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ABSTRACT

This thesis describes the application of a computer to certain
problems in number theory.

Chapter 1 is a general description of the use of computers in this
field, Chapter 2 contains the results of computations relating to certain
non - congruence subgroups of the full modular group, while chapter 3
describes the use of variable precision arithmetic, mainly in connection
with continued fraction expansions.

The last chapter describes a small library of subroutines,
the majority of which are written in Fortran. A computer - printed listing

of these subroutines is given at the end of the thesis.



CHAPTRZR 1.

lel. The electronic digital commuter.

This thesis describes the application of an elect?omic digital computer
to certain areas of number theory. Chanter 4 is a description of the library
of subroutines which has been assembled and used, in particular, to obtain the
results contained in Chapters 2 and 3. In this chapter we discuss gegerally
the use of computers, with the emphasis on number-theoretical problems;

In what follows, the word "csmﬁuter" will be taken to be a shoriensd
versioﬁ of the phrase "electronic digital computer”. The épecific computer used
to derive the results contained iﬁ this thesig is briefly described in 1.5,

A computer performs calculations according to a set of ingtructions,
called a progrzmme, the execution of which is called a run (or job in Atles termin-
ology). A programme may differ from run to run of nzy be altered by itself within
8, Tun. This fact inmplies a considerdble degres of flexibility in the types of
wogk that may be performed: Sometines it may be more advantageous to sacrifice
this flexibility for an increzse in speed of calculztion. An example is
D.H. Lehmer's Delay Line Sieve (DLS-127), for use in certain number;theoretical
calculations - see Lehmér (13), where the economics of the machine is also .
considered.

The execution of programme instructions proéeéds at a2 high speed,
relzative to hand computation vhich has the undesirable feature of being both
unreliable and tedious. In number theory, in particular, the electronic

couputer is a powerful tool in the process of empirical discovery.



1.2, Number-theoretical computing.

Broadly speaking, we may discern two general types of programme. On
the one hand, there is the programme designed to calculate and spend most of
its time adding and multiplying, for example; on the other ﬁand, we have the
programme that updates files on magnetic tape and spends a relatively small
amount of time calculating. In a sensé, of course, all operations performed
by a computer may be regarded as calculation of one kind or another; but here
we distinguish between arithmetical calculation|and, say, character manipulation.
Some programmes could perhaps be placed in both categories. In & sorting
programme, for example, a large ambunt of time is spent comparing quantities,
which essentially involves subtraction and testing.

Nunmber-theoretical programmes are, by their very'nature, placed in
the first category. In_this field, the emphasis is on economy of computation
aﬁd, in general, little ingenuity need be expended on magnetic tape operations.
Because a computer can not only calculate but can make decisions on the result
of a calculation, number-theoretical programmeé themselves fall into two
categories. Thus "pure" calculation only is needed to obtain the algebraic
equation satisfied by j(:liigzzzz) from the values of the jttk) of (3.5.3).
In a factorisation routine, however, decision is an essential ingredient of
the programme. This distinction makes it more difficult to determine,
beforehand, the computing time required by the second type of programme.

Inevitably, the number-theorist's programme will be concerned with
integer quantities while that of the numerical enalyst, for example, will be

almost diametrically opposite, being concerned with real quantities (in Fortran

terminology, real is floating-point). To the number-theorist, there is a
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world of difference between N and N+1, N a large integer. The numerical
analyst would be pedantic if he were to quibble over such matters. This is
perhaps an exaggerated example but it does underline one of the basic
differences between number-theoretical computing and what might be termed
"ordinary” computing. Atkin ( 1 ) has made a similar observation, on low-
probabiiity faults in a computer's hardware and their disastrous effect; on
integer arithmetic.

A computef programme presupposes & problem, which raises the question:
vhat problem? Since a programme is executed in a frecisely determined fashion
by a computer, the problem must be formulated precisely. At present, the
computer can have no idea of what the programmer is attempting to solve and
can normally be relied upon to execute instructions, whether or not these are
sensible._ From the computer's point of view, any resulis obtained must be the
correct ones, though they ﬁay appear ridiculous to the programmer. As regards
suitable problems, it is all too easy for number-theoretical calculations to
"pile up lists of integers in the manner of a magpie" - to use the phrase of
Swinnerton-Dyer ( 19). The calculation of 1r to a million decimals may be
regarded as an interesting exercise in its om right, but it cannot be regarded
as an important addition to number theory. Of course this opinion is_a function

of how important the calculation seems to be at present.

Having formulated the problem, speed of calculation and size of
store need to be considered. The size of the problem has to be altered
accordingly. In 1800 Gauss's considerable calculations on binary quadratic
forms were a major undertaeking; these same calculations now-a-days take a

matter of minutes and would be regarded as a small "production" run. As
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Swinnerton-Dyer (19) remarks, "a calculation which tzakes 106 opgrations is
trivial,‘and is worth doing even if its results are useless". This sort of
calculation tales itlas about 2lor 3 seconds. . Since there is no reason to
suﬁpose tbat either spe=d or store size has reached ité limit, theoretical or
otherwise, the size of a "trivial" job must remain a variable quentity.
Estimates of running times can generally be obisined by extrapolation of small

test rnmns.

1.3. Detection of errors.

The construction of a computer programme almost always involves the
detection and removal of errors in the programme.

Errors can arise in many different ways. Firstly, there may be
errors in the logic of the programne. Only the programmer can corrsct these
errors, since only the programmer Jmows what the problem is and what the logic
should be. It mey be an error in a formula or an incorrect jump after a
decision. The actual resulits produced often give a clue as to the position
of the érror and the programme usually rsquires only a small change for
successful running.

Secondly, there are errors in the languesge in which the progranns
has bsen -written. ‘“hese are detected by the campi&er vhich translates the
statemeﬁts of that 1anéuage into basic'maching code. Sinmple spelling mistakes,
omitted brackets and undefined jumps are typical errors.

.Thirdly, errors at the execution stage, such as the attempt to taks
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the square-root of a negative quantity, are coften due to incorrect iogic or
formulae in the programme.

All these errors are typical in computer programmes under consiruction.
But there are subtler types of errors that are very much harder to detect.

The programmer, in exasperation, will blame the computer; but, in the great
majority of cases, it is the programmer and not the computer who is at fault.
An example is the overwriting of a programme by itself, usually with
catastrophic results. Exceeding array bounds is another typical fault and can
overwrite other arrays and machine code situated nearby. Some compilers
insert code to check for just this sort of error, Incorrect computed go-to
statements and jumping to locations containing data rather than instructions
are similar errors. On Atlas, for example, instructions and numbers require
the same number of binary digits for storage, namely 48 bits or one "word".

It is possible for-the contents of a word containing a sensible number to be
interpreted as a sensible instruction. If this word is executed as a result of
an error of the above mentioned typé, the results may be puzzling, to say the
least. Usually, for a variety of reasons, the instruction is illegal and is
trapped by the computer, either by hardware or by the supervisory programme.
At worst, by sheer bad luck, it could be an instruction to write to an
unprotected magnetic tape.

Finally, there are various execution errors such as entering an
infinite loop of‘instructions; in this case a large amount of computing is
used or a large amount of output produced. Selecfive printing of relevant
quantities in the programme is usually enough to enable the precise location

of the error to be ascertained.
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1.4. Subroutine libraries.

A subroutine (alternatively routine, subprogramme, procedure,
function) is the name given to a body of code which, when compiled, can be
executed by simply stating its identifying name. This avoids having to insert
the whole body of the subroutine in a programme whenever it is required.

Usually a subroutine will have arguments associated with it, so that calls of
"the subroutine with different values of the arguments produce different results,
thus giving the programmer a powerful and flexible device.

Often a subroutine calls another subroutine; the linkage of the
subroutines may be quite involved, especially in a large system. To minimise
the effort of assembling all the relevant subroutines needed in a particular
run of a programme, the concept of a suﬁroutine library is helpful. All the
subroutines that the programmer is ever likely to use in any run are transferred
to a magnetic tape (or disc). This collection, or library, of subroutines
can be arranged on the magnetic tape in such a way that, in any particular run,
only those subroutines that are actually needed are called domm from tape and
assembled in store. The advantage of a subroutine library over a large
manipulatory system has been stressed by Lehmer ( 13).

| A small library of number-theoretic subroutines is described in
Chapter 4. This particular library is by no means complete and can be easily

updated as and when new routines are written.

1.5. The Atlas computer.

Inasmuch as the results given in this thesis have been obtained by

(6)
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a combination of the author and an I.C.L. Atias 1 computer, a brief description
of the latter system may be of some interest.

The store of the computer is arranged in units of 48 binary digits,

a "word". There are 8192 words of "fixed" read-only storé, 16384 words of
working store, 49152 words of ferrite core and 98304 words of magnetic drum
store. The access times of these stores are respectively 0.8, 2, 2 and 4/usecs.
per word, where 1/usec. = 10'6 second. There are 16 magnetic tape decks each
with a transfer rate of approximately 64000 characters per second (8 characters
are held in one word). Information is held on magnetic tape in units of 512
words (one "block"). A Qagnetic tape can cont#in approximately 5000 blocks.

In addition, there is a non-interchangeable magnetic disc file with a storage
capacity of approximately 16% million wgrds.

At any one time, many different programmes may be in the store; only
one is actually being executed. If {this job is held up for any reason - for
example, a request to write to magnetic tape ~ the computer starts executing
another job and is thus kept as busy as possible. In fact, magnetic tape
operations, once initiated, proceed independently. All this "organisational®
work is performed by a master programme (the supervisor, in Atlas terminology).
Because the computer is constantly swapping from one programme to another, in
a manner determined by the supervisor, the real time of execution of any
particular programme is usually an irrelevant quantity, as far as the programmer
is concerned. Thus a programme may need 10 minutes of central processor time
yet take an hour to pass through the machine. All the times quoted in this

thesis are central processor times, which are in fact recorded in units of 2048
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_instructions completed (one "inter;upt“). Cne second of computing is
appfoximétely 160 interrupts. Typical times are: ?/Lsecé. for floating-point
éddition; approximately G/Lseés. for floating-point multiplication, and from
1.6 to l.B/asecs. for "organisational" instructions.

The supervisor is writfen in such a wey that, to the programmer,
the core store and magnetic drum store appear to be continuous; sections of
each are swapped onto the other, when necessary, by means of.the supervisor's
"drum~-learning" programme. This progremme éttempts to perform these swappings
with'the best poséible_efficiency; Only in a few special cases is it necessary
to take account of the fact that the computer's store is really on two levels.
Thus the execubtion of FUL'UL with a large number of terms resulits in a
prohibitive numbsr of drum transfers; in practice there is a restriction to
40000 terms on the use of this routine.

Finally, one of a large number of compilers may be used to
translate a given programme into basic mechine instructions.  All the prégrammes
used to obtain the results in this thesis were written in a language vwhose
coapilér processes programmes written in both FCRTRAN and ASP (the latter
being almost basic machine code). Programmes written in ASP are apt to be more
efficient than those written in FORTRAN, since FﬁRTRAN.may generate redundant
instructions - from the programmer's point'of view. Once compilad, both types
of programme reside in binary form either on cards or on a subroutine library

tape.
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CHAPTER 2.

2.1,

This chapter describes computetions concerning certain non-congruence
subgroups of the classical moduler group. A summary of the mathematics
involved is given in section 2.2.; the complete mathematical background is
to be found in Atkin and Swinnerton-Dyer (2 ). Some of the results arrived
at would have required a prohibitive amount of time had they been obtained
by hand calculation (i.e. pencil and paper). Indeed, it was only by the
hendling of these calculations by an electronic computer that they became
at all feasible. Even so, as Atkin and Swinnerton-Dyer point out in their
paper, the time involved is "not trivigl in either human or machine terms".
In terms of Atlas time (an average of 350,000 basic instructions per second),
some of the computations required about an hour and it would have been quite
possible to fabricate programmes needing several hours of computation, hed
one not had to consider the possibility of a machine failure from which
recovery would have been difficult, if not impossible.

The last section of this chapter gives the (negative) results of

statistical analysis on RamanujarST-function and a few other related functions.

2.2. The classical modular group.

The classical, or full, modular group consists of all linear
fractional transformations

=&at+d .
vt = oT + d (2.2.1)

where a,b,c and 4 are rational integers with ad~bec=1. This group, denoted
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by r' s is generated by the 'tra.nsformations_, S and T where

St=T+1 , T =-= : (2.2.2)

and is the free product of the cyclic groups {T} and {P} of order 2 and 3
respectively, where ‘

P=1S , Pr=-ot , T=P=I .

It is a discontinucus group whose fundamental domain F is shown as the
shaded region in the _figure in 3 6. The vertical sides of the boundary

1 and the curved side into itself

of P are mapped into each other by S and S~
by T.

Klein's modular invarient, which is the Hauptmodul of M(see
Klein - Fricke ( 11), p.5%), is denoted by j where

2T + b .

J is zero at 1.’=/° = ez'? , 1s equal to 1728 at T= i and has a simple pole
a-t T= i“'
2nit . . . .
Ifx=¢e y then j may be written as & power-series in x
(-]
3= 2pelmx = x4 T44 + 196884% + .. ' (2.2.3)

where the coefficients c¢(n) are positive integers. These coefficients enjoy

certain congruence properties. For example
. if 2= 0 (mod 223°5°7%11°)

then 2b+55c+1 7(11 18 )

o(n)= 0 (mod 22283
From Atkin ( 4 ), this is probably the best possible congruence of this form.
Ve give below a table of c¢(n) for n=-1,...,40 with a corresponding

approximation opposite each entry. For 'E' read *times ten to the',
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1

5

26

114

474

1894

7318

27406

99710

3. 53074

12 18832

41 07899

135 35635

436 56892

1379 83758

4278 07822
13023 36938
38960 80061

1 14632 93989

3 31962 77091

9 46816 61357
26 61436 58257
73. 77316 99697
201 76878 99472
544 76388 17516
1452 68925 44393

at + v
dl

If V¥ = o=

4 / /
aZEa,b=Eb,c=c,

c(n)
1

T44
1 96884
214 93760

8642 99970 -

2 02458 56256

33 32026 40600

425 20233 00096

4465 69940 71935
40149 08866 56000

3 17644 02297 84420
22 56739 33095 93600
146 21191 14995 19294
874 31371 96857 75360

4872 01011 17981 42520 .

25497 82738 94105 25184
26142 91646 57818 43075
93121 77242 14450 58560
62842 41315 07752 45160
59912 78844 47865 13920
38786 80123 41688 13250
49976 24889 33900 28800
11377 31813. 75192 45696
30712 51362 46549 29920
41659 93718 26935 33820
53186 56142 70998 77376
843530 42251 04533 51500
60190 30790 91576 38144
41518 64687 86750 77500
24858 87663 46104 01280
34642 99992 55422 88376
44213 26256 T0582 27200
25770 29512 80448 73221
70995 91189 43000 98560
00810 63777 96110 90240
39267 16726 36796 06784
02260 43164 62634 38600
53796 26887 21518 75584
25069 76080 17928 54360
28738 64858 00437 T6000

16630 12316 54104 77688

62169 79435 54293 76000

d= d'(mod n)e

(11)
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A

4
2 n

|

(S

2.0276E+05
2.19682+07
8.7967=+08
2.0557TE+10
34.37T6E+11
4.3050E+12
4.51T71E+13
4.0581E+14
3.2086E+15
2.2784E+16
1.4755E+17
8.8197E+17
4.9130E+18
2.5704E+19
1.2713E+20
5,9761E+20
2.6824E+21
1.15425+22
4.7768E+22
1.9073E+23
7.36635+23
2.7583z+24
1.0034E+25
3.5525E+25
1.2262E+26
4.1322E+26
1.3614B+27
4.3906E+27
1.3876E+28
4,3016E+28
1.3094E+29
3.9168E+29
1¢1523E+30
3.3368%+30
9.5164E+30
2.6748E+31
T.41388+31

. 2,0275E+32

5+4759E+32
1.4596E+33

el” , We write V= v/ (mod a) if and only if

An important subgroup of M is the



set of all transformations
V= I (mod n)

where IT=T. It is called the principal congruence subgroup " (n) of
level n and is a normal subgroup of finite index in [M. By taking n=1,
r ray be written as .

A subgroup G of finite index Vo in r' has a fundamental domain
consisting of /.1. copies of F., If the elements of G conjugate in r‘ to T and
P form respectively e, and e3 conjugacy classes in G, then the boundary of

F will have e, end e, in equivalent fixed point vertices of orders 2 and 3

3

respectively. Let every element of G conjugste in I to 2 non-zero power

of S be conjugate in G to some power of one of
M -1 P -1
S ? g2sl.zg2 9 o090 g gts g'h
. . -1 . - .
where gy = I.,gz,...,e:_b are in M ana gigj ¢ G. The boundary of F will

then have t in-equivalent parabolic fixed point cusps. If t=1, we shall

call G a cycloidal subgroup of . We have

Vel s I o LTI o

and the genus g of G is given by

e e
g=1+1&2--;---4—?--—31 (2.2.4)

Almost all sﬁbgroups of r are non-congruence subgroups in the sense that,
if C(m) and N{m) denote respectively the numbers of congruence and

. non-congruence subgroups with index £ M then CW/NW-—) 0 aspu—poo .
If G is a subgroup of finite index in ™ then f(t) is a2 modular

form on G if

(12)



(1) £f(¥) is single~valued and regular except for poles et the

cusps of &

at+b

2w ,
(2) f(vr) = icv+ 4} £\T) for 211 v in G, where Vo =
. ct+d

2

nd&is & fixed integer.

Vhenw=0, f is called = modular funection on G; whenw= 1, f is called a
differential on G. In the former caze, it cen be showm that £(®) is an
algebraic function of j('b;) and that the only bra.ncl"llpoints of f(r) are
branch points of order 2 at which j=1728, branch points of order 3 at which

J=0 and branch points at which j is infinite.

2¢3, f; : 2 set of 9 non-congruence subgroups of level 9 and genus 1.

In Atkin aind Swinnerton-Dyer (2), it is shown that a subgroup G of r of
genus O can be completely specified by giving:-~
(1) 2 specification for tha group, i.e. 2 set of integers./(,;l, t2 1,
&> 0, eB?- 0y 4,21 and, if h > 1, a set (aL,vz) vith a; =1,
v, > VyDeesdVgy For i1 =1 to g, setisfying
(2) relations between j and j-1728 and certain polynomials in;' y the
Hauptmodul of G ~ the "j - equations" of the specificaticnj
(3) a relation between the coefficients of the polynonials in g deri\-rable
 from the zero constant term in the expansion of ¢ ateo.
When g» 0, the situation is somewhat altered; from a consideration of branch
points one still obtzing "j - equations". In the case of the cycloidal
subgroup r’q »vhere t =1, K =p(=9% g=1,e =1znd e =0, the
elimination of j from these eciuations produces' 2/¢'=.18 simultaneous
non-linezr equations bet?:eeﬁ as meny unimowns whose solubtion effectively

specifies f' . If % ,xz,..'. X9 denote the unkmowmns, the 18 equations

- are those obtained by equating the coefficients of x' (i = 0 to 8) in both
* . . r'l- z)



the following identities :-

(x5+x1x2+x2x+x})(x5+x4x2+x5x+x6)2~(x7x4+x8x3+x9x2+x1ox+x11

= (x}'+x12x2+x131+x14)3 (2.3.1)
(x3+x1x2+xzx+x5)(x3'+x4x2+x5x+x6)2-(x7x4+x8x5+x9x2+x1ox+x11--1728)2

= x(x4+£15x5+x16x2+x17x+x18)2 (2.3.2)

Thus the 18 equations are

2 2 3 . s 0.
xixé -Xq3 X414 (coefficients of x~ in (2.3.1))

2

18 (coefficients of x1 in (2.3.2)) (2.3.3)

2
Xy Xg +2x§x5x6—2x1o(x11-1728) b4

2 - 8 .
x1+2x4-x7 2x15 (coefficients of x~ in (2.3.2))

Given the equations (2.5.3),'the only information on the nature
of the solutions that we were searching for was that the ninth powsrs of
these solutions xi(i = 1 %0 18) were rational; more specifically, the x;
were of the form %.kr y Where k9 was‘ra‘bional and m, -n and r integral. By

setting x =-1§-in (2.3.1) and (2.3.2) and multiplying throughout by k18,
. k

the exponent r of k is uniquely determined for each solution. Thus we can
x,° |

determine integers s and t such that —5¥ is rational.
x

The equations (2.3.3) were obtained by hand, though an algebraic
manipulation package, had one been readily available, would have been used.
This kind of algebra is vbest handled by a computer since by hand it is not
only tedious but definitely unsafe. This does not imply that an electronie

computer is 100% reliable; however, modern computers do have "“hardware”
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cheéks that trap almost ail mnchine errors - see l.3. Furthermore, an
algebraic nanipulation packsge could output directly to magnetic tape or
disc and thus bypass the error-prone data preparation stage.

‘In the first instence, we attempted to solve the equations (2.3.3)
directly, using a library progrémme.designed to minimise a sum of squares
of the form

m
| F(x’ ,.'z,...,xn) = :A_-—;{fk(x”xi’-'“"xny ‘.

Herem =n = 18 and f1='=. xaxz —:12" —xB“_ proey f’ggx'+2x4-x; —2x,'5..
The programme demands that :c',....jc'8 must initially contain starting values
for the search for solutions. Unfortunately, we were 2t a disadvantage in
having no knowledge of the size of these solutionms. There isy in fact, 2%
leagt one infinite family of solutions and one isolated solution for the
J = equations. e obtained from the computer such an isolated solution
which was incorrect since the inegqualities in the j - equations were not
satisfied.

e give below the solutions x; of (2+3.3), obtained by a completely
different method. TE; F;lutions are of the forzt%.kr, where

k =(23-a-) = 0.77885T8471 eee 3

the last column is an approximation to the solution.

(15)
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These solutions were obtained 'in the following way. On ‘—b we

have two functions

~174303/2
~306240
48

672

2176

12

1872
20544
81792

@©ORNOE DO~V AR NORN B

x=52, Za,l(n)gn
nz=-1

and y =E'5+ S a,a(n)gn
. N=~1
where T=e E

Every function on f“9 is an algebraic function of x and y. Normally the
coefficients a1(ni end azﬂn) are complex; in the case of r » however, they

can be teken to be real.

34.12234
353.26778

" 914.34300
32.75745
343.33212
1125,29372
'3050486
-151.66299
-2353.78278
=15152.42927
-32298,75000
29.11773
247.28T744
485.74472
43,67660
688.87217
4586.00164
11075.83371

By considering the pairing of the copies of the

fundamental domain, it can be shown that if

T
T

=b. + e

ei (n-6)

1 i

=c, +
2 i

i@

(2.3.4)

(2.3.5)

then  x(T,)=x(T,) and y(T, )=y(T,) vwhere 1;( 9(%" and the b,,c, are suitably

chosen pairs of integers. On

M we have, for example, the pairings

9

b1= 0,c4= 0 3 by= 1,¢= 4 5 b3= 2,c3= 6 (amongst others). Ve now approximate

(16)



the theoretical situation by attempting to solve the simultaneous linear
~ equations in the unknowns a.1(n), az(n) respectively, obtained by equating the
coefficients in the expansions (2.3.4) at the points (2.3.5). Here © assumes
values in the closed interval [131-,2?”] and the expansions (2.3.4) are now taken as
finite exparisions. The nett result of this device was the input to a linear
programming package of two sets of 241 simultianeous linear equations in 40
unknowns. There was'no guarantee of success since thése equations were rather
‘ ill-conditioned. In the event, we were able to determine, from the solutions,
the first 10 coefficients a, (n), az(n) in the form E,.kr (n and = integral,
-Qgs%), using a continued fraction expansion routine to identify m and m'
By forming a new y = Yora * g}: and by fixing the constant terms in
the expansions of x and y, we obtain the relations
2= x> & 225/46%2 + 960k*x + 4096K°
3= 30 4 541322 4 953k + 5041°) - (2.5.6)
F9kx? + 642K7%> 4 16425K7x% + 174303k x + 612480Kk7)
where k9 .2—516-‘ From these relations we can obtain the solutions of (2.3.3).

Five minutes of computing time were required to set up and solve the

simultaneous equations.

2.4. Congruence properties.

Having obtained the relations (2.3.6) for r‘9, we may form the
differential :

Jax _ Sdx -1 13 2 203 ! 5
AZ - - Z;b( Ik =¥ - 1%% - 3% -k3§4-5k4$ R
-‘We give below a table of b(i), i=1(1)35,99(3)107. Each b(i) is of the form 'E:"x’
3
where 3{' m (except for i=3,6 and multiples of 9) The right-hand entries

against the primes p are the character sums z L.
X=0

(17)
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-17 13787
37 94725
75850

-57 10514
16 35149
2 50073
-17680
50 46244

0
-13695 44161
-37955 93836

-14 98630
59133 93124

-1 98424 52435
-202 63550°

-1 12065 50786
-1 34310 87490

)

=T1755 40277 59242 84974 15239 83076 55920 .

~62070 08185 13546 23220 61516 73050 03883
T -2 46835 24201 03676 23262 10262
-27813 30552 38924 86914 32633 14552 10611
~-85568 15354 28903 46806 04393 37025 91388
=121 93450 57370 27048 51437 39040

12140 91762 41078 27279 42019 39633 28412
=1 94862 13591 18374 43392 49832 83215 38536

(18)
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To investigate the congruence properties of the b(i) and similar
coefficients, it is desirable to have a subroutine which, given an elliptic

curve y2. =x’ + c(3)x2 + c(2)x + (1) ,

2 ' - (2.4.1)

a relation . + e(1)
en e . ?

i= y(d(H+1):|:N + eee + d(1)) + e(N+3)
and the value of k': computes the coefficients in the expansions of
x=%"% ... and y=%¥"% ... and the differential --35= Tt vee , all
the computation being performed modulo a given integer. Here the c(i), d(i)
and e(i) are rational and the index of the subgroup is m where

(1) if/u- is even, N = -L—(/A-4) and e(N+3) = 1

(2) if/A is odd, N = -é—(;a—}), d(N+1) = 1,and e(N+3) =0 .,
Thus, in the .case of [ 9 M=9 and N=3, with the relations (2.3.6) input to the
subroutine., We may eliminate k from ‘th:-.:se relations using the transformations

x =x/k2’3

= 3 i 9 _
new new y/k® and the value k% =

2.
256
Basically, the subroutine sets up arrays to contain tke coefficients

\J
in the expansions of X,e.. ,xI\'+2

’ y,yx,...,ny and j, the latter being
calculated by KLEINJ. At any one time, two coefficients & in the expansion

of x and IB in the expansion of y are being determined es solutions of two
simultaneous linear equations in the unknowns &« and /3, obtained by equating
the relevant powers of E in the relations (2.4.1). All the arrays are -then
updated and the cycle continues until sufficiently many coefficients of x and y
have been computed. The most expensive operation involved in this procedure
is the use of a subroutine to multiply two power series, despite the fact that

this latter subroutine employs e function that overwrites its "calling sequence"

and plants the relevant code directly in the calling Subroutine - see 4.3 .

(19)
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Throughout the whole process, arithmetic is performed modulo a given integer
vwhich must bz relatively prime to 2, M and k’: It could be argued that a
large number of coefficients of x and y and thus _%_x_ should be calculated
once and once only, using a multi-length version of the programme described
above, This would avoid recomputing the coefficients each time a different
modulus is required. Unfortunately, this is not feasible from the point of
view of computing time. Thus, for |—'9, the firat 500 coeffirients of -%
may be computed to a2 given modulus in approximetely 30 seconds; to obtain
these coefficients as rational numbers would, however, require several hours
computing since a high precision would be necessary - see the previous table,
One of the basic congruence propertie's of the coefficients of __d&_x
on |_'9 is that, for p prime,
-1 2 .
b(p) + (L)y=0 (mod p) .

%X=0 P

In fact, a much more general result is known - see Atkin and Swinnerton-Dyer( 2 ),

5¢.3.Theorem 4. Furthermore, from 2 mass of numerical evidence, we obtain the

following properties. Given any "random" x and any Xy9%q9%y W forn y from

yz =%+ x2x2 + XX+ X,
dx S
and obtain -~ with coefficients a(n), say. Let c(p) = z,(%-) and let O be
the discriminant of the cubic x3+x2x2+x1x+xo.‘ Then, for integral k,

(1) if p¥ A and pfelp),
a.(pkn) - Xka(pk-1n) =0 (nod Pk)

where )\kE)\k_,l (mod pk-1), >\1 = -c(p) ~(mod P) 3

(2) it oA A and » | e(p),

a(p*a) +>\ka(pk"2n) =0 (mod p%)

(20)
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where )H;EE p (mod Pk)
(3) if plAand p-{’c(p},

a(n M) + A2 - n) 0 (mod p )

k~
where )\1"—3 -c(v) (mod p") ;
(4) if pll)and ple(p),
a2k
a(p n) =0 (mod ).
It should be noied that a considesrable amount of computation is
required to check these four congruence properties, even for very small p,

n and k.

2.5 Stetisticzl analysis.

In this section we coansider the elementary statistical analysis

of certain functions involving Euler's series

f(x) = ‘_‘ (1=%)=1=-x%- x + X 4 x7 - aee
m=1 o0 _ N -
=14 Z(-?)n{z?n(’n"’ » om0 (2.5.1)
re :

17,950 terms of the following four functions were computed (the
restriction veing due to the. sizé of the three moduli involved):-

2 :E , . o .
(1) = 4’x) = ® ’*\v , P,(n) =T{n) , Ramenujen's T-finction

4 1
12,.2, = n
2\ J{\ {3 = ;:l i \2‘: F .'\ =
( 7 I \‘{ ) &y 2(‘11 9 2(21’1/ O
4 P8 .
(3) }:f"(x)f"(x'\ = > F ()"
nz=l 3 )
(4) ’_( )I (“ T, (n)}x",
2 A=l 4 . .
Each functlon was computed three tlmes modulo three different

moduli, namely 10°-1, 10° and 10%1. . £'2(x) was obtained half-way through

the computation of f 4(x) - These functions were obtained by successive

(?1)
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applications of the routine EULMUL - see 4.5. The: last two functions
required EULMUL and QEULIU. The running times for the four fumections were
approximately 21, 9, 8 and 5 minutes respe,ctively. For each coefficient
of x 4 p prime, 'l;he three integers.-.-?ere processed by a2 modified Chinese
Remainder routine giving the value of that coefficient with "single-length
precisiony i.e. approximetely 11 significant decima;s. Finally the v.a'lues of
9;” = “s'i(Fﬂ(P)/lrk”lz)’ o< Q}Sn’é T , were computed and stored on maéletic
tape. Here k, =11, k’_=5, kg=3 and k4_=1. In all, there were W(17950) = 2507
values of gm, 9(3)' and 9‘4)31‘1& 71.'(35900) ‘= 3814 values of 9(2).

The object of these computations was to consider the distribution
of the values of 9;"’), conjectured to be%;sinledﬂ ~ see Cassels (5).
Here we can oanly state a negative result. fihe numericsl rzssults of ay%—'test
with a 9% significence level and 199 degrees of freedom lezd to the conclusion

()
é

that one cannot reject the hypothesis that the P do in fact setisfy the
conjectured distribution.

Finally, we give below & table of the rasults of the analogous
computation on ﬂ', with o0 "
4 5
- et q
vhere, for example, a(2) = -k, a{3) = -3k“, and k' = 27/256. The sample, howevsr,

was %00 snall for a statistical analysis to be verformed.

s




137
139

181
191

199

a(p)
~C.77885785
-1.81985864
-1.83993637
-1.11614136

0.27787376
2.41894998
0.125686963
=2.90559048
1.02015859
-2.17536941
2.05592107
7.17638578
~1.2820853%9
-5.12554484
1.1883%1601
5,65045095
2.88925528
11.48031518
-5.97525€14
-2.17313009
-2,60818903
0.64310334

3.33551235 °

-4.15760741
8.16229765
-10.88634463
-2,95916217
~7.62915465
642390350
-0.98011192
14.86671545
~2.78541510
=7.79166490
5.46060717
~13.36360276
=3471055400
10.00373368
-2.89581236
9,11865499
23.67556582
-1,16122622
-6.72459301
0.31685666
-8.14854663
18.27192204

(23)
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-0.27536783
-0.52534794
-0.41142228
=0.21093089
0.04189105
0.33544801
0.01526394
-0.33329409
0.10635889
-0.20197798
0.18462716
0.5898952¢
«0.10011405
-0.39081913
0.08666685
0.38807456
0.18807450
0.73495187
=0.12895155
-0.15263272
0.03617739
0.18580413
-0.22035275
0.41437788
~0.54161589
~0.14578746
~0,36876911
0.30764918
~0.04610059
0.,65960384
~0.12168142
~0.33284343
0.25158133
-0454759450
-0.15C98030
0439919243
-0.11340876
0.35281135
0.90000997
~0.04339706
~0.28725231
=0.24328724
0.01140392
~0.29027995
0.64763111

———
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%.1. Accuracy of computation.

As stated in i..fs , the Atlas computer stores numrers (and

instructions) in lesngths of 48 binary bits, called a word. All operations
such as aidition, subiraction, multiplication and division are performed on
words although "small" integer arithmetic can be performed on half-words, or
b-registers in Atlas terminology. All arithmetic is carrieu out in the
accumalator, whick is a double-length floating-point register with special
circuitry. By "floating-point" we mean the representation of a nucver as a
_ mantissa apd an eprnent, e.g. 5.716x1038. By "“fixed-point" we mean the
representation of a number as a mentissce and a fixed exponent, e.g. 3299
khere the exponent of 10 is 0). In aﬁ Atles word, 8 bits are reserved for
the exponent and the'femaining 40 for the mantissa. One bit in each section
represents the sign, leaving 7 for the exponent and 39 for the mantisse.
The nettresult is that it is possible to represent positive or negative
nunbers wiose magnitudes sre approximately in the range 10.116 to 10113,
with a precision of 39 binary digits, or approximately 11 significent
decimal digits. Taking into account errors arising from rounding-off after
arithmetical operations, we can guarantee the accuracy of a couputation to
at most 10 significant decimal digits.

For most purposes, this accuracy is sufficient. There are,
however, certain problems in pure mathematics which require very much
greater accuracy and we shall see in section 2 how to achieve this using'

special routines designed for this purpose.

(24)
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3.2. Variable-precision arithmetic.

Variable-precision, or multi-length, arithmetic is the neme given
to the process of linking together consecutive words in store in order to
perform arithmetic to a precisioﬁ grcater than thet available using only a
single word. Routines for this purpose ware written in the language Atlas
Autocode by F.Lumnon of llanchester University - see under Compiler AR,
section 2 of "Murther Literature on Compilers AA and A£B", University of
l.anchester Depariment of Computer Science. Nost of the coding was in the
format of basic machizne instructions (Atlas Basic Language). .These routines
were adapted for use in the Hartran system onlAtlas by li.Bird of the Atlas
Conputer Laboratory. They were written in ASP (Atlas Symbolic Programming
Language) - see IC Lﬂ). The routines .are called from Fortren programmes
(or, indeed, ASP progrannmes) by two subroutines LLO and YLT, whose arguments
ére functions which operzte on mﬁlti-length variables, Thus, the Fortran

stateuwent
: X = (¥ + SRTR(Z + A * 3))/C (3.2.1)

translates inta the staterment _
CALL.KLO (4,l.0LT(B),ADD(2) ,SRCCT,ADD(Y ), DIV(C),TC(X)) (3.2.2)

where A,3,2,Y,C and X are now multi-length variables and ¥ULT, ADD, SQRCCZ,

DIV and TC are routines which respectively perform multiplication, additionm,
squere-root taking, division and assicnment to the specified precision. Any
routine in Fortran can be so translated into a multi-length version of ix.
Variables erc defined to be of precision P (in the sense that all operations
perforned on them have an accuracy of P significant decimal digits, not

allowing for rounding-off errors) by calling the routine LLD. Thus, for

(25)
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example, before statement (3.2.2) is used in a routine, the following
statement must be executed:
CALL MLD (PREC(P),NAVES(X,Y,Z,A,B,C))

Only the mantissa section of each word is gsed in the spece reserved
for multi-}ength variables. Hence each word will contribute log10259 >~ 11.74
decimal digzits of'accuracy. So a variable declared to a precision of
100,000 decimal digits will require approximateiy 100000/11.T4 words of
store, or about 17 -blocks of store (1 block = 512 words). Additional store
is needed for the execution of various overations; the most ekpensive
operation is SQROOT which requires 5 words of working store for each word of
the multi-length varieble in question. The multi-length routines thenselves
occupy about 10 blocks of store, with the main "calculating" routine having
over 2000 ASP instructions. ¥For further deteils, see 425; .

The multi-~length package is not so efficient that "organisational"
overheads are negligible. For example, the Fortran statement Z = X + Y is
executed in the Hartran system in three basic instructions, while the
"equivalent” multi-length instruction CAIL MLO (X,ADD(Y),TO(Z)) is executed
in. 544 instructions. This is an extreme case, however; as the precision
increases, the ease with which multi-length instructions can be inserted into
Fortran programmes to some extent outweighs the inefficiency of the
computation. This latter observation is generally true of any high-level
language, where macro-instructions replace 8 sequence of basic instructions.

Below is given & table indiceting the performance of the original
nulti-length routines. The times taken by the Hartran multi-length package

are in fairly good agreement with those obtained from this table. ZEach row

(26)
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of the table contains the operation followed by a list of the number N of

instructions obeyed. for each "length" L in the top row. The precision P is

239

given by P = log.'_o X L ¢ 11.74L and the computing time T is given by

T o2 N/327680 seconds. Thus the time required to perform a division to a
1
>

1 2 4 8 16 32 . 64 128

precision of 750 significant decimal digits is approximately = second.

ADD 320 350 400 490 710 1100 18CC 3400

SUB 380 400 450 560 800 1300 2200 3900
WULT 320 400 650 1300 3600 12000 43000 160000
DIV 460 590 950 2100 5500 18000 62000 240000
POWER | 3000 4400 7800 18000 49000 160000 570000 = 2100000
IPART | 320 340 370 440 520 750 1100 2000
SQROOT| 2300 3500 5000 8900 18000 44000 130000 430000
PRINT [ 6100 7200 10000 18000 47000 160000 570000 2200000
READ 8800 16000 32000 80000 240000 TOO000 3000000 11000000

Two further examples of computing times in the Hartran multi-length
package are: (1) Square-root to a precision of 20,000 significant decimal
digits in 2 minutes; (2) Addition to a precision of 200,000 significant
decimal digits in 1.75 seconds.

The writer has used these routines to compute various exponentials
and logarithms to a large number of significant digits. They were also used
to calculate the partial quotients in the continued fraction expansion of
certain numbers, An example is given in 3.4., which links the convergents

-of log %%—ff§§% with the non-existence of solutions to a certain diophantine
equation.

It is vpossible, and from a consideration of computing time, advisable,

to avoid the wholesale use of multi-length arithmeiic in certain problems

dealing with rational numbers. This is discussed in the next section.
(27) .
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363« The Chinese Remainder Theorem eand "modular" arithmetic.

Tt is often the case in number-theoretical calculations thet the
end result of a computation is a large integer or a sequence of these.
Furthermore, the result is often known only up to equivalence modulo a
particular small integer. It is intuitively evident that, if we have the
answer in this form for sufficiently many moduli, then this information will
be enough to determine the answer exactly or up fo eguivale: ce modulo a
large integer. This is, in fact, the case. The Chinese Remainder Theorem
stetes that every system of linear congruences in which the moduli are
relatively prime in pairs is solvable, the solufion being uniéue modulo ihe
product of the moduli.

Let the system of congruences be

x 2z a, (modm) ,i=1,2,....,0 (3.3.1)
with (mi,mj) = 1 for i#j. |

Put M 5f? m, and let y = bi be the solution of the congruence

t=1 M
- y=1 (mod mi).

m,.
1
Then the solution x of the system (3.3.1) is given by
"
x =2 a.b, ¥ (mod k).
i=1 1% mi

The one disadvantage of this theorem is that one has to have sone
knowledge of the size of the numbers involved in a computation before that
computation is carried out. When one does have such knowledge (and this is
usually the case), then the combination of the Chinese Remainder Theorem
and multi-length arithnmetic is much more efficient than the use of
multi-length arithmetic alone.

Applications of the Chinese Remeinder Theorem will require a package

(28)
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desiéned to carry oui arithmetic modulo 2 given number. The routines written
for this purpose are described in 4. 5. These routines need not recessarily
be used in conjunction with the Chinese Remainder Theoren.

As a simple example, a suitable number of executions of the routine
SULDIV (see 4-.5) will set up in an zrray the coefficients c(k) of Klein's

o0

modular invariant j = kZ:ic(k) xk , computed modulo a given prime. From
Lehmer (H ), we know ‘-that c(k)~ —?_;J—; , Which gives an approximate velue

k
for a particular c(k) - see 2.2 .. If j is now computed modulo sufficiently

pany distinet prirmes, the Chinese Remainder Theoren will give the exact .
value of c(k). |

Severzl other applications of the Chinese Remainder Theorem are
given in 3.5. and 3.6 .

: 2
3.4+ Continued fractions and the equations 3x -2 = y2' and 8:-:2-7 = 22.

Let © be a positive real number.. By its continued fraction

expansion we shall mean the representation of © as

© =25+ 1 (3:441)

vhere the a, are positive integers, called the partial quotients of © . The
right-hand side of (3.4.1) will be written [ao;a1,aé,a5,...].

The a; must be unique for they are obtained from the following
algorithm. Let ro=6 ’ ao=[rO]= {_6], where [x] is the largest integer £ x,
and let, for n 3 1,

-8 :
1 ot (3.4.2)

=[5

®
[}

(29)
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‘The éimplest kind of continued fraction expeasion occurs when © is either
rational or & quadratic irrational. In the former case, the sequence
[ao;a1,a2,...] terrinates; the denominstor of r, is zero for some n. In the
latter case, the sequence of partial quotients is eventually periodic. When
©is neither rationalmor a quadratic irrational, i.e. in the case when O is
algebraic of degree 2 3, or transcendental, very little is known abc_;ut the
sequence of partial quotients. A notable exception is e, wh~se partial
quotients form the sequence [2;1,2,1,1,4,1,...,1,2n,1,...] .

If in.(3.4.1), the sequence is terminated at a particular a5 the

resulting /

(3.443)

will be an approximation to O ; the larger n is, the more accurate is the
approximation 9’1:0 © . These retional aspproximetions are called the
convergents to © and can be obtained from the partial quotients 251Bqs8ps 00
by the follom':ng algorithnm.

Let P_q =9 =1 and P, =4 = 0.

2 -1
Then for n » 0

Pp= a‘n.pn--1_ * Ppo2 and LG = 8%t * G2 (3.4.4)

The elementary properties of convergents are:

(1) Forn20, qp 4 -9 4= (-0 . (3.4.5)
(2) For n 20, 9-&1_ 1
4Gl 4t 1
(3) For n > 0, (Pn’qn> = 1.
(30)
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Gauss first posed,' in 1812, the problea that led eventually to the
"metric” theory of continued fractions; see khinchin ( 1f). This theory is
concerned with those properties of the continued fraction expansion which
are true for almost all rezl numbers, i.e. for all numbers with the exception
of a set of measure zero. ie consider O to satisTy - 0£6L1 5 it is clear
from the definition of the a, that the continued fraction exyansion of © is
essentially the same as that of ©+m, where m is an arbitrary integer.

Hence we set

e = [O;za.,I 1851835 et .]

and have

Tn = [?n;an+1’an+2"'a ‘

Let Z, =T, -2 . Ve have 0% zn<1 . Gauss stated that he had proved thet
Prob (zn< x) = logz_(1+x).

His proof was never published; it was, in fact, first proved by Kusmin in

1928 - see Kusmin_ (12).

Some properties obtained by the "metric" theory are:

(1) For almost all O, Prob(a.i=k) = 1032 {1—:+122 (3.4.6)
1'1’2 1{(k+2)

(2) For almost 211 @, lin ™ o 121082
n-yoo

=3,27582 29187 21811 15978..(3.4.7)

(3) For almost 211 G lm je.1a2...a = K, where K is khinchin's constant

= log,r
1+ __1 2" _
1]1 % T(re2) % = 2.68545 20010 65306 44530 ....

(1) and (3) are due to Khinchin (10) ; (2) is due to Levy (15).
We now consider computations in connection with a result of Baker

and Davenpori (4 ). In that paper, Baker and Davenport discuss the
following problem. The four numbers 1,3,8 and 120 have the property that

the product of eny two, increased by 1, is & perfect square. They prove that
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the numbter 120 cannot be repleced by any other integer N>0, if the same
property is to hold. The best result that had been cbtained previously was

that of Professor J.H.van Lint (13), who showed that if i existed,

¥ >1017100000 (3.4.8)
Tre problem reduces to showing that the simultaneous equations
32[2 -2 = y2 .
A
sz - 7 = _7,.2 (3-4-9)

have no solutions in positive integers, other tkhan x=1 and x=11. As Beker
a.nd. Davenport point ou't in their article, Siegel's theorem (see Siegel ( 1_1),
also indexed under X ( 24)) may ve applied to the equation .
(3x% - 2)(8x" - 7) = v22% = t° | (5.4010)
This theorem shows that (3.4.10) can have only finitely many integer solutions,
but, as it depénds ultimately on Thue's theorem on diophantine ecuations, it
offers no possibility of determining an explicif upper bound for x satisfying
(3.4.10).
However, Baker (3. ) has proved a thecrem, whose application to
the equations (3.4.9) yields the following result. If
253z =01+ B2+ B3 - (1 -G)e-3" (3e4411)
then any solution x of (3.3.6) must satisfy
n < (41210g 2880047 < 10%87,
Since the soluticn x=11 of (5.'4.,9) corresponds to m=2 in (3.4.11), the range
in which f_ur‘ther solutions may be found is
2 < n < 1047 ' (3.4.12)
A direct search for scolutions of (3.4.9) in this range would have

been quite impossible in the light of present-day computing power. This
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range can, however, be slmost completely eliminated by the application of a
lemma given by Beker and Davenport (4= ). The applization shows that if
(1) O =20z(2 +J3) = 0.74710 53797 84665 20012 ...

log(3 + §S)

and € = (2 + §3)% = 13.92820 32302 75509 17410 ...

(2) B=1 %1' j_gif = 0.08680 37805 12726 T4666 ...
log(3 + 38) =

and /6'= log (1 + {3){8 = 0.50603 46008 68222 91804 ...
8 - 1)83
log(3 + {3)

(35 %= 10%7 ana x = 1093
(4) 8, = value of © correct to 1040 decimal places,
i.ee 'e e |<1O'104o

(5) gq is the denominator of the last convergent, in the continued
fraction expansion of O, , satisfying q < 105 20
@) qpu)i X 10;33' and Ilqﬁ'"}i X 10‘33, where, for real x,
=l =]x-[x+ -é-]l » i.eo || x|] is the absolute value of the
difference of x and the nezrest integer 1o x ;

then there is no solution of (3.4.9) with m in the range

loz KM ¢ m ¥
log C

i.e. log 10720 ¢ &< 10%7 (344.13)
2 log(2 + {3)

The number on the left-hard side is approximately 483.5.

The main computation is tkat involved in finding q in (5). To .
find O, ﬁ, /B’the author used the square-rcot facility already in the hartran
- aulti-length package and his own logarithm routine. This latter routine

simply uses the standard series for log(1 + x) namely

(33)




log(1 + x) = x - 2

_J_{_ -+ _35_3 =esot (_1)n+1£n LI (-1(1‘1)
2 2 n . :
If (x) = N n+l n -
Ry(x) = | log(1 + x) -Z (=1)"'x" |, then
n=1 n

RN(x) £ £+ if x>0
li+1

N+t .
and I&I(x)< g-ﬂ; if x< 0.

An avproximation y is taken to the number I, whose logarithm is required.
- 2

(3.4.14)

Let 1 be ‘the single-length logarithm of y, i.e. log y, evaluated to a precision

of é.pprcxima."cely 11 significant decimal digits. Let E = multi-length

exponential of 1. The series (3.4.14) is then used with x = Y/E.

Wrench and Shanks (11) have written on the effective computation

cf the continued fraction expansion of a real number. In most cases, their

method will produce the desired results, although provision deoes have to be

nade for the possibility that very large partial quotients may occur ixn the

expansion, Tris procedure was initizlly adopted but the computing cverhezds

in Fortran multi-length computation (see 3.2Z. ) mede it only marginally

more efficient than the use of the algorithm (3.4.2) ; moreover, with tais

algorithm no special provision need e made for very large particl quotients.

The denominators ¢ of the convergents were computed by(3.4.4) and

the denominator g of the last comvergent satisfying q 410520, narwely Q40027

found <o be T4766 56458 85928 21002 92900 19462 74193 99932
88435 51834 20544 €7033 92527 99010 36030 14382 83128 15409 94079 49641
75823 T2448 20294 43561 15091 97552 €5496 09837 65725 TOB05 71781 03765
50201 82968 04828 89690 91216 09036 42656 T4598 43126 05161 50601 13889
48311 34448 43630 77762 01995 65513 73885 70540 20065 08420 17453 43949
32542 08937 08733 92823 67336 28270 20008 54767 81468 64873 46464 28193
59455 78582 27505 86507 22688 57730 19978 42556 32565 44952 91835 82629
52538 66886 97685 22768 40839 96403 83429 92464 53736 46774 48258 60409
41197 29139 39485 18564 04207 26381 80339 63053 74225 67257 33135 04814

(34)



Ve remark that, referring to the esymptotic relation (3.4.7), the -
solution for x of the equation
z "
' e12105 2 - 10520
is found to be x 2 1009.08 , in surprisingly sood agreement with the result

219

Kultiplying q by /6 and /3’respectively, and taking the fractional
part, we ottazin

lapll = 0.42279 €2795 75983 04235 ...
and || o Bl = 0.47422 86563 98614 56344 ...

Thus (6) zolds with a comfortable mergin and this disposes of the range (3.4.13).
The pcseibility of solutions in the range

2 < m < 483.5
is ruled out by the result (3.4.8).

305+ The eguation x3 - 612 + 4x - 2 =0,

This secticn contains the results of computer-aided investizations
of the real root of the cubic
x> - 6x% 4 4x ~ 2 =0 (3.5.1)
These investigations were carried out to explain the occurrence
of very ia.rge partial quotients in the continued fraction expansiocn of this
root. Part of this section appesrs in Churchhouse and Luir (6 ). All the
variable~precision work was performed using the Hartran multi-length
arithmetic package descrived in 3.2 .,
The eguatien (3.5.1) was eriginally studied 0y D.H.Lehner as the

equation 3
y -8 -1=0

Gs)

X
2
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obtained by setting x =y + 2 in (3.5.1). Before this, Delone and
Faddeev (7 ) had made a study of the cubics
x) -ax-b=0 a,b integral and lal,|v g 9.

Unlike rat-ional numbers and quadratic irrationals, very little is
known about the structure of the continued fraction expﬁnsion of the Foots
of cubic or higher order algebraic equations. The continued fraction
expansion of a rational number must eventually terminate and the continued

?‘—"'—cm (a,b,c,d iniegral,

fraction expansion of a quadratic irrational
d not a perfect square)} has a periocdic structure, the length of the period
depending on d. Lehmer observed, however, that eight large partial quotients
occurred within the first 200 partizl quotients in the continued fraction
expansion of the reai root 3.31862 82177 ... of the cubic x5'- 8x - 10 = 0.
The smallest of these was 22986 and the largest 16467250. This is unusual

for the following reason. From (3-4‘-6), for almost all real O, the

probability that in the continued fraction expansion of © a particular

2
. . . (k+1)
partial quotient a; equals k is log2_ k(ke2)

Hence, for almost all O,

o0 2
_ {241)” _ 1y, .44
Prob(a; > k) ',,Z, log, T2y = 1o8{ ) ~ i .

Thus the probability that any particular partial quotient has a value greater
than 20,000 is approximately -1—3;—90. So the occurrence of eight such partial
quotients amongst the first 200 partial quotients in the continued fraction

. expansion of the same.algebraic number mugt be regarded as unusual.

The crucial step in the explapation of this phenomenon is the

3

recognition that the equation x” - 6x2 + 4x - 2 = 0 is precisely the

equation satisfied by a clasg-invariant of Weber's, namely £(J-163).

(36)



Let j denote Klein's modular invariant (see 2.2.) and let

() = q-ﬁﬁ; (1+ &)
vhere q= erri‘l'. ~
To illustrate the-theory of class-invariants constructed by Weber
(see Weber(20)), let -n be a negative integer with n = 3(mod 8). Let h be
the class-number of the determinant -n and let

akxz + b Xy + cky2 (k = 1,25..0,h)

be a complete set of reduced imprimitive binary quedratic forms with

determinant bk2 - 4a'k°k = «n, To construct such a set, one takes

b = 21,43,45,.0. with |b\43'_n and then expresses %(b2+n) as a product of
positive factlors a and ¢ in all p;ssible ways with either ¢ > a and ~-a < b £ a
or c=2aand 0 <£b4 a. Clearly the form

x° 4 xy + +(n+1) (3.5.2)
will belong to this set.

Let now ‘T’k be that root, with positive imaginary part, that

satisfies the equation

a.kx2 + bkx +Cp = 0.
Then, by VWeber (U)’,\ 418-423%, the equetion

T] x-sgn =0 (3.5.3)

k=1
has integral coefficients.

Furthermore, we have 3
24
j( -1 +7T ) = - (£ g'rg - 256)
2 £7(1) )

* Prom (3.5.2), one of the T, must be %—- {-z . Hence f“(ﬁ) must satisfy

(37)
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an algebraic equation of degree 3h since, from (3.5.3), j(zl—EJEE% satisfies
an algebraic equation of derre: he. It can be shown thet this equation of
degree 3h reduces to an equation

3h
I - =0 (3.5.4)
ks

with integral coefficients where the 24th powers of the roots d& are the

roots of the equation satisfisd by sz(I:i). Hence f(J-n) satisfies an
algebraic equation of degree 3h, namely (3.5.4).

To illustrate the above theory, we take the discriminant D = -2347.
The class—mumber h(-2347) = 5. By (3.5.3), y = 3(21—3—%22322) will
satisfy a quintic equation, namely

¥ + 12 54200 00889 28251 61202 59144 98103 48856 55669 55018 17957 72767
51093 76000y* + 38503 92729 35672 30897 76031 37789 72411 73629 20974 45730
99844 79355 24160 00000y° - 397 49801 64212 09870 83534 T3429 08155 23209
04452 72713 27833 29325 08876 80000 00000y> - 275 00560 58932 25672 28352
89220 63608 43069 45561 56276 88517 21342 43991 55200 00000 00000y + 9 01644
56992 25621 59908 07505 26731 94391 59181 35938 85976 89068 08033 28000
00000 00C00 00000 = O,

with discriminant

2324 3132 562 140 1,22 4320 558 5912 4312 508 (42 714 732 634,894, 105%:
2 : 2 4 4 4 2 4 2

107 «109 .127 .157 .167 .197 «199,2277.239 7251 263" .269 .281 .293 «359%.
3832.4092.4312.439%.4612.467%.509%.647%.1103% . 12312, 12592, 13192, 1499°.
15632.1663°,18232.2347°

The factorisation of the discriminant, which is approximately 4.98x10575,

required 15 seconds of computing; for & "random" number of this magnitude,

the problem of its factorisation remains intractable for the forseeable

future.

(38)
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Similarly by (3.5.4), =x = £(J-2347) will satisfy an equation of
degree 15, namely

10

217 - 566214 - 950x1% - 2x'% 4+ 1676z + 168810 - 1216x°

- 5080%°

- 3520x! + 1136x° + 5056x° + 5888x* - 3728x°

- 9152x° - 224x - 32 = 0 .
The discriminant of this equetion is

2102 528 58 74.1370,432.732.109% 409223477
and the real root is
567.67349 42228 67666 ... = e’k"m ﬁ (1 4 e~(20-1m§258T)

Ve now fix D = -4 = ~163, Here the class-number h(- 163)

with y = J(—1;-£:2) satisfying the lirear eyuation
y + (20.3.5.23.29)° = (3.5.5

“The constant term in this equetion is a perfect cube; indeed if p >0 is
2 prime and h(-p) = 1, both jé) and m are inbtegers vhen T = :LEQE.
The equation satisfied by x = f(m) is a cubic, namely

x3—6x2+4x-2=0
with discriminant -22.165.

This is precisely the equation Lehmer had investigated. From the

above theory, we know that its real root, which we shall denote by O, is
FES (), TSy, SISy (3.5.6)

The main factor of this expression is e-k,:n’h 5 , which approximates O with
17 Hn 763

en error of less than 10° '. The continued fraction expansion of e
is unremarkable in the sense that no "large" partial quotients appear early
on in the expansion. The remainder of the expression (3.5.6) involves the

n§163

odd powers of e , which we shall denote by X. By (3.5.5)

(39)



j(i%@) = -(26.5.5.23.29)3' =N , say.
From the definition of j,

) = i{c‘:(n)xn =x1. 744 + 196884x + 21495760x2 + ese
L

where 2t T

X=e °

Setting T = Tt A{183 oo iioin

2
= efri(-1+is163) = ”M163 | _y-1

and

N = -é"Jng + 744 - 195884e-"'ﬁ33 + 214937609-2“5733 = .o
Thus ‘

183 | Ly 4 744 - 196884e" ™53 | 2149576062765 _ . (3.5.7)
Since, by Lehmer (2 ) |

’ ’ bref

o(k) ~ E— es k—yoo
- 22, x4

w§163

it follows that the coefficients of the powers of e~ are heavily

{163

outweighed by these negative exponentials, so that, from (3.5.7), e
_1968846- ™13 | 1,

aust
be nearly an integer, the error being approximately
fact, computation shdws that
X= e‘rrm? = 262 53741 26407 68743.99999 99999 99250 ...

We now show that x2 is nearly an integer; which is not trivially

oovious. Let M = =N + T44. From (3.5.7)
X = K - 196884X~" + 21493760X"2 - ...

Hence, multiplying both sides by X,

2

X% = MX - 196884 + 21493760X" " = ...

= H(N-196884X" 1+21493760X 2-...) - 196884 + 21493760X~" - ...

= M2 4 M(-196864X" 1+21493760X 2. ..) - 196884 + 21493760X" 1 - ...

(40)
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= M2 + (X+196884X"1-21493760X"24 . . . ) (=196884X" 1421493760X 2= .. )
- 196884 + 21493760X" " - ...

= 2 _ 393768 + 42967520~ + 0(X~2)

2163

42987520/262557412640768744 & 1.63739 x 107 1°, the error being one of excess.
308163 e4m$165’ It
, LR N L ]

le therefore deduce that e should differ from an integer by approximately

In a similar manner one could dezl with e

éﬁ6163

is found that the first 8 powers of are nearly integers, the error
increasing fairly rapidly. The fractional parts of the first 9 powers of X

are- shown below.

Power of X Fractional part
X +99999 99999 99250 ...
x> .00000 00001 65738 ...
x> .99999 99901 23693 ...
x4 .00000 03084 64322 ...
x? 199999 36541 87468 ...
x8 .00009 71752 54162 ...
X1 .99880 93165 26134 4.s
x° .01223 41680 69154 ...
x? .29886 26339 54035 ...

The above analysis shows that, in particular, the first few odd

w {163

powers of X = e are nearly integers. Now, as observed previously, the
continued fraction expansion of ékfr{ng is unremarkeble and indeed it is
found that the values of the partial gquotients first differ from the partial
quotients of © at the 16th. term, immediately before the first large term
occurs. This implieg that the first factor ignored, namely

14 o635 (3.5.8)

is, in some sense, responsible for the first large term in the continued

(42)
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fraction expansion of ©. Now (3.5.8) may be written as

R S T I
M+ 1+ N,+ °°°

1 1
where . ¥, = 262 53741 26407 68743,
and N, = 133 34624 07511 .

1 + e'5“\ﬁ_63'

The second factor ignored is and this is nearly an integer,
so that it may be written as

1 1 1

T4+5— =— = «us
L!2+ 1+ N2+
vhere K, 22 1.8 x 10°%  and Nacﬂoe .

Similar remerks apply to the third and féurth factors, the corresponding
values of Mi and N; being
My e 1.24 x T Ny 221.56 x 107
121

M, = 8.6 x 10 , N,£2800 .

To test the hypothesis that the very large partial quotients in
the continued fraction expansion of © are caused by the presence of these
uwnusual factors which contain two large integer terms separated by a single 1,

we compute the continued fraction obtained by taking N1,N2,N and N, to be

3 4

infinite. This is achieved in practice by replacing (3.5.6) by
1 - - -
€, =xF(1+ 2, )1+ 23,71+ 25"') eee (3.5.9)

where z, = [x“ + -é-] s So that z, is the nearest integer to X*. The value
of 91 so obtained is e_x‘tremel& close to ©, the error being approximately
5.8 x 10747, Despite this minute numerical change, the effect on the

continued fraction expansion of © is so drastic that only the first large

term remains and the remaining large partial quotients disappear. Vhen the

(42)
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factors in (3.5.9) are replaced, one by one, by their correct values in
(3.5.6), the large partial quotients reappear one or two at a time.

Ve may thus summarise the reasons why the root of the cubic
x¥ - 6x° + 4x - 2 = 0 has a remarkable continued fraction:

(1) the equation is that eguation satisfied by £(§-163);

(2) the field R(J-163) obtained by adjoining §-163 to the rationals

has class-number 1;
(3) the root © of the equation is approximated to seventeen places

of decimals by e'= eﬁm,

!

(4) the ratio ©/81is given by the infinite product

of
ne 1

(5) the first few terms of this product may all be written in the
form 4

M.+ 1+ N+ °°°

i
where Mi is "very large" and Ni is "large";

(6) the presence of such factors in (5) produces large partial
quotients in the continued fraction expansion of ©. When
these faciors are replaced by factors of the type given in
(3.5.9), the large terms disappear although the resulting

change in the value of © is extremely small.

On the basis of these observations we can make a prediction., We

{163

have seen that e 5 is very nearly an integer for n = 1,2,...,8, the

closeness of the approximation deéreasing from about 10"|2 vhen n=1 to about

10-2 when n=8. Hence the remark made at (5) above should not apply from

n=9 onwards. Thus there is no reason to expect the large partial quotients

(43)
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in the continued fraction expansion of ©to persist beyond about the

——
170th. term, the point where the factor 1 + e~ I 183

could be expected
to have an effect. This prediction is borme out. 4 éomputa@:ion of the
first 875 partial quotients of © reveals no "large" terms after the one
shown at position 161 in the tatle at the end of this section.

The large partial quotients in the continued fraction expansion
of © do not themselves exhibit any remarkable arithmetical properties. An

arithmetical property can, however, be ottained in the following manner.

The convergents of eform an infinite sequence

7
?-, % ) 1212‘ , 4;’% , 12?32 ) ee (3.5.10)
3

Evaluating the expression x7 - 6:~:2 + 4x - 2 there x is a convergent in

(3.5.10), we obtain the following sequence of rational numbers

_1 10 119 1002 _ _163 (3.5.11)

0
1°? 53} y = 22-3' 1] 913 ] 2045 3 oo

in which every other member has the same sign (which follows from the

theory of convergents) and each member is of the form +—m5- s R and n
“n

iixteg;ral and m > O, since O is irrational. Let o _4 be the numerator of
the i-th. member of the sequence (3.5.11). Ve give below a table of mi,

i=0,1,...,3T , together with the corresponding partial quotient a, of ©.

(44)
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m, a. i

-— - -

7 5 0

10 3 1

119 T 2

1002 4 .3

163 2 4

1 34802 30 5

17381 1 6

% 82402 8 1

24 27371 3 - 8

22 25955 1 9

62 10806 1 10

16 23023 1 "

637 75085 9 12

1026 38689 2 13

4716 76211 2 14

3099 14182 1 15

1 85801 3 16

3305 64995 92126 22986 17

12823 92240 92853 2 18

898 30548 74131 1 19

1 14854 71083 26485 32 20

25 63788 06077 75803 8 21

102 88698 97801 28499 2 22

27 75517 62931 32362 1 23

37 44439 84778 89699 8 24

96222 24689 62929 21027 55 25

18163 68699 49053 77558 1 26

3 19471 73483 92623 08047 5 27

51995 08920 34725 81190 2 28

361 01815 94536 22961 64927 28 29

64 47213 54090 76471 05591 - 1 30

2294 80934 02128 87382 T4802 5 31

208 32262 06868 99807 1 32

34866 85461 91617 91885 89642 67242 1501790 33
12117 74075 81146 78024 58582 07401 1 34
95682 73335 49158 14828 46042 02582 2 35
23781 13162 58472 58147 83317 18325 1 36
2 18311 24289 94519 03771 93404 67313 1 3T

The m, are certainly not monotonically increasing, but one
observes a distinet fall in the value just before the position corresponding
to one of the large partial quotients in the continued fraction expansion

of ©. One can expect this, since, at this position, we have a convergent

(45)
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which, in relation to the size of its denominator, is a good approximation
to. E;o : . - ST

We observe two properties of the sequence Dy s 50 Firstly,

2,... L]
the number 163 appears amongst it. Secondly, the eight "large" partial

quotients a.i are

317 = 22986
835 = 1501790
agg = 35657
ag, = 49405
2403 = 53460
8109 = 16467250
8139 = 48120
8469 = 323921

The corresponding values of m, begin

mg = 1 85601
n,, = 208 32262 06868 $9807
mgg = 34354 87084 12692 17891 33839 29164 09801

For brevity, the approximate values of the remaining five m, are

~ 6.88 x 10°%
& 2.97 x 1072

m,. = 1.28 x 10%
80 74
mipgx T.72 x 1074

~ 107
m160__ 1.02 x 10 .

2402
B35

The attempted factorisation of these numbers reveals that

T 11 19.127
11 .19.127.%
T 19.127.*

H
-
[+))

1

meo' = 5.7 «11. 1270*
2
m 7 1. 1270*
102 2
Do = T .11, 127.419.1093. %
m138 7 «11. 19.1270*

2
m16o = 7..11 .19.127-*

(46)
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where * indicates an integer (not necessarily the same) having no prime
factors smaller than 10000.

The primes 7,11,19 and 127 are precisely those obtained in the
evaluation of Jj)-1728 when T'= :J—i;JEEEZ . For we have, by (3.5.5)

2
) = -(26.3.5.23.29)3

= -262537412640768000

and so ilr)-1728 = -262537412640769728

= 1610658973256256 x -163 .
Hence J3-T128 = 40133016§-763
= 22.3%.7.11.19.127 163 .

Pinally, all these observations on the cubic x3 - 6x2 + 4x - 2=0
carry over to the cubics associated with other imaginary guadratic fields with
class~number 1. However, because the absolute values of the_discriminants of
these fields are less than 163 (see Stark ( 18)), the phenomena are not nearly
so pronounced., Thus, with the discriminants -67 and ~43, we have

5"537 = 14 T1949 52743.99999 86624 54224 ...
and 5"523 = 8847 36743.99977 74660 34906 «.o
The cubics satisfied by £(§-67) and £(§-43) are, respectively,

X - 2x2 = 2x =220

X0 - 2x° -2=0

and one observes the partial quotients 87431 and 29866 respectively early on
in the continued fraction expansion of the real root of each cubic.

Below are given the values of © and 91 to 200 decimal places,

/

together with a table of the partial quotients a, and a i in their respective

continued fraction expansions.

(47)
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© = 5.31862 82177 50185 65910 96801 53318 02246 77219 19808 83690
02602 28091 99584 01958 97457 32187 43665 34591 07487 15400
45589 07647 42444 78645 91488 72327 64378 31165 98454 79445
12414 29908 T5700 21982 39534 04098 41477 60189 42443 29911

©, = 5.31862 82177 50185 65910 96801 53318 02246 77219 19808 77903
i 25291 02486 16405 49342 75592 94236 99171 57852 32639 72630
30208 06883 94087 98203 79559 02991 44546 73822 67205 03956

81415 44232 97654 81169 19582 87166 38540 80329 70950 41676

- T -
0 55 36 11 72 12
1 > 3 37 T 1 13 1 2
2 T 1 38 6 3 74 T 1
3 4 4 39 11 75 2 6
4 2 2 40 1 3 76 13
5 30 30 41 5 2 11 7 1
6 11 42 2 2 78 1.6
7 8 8 43 11 79 3 38
8 3 3 44 6 2 80 25 4
9 11 45 2 2 81 49405 6
10 11 46 2 3 82 11
11 11 4T 1 1 83 1 8
12 9 9 48 2 1 84 3 1
13 2 2 49 11 85 1 2
14 2 2 50 1 1 86 1 2
15 1 1 51 3 2 87 4 7
16 3 3 52 12 88 11
17 22986 22986 53 3 18 89 2 1
18 2 2 54 1 5 90 15 1
19 11 55 2 11 91 1 1.
20 32 32 56 4 1 92 2 2
21 g8 8 57 3 40 93 83 23
22 2 2 58 1 1 94 11
23 11 59 35657 2 95 162 2
24 8 8 60 1 2 96 2 7
25 55 55 61 17 5 97 1 1
26 1 % 62 2 1 98 1 12
27 5 5 63 15 3 99 15
28 2 2 64 11 100 2 5
29 28 28 65 1 6 101 2 2
30 11 66 2 7 102 1 1
31 5 6 61 11 103 53460 1
32 1 110 €8 1 6 104 1 1
33 1501790 1 69 5 1 105 6 19
34 11 70 31 106 4 2
35 2 3 T1 2 2 107 3 1

(48)
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108 4 1 139 48120 7 170 110
109 13 4 140 1 2 171 1 1
110 5 1 141 2 2 172 14
11 15 1 142 17 2 173 2 2
112 6 2 143 2 4 174 2 4
113. 1 4 144 13 175 2 1
114 4 1 145 2 2 176 2 19
115 16 146 1 1 17 2 16
116 4 1 147 4 -4 178 17 1
17 1 1 148 2 6 179 4 1
118 11 149 3 1 180 9 4
119 2 2 150 11 181 5 1
120 11 151 2 1 182 1 14
121 16467250 1 152 23 1 183 7 500
122 11 153 3 24 184 - 1M 4
1235 3 5 154 2 1 185 1.2
124 14 155 11 186 2 3
125 75 156 1 1 187 9 24
126 2 3 157 1 14 188 1 1
127 6 6 158 2 1 189 14 4
128 1 4 159 1 1 190 4 1
129 95 2 160 27 9 191 6 1
130 20 2 161 325927 1 192 11
131 1 4 162 11 193 2 2
132 2 1 163, . 60 5 194 1 3
133 11 164 1 1 195 11
134 6 1 165 87 3. 196 13
135 11 166 11 197 1 16
136 11 167 2 2 198 12
137 8 9 168 1 8 199 4 1
138 11 169 5 1 200 1 1

3.6. Some determinants connected with the zeros of Eisenstein series.

This section deals with certain computations connected with
Eisenstein series. The full details can be found in R.A.Rankin's paper
"The zeros of Eisenstein series" - Rankin ( 16).

The Eisenstein series are defined for even k2 4 by

E (2) = Jrfgi(cz + )E $z2>0) .
c,d)=

(49)
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Let Mk denote the space of entire modular forms of dimension <k for the
modular group | (1) :- see 2.2 . The fundamental region for | (1),

denoted by F, will be taken as A UAZUA where

1 3
A1={z=\z\21, -;-4Rz$0}
A2={z=|z|>1, 0L Rz &
A5={z: z=oo}

L -F

[ A

It can be shown that any member of Mk has 152 zeros in F, if zeros at z=i
are counted with multiplicity %, those at 2= with multiplicity %, and zeros
elsewhere with multiplicity 1. Vohlfahrt Qi ) showed that for even k
satisfying 4 € k¥ € 26 , all the zeros of Ek(z) in F lie on the circle }zl=1.
Rankin, in his paper (.'16) discusses the conjecture that this property of
the zeros of Ek(z) in F holds for all k 2 4, and some évidence for the truth
of this conjecture is given in this paper. Rankin proves that

(1) if k= 2 (mod 4),

‘then Ek(z) $ 0 for y =$’z > 1

(i.e. the corjecture holds for this case)

(50)
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(2) if k=0 (mod 4) and y =2

o 3
then E (a) # 0 providing that y > 1 + 5 log C,

k
otk 27,
where C, ==——=r— , and & =——(—%—
k Fk-z.dlwz. k — (k=-1)18(k)

B
. 2 .
or, alterna.tlvely,“k = 3% where Bn is the n-th,

Bernoulli number in the even-suffix notation (32= %).
In an attempt to disprove the conjecture for sufficiently large k,
Rankin was led to consider certain determinants, defined in the following way.
Let x = e2*?, The modular invariant j(z), see 2.2., has the
Fourier expansion:

oo
i(z) = x’1§ a.nxn , with a, taken as 744 .

1
Define a o) by
n [-.-]

R4 =Y Y

i(z) =x gan( )P vso
and let

W) ()

gy = a.y - M%ay_m a’(m)

vhere

o (m) =;d
(T2
Finally, for n 2 0, let
GO 81 gz secsvssnese gn

g1 ga g5 seeevenee gn+1

8 Bpyq Bpg2 ttteercet Bop

(51)




Ve find that :

={1]=1

I 720 = 393120
720 911520

1 720 911520
FA 720 911520 1301011200

2 911520 1301011200 1958042030400
= 27454623356160000 .

By comparing the determinants A with a2 sum of products

ﬂ(« - .‘

14.)4“

where o(d,o(1,...,un assume all sets of n+1 values j(¥) teken from the zeros
T of B, and by using the fact that j is real on the boundary of the
fundamental region F, Rankin 'provés that if, for any n,An< 0 then there
exists a ko such that, for all k 2> ko, Ek does not have all its zeros in F
situated on the boundary of F ; i_.e. Ek certainly has zeros with \z\ #1.
The author computed An sy 1=0,1,2,.40,13, using the multi-length
package described in 3.2 . These determinants were all positive and
monotonically increasing in value. One peculiarity of these determinants
was that each of them turmed out to be products of powers of small primes.
This was not immediately obviocus from the definition of the elements 8, of
the determinants. Each gn had various powers of 2 and 3 in their
factorisation but otherwise were not highly composite. If they had been,
this would have added to the "compositeness" of theAn. A table of the

factorisation of A A 9 eee , is given below., It lists for each

13.
prime p dividing An the power of p in the factorisation ; a blank entry

denotes zero.

(52)
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PA A L L L A N Ay Ay By By B A
2 5 1 18 25 32 40 49 57 64 12 81 90 99
3 3 6 10 15 18 22 27 32 37 42 47 53 60
5 1 4 5 7 9 11 14 15 17 19 23 28 29
1 1 2 3 5 7 ° 11 13 15 17 19 21 23
11 1 2 3 5 5 6 T 8 11 13 14 16
13 1 2 3 4 5 T T 8 9 10 11 12 13
17 1 2 3 4 5 T 9 9 9 10 11 12
19 1 2 3 4 5 é T 9 9 10 11 12
23 1 2 3 4 5 6 . T 9 11 11 11
29 1 2 3 4 5 6 T 8 9 11 13
31 1 2 3 4 5 6 T 8 9 10 N1
37 1 2 3 4 5 6 7 8 9 10 11
41 1 2 3 4 5 6 T 8 9 10
43 1 2 3 4 5 6 T 8 9 10
47 1 2 3 4 5 6 T 8 9
53 1 2 3 4 5 6 1 8 9
59 1 2 3 4 5 6 7 8
61 1 2 3 4 5 6 T 8 9
67 1 2 3 4 5 6 7 8
T 1 2 3 4 5 6 1
T3 1 2 3 4 5 6 T 8
19 1 2 3 4 5 6 1
83, 1 2 3 4 b 6
89 1 2 3 4 5 6
91 1 2 3 4 5 6
101 1 2 2 4 5
103 1 2 3 4 5
107 1 2 2 4
109 1 2 3 4 5
113 1 2 3 4
127 1 2 3
131 1 2
137 1 2
139 1 2
149 1
151 1
157 1

One fact immedietely noticeable from the above table is that,

for n=1,2,...,13 , &, divides & . Let A’n =%ﬂ1 s 21,

/
s D = 393120
/
A, = 69837768000 .
/
The factorisation ofAn, n=1,25400913 is given in the first 13 columns of

the table below,

@
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(contd. over)
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211 . . 1

223
227
229
233
239
241
251
257
263,
269
271
277
281
283
293,

SO

. N
-no_t._s_n_;...\lo
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N
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N
L G S L QP QU QT (I N QT T Y
[\
[ R R P N W YIS WL Ny W N QT W N W S 1.

To cbtain more data, the Chinese Remainder Theorem was used to compute

/ o / /
A 147 *°* ’A25 s instead of computing the -An directly by the

multi-lengtk package which was already proving éxpensive in computing time.
A large prime, p, wds chosen and all computation performed modulo p. In
this particular case, p was of the order of 108. The Fourier coefficients
in the expansion of j were computed (mod p) using a subroutine written for
this purpose, namely KLEINJ (see 4‘5— ). Tke determinant An was then
obtained with its elements Bgrer 180, computed mod p. To obtain a list
of the A;, it was necessary t-o set up AN’ where N was the largest n for
which A; was to be computed - in this case N was 25. Reducing AN to a
triangular matrix by Gauss eliminstion then gave the A; as the diagonal
elements of this matz_'ix. These elements were recorded. The whole process
was then repeated sufficiently mé.ny times modulo different primes and the
Chinese Remainder Theorem then applied to obtain the A’n modulo the product

cf these primes. Just how meny moduli need to be used in an application of

(55)
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the Cﬁinese Remainder Theorem depends on how la.fge the answer is; in this
particular epplication this was not kmown, though an estimate as to how
large A‘n might be expected to be was obtained by a crude extrapolation of
the¢ values of AI.], coe ,A’,I 3 ¢ A very large answer, near to the product
of the moduli, would have meant that either too few moduli had been used in
the computation or the result was a negative number or a fraction or
possibly both. This latter si‘bﬁation would have spoiled the conjecture
that An was divisible byAn_1 for n > 1. The results, as it turned out,
clearly suggested that the A:l were positive integers and the factorisation
of these numbers for 1< n€ 25 is given in the previous table, the first
13. columns 'checking with the previous calculation of these numbers by-the
multi-length package.

y/
Let now A”'n = Aln/Al np 2. Thus Alz = 2.52.11.17.19,

n-1 ?

[}
A 5= 2.3.572,23.29.31.37,and AZ = 3.5.7.41.43. From e table of
I'4
Aﬂz, ces ’A25 ‘the author conjectured that, for n>» 2,
A”n ) 36(12:1+1)(12n-5)(12n-'£)(12n-13.) . (3.6.1)
n(n-1)(2n-1)

If this conjecture is true, then obviously An> 0 for n > 0 and no light
is shed on Rankin's original problen, namely, to show that, for sufficiently
large k, Ek has all its zeros in F on the circle lzl =1.

In conclusion, it should be noted that a similar situation arises
with the expansion of certain Eisenstein series and powers of these in terms

of j. We give three examples.

o0
(1) Write E,(2) as 1 + 240%0'5@)::“,

(56)
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vhere fg(n) = z_ a® and x = e‘z ‘2, e take

dlsn -
j(z) = = . TA4 + 196884% + eoe o

. ' Y B .
If E+(z) is expanded as a2 power series in j~ 4 i.e. if
ol

4f“' = 1+ Zanj"'- : (306.2)
‘h-l
then the ag €njoy a property similaer to thzt found for the Ah in (3.58.1).

From the fact that ;@; is a hypergeometric funcition of 12 _3/ js» it can be

a
shom that if, for n21, b === with ag= 1, then:
by= 22(12n - 7)(%2:1 - 11) , (3.6.3)
n

(Z) By a cpange of variable, it may also be shov'n that if

Ve (-rm28i ) = {4+ S a7
s/
and bh :Qu/a,‘_, » then

vh= 12(12n - 1)(12n -5) | (3.6.4)

2

(3) Finally, if
oD
/Er =1+ 2 alfi™"
end L[\, Q,‘/a.,,.., s then i

bﬁ: 24(6n - 1)(§n -5)(2n - 1) £3-6-5)
n

which follows from (3.6.3) by Clausen's forrula.
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CHAPTER 4.

4.1, Subroutines and funhctions.

The concept of a library of subroutines has been introduced in 1.4.
In this chapter, we describe certain properties of a number-theoretic
subroutine library and give computer-printed Fortran listings of the subroutines.
Some of these subroutines are written in the language ASP, As the statements
in this language are virtually basic machine-code, a listing of an ASP
subroutine is not given, since it is likely to be of interest only to those
programmers acquainted with Atlas machine-code. The version of Fortran used
is that of the Hartran System available on the Atlas 1 Chilton installation
(see ICL(8)).

Subroutines may be divided into two classes, namely subroutines
proper and functions. Basically, the only distinction is that, while a
subroutine or a function is entered by a CALL statement from the calling
programme, a function may also be entered by its name occurring in the calling
programme as though it were a variable (with its arguments, if any). In this
case the value of the function is that of the accumulator on exit from the
function.

Each listing of a subroutine or function is preceded by “comment"
cards giving the purpose of the routine, the arguments (if any), restrictions
(if any) on use, subroutines called (if any), b-registers used and, if
neceésary, any further comments. Where variable-precision arithmetic

subroutines are called, these routines will be denoted collectively by ML.
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4.2, Testing of subroutines.

The restrictions on the use of certain of the subroutines arise
either from the way in which the subroutine was coded or from resirictions on
the use of certain machine orders. Failure to observe the first type of
restriction is either trapped by the programme itself, and a suitable message
printed, or is liable to cause overwriting with possibly disastrous results.
Failure to observe the second type of restriction.will almost certainly
produce incorrect results.

The flow=-diagram of a subroutine may be quite a complicated siructure.
Some sections of the code may only rarely be executed; this fact will usually
make it difficult to thoroughly test a given subroutine. Continual use is,

in the end, perhaps the best method of testing.

4.3. "Overwriting" functions.

The appearance of a subroufine or function name in a Hartran System

Fortran programme causes the following code (“"calling sequence") to be generated
by the compiler:

(1) record the return address, R say, in a b-register;

.(2) go to the subroutine or function (on exit return to R);

(3) give information for error-tracing;

(4) generate a list of addresses of the arguments.
We shall call a subrouéine or function "overwriting" if, on its first execution,

it plants the relevant machine-code directly in the calling sequence and

(59)
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overwrites the code in (1) in such a way that the code in (2) is bypassed.
With this device, the sgbroutine or function is never accessed again on
subsequent calls (unless there are calls for it.eiséwhere in the calling
programme) .

The construction of aﬁ "overwriting™ routine is only possible if the
relevant code of the routine consists of approximatel& as many instructions
as there are relevant arguments of the routine (this is due to the way in which
the list (4) is generated). 'All the "overwriting" routines in the nuamber-
theoretic library are in facf functions, leaving their answers in the
accumulatof. Furthermore, some of these functions require dummy arguments
which must appear in the argument 1list aﬁd may assume any value, conveniently
Zero.

Finally, if a programme uses these "overwriting" functions, incorrect
information.may be output by the Hartran System error-tracing routine. This
is due to the fact that the information in (3) is overwritten in the first

execution run of some of these functions.

4.4. The Fortran used in the subroutine library.

The version of Fortran that has been used in the subroutine library
given in 4.5, differs slightly from that issued by the_American Standards
Associstion (Communicztions of the A.C.M.y, vol. T, Ho.'10, Oct. 1964).

In particular, the following deviations have.been mades ~
(1) Arithmetic IF statement.
IF (1) 1,5,
is-equivalent to
IF (I) 1,0,0
vwhere a O label indicates the next‘statement. Similarly

IF (I) ,1, is equivelent to I (I) 0.1.0 (60)



(2)

(3)

(4)

Logical IF statement.
Ir (L) 1,
.next statement
Where L is a logical expression, is equivaleni to
IF (L) GO TO 1
and IF (L) ,1 is equivslent to
IF (L) GO TO 2 |
GO TO 1
2 next statement
DO -~ loop.
On satisfying a do-loop, thé value of the index is "correct', i.e.
on satvisfying
DO 1 I = N1,N2,N3

1 statensnt
the value of I is Hl4+k.MN3 where k is the largest integer such that
Nl+k . N3& H2.
FOR -~ loop

FOR I = N1,W2,N3

is identical to

DO 1 I = N1,K2,K3

1 statement

(A1) ) : -

——— .




(5)

(7)

(8)

where N is an integer constant or variable specifying the lineprinter (on

except that if H2(W1l, the for-loop will not be executed and the do-loop
will bé executed once (assuming throughout that N3 is positive).
Array storage. .
Arrays or variables coded next to each other are stored

continguously. Thus the statement

INTEGER 4(100),B{50),C
implies that 4(101) and B(1l) share the same storeflpcation, as do 4(100)
and B(0), and B(51) and C. 'This fact is assumed, for-example, in the
subroutine DC.
Print statement.

PRINT 100, Imput/output list
is equiwvalent to

WRITE (N,100) Imput/output list

Atlas, N specifies an output stream destined for the lineprinter).
Truncation statement.

TRUNCATION INTF
indicates that the statement I = X, where I is infeger and X is real, has
the effect of settiﬁg I t0 camtain the integer part 6f X.
Comment statement.

statement 7T comment .
is equivalent to

statement - -

C comment
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Some Hartran system routineé are used in certain subroutines. They
ares:-
I0Z (called from READML)
CALL I07Z(N), vhere N is an integer constant or variable will cause at
least N digits to be output by a2n Iw descriptor in a format specific~tion.
The subroutine is thus used to output leading zeros rather than suppress
them. wZ appearing in a format specification is equivalent to a call of
I0Z with # = w.
IABSF (called from FACTOR)
N = IABSF (I) sets ¥ to contain I j N and I are integer variables.
PRIPAC (called from FACTOR)
CALL PRIFAC (11;12,13,14) where Il is an integer array and I12,I3 and 14
are integer variables, will insert into the output buffer -
Il(l){ T1(2)y «oey I1(I2), in sucﬁ a way that CALL OUTREC will produce
a line of output containing
111(112).I13(Il4)...1112_1(1112),
followed by an asterisk if I4 is non-zero. (Lere Ilk= I1(k)).
If I1(2n) is 1 then it is omitted. If the output buffer is filled
completely by executing PRIFAC then I3 will bé greater than 160.
OUTREC (called from FiCTOR)
CALL OUTREC will print the output buffer. Thus filling the output buffer and
calling OUTREC is equivalent to'a PRINT statement.
INPSEL (called from !LJ) |
CALL INPSEL (N) where ¥ is an integer constant or variable will select
imput stream N (in Atlas terminology). In ¥LJ, %his routine is used in
conjunétibn with the multi-length routine READ vhich is given as an

argunent to the routine 310 (or MLT)1%3)READ will input multi-length



variables from the currently selected input streanm.
SINT (called from HLJ)

X = SINF(Y) will set X to e¢mtain sin Y.

The subroutine listings given in 4.5 are in the following order:-
(i) "single-length" subroutines, alphabetically
(ii) ‘"multi-length® subroutines, (i.e. those subroutines that call the

melti-length routines) alphebetically.
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6.

O

Atkin, A;O.L. Congruences for modular forms, in Computers in
ilathematical Research. Editors Churchhouse and Herz,
North-Holland (1968).

Atkin, A.O0.L. and Swinnerton-Dyer, H.P.F., Hodular forms on non-
emgruence subgroups, Proceedings‘of the Symposium
in Combinatorics, American liathemetical Society,

Los Angeles (l968),_to appear.

Baker, A. Linear forms in the logarithms of alggbraic numbers, to
appear.

Baker, A. and Davenport, He The equations 3x2ﬁ2=y2 and 8x2—7=z2,
to appear. |

Casseis, J.97.8 Diophantine.équations with speéial‘reference To
elliﬁtic curves, Journal of the London HMathematical
Society, Vol. 41, (1966), 193-291.

Churchhouse,; R.¥F. and *uir, S.7.E. Cmﬁmmfmdmm,ﬂwwuc
numbers and modular invariants, to appear.

Delone, B.N. and Faddesev, D.K. The theory of irrationalities of the
thiyrd degree, Vol. 10, Translatioﬁs of :Tathematical
Monographs. American Hathematicai Society (1964).

ICL (International Computers Limited). & primer $f Portran programming

‘for use on Atlas and Grion.computens, (Cs 390).

ICL (International Computeré Limited). Interasp_- an intermediate

Atlas Symbolic programming language. (AERE R4285).
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11.

12.

13.

14.

19.

20,

21.

Khinchin, A. Continued Fractions, Chapter III. Noordhoff Ltd. (1953).

Klein, . and Fricke, R. Vorlesungen uber die theorie der:elliptischen
modulfuniktionen, Vol. I. Teubner, Stuttgart.

Kusmin, R.O. On a problém of Gauss. Reports of 'the Academy of Sciences
(1), 1928, 375-330.

Lehmer, D.H. Machines and fure mathematics, in Computers in Mathematical
Research. FEditors-Churchhouse aﬁd Herz, North-Holland
(1968).

Lehmer, D.H. Properties of the coefficienfs of the modular inverisnt
JGE), American Journal of athematies 64 (1942), 488—502;

Lévy, P. Théorie de 1'addition des variables aléatoires. Paris-(l937).

Rankin, R.A. The zeros of'Eisenstein seriss, to appear.

Siegel, C.L. The integer.solutions of the equation_y2=éxn+bxn-l+...+k,
Joufnal of the London Hathematical Society, Vol. 1, (1526),
€6-68.

Stark, ..  There ié no tenth commnlex quadratic field with class-number 1,
Proceedings of the Hational Academy of Sciences, Vol. 57,
(1967), 216-221. |

Swinnerton-Dyer, H.P.F. in application of computing to class field
theory, in Algebréic Mumber Theory. Editors Cassels
and Prohlich, icademic Press (1967).

Weber, He Lehrbuch der ilgebra. Vol.III. Chelsea Publishing Comvpany.

Tohlfahrt, X. Uber die Nullstellen einiger Eisensteinreihen. Hath.

Nachr. 26, (1964), 381-38%2.
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.22' Wrench, J.%. and Shanks, D. Questions concefning Khintchinets
consteht and the eificient co-_'-‘lp'u'ba:tion of regular
continued fractions, lMathematics of Comwutation,
Vol. 20 (1946), 444-448.

23. Van Lint, J.H. On a set of Diophantine equations. Report
68-15%-03 of the Technological University Rindhoven,
(1968).

24. X. See Siegel (17).
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4.8, 'THE ‘SUBROUTINg LIBRARY.

ABBREVIATIONS
RESTRECTION A€ N <2#835n1 I§ DENQTED! By R#(N)
RESTRICTION U< N g2#s35-1 IS DENOTED BY' RE(N)
RESTRICTION 0<1,J<2%s35«1 IS DENGTED' 8Y RMODtM,1sJ)
' 1$M<€29%35=1

(1ad)/M & 24%39,
RESTRICTION ( &1&2#435=1 1s DENOTED' 8y RMODIM, I)

1€ Mg 24n35mq-
RESTRICTION M/EN/3 < F 1S DENGTED gy REUL( M) N)
RESTRICTION M/2N/C3NN) < F is DENOTED 3¥ REULG(M,NyNN)
RESTRCTION

RESTRICTION

'F

TMUST NOT BE USER IN o PRENT STMT,? 1S DENOT:Ep 3¢ RPR{NT

iMUST NOT -BE USED IN AN IF  STMT.! Ig DENOTED 3y RIF

iz Pnelé e

o0
FEX) -= -,T (4. = XxwaM)
ms 1

ML! =: MULTI=LENGTH = VARIABLE PRECISIONY.

‘.\__\"\.U\ L o
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SUBROUTINE BOF(ViFAsFB,FCoFDsN»Z, IPRINT, TUNLD)

'PYRPOSE, BINARY: QUADRAFIC FORMS.
.ARGUMENTS., FA,FBJFCyFD INTEGER ARRAYS, A RED{JCED ST oF" BI“ARY QUADRATIC:
FORMS
ILIRE * FB(I) FC(1), NTALS

1:5724N IS CALCULATED 'FOR DISCRIMINANT #¥, _ON' RETURN FD MAY ssreaise
2 12 .CLASS NUMBER OF DISCRIMINANT .=V. _I7i IPRINT NEQ 0, FORMS ARI
PRINTED WITH ## AFTER THEM [F HCFIOF FAL1),FR(1),FC41) NEQ: 1,
AND WITH .#- AFTER THEM iF FB(1) iS: POSITIVEXAND) NOT NESATIVE),
-RESTRICTIQNS|L € V¢ 1,000,000, y = 30 moD: &)
CALLS 1Z@y 1 2R
. 'REGS"O -:20
NEEDS: PRIMES' AT BLOCK 1 ON TAPE 2, WHICH IS UNLOADED IF IUNLD # O.

INTEGER A+B»(sDsGsHsPsRsV»2,FDD,D4
INTEGER X(73,8(7)sEQ0,E(7)> F(200),FF(200)
“TEXT STAROSTARS<500)

INTEGER FA(l) FB¢1) FC(1), FD(i)

101 FORMAT{SHOD™ —2016 BXy4HH = ,14)

102 'FORMAT(581x,316,AB))
IE¢IIY) 3,,3
‘REWIND: 2t
READ. TARPE. 2, F!
DB 4 P 21.15200

4 FE(P) = F{R)&F(p)
IECIUNLDY 43,
CALL! UNLOADYE2)

3 Dav

IE(D) 242,

Ll = 1ZRi(4,DeB)
TECLLY 3y
PRINT .8

.8 'FORMAT(BH BQF:, »5X,14H<D NEQ 3 MOD 4)

‘RETURN

1 ‘P4 g, 4eD)

'R‘JX.N -'U
Pr2

5 L = IZREF(P),D)

!F‘LL’ 70:7
Lt =i I2REFFEP) 4D)
TR(LLY) 797
R-®:R T
afR) = FKP)

7 Rz P ;
JE(S#FP(p)I- D) 535!
- TE(RD 43,,43
JY =g
‘GO TO .44

43 ]y =: 4:



FOR JV 51 Red,7

QfJy) DA
‘REPEAT

Z s 0

B =21

H 5 (D:+ B2R)/4
FBrR | = 1,7
Egl),xel) =0
REREAT"

K.z: 0

‘BEO) P =01

(i —.IZRKF(P):HQ

TE(LLY) .34, -

-P:,&l

1E(3aFF(P) -»-D) 12,12,45
IE(F(P) ok E(K?) 45,

Kog- 'K *:.1.

E‘K) E: FKF)

X¢K) =+ X{K) w1

H e 120¢0, 0,0,F(P),H)

.15
46

36

37

60 To 4

IF(K) 4

WX E: JX
‘FOR |-

XfL) =

EfL) =
‘REPEAT

FOR 'JA.
FOR - JB

"FOR JC:

FOR- JD°

'FOR- JE!

FOR 'JF:
FOR JG:

A s 1

IE(JA)
FBR WJH:
Yy 3

-REPEAT

IE(JB)

FDR ‘JHi

Az A®E

‘REPEAT:
“TR(JC)
‘FOR JH:

A = A®E

‘REPEAT"

1E ¢JD)
FER JH.

A = A“E
‘REBEAT"

2!’
6?04¢
-+ 1
P K*4y7
0
1:

RITET | I [ L LI [ B [ O
< -

[T

T DD OO0
- e ® e W

DI I XK
T W N Tl Xl o)
Nt gt Nl NPy P P

»85, -
s1 4, WA
(1)

158,
=1 1;JB‘
(ay -

187,

=1.1,J0.
(3)

a55;
=115 JD:
(ﬂl



98
39
.40

16

20

23

.2b
26

.28
29
S0

34,

32.

33
50

IECJE) 089,
'FOR . JH! 2.1, JE:
Az ABE(S)
'REpEAT'

'IF(JF3 ;901

'FOR JH' 311, F

A = A®E(S8)
‘REREAT'

IF(JG) 0160

‘FOR JH = 1JJG

A A“E(??

RE EAT ‘
IF(S -«A) ELE
Com CD'*'B“B)/(4*A)
IF‘A . CQ 2“0020
'JZ ;:0

‘GO0 To- .25

IF‘C‘ I'A’ 34;.
[F(A, = B) 28,,23
TECJY) 2820

JZ B ﬂ'

‘G0 TO 25!

IE(JY) ,32,.

JZ st 1

Geg. 1 .
L = IZR(U(G);B)

TE(LL) 284,88

Ll = 1ZRAQ(G), A
IF(LL) 23;29;28
Gia Gl

1F(Q(G) - B) :26,26,30

Ll = IZRKQ‘G) cH
1E(LL) 26,33, 25
IE(JZ) 32,31,32.
4 RNV ANL T i
STAR! =:' 3H. &

FBD 5+ 1

-G8 To 50!

Z® 7.2

‘STAR; "5 3H
PDD =0

G0 To 50!

"STARi =: 3H ##:
PBD ,..1'
NNl
‘PA(N 7 A
'FB(N) = B
‘FC(N G
‘SEARSCN) - STAR:

> s Ry 2

lll“'l



REPEAT’

'REREAT'

‘REPEAT:

‘REREAT:

‘REPEAT’

'‘REREAT’

'REPEAT

‘Bs Be 2.

'!F(S*B*Bl' D) 10,10,

1B CIPRINT)

PRINT 101,-5.2

'NU =: (N+4) /5"

‘P8 5:1 MMIE L, NN
‘54 RRINT-4082 ,tPA<M) FB(M),FC(M), STARS(M),M = MM,N,N\)
2 ‘RETURN

‘END



‘PURPESEl, Z:

QoNT Ol ana

'SUBROUTINE! COEFF(XoMaYoNoKsZsMM)

COEFFICIENT OF A=xsK (MOD MM) N XaY
X: A“‘M[lct, Y .= A**N[oo.
ARGUNENTS X»¥ INTEGER ARRAYS, MM IS MODULUS
RESTRICTIONS s RMOD(MMaXCidaY(K=1))al ‘= MsK" N .
. (Kel=NeM)®MM < F

CALLS 1ZMRIIZR '

B'REGsl- 0 "31 _ )
ELEMENTS: OF ‘X ACCEssED M 'TO_ KeN
ELEMENTS: OF 'Y ACCESSED: K-M TO N

INTEGER "Z, Wy X{2),Y(1)

Wel

FBR 1 = M Ko N

W E w:»~1ZFR(MM 0 K(I)oY(K 1))
REPEAT

Z = IZR(MM, W)

RETURN

END

WHERE!



200
30

103
.04

102

PURROSE!,

‘SUBROUTINE .CONFRA(XX, 14JsK,A,LOUT,NTEST)

ML VERSION. I's MLCVS

DIMENSION I(12,d(1),K(1),A(1)
'TRUNCATION INTF:
Wk1Y ,K(2) =0

‘442);K¢19 - 1!

L=

X g ABsExxxp

Y &g X

[4L) . =: ¥

WSELY = LLIRJLLL) gL =2)
KEL) =: [CLIBK(L=%)+K(L=2)
B r U(L)

C:m kL)

AfL) =:B/C ery

IFigJeL) + K(LY .= 1000000000) 4,2,2
2y e 1LY

[F(z. = 0,0000000001) 2,3,3
LOUT = LI

30 TO 00

Y.z 1/7

b = L% 1%

g0 TO 5

IF{NTFST? 2102,
PRINT .20 XX:

'FORMAT{15H convERGENTs OFsF17,10)

DO 108 ' Li= 3,L0UT
RRINT 4,04+L% [(L) s JtL)»K(L)»ACL)

FPORMATC(LX»4158sF27410)

RETURN

-END

COMPUTES CONTINUED FRACTiON EXPANSION OF' XX.

.ARGUMENTS. 1,J,K INTEGER ARRAYS, ON RETURN 1,J,K CONTAIN PARTIALL QUOTIENT
NUMERATOR AND DENOMINATOR QF CONVS RGENT: TO: XX,
NUMBER OF PARTIAL QUOTIENTS COMPUTED-
NUMERATOR .+ DENOMINATOR §;¢U*¢9
NUMv/DEN. ‘» XX« PRINTS CONTINUED FRACTION IF; NTEST NZQ' 0
-B'REGS. g.-= 10

LOUT St =¥ To
FOMPUTATION STOPS: WHEN
a- IS RZ A|1AR?AY CONTAING



cooaeoan

+ o

L4

SUBROUTINE 'DCHODM(IXaNNs 1D, MM)

PURPOSE, TESTS IF: DISCRIMINANT DIyESIBLE BY MM.
ARGUMENTS, IX! INTEGER ARRAY, ID SET. 'TO @ fre: nxscaIWINAvr OF iX(1) X»aNN &
Syes * TXONN*®1) = 0 tMOD MM)s OTHERWISE: 1D' NEQ o (FAULT  GIVES: 1D
-1,
RESTR!CWfONSg NN € 500,. Re*(MM)

.CALLS  1JMODK, 1ZR

BeREGS, 7';;

INTEGER X0,%X(6007,Y0,Y(300),1x¢{1?)
‘N B NN

M-z MM

YENY = O

ne L1 = N*i.i.-l

IF(IX(I’) .8,-

XENeLw])  ® M-!ZR(M.-xthas

GO TO_.1

XEN*de]) IZR(M;IXt1)>
-C@NTINUE

pe 2.1 =i, N-1

Yéy) = IJMQDK(M:UoI*loX(I*l))
LX siN” )

LY =: Nai:

PO 5! K =+ 1,N+10

LXy = LX.'= LY

IECLXY) 600

FOR I =& oqLXY'Fii

Xe1) = LJMODK(M,u,Y(LY) X(I))
REREAT

D 31 silLxy,Lx~1.

IA F‘IJMQDK{M 0 X(CIDaY(LY)) = IMODK(MaQs XCLX) s YCLI=LXY)) + ¥
Xkp) --IVR(M 14)

LX st LX = 1.

TFE¢LX) 1d,12

IH(X(LX)) 6y .6

LEX,LX. =t anl

IFgLX) 11 1i,

DO 91 = LXs0s=d

TE(x(1)) 6,,6

LX riLX = g

1R (LX) 1&:11:

"‘CONTINUEL

D =0 X(0?

‘RETURN

LXY 8 LY'?'.LX

IRELXY) 244, .

FOR | & Qs XYl

Y1) & IJUMODK(M, 0, XLx),yer»
'RFPFAT



40
i2

A3

:DO 4 l _'L.XY LY'l -
'Y‘I) ‘5 IZR(M

LY =i LY = ¢:
IR¢LY) 12,12,
IE(Y‘LY)) 5, 5
LBX, LY = LY!n’
IE(LY) 12,12,

B0 101 = LL)\: 0;:1

IF(Y(1)) 54,5
LY =: LY = 1
IF‘LY, 12'1{'
CONTINUE!

IR 5 Y100

"RETURN
-?ﬂwvimusi

Br-g.

‘PRINT .43

FORMAT (8H DCMDDM-.5X 31HFAULT.

RETURN

END

DISORIMINANF SEF  TO- =19



acoat oo n

12

NS

30

SUBROUTINE PETMOD(A»TAsNN> IDETMM)
PURROSE, CUMPUTES' DETERMINANT OF MATRIX A

ARGUNENTS, A. 18 NN:BY NN INTEGER MATRIX., ia. is IHST DIMENSION OFI A IN.

<

CALLING 'PROGRAMME, IDET SET 'TO DETE MINANT, COMPUTED MOD MM,

RESTRICTIONS: R*(mM)

CALLS 1JMODK, 1ZR,RECIPR

B-REGS|- D -. 11 . p . e
IF- DETERMINANT -CANNOT BE COMPUTED» IDEf' = O

INTEGER A(IA,2)
M = MW

KS =:1:

DO 81 = 1-NN

IFtKK) ,9 11

A1, J) =1M-IZR(H,-KK)

GO To 9

AT, d) = TZR(MIKK)
CONTINUE|

:CONTINUE!

DO 4N =: LyNNRd:

IECACNINY) 4a 4

‘Be 511 =i N=LsNN

JFCALI,NR) 6,,6

CUNTINUE

IBET &: 0

‘PRINT 42 . L
FORMAT(8H DETMOD:,5x,37HDETERMINANT NOT COMPUTED, sSEf TO: ZERD)
RETURN

Lie A(I,H}

AbTek) EFACNAK)

ARNGK) s L

KS s nKS

GALLI RECTIPRILYA(NSN) 4 M, 0)
DO 2: 1 = N»d NN

LE = TJMODKEIM, 0sLuMepACToN) )
DO 3. K. = N+LyNN

Wz ACL,K) * TJIMODK(M,gsLL,ACNK))
Af1aK) —'lZP(MaJ)

CONTINUE!

CONTINUE!

b8 JZR(MsKS+M)

DO 40 N =: L, NN

Les IJNODK(M DalsACNIN))
JDET: = LI

RETURN
END
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SUBROUTINE DIFF(XsMsYsNsAsNA,NUM,MM)

‘PURPOSE, - FORMS :DIFFERENTIAL -DX/Y.
ARGUMENTS, X INTEGER ARRAY Z#aM [ ...y
SETS INTEGER ARRAY A = =DX/¥ :

MM: 1S MODULUS, ,
RESTRICTIONS, (2aMM) = 1,  (Y(N)sMM)

CARLS  1Z71,1ZMR,IZR

BeREGS,. 0 = 13
Dx & 3/242.0x/D2

INTEGER X (12, Y(1)iA(L) M

1Y =0 171(2,MM)

¥y = IZI(Y(N);MM)

|M .lN

1 = M, NUMQM'l

=-IZVR1 (MM 0, X¢ 1) s Lo MM)
=: JZMR: (MMs0aX(TI)oMM=1Y)
| .L;,NUM

O

il o
ZMR  (MMaQaY(N+J=1)sACT=J+1)
y

RN : -
P TZMR! (MM 02 1YY  X(M+T1o2) 2 W+ MM)

mIT>EX VI ME
m

= Mme
-4 il "U'-!l S0 Mm
—
Z N 2
v

¥

= 1.

)

i
4

NTEGER' ARRAY ZaaN Eoens:
&

#NA

R*{MM)

A(i),...,A(VuM)1



ao oonaoo oo

'SUBROUTINE DI1SCUB(A1,A2,81,82,C1,C2,D,MM)

PURPOSE, COMPUTES: DISCRIMINANT -OF ‘CUBIC
ARGUMENTS, - CUBIC 1S X#a3 + AL1/A2 KB B1/B2° X «. u1/32‘ HITH’AZ 82,Ce2:

NEGATIVE IF NECESSARY. D IS SET To DISuR!MIHANT--

RESTRICTIONS, M MUST BE RELATIVELY PRIME 'TO 42,B2,Z2. R#{(M)

CakLS
B‘REQSn-

1JMOUK, 121, 12ZR
Y RLAN-L

IF A= AL/A2, B = B1/B2, C.z C1/C2, THEN

e 2 3 2 3.

Di=:A B =48 =270 '+ 1BABC - 4A C

INTEGER A1,A2,B81,B2,C1,C2
INTEGER A,B,C;, AA;AAA,BB,BBB,CC,D

M-
A
B .
G
AA
AA
BB

n a3 n

A '

BBB

CQ
1

AA
AA
:CC
!
).

ulh

'll -ll ilI ll

‘MM
IJMODK(MaDa ALY IZ1(A2%MIM))
1JMODK(M.0,BL5121(B2+MsM))
IJMODK(M 0,C1, 121(c2+M,M))
IJNODK(Mo 0,A0A)
IJNODK‘MoO AsAA)
TJMODK (M, 04B,B)
“TJMODK (M2 04B,8B)
I JMODK(M,0,CsC) |
JMODY(M DsAASBB)s IJMODK(M 0s4, BBB)'!JWODK(M 0,27,2C)
i TJMODKSAM,0,18,4)
i TJMODK(M, 0, AA, B)
LJMODK{M,0,AA,C)
- I
o N

'-all

- wa =

JMQDK‘MbD:4 AAA)
MUDKsMnU:CC 'C)
! ke AA @ iCQii M o+

“1ZR(My 1)

RETURN
‘END

MM IS MODULUS'



0O Q0 20000000000

SUBROUTbNElEULD‘IiJnNaMpMM)

‘PURPOSE|,  CALLS 'EULDIV, EULDIE, OE(LDI OR QEULDE, DZPENDiNG: ON ARSUMENTS,
ARGUMENTSy  1+J INTEGER ARRAYS.

CALL' BULD(1,J,N) WILL ‘GIVE J = [/Ftx) T9 N FERMS, SxACTLY.
CaLLl' BULD(I, J.N M) WILL CaLl' BEULDIV WITHY THESS ARGUMENTS IF: ME>O
» BULRIE IF M = 0, . )
CALL EUCD(1, JoN, M, MM) WILL CALL- @EULDI wITH: THESE: ARGUMENTS: IF: M
>80, QEULDE IF M= g,
1¢0)+J40) QVERWRITTEN

‘RESTRICTIONS, "REULCM,N), REULQ(M,N,MM), RE (M)

CAlLS EULDPIY/,EULDIE,QEULDT »OEULDE
B=REGg, 1,80 -« 84

SUBROUTINE. EULM(IsJdaNsMaMM), MUTATIS MUTAMDIS: CAL'uMG
BULMUL, EULMUE, QZULM0, QE(LME!

WRITTEN IN ASP



'SUBRDUWINEqEULDiV(I;J NoM)

'PURROSEl DIVIDES '1:3 .1 + 1(1> X * ees BY FOX) GIVING J =010+ JL1) ¥ *aen
ARGUMENTS, M {S MODULUS. N = NUMBER OF TERMS. ((@), J(O) OVERWRI TTEN,
RESTRICTIONS, . 'R*(M),REUL(M, N).

oo0Q

“

12

122

R

44

13

nis
7w~

R#  gaga  gaga

[= 1 )

FORTRAN VEPSION .OF AN ASP RONTINE.

'REMENSTON I(l)ﬂJ(1)
'FOR Lo 4N

Wi E: l(L?

Ka -lLul

K3 =:1:

K2 =(L!2

K4 =_'-1

1F(K2) 212,3

K4 -g: Kﬂ-lﬁ

1Jy F!JJ&J‘Ki)*J(KZ)
K3 = Ks-aa

K2 =: K2#K4-

‘KE =: KL aK3:

G0 TD 4~

“TR(KR) 1,22y22

NERCHNNENTT RT3 €

@8 'To .8

TECKYL) 86,7
e gJdml:

G8 706

JU B JJ#J‘Ki)
K& = |1w5i

Ka g IB

K2 g L'7
Kd-at-v

IE(K2) 12,12,13
K4 --w4-12
!JU'-'JJ'U‘K1>7J(K2)
K3 g: K3=82:
-K21=¥KEQK4
KB 5 KEHKS.

.68 To 14

1E(KR) 11,32,32:

W8 EnJgeyiKired:
G To 481

!Fthi 16,16:17
N HNNELS

80 ‘TO. 481
NI'REHNNENTI LR
ALY BT JgeyJiMan
PRCJULY ) 119,20,20
‘Yhk) B J(L)wM
BEREA®:



'‘REFURN'
SEND’



, ‘PURPOSE) . MuLTIPLIES B g 1(4) X *.4es BY FLX)
.ARGUNBNTSY . M 188 MODULUS, N =: NUMBER QF TERM='

'SYBROUTINE JBULMULK 12U, NaM)

Jot 1 L J‘i) X i g e e

‘TIME: ~iNa&(3/2)

g
¢
c
c' RESTR,CTIONsl R*(M"REUL‘M N)-.
c=
¢

A4

e

43

17
18

20

FORTRAN ‘VERSION /OF ‘AN ASP ROUFINES
DUMENSTON J(4) (1)
M6 .5 6
‘M5 :g: B
D0 20-L'iF- 43N

g - =:I‘Lﬂ

Kog

‘Ka EFL!lvl

K2 =i K1:» Kt

!F(K2? 2.2,

8B Jddoe T(KL) o T(K2)
Ki ElKi T KﬂMﬁ ‘m :MB
Kig K 2.

.GB TO. 4

'IE(KZ) 124

WY ai J m T{KL) =l
G0 TD 8

!F(K1) B,.?

e -8 NNELDE ¥

GO TU

WO B JJ el I(Ki).

K g2

Kt =|h|.'M5

‘Ke B KL= K!

[B(K2) 12,12,

N RCTENN S IgKg) - 1CK2)
K& B: K3 S KEME M5
Kig: K '#ei&-

@38 TO 1M

C1B(KR) 112,

WY middow T(KL) #01
GB TO .18/

!FtKi) 184,17

iJ§ mrdyot L

GB TO 18

WA EnddoT TIKL)
LT L ENBREERNPLT
HITHTIE '20120
-J‘LQh-‘J‘L)
QQNTINUB

‘RETURN:

BND

SIVING:

feldrsa08) oVERWRITTEN,
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23

34

SUBRQUTINE ‘FACTOR(SSaNNsJFsLs IPRINT)

FACTORISED AS

T_r'de2N51)~nuP<2N)J

PURPOSE:, FACTORISATION RAOUTINE, 4 ,

ARGUNMENTS:, NUMBER TO BE FACTORISED IS SS‘l’*iO**(NN-l’ * age-t SSENND,
IFINN>3, HAVE SS(1) < 10#=4,. IFi NN =« ) NuMB R! TO! 84
FACTORISED IS -SS = ss<1>. NUMBER'MADE ®0S51TiVE! BEFDRE! BEING!

ATTEMPTS' TO FACTDRISE!

."USING PRIMES ¢ 10**4 WHICH MUST' BE' AT BLOCK' 1: ON TAPE 2.
IF: IPRINT :NEq 0, FACTORS ARE PRINTED: = # gR ## INDICATES A NUMBE
WITH NO 'PRIME FACTOR < 10#=4

'FACTORISED

INTEGER :SS(1),JF (1)
INTEGER :J(4229),J1230,51250),MM(250)
IE‘III’ i,,1

MNtli“II = 1
JE230 - 1000
‘REWIND: 2: L— M= 10000

‘READ TAPE 2, J. .
IF‘(J‘l) EQy 2’ ,AND, .J(1229), E0o9973)’ i,.
‘PRINT . 235J(1),J(1229)
'FQRMAT‘BH FACTQR.,SX;34HINCORPEUT LIQT OF
»112)

1 .224, +y(1229)

RETURN

LiNSTAR.JPREv =

Ju ®

%S

'IF(NN> 26, ,8
IABSFqss 1))
IFCN'-*1ﬁ01ﬂ 048)

Nz
I.

=

Ga TO
SE3) = N/200000000
S82) = N/20000 = .20000%S(3)

Stl?
N-

3

418

t 1ZREMaN)

fGB N 4.

0

IF(N-2) ,,34-
TR(L+1)=N

LS 2

JE() =1
Go 70 25

RESTRICTIONSy NUMBER 'TO BE FACTOR{SED < 10##1808. NN = 0 oR: 3:€ nNi< 258,

CALLS | 1JMOQK, IZR,PRIFAC

B8=-REGSy. 0= 10 . | L . .
IF- NUMBER 'T0 BE 'FACTORISED < 10#=. 140, HAVE: DiM, JF(1d8) IN MAIN BROGY
I NUMBER'TO BE FACTORISED < 10#. 200, 4AVE DIM, JF(186) IN MAIN PROG,
1F: NUMBER ‘70: BE FACTORISED < 10#& 300, HAVE DiM. JFI(258) IN MAIN BROG
IF NUMBER'TO BE FACTORISED < 10## 400, HAVE. DiM, JF(326) IN MAIN: PRDu.
IF NUMBER 'TQ BE 'FACTORISED < 40## 500, HAVE D!M- JEL392) IN MAIN BROG'
IF NUMBER '70- BE FACTORISED < 10## 630, HAVE DIM,. JF(456) IN MAIN: PROG,
IF ‘NUMBER 'T0O BE FACTORISED < 10## 700, JAVE DiM. JE(520) {N MAIN' PROGs
IF: NUMBER 'TO" BE 'FACTORISED ¢ 10##. 800, HAVE DIM, JF(582) IN MAIN' BROG
IF NUMBER '§0 BE FACTORISED < .10+# 9010, HAVE DIM, JF(642) IN MAIN PROG.
IF NUMBER 'T0Q BE ¢ 10##1000, HAVE DIM, JF(782) IN MAIN PROG.

SRIMES e J{1) =:,112,.



8

28
29

11

12
14

‘N+& NN
TR{N." '*250) 27427,
‘RRINT 29!

'FORMAT ¢ 8H FACTOR|:5¥.86HNUMBER HAS 'T0O, _MANY" (OR: f00° FEW) DIGITSH

A INCREASE ARRAYS 'S AND MM TO CURE FIRST CASE)
‘REFURN:

DO 2.1 51 3,N

5Ky B SS(N-I*l)

:SAN) .z TABSF(S(N))

D4 3. I 21 1,1229

NERETINES B

De 4 K -.2 ‘N

‘MN(K) IJMODKtJJ 0sMsMM(K=1))
L s 0

D0 5! K. =i 1,N

L s Ll e IJMODK(JJ.O.S(K) MMCK) )
L =: TZREJJILL)

IF(LL) 35,3

IR JPREVY 11;,11

iJRREY '& JJ

-G8 To: 1

'IH(JJ-JPEEV) 112,

WE L 19 =: JFREV

L-g Low 2

WFE (LD B Jdd

tJRREY : =‘QJ

WUJ 5 0

JeJ =
Do &
KK =:
.S'K.
§kK) -
KK =:
'8§2)
sk2)
NON = N

PO 7. K: -FNNNISoHM
IF(S(KJ) 0015

N e Nag

:¢ONT]NUE!

N g S¢2)#M -»18(1)
‘G8 TO 48
‘CONTINUE! |
'NSTARA;-x

le]?) TO 20

IV = N/JLID
IE¢Nan1)o11) 216,
15 1 = 1

GG TO 17,
IF‘JPREV’ 332,23

. IPREV := (1)

[ &

xf-l\:xu XII o
<

+
)..\

3!'1

-
Loy ™

( JJ.

r Ny
()7 Jd
S(Kli) - (S(K) i KK#JJYyeM
/
(L) * 'SC2¥8MI 27Uy = KK#*M

" u.m ﬂ‘\' wx '..

K
d
(5
{;



-34

‘24

19

17

24
20

8%

34

]
'3 2
/30
26

He 0
IE(JPREV? 5251
i

Go To 19

'!F(J!I)A- JRREY) ,21,

JF(L ke 1? a1 JPREV

Ls L™

JB(L) s JJJ
JBREY 5 'J(I)
WY = .0

LN RN IS T
N &5 11

IF(JCI#YCT) «»- N) 18,18,
lFGJPREV) 22,.22

JPREy ‘&N

G8 TO -20.

IE(N = JPREY) ,24,
'JFCLI* 1) s. JPREV

N NRIHANFERET

;JF(U"' 1’ s
L B L'*lr
‘JECLD B'JJJ
IRCIPRINTD . .26,
NGOL! = 5!

‘GALL! PRIFAC(JFoLoNCOL NSTAR)

JE(NCOL = 4504 :30,,
BRINT SLH(JF41Ys] = 1,00
FERMAT(5%1x, 111,16))
IF(NSTAR) 32,

RRINT -33:

FORMAT(IH #m)

RETURN:

CALLi OUTREG!

RETURN:

R
“ .0 FEB:8T0

v Mie.
<3l &
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:SUBROUTINE FINDRT{LOsLPOWERs L NUMsLDEN,LROOT»LANS)

PURROSEl, CALCULATES LANS FROM LANSa+[ROOT = {'NUM/LDEN (MOD LOsaLPDWER)
IF LANS NOT FOUND , LANS = 1

RESTRICTIONS, R#(LQ##LPOWER), LRDOT > 2

.CALLS 171, 1ZMR,IZR

B.REGS|» g-= 9

MQ =: LQ*"LPONER

LX g: TZMR(MQ,0,IZT(LDENSMG) s LNUM)
LXX = IZR(LQoLx)

PO 1 Li=:1,L0m.

¥ = L

D8 2: L' & 4»LROOT~1 '
LY 5 PZMROLQ0aL oL Y)

IRCLY = LXX2.,4;

CONTTNUE!

PRINT" S .
FORMAFCBH FINDRT»,5X,26HNO ROOT FOUND = LANS = 1)
LANS: =1 ¢

RETURMN

LANS: =: LI

LRT = LRDDTMLXX , ,

LF "IZMR!LG.O 1ZI1C(LRTsLO?LANS)
FOR L5 3,LPOWER=1

LY =r LANS ]

‘DO 6 LL. = 13LROOT=1

L¥ =: TZMR(MQ,0,LY,LANS)

LZ = {LX2LY*MQ)/(LQ®=L)

LAMBi ‘B3 [ZMRILQ»0si:ZsLF)

LANS: =: LANS m. LAMB#CLQm#| )

REPEAT

‘RETURN

‘END
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FUNCEIONI TVALL T, LP,MAX)

PURPOBE, IVAL! ' POWER -OF LP LE MAX DIVIDING i

RESTRICTIONS, RMOD(LP=aMAX,I)

CABLS [ZR
.B-REGS.. 0= 5!

Ly =2

PO 1L e 1, MAX
ki o= LPebLl.
Lo JTRALL D)
!EQLLLQ 21.2
'GENTINUE

IVALI =1 e
'RETURN" |
“1vali=: Led.
'‘RETURN

‘END

IF: TH1S 1S MAX>

IVAL: 8 =1



Q0 00 Q0

"PUNCTIONI 1Z1(1XoM)

PURPOSEY RECIPRDCAL OF IX MOD M
ARGUMENTS, M 1S MoDULUS
RESTR;chONS- Rib (M)

CALLS Izl,1zQ,1zR
vB'REGS| D ‘- &

IF NO/ RECIPROCAL» 121 = 0.
Iy e 1ZI{IX,M) IS EQUIVALENT ‘70 CALL" REudPR(IY.IX.M 6)

DIMENSION 1¢(4Q),K(40)
KisiXx
LECEL
K& KyeKiy/ MaM
JECKL) ,4,%:
Kis Kl#M

L=4
14L) e 120¢0,0, O.Ki.KZ)
‘YKo w KlﬁI(LJ
1E(J) 2 3y
by L3
K2=K1:
Ki=y
Ge Tp 2
15 (Kewdd ,B,
121 = 0
'‘REFURN
!E‘L'2> 6"6
121 & M= (1)
‘RETURN
1 (Lad) a!7
121 = .4
‘RETURN
K(Lasy,
KeLra) =f(Lad)
‘DO B LLE L-E 1,-1
K&LLQ=K1LL*2)#K(LL+1)*I(LL)
LB = 1ZR42,L)
IF(L 9p 29
'Iii)L: Mi-® K1)
12] = K(1)
RETURN
END
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/3.
-4

40

13

q2

FUNCTIONL IZIUCIX,M, IPRINT)

PURROSE, COMPYTES: RECIPROCAL OF Ix MOD M
ARGUMENTS, M 1S MODULUS, PRINTS RECIPROCAL fF' IPRINT' NEX 6.

'RESTRICTIONS.- Re-(M) s RPRINT
CALLS 170, 1ZR

B=REGS, 0 w6
IF- NOt RECIPROCAL 412

1 HCF oF I
Y or JZIUCIX, M, IPRINT

us= X AND_M.
) 1S EQUIVALENT T0

t CALL) RECIPROIV, IX, M, IPRINT)

DIMENSION 1(40),K(40)
Ki=1IX
KgaM:
KisKiwgly/MeM
TR(KL) ,4,1:
KiksKi+M

Lsy .
1610 E-IZQ‘OrGaOcﬁanz’
UrK2ekip I(L)
IB(J) »3q
Lig L %3
Kp=K1:
Ki &y
68 10 &
IE ‘Kl. " '5
1210, = K1
PRINT 80 Ix, M, K1
FBRMATCSH HCF. OF ,112,5H AND , 112,44 IS ,112,14X,21HI710: SET EQual
1 30 HCF
. RETURN
1E(L=2) 6,,6
LZIUU- 8 M = (1)
1Z1u: = 121Ul
GO TO 13
JF(L=L) ».7
IZ1Uu = .4
121y =: 12100
‘G0 To 4%
KL EL
KEL=19 -J(Lal)
Ro 8 LLFLIQ;i,Pl .
KELLDSK{LL#2y*KALL=1) 2 (L)
Lk =1 1ZRK2,L)
IF(LL) 94949
Kf1) . = Ma-*kti)
121Uy = KU1y
121y -!IZIUU
-IF(IPRINT) 211,

PRINT. 425 M, 1% IZIUU , : o
FORMATYBH MODII A 140 aS5H RECIPEACAlI OF .T4m- 44 18 $40-8H (=172111)



41 RETURN
‘END
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FUNCTION: IZMQ€0,0,0,Mp0,1,J)

‘PURRGSE, [ZMQ: SET TO QUOTIENT (1#.j)/M,

ARGUMENTS, FIRST, SECOND, THIRD AMD FIFTH ARGUMENTS ARE: "DUMMY".-
CONVENIENTLY 0.
RESTRICWIONSs R tM) SRMODUIM AT 2 )
'RbGSo- 4.0 3
OVERWRITES' CALLING SEQUENCE.,
WRITTEN IN ASP
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FUNGTION: TZMR(Ka0,12J)
PURPOSE, 1ZMRi SET EQUAL TO I+J (MOD K)
ARGUMENTS, 0 < IZMR <. K, SECOND ARGUMENT 1§ D{MMY T

-ResTR1CWIQV5 ' RMOD(Ks 14 J?'RIF

B=REGS.. 1.
OVERWRITES' CALLING SEQUENGE
IDENTICAL."T0. 1UMODK
WRITTEN IN- ASP

, CONVENIENTLY' ZERO



Q000

FUNCTIQN! 1ZMRUCM. 120D

PURRPBSEN - GIVES. I#y. MOD M
RESTRICTIONS, Re (M)

.CALS 1ZMR,JZR!

B*REGSe 0= 4

1BCL) 1492
"1ZMRU =. O
-RETURN

K M-!ZR‘MQUI’
16 (KM A0 3id:
K F'IZR(M 1]
&8¢y 1305 .
L 5 M.!ZR(MM.\J)
IF(L-M) 6, 3,6
L IZR(MOJ)
IZMRU F IZMR‘F;U ‘Kol ?
RETURN

END
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FUNGTION. TZPCI,NsM)

‘PURROSE), SETS' IZP! ® le«aN (MOD M)
ARGUMENTS; IF 1:z 0, 1ZP 5 0
’RESTR!C-T’IQNS. R*(Mh 822035 <1, N<2«H~35
CALLS 1Z1

‘B«REGS, 1.41v¢r50.124

WRT TTEN IN. ASP.
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FUNCTIQON! I1ZPRIN)

'PURPOSE: ,. CALOULATES LEAST PRIMITIVE ROOT OF: A PRIVE,

ARGUMENTS, . N MUST BE A PRIME GE 2

.CAuULS FACTOR,1ZP,jZ0

B'REGbI: 0" 6.

DIMENSION JF(20)
IF(N-3) ,,5

-JE¢NaL) 6, 6y -

12pR: ¢ N'1

RETURN:

‘NN =N

‘M ‘R NN'P

‘CALLI FACTOR(M, 0,JF,L,0)
Lz L/2°

DB 1.1 =14,L

EJFcl) B IZG(O UsQasJF(2alml), M)
Dg Y 1 s ;M

DO 3.d.o=id,l )
K s !ZP(IoJF(J? NN?
IF(Kal) . ,2,.

GONTTNUYE!

1ZPRi#: 1

GO TD 4

:GONTINUE!

[ZpRI =: 01

‘RETURN

‘END



FUNGTION: 1Z2a€ 0,0, 001s1)

PURPBSE!, 1ZQ SET :EQUAL TO I/M

ARGUMENTS, FIRST,SECOND AND THIRD ARGUMENTS 6UMM9b50NVEMdENﬂLN'ZERb;
RESTRICTIONSs R*(M),ROC(I),RIF ‘

BeREGS,. 1"~ JuliBé:

OVERHRITES: CALLING SEQUENCE
NRITTEN IN- ASP



FUNCTION: 1ZQU(M. 1)

C PURRGSE, GIVES 1/M
¢ RESTRICTIONS, R+im)
C BwREGg+: 0= ¥

1Zoy. = 1M
RETURN
END
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FUNGTION: TZRAM, 1) .
PURPGSE], LZRisﬁT'EQUAL Ta I MOD M,
RESTRICTIONSs. R*{M)2ROC1IRIF
BwREGS 1"'3b$24'

' OVERWR] TES CALLING SEQUENCE

WRITTEN. IN. ASP
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FUNCTION! TZRUtM, I)

.PURPOSE, GIVES [ MOD M

RESTRICTIONS, R#(M)

CakLS 12ZR

BeREGg, - ‘0 = 3

IRCI) 4,2
1Zry: = 0
‘RETURN. o
J .z MeJZR Myl
[6¢JasM) 234
IZRU: & J.
RETURN:

1ZRUi ‘= [ZR(My 1)
RETURN.

‘EQD



'SYUBROUTINE! KLEINJCTIaNsM,JL123)

‘PURROSE, PLANTS' J, /g=1728 OR I"IN 1, ACCORDNG AS J123:=i1s2 OR 3
ARGUMENTS, 1. INTEGER ARRAY, N NUMBEP OF ‘TERMS' COMPYTED, M IS .MODJLUS.
EG' IF: J123 = 1, 1(1) = 1, _1(2) =i 7444400 MY, 1(3) =:196884
(MOD. M) avus 1¢0) OVERNRITTEN.-
RESTRICTIONS, FDR 'CORRECT END AT ToP OF SER!ES, MAKE' N ZER0: MODi J123% .
M KUST NOT BE ZERO MQOD 691,  REUL(MsN)sR*(MIsK(N)aM < Fo
WHERE 'K(N) 7 D{(H) AND 'H I8 LARGEST HIBH!Y COMPOSITE: NUMBERI N
-CALLS EULDIVs1Z]0]ZMRs12ZR
'REG89 g = 10
L1ST OF HIGHMLY COMPOSITE NUMBERS N

N D(N) N D(N) N D(N)

2 2 240 20 7560 64

4 3 360 24 10088 72

6 4 720 30 15120 80

12 6 840 32 20160 84

24 8 1260 36 252086 9@

30 9 1680 40 27726 96

48 10 2520 48 45366 140

60 12 5040 60 50400 108.
120 16
180 18

-DIMENSION . I €2
0o 4 L=2.N
1 (LY =0

{F(J1230e:-2) ,6,7
BC = JZMR(M,0,65620,121(691,M))
LEsiELD
EBULER=24-
‘Go TQ B
-6 .LG=M-504*504/H#M
ksiz4:
EEULER=42
Go TO 8
7 LCs240
ES1s2
BEULER r- &
-8 'Bo 99" LELyN
Bp..100 LLsLaNsL
XLl
Do 104 (S=1.,L51
301 :Lx--=IZMR(M DaksLX)
300 F(LL) =i JCLL) » LX
99 ‘CONTINVE
80 .2 L=L.N . ,
2 I(LQ ]1ZMR (Ma0,LC,1CL)?
00 3 LeLyLEULER
'3 CAtL ' BiliLDIVIT: 1 sNaM)Y



13
12

14
30

00 4 LaNy2ye1

I(LJ I‘L'l’

IF (J123-2) 246,46
$(2) .5 IZR‘M;744)
TERELS

IF( 183082 104,12
DO 13 LF(\I/‘ 1"1

L(dhLll?Fl‘L’
y(2aL)=0

G0 70 LD

Do 14 Lhe N23,1,71
L(sﬁLHZVPI(L>
1(3&Lu19 1(3%L920

RETURN
END!
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$000

4004

2003
1002

'SUBROU?INE:MODGOF(G.MI;xxxYY;Dl.Dz.DnlaDDébUDb1wﬁDbZ;RiaKZhKEN.MH»

INTEGER D13,
INTEGER C(49
!NTEGFR 33(5
1,Y1¢(2000),D7

‘PURRGSE! , -COMPUTES ARRAYS XX = X, 'YY ‘=Y FROM REUAFIONS GIVEN BELOW.
ARGUMENTS, MM IS :MODULUS,

@ INDEX. (GAMMA Q) Q<51
MT -» GIVES XXsYY, UP TO AND INC. TERM. IN zweM$:
DysD2. ETG. ARE COEFFRS (DENOM NEG IF NEC)
Kesg = KL/KE: (NUMERATOR MEG IF NECY
KLN ,11 FOR J
2.FOR'SQRTtu.g7aa)
‘3. FOR 'CUBE ROOT J.
MM = MODULUS!
Yeup & Xeeg . m‘Di(l)/DZ(i)X**Q * 01(2)102 29X 4 DLI3YI/D2(3) .
JL23 5. y¥CDD1¢1)/pD2(L) xruy - *-...> + DDD1f1 /a D2U 1) yeelN*+2) #y .
WHEREl . -
Q EVEN o.N: & (Q=4)/2 DDDL1(1)Y/DDD2(1) =: L , ) L
Q oDD) +-N = Q= 3)/2 DDi(1)/DD2(1) = 1, DDD1(1)/DDD2YLY =:0

‘RESTRICTIONS,- R*(MM)s Q ¢ 51

‘CAELS COEFF) LJMODK/KLEINJsRECIPR
B'REGS.( D ‘.- 20

SEE. SECTION 244,

),02(4),DD1(17,DD2(1),DDD11),DDD2€1), XX ¢ 1), ¥Y (1)
+CC(26), ccc<26> .
02, x01<2000).D4<50) 'X02¢20002,05¢t557,X( 8,200
¢B0),Y2(2000),D8(50),YXx( 8, ﬁon).n9<50>.A (20

0),D6(55)
013,

2 FCt250),W1(3),wtR000),WH1(50), wie2060)
INTEGER A,AK,AAK,B,Q, oe.RECIP.S '81,52,551, 5§52
NWT LK MT

NT

2t NTT! -2

06 B:Q = 6

Fi(Q = 32/2

-Nmu 2 NT7Q#2 _
CALL: RECIPRUINV222,MMs0Q)

ZERQISE ARRAYS

DS(1). D6M131D7(I>aD8<l) 0
DO 1008 I s &y NTT'
Yi¢ly),v2%1) =: 0

DO 1002 | =:1,NN*2

Do 1pg3 11 T 1.NTT*1

X€1a11)2YX(S

GGNTiNUH

EVALUATE: G, CCeCCC

NO 101 51.1,3
=CALL‘RECﬂpR!IIoD2(4-1)mMM MM+ 0)

14

Ot ay

D 1JMODK(MM,0,Di¢4=1),11)

-4


http://Y2.it

DO 4 1 St 1.NN*D
CALL: RECIFRYI1,DDR(NN*2=1)+MM,MM,0)
4 .CC¢1) = IJMODK(MM,0,DDLI(NN+2=1), 11)
P05 1 =t LaNNE
CALL: RECHPR(I! DDDZ(NN*4nI)+MM:MM.0)
5 CCCC1) = 1JMODKAMM,O0,DDDL(NN+*4=T)511)

IE(Q = Q/28R) 2442

'$Sq.z -0

CALLI REGYPRYSSZ)MM= (NN#2) MM, 0)

'CCQ(NN®3) =: 4 ' DATA SHOULD GIVE ‘THIS
GO To 3

2 cALL_REchR!SSL.MM-@.MM )

$S2 = IJMODK(MM 0,851,2)

CO(NN*L) & ‘" DATA SHOULD GIVE THIS

CECINNRI) -;D T DATA SHOULD GIVE THIS

: SET' UP- JEKLN)

3 CALLI KLEINJAFC, (NNN=1)/656+6,MM,KLN)
'CALLI RECIPRA 1T, KL+MM, MM, ()

AK = TIMAQDK( MM 0,K22 1 1)
CALL! RECIPREAAK, AK, MM, ()
po 6|I =t 1, NNM

AAK 1JMODK(MM 0sAAK, AK)

6 Ad(gn(I-E)) =: JTUMODK (MM, 0,FC(1), AAK) .
x01¢0) =i C(1)

X02(p) =: CCC(L)
DO 71 =11 ,NN*2

7 'X!!;aaﬁl) 50 4
DO & 1 =:1,NN

8 'VX‘IQ.E*I'S,

'Y1(-3>.Y2(-b> 8 1

D0 @ N =rwSyNTT = 3
=CALL!CDEFF(Y1,'3.Y1 m3,NsY2(N), MM)
DO 240 [ =02, N*4

230 WEp). B Xtla)
vGALLlCDEFF(w.-Z Wam=2,N+*2,X(2,N*2),MM)
PO 10 1B 2uMNel
DO 241 Li'= B2#];N=2u]+6

1221 WWIL) = X(I,k)

10 CaLL: CDEFF(h.-a WHyo2uisN-2a144,X( 141, Nc2aisd), MM)
cALL-CoErF(w--2 Yl,e3,N*LoyYX(1aN+1) ,MM)
no 212 Ll’»l?*! NeRe]+4

212 WWILD = X(I1,L)

11 CaLL: FQEFF(NN;-enI Y1 5e3 s N=261%3, YX( 1) N=2#1+3), MH)
‘S8 0
DO 12 1 51,3

12 Ss § = 1JMODE<MM 0,CCi+1) X0 aN))

St =z X0LANI*Sey2(N)*MM



43
.14

35

-6

17
.18

NE StN = Q6

8§ :z. 1JMODK (MM, 0, CC‘l’.Yl‘Nl))

PO 13 1 ¢ 1yNN

8. § " IJMOD (MM, 0, CC(I*l’.YX(I.Ni)?
DO 14 1 = 1y NN+2

S5 S « [JMODK(MMsO0scCOl1*+2) #X(FaN1))
82 ;8. *+ XO0RANL) ‘» AJ(NI)*MM

81 =: 1JMODK{MM,0,1,€1)

82 =iIJMDDK§MH00m1n52)

A 5 [JMORBK(MM,U,SSTsg1) o+ IJHODK‘MMJ 0882032,
B g IJMODK(MM,p,38A+S1, INV2)

XELaN=d) =: A

K. N*¢

DO 15 | g 2,NN=%2

K- = _K_'-'a

XE10K) 8 X(JaK) * 1®A

Yi(N*si g B

Y2(N) & Y2(N)»2aB

K #: N*3

De 186 § = 1,NN

ke kw2 =

YXC1,K) B YXCI4K) *+ [=p =B

CONTINUEI

DB 17 | & .=2,NTT

XX€1) = [JMODK(MM»0 slnx(lnl))

‘DO 18 I = aB3yNTT

YX(D) = YL(D)

RETURN

END
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12

13

17
18

20

SUBROUTINE. QEULMUC IoudsNsMsMM)

PURROSEs  MULTIPLIES I = 1% 1(1) X -* aes BY¥ Flx®eMM) SEVING

Hy ey

ARGUNENTSY M 1S MODULUS» N =" NO+ OF TERMS:

RESTRICTIONS, Rw(M) REULatM.M NNY , J MUST NOT BE' ARRAY !
FORTRAN VERSION OF AN .ASP ROHTINE-

DIMENSION Lgl?rJL1)
M6 &: 6BMM

M5 =: 5aMM

D0 20 '8 LaN

NI I‘Lﬂ

K-z 3

Ki -IL'-»MM

K2 =i K1 = KeMM
IE(KZ) 2,2, :

Wi g Jd e !(Ki) = 1(K2)
KE =: KL ® KEM6 = M5
K g K -» 2

GO TD 4

NI REEINNECES £1 4 SICIH ]
Ge To 8

IECKg9 By, ?.

NN NN A

G To 8

WY R e TEKD)
K's2

K1 =ip: = M3!

K2 =: K3 = KFMM
IF(K2 12,12,

JO =i JdJ b T(KL) *+ 1(K2)
K: zi K1 '= KRM6 = M5
Kes Kw» 2

‘GE TD 14:

JR(K2) 1%,

W i JdJdoe T(KL) + 3
-G8 TD 18

IE(KL) 1B,.17

WY B Jdd e L

GO TO 18

e Rt TIKL)
WJEL) 2 e JJ MY
TECJ(LY) 420,20
ALY BT ALY e
QONTINUE

RETURN

‘END

e do=c 1+ gled
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‘SUBROUTINE 'READML (FCOL ,NCARD »LCOL sNPRINTsJF L)

PURPOSE, READS AN INTEGER OUTPUT By A ML PRINT STAFEMENT' AND AFTEMATS: FO

FACTORISE "IT.

ARGUMENTS. ~ FIRST DIGIT OF NUMBER i$ ON CARD 1 COLUMN FEoLlb LAST' DIGIT: OF:
NUMBER'.I'S ON CARD NCARDs COLUMN. FgoLy | iF: NPR!NT Nz8. 0 WILL' PRIN
NUMBER, ‘FACTORS LEFT IN ARRAY JFUI),i' s 150 AS' IN. FACTOR.
FAGTORS ARE PRINTED, o . :

RESTRICTIONS NUMBER MUST BE POSITIVE AND HAVE' GREATER THAN' B° AND LESS: THAN'

1000 DIGITS.

.CALLS FACTOR

B=REGg,- -0 "® 11

INTEGER JF (1)
INTEGER FCQL,SS(3),S(13007

100 FORMAT(8014)
101 FORMAT(LX, [4,4Z,2914)

N o

w

o

Ms 10
‘NC =i BO#NCARD )
‘READ 100o(8‘!7 1= 1,NG)
NINC: =: NG+L,COL=FCOLe79
NGRPS: = NINC/6
NERONT =: NINCw 6#NGRPB-
NN =00
Do 101 s:. LaNFRONT
NN =: NN * 3!
StNN) ‘E S(FGOL*I =1)
MM ®=: FCOL*NFRONT"6
Do 2; 1 =21 1, NGRPH
MN a#MM@é
De 3i-J. -l105
‘NNzt NN o 1
BENN) = S(MHw)
‘CONTINUE!

NN DIGITS
NGRP4 = ‘NNZ4
NFRONT -aNNnéﬁNGRP4
IJ N3 1
IF(NFRDN LY
po 511 =510 NFRONT
‘Wt E J L 1
SkJ) =
NGRP4 B NGRP4 he
|J‘E‘:‘J .4
Do 6: 1 -;1;NGRP4
J ERC R

v .NFRONT = 1,2,3,4 9R 5

v NFRONT =: 0,12 OR' 3!

1) =:((Stdbﬁm+S(J+1)>°M+S(J#2))*M+S(J+3)

lFtNPRINT? 2 74

PRINT 101"3‘1)01 ‘& 1,NGRP4)

CAI 1 InZ¢1)



/

CALLI FACGTORIS, NGRPH, JF ,L,4)
‘RETFURN
‘BND
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SUBROUTINE SUMRES(I,IN,JsyJN, TANS)

PURPOSE! }
ARGUMENTS, 1.Js1ANS INTEGER ARRAYS,

COMPUTES CHARAJER 'SUMS ,
CURVE IS

yor2, JU1) x®el Nel) -+ .f; + JEIND,

FOR L '# . 1,IN SETS P1ANS(L)
LEGENDPE syMBaL (y#»2 / P)

SUM oVER_ E:
wHERF P = 1

RESTR!CTIGNS (L <1000, JN>2, RsCI(L)).

CALLS

B-REGS.

IZMRaIZR
D=0

DIMENSION 1¢3) 0d0L) s TANSEL) 2K (1000 KK(lDﬂn)
DO 1: Li=z:a,IN

LR & 1(L)

KK¢1) 2 0

DO 3 LL® 2yLP

KK(LL) muwd:

DO 7LLLI & 4, (LPm1)/2

(R

IZHR(LP PEARNEREE

KK(LL w1y 8.1
Do 2 L F 1iuN
TREJICLLY) 4944
KELLD & LP e TZRE(LPs™J(LL))

GO0 TO 2

KELLY = JiLL)

c@NTINu&

KKK = 0

D0 5:LL 5 0,LP=1

Kb = K(l?

DO 6: LLLI B2 JUN -

KL =: 1ZMRCLP SO LLaKL) + KCLLL)
Kl =: 1ZRCLP,KL)

KKK = KKK = KK({KL * 3)
FANSKL) ‘7 KKK
RETURN

‘END

51
t

I
L

pu
Y,

€: CLASS: Mon,P OF:
A PRIMEL,
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SUBROUTINES -MLO,MLT,MLD,SLs TO,TOSL, PREGCs ADD ., SUB, MUL TypIVegOMPY .
RCP-RDUND-lPAR*urPARTsPos-ngooraea.READ.Paw R
'MODULO,PRINT,NP,SP, TEXT,NL, PRECAS, SIZE, NAMES,

PURPOSEs MULTT®LENGTH ARITHMETIC '‘PACKAGE.

CALLS /ML

BeREGS,- 1,56 .8:63,65 « 69,81 - 85,91, 92,97,124:
THESE! ROUTINES ARE WRITTEN IN ASP.
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SUBROUTINE -DCCA,N,MM, MMM, X,P)

'PURPOSE, COMPUTES. DISCRIMINANT USING CHINESE! REMAINDER THEORE MY,

ARGUMENTS, A INTEGFR ARRAY, ML=VARIABLE x. SET To- DISCRIMINANT' OFi .
ACLY XasN * .00 '+ ACN*1)» USING MMM MODULT MMLI) oI =: LuMMM.,.
P ]S: PRECISION.

RESTRICTIONS, N €264 Ra(MMCIN), 1 := 1,MMM

.CAkLS DETMOD]JMODK» IZRsMLCREM

BeREGS,. 0 '=-12.

INTEGER P,B(49,49),A(1),MM(1),DET(50),AAD(26),AA(26),AA1126)

NE s N =

‘NE e 2#N . 1

.De 5! 1 =i dj,26

Adg (1), AA!I) AALCL) B 0

DO 1. L’ #i 1, MM

M = MM(LR

1CACT)) ;2.3

AA(L) = MeIZR(M,=A(]))

60 To 2:

AACTL) "5 JZR(MpALI))

"GONTINUE!

Kz 1

D8 4.1 =:2,N2,2

Kz el

‘P8 6: J. 5t 4, N2:

BR14y) Rt AALJPK)

‘GONTINUE!

AA(NL) =: 0

DO 7' 1 =x1,Ned

QF‘I’ 2 [JMODK (M, 0,NL=1,AA(1))
g8 1

DO 8 ] 511,N2,2

=
qg mmmamn -
>4a

Jﬁ9ﬁN2!DEf{L).M)
ET, MM, MMM, X, P)

iTIOl-"Z
a.."
oW

.;.
CALL: MLCR
‘RETURN
END
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SUBROUTINE MLCF(X,Ysp)

NQRMALLY Y & x * 10##(=p+5),5AY"
CALLS ML
B.REGS. D |f| 4.

EXTERNAL! IPARTJFPART RO
CALL: MLD{PRED(P):NAMES\Z I
CALLIMLOEX s [PART» TOC(1)as NL(2), PRINT<10on)- ¥ FPARTs TO{(x))
GALL: MLOtY, TO(Z), FPART, TO(Y))
1 (MLTCZ, IPART, SUB(I))) 202, 4202
CALL: MLO‘NL!&))
200 IE (MLTC(X)?) 201, L } _— . .
GALL: MLOSXs RCP, 'TO(X)s IPART, TOCI)s» PRINT(10,6), X, FPART,TOCX))
1R CMLT(Y)) 4203,
IR (MLUT{Y+RCP,TO(Z)s»FPART" TOCY).z-IPARTaSUB(I))> 202,200,202
203 ‘CALL: MLOS TEXT(12H *))
- IR (MLTCY)) »204.
CALL: MLOAY, . REPy» “TO(Z)) ) .
‘202 CalLi MLO¢ TEXT(1H,)» Z, IPART, PRINT(1,0))"
Ge Tp 204
‘203 CALLI MLOY TEXT(2H,#))

:204 -RETURN

‘END

PURPBSE, OUTPUTS cONTINUED FRacTION. .
ARGUMENTSs X» Y _ML™VARIABLES. P PRECISION- :0uTAUTS. CQNTINU‘D F?ACTION
X UNTIL -CORRESPONDING PARTIAL QUOTIENTS' OF X' aND' Y’ DIFFER,

OF!
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SUBROUTINE..MLCOSEX,Y,P)

‘PURPOSE!. CQHPUTES ML Cos FUNCTION ) L o
AHGUMENTS, X,Y MLEVARIABLES. P PRECISION, SETS Y = Costx)
CapLS ML
B'REGSln Q=4

READS:! v FROM: CURRENT INPUT STREAM ON F1asT EXESCutloNi,

INTFGER P

‘EXTERNAL! READ}, §Q,P0S

IB(IIN 10,1

9] = L

-CALL MLDIXPREG(P ) NAMES (ERS,PI,F, T>> .

‘GALLI MLO(PRECY P) yREAD, TO(PI).P! ADD(PI), To¢(Pi),Si.t10) . POWER(~P),

1 TolEPS))
1 CALL'MLD‘X MODULO(PI),8Q,TO(F), sl (5), TO(Y) st(1), TO(F))
N & .o
2 N.--5 N*E

CTRAMLTCYSADDCTY, TOCY) s ToMULTEF) L, DIV(SLE=NatN+1)) ), TO(T).POS), SU3Y
A EpSy)Y ,,2

‘RETURN'

'‘END



'SUBROUTINE MLCREM(I,LLP,N, [ANS,P)

cc PURROSE, . SOLVES: SYSTEm OoF CONGRUENCES IANS'=I([) (v0D. LP(L)):!I 1 N

QOO0

[V I % m-(}.l

ARGUMENTSy: 1,;LP INTEGER ARRAYS. TANS ML= VARIABLE. ZLEMENTS'

RFLATIVELY PRIME IN PAIRS

RESTRICTIONS, 2: € N £ 50, R+(LP(L)),L= 1N
CALLS 1Z1,]1ZMR.ML:
B'REGSC Q s 9 1-[-

FORMS! PROD =L ,P(L) AND PROD/LP(I) ONCE: AND '0? ALLm

P. MYST BE LLARGE :ENOUGH TO 'ENABLE N#PROD®MAX(L3(L)) .TD: BE
EXACTLY,. TANS COMPUTED MODULD PROD ~. IFi GREATER THAN. PROD/Z

NEGATIVE!

DEMENSION 1¢1),LP(1),A(50)

LALL:MLOAPRECGP)aSLcU).TO‘IANs>)
1IECIIL) 4, ,4
1 = 1.

'CALL'MLD(PREG(P) NAMES(PROD, PRODH))

D0 6 LKL .= L3N
:CALLIMLD(PREC(P)oNAMES(A(LL)))
?CALLIMLO(PREC(P)oSL(i) TO(PROD))

DO L. L =r1yN

'CALLlMLO(FROD MULT‘SL(LP(L))) TO(PROD))

CALL!MLO‘PROD:DIV(SL(Z))aTO(PRODH))

po 2 L =i 4N
LtP s LPEL)
L

'D0 3 LL-=-15N

LELP.-=: LP(LL)
IECLLLP = LLR) -3

J e 1ZMRY (LLP, 04 J,LLLP)?

CONTINUE!:

'SSLLlMLO‘PR%DJDIV(SL(LEP))vMULT(SL(iZI(J'Etﬁ)))ofO(A(UD))
. 5 L 1,
GALL! MLOKACL) +MULTCSLCECL))) »ADDCIANS) » TO(TANS))

1F (MLTCIANS, MODULO (PROD?, TO C1ANS), SUB(PRADH) ) 7,7,
fALLlMLO(IANS:SUB‘PRDD)-TO(!ANS))

‘RETURN

END

QF. LP: MUST' BEI

' CALCULATED.
IANS: MADE
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SUBROUTINE MLEVS (Xs1sJeKsLOUT,LUTESTSN,P)

PURROSE, ML VEREION OF CONFRA
ARGUMENTS, X MLsVARIABLE, _I,J,K ML= ARRAYS-d p: PREFIsioN.

ON RETURN I coNTAINs PART]AL QUOTIENTS» JsK: NUMERATOR:
DENOMINATOR OF CONVERGENTS TO.Xo PRINT: THERSL COMPUTES: UNFIL!
.NUMERATOR -+ DENOMINATOR &210%#N 0% UNTILi LTEST PARTIALIi QUOTIENTS
HAVE: BEEN COMPUTED. WHEN ASTERISKS' ARE: PRINTED. LOUT =: NUM3ER
OF' CONVERGENTS COMPUTED

CAELS ML
BwREGS, 0 ‘- 10

‘EXTERNAL! RCP, IPART,POS

DIMENSTION I(")aJti) K(4)

IF(II, 1.1

¥ =: 1.

CALL'MLD{PREL(P),NAMFS(Y 'Z,LIMIT, RECIP))F
CALL! MLOSPREC(P) sSL¢%0)»POWER(N) ,TO(LIMIT
‘CALLI MLOKPREC{P) ySL(0),TOCU(1)),TO(K(2)),
CALL! MLOCX,POS,TO(Y))

CALL: MLOKPRECKP) pNL (2) ,TEXT(14HCONVERGENTS' OF Y, X, PR!NT‘lﬁ PY)
L= 3 .

CALL! MLQ(YaIPART¢T0<I(L)))

) s
SL

GALL: MLOKT(LY,MULFCJCL=2)),ADDCjCL=2)),TOCJ(LI )
GALL: NL0¢ICLPaMULT(KCL-l))aADD(K(L'2’) TO(K(L)))
CALL! MLOKPRECKPY oNL (1) ,SLAL=3)4pRINTE5,00, (L) ,PRINTIL5, 80,0400,

4 BRINT(40,0,K(L),PRINT(40,0))

IF(MLT(J(L),ADD(K(L)).SUB(LIMIT))) 4,2,2:
CALL! Lo&v.suBcz(L>).rocz>>

IE(MLT(Z. UB(RECIP))) 2,33

LOUT #: L

RETURN .

CALL: MLONZaRPFaTOCY)?

IF(L e LWEST) 5,5,

'CALL‘MLQ(PREPCP)eNL‘i) TEXT(lOH*a**«#*G#*))
LOUT * LI

'RETURN

‘BND



-SUBROUTINE. MUDC(A,NsX,P)

'PURPOSE, COMPUTES' DISCRIMINANT OF POLYNOMIALI WITH: wuLTI SLENGTH! COSFFICIENTS:

ARGUMENTS, .- A. ]1S!ML™ARRAY, X ML~ VARIABLE. PI PRECISION, X SET' Toi
DISURIMINANT OF ACL) XsaN % 4 o0+ A(N+L)

RESTRICTIONS, N < 26 AND SAME FOR ALL CALLS [N ONE: RUN,

CALLS MLDET, ML

.B-REGB! 0 ‘. 9

SeleloRoleRe

"INFEGER P
‘DIMENS10N Bi(49,49),BB(49,49),A(4),AA8(26,4A(26),AA1(26)
ELERS8Y) 1:.;
¥il = L
Ng =:N- we
N2 =1 2aNi-s- 4
ne 5 I--r2-H Na: ],
GALLIMLD&PRFC(P),NAMES(AA(I)))
/5 CALL!I MLO{PREC(P) #SL(D), TOCAALI)))
‘PO 51§ :F LyN2
‘D8 5p J s I,NE
50 -GALLIMLD(PREC(P) 'NAMES(B(I,J),BB(1,J)))
54 CONTINUE!
1. PO 2: 1 =11 pNY-
.2 -GALLnMLO(A(I)oTD(AA(I))J
Ke 4
DB 4: 1" 512,N2)2;
K &8 K '=.1
DO 6 J =1 1,N2
6 -GALL‘MLO(AA(J*K):TO(B(I:J)))
4 :CONTTNUE!
CALL: MLONPRFC(P);SL(O) TOCAAINL) )
DO 7.1 &:1sNat
7 GALLL MLOSAAST ) ,MULT ESLINS=T)), TaCAACT)))
Kz 1
.pg 8;1,;L1;N2;@
Ks K=k
-DO 9- J. 3t.1,N2 )
9 CALL: MLO‘AA‘J*KQETO‘B(I!J)))
-8 '‘GONTINUEI
CALL: MLOKPREC(R) ySLIN),TO(B(151)),8L¢1),T0OC(B(2,1)))
‘CALL! MLDET(B,BB: X, N2,P,49)
RETURN -
‘END



'SUBROUTINE'NhDET(BJA:DET;M'P:IA’

‘PURPOSE, . ML VERSION OF MBO2AM,
ARGUMENTS, B,A ML:ARRAYS, DET MLZVARIABLE, P PREgISION, DET SET'TO
DEWERMINANT OF M BY M MATRIX B, Wd4iCH_ 13 COPIED INTD A IA IS
~ FIRST DIMENSION OF A OR B IN CALLING PROGRAMME.
RESTRICTIONS, M <. 20 .
CABLS ML
BeREGg, -0 -=- 12

‘BXTERNALI COMP, POS:

INFEGER FoDD

!DiMENSIOh B{lA,1),A(1A, 1),D(20?, IND(QU) JND(28)

IRCITE) %ol

18] = &

=0ALL'MLngPRECgP),NAMES(AMAx STO) )

‘Do 101 1= 1,80
101 CCALL: MLDAPRFG(9>.NAM&stDtI>))
1 CALLIMLO'(PRLC(P):SL(O)-TO(AMAX))

P00 2' 1 =5: 1M

INDCD) -=1

JAD(L) &

DR 7.J =

CALL! MLOY

1B (MLT(AL
3 tCGALL!I MLOW
14 =:]
W B J
CONTINUE
CONTINUE!
DB =14
MM -nm-r

00 a0

d ) TOCA(T, )
¥y POSoSUB(AMAx))) 75753
’

1
i,M
gl
1,J
A(I J), PCS, ‘TOCAMAX))

N~

4 DB Lk .DD‘
1ST0.c=: INDCY)
INDCJ) =: INDCI4)
IND(I4) = ISTD
‘DO B: K. Eidl.M
‘GALLi ML0&A<I4 K),Te(sTO),AlJ,K),TOCAL]A, K)),870e FOCALL,KI))
IE(J4DU’ 8,8,9
DB = 2DDj
ISTOI; JND(J)
WJINDCJY . 5 JND U4
JND<J4> £ [STO
D8 12 Kie 1,M
12 cALL'MLO(AgK 1049 #»TOCSTO) sACKsJ) s TOCALKsJA) ) »STOs FOCALRD U ))
-8 ‘GALL: MLOKPREC(P) ;sLL(0),TO(AMAX))
VSRRV AN T
nNO 449 - ¢ & il.M

oo W



AL MLocArx J),DIV(A(J.J’) COMP,TO(STO?!
CALLIHLO(A(JaK) MULTC(STO) s ADDCACT K)) S TOtALTLKY))
IF (Key). 10,10,15 ,
15 TE(MLTCAS L, K POSoSUB(AMAX))) 10,10,17
A7  CGALL! MLO(A(! 'K)»POS,TO(AMAX))
14 =1 ]
iJ4 =K.
10 CCONTINUEL
‘CALL! MLOLSTO,TOCASL,J)))
11 ‘CGGNTINUE!
111 :CGNTINUE‘
'GALL! MLOI(PRFC(P).SL(DD).TO(Dtl)))
D8 1g 1 'F: leMM
48 CALLIMLOKACL, I’aMULT(D(l?);TO(D(! 1))
CALL! MLOKACH, M), MULT(D(M)), TO(DET))
RETURN
‘END-
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SUBROUTINE -MLEXP(X,Y,pP)

PURPOSE;, GOMPUTES ML .EX {PONENT]AL . o
ARGUMENTS, X,Y ML=VARIABLES. P PRECISION., §ETS Y = ExP{x)
CALLS ML

B=REGS. - [ "= 4

CoMPUTES: E =i EXP (1) ONCE AND ‘FOR ALL ON: FIRST EXECUTIONS

’EXTERNALJIPA"T'FPART POS

IF‘II’ 242!
1§ =: 4

'GALL MLDAPREC{P) yNAMES(ERS,T,F F,E))

LALLIMLD(PREL{P>aSL(1) TOCE) »TOCF)»SL(10), BONER(=P), TOCERS))
N R

N o+ &
IE(MLT(=7ADD(F).TO(E) FaDIV(SL(N)).TD(F),suB(EPs))) 203

-CALLINLO&XaIPART.TOSL(I) XsFPARTSTO(F)»TO(T)»SLCLY,TOCY))

N's 1

N s N =1 ) . _

TR (MLTCY  ADD(T), TOCY) ST MULTCF) ,DIV{SLINY), TO(T)POS»SUBLEPS))),,1:
CALLI MLOKE,POWERCI) , MULTCY), TOCY)) '

RETURN

‘END
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SUBROUT1N55MLEXPO‘X!YJZJP’

PURPOSEy . COMPUTES: ML EXPONENTIAL
ARGUMENTS, ~ X,Y«Z HML=VARIABLES,
CALLS MLEXP/MLLOGHML

B=REGS, @ ‘'= 3!

IBCIIN) a0l

41 .2 1

‘CALLLMLDSPREC(P) yNAMES(A))
‘CALL' MLLDG(X2A2P)

CALLI MLODLY, MULT(A);TOLAD)
CALLI MLEXP(A#ZsP)

RETURN'

‘END

P PRECISION.

SETS 7' = Xwsay



PURPQSE, COMPUTES' KLEIN'S INVARIANT J (sMALLiJy
ARGUMENTS, C#DsAA,BB ARE -ML-vARIABL'ES., A PRECISsiON.

TO0QATOQA2 AN OC

‘SYBROUTINE ‘MUUCC#DsAASBB,N»NNsNSPEC,P)

IFi NSPEC NE@ , C AND ‘NN ARE IGNORED AND' AA Is: sET TO

RE' J{1/2 +-D, 1), BB TN IM Jt1/2 +. D,1), USING: N' TESRMS: OF J.

1y 744, 196684: veo (MLCOS NOT: ENTERED’-

IFi NSPEC s 0, AA IS SET TO RE J(Ci+ DWwl), B3 70! M JAC & BN1),
USING ‘N TERMS OF EXPANSION, = if: BOTH c: AND: D ARE! OF} FORM
Ci/INT, Dev/INT, WHERE INT IS AN EVEN. INTEGER, SET NN =: INT
-OTHERHISE 'SET NN =G,

RESTRICTIONS, 3<N<400,
.CAELS MLCOS, MLEXP, ML
‘B=REGS,. 0 -= 11

ON FIRST! EXECUTION READS 7 FROM CURRENT: INPUT' STREAM! AND READS:
C{1) ‘& 1y C(2) ‘&= 7442 ...s C(N) FROM. INPUT STREAM 1, SELECTING INPUT

STREAM 0 AFTERNARDS

DIMENSION AJ£400)

INTEGER. P

-EXTERNAL! READ, RCP,SQROAT,SQ, COMP, POS

IE(IID) &001

¥t = 1’

PR z: 2,0#3.14159265359

-CALL‘MLD&PRFC(P):NAMES(PI X»¥sZsWsV,yh,B,ERS; S.SS)) .
=CALLIMLomPREC(P>aPEAD TOCPI) sPI, ADD(PI),TQMPx),sluloa.PowERw-P>.-
1 TO(EPS))

-QALL:INPSELK1>

DO 201 = 1,N

'GALL,MLD(PREC(P).NAMEstAJcI )) -

GALLI MLOKPREC(P) JREAD, TOCAJC(I)))

CALL: INPSLLKO)

[E(NSPECY 19

‘GALL! MLOSD MULTC(PI)»TO(A))

CALL: MLEXP(A,8,P)

‘GALLI ML.OSS,COMP, TO(B) sRCP,TOCA) »B»ADDCAJE2) ), TO(S)HSL1),TO(R))
‘RO 40 1B FHyN

!F(MLT(BbMULT(A),TO(B).HULT(AJ(I’),TO(SS) ADD(S9,T0(S),5S,P0S,
4 SUB(EPS?)> 11,11,

CONTINYE!

‘GALLI MLOAS, 'TO(AA),SLCQ),TO(BB))

RETURN: ) o ) o
GQL%!?%OMQiTOSLKAi)nMULTCPI)iTO(A)»COMPdTOKzOanfOSL(81?.MULW(Pd’o
1 Po(B . . :
2% =: PPepl.

72 Fieyll

NON = NN72. .

'CALLlMLEXP(B X.P)

CALLI MLOKX,RCP,TOCY))

'CALLIMLGQS(Z NYIRT-3)


http://lli.ll'

CALL! MLOSAJLLY oMULTEX) aTOCY) aMULT (WY 2 TO(AA. )
"GALL: MLOKW,'SQ, COMP, ADD(SL (1)), SQOROOT,TO(NW)
IF¢SINF(22)> 03 3

GALL! MLOKW COMP, TO(W) )

GALLI MLO4VSMULT(W) s TO(BE))

K =0

J 8 ;.1.

De i ¢ 1 =.|-'2'.'N
i g o L

CALLE MLOCK, MULT(YI »TO(X) 22, ADD(A) S TO(Z))
‘22 5:22 w21

'QALL! ML,COSCZ i aP)

CALL: MLOGAJET) y MULT (X)), TOCV), MULF (i), ADDLAR), TOCAAD)
1F(JBK) €y.8

K. z-K* NNN

GB Tp 4

"CALLI ML.OKW,SQ), COMP, ADD(SL (1)), SOR00OT: TOCW))
IF(SINF‘22)3 5.5

‘CALLI MLOSW,COMP, TO(W?)

CALLI MLO(V, MULT(W),ADD(BB)»TO(BB))
‘GONTINUE!

RETURN.

END
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SUBROUTINE. MLLOG(XaY,P)

" PURPOSE, COMPUTES ML LOGARITHM. T
ARGUMENTS, X,Y MLrVARIABLES. P PRECIS!ON.- v: SET"TO LOG{X?
cakLs IHLEXPQML

B-REGS: 0= 4

-EXTERNALI POS

INFEGER P

1ECIL) 2y,2

1y 80 4

GALL!MLD(FREC(P>,NAMES(2,A B,C,EPS))
CALL'MLO(PREC(P)nSL(iD)oPONER( P) s TO(EPS))
'CALL'MLOKXaTUSL‘xx”

XX =: LOGF (XX}

.GALL! MLO(PREC(P) #SL{XX) s TO(Y))

CALLI MLEXP (Y, Zsp)

'CALLI MLO®X, DIV (Z),SuB(sL(1)),70(Z),TO(B),FoLA))

N 5 1 : .
N s N #.%

CALL! MLLOXA,MULT(B) s TQCA) 4DIVESLE~N)),ADDLZ)»TOCZ))
1N ] N - 1

‘GALL: MLO(A, MULT(B):TO(A)aDIV(SL(N))oTO(C).ADD(Z) TaC2))
IF(MLT‘C&POSrSUB(EPS7)) asl

CALL!Y MLOKY, ADD(Z) T0C(Y))

RETURN

END



‘SUBROUTINE' MLPOWCASNL,N22 Y, XX5P)

PURROSE, . ML EXPONENTIATIUN WiTH RATIONAL EXPONENTY USTNG: NEWTON ITERATION: .
ARGUMENTS, A Y,XX MLeVARIABLES, SETS Y z Aws(Ni/sb2), CALCULATED WwITH

PREQISION P, XX MUST 1N1T1ALLY CONTAIN APPROX{MATION TO: Y,
CALLS ML

EXTERNALI RCP,POS
INTEGER P
1F<111a Bl

14 4

CALL'MLD(PREC(P).NAMES(EPS B,R,X,XXX})
fCALL.MLD&PREC(P)aSLtio).PowER<-P¢2) 2+ TOCEPS)Y)

NN ®r N8

GALLI MLOSA,POWERCHNL),DIVISLINZ) ), TO(B), XX, TOCX),SLINN),DIVESLINZD)
3 ¥TO(R)) !

*GALL‘ML0<X.To<xxx))

"CALL! MLO(X,POWER(NN),RCP, MULT ¢(B), ADD(X, MULTC(RY ), TO(XD)
IF(HLT(X;SUB(XXX):POS:SUB(EPS))) 92

CALL: MLOAXsTOCY))

RETURN:

’END



-SUBROUTTNE”MLPON3(A:YIXXlP)

PURROSE,. COMPUTES CURE ROOT USING NEWTON ITERATION.
ARGUMENTS, A,Y ML<VARIABLES, P PRECISION. K SETS ¥ 2: Ae#{1/3),.
XX MUST" INITIALLY CONTAIN A. SINGLE=LENGTH APPROXIMATION: TO- ¥,

CALLS ML

B=REGSy - 0 = B!

‘EXTERNAL! RCP,/POS#S0

INTEGER P

IF(III) deald

1§1 =1

.CALL! MLDSFREC{P),NAMESCEPS,B,Ry¥X,XXX))

CALL; MLO(PREC(P)-SL(lO)oPONER( P#3), TO(EPS))
CALL! MLOKASDIVESL(3))570(B) sl {xx)sT00xX)ssLi2),DEvISLK3II5TOUR))
'CALL! MLOCX, TOSXXX))

GALLI MLOSXsSQ,RCP.MULT(B) s ADDIXMULT(R) ) aTaL X))
1F (MLTCX, SUBTXXX), POS:SUB(EPS))) 2s2

CALL: MLO{X,TO(Y))

‘RETURN

‘END



c

400

409
411

499

204

SUBROUTINE MLROOT(AA,NN,XINIT,R00T,P?

PURPBSE:, COMPUTES: ROOT OF ALGEBRA!C EQUATION.

ARGUMENTS,. AA MLrARRAY, ROOT ML= VARIABLE'_ EQUATION !q‘AA<1) X#aNN: +. coe.
*AA(NN*ii- XINIT IS q!NGLE LENGTH APP?OXIMATIDV To RDOT
i P IS ‘PRECISION,
ESTRICTIONS.: NN < ‘50
ALLS ML

B‘RE.GSI_- 0 e 8:

D¥MENSION AAf1);A(50)

- ]MTEGER P, POWR

EXTERNAL'COMP

IBCIII) . 1,,1.

41 = 1

;CALL‘MLD&PRFC{P),NAMES(X 'YoF,GsDEL))
‘ROWR: B: 0343430 0GF(ABSF¢XINITI*1)=pP

‘D0 2:1 = LN 1

AlY) = AA!I?

GALLI MLOSPREC(P) ,SL¢XINIT?, To(x>.SLc10).PowER4Pown).To<D=LD)'
'CALL! MLOCPREC(PY #SLCACL))»TOCF))

DO 3.1 =1 2,Nwd

CALLI MLOCF, MULTCX) , ADD(SLI(A(1))),TO(F))
CALL: M,04X,ADD(DEL) sT0(Y))

CALL! MLOSPREC(PY sSL(A(L)),TOLG))

P 41 =212,Nw1

CALL' MLOKG,MULTLY),ADD(SLCACT) ) ) S TO(G))
IFCHMLTCFD) 102,199,101

IR(MLT(G)) .199, 199,103

IBCMLTE(G) ? 104,199,199
IF(NLT(FisuE(G>)> 106,204,107
IF(ML TG SUB(F))) 106,2045107

‘CALLI MLOSDEL,COMP, TO(DEL))

CALL: MLOcDEL MULT(F),DIV(F SUB(G)).ADD(X), TO(X))
GALL) MLOKPREC(PY sSLEACL)I,TOCF))

DO 51 =12,Nmt

CALL' MLOSF aMULT(X) 2 ADDCSLCALT) ) 5 TO(F))
IR(MLT(FD) 209,100,

JECMLT(G)) 112,204,100

IB(MLT(GY) 100,204,141

CALLI MLOSDPEL, COMP, TO(DEL))

GO TD 100

'CALL! MLOEXsTO(ROOT))

RETURN
1SALL1T%O(PREL(P)nSL(YINIT).TO(ROOT)aML(l).TEXT(21H**0 NO: ROQT' FOUN.

L4 X
‘RETURN
END
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-SUBROUTINE MLSINCX,Y,P)

‘PYRPOBE, COMPUTES' ML :SINE FUNCTION

ARGUMENTS: X,Y MU~VARIABLES. -P 18 PRECiSioN. SEFS Y = Sin(x)

CABLS ML

BuREGS:: Q= 4~ ] . . ;
READS' 7 'FROM CURRENT ]NPUT STREAM ON ‘PIRST EX2CUT]ON;

INTEGER P. ,
EXTERNAL!I READ, SQ,PCS

IFCIIL) Lt

141 =8 )
CALLI M_DXPREC(P) ,NAMES LERPS,P1,F,T)) o o
CALL! MLO(PREG(P) yREAD,TO(P1),P1,ADD(F11,TO(P1),SLt10),POWER(-P),:
1 Fo{EPS)) ) e e :

CALL! MLOAX,MDDULO(PI),T0(T), S0, TO(FI,SL(§),TO(¥))

iNs 0

N7 N*@ , . _ o . . - .

TR(MLTCYSADDCT) S FOCY) s TomMULTCF) ,DIV(SLE=Na{N+2))),TOCT),POS,SUSK
1 -EpSy)) ,, 2 -

‘RETURN

:BND

g
5 o pEBWIY -
- kg



