Folio of original compositions

Alcorn, Michael

How to cite:
Alcorn, Michael (1993) Folio of original compositions, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10186/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in Durham E-Theses
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Folio of Original Compositions

submitted for the Degree of Doctor of Philosophy

1993

Michael Alcorn
Contents

Declaration 2

Acknowledgements 3

Introduction 4

Recycle 11

Incantation 18

Calypso's Song to Ulysses 31

Making a Song and Dance... 40

Voyager 51

Perichoresis 60

Double Escapement 69

A Slow Dance 80

Appendix One (details of the recordings submitted) 96

Appendix Two (Incantation : detailed structure) 100

Appendix Three (Voyager Slides) 103

Appendix Four (examples taken from PitchTwister) 111

Appendix Five (Csound orchestra and score examples) 115
Declaration

The compositions submitted in this portfolio are my own unaided work and have not previously been submitted for a degree in this or any other University.
Acknowledgements

There are many people who deserve to be thanked for their support and assistance during the period over which these compositions were written. Particular thanks are due to Professor John Casken for his supervision and inspirational guidance during my time at Durham and to Dr Peter Manning for his persistence in teaching the value of Music 11 as a compositional tool.

I should like to thank many friends and colleagues who encouraged my work, among them Dr Michael Clarke, Dr Anthony Carver and Professor Adrian Thomas.

I am also indebted to Sequenza, Singcircle, the Nash Ensemble, Capricorn, The Queen's University Symphony Orchestra, The Ulster Orchestra and other performers who gave their permission for recordings to be made and submitted for this thesis.

This research could not have taken place without a grant from the Department of Education for Northern Ireland and I am grateful to them for providing a Major State Studentship and additional funding to attend the International Computer Music Conference in Cologne in 1988.

Finally I should like to thank my wife, to whom this folio is dedicated, my sister Elaine and her husband Brian, and particularly my parents, for their tireless support throughout this period of study and for their help at 'those' crucial moments.
INTRODUCTION

"The study of the creative process is an extremely delicate one. In truth, it is impossible to observe the inner workings of this process from the outside. It is futile to try and follow its successive phases in someone else's work. It is likewise difficult to observe one's self. Yet it is only by enlisting the aid of introspection that I may have any chance at all of guiding you in this essentially fluctuating matter."

Lecture Three: The Composition of Music

Poetics of Music

Igor Stravinsky

The works prepared for this folio represent seven years of focussed compositional activity, guided largely by the desire to shrug off the heavy mantle of influences and studied techniques which envelop many young composers, and by the necessity of finding an original voice in a society which so often suggests that there is very little left to say. This search has run parallel with a need to refine (and therefore define) my own compositional technique which has been brought to bear on the increasingly simple musical language to which I am attracted.

The eight works (selected from twelve written during this period) utilize a wide variety of resources (both in terms of compositional techniques and in terms of performers and ensembles) and reveal many of the features which I regard as central to my compositional thinking: energy, movement, dramatic structure and climax. These attributes help create the goal orientated and mosaic-like
structures that characterize the works of this period. Other features, of a musical
nature, include a preoccupation with resonance and timbre, with lyricism
(especially in later pieces) and with complexities arising from simple rhythmic
procedures ('aleatoric counterpoint') or from manipulating simple units of
duration.

As will be seen in the commentaries, the titles of the pieces play a large part in
the compositional processes and qualities of each work. In most cases they are
descriptive of some musical or gestural process or event which is central to the
piece.

Three of the (recent) compositions in the portfolio employ electro-acoustic
resources and thereby reflect my growing desire to integrate technology into my
work. Although I have worked (and taught) in the studio for a number of years it
has taken me a while to understand how such resources best suit my
compositional needs. The clearest indication of this in the folio is the electro-
acoustic material devised for A Slow Dance. These (often simple) sounds were
created using only one resource (Csound) and borrow many of the stylistic
qualities of my instrumental music. This link with the instrumental music is a
two-way process. Several of my pieces draw upon processes or techniques
devised in the studio and apply them as structural, timbral or textural processes
in the instrumental writing. Large sections of the orchestral piece Incantation
borrow technological ideas - for example labyrinth (multiple two-track tape
delays), delay line effects, and 'white noise' ('highest note possible' strings
imitate this). Other pieces have even attempted to simulate the electrical
processes at work in the studio; electrical states in circuits such as resistance,
capacitance and the effect of components such as transformers and diodes
finding musical analogies in early pieces (not included here).
Taking an overview of the portfolio the compositions seem to group themselves in different ways. In some respects they appear as a single line, each subsequent piece growing from the inconclusive threads of the previous piece. In other ways they seem to divide into two groups: pieces which experiment principally with compositional techniques (*Recycle, Incantation, Voyager*) and pieces which experiment with musical material (*Making a Song and Dance..., Perichoresis, A Slow Dance*). I also see them in the light of musical discoveries made before or at the time of composing each piece. For example *Calypso’s Song to Ulysses* was written at a time when I had been listening to jazz and this may be reflected in the choice of ensemble and prominence given to the soprano saxophone (the playing styles and sounds of Jan Garbarek and Courtney Pine were in mind when making this choice); *Making a Song and Dance...* followed a period of studying Scandinavian music and this is to some extent reflected in the music. More recently I have spent considerable time studying Irish traditional music, and the music of John Sheppard which has had a bearing on the soundworld of *A Slow Dance*.

In purely musical terms the pieces have changed considerably. Generally they show a gradually refined compositional technique: purer and simpler harmonic events, less cluttered textures, more clearly delineated structural objectives and a simpler rhythmic manipulation which sacrifices complexity for a desire to ensure correct heterophonic alignment (where required) in performance.

In preparing these commentaries I have been as surprised by the consistencies across the works as I have been by the change. Despite the time span and (for me at least) the gulf in the musical language which separates *Recycle* and *A Slow Dance* I see numerous harmonic, stylistic and gestural fingerprints which unite the works. In particular I see a consistent harmonic language which has
changed only in the fact that the corners have been rounded off jagged melodic lines, and chords and aggregates have acquired more resonant qualities. I also identify a preoccupation with cluster-like harmony throughout the works: much of the orchestral piece *Incantation* is based on cluster formations arising from the compositional method, and both *Perichoresis* and *A Slow Dance* use this type of harmony at some point. Despite the general change in harmonic rhythm and pacing which has occurred across the portfolio (more recent works move at a relatively slow rate) I see similar processes at work in defining structures in all of them: that is, a single thread gathering other materials or instruments and the instrumental fabric continuing by replication and development.

Beyond this the works all show a concern for texture, particularly (what I regard as) transparent textures. At one stage the early pieces in the portfolio were criticized for being 'superficial' or at least 'concerned only with surface embellishment'. If anything this comment helped me realize that such embellishment was a strength in the music and I became more consciously interested in it for its own sake. In looking for an analogy I became struck by the detail in many types of embroidery and in Irish lace. Here the fine and often delicate detail is both functional (its patterns form a strong fabric) and also attractive to the eye. Similarly I see the surface activity of my music as being the strength of the material (not an animation of the harmonic progression) and the rationale behind its creation. I regard all works after *Calypso's Song to Ulysses* as being influenced by such textural concerns.

In terms of my approach to the process of composition I see a number of changes and consistencies. Throughout these pieces my compositional sketching has begun with the most rigorous procedures: charts for pitch material, chordal formations, numerical patterns for controlling duration and structure, and computer programs for controlling pre-defined parameters (see
Appendices). This is without doubt one of the most crucial parts of the compositional process for me and one which serves to suggest a general way in which the work should develop in terms of harmony, gesture or structure (although it need not be the beginning of the piece). However, in all of these works the procedure has broken down, or more accurately, I have dispensed with the procedure in pursuit of more intuitive methods at a later stage. Thus the function of the process is to suggest those ideas which may be beyond our experience and to fuel the act of composition.

This has close links with my views of certain areas of electro-acoustic music which I feel are often guided by accidental happenings outside the composer's control. When working in the analogue domain this is particularly true. Several of the sounds in the electro-acoustic pieces of the folio evolved in this way (for example, the opening sound of Voyager was created from feedback from a Yamaha SPX90 II which is controlled and filtered through a mixing desk). As composers working in this particular genre it becomes our function to observe and understand these occurrences and, if they are worthy of development, to implement them in the creative process. In this way I draw a parallel to the use of processes in my instrumental music.

At one stage several years ago I became very anxious about the repeated rejection of these processes during each composition but have since come to accept it quite happily as an idiosyncrasy of my work.

In conclusion, whilst it is not uncommon for one to feel that the most recently finished work is closest to one's artistic ambitions, it can truthfully be said that A Slow Dance proffered fewer of the inconclusive threads mentioned earlier, and in other respects created a clear harmonic, gestural and structural path for me to explore in subsequent works.
In the commentaries that follow I have attempted to highlight those features and procedures which are peculiar to each piece and those which are characteristic of my compositional style, and to present an overview of the structural and organisational processes at work. Although many of these features could be examined in several of the compositions I have chosen to illustrate them in particular pieces where they are most clearly exemplified. The following are the principal attributes and features examined in each work (not necessarily in the order in which they are discussed):

Recycle structure, harmonic language & style

Incantation structure, harmonic & melodic processes, orchestration

Calypso’s Song to Ulysses
 structure, text and musical relationships, structural processes

Making a Song and Dance . . .
 structure, quotation, harmonic and melodic processes
 relating to the quotation

Voyager structure, educational considerations, 'aleatoric' writing,
 electro-acoustic resources

Perichoresis structure, influence of the title on structure and musical material, 'aleatoric' writing
Double Escapement
structure, harmonic, melodic and rhythmic procedures, electro-acoustic resources

A Slow Dance
structure, relationship between text and music, use of Csound

The approach taken in the examination of these features relies heavily on information presented in the final score and in the preparatory sketches which led to the final copies. There are instances where the clear recollection of the intuitive and systematic procedures in any particular work has faded, largely because of the passage of time and, as mentioned above, because pieces evolved in their own right once the original compositional procedures were abandoned. On the other hand it has been possible to assume the role of a musicologist and unearth some of the unconscious processes at work which were not apparent at the time of composition.

Above all these pieces stand or fall not because of what is written in these commentaries, nor because of the processes used in creating them; but because of the energy or atmosphere they might create in performance and the spiritual effect they might have on the listener.
Recycle
for chamber ensemble
(duration: 10’)

first performance: University of Durham
Players from the Northern Sinfonia
March 1987

other performances: Haenjo Ensemble
Accents Festival, Dublin
April 1990

Introduction

In retrospect this piece still holds particular charms for me, not least because within it one can see many of the harmonic, melodic, gestural and stylistic fingerprints of my later music. Of the pieces in the portfolio it probably bears the closest signs of influence from other composers. However it is through a process of abstraction and integration that these features arise, and not through direct borrowing. Without doubt the greatest of these influences was the music of Harrison Birtwistle (particularly *Secret Theatre and Carmen Arcadiæ Mechanicae Perpetuum*) and this may well have contributed to the rhythmic articulation of this piece.

The inclusion of the piece here is justified in that it was one of the earliest works to show coherence in its realisation (i.e. performance) and in its methods of organisation. It also stands as an example of a maturing compositional voice exploring materials, of an often rich and complex nature, without total control. Despite this, the piece presents many interesting and attractive features which,
as mentioned above, became the basis of many of the works in the last five years. Examining this piece six years later I feel removed from the compositional processes used and to some extent the musical language employed.

My pieces from around this period were concerned with the concept of cycles. A wind quintet written at this time (In a Roundabout Way) and the work in question rely on this cyclic idea to inform much of the musical material. In the latter case this guides the structural and harmonic ideas as will be shown. What is also important about this piece is that it is the only composition of recent years which does not utilize a 'hidden agenda' (usually associated with the title) to control or assist in the organisation of the materials. Typically, later works have at least some programmatic element to assist in this process.

Structure

As the title suggests, Recycle was inspired by the possibilities of re-using or re-exploring particular musical ideas. The dictionary defines the word recycle as the act of passing a substance through a system for further treatment or use. This can be applied to the handling of both structural, gestural and harmonic ideas.

Three basic types of music can be identified and traced within the piece:

A - fast, punctuating or accumulating textures
B - senza misura passages
C - lyrical duets (or solo passages based on duet material)
These are distributed freely within a mosaic-like structure (as shown in Figure 1).

This type of structure - containing a collection of fragments which are linked via voice leading, instrumentation or gesture - is common to my compositions up to Voyager and Perichoresis, later works relying on simpler structures and a greater concentration on any one idea. The attraction of the mosaic-like structure was the possibility of linking together short sections of music by cross-cutting quickly between the various musical ideas.

Although Figure 1 clearly identifies the origin of each section of the piece (in terms of their relationship to the types of music A, B, C listed above) it does not reveal the changes which occur to each type of music across the piece. For example, the A-type music (chord and rising chromatic cluster-like material, fast counterpoint) is influenced by the B-type music (rapidly repeated notes). This manifests itself in the music at bar 109. Also, the final statement of A (bar 198) shows an influence of C-type music (lyrical and relatively slower in speed). The climax of the piece (bar 164) could be regarded as a combination of A & B (the opening chord of the piece cross-fertilized with the repeated note idea).
Figure 1

Pitch G prominent

flute
oboé
clarinet

pointillistic fragments develops into continuous texture

a-fl
clarinet

flute
oboé
clarinet

B - becomes fast repeated notes

A & C material developed in parallel

most extreme transformation of A (faster tempo)

stretched and distorted version of A

climax

focus on pitch A

solo: violin

solo: horn
Compositional processes

The majority of the musical material of Recycle stems from an 8 note pitch set shown in Figure 2a.

Figure 2

![Figure 2a](image)

![Figure 2b](image)

This set, constructed from the intervals of tones and tri-tones (freely chosen), was used to provide basic melodic material such as the opening horn gesture (shown in example 2b - transposed from the original pitches of the set). It was also used to create the grid shown in example 3a which provided additional melodic and harmonic material. The arrows, numbered 1 to 7, identify pitch sets which were implemented as chords (shown in example 3b below the grid) by free selection from the available pitches in any one row. These new chords (or pitch fields) were then implemented in the composition, either by moving abruptly from chord to chord (as is the case in faster passages) or by a gradual process of cross-fading between the chords (used in slower passages). The chords shown in example 3b are used in one of the lyrical passages of the piece (b20-28) with the 'cross-fading' process noted above linking one chord to the next.
Figure 3

Part A: Recycle Pitch Grid

Part B: Recycle Chords [Bars 20-28]
Cadential chords & key harmonic points

Each short section of the structure is driven towards a momentary climax (either a chord or series of chords) or a *senza misura* passage which serves to relieve the dramatic tension. These chords are again derived (or distorted) from the pitch grid and arranged freely for dramatic purposes. Figure 4 shows the principle harmonic regions of *Recycle* and indicates the importance of the pitch G (the first note in the exposed horn line at the opening) in nine of the eleven regions. In each case the harmonies include cluster-like formations usually in the upper treble register, and in all but two cases the harmonies lie in the high bass/treble register adding to the dramatic effect of the chords.

In all other respects the compositional processes used here were freely organised, control of rhythmic organisation and of timbral considerations being based on the desire to create strong and focussed musical gestures (such as the opening, or the repeated chords at bar 164).

As mentioned at the beginning of the commentary this piece is important as a seminal work. It contains many signposts of processes and techniques that have developed in more recent pieces, and includes the use of limited aleatoricism (used tentatively here in the percussion part at bar 93ff), simple rhythmic gesture (for example at bar 139) and a mosaic structural process.

Despite its abrasive harmonies (resulting from the overuse of sevenths and minor ninths) and its over-fragmented structure it remains a powerful and dramatic work within the context of my early compositions.
Incantation
for orchestra
(duration: 14')

First performance: University of Durham Chamber Orchestra
18 May 1987
University College, University of Durham
conductor: Andrew MacFarlane

Subsequent performances: The Ulster Orchestra
17 May 1992
Elmwood Hall, Belfast
conductor Richard Bernas

The Queen's University Symphony Orchestra
8 December 1992
Whitla Hall, Belfast
conductor: Michael Alcorn

Introduction

It had been my desire for some time to flex my compositional muscles on the rich resources of the orchestra. Up until this point my pieces had concentrated on solo instruments or chamber combinations, and thus, given my growing interest in texture, the attraction of a broader palette seemed reasonable.

Given that this was only my fifth composition, the challenges which lay ahead were considerable: particularly to do with large-scale structure, instrumentation and orchestration. Equally, questions about the soundworlds to be employed and the methods of organisation were prominent at an early stage. With regard to the soundworlds employed, my growing disillusionment with the harmonic
language of pieces such as *Recycle* and my desire to work with a more fluid and conjunct language suggested that the music should grow not from a series of vertical aggregates, as was the case in a number of earlier pieces, but from a linear construction (scale). This approach would address a number of concerns that I had at this stage; namely that working with a series of aggregates treating them as harmonic and melodic fields, produces a unified language but is highly inflexible and provides only relatively fixed methods of moving from one chord to another. Instead, I was looking for a 'formula' that would provide unified harmonic and linear material equivalent to the diatonic scale and an associated hierarchy of chords and melodic possibilities. The answer stemmed from the creation of a 'macro-scale' which extends from the lowest register of the orchestra to the highest. This will be discussed in greater detail below.

As with most of my pieces the title provided one of the initial impulses in the compositional process. The dictionary defines *Incantation* as a ritual recitation of magic words or sounds, the formulaic words or sounds used, a magic spell. The influence of these meanings can be found at various structural and thematic levels in the piece especially in the 'mantra-like chanting' of gestures such as the G / A pitches at the opening and in the F# / G in the middle section. Also important at an early stage of the composition was the desire to embody within the piece the idea of ritual and dance. An imaginary ballet was created which presents in the first and third sections a series of dance-like gestures, groups of dancers working in synchronisation, other dancing freely. From this two principal characters emerge in the second section: the violin and clarinet who weave a slow and seductive dance through some of the pitch material of the opening of the scale. An extended passage at letter V draws together the entire
orchestral mass for the first time and provides the most concentrated dance-like material of the piece, perhaps representing the final energy required to cast the spell.

Macro Scale

This scale was to provide a considerable amount of the harmonic and melodic material for *Incantation* and was derived from a rotating sequence of intervals which ascends and descends from a central point (or tonal centre) to the registral extremities of the orchestra. The sequence of intervals (I refer to this as an algorithm) and the rotation process are shown below. The first few octaves of the scale are shown in Figure 5.

```
algorithm: 1 2 1 1 2 2 1
            (semitone steps)
```

![Diagram of the scale's rotation process and first few octaves](image)
What is perhaps most interesting about the scale is its lack of uniformity; within the span of six octaves above the central pitch (f#) there is virtually no repetition in the sequence of pitches. Furthermore, the rotation of the algorithm ensures that the intervallic succession is always varied (for example the rotation process produces a cluster of five semitones - marked X in the diagram) and provides octave doubling in certain registers.
The scale was used to create the following compositional materials:

- harmonic progressions produced by 'filtering' out unwanted pitches (a term derived from electro-acoustic composition where particular parts of a spectrum can be isolated).

- melodic material produced by intuitive selection from the scale

- textural and transitional 'padding'

None of these materials was used without the possibility of modification and, as the examples below will show, 'wrong notes' or as I prefer to call them 'modulations' are used freely to colour the scale. A notable example is the thematic material shown in Figure 6 where a C natural is exchanged for the prescribed C# of the scale.

Figure 6
Other examples include:

- Figure 7 which is a reduction of the harmonic material from bar 213 (letter V) and illustrates the 'filtering' process at work.

- Figure 8 which shows the use of the scale to provide two basic chords connected by melodic material drawn from the scale (the e flat (horn II) in the first chord is a 'passing note').

- Figure 9 shows how aleatoric techniques were used to create a texture from the scale.

Figure 7

```
b213  b214  b215

(b)    (b)    (b)

(b)    (b)    (b)
```

Figure 8

```
b216  b217

(b)    (b)
```

Pitches in brackets = added notes
Figure 8

O

Fl
Fl
Ob
Ob
Cl
Cl
Bsn
Bsn
Hn
Hn
Tpt
Tpt
Trb
Trb
Tba

Pn

Vib
Vib

Vi1
Vi1
Vi2
Vi2
Vc
Cb
Despite the inflections and deviations from the basic material it was hoped that the listener would have a familiarity with the scale by the end of the piece, if only at a sub-conscious level.

Structural Features of Incantation

If the concept of a 'macro-scale', as outlined above, is one which encourages an image of a unified structure then the structural techniques employed do much to contradict this: *Incantation* proceeds largely as a mosaic of related but diverse fragments of music. Each of the new, and often brief ideas, revisits similar basic concepts (perhaps the 'macro-scale') or alludes to other ideas in the work (for example bar 21 is related to the material in bar 213). A degree of consistency is created by the prevalence of two of these ideas or themes and their relatively systematic distribution throughout the piece. Figure 10 shows the position of each type within the structure. (An * is used to denote other types of music much of which is of secondary importance). The A material is characterized by a tutti chord followed by a rhythmic discourse on a tone or semitone diad close to the f# tonal centre. The B material is characterised by wide intervals (tritone, ninth ...) and a clearly defined melodic contour. During the course of the piece A type music is repeated or, for example, is transformed into the melodic material used from bar 86 onwards. B type music is gradually extended during the piece beginning as a one bar fragment at bar 6 and extending to a 57 bar melody at 270. The two types of music serve different functions: A is a punctuating device which expands vertically into cluster-like material, and B is wide ranging, and expands linearly and rhythmically each time with varied accompaniments.
Figure 10 Incantation Structure

- One bar fragment
- Extended melody
- Truncated
- Distorted & extended duet for piccolo and cello
- Transformed & transposed: becomes f#/g - duet for clarinet and violin
- Extended melody, becomes more complex
- Melody in high strings - becomes more complex
- Gesturally like A: string trem etc

| Bar | 1 | 4 | 8 | 7 | 10 | 14 | 27 | 30 | 38 | 46 | 67 | 74 | 86 | 94 | 106 | 136 | 144 | 166 | 169 | 185 | 190 | 206 | 213 | 270 | 283 | 289 |
|-----|
The music between the occurrences of A and B, denoted * in Figure 10, can be divided into seven types:

C - low cluster counterpoint
D - rising 3 note motif (tritone based)
E - static harmony

Z - textural counterpoint
Y - textural counterpoint - sustained
X - aleatoric textures
W - aleatoric punctuation

Types Z, Y, X & W are unmeasured, unsynchronised 'aleatoric' musics and are mostly used to create focal points or brief moments of climax during the piece (particularly at bars 162, 213 and 271). Whilst I have chosen to differentiate between the 'composed' music and the aleatoric writing there are instances in the piece where this distinction is blurred. One of the many examples is the 'composed' music at the beginning of the piece which resembles, rhythmically and texturally, the unsynchronised nature of the aleatoric sections. Other instances in the work combine the aleatoric and 'composed' music. Appendix Two is a reduction of the entire motivic material of Incantation and includes, amongst other things the distribution of the elements listed above.
At another level the work can be viewed as a simple tripartite form (fast, slow, fast) delineated largely by tempo, orchestration and pacing. The first section features rapid cross cutting between the various ideas and has brief climactic moments at bar 56, and at bar 83. The middle section (bar 85 - 163) has a slower harmonic rhythm, restricted harmonic palette and features chamber groupings such as violin and clarinet; oboe and piccolo, and strings (harmonics). The last section includes a repeat of the opening idea and a major discourse on B type material. Climax passages in this section are at 207 ff, 213, 271 and 283.

One might also see an arch-like shape in the work with its 'highest note possible' section at the centre of the piece and the focus on middle registers in the opening and closing passages.

Orchestration Techniques

The resources available were foremost in guiding the instrumentation of *Incantation*. The absence of timpani and the restrictions in the number of brass, strings and doubling woodwind were amongst the initial quandaries. In the case of the timpani this was a positive factor for I felt that, like some other percussion instruments such as snare drums, they dominate and stylize the orchestral sound in a particular way which was alien to the soundworld I was creating.

In all other respects the orchestration of *Incantation* is quite traditional. There is little in the way of special effects (except 'highest note possible', detuned 'cellos, and some percussion effects), the work focussed instead on fundamental orchestration techniques: doublings, octave doublings, and homogenous scoring (woodwind, brass, string families). This approach was the result not of being
unwilling to experiment but of desiring to find the best method of allowing the inherent resonances and timbres of the music to speak for themselves. For example homogenous scoring is used to blur already 'hazy' pitch and rhythmical material (for example the strings in the opening bars) or to clarify the registral and intervallic qualities of some of the harmonies (for example in bar 42 the brass identify a contrasting harmonic area to the strings). The orchestration is also driven by spatial possibilities of the orchestra in performance and, to a lesser extent the visual qualities of the music on the score.

At a fundamental level the orchestration techniques employed were aimed at illuminating all thematic and gesturally important material in the piece. Whilst it is impossible to isolate the orchestration from the basic process of composition the approach taken was to ensure that a clear orchestral texture was achieved in what is otherwise a dense and complex musical fabric.
Calypso’s Song to Ulysses (1987/88)
for soprano, soprano saxophone, alto flute, viola, percussion, double bass
(duration 12’)

New Chamber Players, conductor Philip Cashian
February 1988

other performances: University of Durham
New Music Group
May 1988

Guildhall School of Music and Drama
Student ensemble
June 1993

Introduction
The fact that this piece has not yet received a professional performance is, I feel, a reflection on the unusual instrumentation it employs and the inherent difficulties in rehearsing it. Indeed if I were forced to select a seminal work in my portfolio it is likely that this piece would be my first choice. Within this context its importance is as a crossing point between what I now regard as formative pieces (illustrated in the language and soundworlds of Recycle and Incantation), and works of a freer, more individualistic nature which were written after it. Contained within it are many pointers which suggest harmonic, melodic and stylistic fingerprints which have developed in later pieces, but it also contains music which demonstrates the peak of my previous interest in rhythmic and contrapuntal complexity (for its own sake) and passages of relatively fast harmonic rhythm. Despite my intention that the work should turn a ‘creative...
corner' it proved impossible to shake off completely those compositional elements which had interested me up to that point.

The concept for the piece stemmed from the language (and images) conjured up in Adrian Mitchell's poem *Calypso's Song to Ulysses* from the collection *Ride the Nightmare*. These sensual and erotic images immediately suggested the soundworld of the piece and the instrumentation which was best suited. As well as having clear links to a jazz ensemble (soprano saxophone, vibraphone, double bass) the instrumentation has many other qualities which are exploited in the work: for example, the alto flute and viola are used as mellow inner voices because of their similar timbral qualities, and the soprano saxophone and solo voice are used as an important pairing (representing the two bodies suggested in the text). Furthermore all of the instruments are capable of blending together in the octave above middle C, where a considerable amount of the pitch material is heard, without any one instrument dominating the general balance of the group.

Structure

The structure of *Calypso's Song to Ulysses* is governed largely by the pacing and content of the text. The table in Figure 11 below outlines the main structural divisions and identifies the instrumentation and materials in each section.
<table>
<thead>
<tr>
<th>bar</th>
<th>section</th>
<th>instrumentation / material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>saxophone: melody</td>
</tr>
<tr>
<td>16</td>
<td>verse one</td>
<td>viola/flute: G - cluster harmony</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>vibraphone: diads</td>
</tr>
<tr>
<td>49</td>
<td>bridge</td>
<td>saxophone: solo melody</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chordal accompaniment</td>
</tr>
<tr>
<td>58</td>
<td>verse two</td>
<td>viola/flute: flute of melodic importance</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>tutti texture</td>
</tr>
<tr>
<td>90</td>
<td>bridge</td>
<td>tutti texture</td>
</tr>
<tr>
<td>96</td>
<td>verse three</td>
<td>tutti texture</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>flute/viola/marimba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>calypso tempo & rhythmic units</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>sax & voice shadow each other</td>
</tr>
<tr>
<td>130</td>
<td>bridge</td>
<td>tutti: becomes reprise of the ideas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the end of the introduction</td>
</tr>
<tr>
<td>146</td>
<td>verse four</td>
<td>viola & bass related to each other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saxophone: diads</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>flute joins chordal material</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td>tutti: calypso-type music established</td>
</tr>
<tr>
<td>187</td>
<td>coda</td>
<td>calypso-type music interrupted solo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sax material related to the opening</td>
</tr>
</tbody>
</table>
It can be seen how the structure of the poem is clearly delineated in the instrumentation and material of each section. (In a number of cases each sentence within a stanza is given different treatment.) Of particular importance is the role of the saxophone: it is often a solo voice, used for example in the introduction, and bridge passages to set the mood of a given section. Other instruments as mentioned above perform textural functions, particularly the viola, vibraphone and alto flute.

Before discussing the more intricate structural details of the piece it might be helpful to highlight the relationship between the text and the music, and to give examples of the word painting used in the music.

Two important elements in the piece grow out of the text and its particular legendary associations: firstly a dance-like melody/rhythmic idea (a calypso) which permeates almost all sections of the piece (this is discussed later) and secondly a chord, related to the calypso idea, which is derived from Wagner's Tristan chord.

The use of the Tristan chord, with its various associations, was suggested by the legend: Calypso was a sorceress who fell in love with Ulysses on his journey home from the battle of Troy and attempted to bewitch him into staying with her. Only the first chord of the Tristan progression is used, suggesting a parody of the reciprocal love of Tristan and Isolde. It appears in a distorted form as cadence points half way through the piece and at the very end.
On a smaller scale much of the music relates very closely to the suggestions and moods created by the text, Calypso's luring and bewitching spell being represented by the melodic line 'spun' by the saxophone at the opening, and the cymbals (played with brushes) creating a sensuous shimmering texture.

Furthermore the poem was particularly well suited to word painting, some examples of which are detailed in the table below (Figure 12).

Figure 12

<table>
<thead>
<tr>
<th>words</th>
<th>bar</th>
<th>characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>tender feathers</td>
<td>20</td>
<td>flute + viola (pp) flutter tonguing/trills</td>
</tr>
<tr>
<td>soar</td>
<td>29</td>
<td>register, sweeping lines: alto flute, sax</td>
</tr>
<tr>
<td>feet are two comedians</td>
<td>34</td>
<td>vib: diads, quirky character</td>
</tr>
<tr>
<td>jokes</td>
<td>39</td>
<td>quirky/humorous lines</td>
</tr>
<tr>
<td>wheels / revolving</td>
<td>71</td>
<td>pitch cells, repeated cyclic material, cymbals</td>
</tr>
<tr>
<td>rhythm/heartbeat</td>
<td>96</td>
<td>mechanical, rhythmic material</td>
</tr>
<tr>
<td>rise and fall</td>
<td>156</td>
<td>contour of the vocal line</td>
</tr>
<tr>
<td>two loving bodies</td>
<td>160</td>
<td>two duets (flute/sax, viola/bass)</td>
</tr>
</tbody>
</table>

Working in parallel with these techniques are broader scale structural considerations, the most important of which is the formation of the calypso-like dance material.
The diagram in Figure 13 illustrates the gradual formation of the dance-like material and shows how, for example, the E pitch centre and small fragments of the melody are established from the outset (1A, 1B) and later passages relate to the profile of the 'calypso' (2A, 2B, 3B). This gradual process of assimilation is completed by bar 172 though the bass and soprano do not comply with the style or pitch material of the 'calypso'. It is not until bar 187 that the process is complete.

As the diagram shows in example 4A the 'calypso' is also used to create harmonic material, and through distortion becomes the Tristan chord which is used at key moments.

Structural unity is achieved at a more local level by a process of 'suggestion and realisation': the essence of a musical idea is hinted at and several bars later becomes the focus of the material. This procedure is used in many of my pieces and is an attempt at involving the listeners' short term memory in the cognitive process of understanding the music. The procedure might thus be regarded as a form of déjà vu.

Examples of this are shown in Figure 14. Example 1 illustrates the displaced scalic elements hidden within the saxophone line at the opening which lead to a scalic passage at bar 15. Example 2 shows the chordal material at bar 8 and the corresponding cluster material in bars 16 - 20.
Figure 14
One might also argue that the rhythmic material starting at bar 96 follows a similar principle; example 3 shows the rhythm of the first few bars of this section and identifies the basic rhythmic units. These form the following pattern:

bar 96

abcd abcd abea fabc daf e abcd f abcd abe acd aa

These rhythmic, structural and harmonic processes help create a tightly organised piece and, although such restrictions could be regarded as contradicting the fleeting, carefree imagery of the text, the choice of ensemble and inclusion of the calypso-like dance music restores the balance.
Making a Song and Dance... (1989)
for violin, 'cello, clarinet and piano
(duration: 11’)

Commissioned by the 1989 Sonorities Festival of 20th Century Music

First performance: 1989 Sonorities Festival of 20th Century Music
Harty Room, Belfast
Sequenza

other performances & recordings:
Scandinavian tour
Capricorn
February 1990
Broadcast: Danish National Radio
Sequenza
Neuma CD Label
to be released in 1994

Introduction
This piece is a pivotal work in my folio. Firstly it was written when I had returned to Ireland and was looking for new directions to explore in my composition. Secondly, the pieces which I had written up to this point had been concerned mainly with manipulating systems, formulae and structures; this piece was to provide a departure from these processes by allowing a more intuitive approach. (As it happened the use of processes was integral to the early part of the pre-compositional work and defined the paths along which Making a Song and Dance... could develop). To effect such a break with the complexities of earlier
pieces a strong external stimulus was used. The folksong, The Lasses of Donaghadee provided this and at the same time suggested a direction in which subsequent pieces might develop.

The exact origin of The Lasses of Donaghadee is unknown but it is suspected to be a folksong indigenous to North Co. Down. Certainly it bears a number of the important hallmarks characteristic of traditional Irish music. Not least of these is its particular modal progressions and 'slow air' qualities. Such a piece would be played in 'unison' by instruments such as violins, tin whistles and uilleann-pipes with considerable embellishment or ornamentation. The piece originally came to my attention as a song for soprano and piano by Hamilton Harty in which the melody was harmonized with folk-like progressions.

For me the original melody (shown in Figure 15) offered a new and potentially fertile area to explore, namely conjunct melodic lines and simple, consonant intervals, but it was not until pieces such as A Slow Dance, three years later, that I was utilising this type of simple material to its full potential.

Figure 15
My initial concerns at the outset of writing the piece were as follows:

- to reduce the rhythmic and textural complexity of my music

- to broaden my harmonic and melodic palette using the folksong material

- to explore fully simple rhythmic devices such as canon, isorhythm and rhythmic distortion

- to achieve greater clarity of structure than in previous works through the controlled juxtaposition of repeated and developed material

To what extent these objectives are totally met in this piece is debatable but there is no doubt that they are signposts pointing towards particular developments in my compositional language which evolved in later works and are still influential to a large extent.

Compositional Processes

The transformation of the original melody was the starting point in the composition process. As Figure 16 shows, the initial notes of the melody formed the basis of a pitch matrix which contains all transpositions and inversions of the melody. Without doubt the most intriguing qualities of this matrix are the unusual harmonic and melodic possibilities which result from the repetition of pitches in
the original melody and the non-chromatic row which is presented as the 'prime'.

Figure 15

LASSES OF DONAGHADDEE
In other compositions where such a grid was used (not included in this folio), it would have been explored by some rigorous process such as zig-zagging through the grid (for example reading tetra-chords (left, down, left, down) as shown below).

Such processes implied that the grid was not square but in fact a spherical object which allowed continuous passage around the material. The results from these explorations were most often used without correction or intervention.

In the case of *Making a Song and Dance*... the pitch material was to be treated freely, as something to 'dip into' to generate pitch material at key points in the work. Examples of this include the opening piano idea which identifies the main pitches of the original melody, the descending lines at bar 118, and the final passage of the piece (bar 261 ff). Furthermore the modal matrix itself became a subject for further pitch transformation and produced the pitch set shown in Figure 17. The example also identifies the main characteristics of the pitch set which had a considerable influence on the harmonic language of the piece.
Figure 17 shows the new pitch set and its associated transpositions. This matrix was used to generate much of the music in other passages. For example the opening section of the piece takes its material from the matrix (as identified in the example) with each instrument playing independent rows of the matrix. Again this matrix was treated freely with some notes being adjusted from the pitches defined in the row according to my desires, or entire sections of selected pitches omitted for the same reasons. The freedom to call upon any given system or matrix, and to use these as compositional tools rather than as dogmas to follow was, to say the least, liberating. In this way the musical 'cement' is provided not by the system itself but by an inner 'ear' casting around for objects drawn from or modifying material from common sources (eg the pitch grids) to enlighten the compositional procedure.

To some extent the rhythmic patterns of Making a Song and Dance... evolve from a similar process of extraction from the original folksong: converting the rhythms of the melody to quavers and semiquavers produces the following line. (Figure 18 also shows how this relates to the opening gesture of the piece.)

Figure 18
The diagram also shows how the first rhythmic gesture of the piece may be derived from this material. All simple semi-quaver passages in the piece have their origins in the above rhythmic strand.

From this rhythmic canons were created: for example the clarinet line at bar 10 is a canon of the piano line at the opening (the first unit of the canon is omitted); similarly the violin line at bar 20 is another canonic strand in this sequence. Another example may be found at bar 34 where the rhythmic unison, established in the opening bars, drifts by one semi-quaver in bar 37. Rhythmic transformation is also used in the passage at bar 188 where the various lines are derived by simultaneous augmentation of the violin line. The augmentation process is also applied chronologically: each successive section using longer rhythmic units and decreasing in tempo.

Other Melodic and Harmonic Considerations

The general descending contour of the opening phrase of the folksong was used as a model for much of the melodic material in Making a Song and Dance.... This is utilized over short gestures and over longer passages of music such as the opening which passes from the highest register of the piano to the middle resonant register. This is achieved by a quasi-random process of dropping pitches through octave displacement over a given number of bars. The clearest example of descending lines is in the passage from letter G to letter K where each short section moves from one register to another; similarly the lines at bar 255 follow this contour.
Other important influences on the pitch material of this piece were the gestural and technical qualities of the instruments. In earlier works the results from a particular process were inflicted on the instrumental lines, often with less regard for the feasibility of these gestures on the instruments than for the details of the pitch material. In this case the collective timbre of the ensemble and the resonant possibilities of each instrument were prominent considerations in the early composition process and, as a result, helped narrow the search through materials such as the grids when developing ideas. An example of this would be the passage at letter A, which was conceived with the open 5ths of violin line in mind. These were included to ensure that a resonance of the violin cut through the dense harmonic blocks of the ensemble.

Structure
The title played a major part in the development and implementation of the main musical ideas of *Making a Song and Dance*.... The choice of the title is related to my predilection for lyricism (*song*) and stylized rhythmic gestures (*dance*), and the possible processes through which these types of music can be created and cross-fertilized. Taking an overview of the piece it is perhaps best regarded as a mosaic of dances, songs and hybrid types of music. Closer examination reveals a number of important relationships across the piece. For example the rhythmic material at bar 34 can be related gesturally to the music preceding it and following it (as shown in Figure 19).
Furthermore the influence of this music can be observed in other passages of the work:

- b 34 original
- b 69 modified to 6/16
- b 99 developed from b85
- b 109 developed from b99
- b 193 long notes added
- b 236 close to original
Other examples of links throughout the piece include:

opening -
related to b47, b171 (the latter might be regarded as a recapitulation)

b44- (semiquavers)
related to b 246

b163 (piano arpeggio)
related to b 207 - piano arpeggios

As stated at the opening of the commentary *Making A Song and Dance*... marks a significant development in my compositional language: namely the use of simple harmonic materials (especially at the end of the work). Although the work might be viewed as being over-endowed with ideas (a characteristic which is addressed in subsequent pieces) its success is linked to the strength of the pitch and rhythmic material derived from the folksong melody.
Voyager (1990)
for mixed ensemble, live electronics, tape and slide projection
(duration: 10'22")

Commissioned by the Arts Council of Northern Ireland for the 1989/1990 Young Arts Festival

First performance: Lurgan Town Hall, Co Armagh
pupils from Portadown Grammar School and St Patrick's Grammar School, Lurgan
January 1990

Subsequent performances: Accents Festival in Dublin
April 1990
Haenjo ensemble
Armagh Planetarium
using Lasers and multiple slide projection.

Introduction
This work was commissioned specially for an education project in schools in Northern Ireland in 1989/90 and was targeted at GCSE students of a relatively advanced instrumental standard. My aim was to introduce electro-acoustic music and new performance methods to the young musicians and above all to bring the concept of timbre to their attention.

The inspiration for the work stemmed from a set of photographs published in many of the broadsheet newspapers in August 1989 which showed high definition images of Saturn taken by the spacecraft Voyager II on its journey
through the solar system. These photographs, which were unprecedented in terms of detail and quality, were part of a series of images transmitted by both of the Voyager spacecraft since their launch in the mid 1980s. I felt that these images would prove to be a very powerful stimulus for the musicians and the audience, and would also help unite in some programmatic way the electronic and instrumental soundworlds.

The challenge of writing music for younger musicians is considerable. The piece had to be written for pupils of a varied standard of instrumental proficiency and unspecified resources and had to be prepared with a minimum of rehearsal time (6 hours per performance had been allocated). Because of these constraints I resorted to using a simple score which allowed for most of the usual assortment of school instruments (flutes, clarinets, strings, piano/keyboard, brass, percussion) and a method of notation which, because of its reliance on improvisation techniques, provided scope for the variety of technical abilities. In this context performers could be asked to apply their skills to the manipulation of one or more of the parameters of pitch, rhythm or gesture to contribute to the performance at a level appropriate to their ability, within a controlled environment.

This immediately leads to questions about the validity of such techniques in the 1990s, which are largely associated with the 1960s music by composers such as Lutoslawski and Penderecki, and about the control which the composer relinquishes over the music in the process. In the context of this piece and my music generally it can be justified: for Voyager it provided the most flexible line to take and proved to be stretching mentally and musically for the performers; in my music as a whole it represents one extreme in the use of a compositional technique (controlled aleatoricism) which features in a limited way in many
pieces. Going further one can justify such freedom as a valid action in a compositional language such as mine, given that the influence of random patterns and the random results that can arise from working in the electro-acoustic medium play a large part in guiding my music.

Compositional processes and procedures

The compositional procedure in a work such as this is governed considerably by the objectives, context and resources of the project. (One might argue that these considerations should play little part in the formulation of a composition, where, ideally at least, the composer should be guided only by a creative vision. Whilst techniques such as these might not be strikingly original they do nevertheless demonstrate some of the flexible skills which today's composer needs to adopt as a professional artist working in the field of new music.) Early in the process of planning this work I was keen to define the role that the musicians would take in the piece and to create tasks which would challenge them in specific ways. Six basic tasks or skills were identified which would be used to form the backbone of the piece:

- exploration of unconventional instrumental sounds (extended instrumental techniques - self discovery)

- rhythmic improvisation with a given pitch set

- melodic/gestural improvisation with given durations

- timbral exploration
- instrumentation/orchestration tasks

- reacting to a variety of stimuli - visual (slides), aural (tape, fellow musicians) notation (unconventional score instructions)

In terms of the folio this piece represents one extreme in my method of organizing musical materials and, despite its simplicity, illustrates some of the textural and harmonic fingerprints of my musical language. The electronic sounds used in the piece were created in a small studio using basic MIDI equipment (sequencer and two synthesizers) and three reel-to-reel tape recorders.

After sifting through the entire collection of images from the Voyager spacecraft (more than three hundred slides were made available to me by the Armagh Planetarium), a visual sequence was created from eighty-four of these slides. The structure of this was governed not by the chronology of the photographs (following the path that the spacecraft took), nor by their astronomical qualities, but by the succession of colours and shapes that could be created. In general the sequence progresses from vibrant, fiery-red slides through to black and white images of close-up landscapes and eclipse images (Colour photographs from this sequence are shown in Appendix Three).

In addition to this visual process the idea of voyaging or journeying was used as a structural plan for the piece. In particular the voyage of the spacecraft from the polluted environs of the earth to deep, as yet, unpolluted space was mirrored in
the general pitch and harmonic progression where the chromatic cluster-like material near the opening of *Voyager* (01'17") gradually becomes static, sparse and consonant material towards the middle section of the piece. This idea is extended to include a broad shift in register during the piece from high noise-like timbres at the opening to a low b flat pitch at the end of the work (08'23"). One might regard these processes collectively as a passage down through a single complex sound spectrum from higher, dissonant 'partials', through harmonies of decreasing dissonance, to a 'fundamental'. The 'fundamental' in this case is itself a complex timbre and during the final moments of the work its inner detail is revealed, starting with timbres and noise-like material in the higher register. Thus the registral and pitch process could be regarded as beginning again, in a procedure which is similar to the behaviour of fractal images.

Other journeys include a progression from active, disjunct and aggressive music at the opening to consonant material which, given the scalar presentation of the pitch material at 06'30", is likely to be conjunct and melodious. As suggested above the harmonic language of the piece is based on a simple registral and harmonic progression to a 'fundamental' and then to a series of noise-like timbres. Within this are a number of 'sub-progressions'. For example the pitch material of the instrumental parts at 01'17", based on the semitone intervals of the tape chord, gradually ascends, both by octave displacement and by transposition to arrive at the same chord again before the next section at 2'46". The middle tape section, which explores two diads a semitone apart, becomes the pivot for the previous cluster material and the pitch material of the next section (which has its origin in the overtone series and in a progression inspired by *Neptune* from Holst's Planet Suite).
At this early stage of composition the challenge of harnessing these structural ideas to improvisation techniques was considerably demanding. In essence two time scales existed; firstly the scale which is suggested by the simple progression from noise to consonance to noise, and secondly the time necessary for many of the improvisation techniques to unfold and create their desired effects. In the latter case it was necessary to judge and control these processes quite carefully given the static nature of much aleatoric music. The tape plays an important role in controlling this process: on one hand it provides aural cues suggesting gestures, registers and timbres for the improvisation techniques, and creates a backcloth against which the sounds may be played, and on the other hand it delineates the freedom of the improvisation by providing fixed timings which control the duration and overall structure of the piece.

In most cases the improvisation skills are concerned with manipulating written pitch material with the performers having a degree of freedom over rhythmic interpretation. Feeding into this is guidance from written instructions in the parts for example at 1'17":

Create fast, aggressive and intricate musical gestures from the pitch material provided. React to the tape sounds, the gestures played by other members of the ensemble and any other indications on the score . . .

and other parameters such as 'trill percentage' which instructs the players to trill a certain percentage of the events or gestures in a repeated section.

Built into the aleatoric passages are controls over pitch material (for example at 1'17") which ensure that there is continuity (much of the pitch material of any section is common to all instruments) and variety (the ordering of the pitches is
different for each instrument and in a number of instances some parts have pitches that are unique to the texture at that point).

Other passages require the performers to improvise pitches in a decelerating pointillistic texture. In most cases performers (young or old) found decisions over pitch material harder than rhythmic manipulation.

The improvisatory passage which begins at 6'30" and extends for a further two minutes is perhaps the most difficult section of the piece to control (both from my position as a composer and from the performers' position as contributors to the development of the material); firstly, it is difficult to sustain this material for such a length of time; secondly, there is little in the way of tape cues to guide the (suggested) lyrical melodic lines; and thirdly, the score also requires the performers to build the material to a climax at 8'23" (without the assistance of tape). It was hoped that the performers would find a method of extemporizing on this material and a way of creating a climax at 8'23" (thus developing some understanding of the processes at work in creating a musical climax in other contexts) by crescendo, increased activity and possibly a gradual shift in registral focus of their improvisation.

Electro-acoustic Sounds

The tape sounds for *Voyager* were created with modest studio resources: 3 analogue tape recorders, *Yamaha SPX90II*, *Yamaha DX5 synthesiser*, *Roland D110 module*, *Yamaha TX802 module*, and Mark of the Unicorn's *Performer* software. Many of the sounds are MIDI sequenced timbres from voices modified on the synthesiser and associated modules. Others were created from analogue tape techniques, for example splicing and labyrinth techniques. The latter
process involved running a tape across all three tape recorders and recording sound on the first machine which would be replayed on the second and third machines. The audio signal can then be adjusted (or coloured with equalisation) on the mixing desk and fed back into the system. The process usually produces a slowly disintegrating (and increasingly noise-like) timbre. In Voyager this was used to create the final sound of the piece. The source sound (an arpeggio of bell timbres) was played backwards and fed into the labyrinth. The finished processed tape, played backwards, begins with the transformation (a convoluted noise-like timbre) which gradually becomes the original timbre (in the correct direction). In the piece the sound is faded out just before it reveals its identity. The diagram below shows the configuration of the tape machines.

Other sounds were derived from unusual sources. For example, the opening noise-like timbre was created from feedback achieved by connecting the output of a Yamaha SPX90II (set to a flange preset) to its own input, via a mixer. Varying the equalisation and levels at the desk allowed rich and dynamic spectra to be produced. Also, the textural sound used at 8'30" was created from piano
attacks which were fed through noise gates (with a short attack and decay rates) and onto each track of the two track tape recorders. This was then mixed directly into the final version of the piece.

Despite its simplicity in terms of the concept, the materials and techniques employed, and the score, Voyager is quite an important work and has influenced, above all, the structure and pacing of more recent compositions. To date it has remained my most performed composition.
Perichoresis

(1990)

for wind quintet

in three movements

(duration: 12')

Commissioned for the Nash Ensemble by the Belfast Music Society with funds provided by the Arts Council of Northern Ireland to celebrate the 70th year of the Society.

first performance: University of Ulster at Coleraine
Nash Ensemble
10 October 1990

Broadcasts & recordings: Nash Ensemble
BBC Radio 3
26 April 1991

Belfast Wind Quintet
Neuma CD label
To be released in 1994

Introduction

Perichoresis is in one respect unique within the context of my folio, being the only work which was written with previous experience of a particular medium or resources. All other pieces are the fruits of first experiments with their ensembles or instrumentations. In this case an earlier Wind Quintet In a Roundabout Way (1987) was a valuable springboard for many technical and timbral considerations in Perichoresis.

Many of the noteworthy points of this piece stem from the possible interpretations of the title. Indeed it is this which guided the planning of the dramatic structure and musical ideas of the work. Amongst the various definitions of Perichoresis
are the following: going around, rotating, transferring to, to come to in succession. Greek words which may be extracted from it include: *choreutes* (to dance), *chori* (to tear asunder, wrench apart) and *choragus* (the leader of the chorus in Greek drama). These ideas were applied, often through underlying dramatic devices, to various musical parameters and processes. One which is particularly important is the role played by the oboe within the ensemble. Whereas most wind quintets might explore the sounds and timbres of a balanced ensemble, this piece presents the oboe as a solo or principle voice (standing at the centre of the group) with the other instruments accompanying or conversing with it. In this way it can lead the ensemble (acting as choragus) and control the dissemination of the musical material. Many of the ideas derived from the title are suggestive of ritual and are supported by the presence of other elements such as the crotales. Feeding into this are other words such as *Peri*, a word in its own right, which means one of a race of beautiful supernatural beings in Persian folklore and is personified here by the oboe.

The first movement demonstrates some of these features in operation.

<table>
<thead>
<tr>
<th>bar</th>
<th>parts</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>solo oboe</td>
<td>clarinet resonances</td>
</tr>
<tr>
<td>4</td>
<td>ob / cl</td>
<td>clarinet is given material</td>
</tr>
<tr>
<td>13</td>
<td>ob / cl / fl</td>
<td>flute resonances</td>
</tr>
<tr>
<td>18</td>
<td>ob / cl / fl</td>
<td>flute is given material</td>
</tr>
<tr>
<td>31</td>
<td>ob / cl / fl</td>
<td>each play relatively independent lines</td>
</tr>
<tr>
<td>35</td>
<td>tutti</td>
<td>bassoon & horn come to life in a similar rhythmic and durational process as the clarinet and flute</td>
</tr>
</tbody>
</table>
There are instances where the role of the oboe is challenged. The central passage of the second movement shows this quite clearly. After the opening solo oboe passage a new section, which explores a wide variety of gestures, features fast figuration in the oboe line. This is triggered initially by the clarinet and leads to a high wailing passage for the oboe, which, due to the gradual proliferation of material underneath becomes engulfed into a momentary climax at bar 28. The oboe, lost in the texture at this point, becomes a secondary character for the remainder of the movement.

The definitions of the title (going around, rotating, transferring to) are reflected quite clearly in the final movement starting at figure B. The repeated aleatoric material can immediately be interpreted as embodying the rotating idea, and the development of this material as part of a process of transferring. The oboe initiates the repeated material (triggered on and off by tutti chords), and eventually this type of material is passed to the flute, and later the clarinet. By cue number 11 the horn has been drawn into the process, the bassoon triggering each cue, though by figure 12 it has no effect on the punctuation of the structure. Other examples of the influence of the title can be seen at a more local level, the orchestration at figure A of the last movement being a good example: the same
harmony is stated over the next 8 bars with the voicing of the chord being rotated amongst the instruments.

Other structural features

Although Perichoresis uses little in the way of strict compositional procedures it did begin life from experiments in organising pitch and rhythm. In other respects it displays many features which provide unity both on a micro and macro structural level. Not least of these is the distribution of and relationship between certain harmonic areas which are frequently called upon. The two main pitch sets, a tri-chord and its extended (symmetrical) four note set, are shown, along with a series of examples from the piece, in Figure 20 below. In each case the tri-chord is present, though not always in the same inversion, and can be seen to inform both harmonic and melodic material.

Other unifying features can be seen in the broader processes occurring in each movement. All three movements begin with an initially sparse texture which becomes more dense: the first movement presents a single melodic line which is distributed eventually amongst the other instruments; the second movement, after a brief introduction, gradually embellishes the spaces between a two note rhythmic gesture on bassoon; movement three features a sparse series of chords which gradually proliferates.
Figure 20
Scallic figures, producing a shift in register, occur in many places in the work: for example, the flourish at bar 65 in the first movement and its related passage in the penultimate bar of the work. Other examples are less obvious and include the slow descent in bar 28 of the second movement and the ascent of the pitch material from letter B of the last movement. In the latter case this may be traced in the upper notes of each cued section (see Figure 21).

At a more localized level continuity is created by gestural, rhythmic and harmonic events. For example there is a strong link between the clarinet / horn gestures at the end of the second movement (b 54 ff) and the opening gesture of the third movement. There is also a link between the cluster-like lines in bars 22 ff of the last movement and rhythmically punctuating lines in bars 44 and 49 of the same movement. Furthermore, the second and third movements each contain a single unifying feature: the second movement is composed around a long melodic line which eventually focuses on an F sharp (also part of the last harmonic area of the first movement), and the last movement shows a continuous preoccupation with articulation: the rhythmic material of the opening becomes the trigger for the aleatoric segments at letter B, and later becomes the faster dance-like rhythms of cue 16 (bar 29) and the repeated chords in bar 62.

Figure 21
Harmonic, melodic and gestural techniques

As already mentioned much of the harmonic material is derived from pitch cells of three or four notes. Unlike previous works the control of the harmonic material during the composition process is extremely rigorous due to the narrow harmonic palate available. A clear example of this is the opening section which features only three pitches (excluding the crotalas), extending to five by bar 29. Octave transpositions and doublings ensured that the harmonic events appeared to be constantly changing. Other techniques which help clarify the harmonic areas include the use of fixed registers for pitches within an aggregate. This can be seen in operation at bar 31 of the first movement.

Harmonic passages such as the opening of the third movement are based on tightly controlled processes. In this particular case each chord is part of a larger harmonic complex. For example the first three chords form a particular aggregate. This becomes dissected and juxtaposed with other chords from other aggregates. A similar process happens with the chords from cue 16 (bar 29) of the third movement. The diads of the two upper instruments and those of the lower (horn and bassoon) are part of a linear sequence. In most cases the same pairs of diads rarely coincide producing a wide variety of harmonic events.

Much of the general harmonic material arises from the melodic procedures being used. In many passages of the piece, where a small pitch vocabulary is used, considerable emphasis was placed on pattern, stress (note to note, phrase to phrase), and duration. This can perhaps be seen most clearly in the opening bars of the piece where the oboe line comprises a series of short gestures each varying in pitch and rhythmic emphasis. Figure 24 shows the first nine oboe gestures of the piece. It can be seen that the pitch material is gradually copied to
each register (B flat is added to the upper register in the 5th gesture, C to the lower register in the 6th gesture), and that the important emphasis on the high pitches (A & C) is replaced by an emphasis on the lower B flat by gesture 5. What is most important is that the path taken through this pitch material is different in every instance.

Figure 24

Other melodic devices include the process of 'shadowing' (also used in many passages of *Making a Song and Dance...* such as the violin and clarinet duet at bar 185). Examples in *Perichoresis* include the passage from bar 37 of the second movement where flute and clarinet are pitted against each other. Another example is at bar 50 of the third movement where the oboe and clarinet line only occasionally come into unison. This procedure could be related to the 'shadowing' effects used at the opening of the piece where the lines rarely come
Finally, one feature of this piece which deserves to be mentioned is the clear delineation of the piece into three distinct sections. Until *Perichoresis* such a division had never occurred in my music; earlier pieces explored single movement structures which were often organised around a large scale climax or series of related climaxes. Whilst the succinct and (relatively) isolated nature of these three movements is by no means ground breaking, it did point the way to the simpler structural characteristics of later pieces, most notably *A Slow Dance*, in which there is considerably less interest in goal oriented music.
Double Escapement (1992)
for piano and live electronics
(duration: 9'20")

The work is due to be performed in the Autumn of 1993.
A MIDI sequenced 'performance' of the live piano part has been mixed with the electronic sounds to create a rehearsal version of the piece for the purposes of this submission.

Introduction

Double Escapement is the first of a cycle of pieces which explores the vast range of timbres available on the piano with the aid of electro-acoustic resources. It is envisaged that these pieces may be played separately or as a set making an extended work of approximately twenty five minutes' duration.

The basic idea for the cycle was formulated in 1987 whilst working in the Electronic Music Studios of The University of Durham on another piano and tape piece entitled Jubilate. At that stage I was working principally with analogue resources (eight-track, four-track, and two-track tape recorders), and with Music11 to transform recordings of piano sounds. Despite the rich timbral qualities of many piano sounds, especially low stopped harmonics, and harmonies which excite strong sympathetic resonances, the short decay time and low dynamic levels of the short decay were found to be severely restricting. This was especially given that the rationale behind the tape sounds of Jubilate was the exploration and extension of piano timbres after the attacks. These shortcomings suggested that the piano attack was perhaps a sound worth...
exploiting and thus the idea of a composition for piano and electronics which focused on piano attacks became the basis of the work now in question.

Given that the manipulation of piano attacks using analogue techniques such as montage splicing is a highly time-consuming process, and that the possibilities for such manipulation using Music11 was relatively complicated, the piece was shelved until I had access to MIDI and sampling resources.

In 1991 the project was restarted using a Macintosh computer, Mark of the Unicorn - Performer, two Akai S1000 samplers and a Yamaha TG77. As the composition developed I also wrote some software utilities under Hypercard (running on the Macintosh) for manipulating pitch data; these are discussed later. Using these resources the sampled piano sounds could be controlled from the sequencer without recourse to tape recorders or multi-track recording. Furthermore it became apparent that the two samplers, connected to independent hard disk storage devices, in conjunction with Max program, would allow me to perform this work live in concert and to provide some basic interaction between the pianist and the technician. This has a number of benefits not least of which is the freedom from the timings of the tape and the opportunity for the performer to adjust, within reason, the tempi of some of the sections of the piece during the performance. Such decisions could be related to the acoustics of the building or to the desire of the performer to adjust the dramatic profile of any given section of the piece.
It is intended that this interaction will be exploited to a greater degree in subsequent pieces in the cycle using the commercially available Opcode version of Max, which would allow interaction between the performer and the technology via a MIDI grand piano, or using the IRCAM version of the Max program which allows interaction via the audio-in connection on the IRCAM Digital Signal Processor Workstation.

Compositional processes and procedures
The influences on the compositional processes employed in this work stem from the tension between technical and aesthetic considerations. The timbral and gestural qualities of the sampled piano sounds and their transformations were particularly important in guiding the progress of the composition.

Beyond this, one of the over-riding considerations was to create a piece which explored the musical material within a simple structure; despite attempts to decrease the pace of my music in earlier works, for example in the opening passage of Making a Song and Dance, it is in this work that I feel a slower rate of change has been successfully sustained. This is in contrast to a greater degree of surface activity in the musical material. On a different level, the intense, goal-oriented gestures of previous works (which most often lead towards brief climactic moments), are replaced, in the first section of this piece, by simpler gestural events which are most notable for their contour, timing and slow evolution of pitch material. All of these features unfold within a simple bi-partite
structure which is delineated by a broad registral and dynamic change, and a sudden shift in the activity of the live piano part.

To some extent the title of *Double Escapement*, which refers to the hammer action of the piano, has a bearing on the structure in a metaphorical sense: the repeated notes of the electronic part in the first section, (performed loudly in the source recordings to create a 'bright' timbre and played back very quietly in the transformed version) could be regarded as being suppressed; these are answered, by way of a release, by the louder more aggressive material of the second section.

Other factors which influenced the compositional process were the technical restrictions of the equipment, principally in terms of the time required to load samples and programs to the Akai S1000 during a performance (typically 20 - 30 seconds for some of the complex piano timbres), and the limited polyphony and transformation capabilities of the instrument: the sampler is limited to 4-note polyphony where each note consists of four superimposed timbres.

Structure

Despite the simplicity of the overall shape of *Double Escapement* the intuitive processes at work in organising the music at a lower level are quite important, for example, the exploitation of the listeners sense of expectation. In the opening section the tape sounds unfold very slowly into a descending scale: E D C# B. Despite the very slow pace the entry of the C# at 00'52" and the B at 01'28" are an expected continuation of the initial descending shape. Another example is the plucked E pitch in the live piano part at 03'13" which pre-empts the E pitch in the
tape part at 03'14" and anchors the harmonic suggestion of this material. The fact that this entire section focuses on the middle register of the piano (only the live piano steps beyond this register, and even then only for sporadic events) and that the rate of change of both the piano and electronics parts decreases towards the end of the section also creates a feeling of expectancy. The resolution of this is the sudden change to the second section.

The use of contrast and the control of duration could also be cited as intuitive processes. For example the crossover between the first and second sections brings together a collection of opposite states: the narrow dynamic and pitch range, slow evolution and relatively inactive piano part of the first section meet the wide dynamic range, use of high and low piano registers, harder attacks, extended writing for the live piano, and interplay and integration between the live and electronic material. With regard to the control of duration, one of the ideas behind the structure of the piece was to create a feeling of acceleration where each section (or subsection) would appear to be shorter than the previous section.

Despite the contrast between the first and second sections discussed above, continuity is created by the use of E related harmony in both sections and the development of the repeated note pattern into a high melodic line in the upper register. This melody is doubled by the repeated note samples from the first section though transposed several octaves higher. The result of this transposition is that the samples lose their original qualities and become a metallic resonance.
Harmonic language

Two main elements were at work in guiding the harmonic language of this piece. Firstly the creation and distribution of simple harmonic areas in the work and, secondly, material derived from the program *PitchTwister* (described below) which provided additional melodic/harmonic material to connect the main harmonic areas together.

Unlike many of my previous works, this piece has an underlying harmonic progression. Although the term is not appropriate in this context it might be regarded as a type of 'Urlinie'. As the diagram in Figure 22 below shows, this outlines two interlocking tritones.

Figure 22

![Double Escapement](image)

Albeit widely spaced this progression can be heard clearly during the piece and is assisted by the slow harmonic rhythm and by the fact that the majority of the pitch material is placed several octaves above the bass line. The importance given to this bass line is an attempt to reject the 'fudged' harmonic language that I (and many other younger composers) have used in the past which often avoids...
any specific harmonic implication.

Above the bass line other harmonic areas (often clusters related in some way to the bass) vie for prominence. These areas are shown in the diagram below (Figure 23)

Figure 23

chords of consonance (04' 57")

chords of dissonance (04' 44")

The two chordal areas above (shown as collective resonances for the passages in question) share a common 'fundamental', and intervals (2nds, 4ths) though have entirely different harmonic functions: consonance and dissonance. The alternation of these two basic formations and the linear material which interject comprises the majority of the music in the second section of the work.

As mentioned already (page 71) additional pitch material was derived from a Hypercard program (PitchTwister) which facilitates the creation and transformation of pitch material. Techniques include manipulating random numbers of any given range, creating grids for prime and inversion orderings of rows of any length and applying random and weighted random processes to primes. A typical 'Random Grid' is shown in Figure 25a and demonstrates how this relates to a passage in the composition in Figure 25b.
Process:

The 6x6 pitch grid (shown left) was created from a random hexachord and is typical of the grids used in the composition of the faster sections of *Double Escapement*. There is no continuously systematic approach to the use of these grids, though they did form the basis of many sections of the piece.

The grid displays the transpositions and inversions of the hexachord. Each line (marked 1 - 12) was converted to a chord (shown in the first example below) and ordered according to the number arising from the random grid (also shown left). Diads or triads from each chord was then selected and used in the section.

These were then implemented in the passage of music which follows (with some free changes to the events).
Rhythmic features

In addition to the simple sextuplet figuration which is used in many passages of the piece much of the rhythmic material of sections such as 04'40" is derived from the following rhythmic talea which was modified by free subdivisions and distortions of the individual units. The example below (Figure 26) shows three subsequent variations of this rhythmic material which relate to the passage starting at 4'40" in the piece. (The sextuplet material breaks into the middle of the third variation). Such a process of variation allows for rhythmic diversity but helps retain a degree of continuity in the flow of the music.

Figure 26
The Electro-acoustic sounds of Double Escapement

As mentioned in the introduction, Double Escapement is the first piece in a larger cycle of electro-acoustic piano pieces which has been planned. It is envisaged that each piece in the cycle will explore a different aspect of piano technique or piano timbre. The idea behind Double Escapement, as the first in the cycle, was of leading the listener into the simple, un-transformed sound world of the piano and enveloping the listener in the piano timbre through multi-loudspeaker diffusion. To do this the tape sounds concentrate on minor transformations of piano sounds, for example pitch doublings with subtle detuning or attackless timbres, and on the rhythmic layering and complexity to assist in the overpowering impression which the piece seeks to achieve. (Much of this was achieved using superimposed zones on the S1000 Sampler.) Whilst there is not a wide palette of sounds in Double Escapement it was my desire to focus on the subtle juxtaposition and superimposition of these timbres. For example the opening passage concentrates on the phasing effects which arise from the transposition of the sampled E pitch. Successive transpositions produce a slower rate of repeated notes. In addition, each event comprises at least two sounds: a crescendo gesture and diminuendo sample which are overlapped to exploit the phasing possibilities of the two patterns. Additional layers are added to this texture by multiple delays from external effects processors.

The only particularly unusual timbre in the piece is the last note (a transformed harmonic) which forms a link to the next piece which will explore static and unconventional piano timbres.
A Slow Dance (1992)

Back

Seskilgreen

The Dance / Message

For the Hillmother

for soprano, alto, tenor, bass and tape

(duration: 17')

Commissioned by the 1992 New Macnaughten Concerts with funding from the London Arts Board

First performance: 1992 New Macnaughten Concerts
22 October 1992
St Giles Church, Cripplegate, Barbican, London
Singcircle, conductor: Gregory Rose

Broadcast: 9 April 1993
BBC Radio 3 - Midnight Oil.
Singcircle, conductor: Gregory Rose

Selected for performance at the 1993 International Computer Music Conference, Japan.

Introduction

The collection of poems by the Irish/American poet John Montague entitled A Slow Dance came to my attention some three years before the composition of this piece. At that stage I had imagined that its influence would find a way into the composition of Making a Song and Dance... though by that time I had become engrossed with the harmonic and melodic qualities of the folksong the Lasses of Donaghadee and retained the Montague text for some future project. There were a number of qualities in these poems which appealed greatly to me;
not least of these were the dark and often sinister images of birth, life, death and decay, and the constant feeling of movement depicted in almost every part of the text. (This latter point supports further my interest in dance, gesture and ritual in recent works such as Perichoresis.) At another level the poems appeared to be timeless, or at least moving in very slow motion; passages such as the opening of Back or the end of Seskilgreen create this atmosphere particularly well and I was anxious not to lose this quality in the process of composition.

Whilst the poems are quite clearly rhythmical and often 'musical' (in terms of the sounds of the spoken text) my initial work suggested two important things; firstly that the goal-oriented structures and fast harmonic rhythm typical of the compositions preceding A Slow Dance were inconsistent with the pacing of these poems, and secondly that the harmonic material which I was attempting to force onto the text was less suitable than pure speech and extended vocal sounds. Both of these points were addressed when the harmonic rhythm was slowed considerably and the pacing and direction of the music became less obsessed with building large-scale dramatic structures and more focussed on the mood and quality of the music and text at any given point. The speech and extended vocal sounds were in fact used in Dance and Message to heighten the qualities of the text.

Beyond the considerations outlined above lay a more fundamental challenge, that of transferring these ideas into the medium of electro-acoustic music with its complex resources and processes. Ideas, such 'transparency' and 'fragility', which I associate with the musical language of A Slow Dance, seem less common in much of today's electro-acoustic music where high loudspeaker levels and complex noise spectra seem all too prevalent. It was my aim to
engage the full armory of a sophisticated computer music system whilst not losing sight of these simple objectives. The following detailed discussion of the resources used and their relationship with the text and music will reveal a greater understanding of my intentions in this piece: this includes an examination of the different electro-acoustic instruments created for use in the piece.

The electro-acoustic processes

Despite having a wide range of resources at my disposal I decided that the entire piece would be composed on one system without reference to external analogue, digital or conventional mixing facilities; the final 'tape' sounds would in fact be first generation sounds. Such a restriction was by no means a limitation but proved to be a successful way of focussing on a small range of techniques and processes. The NeXT computer was the platform chosen for the composition, running software such as Csound, Cmix, NeXT MusicKit and IRCAM's Digital Signal Processing Workstation software. Very quickly it became apparent that the Csound software was fast and flexible enough to provide the majority of sound synthesis and manipulation techniques. Seeing the entire work through without recourse to external media also required considerable work in the later stages of mixing and required vast amounts of hard disk storage. (More than 2.5 GBytes of storage space was used during the composition of the piece.)

Much of the early work for the piece involved developing a wide range of timbres on the computer from which the desired soundworlds could be carved out. It also appeared that there was scope to cross-fertilize the computer sounds and live voice sounds whereby synthetic sounds could be developed to the point of being life-like and the sampled voice sounds transformed into noise-like timbres and
electronic sounds.

Csound Instruments and Scores

The basic philosophy behind Csound, that of an instrument file containing precise instructions about timbre, being played or 'initialized' by events describing time, duration, pitch, and other variables in the score file is not too dissimilar from the conventional composition environment. Where this analogy breaks down is in the complexity of the programming required to develop these instrument and score files to anything resembling the sophistication of a musical instrument or the complex process of notation, interpretation and performance. A simple instruction in a conventional score, for example, 'with expression', can invoke a series of intricate and idiomatic distortions of the pitch, dynamics, and timing of musical gestures. If such nuances are to be possible with computers they require many hours of programming and a detailed familiarization with the controls of an instrument which exists only in terms of mathematical and acoustical data in Csound.

From the outset it had been my aim not to be lured into the possibilities of creating new synthesis methods (an altogether time-consuming activity which is possible in Csound because of the open-ended nature of the software), but to create a small and complex range of instruments and processes and exploit these to the full. The emphasis of my work lay in creating sophisticated orchestra files, some these as long as one thousand lines, controlled from the score file. These instruments were used to create or manipulate four basic categories of sound:
1) synthetic timbres (additive synthesis, frequency modulation)

2) synthetic voice or instrument -like timbres

3) transformed sampled sounds

4) heavily transformed sampled sounds

Sampling Instrument

This is used frequently in the piece to create sounds which directly unify the live sounds and computer sounds. The process involves recording sound sources into the computer and then reading the resulting soundfile within a Csound instrument many times at short intervals. Depending on the control parameters of the Csound instrument, the output can appear to be static at one extreme or micro-polyphonic at another. The diagram below (Figure 27) illustrates this process and shows a series of 'windows', spaced at distances as small as 0.002 sec, which access the soundfile.
To make these sounds more interesting the parameters of the windows were constantly altered, often by simple procedures such as increasing the length of the window, shifting the horizontal position of the window and/or increasing or decreasing the number of windows. Throughout this process random fluctuations of timing and amplitude were also added to ensure a more life-like result. A typical instrument and score is shown in AppendixFive.

This technique is used to good effect in the opening minutes of *A Slow Dance* where the harmonic material of the live voices is pre-empted, supported or mirrored by sounds on the tape. For each chord that was treated a different sampling orchestra and score file was developed to ensure maximum diversity. What is perhaps most interesting is that the tape timbres at this point were derived from a recording of a linear sequence of pitches taken from the singers’ chords and transformed using the technique described above, into complex
melodic lines or vertical sonorities. Thus they become animations of the static vocal chords to which they related.

Phase Vocoder Instrument

In some respects the Phase Vocoder process is not unlike the sampling process described above and was used to create the computer sounds of the third section of the piece (The Dance, Message). It utilizes a Phase Vocoder model developed by Mark Dolson\(^1\) which can be implemented within the Csound program. The attractions of the Phase Vocoder are many: complex, rich spectra can be produced quite quickly after the relatively lengthy process of running the analysis programme on the selected sound. The analysed data, containing spectral information on frequency and amplitude at intervals of 0.005 second, can then be read by a Csound Unit Generator called pvoc which has independent controls for the direction and speed of the resynthesis process. The power of the pvoc processor is considerable; a short passage of sound stretched many times, reveals information on the timbre and inner qualities of the sound in much the same way that a microscope examines visual images.

The Phase Vocoder instrument that I used employs several pvoc generators within a single instrument reading the analysis data simultaneously in different ways. This meant that a relatively simple score instruction could produce a complex range of timbres. The audio output from the pvoc generators was subjected to further processing using panning and amplitude variation. After a series of experiments it was apparent that the analysis data resulting from

speech worked particularly well and eventually a file derived from the word 'dance' was used to form the basic material of the second half of *The Dance*. The simplified diagram below (Figure 28) showing three pointers which can move in different directions and at different speeds through the analysis file shows the typical processes that were employed in this passage.

Figure 28

An example of the instrument and score files is shown in Appendix Five.

Voice-like Instruments

This synthesis method has its origins in the Chant program and was developed and implemented in Csound as a FOF unit generator by Dr Michael Clarke.²

The FOF generator, amongst the most complicated in Csound, allows the user to create basic voice-like timbres; the process of shaping these timbres into realistic musical sounds is an even more complicated business and requires further study of the behavior of vocal formants for the human voice.

Most of my early work on the NeXT was spent developing a series of convincing 'voice instruments' which could integrate with the live voices or dissolve into electronic timbres. Early experiments used single FOF generators and models using ten or more were developed later. One particular instrument, which contained nearly one thousand lines of code, allowed me to specify from parameter fields in the score up to three sequential male or female vowel sounds, (it was possible to map the male vowel parameters onto the female voice), glissandi to a different pitch and when during the duration of the event the glissandi would occur, reverberation, pitch spread, the rate of pitch spread, and accelerating and decelerating vibrato rates. Figure 29 shows the basic components of this instrument. A complete orchestra and score file is in Appendix Five.

By using conditional control statements such as 'if - then' within the instrument file it became possible to develop this model further and allow the value of a single number in a parameter field of the score to represent a particular chain of events in the orchestra.
Manipulating the basic parameters of the FOF generator can provide interesting results. For example, reducing the basic frequency of the generator reveals the impulses of the synthesis method and produces a sound akin to vocal 'glottal clicks'. (This particular sound, used at the beginning and end of the first section, and the final moments of the piece, is linked quite closely to the images conjured up in the text and will be discussed in detail later.)
Granular Instrument

In the composition of instrumental music chance discoveries are not uncommon. For many composers they are key moments in the composition process. To quote Stravinsky, "An accident is perhaps the only thing that really inspires us". Such accidents are less common when working within the exacting procedures of computer synthesis where, more often than not, a 'slip of the hand' results in no sound. However the granular Csound instrument being discussed here was developed from a failed experiment with random number generators and produced one of the more unusual instruments used in A Slow Dance. By applying random number generators (randi) to the frequency input of an FM instrument a granulated texture can be produced at the output. Additional generators linked to the index of modulation allow the sidebands of the instrument to be controlled as well. The final 'granular instrument' (shown in Figure 30 below) allows rich pointillistic timbres to evolve by controlling the range of the random generators and controlling the amplitude and pan position of the output.
With this instrument extended evolving textures were created from one event listed in the score. In *The Dance* (section III) the electronic sounds which underpin the middle section of spoken bass part (from 'then the dance begins...') were created from a few score events of 100 seconds' duration. An example of a granular orchestra and score can be seen in Appendix Five.
Other Instruments

In contrast to the complex instruments discussed above several other acoustic sampled sounds were explored. The crotale events which feature in Seskilgreen and provide punctuation in several other places are simply sampled, filtered, panned and amplitude modulated. Another instrument was created which uses sine waves artificially to extend the resonance of the crotale. These become timbres in their own right in the middle passages of Seskilgreen and For the Hillmother and, in the case of the latter, become glissandi events pre-empting the descending vocal lines which appear in the passage at 14'18".

For the final mix-down of the work a special instrument and score were developed resembling the functions of a mixing desk which allowed me to specify the time of entry and amplitude profile of the compiled soundfiles, and to add effects such as reverberation and panning. This meant that multiple versions of the piece could be created, each with slightly varying parameters.

Relationship between Text and Music

Each of the five selected poems from Montague's collection conveyed strong images through key words in the text or by the general tone of the poetry. These words were extracted at the start of writing and became central to the compositional process.
They are as follows:

Back

Darkness
earth womb
slowly
lonely dance

whirling arms
shuffle
fly
flash
echoing
earth

(interpreted images: distance, birth, organic growth)

(musical metaphors: reverberation, the creation of a timbre, slow harmonic rhythm, movement)

Seskilgreen

circle
secret dance
sleepily

(interpreted images: landscape, grave, birth, nature/mother earth)
The Dance

silence
isolation
the head lolls, a broken stalk
body rags
a soft drum

The dance begins
the purse of your loins striking against your thighs
a windbreath light
In wet and darkness you are reborn
wet hair clinging
humus and mould

(interpreted images: death, decay, unity with the earth)

(musical metaphors: noise-like timbres, cluster/dense harmonic timbres, articulation, fragmentation)

Message

a body heavy as earth
her secret message
quartz
spider's web
so novice, blind
her sunless breasts

(interpreted images: at one with 'mother earth')

(musical metaphors: cluster/dense harmonic timbres becoming consonant)
For the Hillmother

Hill of motherhood

Gate of Birth

(interpreted images: objects of natural beauty, versicle and response)

(musical metaphors: versicle and response, harmonic simplicity, consonance)

The translation of these phrases and images into sound is an entirely subjective process and relies heavily on one's compositional language. My approach to this was to combine the possibilities which were available in my Csound instruments with my predilection for certain harmonic and melodic procedures.

In Back I used synthetic glottal sounds (which evolve into a voice) and accumulating fragments of speech on tape to create a feeling of distance and organic growth. The imitative hummed vocal lines at the opening are internalized vocal sounds and provide a link to womb-like images expressed in the text. The glottal sounds, whispered fragments and voice sounds become eventually the first harmonic block of the piece. During the passage 1'24" to 3'24" the widely spaced harmonic events, low dynamics, and the expansion and contraction of lines provide the music with a slow 'breathing' quality.

The second half of Back bursts into frantic activity accompanied by loud tape sounds (transformations of previous material) and punctuating metallic timbres whilst the voice parts decorate an expanded version of the cluster harmony found at 1'24" on key words such as 'whirling', 'flying' and 'flashing'. This unwinds to the tape material of the opening passage (glottal sounds) linking the word 'earth' at each end of the text.
Seskilgreen uses a more resonant and consonant harmonic language with simpler tape sounds (processed crotale sounds and sinewave timbres) to create an 'open' musical landscape. As the pitch material unfolds an F# dorian 'tonality' becomes clearly established (supported by synthetic voice sounds) before crossfading with the static Phase Vocoder sounds of the opening of The Dance.

The use of spoken voice and text fragments in The Dance was to help create an intimate and sinister atmosphere. I chose to mirror the build-up of intensity in the text by using an accumulating granular texture in the background (which crescendos, rises in register and increases in brightness) supporting an increasingly frenzied spoken bass line and vocal utterances in the other parts. The vowel sound of the final word of the text ('mould') is superceded by a filtered white noise sound on tape (11'02") which then builds to an explosion - perhaps representing a superhuman vocal utterance. This provides sharp transition to the Phase Vocoder sounds used in Message.

In Message the rôles of spoken voice and background texture are reversed. The tape now carries the text whilst the voices provide an undulating harmonic backcloth which provides a link to the sung material of the last section. In Message there is a conscious effort to borrow some of the ideas found in Back such as internalized vocal sounds, cluster-like harmony (displaced 4ths) and a focus on the vocal sounds of the tape.

For the Hillmother uses ideas and gestures from Seskilgreen such as the solo voice to open the section, simple methods of punctuating the vocal lines (low 'bass drum' timbre) and the dorian F# 'tonality' at the very end. The versicle and
response is the initial structural device used here and it soon becomes absorbed into descending vocal lines which characterize the middle passage of the section. The work ends with a return of the 'bass drum' timbre (or 'heartbeat') and the glottal sounds from the opening receding to infinity.

The Figure 31 illustrating the musical and structural relationships of the piece clearly shows the links between the first and third and the second and fourth sections. These and other simple relationships, including the use of particular timbres, help to create one of the more interesting formal schemes of my recent pieces. It is arguable that the strongest aspect of this is the absence of a conventional climax passage and the continuity provided by relatively slow, sustained music.
A Slow Dance - structural parallels

1. SIMPLE, RESONANT HARMONY
2. CLUSTER-BASED HARMONY
3. CROTALE RELATED TIMBRES
4. SOLO VOICE
5. SPOKEN TEXT
6. SPANISH TEXT (LIVE) (TAPE)
7. SESKILGREEN DANCE MESSAGE FOR THE HILLMOTHER
8. SIMPLE PUNCTUATION
9. SPEECH FRAGMENTS (TAPE)
10. LOW 'GLOTTAL' SOUNDS
11. TAPE MATERIAL REPEATED
12. ('BASS DRUM')
13. (PHASE VOCODER)
APPENDIX ONE

Notes on the recordings submitted as part of the portfolio

Recycle

Northern Sinfonia Ensemble
Composers Workshop - directed by John Casken
February 1987
University of Durham

Incantation

The Queen's University Symphony Orchestra
conducted by Michael Alcorn
December 1992
Whitla Hall, Belfast

(although there are a number of inaccuracies in the performance, this version comes closest to my ideal performance of the piece)

Calypso's Song to Ulysses

As yet unperformed professionally. The work was rehearsed at an SPNM workshop at the University of York in 1988 from which no recorded material was produced. The piece is programmed for performance at the Guildhall School of Music and Drama in June 1993.

Making a Song a Dance . . .

Sequenza

Studio recording for release on Neuma CD label in 1993
July 1992, Harty Room at Queen's University
Voyager

DAT recording (cassette backup enclosed)

1. Pupils Glenlola High School, Bangor
 Directed by Michael Alcorn
 April 1993, Harty Room at Queen's University

2. Tape only

Perichoresis

Nash Ensemble
Belfast Music Society
October 1990, Elmwood Hall, Belfast
(BBC Radio 3 recording)

Double Escapement

DAT recording (cassette backup enclosed)

1. MIDI realisation
 Studio III at Queen's University
 January 1993

2. Tape only

A Slow Dance

DAT recording (cassette backup enclosed)

1. Singcircle
 director - Gregory Rose
 Midnight Oil - BBC Radio 3
 April 1993

2. Tape only
APPENDIX TWO

Incantation - detailed structure

A - punctuating chord + g/a texture
B - Lyrical melody based on
C - low cluster counterpoint
D - rising three note motif (tritone based)
E - frozen harmony
Z - textural counterpoint
Y - textural counterpoint - sustained pitches
X - aleatoric textures
W - aleatoric punctuation

<table>
<thead>
<tr>
<th>bar</th>
<th>material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>a + Z</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>27</td>
<td>B</td>
</tr>
<tr>
<td>30</td>
<td>Z</td>
</tr>
<tr>
<td>33</td>
<td>E</td>
</tr>
<tr>
<td>36</td>
<td>C</td>
</tr>
<tr>
<td>37</td>
<td>E</td>
</tr>
</tbody>
</table>
38 A
44 E
46 Y + X
56 W
57 X
67 B related
76 E
80 E
83 W
84 X
85 A related (g/a transposed to f#/g - slower)
92 Y (harmonics)
94 A extended to melody with Y - (harmonics)
97 A extended to melody with Y - (harmonics)
107 A related
113 Y (harmonics) + A expanded
121 A expanded + (picc/ob1)
125 A expanded + / Z
136 A expanded
142 E
149 C related
162 X
162.3 W
163.4 E
162.5 W
163 E related
166 A
168 A developed
179 E related
185 A (becoming B) with X
206 W
207 X
207.4 E
208 E related
209 E with flourish
213 D related
220 B
238 D + E
248 D related
268 E
271 X & C (elongated)
281 E
282 W
283 A related & E
289 X & A
APPENDIX THREE

The following photographs were copied from slides with the kind permission of the Armagh Planetarium.

Slide 1 -
Eruption on the moon Io 1'17"

Slide 2 -
High altitude clouds over Neptune 2'48"

Slide 3 -
Callisto 3'37"

Slide 4 -
The Tarantula Nebula, 30 Doradus 4'30"

Slide 5 -
Triton - Oblique View 6'30"

Slide 6 -
A crescent Uranus 7'03"

Slide 7 -
The "C" ring - Saturn 8'41"
APPENDIX FOUR

The following examples show the main facilities of the program PitchTwister. The first example is the notation interface which allows the user either to click on note names or to play notes on a MIDI keyboard. The selected note is then displayed on the stave (in the order of selection).

The controls P-I-R-IR, ROTATE, Find (not yet implemented) navigate to another card which displays permutations of the row.

P-I-R-IR displays prime, inversion, retrograde and retrograde inversions of the row (example on next page)), whilst Rotate displays the original row and allows the use to move the pitches around the grid, for example by rotating the pitches to the left (as shown in the example on the last page).

The Rand mix will create a random pattern from the prime. Double clicking this button produces a totally random grid.
PITCH TWISTER

\[\text{C} \quad \text{F} \quad \text{G} \quad \text{Bb} \]

reset stave

play

P-I-R-IR ROTATE FIND... LIBRARY MIDI setup
<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- ○ rotate <
- ○ rotate >
- ○ interleave
- ○ rand mix
APPENDIX FIVE

Csound instruments and scores

GRANULAR INSTRUMENT

ORCHESTRA FILE

sr=44100
kr=2205
ksmps=20
nchnls=2
instr 1
; INPUT CONTROL
;
kamp linseg 0, p3*.5, .6, p3*.5, 1
k1 oscil 1, p10, 2
k2 = (k1+1)*.5
k3 = k2*p4*kamp
kindx line p7, p3, p7*30
;
; RAND MODULE 1
;
krandsp1 line p10, p3*.8, p10*5
k4 randh p9, krandsp1
if k4 < .7 goto transp1
transp1: k4 = k4*100
kgliss1 linseg p5, p3*.7, p5*2
a1 foscili k3, kgliss1*k4, p6, kindx, p8,2
;
;
; RAND MODULE 2
;
krandsp2 line p12, p3*.7, p12*6
k8 randh p11, krandsp2
if k8 < .7 goto transp2
transp2: k8 = k8*100
kgliss2 linseg p5, p3*.6, p5*1.9
a2 foscili k3, kgliss2*k8, p6, kindx, p8,2
;
;
; RAND MODULE 3
;
krandsp3 line p14, p3*.9, p14*7
k12 randh p13, krandsp3
if k12 < .7 goto transp3
transp3: k12 = k12*100
kgliss3 linseg p5, p3*.8, p5*2.1
a3 foscili k3, kgliss3*k12, p6, kindx, p8.2
;
; OUTPUT CONTROL
;
k20 oscil 1, p15*.5, 2
kpan1 = (k20+1)/2
a10 = a1*(1-kpan1)
a11 = a1*(0+kpan1)
;
k21 oscil 1, p15, 2
kpan1 = (k21+1)/2
a12 = a2*(1-kpan1)
a13 = a2*(0+kpan1)
;
k22 oscil 1, p15*.7, 2
kpan1 = (k20+1)/2
a14 = a3*(1-kpan1)
a15 = a3*(0+kpan1)
;
kampc linseg 0, p3*.1, 1, p3*.7, 1, p3*.2, 0
a20 = (a10+a12+a14)*.7
a21 = (a11+a13+a14)*.7
k13 line 2.5, p3, 1 ; was 2.5
aout1 reverb a20, k13
aout2 reverb a21, k13
outs aout1*kampc, aout2*kampc
endin

; instr 2
;a1 linseg 0, p3*.1, 1, p3*.8, 1, p3*.1, 0
;a2 = gaout1*a1
;a3 = gaout2*a1
;outs a2, a3
;endin

SCORE FILE for GRANULAR INSTRUMENT

t 0 60
c
f2 0 512 10 1
c
c st dr amp cp car mod dx rand1 rand2 rand3 pan
c
i1 0 100 1700 60 50 30 .12 .001 1.1 .001 2 .001 1.2 1
i2 0 100
i1 .25 100 1700 60 40 30 .15 .001 1.2 .001 1.8 .001 1.5 .5
i2 .25 100
i1 .35 100 1700 60 42 30 .19 .001 2 .001 1.4 .001 2.1 2
i2 .35 100
i1 .75 100 1700 60 34 30 .18 .001 2.3 .001 1.6 .001 1.7 2
i2 .75 100
i1 30 100 1200 1000 50 30 .19 .001 1.3 .001 2 .001 1.2 1
i2 30 100
i1 31 100 1200 1000 60 30 .20 .001 1.1 .001 2.001 1.5 .5
i2 31 100
i1 31.2 100 1200 1000 100 30 .10 .001 2 .001 .5 .001 2.1 .1
i2 31.2 100
i1 32.75 100 1200 1000 90 30 .11 .001 4 .001 .9 .001 1.7 .5
i2 32.75 100
i1 45 100 1700 1500 10 30 .19 .001 1 .001 2.3 .001 2 .3
i2 45 100
f0 10
e
POF VOICE INSTRUMENT

ORCHESTRA FILE

sr = 44100
kr = 441
ksmps = 100
nchnls = 2

instr 2
;
;
REGION ONE

if p6 != 1 goto vowel2 ; 'a' vowel
 ifreq1 = 609
 ifreq2 = 1000
 ifreq9 = 2450
 ifreq4 = 2700
 ifreq5 = 3240
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 6
 iamp3 = 3
 iamp4 = 3.1
 iamp5 = .75
 iamp6 = .25
 goto voweln

vowel2: if p6 != 2 goto vowel3 ; 'e' vowel
 ifreq1 = 400
 ifreq2 = 1700
 ifreq9 = 2300
 ifreq4 = 2900
 ifreq5 = 3400
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 9
 iamp3 = 8.5
 iamp4 = 3.1
 iamp5 = .9
 iamp6 = .25
 goto voweln
vowel3: if p6 != 3 goto vowel4; 'iy' vowel
 ifreq1 = 238
 ifreq2 = 1741
 ifreq3 = 2450
 ifreq4 = 2900
 ifreq5 = 4000
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 1
 iamp3 = 1.4
 iamp4 = 1
 iamp5 = .3
 iamp6 = .15
 goto voweln

vowel4: if p6 != 4 goto vowel5; 'o' vowel
 ifreq1 = 325
 ifreq2 = 700
 ifreq3 = 2550
 ifreq4 = 2850
 ifreq5 = 3100
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 3
 iamp3 = .6
 iamp4 = .7
 iamp5 = .4
 iamp6 = .15
 goto voweln

vowel5: if p6 != 5 goto vowel6; 'oo' vowel
 ifreq1 = 360
 ifreq2 = 750
 ifreq3 = 2400
 ifreq4 = 2675
 ifreq5 = 2950
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 3
 iamp3 = .39
 iamp4 = .41
 iamp5 = .1
 iamp6 = .15
 goto voweln

vowel6: if p6 != 6 goto vowel7; 'u' vowel
 ifreq1 = 415
 ifreq2 = 1400
 ifreq3 = 2200
ifreq4 = 2800
ifreq5 = 3300
ifreq6 = 80
iamp1 = 12
iamp2 = 3
iamp3 = 2.6
iamp4 = 1.5
iamp5 = .29
iamp6 = .15
goto voweln

; vowel7: if p6 != 7 goto vowel8 ; 'er' vowel
ifreq1 = 300
ifreq2 = 1600
ifreq3 = 2150
ifreq4 = 2700
ifreq5 = 3100
ifreq6 = 80
iamp1 = 12
iamp2 = 2.8
iamp3 = 3
iamp4 = 2.6
iamp5 = .3
iamp6 = .15
goto voweln

; vowel8: if p6 != 8 goto vowel9 ; 'uh' vowel
ifreq1 = 400
ifreq2 = 1050
ifreq3 = 2200
ifreq4 = 2650
ifreq5 = 3100
ifreq6 = 80
iamp1 = 12
iamp2 = 3
iamp3 = 1.4
iamp4 = 1
iamp5 = .3
iamp6 = .15
goto voweln

; vowel9: if p6 != 9 goto vowel10 ; 'a' vowel
ifreq1 = 650
ifreq2 = 1100
ifreq3 = 2860
ifreq4 = 3300
ifreq5 = 4500
ifreq6 = 80
iamp1 = 12
iamp2 = 5.8
iamp3 = 2.9
iamp4 = 3
iamp5 = 1.5
iamp6 = .15
goto voweln

vowel10: if p6 != 10 goto vowel11 ; 'e' vowel
 ifreq1 = 500
 ifreq2 = 1750
 ifreq3 = 2450
 ifreq4 = 3350
 ifreq5 = 5000
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 4.5
 iamp3 = 4.2
 iamp4 = 2.6
 iamp5 = 1.7
 iamp6 = .15
goto voweln

vowel11: if p6 != 11 goto vowel12 ; 'iy' vowel
 ifreq1 = 330
 ifreq2 = 2000
 ifreq3 = 2800
 ifreq4 = 3650
 ifreq5 = 5000
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 2.8
 iamp3 = 3.1
 iamp4 = 3.25
 iamp5 = 1.6
 iamp6 = .15
goto voweln

vowel12: if p6 != 12 goto vowell3 ; 'o' vowel
 ifreq1 = 400
 ifreq2 = 840
 ifreq3 = 2800
 ifreq4 = 3250
 ifreq5 = 4500
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 3
 iamp3 = .6
 iamp4 = .75
iamp5 = .4
iamp6 = .15
goto voweln
;
vowel13: if freq1 = 280
 ifreq2 = 650
 ifreq3 = 2200
 ifreq4 = 3450
 ifreq5 = 4500
 ifreq6 = 80
 iamp1 = 12
 iamp2 = 1.75
 iamp3 = .1
 iamp4 = .05
 iamp5 = .03
 iamp6 = .02

goto voweln
;
;
REGION TWO
;
;
voweln:
 if p7 != 1 goto vowel14 ; 'a' vowel
 ifreq7 = 609
 ifreq8 = 1000
 ifreq9 = 2450
 ifreq10 = 2700
 ifreq11 = 3240
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 6
 iamp9 = 3
 iamp10 = 3.1
 iamp11 = .75
 iamp12 = .25

goto vowelnnn

vowel14: if p7 != 2 goto vowel15 ; 'e' vowel
 ifreq7 = 400
 ifreq8 = 1700
 ifreq9 = 2300
 ifreq10 = 2900
 ifreq11 = 3400
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 9
 iamp9 = 8.5
 iamp10 = 3.1
 iamp11 = .9
 iamp12 = .25
goto vowelnn
;
vowel15: if p7 != 3 goto vowel16 ; 'iy' vowel
 ifreq7 = 238
 ifreq8 = 1741
 ifreq9 = 2450
 ifreq10 = 2900
 ifreq11 = 4000
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 1
 iamp9 = 1.4
 iamp10 = 1
 iamp11 = .3
 iamp12 = .15

 goto vowelnn
;
vowel16: if p7 != 4 goto vowel17 ; 'o' vowel
 ifreq7 = 325
 ifreq8 = 700
 ifreq9 = 2550
 ifreq10 = 2850
 ifreq11 = 3100
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 3
 iamp9 = .6
 iamp10 = .7
 iamp11 = .4
 iamp12 = .15

 goto vowelnn
;
vowel17: if p7 != 5 goto vowel18 ; 'oo' vowel
 ifreq7 = 360
 ifreq8 = 750
 ifreq9 = 2400
 ifreq10 = 2675
 ifreq11 = 2950
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 3
 iamp9 = .39
 iamp10 = .41
 iamp11 = .1
 iamp12 = .15

 goto vowelnn
;
vowel18: if p7 != 6 goto vowel19 ; 'u' vowel
 ifreq7 = 415
 ifreq8 = 1400
ifreq9 = 2200
ifreq10 = 2800
ifreq11 = 3300
ifreq12 = 80
iamp7 = 12
iamp8 = 3
iamp9 = 2.6
iamp10 = 1.5
iamp11 = .29
iamp12 = .15
goto vowelnn ;

vowel19: if p7 != 7 goto vowel20 ; 'er' vowel
ifreq7 = 300
ifreq8 = 1600
ifreq9 = 2150
ifreq10 = 2700
ifreq11 = 3100
ifreq12 = 80
iamp7 = 12
iamp8 = 2.8
iamp9 = 3
iamp10 = 2.6
iamp11 = .3
iamp12 = .15
goto vowelnn

vowel20: if p7 != 8 goto vowel21 ; 'uh' vowel
ifreq7 = 400
ifreq8 = 1050
ifreq9 = 2200
ifreq10 = 2650
ifreq11 = 3100
ifreq12 = 80
iamp7 = 12
iamp8 = 3
iamp9 = 1.4
iamp10 = 1
iamp11 = .3
iamp12 = .15
goto vowelnn

vowel21: if p7 != 9 goto vowel22 ; 'a' vowel
ifreq7 = 650
ifreq8 = 1100
ifreq9 = 2860
ifreq10 = 3300
ifreq11 = 4500
ifreq12 = 80
iamp7 = 12
iamp8 = 5.8
iamp9 = 2.9
iamp10 = 3
iamp11 = 1.5
iamp12 = .15
goto vowelnn
;
vowel22: if p7 != 10 goto vowel23; 'e' vowel
 ifreq7 = 500
 ifreq8 = 1750
 ifreq9 = 2450
 ifreq10 = 3350
 ifreq11 = 5000
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 4.5
 iamp9 = 4.2
 iamp10 = 2.6
 iamp11 = 1.7
 iamp12 = .15
goto vowelnn
;
vowel23: if p7 != 11 goto vowel24; 'iy' vowel
 ifreq7 = 330
 ifreq8 = 2000
 ifreq9 = 2800
 ifreq10 = 3650
 ifreq11 = 5000
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 2.8
 iamp9 = 3.1
 iamp10 = 3.25
 iamp11 = 1.6
 iamp12 = .15
goto vowelnn
;
vowel24: if p7 != 12 goto vowel25; 'o' vowel
 ifreq7 = 400
 ifreq8 = 840
 ifreq9 = 2800
 ifreq10 = 3250
 ifreq11 = 4500
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 3
 iamp9 = .6
iamp10 = .75
iamp11 = .4
iamp12 = .15

goto vowelnn
;
vowel25: ifreq7 = 280
 ifreq8 = 650
 ifreq9 = 2200
 ifreq10 = 3450
 ifreq11 = 4500
 ifreq12 = 80
 iamp7 = 12
 iamp8 = 1.75
 iamp9 = .1
 iamp10 = .05
 iamp11 = .03
 iamp12 = .02

goto vowelnn
;
;
REGION THREE
;
;
vowelnn:
 if p8 != 1 goto vowel26 ; 'a' vowel
 ifreq13 = 609
 ifreq14 = 1000
 ifreq15 = 2450
 ifreq16 = 2700
 ifreq17 = 3240
 ifreq18 = 80
 iamp13 = 12
 iamp8 = 6
 iamp9 = 3
 iamp10 = 3.1
 iamp11 = .75
 iamp12 = .25

goto amptimbre

vowel26: if p8 != 2 goto vowel27 ; 'e' vowel
 ifreq13 = 400
 ifreq14 = 1700
 ifreq15 = 2300
 ifreq16 = 2900
 ifreq17 = 3400
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 9
 iamp15 = 8.5
 iamp16 = 3.1
 iamp17 = .9
 iamp18 = .25
goto amptimbre
;

vowel27: if p8 != 3 goto vowel28 ; 'iy' vowel
 ifreq13 = 238
 ifreq14 = 1741
 ifreq15 = 2450
 ifreq16 = 2900
 ifreq17 = 4000
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 1
 iamp15 = 1.4
 iamp16 = 1
 iamp17 = .3
 iamp18 = .15

goto amptimbre
;

vowel28: if p8 != 4 goto vowel29 ; 'o' vowel
 ifreq13 = 325
 ifreq14 = 700
 ifreq15 = 2550
 ifreq16 = 2850
 ifreq17 = 3100
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 3
 iamp15 = .6
 iamp16 = .7
 iamp17 = .4
 iamp18 = .15

goto amptimbre
;

vowel29: if p8 != 5 goto vowel30 ; 'oo' vowel
 ifreq13 = 360
 ifreq14 = 750
 ifreq15 = 2400
 ifreq16 = 2675
 ifreq17 = 2950
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 3
 iamp15 = .39
 iamp16 = .41
 iamp17 = .1
 iamp18 = .15

goto amptimbre
;

vowel30: if p8 != 6 goto vowel31 ; 'u' vowel
 ifreq13 = 415
 ifreq14 = 1400
ifreq15 = 2200
ifreq16 = 2800
ifreq17 = 3300
ifreq18 = 80
iamp13 = 12
iamp14 = 3
iamp15 = 2.6
iamp16 = 1.5
iamp17 = .29
iamp18 = .15
goto amptimbre

;
vowel31: if p8 != 7 goto vowel32 ; 'er' vowel
ifreq13 = 300
ifreq14 = 1600
ifreq15 = 2150
ifreq16 = 2700
ifreq17 = 3100
ifreq18 = 80
iamp13 = 12
iamp14 = 2.8
iamp15 = 3
iamp16 = 2.6
iamp17 = .3
iamp18 = .15
goto amptimbre

;
vowel32: if p8 != 8 goto vowel33 ; 'uh' vowel
ifreq13 = 400
ifreq14 = 1050
ifreq15 = 2200
ifreq16 = 2650
ifreq17 = 3100
ifreq18 = 80
iamp13 = 12
iamp14 = 3
iamp15 = 1.4
iamp16 = 1
iamp17 = .3
iamp18 = .15
goto amptimbre

;
vowel33: if p8 != 9 goto vowel34 ; 'a' vowel
ifreq13 = 650
ifreq14 = 1100
ifreq15 = 2860
ifreq16 = 3300
ifreq17 = 4500
ifreq18 = 80
iamp13 = 12
iamp14 = 5.8
iamp15 = 2.9
iamp16 = 3
iamp17 = 1.5
iamp18 = .15
goto amptimbre
;
vowel34: if p8 != 10 goto vowel35 ; 'e' vowel
 ifreq13 = 500
 ifreq14 = 1750
 ifreq15 = 2450
 ifreq16 = 3350
 ifreq17 = 5000
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 4.5
 iamp15 = 4.2
 iamp16 = 2.6
 iamp17 = 1.7
 iamp18 = .15
goto amptimbre
;
vowel35: if p8 != 11 goto vowel36 ; 'iy' vowel
 ifreq13 = 330
 ifreq14 = 2000
 ifreq15 = 2800
 ifreq16 = 3650
 ifreq17 = 5000
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 2.8
 iamp15 = 3.1
 iamp16 = 3.25
 iamp17 = 1.6
 iamp18 = .15
goto amptimbre
;
vowel36: if p8 != 12 goto vowel37 ; 'o' vowel
 ifreq13 = 400
 ifreq14 = 840
 ifreq15 = 2800
 ifreq16 = 3250
 ifreq17 = 4500
 ifreq18 = 80
 iamp13 = 12
 iamp14 = 3
 iamp15 = .6
iamp16 = .75
iamp17 = .4
iamp18 = .15

goto amptimbre

vowel37:ifreq13 = 280
ifreq14 = 650
ifreq15 = 2200
ifreq16 = 3450
ifreq17 = 4500
ifreq18 = 80
iamp13 = 12
iamp14 = 1.75
iamp15 = .1
iamp16 = .05
iamp17 = .03
iamp18 = .02

goto amptimbre

amptimbre:

kp1 linseg ifreq1, p3*.15, ifreq1, p3*.3, ifreq7, p3*.35, ifreq13, p3*.20, ifreq13
kp4 linseg ifreq4, p3*.15, ifreq4, p3*.3, ifreq10, p3*.35, ifreq16, p3*.20, ifreq16
kp5 linseg ifreq5, p3*.15, ifreq5, p3*.3, ifreq11, p3*.35, ifreq17, p3*.20, ifreq17
kp6 linseg ifreq6, p3*.15, ifreq6, p3*.3, ifreq12, p3*.35, ifreq18, p3*.20, ifreq18

kkamp1 linseg iamp1, p3*.15, iamp1, p3*.3, iamp7, p3*.35, iamp13, p3*.20, iamp13
kkamp2 linseg iamp2, p3*.15, iamp2, p3*.3, iamp8, p3*.35, iamp14, p3*.20, iamp14
kkamp4 linseg iamp4, p3*.15, iamp4, p3*.3, iamp10, p3*.35, iamp16, p3*.20, iamp16
kkamp5 linseg iamp5, p3*.15, iamp5, p3*.3, iamp11, p3*.35, iamp17, p3*.20, iamp17
kkamp6 linseg iamp6, p3*.15, iamp6, p3*.3, iamp12, p3*.35, iamp18, p3*.20, iamp18

pitchchange linseg p5, p3*p14, p5, p3*.5, p13, p3*(1-p14), p13
k100 = (p5/100)*p12 ; pitch spread %
k101 randi k100, 4.6, .9
k102 = k101+k101/2
k103 oscil k100, k102, 1
k104 randi k100, 7.75, -1
k105 = k104+k104/2
k106 oscil k100, k105, 1
;
\[a1 = \text{linseg} 0, p3*.4, p4, p3*.6, 0 \]
\[; \]
k60 linseg 0, p3*.7, .015, p3*.3, 0
k70 linseg p10*.01, p3*.2, p10, p3*.5, p10, p3*.3, p10*.6
k20 randi k60, 1/.91
k21 randi k60, 1/1.7
k22 randi k60, 1/1.015
k23 randi k60, 1/.93
k24 = .02*(k20+k21)
k25 = k70*(k22+k23)
k2 oscili p5/4, k70+k25,1
k3 = k2*(.02+k24)
a2 randi .01, 1/.05
a3 randi .01, 1/.1111
a4 randi .01, 1/1.2186
a5 = a2+a3+a4+k3+kpchchange;+k103
a5 = a5;-(a5*.017)
k600 linseg 0, p3*.4, .01, p3*.6, 0
k700 linseg p10*.01, p3*.1, p10, p3*.6, p10*.7, p3*.3, p10*.4
k200 randi k600, 1/.6
k210 randi k600, 1/1.02
k220 randi k600, 1/1.02
k230 randi k600, 1/.093
k240 = .02*(k200+k210)
k250 = k700*(k220+k230)
k12 oscili p5/3, k700+k250,1
k12 = k12*(.02+k240)
a12 randi .01, 1/.012
a13 randi .01, 1/.19
a14 randi .01, 1/1.0315
a6 = a12+a13+a14+ki2+kpchchange+k106*.9
a6 = a6
;
kx600 linseg 0, p3*.5, .06, p3*.5, 0
kx700 linseg p10*.01, p3*.4, p10, p3*.5, p10*.6, p3*.1, p10*.5
kx200 randi kx600, 1/.6
kx210 randi kx600, 1/1.1
kx220 randi kx600, 1/1.2
kx230 randi kx600, 1/.9
kx240 = .02*(kx200+kx210)
kx250 = kx700*(kx220+kx230)
\texttt{kxi2 oscili p5/2, kx700+kx250,1}
\texttt{kxi2 = kxi2*(.03+kx240)}
\texttt{axi2 randi .01, 1/04}
\texttt{axi3 randi .01, 1/09}
\texttt{axi4 randi .01, 1/1.1}
\texttt{a7 = (axi2+axi3+axi4+kxi2)*.8+kpchchange}
\texttt{a7 = a7}
\texttt{;display a5, .1}
\texttt{;display a6, .1}
\texttt{;display a7, .1}

\texttt{a10 fof kkamp1, a5, kp1, 0, 1, .003, 77, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a20 fof kkamp2, a5, kp2, 0, 1, .003, 88, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a30 fof kkamp3, a5, kp3, 0, 1, .003, 122, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a40 fof kkamp4, a5, kp4, 0, 1, .003, 127, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a50 fof kkamp*4, a5, kp5, 0, 1, .003, 137, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a60 fof kkamp6, a5, pl1, 0, 1, .003, 70, .01, .007, p9, 1, 1, p3,0, 1}

\texttt{a70 fof kkamp1, a6, kp1, 0, 1, .003, 77, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a80 fof kkamp2, a6, kp2, 0, 1, .003, 88, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a90 fof kkamp3, a6, kp3, 0, 1, .003, 122, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a100 fof kkamp4, a6, kp4, 0, 1, .003, 127, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a110 fof kkamp*4, a6, kp5, 0, 1, .003, 137, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a120 fof kkamp6, a6, pl1, 0, 1, .003, 70, .01, .007, p9, 1, 1, p3,0, 1}

\texttt{a130 fof kkamp1, a7, kp1, 0, 1, .003, 77, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a140 fof kkamp2, a7, kp2, 0, 1, .003, 88, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a150 fof kkamp3, a7, kp3, 0, 1, .003, 122, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a160 fof kkamp4, a7, kp4, 0, 1, .003, 127, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a170 fof kkamp*4, a7, kp5, 0, 1, .003, 137, .01, .007, p9, 1, 1, p3,0, 1}
\texttt{a180 fof kkamp6, a7, pl1, 0, 1, .003, 70, .01, .007, p9, 1, 1, p3,0, 1}

\texttt{aadd = a130+a140+a150+a160+a170+a180}
\texttt{aout = (a10+a20+a30+a40+a50+a60+a70+a80+a90+a100+a110+a120+aadd)*a1*.55}
\texttt{aoutr reverb aout*.5, 1.2}
\texttt{aout1 = aout*(1-pl1)}
\texttt{aout2 = aout*(0+pl1)}
\texttt{outs aout1+aoutr, aout2+aoutr}

\texttt{endin}
SCORE FILE FOR FOF INSTRUMENT

f1 0 8193 10 1
f2 0 512 10 1
t 0 60
c p4 = pitch 1
c p5 = pitch 2
c p6 = pointer 1
c p7 = pointer 2
c p8 = pointer 3
c p9 = pan position

;a 0 0 6
i1 5 25 .9 .9 2.2 2.1 2 3 4
i1 0 20 .5 .5 1.8 1.9 2 3 4
i1 12 30 .8 .78 3.2 3.1 3 3 4
i1 22 35 .7 .75 2.3 2.2 2.1 3 4
i1 30 30 .99 .93 2 1.9 1.8 3 4
i1 38 28 .6 .65 3 3.1 3.2 3 4
i1 40 20 .8 .9 1.9 2 2.1 3 4
i1 44 18 1 1 1.2 1.3 1.2 3 4
i1 47 22 .7 .75 .9 1 .9 3 4
i2 0 8 .9 .5 1.15 1.2 1.4 4 18 12
i1 0 8 1 .7 0 1 2 4 3.1 4
e

PHASE VOCODER INSTRUMENT

ORCHESTRA FILE

sr = 44100
kr = 441
ksmps = 100
nchnls = 2

instr 1
ktime linseg p6, p3*.5, p7, p3*.5, p8; changing speed
kptlin linseg p4, p3, p5
aout pvoc ktime, kptlin, 0, 12
aamp linseg 0, p3*.5, p10, p3*.5, 0
apreout =(aout*3)*aamp
areverb reverb apreout, .2
areverb = areverb*.3
if p9 != 1 goto pan1
apan1 linseg 0, p3*.3, 0, p3*.2, 1, p3*.1, 0, p3*.1, .5,
p3*.3, 1

k1 linseg p11, p3, .0001
a1 oscili 1, k1, 2
apanx = (a1+a1)*.5
apreout = apreout*(1-apanese)

aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

pan1: if p9 != 2 goto pan2
apan1 linseg 1, p3*.3, 0, p3*.2, 0, p3*.1, 1, p3*.1, .5,
p3*.3, 0

k1 linseg p11*.0001, p3*.5, p11, p3*.5, p11*.0001
a1 oscili 1, k1, 2
apanx = (a1+a1)*.5
apreout = apreout*(1-apanese)

aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

pan2: if p9 != 3 goto pan3
apan1 linseg
.5,p3*.5,.5,p3*.02,0,p3*.02,1,p3*.01,0,p3*.25,.5,p3*.1,0,p3*.1,1

aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

pan3: if p9 != 4 goto pan4
k1 linseg p11, p3, .0001
a1 oscili 1, k1, 2
apan1 = (a1+a1)*.5
aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

pan4: if p9 != 5 goto pan5
apan1 linseg 0, p3*.3, 0, p3*.7, 1
aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

pan5: apan1 linseg 1, p3*.3, 1, p3*.7, 0
aout1 = apreout*(1-apanese)
aout2 = apreout*(0+apanese)
goto outpan

outpan: outs aout1+areverb, aout2+areverb

;outpan: outs apreout*(1-apanese), apreout*(0+apanese)
endin

instr 2
ktime linseg p6, p3*.5, p7, p3*.5, p8; changing speed
kptlin linseg p4, p3, p5
aout pvoc ktime, kptlin, 0, 12
; aamp linseg 0, p3*.5, p10, p3*.5, 0
; aamp expseg 0.001, p3*.06, p10, p3*.94, 0.00001
aamp expseg p10, p3, .000001
apreout =(aout*3)*aamp
areverb reverb apreout, .2
areverb = areverb*.3
if p9 != 1 goto pan1
apan1 linseg 0, p3*.3, 0, p3*.2, 1, p3*.1, 0, p3*.1, .5,
p3*.3, 1
 k1 linseg p11, p3, .0001
 a1 oscili 1, k1, 2
 apanx = (a1+a1)*.5
 apreout = apreout*(1-apanx)
apreout = apreout*(1-apan1)
apreout = apreout*(0+apan1)
goto outpan
pan1: if p9 != 2 goto pan2
apan1 linseg 1, p3*.3, 0, p3*.2, 0, p3*.1, 1, p3*.1, .5,
p3*.3, 0
 k1 linseg p11*.0001, p3*.5, p11, p3*.5, p11*.0001
 a1 oscili 1, k1, 2
 apanx = (a1+a1)*.5
 apreout = apreout*(1-apanx)
apreout = apreout*(1-apan1)
apreout = apreout*(0+apan1)
goto outpan
pan2: if p9 != 3 goto pan3
pan3: if p9 != 4 goto pan4
 k1 expseg p11, p3, .000001
 a1 oscili 1, k1, 2
 apan1 = (a1+a1)*.5
 aout1 = apreout*(1-apan1)
aout2 = apreout*(0+apan1)
goto outpan
pan4: if p9 != 5 goto pan5
pan5: apan1 linseg 0, p3*.3, 0, p3*.7, 1
 aout1 = apreout*(1-apan1)
aout2 = apreout*(0+apan1)
goto outpan
outpan: outs aout1+areverb, aout2+areverb
 ;outpan: outs apreout*(1-apan1), apreout*(0+apan1)
PHASE VOCODER INSTRUMENT

SCORE FILE

f1 0 8193 10 1
f2 0 512 10 1
t 0 60
c p4 = pitch 1
c p5 = pitch 2
c p6 = pointer 1
c p7 = pointer 2
c p8 = pointer 3
c p9 = pan position

; a 0 0 6
i1 5 25 .9 .9 2.2 2.1 2 3 4
i1 0 20 .5 .5 1.8 1.9 2 3 4
i1 12 30 .8 .78 3.2 3.1 3 3 4
i1 22 35 .7 .75 2.3 2.2 2.1 3 4
i1 30 30 .99 .93 2 1.9 1.8 3 4
i1 38 28 .6 .65 3 3.1 3.2 3 4
i1 40 20 .8 .9 1.9 2 2.1 3 4
i1 44 18 1 1 1.2 1.3 1.2 3 4
i1 47 22 .7 .75 .9 1 .9 3 4

f0 1
f0 2
f0 3
f0 4
f0 5
f0 6
f0 7
f0 8
f0 9
f0 10

e
A SLOW DANCE

for soprano, alto, tenor, bass and tape

Michael Alcorn

1992

Commissioned by the New Macnaghten Concerts with funding from the London Arts Board
Performance Instructions

VOCAL STYLE:
The singers should sing without vibrato (unless indicated otherwise) with a slightly nasal, folky quality.

The spoken part for the bass in *The Dance* should reflect the dark and sinister qualities of the text. A whispered/half spoken voice should be used which builds in intensity following the contour and qualities of the tape sounds.

TIMING:
Timings are given at the top of each page and for important structural points which will help cue the voice parts. This is not the case in the relatively free passages of *The Dance* where only the main textural changes in the tape are indicated.

The textural nature of many passages of the piece will allow for some degree of flexibility within sections though the singers should endeavour to keep this reasonably accurate. It is more important that the individual voice parts are themselves tightly coordinated, especially in sections which are purely homophonic.

Time 0'00" should be synchronised with id2 (02'06") on the DAT.

TAPE:
The tape may require 2-3 dB boost on HF and 2-3 dB cut on LF on the desk's EQ.

A reverb of 1 - 1.5 secs should be mixed into the amplified voice sounds.

Care should be taken throughout to ensure that the tape and amplified voices are always equally balanced.

The bass in *The Dance* may need additional EQ to emphasise the darker qualities of the voice.
from a collection of poems called A Slow Dance by John Montague.

BACK
Darkness, cave
drip, earth womb
we move slowly
back to our origins

the naked salute
to the sun disc
the obeisance
to the antlered tree

the lonely dance
on the grass

earth darkness
clouded moon

whirling arms
they shuffle

hair flying
eyes flashing

instep echoing
one, two as

bare heels, toe
smite the earth

SESKILGREEN
A circle of stones
surviving behind a
guttery farmhouse

the capstone phallic
in a thistly meadow:
Seskilgreen Passage Grave.
Cup, circle, triangle beating
their secret dance

(eyes, breasts, thighs of a still
fragrant goddess).

I came last in May
to find the mound
drowned in bluebells

with a fearless wren
hoarding speckled eggs
in a stony crevice

while cattle
swayed sleepily
under low branches

lashing the ropes
of their tails
across the centuries.

THE DANCE
In silence and isolation the dance begins. No one is meant to watch, least of all yourself. Hands fall to the sides, the head lolls, empty, a broken stalk. The shoes fall away from the feet, the clothes peel away from the skin, body rags. The sight has slowly faded from your eyes, that sight of habit that sees nothing. Your ears buzz a little before they retreat to where the heart pulses, a soft drum. Then the dance begins, cleansing, healing. Through the bare forehead, along the bones of the feet, the earth begins to speak. One knee lifts rustily, then the other. Totally absent, you shuffle up and down, the purse of your loins striking against your thighs. From where the legs join the rhythm spreads upwards - the cage of the ribs whistling - to pass down the arms like electricity along a wire. On the skin moisture forms, a wet leaf or a windbreath light as a mayfly. In wet and darkness you are reborn, the rain falling on your face as it would on a mossy tree trunk, wet hair clinging to your skull like bark, your breath mingling with the exhalations of the earth, that eternal smell of humus and mould.
MESSAGE
With a body
heavy as earth
she begins to speak;

her words
are dew, bright
deadly to drink

her hair
the damp mare's
nest of the grass

her arms
thighs, chance
of a swaying branch

her secret
message, shaped
by a wandering wind

puts the eye
of reason out;
so novice, blind,

ease your
hand into the
rot smelling crotch

of a hollow
tree, and find
two pebbles of quartz

protected by
a spider's web:
her sunless breasts.
For The Hillmother

Hinge of silence
 creak for us
Rose of darkness
 unfold for us
Wood anemone
 sway for us
Blue Harebell
 bend for us
Moist fern
 unfurl for us
Springy moss
 uphold us
Branch of pleasure

Leaves of delight
 murmur for us
odorous wood
 breathe on us
Evening dews
 pearl for us
Freshet of ease

Secret waterfall
 pour for us
Hidden cleft
 speak to us
Portal of delight
 inflame us
Hill of motherhood
 wait for us
Gate of birth
 open for us

First performance:
22 October 1992, St Giles Church, Cripplegate, Barbican
New Macnaghten Concerts 1992 Season
Singcircle, Director Gregory Rose
A SLOW DANCE
BACK

Michael Alcorn

\(\text{tap} \)

\(\text{sop} \)

\(\text{alto} \)

\(\text{ten} \)

\(\text{bass} \)

\(\text{tape} \)

\(\text{sop} \)

\(\text{alto} \)

\(\text{ten} \)

\(\text{bass} \)
0'24"

[ACCUMULATING VOICE FRAGMENTS]
4'00"

Tape

Soprano

- Arms - They shuffle
- Hair - Flying - Eyes

Alto

- Arms - They shuffle
- Hair - Flying - Eyes

Tenor

- Arms - They shuffle
- Hair - Flying - Eyes

Bass

- They
- Hair - Flying - Eyes - Flash

4'12"

Tape

Soprano

- Flashing - in - step
- Echoing - One - Two - As

Alto

- Flashing - in - step
- Echoing - One - Two - As

Tenor

- Flashing - in - step
- Echoing - One - Two - As

Bass

- Flashing - in - step
- Echoing - One - Two
SESKILGREEN

tape

[CROTALB - TIMBRE]

[5'14'']

[5'22'']

sop

alto

ten

bass

[5'28'']

[NO CIRCLE]

A CIRCLE

-14-
I came last in May to find the mound drowned in

THIGHS OF A FRAGGRANT GODDESS

THIGHS OF A FRAGGRANT GODDESS

S BREAST(S) (S) THIGHS OF A FRAGGRANT GODDESS

(m) (m) (m)
BLUE --- BELLS --- WITH A FEARLESS WREN --- HOARDING

SPECKLED EGGS --- IN A STONY CREVICE
(SYNTHETIC VOICE TEXTURE]

CONTINUES

WHILE CATTLE SWAYED SLEEPILY

WHILE CATTLE SWAYED SLEEPILY

WHILE CATTLE SWAYED SLEEPILY

UN-DER LOW BRANCHES LASHING THE ROPES OF THEIR TAILS

UN-DER LOW BRANCHES LASHING THE ROPES OF
A CROSSED THE CENTURIES
THEIR TAILS A CROSSED THE CENTURIES

[NO BREAK]
THE DANCE

[8'24"

[FADE IN]

[PHASE VOICE SOUNDS]

[FADE OUT]

[1sop alto ten bass]
Bass: The text should be spoken deliberately, and in an almost whispered voice at the start. The enunciation should gradually become fragmented and a little frenzied, mirroring the dark earthy qualities of the text.

In silence and isolation the dance begins. No one is meant to watch.

Least of all yourself. Hands fall to the sides, the head
Lolls empty, a broken stalk, the shoes fall away from

Your feet, the clothes peel away from the skin, body rags
THE SIGHT HAS SLOWLY FADED FROM YOUR EYES, THAT SIGHT OF HABIT WHICH SEES

NOTHING. YOUR EARS BUZZ A LITTLE BEFORE THEY RETREAT TO WHERE THE
HEART PULSES, A SOFT DRUM. THEN THE DANCE BEGINS, CLEANSING

HEALING. THROUGH THE BARE FOREHEAD, ALONG THE BONES OF THE FEET,
THE EARTH BEGINS TO SPEAK. ONE KNEE LIFTS RUSTILY, THEN THE

CRESCEndo poco a poco...
of your loins striking against your thighs. From where the legs join

the rhythm spreads upwards — the cage of the ribs whistling — to pass
1 Soprano, alto, tenor: continue fragmented texture of gasping & breathing sounds, consonants, vocal utterances and exhalations. Build gradually towards a complex stammering mass of sound by the end of the passage. Include any other short vocal sounds which you feel appropriate.

Down the arms like electricity along a wire. On the skin moisture.

Crescendo poco a poco

Forms, a wet leaf or a windbreath light as a mayfly. In wet
AND DARKNESS YOU ARE REBORN, THE RAIN FALLING ON YOUR FACE AS IT WOULD ON A MOSSY TREE TRUNK, WET HAIR CLIMBING TO YOUR SKULL LIKE BARK.
YOur BREATH MINGLING WITH THE EXHALATIONS OF THE EARTH, THAT ETERNAL...

SMELL OF HUMUS AND MOULD...
[11:26] [TAPE: with a body heavy as earth]

SHE BEGINS TO SPEAK; HER WORDS ARE DED, BRIGHT DEADLY TO DRINK.
HER HAIR, THE DAMP MARE'S NEST OF GRASS. HER ARMS, THIGHS

CHANGE OF A SWAYING BRANCH. HER SECRET MESSAGE, SHAPED BY A
WANDERING WIND PUTS THE EYE OF REASON OUT; SO NOVICE, BLIND

EASE YOUR HAND INTO THE ROT SMELLING CROTCH OF A HOLLOW TREE
AND FIND TWO PEBBLES OF QUARTZ: PROTECTED BY A SPIDER'S WEB.

HER SUNLESS BREASTS.
tate

sop

alto

ten

bass

ROSE

ROSE

OF DARICNESS

CREAK FOR US

CREAK FOR US

WOOD

-36-
Pour for us
Speak to us

Pour for us
Speak to us

Hidden Cleft Portal

Pour for us
Speak to us

OF DELIGHT HILL OF MOTHERHOOD

Pour for us
Speak to us

Pour for us
Speak to us
Perichoresis

Michael Alcorn
1990

Commissioned by the Belfast Music Society to celebrate their 70th season, with funds provided by the Arts Council of Northern Ireland.

First performance by the Nash Ensemble
University of Ulster at Coleraine, 10 October 1990
Instrumentation

WIND QUINTET -
Solo Oboe
Flute (doubling piccolo)
Clarinet (B Flat)
Horn (doubling G sharp antique cymbal)
Bassoon (doubling F sharp antique cymbal)

Programme Note

Two ideas were important in my mind from the early stages of writing this piece. Firstly, to create an imaginary ballet with musical ideas suggesting movement, dance and drama. Secondly, to de-stabilise the wind quintet by featuring one of the instruments as a principle voice. This role is taken by the oboist, whose function is to initiate, develop and disseminate musical material to the remaining instruments.

Throughout the work the position of the oboe is constantly challenged; gradually its untethered musical lines become constrained and integrated into the ensemble.

Much of the inspiration for the work is drawn from the title, a chance discovery, which helped forge many of the musical ideas. Perichoreis means going around, rotating, transferring to, to come to in succession. Other Greek words which are linked to the work are Choreutes: to dance, Chori: to tear asunder, wrench apart, and, with regard to the role of the oboe within the quintet, Choragus: the name given to the leader of the chorus in Greek Drama.
Piu Mosso \(\text{\textit{j = 2.88}} \)

\textit{marcato [tutti]}
Movement II

\[\text{Coda 60} \]

\[\text{SENZA MISURA} \]

Oboe

\[\text{Flute} \]

\[\text{Clarinet} \]

\[\text{Horn} \]

\[\text{Bassoon} \]

\[\text{with expression} \]

\[\text{f} \]

\[\text{PP} \]
Oboe

Flute

Clarinet

Horn

Bassoon

[Breathe quickly where necessary]

[Breathe quickly where necessary]

[Breathe quickly where necessary]

[Breathe quickly where necessary]

Oboe

Flute

Clarinet

Horn

Bassoon

[roll...]

[roll...]

[roll...]
"Oboe"

"Flute"

"Clarinet"

"Horn"

"Bassoon"

\[\text{Horn + Bassoon Synchronize Exactly} \]
[Flute]

Oboe

Flute

Clarinet

Horn

Bassoon

Synchronize exactly with Horn
SENZA MISURA
Making a Song and Dance . . .

for

violin, clarinet, 'cello and piano

MICHAEL ALCORN
1989

Commissioned by the 1989 Sonorities Festival of 20th Century Music.

First performance given by Sequenza at Sonorities in April 1989
Harty Room at Queen's University.
MAKING A SONG AND DANCE...
poco a poco rall...
A Tempo \(\frac{4}{4} \approx 80 \)

vln

cl

ve

pno

A Tempo \(\frac{4}{4} \approx 80 \)

vln

cl

ve

pno

rall poco a poco

rall poco a poco
*Allow the resonance of the piano to die away before starting each new phrase in this section.

\[\text{\textcopyright 1976 by the Estate of James Tenney} \]
Double Escapement

Michael Alcorn

1992
Performance Notes

- The opening section should be played with a degree of rubato: for example, the semi-quavers can be played as grace notes figurations at times. The timings of this section are relatively free, although the plucked notes should be played before the pitch 'E' is introduced on tape.

At all times the performer should remain poised at the keyboard ready to play.

- Harmonics: The position at which these strings should be stopped varies from instrument to instrument. These are usually found within a meter beyond the hammers. It is advised that these positions are marked with chalk for each string.

- NOTE: The tempo change at 4'40":

 \[\begin{align*}
 \dot{J} &= 60 \\
 \dot{J} &= 60
 \end{align*} \]

 The barlines throughout the work denote approximate time intervals of 4 seconds.

- The complexity and speed of the music from 4'40" onwards may provide problems in performance. If this is the case the player should "jump ahead" to any of the points cued on the tape.

- Accidentals apply throughout the bar.

- The suggested pedal markings indicate key resonances in the piece. Depending on the timbre of the piano additional pedalling may be added.

RECOMMENDED EQUIPMENT SETUP

- Microphones should be placed to ensure that the plucked strings and harmonics are clearly audible and that a 'bright' timbre is achieved to match the tape sounds in the remainder of the piece.

- Reverb (SPX9011: Hall preset) and delay (Lexicon PCM70: 4 voice delay preset) should be added to colour the live piano timbre.

- At least two pairs of loudspeakers should be used in performance. A narrow image, placed underneath the piano, should be used during the opening passage. Over the four minute period of this section the image should be panned out to the widest pair for the second section.

- The tape levels should be exaggerated during performance: the opening passage can be 'tweaked' to keep the levels down. The lead-in to 4'40" should be increased to heighten the sudden change of dynamic. A similar manipulation should be used for the end of the piece.

- Depending on room acoustics and the timbre of the live piano, it may be necessary to EQ the tape (HF band -15dB).
* the string should be plucked with the fleshy part of the finger

** HARMONICS -
the strings should be stopped at the position which will produce the notated harmonic as clearly as possible
Performance Notes

- The opening section should be played with a degree of rubato: for example, the semi-quavers can be played as grace notes figurations at times. The timings of this section are relatively free, although the plucked notes should be played before the pitch 'E' is introduced on tape.

 At all times the performer should remain poised at the keyboard ready to play.

- Harmonics: The position at which these strings should be stopped varies from instrument to instrument. These are usually found within a meter beyond the hammers. It is advised that these positions are marked with chalk for each string.

- NOTE: The tempo change at 4'40":

 \[
 J = 60 \quad \text{to} \quad \frac{J}{2} = 60
 \]

 The barlines throughout the work denote approximate time intervals of 4 seconds.

- The complexity and speed of the music from 4'40" onwards may provide problems in performance. If this is the case the player should "jump ahead" to any of the points cued on the tape.

- Accidentals apply throughout the bar.

- The suggested pedal markings indicate key resonances in the piece. Depending on the timbre of the piano additional pedalling may be added.

RECOMMENDED EQUIPMENT SETUP

- Microphones should be placed to ensure that the plucked strings and harmonics are clearly audible and that a 'bright' timbre is achieved to match the tape sounds in the remainder of the piece.

- Reverb (SPX90II: Hall preset) and delay (Lexicon PCM70: 4 voice delay preset) should be added to colour the live piano timbre.

- At least two pairs of loudspeakers should be used in performance. A narrow image, placed underneath the piano, should be used during the opening passage. Over the four minute period of this section the image should be panned out to the widest pair for the second section.

- The tape levels should be exaggerated during performance: the opening passage can be 'tweaked' to keep the levels down. The lead-in to 4'40" should be increased to heighten the sudden change of dynamic. A similar manipulation should be used for the end of the piece.

- Depending on room acoustics and the timbre of the live piano, it may be necessary to EQ the tape (HF band -15dB).
HARMONICS

The strings should be stopped at the position which will produce the notated harmonic as clearly as possible.
INCANTATION

for chamber orchestra

Michael Alcorn
1987
Performance Instructions:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🏷️</td>
<td>Denotes highest note possible (strings only)</td>
</tr>
<tr>
<td>⏰</td>
<td>Senza Misura - without strict measurement: Players should try not to coordinate with each other during these passages</td>
</tr>
<tr>
<td>🔄 3</td>
<td>Denotes finger cues given by the conductor. When this is given players should move on to the next passage or section immediately. Exceptions to this are marked in the score.</td>
</tr>
</tbody>
</table>

Accidentals apply throughout the bar.
Play Either 1 or 2. More.

Repeats Then Go on Immediately to A Bar.
null
RECYCLE

for chamber ensemble

Michael Alcorn
1986
Instrumentation:

flute (doubling alto & picc)
oboe (doubling Cor Anglais)
clarinet (B flat)
horn
trombone
violin
double bass
percussion: xylophone
glockenspiel
vibraphone	
tam-tam
2 gongs
3 tom-toms
bass drum

Score notated in C
poco rall... a tempo

molo legato

breathe quickly as long as possible, always legato
Michael Alcorn

Calypso's Song To Ulysses

a setting of words by
Adrian Mitchell

FOR: Pam

Instrumentation
Soprano
Alto Flute
Soprano Saxophone
Viola
Double Bass
1. Percussion
Vibraphone
Marimba
& assorted mallets
Details

SEATING PLAN

Percussion Plan
Snare
Brushes
CB Bow

\[\text{\textcopyright} \]
Score notated in C
Accidentals apply throughout bar.
CB harmonics sound at written pitch
'Circular Bounding'—moving between
Sul Pont & Sul Tastato—gradual transition.
Calypso's Song to Ulysses

My hands are tender feathers,
They can teach your body to soar.
My feet are two comedians
With jokes your flesh has never heard before.

So try to read the meaning
Of the blue veins under my skin
And feel my breasts like gentle wheels
Revolving from your thighs to your chin.

And listen to the rhythm
Of my heartbeat marking the pace
And see the visions sail across
The easy riding waters of my face.

What is sweeter that the human body?
Two human bodies as they rise and fall.
What is sweeter than two loving bodies?
There is nothing sweeter at all.
Lose yourself, find yourself,
Lose yourself again
On the Island of Calypso.

Adrian Mitchell
from Ride the Nightmare
Calypso's Song To Ulysses

MICHAEL ALCOON

CalyP-so's

Song

To

Ulysses

MICHAEL ALCOON
Listen to the rhythm

The rhythm of my heavy heart