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Introduction

This thesis is concernmed with those aspects of the galvenothermo- -
magnetic eff#gts which are related to the performance of a semiconducting
.or semimettalic energy conv;er'ber, - Although the theory of iaof:mpic
galvanomagnetic devices can be developed relatively easily it is only
recently (1963) that a full study of the refinements caused by crystal
anisotropy has been completed.

An attempt is made here io present. the eleménts necessary for an
understanding of thé problems i.nvolved in predicting the behaviour of .
an ensrgy converter. A descriptioﬁ of a refrigerator in a particular
orisentation is provided and serves to explain the physiecal principles
undsrlying the operation of these dsvices.

Since theres is available a great deal .of experimental and theoretical
information on gmphite in singls crystal or pyrolytic fomm and since
graphite exhibits properties which suggest that it might behave efficiently
as a refrigerator it has been chosen as a model. ;

The magnetic field dependent conductivity tensor is developed from
what is-known of the band structure and the Nernst coefficient is reduced
to a simple form in terms of mobilities. These coefficients are applied
to the figure of merit of the refrigeration device to give a mumerical
estimate of the efficiency of graphite as an energy convarter.

Chapter 1 describes the Nernst-Ettingshausen refrigeration device

operated in the transverse mode with the theormal gradient, electric
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current and magnetic fisld x_nutdally perpendicular. It is shown that

the efficisncy of the cooler depends on a figure of merit which is’
required to be as large as possible. The figure of merit is directly
pmportions.l; et a particular temperature, to the slectrical conductivit;y,
the thermal resistance and the Nernst coefficisnt. The material used in
an efficient device should, therefore, have a high mobility and electrical
conductivity and a low thermmnal conductivity.

Ths general equations of transport are developed in Chapter 2 and
the galvanomagnetic coefficisnts are ext;'acted from them in terms of a
general scattering parameter. The assumption is made that the relaxation
time of a carrier exhibits a power dependsance on its esnergy.

The band structure of graphite is well documented and Chapter 3
merely serves as a brisf resund' snd as a source of references to the
many contributions mads to this topiec.

Two types of scattering are thought to take place in graphite at
temperatures in the range © <°T < 300°Kand it;'-chapter 4 weak fisld
expressions for the phenomenological coefficients are obtained for the
cases of acoustic mode scattering and scattering on imperfections and
crystallite boundaries.

The final Chapter discusses the saturation values of the conductivity
ﬁnsor at high magnetic fields and concludes with numerical estimates of

the figure of merit for graphite.
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CHAPTER 1

The Nernst - Ettingshausen Refrigerator.

PFnergy oconversion can be achisved with reasonable efficisncy in
semiconductor devices by making use of the thermoelectric or the
galvanothermo-megnetic éffecta. The théory for the thermoelectric devices
has been well established (1, 2) and the recent discussion (3, 4, 5, 6) of
~ the Nernst - Ettingha.usqn power generators and refrigerators has developed
' in an analagous manrer. The detailed analysis shows that the efficiency of
the ..lat'ber devices depends -on an anisotropy factor and some clarity of the
physical situatibn is lost in dealing with the anisotropic equations in the
gensral approach. For f.hia. resson the isotropic Peltisr refrigeration
dovice is discussed briefly.
| 1.1 The Peltier Coolsr.

Er;argy is emitted or absorbed when a current flows across the junction
between a metal and an extrinsic semiconductor due to the discontinuity in'
average energy of the current carriers. ILattice vibrations provide the
energy reqﬁired ‘when absorption takes place and there is a subsequent
gooling of the mater:.al -

Temperature is re duced when the electric current flow is from n -~ type
material to the metal and from the metal to p - type material. The device
' is shown in Fig. 1.1. The the‘ma.lureservoirs are at temperatures Th and

Tc, the junction resistance is supposed to be negligible and the electrical

n‘).": W I‘... L
('f\'u FEL ,,;{,)

Lxr.E}»“ :
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resistance P> thermal conductivity XK, and Seebeoh.eoefficiant ¢ arTe

assumad to be independent of temperature.

L

Fiz. 1.1. The Peltier Cooler

<
&

The efficisncy of the cooler is discussed in terms of the reduced coefficiant

of perfomancs.

(br"" _%_ - ¢ —A'F;r—< PP IS, |
C.

where is the coefficient of performmance defined as the ratio of the
heat q, » removed from the cooled ressrvoir devided by the electrical power

b= e

P eessscssae la2

¢C is the maximum value of ¢for a Carnot cycle

T | '
¢°= .Z‘:"-‘_— . JX.

md ....t-...ool.4

AT = T, - Te >0
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Joule heating in the sample caused by the flow of current together
with themmal conduction from the hot reservoir cause an umwanted temperature
rise at the cold junction. Thus the heat removal rate is reduced - from

0(1:.- I - the rate of Peltier heat absorption - to
q =xT . I-1I*R-KAT cirneennals’
(o] 2

I is the electric current, K is the themp.l conductance of the two amms

in parallel and R is the resistance of the two amms in seriss.

‘ K: KnYn-{-l(,PYP ' ecscesssasleb

. P Po
n
R = ¥ + Y cereneees odnT
n P
where the subscripts n and p refer to each am and'Yi, is-the area to length
ratio for each am.

The applied voltage

V= AT+ IR

...........1.8

so that the power imput

P=VI
= xIAT + I’R

..l....l..l.g
Thus the coefficient of performance is
Ml —4m? - -—(,-ﬁK AT
¢ = c 'I — ooooooo-ololo

mAT + m*




with me= -:—[eug—

@ may be optimised with respect to the ratio Yp [Yp b7 equating the

derivative to zero.

Then Ja
. ssessssss 1.1
o) _ ( e | /’n) |
'Yp opt Kn 'PP - |
| - AT
and ¢ = mle —Jgm? _Z ceeees 1.12
opk mAT + m?
wheTe - ox?
Z [(pn K;n)yz. +(Fp K'P)hjz_ eescecslel’
o>

(XR) -
is the figure of merit, requiring to be qs' large as possible.

The optimum coefficient of performance reaches a maximum value.

. - Th/ e 1.14

wa AT w+ |

xAT
R(w-1)

when I =

....... 1.15
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and

w=(l +Z7) ceeenealalb

T-=

' [N NN N ] .1.1
7 (Th"'-'z) 1
Finally the reduced coefficisnt of performance optimised for geometry and
applied voltage

¢ — .Q;__rﬂ/_TL_ ceveeelsl8
r

The maximum temperature difference, AT max., is found after setting

Gr=0 to b ATW= ,\9-_2'-1};:l ceeeslel9

Delves (7} points out that a Zr, of about ity must be optained for

2 at 80° K.

useful cooling at low temperatures requiring Z~10
Wolfe and Smith (8) bhave obtained 2= 5 x 1070 (deg. c)-:L at 80° K for an
n - type Bi - Sb alloy, which is better than any of the values given by
Hoikes and Ure (1) but which is still rather low. A corresponding p - type
material has yet to be foumd. _

The search for a better figure of merit has caused attention to be
turned to the themmogalvanomagnetic effects. The principal advantage is

that only one material is required.




1.2 The Bttingshausen Effect.

In an extrinsic conductor the Ettingshausen effect (9, 10) is the
production of a thermal gradient in the y - direction when a magnetic |
field preferentially deflects fast and slow current carriers flowing in
the XL - direction.

Near the intrinsioc region both electrons and holes are deflected by
the magnetic field to the same side where they recombine and release energy.
On the oppoaite side generation takes place and energy is absorbed. This
process provides and additional and often larger contribution than in the
extrinsic case.

A rectanguler cnfiguration is supposed in the above description and the

effect is formally described by

- .
.%g. = PHsz . ceseceale20

whore P is the Ettingshausen coefficient
le3 [The Nermnst Effsect.

The extrinsic Nemst effect (9) ocours when carriers diffusing along
an applied temperature gradient are deflected by a magnetic field. The

con@entration of corriers produces a transverse electric field

ES = QB ..-...10'21

zd'x.
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where Q, is the Nernst coefficisnt.

1.4 The Galvano-themmomagnetic Refrigerator. |

' The theory for thermogelvancmagnetic generators and refrigerators has
been treated extensively by Harman and Honig (5) and by Kooi et al. (6).-
The manner in which the Nernst and Ettingshausen coefficients enter the
equations for the coefficient o0f perfommance is shown by particular
reference to the transverse device.

For simplicity attention is restricted to the isothermal mode of
operation although a subscript is not used on the various coefficients to
specify the isothsrmal case.

Although Harman and Honig discuss a two amm device they show that no
advantage is gained by using two different materials so that it is sufficient
to examine the single rectangular bar configuration which is discussed by
Kool et al. (6)_ and treated rather less fomally hy numerous other authors,
(354,8,7,9 )e The device is shown in Fig 1.2.

; g T
Y i To
L ——————d e, mc e - - X=0
D g
Ix'."'VgT=
=1V, T=0

2

»—{l-\-}"F

.................................
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The rectangular parallelipiped bar is maintained be'bwaeﬁ two heat
resevoirs at tamperatures To and TL with T, > Ty The desired conventions
and configuration are clearly shown in Fig le2. The magnetic fisld is -

| H= (O'O'Hz) 1= <O:IS»O) is the electric current and
V. T=(V,.T,00) is the themal gradient.
With these restrictions the rhenomenoclogical equations (8e,11) for

an anisotropic material may be written in relatively simple fomm.

J

< .
< - _l_erx vxT-i- (dsx— HzQym)Ig . esvele 22

9 - —ny‘l'H K M
T.s - ngj i Ve T+ @‘33""2935)3'3.....1.23

*

V, ¥i= (me-f Hzer_)Vx_T+ (P_Hx‘Hz.r\’Bm)J—H eeeela2d

%@:(a g:z:"". H;__Qa:r.)vxT +’P95 TY cerresleS

.i..'-' ] *
E = —vr (—«}é«) is the electric field, “’y = — ;ge +V
§=7| according as the material is p or n type and O is the

Forxmi enefgye.
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The entropy flux density is Jg and the electric current density is J.

FJ’Q‘J’QU’O(U’K(:J and L‘.‘J are the resistivity,
Nornst coefficient, Hall coefficient, Seebech ooe.f.‘ficient, themal
conductivity and Riéhi—Leduc eoefficiez;t respectively. _

. A differential equation for the tempera.ti:re distribution '1'x along ths
. bar is obtained by Hamman & Fonig (Be) with the assumption that the current
137 is constant. Their claim that the error involved is not large is
validated in a short discussion by Honig & Tamy (12) and by the fact that,
although an approximation is obtained for the temperature distribution, the
resultant expression for the coefficient of performance amd maximum
temperature difference is equivalent to that obtained by Kooi (et al.)(6).

It will, therefore, be assumed that Iy is a constant. As energy is

congserved in the system the equation of continuity applied to the total

energy vector J ¢ is (13)

div]e =0 o ceeerleb
with 3. =TI -pJ | verssled]

giving Ve (T T:) +,V3 (TJ': - ¢I”)=O ceseele28

since T ____O



R

. gives . T(o '—

% :
- ‘Substituting for T s T: and V ‘ll) from equations 1.22

J.

1.23 and 1.24 and assix_ning that each transport coefficient is replaced by
its average value denoted by a bar gives a second order linear differential

eduqti,on--fot‘ the temperature distribution.

R VT +aH, Qe T T+ 5, @0 oo

Kooi (et alia)(6) treat the -case when the Nernst coefficient and the
resisitivity are proportional to T L and obtain the same coefficidnt of
perfomance. -Equation 1.29 is solved approximately if T(x) can be

axpanded-as a Ta.ylo'r series about _:_Lts valus at x = o

T ) ' m’. M .
T@)=T(c)+xT (o)+ 5 T (o) eeeela30
Retaining powers of x up to x° and using the bounde.ry cc;ndition's

Té= M,T oL | e

AT

L:c
5 =y

where Qa = 2’518&"]- veeealed3

' Kxx '

AT)_L:E‘. S :.....1.'32

+ (b+o. )

b = P"L!-(j:y)z' | | 134

K’Ii
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and AT = T‘_— To > 0O 5 cieeesle3

The sample has sides of length Ly (A = x,y,z‘ ) and cross - sectional
area A, perpendicular to the direction A e

The coefficient of performance C of the dﬁ_wice is the ratio of the 1_‘8.1'8.
of ﬁmsfer of energy to the cold resoir, E.,_,o , to the power imput,
P, to the device '

€.
C= ;o ) cececeeledb

The total energy flux past the junction at

.ez-o=_ Az:r: esessssle’d]

x ' ;8
Substituting for TE from equations 1.27 and 1.22 and neglecting the junction

resistance term involving 'll),._,_o
€ 5 AT\L -
gives Ex_o Ax L. ( e ¥ Ly )"i":' Ax_'f essseseled8

SICRILI,

y : .
Since the total current is Is = AST * esesssle39
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expression 1.38 may be abreviated to

€0 Ko AT-4R I+
....... 1.40
+ Ty T (A e HoN o) 5 AT (Aot HoN )]
- - A :
Km'r_= Kyx —: ' ceewseledl
- | L
= —
R‘gg p.‘JH Ay [ 1.42
ry - L
= —
Asx o‘g:r. e 1.43
_ - Ly
NH& ) ng—x 1.44
and T= (TL+T°)
ceessled5

The electric current, Iy, is detemmined by evaluating the line integral

of Vs'll) round the circuit.

' hbving Tua. V = AT [Agm"' Hzl:lsm] +Rysi.9 ee1026
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Wheore V is the applied electromotive force.

The electrical power imput is then

p= VIH
=yﬂir[7xgaff|*;§u93é]ISr+fl1£J];:

and the coefficient of perfbrmanee {equ.1.36) is

eeasled]

Cam K, AT+ zR“gI”d!![T(H Nyz- Ayx)-t)iAT(Agr_-tH,_N,x)] Las
- AT[AH,_+H Ny,]Iy+R wly

The optimum value, c:' is obtained by equating the derivative -a—(-"’- to zero.

a1,
‘Then the optimum valus of the cur;"ent.ia Co '
It I—»{ ——.-.’—"I Lf—sﬂl— ceeeled
3 T . H N Ag:c ) B ' _ '
= (1= YT " '
where ‘SH = (1+YT) ve ee1e50
Y"' rg:r,z' ....2}-;51 "

vy | B o .....1.52




and r - -|-—"-L ng __yx " essesae 1053 )

»
Substituting Iy into equation 1l.48 gives

C“= To [Q¥°%(l+§§)-%(l+8§) ]._.....-.1.54
AT +6, -

- N y - . d 13 - - . .
The maximum t_empera.tum difference is found by optimising .81‘:0 (gq;.\ | h.D)

for Iy and equating to zero vhen

(AT) =,_|2_-'|-2-r3xY . . eoves-1e55
mox .
Whén O(Sx is small, ..('93c tends to unity and Yt.enclls to
K PSH
Then the maximum temperature difference is
_ 1l F2
(AT')“W leT 00001057 ‘

and Z..E is seen to be the figure of merit for the Nernst-Ettingshausen

device. Suitable orisntation of the crystal provides an optimum value.



The oriteria for a large valus for ZE a_i-e e high Eernst coefficient

and elesctrical conductivity snd a low thermal conductivity.

The expression 1.56 is obtained (6) if the crystal used in the device
canbe oriantated so that the various fluxes are directed along principal_

axes8 which are mutually perpendicmr.
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CHAPTER 2

The transport equations and the galvanomagnetic coefficients.

Magnetic fisld dependant exp-re'aaions are obtained for the
galvanomagnetio tensors which are epefﬁcienta in relations between
electric and heat curr.ent densities and applied electrochemical fislds
and thez.mal gradisnts. .The tensor components are obtained in terms of

the solution of the Boltgmenn equation assuming the existance of a relaxation
| time for some particular cases. Further assuming that the relaxﬁtinn time
“T" bhas a power dependsnce on energy ( T=b ex) an expression is giv.en
for the Narnst ooe_fficient in an anisotropic conductor with arbitrary
scattering parameter, A in temms of partial mobilities, Fermia levels and
Fermi integrals. |
2.1 [The Transport Equations.

The phenomenological equations relating current density flow to applied

electric, magnetic and thermal f£islds are established by the theoi'y of |

irreversible processes (1%, 14, 15, 16) to be of the fom

T =0 (WE +M,_ (1) 2T ceeeeei2d
d I dx; -
- * ., —6-1. " : | secssnacsle
q.-= Ng (FI)EJ + LU(I:{) axj 2,2

o¥

where E*-‘—‘E-l'_'e _B-; oV

=& axj .........a3

J




is the electrochemical fisld
E 3 and _g_l_- s are respectively the cartesiun components of electric
fisld and thermal gradisent.
Jand q are electric.. and thermal current densities
V is the electrochemical potential
and - o is the electronic cka-.rg“e.
A sumation convention is -used over repsated indices.
When more than one type of carrier is present the total current demsity is - .
obtained by summation over contributions dus to individual carriesrs.
The choice of grad V and grad T as forces and [I/ (— e)-] J and
[\ /T ]3, as mass and entropy flows psrmits the applicetion (16) of

thaﬂOusager relations.
mes o, (H) = 75 (—_i—_l) ceeece2ed

Lij (ﬂ) = L}("‘:D ' ceerss2e5

Nij (Ij) = "TM'Lj (’_’H) ceseces2eb

Q" is the electrical conductivity defined as the reciprocal to the resistivity
tensor o  The other coefficients M, N and L are not easily observabls but

can be expressed in terms of more familiar effeéfl-.s by inversion of equations

(2.1) and (2.2) e



~18-

PARY-1
E:‘ = ,Olk(lj) J-h"" ik (H)—a_g'cJ ....... 2.7
' oT
9. =Ty (H)J- k(B s 2.8
where - €  esessses 2.9
Ry Te= Sue
Xk = eijh C ceeseess 2,10
My = N-'J. ,OJ.Iz ........ 2.11
Kie = Nij A Mge L i ceenenes 2,12
and = L) eeeeenes 2.13
Kile(t‘): Klzi(— H) C eveeeee 2.14
'n'(h(I-_-D = To(ht(“'_'_') ......... 2.15

' 0( is the absolute themmoelectric power, N is the absolute Peltier

coefficient and K is the thermal conductivity.
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2.2 The Galvanomagmetic Coefficients.

Expressions for the transport coefficients are obtained by considering
the distribution function :F (E,.C) of the charge carrisrs under the
influence of applied fislds. :f (Ig, f) is the prohé.bilit.y that a carrier .
exists in a state with wave vectar R and position vector r .

With this definition the number of charge ocarriers in a volume element '

with wave 'vectoi's\ B in the element dsgis" —-'—3 J(E,C)ds'f d3[

i

In the absence of fields the carriers obey Fermi-Dirae statistics (17) and

'JC'-"JCO"' \-}exL( ) B cereres2e1b

vhere € is energy, €  is the Fem:l. level and T is the absolute

temperature. R is Boltgman's constant.
. Knowledge of the distribution function gives an explicit fom for the

current denaity equations (18).

;_’:;- - Ie;g S\_/f ds}_Q_ cerress2.1]

(}el _L_|.L Sy (e-)fd%k ceereee2,18

_\_/ ia the carrier velocity. The subseript el indicates that only the

eloctronic contribution to the heat ourrent density is given by equation (2.18).




The d&istribution function arises as the solution of the Boltymann
integro-differential squation. A derivation is indicated in Appendix 2.A.

The equation is
——‘gh_ (E "“'-é‘\—//\‘:‘) . Vk:f_‘, Vv : Vr:f= (-%i_t)co“ eesceea219

where E is the electric fisld, H is the magnetic field and Y is the
gradisnt opers.'bor. ,

The temm —T) represen'bs the contribution to changes in the distribution

function ecaused by @ollisions of charge carriers with lattice imperfectionse.

This change may be represented as a collision integral (7)
) - g{s_ge:@fcs')n-fc@J—S(h, FE-SE T de’ ..o

in which a carrisr is taken by a collu:.on from the state B to the state
and S(k ) :.s the probability per unrt. time interval that the carrier

wmdlkes the tra.nsition.

:f(h) E!"If (hf)] is the probability that the siate h( is occupied and
the state hf is unoccupied.

The solution of equation 2.19 with (a.t) given by equat:.on 2.20
coll

can be obtained by variational methods (20) but it is usual to assume that

4 relaxation time T governs ths approach of the distribution function

to its equilibrium value after the external fislds have been removed amnd



under the influsnce only of collisions of carriers with lattice imperfections.

That ia‘

($45), =G, e €Y S

or _a_:_f__.) = - f-fo eecensse22

The existence of a relaxation time is discussed by Beer (16) who points out

that the.asatmption'is justified for elsmsntal semiconductors provided that
the enargy emitted or absorbed by a ca:;'rier ak collision is small --compa.red '
with its initial velocity (21, 22, 23)

With the collision temm represented by equations 2.22, BoligmannSequation

raduces 'bo.s, first order linear differsntial equation.

)

__%[g.q.;c \_/AI-_-l] .ka.g. _\_/.vr-‘f_—i;.‘_fg. cosecee2e3

which can be solved by letting

- omdh 5
$=f - O

substituting
___'-V |
+ R

and retaining first order tems.
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This results in an equation for (b

¢
e . ————
% F. Vke + = Ha ¢ T ceeeesees2.26
whera - seessssele
2=V v, 2.27
_ o€ | ceeeeces2.28
=€k S5,

where EL‘ 0 is the permmutation tensor
J

Esz‘ = 8[32 = 2|s=_l 0000.02-29
other components zaro

F= E—%—Vf (.e_—'rs) is the applied electrothermal fisld.
Equation 2.26 is solved by an iteration process (24). To zero order in

magnetic field.

¢o=_%:l:f_vhe- | esseees2s30

Substitution in the second term of equation 2.26 gives
| T (o, €
o =- —%\—{E-Vhe-‘;"z‘cd-ﬂﬁ'f-vhe)} vereeni2edL

ans so on, for a series expansion for (b in rising powers of the

magnetic field



=23~
Q):-%h:—r {E'Vhe -~ —T%_C-,H -n.("T'E-VkG)+

+ (%c)ﬁj 'Q'{T’:' -a(TF Vke)}+..}"‘"'2'32

The approach must evidently be used when the magnetic field is small enough
to allow reasonable convergence of the series. . In addition the expansion

and the Boltgmann equation itself is subject to the quantum limit

__e_"l;-l < | ceeeee2e33
mC m*c

The procedure for high magnetic fields below eT is discussed by Shockley

(25, 26, 27) and others and quantum effects are disaussed by Beer (16).1& is
assumed here that the inequality2.33 applies.

The substitution of equation 2.24 in equations 2.17 and 2.18 gives

. a.& '
| J= lp_:gt\ gv,_ie ¢ Se ds,l_e ceeees2.34

ceeeeas2e35

- - ‘ » __'g a_fo'd3|e
@5 Ve (e

since there is no current contribution dus to the equilibrium terms
 involving :f° .

F:.xpression 2.32 for cb , When used in equationa 2.34 and 2.35 gives
explicit if cumbersome sxpressions for the galvanomagnetioc coeffieients
after reduction to the form of eqﬁations 2.1 and 2.2. }More ussful

expressions are obtained by examining some particular cases.
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2.3 Quadratic Energy Surfaoces.

Mn the carrier energy is a quadratic finction of [ ths Boltgmann
equation can be solved exactly. With a suitable choice of co-ordinates
it is possible to write

! 2 2 2
k
e(g)-:—i.hz h.‘. + 2 + ks es e -2.36

The themmogalvancmagnetic effects in many conductors can be predicted
using an arrangement of such ellipsoids in accordance with the symmetry of
the crystals (28, 29) it is found that usually msz=m,= m;._ y Mg = My,
where - and 11 indicate directjnns perpendicular and parallel to the
long axis of the ellipsoid. |

As an ellipgoid can be reduced to a sphere using a linear transfommation
it is useful to study the isotropic effects.and to deduce the general quadratic
case. The results will have the same form (30) except that < * temms will
be replaced by O'|'| . .

With energy given by 2.36 ¢ may be written in clossed form.

{E_If(:;)’\ H+<_'Lce_)z-(F-H)(m H)

{ml
TeyY (mH-H)
H(._—c') T

......2!37

where ™ and |M| are the effective mass tensor and its deteminant. °
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2.4 The Transport Equations in an Isotropic Medium.

In an isotropic medium the ellipsoids of the previous section are

reduced to spheres and
T"z

R
2 m

€= cereaea2.38

is parabolic in B- space

The expression for (b simplifies 'ho

P e.{f el )FaH+ (5 G H)H}
4 'R l-{-( ) H" eeceseee39

" since the effective mass tensor'reduces to the scaler M.

Expressions for the transport coefficiente are obtained (31) by expfesing
q) and equat:'.or.xs 2.34 and 2.35 in tensor fom and comparing with

equations 2.1 and 2.2.

For a cartesian coordinate system with

Txx™ Tygy = C| ceeesse2040
Tey= ~ Tyac=— B, | ceeenes2edl
Typ = Tyx=~TFpp = ~Tzy = O oo 22
0, (H)= T, (©) o ceeees2.43

M

11

& s, Mg = ~Fr [on-%0] P
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| _\
N:x = __é.[cz‘ SC:] ,N:; = '!e"[D,- D] ceceeee2dd5
o |
Lu =- é"T [CS— QSC2+ SZC.] ....... 2,46
\ o ' 2 '
Liﬁl = eaT [03' 250,+S D|] cereeee2ed]

Tye symmetry relations expressed in equations 2.4l and 2.42 apply to the

other coefficients.

Cn —_<€etsim) et (2 M)ﬁ T n+¥ aFo de

'5.“ 2‘F\3 R '+(LOT)2' € g_ ....... «2.48
Ya po®
o 2e*(2m) X wT? m&a.f
Dﬂ 3“‘2“3 |+(‘DT>2 e ae de-
ceennns 2.49
L= —%‘—;‘- , € >0 for elecirons

The equations 2.1 and 2,2 may be inverted so that the conductivity, Hall
coefficient, Nernst coefficient and thsmmoelectric power can be expressed
a:’u_nply.

Equation 2.1 becomes (32’.


http://Efa.ll
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.é&!ﬁi A LA A Q /1|
63— TN LA L_y t Aw_a_i(-ﬁ)-Als_a'g (Tﬁ‘)

V¥ (S- e€)ir = Vit
E'=&VV

© is an electrostatic potential associated with

:FL = - eLi) €3> © for elsctrons

A ,__3m Kl
" ART K2+H?
_3m H,

Ao okt K2+ H,?

- _JKKa+HH o
A" { K +H? .

v eee2.50

cee2.51

....... 2.52

....... 2.53

...... 2.54

....... 2.55

«ee2.56

...2.57




- cesesea2e58
" K,‘+H,’-
Kn = - 39'21 Can e 2459
3m | |
Hn = - -i:" Dr\ ..... 2.60
2.5 Isothermal Effects.
The electrical conductivity
=7 wh 97 _ dT _
o= / with dae dy J-H ...... 2.61
_.e*
T=%T A,
The Eall ooeffic:.ent
E
Q"—: ___S_ N\th ﬂ — él- - =
H dx d_g ]‘-9 °
..... 2.62
_RT
R= G5 Au
The Nernst coefficient.
Q= E%- L“‘h J- J- -é——z )
HEd /d:c dy
2.63
Q==L A

TeH




The Thermoelectric Power

Ex _ dT
= T, 'J'
0( d17 xw dg O [N XX ] 2-64
A|3 x
{la-r +V }

, 2.6 Mixed Conduction.

The equations used so far apply when only ones type of carrier is
presente When two carrisrs take part in conduction, the contribution
to the current of each band is svaluated individually with the correct
sign for the carrier charge and the total current is obtained by summation.

For an isotropic medium the valence band energy is

__ ‘lhl
€= Eq-5 e

where E9 is the energy gap between bands.

.- 2.65

E9 > O for semiconductors and energies are referred to the bottom
of the conduction band. v
The Fermi levels for electrons and loles are related by Eq=- ('5,+"§,),
where the subscripts 1 and 2 refer to electrons and holes respectively.
The‘ sumation for the two carrisr case has been carried out by Putley (32)

and his results ars quoted for the isotropic, isothsrmal case.

(or+o2)+ Higla R +R. ) veees 2266
I [1+ H'R: o I+ [1 +H7R 2]

T =




=30~

R- RTG 4R, q 2+H<rcr,refe (R +R,)

...... 2.67
(G +9:) +Hz<f‘cr,(f2 +R)?

Q=19 {5+ )+ata* R, R, +R,)H§+Qz{u'(o-+cr)m-dzR,(R +(e2)Hj +
+<r<3'i.(°‘ ot,)(f?cr Roz)]x ...... 2.68

% (o7 +aa) + Hia o (R 4R, T
=[x, {0' (0’ +c‘)+ﬂ'<r Q2(2+R,)Hg+o< {oi(o‘-eo;)-l-q— o R (ﬁ.+Rz)Hﬂ

- 070;@1 QYRw;~ Q,_Gi)H] X =0
x[(G1am+ P2 R +R )T

2.7 The Single Ellipsoidal Energy Surface.

The expressions for & (equation 2.68) may be extended (33) w0
cover the case of a single euipsoidal energy surface. Then .
Q.= Qua (N ax () +Qy= (p) JTx P

y* Ty (0) + a3 (p)
+ _[Ryx (M) a5 (M)~ R (p)Te (P)] ()3 (p) (o= o), -
[ () + % (p)][ﬂ' (4, 3 @)

-+

m and § refer to electrons and holes respectively
% is the dirsction of the electric field

y is the dirsction of the themmal gradient



and J is in the z - direction. .
It will be shown later that Q, R and g~ are relatad for each band if the

relaxation time can be ;'epreaented as a power of the energy.
fr'= be A R ! - - ) 0000_2.71

.Then _'Q.._..- % r\’ T B ceeee2e]2

i =1 or 2 and the negative or positive sign are used for
electrons or holes 'reap'e_ctivaly'f' and '-"'*e‘_>o-, c’u has been abbreviated
to O | | |

When the substitution for Q.L | 16'mades

Qye= 2B [—q,, Ln)qs!(“)"i(")*‘lp 9x<P)°’ CP)G' P
= - =2 (n)+c"x(p)
[.e x(n)ﬂ' Cﬂ) z(P)O'xCp)]o" (n)o" (p) (uﬂ_ O‘p) '
[ Cn)+cr CP)J[o‘(n)+ (P 2l

- 2.8 Genaral Energz Surfaoea. »
Expreasmns can be obtamed for the disothermal electnoal conductivity

and I-hll coeff:.c:.ent when the energy is an- a.rb:Ltrary fu.ncta.on of wa.ve vector.
The electrq.cal conduct:.nty_‘hensor “ ___) . '.'LB expanded as a power

series in H about its zero fisld value




I = Ty (£) Ej | ceee2.74
and G =+ Ho+ay HH +.. 25
Y R 3] HLt "' Ylm Lm0 eeee2e
° d oi; (W)
W th G’ij. =( BI—)I(— ) : cees2eT6
. L H=0
° _[day(H)
ijLN'\:( 1= ) ooo.2.77
OH 2H,, /=0
md WT<L|,
Substi;tution of & (equation 2.32) into 2.34 gives (54)
° e* af ée ae 3
i =T TTag cer.2.78
j I-FIT‘t‘\z S ae éh‘ ah:’ d’kR 7

o_, € (o de de d 3
Ty " ke e &' 3 ok, ok, k5 5)f k-2

€ > O for electron and E is the permutation tensor defined

. e
in equation 2.29.



. [ o6es .8]-
G:';. =0 unless L=) 2

tJl =0 un\esg L*J -_#Q_,# L 00002.82

The Hall coefficient is related to the conductivity coefficients 2.81 and

2.82 by

| &ﬂ:rgg; eeee2.83
¢ )

The expansion is useful when the magnetic field is not large enough to

prevent convergence.

29 Ewvaluation of the tensor components of oonductivi}x for quadratic
energy surfaces.

When the relaxation time is depsndant only on energy Q’\' = b€)') the

evaluation of the integrals 2.78 and 2.79 gives

_ CHDS aﬁde&.&&§; ceee2.B4
- m? de | grode|

mo ¢= B[R, % _i 2y ol

2 |Lm,

&

and dS is an'element of conptant enefgy surface.



http://Ifc.ll

.-%
When M =M, and My is the long axis of the ellipsoid.

A
T =G, =Am, Fx-l-Vz(n*)

ceee2.85
Am,
T = i e (1)
3 cese2.86
with f\*= g/rzT ....é.a7

F (ﬂ? 3 |+9<::(I—T | e0002.88

' is the Fommi integral

A /) :
A = c.bQ.%'IT(K +3/2)(|°~T)( M s ee2.89
2
and Q= E-:Tﬁ; eese2.90
m %
- 3 X
=8 B (™ 28
— ' *
251 = "B 1% Foaan (1) ceer292
G-Iz?,: —0;13 00002.93
a. e = —0__=- a7
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s ¥a
A= ob‘dQVQS"'lr(Q>~+3/z)(h‘)(m ‘
d= % «e2.95

Using equations 2.83 it is found that all the Hall coeffieisnts are equal

for a single ellipsoidal valley.

| K
=R= - 8 | _»+h cooe2e
R‘JL A* m,mS* Fast *

The carrier density . is given by the products of the density of states temm.

n(e)de= -(-;1?)3 Sdgh ceee2.97

with the carrier distribution function j; (G)

o0 e=oo
n= X nC€>Jc° (€)de = & :E(e) d*rR vees2.98
© €=-0
L [2KRTYE % |
Tont \ K ) F-”z ('\*) veee2.99

Substituting N into equation 2.96 gives

Ro 3% Py ()R (1)
~ “nec 2. (A.;.%) [FM%(Q*)]:. cee22.100




with @ > 0O for elsctrons.
If partial mobilities associated with the directions of the principal
axes of ths ellipsoid are defined by

Y

m.L ...2-101

(hT) 7&+ Va ("I*)
F”z (n* ceee2.102

= -%- eb(A+33)

then G.Ei,': neHi 00302.103

2.10 The relation between Q, R, and T

The weak fisld Nernst coefficient i# obtained from equation 2.63 for

the s\ngle carrier isotropic case.

L KH- KM, o ion
QT ™ K2 o
oy (e |
= bk = )((FP) .eee2.105
ceee2.106

a‘( _ (34235420 Fa () oz (79)-Gis2) (5495 %(n"‘)rma(n’?
)=

(3442)* [FA-t'/a (n* )]




BEquation 2.105 together with

I=neM eee 2,107

- (3/2+1>Q Fars y,_(ﬂ")F'yz(n") eee 2,108
et GarnT  [Fan(W

giva Q=—-A% ORT - * LN J 2.1”

|[_§é+21 Faa+3e Yo+ F/\+%]

where Q = — - .
Al3a4+ax Faaqry  Ya4A Faun

ees 2,110

a = 1 when non-degenerate statistics are applicable and is zero for full
degensracy. ar= 0 when XN =0
The expression for a for values of A=-V2, '/2 ) 3/2 are given in table 1

<

and are plotted for values —{2 <-Er< 12 in graph 1.

A - Y 3,

Iq.E!—--éEVi | &&E- R 22 Fy, g Fa
o TFy 5F, F |7R 9R

- TABLE 1.
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2.11 The Thermoelsctric Powser.

The themmoelectric power for a single carrier is derived from equation

2.64.

vess2.64
For the weak fie}d case
‘Hg + H, K
O(‘-"th[K ’kz ' z] 4 IET reee2.111

where Hi and K { 8Te given in equations 2.48, 2.49, 2.59 and 2.60.
The sibstitution gives

wr-8 %ar Py (M) *
] )
3/9'4')‘ FA+V2-(Q’9

L] ..2.]12

for slectrons. (€ > 0)

< " for 0¥
For holes 0(P= —CXn substituting fes g —for f]
The partial thermoelectric powers are not directional (34) if -the

relaxation time is of the fomm T= bex as has been assumed.

L
2,12 The Nernst Coafficiant.
fhe weak field Nernst coefficient for two carrier conduction with a

single ellipsoidal energy surface for each band can be written as the sum




of two texms
a c
ny= ny_ + QB" cees2,113
Qa
where QB& is the bipoler contribution caused by carrier flow along the
temperature gradient and subsequent recombination. Q; o 18 the contribution
due to individual carriers.
a _ h —Oan n" Hx P9+ O.P QP P’.Omvg

Q x— X ——— 000020114
oy an-_ + va
where r Trefers to slectrons and p to holes

¥

R =--1_3 17*_*3/31 i(f] )F%"'/’-(ma eeee2.115

N nec 2 3 | z |

(A + 3/2) [_F“Vz GY) J
<)

&nd RP-:—ﬁn( .....2.1].6

x
with S replacing ¥ and p rglacing N in 2.115
4
N¥ and §  are the reduced Fermi levels for holes and elsctrons

respectively. (M and Q.L are elsctron and hole partial mobilities.
\

ch = e(nef\NfPRPv")npﬂyvﬂ@‘n' Op) ceeee2.117
’ (M +p V)0 M+ P Vy)




4O

Both Qﬂm and Q yx are indespendsnt of carrier densities for the

intrineic case N = p.

For the particular case of a single ellipsoidal Fermi surface for
each band the Nernst coefficisnt can be plotted if the Fermi levels of
each carrier and the snergy overlap of the bands are known. The
ellipsoids for a particular crystal are situated in general in accordance
with crystal symmetry and the coefficients 2.78 and 2.79 are then summed
over all the valleys. The details are presented in a later chapter.

The isotropic Nernst coefficient howsver can be plotted for the
various scattering parameters when some assumptions are mades. Whenn=p

and the mobility ratio is unity the isotropic Nernst coefficiant is
= 2 4 '
Q= +Q ' 2.118
oL xhr\ -a,R_+aq
Q= nRn+QpRp|p

= Dﬁ..e- [Rn- RP] [0<,\- O‘I’] M cer 20120

‘and the useful quantity (35)

Q-8 Q % _% ( a Qn+qu‘,)+ (Q ~Ro)(%n - %p) e 2120

oo 2.119



can be plotted. This is done in graph 2 for valuss of 7\=-ﬁ,0,}§_,3§;
and for the Fermi level lying mid way between the valance and conduction
band edges. |

The quantity Q can be plotted for various crystals only wl_mn ths
band overlap and Fermi level of either the electrons or the holes are

knowne.
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CHAPTER 13

Graphite.

' If a.n anisotropic material is used in a semiconducting energy oconverter
the tensor components of conductivity must be summed over all the energy
extreme in the Brillouin zone of the reciprocal lattice.

As the distribution of Fermi surfaces is determined by the symmetry of
a particular crystal it is not possible to proceed to a general formulation
of the transport coefficients. A parf.icula.r modsl must be chosen.

As an illustration of the technique, graphite has ths advantages that
its Fermi surface is well defined, that there is .available sufficient
information on its transport propertias to make a final estimate of its
figure of merit and that the results for some orientations reduce to the

isotropic case described in chapter 2.

3 The Cz'xstal Lattice of Grapln'te.

The latta.ce po:Ln‘hS of the graph:.'be crystal are shown in Figure 3.1.
The carbon atoms are arranged in two ‘distinct layers which are alternately

\repea'ted and are obtained from each
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other by a translation along a triad (Z) axis and a rotation about this
axis through 180°. In each plane tha_ atoms are arranged in regular
hexagons of side 1.424 (36). There are two types of atom, categorised
with respect to their enviromment,; one with atoms above and below in
adjaceﬁt planes, the other being above and below hexagon centres. They
are denoted A and B type atoms respectively. The interlayer spacing is
3.37 & (36). |

3.2 The Reciprocal lattice of Graphite.

" A set of basio veoctors Q;: 1= 1,2,3) of the graphite lattice is
av3 -

0-(253-8,0),0,2(0,0,0) e &= (0,0,C)

where the origin of coordinates and the quantities a and c are shown in

Pigure 3.1« The unit cell enclosss four atoms. The reciprocal lattice

is defined by the vectors ‘g_J (i = 1,2,3) satisfying the relation,

Q~'|_‘ b =21T6i_).

69 is the Kroneekex delta

The solution is

po2T@1,0s) b 2M(Gn8) b 21 A Gy)

. '-Q|'(gzl\gs) ) =2 9.'ZQzAQ3) ) --af(gzl\ gs)

or b'=[aL\T/r§’ 0, 0] , D,= %}%,—%—F—-;O} b3.=[0, 0, ZC.IJ




The thres t_aj vectors define a right hexagonal cylinder shown in cross

section in Figure 3.2

Fig. 3.2 Cross section of the graphite reciprocal lattice.

3.3 The Band Structurs of Graphite.
The large anisotropy of the graphite corystal suggested that the band

structure would not greatly differ from that of a two dimensional layer.
Thus the early papers (37, 38, 39 ) first established the two dimensional
structure and extended the method to include the interaction between layers.
Although these calculations erroneously predicted a zero band gap implying
no free ca.rriers at zero absolute temperature they did serve to loeate the
FPermi levels This lay in the region of the edges of ithe hexagonal prism
which is the Brillouin zone. As the actual overlap is small this is glso
where most of the current carrisrs are located and further studies (40, 41)

have been confined to the neighbourhood of the zone edges.

3.4 The Band Structure of a Single Graphite layer.

. . . . 29:29
In isolstion the carbon atom has the electronic configuration Is 25 P

with the. |S electrons formming the ion core and the remaining four elactrons

R




~a5~

being loosely bound valence electrons. When arranged in a graphite layer.
ons of the AS electrons is sxcited to the Qp,_ state in a process of
"hybridisation™ (42). The QS,Qannd pr valence electrons form
covalent bonds with valence elsctrons of three neighbouring atoms leaving -
the sz electron loosely bound.

In a tight binding approximation involving only nearest neighbours
Wallace (37) pointed out that a linear combination of hybrid orbitals
corresponding to the 28, 2P, a.nde9 states gives rise to even (T
elgen-states and that a linear combination of atomic orbitals gives an
odd (T) eigenstate. The labelling even and odd is with respect to
reflection in the layer plane. There are four bands for each of the two
atoms in the two dimensional unit cell. Of these, six areCU-bands. Thres
of these are normally occupied and three unoccupied. They are separated by
a gap of about D@V in which there are twoT-bands and the Fermi level.

The lowsr - band is designated the walence band and the upperT-band is the
conduction band.

Wallace (37) considered only the W-bsnds and neglected all but
nearest neighbour interactions. His solution for the energy in the

viecinity of the Brillouin zne corners is

E(\gu+ IS):Eu‘.*Cg\QQK.+O(K") coes 3ol

where K=R -R, is the wave vector k measured from U, the Brillouin

Zone corner of wave vector Ku and Eu is theanergy at Us. O(k) indicates
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povers of K greater than unity.
- -
Vo= - §ATH3 E-r) (V- )y, (c- £) 7O
is the resonance integral for nearest neighbours with ths sz atomic orbitals.
V is ths periodic one electron potsntial

Vm,_ is the potential of an isolated atom.

Fa and g are the position vectors of the atoms A and B in figure 1.
o
0= 2.46A is the primitive lattice vector.
A two-fold degeneracy occurs at U, when K = 0. Thie is verified in later

mora extensive papers (40,43,44) and is attributed to crystal symmetry.

ul
I}
Energy +— Conduction
E e 2
u
i
| ]\
T__Volence
Ba:nd '
I
Pig 3.3 The Brillouin % W v u L —o
» ouln ne
of a single graghi_f;__* . PFig.4,4 Variation of sne in
layer. the bands along ths -
.. path OLUWW

The energy is plotied in Figure 34 for the path OLUV¥ in the two dimensional

Brillouin zone shown in Figure 3.3. The constant energy contours in the




.
neighbourhood of U are circles and for given Y, the - bands form touching

conese.

33 The Three Dimensional Band Structure of Graphite.
The thres dimensional Brillouin Zone is shown in Pigure 3.5

Ix

Fig 3.5 |The Brillouin zone of Graphite..

Wallace (37) used a similar approach to obtain the three dimensional band
structures Retaining only resonance integrals between ths atoms A and B,
and A and A' of figure 3.1 the energy in the vicinity of HKH is ({41}

l | 2. 4 ]2
E(#B)=E5Y, M [GY, M+ (o) ]

3
....-.3.2

3 ' =
wheTe c:‘!%-qpc, I'"= 2 cos (—E—) and § -vlech
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¥, == §ar b (e-alV-Vau g (c-x) >0

is the resonance integral between A and A' atoms.

The energy for the four bands described by equation 3.2 is plotted in

figure 3.6 along the zone sdge and figure 3.7 shows the hyperbolic variation
of energy with O away from the zone edge for a particular value of § .

Figurs 3.6 The four bsnds of i .7 The variation of
- --equation 3.2 plotted for =0 the bands away from the
Zone edge. '

Two of the bands. are degenerate all along the zone ;dge and four fold
degeneracy occurs at the zone corners H. Later calculations show that a
more exact treatment taking more than nearest neighbours into account causes
a variation of E along the zone edge and produoés: vertical overlap of the

bands E; « The resulting qualitative discrepancy has caused the approach
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t0 be abandoned in favour of a group theoretical treatment which takes
advantgge of the fact that only the viecinity of the zone' edges needs to
be studied.

A combination of group theoretical analysis of the wave functions and
perturbation theory was used by Slonezewski and Weiss (40) to determine the
three diménsional band structure. They observed from previous results that
only the TV~ bands needed to be discussed in the neighbourhood of the edges
of the hexagonal Brillouin 2zone and approximated to the three dimensional
wave functions by taking linear combinations of apz atomic orbitals
corresponding to the two layers in the unit cell.

The four functions

B, =¢'!-9_'=[Z.‘, ep(inB)u,(c-nc)+3 exp[L(n+V1)§].G‘-(c-ng°)]
V=75 (B ewlin€)u, (c-nc,)- % explitn+14) 10, (-0, )
Y= % expli(n+42)E]G, (c-n¢,)
b5 exp(inE)u, (c-ne,)

ar;- shown byﬁ Slonezevski and Weiss (40) to fomm the basis of an irreducible .
representation of the Wave vector group corresponding to any point on the

zone edge.

U, and U, are the two basic functions corresponding to a corner of the two
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dimensional zone. They represent the two two-dimensional states and
are degenerate at the zone corners. Gl and ‘.}2 are similarly defined for
the other layer in the three dimensional unit cell.

The Hamiltonian H is reduced to ﬁmt corresponding to the four wave
functions 1b, ) \Pz ,'tl)m and 'LP31 and is given in a convenient notation by
McClure (41). This involves the sise constants associated with the band

structure of graphite.

—

E' o H|3 H:; '.1\)|

o E, Hy -H* : P

% _ 23 2

H:; Hos Ei Hss | : Y,

| Hs ~Hy Hy Es | Ps

H=

with E‘=Y‘r'+A
E1=—'Y|P+A |
E,=Y,(1+cosE) =Ky, M
H,,= \/L,—_ (-Y° +Y, M) g exp (i)
{ .
Hys= 75 (% 4, M) o exp(io)
Ha= Y |—_'<"€’<F°(¢<?‘)

2
€ =k,c,,M=2cos(§)

X = tany’ (%), o*:—‘/:?’——.aclﬂ |
Y
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K is the displacement from the edge ¥KH in a plane psrpendicular to
the 2zone corner.
Only the lowest terms are retained in this calculation both for the rapidly
converging seriss expansions and in the tems inwolving O . Higher order
terms in O are shown by Mc.Clure (41) to have only & small quantitative effect.
The four bands are -derived from the sscular equation.
|H-€1]=0
This quartic equation is not solved explicitly in the first instance but can
be factored when Y.': and 'Yq_ are set equal to zero.

Then the bands are .
E=-4 (E+E5)T [yll-(El"Es)z"‘Y:d'z]yz

£= Yo (E+E)t [ (E,-E) 412 T

For a given vaiue of thhey form a set of hyperboloids of rsvolution two of
which touch at @ =O . A description of the bands is shown in PFigure 3.7
based on estimated of the relative magnitudes of Y, ,Y, and A .
Figure 3.8a shows the variation along a 2zone edge for O =0 amd figure 3.8b.
the variation with O for a given valus of § . The latter have rotational
symmetry about the energy axis. Mc.Clure has drawn a three dimensional plot
of energy against the vectors hz and K for these bands in the four

parameter model.




A

¢-
Figure 3.8 The four energy bands Pigure 3.8b The variation
(¥;=Y,=0) Yariation shows : withg-away from the edge

alonz a zons edge. for e particular

The inclusion of Yn- does not affect the qualitative description since
it merely modifies 'Yc‘ but Y3 causes a warping of the energy surfaces and
further degeneracies for energiss in the vicinity of EB' Exemination of
the two bands derived from ¢3| and Ibzz under the assumption that Eg was
well removed from Ey and E, led Mec.Clure (41) to predict additional over-

lapping of the bands in the planes O¢=4NT: This trigonal warping

together with his three dimensional four parameter plot gave the Fermi surface

drawn in Figure 3.9




ELECTRONS

HOLES Q_,-}-)C

ELECTRONS

Figure 3.9 Description of the Fermmi surface in graphite showing

W

in exageratgd form the cross sectional areas. The
length to width ratio of the "ellipsoids” is

about 13:1
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A review of the literature on the band Xwswxmwmici structure of graphite
has been published by Haering and Mrowzowski (45) and the features predicted
in the Femi surfaces have been verified experimentally by Soule (46) and

Dresselhaus and Mavroides (47).
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CHAPTER 4.

The Nernst Cosfficient in G raphite.

The complex bané atructure of graphite and the position and shape of
the Fermmi surfaces make the formal analysis of its Wamrt propsrties
very unwieldy. A rather more simple calculation is mades in which the
Fermi surfaces are taken t be ellipsoidal. This is justified in view of
the large length to width ratio of the Fermi surfaces and amounts 0 neglecting
the small amount of warping caused by interactions between the atoms B and
B' of figure 3.1. The anisotropic transport coefficients so obtained are
expressed in their simplest form in terms of partial mobilities and are used
to evaluate the Nernst coefficient in the weak fisld approximstion. Exact

statistics are used.

4.1 The Conductivity Coefficients in G raphite.

. From the description of the ba.nci structure given in chapter 3 it is seen
that graphite has éigh‘baen energy ex'“l'.rema. placed in three layers of six with
each extrems on an edge of the hexagonal Brillouin zone. The central plane
contains the six extrema associated with the wvalence band while the remaining
twelve extrema ars in the conduction band. The Fermi surfacea are assumed
to be ellipsoids centred on thege extrema and each major axis is along a Zone

edge. The configuration is showm in figure 4.1




Figure 4.1 The. Formi surfaces in Graphite.

An orthogonal set of axes may be chosen for an arbitrary ellipsoid,
denoted the '™ valley (i = 1.....12 for electrons and i = 1.....6 for holes)
vhich coincides with the crystal axss. The energy in the vicinity of the

extrems is then

P2 {h.‘

R Rk
SR

+
m, " m, " m

with m,=mM, . R is the displacement in wave .vector space from the zone

E=E +
e coes 4al

edge. E, is the extramum value of energy.

As the results for the valence band differ only by a numerical fa.ctor-
from those for the conduction band ths ‘general discussion is now confined to
olectrons.

The remaining ellipsoids for the gonduction band are gensrated from the

ellipsoid by the following set of real orthogonal matrices Qy .




1 o0 O c -S 0 - -S O
o 1 O S C O s -C 0
o 0 1 0 0 1 o o0 1

3
(7]
o
Q
7]
o

[
o

S ¢C s C O

o

o 1 O
0 0 -1

: -1 0 O
S - O - C O o -1 O
o O 0 1l 0 0 -1

o 0 -1 o 0 -1

were ¢ =cos(W%) ana s =’Sin<1y3)

-1
0

0

-C

=S

0
-1

0

S

-C

o .

0

41

0

The phencmenological coefficients are obtained by simming the tensor

components corresponding to each valley in the manner described by Drabble

and Wolfe (48).

The total conductivity coefficients are

{2 R" v at ot o

) ,‘ll h(f tu tu

&: R) R'.) R‘) l aL O-i @)
J

PR qL. m\ R lu mv eu.v

[ R A K ] 4.2

[N 4.3
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where the Q“ ‘S are the direction cosines of the principal axis system
of the (M ellipsoid relative to the crystal axes. In this case [0;]
is merely the unit matrix but any angle of tilt can be accommodated quite
easily.

The tensor components for a single valley are given by equations 2.85
0 2.90 and 2.91 to 2.95 if the assumption that a powsr dependence of
relaxation time on energy is made.

On carrying out the various summations the independent non—-zsro components

of conductivity ars

O;:IQAmsy’- | cee 4.4
= m, :
q-éa-|QA rv‘g& eee 405

S cee 4.6
=287 | o
°;3|=_|Q6.m3& cee 4.8
‘ra,-h: - cee 49
0;. - O;m eeedelO

The partial Hall coefficiénts are

p = G-i'!k =—_' b al va{‘ 0004011
|jh U&U';J 2A m, 3
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Which have a single valus for the particular symmetry of graphite.
The factor 12 is replaced by 6 for the valence band and the parameters

associated with holes are used in the appropriate places.

4.2 The Nernst Coefficient.

- The substitution of the conductivity coeffieisnts into equation 2.73
gives the weak field Nernmst coefficient for the six orientations obtained
by permutation of the orthogonal axes x, y and 2. The Nernst coefficients
for these orientations are displayed in table 4.1. Twble 4.2 shows the
Nernst e;a“fficients in their simplest form in terms of partial mobilities
and Femi lavels.

Ths relations

A F;\-\-V;(n*) t
RT. .
eb, (kT)r2 l for holes cee 4413
P FyzCS*) m"'P

for elsctrons eee 4,12

=2
Ha"—ze’b

3

a.nd\)~t =

w|®

are used.




Table 4.1 Weak fiold approximations for the Nernst coefficient in G raphite

x T
% % B
m m _\“m P -
L2 AR po..m et ommam.mm ; 2A >13§ Buw;._ss+ .N:LOA
ol | ® p>;3s +A 3% ??.334?5 A
20,8  a,8B G, By 1-
| Q4 n it P
° A P T B Armin™ %M> Mgn >13~L2
| e’ m, % %a
2|3 p>= My, <p+>... 7 M. m.,u:.nv»+> ..ﬂm.: u:+>v3uL
70 D 91@1 MinpMip n
3! AR 3u§:+ Mgt Adhem nBuS M.» Min >13.1w0n
e’ ) )
312 Aqmg, +A 3§ Mw? mm..Lw n) 3§+> BL

The relaxation time A..|..Umﬁ where € is the energy

A, = pc._p._m:?t\&%qv?ﬁm.
B,=ab. d2% 37 1 (2 + ¥ )(ieT)(P+¥2)
a= NV eym ; d=z = m

D is defined by Gpcpapos 2,110

QA...OV\Q.o&g npwmoumsgowmﬁuﬁmwas.obuom“_.mo.auwawoamu.m.




Table 4.2 The weak fisld Nernst coefficient in graphite in terms of the
: rtial mobilitles. . :

Y |x . Qyx

i3 szvwwmpai m,,%pkd+pexc.?_mzc.myvm g |
2(1 |2 (r+¥2 L© u:.... + PV, Ap31+1c.uﬂ ;

3 (2% s (Ana, s 1 EYPOR Y frpin m,,e,mj |
d .w .m.m my...w\»v e DDTUL..TC« gDD Tm...ﬂc.VmUDTu... pVs)

6l =

u__ubrw\t T.N mp:p,x_ }m: %_.,\_,m.m,yw+ Np%@?m,z. uw :
3 2 ac A.vr.—.w\n e pD"I +pV, gst_&.ﬂ/v.vﬁpatw*. ﬁOwV

o* = F (OINAGY) p*- i ()P €49)
+.

-, [Run()] +h

The electron and hole densitiss are N=|Qn and P=6p

In tables 4.) and 4.2 x is the direction of the electric fisld
¥ is the direction of themmal gradisnt

and W is in the z - direction.




re

Since m‘ =M, for both electrons and holes it follows from equations
4.12 and 4.13 thatpl=p, and V), =V, ad this has besn used in deriving
the coefficients in table 4.2.

In pure graphite the acattering parameter, A, has the value A= -’5_
while in pyrolytic graphite it has besn suggested (35) that boundary
scattering, for which A=0 , gives a better explanation of the experimental
behaviour of the Nernast coefficiente In both materials the electron and

hole densities are véry nearly equal and Qn = p -

4.3 The Nernst Coefficient for acoustic mode scattering

The coefficients of table 4.2 may be written as the sum of two temms,
one, Q_ s negative and the other, Q+ s positive. The components ars

given in table 4.3.

ylx| Q. Q,

2 3R [a,,é_y‘-mPEzf-?V‘] 3, P2+ EPJK)&
ali [Tgeh | +E et (+E)*
"Plze ang”t+a,,epp;y=] 3 4. E(P*4FP*) 5
2|13| 8 € '[ | 4+ ke ' (+E)(14F)
| . - " -¥
P __'é_\gH anP_“‘+afEFP+&] }‘Hy F(P" + EP, “)&
32| Bee's |1+E ke (+e)(14F)

+_ P (T)Fy, (™ P (c*)=#;"
S ey T




It is assumed that the electron and hole

densities are equal (49) so that QAn= <

When the degenerate limit is approached . '
C.\ n=> CIP -0

-V
P : P 4 “/3
For non-degeneracy

Q,= QP - |

P—V; p-;& - T /2

The general value of a is given by equation 2.110.

and

For dagenerate material® is zero in each case since the degeneracy factor

a0

. In the degenerate limit

H _E_ & cee 4,14
Q, = 0,3 — < Tae &
1| 3
and H F - oo e 4015
Qo T & S
The non-degenerate limits are
Q,=-bt 3i[ Lk 1+E* £ 5] s 46
2=¢c gl2reze tTHE X
B 3n 7, r I4EF, _E
S— -l + ~ see 417
Q&% C gl l2eTme I+ &
.tll 3T -'/.g |+EF+ F "‘] eee 4,18
31T 0 | 1€ 14 |+4F




-64~

The mobility ratio & is very close to unity (49) over the temperature
range 0 - 300°K and meking the assumption that this, together with
c-dirsction mobility ratio F, are unity, gives the following non-degensrate

limits for the Narnst coefficient.

Q2= Q|3 S = % [3*"%'] cee 4,19

al 23 c | hT
Hs 31 kR Eg |
=2 % 2 [3+32] e 4220

where - 63 is the energy overlap of the conduction and valence bands.
Ql 9 is plotted against the tempsraturs, T, in graph 4.

The values of a - axis mobility are taken from gra.piq 3 which is a smooth
curve through the three points given by McClurs {49).

Q:; rises as mobility rises with decreasing temperature until the
partial themoelectric rowers begin to fall.

Q; increases with mobility from 224 of Q': at 298°K  to 60%
at 10°K  thereafter diminishing to zero due to the degenemcy factor a.

The overall effect is t produce a maximum in the leéQm:Ql:-: Q":.)
curve at about 800 .

If the assumption is made that the e-dirsction mobility ratio F has .
8 valus of about unity over the temperature range 0 - 300° K then Q‘s:(st)
has a similar behaviour to Qﬂ_. bwever, Q.'M is proportional to }Ls
which is three to four orders of magnitude less than |, (50) and the
Nernst coefficient in this orisntation is too small to be worth further

analysis in the contemt of providing a large figure of merit.
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The quantity —& Rz -%:Ls plotted in graph 5 for values of the reduced

2

energy gap from =10 to +10.

4.4 The Nernst Goefficient for Boundary Scattering (A=0)

The term denoted by in the discussion of the coeffieients for

acoustic mode scattering is, in this case, zero and the Nernst coefficients

simplify considerably to
- | E &
2= Q e — X
Q 2t a3 C Miite

Q= H T e &

and to

M =
-i—OC

when the mobility ratios ars wmity.

The non-degensrate limits are

LE N} 4021

ces 4,22

[N X ] 4.23

eee 4,24

ces 425

cee 4.26

le is plotted for A=O in graph 6 against temperature over the range

04T < 4OOK  Ths bekaviour is similar t @, for A= -2 but

A
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as there is no negative contribution the maximum of the curve has a valus
about three times larger for boundary scattering.

%_z_ % is plotted in graph 5 for the range — 10 3¢ £ |© where x
; .

is the reducsd energy gape
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CHAPTER -5

. The Conductivity Tensor in Strong Magn ef;ic Fields.

The field dependent expressions for the figure of merit have terms
H‘H,/(H’WHL) which has a saturation valus of unity for high values
of P‘H . In addition, the electronic component K¢°f thermal conductivity
in inversely proportional to the magnetic field and becomes increasingly
small compared with the lattice component, |(._, :E"c?r large 'P‘H particularly
at low temperatures (<|OPK). It is useful, therefore, 10 examins the

high fisld behaviour of the conductivity tensor.

j Tha Electnca.l Oonduct:w:.gx
The components of slectncal conductivity are extracted from

&9"""’ €E< ot bdv eee 50l

which may be writtsn in tensor fomm

'U:h(H)Eh . S e 5.2
where 'l'.heq-uz are the tensors of conductivity expressed as integrals in
equation (5.1). The symbols hm.re the meanings ascribed to them in
chapte;' 1.

For a general power dependence of relaxation time on energy
T= bex L s X x) 5.3

the integrals reduce to the form

ede | ceee 5od
J= S ™ 4+ RTw?
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with = VK)‘(H'1+H:+KH:)V" ceee 565

K= m,/m' ceee 5.6

H= (H,,HyyHlie the m;gnetic field.

Except for boundary scattering ( A= O ), when the denominator of J -

is independent of energy it is necessary to use digital computation for
. exact é.tatistios. An analytical solution can be obtained for lattice
scattering ( A=-'4) when the limits of degensracy of non-degeneracy set
in. |

In expanded notation, § (equation 2.37) is given by (51)

er(p s T[BH _BH] +(e‘f (R, JRH+A v+t £
\+(.e_'|.’.) [ m3m f:l*.:m] 5.8

and two other terms obtained by cyslic pemutation of indices.

¢=

g = (E| ’El' ES ) is the electric fisld.
P: (P" Pz, ps) is the momentum vector.
The components of conductivity are obtained by comparison of equations

{5.2) and (5.3). Por example

- _ex&“; ae'r{p +E2 (B;%‘-f’-tli‘)-f(%l)l(ﬁHﬁRHﬁ@H,idV
n h;n!ﬁ) {l +(Jé hTw‘} cees 5.9




deds
lgmd '

a constant energy aurfaoe and than with respect to anergys fntam'ation

The element dV = the integration being parfo: e f"ret over

over the aurface S yialds integra.la of the fom _

j--_-g. AR dS. , o  eee 500

(& +—+-=-} = ) '
mg) .

whioch are 2eT0 unless i=3 x?ith m,

T=T 9.""3 1rrn, m3 e%

ves 511

and J; = = %3 Tm, ms’* % T eee 512

Then --02%3 1rrr\3 i_ 6*"'{""(c. m; }de ces -5.'13'
| 66 1+ @) RTe? :

_ & .
whore a = m
The other components are gimilar and are given explicity only as results in

the rolevant sections. B

5.2 Boundary Scattering. .
Tho f£isld dopsndsnt terms .in equation (5.13) ean be taken outside the

integral as the relaxmtion time in this case in indepandant of energye. =

T=b° | 'l . | (XX 5014 -

T S B ﬁ+@%ﬂiw1$} o . 51
. Then = 3 ﬂm,b” H-hTw* 3¢ € de . ?15 .
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eb,} _H’
- 1-bo l+(T) m
=ne -E T:RTAQ" sees 5016
= neH‘(l:!) ceee 5017
L+,0) pye) e
where  (H)=pL(0) (; . )-" c? -
4+ M©OHs©) (12,2 KLO) ;2 eoee Se
ceee 5419

-}t(O):%is the zero fisld mobility for boundary scattsring.
L

and m|= mz

23 _ Acoustic Mode Scattering,
In this case the relaxation time, and _henee the field dependent factors,
in the integral of equation (5.13) are energy dependent. The resulting

16§\LSS
integrals are complex and further analytical -Ereoess is made only when ths

limits of non-degeneracy or degeneracy are applicabls. T, is derived

below for the non-degenerate case and-tha results for the other components
of electrical conductivity for this case and for complete degeneracy will

be quo tedo

From equation (5.13)

: 2 [NHE ] |
T = —qb';l’zy\“ mzag_g_fg {e +e(—,é"_‘) '“z_'f\:} de cess 5020
€ €+RTw?



where T= b' e"i

XXy 5.2.

The integrals required. for the evaluation of the tensor components .
- | statists - [.(e-€
| when non-degenerate statistics are used (L—_)exp[ %_f)])are.(jl,jﬂ

\6& € de- Po((w)

de &+ h\w'-

\.gg (S de--0r)" B

& N HT
Sée ”n hT _de =-PRT)" V()
here P = 2% R am:' m% Gk

o) = | - 32 + wt exp () E(W")

B =T"%[%- w4 T wiexp (W) F(W)]

Y(9= |- wt exp (WIEGS)

E(x)= S €€ de

= uK [ +vA HIK Y ()]

u

5.22

223

ec e 5.24

eoe 5.5

L] 5.%

5-2]

LN 5.%

5:29

* 5.30




= nep (8 . 5.31
where
M=, (O)E%(NH H.(O)H;(O) Y(w)] ces 5032
F‘(O)-%_(-ITE[)&

is the 2010 fisld mobility for lattice
scattering and m, = Mo

= 4etbn
3m3(ﬂ' hT).h eee De33
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The complete set of tensor components for both acoustic mode scattering

and boundary scattering are given in table.S.l
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Sumnation over all the valleys of the conduction band is reduced to
multiplication by 12 for both sets of tensor components as for the weak
field case. Iowever, it must be noted that the magnetic fisld is fixed
in direction and must be replaced after each transformation by the original
fisld referred to the new co-ordinates. TFor the wvalence band the factor
is 6. The tems involving ﬂ(w)oan cel in the summation.

The componsnts of interest for the evaluation of the figure of merit
are the diagonal elements with the magnetic field in particular directions,
which simplify considerably the components shown in table S.l. The necessary

components reduce to those given in tables 5.2 and 5.3.

H x !j g—xt' va??:ee @
. wnb:.:d?on ba.:d..

\ 2 (COH) 12 uKex (W) GuKx (W) vKH

2 | (©,0H) 12uKox (W) buKx(w) VKH

I 3 (oHO 12U o (W) buok (W) vKH
2 3 (H,00) Rux(w)  buc(w) vK%:H
5 ) (oHO) NuKo@) 6buKxk@W)  vK%H
S 2 (H,00) RuUKx(w) 6buKx(w)  vK%H

Table 5.2 Conductivity components for acoustic mode scattering.

(QOH) lQnelgf (14 kT (‘JP?—"—” (1+Tvery! vKH
(0,0,H) |Q_ne1. (H’ E]'w") \ ém} m, (FHQT#O")-‘ vKH
©HO) o ne“_.n. (14 kT P?—‘b‘ (+RT)™ ViKY
(4,0,0) laneh%n: L) 6Pe‘--“ (LeRTSY! VK
©HO)  anerls4kmid)! 6peE (HRTWY! vk
(.00 12net —-(\+RTw’)" 6pe" be (l+h1’m’~)" vK*H
Table 5}_ conductlv:.jz components for boundary lcatteg;g

Wb —p-
MN-WW-—-pP
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The appropriate effective masses and constants b, and b, are
used in tables 5.2 and 5.3 for ths conduction band and the valence band
and, throughout, m=m, -

The saturation valuss of the principal components of conductivity
are given in terms of zero field mobilities in table 5.4. It is assumed
that the total conductivity is the sum of the individual components due
to the valence band end the conduction band and Mt ele’etmn and hole
densitias are equal.

The saturation valus of o((w)for high fields is

Lim at(w)= L + o)

Ho 00 see 5.34
boundary scattering acoustic mode

scattering non-
degenerate limit.

| 2 (olol Hﬂ

2 | ©,0,H) | ne/ . .\ S2nefi . |

| 3 ©,H,0 | : T{E <“u +°l qn H* ("‘ll+ \).)
2 3 (+,0,0) .

3 l -(O'H)O) nefl , 1 32 ne AN
3 2 (H,0,0)} T—F(Pa*‘ \%) QR H* (Ps + \)3)

Tabls 5.4 The high field saturation values of Uxxin terms of

Zero fisld mobilities.
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M= Sr% for boundary scattering
L .

keb, .
= or acoustic mods scattering.
3m-‘(‘lm'l)£

The fully degenerats limit of Oy, for acoustic mode scattering is
evaluated by approximating 50 by the function.

f,=\ for o< E< €
=O ‘br Gf s e . cese 5.35

where E_F is the Fermi level.
The expressions obtained are those of tables 5.4 with the factor

roplaced by unity.

5.4 The Thermal Conductivity.

" The thermal conductivity Ky bas two components K, and K
due respectively to lattice vibrations and the current carriers. The
latter, K, has itself, contributions from holes K|, , slectrons Kg
and the bipolar effect Keh e Thse elactronic component is derived from
the phenomenological equationa in just the same manner as for the purely
electrical coefficients.. The detailed derivation for the anisotropic
case is of no concarn here, however, as it is obssrved from the isotropic
expression for the simpls two band model that its mature is such that it

can be neglected in comparison with KL when sufficiently large magnetic




fields ars applied.

The expression for l'CE is given by Klein (53.55)

K =T(3) [ha+Yes "‘cﬂ' (511*8 h?r)l]

vese 5436
Y and 8 are the following degeneracy factors.
2
Y- A+Ya Fa+sa _ ?\45/_2_ _ Fat3a
T AtYa Fup A+ Fasy seee 2:37
§ = M¥2 Fassn .
7\.‘.3/2 FA*V; esece 5.3

Fp is the Fermi integral.
Thus the electronic component of thermal conductivity is proportiomal
overall to the electrical condiuctivity, which is expected from the simple

Lorertz re1ation.

= Ke
po T cese 5039

Consequsntly, the high field behaviour of KE is ~ %-g_— and each of
the terms Ke, Kh' Keh are negligible compared with KL which
depends only on the lattice vibrations and is fisld indepsndent. These

comments are pertinent for graphite at temperatures lower than about

1°K  when K becomes comparable with K_ and can be larger at
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temperatures lower than about 2 K (53)e Above 16°K , KK, is much
larger than K¢ and the latter, even in the field free éa.se, can be
neglected.

The in-plane experimental bshaviour of the thermal conductivity .
has been discussed by Mills (et alia) (35). At low temperatures K
nas e temperature dependsnce of T - and at high temperatures O. T |
dependence. A peak value of about 30 Weny © K™ occurs at about 140°
and a valus 20 wc,'.,'fK" is recorded at 80°K for their best sample.
Experimental valuss of thermal conductivity are given in Table 5.5 for

three of their samplés.

Deposition . Themmsl Conductivity (Wem ° K™ )
Tempe ra ture (oc) at 80°K Poak Valus Temp. of peak.
2700 ' 6 13 195
2920 1 19 170
2980 20 31 144

Table 5.5 The a-direction thermal conductivity in pyrolytic graphite.

Experimental values of c-dirsction themmal conductivities are not
available over a wide temperature range (OK T < 30CPK) but values
at 300°K  are quoted by Slack (54) and he provides an anisotropy ratio
KJ./K“ over the range O§'T £ 300°K for a particular ssmple, (P.G.-0)
of pyrolytic graphite with a good degree of crystallite a]iignment. The
subscripts 4= and ||  refer to directions perpendicular and parallel

to the c-direction.
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His results indicate that K4 /K'" is temperature dependent, having
an asymptotic low temperature valus 2.25 and a value of 500 at 300°K .
He concludes that at 300°Kt.his ratio would approach 1000 for a single

crystal graphite.

55 The Figure of Merit.
The preceeding theory provides the information required for the

evaluation of the figurs of merit for graphite.

ZE.= (Q

S*H

z)z -?‘—(—& seces 540
)
VWhere x is the direction of the electric field and the thermal gradient
is in the y-direction.
The general conclusions are:

1) The Nernst coefficient is independent of magnetic field.

11) The electrical conductivity is reduced by a factor ({4 | H* )

in the denominator on application of a magnetic field.

111) The electronic component of themmal conductivity is negligible
compared with the lattice e&mponent IC._ at temperatures greater
than 20°K and, for sufficiently high magnetic fields, in the
range O<T £ 20°K

from which
Z, ~ Jox ( '*;c_H: ) ceeee o4l

2
K‘,_’9 \+|u5:Hz
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The factor in brackets has the asymptotic value of unity for large values
of HH and is 0.9 for mgnstic fislds of 0e35, 5, 35 Kilogaussat
temperatures 4,80 and 300°K

The six components corresponding to table 5.4 are given in table 5.6
for boundary scattering with general statistics and in table 5.7 for
acoustic mode scattering with non-degensrate statistics. The latter
restriction on the degree of degenemacy could be removed if experimental
valuss of field dependent electrical conductivity rather than zero field

mobilities were available.

y - d Ze
[ Q] .
E X

) ] ik,
| 3 ol
Q 3 J

3 ' } nep, £ &
3 2 3 I+F lc"lg-

Table 5.6 The figure of merit for boundary scattering. (KL,FKL.';)
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u 2
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The figure of merit for acoustic mode scattering
(assuming non-degenerate statistics for evaluation
of the electrical conductivity)

= Qn p_-yz + QP Ez P.;y"
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-Ya
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g/

P."and P, " are defined below table 4.3 and Mmvex mams ™" is
defined by equation 2.110 and plotted for acoustic mode scattering in
graph l.
When the non-degenerate limits are inserted for Q ¢ and e
) Q,EF
the expressions of table 5.8 are obtained for acoustic mode scattering.

9. x Ze
\ 1)
| | T (kV :
2 3.
’ | \* €% 1
3 ! nep T (BY[3+ 2| -
3 a. m (B Kiza.
Table 5.8  The non-dsgemerate limit for the figure of merit
(acoustic mode scattering, mobility ratios E and F

close to un\iulc

The evaluation of the figure of merit is most easily accomplished
by reducing the expressions in tables 5.6 and 5.7 to a more compact form.

The components for the orientation x =2, y =1 is

L~
Zoon® r(%) Q i T = Zeean) ceer 5.42

where (" is a degeneracy factor.

= | for boundary scattering.

:3%“:601' acoustic.mode scattering with non-degenerate

" statistics.
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A theoretical plot of Q,,is available in graph 5 for both boundary
scattering and acoustic mode scattering. Mills et alia (35) provide

experimental values of ths ratio U:/K for temperatures down to 60°
[ .

and extropolated values for lower temperatures.

=Qne,u, . eses 543

is the 2zero field elecgrical conductivity for equal hole and electron

densities. The values predicted for Z are given in table 5.9 for

€0,2)
boundary scattering and acoustic mode scattering.

Co -t (YP L
Ttx) (%ﬁ) - (Q/fﬁgm /K (Ze), (°;f) (2),,(K )
4 &\ x10°® L[9x10¢ 19-5x l0's 1AxIO* OKTx |o-lf.
0 30x lO"’ Q.-8x10™® Q- kX 105 22 x10% 0O-23x |Q-i;
go 150x10° 87x10°  .g3xi0° 2.4x10% 0-98xI0

Tabls 5.9 for both acoustic mode snd boundary scattering.
The oomponents 250 3) = ZE@ 3) are expected to be of the

same magnitude as ZE(‘ 2) if the mobility ratio F = \’3/“ is about
un:l.ty for the acoustic mode case. These components are 1den't.ica.1 for
boundary scattering.

The ratio
ZE('lz), _ Pl . K'-|3

- ' | XXX 5.44
25(330 Hs KL,L
is always greater than unity, since, according to Slack (54), the

anisotropy :Ln electrical conductivity is greater than that of the thermal

conductivity.




The figures of merit in table 5.9 are not large enough to provide
adequate cooling at eny temperature the requirement being ~- IO~*°K™ .

It is concluded that graphite does mot provide a useful figure of
merit in the usual orisntation with the magneti_.c field perpendicular to the
basal planes and that an increasse is not obtained by directing the fisld
parallel to the planes. The close agreement with experimental evidence
suggests that the model used for the band structure is sufficient and that
further refinement is umnecessary for this particular application of the

thermo-galvanomagnetic effects.




épmndix 2A.
Dar:.vat:.on of the Boltzmann Eguation.

Let f(r, k, t) be the avera.ge manber of carriers which are in a state
_descr:.bed by position vector r, wave vector k and time t. According to
Liouville's theorem, f(r, k, t) the distribution function of particles in

an isolated system, is constant for motion along a path in phase space,

(éﬁ) signifies changes in the. distribution function dus to the aetion of
extarnal forces, (é&) represents changes due to scattering phenomsna
within the material and ﬁ is the temporal change. In the steady
state ﬁ =0 &and, since

at
AR _[de A
(ae e [ag fo*g% Vhf] QA

the equation for the distribution function becomes

V: V-f+ F. Vh-f <él:)cou | A3
vhere V= g.g is the carrisr velocity and F ‘%'%h- is the

oxternal foree acting on the carrier. If the applied fields are slectriec,

E, and magnetic, H,

.E'-'——e-(E""/C\./AH) , €> O for electrons LAY
Combination of equation 2. A. 3 and 2. A. 4 gives the Boltzmann equation.

___€,_ (I::+-lc- )+V V‘f (&)cou - 3AS
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