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Abstract 

We study the dynamical properties of r i s i n g Regge 
t r a j e c t o r i e s . I n t h i s dynamics crossing symmetry i s 
an essential dynamical ingredient and u n i t a r i t y i s used 
only i n some approximate form. The crossing i s used 
through the f i n i t e energy sum rules. We f i r s t work i n 
the narrow resonance approximation (when u n i t a r i t y i s not 
used) and consider the questions of scalar meson bootstrap 
and the bootstrap of j> i n JT-7T scattering. Next we 
consider the question of J> bootstrap by using unitarized 
Regge parameters through the solut i o n of Cheng-Sharp equations. 
Two approximate forms of u n i t a r i t y are considered - one 
corresponding t o a single Regge pole term representation of 
the amplitude and the other corresponding t o Khuri representa
t i o n . I n eith e r case u n i t a r i t y seems to make only a small 
difference to the resul t s of narrow resonance approximation. 
We f i n d that the values oC = 1 GeV"2 and R = 140 MeV f o r 

. . . . . . . . . . . 

the slope and width of the p are self-consistent when the 
cut - o f f parameter i s chosen somewhere between the and the 
^ 0 on the degenerate ji. £q t r a j e c t o r y . 
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CHAPTER 1 
Introduction. 

The Bootstrap Philosophy and Classical Bootstraps 

The concept of a n a l y t i c i t y occupies a central place 
i n present day strong i n t e r a c t i o n physics. The postulate 
of maximal a n a l y t i c i t y of the f i r s t kind ^ enables us 
t o f i n d a l l s i n g u l a r i t i e s of the S matrix, given the 
bound state and resonance poles. However, i t does not 
r e s t r i c t the poles themselves. This ambiguity i s manifested 
i n the undetermined subtractions i n the Mandelstam represent
ation of the scattering amplitude. Because of the Froissart 

(2) 
bound the undetermined subtractions are confined t o 
the lower ( ̂  = o, 1 ) p a r t i a l waves. Thus we see t h a t the 
maximal a n a l y t i c i t y of the f i r s t kind determines the amplitude 
up to the f i r s t two waves. The postulate of maximal analyt
i c i t y of the second kind ^ permits continuation i n angular 
momentum, the only s i n g u l a r i t i e s being the isolated ones, 
and enables us t o determine the lower p a r t i a l waves of the 
amplitude from the higher ones by analytic continuation. 
We can therefore determine the amplitude completely by using 
the maximal a n a l y t i c i t y of the f i r s t and the second kinds. 
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The two postulates together impose self-consistency require
ment on the poles of the ^ matrix. This can be seen as 
follows: Starting with an a r b i t r a r y pole of the amplitude, 
we can generate a whole new set of s i n g u l a r i t i e s (and i n 
p a r t i c u l a r double spectral functions) v i a u n i t a r i t y . The 
divergences of these double spectral functions require a 
new set of poles v i a the maximal a n a l y t i c i t y of the second 
kind. We can keep on repeating t h i s operation u n t i l s e l f -
consistency i s achieved i . e . the set of poles of the 
matrix i s complete and no new poles can be generated by 

(3) 
the above process. The bootstrap hypothesis postulates 
that the only set of strongly i n t e r a c t i n g p a r t i c l e s s a t i s f y i n g 
the above-mentioned self-consistency c r i t e r i o n and therefore 
consistent w i t h the maximal a n a l y t i c i t y of the f i r s t and the 
second kinds i s the actual set of strongly i n t e r a c t i n g p a r t i c l e s 
found i n nature. The bootstrap hypothesis accords equal 
status t o a l l strongly i n t e r a c t i n g p a r t i c l e s which are 
composite systems of each other, each owing i t s existence 
to the r e s t . This apparently simple and a e s t h e t i c a l l y 
s a t i s f y i n g idea of a 'nuclear democracy1 of hadrons i s however 
well-nigh impossible t o t e s t as a whole. The bootstrap 
problem i s i n t r i n s i c a l l y a multi-channel problem and to 
implement i t would involve the solution of an i n f i n i t e set 
of coupled i n t e g r a l equations a r i s i n g from u n i t a r i t y condition. 
However we can hope that a small subset of the set of strongly 



i n t e r a c t i n g p a r t i c l e s i s approximately decoupled from the 
rest and demand self-consistency between the output and 
the input. The simplest and best studied example i s the 
bootstrap of the Rho meson i n p i - p i s c a t tering. There i s 
ample experimental evidence that low energy Jt—Ti scattering 
i s dominated by the J3 resonance. Since 7T—TT system i s 
crossing symmetric one can ask whether the force a r i s i n g 
from the exchange of theJWi i n the crossed channel i s 
s u f f i c i e n t to produce the i n the d i r e c t channel. Or 
i n other words, can the P bootstrap i t s e l f ? 4ti £ia 4.-

TT IT V 
< > A 

TT TV 
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This and s i m i l a r calculations have been performed i n 
various degrees of approximation and w i t h varying degrees 
of success. One good feature of these calculations i s 
that the correct signs of the masses and coupling strengths 
of the output p a r t i c l e s are reproduced; ^ however i n 
most of these calculations the magnitudes of the output 
quantities are bigger than those of the input by a factor 
of 2 to 6. 

In the so-called c l a s s i c a l bootstrap calculations 
u n i t a r i t y i s an essential dynamical ingredient and crossing 
is applied only i n some approximation. The input i s taken 
as the force a r i s i n g from a few single p a r t i c l e exchange 
graphs and output mass and coupling are calculated by solving 
the N/D equations. Apart from the basic drawback of not 
t r e a t i n g the input and output p a r t i c l e s on an equal f o o t i n g , 
(the input consists of an elementary p a r t i c l e exchange whereas 
the output i s the composite p a r t i c l e corresponding to a zero 
of the denominater function (s) ) t h i s approach has the 
additi o n a l drawback of introducing a r b i t r a r y cut o f f s t o 
circumvent divergence of integrals a r i s i n g from the exchange 
of spin ^ 1 p a r t i c l e s (the exchange of a p a r t i c l e of spin 
\j gives a con t r i b u t i o n proportional t o Pp {&t ) which goes 
as Z t or A f o r large s Z t ). Also the 
results are dependent on the choice of subtraction constant 



and i f i t i s taken somewhere i n the nearby part of the 
l e f t hand cut (LHC), the d i s t a n t part of the LHC i s not 
taken i n t o consideration and consequently the approximation 
i s meaningful only i f the short range forces are unimportant. 
Alternative treatments of the LHG contributions, as f o r 

(5) 
example i n Balaz's method , overcome some of the 
disadvantages of the other methods but they have t h e i r own 
shortcomings. In a l l such calculations the widths of the 
resonances come out too large and the output masses a b i t 
too small. 

An a l t e r n a t i v e approach t o bootstrap dynamics i s the 
bootstrapping of a whole t r a j e c t o r y rather than a single 
p a r t i c l e on i t . The Chew-Jones' "new form" of the s t r i p 
approximation i s based on such an approach. Here the 
amplitude is represented as the sum of Regge pole contribu
tions i n each channel and the output t r a j e c t o r y i s obtained 
by solving the N/D equations. The t r a j e c t o r y <X (t) r e 
produces i t s e l f s e l f consistently f o r small \ t \ . Using 
t h i s method with some improvements Collins and Johnson ^ 
have recently succeeded i n bootstrapping the j> and tk« 
Pomeranchuk t r a j e c t o r i e s i n 7T—7T scattering. They f i n d 
self-consistent t r a j e c t o r i e s w i t h correct physical mass, 
width and intercept, but t h e i r s o l u t i o n i s not unique since 
self-consistency can be achieved w i t h t r a j e c t o r y oC)(t) having intercept anywhere from o ( [o \ = O.32 t o 

oC(t) 
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0.69* The main drawback of t h i s method i s t h a t an 
a r b i t r a r y parameter (the s t r i p width) i s introduced and 
i t i s assumed that the t r a j e c t o r y f a l l s o f f a f t e r t h i s 
width. The Chew-Jones s t r i p approximation i s therefore 
not suitable f o r bootstrapping i n f i n i t e l y r i s i n g t r a j e c t o r i e s . 

Another method of cal c u l a t i n g self-consistent Regge 
t r a j e c t o r i e s s t a r t s with dispersion r e l a t i o n s f o r the Regge 

(7) 
parameters, and involves the so l u t i o n of coupled i n t e g r a l 
equations. This method has already yielded successful results 

(8) 
i n p o t e n t i a l scattering . The dynamical scheme that we 
w i l l discuss i n the foll o w i n g pages (due to Mandelstam ) i s 
an application of the method based on dispersion r e l a t i o n s 
f o r Regge parameters t o the r e l a t i v i s t i c s cattering involving 
i n f i n i t e l y r i s i n g Regge t r a j e c t o r i e s . I n t h i s scheme cross
ing i s an essential dynamical ingredient and i t i s applied 

(Q) 
v i a the so called F i n i t e Energy Sum Rules 7 . U n i t a r i t y 
w i l l be applied i n d i f f e r e n t degrees of approximation. 
The application of u n i t a r i t y leads to coupled i n t e g r a l 
equations f o r the Regge parameters 0 ( ( t ) and ^ ( t ) • the 
Cheng-Sharp type equations I n most previous calculations 
only the narrow resonance approximation where the t r a j e c t o r y 
0 ( , ( t ) i s s t r i c t l y l i n e a r , has been used. 

In the next chapter we w i l l describe the dynamics based 
on the r i s i n g t r a j e c t o r i e s , discuss the application of cross
ing through f i n i t e energy sum rules, and consider some simple 
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applications of these dynamics, i n the narrow resonance 
approximation. I n the t h i r d chapter the e f f e c t of un
i t a r i t y on the l i n e a r i t y of the t r a j e c t o r i e s , and on the 
consistency of the bootstrap w i l l be investigated. 
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CHAPTER I I 

Bootstraps of Linearly Rising Trajectories* 

In t h i s chapter we' w i l l discuss a dynamical scheme 
based on the concept of l i n e a r l y r i s i n g t r a j e c t o r i e s 

apply crossing can y i e l d some resul t s on the slopes of 
t r a j e c t o r i e s and the couplings of resonances. We w i l l 

problems.. These being crossing symmetric reactions i t 
w i l l be possible to do bootstrap calculations. U n i t a r i t y 
w i l l not be used i n such calculations. 

I I . 1 (a) Analytic Properties of Regge Parameters: 

Before obtaining the dynamical equations f o r the 
Regge parameters, we need to know the analytic properties 
of these parameters. We s t a r t from the Froissart-Gribou 
projection f o r the p a r t i a l wave amplitude 

and study how the use of f i n i t e energy sum rules (9) t o 

concentrate on the scalar meson and it-TV scattering 

it Q (Z) Ds ( s , t ) dZ A U , t ) 

Z t (sd©,t) 
fo r 
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where Ds ( s , t ) i s the s-discontinuity of the scattering 
amplitude A(s,t) and N(t) denotes the number of subtractions 
required i n the Mandelstam representation f o r t h i s amplitude. 
Noting that the t r a j e c t o r y function CX(t) i s a pole of the 
continued p a r t i a l wave amplitude A(£ , t ) such that A( <£,t) = 
^3^) 0((t)jwe can derive the a n a l y t i c i t y properties 
of OC (t) and f%{t) as follows: 
We w r i t e A(£ , t ) as 

k(l , t ) = E( f , t ) + F(i , t ) 
where 

E( £ , t ) = 1 ( J (Z) Ds ( s , t ) dZ 

and F(£ , t ) i s given by the same i n t e g r a l from s = so to 
s = & Since F(£ , t ) i s defined by a f i n i t e i n t e g r a l i t 
must be helomorphic i n Re 1 w i t h j u s t poles at the 
negative integers due to Q^(Z). The other £ plane 
singularieies of A( £,t) are due to the asymptotic s 
behaviour of the integrand i n equation (1) and are therefore 
contained i n E(£ , t ) . The po s i t i o n of a pole i s given by 

E ( £ , t ) "J = 0 at {> = 0 ( ( t ) (3) [ 
but because of s i n g u l a r i t y at threshold i t i s better to^use 
the reduced amplitude fo(fc,t) = .A( fi.it) / ( ^ t 1 2 \ ^ ^ ) a n d 

http://fi.it
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therefore w r i t e (3) as 

( ^ t 12 ^ / t 3 4 ) \ _ E ( i , t ) y = 0 at £-(X(t) — (4) 
Therefore the residue ^ ( t ) of the pole at £ « d e f i n e d 
by A(£,t) = ^ ( t ) / (£- (t))is by Cauchy's theorem 

r 

or 

( t ) = JL B(£ , t ) 

/Y <*> - ( V ^ V 3 ^ (Z (t) 
(5) 

(6) 

f 

= ̂ J d t <V2
 E(t) ( ? ) 

where the i n t e g r a l i s taken i n a path around the point ̂=o((t)« 
Equations (4) and (7) enable us to f i n d the analytic properties 
i n t of 0^(t) and the reduced residue Y ( t ) . I f Re £ \> 
R e Q ^ t ) where-0(M ( t ) i s t h e highest l y i n g plane 
s i n g u l a r i t y , the i n t e g r a l (2) converges and so E£ ( t ) ^ ^ | / t 12 
^ 34^ has t plane s i n g u l a r i t i e s of the f u l l p a r t i a l wave 
amplitude v i z . a right-hand cut s t a r t i n g at t = t o , the 
threshold, and the usual left-hand cut (due t o crossed 
channel s i n g u l a r i t i e s of the t o t a l amplitude A( s, t ) 
Since we are in t e g r a t i n g from s = S rather than so i n (2) 
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the left-hand branch point i s at t ^ -J@J f o r large S 
and by taking S large enough we can cause the left-hand 
branch point t o recede as f a r to the l e f t as we please. 
This means that the s i n g u l a r i t i e s of 0 ( ( t ) and which 
stem from those of E ( ^ , t ) do not include the left-hand 
branch points of the p a r t i a l wave amplitude. So the only 
relevant s i n g u l a r i t i e s are f o r t ^ t o . I t can fu r t h e r 
be shown that as long as the t r a j e c t o r i e s do not cross, 
the Regge parameters0({t) and "Y^t) are r e a l analytic 
functions of t wi t h only right-hand cuts. 

I I . 1 (b) Dynamical Equations f o r Regge Parameters 

To obtain dynamical equations f o r the Regge t r a j e c t o r y 
0 ( ( t ) and the residue function ^ ( t ) ' , we note t h a t Regge para
meters (X(t)and *Y ( t ) are r e a l analytic functions of t . 
Demanding a l i n e a r dependence of Q((t) on t , the e x p l i c i t 
form of 0 ( ( t ) should be 

0( ( t ) = at + b (8) 
To obtain an expression f o r / $ ( t ) , we use the f a c t that 
^ Y ( t ) = ^3(t) / t) i s a r e a l analytic function 
of t and so we can w r i t e 

n 2 <X(t) 
j , ( t ) = (4 fy£ ) . Et ( t ) ( 9 ) 
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where E ( t ) i s also r e a l and analytic. Noting f u r t h e r 
that should have zeros at Mandelstarn symmetry points 
Xy'X'Z* at negative h a l f i n t e g r a l values of OC(t) other than 
- 1 / 2 , and req u i r i n g that ^ ( t ) should go asymptotically as 
l / t we can rewrite (9) as 

2 e<lu 

. 4 a <T t \ J L , y E ( t ) 

The exponential f a c t o r together with the gamma function 
ensures the asymptotic behaviour l / t . The slope 'a' 
appears i n (10) because a l l t r a j e c t o r i e s appear to have the 
same slope and therefore we are assuming t h a t "Va i s the 
scale f a c t o r which determines the asymptotic behaviour. 
E(t) w i l l be taken as a constant i n scalar meson case and 
= (X ( t ) x constant f o r J ) t r a j e c t o r y i n JP-/T scattering 
whereO((t) i s the g h o s t - k i l l i n g f a c t o r . I t ' s value depends 
on the coupling constant (or width) of the p a r t i c l e . The 
narrow resonance approximation (or a s t r i c t l y l i n e a r form 
for OC(t) ) requires the saturation of the scattering 
amplitude with zero width resonances l y i n g on l i n e a r t r a j e c t 
ories. This gives 

2 — ' 2 t 
s - 4 

A( s,t) 

^ ( s - r a 2 H ) / o / 
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To do dynamical calculations we need to apply crossing. 
In f a c t crossing i s the e s s e n t i a l dynamical-, ingredient of 
such a dynamics. . This i s achieved by means of the so c a l l e d 
f i n i t e energy sum rules (FESR). In the next section we 
discuss the formalism of FESR and the related concept of 
duality, and then turn to a. discussion of t h e i r applications 
to the s c a l a r meson and JT-JT bootstraps. 

I I . 2 F i n i t e Energy Sum Rules and Duality 
(a) Derivation of FESR: 

(9) 
To derive the FESR we begin with a function F(V) 

analytic i n the V - plane with a right-hand cut from Vo to OQ> 
and s a t i s f y i n g the dispersion r e l a t i o n 

1 
F(y) = — 

(We have written an unsubstracted dispersion r e l a t i o n . 
I f F(V) —^->o as V-̂ OO we can write down a subtracted 
dispersion r e l a t i o n i n the usual way.) The variable V 
might represent some physical variable l i k e the energy or 
momentum transfer i n some scattering process. The FESR 
are consistency conditions that have to be obeyed by the 
function F(y) as a r e s u l t of i t s analytic structure and 
asymptotic expansion. Suppose F (Y) i s a r e a l analytic 

<j m F(V) dV 
y/ - v ; ' ( i i ) 
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function i n the cut y - plane that can be expanded i n an 
asymptotic power s e r i e s . We note that each term i n the 
se r i e s can be written i n such a form that i t i s also a 
r e a l analytic function i n the cut V- planei The function 

( e V) / s i n JTÔ  has the imaginary part at the 
cut fromVb to OO .• We can therefore write asymptotically 
i . e . f o r V ) / N 

' (say) 

F(V) ^ / ~ f - Ci (eXPf% ) /sinfTCX; - ^ - - — ( 1 2 ) 
Let us now form the in t e g r a l fo F(V) dy along the 
contour of figure 2o 
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The integration from N - i@ to V 0 and then to N.+ i f i w i l l 
rN . 

give 2 i \ J nif dV For the integration along the contour 
T o 

we use (12). The whole i n t e g r a l along the contour i s zero, 
by Cauchy's theorem. On performing t h i s c a l c u l a t i o n we 
get r N ^ 0 ( i + l 

a l we can write down the nth moment 
^ <*i+ n 

V ^ m F ( V ) d V 

JLJ " ( 1 3 ) 

In general we can write down the nth moment' sum rule 
•N ' „P^i + n + 1 

«.— (14) 
/ "**'>•; T 11 T X 

The higher moment sum rules emphasize high energy region of 
the integral and therefore i t i s preferable to use lower 
moment sum rules as f a r as possible. The sum rules (13) 
and (14) hold for any function with the above mentioned 
analytic behaviour and asymptotic empansion. I t should, be 
noted that the form of the sum ru l e s i s independent of the 
position o f ^ • Consequently any function that obeys a 
dispersion r e l a t i o n with an arbit r a r y number of subtractions 
w i l l also obey FESR. I f the leading power i n the asymptotic 

C< / 

s e r i e s i s low enough (e.g. ^ X " n ~ x i n e ( l u a t i o n (7)) we 
can find from (7) the superconvergence relations 

\ y n <Jm F(Y) dY = 0 
by l e t t i n g N ^ oQ • 
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As f a r as the application of FESR i s concerned, we 
may note that we can write down even or odd moment sum 
rules for the scattering amplitudes which are odd or even 
under crossing y<-» -V (or s u, at fixed t , V=.|(s - u ) . 
The amplitudes of a definite signature have only a righ t 
hand cut and we can write down a l l moment sum ru l e s for such 
amplitudes. The signatured amplitudes, however, have fixed 
poles at wrong signature unphysical values of angular momentum 
and i t i s not always possible to ignore the contributions 
of these fixed poles. I t i s therefore advantageous to work 
with the t o t a l amplitudes. 

I I . 2(b): Interpretation of FESR and Duality: 

As we have seen i n 11.2(a) the FESR connect the low 
energy region and the high energy region of the scattering 
amplitude. The high energy region i s described i n terms 
of the crossed (t) channel Regge poles which are observed 
for small t values. Therefore one could say that the FESR 
connect the low s channel behaviour with the low t channel 
e f f e c t s . I f the low s channel amplitude is. described by 
resonance contributions only and the high energy behaviour i s 
given completely by t channel Regge poles then we can speak 

9 11 
of duality ' between direc t channel resonances and crossed 
channel Regge t r a j e c t o r i e s . The Pbmeranehuk tr a j e c t o r y 
has to be regarded as a s p e c i a l kind of s i n g u l a r i t y , and i s 
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12 not associated with the d i r e c t channel resonances. I f 
a l l resonances are supposed to l i e on approximately l i n e a r 
t r a j e c t o r i e s , then we have a scheme where resonances i n 
one channel generate resonances i n the crossed channels* 
Appreciable forces are therefore to be considered only when 
resonances e x i s t . They do not r e s u l t from u n i t a r i t y alone^j 

Though controversial t h i s duality idea, has received 
13 

support from a related phenomenon observed by Schmid. 
I f one takes the p a r t i a l wave projection i n the d i r e c t 
channel of the Regge exchange amplitude A(s,t) the r e s u l t i n g 
p a r t i a l , wave amplitude A£(s) shows phase variations giving 
r i s e to loops i n the Argand diagram. These loops approxi
mate the observed resonances. Thus i t appears that d i r e c t 
channel resonances and crossed channel t r a j e c t o r i e s may be 
interlocked. The presence or absence of resonances i n one 
channel can be associated with relations between t r a j e c t o r i e s 
i n the crossed channels. In channels such as K+N where 
there are no observed resonances, the crossed channel contains 
exchange degenerate t r a j e c t o r i e s which give purely r e a l 
contributions to the amplitude. 

The duality idea has implications fir the description of 
a scattering amplitude. The so c a l l e d strong (or l o c a l ) 
duality implies that the f u l l scattering amplitude for a l l 
energies may be described either i n terms of d i r e c t channel 
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resonances or i n terms of crossed channel t r a j e c t o r i e s . 
The Veneziano model^1" has t h i s strong duality b u i l t into 
i t . The so c a l l e d averaged (or weak) duality on the other 
hand implies that averaged sum of resonance contributions i s 
equal to Regge contributions (through FESR) and therefore 
the amplitude should be described at a given energy by the 
sum of d i r e c t channel resonances and crossed channel Regge 
poles minus the average of the resonances A(s,t) = A.j2ie^s>'t) + 

Ag^£s,t) - (s.,t jy . The extrapolation of Regge terms 
to low energies i s taken to give a smooth background upon 
which resonances are superimposed. 

Duality becomes especially useful i n bootstrap c a l c u l a 
tions. Taking the same type of Regge t r a j e c t o r i e s as an 
input on the l e f t hand side of the FESR (via. t h e i r low energy 
resonances) as are used for describing the high energy region 
(on the right hand side of FESR), we can demand s e l f - c o n s i s t 
ency of the Regge parameters. Bootstrap calculations with 
FESR are much simpler than the older N/D programs. In 
the narrow resonance approximation the formulation of the 
problem with FESR leads to algebraic equations for the 
t r a j e c t o r i e s and t h e i r residues. 

We have seen that s t a r t i n g from FESR and assuming 
resonance saturation we a r r i v e at the concept of duality. 
The inverse procedure would be to s t a r t from duality 
idea, and construct an amplitude, which i s a solution of the 
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FESR. The so c a l l e d Veneziano model i s such an amplitude 
i n the zero width approximation. A one term Veneziano 
formula i s 

v ( S , t ) = j r ( i - ( X ( s ) ) , r b- - o c t t ) ^ 

where |3 ^ s a constant. 
This i s crossing symmetric between s and t , has 

resonance poles at positive i n t e g r a l values of o C a n ( i gives 
Regge asymptotic behaviour i n s and t . I t also s a t i s f i e s 
the FESR. 

These fundamental principles of a n a l y t i c i t y , Regge 
asymptotics, and crossing symmetry on which FESR are based 
are at the root of our bootstrap calculations that w i l l be 
discussed i n t h i s and the next chapter. 

I I . 3 Bootstraps of Linearly Rising T r a j e c t o r i e s : 

We have seen i n the l a s t section how FESR r e l a t e the 
low energy part of an amplitude with the Regge parameters 
of the crossed channel. Assuming resonance saturation of 
the d i r e c t channel low energy amplitude one can r e l a t e the 
Regge parameters of the s - channel with those of the t 
channel. This constitutes a (so ca l l e d ) bootstrap of the 
l i n e a r l y r i s i n g t r a j e c t o r y . However we should note that 
when we speak of bootstrapping a trajectory we r e a l l y mean 
bootstrapping of the parameters of the t r a j e c t o r y . The 
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absolute, magnitudes of the widths of the resonances lying 
on the trajectory (or the magnitudes of the. residue functions) 
are not bootstrapped since they appear l i n e a r l y on both sides 
of the sum r u l e . To bootstrap these quantities we need an 
additional principle such as u n i t a r i t y , as w i l l be discussed 
l a t e r . With t h i s limited sense of the word bootstrap i n 
mind, we proceed to discuss some simple cases of such boot
strap calculations f 6 r s c a l a r meson and ^ ^ _ J f s c a t t e r i n g . 

I I . 3(a) Scalar Meson Bootstrap: 

The simplest of a l l possible worlds of strongly i n t e r 
acting p a r t i c l e s i s the one consisting solely of s c a l a r 

P + 
mesons (J = 0 p a r t i c l e s ) . I f the concept of nuclear 
democracy were applicable to such a world then a s c a l a r meson 
would appear as the bound state of a pair of s c a l a r mesons 
sustained by the force a r i s i n g from the exchange of a s c a l a r 
meson i n the crossed channel. 

Vtv 

Ct4 
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However as G r o s s ^ has shown i t i s easy to see that a 
s c a l a r meson cannot bootstrap i t s e l f . Let A(s,t) s 
A(V,t) denote the scattering amplitude for s c a l a r meson -
sc a l a r meson scattering. This amplitude i s completely 
crossing symmetric i n s, t and u. Moreover 
V = \ (s-U.) i s even under crossing V<£—> -V. Thus we 
• can write down the f i r s t moment sum rule 

N O t ( t ) 
V 4»A(V,t)dV = C ( t ) $ ( t ) / N _ \ 

\ \ a 2 \ x N2 
V o \VtJ o(TtTT2. (9) 

where O^fa) = at + b i s the s c a l a r meson tr a j e c t o r y such 

t h a t O ( ( m 2 ) - 0 

and we have used the asymptotic form 
A<y,t) cm 3m I i • e" i T OS s _ \ ° ^ l t ) 

saturating the L.H.S. of (9) by a sc a l a r 4neson l y i n g on 
the s t r a i g h t l i n e trajectory (X( s)» we have 

<Jia A(y,t) = k ( s i + i ) | 3 ( s ) p/ ( 1 + I 2 T T n i 2 ) x 

^ r O (s - m2)/c>/ 
= J T | S ^ ) d (a - m2) / / y

 / O C 

1 (OC= a) 

so that equation (9) gives, on substitution 

7T (t - 2 m2) (3 (m2) - ^ f£(m 2) / N \ ^ L j i L 

^ 1 1 WA <*t2 

7 
where 
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2 Evalating both sides at t = m we have 

- 31 m* ^ m 2 > /2cx = jr p ^ 2 ) n 2/2 ^ / 

The bootstrap condition i s which gives a 
negative value for the slope of the s c a l a r meson trajectory 
. thus implying the impossibility of the s c a l a r meson 

15 
bootstrap. 

I t i s interesting however to consider the p o s s i b i l i t y 
that the exchange of an additional t r a j e c t o r y which couples 
with the sc a l a r meson channel might influence our r e s u l t s 
i . e . i f a world more complex than the scalar meson world 
might be self- c o n s i s t e n t . Since the Pomeranchuk tr a j e c t o r y 
couples with the sc a l a r meson channel, we try i t f i r s t . 
To simplify calculations we take the Pomeranchuk trajectory 
p a r a l l e l with the s c a l a r meson one and denote the common 
slope by ( X • Since we now have an additional unknown 
quantity^<p(t) we consider both the f i r s t moment and the 
th i r d moment sum ru l e s 

OUt) 
S | ( t ) = C ( t > p ( t ) ^ ^ + C p ( t ) p p ( t ) x 

v Y t ) 0 ( p ( t ) + 1 

S 3 ( t ) = C ( t ) ^ ( t ) ^ 2 J 3 + C p (t) x 
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Also rN 
S ( t ) = V V^m A(V,t) dV = 7T/S(m2) (t - 2 m2) 

1 7 ' ^ 3 
S 3 ( t ) = ^ 7 3^m A(V,t) dV =7T^3 (m2) (t - 2 *n2) 

Remembering that ( t ) = t + 1 and taking 
0^= 1 i n sc a l a r meson mass units (m2 = 1) we obtain from 
the two sum rules the equations: 

- 2^(m 2) = |3(m2) N.+ ^9 ^>(m 2) ( 1 2 ) 

- 6^>(m2) = ̂ 3(m2) N3 + 2^3 (m 2) N5
 ( l 3 ) 

These equations constitute consistency conditions on the 
residues and on the cut off parameter N. Eliminating (^'jb we 
obtain the equation: 

2 N3 + 9 N2 - 15 L= 0 
A solution of thi s equation i s N /^,1.2. Now from the 
re l a t i o n V = | (s - U) } N = S

N - 2 m 2 + t/2 , which gives 
for N = 1.2 and t = m2 = 1, s N = 2.6. The half-way . 
point between the 0* and 2 + p a r t i c l e s on the s c a l a r meson 
trajectory corresponds to SN = 2, but any value for f j j 
l y i n g between 1 and 3 i s permissible. However taking N = 1.2 
one gets from (12) 

f> ( m 2 ) 'A P ( M 2» • - 5 / 3
 ( 1 U 
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^Vn)belng positive i t follows that 3̂p i^s negative. 
Again evaluating the sum rules (10) and (11) at t = o we 

M m 

obtain: 

•) - k 0 , 2 - 8 ) * (14') 
Now for t = o, N. = SN - 2 . With SN l y i n g anywhere 
between the masses of the 0 + and 2 + p a r t i c l e s on the sc a l a r 

• . -• • / -•• 

meson traj e c t o r y , the equation (14) gives 

«&As&^ ^ ( O ) / ̂ p {o)C° ^ ' ' { 1 5 ) 

Nowf^pip) i s related with the t o t a l cross-section i n the 
forward direction for.an e l a s t i c scattering process (by 
optical theorem) and therefore i t must be pos i t i v e . Thus 
(15) implies that |3( 0)^ s negative. Hence from equations 
(14) and (15) we conclude that the consistency conditions 
for the bootstrap of s c a l a r meson and Poraeronchuk t r a j e c t o r i e s 
require that ̂ 3 ( t ) and^p (t) should have opposite signs 
at t = o and t = i . c . they should change signs 

2 
siraultaneoursly somewhere between t = o and t = m . This 
i s obviously very implausible. Thus we conclude that even 
with the inclusion of the Pomeranchuk trajectory the s c a l a r 
meson tr a j e c t o r y does not bootstrap i t s e l f . 
I I . 3(b) The Case of Signatured Amplitude 

An amplitude of d e f i n i t e signature has only a right-hand 
cut and we can write down a l l moments sum rules for such an 
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amplitude. We w i l l consider the zeroth moment sum rule 
for the positive signatured amplitude A + ( V , t ) of 
sc a l a r meson-scalar meson scattering. This amplitude has 
a fixed pole at (X = Od) = - 1 which i s the, f i r s t wrong 
signature unphysical value of angular momentum. Correspond
ing to equation (9) we w i l l have the sum r u l e . 

I J t a A + ( V , t ) d * = c(t) |3(t) | N \ 

-o • $ ( t ) N"S (16) 
where C (t) = J f f (0(+- 3/2) X ) a n d t h e 

l a s t term denotes the contribution of the fixed pole at 
( X = O d j = Saturating the left-hand side of (16) by 

2 
the s c a l a r meson and evaluating both sides at t = m . 

JTP) (m2) = i j f ^(m 2) N • ^ U 2 ) N° 

Without the l a s t term, the sum rule (17) w i l l give a positive 
value for the slope OC i n contradiction with the r e s u l t 
obtained from the sum rule (9) for the t o t a l amplitude-
Demanding that the two sum rules (9) and (17) for the 
amplitudes A(V,t) and A (tf,t) 

respectively should be 
consistent, we can obtain a condition for the "residue" 
Y ( t ) of the fixed pole at 0 ^ = - 1 . 

Taking ^>(m2) = ^ ( m 2 ) i n (17) we obtain from 
(9) and (17): 
V ( m 2 ) " - i l \ N p m 2 ) (1 + 2 N) 
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Since |3 ) a n d N are positive "^(m^) i s negative. Also 
i t is'obvious t h a t ^ ( m ^ ) i s larger i n magnitude than^(m 2) 
Thus for. the two sum rule s to be compatible we require that 
the residue of the fixed pole at the wrong signature unphysical 
value of the angular momentum should be large.and negative. 

I t i s also obvious that the higher moment sum rules for 
the amplitude A(v,t) w i l l continue to give a negative value 
for the slope (because of the factors V-5, V etc.) 
and the higher moment sum rules for the signatured amplitude 
A+ (v,t) w i l l have more fixed poles at other wrong 
signature unphysical values of i«e. at Q{ = - 3, -5 etc. 
By requiring that the two kinds of sum rules be compatible 
we could obtain more conditions on the residues of the fixed 
poles* 

I I . k Bootstrap of Rho Meson i n Scattering. 
(a) FESR for the t o t a l Amplitude: 

I t i s well-known that the rho meson i s a prominent 
resonance of the Jt-Jt system and since the 7T~7T 
reaction i s completely crossing symmetric, i t contains the jP 
i n a l l channels. Through the FESR we can r e l a t e the 1^ = 1 
JX—7\ amplitude with a l l isospin states of the s _ channel 
low energy amplitude. We can then ask, following Gross 
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and Schmid^ whether the input and output parameters are 
consistent. In the narrow resonance approximation, where 
the d i r e c t channel amplitude w i l l be saturated with the 
contributions of d i r e c t channel resonances l y i n g on. a 
straight l i n e trajectory and the crossed channel amplitude 
w i l l be the Regge amplitude with a l i n e a r t r a j e c t o r y , the 
residue function w i l l appear l i n e a r l y on both sides of the 
sum rule and consequently i t w i l l not be possible to determine 
the absolute magnitudes of the widths (or couplings).of 

16 
resonances; only the r a t i o s w i l l be determined. 

We work at fixed ' t ' and begin with the I t = 1 Ji-'R 

amplitude A^[v,t)t V = i ( s - OL) and remembering that 

A1* = V y, t ) = . - A X T = 1<y,t), 

we can only write down even moment sum r u l e s . We w i l l 
consider only the zeroth and the second moment sum rules v i z . 
So (N,t) = \ ^m A1*" 1(v,t)dV = C ( t ) $ ( t ) / N \ L M ^ ^ 

o(-M 
(18) 

and 
v A v i a 

S 2 ( N , t ) = \ V 23t?V A ( V , t ) d V ^ C(t)P(t) / N \ N 3 

•Vo o( ( t ) + 3 [ ^ ] 

where c ( t ) . ^ ^2)) ^ (0£ l ) 

t ' (19) 
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and we have used the asymptotic form 

A1* (v,t) 3/,)6ft> v 

¥ 
1/ 

/.V f " * * 
for the amplitude | Q 2 J 
I t A " (v,t) = + 7T (2(3(+ 1) g ( t ) P<X (Zt) - Po< (- Zt) 

T 2 sin- ~jT(y( 
0^("t) = CX * s °^ course the degenerate 
t r a j e c t o r y . 

I t = l 
The amplitude A (v,t)on the left-hand sides of equations 
(18) and (19) can be related to the s _ channel amplitude 
A^" s(v,t) by the crossing r e l a t i o n 

L
X t = 1 ( V , t ) = 2 |5dt - 1, I 8 ) A I s ( v , t ) 

i 4A — - (2°) 
( I t I s ) i s of course the isospin crossing matrix. 

Now the resonances i n the s - channel are the I s = 1 
J) - resonance and the I = 0 ^ resonance (we assume that 
there i s no I =2 resonance). F i r s t we consider the case 
when the left-hand sides of (18) and (19) are saturated by 
the ^ resonance only. In t h i s case 

^ W A I s - 1 (v,t) = 1 3Y (2£+ 1)6(8) P£ [ i + 2$--^) 

o(' r 2 3 " 4 m 

/ x o ( s - m ) 
)(where (X i s the slope.) 

Also /V s) i s related to the resonance width at the resonance 
I 
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m R 
mass n ^ 

where K ( s ) = ^ ( s - 4^) 7 S ~ J * and V-e. i s t h e e l a s t i c 

width = \~* x, x being i n e l a s t i c i t y ( = 1 f o r f ) and j - " 1 

the t o t a l width* Using (20) and making s u b s t i t u t i o n s i n 

sum r u l e s (18) and (19)» and e v a l u a t i n g both s i d e s a t t = ^ , 

we obtain: 

^ = (3 raJ - 4 m * ) / N 2o/ - (18) 

2 . „ 2 , 3 / . . . 4 / 

7> / >y> - ^ /> 

and p t / r - n " 4 

V / y " 2 ( 3 ^ - 4 " ' ' / 4 M ° < , , . , - . ( 1 9 ) 

Now we can check the c o n s i s t e n c y of our sum r u l e s (18) and 
/ 

(19) i n v a r i o u s ways. F i r s t we c o n s i d e r (18) and (18) only. 

We choose N at the half-way point between the j> and , 

so t h a t because of the r e l a t i o n 
y = i (s - U) = i (2 s - k ™ 2 + t ) 

N - 3 ^ / 2 - 2 ^ + 1/ 2 ( X (21) 
2 2 1/ (a t t = m ) corresponds t o the half-way value s N » / ' 

2 -.̂ m2 ^ m-2 
Taking experimental v a l u e s of m = 30irand ( V =0.02 <«-

/ r 
we obtain from (18) 

p t > out i n 

> 
T h i s r e s u l t depends c r u c i a l l y on the c r o s s i n g matrix element 

P 
( ^ t - ^ i I s = l ) = \ and on J? s p i n . I t a l s o depends on N. 
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corresponding value i n c l a s s i c a l bootstrap c a l c u l a t i o n s 

where i n most eases y ^ 0 ^ / r ^ 1 1 " ^ " 

Another way to cfieck c o n s i s t e n c y i s t o take — JyO^ 

as a bootstrap c o n d i t i o n i n (18) and then to f i n d N from a 

knowledge of the experimental v a l u e s of the other parameters. 

T h i s g i v e s N = 65.5 m2 which should be compared w i t h the 

half-way value of 68 ^ . 

We can a l s o determine s e l f - c o n s i s t e n t slope from (18) 

provided we express N i n terms of 0 ( by r e l a t i o n ( 2 1 ) , take 

Vjo^/\J>^-\ a n d s u b s t i t u t e ^ = 30 ^ (from e x p e r i 

ment). We obtain the equation (43 0 ( - V 2 ) = 0 which gives 

0 ^ - .0116 <n-2 . 

Next we use the second sum r u l e (19-^ as w e l l . Taking 
\\ -ZL. ^ and other parameters from experiment we obtain 
j J* 2 o. 

N = 63.1 ° which i s not f a r from the v a l u e N = 65.5 ™ 

obtained from the z e r o t h moment sum r u l e . 

Using both the sum r u l e s (18) and (19) simultaneously, 

we obtain the c o n s i s t e n c y c o n d i t i o n 

N 2 - ( S j S ... 4 f ) 2 / 2 
Taking the experimental v a l u e of m2 we obtain 

2 2 
N = [2 43 m - 60.8 xsT 

. i Tt TT 

which compares f a i r l y w e l l w i t h the previous v a l u e s of N 
2 

as w e l l as the half-way value of 68 m • 
P" 
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I n the above c a l c u l a t i o n s we have s a t u r a t e d the l e f t -

hand s i d e of the sum r u l e by J3 resonance only. However we 

can a l s o include the c o n t r i b u t i o n of + (1260)• The sum r u l e 
Jo 

( I S ) then g i v e s 

(J ) 7! ( 2 £ - D % ( i • J t ^ m, , ̂  ) ^ 

= C ( t ) A ( t ) / N_ 

w h e r e C(t) = ^ 1 ^ 3 / 2 ) ^ ^ . 1 ) , ( 2 2 ) 

0 ^ ( 0 i s the degenerate t r a j e c t o r y , 

and we have taken the c o r r e c t matrix elements 

|2> ( i - i , i s - i ) = i,.(3 d t i a = o) = * 

We w i l l e v a l u a t e (22) a t t = Jj^and take N a t t h e half-way 

point between -f^ and g (3 ) resonances on the t r a j e c t o r y 

( t ) . On s i m p l i f i c a t i o n we obtain: 

F u r t h e r on r e e x p r e s s i n g ^ j± i n terras of the widths \p 

and ^ by the r e l a t i o n : 

(3 ( t = m 2R) y/^/ = Pg / K ( t = m 2
R ) 

we f i n a l l y o b tain: 

(x O f / ( x T )p = 0.999 

where l " ^ " " X [ ~ ^ w h e r e x i s t h e i n e l a s t i c i t y a n d P t h e 

t o t a l width. The experimental r a t i o given by Rosenfeld e t a l 



- 3 2 -

i s 1.2. 

I I . 4 ( b ) : FESR f o r the Signatured Amplitude; 

We w i l l c o n s i d e r the 1^=1 , TT-'H amplitude of 

negative s i g n a t u r e , A fc ' ( v , t ) = Â  ^ ( v , t ) . This 

amplitude w i l l be approximated by the c o n t r i b u t i o n of p 

t r a j e c t o r y f o r l a r g e V i . e . V ^ N . Th i s amplitude 

has only a right-hand c ut and we can w r i t e down a l l moment 

sum r u l e s f o r i t . However the even moment sum r u l e s are 
I t _ l 

i d e n t i c a l w i t h those f o r the t o t a l amplitude A tv,£) and 

t h e r e f o r e we w i l l c o n s i d e r only the odd moment sum r u l e s . • 

The amplitude ^ ^ " | y , t ) i s a l s o expected t o have f i x e d poles 

a t wrong-signature u n p h y s i c a l v a l u e s of 0 ( i . e . a t ( X = 

0,-2,-4* We w i l l show however t h a t the c o n t r i b u t i o n s of these 

f i x e d poles a r e n e g l i g i b l e . , Neglecting the f i x e d pole terms, 

the nth moment sum r u l e f o r A ^ ( y , t ) can be w r i t t e n as 
f N

 n i I = 1 ( ) i 
^ *V Q>f\ A* ' " (v,t)dV = C ( t ) |J<t) A^\- N n + 1 

V 0. 1 t^t|0C + n + 1 (23) 
S a t u r a t i n g the l e f t - h a n d s i d e of (23) by the c o n t r i b u t i o n of 

2 

p resonance only and e v a l u a t i n g both s i d e s a t t = ^ we 

obtain ^ ^ ^jt v 
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Using jZ^ijo) = ^' t h e l 3 0 0 t s t r a P c o n d i t i o n 
and s i m p l i f y i n g , we get 

2 « ' \ r ' 1 2 " -v- (24) 
I f we, co n s i d e r the 1 s t and 3rd moment sum r u l e s (n = 1, 3 ) , 

we have 

and 2 2 4 

N = &o( f r - ... (2*b) 

From (24a) and (24b) we can obtain an a d d i t i o n a l c o n s i s t e n c y 

c o n d i t i o n on N: 
c Urn2 ija2 \2 

N 2 .. . ( 3 J ° - V ) — (24c) 
From (24a»b»c) we w i l l check whether the d i f f e r e n t v a l u e s of 
N are c o n s i s t e n t . We w i l l take experimental v a l u e s f o r the 

2 2 / —2 
unknown q u a n t i t i e s : n£ • 30™^ and Q ( = .02 m ^ 

2 m2 

(24a) g i v e s N = 64-96 ^ (24b) gives N = 65-3 j r 

2 and (24c) g i v e s N = 65.7 f . I n f a c t we see from 7T 
(24) t h a t N v a r i e s only slowly w i t h n. These v a l u e s of N 

are not only c o n s i s t e n t w i t h each other but they are a l s o 

c o n s i s t e n t with v a l u e s of N found from the FESR f o r the t o t a l 

amplitude. T h i s shows t h a t the c o n t r i b u t i o n s of f i x e d poles 

of A * " * ( v , t ) are n e g l i g i b l e . 
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I I . 5 The L i m i t a t i o n s of FESR Bootstraps; 

The bootstrap c a l c u l a t i o n s t h a t we have performed 

depend on the Regge pole dominance of the RHS, and on the 

s a t u r a t i o n by narrow width resonances of the LHS. I n other 

words we assume d u a l i t y between channel resonances and t 

channel Regge t r a j e c t o r i e s . The resonance s a t u r a t i o n demands 

a s m a l l v a l u e f o r the c u t o f f N because a t l a r g e N more and 

more resonances w i l l c o n t r i b u t e and/or the non-resonating 

background w i l l a l s o become important. On the other hand, 

the Regge form of the RHS r e q u i r e s a. l a r g e value f o r N. 

Thus N should be chosen where the resonance r e g i o n matches 

wi t h the Regge region. We have chosen N a t the half-way 

point between the hi g h e s t resonance kept and the lowest one 

l e f t out. I f N i s v a r i e d from t h i s middle point to h a l f 

the d i s t a n c e from the n e a r e s t resonance on e i t h e r s i d e , the 

r e s u l t s are changed by not more than 10 per c e n t . ^ Another 

d i f f i c u l t y i s i n the choice of the value of momentum t r a n s f e r 

' t * a t which both s i d e s of the sum r u l e are evaluated. I n 
2 m 

our c a l c u l a t i o n we evaluated both s i d e s a t t = m R where T i 
i s the resonance mass. This i s so because we know that S d n ^ j ^ 

17-

i s r e l a t e d to the width of the resonance. Desai e t a l 

have performed c a l c u l a t i o n s to bootstrap the degenerate f>-fQ 

t r a j e c t o r y i n Jf—7T s c a t t e r i n g a t d i f f e r e n t v a l u e s of t . 
The r e s u l t s are dependent on the form f o r / 3 • F o r a n v 
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given v a l u e of t they f i n d t h e r e i s not a unique s o l u t i o n 

f o r the slope and the i n t e r c e p t but a continuous range of 

s o l u t i o n s * 

I t should be noted t h a t Regge dominance on the RHS of 

the sum r u l e demands a s m a l l value of t ( t « N) whereas 

the n e g l e c t of lower p a r t i a l waves on the LHS r e q u i r e s l a r g e 

t . I t i s t h e r e f o r e not p o s s i b l e to ensure the accuracy of 

both s i d e s i n a c a l c u l a t i o n where lower p a r t i a l waves are 

ignored. We have performed our c a l c u l a t i o n s only f o r t = m^R 

and our r e s u l t s are a check of the c o n s i s t e n c y of the Regge 

parameters r a t h e r than a complete bootstrap c a l c u l a t i o n . 

I n more g e n e r a l terms the bootstrap of an i n f i n i t e l y 

r i s i n g t r a j e c t o r y should a r i s e from an answer to the f o l l o w i n g 

question: . Can we sum, i n an average sense, a s e t of narrow 

resonances i n the s channel i n such a way as to reproduce 

the Regge high energy behaviour i n the same channel ? 

I f we assume t h a t a l l d i r e c t channel resonances l i e on a 

s i n g l e t r a j e c t o r y OCl'M a n d take the narrow width approx-

imation then the c o n t r i b u t i o n of a l l these resonances t o 

the absorptive part of the amplitude w i l l be a sum of d e l t a 

f u n c t i o n s i n s . Thus the LHS of the FESR w i l l be a s t e p 

f u n c t i o n i n /6 (or i n the cut o f f N) whereas the RHS i s a 

smoothly v a r y i n g f u n c t i o n of N. We can however smooth out 

the narrow resonances and then demand c o n s i s t e n c y of the RHS 

and LHS of the FESR. E x p l i c i t c a l c u l a t i o n s performed by 
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d i f f e r e n t a u t h o r s ^ ' s h o w t h a t the two s i d e s of FESR are 
s t i l l i n c o n s i s t e n t . The L.H.S. does not grow f a s t enough 
w i t h energy and more resonances are needed. However i f we 
allow the resonances to have non-zero widths, the overlapping 
of the resonance c o n t r i b u t i o n s can be made ' ^t o generate 
Regge behaviour, by a s u i t a b l e choice of the v a r i a t i o n of the 
widths. An a l t e r n a t i v e approach to the s a t i s f a c t i o n o f the 
FESR i s based on the r e p r e s e n t a t i o n of the s c a t t e r i n g a m p l i
tude i n terms of the c o n t r i b u t i o n s of resonances l y i n g on a 
sequence of t r a j e c t o r i e s having non-zero s p a c i n g . The sum 

of such c o n t r i b u t i o n s leads to the Regge asymptotic behaviour 
21 22 

and thus t o the s o l u t i o n of the FESR ' • Such a s o l u t i o n 

of the FESR imposes c o n s t r a i n t s on the r e s i d u e f u n c t i o n . 

The Veneziano formula"^ i s an example of such a. r e p r e s e n t a t i o n 

having a sequence of p a r a l l e l t r a j e c t o r i e s i n each channel. 

I t s a t i s f i e s the FESR. T h i s s o l u t i o n however i s not unique, 

and t h i s i s t y p i c a l of a l l approaches based on the FESR and 

the narrow width approximation. I n order to pin down the 

Regge parameters we need to impose u n i t a r i t y . 
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CHAPTER I I I 

U n i t a r i z e d Regge Parameters and Bootstraps 

I n the previous chapter we considered the q u e s t i o n of 

bootstrapping a l i n e a r l y r i s i n g t r a j e c t o r y . There we worked 

i n the narrow resonance approximation w i t h d M OC — O and 

consequently the u n i t a r i t y c o n d i t i o n was not used* We 

found t h a t whereas we could determine s e l f - c o n s i s t e n t v a l u e s 

f o r the slope OC and the c u t - o f f parameter N, the absolute 

magnitude of the width (or coupling}of the resonance l y i n g 

on the t r a j e c t o r y remained undetermined. I n the present 

chapter we w i l l invoke u n i t a r i t y and t r y t o determine s e l f -

cons i s t e n l y both the slope and the coupling of the J> i n JT-TT-

We w i l l be p a r t i c u l a r l y i n t e r e s t e d i n s e e i n g how f a r u n i t a r i t y 

a l t e r s the r e s u l t s of the previous chapter. We w i l l a l s o . 

study the r e l a t e d question of the e f f e c t of u n i t a r i t y on the 

l i n e a r i t y of the t r a j e c t o r y and on the t - dependence of the 

r e s i d u e f u n c t i o n . 

We begin w i t h the d e r i v a t i o n of the so c a l l e d Cheng-
10 $ 

Sharp ' equations f o r the Regge parameters. 

I l l - 1 Cheng-Sharp Equations f o r the Regge Parameters: 

We have seen i n s e c t i o n I I . 1 ( a ) t h a t provided two 

s i n g u l a r i t i e s do not c r o s s the Regge t r a j e c t o r y f u n c t i o n Q ( ( t ) 
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rt 
x(X(t) 

and the reduced residue function |3 ( t ) = ^ ( t ) 
are r e a l a nalytic functions of t with a r i g h t hand c*ut only. 
Requiring thatO((t)should be l i n e a r l y r i s i n g asymptotically^ 
We can represent i t by the dispersion r e l a t i o n 

( X ( t ) = at + b + 4 »<* (t) ) dt 
t ' - t 

where we have assumed that ^mOC-^ O as t — 0 0 • 
I t i s obvious that the effect of u n i t a r i t y represented by 
the i n t e g r a l term i n (1) w i l l be to give a small curvature 
to the t r a j e c t o r y . 

To obtain an equation f o r ^ t ) we f i r s t consider the 
case of potential scattering from a superposition of Yukawa 
potentials. I f | 3 n ( t ) i s the residue of the nth trajectory 

( X n ( t ) ) i t i s found to have ( n - 1 ) zeros.^ Let t i , i = 1, 
2, - , n-1 be the locations of these zeros, then the function 

n-1 TT 
i = l 

^ n ( t ) = ^ n j Y n ( t ) j | | ( t _ t . ) ^ 

s a t i s f i e s the dispersion r e l a t i o n : 

J t ' — t 

W x < ^ (2) 

(3) 



-39< 

where 

(t) 
(Xn(t) 

But 
^ y \ ^ > ( t ) = phase of "Y n (t ) ^ 

= phase of j3 n (t) ~ 5mQ( •l/yv^'t 

= tan" 

We can therefore rewrite equation (3) as 

; i_\ T t a n - i r 4 m 6 n ( t ) i 
* J L \ R e g n (t'> 

4 ° / 2 / / 7 

which i n vi r t u e of (3) gives 

^Xri(t) = (constant) P Y T 1 

n-1 • 6 X p 

^ ( t - t i ) 

i = l 

) 
Rej £ n ( t ' ) 

(4) 

This i s the required equation for the residue function 

"Vn(t) ~(~*n ̂  ^i^V^^ h ' c o n s t a n t f a c t o r i s 

proportional to the coupling. To obtain the corresponding 
equation f o r | ^ ( t ) i n the r e l a t i v i s t i c case, we note that ^ ( t ) 



-40-

should have zeros a t the Mandelstam "symmetry points and 
n-1 

t h e r e f o r e we r e p l a c e the f a c t o r "jt ( t - t i ) i n equation 
i = l 

(4) by an e n t i r e f u n c t i o n G ( t ) which produces z e r o s of|&(t) 

a t the r e q u i r e d p o i n t s . As an example we could take 

S ( t ) e f c G ( t ) 1 \, T\ . i-=-£a 
t (at + b +-V2) n - 1 (at + b + n + V2) 

where t n , n = 1,2,... are those v a l u e s of t for which 

( X ( t ) = - n - !/2 , n = 1,2...., but t h i s form f o r G ( t ) i s 

not convenient f o r computational purposes. A l t e r n a t e l y we 

could take 

1 
G ( t ) = p ( o ( ( t ) + 3/ 2) 

which has zeros a t the r e q u i r e d p o i n t s but s i n c e O ( ( t ) develops 

an imaginary f o r t ^ t o t h i s i s not an e n t i r e f u n c t i o n . But 

f o r t ^ t o , 0 { ( ' t ) = Re0£(t)and i t i s convenient to use the 

form G ( t ) = 1 ̂ ^ ( R e OC + ^ 2 ) e v e n though i t i s not s t r i c t l y 

an a n a l y t i c f u n c t i o n . 

We can now w r i t e down an equation f o r |3(t) • By 

r e q u i r i n g , as i n the case of narrow resonance approximation, 

t h a t ^ ( t ) without a f a c t o r E ( t Should go a s y m p t o t i c a l l y as 

1/t we obtain, by analogy w i t h equation ( 4 ) , the equation 

\ e / r (HeO(+ 3 / 2 ) I 1 

(5) 
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with 

I ( t ) = 

t ' - t (6) 

where the exponential f a c t o r , e » has been i n s e r t e d i n (5) to 

ensure ̂ the asymptotic b e h a v i o u r i s t (without the f a c t o r E ( t ) ) 

Here OC i s the slope of the t r a j e c t o r y and s i n c e a l l t r a j e c t -

o r i e s appear to have the same slope of 1 GeV~ , '0^ gives 

the s c a l e of energy. E ( t ) i s an e n t i r e f a c t i o n and we w i l l 

take E ( t ) = E. Re(X ( f o r the ^ t r a j e c t o r y i n JL-7T s c a t t e r 

i n g ) . This ensures t h a t the t r a j e c t o r y chooses non-sense a t 

= o . The constant E i s r e l a t e d to the c o u p l i n g . 

Equations (1) and (5) do not form a coupled s e t of 

i n t e g r a l equations. They must be supplemented by an addition

a l equation connecting ^ m o ( w i t h | 3 ( t ) • Such an equation 

i s given by u n i t a r i t y . 

I I I . 2 Coupled I n t e g r a l Equations f o r the Regge Parameters: -

I l i a . 2(a) The Case of a S i n g l e Regge Term Representation 

I f we represent the amplitude by a s i n g l e Regge pole, 

the p a r t i a l wave amplitude has the form 

A(£,t f) = ^ ( t ) / ^ — < X ( t ) ^ 
(7) 
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and i f t h i s i s s u b s t i t u t e d i n the u n i t a r i t y equation: 

A (£,t) - A<i ft) = K ( t ) A ( ^ t ) k(ft t ) 
(8) 

where K ( t ) = ^ ( t - t o ) / t ) Z 

we o b t a i n the equation: 

§ ra(X(t) = K ( t ) ^ ( t ) , t ^> t o ^ 

This shows t h a t ^ ( t ) i s r e a l f o r t ^ t o and thereforeJmjJ=o f o r t ^ t o 

Equation (9) together w i t h equations ( 1 ) , (5) and (6) 

c o n s t i t u t e a c l o s e d s e t of i n t e g r a l equations f o r the Regge 

parameters, where now 
.-«> A , / n i . <Q2. 

1 ( t ) • i \ /• 1 " ' d t 

t - t / 
K \ V % V *• — (6) 

I I I . 2 ( b ) : The Case of Khuri Representation 

The ordinary Regge r e p r e s e n t a t i o n of the amplitude of 

d e f i n i t e s i g n a t u r e v i z . 

A - ( s , t ) = -JT (2(X(t) + l ) 8 ( t ) (- Z^) L 6 \ V 1 \ ^ 
1 do) 

does not possess Mandelstam a n a l y t i c i t y i i t has a cut i n 

Zt = Z t ( s j t ) from 2^ = 1 t o CX3 i n s t e a d of the cut 
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from Z't = Z t ( s o j t ) toQO » where so i s the t h r e s h o l d 

of t h e s - channel. I n terras of the v a r i a b l e s , the amplitude 
. . . . . 

i n equation (10) has a cut from s — _ 4 ^ t . to s = QO whereas 

the Mandelstam a n a l y t i c i t y r e q u i r e s i t t o have a c u t from 
22 

s 0 t o 00 • The b a s i c idea of the Khuri r e p r e s e n t a t i o n 
i£ to remove from the Regge term the p a r t corresponding to 

n2 

the c u t between s ^ f - Z ^ and s = s ^ . To t h i s end we invoke 

an i n t e g r a l r e p r e s e n t a t i o n f o r the Legendre f u n c t i o n 
<_ Z t ) = - J2 sinTTCV cos 

( c o s h Z)C- Z) I 

- 1 < Re (X C 0 

_ ^ - ( l l ) 

which can a l s o be w t i t t e n as 

P ^ ( - Z t ) = - s i n TT0/ (CX+ i ) X 

J J ( c o s h X - Z) 
s i n ^ X 

- 0 0 

(12) 

Using t h i s we can produce a r e p r e s e n t a t i o n of the Regge term 

(10) w i t h a c u t beginning a t s = s ^ v i z . 
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00 

( s , t ) p ( t ) \ e
l 

s i n h x dx 

(cosh x - ^) 3 ^ 2 

v-x-VVXV (13) 

where 

-1 S l ^ , K b - i s i 
<T = cosh (1 + £ ) 2 V 

Equation (13) i s v a l i d only f o r R © 0( ̂ ° D u t w e can use (12) 

t o define the a n a l y t i c c o n t i n u a t i o n t o R e O ( ^ o and f i n d 

A" ( s , t ) = - "JT (20(+ 1) ^ ( t ) - Zt) 2 s i n TTO^ 

— i p ( t ) \ C s i n h x dx 

2 J 2 \ (cosh x - Z*) 3 / 2 

- 0 0 

T h e . p a r t i a l wave p r o j e c t i o n of t h i s can be shown to be 

. £ - 0( <*> 
T h i s p a r t i a l wave amplitude has a r i g h t hand cut due t o 0C(t) 

a.ndj3 ( t ) and a l e f t hand cut from t = - s j + 4 ^ to t = -CO 

due t o the behaviour of M t ) . 
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Here we may d i s c u s s the question of the choice of s ^ • 

€orresponding t o a Regge pole i n the t c h a n n e l , s ^ must 

l i e i n the high energy region of the s channel, t h e r e f o r e 

we may take s i = Sjj where s^j i s the c u t - o f f i n the FESR. 

With t h i s c hoice of s i , the boundary of the e l a s t i c t double 

s p e c t r a l f u n c t i o n w i l l be given by t = to and s = s i e 

Now we want t o see how the boundary of the double s p e c t r a l 

f u n c t i o n i s s h i f t e d i f we invoke the d u a l i t y i d e a . Accord

i n g t o the concept of d u a l i t y the t - channel Regge pole i s 

generated by the s channel resonances, and the s channel 

resonances are important fo r s (where s ^ marks the 

boundary of the high energy r e g i o n ) . Thus the f o r c e s or 

p o t e n t i a l which generates the t channel Regge pole (which 

c o n t r i b u t e s to the amplitude f o r s y s N ) i s given by the 

pa r t of the double s p e c t r a l f u n c t i o n l y i n g between s = s Q 

and s = spj. S y m b o l i c a l l y we can w r i t e the p a r t i a l wave 

amplitude A(£ ;t) as 

AjJ ( t ) = A R e g g e (s y 3 N ) + P o t e n t i a l ^ 4 < / 4 N ^ 

Now s i n c e d u a l i t y i m p l i e s that the i n t e g r a l over resonance 

c o n t r i b u t i o n s from t o i s equal to the i n t e g r a l over 

Regge c o n t r i b u t i o n s ( v i a the FESR) we may r e p l a c e the re s o n 

ance (or p o t e n t i a l ) term i n the above e x p r e s s i o n f o r A£(t) 

by ARegge ( s 0 ^ s ^ s N ) so t h a t we may w r i t e 

Ajg ( t ) = A R e g g e (s y s N ) + ARegge ( s 0 ( s ( s N ) 

= Khuri amplitude w i t h s i = s D 
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Thus duality implies that i n the Khuri representation 
for the p a r t i a l wave amplitude we must take coincident 
with the boundary of the e l a s t i c s channel double s p e c t r a l 

2 
function (for t 16 % ) . ff Now the boundary of the 

/ / I. 
double s p e c t r a l function // 

— — —-

f i g . 4 . 
boundary of the double 

t , x s p e c t r a l function i n H-R 

i n 7t~7L scattering i s * given by the curves (see figure 4) 
y$ = 4 + 64^(t - 4) for t D < t <C 16*% 

and
 t {yv-i 
= 16 + 64 y^(t - 16) for t y 16 V*" 

The parameter f <S 1 i n equation (14) w i l l be taken coincident 
with t h i s boundary* 
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Now we can d e r i v e the Cheng-Sharp equations f o r the 

Khuri r e p r e s e n t a t i o n s u b s t i t u t i n g 

1 - - <L - C*M 
i n the u n i t a r i t y equation: 

A (J^jt) - A (it) = 2 i K ( t ) A ( l t ) • A ( l , t ) 

we obtain a t 

where 
i 

K ( t ) = ^ ( t - to) / t ~ ^ * 
This g i v e s the phase of|3)(t) as 

t ™ - 1 f %|_y - - 2
 fax w • f w 

The equations (5) and (6) t h e r e f o r e give 
0((t) 

where _00 

(15) 

/ 
(15) 

Using the r e l a t i o n (15) these equations give an i n t e g r a l 
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equation f o r 

^ m ( X ( t ) = K(t) Ub[%l\ E <*> 

exp 

t 0 . V v . (16) 

with 

( V ( t ) = a t + b + -
^ TV 

4: 

5 m Q l ( t ) . dt 
f - t -^ - - - - (17) 

The equations f o r Remand ^ m ^ a r e given by (15) f o r " £ ^ t o 

and by (15) f o r a l l t . We can s o l v e the equations (16) 

and (17) as w i l l be d i s c u s s e d i n the f o l l o w i n g s e c t i o n s . 

I I I . 3 The S o l u t i o n of the Cheng-Sharp Equations: 

I I I . 3 ( a ) The Case of a S i n g l e Reeee Term Representation 

To f a c i l i t a t e convergence of the i n t e g r a l s and t o ensure 

t h a t the t r a j e c t o r y passes through the mass of the we 

r e w r i t e the equations of s e c t i o n 111.2(a) f o r the parameters 

0 ( ( t ) a n d h ( t ) w i t h a s u b t r a c t i o n a t t = ™ (where ReO(= 1) T 00 J 
and o b t a i n y P 

Re (X = (* ( t - m* ) + 1 + _P \ i m t t t t V dt-
^ TV \ ( t 7 - t ) tf- m 2 ) 

4. f (18a) 
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( t ) . / K J C I a \ -ILfeJ ' r (»•<*• 3 / 2 ) ^ < -i} 

where 

( t / - t ) ( t ' - m2 ) 

(18c) 

and 

flm#(t) = M t ) . j3(t) - v < l 8 d> 

where E ( t ) i s an e n t i r e f u n c t i o n , and as d i s c u s s e d i n s e c t i o n 

I I I . l we r e q u i r e i t to have a g h o s t - k i l l i n g f a c t o r ( X ( t ) or 

ra t h e r R e O ( ( t ) to keep i t r e a l above t h r e s h o l d . Hence we take 

E ( t ) = (ReOO . E (E = constant) . . With t h i s choice o f E ( t ) j 

p ( t ) goes to a constant as t^oQ . I n v i r t u e of equation 

(9) t h i s means th a t 4 " Y ^ $ ~ > c o n s t a n t , w n i c n prevents the 

convergence of the i n t e g r a l s i n (16) and (17) ; so i n s t e a d we 

use K ( t ) = K ( t ) / F ( t ) where F ( t ) i s the Fermi fun c t i o n ^ 

F ( t ) = 1 + exp £ ( t - t ) /^~\ • ^ i s u s e d t o c u t - o f f 

U n i t a r i t y and hertce make 9 m0(—^ 0 as t goes beyond a c e r t a i n 

v a l u e , t , where e l a s t i c u n i t a r i t y i s no longer v a l i d . 

Using the r e l a t i o n between pi(t) and the width f j , v i z . 
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we f i n d t h a t ( i n pion mass u n i t s ) 

E = 0 .82 Yp x % . (19) 
Taking [J - I4O MeV = 1 Yv^ } E - 0 . 8 2 

To s o l v e the equations (18) we note t h a t we have two f r e e 
/ 

parameters OC and E. - whose p h y s i c a l v a l u e s are r e s p e c t i v e l y 
-2 • • 

0.02 m ^ and 0.82. To study the e f f e c t of u n i t a r i t y on 

the l i n e a r i t y of the t r a j e c t o r y we s t a r t with the p h y s i c a l 

v a l u e s of these parameters and s o l v e the equations (18) by 

i t e r a t i o n . They converge a f t e r about 4 i t e r a t i o n s . To 

demonstrate t h a t the s o l u t i o n s are independent of the c u t - o f f 

t we s o l v e the equations f o r two v a l u e s of the c u t - o f f , 
2 , , 2 2 

t - 200 and t = 300 \ ( w i t h ^ = 20 i n e i t h e r c a s e ) . 

I n f i g u r e 5 we d i s p l a y the s e l f - c o n s i s t e n t v a l u e s of 

corresponding to these two choices of t . We see t h a t the 

val u e s of QmO^ agree f a i r l y w e l l over the re g i o n t^.<^ 16 O n 

I n f i g u r e s 6 ( a ) , ( b ) we e x h i b i t the p l o t s of Re (X and "Y = R e Y 

.s shown i n f i g u r e 5« We*see t h a t Q 

ReC* A 

and the p l o t of <jm0( 

i s shown i n f i g u r e 5« We see t h a t 9m0C h a s t h e u s u a i form 
and t h i s form i s c o n s i s t e n t with the behaviour of the widths 

23 
of higher beson resonances found by F o c c a c i e t a l . and 

d i s c u s s e d by C o l l i n s e t a l . The graph f o r ReO(shows t h a t 

i t i s almost l i n e a r and t h a t the e f f e c t of u n i t a r i t y i s s m a l l . 

I n f i g u r e 6(b) the graph of Y ( t ) i s shown. I t f l u c t u a t e s 
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around the value of E = 0 .82 but i s almost constant over a 

wide range of t as i n the narrow resonance approximation 

(NRA). To demonstrate f u r t h e r the d i f f e r e n c e of these 

r e s u l t s from those of the NRA we p l o t i n f i g u r e 7 t h e , % — 

d i s c o n t i n u i t y of the Regge term v i z . 

v e r s u s t i n the NRA (A) and i n the case when u n i t a r i t y i s 

imposed on Regge parameters ( B ) . We observe t h a t the two 

curves resemble each other very c l o s e l y f o r a l l v a l u e s of t 
m 2 2 between t = 30 jy and t = -20 ^ , and t h e r e f o r e we conclude 

t h a t u n i t a r i t y makes only a sm a l l d i f f e r e n c e . 

I I I . 3 ( h ) : The Case of Khuri Representation 

As before we r e w r i t e the equations of s e c t i o n 1 1 1 . 2(b) 
2 2 

w i t h a s u b t r a c t i o n a t t = and s o l v e them by i t e r a t i o n . 

We s t a r t w i t h p h y s i c a l v a l u e s of the parameters 0( and E and obtain s e l f - c o n s i s t e n t s o l u t i o n s a f t e r 4 i t e r a t i o n s . 

I n f i g u r e s 8 ( a ) , (b) and ( c ) we p l o t s e l f - c o n s i s t e n t values 

o f ^ m t f , Re(X a n d Y - ^ U ) x f W x * 3/ 2)/ B < 3 (y/ 4ofy* \ 6 

versus t . ^ e / 

The graph of ̂  m 0( has the u s u a l form; Re(X appears to have 

a s m a l l curvature f o r s m a l l values of t but otherwise i t i s 

a s t r a i g h t l i n e , ^ ) ( ( t ) f l u c t u a t e s about the NRA - value of 0 .82 

and i s almost a constant f o r t > £ 0 0 ^ . The s —.t1-
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d i s c o n t i n u i t y of the Regge term i s p l o t t e d i n f i g u r e 9» 

Again the two curves are c l o s e t o each other and t h e r e f o r e 

u n i t a r i t y seems to make a s m a l l d i f f e r e n c e , although by 

comparison w i t h f i g u r e 7 we can see t h a t u n i t a r i t y makes a 

l i t t l e more d i f f e r e n c e i n the case of Khuri r e p r e s e n t a t i o n 

than i n the case of a s i n g l e Regge term r e p r e s e n t a t i o n , 

I I I . 4 "Bootstrap" C a l c u l a t i o n s and Consistency of the FESR 

To do bootstrap c a l c u l a t i o n s u s i n g the u n i t a r i z e d Regge 

parameters obtained by s o l v i n g the Cheng-Sharp equations.of 

the previous s e c t i o n , we note that we have three f r e e parameters 

a t our. d i s p o s a l v i z . the slopeCX , the constant E ( p r o p o r t i o n a l 

to the width Yp ) and the c u t - o f f parameter N. I n the NRA, 

we had only two f r e e parameters — 0^ a n d N, and we found t h a t 

the s e l f - c o n s i s t e n t v a l u e s of these q u a n t i t i e s obtained from 
/ _2 2 

the FESR are (X = 0 .02 m
n , N = 6 5 . 5 % . The constant E 

could not be determined i n the NRA. To do bootstrap c a l c u l a 
t i o n s w i t h the u n i t a r i z e d Regge parameters, we s t a r t w i t h the 

s 

values of .and N obtained i n the NRA and f o r the constant E 

we take the value given by equation (19) v i z . E = 0 . 8 2 . 

We thfln s o l v e the Cheng-Sharp equations as explained i n s e c t i o n 

I I I . 3 and obtain v a l u e s f o r the u n i t a r i z e d Regge parameters 

CX'(t) and S ( t ) . Next we i n s e r t these v a l u e s i n the FESR v i z . 
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N 

( I t - 1 . L - 1) 4 ° A 3 ( v , t ) dy 

r 3/ 2> 
2) 

(20a) 

w i t h 

A I s ( v , t ) = 71 (2 * 1) ft^> [ 1 -
I V 2 s i n j r o ^ 7 

X P ^ U s ) < 2 0 b> 

and see whether the FESR i s c o n s i s t e n t . To achieve s a t i s 

f a c t i o n or near s a t i s f a c t i o n of the sum r u l e we may vary any 

one of our f r e e parameters, i n p a r t i c u l a r N . < 

Before d i s c u s s i n g the a c t u a l c a l c u l a t i o n s i n the two 

cases v i z . a s i n g l e Regge term r e p r e s e n t a t i o n and Khuri 

r e p r e s e n t a t i o n we f i r s t d i s c u s s some r e l a t e d q u e s t i o n s . Th© 

two s i d e s of the sum r u l e (20a) have t o be evaluated a t some 

valu e of t . For t y t o the R.H.S. of (20a) w i l l have an 

imaginary p a r t i n t due to the f a c t that(X(t) i s complex. 

The L.H.S. of (20a) w i l l a l s o have an imaginary pa r t due to 
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the cut of P ^ ( Z s ) f o r Z s ^ _1 . We w i l l compare only 

the r e a l p a r t s ( i n the NRA both s i d e s have only r e a l p a r t s ) . 

For t ^ t o (and i n p a r t i c u l a r f o r negative t ) the R.H.S. of 

(20a) i s r e a l but the L.H.S. has an imaginary part due to the 

cut of p (Z_) f o r a. c e r t a i n range of s ( s =so to say s = "s- ) • 

To make the L.H.S. r e a l we take only the r e a l part of P ( Z s ) 

i n t h i s range, i . e . w r i t i n g 

P (Zs) ^ P^( - Z s ) e 0 ^ , f o r Z g / -1 
we take ^ 

R * Po<< zs) ^ cos TT OC * ? U (-Zs) , Z s < - 1 ( £ 1 ) 

i . e . we remove the spurious c u t of the Regge term. For 

negative values of t we expect the L.H.S. of the sum r u l e t o 

change s i g n from p o s i t i v e t o negative due to the zero of the 

Legendre f u n c t i o n . On the right-hand s i d e t h i s change of 

s i g n should take place due to a zero of ^/p ^ ) f a c t o r (Schmid 

h y p o t h e s i s ) . For a bootstrap the two s i d e s should c h a n g e 

s i g n simultaneously a t a. given value of t.# To see t h i s c l e a r l y 

l e t us c o n s i d e r t h i s question i n the NRA. On the L.H.S. we 

w i l l , have 
Qm A (>>,t) = pi4)i2l+ 1) P£ IZ) £ ( s - m 2) / ^ 

and f o r • ^ ^ ^ ~ ^ 

J $ m A U , t ) ds = _ J _ A ( m 2) ^ 1 + _ 2 _ t 
-A0 ^ p n 
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The zero of the L.H.S. w i l l t h e r e f o r e occur when 

ayg> IT 
Now f o r the R.H.S. we w r i t e / PC 

N 
oC + 1 

4 . * < . . t > - ( k S * ^ 

w i t h / o 
(XMt) = 0<(t - «£) + 1 

and we r e q u i r e (-13) = 0 

which gives / v / t / m-2 
C \ = 1 / 4 3 = 0.023 ^ 

which i s very c l o s e t o the p h y s i c a l v a l u e . S i m i l a r l y i n 

the non-zero width approximation we expect t h a t by a d j u s t i n g 

the slope i t may be p o s s i b l e to make both s i d e s change s i g n s 

simultaneously. 

In the following, however, the results for t o are presented. 

y 1 
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I I I . 4 ( a ) Bootstrap" C a l c u l a t i o n s w i t h a S i n g l e Regge 
Term Representation; 

/ ? 

S t a r t i n g w i t h 0 ( = 0.02 m ~ and E = 0.82 we s o l v e the 
equations (18 (a,b,c) and c a l c u l a t e both s i d e s of the. sum 

2 
r u l e (20,a,b) f o r a range of v a l u e s of t , 0^.t ^ 30 m ^ with 

2 
c u t - o f f N = 6 5 . 5 m ( = i t s v a l u e of NRA) as shown i n f i g u r e 
10. We f i n d f o r most of the v a l u e s of t both s i d e s of the 

A ...... 
sum r u l e agree up to an accuracy of 20 per c e n t . For t = 0 
the two s i d e s are e x a c t l y equal. Thus we conclude t h a t the 

n 
/ 2 

v a l u e s OC = 0.02 "JT , E = 0.82 (which corresponds, to a width 
of 140 MeV) and N = 6 5 . 5 ^ (which l i e s c l o s e to the h a l f 

way point between t h e ^ and £ on the degenerate J ^ - £ ^ 

t r a j e c t o r y ) are n e a r l y s e l f - c o n s i s t e n t . I n f i g u r e 11 we 

again p l o t the two s i d e s of the sum r u l e a g a i n s t t with a 
2 

d i f f e r e n t c u t - o f f N = 55 .5 m . We observe t h a t we have a 
Tl 

b e t t e r agreement between the two s i d e s of the sum r u l e i n 

t h i s c a s e . 

To study the c u t - o f f dependence of the sum r u l e a t a 

given v a l u e of t we p l o t the two s i d e s of the sum r u l e a g a i n s t 

N i n f i g u r e s 1 2 ( a ) , ( b ) . For t = 0 we see from f i g u r e 

12 (a) t h a t as N v a r i e s from 55-5 m 2 to 75*5 m 2 (these v a l u e s 

of N l i e between and ^ on the degenerate J3— 

t r a j e c t o r y ) the two curves are always c l o s e t o each other. 

From f i g u r e . 1 2 ( b ) ^ t = 30 ^ ) w e see t h a t the two curves are 
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c l o s e to each other only when N ^ 7 0 . 5 . Thus we conclude 

t h a t our r e s u l t s are to some extent dependent on the c u t - o f f 

as w e l l as on the value of t a t which both s i d e s of the sum 

r u l e a r e evaluated. 

I I I . 4(h) Bootstrap C a l c u l a t i o n s w i t h Khuri Representation; 

As before we s o l v e the Cheng-Sharp equations i n the case 
' - 2 

of Khuri r e p r e s e n t a t i o n s t a r t i n g with input Q£ = 0 .02 "1" , 

E = 0 .82 and then c a l c u l a t e both s i d e s of the sum r u l e (20,a,b) 

f o r a range of values of t , 0 ^ t ^ 30 ffl2 and with d i f f e r e n t 

c u t - o f f s , 55*5 < C N ^ 7 5 . 5 ffl2. We d i s p l a y the two s i d e s of 
^ n m2 

the sum r u l e as f u n c t i o n s of t i n f i g u r e 1 3(a) wi t h N = 6 5 * 5 ^ 

and i n f i g u r e 1 3(b) w i t h N = 55.5 m ^ . I n both ca s e s the 

two curves are c l o s e to each other over a f a i r l y l a r g e range 

of t although the two s i d e s do not seem t o agree over the 

whole range of t . . Our c o n c l u s i o n t h e r e f o r e i s t h a t the 

v a l u e s o(= 0 .02 ^ 2 and E . 0 .82 ( i . e . £ - 140 MeV) are 

c o n s i s t e n t ; although our r e s u l t s are t o some extent dependent 

on the val u e of t a t which both s i d e s of the sum r u l e are 

evalu a t e d . 

To study the c u t - o f f dependence of the sum r u l e we p l o t 

the two s i d e s of the sum r u l e a g a i n s t N a t a given value of 

t . I n f i g u r e 1 4(a) the two s i d e s are p l o t t e d a t t = 0 
2 

whereas i n f i g u r e (14b) they are pl o t t e d a t t = 30 ^ . We 
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n o t i c e t h a t f o r a b e t t e r agreement between the two s i d e s of 

the sum r u l e we r e q u i r e N y^/ 70 .5"^ when t = 0 ( f i g . 1 4 ( a ) ) 

and N <^70.5 m* when t = 30 m ^ ( f i g . 1 4 ( b ) ) . Again we 

conclude t h a t w ith a s u i t a b l e choice of N ( l y i n g somewhere 

between the f> and on the degenerate J>- §0 t r a j e c t o r y ) 
/ m-2 

at a given value of t the v a l u e s Q ^ - 0.02™^ and E = 0.82 

are s e l f - c o n s i s t e n t . 
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CHAPTER IV 

Conclusion 

We have s t u d i e d the dynamical p r o p e r t i e s of r i s i n g 

Regge t r a j e c t o r y i n the narrow resonance approximation and 

i n the approximation of u n i t a r i t y . I n the NRA we found 

t h a t our dynamics based on the concept of r i s i n g t r a j e c t o r i e s 

and the f i n i t e energy sum r u l e s p r e d i c t s the i m p o s s i b i l i t y 

of s c a l a r meson bootstrap - a r e s u l t a l r e a d y proved to be 
25 

t r u e on the b a s i s of N/D approach • I t a l s o p r e d i c t s 

the p o s s i b i l i t y of the bootstrap of p i n jr-iTscattering. 

F u rther we found t h a t i n the NRA the v a l u e s o( = °-02 m
n 

( = 1 GeV" 2) and N = 65-5 m 2 of the slope (Y (of P t r a j e c t o r y ) 
rr - . - - J-

and the c u t - o f f parameter N are s e l f - c o n s i s t e n t . We could 

not however determine the absolute magnitude of the width 

(on coupling) i n the NRA. An attempt was made to determine 

t h i s parameter together with the slope by imposing u n i t a r i t y 

on the Regge parameters through the s o l u t i o n of Cheng-Sharp 

equations. We considered two approximations to u n i t a r i t y -

one corresponding to a s i n g l e Regge pole term r e p r e s e n t a t i o n 

of the p3B?&a$&«*e<Hf& amplitude and the other corresponding t o 

Khuri r e p r e s e n t a t i o n . We found t h a t the r e s u l t s i n both 

approximations are q u a l i t a t i v e l y the same, and t h a t u n i t a r i t y 

makes only a s m a l l d i f f e r e n c e on the r e s u l t s of NRA. We 
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a l s o found t h a t t h e . p h y s i c a l values of the slope and width 

of p viz.Q(= 0.02 "JjJ and \Z - 1 % = 14° MeV are c o n s i s t e n t 

w i t h a (reasonable) value of the c u t - o f f parameter N l y i n g 

t r a j e c t o r y . 

I n the end we may note t h a t our c a l c u l a t i o n s are not 

s t r i c t l y speaking bootstrap c a l c u l a t i o n ; they r a t h e r check 

the c o n s i s t e n c y of the f i n i t e energy sum r u l e s i n the NRA 

and i n the approximation when u n i t a r i z e d Regge parameters 

are used. 

somewhere P a n d f o between the on the degenerate f - f o 
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Figure Captions 

Fi g . 5 The graphs of against t i n the case of one 
Regge pole representation corresponding to two values of the 
cut-off t i n the Fermi function v i z . t = 200 m (curve A) 

2 2 
and t = 300. ^ {curve B) with £± = 20 ^ i n e i t h e r case, 

. 8 2 and 0(= 0 .02 , E = 0 

Fig.6 ( a ) i (b)r The graphs of Re o( and Y against t i n the 
case of one Regge pole representation with = 0 . 02 M

N and 
E = 0 .82 

Fig.7 The graph of the s - discontinuity of the Regge term, 
Ds (N, t ) , against t i n the case of narrow resonance approx
imation (curve NR) and i n the case of u n i t a r i t y using one 
Regge pole term approximation (curve U); N = 65.5 ^ and 
Cx^ = 0.02 M ~ 2 , E = 0 .82 • 

F i g . 8 ( a ) , ( b ) , ( c ) r The graphs of 9 ra0* , ReO^ and 1& i n the 
/ 2 

case of Khuri representation, with Q ( = 0 .02 , E = 0 . 8 2 . 

Fig.9 The plot of the s-discontinuity of the Regge term, 
Ds(N,t), against t i n the case of narrow resonance approxima
t i o n (the curve NR) and i n the case of u n i t a r i t y using Khuri 

2 S -2 • representation (curve U), N = 65.5 m , (V = 0 .02 'L , 
E = 0 .82 

Fig.10 The plots of the L . H . S . and the R.H.S. of the sum . 
rule against t , i n the case of one Regge pole terra representa-

M _2 ' 9 
t i o n w i t h ( X = 0.02 M

V , E = 0 .82 and N = 65.5 _ 



Fig.11 the same as i n figure 10 with N = 55« 5 m 

Fig.12 ( a ) , ( b ) : The plots of the L.H.S. and the R.H.S. of 
the sum rule against the cut-off N ( i n the case of a single 

/ „2' 
Regge pole term representation) with ( V = 0.02 m , E = 0.82 

2 i f 
and (a) t = 0.0, (b) t = 30 m . 

TT 
Fig.13 ( a ) , ( b ) : The plots of the L.H.S. and the R.H.S. of 
the sum rule against t (in the case of Khuri representation) 
with ( X = 0*02 ra~ , E = 0.82 and (a) N = 65-5 , 

(b) N = 55.5 "V 
Fig.14 ( a ) , ( b ) : The plots of the L.H.S. and the R.H.S. of 
the sum rule against the c ut-off N, i n the case of Khuri 
representation with 0 ( - ° » 0 2 ^ » E = 0.82 and (a) t = 0, 
(b) t = 3 0 ^ . 
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