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ABSTRACT

Investigation of the Thermal Stress in a Thin Plate

When the distribution of temperature in a body is non-
uniform, there is a state of thermal stress. The linear,
quasi—static, uncoupled theory of thermoelasticity is used to
investigaﬁe such a state of stress in a thin circular plate
subject to purely radial heat flow.

It is shown that the plane-sﬁress hypothesis, although
consis?enp with a pwo—dimensional'treapmen@, leads to
unsa?isfactory results when used within the full framework of

the three-dimensional theory and an alternative approach is

_given. The solution is obtained by the superposition of a

primary stress system saﬁiéfying Sain?.Venanﬁ boundary
conditions aﬁ the edge of the plape and a suitably'chosen
secondary (isqfhermal)’s?ress syspem.

The analysis of each system is execuﬁed using a method
based on the,asymp@o@ic expansion Fechnique of Reiss and Locke
(1961), the small parameter being the thickness/diameter ratio
h, of the plate. It is found thaﬁ a boundary layer effect
occurs in the isothermal case in which the significant terms
are second order (hz),.adding sqme.furpher justification to

the Saint Venant Principle.’



(ii)

Consideration of the composite solu@ion shows that the
two-dimensional solution plays the role of the zeroth order
term in the series soluﬁion, the higher order terms being in
the nature of Fhree-dimensional corrections. These correction
terms are of second order and it is concluded that for
sufficiently'small'h the soluﬁion is plane stress except in
the boundary layer.

The inves?igation is cqmpleted'by a discussion of the
method in rela@i@n @o a specific example. The accuracy of

the series solution is considered and numerical results given.
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INTRODUCTION

When a body is subjected to external surface forces,
body forces, or heatiné, in general there results a state of
stress. Thermal stress is that which arises in a body
because of the presence of a non-uniform temperature
distribution, external éénstraints,or both, although this
account 1is coneerned only with the state of stress arising
from the first source.

Any theoretical investigation into a physical phenomenon
requires a basic mathematical theory and furthermore if
meaningful results are to be obtained, the. simplifying
assumptions, of necessity inherent in such a theory must be
understood. The study of thermal stress is no exception
and consequently Chapter 1 is devoted to the construction
and development of the relevant mathematical equations.

In this respect, the concepts of stress, strain and
displacement are introduced and their interrelations
determined, within the framework of a linear theory, through
the basic laws of mechanics, geometry and material
properties.

In particular, the derivation of the Duhamel-Neumann

stress=strain relations is of some interest, as it combines




a fuller explanation of the origin of thermal stress, with
the mathematical consequences of the assumed homogeneity
and isotropy of the material.

The éhapﬁer is concluded by a formal derivation of
the equations of thermoelasticity, in a form suitable for
the direct determination of the stress components. The
theory is applicable to problems inlwhich inertia forces
can be neglected'and the temperature of fhe body can be
obtained independently of its deformation.

The project is coﬁcérned with the thermal stress in
a thin plate, when the'temperature does not vary acroéé
the plate thickness. Such a problem is usually given,
what is essentially, a tWOfdimensional treatment. The
results so obtained may bé'adequafe but, an analysis of
the'problem; which proﬁerly places the two-dimensional
solution within the framework of the three-dimensiénal
theory, is desirable.

The full three dimensional equations of thermo-
elasticity, consisting as they do of nine partial
differential equations, together with appropriate
boundary conditions, present a formidable problem for

solution. However, by transforming to a cylindrical




polar coordinate system and making use of axial symmetry,
the equations are much simplified.

Indeed, it is interesting to observe, that the single
assumptioﬁ, that all quantities are independent of the
angular coordinate, uncouples the system of equations into
two distinct sets, one of which admits the trivial (zero)
solution and the other, the remainipg stresses. The
author believes that this approach is more satisfactory,
than that of appealing to the physical consequences of
axial symmetry.

Because of the relative simplicity of the axially-
symmetric equations and because it is of some practical
iﬁportance, the thermoelastic problem of a thin circular
disc, subjected to purely radial heat flow, is chosen as
a vehicle for the investigation.

A tentative approach to the problem, is to use the
semi-inverse method, coupled with the assumption, consistent
with the two-dimensional theory, of plane-stress (Appendix
1). The results are not satisfactory. For a rigorous
solution, the temperéture distribution, which in the
uncoupled theory is assumed known and thus, at least as

far as the stress analysis is concerned, arbitrary, must. be
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restricted to, at most, a parabolic profile. Furthermore,
even allowing such a severe restriction, the edge boundary
conditionslcan only be satisfied, for a non-trivial case, in
the Saint Venant sense. The result is, that in the
immediate locality of the edge, the stress is unknown.

The presence, in the non-dimensional form of the
equations, of a small parameter %, the thickness/diameter
ratio, suggests an asyﬁptotic expansion technique. Such
methods have been widely employed in many different fields
of study, a. general discussion being given by Priedrichs
(1955).

Particularly relevant to the ﬁroblem under investigation,
is the work in isothermal elasticity of Reiss and Locke (1961)
andﬁ&dédrichs and Dressler (1961) and, more recently, in
thermoelasticity, of Laws (1965).

The work of Laws, is in fact, concerned with the
thermoelastic problem of a thin plate under steady state
conditions. His method, although based on that pioneered
by previously mentioned authors, differs from the present
invespigation, in so far as the steady state problem permits
the use of a suitable particulaf integral of the thermoelastic

‘equations., So far as:the present author 1s aware, the direct




detéfmination of thermal stress under arbitrary, and
therefore possibly transient, temperature ‘conditions has
not'beeﬁ hitherto attempted by asymptotic expansion
techniques. ‘

The required stress system is conveniently considered
as the Superpoéition of two sub-systems, thé primary and
secondary stresses. The primary system satisfies all the
field equations. and the "face" boundary conditions. On
the "edge" of the disc, however, the Saint Venant conditions
are used. Briefly, each stress component ié assumed to
have an . gsymptotic expansion in powers of . Substituting
these expansions into the full set of equations, &ields a
sequence of systems of differential equations, from which
the expgnsion coefficients are determinable.

The secondary stresses are isothermal and are chosen
to make the compoéite solution satisfy the requirements of
a stress free edge. The boundary conditions of this
secondéry problem, being in the nature of asymptotic series,
demand an approach similar to that used in the primary
problem. Unfortunately, it is found, that the secondary
expansions“cannot be made to satisfy.the stress free edge

conditions and thus, can oﬁly'represent the isothermal stresses



in the interior of.ﬁhe disc.

These difficulties are overcome by introducing
coordinates, suitable for what is in effect, a boundary
layer anaiysis. Asymptotic expansions, assumed to be
valid within the boundary layer, are introduced and result
in. a new sequence of'systems of differential equations,
for the boundary layer expansion coefficients.

The limit space, in which these equations are to be
solved, is a semi-infinite strip and the formulation is
completed by an appropriate matching of the interior and
boundary layer expansions. This procedure is, in fact,
responsible for the interdependence of the interior and
boundary layer proﬁlems and necessitates their simultaneous
solution.

The relevant analysis is carried out and it is
inneresting to note, that the first non-zero contributions
to the secondary solution, are second order boundary
layer terms, giving additional justification to the Saint
Venant Principle. It is of further interest to observe,
that the determination of these coefficients, by means of
the'introduction of a suitable'stress function, reduces to

the solution of the biharmonic equation, which is of frequent
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occurrence in two dimensional isothermal elasticity and as
such can 5e conveniéﬁtly solved by the method of Gaydon
and Shephérdl (1964), (Appendix 3).

Combinatidn of the primary and secondary stress
systems, yields a uniformly valid, composite solution, the
series.being determined as far as the terms in hz.
Comparison with the two dimeﬁsiénal solutioﬁ of the problem
shows that the latter plays the not unexpected role of the
first term in the series; the higher order -terms being
regarded as three dimensional corrections. ' These correction
terms, are in fact, of order B2 and it may be concluded
therefore, that for sufficiently small 3, the two dimensional
soluﬁion provides an accurate espimate of the tiyyje stress.

The investigation is completed by a discussion in

Chapter 3 of the method in relation to a specifically chosen

temperature field and plate thickness/diameter ratio. The
accuracy of'the'series representation, for a fixed value of
72, is ascertained by a comparison with an exact primary stress
system and good agreement, to three decimal places, 1is
obsérved.

Comparison of the two and three dimensional solutions

for this example, shows that their differences, of any



importance, aré confined to the region of steep temperature
.gradients. In the case of the radial and hoop stresses,
the maximum deviations occur near to the edge of the
boundary layer, on the faces and mid-section of the disc.

It is further observed, that, although the actual numerical
corrections may, or may not, be considered iﬁportant, at
some points the relative'chénges in stress are considerable.
The correction terms, as applied to the remaining stresses,
occur only in the boundary layer and are generally small,
although in the case of the direct stress, there is a local

effect at the edge.



CHAPTER I

Thermal Stress TheOry'

~1.1. The Equatiéns of Stress

As this chapter is devoted to discussions of a general
theoretical,nature, ﬁhich do not refer to any specific
' geometry, it 1s convenient to adopt the notation and techniques
of Cartesian tensors in accordance with Jeffreys (1952).

The existence of a fixed Cartesian frame of reference 0xx,x3
is therefore presupposed.

We assume that the body under investigation can be
represented by the idealiéed concept of the continuum; that
is to say we ignore the atomic structure of matter and regard
the body as a continuous medium.

The forces concerned in the mechanics of such a body
are assumed to be of two types, those acting on the elements
of volume (or mass) of the body, called body forces, and thosé
acting on the surface elements inside or on the boundary of
the body, referred to as stress forces.

Consider an arbitrary portion of the body occupying a
volume V and bounded by a surface S. Suppose that at an
arbitrary point X, of V the bédy force per unit volume is Fi

in the sense that the resultant body force on V is then
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JV F’Z:dV o (l.l)

and'tha§ the resultént‘body force torque about 0 is

[V ek Fy dv | - (1.2)
where Eijk is fhe alternate tensor. We assume -that in general
Fi is a continuously differentiable function of space and time
coordinates.

- Now suppose that at a genefal point xi, of 5; #hé"
Aou#ward normal is ni » and suppose that %i denotes the force
per unit area, exerted at F by the material outside S on the
material inside S; Again the definition is understood in the
séﬁse thatAthe résultant stress force on the material within
S 1is

' [ (n)
s T, ds (1.3)

and that the resultant stress force torque about 0 is

(n)
eijk xj Tk ds. (1.4)

The superscript (n) refers to the normal nes since, in
(n)

addition to assuming that the stress vector T, is a

continuously differentiable function of space and time we
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assume that it depends upon the orientation of the surface

elements specified by e
' (n)
We note further that by definition Ti is the force

per unit area exerted.at'xi by the material outside S on
' ' (-n)
that inside. Consequently TiA denotes the force per unit

ares exerted at . by the material inside S on that outside.

It follows therefore from Newton's third law of motion that

(n) (-n)
T, + T, =0. (1.5)

If the body forces are assumed to include the d'Alembert
inertia forces, we may consider the.whole body and
consequently'any pért of it to be in a state of mechanical
equilibrium. Thus from (1.1), (1.2), (1.3), (1.4) and the

laws of mechanics we obtain

J ’J(n)
F.dV+ ) T.dS=0 , (1.6)
y t g *
and

(n)

) eiik % Fy dv + Sygijk 2 i as =0 (1.7)

Following Sokolnikoff (1956) pp. 36-39, consider the

application of (1.6) when V is a vanishiﬁgly small tetrahedron

PABC located at an arbitrary point P of the body, (figure (i)).
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Figure (i)
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The faces PAB, PBC, PCA are parallel fgo the coordinate pla.nés’
and the face ABC has gn outward normal ne Suppose furthér
that triangle ABC has area A and that the length of the
perpendicular from P to this face is p.  Applying (1.6) we

have

; J J n) J (-1) [4(-2) J (-3)
F.AV + T.d5 + T, dS + T.dS+ | T.d5=0
VA7/ 1 1 1 1

MBC APBC APCA APAB

and, using (1.5) get

] J . [ (n) [ (1) . [ (2) . J (3)
Fdv+ | T.dS - T.dS - |[T.ds- T, ds=0
gt AR B T i

MBC APBC . APCA APAB

from which .
L @ @)
F’i—fi-pA"-Ti A—TinlA‘—Ti n@A-Ti n3h = 0

which primed quantities tend to their values at P as p tends
to.zero., Dividing through by A and letting p become

vanishingly small gives
(n) (1) (2) ((3)

.= T, + 1. + I, . .
. T, my + T, np + T, ng (1.8)
Equation (1.8) has been derived for an arbitrary point

P and thus holds at all points of the body. If we now
(4) ' '
denote T. by e (8) becomes
(n)

T, = Op M (1.9)



- 1k =

(n)

exhibiting the dependence of Ti on n. It is clear from
(1.9) that ¥ is a second rank tensor, knowledge of which
gives the state of stress in the body.
Returning now to (1.6), V arbitrary, use of (1.9) gives
JFdV+fo”n.£=O
vt s It d
Transforming-the'surface'inpegral by the divergence theorem

we obtailn

f [E% * 91,7 ] v =0
. :

whence, since V is arbitrary

.. .,+F.=0 (1.10)
Jlsd 4

Also from (1.7) and (1.9)
[ €17k 5 Fy av + J €15k %3 mk ™m ds = 0.
v S

~ Use of the divergence theorem and (1.10) gives

J-'[- €1 ik xﬁ Omkm + (Eijk xj Gmk)’ £ ] dv = 0
%4

4

whence

l [-Eijk s Opeom ¥ Sigk Ogm Omk ¥ Sigk %5 °mk,m] dv =0
V R
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where Gjm is the substitution tensor. Simplifying, we get

[V eijk ij dav =0

Since V is arbitrary,
.. .. =0
Eth ng
from which it easily follows that
0. = 0,. (1.11
gk kg )
and the stress tensor is symmetric.

The stress equations (1.10), valid throughout the body,
are normally referred to as the "equations of equilibrium".
They are clearly insufficient for the determination of the Oij'
We remark further that the results of the discussion so far,

are applicable to any state of stress whether caused by the

presence of body or external surface forces or thermal effects.
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1.2. The Equations of Deformation

Another assumption, basic to the theory, is that the
body is deformable, that is, material points may be
displaced in such a way that their relative distance apart
is altered, contrary to the éoncept of a rigid body in which
this distance is assumed invariant.

" Let us suppose that there is an initial undeformed
state in which a material point P is at x (fig. (ii)).
As a consequencé of some external agency the body is
deformed so that at some instant ¢, the point P is now at
P’ given by‘xi +u. The displacement vector Uy is
assumed to bBe & continuously differentiable function of
X, and .

Consider now a material point &, which in the
undeformed state is at x; + yi.where Y; is small. After
deformation @ moves to §°, the point x,oty,t uirQ. By

Taylor's theorem

u = w0 U, L0y, (1.12)
ﬁlQ o+ w10y,
Higher order terms are neglected since Y; is small. We

may thus obtain

a), =y, (1.13)

1
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P %
0
2
*
Figure (ii)
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R
P
. ’
% P Q
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Figure (iii)
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and

(?’Q‘)i =Ygt U Y | (1.14)

the extra suffix P having been dropped.

From (1.1L4)

"2= .+ « U . ,-‘
(P7g7) Y39: “; sd s yg z J uz,k yg Y (1.15)
We further make the assumption that the displacement ui and
its space-derivatives are sufficiently small to warrant the
neglect of second order terms involving these quantities,

and thus (1.15) becomes

(P@)? =yuy, +2 up Y Ys (1.16)

Further we observe that

ui’j,yi yj = J i y$ yJ

summation occurring over both < and j and thus (1.16) may be

written
2n2\2 = -
(P.Q Y=y, t (uiu7 Ui ¥z Y (1.17)
Using (1.13), (1.17) we obtain
“0°)2 - 2 = L
or
ney2 - {2 v
(00)2 - (B0)? = 2¢ 4, (1.18)
where
.. = l-(u7. ) (1.19)
1] 2 1, Jsth:
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(PQ)2 - (Pg)2 is a measure of the change in the relative
distance between the material points P and @ due to the
deformation. Consequently we assert that the deformation
of the body in the neighbourhood of an arbitrary point P
initially at X, is charécterised by the symmetric second
rank Fensor-géj, referred to as the strain or deformation
tensor. We observe that if 823 = 0 then from (1.18),
P’Q”° = PQ and there is no deformation.

We now proceed tq show the way in.ﬁhiCh,the strain
tensor describes the deforﬁaﬁion. In the notation used,
let 2§ Dbe initially parallel to the zy-axis (fig. (iii)).

Thus we may write

. ifi=1"
yi Y1 1f 2

0if 7 =2, 3.

From (1.13), 1.14) we obtain, in extended notation

?Q'='{y1, 0, 0} (1.20)

and .
SUUR AL R VR 17 |
B9 —{(1 + axl) Y1s 5z, Y1 5z y1} (1.21)

From (1.21), to appropriate order,

PV +’; Py a
(Pr@”)2 = p°q".PQ =(A1+2£i)y12-

and Hence from (1.19), (1.20)
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1 :
PQ- =(1+2¢1)° PQ (1.22)

(l + Ell)'PQ since €11 small.

Thus. we have

. _ P@” -PQ
€11 % g

and represents, therefore the increase in length per unit
length of the line element ?Q initially parallel to the x;-axis.
€11 is called the direct strain associated with the direction
Oxy. We may obtain similar interpretations for the direct
strains €55, €33.

Suppose now that PR is a line element initially parallel
to xp-axis (fig. (iii)), so that in (1.13), (1.14) we may take

y.=11if ¢ =2

7
=0 if 7

1,-3

and hence obtain

PR

ape —j0UL T Uy - dug
PR {axz y2» (l ¥ %, )Y2° B, ‘yz} (1.24)

{0, ya2, 0} (1.23)

Proceeding as before we use (1.24k) to get

ol

P'R° = (1L + 2 #,)% PR (1.25)

and (1.24), (1.21) to-get



_21_

7171=ﬂ1 .2_37_".2)
PTQr.P'R <3x2+3x1 Y1 Y2

2 e1p (PQ)(PR) from (1.19), (1.20), (1.23).
But,

pigr.pig?

(P'Q")(P'R') sin ¢4
where ¢1; is tﬁé change in the original right angle between
?Q and ?R, and hence

2 ey (PR)(PR) = (P'Q")(P'R') sin ¢15.

Use of (1.20), (1.22), (1.23), (1.25) now gives

| ] .
e12 =5 (1 +e11)® (1 + €35)° sin ¢y

no =

%-¢12 to appropriaﬁe order.
Thus~§12 denotes half of the change in the right angle between
the line elements ?Q, PR initially parallel to the axes Ozj, Oz,
respectively and is called the shear strain associated with
those directions. A.similar interpretation is possible for
the shear strains es3, €37.

Equations (1.19) constitute the equations of deformation.
and are ﬁsually'referred to as the "strain - displacement

equations”.
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1.3 The Equations of the Material

Let us suppose that there is an initial state of the
body in which the absolute temperature is uniform and equal
to To and in which, subject to there being no body or
external surface forces,the body is undeformed and stress
free.

If the body is now subjected to the action of body,

‘or external sﬁrface forces, or heating, under which it
undergoes a rise in temperature T(xi’?) in general there
results a staﬁe of stress throughout the body. That stresses
arise due to the action of body or surface forces is clear
but the origin of the thermal stressl(that due to the heating
effect) perhaps is worﬁhy of some eXplanationT

Consider a body at uniform temperature To’ whose
bounding surface is free of external constraint. If this
body is now heated to a new uniform temperature To + T, free
expansion takes place by an amount proportional to I. On
the other hand,vif the bounding surface is geometrically

fixed by the action of external constraints, the thermal

expansion must be suppressed by the action of external surface

(constraint) forces, and thus stresses arise.
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Suppose now that the temperature T is non-uniform.
By virtue of this non-uniformity the volume elements of
the body, under free expansion conditions, would each
expand by é different amount (proportional to T).
Clearly, if the body is to remain continuous, such free
expansions cannot occur and in fact are suppressed by
constraint forces set up on each element by its neighbours.
In accordance with the previous case, therefore, stresses
arise. |

We are thus led to assert that thermal stresses may
arise in a heated body, either because of a non-uniform
temperature distriﬁution, the presence of external constraints
or indeed to a combination of both. It is our intention,
however, to confine our investigation to those thermal
stresses caused by non-uniform temperature effects only, a
state characterised by a boundary free of constraint.

Before proceeding further it is necessary to make the
following remarks (Muskhelishvili (1953) p.54).  When
stating that the strain tensor € is a function of the space
coordinates Lo these refer ﬁo the geometrical position of
the material point P in question, before deformafion. The

same remark is true of the displacement vector, Uy On
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the other hand, when we state that the stress tensor Oij is

a function of Ei we refer to coordinates after deformation.
Within the framework of our theory, hbwever, this distinction
is not essential. For, suppose that the coordinates of P
before deformation are X whilst those after are xé; Since

xé = <, + ui4and by assumption ui is smail, clearly the
value‘of Oij at x. can differ but little from its value at

xéfl Consequently we shall consider at all times that all
three functions Gij’ Eij’ u, are functions of x the coordinates
of an arbitrary point P before deformation occurs.

To continue with the theory we assume thaﬁ the state of
stress in the body depends upon its state of deformation and
on the change in temperature from the initial state.
Mathematically we express‘this assumption

% =’oij (eg 20 ). (1.26)

We recall that the strains eij are smail,'and if we also
assume that T is sufficéiently small the functional relation
(26) may be taken as linear, and accordingly we obtain a
tensorial equation of the form

+b T (1.27)

17kl k1 T %y

Since we require that a possible state is such that

G..= Q..
7 o

6.,=0, €..=20,T=0
% %
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clearly a ;= 0 and (1.27) becomes

b T (1.28)

% = Pigra Skt Cuf
We remark: that inherent in (1.28) is the fact that the
original state may be recovered under suitable conditions,
defining in. fact the’concept of elasticity. We further
remark that the tensors bijkl’ cij depend upon the physical
properties of the material.

We now make the assumption that the material is isotropic
and homogeneous, by which we mean that the material
properties are independent of the orientation and position of
the body elements. This is not an unreasonable assumption
since many materials, due to their crystal structure (Long
(1961) pp. 61-65), may, to-sufficient approximation, exhibit
such properties. . The mathematical consequenceé‘of'isotropy
and homogeneity are that the tensors bijkl’ cij assume
(Jeffreys (1952) Ch. VII) the general forms

b .8

ikt = % 944

and

kp H I8 S 4 8y 8) + M8, 8.y = 8,y 8 0)

C.. L.
24 d
where K, L, M, N are scalar constants.

Substitution into (1.28) gives
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oij = {K aijakz + L(Gikéjz + 6i16jk) + M(Gikdjz - éilajk)}ekl + NdijT
K Gij S ¥ 2L sij + N aij T (1.29)

The constants K, L, N can be renamed in terms of the Lamé

X, u and the coefficient of linear thermal expansion a, as

follows:

K=2X, L=y, N =-(3x+2u)a.

- (1.29) now becomes

5 = %5 tkk

Equations (1.30) are the so called Duhamel-Neymann relations.

+ 2y €5 " (32 + 2yp) 6ij4aT. (1.30)

Contraction on Z, j§ of (1.30) gives

op = (3% +2u) e = 3(30 + 2u) of
giving
= 1 __ -
k= (3% + 2n) Okk 3ol (1.31)
Using (1.30) and (1.31) we may obtain
o 0 P 5£J5,7 + oT Gij _ (1.32)

€4 - 2 ]
A 2p(32+2y)

Introducing Young's modulus E, and Poisson's ratic v by the

relations (Sokolnikoff (1956) p. 67),

E=yu(3\+2y) , v = A

O+ ) 200 + )

from which
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\ = B i
T (1) (1-2v) > M T SI)

we may write (1.32) as

= (1+v) _v . .
€54 Z % " F kk Gij + of 57:,7" (1.33)

Equations (1.30); (1.33) can be obtained alternatively using
fhe assumption that the pure thermal strains due to free
expansion and the isothermal strains associated with stress
are additive (Nowacki (1962) pp. L-5), or from thermodynamic

considerations (Benham and Hoyle (1964), ch. T).
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1.4 The Equations of Thermoelasticity

" The final assumptions applicable to the theory concern
the temperature field T. A precise derivation (Benham and
Hoyle (196L4), Ch. T) of the heat conduction equation (from
which the temperature of a solid is generally found) shows
the presence of a strain term in that equation. However
(Boiey and Weiner (1962) Ch. 2), if the time rate of change
of temperature is sufficiently small, this coupling term,
and indeedvthe inertia forces in equations (1.10), can be
neglected. We shall assume that this is the case. Tﬁe
temperature field can thus be determined independently of
the stress problem aﬁd for our purposes is regarded, at any
insﬁant of time, as a known function of the space coordinates.

Before proceeding further, it is convenient to summarize.
The principal assumptions basic tolthe theory:
(i) the body is an elastically deformable continuum
having isotropic and homogeneous material properties,
(ii) the deformation and temperature change are
sufficiently small for é linear théory, and
(iii) the time rate of change of temperature is slow
enough to warrant the neglect of inértia forces

and to consider the temperature field a known quantity.
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In addition, since we are interested only in thermal stress,
originaﬁing from a non-uniform temperature distribution, we
require zero body and'external.surface force. Accordingly
the equatioﬁs governing an investigation of this kind are:

Equilibrium equations: (from (1.10))

0., . = 1.34
| 4,4 | (1.3k)
Strain-Displacement equations:

| _
e.. =3 (u, .+u, . 1.1
i 2 \u; J,t) (1.19)
Stress-Straih-Temperature Equations:
.. = +. ‘..— ' ..+ .. .
€3] (lEvQ 0 %-Gkk 613 aT 6$3 (1.33)
Boundary equations: (from (1.9))
(n) - :
T. =0.,n.=0 (1.35)

We remark that time derivatives do not enter into any of
these equations. It follows that the time t'énters into
problemé of this kind only as a parameter throﬁgh the term
involving T, and we shall therefore disregard it and comsider
all'quéntities to be functions only of the space coordinates
xi.. The term quasi-static is often used to describe such a
situaéion.

In so far as equations (1.34), (1.19), (1.33) are fifteen

equations in fifteen unknowns they are complete, but as we are
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primarily interested in stress, and in view of (1.35) we
find it conveﬁient to eliminate the strains and displacement.
This we now do and formally derive the complete stress
equations for the problem.

| From (1.19)

1

esiky = 2 Wy g s )
and interchanging < and k, j and 7 we get

.
k1,45 " 2 (uk,lij * uZ,kij)'
Adding results in

. =1
il Y i T2 W t okt Y145t Y, kig)

|
ol

(y wir * %1t %1kt v, g

I
ol

1
(wy gz * %, eq1) * 20 g * ¥y 401

and henge

Skl T Ski,iy T Sik,g1 Y S5,k
or

Siakl T k1,55 T Sik,gl T Sjl,ik 0 (1.36)

Substitute for the eijfrom (1.33) to get
(1tv) o +0 -0 -0
E [ 1d,kL kl,7g 1k, gl Jl,tk ]

- %-[Gij s,k * k1 ss,ii " Sik %ss,i1 T %1 s, ik ]
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P o8 Ty ¥ 8y Togs = S Tosg = 85y Tog ] =0

Contract on k, 7 and obtain

(%7—\’) [osi i * Ouy 15 = Ok, ik~ Ogn,ix ]

3 E[ %55 Osaukk * 3 %ss,i5 " Sik Tss,gk T Sk ™ Sk e, ik]

+ o [ 8 Togge + 3 T’ij - 8. T,jk - ajk T, ] =0 (1.37)

From (1.3k). Oik,kj = gjk,ki = 0. Using this result

(1.37) simplifies to
R Sy : 1 T -
ikt (1+v)'[°ss + EoT ] . + () 8 [EaT v oss] = 0 (1.38)

H

Contraction on ¢,J gives

ss,kk Skk
Combination of (1.38), (1.39) gives finally

(1-v) o + 2 EaT 0 (1.39)

Eq )
+ EaTJ’ij + 8 ooy Tope = © (1.%0)

%g,kk @) s
Equations (1.40) are the generalized Beltrami-Michell equations,
of compatibility equations of thermal stress.

The stress components Oij must thus satisfy the equations
(lf3h), (1.40) and (1.35) and it can be shown by a more rigorous

‘treatment (Boley and Weiner (1962) pp. 62-66 and 84-92) that

this formulation admits a unique solution.
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For future reference we record here the complete equations

in extended notation.
Equilibrium:

3 01y +3 o015 3

Sy . 39Xy 3x3

Compatibility:

.V2011'+:§E§ + _Ea VZT

s . (1-v)

V205, +3%% + Fo V2T
' sxs  (1-v)

n
(@

[}
o

.V2033 + 927 + FEo V2T
(1-v)

[}
(@)

Vo + 3% o
0 axz

.V?023 + '322 =0
3.’1323.’83

.V20'13 + 322 =0
3.’1713.’173 :

where
(1+v) I = 011 + 0po + 033 + EaoT
and

+ —

v2 = ;@32 32 N 22
90X < axzz

(1.41)

(1.42)
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O11 My * 012 Mg + 013 Mg - =

O12 n1 + 032 iy * O3 ng =

013 N1 + 023 Ny + 033 73

(1.43)
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CHAPTER II

The Problem and Solution

2.1. Preliminary Remarks

In this chapter, the full three-dimensional thermoelastic
theory is used to determine the stress in a thin circular disc,
of uniform thickness, when thé heat flow is purely radial.

The state of stress in the disc is considered to be
known once the stress vector has been calculated at all points.
Furthermore, we have already seen that this vector, by virtue
of equations (1.9), is expressible in terms of the components
of the stress tensor, and these, in theory at any rate, can
-be obtained by solving the system of equations (1.h1), (1.42)
and (1.43). )

Successful solutions of such a system of partial
differential equations deﬁend to a large extent on the choice
of coordinate system, and for the probleh of the disc,
cylindrical pélar coofdinates are clearly more suitable than
Cartesian coordinates. Consequently, it is necessary to
introduce a more genéral notation for the components of stress,
amenable to analysis using curvilinear coordinates.” This
noﬁation naturally, must include the cage of Cartesian

coordinates so that the results of previous sections may be

applied.
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2.2. Generalized Stress Components

(n)

Since:T is a (stress) vector, we may resolve it in

any direction m given by the unit vector m. This resolute

O, LS glven by
o = T.m (2.1)
nm -

In this notation, a modified version of that used, for
example, by Godfrey (1959), the first suffix n refers to the
outward normal, specified by the unit vector n, of the
surface element and the second, m, to the direction along
which the stress vector is resolved. The component of stress
onn'(repeated suffices do not imply summation) is called the
direct stress associated with the direction #n, a positive
value denoting tensile stress. Further if n, m are
orthogonal, the component Unm is referred to as the shear
stress associated with these directions.

If i, j, k denote unit vectors in the directions of
Oz, Oy, Oz of a Cartesian frame of reference we have from
(2.1)
(n)
T =6 1 +o0 J + 0 k (2'2)

ne ny nz

whence
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(2.3)

—_
[l
—
+
Q
1N
-+
Q
-

Comparison of (2.3) and the definition of o in section 1.1,

1
yields
Ope = 011 Oyy = %22 > Tpy = 033
o =0 =0 =0 o =0 =0 =0 g =0 =0 =0 _ .
ay 12 21 yx® Oyz T 923 32 zy® %z 31 13 = 0.,

Thus equations (1.41, (1.42) and (1.43) for the stress problem,

may be written

9 o _+3 o +3 o g - 0
bx oY Y gz T
9 Oxy + 39 ny + 9 Gyz =0 (2.4 a, v, ¢)
ox "3y 9z '
6 +93 o + g =0
R TR ri
v2 +93%2L + Fga V2T=0
T %l (1-v)
v2 +932% + EFu V2T =0
vy 5y2 (1-v)
v2 +93%3 +_Ea  V2T=90
%% ([
V2o +328 =0 (2.5 a-f)

Y zoy
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v2 + 323 =0
Y2 Byez

V2 + 3%z =0
xz X903

vhere (L+v) 2 =0 _+0 _+o0 ot Eol and V2 = 32 4+ 32 4+ 32

T Yy 2 3z2  9y2  3g2
and with
(n)
T =0 on the boundary. - (2.6)

We remark that the cylindrical polar form of (2.4), (2.5) and
(2.6) will be derived in due course.
It
n=nmni +vn2.j + n3 k, (2.7)

then equations (1.9) give

o =0 Ny +0_ 7Ny +0__ ng

ne xx xy 2

o =g ny +0d nNo+o n (2.8)

ny zy "t Tyy 2 Tya 3

; = + + .

nz T Cga "1 T Oyg M2 T Oy M3
Also, if

m = my i+ my J + mg k, (209)
from (2.1), (2.2)
(n)
o = T.m=o0_m +0_ m +0 _ ms
nm ne ny . na

and thus using (2.8) we obtain

9
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0 = (0 _ni+0 _no+o. na)m+(0 71140 no+0 N2 met(0 mit0 no+0 na)m
nm ( xx 1wy 2 xa 3)my+( xy L yy 2 ya 3)my+( xz 1V yz 2 zg 3)ms
or

O = nymyo- MoMoG  HqMad

nm VPP goap 772725y 7373 g

+(m1n2+m2n1)oxy+(m2n3+m3n2)oyz+(m3n1¥m1n3) (2.10)

o
xz
Thus from (2.1p) we may obtain the generalised stress component

O m in terms of the six Cartesian stress components.

2.3. The Thermoelastic Equations in Cylindrical Polar Coordinates
Let us turn now to the specifié task of transforming
equations (2.4), (2.5) and (2.6) into cylindrical polar coordinates
r, 6, 2.
The coordinate transformation is effected (fig (iv)) by the
equations
z=rcos 6, y=rsin 6, z=z. (2.11 a, b, c)

Differentiating (2.11 a, b) each with respect to x, y gives

1=cos 6 2Z-psine 32, 0=sin6 L+ pcos o
ox ox’ - ox ox
0O =cos 8 r r sin 8 30 1l = sin © 2£+ r cos 8 o6

oy oy C dy 3y
from which we obtain

K2 P _5in 68 36 _cos 6
dy 'y r '

L = cos 6
X >
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We may now write

d=cos 83 -sin63 , 3 =sin 63 +cos 83,3 =23 (2.12 a,b,c)

oz or r 036 dy or r 036 oz oz

and thence obtain

32 =1lcos 2032 =13 =1 32 ]-sin20f1 32 -1 3
Z 2 2 ror r? 362 r ordd r? 30

9 -1 3% |+sin20f1 3 -1 3
r 5rd6  »r? 36

ar? r  r? o

32 = 32
922, 9z2

3% =1sin28 |32 =13 | +cos28 |1 8 -1 3
dxdy 2 r?  r 936 r 9r3d r? 36

32 =sin 6 92 =cos B 32 (2.13 a - g)
Yoz 0raz r 39690z

92 =cos & 32 - sin 6 32

9x9z 1oz r 900z

<
N
I

2413 +1 32 +22
ar: r ar r2 362 972

Equations (2.12), (2.13) are the transformationformulae for all

operators in (2.4), (2.5).
Turning now to the stress components, the unit vectors in

the directions parallel to the r, 6, 2 directions are given by

(fig (iv)).
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D .
[}

cos 6 1 + sin 6 J
r
eé ==-5in 61+ cos 6 ] (2.1k)
k =k

We use (2.14) together with (2.7), (2.9), and (2.10) to get

6 =1lcos?29(c -0 )+sin200 +1(c +0 )

rr 3 z Yy zy "5 e Yy
o6 ==1cos20 (0 -0 )=-sin200 +1(c +0 )

66 E’ XX yy xy 5‘ xx yy
g =g

32 22

= = .- 3 - + . -

S0 %_s1n 20 (Oxx oyy) cos 26 ny (2.15 a = T)
6. =cos 6 0 - sin &0

0z ya ez
o- =sin 6 ¢ + cos B o

rz yz x2

A simple inversion of equations (2.15) now gives

O s = % cos 26 (Grr - oee) - sin ?6 0.0 * %-(crr + cee)
= - 2 - + 1 + +
ny %_cos ) (Grr 066) sin 26 S0 % (Orr 066)
o =0
22 22
= 1 - + R -
Oxy %_s1n 26 (Urr oee) cos 26 % (2.16 a - T)
g =cos 60, +sinba
ys 62 rz

o -sin 60, +cos B o
3 82 rz

We now apply the results of (2.12), (2.13), (2.16) to effect the

transformation of (2.k4), (2.5).
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(2.4a), (2.4b) become
cos 6 [2—-0 4 L (6 =-o0.)+ L3 K I

or rr r ry 609 r 35 Ore 0z Orz
. P} : 2 P}
- — + + = + — =
sin 9 [ar %% T 7 36 %80 T 7 %po T 3z %oz } 0

and

sin 0 [é— o +‘% (0 =-0_) + 13 o+ J }

ar rr rr 66 r 36 "ro °z Urz

A 3 1l 3 2 9
tcos 0|50 +t—- — + = + — =
[ar o r 30 %80 -7 °ro T Bz Y6z ©

respectively, whence

3 1 13 P}
_— = - + = — + — =
or Orr * r (Orr 069) r 36 Gre 93 orz 0
(2.17 a,b)
J 13 2 d
— g + — Z_ + - + — =
37 “r6 " 7 38 %0 * 7 %po T 37 Joz = O
and (2.4c) becomes
3 13 1z 3
L =2 + = + — = .
.or Orz * r 96 Oez r crz 93 gzz 0 . (2.17 c)

The transformation of equations (2.5) is naturally more difficult
since second order derivatives are involved, but some saving
on algebra is made by observing:

ol = o +o._ +o 4ol

+ = +0 4o
(1 + V)2 O Oyy 022 rr 066 23

Adding and subtracting (2.5 a,b) in turn gives

2 3y 8% ., 2o op _ .
v (oxx+cyy) ullieve Rl 7 * ey Y T=0 (2.5 a”)

and
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v2 (o =0 ) + 3% - 3% =0, ‘ (2.5 b")
XL vy 2y

Transforming (2.5 b') and (2.5 d), we obtain

cos 26 | (v2 =4 Yo -0, ) =8 3 o .+ -133 -1 5%
;2 rr 00 — v ';2“7

72 5 O r? r 37

rr

-sin 20 {4 3 (o —oee)+ 2(v2 —g)cre +2(1 8% -1 31)f_
r% 39 - p? r 3r30 r? 938

and

2 30 or? 3r 12 362
+ cos 26[%2 ge (0, = 0gg) * 2 (v2 - %Z)O’re + 2(% gige - %2 _g_g)] =
whence’ '
(v2 —%2)(om - Uee) - 32 ‘2301’9 +_§_i§+%%'-_g%§_= 0 (2.18 v'")
and |
(v2 - %2) S0 +‘%2 %e' (om - Oee) +% gige - %2 % = 0. (2.18 Q)

Equation (2.5 ¢) is unaltered in form, being

v2 0, * 323 + Eo. V2 T = 0. (2.18)
322 (1-v) :

Equations (2.5 e,f) transform to

cos © (vz-;)oez+g a_orz+;azz
: r? r? 38 r 36
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+sin6[(V2-l)0 -2 3 o + 322]=o
2 rR . T2

r r< 30 9192
and .
sin 6 [ (V2 - _1_‘)0ez +2 3 o +1 32y
i r% 30 r 3092

-cos 6 [(V2=1)o =2 3 o, + 31 =0
: 2 72 36 3rdz

respectively, whence

(V2 -1)o, +2 3 o +13° =0 (2.18 )
2 9B 27 r 369z
and.
(v2=1)c =2 93 o. +2321 =0 . : (2.181)
bt Yz -0 T~ 2 —_——
r? r2 36 37z

Equation (2.5 a') becomes

V2 (o, +05,) 320 4138 +1 3%% +2Ba V>T=0 (2.18a')
ar?  rdr r?.93%82 (1-v)

and adding and subtracting (2.18 a'’), (2.18 b’) in turn gives

finally
‘v2‘or—g (ow-cee) - ) _8_0re+322+Ea V2T =0
e 2 r2 36 vz (1-v)
(2.18 a)
» and

V2o +2 (0 =0..)+h 3 o +
rr
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Removal of the temperature terms from equations (2.18)
results in the equations for isothermai theory, these latter
agreeing with the results of Ford (1963), pp. 199-201.

Equation (2.6), the boundary conditions, being a vector
equation requires no modification, however, when applying
it to the surface of the disc we must express it in terms
of cylindrical polar stress coﬁponents. In this sense we

renumber equation (2.6) to get, on the boundary

(z)
T =0 (2.19)

Equations (2.17), (2.18), and (2.19) constitute the full
three-dimensional thermal stress equations in cylindrical
polar coordinates. Their solution, in the general case,
clearly presents a formidable task. Howe&er, in the present
investigation, the analysis is much simplified by the two-
fold symmetry of the problem.

2.4 Mathematical Statement of the Problem

We consider a circular disc of radius a and uniform
thickness d where d is small in comparison to a. Using
cylindrical polar coordinatés r, 9, 2 we take the faces of the
disc to be z = + d, [r]f a, and the edge to be the cylindrical

surface r = a, |z|s d.
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We assume that the theory of linear, quasi-static,

uncoupled thermoelasticity, as developed in Chapter 1, is

valid and that the heat flow is radial.

problem has axial symmetry with T = T(»).

Consequently the

Accordingly

we seek a stress system, symbolized by o(r,z), the §0lutidn of

the equations.

3 0, +23 o, +1(o, -0
ar 22 r
9 O + 3 + 20 =0
e ro e 02 7 ré
o] +93 o +1o0 =0
— rz — zz = rz
.oy 93 r
v? 0t 9%y + Eo V2T -2
arZ  (1-v) ! r?
v2 Oge * 132 + Ea vf T+ 2
r ar (1-v) r?
V2 o+ 323 + Ea v% T=0
22 337 (1=v)
2 — -
VE 0. 32 O, =0
r
v2 - =
OGZ ‘];2 092 0
r
v2 o, * 3% = 1 o, =0
3ridz r?
= + + .
where (1 + v) I Ot Tgg * 0,
end V2 =32 +13 +32 , V=
or2  r 9r 932

(2.20 a,b,c)

Ogg) =0
Ogg) = O
(2.21 a-f)
o
or
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The boundary conditions of the problem are

o  (a, z2) = ore(a,é) =g Z(a,z) =0 (2.22 a-f)

rr r

(ry +d) =0 _ (r, +d) =0

o (r, +d) =0 2z +

rz - 02
Equations (2.20, (2.21) have been obtained from equations
(2.17), (2.18) using the property of axial symmetry, that

3_=0. Equations (2.22) were obtained from (2.19), using
a0 :
components.

We observe that the system (2.20§, (2.21) and (2.22)
divides naturally into two sub-systems; equations (2.20 a,c),

(2.21 a,b,c,f) and (2.22 a,c,d,f) determine the stresses

O Tgg° Tpz® Oy whilst equations (2.20 b), (2.21 d,e) and

(2.22 b,e) determine O g S Inspection of the latter
system yields the result that g = OBZ = 0 everyvwhere. It
is of some interest to observe that this result was obtained

from the full sst of equations and not, as is more usual, as

a direct assumption of .axial symmetry.
The problem also has symmetry about the mid-plane
2 =0, Ir[s a, the implication being that the stress components

> Oggs O are even functions in z while O is odd.

Y
rr 25

We shall frequently make use of this property.
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We non-dimensionalize the relevant equations of (2.20),

(2.21), (2.22) by writing

* *
r=qr,z2=d=a

* % % ®* % % (2.23)
T(r,z) = TR T (r, 2 ), olr,z) = EaTR o (r, z)
where TR is some convenient reference temperature.
If we further write
h=d (2.2k)
a
the equations of the problem become
h a_om+; (Gr'z’_ oee):l +-a—0rz =0
| or r 93
(2.25 a,b)

where
(2.27 a)

]
+
Q
=+
Q
+
3

(14v) =
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and

V2 =32 +13
1 — T =
or r or

A further equation: is useful, namely that obtained by

adding (2.26 a, b, ¢) and using (2.27 a), the result being

n2fv2 s+ 1 vf 7] + 323 =0 (2.27 b)
1 (1-v) 932

The boundary equations of the problem become

0, (1,2) =0, (1,2) =0 © (2.28 a=d)

= + =
O,y (r, +1) O (ry +1) =0

In equations (2.25), (2.26), (2.27) and (2.28) the
asterisk has been dropped for convenience and all quantities
are non-dimensional.

2.5 The Method of Solution

It is convenient to regard the stress system ¢ as being
the superposition of two sub stress systems, referred to as
the primary stress system, symbolzed by 7 and the secondary

system symbolized by y. Thus we write

o(rsz) = 7(r,z) + y(r,2) - (2.29)



The primary stress system is the solution of the

_SO-

equations:

h

n2

h2

hz

g

or

.....

+ - + =
Trr ;-(Trr Tee)] 3— Trz 0
r 33
+ 1 } + 9 =0
rz = rg — ‘2z
r 93
Tt azg@4- 1 vir-2 (1, = Tge) | *
or (1-v) r?
+ 2@+ 27+ N
g L@+ 1 V1T 2 (Tym = Tgg)
r Jr. (1-v) r
Tt 1 VET|+ o2 TZZ+32§D=O
(1-v) 352 3z
rz L Tpg| T B |22 * EE Tyg = 0
2 aroz | 9z2 TR
= + + +
Trr Tee Tzz T
@+ 1 v2r1]+232 @=0
1-v 1 ] 952
=0
=1 (ry,+1) =0

(2.30 a,b)
32 1 =0
Fr
+93 t,.=0
52 66

(2.31 a-4d)

(2.32 a,b)

(2.33 a,b,c)
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The field equations (2.30), (2.31), (2.32) and the "face"
boundary conditions (2.33 b, c) are identical with those
for o, The remaining equa?ion (2.33 a) corresponds to
the condition which ensures that the edge of the physical
disc is subject to a stress force system-statically
equivalent-to;;rather than precisely, zero. Consequently,
by-the Principle of Saint Venant (see, for example,
Timosheyke and Goodier (1951) pp. 30 and 150) the stress
systems o and T are equivalent, except near to the edge of
the physical disc.

The secondary stress system is the solution: of the

equations:
- _
h é—-Yrr *i (Yﬁr - Yee) o er =0
| or r 03
_ (2.34 a, b)
Rl3 vy _+1y | +3 y._=0 '
o7 rz . 3 rz] 35 33

R2Iv2 v+ 32T =2 (y -y, )|+382 v =0
L 1 'yr 72 p2 rr 06 2z rr

‘ hz[v.f} +.22 Xzz]+ 7 =0 (2.35 a-d)
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B2 [v2 y -1 ¥ + k| d%r +932 y =0
..[1 »rz .I’2 ra 3705 . 322 rz

(l+v) I =Y, * Yoo * Ypy
T |+ 32r : =0 (2.36 a, b)
? -
(l Z) (l Z), Y (1,2) ==71 (l,Z)

ra
(2.37 a-d)
Yo (ry, +1) = A (r, +1) =0

y is clearly the isothermal stress system which by virtue of
(2.29), and (2.37 a, b) ensures the stress free "edge" required
in the determination of 0. The superposition of the stress
systems 1, Yy to give o is the valid since all field equations
are linear.

The definiﬁg property of a disc, as opposed to a cylinder,
is that its thickness is small in comparison to its diameter.

- Consequently thevdimensionless parameter # introduced in (2.24)
is smali'and:its.appearancé in the equatiodns for o, T, Y
suggests a perturbation technique.

We focus our attention, not on the task of abtaining a
soluFion for a specific fixed value of 4, but on the dependence
on h of such solutions. In particular since only small values
of % are of interest we seek to describe the way in which the

stress distribution behaves as A approaches zero.
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The most precise descrippion of this kind is furnished
by the knowledge of the asymp?otic expansion of each stress
component (see for exampie, Van Dyke (1965) p. 26) and we
are thus concerned with obtaining such a representation.

The technique is well suiﬁed to the problem of the disc
since the relationship of the two-dimensional to the three-
dimensional theory will be clearly exhibited. Further by
pheir very nature, the first few terms of an asymptotic
series will provide‘é good approximation to the three-
dimensional solution for a small, fixed value of h.

2.6 The Primary Problems

We assume, for each stress coﬁponent, symbolized by T,

asymptotic expansions of the>form
(e, 2; B) = 1°(2, 2) + h tH(r, 2) + K2 12 (;52) + ... (2.38)

Equality signs are used for convenience but only asymptotic
validity is assumed. We further assume that each stress
coefficient ' will have the same even—odd property in z as
the stress component itself.

We introduce (2.38) into equations (2.30), (2.31), (2.32)
and (2.33) and as the expansions are valid, at least in an

asymptotic sense for arbitfary values of 4 we may equate



coefficients of like powers obtaining for all integral =,
valid in the region |r|<1,|z|<1
3 Tn-l +1 (Tn;l - ngl) + 3 T;l’z =0
ar ¥ r T 9z
. (2.39 a, b)
a__nl"'l.TZzl"'é_T:z =0
or 1% oy 03 .
V2172402 @ PeBn2) 1 VT -2 (00 -E) w2 -
re ar? (1-v) 2 T 922
v2 Izgz +10 @ % gn2) 2 V2T o+2 (TZ;F - ngz) + 32 T
r or (1-v r? =2
v2 772 4 g(n-2) = v27+932 F +32 @"=0
1 22 (l ) 1 Eg 23 52
(2.40 a-d)
T.n-2 - -rn-2 + 32 @n-l + 32 Tn =0
1 rz = Pr3 735 g2 TR
(1) @" = an + TZe * TZz + 8(n)r
r ‘ (2.41 a,b)
g2 mh - 2 2 no_
" +8n-2) 1 VT+3_2@ 0
(1-v) 3z
where
1ifn=1
B(n) =
0Oifn $1

together with the

boundary conditions

.
J 7 (1,3) dz =0
-l rr

(2.42 a,b,c)
n

- (I’,j‘_l)=0

n
Ton (py 1) =1
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Inherent in the equations (2.39), (2.40), (2.h1), (2.42)

are the assumptions:

(i) T(r) is independent of %

and (ii) 7' =0 if n < O.

The above system of equations gives rise to a sequence

of boﬁndary value problems, referred to as the primary

problems, the solutions to which can be systematically obtained.

2.7 The Stress Coefficients.rzz, T

n
r3

. . n n : .
The stress coefficients TZZ’ Trz are determined from

(2.39 b), (2.4%0 c¢,d) and (2.42 b,c) and it is convenient to

‘re=write these equations in the form

2 @

3z2
'33- Tzz
352
| n
v (r
rr (.’
n
T r
rz (,

We further

. . n
even 1n 2 whilst Trz

9 T = - 3
92 22

7Ly Tn'l] (2.39 b”*)

-
=-132 P 472" Pgm-2) 1 V2T | (2.40 ¢”)
-2 23 - 1
3z (1-v)
=- |22 @" e w2 E g P (2.40 a*)
Laraz 1 ‘ r?
+1) =0 (2.42 b)
+1) =0 ' (2.42 ¢)
recall that ' = 0 if n < O and that T:Z, C)n are

is -odd.



The Case n

0

From (2.39 b”)

Integrating and u%ing (2.42 b) yields

0 =
23 .

(2.40 ¢~), (2.43

8_22@0
P

2

T 0

0

(2.40 4) gives

2 rl=0
372 TR

Integrating twice

yields

1 0=
ra

0

The-Cése.n

(2.43 a)
n) give

(2.43 b)

; using the odd in z property, and then (2.42 c)

(2.39 v*), (2.43

ok

(2.3 ¢)
1
c) give
sing (2.42 b) yields

(2.4k a)
a) give

(2.kk )




(2.40 @) become

Tl

2 1222/
L 2@

ord
Differentiating &.

33 1 =0
'53 rg

Integrating three

and then (2.42 -¢)

The Case n =
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3

r.t z and using (2.43 b) gives

times, making use of the odd in z property,

(2.39 v7), (2.4h ¢

Differentiating w.

yields
(2.4k ¢)
.
) give
ing (2.42 b) we get
(2.45 a)
) givé
v2 T (2.45 b)

N~ 1

)

) give

g}l

ardz

r.t z and using (2.44 b), we obtain




We shall in fact

Integrating three times and using (2.42 c) yields as before

(2.45 ¢)

confine our attention to the first three

terms. of the asymptotic series but is is convenient to

. . . n
obtaln the stresls coefficients Trz,

The Case n

3

(2.39 v°), (2.45

c) give

from which, using.(2.42 b) we obtain

(2.40 ¢7), (2,&6
.az_g:)?3 =0
. 3z

(2.40 a7), (2.Lk

a), (2.4 a) yield

a) give

2 3 -- @2

332 3
Differentiating w

2 o2 = 1
g3 (1-
Integrating three

(2.h42 ¢) gives

3

vz T % =
6

(1-v

T

rz —;)

13z

3 (vf T)

or

n
T
a2

(2% - 2) 3 (vZT)

or

as far as 5 = 6.

(2.46 a)

(2.46 D)

.r.t 2 and using (2.45 b) we obtain

times, using the odd in 2z property and

(2.46 ¢)
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The Case n = L

(2.39 v*), (2.46 ¢) give

3tt == 1 (23-32) VT
3z Y 6(1-v)
where V¥ = /32 + 1 3 \?
r? r dr

Integrating and using (2.42 b) gives
b 1 (% -az2+1) Wi (2.47 a)

22 2h(1-v)

(2.40 ¢”), (2.47 a), (2.45 a) yield

gigr =__ 1  (3s%-1) v} T (2.47 )
924 6(1-v)

(2.40 a7), (2.45 ¢) give

‘32",1._'-} =_32®3
0r9z .

Differentiating w.r.t z and using (2.46 b) yields
33 ¢ % =0
53 rs .
Integrating three times, using the odd in 2z property and

(2.42 ¢) gives

T4 =0 . ' (2.47 ¢)

The Case n = 5

(2.39 p7), (2.47 c) give
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Integrating and using (2.42 b) gives

T =0
22
(2.4 c¢*), (2.48 a), (2.46 a) yield
2@° o
222

(2.%0 47), (2.46 ¢), give

32

3z ardz 6(1-v)

5 =< 324 - 3 -
3 Tra @ 1 (23 -2)3%

Differentiating w.r.t z and using (2.47 b) yields

33 5% == 1 (322 - 1) 3

3(1=v) or

(2.48 a)

(2.48 b)

Integrating three times, using the odd in 2z property and then

(2.42 ¢) gives

rz 180(1-v)

The Case n = 6

(2.39 b*), (2.48 ¢) give

23

Fr} 180(1-v)

Wherevfls= ﬁ +;B_3
: ar? r or

Integrating and using (2.42 b) gives

T 6 = 1 (28 - 53% + 732 = 3) Vf T

8% i 360(1-v)

(2.40 ¢”*), (2:49 a), (2.&7 a) yield:

5 16 = 1 (325 - 1023 + Tz) VO T

T 9=~ 1 (32°-1023 +72) (V1)

(2.48 ¢)

(2.49 a)
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2 @b = - 1 (15z% - 3022 = 1) v6 T (2.49 b)
2% 360(1-v) '

(2.50-a%), (2fh7 c) give

2 6 = = 252)5
S ez

PG roz
Differentiating w.r.t z and using (2.48 b) yields

33 16 =0
'-3_23 rg

Integrating three times, using the odd in 2z property and then

(2.42 c) gives

6 = .
Ly 0 (2.49 ¢)
. . n n
2.8 The Stress Coefficients t__ , T
] . rr 60

The stress coefficients TrZ, Tez are determined from

(2.39 a), (2.40 a,b), (2.41 a,b) and (2.42 a) and it is convenient

to re-write these equations in the form

n n . n n+l - .
- + - . .
L Trp ;'(Trr Tee) §—-Trz (2.39 a%)
or r ; ¥4
35 TrZ = - V% sz-z + azgﬁ)”'2+ B(n-2) 1 V%T -2 (TPZ-2—T92—2)
3z2 or (1-v) r?
(2.40 a~)
32 Tez =-|v2 TGZ'Z +1 0@ %+ g(n-2) _1 V2T + 2 (TrZ'z-rez'g)
322 - P AP (1-v) r?
(2.40 v”)
n_ _n n n
(1+v) @D T ¥ Tog + Tap + B(n)T (2.41 a)
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v2 @" + 8(n) _1 V2= 32 @m*e (2.41 b”)

J-l Trz (1,2) dz =0 (2.42 a)

In the solution of the above equations we shall refer to
the even in z properties of TPZ » Tee and to the results of the

previous section.

The Case n = 0

Putting n = O and using (2.43 a) (2.4 c), (2.45 b) we obtain the
following system of equations:

L0 4 0 - .0y =
3 T 1 (7 Tee)

~ rr - rr
or r

32 10 =09
332 rr’ :

52 0 =
w00

(2.50 a-f)

Integrating -(2.50 b,c) twice and using the even in 2z property gives

T = fpo (2)s 10 = Fg (7) (2.51 a,b)

where the f0 are functions of the integration.
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Introducing a stress function ¢%(») such that

F£O=14de0, £.0 = @20 (2.52 a,b)
rr ar 60 ﬁ—

3

we see from (2.51 a,b), (2.52 a,b) that (2.50 a) is identically
sa?iéfied. From (2.50 d) we get

(1+) @O = V%.q)o + T
and thus from (2.50 e)

viel+v2r=0 (2.53)
We remark in passing that (2.53) may be identified with the
familiar equation of the two dimensional theory (see, for example,
Boley'and‘Weiner'(l962) p.261).

A particular integral of (2.53) is

oo lyl g

and the general solution is therefore

¢0=Ar2logr+Blogr+C'r2+D—J;{Jr’l’dr}dr

r

where 4, B, C, D are constants. From (2.51), (2.52) therefore

t 0 =4(1+21ogr) +2c+B . -1 J rTdr
rr ' 2 p?

10 =4(3+2logr)+20-B +1 [rlde-T
606 2 ;2

Further assuming the stresses to be finite at the origin 4 = B =0

and 'we may write-
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= %0 - rIdr

1
72

| | (2.54 a, b)
1.0 = k0 +1 Jz’Tdr—T
. I,Z

where k0 = 2¢.
Applying (2.50 f) to (2.54 a) yields k0 and finally

Tt 0 #J rIdr - 1 Jrerr

rr 2
r
| L 0 (2.55 a,b)
TO#Jerz’+lvrerr—T
06 ‘ 72 _
0 ' 0

The Case n = 1

Putting n = 1 and using (2.4h4 a), (2.45 c¢) and (2.46 b) the
relevant equations are: »

1y 1 - -1y =
= Tpr (= Toe) = 0
or

32 T 1 -
'52'. rr

O RIH

32t ! =0 (2.56 a-f)

() @l=1l+ 1

rr 66
v2 @'= 0
.
' J_*l'rr; (1,2)dz =0
Equationé (.2.56) are identical in form to (2.50) with T = 0O

and using (2.54)
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1 - 41 =71
Ty kL, Tag k (2.57 a, b)

Application of (2.56 f) yields k! = 0 and

t1l=7:1=0p (2.58 a, b)

The Case n = 2

Putting n = 2 and using (2.45 a), (2.46 c), (2.47 b) we obtain

3 1.2 +1(c2-12)=__1 (1-322)d (v271)
w T % T dr !
82c2=14dr-_1 V4T

922 rdr (1-v)

32 1 2=g7 - 1 V27T

(l+\))QD2 = Tri + Teg (2.59 a-f)
V@2=_ 1 _ (1-32) vir
. 6(1=v

Integrating (2.59 b,c) and using the even in 2 property we have

52 (1-v) 2Ldr - v27T|+ 2 (r)
2(1-v) [ rar :] g

,_]
i

dr
(2.60 a,b)

o Ty [T ] e

where the f2 are functions of the integration.
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Substituting (2.60) into (2.59 a) gives

R L

Equation (2.61) is identically satisfied if we introduce a

function .¢2(») such that

£2 =__1 _ V% T -1 dr+1ds?
rr 6(1=v) 6r dr » dr
2 2 2,2 (2.62)
s __ 1 V2T-1 Pr+d
fod =gy 1 € @7 o
Hence, from (2.60), (2.62) we obtain
T2 = (1-322) v%'T - (1-v) 1Ldr | + 1 dp?
rr 6(1~v) . ' r dr r dr
(2.63 a,b)
1.2 = (1-3z2) [ v2 7 - (1-v) 4?7 | + dzgz
A = I ar? dr
Equations (2.63), (2.59 d) now give
(1+v) @2 = (1+v) (1-322) V2 T + vZ ¢2
6(1-v)
and using (2.59 e) we get
v? $2 =0 (2.64)

Equation (2.6L4) is identical in form to (2.53) with T = O and
the contribution to the solution is the same form as (2.54) with
T = 0. Thus

2= (1-322) [v2 T - (1-v) 1 dT |+ k?
o) LY r dr

(2.65 a,b)
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Tgo = (1-322) V2T - (1mv) 827 ] + K2
6(1-v) — arZ

where k2 is a constant.

Finally applying (2.59 f) yields k2 = 0 and’

12 =(1-332) [v2 T - (1-v) 1L dr

e o) [ ! ’ ;E]

T2 = (1-322) I:vf T - (1-v) 42T ]
6(1=v) dar?

(2.66 a,b)

If necessary, the procedure could be continued and higher order

stress coefficients found.

2.9 The Primary Stresses

Using equations (2.38), (2.43), (2.4k), (2.45),

(2.55), (2.58)

and (2.66) we obtain the asymptotic representation of the primary

stresses to terms‘in.hzz

r
rrr(raz) = [ rTdr = 1 J rTdr + (l -322) [V T -

1’2 0 l"\))

(1-v) 1 dr

ar| n?+ ...
r dr

1. (r,z) = J rTdr + 1 J rTdr - T + 1 3z }l V2T - (1-v) dzT] K2+ ..
60 —
0 r l-\) )

0 (K2) +

1 (r,3)

0 (h2) +

—
—
3
0
~—
n

(2.67 a-d)
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2.10 The Secondary (Interior) Problems

The seéondary stress syspem y 1s the solution of the
equations (2.34), (2.35), (2.36) and (2.37). 1In view of (2.37)
and (2.67) an asymptotic expansion procedure is clearly necessary.
We -therefdre assume series of Fhe form

Y(r,2; %) = v (r,2) + iyl (r,2) + K2 ¥2 (2,2) + ... (2.68)
and obtain, .as before, a sequénce of differential equations for
the secondary (interior) stress coefficients yn. The field

equations (|r|<l,.|z|<l) are

n=1

n=1 n
d v, +t1l (v _-v.,) +3 v, _=0
57 T 5 T 86 5 I3
n-1 n=-1 .no_ (2.69 a,0)
2 Ypg td Ypz *a Yaz ~ 0
or r 33
v2 yn-2 + _iﬁ :fn-2 -2 (YZ;F - Y};gz) + 92 - YZP =0
re Ar? r? 952
R e ey, G e Ve
r op r? 3z (2.70 a-4a)
v2 Yn-z + 32 A+ 325 =0
1 %2 2 %% 3
n-2 n=2 2 n-=1 > N
Y - =0 Y + 3¢ T + 0 Y =0
1 ra rc 'rz 5733 g2 T2
n n n n
+u)E = A + v .+
(+v)g Ypp ¥ Yoo 7 Vaz
(2.71 a,b)



and the boundary conditions are

n __n 0 R A
YZ’I’(l’z) = TY’P(l’Z)’ 'er(l,Z) T‘Z’Z(l’Z)

n _.n _ (2.72 a-d)
Yrr(r,:,l) = er(r,1 1) =0

With the exception of (2.72 a,b) these equations are identical
to those for the Tn with T = O'and'consequently we may use
equations (2.43), (2.4h), (2.45), (2.54), (2.57), (2.65) with

T =0 and (2.68) to obtain

yfr(rgz) =0 +ncl + K202+ ...

Yee(r,z) =0+t +n20%+ ... (2.73 a-d)
= 2

.yzz(r,z) o(A2) + ...

Y?z(r,z) = 0(42) + ...

where the €9, ¢l, (2 are constants, as yet unknown. In fact

it can be easily shown (Appendix 2), that

no_no_

rr
n _.n _ 0 n = 03132 s e (2-7)4 a"d)
Yoz =~ Ypz ©

We emphasize, however, that in obtaining (2.73), (2.7hk) the
"edge" boundary éonditions (2.72 a,b) have not been used. Indeed,
inspection of (2.73 a) and (2.67 a) shows that it is not possible
to satisfy these edge conditions, however the (" are chosen and

we conclude therefore that if (2.68) represents the solution
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they do so in some region away from the edge, in the interior
of the disc. Near to the edge, in the boundary layer, there
must be a rapid variation from the interior solution in order
that the precise edge boundary conditions may be satisfied.

2.11 The Secondary(Boundary Layer)Problems

To obtain asymptotic expansions which uniformly represent
the solution up to and including the edge we follow a similar
procedure as that used by Reiss and Locke (1961) and
introduce a boundary layer coordinate £, defined by

=(l—_p)» .
noo | (2.75)

Introducing also, the symbol p(&,23h) to represent the stresses

in the boundary layer, we obtain from (2.34), (2.35) and (2.36),

%E-prr - gz-prz - ht L%E-prr - %E-prz %'(prr - pee)] =0

(2.76 a,b)
9. p, -9 p -mFLp tlp,-3.p ’
3E rz 5% 23 3E rz £ "2

272 AV2A - -
+.h%'g [ Py ¥ g A .2 (P, = Pgg)

e[ find oot
™ %) ] 20

+ B2 g2 [L2 Dgg * 1234 +2 p
£oE  £2

L2 + 32N - k& L2 + 32A | +)12 + 327
pI’I‘ pI’I’ pI’I’
0 Er 0 3g2 , 8g?
] - O

Pop ~ pee
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L2 p__ + 32A - K L2 p _ +03200+) L2 p  + 32
0TEE L wT 0782 g2 S T2

+ h2 g2 [ L% p,, + 324 :l =0 (2.77 a=a)

L2p -3%A - ht L2p =328 {+) L?2p +32p
0°r2 355z 0712 o5z T2 ez

(2.78 a,b)

&
N
>
]
5
aat
A
]
ON
>
]
r"tﬁ
b'
N
>
| I |
+
P
N
a2}
N
| Ja—— |
b.

N
>
_
i}

(@]

I2 =32 +135 + 32 and L(2)=§3 + 932
2 £ 3E  9z2 3g2  3z2

Equations (2.37) become

prr(oaz) = - Ti’r(laz)’ prz(o,z) = - TI’ (1,2)
(2.79 a-d)

Py x1) =p (g, 1) =0

44

We proceed, as in previous sections, by assuming asymptotic

" expansions of the form

p(g, 25 1) = pYg, 2) + mpl(e,z) + A2 p2? (g, 2) + ...
(2.80)



-T2 =

Introducing (2.80) into (2.76), (2.77), (2.78) and (2.79)

and equating coefficients of like powers of %, we obtain

n .. n-: [ n-1 .. n-1 n-1 n-1
3_p,,-3 p,=¢tla_p, =3 p ~+1l(p ~-p .)]
9t rr 33 rz Y3 rr Y rz E rr Y
(= 1 P n-1 n-1
3. p =3 p,_ =¢&|d p ~+lp T -3 p (2.81 a,b)
T i | 3g rz g T3 s 23
L2 pn + 32An = £ 6 pn—l + »azAn 1 +)12 n-1 + 32An_l
0 “pp 9L rr 222 p 57
- 2|72 12 o M2 _ n-2  _n-2
g [L P, * %ET A igz (prrv 50 )J

=2 - -2 -
Sl AT e ]
g 93¢ €
2 - - - -
Lop? o+ = [{Lg p’;gl + 324" l}+{L2 I l}]
52 922 382 42 9z
2 n-2 a2 n=-2
2 [ Py +vg_zg ] (2.82 a-d)
. -1 n=1 B n=1 n-1
L2 p*' =324 = ¢ [{LZ T - 324 }+{L2 ps 2" }]
R 0" Yo T2 Ttz
n=2 _ n=2 _ 2, n=2
- F’Z [LZ p - l p 3 ]
rs z2 rz 3207
(1+0)a™ = plt  + p’ge tp (2.83 a,b)
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. N R ¢ _ n R :
P (0,8) = - T (1, 2), D (O, z) = - T (1, 2)

" (2.84 a-d)

pZZ

(€, +1) =p, (¢, £1) = 0.

Once again we define pn = 0 if n < 0 and the above equations
hold  for all‘inteéral n.
The sequence of differential equations is valid in the
iimit space 0 <g <o, |z] < 1, and.to complete the formulation
of the boundary layer problems, we require boundary conditions
as § > », These we obtain by matching the boundary layer and
interior expansions. By virtue of (2.75) any fixed neighbourhood
of the edge in the limit £ r, 2 space corresponds to £ = » in

the limit £, 2 space. Consequently we have from (2.68), (2.7h)

and (2.80)
er (w, 2) = pge (o, 2) = ("
(2.85 a=d)
p:z (oo,‘ _z).: pzz (90, z) =0

2.12 The Zeroth Order Secondary Stress Coefficients

Putting n = 0 in (2.81), (2.82), and (2.83) we obtain

L2 pl + 3200 =0 (2.86)



FT)—I»"

2 0 =
Lj Pog 0
Lz pd + 320 =0
23 __2-32
LZ p =32 =0

P2 Sz

#0) A0=p 0 40 4,0
(1+v) & prr pee pzz
2 40 =
LO A 0
The  boundary conditions from (2.84), (2.67) are

0 = 0 =
20 (0, 2) Py (0, 3) =0

0 — (2787)
P, (£, +1) = P, (8, £1) =0
and the conditions at infinity from (2.85) are .
0 =5 0 = (0
p.) (v, 2) =p Y (v, 3) =¢C
it " (2.88)
Prz (=, 2) = Prz (=, 2) =0

It is convenient to introduce new stress coefficients 50(g,z)

defined by
. 0 = 0 o 0 0 = 0 - 0
Srr prr s See pee ¢
0 0 0 0 (2.89)
Szz,_ Poy » Srz T T Pyy



-5 =

3_ 5,0 +3 8% =0
3E 28
Lz s 0 4+ 3200 =0
R
2 60 =
L3 S0, 0
L350 +3200 =0
22 _—2-32
L2509 +3200 =90
9£03
0 = a0 0, 60
(1+v)Q . Sm + 39_9 +5,;
2% =o0

The boundary conditions (2.87) may be written

0 o = 0 0 -
Srr (0,2) cY, Srz (0,2) =0

0 = 0 -
Sy (B £1) =0 8 (g, £1) =0

and the conditions at infinity (2.88)

The immediate difficulty is now apparent from (2.91 a).

(2.90)

(2,91 a=d)

(2792 e)

The

constant €0 is unknown and therefore it is not possible to

solve equations (2.90), (2,91) for the boundary layer stress

coefficients S0, We surmount this problem by proceeding as

Friedrichs and Dressler (1961) and prove the following result:

C Rl .
' J‘ 50 (o, ) dz=0
,

(2.92)



Proof,
We -assume in accordance with (2f9l e) that
Srg (£,2) ~ O uniformly as € » =,
That is, for any given € > O, no matter how small there
exists §(e), depending only on-e and not on z such that
5.0 (g, 2) | <e | (2.93)
whenever £ 2 ¢.
Now consider the region under investigation (fig v),
£ 20, |z|<l. Let ABCD denote the region bounded by the
lines z = +1, £ =0 and £ = 6.
Assuming that Srg, Srg are continuous and have continuous
first derivatives, we may apply Green's theorem of the plane
(see for example Courant (1957) p. 360) to the region ABCD

to get

3 S0 45 So>d£dz
- - r3

5 0ds -5 0 gt =” rr
JABCD rr rz ABcp \ 28 9z

By the first equation of (2.90) the R.H.S. is zero and thus
Y .
- |- 0 - 0 - |- 0
[ s i [ 50 e - [ 5,0 v

1
+ J 5 9 (0, 2)dz =0
Jy Trr



+1 ¢t

-7 -

fi
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and using (2.91 4)

1 -1
0 = 0
J 5,0(8,5)dz J 5,0 (0,5)ds.
-1 1
Hence
1 1
J S 0 (0,2)dz | = J S 9(s,2)dz
1 - rr .
< 2e by (2.93) | RSN

and result. (2.92) follows immediately.
Application of (2.92) to (2.91 a) yields €% = 0 and
inspection of equations (2.74), (2.90), (2.91) and (2.89) gives

w0202y 0 =
Yo = Yog = Yoz = Ypu = O

62 zi ri (2.94)
Pyp = Pgg T Pay ™ Ppy 0

and the zeroth order secondary stress coefficients are known.
We observe that no contribution to the complete stress solution

is made.

2.13 The First Order Secondary Stress Coefficients

The equations for the first order secondary stress

coefficients are in fact identical in form to those of the

zeroth order and thus by the same analysis

Il vl lcolcz
Ypp = Ygg = Yaz = Ypz = O

r

’1’ 92, zj r"j (2.95)
Pyp = Pog = Pyy = Ppy =
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and once again no contribution to the complete solution is

made.

2.14 The Second Order Secondary Stress Coefficients

Putting n = 2 in (2.81), (2.82), (2.83) and making use

of (2.94), (2.95) we obtain

3 p2=-3p?2 =0
YA
' 2 _ 2 -
-g—gprz g—z’pzz 0
L2 p 2 +3202 =0 (2.96)
e
2 2 =
L0 pee 0
2 p ; +93202 =0
2 337
L3 p,> - 3202 =0
Y2 Stoz
(1+v)a2? = pr12= + pe% + ng
2 42 -
L3 A =0

The "edge" and "face" boundary conditions from (2.84), (2.67)

are

p.2 (0,2) = (322 - 1) [v2 7T - (1-v) 1dT
re 0 6?l-v) [1 vr%]
r=1
p,2 (0,2) = 0 - (2.97)

2 = 2 =
P, (8:#1) =p 2 (g,41) = 0
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and the conditions at infinity from (2.85) are

2 (o = 2 (o = (02
Ppp (=5 ) = pgg (=52) =€

(2.98)

n
(@]

2 (w = 2 (o
P, (v 2) =p 2 (=,z2)

As in Section 2.12 it is convenient to introduce stress
coefficients S2(£,z) defined by

2 = 2 _ 2~ 2 = 2 _ 2
Spp = Py = €% 545 = Pgg ~ €

) ) ) ) (2.99)
Szz P Srz =T Ppy
Substituting (2.99) into (2.96) we obtain
3_52+3 52=0
3 3z T2
3 82+3 §,2=0
9L ra 02
L2 52+ 3202 =0
rr 7
9¢
2 a2 -
L0 See 0]
L2 5.2 + 3292 =0 (2.100)
o FEE
L2 S  +2322 =0
0833
2 -a 2 2 2
(1+v) @ Srr * See * Szz
L2 g2 =0

The boundary conditions (2.97) may be written
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5.2 (0,z2) = (3s2-1) [v2 T - (1=v) 1 dT ] -2
rr 1 ;%

6(1=-v)"
. . r=
Sré (0,2) =0 (2.101 a-d)
5.2 _(s,il_)' = Srg (g,41) = 0
and the conditions at infinity (2.98)
52 (=,3) =0 (2.101 e)

The difficulty arising from the appearance in (2.101 a) of the
unknown constant (2 is once again cgvercome by proceeding as in

Section 2.12 ‘and proving
1
‘ J i sri (0,2)dz = 0 (2.102)

Application of (2.102) to (2.101 a) yields €2 = 0 and hence

from (2.7h4)
2 202 22242 =
Yop = Yoo T Yzz T Ypg 0 (2.103)

We introduce now a stress function (£,z), the solution of the
following boundary value problem:
Lg‘w =0 £>0, |z|<1

giy (0,2) = 3 (322-1), 22y (0,2) = 0O
03~ 983z .

gfg (£,41) = 32y (g,+1) =0 (2.104 a-f)
Y3 ‘ 3E0z
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0

P(,2).

where Lg = 9% + 2 ot + ot
Pl 3E%3z% 9zt

We shall refer to (2.104) as the auxiliary problem, the required
solution to which is given in Appendix 3.

If we now write

2 = i 2 . | 2
p. 2 (g,2) =_1 ve T -(1-v) 1 dT 9
rr 30 | rdr |, e
p2lea) =_y _ [¥r-(a-v)1dr]| 2y
“3(1-v) L rdr | _,
X , _ , (2.105)
p - (g2) =__ 1 vZ T =-(1-v) 1 dT 9
22 ) [ 1 rd | E‘Jzi
p.2 (g,2) = __ 1 'v% T =(1-v) 1 dT ] 32y
e 3(1-v) rdr | 30z

equations (2.96), (2.97) and (2.98) are all satisfied and the
second order secondary stress coefficients are known. These
coefficients are the first non-zero contributions to the
complete solutipn, and:the secondary stress system to terms in

h? may be written

Ppp (L2 52) = B2 [V% T =(1-v) -1-91':"1_-‘ [8211: ] + ...

' h 3(1-v) r dr L=y U557
Dy (1orsz) = _K2v [vz T -(1-v) ;g'l [Lg w:l ...
2 3(1=v) rdr | _, g=1-p

h
(2.106)
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p, (11 ,2) = _K [Vz T -(1-v) _‘l-_éT_] Es ] e
3(1-v) rdr | _, L3¢ £=l-r
Z
et oy [0 ] I
© 3 v r =1 L E 2 g:l;r
z

© 2.15 The Complete Solution

Superposing the primary and secondary stress systems we
obtain the complete solution to the problem of the disc in
the'form of an asymptotic power series in A, the thickness/
diameter ratio  Symbolically

a(ryz) = t(r,z) +p (1-r,2) (2.107)
h

where f, p are given by (2.67) and (2.106) respectively.
Comparison of (2.107) with the two dimensional treatment,
given for example in Timoshenko and Goodier (1951) p.L06,
shows that the two dimensionél solution plays the not
unexpected role of the zeroth order term in the series solution.
Consequently we may conclude, that for sufficiently small 4
the two dimensional theory will give accurate resulﬁs.
It is also clear that the nature of the complete solution
is such that the higher order terms provide three dimensional
corrections to the two dimensional theory. Indeed, these

correction tefms are of order #2 and thus the two dimensional
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theory is actually more accurate than would normally be
anticipated.

Furthermore, it is of interest to observe that even
including the correction terms, the solution is plane stress
excepﬁ in the boundary layer, the analysis thus providing

additional justification to the St. Venant. Principle.
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CHAPTER III

Example and Discussion-

3.1 Preliminary Remarks

When the small parameter h is fixed, it is of interest
FQ use the asymptopic solution as an approximation to the
tfue soluﬁion to #he problem of Fhe disc. In this chapter
we discuss the.approximate solution in relation to the specific
case T(r) = 5.  The choice of temperature field is motivated
by the fact that it has quite severe gradients (figure vi’),
yethbs sufficiently simple form to permit analytic discussion.
We further choose 2 = 0.05, v = 0.3 as being fairly typical
values. |

3.2 'The Approximate Solution for T(»r) = »®

Putting T(r) = »® in (2.67), (2.107) we obtain for the

primary and secondary solutions respectively,

T=1(1-125 + (l - 332) (5+v) r* K2 =»
rr
8 (1 - v).
Toe =1 (1-17r% + (1 - 33 ) (1 + 5v) r* K2 +
8 (1 - v)
(3.1 a-d)
T = ohz +
23,
= Oh? +

T
ra
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[.00F

0.80t

o 0.50 lLoo

Figure (vi)
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2(5 + v) K2

Py = 32y +
r T(1=v) 332

Pgg = 2v(5 + v) h? L% VR S

(1-v).
=2 K2 32 - (3.2 a=d
Py (ﬁi_:)v) EEBLD’ + | (3.2 a=d)
p,, =2(5+v) B 3% +...

(1-v) 39z

In order to assess the accuracy of the (épproximate) series
solution, obtained by superposing (3.1) and {(3.2), we adopt the
following approach. We do not attempt to obtain, for the
purpoée of comparison, the exact three dimensional solution of
the case under coﬁsideration as this 1s likely to present great
difficulties. Instead, we determine, with considerably more
ease, the exact primary solu@ion. Such a solution, by virtue
of the Sainﬁ Venant Principle errs from the Ffue soluﬁion only
in the vieinity of the edge of the disc, and consequently
comparison with the approximate primary solution (3.1) should
‘yield a useful estimate of the degree of accuracy of the series

solution.

3.3 The Exact Primary Solution for T(r) = r®

Using the results and the relevant equations of section
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2.7 it is seen that for the case T = 75, the series
representations for 1, T. terminate at n = 6, n =5
bty 22’ rz . ! ’

respectively, giving exact solutions

A S 4 o~ 5,2 224 4 20(s6 - b 2 _ 2)%6
Ty 5(l-v)'[ 120(z* = 2z + 1)rht + 32(2° = 52% + Tz% - 3)h ]
(3.3)
T o= 1 [120(33 = z)r3K3 = 32(325 - 1033 + Tz)rhs]
rz .
- 5(1-v) d
(3.4)

We now proceed to systematically analyse equations (2.30), (2.31),

(2.32) and (2.33) to obtain the primary stresses T Tog®

Putting T = r® and substituting (3.3) into (2.31 ¢) gives

32@=- 1 |180r%h? - 480(322 - 1)r?AK* + 32(15z% - 3022 - 1)h6}
322 5(1=v)
(3.5)
and (3.4), (2.31 d) yield
P2@H=-__ 1 [72Ozr3h2 - 960(z3 - z)rh‘*] (3.6)
droz . 5(1=v) & :
Inﬁegratingl(3.6) we obtain
@=-_1 9022r"*h2 - 120(z"% - 222)p2K* + F(r) + G(2)
SZl-vi
(3.7)

where F, G are functions of the integration.
Substituting (3.7) into (3.5) now gives

d2¢ = 32(15z% - 3022 - 1) hS.



Integrating twice we get
G(z) = 16(z5 - 53% - 22) + Az + B
where A, B are constants.

We recall that TPP, T and hence QD are even in 2 and

06
?hus A = 0. Further Fhe cqnspanﬁ B may be considered as
part of F(r) and consequently |

G(z) = 16(2% - 53" - 32) (3.8)
Equations~(3.8), (3.7) now give

@=. 1 [9022r9h2_- 120(z% - 222)r2n" + 16(2% - 53% - 22)A® + F(ﬁ)]

5(1-v)
(3.9)
Using '(3,-9), (2.32 b) we obtain
VEF + 480 #2 12 - 32 A% = 0
from which
F(r) = - 300%%2 + 8r2K* + C + D log .
Assuming (@) to be finite at the origin, D = O and’
F(r) = - 30r*h2 + 8r2h* + C
giving from (3.9)
@=-_1 [30(3.22 - 1)r%h2 - 8(15z% - 3022 - 1) r2n*
- 5(1=v)
+ 16(z% = 53" - 22)nb + ¢ :l (3.10)

From equations' (3.4), (2.30 a)
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Tt +1l (rrr - Tee) + 1 r[lQO(3z2-l)r3h2-32(153”-3Oz2+7)rh”] =0
r 5(1-v)

which equation is identically satisfied if we introduce a stress

function ¢(r,z) such that

T =193p-_ 1 [30(3z2-1)r”h2 - 16(15z“-30z2+7)r2h“]
P Y er 5(1-v)
, (3.11 a,b)
Too0= 32¢ - 1 [30(3z2—1)r”h2 - 16(15z”-3032+7)r2h”]
oo T 5(1-v)

Equations (3.11), (2.31la) give

13 [h? v2¢ +32% |=-_1 I120(3zz-l)r2h”+h8(252“-5022+9)h6]
Nel
r or 0z 5(1-v)

(3.12 a)

and’ (3.11), (2.31 b) give

.932 [h2v§¢.+ aZQ] =- 1 [360(322-1)rzh”+h8(25z”-50z2+9)h6]

o7 027 5(1-v)
| (3.12 v)

Integrating (3.12 b) twice and using (3.12 a) yields

h2v2¢. + gig =- 1 [30(3z2-1)r”h4+2h(253”-5032+9)r2h6+ﬂ(z)]

oz 5(1-v)
(3.13)

where H is a function of integration.
Equatiens (2.32 a), (3.11), (3ﬂ3) give
V§¢‘=1__j;__[5(l—v)r6-30(l-v)(322-l)r”h2+8{15(2—v)z“-30(2-v)22

5(1-v)
+(1h+v)}r2h”416f(3+v)z5—5(3+v)z”+(13-v)z2—6}h6+(1+v)c]

(3.1k)
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Combining this equation with (3.13) we obtain

32¢ = 1 [5(1-v)r6h2—30(3z2-1)(2—v)r4h2
3z¢  5(1-v)

-8{15(3+v)2"4=30(3+v)22+(13-v) }r2Kb+L(z )]

where L(z) is an unknown function of z.
Integrating twice and observing that ¢ must be even in 2

we. obtailn

¢ = 1 | 5(1=v) r® 22 n2 - 15 (2-v)(z%-222)r2n"
5(1=v) 2 2

“U{ (3+0) 26-5(3+v) 24 +(13-v) 22 2h6+4(z) 4y () |
where M, ¢ are arbitrary functions (3'15)

From (3.1L)

d (v§¢) = - 1 [30(1-v)r5-120(1-v)(332-1)r3h2
Ar 5(1-v)

+16{15(2-v)z”—30(2-v)z2+(1h+v)}rzh“]

and this equation together with (3.15) gives

d (Viw) = = 30(1-v)r° - i20(l-v)r3h2-16(h+v)ph“

from which we obtain

5 (1=v)r® = 5 (1-v)rPh2 = 1 (1k+v)r"n* + 1 Dr? + E
6l 6 2 2

(3.16)

(r) = -

where D, E are constants of integration and where we have
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rejected any logarithmic.terms due to our assumption of finite

stresses.

Equations (3.11), (3.16), (3.15) now yield

T =1 [ = 5 (1=v)r® = 5(5+v)(322=1)r"n?
T 51) 8 |

+H30(6+)2". = 60(6+v)z2 +( 8lh-2v) Jr2nt

=8{(3+v)g® = 5(3+v)z* +(13-v)22}#6 + D ]

(3.17 a)
and from .(2'f 30 a), :(3'f'h)'
Tee =1 ._.3_5- (1"\))'1:6 - 5(l+5\))(3z2 _ l)_puhz
2 5(1=v) 8

- #{30(2+3v)z" = 60(2+3v)22. +(28-6v) }r2h"

~B{(3+v)28 = 5(3+v)z" +(13-v)22}1%6 + D ]

(3.17 1)
Applying,(2g333a) ?o'(SflTva) gives’
D=5 (1-v) + 16v B* =8 (37-25v)AE
8 21 -

and henCe'fromf(3ng)

T (pyz) =1 |5 (1mw) (1=6) = B2{5(5+v)(322-1)r"}

rr - | &7

- 5(1=v) 8 :

' 4h5{[30(6+v)z”—60(6+V)z2+(8h-2v)]r2+16v}

-8h5f(3+v)z5—563+v)z”+(13-v)zZA*';_*(37-259)}]
21

(3.18)
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Toplrsz) = __1 [2 (1=v) (1=T2%) = H2{5(1+5v)(322-1)r"}

5(1-v) | 8
+14{[30(243v)z" = 60(2+3v)22. +(28-6v) [r2+16v}

=818 {(3+v)2b = 5(3+v)z" +(13-v)a? - 1 -(:37-25\)')}]
21 -

| (3.19)
Equaﬁions-(3fl8),:(3.19)3f(3w3),'(3;h)vconstitute the exact

primery solution for the case T(r) = .

3.4 Comparison of the'Exacﬁ‘and'ApprOXimate‘Primary Solutions
The exact and'approxima@e primary solutions have been
calculated from-(353),f(3.ﬁ),~(3.18),’(3.l9) and (3.1) with
v=0.3and & = 0.057 The results, correct to five decimal
places are exhibited in Tables XII to XV. (Appendix k4)
Inspection of these results.shows thaﬁ for the stresses
Ty feé,.fzéAthere is an overall agreement of the exact and
approximape’solupiqns to three decimal places and indeed the
.accuracy is .much greatef at many points of the dise. The
spress fré Foo is.accurate tq three decimal places except in
the]edge layef>where the last decimal place is subject to an
‘error of + 2.. That the series solution for frz is slightly

less accurate than for the other stresses is to be expected as

the ‘error term is of order #3 as opposed to K.



In accordance with the remarks made in . section 3.2, we
shall assume that if the series solution is calculated correct
to three decimal places the difference from the true solution

will be negligible to this degree of -accuracy.

The calculapions relevant,§q ?he}comparison of the two and
@hree.dimensional soluﬁiqns have been executed and the results
. displayed. in Tables XVI to XXI (Appendix k). We further
.remark Fhaﬁ ﬁhe‘error,of_l%'in Fhe.auxiliary splu#ion, referred,
ﬁo in Appendix 3 is of no consequence, the actual errors being
.sufficien?ly'small?' The three dimensional correction terms of
any imporﬁance:areAnop unexpectedly‘confined to the region in
which ?heﬁ?emperature gradients ‘are the‘greatest. In the case
of the shear stress crz,_ﬁhe-borrecpion term is uniformly small
and.therefOre.Fhis stress may be.considered unimportant. The
. direct stress.czzlis also small‘wi?h the exception of a rather
sharp increaée in magniﬁude at the .edge, particularly in the
.neigthurhqod_of thé'poin@ r = lfO; 2z = 0.0, Consideration of
'phe'radiai'stress - and the hoop stréss oée shows that the

two. and three dimensional solutions differ most on the planes

2z = 1.0 and 2 = 0.0, particularly in the .neighbourhood of the
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edge_@f Phe bqundary layer, and-exhibi? close.agreement.near

to the plane z = 0.6. It is fur?her‘intérésting to observe
that in the case of the radial stress the two diménsional
solupion.overestimaﬁes the stress on z = l.O.buﬁ underestimates
it on Z = 0.0, whereas in the case of the hoop stress the
.reverse effecﬁ is-?ruef. The fac? Fhap Fhe effect is reversed
is-nq dqubﬁ due ?q the qu sﬁresses having opposite sign in
the'region:under consideratiqn, the radial stress being tensile'
and the hoop stress compressive.

To say'generally whe?her or not the correctiqn,ﬁermS'are
importan? is not possible as n0'cri§erion on which such a
decision can be made, has been givenf However, it should be
poinﬁed out that particularly in the case.§f the radial stress,
the relative increases or decreases are considerable. For
example a@ the point r =0.9, 3 = 1.0 the two dimensional
soluﬁion.overestimates the stress by as much as Th%.
Admip?edly such a figure is-exaggeraﬁed by the fact that at
this pqinﬁ the radial stress is qui?e small., - Nevertheless,
the fact is worthy of mention.

A-graphical illustration relevant to the above observations

on the radial -stress is given.in Figure (vii).
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G
0.100T
0.050 7
3], Z:=0.00
2D
3D,Z= 1.00
o 0.50 1.oo

Figure.(vii)
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CONCLUSION

A method for the determinaﬁibn, wiPhin the full three
dimensional theory, of Fhe thermal stress in a tﬁin circular
disc subjécﬁ to purely radial heat flow, has been given.

For sufficiently phin plates it is verified that a
solution based on two dimensional theory will give accurate
results, and furthermore if second order three dimensional
correction terms are included, the soluﬁiqn is still plane
stress except in Phe boundary layer.

The method has been applied, in a specific example, to
compare the two and three dimensional Fheories. The accuracy
of the series solution has been considered and numerical

results produced.
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APPENDIX I

On the Assumption of Plane Stress

A widely used procedure in attémpting to find a solution
of the three dimensional thermoelastic équations, is the
seni-inverse method, in which parﬁ of the solution is assumed
and the remainder found so as to satisfy all the required
equations. The uniqueness aspect of the formulation, referred
to in section 1.4 then ensures that the solution so obtained is
the correct one.

Referring now to section 2.4 and equations (2.22) we note
thatAozz?.orz are zero on the faces of the disc-and it is
therefore reasonable.to assume that as the thickness of the disc
is small,‘the stresses Gzz’.arz gre‘zero everywhere. Such a
state of stress in which the stress vector has no component in
a particular direction, in this case the 2z direction, is referred
po as a stéﬁe of plane stress.

The equations,'from which the remaining stress components
~are to be calculated are, from (2.25), (2.26), (2.27) and (2.28)
in non-dimensional terms,

3 o +1 (Orr - 096) =0 ‘ (A1.1)

@
s
]
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W2 v2 o, #1085+ 1 V2T7+2 (0 -0 )]+92 o =0
i 1 68 r oz (1-v): 1 P2 rr 66 352 68
' (A1.2 a-4d)
h2 1 V27 }+952x =0
| (1-v) 927,
3%2% =0
3roz
+ = + +
(1+v)z yp 066 T
(A1.3 a,b)
h2 .v% I+ 1 ,vi T |+.93%2x =0
(1-v) 3g2
om(l,z) =0 (A1.4)
Integrating (Al.2 4) gives
£ = flr) + glz). (A1.5)
where f,g are arbitrary functions of the integration.
Substitution into (Al1.2 c¢) leads to
d2g =- B2 V2T =K (A1.6)
_gdz (1-v) !

where K 1s a constant.
Equation (Al.6) imposes a restriction on the possible
temperature field for which a rigorous plane stress solution

can be found. In fact we have

T + - (1-v)X
HZ

2"
ol L
SIS
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from which we obtain

T =-(1-v) Kr° + A log r + B
I3 ‘

where A,B are constants of integration.
If we write T(1) = 1, that is taking the edge temperature
as reference, and assume T to be finite at the origin we get

A=0, B=1+(1-v)K .

Lr?
Consequently’
T =1+ (1-v)X (1-r?) (AL.7)
172

is the most general permissible’ form of T..
Returning now to (AL.6) we have .

-:a_2g=z<

dz*.
from which We'qb§ain.

g = 3Kz’ +Cz * D
where C,D are chspanps of inﬁegraﬁion. The‘Stresses'oPr,
Y98 are even in z and thus from (Al.3 a) so must be I and
hence g. Thus € = O and we may consider D as part of f(r) so
thaﬁ

glz) = 3 Kz?.
From (Al.5) we get’

5= flr) + 3 ka2 (A1.8)
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Using (Al.3 b), (Al.7), (A1.8) we obtain

2oy
r dr

from which
flr) =F logr + G (A1.9)
where F, G are constants of inpegra?ion.
From (A1.8), (Al1.9) and assuming finite stress at the
origin, we obtain
=G+ 3 Kz (A1.10)
EquatiOn (Al.l)'is.idenﬁicallY‘satisfied if we introduce

a stress function ¢(r,z) such that

o =13¢,0,, =23% (A1.11 a,b)
™oy 88 or?

Using equatiéns (AlwT), (A1.10), (Al.11) equations (Al.2 a,b)

may be written

13 [m2vig+22% |=K
r 3r 93
(A1.12 a,b)
32 [h?2 V2 g + 22 =K
ar? EE
Integrating (A1.12 b) twice and using (Al.12 a) yields
h2 92 ¢ +32¢ = 3 Kr? + H(z). (A1.13)
1 377

‘where H(z).is a function of the integration.
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Equations (A1.11), (A1.3a), (A1.7), (A1.10) give

(1+9){G + % k82 =v2 ¢ + 1 + (1=v)K (1-12) (A1.14)
! L2

and (Al1.13) becomes

3%¢ =1 (1+v)Kr? + L(z)
FEEAT

where L is an arbitrary function of z.

Integrating twice and observing that ¢ must be even in

2 we get
¢ =1 (L+v)Kr? 22 + M(z) + x(r) (A1.15)
;-

where M, x are arbitrary.functionms.
It follows from (Al.11), that

0, = 1 (1+v)ka? + 1 'dyx
L r dr

o:. =1 (1+v)Kz2 + 42
1 @t

The function x may be determined by differentiating (A1l.1L)
w.r.t. r and using (A1.15) to.get
d (V%JX) = (1=v)Kr
dr T on?
Thence .we. obtain.

x(r) ='éi*v)Kr“ +N.r>+P (A1.17)
iz .

where N,P are constants and where we have .rejected any
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logarithmic terms due to the assumption of finite stresses.
(A1.16), (A1.17) now give

0, =1 (1+v)Kz2 + (1-v)kr? + 2N
L 16A2

- —) - 2
Sg % (1+v)Kz% + 3%}2\)2]@ + 2N

It is clear from the form of (Al.18a) that the boundary

(A1.18 a,b)

condition (Al.4) can only be strictly satisfied when K=0
corresponding to the ﬁrivial case of uniform temperature and
Zero s?ress. However, we may apply the Principle of Saint
Venant'and require instead of (A1.4),
1 ) ;
' J-Arn’ (1,2).dz =0 (A1.19)
1
The'Symbql T, raﬁherlthan 0 has been used in order to be
consistent wiph the no#ation of SecFion (2.5).

Application of (Al.19) to (Al.18a) yields N and we obtain

finally'
1 (p,2) = (L+v) K(322-1) = (1=v)K (1-r?)
rr 12 1672
. (A1.20 a,b)
Too(rs2) = (1) K(32%-1) = (1=v)K (1-3r2)
_ 12 16

The constant XK is of course known from (Al.T).

Equations (Al.7), (A1.20) give the solution to the problem,
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the expressions being valid everywhere except in the vicinity
of the edge of the disc.

It appears from the above analysis Fhat the plane stress
assumption may be judged inadequape on two counps:

(i) as a consequence of the assumption, the temperature
distribution, for which a rigorous solupion is possible
is restricted to the form given by (A1.7), and

(1i) because the exacp bqundary cqndiﬁions cannot be satisfied
for a nqn-?rivial case, the St. Venant Principle has to
be invoked, and as a.resulp; the'nature of the stresses
in the'immediaﬁe.neighbourhodd of the edge of the disc

remains unknown.
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APPENDIX II

V=P 22t =0 n=o0,1,2, ... (A2.1)
28 . rs . a—z-z- _

Proof:

The proof is by induction. = We make the inductive

assumption that

: s +1 - n+l +1
FEo= = 520" =,Yn 1o v ;‘=132Fn Yoo (a2.2)
SR A S

Using equations (2.69v), (2.70c,d), .(2.72c,d) and (A2.2) we

obtain
1+
'Lé_ nZQ._ 0
Bz . 2%
+ +
202 o o 2,12 (A2.3a,b,c)
922 32
p2y/t2 o L papitl
Fra 0raz
nt2 - n+2,
Yzz,(r5i;) = Y (r,41)= 0 (A2.4a,b)

From (A2.3a), (A2.ha) we get

n+2. _ .
'Yzz. =0 (A2-5a)

and using this result in (A2.3b) gives

3202 2 ¢ (A2.5b)
322

Differentiating (A2.3c) w.r.t 2z and using (A2.2)
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,.82 n+2 - =
. .

0
3z

Integrating-ﬁhree'pimes, using ﬁhe.odd in z property and
(A.24D) we get

Voe =0 (12.5¢)
The induc?ive assumppion is known FQ be valid for n = 0, 1
(see 2.73) and the proof follows by induction with reference to
(A2.2), (A2.5).

Theorem 2

n-o_.n- -
-Ym = 'Yee = Crz n = 0,1,2,_ cee (A2'6)
Proof:
The proof is by induction. We made the inductive

assumption that

no_ n-_ n ntl. _ ntl _ i+l
Yoy = Yog = ", Yoy = Yoq- c* (A2.7)
Using equations .(2.69a), .(2.70a,b), (2.71), (A2.1) and (A2.T)

we obtailn

"32-Yn+2'+f,= 0 (A2.8a-e)

n+2 . _ nt2 n+2
Yrr 7 Yoo

-~
=
-+
<
—
=
1
-+
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Integrating (A2.8b,c) twice and using the even in z property

yields
n+t2 _ nt+2. ' n+2 _ n+2.
yreo (r), Yoo = Yoo (.p)k (A2.9a,b)

From (A2.9), (A2.8a) we may write

YZ;zf = ;'éf,‘YZ;?E:dZ{ | (A2.10a,b)

.+
for some function ¢ (»).

Equations (A2.10), (A2.8d,e) yield

the general solution to which is
+ . A :
¢: = Ar? log r + B logr + Dr? + E (A2.11)
where 4, B, D, E are constants.
Using (A2.11), (A2.10) and éssuming finite stress
nt2._ .. - nt2 . )
Yy = 2D = Cﬁ. say

+ A +
n+2. _ op = Cn.?'Say

(A2.12a,b)
Yoo

The inductive assumption is known. to be valid for n = 0, 1 -

(see'2a73) and'the“proof follows. by -induction with reference to

(A2.7), (a2.12).
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APPENDIX III

The Auxiliary Problem

The solution'of the auxiliary problem can be readily
obtained using the me?hod and numerical results of Gaydon and
Shepherd (196k4).

Assume a_pen@aﬁive sqlu@ion of the form

W(E,2) = e** 2(z5) (A3.1)

the substituting into (2.10Lka,d,e) gives

Z*V 4 ou2 gzt ¥ ¥ =0
| S (A3.2)
Z2(+1) =2t (+1) = 0.
A particular solution of (A3.2), even in z is
Z(z;u)»=.(cos 2u=1) cos uz = 2pz sin uz (A3.3)
where
2u + sin 2y = O. - (A3.4)

With the exception of ﬁ = 0, the roots of (A3.4) are all complex
and, in view of (2.1th) we take only those With a negative
real par@. These ¢ccur in cqnjugape pairs

b =-a +ib i =-aq -ib k=12, .. (43.5)
where s bk are real pqsitive quantities and i = /1. The
first ten values of ﬁk are given in Table I.

As the equation (2.10ka) is linear we may superpose
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solutions and consequently obtain from (A3.1), (A3.5) and
(A3.3) a general solution of the form
W(E,2). = S e +1B) gl (4 =1 8) e s

k=1 ui A k ‘Ekz K

(A3.6)
where Zk denotes the Z function corresponding to Hpo and

Ak,'B"areﬁreal constants which have to be determined from

k

equations .(2.10kb,c). These equations give

= ; L _ AL
Z ‘(Ak",+/1 B,) Z; +‘(Ak'.i'l'Bk) Z - 1(32-1)

—r —=r
k=1 Y iy
' (A3.7a,b)

® . 1 =1 : I =
Z .(Ak:'lf,l‘Bk).Z]*é +.(4,~1iB) 2" 0

k=1. v

Uﬁforﬁunapely'the funcpidns Zk are not orthogonal and
thus equations (A3.7) are not useful.’ However, this difficulty
is:qverCome by Gaydqn and Shepherd by expanding each Zk in terms
of a set of suitabletfunctions Y(z;.1).

These funcpions are éolupiqns of the fourth order equation

iv

- X”Y<? 0 (A3.8a)

together with the same four boundary conditions as Z, viz:
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¥(#1) = ¥ (#1) = 0 (A3.8b,c)

A particular solution of (A3.8), even in z is

Y(z32) = 1 Jcos Az =- cosh Az (A3.9)
/2 |cos A cosh A
where
tan A + tanh X = 0. (A3.10)

The roots of (A3.10) are. given in Table IIT.

Denoting by Ym- the ¥ function corresponding to the mth

value of A, A , we can show by direct integration that

1

'flyy dz = {éigz;z mon=1,2, ... (A3.11)
Also
1 1
J_yu- ™ [yvp [y'yﬂ da
m n ‘ m n
| -1 =1

]
| e |
3"<2
xS
1
]
[pu—

Y Y:lv dz }using (43.8)
1

o1
Ak J Y Y dz using (A3.8b,a).
n) mn :

Thus we have by (A3.11)
b pMifmEn
' yer o yo dg o= n mn = 1,2 ... (A3.12)

moTw . o
: v O 1ifm + n
-1 )
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We now assume expansions of the form

(o]

z, (2). = E e T k=1,2 ... (A3.13)

m=1 -

Multiplying both sides of equation (A3.13) by Yﬁ'and integrating

over the range = 1 < 2 < 1 we obtain

1
J zk yjl_dz = E ) [ ‘ sz YJ.} dz
-1 m=1. =1

cjk by (A3.11)

IT'hus from (A3.3), (A3.9)

N 1 .. .. .. -
_' ik = J{(cos 2uk'l)COS ﬁk2+2u'k28if1 U‘kz}l{cos Agz f.cosh_sz}'dz
-1 /E.-cos A. cosh A.
- d - d

= h@Ui{UkSln uk+>‘jcqs Ukta'nh )‘j}[()\;ﬂi) 2~ -Uk)_z}
' (A3.14)

. Using (A3.6), (A3.13) we obtaln

L. = g -—
v(E, Z)‘_Zz { (4,+iB,) e’ ¢ * (4,-iB,) ek cjk}yj
J=L

(A3.15)

giving

u «E _ U E 0
g {(A 2 *iBy ) ekve + (4,-1B)) ek Jk}i";

J=1 k=1

(A3.16a,b)
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g3z .

e =SS gring RN B
3%y (£,2) =" {(Aklek) ekejk+,(Ak,1Bk) ek cjk}yg"-
U
k

J=1. k=L -
"k
We now assume that
3 (32%2-1) = .ZE a, Y41 (A3.17)

PR
Multiplying both sides of (A3.1T) by Y;?’and integrating as

before we get !

N J
1 (an2o7)yid - 1oy i
J 2_(3z -1)¥}7 ds EE a; ) 131 Y da m=1,2
-1 g=1. 1
= . .
o Am by (A3.12)
Thus
@ = 1° J 3(322-1)1" dz
m T4 m
A =1
C=6/2 tan Aom=1,2, ... (A3.18)

From (A3.16), (A3.17), (2.10Lb,c) w&;.gé{c'

(A3.19a,b)
and

z Z A(Ak+in) cjk +.(Akfin) cjk Y3  =0
‘ Wz

,j=l:k=l. uk
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Equations (A3.19) are satisfied if

[ee]

:E .‘(Akfin) ¢ +,(Ak-in) el = oy j=1,2..
. R — -5

= Al : . :
k=1 k | iy’ (A3.20a,b)

and’

o]

:g .(Akfin) ¢ +.(Akfin) el = 0 J=1,2...

e | M
k=1 ‘ k Uk

From (A3.1L4)

" h/é{ﬁk' sin by th; cos Wy tanh Xj}{‘(A§+}1:72<)-2-A(>\§—.'}1-72<)"2}

ESU N

.+ 1 .

dgk i egk say

The real quantities djk’ ejk are obtained by equating real and
imaginary parts in the above equation, but the results are not
recordéd.because of their excessive length.

Equation (A3.20a) now becomes.

(4 4iBy) (dptie ) +(4 =18 ) (d e ) = >
k=1 -

giving

[se]

:E (Ak C. i + Bk ng) aj_' j=1,2... (A3.21a)
k=1

where
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Cjk = géjk and Djk = - 2ejk.

Similarly we obtain from (A3.20D)

_E (Ak Eﬁk +ka gjk) =0 gJ=12... (A3.211b)
k=1

where

.y = . +e. b . = . -e., .

B = 2ldp ap * e by)s = 2dy by = eq q)
The coeff1c1en§s Cjk’ Djk’ Ejk’ ij are known.fqr all g, k
and the constants Ak? Bk can be calculated from equations
(A3.21).

To obtain numberical results for the problem, clearly a
finite range of J§, k must be used and in this.respect Gaydon
and’ Shepherd have achieved satisfactory results by letting J
range from 1 to 20 and k from 1 to 10.

Equations (A3.21) may now be written, in matrix form,

Ci1 D11 Cr2 Ci,10 D110 |[41 7] [er]

Ey1. Fi1- Fi,100 || B 0

oo | 4 |

| "L . = (A3.22)
(4o x 20)

E20,1 Fag,10 | Bro 0




—116-

Solving equations (A3.22) by the method of least squares gives

r2‘11 | [ Il oy 1
By 0
52
= "M ' , (A3.23)
(20 x ko)
40 &20
Byo 0
1L I

=1

where M = (L' L) " L', L' being the transpose of L.

Gaydon and Shepherd have calculated M and it is given in

Table III.  The As Bys k=1, 2 ... 10 have been computed
from equations (A3.18) and (A3.23) the results being shown in
Table IV.

From (A3.6) i

‘123% (£,2). = E '(Ak+in) ek’ Zi'+.(Akfin) o"kE 7
93%. ,

2 =2

‘ U H

=0 k

(A3.24)
and from (A3.3)
.‘Z"'_ ( .- N ) +2... .
:é = = .{cos 2uk 3 cos uk 3 - uk 2 sin uk 2 .
k

= P, + iQ, say
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Also from (A3.5)
kb = %S (cos bkg + i sin bkg)

and (A3.24) now becomes

10
2%y (g,2).= § 4,(zz); + B (22)7 (43.25)
03

k=1
where
’(zz)i = 20 %5 (Pk cos bkg - Qk sin bkg)
'(zz)i'= —2e-akg(Pk sin bka + Qk cos bkg)
The P, @, are known. quantities and Fhus'(zz)i,"(Zz)i can be

evaluated at any point (£,z). Gaydon and Shepherd have in
fact calculated them for Xk = 1, 2 ... 10 for the range of
values:

£ =0, 0.5, 1.0, 1.5, 2.0

'z 0, 0.2, o.h,4,o.6,-0'.8,'1fo_

Ip is of course unnecessary to consider negative values of
z as Phe problem 1s symmetrical about z = 0. The results appear
in Table V.

Proceeding in a similar fashion we can show that
) 10 :

‘ »2) = ' 2 2 ~ (83.26)
ﬁg (£,2) 4, (€)1 + B, (g£)2 (A3.2

where

Qe-akg (Uk cos bkE - Vkisin bkg)

~
i
it
o

KN R
n

r2e-akg(Uk sin bk£ + Vk cos bkg)
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i
Uk + 1 V%»= (cos'2uk - l)'cqs 2z = 2ukz sin 2 |
The values of (&E)i,'(éﬁ)i have been calculated at the same

points as the previous case and the results given in Table VI.

Also Lo
a2 - : L N2 _
_a_l_ (Esz) = Ak(&Z}l( + Bk(€2)k (A3.27
3£0z . 7
k=1 - :
ﬁhére
(Ez)i = 2efakg’(Rk cos bk g - Sk sin bkE)
(gz)i = —2efakg'(Rk sin bk £ + Sk cos bkg)

and
Rk'+ i Sk = - (cqs Zﬁk +1) sin ﬂk 2 - Qﬁk 2 cos ﬁk z.
The relevant values of (g2)1, (&z)i'are given in Table VII.
Using equations (A3.25), (A3.26) and (A3.27) the required
derivapives of ¢ have been computed, the values being recorded
in ?ables VIII to XI. Comparison of these calculated values

with the known values on the boundary suggests an accuracy to

at least 1%, although more decimal places are included.
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APPENDIX IV

Auxiliary Problem:
and Shepherd)

Auxiliary Problem:

Tables
Roots of 2u + sin 2p = 0. (Gaydon
Roots of tan A + tanh A = 0. (Gaydon

and Shepherd)
Auxiliary Problem:
Auxiliary Problem:

Auxiliary Problem:
and Shepherd)

Auxiliary Problem:
and Shepherd)

Auxiliary Problem:
and Shepherd)

(o8]
N
<

Auxiliary Problem:

2%
Auxiliary Problem: L§ v
Auxiliary Problem: .32y.
13
Auxiliary Problem: 32y,
£93z

Comparison of approximate
Comparison of approximate
Comparison of approximate

Comparison of approximate

Coefficients'(zz)i,'(zz)

Coefficients (&z)l, (gz)i.

Matrix M (Gaydon and Shepherd)

Coefficients Ak’ Bk'

XN

and exact primary stresses:
and exact primary stresses:
and exact primary stresses:

and exact primary stresses: T

(Gaydon
Coefficients (gg)i, (gg)i. (Gaydon

(Gaydon

T
rr

Tee.

T e
22

rs’.
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Table

XVI  Secondary stress: Dot
XVIiI Secondary stress: pee;
XVIIT Secondary stress: Doyt
XTX Secondary stress: D,

XX  Comparison of two and three dimensional solutions: Radial

stress @
. rr

XXT- Comparison of two and three dimensional solutions: Hoop

spress 069’
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Table I (Gaydon and Shepherd)

Roots of 2u + sin 2y = 0

He = .ak.'l-.ibj',:
L I -
1| L.212392 | 2.250729
2] 10.712537 |' 3.103149
© 3] 17.073365 | 3.551087
L1 23.398355 | 3.858809
5| 29.708120 | 4.093705
6| 36.009866 | 4.283782
71 42.306827 | bk.hkL34kL6
- 8{ 48.60068L | L4.581105
9| 54.892406 | L.T700291
10| 61.182590 | k4.810025

" Table 1T (Gaydon and Shepherd)

Roots of tan A+ tanh A = 0
m A
........... m.
1 |2.365020.
2 . |5.49780k -
>3 | (m = )
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Table III Matrix M (Gaydon and Shepherd)

-1.30305 0.52703 0.49354 -0.03k61 0.30938
~-0.18697 | -0.18932 | =0.52923. 0.06254 =0.15024
-0.12246 0.097T0 6.32605 -1.1hk85 -2.07409
-0.070L48 0.0371k | 0.4h758 0.23977 2.48023
0.03130 -0.0229k 0.83471 | -0.26469 | -15.55358
-0.00100 0.00400 0.88275 -0.19653 -0.72105
-0.01050 0.00696 | =-0.32919''| 0.10572 | =2.16082
0.00382 -0.00398 -0.08055 0.01115 | -3.046k46
0.00k29 -0.00252 | 0.14902 -0.04859 1.05058
-0.00303 0.00270 | =0.00TLT 0.00892 0.40876
-0.00180 0.00081 | =0.08000 0.02530 -0.5293k
0.00263 | =0.00213 0.02635 0.01332°| -0.02998
-0.00052 0.00083 0.03355 -0.00T43 0.33749
-0.00252 0.00189 -0.03639 0.01595 -0.05547
0.00366 -0,00306 0.01875 -0.01458 -0.19118
0.00067 -0.00031 -0.02766 -0.00890 0.15876
-0.00037 0.00005 -0.02718 0.00797 -0.17591
0.00081 -0.0007k -0.0016L -0.00175 -0.08805
-0.00019" 0.0001L4 | =0.00243 | 0.00113 -0.001Lk
-0.00021 0.00013 -0.00592 0.00209 -0.02582
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Table IIT Matrix M (Gaydon and Shepherd).

1 1
OOOi—'éOOO

)
(@]

.017L6 0.18Lk00 -0.00829 0.11256 -0.00k21
.01207 -0.04916 0.00348 -0.01272 0.0011%
.11k06 -1.53613" 0.06921. | -1.01625 0.03578
. 22605 0.63453 -0.0L4k26. 0.18155 -0.01253
.79580 4. 20837 -0.19285 © 3.29036 -0.12754
.28003 -6.11003 0.43565 -1.53316 0.08853
ko512 29.2935k -2.48109 -6.711L6 0.25837
Jakeh 0.99465 0.31478 11.63895 -0.67566
.20134 - 3.99492 -0.52691 |-LT7.965kL5 ©3.20738
.0k723 6.9729k -0.67614 | -1.03753 -0.36359
.10611 - | -2.35183 0.30955 -6.44920 0.65270
.00851 - | =1.23960 0.10698 |-13.L45452 | 1.00993
05745 1.57103 | =-0.19706 | . 5.72915 | -0.53669.:
.02797 0.32448 ~0.00289 - 3.08478 -0.21059
.00799 -1.48637 0.13987 =5.73840 | 0.L865k
.03388 0.476k9 -0.07570 0.79797 -0.11303
.03522 | -0.58290 0.08691 | -1.084kL7 0.14203
.01009 -0.49757 0.05Lk0ok -1.62386 0.14909
.00170 0.03090 -0.00097 0.17270 -0.01175
.00640 | =0.05376 0.01122 |..0.00402 |. 0.00922
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Table IIT Matrix M (Gaydon "and Shepherd)

© Columns 11°to 16

.00199
.00038
.01706
.00378
.05799
.02318
17258
.13068
.29622
.90332
“9357T
.50992
LOb1kT
45563
.24346
.01108
.10283
.3007T1

.03819
.01988

.00036
.00018"
.00210
.00115"
.00T767
.0030L -
.0381T
.00958
.18206
.09kk9
o143
.97198
22516}
.83120.
. 37080
.36852
.37018
. 37000
.08350
.12288 .

27
_27
95
=3
L6
26

-1.

.00278
.00399
.00304
.03420
.00863
.16249
.21619
.617L0
.86330
.69726
.83131
14286
J38126
.08972
66722
.95952
.87910
.32033
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[eNeoNe!

1
[oNeoNe]

o OO

&

75 oNeo)

.00100
.00028
.01183
.0011T
.03788
.00375
07167
.03k6h
.0522)
.12358
J26Lh2
.20401
.12520
.78624
. 26627
51717
.98616
92681
.09939
.35815

.00276.
.00278
.0L697
.02128.

.19105

.06277.
.59019

.08540
.58169
24346
.1036L

31517
+12530

.55878
k8356

.06k32

.22399
.03653
.99913
L6102

1
[eNeNeoNe

Ldodd

O+ O

S O OO

1
OooOoOooO

.00104

00055 -
.01koT
.00333

04790
.00458

.10896
.01038
.19506
L0792k
.23503 °
.28217
J1hhlo,
.6L6LL
. 78402
.07029
.52040
.23818
.00030
.05360

.00005
.02852
.00201

.02172
13348
.0908k
.13265
.25679

.55621
.11059
. 75829
.14303
.01282
L6500
.03285
.13779
0.45961

ornvitwdloodbooddoodoo

.00299 -

L0T84T

11326

[eNeNoNe]

1 1
O O O

&

: 1
oNeoNoNoNoNe!

boodoo

.00082
.000k47
.01139 -
.00281
.03884
.00380
.08609
.008k41
14478

.05892
.15953
.18481
.0k273
. 36490
.62542
.30249
.72535
.15065 |
.15678
.0206L. .
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‘Colurns 21 to 26

MR O

.0028%.
.00056
LO03L7L |
.0021k
.10154
.01033
.21075
.08426.
27702
.31388
.06075
75720
.59280
. 89223
.72853
.58203
Lals1

.T8735

46331

.08278

=22,
10.
-27.
=7,
-3,
-6.

.01418

.00101 -
.1hkko

.00197

44891 -
.087hk
.91539
.96k -
.10162
. 7268k
.00682
.08163
96727,
.52790
56819
79771 -
2221k

18528
11539 -

05470

[eNeNe)
(@]
o
o
o
no

booddboo
(@]
\J]
[
W
(@]

oY oNoNe
™
o
N
=
o

OOOO(!)O
o
N
o
(o]
o
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Table TIT Matrix M (Gaydon and Shepherd)

Columns 26 to 30

0.01209 0.00102 | 0.01747 0.00080 0.01609
0.00273 0.00003 0.00280 0.00002 | 0.00217
-0.13671 =0.00995 -0.189kL. -0.00779 -0.17156
-0.0127h 0.00059 -0.0090L 0.00050 -0.00L487
0.4hh9o 0.0282k 0.60201 | 0.02208 | 0.53881
-0.02500 -0.00757 -0.07078 -0.00613 -0.07836
-0.98232 -0.04860 -1.26110 -0.03756 -1.09597
0.29983 "~ 0.03369 - 0.51769 0.02708 | 0.50735
1.56513 0.04163 1.7292k 0.02953 1.37207
-1.27603 -0.09626 -1.91965 -0.0764T -1.77905
-0.8020Lk 0.0752k 0.098L48 0.06798 0.56110
3.60650 0.19171 - 4, 76993 0.14790 4.15377
-5.79792 -0.43196 | -9.26482 | -0.34507 | =8.62173
-5.82290 -0.19132 -6.30399 - | =0.135k2. =L ,92573
20.16721 0.82430 [ 24.03075 0.606L45 | 19.57878
-4,20379 -0.30982 -7.11635 =0.24571 | -6.51284
9.94989 0.64653 16.27203 0.50514 1k k7272
6. 74869 0.28903 8.10239 0.21450 6.67012
-0.5089L 0.02077 0.29618 0.02025 0.45225
1.18106 0.11091 | . 2.63778. 0.08919 - |.. 2.46577
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Table III Matrix M (Gaydon and Shepherd)

Columns 31 to 35

[eNeNeoNoNeoNeoNoNoNoNoNoNoNe)

&

000000

.00060 0.01327 0.00045 0.01057 0.00034
.00001 0.00157 0.00000 0.00113: 0.00000
.00586 -0.1k400k4 -0.00L438 -0.11063 -0.00329
.000k2 -0.00217 0.00035 -0.00065 0.00028
.01653 | 0.43609 0.01228 | 0.3k217 0.00917
.00L481 | -0.07177 -0.00373 -0.06132 -0.00290
.02759 -0.86TLk -0.02008 -0.66838 -0.01L70
.02089 0.L4344) 0.01595 0.35489 0.01219
.01943 1.00956 0.01254 0.73081 0.00807
.05792 -1.k6835 -0,0L3h1 -1.16713 | ~0.0326k
.05729 0.TO6TT 0.0L4666 0.70039 0.03747
.10851 | - 3.28186 0.07894 2.52244 0.0577T
.26056 -7.09125 -0.19416 =5.60T711: | -0.14500
.091:33 =3.59015 -0.06140 -2.58537 -0.0k172
.42oL88 14,70533 0.29650 10. 85399 0.2090L
18317 -5.25915" -0.13480 -4.09397 -0.09956
.36988 | 11.k42592 0.26765 8.73428 0.19472
.15186 5.05732 0.10709 3.76388 0.07626
.016L4 0.42hk29 0.01269 0.35495 0.00967
.06636 1.9900k . 0.0L4855 1.54130 0.03562
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Table TII Matrix M (Gaydon and Shepherd)

Columns 36 to L0

0.00833 0.00026. 0.00656 0.00020 0.00520
0.00081 0.00000 0.00059 - 0.00000 0.000L4L
-0.08666 -0.00250 -0.06796 -0.00192 -0.05359
0.00016 0.00023. 0.00055 0.00019" 0.00072
0.26651 - 0.00692 0.20801 | 0.00527 0.16335
-0.05090 -0.00227. -0.04176 -0.00179 -0.0341k
-0.51271 - | =0.01087 -0.39499 - | -0.00815 -0.30670
0.28505 0.00939 0.22800 0.00729 - 0.18266
0.53068 0.00520 0.38929. 0.00336 0.28919
-0.91755 -0.02475 -0.72121 | -0.01896 -0.56950
0.63368 0.02996 0.54989 0.02399 0.46760
1.93018 0.0k275 1.48366 0.03205 1.1k970
-4.38399 | =0.10920 | -3.k2796 | -0.08311 | -2.69386
-1.87312° | -0.02878 -1.37377 -0.02018 | -1.02177T
"~ 8.03306 0.14958 6.00383 0.10873 4,5k201
=3.15999 | -0.0T7426. =2, khL7h -0.05605 -1.90421
6.64179 - | 0.1h4328 5.07475 0.10684 3.91109
- 2.80599 0.05509 - | 2.11065 0.0Lok1. - [ 1.60586
0028583 ,| 0.00737 0.227kk | 0.00566 0.18076 |
1.18265 '0.02639 0.9097T1 0.01979 0.70483
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Table IV

‘4Coeff1c1ents,Ak,,Bk

Ky A By

1 0.1459239 | 0.0219892
2 0.0035498 | 0.0067221.
-3 ] -0.002L010 | =0.0010037
L 0.001130% | 0.0000596
5 | -0.0005755 0.0001197
6 0.0003118" | --0.0001765
7| -0.0000829 |1 0.0002141.
"8 | -0.0002179 | -0.0001116
‘91 0.0000969 | =0.000031k4
10| 0.0000161 {. 0.0000267-
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Table VIII 3%y
927
£ = 0.0 g =0.5 £ =1.0 £ =1.5 £ =2.0
2z =1.0 | 1.0000000 | 0.5835965 | 0.1994379 [ 0.0458775 [ 0.0027937
5 =0.8 | 0.4600000 | 0.3095485 | 0.1316099 | 0.0399281 .| 0.0075343
2= 0.6 | 0.0400000 | 0.0k78K18 0.033149k | 0.0146331 [ 0.0046297
z = 0.4 |-0.2600000 |=0.161487k |-0.0606470 |-0.0156016 |-0.0017859
z = 0.2 |-0.4400000 {-0.2954001 |-0.1259795 |~0.0388497 |{-0.0076112
2z = 0.0 |=0.5000000 |=0.3413300 |-0.1492293 |-0.0kT4TTO }|-0.0099072
Table IX (Lg v)
£ =0.0 £ =0.5 £=1.0 £=1.5 £ = 2.0
z = 1.0 | .1.0000000 | 0.5835965 | 0.1994379 | .0.0458775 | 0.0027937
2 =0.8 ] 0.3676050 | 0.3187231 | 0.1466546 | 0.0471692 | 0.0099518
5 = 0.6 |-0.2695528 | 0.0685020 | 0.0793068 | 0.0384615 | 0.0130165
2 = 0.4 [-0.7673032 [-0.1339664 | 0.0169128 | 0.026LTL8 0.0135697
2 = 0.2 |-1.07TL179 |-0.265130k -0.026283h 0.0168647 | 0.0131699
2 = 0.0 |-1.1821199 |-0.3104515 |-0.0416292 | 0.0132313 | 0.0128972
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. 0.0000000 .

Table X
£ =0.0 £ = 0.5 £=1.0 £ =1.5 £ =2.0
"z =1.0.].0.0000000 | 0.0000000 0.0000000 .| .0.0000000 0.0000000
"z = 0.8 |-0.0923951 | 0.0091T7L46 . 0.0150hh7_ 0.0072L411 .| 0.0024175
"z = 0.6 |-0.3095528 | 0.0206602 | 0.0461574 | 0.0238284 | 0.0083868
z = 0.4 |-0.5073032 | 0.0275210 | 0.0775597 | 0.0420765 | 0.0153556
"z =.0.2 |[-0.6374179 | 0.0302698 0.0996961 | 0.05571kL | 0.02078k2
2 = 0.0 |-0.6821199 | 0.0308786 | 0.1076001 | 0.0607082 0.02280h5
Table XI 432¢
‘ ’ 3633
£ = 0.0 £ =0.5 £ =1.0 £ =1.5 £ =2.0
" z.=.1.0 | 0.0000000.|.0.0000000 { 0.0000000 | 0.0000000. | 0.0000000
"z.=.0.8 | 0.0000000 | 0.1k0Lk626 | 0.0774L32.].0.0279292.} .0.00T0307
" z.=.0.6.].0.0000000 | 0.1792908 | 0.1081450 .} .0.0419921 .| 0.0116030
"2 = 0.4 | 0.0000000 |+0.1525387.].0.0972335. .0}0396598._.0.0116982
"2 = 0.2 | 0.0000000.]|+0.0857331 .| 0.0563661 ] .0.0236438 .| .0.007151T
'z =0.0. '0.0000000 | .0.0000000 | .0.0000000 .| .0.0000000
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Table XII (1 )

. rr
r=0.0] r=0.2] =04 | »r=0.6| 2»=0.8]r=01.0
z = 1.0{A]0.12500 | 0.12493 | 0.12352 |-0.11k26 | 0.07673 |-0.03786
E[0.12501 | 0.12L93 | 0.12350 | 0.11420 | 0.07661 |-0.0380k
z = 0.8[{A[0.12500 | 0.12496 | 0.12kok | 0.11691 | 0.08510 |-0.017h1
: E[0.12501 | 0.12497 | 0.12403 | 0.11687 | 0.08501 [-0.01T755
z = 0.6[A[0.12500 | 0.12k99 | 0.12kk45 [ 0.11897 | 0.09161 |-0.00151
E|0.12501 | 0.12500 o.12hh5A'_o.11896. .0.09159 |-0.00156
2 = 0.4]al0.12500 |-0.12501 | 0.1247k | 0.1204k | 0.09626 | 0.00984
: E|0.12501 | 0.12502-| 0.12L476 AO.l2OhT,_,O.O963O. .0.00990
z = 0.2{a[0.12500 | 0.12502 | 0.12491 | 0.12133 0.09905 | 0.01666
: E}0.12501 | 0.12503 0.12L9k | 0.12138 | 0.0991k | 0.01679
z.= 0.0|Al0.12500 | 0.12502 | 0.12497 | 0.12162 0.09999 0.01893
E|0.12501 ._Of1250h 0.12501 | 0.12168 | 0.10009 | .0.01909
A - Approxir’néte ‘Primary Solution™" ~ E - Exact Prizﬁary ‘Solution.

Table;XIII.(ree)_

..... lr=0.0l r=02]lr=042=0.6]|2r=0.8]»r=1.0
z = 1.0 A’O,lzsoo 0.12492 | 0.12096 | 0.08186 |-0.11169 |-0.T76786
. 1E|0.12501 | 0.12492 { 0.12095 | 0.08183 |-0.11175 |-0.T76796
z = 0.8|a}0.12500 | 0.12493 | 0.12121 | 0.08311 |-0.1077k }-0.75821
E[0.12501 | 0.1249k | 0.12120 [ 0.08309 |-0.10779 [-0.75829
z = 0.6{A]0.12500 | 0.124k9k | 0.121Lk0 | 0.08L408 -o.ioh67 -0.75071
: |El0.12501 1 0.12495 | 0.12140 0,08h08 =0.10469 |-0.75075
2z = 0.4]A[0.12500 | 0.12495 | 0.12153 | 0.08478 |-0.10247 |-0.7k536
|E]0.12501 | 0.12496 | 0.12154 |.0.08479 .1-0.1024T |-0.T74535
z =0.2[alo0.12500 | 0.12496 | 0.12162 | 0.08519 |-0.10116 |-0.7k21L
. - |E]0.12501 | 0.1249T7 | 0.12163 Q,o8522 | =0.10113" |=0.74210
2 = 0.0[alo.12500 | 0.12496 | 0.12164 | 0.08533 |-0.10072 |-0.74107
‘|E]0.12501 | 0.12497 | 0.12166 | 0.08536 =0 10068 .Th102
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Table XIV (Tt )
24

r=0.0]lr=0.2 |2r=04 |Pp=0.6 |r=0.8 |[r=1.0
2z =1.0lal0.00000 | £0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
E{0.00000 | 0.00000{ 0.00000 | 0.00000 | 0.00000 | 0.00000
%z = 0.8{A[0.00000 | 0.00000{ 0.00000 | 0.00000 | 0.00000 | 0.00000
E[0.00000 | 0.00000 | 0.00000 [-0.00001 [-0.00002 {-0.00003
z = 0.6]A[0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
E|0.00000 | =0.00000 { =0.00002 |-0.00003 [-0.00006 |=0.00009
2z = 0.4]|A[0.00000 | 0.00000| 0.00000 | 0.00000 { 0.00000 | 0.00000
E[0.00000 } =0.00001 | -0.00002 {-0.00005 [-0.00010|=0.00015
2 = 0.2|alo.00000{ 0.00000} 0.00000 | 0.00000 | 0.00000 | 0.00000
|El0.00000 | =0.00001 | =0.00003 |=0.00007 |=0.00013 |-0.00020
2 = 0.0|Al0.00000 } 0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
' E|0.00000 [ =0.00001 | -0.00003 {-0.00008 -0.0001k {-0.00021

Table XV (v )

. - rs .
...... lr=0.0|lr=0.2 =04 |r=0.6 |r=0.8 |r=1.0
5 = 1.0lalo.00000 | 0.00000{ 0.00000 | 0.00000 | 0.00000 | 0.00000
12]0.00000 | 0.00000 | . 0.00000 | 0.00000.|.0.00000.{ 0.00000
2 = 0.8|Aalo.00000 } 0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
_____ £l0.00000 | -0.00001 | =0.00008 |=-0.00027 |=-0.00064 |=0.00123
5 = 0.6|Al0.00000 | 0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
- 12lo.00000 | =0.00001 | .=0.00011 .| =0.00036 |=0.00085 |=0.00165
s = 0.4lalo.00000 | 0.00000| 0.00000 | 0.00000 [ 0.00000 | 0.00000
________ El0.00000 | -0.00001 | =0.00009 {=0.00031 {-0.0007%.|=0.001Lk
2 = 0.2l alo.00000 1 0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
........ E|0.00000 .| =0.00001 |.=0.00005 | =0.00018"|=0.00042 |=0.00083
% = 0.0l alo.00000 | 0.00000| 0.00000 | 0.00000 | 0.00000 | 0.00000
N £10.00000 .} .0.00000|. 0.00000.] .0.00000 | .0.00000 .| .0.00000
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Table XVI (prr)

=09 | »r=0.925 r=0.95| 7 = 0.975| » = 1.0
'z = 1.0 0.000 0.002 0.008 0.022 0.038
'z,=0.8 ] .0.000 [ 0.002 0.005 0.012 0.017
z.=.0.6.| . .0.000 0.001 0.001 . 0.002 0.002
"z=0.4 | o0.000 | -0.001 | -0.002 =0.006 . | =0.010
z=0.2| .0.000 | =0.001 | =0.005...}.=0.011"" | -0.01T
2.=.0.0] .0.000 | -0.002 -0.006. | .=0.013". | =-0.019

Table XVII (pg,)

.......... 7»=.0.9] r=0.925 »=0.95 | .r=0.975| r=.1.0
"2=1.01...0.000. |..0.001" 0.002 . |. 0.007. .|..0.011 "
‘Az_=Aqg8.' ..0.000. | ©0.001 - |. 0.002 | 0.004 . | .0.00k
' 2.=0.6|. .0.000..f 0.000 | 0.001...}..0.001.".}.<0.003.
©z.= 0,4 |  0.000 .} 0.000...|..0.000.. f.-0.002. . [ =0.009.
"z =.0.2.|. .0.000 .|. 0.000 ..0.000. . .| .=0.003.. | .=0.012
2.=.0.0 [ 0.000 |.0.000.. .. 0.000 . | =0.004 . -0.013.
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Table XVIII (.pz-z\)

r=0.9 | r=0.925 »=0.95| r=.0.975 |r = 1.0
3.=1.0 | 0.000 | 0.000 0.000. .| ...0.000...| 0.000
'z =.0.8 0.000 0.000 0.001..}...0.000.. .{=0.003
2 =.0.6..[..0.000 0.001 0.002. | ..0.001...[<0.012
z=0. | 0.001 0.002 .| 0.003..]...0.001..4-0.019
'z =.0.2..}. .0.001 0.002 . 0.00% | . 0.001. . |=0.024
z.=.0.0 .|..0.001 0.002 .| . 0.004 | . 0.001. [-0.026

- Table XIX.(p,)

........... r=0.9. .r.=‘Q.925..f_= 0.95.| » = 0.975 {r =.1.0
2.=1.0 | 0.000..]..0.000.. f. 0.000 0.000. . .| .0.000.
2.20.8. | 0.000 | 0.001. | 0.003 | 0.005 -| 0.000.
z.=.0.6.|..0.000. £.0.002.. .| ..0.00k. ..0.007. . .| .0.000 .
ﬂ2.=.0fh..4..Q.QOO..‘,_O.OQZ_NA,__Q.QOﬁ 0,006 .. .| .0.000 .
3.=0.2 | 0.000..}. .0.001.. | .0.002 ..0.003.". | .0.000.
2.2.0.0. .| 0.000 [ .0.000. ..} .0.000 £0.000 .. [ .0.000.
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