih. 
Capacitance behaviour of alumina f i l m s formed i n dry 

oxygen at 500 C, immersed i n ionic strength 1*5 
500 sulphate solutions as a function of pH 

A00 

pH value 

300 

200 

Final value.for pH 5.0 

0.25 cm^MF-iaft er 100 about. 440 min 

• 

1/C cnruF 
Fig. 23 
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Table XXI 

Kinetic Data f o r Dissolution of Oxide Films Formed 
i n Oxygen at 500°C i n Sulphate solutions. Ionic Strength 1 .5 . 

Film 
preparation 

pH 
value 

Slope as 
per graphs 

Reciprocal of 
interpolated 
i n i t i a l 
capacitance 

Corrected 
slope Comments 

2 r r l lc. cm uF V^cmV 1 2 - 1 Ic^cm HF x 

min~-gr 

Dry oxygen 1.0 - 0.081 
- 0.066 

O.93 
0.74 

- 0.082 
- 0.084 

Deviation from 
l i n e a r i t y a f t e r 
about 60 miins 

Dry oxygen 2.0 - 0.034 
- 0 .028 

0.90 
0.70 

- 0.036 
- 0.038 

Some evidence 
f o r zeroth order 
after about 
170 mins. 

Dry oxygen 1.0 - 0.052 
- 0 .018 

0.64 
0.44 

- 0.047 
- 0 .038 

TDeaerated 
solution 

Oxygen with 
ga seous 
water content^ 
p H lo = 45 •1mm 

1.0 - 0.0247 
- 0.0244 

0.64 
O.96 

- 0.035 
- 0.023 

Deaerated 
solution 



103 (b) 

• Table XXII 

Kinetic Data f o r Dissolution of Oxide Films Formed 
i n Dry Oxygen at 500°C i n Sulphate Solutions. Ionic Strength 1.5. 

pH 
value • 

'Slope as per 
graph 

Reciprocal of 
•interpolated 
i n i t i a l 
capacitance 

Corrected Slope 
converted to 
A min" 1 

assuming £ = 10 

Comments 

2 - 1 - 1 
ik^cm pF min O/C cm 2pF - 1 

3.5 - 0.0010 

( - 0.0011) 

0.83 

(0 .83 ) 

- 0.088 

(- O.097) 

some evidence f o r 
d i f f u s i o n control 
during f i r s t 40 
min. 

5.0 - 0.0015 0.875 - 0.126 

I n parentheses - based on a l l data f o r ionic strengths 0 . 0 1 5 - 1 . 5 . 

Table XXIII 
Kinetic Data f o r Dissolution of Oxide Films Formed 

i n Dry Oxygen at 500°C i n Sulphate Solutions, pH Values Close to 2.0. 

Ionic 
strength 

Slope as per 
graph 

Reciprocal of 
interpolated 
i n i t i a l 
capacitance 

Corrected slope 
converged to S min 
assuming £= 10 

'Comments 

L cm uF mm l/C^cm 2^" 1 

. 0.15 - 0.0022 

- 0.0014 

1.00 

0.80 

- 0.16 

- O.13 

some evidence for 
d i f f u s i o n control 
during f i r i t 
25 min. 

0.015 - 0.0016 

- 0.0021 

0.70 

0.94 

- 0.17 

- 0.16 
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Potential-Time Studies. 

Typical potential-time curves obtained using f i l m s formed i n 

dry oxygen when immersed i n aerated and de-aerated sulphate solutions, 

pH 1.0, ionic strength 1.5» are shown i n Fig. 24. 

Results f o r f i l m s formed i n oxygen containing gaseous water 

(PTT 0 = 43*1 m.m.) during specimen inmersion under i d e n t i c a l conditions 
• 2 

are shown i n Fig. 25. Fig. 24 shows that the i n i t i a l r a t e of f a l l 

of specimen potential was greater under deaerated than aerated con­

d i t i o n s f o r f i l m s formed i n dry oxygen, and the minimum i n po t e n t i a l 

occurred a f t e r about the same time f o r each. Fig. 25 shows that f o r . 

films formed i n the moist oxygen atmosphere, deaeration led to the 

absence of the f i r s t and second maxima i n the specimen p o t e n t i a l , 

features present under aerated conditions. Under both sets of 

conditions,a f i n a l minimum i n p o t e n t i a l was observed a f t e r about the • 

same time. 

Barrier Voltage Studies. 

Typical current-time behaviour i s shown i n Fig. 26 using the 

methods of Hunter and Fowle2^" and of K a r t ^ . The i d e n t i f i c a t i o n of 

the minimum voltage to support ionic conduction i s also indicated i n 

Fig. 26 and was wknown since the rate of voltage increase and the 

chart speed were known. 

Films Formed i n Dry Oxygen. 

The ba r r i e r voltage was found to be sensibly independent of the 



The specimen potential - time study of the erosion of alumina films, 

formed in dry oxygen at500°C, in sulphate solution,pHl.0,1=1.5,aerated 

and deaerated. 200 400 600 
• * • t i 

erosion time, min1 

aerated 

deaerated ; 

specimen potential, V (S.C.E.) 
Fig. 2U 



P o t e n t i a l behaviour o f aluminium specimens o x i d i s e d i n t h e mo i s t oxygen 
atmosphere a t 500 °C , in su lphate s o l u t i o n i p H 1 . 0 , i o n i c s t r e n g t h 1 . 5 , 
aerated and deaera ted . , • 

e r o s i o n t i m e , m±n-.. 

4000 : 

3200 -

2400-

1600 • 

800 : 

X aerated 

O deaerated 

0-8 1-1 10 07 
F i g . 25 
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r a t e o f v o l t a g e increase and was f o u n d t o be 9 .3 v o l t s u s ing the 
method o f Hunter and Fowle, and 8.8 v o l t s . u s i n g the method o f H a r t . 

6 .4 .2 F i lms formed i n Oxygen C o n t a i n i n g gaseous Water. 

The f o l l o w i n g t a b l e s summarise the r e s u l t s o b t a i n e d . 

Table XXIV 

B a r r i e r Vol tages Using the Method o f Hunter and F o w l e d 

Rate o f v o l t a g e 
inc rease , V min~ 

B a r r i e r 
v o l t a g e 

Specimen 
type 

E l e c t r o n i c leakage 
cu r r en t j ja cm 

0.83 4 . 7 
0.42 4 . 5 c y l i n d r i c a l about 4 
0 . 17 no break 

0.83 
0.42 

4 .6 
no break 

w i r e 20-40 

Table XXV 

A 
B a r r i e r Vol tages Using the Method o f HartT 

Rate o f v o l t a g e 
inc rease , V min 

B a r r i e r 
v o l t a g e 

Specimen 
type 

2.4 
• 0.6 

0.2 

5.2 
5.0 
4 .8 

c y l i n d r i c a l 

2.4 
0.6 

5.0 
4 .8 

c y l i n d r i c a l 

2.4 
0.6 
0.2 

4 .8 
4 .6 
4 .4 " 

w i r e 

The mean b a r r i e r v o l t a g e , based on bo th methods,was 4 .8 * 0.3 v o l t s . 
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I t would appear t h a t reduced r a t e s o f v o l t a g e increase l e d to reduced 
b a r r i e r v o l t a g e s . The method o f Hunter and Fowle gave somewhat 
lower va lues than the method o f H a r t , a r e v e r s a l o f the behaviour 
observed f o r f i l m s formed i n d r y oxygen. 
Summary. ' 

For f i l m s formed i n dry oxygen, capaci tance measurements i n d i c a t e 

t h a t the t ime r e q u i r e d f o r "capacitance increase t o cease increased , 

except f o r pH 5 . 0 , w i t h i n c r e a s i n g s o l u t i o n pH. These t imes were 

about 260 minutes a t pH 1 . 0 , about 400 minutes a t pH 2 . 0 , about 520 

minutes a t pH 3 . 5 and about 450 minutes a t pH 5*0. I n deaerated 

s o l u t i o n , pH 1 . 0 , t h i s t ime was about 350 minutes and appeared t o be 

independent o f i o n i c s t r e n g t h a t pH va lues c lose t o 2 . 0 and a t pH 3 « 5 . 

The f i n a l capaci tance va lues decreased w i t h i n c r e a s i n g pH f r o m about 

- 2 - 2 

10 jjF cm a t pH 1 .0 t o about 4 | J F cm a t pH 5*0. I n those cases 

where the specimen p o t e n t i a l was measured d u r i n g specimen immersion, 

the t ime r e q u i r e d t o achieve the f i n a l maximum nega t i ve p o t e n t i a l 

appeared t o correspond w i t h the t ime r e q u i r e d to achieve the maximum 

capac i tance . 
i _ 

Where l i n e a r p l o t s o f l / C versus ( t ) 2 " were ob t a ined , the slope 

decreased w i t h increased pH and f o r a g i v e n pH was lower under 

deaerated than aera ted c o n d i t i o n s . F i lms formed i n the mois t oxygen 

atmosphere gave smal ler slopes than those formed i n d r y oxygen d u r i n g 

specimen immersion i n pH 1 . 0 , i o n i c s t r e n g t h 1 , 5 deaerated s o l u t i o n . 
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Linear "behaviour o f ] /C versus ( t ) 2 was found f o r these l a s t two 
systems th roughout the p e r i o d o f capaci tance inc rease , but i n the 
o the r cases, d e v i a t i o n s f r o m l i n e a r i t y took p lace , o c c u r r i n g l a t e r a t 
pH 2 . 0 t h a n a t pH 1 . 0 . A t pH 2 . 0 , i o n i c s t r e n g t h 1 . 5 ( F i g s . 20 and 
2 2 ) , t he re was some evidence f o r l i n e a r l / C versus t "behaviour a f t e r 
the f i r s t stage o f l i n e a r l / C versus ( t ) ^ "behaviour. For f i l m s 
formed i n d r y oxygen, d u r i n g specimen immersion i n pH 1 . 0 , i o n i c 
s t r e n g t h 1 . 5 , sulphate s o l u t i o n under bo th aera ted and deaerated 
c o n d i t i o n s , the r a t e o f d r i f t o f specimen p o t e n t i a l i n the nega t ive 
d i r e c t i o n inc reased a f t e r about 200 minutes but be fo re t h i s t i m e , t h i s 
r a t e was g r ea t e r under deaerated c o n d i t i o n s . For f i l m s formed i n the 
mois t oxygen atmosphere, d u r i n g specimen immersion i n pH 1 . 0 , i o n i c 
s t r e n g t h 1 . 5 , su lphate s o l u t i o n under deaerated c o n d i t i o n s , the d r i f t 
o f specimen p o t e n t i a l i n the nega t ive d i r e c t i o n was a t approx imate ly 
a constant r a t e , whereas i n ae ra ted s o l u t i o n , d u r i n g the f i r s t 200 
minutes , the p o t e n t i a l became more p o s i t i v e be fo re d r i f t i n g t o a more 
nega t ive v a l u e . The f i n a l d r i f t i n the p o s i t i v e d i r e c t i o n was no t 
observed f o r any o ther system examined. 

For f i l m s formed i n d r y oxygen, a change f r o m predominant ly 

l i n e a r l / C versus ( t ) " 2 t o predominant ly l i n e a r l / C versus t was i n ­

d i c a t e d a t s o l u t i o n pH va lue 2 . 0 between i o n i c s t r eng ths 1 . 5 and 0 . 1 5 , 

probab ly r a t h e r c lose t o i o n i c s t r e n g t h 1 . 5 , s ince a t t h i s i o n i c 

s t r e n g t h , the re was some evidence f o r l i n e a r l / C versus t behaviour 
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a f t e r about 170 minutes . For 14 v o l t a n o d i c a l l y - f o r m e d ox ide 
f i l m s d u r i n g immersion i n su lphate s o l u t i o n , pH 2 . 0 , a s i m i l a r t r a n s i t i o n 
was i n d i c a t e d a t an i o n i c s t r e n g t h r a t h e r l e s s than 1 .0 and a t t h i s 
i o n i c s t r e n g t h the re was some evidence f o r l i n e a r l / C versus t be­
hav iou r a f t e r about 350 m inu tes . 

Where l i n e a r p l o t s o f l / C versus t were ob t a ined , the slopes 

appear t o be independent o f i o n i c s t r e n g t h and were f o r pE 2 . 0 > p H 5»0 

> p H 3 . 5 . A r u n i n pH 7 . 4 , i o n i c s t r e n g t h 1 . 5 su lphate s o l u t i o n i n ­

d i c a t e d t h a t the slope was about h a l f t h a t i n pH 5 . 0 , i o n i c s t r e n g t h 

1 .5 s o l u t i o n . For 14 v o l t a n o d i c a l l y - f o r m e d f i l m s , the r e l a t i o n s h i p 

was, pH va lues c lose t o 2 . 0 > p H 3 . 5 > p H 5*0. For f i l m s formed i n • 

d r y oxygen, i n i t i a l d e v i a t i o n s f r o m l i n e a r i t y , w h i c h cou ld be i n d i c a t i v e 

o f d i f f u s i o n processes,were f o u n d d u r i n g about the f i r s t f o r t y minutes 

except f o r pH 2 . 1 , i o n i c s t r e n g t h 0 . 0 1 5 and f o r pH 5 . 0 , i o n i c s t r e n g t h 

1 . 5 . Th i s type of behaviour was a l so f o u n d f o r 14 v o l t a n o d i c a l l y -

formed f i l m s except t h a t a t pH 5 . 0 , i o n i c s t r e n g t h 1 . 5 » P o s s i b l y i n i t i a l 

d i f f u s i o n c o n t r o l d u r i n g about the f i r s t f o r t y minutes was i n d i c a t e d . 

VJhereas the f u l l e l e c t r i c a l analogue i n d i c a t e s t h a t the capaci tances 

o f the two types o f f i l m formed i n oxygen were about the same, the 

b a r r i e r v o l t a g e f o r f i l m s formed i n d r y oxygen was found to be about 

t w i c e t h a t f o r f i l m s formed i n the mois t oxygen atmosphere. 
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S i g n i f i c a n c e o f B a r r i e r Vol tage De te rmina t ions 
f o r Alumina F i l m s Formed i n Oxygen, 

44 

Hunter and Fowle have determined b a r r i e r v o l t a g e s as a f u n c t i o n 

o f o x i d i s i n g t ime a t constant temperature f o r a luminium o x i d i s e d i n 

d r y oxygen a t temperatures s u f f i c i e n t l y h i g h f o r the f o r m a t i o n o f 

c r y s t a l l i n e y - a lumina . The type o f s u r f a c e p r e - p r e p a r a t i o n was 

not mentioned. A t lower temperatures , a t which o n l y amorphous ox ide 

formed, the b a r r i e r v o l t a g e s were found t o be low, about 4 v o l t s . At 

the h igher temperatures , f r o m the t ime o f onset o f c r y s t a l l i t e f o r m ­

a t i o n , a r a p i d r i s e i n b a r r i e r v o l t a g e was observed, i n c r e a s i n g f r o m 

about 4 v o l t s and l e v e l l i n g o f f q u i c k l y t o about 12 v o l t s . Th i s 
44 

increase was i n t e r p r e t e d i n terms o f an increase i n the minimum f i e l d 

f o r i o n i c conduc t ion f o r the c r y s t a l l i n e o x i d e , a l though i t may be 

t h a t the t o t a l f i l m th ickened r a p i d l y as a r e s u l t o f c r y s t a l f o r m a t i o n ^ ' ^ 

S t ruc tu r e s o f Alumina F i lms Formed i n M o i s t 

and Dry Oxygen. 

Wo d i s c o n t i n u i t i e s were observed i n the l / C - ( t ) 2 behaviour f o r 

the immersion o f these f i l m s i n su lpha te s o l u t i o n s o f low pH, suppor t i ng 

the evidence o f the simple type o f analogues, r e p o r t e d i n Sec t ion 6 . 1 , 

found f o r both o x i d a t i o n i n d r y oxygen and i n the most oxygen atmosphere, 

t h a t o n l y one type o f m a t e r i a l was p resen t . 

B a r r i e r vo l t ages determined i n the present i n v e s t i g a t i o n were 

about 9 v o l t s f ° r ox ide formed i n d r y oxygen and about 5 v o l t s f o r 
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ox ide formed i n the mois t oxygen atmosphere a t 500°C. These va lues 

may i n d i c a t e , accord ing t o the i n t e r p r e t a t i o n o f Hunter and Fowle^" , 

which was discussed i n Sec t ion 6 . 6 , t h a t the fo rmer oxide f i l m type 

was c r y s t a l l i n e and the l a t t e r type amorphous. I n t h i s connec t ion , -

i n Chapter I I ( 2 . 2 . 3 ) i t was concluded t h a t o x i d a t i o n o f a luminium 

i n moist a i r o r oxygen might l e a d to boehmite f o r m a t i o n f r o m about 

1 7 5 ° - 500°C and a t temperatures g r ea t e r than about 500°C, some 

c r y s t a l l i n e Y ~ a l u m i n a might be present w i t h a l i t t l e water adeorbed. 

P l a t e IV shows t h a t the c u r r e n t - v o l t a g e behaviour o b s e r v e d ® ^ i n an 

almost non-so lven t e l e c t r o l y t e d u r i n g the a p p l i c a t i o n o f a s t e a d i l y 

i n c r e a s i n g v o l t a g e to a lumin ium specimens bea r ing porous ox ide f i l m 

i s smooth. A t r i a l experiment i n d i c a t e d t h a t the c u r r e n t behaviour 

was a l so smooth f o r an anodic b a r r i e r - t y p e f i l m . F i g . 26 shows t h a t 

i n the present b a r r i e r v o l t a g e s tud ie s on f i l m s formed i n oxygen usiKjg 

24 45 

both the method of Hunter and Fowle and o f Ha r t , the c u r r e n t 

s t a b i l i t y was poor f o r f i l m s formed i n d r y oxygen but was b e t t e r f o r 

f i l m s formed i n the moist oxygen atmosphere. I t i s suggested t h a t 

i n the present s tud ies b o t h porous and non-porous anodic f i l m s were 

less f a u l t e d , than f i l m s formed i n oxygen and t h a t the " f i l l i n g i n " 

o f f a u l t s by the anodic f o r m a t i o n o f ox ide i n the course o f the 

b a r r i e r v o l t a g e d e t e r m i n a t i o n was r e spons ib l e f o r the unsteady c u r r e n t 

behav iour . I t i s f u r t h e r suggested t h a t the p o s s i b i l i t y o f the e n t r y 

o f water i n t o an ox ide f i l m formed i n oxygen may r e s u l t i n a l e s s 
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f a u l t e d f i l m . I n t h i s connec t ion Chis tyakov and h i s co-workers"^ ' ^ 

have r e p o r t e d t h a t a t temperatures s u f f i c i e n t l y h i g h f o r the f o r m a t i o n 

o f c r y s t a l l i n e o x i d e , d u r i n g the o x i d a t i o n o f a luminium i n "both wet 

and d r y oxygen o r a i r , e p i t a x i a l growth o f the c r y s t a l l i n e oxide l e d 

to f r a c t u r e s o f c r y s t a l l i n e f i l m l o c a t e d on metal o f d i f f e r e n t c r y s t a l 

o r i e n t a t i o n s "because o f smal l d i f f e r e n c e s i n the dimensions o f the 

a luminium and c r y s t a l l i n e ox ide l a t t i c e s . 

The capaci tance va lues o f the f u l l e l e c t r i c a l analogues ( T a b l e s XIX 

and XX) i n d i c a t e , assuming t h a t the f i l m d i e l e c t r i c constant was, i n 

70 
both cases 10 , the va lue f o r non-porous a n o d i c a l l y - f o r m e d f i l m s 

which are g e n e r a l l y regarded as amorphous, a f i l m t h i c k n e s s o f about 
o 

80 A f o r bo th types formed i n moist and d r y oxygen a t 500°G. The 

lower r e s i s t i v e component o f the f u l l analogue f o r f i l m s formed i n the 

moist oxygen atmosphere might be a s soc ia t ed w i t h the presence o f water 

21 39 

i n the f i l m s ' y . I t would appear t h a t these f i l m s d i d no t c o n s i s t 

p redominant ly o f boehmite s ince t h i s compound i s h i g h l y i n s o l u b l e and 

the. f i l m s were a p p a r e n t l y t h i n n e d i n deaerated sulphate s o l u t i o n , pH 1.0, 
o o 

i o n i c s t r e n g t h 1 . 5 , f r o m about 80 A t o about 10 A i n 500 - 900 minutes 

(see F i g . 1 9 ) . I t i s suggested, t e n t a t i v e l y , t h a t they cons i s t ed o f 

amorphous a lumina . 

The h ighe r weight gains observed i n the f o r m a t i o n o f c r y s t a l l i n e 

y - a l u m i n a compared w i t h va lues i n v o l v e d i n the f o r m a t i o n o f amorphous 

oxide o n l y ^ * " ^ ' ^ ^ » ^ 2 i n d i c a t e t h a t i n the present work, the capacitance 



112 

va lues o f the f u l l analogue f o r f i l m s formed i n d r y oxygen were 

48 
abnormal ly h i g h . Beck and h i s co-workers have r e p o r t e d t h a t -

y - a l u m i n a f i l m s Slowed abnormal ly h i g h capaci tance va lues a t h i g h 

48 
c r y s t a l coverages. E l e c t r o n micrographs r evea l ed t h a t the c r y s t a l l i n e 

ox ide was h i g h l y f a u l t e d and the h i g h capaci tance va lues cou ld have 

A8 

a r i s e n f r o m easy a luminium i o n conduc t ion v i a these f a u l t s ' . Indeed, 

these workers found t h a t the i o n i c r e s i s t i v i t y o f the c r y s t a l l i n e ox ide 

was low and the obse rva t i on t h a t the r a t e o f g rowth o f the amorphous 

ox ide was u n a f f e c t e d by the appearance and growth o f c r y s t a l l i t e s was 

i n t e r p r e t e d i n terms o f t h i s rlow i o n i c r e s i s t i v i t y . 

Surface p r e - p r e p a r a t i o n appears t o be an i m p o r t a n t f a c t o r i n 

r e l a t i o n t o f i l m s t r u c t u r e . The simple analogue found f o r f i l m s 

formed i n d r y oxygen a t 500°C may i n d i c a t e t h a t n e a r l y a l l o f the ox ide ' 

f i l m was c r y s t a l l i n e , i n agreement w i t h the f i n d i n g s o f Dignam and 

F a w c e t t ^ , but not w i t h those o f Beck and c o - w o r k e r s ^ 8 . The su r face 

p r o p e r t i e s o f specimens i n i t i a l l y c h e m i c a l l y p o l i s h e d , the procedure 

adopted i n the present s t u d i e s , may^esemble more c l o s e l y those o f 
47 

specimens e l e c t r o p o l i s h e d , the procedure f o l l o w e d by Dignam and Fawcett , 

than those o f specimens etched i n sodium hydrox ide s o l u t i o n , the p r o ­

cedure adopted by Beck and h i s co-workers . Al though Beck and h i s c o ­

workers avoided methods such as e l e c t r o p o l i s h i n g and chemical p o l i s h i n g 

because o f the r educed^® i o n i c r e s i s t a n c e o f f i l m s so produced, one 

might expect t h a t i f the appearance and comple t ion o f the c r y s t a l l i n e 
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phase had no e f f e c t on the r a t e o f g rowth o f the amorphous o x i d e , 

t h i s type o f behaviour would a l so have ob t a ined i n the s t u d i e s o f 

_ 47 

Dignam and Pawcett . However, Dignam and Fawcett f o u n d l i m i t i n g 

weight g a i n behaviour . I t may w e l l be t h a t the h i g h l y f a u l t e d 

na ture o f the c r y s t a l l i n e ox ide r e p o r t e d by Beck and h i s co-workers 

was s t r o n g l y i n f l u e n c e d by the na tu re o f the o r i g i n a l su r face produced 

by e t c h i n g w i t h sodium hydrox ide s o l u t i o n and t h a t f a u l t i n g was no t 

so ex tens ive i n the c r y s t a l l i n e f i l m produced by Dignam and Fawcett 

and i n the p robably c r y s t a l l i n e f i l m produced i n d r y oxygen a t 5 0 0 ° C 

i n the present s t u d i e s . The p o s s i b i l i t y remains t h a t the i o n i c 

r e s i s t i v i t y o f f i l m s formed i n d r y oxygen a t 500°C i n the present 

s t u d i e s was somewhat l e s s than t h a t o f those f i l m s formed i n the 

mois t oxygen atmosphere t o account f o r the abnormal ly h i g h capaci tance 

o f the f o r m e r . B a r r i e r v o l t a g e de te rmina t ions i n the present s t u d i e s , 

as has been po in t ed out p r e v i o u s l y , i n d i c a t e t h a t f i l m s formed i n 

d ry oxygen may be more f a u l t e d than those formed i n the mois t 

atmosphere. 

The f o l l o w i n g t a b l e l i s t s the f r equency dependence o f the 

measured impedance o f : -

( i ) , a 14 v o l t anodic b a r r i e r - t y p e f i l m when the lowest c u r r e n t 

d e n s i t y d u r i n g anod i s ing was main ta ined f o r about 5 minutes , 

( i i ) , a f i l m formed i n the mois t oxygen atmosphere a t 500°P , and 

' ( i i i ) , . a f i l m formed i n d r y oxygen a t 500°C . The va lues g i v e n 
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i n c l u d e the c o n t r i b u t i o n f r o m the s o l u t i o n and the e x t e r n a l c i r c u i t r y 
but t h i s c o n t r i b u t i o n was n e g l i g i b l e a t f r equenc i e s o f 500 Hz and 
below and o n l y a f ew percent a t 5.000 Hz. A t the h ighes t f r e q u e n c i e s , 
the measured impedance tended t o t h a t o f the s o l u t i o n p l u s e x t e r n a l 
c i r c u i t r y . 

Table XXYI 

Frequency Dependence o f Impedance f o r 

Non-porous Alumina F i l m s 

Oxide 
type ( i ) ( i i ) ( i i i ) 

f Hz 2 
z ohm cm z ohm cm^ z ohm cm^ 

10 2 .84 x 1 0 4 1.16 x 1 0 4 1 .15 x 1 0 4 

83 3 .71 x 1 0 5 1 . 60 x 1 0 5 1 .48 x 1 0 5 

500 694 261 244 

5 x i o 5 76 28 .6 2 5 . 8 

JO - x 1 0 5 13 .6 9 . 5 1 1 . 7 

100 x 1 0 5 1 2 . 0 8 . 8 

Fi lms o f type ( i ) were about 200 A t h i c k and, assuming a va lue 

f o r the d i e l e c t r i c o f 10 f i l m s o f type ( i i ) were about 80 A t h i c k . 

I f the o u t e r l a y e r , a p p a r e n t l y much t h i c k e r than the i n n e r . l a y e r , o f 

type ( i ) cons i s t ed o f m a t e r i a l s i m i l a r t o t h a t o f f i l m s o f type ( i i ) , 
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the r a t i o o f impedances a t a g i v e n f r e q u e n c y up t o 5 000 Hz o f about 

2.5*1 can he understood i n terms o f the d i f f e r e n t t h i cknes ses . 

I t has a l r eady been suggested t h a t f i l m s o f type ( i i i ) a re con-
o 

s i d e r a b l y t h i c k e r than 80 A . However, t he impedance a t a g i v e n 

f requency was found t o be about the same as t h a t o f a f i l m o f type 

( i i ) a t f r e q u e n c i e s up t o 5 000 Hz. I t i s suggested t h a t t h i s 

behaviour c o u l d be assoc ia ted w i t h a more f a u l t e d s t r u c t u r e o f the 

f i l m s formed i n d r y oxygen a t 500°C which cou ld l e a d t o a g r e a t e r 

i o n i c c o n d u c t i v i t y i n f i l m s o f t h i s t y p e . I n t h i s connec t ion , Beck 

48 

and h i s co-workers r e p o r t e d t h a t c r y s t a l l i n e Y - a l u m i n a appeared t o 
have a g r e a t e r i o n i c c o n d u c t i v i t y than the amorphous oxide and t h i s 

48 

d i f f e r e n c e i n behaviour was suggested to be due to t h e h i g h l y f a u l t e d 

48 
s t r u c t u r e o f the c r y s t a l l i n e m o d i f i c a t i o n . 

47 
Assuming, as do Dignam and Fawcett , t h a t the d e n s i t i e s o f 

c r y s t a l l i n e and amorphous Y ~ a l u m i n a a T e no* naich d i f f e r e n t and t a k i n g 
-3 115 the va lue t o be 3.17 g cm as r e p o r t e d by Bernard and Cook f o r 

b a r r i e r - t y p e f i l m s formed a n o d i c a l l y on a luminium i n e thy lene g l y c o l / 

ammonium pentaborate s o l u t i o n , . a n es t imate o f the l i m i t i n g weight g a i n 

achieved a f t e r about 40 h o u r s a t 500°C, f o r e l e c t r o p o l i s h e d a luminium 

o x i d i s e d i n d r y oxygen, based on data f o r o the r temperatures (see 
An 

P l a t e V I l ) , assuming a su r face roughness f a c t o r o f 1.0 , i n d i c a t e s 
o 

a l i m i t i n g f i l m th i ckness o f about 190 A . The same t rea tment a p p l i e d 

t o the weigh t g a i n a f t e r 49 hours ( the p e r i o d o f o x i d a t i o n chosen i n 
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the present i n v e s t i g a t i o n ) a t 500°C, o f a luminium, i n i t i a l l y e tched 

4-8 
i n sodium hydrox ide s o l u t i o n , o x i d i s e d i n dry oxygen , assuming a 

48 
su r face roughness f a c t o r o f 1 .2 , i n d i c a t e s a t o t a l f i l m th i ckness 

° 48 o f about 370 A . The r e s u l t s of- Beck and h i s co-workers i n d i c a t e , 
o 

t h a t under these c o n d i t i o n s , t h e i nne r c r y s t a l l i n e phase was 217 A 
o o 

t h i c k and the o v e r l y i n g amorphous l a y e r was 120 A t h i c k (about 90 A 

f o r a p e r i o d o f o x i d a t i o n o f 40 h o u r s ) . The d e n s i t y o f c r y s t a l l i n e 

48 

Y - a l u m i n a was r e p o r t e d , based on measured c r y s t a l l o g r a p h i c 
parameters, t o be 3*69 g cm \ i n d i c a t i n g t h a t a t o t a l f i l m t h i cknes s 

0 - 3 o f 370 A was r a t h e r h i g h . Adop t ing a d e n s i t y o f 3 . 6 9 g cm , r a t h e r 

-3 47 than t h e va lue o f 3 .17 g cm adopted by Ddgnam and FawcettT , the 

t o t a l f i l m t h i cknes s i n f e r r e d f r o m the data o f these workers was 
o 

about 165 A» so t h a t i f , i n the present work, the t h i ckness o f the 

supposedly c r y s t a l l i n e ox ide formed i n d r y oxygen a t 500°C were about 

the same, i t s capaci tance would appear to be abnormal ly h i g h as „ 

suggested b e f o r e . 

C o n t r o l l i n g Factors i n the D i s s o l u t i o n o f Alumina 

F i lms Formed i n Mois t and Dry Oxygen. 

I t i s suggested t h a t the d i s s o l u t i o n behaviour o f ox ide f i l m s 

formed i n d r y oxygen a t 500°C can be exp l a ined i n terms o f the f a c t o r s 

suggested t o i n f l u e n c e the d i s s o l u t i o n i n su lphate s o l u t i o n s o f anodic 

non-porous ox ide f i l m s . The increase i n slope o f the p l o t o f 

l / C versus t f o r f i l m s formed i n d r y oxygen on i n c r e a s i n g t h e su lphate 
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s o l u t i o n pH f r o m 3 . 5 t o 5 . 0 , "both a t i o n i c s t r e n g t h 1 .5 (see Table X X I l ) 

can be exp l a ined as f o l l o w s . The p o s s i b i l i t y o f i n i t i a l d i f f u s i o n 

c o n t r o l , present a t pH3.5 was absent a t pH5 .0 , p o s s i b l y because o f 

the increased h y d r o x y l i o n a c t i v i t y , r e s u l t i n g in- a- g r ea t e r e q u i l i b r i u m 

p ro ton a c t i v i t y more r a p i d l y achieved a t r e a c t i o n s i t e s , i n s p i t e o f 

the reduced p r o t o n a c t i v i t y i n s o l u t i o n . The lower i n i t i a l l y observed 

oxide r e s i s t a n c e found f o r a s o l u t i o n pH o f 5 « 0 , compared w i t h pH 3 . 5 , 

could have a r i s e n f r o m enhanced p ro ton e n t r y i n t o the f i l m . 

I t would appear t h a t su lphate i o n a b s o r p t i o n may be l e s s , under 

the same c o n d i t i o n s , f o r f i l m s formed i n d r y oxygen t h a n f o r n o n - P O r o u s 

anodic oxide f i l m s , i n d i c a t i n g a d i f f e r e n c e i n sur face p r o p e r t i e s f o r 

the t^ro t y p e s . This i s i n keeping w i t h the t r a n s i t i o n f r o m suggested 

predominan t ly d i f f u s i o n - c o n t r o l l e d t o suggested predominant ly ze ro th 

o rder t h i n n i n g appearing t o take place a t a r a t h e r h i g h e r i o n i c 

s t r e n g t h a t s o l u t i o n pH va lues o f about 2 . 0 f o r f i l m s formed i n d ry 

oxygen. A l s o , a l though t h e r e could have been, i n i t i a l l y , d i f f u s i o n 

c o n t r o l l e d t h i n n i n g o f an anodic f i l m i n pH 5 . 0 , i o n i c s t r e n g t h 1 .5 

sulphate s o l u t i o n , t h i s d i d not appa ren t ly t a k e . p l a c e f o r d i s s o l u t i o n 

o f a f i l m formed i n d r y oxygen under the same c o n d i t i o n s . 

The p o s s i b i l i t y o f reduced boehmite f o r m a t i o n by r e a c t i o n s (4) 

and (jj!-) w i t h reduced a c c e s s i b i l i t y o f the f i l m su r face t o h y d r o x y l 

ions f r o m the s o l u t i o n and a d imin i shed r a t e o f removal o f p ro tons 

r e s p e c t i v e l y may e x p l a i n why the r a t e o f capaci tance increase was 
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g r e a t e r where d i f f u s i o n c o n t r o l was i n d i c a t e d . . This type o f behaviour 
was found f o r bo th so-ca l led-non-porous anodic f i l m s and f o r f i l m s 
formed i n d r y oxygen a t 500°C. Since the e a r l i e s t measured ox ide 
r e s i s t a n c e va lues were always found to be much g rea te r where ze ro th 
order t h i n n i n g was i n d i c a t e d , boehmite d e p o s i t i o n may be i n i t i a l l y 
i n pores o r f a u l t s . 

For f i l m s formed i n d r y oxygen, the more r a p i d i n i t i a l decrease 

i n specimen p o t e n t i a l f o u n d under deaerated c o n d i t i o n s , compared w i t h 

ae ra ted , i n pH 1 . 0 , i o n i c s t r e n g t h 1 . 5 sulphate s o l u t i o n (see F i g . 24) 

could a r i s e f r o m a reduced r a t e o f boehmite f o r m a t i o n . Increased 

boehmite f o r m a t i o n i n ae ra ted s o l u t i o n c o u l d account f o r t h e i n i t i a l 

and f i n a l maximum i n p o t e n t i a l found f o r f i l m s formed i n the moist 

oxygen atmosphere ( F i g . 2 5 ) . 

E l e c t r i c a l Resis tance o f Oxide Dur ing D i s s o l u t i o n . 

For bo th types o f f i l m examined e x t e n s i v e l y i n the present s t u d i e s , 

much l a r g e r r a t e s o f r e d u c t i o n o f ox ide f i l m r e s i s t a n c e were observed 

f o r those cases where z e r o t h order t h i n n i n g was i n d i c a t e d . This i s 

c o n s i s t e n t w i t h the idea o f an enhanced r a t e o f p r o t o n e n t r y i n t o the-

f i l m d u r i n g the p e r i o d o f measurement as suggested e a r l i e r (page 96 ) . 

r e s u l t i n g f r o m reduced su lpha te i o n a b s o r p t i o n . I n g e n e r a l , f o r 

r e c i p r o c a l capacitance p l o t s o f the same t y p e , an increased r a t e o f 

r e d u c t i o n o f f i l m r e s i s t a n c e -was cons i s t en t w i t h an increased r a t e o f 

p r o t o n e n t r y , t h a t i s w i t h reduced s o l u t i o n pH a t constant i o n i c s t r e n g t h . 
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As mentioned i n Section 6.8, the values of the oxide resistance 
when f i r s t measured were always -much greater i n those cases i n which 

zeroth order thinning was indicated. ' This might have arisen from a 

greater rate of boehmite deposition under these conditions, possibly 

in pores or faults . 

6.10 Comparison of the Rates of Thinning of 

Films Formed by Anodic and Dry Gaseous Oxidation. 

In cases in which diffusion control of dissolution was indicated, 

the time required to remove the outer layer of anodic films was much 

less than that required for removal of the thinner inner layer. For 

a given ionic strength of solution the time for removal of the outer 

layer increased s l i g h t l y as the pH of the solution increased. 

I f , i n i t i a l l y , there were considerable incorporation of hydroxyl 
ions into the outer layer of anodically-formed films, as suggested "by 

21 

Heine and Fryor , this could contribute to enhanced thinning by 

providing easy diffusion paths for protons. The presence of pores 

may also f a c i l i t a t e rapid removal of the outer layer. Films formed 

in dry oxygen thinned at intermediate rates under the same conditions. 

At higher solution pH values, the rate of thinning of films formed i n 

dry oxygen approached and at pH 5.0 exceeded that for anodic films 

and this behaviour might he associated with the smaller sulphate ion 

absorption suggested earlier for films formed i n dry oxygen. 
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CHAPTER VI I 
Conclusions. 

Sonclusions. 

Differences between the dissolution behaviour of anodic barrier-

type films and oxide films formed i n dry oxygen, when immersed i n 

sulphate solutions of the concentrations and pH values used i n the 

present work, appear to be related to the extent of sulphate ion ad­

sorption on the films. I t is suggested that, i n a given type of 

solution, the extent of sulphate ion adsorption was greater for the 

anodic films, which are generally regarded as amorphous, than for the 

films formed by gaseous oxidation, which were probably composed of 

crystalline y-aluroina* A reaction scheme proposed by Diggle, Downie 

and Goulding^ to account for the effects of solution pH and ionic 

strength on the dissolution behaviour i n sulphate solutions of the 

barrier layer of porous films formed anodically i n sulphuric acid 

appears to satisfactorily account for the behaviour found i n the 

present studies. 

Per the dissolution behaviour of the barrier layer of porous 
23 36 

films, a c r i t i c a l solution pH was reported to occur J % J below which 

suggested approximately zeroth order thinning took place. This type 

of behaviour did not occur i n the present investigation. Rather, a 

c r i t i c a l ionic strength was observed at solution pH values close to 

2.0, below which suggested predominantly diffusion-controlled thinning 
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gave way to suggested zeroth order thinning. Deaeration of the 
solution resulted i n reduced rates of thinning where diffusion control 

was indicated hut this had no effect on the suggested zeroth order 

rate of thinning of porous films below the c r i t i c a l pH ' . In 

the present studies, deaeration i s suggested to result i n reduced 

diffusion of hydroxyl ions and, therefore, of protons into the films, 

under reduced fields arising from the absence of oxygen at the f i l m 

surface, leading to reduced rates of f i l m thinning. I t would not be 

surprising to find, therefore, that where zeroth order thinning was 

indicated, deaeration had no effect. The large amount' of sulphate 
91-93 

ion incorporation i n porous films during anodising e might be an 

important factor i n the different type of behaviour observed, even 

after the effect of the porous layer on the rate of thinning of the 

barrier layer had been accounted f o r 2 5 ' 5 ^ . i n i t i a l preparation of 

the specimen surface cannot account for this difference since i t was 

the same for a l l . 

I t i s tentatively suggested that films formed i n a moist oxygen 

atmosphere, t o t a l pressuuelatmosphere, ^ =43.1 m.m., at 500°C, 

consisted of amorphous alumina with some water adsorbed and were less 

faulted than the probably crystalline y-alumina films formed i n dry 

oxygen at 500°C. 

Anodic barrier-type films studied i n the present investigation 

appear to consist of two regions, an inner less soluble and an outer 
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more soluble region into which, i t i s suggested, hydroxyl ions were 

incorporated. I t i s suggested that the slightly different structure 
21 

reported by Heine and Pryor arises from the different i n i t i a l 

preparation of surfaces adopted "by these workers. I t appears possible 

that the outer region of this type of f i l m , studied i n the present 

work, contained pores, as suggested by other workers,39 > 81-83,118;̂  

and that i n low pH solutions, the removal of the outer layer was 

controlled by a pore widening mechanism, the mechanism suggested to 
23 

control the removal of the porous layer of formally porous films . 

In the present studies, self corrosion apparently occurred for 

anodised specimens when the outer oxide layer had been removed, and 

also for a specimen chemically polished only. This did not occur 
for specimens i n i t i a l l y electropolished and then anodised i n sulphuric 

32 
acid . This indicates that the f i l m remaining after thinning was 

more protective i n the l a t t e r case than for even thicker films 

remaining on the metal after the removal of the outer layer of barrier-

type films. This might be related to the different i n i t i a l surface 

preparations used and/or a different extent to which sulphate ion 

was absorbed. 

Whereas the films formed i n dry oxygen at 500°C were apparently 

crystalline and contained l i t t l e amorphous oxide, i n agreement with 
47 

the findings of Dignam and Pawcett , who f i r s t electropolished --their 
48 

specimens, Beck and his co-workers found that amorphous oxide was 
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an important constituent for specimens i n i t i a l l y etched i n sodium 
hydroxide solution and the difference is.suggested to arise from 

different surface properties produced by this i n i t i a l preparation 

compared with those of specimens electropolished or chemically polished. 

The consequence of these different surface properties may well befthe 
4.8 

extensive faulting observed by Beck and his co-workers ,resulting i n 

easy aluminium ion conduction through the crystalline layer leading 

to the continued growth of amorphous oxide after the underlying 
crystalline layer was completed. For specimens i n i t i a l l y electro-

47 
polished or chemically polished, i t i s suggested that faulting was 

considerably less. 

There i s , then, considerable evidence that the structure and 

dissolution behaviour of several types of oxide f i l m on aluminium may 

be strongly influenced by the i n i t i a l preparation of the specimen 

surface. 

Proposed Future Work. 

Confirmation of the type of material present i n oxide films 
o 

formed i n this investigation in dry and moist oxygen at 500 C i s desir­

able, together with the extent of faulting i n each type. 

The effect of different i n i t i a l preparation techniques of the 

specimen surface on the extent of faulting of crystalline films formed 

in dry oxygen and on the relative amounts of crystalline and amorphous 

oxide should be investigated.' I t might be. possible to relate the 
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dissolution behaviour of the three types of f i l m studied to this 
i n i t i a l surface preparation. 

I f a pore widening mechanism controls the dissolution behaviour 

of anodic barrier-type films i n low pH sulphate solutions, electron 

microscopy might confirm t h i s . 
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Appendix I 
Apparatus Specifications. 

Anodising. 

Shandon water thermostat. 

Heathkit valve voltmeter, modelV-7AU. 

Solartron Dual constant voltage supply unit, model P.S.U. AS 1416. 

Oxidation i n oxygen. 

Constant voltage transformer - Advance Components Ltd., Type 
M.T. 262 XA. 

Heating tape powered from Powerstat mains transformer - Superior 
Electrical Co. Ltd. 

Furnace powered from Rotary Berco Regavolt mains transformer, 
Type 72 C. 

Cenco Lab Jack. 

Shandon water thermostat. 

Impedance measurements. 
Decade boxes-resistance and capacitance-Educational Measurements 
Ltd. 

Farnell, Type LF sine/square oscillator. 

Solartron C.D. 1400 oscilloscope, maximum sensitivity 10 mV cm \ 

Specimen potential monitoring by Philips GM 6001 volt-ohmeter. 

Switches - Radiospares. 

Sunvic, Type TS 3 (bimetallic strip type) thermostat i n conjunction 
with Sunvic, Type R 10313 relay. 

Specimen potential/time measurements. 

E.I.L. Vibron electrometer, model 33 B. 
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Sefram (Paris) Graphispot. recorder, Type GRVAT. 

Servoscribe recorder, Type RE Sll-Kelvin Electronics Co. Ltd. 

Determination of concentrations of aluminium ions i n solution. 

Unicam, Type SP 600 spectrophotometer. 

Barrier voltage determinations. 

Solartron Dual constant voltage supply unit, model P.S.TJ. AS 1416. 

Mbtorpotentiometer, Type MP 165 - Erwin Halstrup. 
Sefram (Paris) Graphispot recorder, Type GRVAT. 

Servoscribe recorder, Type RE Sll-Kelvin Electronics Co. Ltd. 

Determination.of solution pH values. 

Vibron Laboratory pH Meter, Model 39A - E.I.L; 
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APPENDIX I I 

Establishment of, the Calibration Curve, for, the Optical 
Densities of Solutions Containing Aluminium Ions. 

The experimental procedure used to determine the concentration 

of aluminium i n solution (Chapter XV (4.3-5) ) depended on the 

establishment of a suitable calibration curve for the optical densities 

of solutions. The procedure used i s described here. . 

Standard aluminium solutions (as sulphate) were prepared i n sodium 

sulphate - sulphuric acid solution used i n the dissolution experiments; 

this solution was of ionic strength 1.5, and.pH 1.0. 2 ml portions 

were buffered with 2M sodiiim acetate solution to pH 4.5-6.5, and ex­

tracted with 10 ml ifo w/v 8-hydroxy quinoline i n spectroscopic grade 

chloroform by shaking for three minutes. Extracts were dried over 

anhydrous sodium sulphate. Except at very low concentrations, com­

plete extraction of aluminium should be achieved under these conditions'1 

Using as a blank an extract made by using a solution (pHl.O, I =1 .5) 

which contained no added aluminium, an absorption-concentration plot 
o' 

was constructed spectrophotometrically at 3 900 A. 
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