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(1)

SUMMARY

Most of the work recorded in this thesis was carried out
during a year of postgraduate study at the University of Durham. There
are three main sections in the thesis. One comprises an account of
some field work carried out in a local industry, another is a review of
some recently developed statistical methods which were applied to the
practical problems, and the third is a development of some theory on
missing values,

A study of a kiln process is described in which the effect of
four factors on the guality of the final product were examined. An
experiment on a related problem, on a laboratory scale, is described,
In both of these investigations it was intended to determine the optimum
working combination of a number of factors, and the methods of Box and
Wilson were to be applied. The difficulties of adhering strictly to |
these methods in practice in these instances are described and how
useful are the applications of their general principles. An appraisal
of the work of Box and Wilson, together with a review of other related
papers prefaces the practical results

Other kiln records showing the effects of several factors-on
the amount of dust lost were studied. The important factors were

isolated and a relationship between them and the dust loss was estimated,



(ii)

Some of the observations obtained in one of the kilm experiments
were of doubtful validity because of changed operating conditions, and'
as a result some thought was given to the problem of estimating missing
values in Factorial experiments. A method of estimating a single
missing result in a balanced complete block design is described which
is believed to be original. This technique enables a missinglobservation
in a Factorial experiment to be estimated much more quickley than the
current iterative method, and in addition it affords a new general
method of deriving known formulae for other designs. A review of other

methods is also given.
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CHAPTER 1.

THE EXPERIMENTAL, DETERMINATION OF OPTIMUKM CONDITICONS

1.1 INTRODUCTION
In 1951 Box and Wilson (1) read a paper before the Royal

Statistical Society on the experimental determination of optimum conditions,
with particular reference to chemical processes, Although the methods
had been developed from the authors' experience in the chemica}l industry
they have a more general application and the paper is a valuable
contribution to industrial experimentation. It is intended to review
this and other related papers in this chapter.

The work of Box and Wilson is about the design and analysis
of experiments intended to explore functional relationships between a
dependent variable, ] , and several independent variables Xyy Xpy ceeXpe
In the chemical industry the response to be optimised may be the yield
or purity or cost and the corresponding variables may be temperature,
concentration and time of reaction. It is assumed that the independent
variables, or factors, can be varied on a continuous scale and that they
may be controlled at any pre-assigned value. The reSponse'variable, T ,.
is supposed dependent on these other variables according to an unknown
Mction 7 =8 (x4,%, «.. X), which defines the Response Surface.
For any combination of the x variables the observed response, y, will
vary in repeated trials and have mean n and variance 0-2. The object

of course, is to draw inferences about 2 ‘(x1 T ...xk) from the observed
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response pattern and ultimately to find that combination of the factors
which optimises the response within a given region in the k-factor space,
defined by the practical limitations to changes in the factors.

One way of finding optimum conditions is to explore the whole
experimental region but this would 'generally require a prohibitive
number of experiments. Such a procedure is clearly inefficient as it
would give a representation of the whole region when it is only in the
neighbourhood of the optimun that an adequate representation is required.
In practice the experimental error is often small, relative to the
possible gains, and in addition the experiments can often be performed
sequentially., A technique is therefore needed which will exploit these
advantages. Box and Wilson proposed that as a first step 2 small -
group of experiments should be carried out at some base point corresponding
to the best pivio'r_ estimate of the optimum conditions. If in this sub-
region the response surface can be represented locally Ly a hyperplane
then the maximum increase in response can be obtained by following the
calculated path of steepest ascent. This corresponds to altering each

factor, x;, in proportion to its estimated first derivative, bs;, from the

i»
base point at the centre of the design. A provisional optimum will
be determined at some point along this path and this can be taken as
the base point for another small group of experiments, from which a
new path of steepest ascent is calculated. This procedure is continued

until a region is reached in which second order effects become important.

Here the resconse surface is locally nearly flat and the region is said to
howws! aa <xwplion it when a Hdqe of rsing reoPonbe i crossed .
be near-stationary, )__In many applications the initial sub-region may not

be adequately represented by a hyperplane in which case a near stationary
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region will have been found without the use of the steepest ascent
procedure,

The above technique has the d'isadvantage that it may'fi.nd only
a local maximum and as & result may miss a higher maximum, Where fuller
exploration is impracticable this risk has to be accepted, but it is
thought that surfaces with more than one peak are relatively rare.

. Suitable chosen supplementary experiments will then be performed

in the neighbourhood of the highest response obtained at this stage,
which will allow an equation of second degree to. be fitted, Analysis
of this equation will indicate whether there is a locel maximum or
some ridge system. If an absolute maximum is indicated its coordinates
can be determined and checked by carrying out a few confirmatory trials,
but if there is no absolute maximum. then the subsequent experiments
will depend on the shape of the surface; if it is found that the surface
cannot be adequately represented by an equation of second degree then
it will be necessary to fit higher order terms. In practice however
the quadratic response surface is often adequate.

Most of the papers on this work have been about the experimental
designs used to estimate the functional relationships This problem
was dealt with only in part by Box and Wilson in their original paper
who had until that time, relied mainly on conventional designs such
as the factorial type, although in addition they had created a new " composite"
" design. OSince then designs have been developed which are very efficient
for deriving equations of up to order three. These designs were constructed
to satisfy as many as possible of the following requirements:-

(‘a) . The design should allow the graduating polynomial to
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represent the truefunction as accurately as possible
within a specified region.

(b) It should allow a check to be made on the adequacy of the
model,

(¢) It should form a nucleus which can be augmented to
satisfactory designs of higher order in case the model
is jinadequate.

(d) It should lend itself to "blocking".

(e) It should not contain an excessively large number of

experimental . points,.

1.2, THE EXAMINATION OF RESPONSE SURFACES

DERIVATION OF THE EQUATION OF THE RESPONSE SURFACE.

The form of the response function ﬁ(x,‘-, Xy ...xk) will be
unknown but it is assumed that it can be represented by a Taylor Series
of some order. The response surface is therefore represented by a

regression equation of the form

(O3] Jrt

rl‘%o + ‘Z| G;'xa + Z.Z f’-‘gaaap ---- . | meee———————— (1)

If responses are observed at a suitably placed set of N points
in the k-factor space estimates b , by, ..., of @0,%\1, eeess Can be
obtained by fitting the regression equations. This set of pointa
constitutes the experimental design and defines the (N x k) design matrix.
The observed responses at these points can be denoted‘ by the N elements

of a vector ¥, and ] = E (Y) is the corresponding vector of expected




values. If the equation of the response surface contains L terms and
X is the (N x L) matrix of independent variables then

1=, )
where (5 is the vector of unknown constants.

The surface is fitted to the observed results by the method of
least squares and if the errors in the responses are wmcorrelated and
have variance 82 and if in addition X has rank L, it is known that

(1) Unbiased estimates: ofﬁi' which are linear in the observations
and have minimum variance are given by the elements of the
vector B = TY, where the transforming matrix T is (X1X)-1x1.

(ii) The variances and covariances of these estimates are the
elements of the matrix C-trz, where CT1 = (X’}C)-1 and is
called the precision matrix.

(iii) An unbiased estimate of (N-L)c'z is given by the residual

sum of squares (N-L)s? = (¥-xB)! (y-xB) = Y'r - ¥ixs.

METHOD OF STEEPEST ASCENT

In many practical situations the experimental error is small
compared with the expected increase in response and in such clrcumstances
it is often possible to exploit this by initially representing the
surface in a sub-region of the factor space by an equation of first

degree, namely

7 2 (so - @s"r" @le"""“%!ﬂ"\t.

This of course represents a hyperplane and can be expected to provide

2 (3)
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a satisfactory approximation to the true surface only in regions of
limited extent and removed from stationary points,.

If a series of experiments is carried out in a region in which
this approximation is adequate the pattern of the observed responses
can be used to indicate the best direction in which to move for higher
responses, The method employed is that of steepest ascent, in which
the factors are varied in proportion to the estimated regression coefficients,
Geometrically, this means the path followed is in the direction at right
angles to contours of equal response which are assumed to be locally
parallel and équidistant. Further experiments along this path can be
expected to produce higher and higher responses until eventually an
apparent stationary- point will be reached. If at this point first order
coefficients are still dominant further experiments and subsequent
application of the method of steepest ascent will lead t; still higher
responses, This procedure is continued until first order effects can
no longer be regarded as large compared with effects of higher order.

At this stage a near-stationary region will have been reached.

If after the initial series of experiments, certain of the
factors show only small effects, it may be that the factor has no real effect
at all on the response or it may be due to either the mean level for the
factor being chosen near a conditional maximum or the change in level for
the factor being too small. To safeguard against a wrong decision the
average level of the factar should be changed away from the.celculated path
of steepest ascent and an increase made in the differehce bétween the
levels of the factor. If the factor is still found to be without effect

it can then be discarded, while if a real effect is found then it would
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appeﬁr that the earlier absence of effect had been due to one of the two
latter reasons given above.

The above technique will not in itself locate a maximum but it
will lead to a near stationary region. This region cennot contain a
minimum but it need not necessarily contain a true maximun. Since only
simple equations of first degree are fitted in the method of steepe-st_
ascent the number of experiments required is relatively small and if
is thus possible to make rapid progress very economically. If the
original sub-region cennot be adequately represented by a plane the above
technique cannot be applied and it will be necessary to carry out further

experiments in that region in order to fit an equation of higher degree.
¥ See focing page.
EXPLORATION OF THE SURFACE IN A NEAR-STATICNARY REGION.

Vhen a néar-stationary region has been reached, the immediate
neighbourhood is explored by performing a number of suitablg chosen
experiments which will allow a response function of second degree to be
fitted, the equation being '

® w K’
Y=z b+ L}bix; 4 :Z-‘&Z‘ b(:\‘)(,.'x‘), —— (4)
This equation represents a system of hyperquadrics but as it stands it
conveys very little of the nature of the surface. A better appreciation
of what the surface looks like can be obtained by reducing the equation
to its canonicel form. This is done by shifting the origin to the
stationary point, S, and rotating the coordinate axes so that they correspond

to the principle axes of the qpodws. The above equation then reduces to
® -

Y=Y 0 T ®a Xt —

NESY
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The derivation of the cenonical equation is straightforward. The stationary
point, S, is found by solving
P=Q  eme— (6)

where P is the (kxk) matrix whose elements Py 4 &re equal to %bij(i A
or biJ(i = J)e S is the (kx1) matrix of the unknown coordinates of the
centre and Q is the (kxl) vector whose elements Q4 = -:%bi. The coefficients
B;; are the eigenvalues of matrix P end the direction cosines of the new
axes Xi are the corresponding[i‘:tent vectors.

When the fitted surface contains only two independent variables
a visual insight -into the form of the surface can be obtained by plotting
contours of equal response. Such a representation allows the experimenter
to study the effect of changing the levels of the factors without having
the distraction of representing the response in another direction. Examples
of surfaces generated by a second degree equation in two variables are
given in Figure 1.1, and these are the only possible types of surface for
a éecond deg-ee' equation in two variables. If B,4 and By, are of the same
sign the contours are ellipticel with a point meximum (or minimum) at the
centre S, If the coefficients are of different signs the contours are
hyperbolas and the resulting configuration is known as a saddle point,
col, or minimax. The degree of attenuation slong the eaxis depends on the
relative magnitudes of the coefficients snd in Figure 1.1(b) By, is sn;aller
than By. When By, is zero we have a stationary ridge system in which the
cont'ours are all straight lines, except when the centre of the system is at
infinity in which case the contours of the ridge are psrabolas. In Figure
1.1, (c) and (@) represent limiting forms of (a) and (b), for example, (c)

represents the momentary situation between (a) and (b) when the sign of B,y







changes from negative to positive. These limiting forms rarely occur
exactly in practice but often we have an attenusted form of one of the
basic surfaces (a) and (b) which approaches one of the limiting cases.

When one coefficient is small compared with the other in the
canonida% equation, but the centre is remote from the design, a ridge of
some kind is indicated and the effect of changes in response along this
ridge can best be appreciated by making a further transformation of the
response equation. Suppose By, is small, Since all large first order
eff'ects have been eliminated the axis, xz, corresponding to the coefficient
322, will normally be foumd to pass close to the centre of the design. A
new origin is then taken on x2 near to the centre of the design, the co-
ordinates of which are X4, and X3 = Xp-a. Substituting back into the
canonical equation.we have

R At e

where Y; is the predicted value of the resfonse at the new origin,

I =Y +a’B,, ---—~(8)

and

B} = 2a Bpo, = (9)

is the slope of the ridge X2 at S'. B} is therefore the predicted increase

2
in response for unit changes along the ridge.

For the general case in which there are k factors the interpret-
ation of the response surface follows the principles outlined above for the
case of two factors. However it is oﬂiy permmissible to make inferences

about the shape of the surface over a limited region which is dependent

on the range of the experimental design. Box and Wilson suggested that
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interpolation should/\';etricted to a hypersphere whose centre is at the
middle of the experimental design whose radius, R, is equal to E‘ %

When there are several independent variables the point at which the response
is maximal within the hypersphere is not readily estimated, even when the
response equation has been reduced to its canonical form.

This particular problem was dealt with by Hoerl (2) who considered -

the quadratic response surface whose equation is

X % K
Yy :hbos Z byx; + Z‘Z bixix.  aeea= (10)
(&4} [t .‘“
and the hypersphere of radius R (=Z x?) , centred at the middle of the design,
' He developed a method of calculating the paths of maximum and minimum
, e 3
response from the centre of the design to a point on this hypersphere.

Substituting

xy ¢ (R - E‘-‘x'.')'/l """ (11)

in equation (10) he then obtained (k-1) equations in x;(i=1 ....k-1) and R
by diff'erentiating the response equation with respect to Xy5 and equating
to zero. Substituting back for R and putting

("2 )
e bae &b | - (12)

HAn

the following equations were derived.

E:(Bn' bxlc)'/;] Xy ¥ b x. + e bkt - b
b“ AL *t?.(bu_bm‘)-,.] Az -t 4 blK xx t - bg

-——-= (13)
b\;i‘ 4+ bgK ke 2% L '}‘ Sy -b“

¥ The wominets hove poinYed ocu¥ Kol Mis pEroblem con be dealV WAt ~ore nealVily
Wi o \.aﬂm.v\%; Mulliplel.




In an obvious matrix notation this may be written as

A-pm17x = ¢ eme—- (14)
Hoerl then states, without proof, that the meximum value of y on any
radius R is defined by the X; corresponding to a value of p greater than
the maximum latent root of H. Similarly the absolute minimum is given by
x; corresponding to a value of M less than the minimum latent root of H.
Thus the maximum, or minimum, value .of the response on the surface of a
hypersphere can be found from

X=/H=-mI e ===== (15)
This is a useful technique when there are more than two factors to
consider as it is possible to represent the values of x; on the optimum
ridge from the centre of the design on a two-dimensional grarph.

Although Hoerl .does not point it out there is a connection with
the canonical form discussed previously as the matrix H considered above
is related to the matrix P in equation (6), for

H=2(P - by I) -=--- (16)
As the canonical form of the response equation will generally be calculated
in addition to applying Hoerl's technique it is unnecessary to calculate
the maximumn and minimum latent roots of H as they are equal to twice the

maximum, or minimum, coefficient in the canonical equation, minus 2 by,.
ADDITIONAL EXPERIMENTS

Having determined the approximate form of the response surface
in the immediate neighbourhood of a stationary point the next step is to
carry out some confirmatory experiments in order to get more precise

information on the characteristics of the surface. If a point maximum is
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indicated these experiments will generally be performed at points along
the canonical axes. If a ridge system is indicated the new experiments
will be carried out in the direction of the ridges. New estimates of the
coefficients in the response equation will then have to be determined
including the information from these additional trisls. The matrix C"1

is known for the basic design and in order to avoid having to recalculate
the precision matrix for all the experiments from the beginning, formulae
due to Plackett (3), (1), can be used which require only the inversion of
a matrix of order Np, the number of new observations. Besides C'1, the
vector B of the estimates of the elements of @: and the residual sum of
squares, 5, are known for the basic designe. If the vector of the additional
responses is Z, and W is the corresponding matrix of independent variables,

then Plackett showed that the new matrices C'1, B

1 and S

for all the

1 1

experimental points are given by

c.”1 = ¢ -gleg

1
B; = B' + V'GV
S =8 + VGV
1
Where
1

J=w T e=(I1+R G rR=wcW;Vv=2-uB

The maJor saving in computation is in the calculation of the matrix 01'1,
but if the number of additional points is comparable to the initial numte.r
of points then the use of Placketts technique will not result in such a
great saving as some time will be spent on the additionsl auxiliary matrix
computations. Generally the number of confirmatory trials will be

relatively small and the use of Placketts formulae should result in a real




- 14 -
saving in computational labour.

PRECISION OF THE ESTIMATED OPTIMUM

Little was said in the original Box and Wilson paper about the
precision of the estimated optimum working conditions. In a later paper
Box and Hunter (4) determined a confidence region for a stationary point

of Wie. soluliony

by considering the general problem of finding the limitis)of a set of
simultaneous linear equations. The particular equations of interest in
quadratic response surfaces are those given by equation (6) and Box and
Hunter showed that the confidence region of the solution depends upon the
magnitude of the errors in the coefficients, bi;j’ which in turn depend upon
the experimental design and the estimate of the experimental error. It is
also shown that the confidence region reflects the general characteristics
of the response surface itself. |

This particular work has its greatest value when the surface has
an absolute maximum, which will be located at the stationary point.
However, when the summit is fairly flat and the curvatures small, the
exact maximum will be difficult to estimate accurately and the confidence
region will be wide, In such a situation as this it is probably not worth
devoting a lot of effort to locating the exact maximum as any inaccuracies
in its estimation will not result in any serious loss in response due to the
summit being so flat. Hartley in the discussion in (1), suggested that it
may be preferable to estimate the amount of the maximum response, which is
relatively simple, rather than the position. If the estimated maximum is
only a little bettér than the response already obtained then there is no

* .
need to proceed further. St focing page-
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1.3 SOME GENERAL CONSIDERATIONS

The general methods of analysis of response surfaces, together with
illustrative practical applications (mainly chemical) have been described
by Box and Wilson (1), Box (5), Box and Youle (6), Read (7), and Davies (8).
These papers are particularly useful to the applied statisticlan as they
examine the various characteristics of response surfaces, how they arise and
how they should be interpreted; and it is shown in (6) how it may be possible
to determine the basic mechanism of a system from the study of the response
surface. Other topics discussed include the Joint optimising of several
responses, the use of electronic computers in analysing responses surfaces

and methods of presenting the results back to the experimenter,

FACTOR DEPENDENCE

The reason for quadratic surfaces having the forms shown in Fig.1.1,
is clearly due to the response function for one factor being dependent on
the remaining factors. As the factors Jointly influence the response it is
of little value to vary one factor at a time, especially when the response
surface contains a ridge. Consider a surface like that in Fig.1;1.(d) and
suppose the experimenter starts at A and varies X5 keeping X, constant. He
will reach an optimum at E and if he then keeps x4 cdnstant at this point
vand varies x, he will find that by moving away from E the response decreases
and he will falsely conclude that E is the point of maximum response. For
response surfaces of type (&) or (b) in Fig. 1.1 the true optimum may
eventually be reached by the one factor at a time approach;‘ but the path
followed would be very erratic.

It is pointed out by Box (5) that factors like pressure, time,
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temperature etc., can only be regarded as "natural" variables because they
cén'be conveniently measured separately but in practice the behaviour of
systems can often be described more economically in terms of "fundamental® or
"comp&un&" variables which will be functions of one or more of the natural
variables. For this reason many combinations of naturai variables may
correspond to the best level of the fundamental variables and in addition it
can happen that a system dependent upon K natural variables can be expressed
in L (<K) compound variables. In such situations some coefficients in the
camonical form are zero, or very small, and some sort of ridge system is indicated,
An important feature of the discovery of factor dependence is that
it may Jead to a better understanding of the basic mechanism of the system.
Box states in (1), (5), (6) that from his experience in these problems point
maxima are something of a rarity and that ridges, stationary or rising, are
fairly common. He suggested that the nature of a ridge system could indicate
physical laws which underlay the process studied. He discusses this in some
detail in (6) and he points out that the compound variables mentioned above
can have a greater significance than a purely representational one. This is
illustrated in the text of the last reference by both hypothetical and real

problems,

SECONDARY RESPONSES

When the surface contains a ridgg such as that in Fig.1.1(c), a
whole range of optimum conditions exist corresponding to points along the
crest'of the ridge. The factors are therefore compensating as the effécts
of changes in one factor can be balanced by changes in one or more of the

other factors. This situation can be exploited to great advantage when there
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is a secondary response to consider for it is then possible to choose that
point on the ridge for the main response for which the secondary response is
maximised., Thus both the major response and the auxiliary response might be
brought simultaneously to their best levels., Alternatively, there may not
be a secondary response but other practical considerations can be taken into
account. For example, it may happen that some of the alternative conditions

on the ridge are less costly or more convenient than others.

PRESENTATION OF RESULTS

When the response surface has been analysed statistically it is
necessary to present the results back to the experimenter in a form.which is
unambiguous and readily understandable. When there are only two or three
factors the simplest representation is the geometrical one, particularly
when there are several responses to consider. Contour representations in
up to three variables are readily constructed and in three-dimensions it is
often useful to make a model in which contours can be denoted by coloured
wires supported by wire grids. When there are two responses to consider they
can be shown on the same model, or two models can be built and viewed side by
side. Another means of diagramatic representation is the use of tri-coordinate
diagrams.

With more than three factors it is not possible to represent
features of the surface geometrically butthe coordinates of the ridges of
maximgm and minimum responses can be graphically represented after applying
Hoerl's technique (2). Box in (5) also shows that it is sometimes possible
to illustrate ridge systems with 5 variables by listing alternative processes,

‘over the neighbourhood of the optimum, in tabular form.
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USE OF ELECTRONIC COMPUTERS IN THE ANALYSIS OF RESPONSE SURFACES

In a second order approximating polynomial for k variables there
are (12“2) constants to estimate from the (k§2) linear equations obtained
by the application of the method of Least Squares. With orthogonal designs
these equations are simple and easily solved on a desk calculator, but
often the designs which may be used are non-orthogonal. The siting of the
experimental points tends to be dictated by the features of the response
surface in the later stages of experimentation and an electronic computer is
then required to solve the least squares equations.

It is pointed out in (9) that the analysis of response surfaces
is readily carried out on an electronic computer, particularly as most of the
calculations can be expressed very simply in matrix notation. The only input
necessary ia the design matrix, D, the response vector, Y, and parameters
apecifying the dimensions of the experiment. The X matrix can be generated
from the design matrix and subsequent calculations are straightforward. The

1 s the vector of predicted values, XB,

output will usually consist of B, C~
the residuals (which will give some check on the validity of the model and

on gross blunders in the data), the total sum of squares, the residual suﬁ of
- squares and the coefficients and axes of the canonical form.. Secondary
responses can be automatically read in by the programme and the appropriate
output obtained; it is worth noting that in such situations the transforming
matrix T and the precision matrix ¢! are already availaeble within the

computer and need not be recalculated. The use of Hoerl's technique and

Plackett's formulae can also be readily incorporated into a general programme.
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1e4.  EXPERTMENTAL DESIGNS FOR RESPONSE SURFACES

DEVELOPMENT OF EXPERI{ENTAL DESIGNS

The main requirements of an efficient design for investigating
response surfaces are that it should allow the graduating polynomial to
represent the true function accurately within a given region, without containing
an excessive number of experimentel points. It shoulé allow a check to be made
on the model, and if the model is found to be inadequate the design should
be readily augmented with further points to allow higher order polynomials
to be fitted. Finally, the design should lend itself to "blocking" arrangements;
that is to say, it should allow the elimination of systematic effects, such
as polynbmial time trends or block effects, without affecting the precision
of the regression coefficients.

The designs employed in the original Box and Wilson paper (1) had
mainly been of the conventional type. For fitting equations of the first
degree the two level factorial and fractional factorial designs had frequently
been used, while for second degree equations the three level factorials had
been used and a new "composite" design had beeen developed empirically,
consisting of two-level factorial designs with extra points added. Most of
these designs satisfy many of the requirements listed above, they are
convenient to use in practice, and the analysis of the results is extremely
simple.

A more fundamental investigation of first order designs was given
by Box (10). He showed that maximum precision of the estimated linear
regz-eésion coefficients was obtained from orthogonal designs, which include
the two-level factorial designs and the multi-factorial designs of Plackett

and Burman (11). It was also shown that the orientation of the designs does
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not affect this property of minimum variance. This means that the design
can be rotated so that systematic effects are eliminated without loss of
efficiency, and possible bias may be reduced.

Orthogonal second order designs of a sort can be obtained by
redefining the independent veriables in terms of orthogonal polynomials. Box
and Hunter (15) show that this condition of orthogonslity refers only to a
particular orientation of the design and is lost on rotation of the design.
This led them to consider the joint accuracy of the coefficients and they
developed some designs of first and second order for which the estimated
response had constant veriance at all points equidistant from the centre of
the design. These are called rotatable designs. When such arrangements are
rotated about the centre the variances and covariances of the regression
coefficients remain constant. Bose and Draper (16) extended this work and
derived general methods for obtaining second order designs for three factors
and Gardiner, Grandage and Hader (17) derived new third order desigms.

The disgrepancies between the graduating polynomial and the true
function can occuf because of sampling error and the inadequacy of the
graduating polynomial to represent the true function. Box and Draper (18)
refer to these as the "variance error" and "bias error" respectively. They
examined the £e1ative importance of these two sources of error in first
order designs and they show that practical designs are similar to those

which would be appropriate if the experimental error was ignored altogether.

¥ e focing page-
THEORY OF ALIASES

In fitting a response equation of order d the estimates of the

regression coefficients differ from the true values on account of
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experimental errors in the response and biases arising when it is impossible
to represent the function by an equation of the type fitted. This was
recognised by Box and Wilson (1) who suggested that an experimental design
should be judged on the apparent precision of the estimated constants and

the magnitude of the possible biases in the estimates. The nature of the
biases can be determined for any experimental design, for suppose the response
function is represented by an equation involving L constants when M () L)

are required for an exact representation. Then it is wrongly assumed that

1= X B, == (17)

when, in fact

= X, B, +X,B,, ==me- (18)
where X2 is the matrix of independent variables which have been wrongly
omitted and B2 is the corresponding vector of constants in the response

function. The least squares estimates, assuming equation (17) is true, are
x>y e
B, _(x1 x1) XY (19)
and these in general will be biased since
. -1,/
E(By) = (X} X4q) X4

= ()7 X Bye (XE)THGP, e (20)

so that
)=
By — &4 +4aD,,  where A= (XIX)7 XX,

The arrow in this expression indicates that the guantity on the left is an

unbiased estimate of the quantity on the right. A is celled the alias

matrix and the elements, a, , determine the extent of the biases and will

id

depend upon the experimental design. If a particular a,

iJ

is zero then bi
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will not be biased by @aj. In general, if the number of constants necessary
to represent the function is greater than the number of experiments then
the extra constants will either bias the estimates or else appear in the
residual mean square.

¥ Se {—'acins page-
STANDARDIZED VARIAELES

The precision matrix, C~', and the alias matrix, 4, depend on the

arrangement of the experimental points and therefore supply an objective
basis for comparing the relative efficiencies of designs. However both
matrices depend upon scale factors and in order to cvercome this Box and .
Wilson proposed that the variables should be standardized by making the
marginal second moments of the design configuration the same for all factors.

For the ithvariable this is defined as

N
5: : '{‘ .‘Z' (X;J - Xg) , T (21)

so that we have the standardized x5 = (xij -'Xi)/Si, and in addition

N

z ®xy=o0 e (22)
J=

N

2 (23)
J=1

DESIGNS OF TYPES A AND TYPE B.

Box and Wilson defined designs of Type A and order d as those

which give unbiased estimates of all derivatives of order 1 to d, providing
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the assumption is true that all terms of higher degree can be ignored. In
such designs the number of experiments can be as small as the number of
constants estimated. Designs of Type B provide unbiased estimates of all
derivatives of order 1 to 4 even though terms of order 4@ + 1 exist so that
the number of experiments must be greater than the number of conatants
estimated in order that the aliases can be accommodated by the residual
degrees of freedoms It should be noted that it is umnecessary to know

the value of@o; in order to apply the method of steepest ascent or to study

the nsture of the response surface so that any bias in B, is immaterial.

First order designs can be obtained by varying the factors at two

levels and factorial designs, fractional factorial designs and the multi-

factorial designs of Plackett and Burmen (11) were considered particularly
appropriate. Multifactorial designs are given for k=3,7, ...4m =1, ....99
factors in N = 4,8, ....4m ....100 experiments and provide designs of Type A.
When N is a power of two these designs are identical with fractional factorials
while for intermediate values of k the next higher designs is used, with

the appropriate number of columns omitted from the design matrix. First

‘order designs of Type B can be obtained by duplicating the appropriate

Plackett and Burman design of Type A and order 1 with reversed signs, thereby
allowing a check to be made on the assumptions, and in sddition any factor

held constant in the first design can be simultaneously introduced by changing
its level in the duplicated design. All these designs are orthogonal with

X:X = NI and it can be shown that while first order terms may be biased by

the cross-produck coeffic_ients (Si:] they are always free of quadratic effects&..

Fractional factorial designs of Type A and order 1 are found by
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associating independent variasbles with interaction terms in the coﬁplete
design and this is illustrated by a design for 7 factors in 8 experiments

in which the four "additional" variables are equated to the interaction
terms in the basic 23 design, When the number of factors is.between 3 and 7
the remaining factors should be treated 2s dummy variables; the aliases are
obtained from the alias matrix omitting all terms containing dummy suffixes.
Care must be taken in these circumstances since all such designs are not
equally satisfactory.

Several factorial designs of Type B are derived in (1) and it is
shown, for example, that for 8 factors in 16 experiments a suitable design
can be obtained by duplicating with reversed sign the design for 7 factors
in 8 experiments and associating xg with x, in the original design. This
particular design allows unbiased estimates of both first order effects and
mixed derivatives and such a design is said to be of Type B' and order 1.

The designs of Type B and order 1 discussed above allow unbiased
estimates of first order effects to be obtained but to do this it is necessary
to have at least twice as many experiments as the number of constants to be
estimated and this would appear to be wasteful if linear effects were dominant.
Daniel: (12) suggested that in situations where the experiments can be
performed sequentially a more efficient procedure was possible by varying
the factors one at a time. The estimated linear effects will be of minimal
precision but if the effects are large then a move can be made towards a
higher response relatively quickly. If the effects are not large additional
runs can be added to complete the -replicate design, thereby maximising the

accuracy of estimated linear coefficients and at the same time estimating
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second order terms. For example, with 3 factors in 4 experiments he
proposes to carry out the trisls (1), a,b, and c, which will allow unbiased
estimates of the main effects to be calculated even if second order terms'
are important. The precision of the estimates is only half that obtained
from the trials (1), ab, ac, bc, but in this latter case linear effects
are aliased with second order terms. If the linear effects are found to be
small the Z-replicate defined by I = ABC can be completed by adding the run
abc so that maximum precision of the linear estimates is obtained and the
run (1) can be used in the contrast (a+b+c-abe=2(1) )/4 to get an estimate of
-AB~AC-BC+ABC.

These one factor at a time sets can only be augmented to Z-replicates
and it is unlikely therefore that this procedure will be used for more than
5 factors. In addition this technique violates the requirements of randomization

So that the results are of limited validity.

COMPOSITE DESIGNS

Two-level factorial designs are very useful for estimating the
constants in an equation of first degree but for second order equations the
5-level factorials are much less useful. This is mainly because of the large
number of experiments required relative to the number of constants to be
calculated, which would be very inefficient if the experimental error was
small. In addition there is also the digadvantage that the estimated constants
" are of very different accuracies, and in particular the variance of the
quadratic coefficients is twice the variance of the ihteraction derivatives.

The linear and all cross-product coefficients can, however, be

determined from 2-level factorial designs of Type B' and Box and Wilson
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suggested that the additional quadratic terms could be etimated by adding

to the basic factorial design a central boint and ;xial points a distance of
from the centre of the design, the distribution of the axial points being
symmetrical with respect to each factor., Such a design is called a Central
Composite design. The value of & can be chosen to make the design orthogonal
or alternatively so that all second order coefficients are estimated with
equal precision. The precision of the estimated coefficients and the extent
of the possible biases indicate that these designs compare favourably with
3-level factorial experiments when the reduced number of trials is taken

into account.

These designs have the advantage that they can be carried out in
stages. If in the initial factorial or incomplete factorial.design, large
first order effects are found the method of steepest ascent can be employed,
but if the cross-product terms are of comparable magnituvde then it will be
necessary to determine the quadratic effects and the required points are
readily included into the composite design. In situations where the initial
design has indicated the existence of a stationary point in a particular
direction away from the centre of the design the additional points should
be added in that direction thus forming a non-cenfral composite design.

The problem of the possible existence of "blocking" effects when
adding the cross-polytope, or radial points, to the original design was
considered by De Baun (13). The bi’ bij’ will in general be unaffected by
blocking effects but the-bii will be biased and the extent of this bias will
depend on the choice of the distance,, of the radiai,points from the centre

of the design and the shift in boi However if the block effect is only to
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shift b,, the nature of the response surface will remain unaffected. For
the initial Type B' design consisting of N1 points, n, of which are central,
the expected value of b, is given by

E(bo) = (50 + (Nq-nq)/Nq. i(azii . e (24)

For the cross-polytope of N, points the expected value of bo is
_ 2 2 .
b‘(bo) = @o *2 “/NZ' 2 @ii """ (25)

For the block contrast to be orthogonal these expectations must be equal

so we have to choose A such that the equation

2a® = N/N(N, -n,) - (26)

is satisfied.

The basic design forming the nucleus of the composite design
usually consists of a factorial experiment. As the number of factors
increases the number of experimental points increases rapidly and for this
reason the complete factorial is of'ten replaced by a fractional replicate.
The choice of these basic factorial experiments is discussed by Hartley
(14) and in particular those designs which do not allow the estimation of
all the cross-product coefficients. In such situations he shows that if
no main effect is used as a defining contrast in the fractional replicate
it is possible to estimate from the composite design all linear coefficients,,
b;, all quadratic coefficients, bj;, the constant term, b,, and one, and
only one, of the product terms, bijs from each of the alias sets. This
implies that the largest nuE;Mr\of coefficients can be estimated if each

alias set contains at least one two-factor interactiori, xixJ, He examines
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some of the usually recommended fractional replicates, for example Davies (8),
which keep main effects clear of two-factor interactions but which do not
permit the estimation of all individual interaction terms, and shows that

by changing the defining contrasts and aliasing linear and/or product terms

in the basic design it is possible to get information on more coefficients

from a composite design. He discusses the efficiencies of these alternative
designs and shows that there is a loss in the precision of a linear coefficient
through introducing a product term into the alias set,

It is doubtful if the above procedures are of real practical benefit
in the study of quadratic response surfaces as it is generally necessary to
estimate all the second degree coefficients to represent the surface adequately.
If the experimental design does not allow the estimation of all the necessary
coefficients then some of the coefficients which are esiimated will be biased
and a true representation of_thc surface will not be possible. While
Hartley's.proposals may be of use in other situations they hardly seem applicable

to the present problem,

FIRST ORDER DESIGNS OF MAXIMUM PRECISION

The problem of choosing first order designs for which the variance
of each of the linear coefficients is minimised was considered by Box in (10).
The matrix of variances and covariances for the estimates oﬁ the regression

coefficients is (X'x) Vo2

end the problem is therefore to choose the design
matrix so that the diagonal elements of (X" X)_1cr2 are minimised. When the
standardised variables are functionally independent Box showed that this

condition is satisfied only when all the off-diagonal terms in the precision

matrix are zero so that the linear regression coefficients are uncorrelated
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and have variance cz/N. Maximum efficiency is therefore obtained from an
orthogonal design. This is a generalisation of the result obtained by
Plackett and Burman (11) who had restricted the standardised values of the
 independent variables to X 1.

Designs of optimum precision for up to k= N-1 factors in N experiments
can be obtained from any orthogonal matrix with all elements in the first
column equal. When k = N-1, the geometrical implication of this result wes
shown to be that the N experimental points are at the vertices of a regular
N-1 dimensional simplex and if k{ N-1 the experimental points are the
projections onto a space of k dimensions of the vertices of the N-1 dimensional -
regular simplex. No restriction is imposed on the orientation of the design
as this does not affect the variance-covariance matrix but corresponds to a
different choice of the orthogonal design matrix. This class of designs
includes the factorial experiments which, of course, are of particular
value as in addition they readily allow a check on the adequacy of the first
degree equation, they form a good basis from which designs of higher order
may be augmented and they lend themselves to blocking. |

While the variances and covariances remain constant under orthogonal
rotation of the design the biases which may occur, due to the planar represent-
ation being inadequate, do not. As a measure of the effect of bias Box .
considered the sum of squares of bias coefficients for the k + 1 coefficients
in the eguation of the plane. These are given by the diagonal terms of AA',
where A is the alias matrix, but it was found that this matrix is invariant
under orthogonal rotation of these optimum first order designs. He then
concluded that no particular design can be chosen in preference to another if

no prior knowledge was available concerning the relative importance of the
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second order terms, However if the direction of the principal axes of the
canonical form were knovn then by choosing the design so that the axes of
the design were parallel to the principle axes, the linear coefficients would
be unbiased, since in the new variables the second degree equation contains
no product terms and the guadratic terms could be aliased with by

These orthogonal designs for estimating linear coefficients are
also very useful for eliminating systematic variations such as block effects
and time trends. It has been shown that first order designs of maximum
efficiency can be obtained by taking k mutually orthogonal column vectors,
each containing N elements, and each orthogonal to é. column vector of unit
elements. It is well known that another N-k-l vectors can be found which
are orthogonal to these k-1 vectors and which are mutually orthogonal;
consequently some of these N-k-1 vectors can be used to represent the

systematic variations.

ROTATABLE DESIGNS
The criterion of orthogonality has been found very useful in
determining optimum designs of first order. For designs of order higher

than the first the quantitieé X 93X eeoX 3X Xy, soeX 2,... are not functionally

1
independent and a diagonal moment matrix N‘1(X'X) is not possible. Orthogonal
designs of a sort can be obtained by redefining the independent variables

in terms of orthogonal polynomials but it isshown by Box and Hunter (15),

that there is an infi.nite variety of such designs with widely different
properties'; examples of such designs are 3-1evei factorials and or'l;hogonal

composite designs. They considered the moment matrix and showed that

several of its elements would have to be made zero in order to have a diagonal
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matrix but for some moments corresponding to diagonal terms, the choice is
arbitrary. The choice of these terms is discussed at some length and it
is shown that they have conflicting effects for in choosing them such that
the variance of quadratic effects is reduced they cause an increase in the
possible bias in the linear effects.

It is then demonstrated that while the curvature in one direction
may be measured with a certain precision the accuracy with which it is
determined in another direction, which may be of equal importance, may in
fact be much reduced. In the 3-level factorials, for example, the covariances
between all effects are zero in the normal orientation of the design but
if the design is rotated the variances and covariances of the second order
effects undergo marked changes and only the linear effects have constant
variances in all orientations. Thus the variances of individual coefficients
in a particular orientation may give a misleading impression of the efficiency
of a design and the condition of orthoggnaiity refers to a particular
orientation and is lost on rotation,

Considering the accuracy:of individual coefficients does not lead

to any unique solution for designs of order higher than the first, so
Box and Hunter considered the Jjoint accuracy of the coefficients. The
variance of the estimated response at some point x is a function of the

2

independent variables,e“ and N so that V(x) = l\IV'(y-x)/g--2 is a unique

the
standardization of/accuracy with which a response at x is estimated, and
this is called the variance function of the design. It was suggested that if
nothing was known of the orientation of the surface, as is usually the case,

it would seem appropriate to choose designs for which the contours of the

variance functions are hyperspheres centred at the origin of the design so
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that the response is estimated with constant precision at all points

equidistant from the centre of the design. An arrangement of points having

this special variance function is called a rotatable design. * See Soduj page-
Conditions for rotatability were derived and it was found that a

necessary condition was that the moment matrix should"}be invariant under

orthogonal transformetion of the design matrix. The moments which are

elements of this matrix are the same as those of a spherical distribution

and are known apart from constants A, /\2, coas )‘2d' Writing (1% . 242, ...k’l)

for the moment N~1 “i_' xf&-, xgl;., ...xl:; it is shown that when any of the of¢

are odd
oly oy ol

®
(1 ’ 2 » ooc-.k ) = 0’ ————— (27)
and when all « i are even

4
(1™, 2™, ...k"‘) = Ax TTet ~—=== (28)

]

A% 'll_‘r('/ad.)‘

The variance function therefore Lc—llepends only on A and R = (x'x)2
so the required form of the design matrix is completely defined by choosing
the )\ 's to give a suitable variance matrix and alias matrix.

From equation (28), >\o = @ and )\2 = [ly and since by convention
(V=T =1,), and), are always equal to unity. There is therefore :
no choice for the A's in a rotatable design of first order for which the
moment matrix is the identity matrix, so that the condition for rotability
is precisely the same as that it should have minimum variance. ¥or second
order rotatable designs the linear and product coefficients are necessarily
uncorrelated but the correlation between the quadratic terms depend upon the . ‘
choice of Xh‘ Ith is made equal to unify these correlations are zero and |

the design is therefore orthogonal as well as rotatable. In such a situation '

J
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it is worth noting that the variances of the Quadratic terms are only half
the variances of the product terms so that four times as much weight is placed
on the quadratic terms relative to the product terms in these designs
compared with 3-level factorials. VY ith these orthogonal designs the precision
is high particularly near the centre of the design, but the bias coéfficients
are also high. With siightly lower values of X’h a more uniform distribution
of precision is obtained over the immediate vicinity of the design, and in
addition the third order bias coefficients are reduced. No clear cut
statement is made on the best choice of )\4 and it was suggested that a
compromise be sought between experimental error and bias which will be
satisfactory for practical situations,

Since the moments of a rotatable design of order d must be the
same as the moments up to 24 of a spherical density function it seemed
reasonable toassume that rotatable designs might be constructed by equally
spacing the experimental points on one or more hyperspheres. A set of
points all equidistant from the centre of the design are -called equiradial
sets. and if the moments up to 24 are such that they are unaffected by
rotation they are called equiradial rotatable sets of order d. These sets
are discussed at length by Box and Hunter who consider individual cases
in two dimensions and three dimensions before generalising the problem.
It is shown that it is necessary to have more then one radial set otherwise
the quadratic coefficients and the constant term cannot be separately |
estimated. This is often overcome by adding central points,'corresﬁonding
to a set of ;adiuﬁ zero, which in addition provides aluseful:means of modifying
the value of A 4+ In general A 4 » end therefore the variance and bias coefficients

is dependent upon the number in the different sets, the radii of the sets and
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the number of independent variables.

For two dimensional second order rotatable designs each ring of
non-zero radiuff must contain a minimum of five points. Orthogonal designs
can be obtained from pentagonal and hexagonal designs with five or six
points respectively, and for hexagonal designs there is the added advantage
that the constant term and second order coefficients are unbiased by third
order effects in any rotation. Rotatable designs with more than ten points
can also be obtained by combining two or more circles of equispaced points
but in addition it is also possible to combine sets of equiradial points
which in themselves are not of order 2; for example, sets of three points
forming the vertices of an equilateral triangle with.centre‘coincident with
the origin.

In three dimensions, sets of equally spaced points on a sphere
are provided by the tetrahedron, octahedron, cube, icosahedron and dodecahedron.
Only the latter two, when combined with central points individuslly, provide
second order rotatable designs; they cen also be combined. As with two
dimensional designs, sets of points not themselves rotatable arrangements
of order two can'be combined to give them. One particular interesting
combination is the cube and the octahedron orientated such that a line
Joining the origin to ia: vertex of the cube passes through the centre of the
face of the octahedron; these designs are special cases of the central
composite design.

In five or more diménsions there are only three regular figures,

the regular simplex, the cross polytope and the hypercube., The most

useful designs can be obtained by combining the cross-polytope and the hypercube

to form particular cases of the composite design. Consequently they lend
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2

themselves to sequential testing and are easy to use, .

Rotatable designs can conveniently be performed in orthogonal
blocking arrangements and Box and Hunter show that the t{wo necessary conditions
for this are:-

(1) the sum of products between the independent variable XysXyeeeeX s
must be zero for each block, el

(2) the fraction of the total sum of squares for each variable in

each block must be proportional to the number of observations in each block.

For rotatable designs consisting of equidistant sets of points
with . added central points the above conditions can be satisfied by dividing
the equiradial sets into subsets which are themselves first order rotatable
designs and adding the appropriate number of central points to each of these
subsets, With composite designs it is not always possible to attain both
exact rotatability and orthogonality for quedratic varisbles and block effects
and in practice it is usually more convenient to retain the orthogonality
and to relax the conditions of rotatability. In these latter designs both
the hypercube and the cross-polytope are first order designs and conveniently
define the blocking arrangements and in addition the hypercube may sometimes
be further subdivided into first order rotatable designs, for example the
fractional factorials.

At this time there were very few rotatable designs known and a
fundamental investigation of second order rotatable designs in three
dimensions was carried out by Bose and Draper (16). The conditions for
rotatability of second order designs for three factors, derived by Box and

Hunter, are

N N s
2 ox e z“"'st T T2y e ’\LN' ------ (29)

uel .
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N a L] o ' N a [ . 2 A
ug'xm.zl:g,lu_z-... t‘z.(x.‘.,s 3E‘=iu=¢jw‘3 N (30)
Moy k/(ke2) e (31)
2

" Condition (31) can always be satisfied by adding central points to the design.
‘Bose and Dreper define certain transformations applied to points

in three dimensions as follows. Let W(x,y,z) = (y-,z,x)‘. Then Wz(x,y,z) =

(z,%x,y) and WXx,y,2) = (x,7,2). Thus W,#2 and W3 = I form a cyclical group

of order 3. Let R1(x,y,z) = (-x,y,2), R2(x,y,z) = (x,~y,z) and R5 (x,y,2) =

(»x,y,-z). The four transformations ‘.’f,R1 , and R2 and R3 thus generate a group

G of 24 points with coordinates (Xx,*y,*x), (*y,*z,*x), (22,*x,*y). This

set G(x,y,2z) satisfies the moment conditions (29) but not

Tx b =37 %%, % (i4).(481,2,3) - (32)

u « iu x.ju

The fvaction XK (x,y,2z) of the point (x,y,z) is then defined as
K(xyy42) = 1/3 (Jé++yl++zh-3y222-322x2-3x2y2) ----- (33)

This function is constant for all 24 points of the set G and, if it is equal
to zero then G{x,y,2z) is a rotatable design. If K(x,y,2z) £# 0, then
ZK(x.y,z) over a point set is defined as the excess of the set. Thus the
excess over the set G is

Ex/Cx,552)] = B(rsytezt-3y222-322%y2-3x2y2), e (34)
and this can take positive or negative values depending on x,y and z. .
Consider the 12 points (*p,%fq,0), (*q,0,%p), (0,tp,*q), and denote this

set by %6{p,q,0) this set has excess

Ex/#6(p,9,0)7 = 4(p*+g*-3p2q?) = (35)
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The set 3G(P,Q,0) will itself form a rotatable design if the excess is zero.
This implies that pz/q2 = (31 ﬁ)/Z = ©and 9_1, say. Thus, the set of
points reduces to (%e, Z1,0), (%1,0,%6), (0,26,51)., These are the vertices
of an icosahedron and by adding central points the icosahedron design of
Box and Hunter (15) is obtained.

Bose and Draper theﬁ consider the combination of several points
sets which in themselves may not form rotatable designs but which when
combined have zero excess ahd thus form rotatable designs. Ior example, the
combination of the two sets 3G(a,a,a) and 3G{c¢,0,0) give the. cube plus
octahedron design of Box and Hunter (15). In this particular example there
are two parameters a and c and as there are two conditions to satisfy,
namely Ex( set)=0 and A2=1, a unique design is obtained. When there are
more than two parameters an infinity of designs are obtained. These are
examined and it is shown that previously known designs are special cases of
this infinite class.,

A second method of generating point sets suitable for building
second order rotatable designs is given in terms of polar coordinates. The
procedures for obtaining rotatable designs are similar to those given above
but in this case the excess of each single point is not constant and it is
necessary to consider the total over all points.

The methods were extended to a 16 point design class including
the 12 points in the set G for which the product of the coordinates is xyz.

(

1
The set is written as G +2)(x,y,z) , &and the complementary set for which the
1
product of the coordinates iy -xyz is written as G( T)(x,y,z). These sets
do not in themselves form rotatable designs as they do not satisfy condition (32)

nor the further condition that X, x-... = 0. Defining a second excess
‘ ‘E- w*2uX3u €
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function as

Fx/set (xldxzd?c3 0)/ = ?; % FoXsy 00 T (36)

it was shown thaﬁ if a2 set of points S satisfied ER(3) = 0 and Fx(S) = 0
then S is a rotatable design of second order. By considering the combined
sets G(t%) (x,y,2) and %G‘t%) (a,a,a) Bose and Draper derive.an infinite
class of designs using only 16 points.

Third order rotatable designs were investigated by Gardiner,
Grandage and Hader (17) who examined combinations of regular and semi-

regular figures, They showed that designs for two factors require 7 or more
points on each of two concentric circles of different non-zero radii. Each
of these sets of points can be rotated independently of the other so there
are an infinite number of such arrangements. Points at the centre do not
disturb the moment properties of the configuration and can be used to vary
)\4 and )‘6' By a suitable choice of @,, and @ ,, the radii of the two
concentric circles, this desiin can be carried out in two blocks and the
regression coefficients can be estimated independently of block effects.
This is particularly useful for generating third order designs from second
"order designs. It is also shown how a third order rotatable design in two-
~ dimensions may be sequentiallized in 3 stages with a total of 3 or 4 blocks
by suitable choice of the number of central points.

Third order rotatable designs in three dimensions are also discugsed.
Combinations of cubes, octahedra, icosahedra and dodeéahedra'arg examined
and it is shoﬁn that some of the resulting desigps are umsatisfactory as
the resulting matrix of normal equations are poorly conditioned. The use

of a truncated cube with other figures is studied and sequential methods of
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developing thirél order designs are given. This is extended to four
dimensions in which four-dimensional analogues of the cube, octahedrc.m and
truncated cube are combined. In this latter case 128 points are
necessary, not including any central points, and the authors concluded
that extension of these principles to higher dimensions was impracticable

_because of the excessive number of points required.

A BASIS FOR THE SELECTION OF A DESIGN,

In all the previously mentioned 'papers it had been recognised
that discrepancies between the graduating polynomial and the true function
occur because of sampling error and the inadequacy of the fitted polynomial
to represent the true funtion. No obJjective basis had been found for
comparing the relative importance of the "variance error" and the "bias
error" and the designs had been chosen intuitively. This was investigated
by Box and Draper (18) who considered the general problem of choosing a
design such that

(a) the graduation polynomial most closely represents the true
function over a given region, R,

(b) subject to (4), there is a high probability that any inadequacy
of the fitted function will be detected.
Denote the variance error by V and the bias error by B, To meet the first
requirement the design is chosen to minimise J, the expected mean squared
deviation from the true response, averaged over the region R, and normalised

with respect to the number of observations and the variance. Thus
J=V+3B .

F N/c%d‘f&V[?(x)] ax /J"l » N/, Ir{ [B(H=x) - 1 (x)]. dx/& -

h -- (37
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V is minimised by making the design as large as possible, but increasing
the size of the design increases the error due to bias., What is required
is the best balance between these conflicting issues.
To test for lack of fit the Residual Sum of Squares, SR’ is
compared with the experimental error variance. The parameter which determines

the power of the test for goodness of fit will be the quantity

E®F) -7 )2 =88) -ve?, = - (38)

where ¥ is the number of degrees of freedom on which SR is based. To
maximise the power it is necessary to maximise E(‘SR), and this is
requirement (b).

Box and Draper suggested it was reasonable to regard (a) as being
of major importance. The problem is therefore to find a cléss of designs
which satisfy (a) and select from these a sub-class which makes E(SR)
large. They consider in particular the problem of choosing first order designs.

For the case of fitting a straight line for one variable when
the true function is more complex it is shown that both requirements (a) and
(p) independently require that the third moment of the design points be
zero, and in order that the quadratic tendency in the true model be readily
detected the fourth moment should not be too small., If there was no bias
error the experiment should be as large as possible; if the contributions
due to error and bias are equal the size of the design is such that the root
mean square distance of the design points from the centre is 0.628, with 2e
the width of the region R over which the linear approximation is required.
This is very close to the value 0.58 @ which would be chosen if experimental

error were ignored completely.
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The general problem of fitting a hyperplane in k variables when
the true function is quadratic is considered. The region of interest R,
is Specified as a hypersphere, defined byifxiz € 1. An interesting result
of this analysis was that minimising V or B individually required that the
design be orthogonal. For minimising total variance, J, the design must
be orthogonal with the third moments of the design zero and the variances
of the x's equal. The optimum size of the design is such that the root mean
square distance of the design points from the origin is greater than k/k+2
but less than unity. These are first order orthogonal designs of Type B
which were discussed in (1), examples of which are the fractional factorial
designs and Plackett and Burman designs.

The authors intend to examine topics such as the effect of cubic
bias in first order designs, the extension of the present ideas to second
order designs, and the effect of changing the criterion to the minimisation
of the maximum mean squaere error instead of minimisation of average mean

square error.
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CHAPTER 2.

FACTORS AFFECTING BRITMAG GRADING - No.3 KIIN TRIAL

201, INTRODUCTION

The initial part of the process at Palliser Works is concerned
with precipitating magnesium hydroxide by reacting hydrated dolime with
pre-treated sea water. The precipitate is settled, the sludge is filtered
on rotary vacuum filters and the residual paste, which contains about 334
in weight of magnesia, is carried on conveyor belts to the feed end of the
rotary kilns., The paste is removed from the conveyor belt by a scraper
which is made more effective by fine water sprays which keep the face of the
belt wet. The paste is fed into the kiln through a gear pump whichhas a
variable rate of rotation and can therefore control the rate of feed.

A typical rotary kiln is an inclined revolving steel cylinder
approximately 150ft. long by 9 ft. in diamtér and lined with refractory
brick. The front of the kiln is closed by a hood which carries the burner,
through which a mixture of powdered coal and air is blown. This air which
acts as a cbnvqyor for the coal is called the Primary air. Ignition of this
mixture produces an intensely hot flame. As the kiln rotates the magnesia
paste gradually works its way down towards the burning zone and the discharge
port. During its passage water is evaporated, alkali salts are volatilized
and the residue partially fuses to form the brownish granules known to the
refractories industry of this country as Britmag. The size grading of the
Britmag granules varies from about " in diameter down to very fine dust.
The maximum temperature attained in the kiln is in the region of 1650°C.

and the exhaust gases leave the kiln at approximately 300°c.




- 43 -

The Britmag is discharged from the kiln into a rotary cooler and
is then conveyed to the storage and loading bunkers. The average time taken
" from the paste entering the kiln to leaving the cooler biin as Britmag is
approximately six hours and this time lag had to be taken into consideration

when planning the experiment.

2.2, _ STATEMENT OF THE PROBLEM & METHOD 0) ANALYSIS

In this experiment, four factors
(a) the speed of the gear pump (no. of secs. /10 revs): Xy,
(b)  the exhaust gas or back end temperature (°C) : X5,
(¢) the speed of rotation of the kiln (r.pem.) : X3,
(@) +the volume of primary air (orifice meter inches water gauge differential):

X),»

were varied and their effect on the grading analysis of the Britmag determined.
The object of the investigation was to find the levels of these four factors
for which the percentage of Britmag less than " in diameter and greater
than 0.0234" (30 B.S. mesh) in diameter was a maximum. (The percentage of
Britmag in this range will henceforth be referred to as the response).

It was proposed to fit a Response Surface of the form

Q= i (x1, Xy, X3, xh),

where \7 is the true response and @ is some function of the variable factors
Xy, X, X3, X

Providing this surface is smooth it can be represented to any
required degree of approximation by taking a sufficient number of terms in

the following series, suitably choosing the constants @o’ %1 g sy @ 12 e etc.
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2 2
7 = (Lo + @1::1 + &@%’}‘2 + (53x3 + (5 hxhé}wg“x,l 4+ ees *'GM’CL,

+ Q12x1x2 eess + Gj"‘l’x}x XXX .
Over a sufficiently narrow range, not including a turning point

of the surface, a good approximation is given by the plane

r? = (&o + G’1x1 + (szxz + (1;3::3 + thh'
If a larger region is to be covered, or if the region is near a turning
point it would be necessary to include terms of higher degree which would
take into account the curvature of the surface.

As this process had been in operation for some time it was expected
that conditions would already be somewhere near the optimum. Consequently
it was expected that second order effects would be important and so the
experiment was designed to allow first and some second order effects to be
calculated. If conditions were already at their best then this investigation
would confi¥m.the situation and at the same time give some indication of the
effect of changing the levels of the factors. If it turned out that the
present conditions were not the best then this analysis would rectify the
situation and lead to a more fruitful working point.

Accordingly the four factors were each varied at two levels,
forming a single replication of a 24 Pactorial design, and the sixteen trials
carried out in random order to eliminate bias.

To take into account the time lag between the paste entering
the kiln and leaving the cooler bin as Britmag, a settling down period of
twelve hours duration was allowed between trials. It was suspected that the

experimental error, including the effect of un-controllable factors, would
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be quite large and to offset this seven samples of the Britmag were taken
at two-hourly intervals for each trial and the average of these seven samples
taken as the observed response for a particular set of conditions. This

meant that the testing of each treatment combination took twenty four hours

to complete.

2¢3, EXPERIMENTAL RESULTS - ANALYSIS & CONCLUSIONS

The levels .for x;, x5, X35 X investigated in the experiment are

given in Table 2.A.

The factor levels with the corresponding responses obtained are

shown in Table 2,B, in the actual order in which the experiment was carried

out.




TABLE 2,4,

FACTOR LEVELS FOR THE EXPERIMENT

Factor Factor Level

-1 +1

x, Gear Pump speed .....s no. of sec. for 86 88

10 revs.
x, Back-end Temperature ...... °c. 285 295
X3 Kiln speed .eceee revs., per min, 0.59 0.61
x, Primary air ..... "w.g. diff. pressure 0.85 0.95
TABLE _ 2.B.

EXPERIMENTAL DESIGN AND RESPONSES

TRIAL x4 x, X3 X, Res;onse (%)
1 -1 -1 1 70.35
2 -4 1 1 72,54
3 -1 1 -1 -1 75.19
L -1 1 1 -1 74 .21
5 1 1 1 -1 72.64
6 -1 -1 -1 -1 72.41
7 -1 1 -1 1, 67.07
8 -1 -1 1 1 66.33
9 1 -1 -1 -1 62.54

10 -1 -1 1 -1 63.29
11 1 1 1 1 67.08
12 -1 1 1 1 65.29
13 1 1 -1 -1 64.06
14 1 1 -1 1 67.19
15 -1 -1 -1 1 64.21

66.66

-
oN
-
1
-
-
1
-
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Attention may be drawn to the fact that the design of this
éxperiment did not allow quadr'atic terms of the form @)iixiz to be determined.
This was not considered to be of primary importance at this stage as we
were interested in finding out whether second-order effects were comparable
to first-order effects and this would be brought to light from a study of
the cross-product terms. If this turned out to be the case, supplementary
points could be added to the original design which could allow the remaining
quadratic terms to be estgblished.,

It was intended to calculate an equetion of the form,

7 =(5°x° + G1x1 + (:'2"2 + 93"3 + Q:.Axh + @12x1x2
+ @315x1x3 cesee + %34"3"# ------ (1)
where x, is a dummy variable which is always equal to _un:'Lty.

Owing to the nature of the design the sum of products of any two
columns in Table 2.B. is zero and this orthogonality enables the effects

to be estimated very simply. It can easily be seen that,

= 2
by = Tyx, /_Z'xi ’
where bi is the estimate of (Si s, and the variance of this estimate is

given by
Var (by) = o? /inz

where o 2 is the experimental error variance,

As stated earlier seven samples were taken during each trial over
a period of twelve hours in order to compensate for sampling and testing
errors and for extraneous sources of variation. These latter variations
might be due to erz;atic fuel consumption, for example, or any other un-
controllable factors affecting the process.

There was no evidence of the seven readings within each trial
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being serially correlated and it was therefore concluded that the sampling
and testing error must be much greater than the error due to the extraneous
variations in the process. The variation within each trial was consequently
used to furnish an estimate of the experimental error. This means that the -
trials have effectively been replicated seven times. ¥ S foctnote .

Although it was not thought of until after the experiment had been
carried out it would have been wiser to run a preliminary test in which
samples were taken every hour, or even half hour, from a stable process,
such measurements being taken continuously for about two days. An
examination could then have been made of the correlation between successive
readings in a manne; described by Jowett, (19). As it turned out nothing
was lost by omitting this preliminary study, but it may well have been that
the seven results were so highly correlated as to have provided very little
increase in efficiency.

There was a particularly odd result in trisl 8 and it was omitted
from the analysis., The estimate of the residual error variance was calculated
from the remainder of the data to be 12.84 and the variance of the mean of
seven readings is thus

12.8!./7 = 1.83
The calculations of the regression coefficients are given in Table 2.C.

*The conclusions or nof oVHclyy valid oe e exYraneouwd randoem

vonaYions Moy reguike o \cn%cj’ Pu—'tod Ron. tha |2 Nouts Cconsidered Yo
Yhows TRamseloes. 87 is laVer ohown KoYl e or no souch imporranY oxYraneocvs
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TABLE _ 2.C.

THE ESTIMATES OF THE CONSTANTS AND REGRESSION ANALYSIS.

Constant b x2 T yx Estimate Degrees| Component Mean
Estimated =(3)/(2) of SofoS Square
Freedom| =(3) /(2) | =(6)/()
(1) 2 [ ) (4) (5) (6) (7)
@ o 16 1092, 74 68.30 1 74,630,044
G 16 -6.62 0.4k 1 2.739
@2 16 12.72 0.795 1 10.112
%3 16 6.70 0.419 1 2.806
Q’h 16 -9.26 -0.579 1 5359
%12 16 " -14.96 ~-0.935 1 13,988
%13 16 22,86 1.429 1 32,661
@14 16 31.78 1.986 1 63.123
Q’ 23 -16 4,72 0.295 1 1.392
Q’24 16 -29.68 -1.855 1 55.056
C)% 16 1.50 0,094 1 0.141
Due to regression 10 187.377 18.73577
Residual 5 61,982 12.396
Total 16 74,879.403
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The residual mean square of;' 12.4 is significantly larger than 1.83, which is
fhe expected value if the postulated second degree surface is correct.

The quadratic terms,;;, are included in the estimated b, and therefored
not contribute to the residual sum of squares which is made up of second

and third order interactions. It appears then that some of third degree
terms must be appreciable and the residual was therefore separated into

the individual higher order interactions. These are tabulated below,
¥ Seo -F:.u.na poqe-
TABLE _2.D.

———————— —

ESTIMATES OF THIRD AND FOURTH ORDER REGRESSION COEFFICIENTS

Constant Ix Zyx Estimate Degrees of Component s.s
Estimated =3)/(2) Freedom = (3)%/(2)
(1) (2) (3). (4) (5 (6)
® 123 16 -0.40 -0,025 1 0.01
%12# 16 -2.56 -0.160 1 0.41
(51% 16 =22, 74 -1.421 1 32.31
(525# 16 -20.48 -1.280 1 26,22
Bi23, 16 6.9 0.474 1 3.03
| Total : 5 61.98

Two of the third degree coefficients are therefore of the same
order of magnitude as those of lower degree and it woulﬂd appear that a
second degree model is: anadequate. This was rather ux;'expected as the
levels of the factors considered had been selected over rather limited ranges,

in fact over narrower ranges than they should have been, possibly:;, in some cases.
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A study of the results obtained in Table 2.B. .show that after
the sixth trial the responses were all less than 70 per cent whereas the
first six trials all yielded more than 70 per cent. This changeover
coincided with a report that the kiln was becoming harder to control due
to a change in the physical characteristics of the magnesia paste. This
was a purely qualitative observetion as no measurements of paste properties
had been taken.

' Whether the properties of the paste héd any effect on the grading
analysis of the Britmag was at the time open to question. Subsequent
laboratory investigations showed that pre-drying the paste and working it
mechanically before subjecting it to treetments similar to those experienced
in the kiln did in fact strengthen the paste, (see Chapter 3).

As it happened, maintenance of the specified conditions became
increasingly difficult until at last experimentation was suspended after
the 13th trial due to the inability to control the kiln on a fixed set of
conditions for a 24-hour period. This suspension lasted a month or so
before the final three trials were able to be completed. It should be
pointed out here that each trial does not necessarily follow the previous
one on consecutive days as the experiment was sometimes interrupted due
to a failure in some part of the process and consequently had to be restarted;
but with the exception of the break between trials 13 and 14 no important
time lapse occurred between consecutive tests,

It had at one time been considered to treat these last three
triels as missing observations and in working on this particular problem

a method of estimating missing values in Factorial Designs was derived
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which is believed to be original, ( see Chapter 5).

Recordings of the amount of product leaving the cooler over a
period of half a minute had been taken every two hours during each trial.
As X, measures the number of seconds per 10 revolutions of the gear pump

a negative correlation would have been expected to exist between x, and the

amount of product from the cooler, but a study of the mean production figures, -

for each trial showed that this correlation was quite small. This could

be because the two levels of gear pump speed were not far enough apart to
show a significant effect or else the gear pump was unsuitable as a measure
of the amount of paste fed into the kiln. The former reason is probably
the stronger of the two but it must be remembered that the effect of the
gear pump is dependent upon the consistency of the paste which is known

to vary.

The effect of the primary air is dependent upon ﬁhe amount of
coal used and as there was no means of measuring the coal consumption and
therefore making the necessary allowances and it was considered that this
could indeed mask any effect of the primary air. Similarly there is a
limitation to the levels over which the kiln speed could be varied, due to
the mechanical arrangement of the process, and once again it was not sure
whether or not extraneous sources of variation would mask its effect. In the
case of temperature however the difference between the upper and lower
levels, namely 10°C, should be sufficient to show an effect, if the

temperature did indeed affect the grading. At this stage it was discovered

that the temperature had, in error, been held at the wrong level in trial 8
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which naturally invalidates the previous analysis, though it is almost
certain that this would not account for the third order coefficients being
S0 large.

The abrupt change in the response between trials 1 - 6 and 7 - 16
was sufficiently marked to justify these two sets being considered as "blocks",
especially when there is the practical confirmation regarding the observed
change in the initial paste. The effects of some of the factors are thus
correlated with these "blocks" and this is illustrated in Table 2.E.

TABLE 2,E,

CORRELATION BETWEEN FACTORS AND "BLOCKS".

Factor _ Corre%;{izﬁsrith Regression Qoefficient
X, 0 =0.41
X -0.125 0.80
x3 0 0.42
X, -0.25 -0.58
X, -0.125 =094
X3 0.25 1.43
X 0.50 1499
Xp3 0.125 0.30
X9, -0,625 -1.89
X3, 0 0.09
x123 0.125 -0.03
X410, -0.125 . -0.16
X43), -0.25 -1.42
Xy3, -0.375 -1.28
x123# 0.125 047
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We have ignored for the time being the fact that the temperature
was held at the wrong level in trial 8 and the above regression coefficients
are the same as those given in Table 2.C and Table 2.D. Those factors
which are correlated with "blocks" all have relatively large regression
coefficients associated with them. It will be noted that x, which is
negatively correlated with "blocks" has a positive regression coefficient
which suggests that it is an underestimate whereas the other larger co-
efficients are overestimated. The conclusion to be derived from this table
is that the blocking effect is almost certainly the cause of tﬁe unexpected
results obtained in the original analysis and the difference in the average
response for trials 1-6 and trials 7-16 must be taken into account in the
analysise

As a preliminary analysis only the main effects were considered

and the following coefficients were determined.

by = -0.186
b2 = 0.980
b3 = 0.191
b, = 0.409
bB =  4.098

The regression coefficients b1, b3 and bl+ are of equal magnitude
and are appreciably smaller than b, and bge The latter refers to the
"blocks". The significance of these effects is tested in the following

analysis of variance table.
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TABLE 2.F.

TESTING THE SIGNIFICANCE OF THE -REGRESSION COEFFICIENTS

Source of Variation D.F. S.S. M.S.
Blocks and Temperature @ - 2 229.1 114..55
Extra due to Gear Pump, Kiln Speed
and Primary Air 3 3.7 1.23
Regression 5 232.8
Residual 10 20.6 2.06
Total 15 2534

The residual mean square, 2.06, is consistent with the value of
1.834 derived from the repeat readings for each tria;, There is no evidence
that the gear pump speed, the kiln speed or the primary air volume affect
the grading and it now remains to Sree whether or not the temperature has a
significant effect. Ignoring the other factors, the new estimates of the
regression coefficients for temperature and "blocks" were determined to be

1,06 and 3.864 respectively.

TAHLE 2.G.
ANALYSIS OF VARIANCE TESTING THE SIGNIFICANCE OF TEMPERATURE

Source of Variation D.F. 5.8. M.S. .
Blocks 1 212.3 212.3 114
Extra due to TLemperature 1 16.8 16,8 9.0
Regression 2 229.1
Residual 13 2L..3 1.87
Total 15 253.4
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The value of F = 9.0 on 1 and 13 degrees of freedom just reaches
the 1 per cent level of significance and we conclude that the temperature
does have a Eearing on the grading. The "blocks" are of course highly
significant. The average response for trials 1-6 was 72.89 compared with an
average of 65.37 for the remaining trials, and this represents the outstending |
effect as regards the grading. The regression coefficient for temperature
was 1,06 which means that the average effect of increasing the temperature
from.285° to 295° was to increase the response by 2,12 per cent. This
increase is only about a quarter of the difference between the blocks,
namely 7.72 per cent, and this suggests that though the temperature can be
used to increase the grading there is a much greater potential gain if the
exact causes of the changeover between trials 6 agd 7 can be determined., As
the residual mean square is consistent with the value of 1.83, it was

concluded that the effects of the individual interactions must be negligible.

2.4. SECONDARY RESPONSE.

Although this experiment was primarily designed to investigate
factors affecting the grading of Britmag there wase also a secondary rg;ponsé
to consider. This was the bulk density of the product which has to be
greater than 2.90 to meet the consumers' specifications. As stated earlier,
seven samples of the product had been taken over a period of twelve hours,
the first, fourth and last of these were analysed and the bulk modulus
determined in each case. There were only two figures quoted for trial 1,
From these results the'standard error of a determination was calculated
from the variance within the trials to be 0.0594. The standard error of a

mean of three readings is thus 0.05944/y3=0.0343; " the variance being 0.00118.
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The mean results obtained in each trial are tabulated below.
TAELE 2.H. ¥ e focing poqe-

MEAN BULK DENSITIES

Trial Average Bulk Density
1 2,88
2 2.85
3 2.84
4 2.94
5 2,92
6 2.89
7 2.74
8 2.82
9 2.75

10 2.91
11 2.7k
12 2.76
13 2.69
14 2.69
15 2.70
16 2.75

Once again there is an obvious changeover between trials 1-6 and
7-16 and so the "blocks were introduced into the analysis again. The

regression coefficients for main effects and "block” were determined to be




as follows: =

b1 = "20214-2 X
b5 = 3. 367 X
bl'. = -00828 X
bB = 60219 X

The significance of

of variance table.
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TAHLE 2.1,

ANALYSIS OF VARIANCE TESTING THE SIGNIFICANCE OF THE

DIFFERENT FACTORS

these effects is tested in the following analysis

Source of Variation D.F. S.S. M. S, F.
Blocks 1 0.06501 0.06501 61.3
Gear Pump Speed 1 0.00680 0.00680 6.42
Kiln Speed 1 0.01626 0.01626 15.3
Extra due to Temp. and Primary
Air . 2 0 .00416 0.00208 1,96
Regression 5 0.09223
Residual 10 0.01057 0.00106

Total 15 0.10280

The residual mean squere, 0,00106, is consistent with the value

of 0.,00118 derived from the variation within groups, which suggests that

there is no need to examine the individual interactions as they will be of
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negligible account. Of the main effects there is nc evidence to suggest that
temperature or primary air affect the bulk density of the product, but the
effect of gear pump speed is significant at the~5 per cent level while for
kiln speed the significance reaches the 1 per cent level. Once again
"blocks" are highly significant.

The regression coefficient for gear pump speed, b1, is negative
which implies that the lower level of speed gives the higher bulk déﬂs{ty,
but as the speed is measured as the number of seconds per 10 revolutions
the lower level is in fact the higher speed. Increasing the speed over
the range considered here increases the bulk density by 0.045 on the average.
The effect of 1ncrea31ng the kiln speed is to increase the bulk den31ty by
0.067., The average bulk density in trials 1-6 was 2,887 compared: w1th 2.755

for the remainder, a difference of 0.132.

2.5. SUMMARY OF THE CONCLUSIONS

The effects of four factors, Gear Pump Speed, Back End Temperature,
Kiln Speed and Primary Air Volume on the grading and bulk density of
Britmag have been studied in this experiment. Of these factors only Back
End Temperature was found to significantiy affect the grading, increasing
the temperature from 285°C to 295°C resulting in an increase of 2.12 per cent
in the response. Temperature had no significant effect on the bulk density
of the product but increasing the Kiln Speed from 0.59 revolutions per minute
to 0.61 revolutions per minute caused the bulk density to increase by 0.067
on the average, while increasing the gear pump speed from 88 seéonds/10
revolutions to 86 seconds/10 revolutions resulted in an increase of 0.047.

There was no evidence that Primary Air Volume affected the grading or bulk
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density.

During the experiment, namely between trials 6 and 7, it had been
observed that the initiel paste had apparently become wetter and this
coincided with a general decrease both in the grading response and the bulk

density. The average for trials 1-6 inclusive and 7-16 were as follows:-

Trials 1-6 Trials 7--16_ Differences

in Averages

Average Grading 72.89 ' 65.37 7.52

Average Bulk Density 2.887 2.755 0,132

No further work was done on this problem due to this particular
kiln having to be closed down for overhaul. A new air system was installed
but it was decided in any cese to carry out any furﬂxer tests on NoJ4 kiln,

which would allow & wider range of levels of the factors to be considered.
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CHAPTER 3,

FACTORS AFFECTING BRITMAG GRADING - LABORATORY INVESTIGATION,

3,1,  INTRODUCTION

It was proposed to study on a laboratory scale a process which
was rather similar to that performed in the rotary kiln plant.

It is described in the introduction to Chapter 2 how a magnesia
slurry is precipitated from a reaction between pretreated sea water and
calcined dolomite and this precipitant, after filtration, is fed into the
rotary kiln. As the filter paste passes through the kiln, which is heated
by burning pulverised coal, water and alkali salts are volatilized and the
residue fuses to form brownish granules which are known to the refractories
industry of this country as Britmag.

The problem to be investigated is one of improving the grading of
the Britmag, an improvement being a reduction in the amount of fine material
in the final product.

It can be seen that there are roughly three stages in the kiln
process. Firstly there is the drying stage where the free moisture is
evaporated, secondly the calcination stage and finally the fusing, and it
is principally on the first two stages that the ultimate size of the Britmag
granules depends. This is because the drying and calcination determine
the strength of the material at this stage and obviously the weaker the
material at this stage the smaller the final granules of Britmag as the
rotation of the kiln causes a disturbance of the material and consequently

breakdown. It seems feasible therefore that an increase in the strength of .
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the material after drying and calcination would result in an improvement
in the grading of the Britmag and it was with this view in mind that the

following experiment was carried out.

5.2. PILOT EXPERIMENT
: The object of this investigation was to determine the effect of
drying temperature, drying time, free moisture content, calcination and the
influence of additives on the mechanical strength of the filter paste.

Some of -th.e conditions imposed in this experiment were similar to
those operating in the actual kiln process but were at different levels.
f‘or example, in this experiment the drying temperature ranged between 30°C
and 140°C. whereas in the kiln the filter paste is dried by contact with
gases at a temperature of about 300°C. Similarly the temperature at which
the dry paste was calcined in the experiment was 500°C . compared with a
tempgra-ture range of 400-1000°C. in the kiln. From different drying
temperatures it was hoped to get some idea of the effect of having different
rates of drying. It was known from previous experiments that calcination at
500°¢. gave more friable material than calcination at any other temperature,
and it was assumed that any improvement achieved at this temperature would
hold at a higher level. This extrapolation is recognised as being a
dangerous practice and not to be commended but as this is only a preliminary
experiment it was hoped from a study of these effects to_ get an indication
as to the type of experiments which would need to be carried out in future.

Two additives for which there was prima facie evidence that they

would strengthen the paste were tested and to determine their effect paste
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with no addition was included as a control. The free moisture content

was varied at two levels, which were actually measured by the Mgl
concentration of the pastes The paste was dried to the higher level of
Mg0 concentration by pressing between plaster bats which absorbed some of
the free moisture. The drying temperature was varied at four levels at
each of which the drying time was varied over three levels, which were
different for each temperature. These drying times were chosen so that the
paste would be dry enough to be put to a standard milling test.

Having been subjected to a particular set of the previous conditions
the dried paste was divided into two portions and by random selection one of
them was given the standard milling test while the other was first calciﬁed
and then milled. This milling test was the means of assessing the mechanical
strength of the paste and the procedure was to mill a constant weight of
dried paste, having a standard size grading, with 250 grams of 3 inch dia.
steél balls in a six inch diameter steel cylinder, 8 inches in length,
rotating at 20 revs./min, Thes proportion of material reduced to less than
1/16" in size was taken as a measure of the mechanical strength. A strong
paste would thus have a amall breakdown,

The investigation was in the nature of a pilot experiment and as
it was not certain which factors would interact, it was decided to examine
all combinations of the factors at their respective levels. Accordingly
a complete replication of a 12 x 3 x 22 factorial experiment, including
144 trials in all, was carried out with the intention of pooling second and
higher interactions as an estimate of the residual variance. The cost of
each trial was very small and there was consequently no need to carry out

only a fractional replicate,




- 6l =

It was impossible to randomise this experiment completely and in
order that it could be a practical proposition each block, where a block
represents all treatment combinations for a particular drying temperature,
~ was carried out in full and the order of the blocks randomised as well as
the combinations within each block. In order to eliminate any possible bias
in the filter paste, sufficient paste for a complete replication was obtained
and having been sub-divided into 72 port:‘f.ons it was stored in heat-sealed
polythene bags so that there should be no difference in the starting material
for any treatment.combination. Any differences which might occur would be
confounded in the effect of drying temperature, but assurances were given
that these differences should not ari‘r.se. *c.!u. focing poge.

The factors and their levels were as follows:-

Predryin T

Drying Temperature Drying Time {hours)
(1) (2) (3)

(1) 300C. 18 2 30
(2) 609¢C. 12 15 . 18
(3) 1000C. 8 10 12

(&) 1400C., I 5 6

Treatment levels will be denoted by Tij where the first suffix
represents the level of drying temperatures and the second suffix the level

of drying time. ( i = 1,2,3,4; J = 1,2,3).
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Free Moisture Content, gw 2

(1) Untreated filter paste - 32/33 siMg0 ; (Vo)

(2) Dried filter paste - 39/40 %Mg0 ; (w1)

Additives, ‘A}
(1) control ; (ao)
(2) Sodium Silicate, 1% addition ; (A1)

(3) Aluminium Orthophosphate, 1% addition ; (4,)

Calcination, (C)
' (1) No calcination ; (Co)

(2) Calcined at 500°C. for 5 hours ; (C,)

3¢3. _RESULTS AND ANALYSIS

The percentage breakdown of the dried filter paste in the standard

milling test for each treatment combination is shown in Table 3.A.
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At this point we were interested in the following questions:-
What is the effect of drying the paste at- different temperatures?
What is the effect of varying the drying time at a particular
temperature?

Does the removal of free moisture have a beneficial effect on the
strength of the paste?

Do the additives have a beneficial effect and is this effect the
same for both additives?

What is the effect of calcining the paste?

Are there any interactions between the treatments?

It can be seen from Table 3A that the paste at the lower Mg0

concentration, which had been calcined, had suffered 100 percent breakdown

in nearly every case. The data in this block was therefore omitted from

the analysis and the design modified to a 12 x 32 facforial experiment.

Denoting the treatment combinations C W , CW,, C4W, by B,,By,B,,

respectively, the analysis of variance testing the general treatment effects

as shown in Table 3.B.
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TABLE 3,3,

ANALYSIS OF VARIANCE OF TABLE _ 3.A.

Source of P SS S F
Variation
Main T 11 1,602.56 145,69 1414
Effects A 2 932.29 466.15 3.6l
B 2 58,132,50 29,066.25 227.04
Interactions  TA 22 1+4095.98 18618 1.45
IB: 22 7,658.09 348.10 2.72
AB L 14103.93 275.98 2,16
Residual Ly . 5,632,72 128.02
(Higher order ( = a 2)
interactions)
Total 1077 | 79,158.01

In the absence of replication or an independent estimate, the
higher order interactions mean square is used as an estimate of the error
variance. The analysis shows that B is very highly significant and A is
significant at the 5 percent level, while the interaction TB, is also
significant at the 1 percent level. None of the other effects reach the
10 percent level of significance. = Se facing poge.

Neither of the interactions TA or AB are statistically significant.
The effects of the two additives can therefore be determined by averaging

the results over all levels of T and B. This gives the following table of
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mean percentage breakdown, each entry being the average of 36 results.

TABLE 3C,

EFFECT OF THE TWQ ADDITIVES (MEAN % BREAKDOWN)

Control Sodium Silicate Aluninium
Orthophosphate
45.18 50.07 52.19

The standard error of the difference between any two of these means
is 2.67. There is therefore no significant difference in the effect of
the two additives, and the use of either of these additives results in a
significantly higher percentage breakdovn than is obtained for untreated
paste.

In analysing the effects of the predrying treatments, the removal
of free moisture and the calcination, it is helpful to examine the
following table. The entries in this table are the meen percentages
brealkdown for paste with and without additives.

, The two major effects are due to the initial removal of some free
moisture and to the calcination. The average effect of increasing the g0
content was to reduce the breakdown from 51.6/ to 19.6}% for uncalcined paste,
while for calcinea material the corresponding reduction was from 99.2%
to 76.3%%. Calcining the paste under any conditions caused a large increase

in the amount of breakdown,
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Drying Drying Not calcined Calcined
Temp. (°C)| Time(hrs) | 32/33% Mg0| 39/40j% Mg0 | 32/33% Mg0| 39/404 Mgo
18 48.9 23.9 100.0 56.8
30 39.0 21.6 98.7 88.7
12 47.0 9.8 98.3 86.6
60 15 46.9 22.2 98.9 80.8
8 L43.7 2343 100.0 60.0
100 10 55.7 18.0 100.0 95.3
12 60.3 22,8 100.0 71.5
IA 71.9 20.6 96.1 66.3
140 5 69.5 15.3 100.0 72.8
6 40.5 174 100.0 89.5
Average Breakdown 51.65% 19.6% 99,2% 76.3%

The magnitude of the effects of removing free moisture and

calcining the paste varied for the different predrying treatments, the

interaction 1B being significant.

The effect of varying the drying. time

was therefore examined for each of the drying temperatures separately,

ignoring the results for calcined paste with an initisl content of

32/ 33} Nigo.

For paste dried to 39/40/% Mg0, and not calcined, there was
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no significanteffect of drying time or temperature and all the results
obtained under these conditions were comparable. Ior the remaining pastes
the effecf of the drying time varied at the different drying temperatures.

In some cases increasing the drying time increased the pércentagg breakdown,
while in other cases increasing the drying time reduced the breakdown.

It would appear therefore that under given conditions there is a particular
drying time for which the resulting paste is weakest. This is an interesting

result.

3e4, DETERMINATION OF OPTIMUM CONDITIONS FOR PREDRYING PROCESS AND

MECHANICAL WORKING.

One of the most important indications to come from the'pilot
experimeﬁt was that the removal of free moisture by pressing between plaster
bats increased the strength of the filter paste. The removal of the free
water by this method was not standardised in the last experiment and the
question arose whether or not the actual working of the péste, which was
8 necessary part of the pressing with the plaster bats, was also a
contributory factor. It was decided to investigate this and a few
preliminary trials were carried out which indicated that working the paste
after it had been partially drieddid have a beneficial effect,

As it was hoped at some future date to put the results of these
experiments to fhe test on a plant scale, the previous method of free
moisture removal by pressing between plaster bats was discarded and the,
water removed by drying in an even at a fixed temperature. It was proposed

to dry the paste to a certain concentration of MgD, work it mechanically, - -
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and then dry.it again until the total drying time was six hours, before
finally calcining it.

It would be advisable at this stage to give an outline of the
practical side of this experiment in order to bring to light the sources
of error.

A sample of paste is taken from the current stock on the plant and
1,000 grems of this is taken and spread on a tray to a thickness of
approximately 3/4 inch. The tray is then put in an oven and dried at
140°C. for half an hour, say, in which time the g0 concentration of the
- paste would increase from about 33% to 40%. The paste would then be worked
mechanically by pessing it through a mincing machine a required number of
times and then spread on the tray again to a thickness of approximately
2 inch and put back in the oven for 5% hours, thus making the total drying
time 6 hours. The dried paste is then calcined at 500°C. for 5 hours before
being subjected to a standard milling test,.  which is the means of assessing
the mechanical strength of the final paste.

The first source of error arises from the fact that when the paste
is put in the oven to dry, or calcined for that matter, it is not spread
to exactly the same thickness everytime and so the drying effect is never
really the same for each portion of paste. This has the added disadvantage
that one cannot tell beforehand with any degree of accuracy what the Mg0
concentration is going to be before mechanically working it. A second
source of error is due to the possible variations in the original filter
paste which, as stated earl;er, is taken frﬁm the current stock when
required. It would have beén possible to have obtained enough paste at

one time, supposedly of homogeneous consistency, and stored it in pobythene
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bags until it was required for use, but that would have meant the results
have applied only to paste with the same physical and chemical properties

as the one used. By taking paste from the plant stock when it was required,
it meant the results could safely be assumed to hold in general for any
paste, and this advantage more than offset the increase in the experimental
variation.

A further source of error is due to the effect of the mechanical
working not being exactly measurable by the number of times the paste is
passed through the mincer. It was noticed after experimentation had begun
thai; when the paste had been dried to a high concentration of Mg0 it was
necessary to force the paste through the mincer manuelly, so that the
amount of work done on the paste did not increase linearly with the number
of times the paste was passed through the mincing machine.

These additional sources of error, which inflated the inherent
experimental error, meant that more trials would need to be carried out than
would normally have been required, but experimentation was not' so costly as
to make this a major point of consideration.

The predrying treatment was usually applied to four samples of
paste at the same time; they were then remo.ved and by random selection
given a stipulated number of mechanicel workings bef'ore being returned to
the oven until the total drying time for each was six hours. They were then
all calcined together. This meant that four trials could be carried out in

little more than the time taken to do one trial separately..
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3¢5, METHOD OF ANALYSIS AND EXPERIMENTAL RESULTS

The title of this particular work (see 3.4) is a trifle misleading
as we were not really interested in finding an optimum point, at which the
paste is strongest for a particular combination of Mg0 concentration and
'the number of mechanical workings, but rather in studying an "optimum area".
However, the general principles of Box's technique, as described in
Chapter 1, do carry over to a certain extent as it was proposed to carry
out a small initial group of experiments which would indicate in which
direction the optimum area lay, and}ggge into it. Having got there it was
intended to study this area initially by estimating an equation of the
second degree and reducing it to its canonical form in order to assess
visually the effects of pre-drying and mechanically working the paste,

The general principles of the sequential method of procedure will
therefore be maintained but it is impossible in this experiment to make
usé of the principles of factorial design which are so essential for the
simplicity of computation and analysis and in its place we will have to
employ the methods of multiple regression at length. .This is not so
inconvenient as it may'first appear as we are only dealing with two
variables and an equation of the second degree would only require five
regression coefficients to be estimated, which is not too troublesomé on
a desk calculator. Estimation of a surface of the third degree would be
more of a problem but it was thought that this situation would not arise.

In the first experiment four trials were carrieé out in which two
samples of paste were pre-dried for % hour and two for %-hour before being
given a set number of mecghsnical workings, the whole being replicated to

overcome the large error which is known to exist. As stated earlier it was
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impossible to gauge the Mg0 concentration from the length of time it was
pre-dried and it can be seen from the results in Table 3.E. that the
second "replication" was at a much higher MMg0 concentration than the first.
This is not disadvantageous as the method of analysis is that of multiple
regression, though there was the possibility that too great a range of

Mg0 concentration had been covered and would consequently necessitate the

inclusion of second order terms immediately.

TABLE _ 3.E.

FIRST EXPERIMENT

Trial % MgO No. of Mechanical % Greater than 1/16"
workings after Milling.
%4 ] y
1 3642 1 30.9
2 3743 4 464
3 42.75 1 42.2
4 40.95 4 43.0
5 39.06 1 32.8
6 38.65 b 4302
7 44,03 1 574
8 4403 4 59.0

Assuming that first order effects are predominant an equation of

the form

y =6,+ @1"1 + B%p
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was set up as a model and this gave the equation:-
¥ = 2.63%, + 2.58x, - 68.3 PR € 5
The analysis of variance testing the signifiicance of this
regression plane as well as showing the effect of including both factors,
is shown in Table 3.F.

TABLE 3.F.

ANALYSIS OF VARIANCE TESTING MULTIPLE REGRESSION.

e

Source of Variation DF SS MS P

t Regression (x4 alone 1 416,42 416,42 11,91

extra due to
Exg 1 119.72 119.72 3,42

he e e e e wr mm me e e e e de e e e b mr mw e e mw e e

Regression for x, & x, 2 536,11 268,07 7.67 =
 Residual 5 17484 34.97
Total 7 710,98

x Significant: 1% <P < 5%

It can be seen from the above analysis that the hypothesis that
first order effects are predominant at this stage is borne out by the
significance of the regression. The analysis also shows that x1 is the
dominant factor and that the inclusion of x2 does not significantly
improve the fit of the regression plane.

The indication at this stage therefore is to increase the ligd

concentration of the paste before working it. The effect of the mechanical

treatment is not so obvious and this may be because

\
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(a) it has no effect,

(b) there is not enough difference between 1 and 4 workings
to show a significant effect,

(c) the base level chosen for this partipular factor is near
a conditional maximum.

It was known that the paste must be given some mechanical working,
unworked paste giving 100 per cent breakdown in all cases, but it was
not known at this stage whether or not a minimum amount of working is
required after which it has no effect on the strength of the paste. It
was proposed to accept temporarily that an increase in the number of
mechanical workings did strengthen the paste and following the line of
steepest ascent, further trials were carried out to see whether the
indications of the first eight trials were confirmed. Accordingly it
‘was éuggested that the paste be dried for 40 minutes and worked six times
and dried for 45 minutes and worked seven times, each of the trials
replicated. Thes results obtained were as shown in Table 3.G., in trials

9"120




..78-

T 5eGn
PATH OF STEEPEST ASCENT AND SECOND EXPERTMENT

Trial saM g0 No. of Mechenical Response
Workings
x, x, y
9 47.15 6 78.3
10 47.15 6 69.8
1 45.25 7 63.5
| 12 47.2) 7 70.8
13 50 (Approx) 8 -
1y 50 (Approx) 8 Paste too dry for
Mechanical Treatment
15 42.72 2 60.6
16 43.97 b 3440
17 41,90 6 3440
18 | 42,82 8 6446
19 43.39 2 15.4
| 20 46,24 " 83.1
21 43,86 6 724
22 45,71 8 76.9

A marked increase in the strength of the paste is obvious from
a visual inspection of the results. Continuing along the line of
steepest ascent trials 13 and 14 were found to give a paste so dry as to

be unable to work it - the dried paste having crumbled to a powder. This
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sort of thing was not unexpected and it was decided to move back from

this critical region to a safer area. The area elected upon was one for
which the paste concentration ranged between 43 and 47 percent Mgl and

to try to establish just what the effect of mechanical working was, eight
further trials were performed in which the paste was dried for 40 minutes
and 45 minutes and for each drying time four samples were worked 2,4,6 and
8 times respectively. Three of these trials fell outside the area in which

we were interested and four further trisls were included as supplementary

points.
TABLE 3.H.
SUPPLEMENTARY POINTS
‘Trial % Mg0 No. of lechanical Response
Wiorkings
23 L4544 2 87.8
2 4,88 L 72.5
25 4643 6 81.9
26 46.03 i 7 55.2

The area to be investigated was suspected of being large enough
to necessitate the inclusion of second order effects. Accordingly, all
points lying in this area (and there are 15 in all, taking into
consideration those points in the earlier trials), were used to estimate

an equation of the form:-

2 2
y=o,+ Byxp e Boxp ¢ Bpoxixy ¢ %11"1' + Bro%y
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and this gave rise to the equation:

2
y = Z+5087x1 - 1.59’:2 - 8,21 x1XZ + 1.29X12 4 1.88}52 - 1901.3’-&- XX (2)

The analysis of variance testing the goodness of fit of

equation (2) is shown in Table 3.I.

TABLE 3.1,

ANALYSIS OF VARIANCE FOR MULTIFLE REGRESSION.

Source of Variation 1)) Sé MS P
Multiple Regression 5 4168.28 833.66 7.05
Residual 9 1063.58 118.18

Total 14 5231.86

The variance ratic : testing the adequacy of equation (22 as a
representation of the data is 7.05 on 5 and 9 4.f. which is significant at
the 1 percent level. It is of interest at this stage to test (a) if second
order terms are important, (b) if the effect of mechanical working is
. 8ignificant. This is done by partitioning the s.s. due to regréssion as

follows: -
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Testing the need to include second order terms:

Source of Variation I SS MS F
Linear Effects 2 2005.50 1002.75 8.45 xx
Extra due to 2nd order
terms 3 2162,78 720.93 6.10 ==
Multiple Regression 5 4168.28
Residual 9 1063, 58 118.18
Total 14 5231.86
Testing the need to include mechanical working:
Source of Variation ) SS MS F
Ascribable to x4 & x12 2 3052, 36 1526,18 12,91 ==
Extra due to terms with x, 3 1115.92 371.97 3.15 @
e = e we e ew wm ew mmw e wm | e W — - - [T
Multiple Regression 5 4168.28
Residual 9 1063,58 118.18
Total 14 5231.86
e Highly significant : P £ 15
*® Significant %W < P £ 5b
A achin
P Doesily significente: 56 < P < 10%

It can be seen from the above two tables that the inclusion of

second order terms significantly improves the adequacy of the regression

equation, while the importance of the mechanical working is still not
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definitely established, though it does appear likely that thereis an effect.
The above calculatibns show that an equation of the second degree
is adequate to describe the response surface in the region of the design
'bqt in its present form equation (2) does not convey a great deal about the
nature of the response surface. It is proposed to plot a contour diagram
for the yields and to facilitate the procedure, the equation is first
reduced to its canonical form
Y -Ys = B11x12 + B22X22,
where Ys is the response at the centre of the system, S, which is taken
as the new origin and X1 and x2 are the principle axes of the new system.
The centre, S, is found by differentisting equation (2) with

respect to x, and X, and equating to zero. This gave the co-ordinates of

the centre as
X1g = 45.8 Xpg = 625

with a corresponding yield Ys = 68,01,
The direction of the axes, X, and X,, and the values of the
constants B11 and B22 were determined in the usual way.

This gave the equation

I = 5.70 X12 - 2.53 x22 + 68.01 sessssseseacas (3)

The geometrical representation of equation (3) is illustrated
in Figure 3.1., and we can see that we have a saddle-point ( sometimes called
a minimax or col), which is what was expected as the coefficients B11 and B22

are of the same order of magnitude and with opposite signs.
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The importent indications for the contour diagram at this stage
are as follows: -

(a) Moving along the X4 exis away from the centre gives a higher
response, which means we can either have a dry paste with a few number of
workings or a wetter paste with more workings.

(b) A dry paste with a large number of workings will not give a
strong paste,

However, we are really extrapolating outside the experimental
region as the centre of -the new co-ordinate system lies towards the outside
of the experimental design and it was therefore decided to carry out further
trials to supplement the present design in order to confirm or disprove the
present indications. 1t was therefore recommended that additional trials
be performed in the regions of particular interest, namely for paste dried
t0 43-4h4% Mg0 with 7-9 mechanical workings, and for paste dried to 45-46/% MgO
with 2 aud 3 workings. Several trials were carried out as suggested but due
to the experimentel difficulties some of the trials did not fall in the
areas intended, even though they did fall in the general region of interest.
Nothing definite could be established from a visual study of these new
results, and these additional observations were therefore pooled with the
earlier data, and a new response equation of the second degree was estimated
to see whether the suggested tendencies were stili in evidence,

Recalculation of the equation gave:-

Y = 3h.66x, + 9.30%, = 2.47 XX, = 3.15 x12 - 0.23x22 + 5390.5 .ee. (&)

The analysis of variance testing the adequacy of this equation as

a representation of the data is shown in Table 3.J., together with the effect
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of including mechanical trestuments.
TABLE 3.J.

ANALYSIS OF VARIANCE TESTING MULIIFLE REGRESSION

Source of Variation DF SS MS F
Ascribable to Xy and x12 2 2709.771 1354.886 8.45
Extra due to terms with xp 3 1879.023 626,341 3.91
Multiple Regression 5 4,588,794 917.759 5.73
Residual 31 1,968,204 160,265
Total 36 9556.997

For multiple regression, the value of F is 5.73 on 5 and 31 degrees
of freedom which is significant at the 1 percent level, while the variance
ratio testing the effect of including terms dependent upon X, is 3.91 on 3
and 31 degrees of freedom which just reaches the 2 percent level of
significance. Thus the mechanical working does have a definite effect on the
final strength of the paste.

Once again the regression equation was reduced to its canonical
form and this gave:-

y = 0.225 X,2 - 3,507 X,% + 72.95
with the new centre, S, at x, = 45.24 and x, = 8434
For diagrammatic purposes the response contours were replotted and

this gave the situation as illustrated in Figure 3.2. There is an obvious

change from the earlier representation, the main characteristics being
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emphasised by the relative magnitudes of the coefficients in the canonical
forms The centre of the co-ordinate system is still some distance from
the centre of the experimental region and the situation is becoming more
like that of a stationary ridge.

322 is appreciably larger than §11 and a good approximation to

the surface can be obtained by taking B11 to be zero. The equation of the

surface then becomes

¥ = 72.95 - 3.6 x22 ) | ,
or Xp=< / 72,95 - yos 0s527 [72.95 - ¥
3.6

This equation defines a pair of parallel planes on which the
response is y. This would indicate a plane x2 = 0 which is maximal for
- which the response is 72.95.

A review of the practical implicetions is warranted at this stage
in order to explain the logic of the trials already performed and those to
be carried out. It has been established that pre-drying the paste and
working it mechanically before calcination, improves the strength of the
paste. Ve are now interested in finding a combination of the two facfors
for which the sﬁrength of the paste is satisfactory without necessarily
being maximal., This last statement is not as ludicrous as it may at first
appear, for in performing this sort of process on a plant scale it would
be much easier to work the paste than to pre-dry it to the range of Mg0
concentration we are dealing with here. If a dry paste with a small amount
of working gave the samé, or only slightly better, results than a wetter

paste with more workings, then the latter conditions would be preferable
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from a practical point of view., Thus it is more smportant at this stage
to determine whether the indication that more workings for relatively wetter
paste give good results is borne out away from the area already under
consideration.

With this is mind, a further set of trials were performed in
which the Mg0 concentrations were decreased down to approximately 39 percent
with corresponding increases in the number of mechanical workings. These are
tabulated in Table 3.K. though not necessarily in the order in which they

were carried out.
TABLE 3.K.

SUFPFLEMENTARY TRIALS

% Mg0 No. of Mechanical Response
Workings
x4 X2 y
43,00 10 56.8
42,99 10 754
42,20 10 52.8
L1.72 13 45.9
41.66 15 63.6
L1.59 15 6243
41,39 13 648
41.28 11 62,8
41.23 13 71.2
40.853 11 y
LO.40 15 61.7
39.09 20 55.1
3923 - 25 59.8
38491 20 53e3
39.11 25 65.6
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These results, although very variaﬁle, confirm the tendency
indicated that wetter paste with a larger amount of working is comparable
in strength with a paste dried to & higher level of Mg0Q concentration
with relatively less working. This was a very favourabkle state of affairs
for the reasons already mentioned, and few further tesfs were performed
on undried paste, of approximately 34% Mg0, with 20 and 25 mechanical
workings. These experimental conditions gave yields in the region of 20%,
which, although not as good as those obtained for drier paste, are of some
interest. The number of mechanical workings for paste concentrations of
34 percent can hardly be related to those for drier paste as the relative
amount of work done is so different. In order to investigate an areain
which wet paste is used, it will be necessary to find a new method of working
the paste which would allow more accurate comparisons to be made. It was
decided therefore, that this investigation had served its purpose in giving
an insight into the system and so experimentation was adjourned.

As opposed to predrying the paste and then working it mechanically
in order to increase the strength of the final product, a series of
experiments was carried out in which the paste was treated with additives
to see if comparable results could be obtained. In these trisls ten
chemicals were added at two levels to ordinary filter paste, and the
strength of the dried and calcined paste measured by the percentage breakdown
to less than 1/16 inch. In every case one hundred percent breakdown was
recorded, and it was therefore concluded that the additives were less

efficient than the predrying and working method in strengthening the paste,
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GENERAL CONCLUSIONS AND RECOMMENDATIONS.

From the investigation described above, it was determined that
predrying the filter paste and working it mechanically.affected the strength
of the final product. The results indicate that predfying the paste
before working it is very beneficial, but that comparable results may be
obtained from a relatively wetter paste subjected to more intensive working.
The experimental technique and the differences in the properties of ﬁhe
initial filter pasté meant that the results obtained were necessarily very
variable, but nevertheless, it was possible to draw some reliable conclusions.
For material which had been dried upto 46% Mg0 and worked twice or thrice,
the average yield (measured by the percentage of the final paste not broken
down to less than 1/16 inch in size in the standard milling test), was
about 70% and for paste with an Mg0 concentration of 39% MgO, which had
been worked approximately twenty times, the average response was about
60 percent.

However, these results in themselves are hardly strong enough
to enable one to say it would be worthwhile to employ a similar set-up on
a plant scale, and this should be regarded purely as a preliminary enquiry.
It may be argued that the simplicity of the conclusions did not warrant the
need of such a long experiment with the corresponding excessive statistical
analysis. However, before this investigation was carried out, it had been
contended that only a certain number of mechanical workings would be required
after which any increase in working would have no additional effect. This
is probably true but it was not known what this number of workings is for
any particular paste. In the preliminary experimentation, paste which had

not predried and had received only half a dozen workings, resulted in 100 percent
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breakdown., It had then been concluded, wrongly, that the paste must be
predried to a certain level before any improvement could be obtained.
Therefore if this technique had not been employed, it may well have been
that the results for paste of low Mg0 concentration with a higher number
of mechanical workings would never have materialised, and consequently a
very useful result overlooked,

It would be profitable to extend the above analysis using a
different experimental arrangement, in which the effect of mechanical
working is studied in further detail at much higher levels. A mechanical
stirrer or milling operation would probably be much less susceptible to
efror than the method used previously as the operator effect will be excluded.

It is difficult to assess what a decrease in the amount of
breakdown in the above tests is equivalent to on a plant scale, It
certainly means that the paste is stronger, but what is this increase in
strength equivalent to in terms of improvement in Britmag grading? The
economicsof this problem must be'carefully studied, and it should be
ascertained quite definitely that the cost of reorgenising the present

system will pay dividends in a higher quality product.
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CHAPTER .

INVESTIGATION OF DUST LOSSES FROM A ROTARY KIIN AT COXHOE

4ele INTRODUCTION

One of the basic raw materials used in the production of Britmag
is Doﬁhite, a magnesium limestone, which is quarried at Coxhoe, a few
miles from Hartlepool. This stone which contains approximately equimolecular
amounts of magnesium carbonate and calcium carbonate is first crushed and
screened before being calcined in a rotary kiln to give a mixture of
magnesium and calcium oxides; the actual chemical process being

Mge COB. CaCO; ->» Mg0O. Ca0 + 2C05.

Following the crushing and primery screening operations, the
stone fraction less than 13 inches in size is classified on a double-
deck Nordberg screen fitted with 2 inchizgsﬁggfh The material retained on
the % inch mesh and having a nominal size grading + 2" - 13" is conveyed
directly to a storage silo of approximstely 800 tons capacity. The fraction
retained on the 3 inch mesh is fed to a wash plant where material less than
% inch in size is removed in suspension and the residue, having a nominal
size grading +3" - 2", is conveyed to a second storsge silo. Stone is
drawn from either of these silos by Pendan weight feeders and conveyed
to the rotary kiln. The unwashed stone used is equivalent to approximately
80% of the total consumption and is therefore used for much longer periods
than the washed stone. The kiln is fired with pulverised coal and the

stone decomposes during passage through the kiln, the magnesium and

calcium carbonates being converted to the oxides with the evolution of
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carbon dioxide. The calcined product from the kiln is called Dolime.

The gases arising from the combustion of the coal and the
decomposition of the dolomite pick up any fine particles of material and
'carry them out of thekiln. These gases are cleaned before being exhausted
to the atmosphere by passage through cyclones which separate the dust from
the gas stream; this dust loss from the kiln is waste material. It must
be explained here that the company pays for the stone according to the
weight of stone which is fed into the kiln, and therefore all dust loss
from_the kiln is a direct financial loss to the company. The dust loss
would be expected to increase as the proportion of fine material present
in the stone fed to the kiln increases. The purpose of the initial screening
is to remove dirt and stone dust from the dolomite before it reaches the
silo. However, the screening is not fully efficient and some fine material
is carried over to the silo where further breakdown in the stone occurs
due to the crushing effect of the weight of stone in the silo. Breakdown
‘8lso occurs in the kiln due to the continual movement of the stome. In
both cases the amount of breakdown is dependent upon hardness of the stone;
so that stone hardness is a likely factor.

A practical point in the operation of the kiln is the formation of
"clinker rings". A ring caused by coal ash and dolime fusing together,
forms on the inside of the kiln and gradually builds up until it severely
restricts the flow of material along the kiln. When this happens the kiln
has to be stopped and the ash ring is removed by shooting it off with a
‘gun. This heppens about once every four days.

A sgeries of experiments on dolime production, designed and

analysed by N, Heasman, was carried out at Coxhoe in January. One of the
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problems investigated was the amount of dust loss from the rotary kiln
when the unwashed stone was being used, and the object of the experiment
was to establish a mathematical model to determine which factors affect
the amount of dust loss. Previous tests on the dust plant effluent ..
had shown the dust was mainly uncalcined dolomite having a particle size
less than 100 B.S. mesh i.e. 0.006". It was therefore expected that the
weight of dust loss would be directly related to the amount of -dust in the
feed to the kiln, and to assess the latter samples-were taken hourly and
the fraction less than 100 B.S, mesh was noted. The weight of the stone
dust in feed, or stone "fines“ entering the kiln pef minute was then
calculated from the mean Pendan feeder setting.

As stated earlier it was suspected that the stone hardness
affected the dust loss and this was measured by percentage_breakdown of
material to a size less than 1/16 inch, in a standard milling procedure.
Accordingly Heasman carried out determinations of hardness on the hourly
samples from the Pendan feeder and tabulated mean velues for each shift
of eight hours duration., The amount of dust discharged from the cyclones
-was measured at hourly intervals by collecting and weighing the dust over
a one-minute test period, and an average value per shift recorded.

Table 4.A. gives the observations on the dust loss (1lbs./min.), Y,
stone fines in feed (1bs./min.), X, and stone hardness, T, over the test
period with the corresponding dates., Shifts when washed étone was being
used have been omitted. The shutting down of the kiln for shooting off
the clinker ring is also indicated.

Heasman estimated a multiple linear relationship of the type:

(v-7) =Pylx-%) + Pfe-%)
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and this gave the equation:=-

y = 0.5701x + 0.9642t + 47.4

The significance of this regression is shown in Table 4.B.

TABLE 4.A.
OBSERVATIONS
Date & Time Stone Fines Stone Hardness Dust Loss
(1bs./min.) (% breakdown) (1bs./min,).
X T Y '
30.1.57 6 - 2 25 17 109
2- 10 43 17 108
10 - 6 50 17 119
31.1.57 6 - 2 37 14 96
2 - 10 43 14 100
10 - 6 61 19 116
2.2,57 6 -2 49 19 104
CLINKER RING
3.2.57 6 =2 33 17 95
2 - 10 73 17 109
10 - 6 58 19 79
4.2,57 6 - 2 b1 15 92
2 -10 43 15 86
10 - 6 64 15 90
5.2,57 6 - 2 42 14 70
2 -10 3L 14 71
10 - 6 27 14 60
6.2,57 6 -2 18 14 64
- CLINKER RING
7.2,57 6 - 2 25 15 59
2 - 10 33 15 69
10 - 6 30 16 65
8.2.57 6 -2 39 19 67
2 - 10 38 16 /R
CLINKER RING

10.2.57 10 - 6 56 22 70
11.2,57 6 - 2 45 29 9%
10 - 6 76 28 132
12.2,57 6 -2 50 38 127
2 -10 56 37 105
10 - 6 u7 36 119
13.2.57 6 - 2 49 32 116
2 - 10 54 32 109
10 - 6 66 3 93
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TABLE 4.B.

ANALYSIS OF VARIANCE FOR MULTIPLE REGRESSION

VARIATION D.¥ S.S. M. S,
Due to x and % 2 5,747.71 2,873.86
Unaccountable .29 7,944.01 273.93

Total 31 13,691.72

The variance-ratio testing the adequacy of the fit is significant
at the 0.1 percent level, Yo test whether each variable contributes

significantly in the regression the analysis was extended as Shown in

table 4.C.
TABLE 4.C.
ANALYSIS OF VARIANCE FOR MULTIPLE REGRIESSION

VARIATION DO F. So So Mo So
Due to ¢ 1 I-i-,182.56 4,182.56
Extra due to x 1 1,565.15 1,565.15
Due to x and t 2 5,7.7 2,873.86
Unaccountable 29 7 944 .01 273.93

Total 21 13,691.72

 The variance-ratio testing the effect of including x is thus
significant at the 2 percent level. Thus x contributes a significant

amount to the overall regression. It can be similarly shown that €
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contributes a significant amount to the regression. This does in fact
verify Heasman's initial assumptiorsas the indications are that an increase
in stone fines in the feed to the kiln will give rise to an increase in
dust loss from the kiln, and an increase in t, which is tﬁe percentage
breakdown to a certain size in a standard milling test and therefore a
measure of stone softness rather than stone hardness, will also cause an
increase in dust loss from the kiln,

Heasman then plotted the observed values of the dust loss and
also the values predicted from equation (1). This is shown in Pigure 4.4
This graph showed up certain irregularities and it is the explanation of

these which is to be described in the remainder of this chapter,

4.2, EXTENSION OF HEASMAN'S ANALYSIS

It can be seen that the data falls 1nto four groups the
boundary mark between successive groups being the stoppage of the kiln
to shoot off the ash-ring. The two most striking features of Heasman's
graph are the pronounced similarity in trends and the displacement of the
observed and predicted values of the data in Groups I and III. These two
features rather suggest that the individual regression planes for these
two. groups are probably parallel but not coincident. Groups II end IV are
rather harder to interpret visually as they show much more variability
though the later observations in Groups II do show a systematic difference
between observed and predicted values. It was decided therefore to compare
the regressions of the four groups to see if they do in fact differ

signifiicently.
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To test whether the dependence of cyclone dust on stone fines

From which we get:-

Using the d

equations were derived.

was necessary to

ata of Table 4.A.

Group I : 818by + 87b, = 335 ;
87b,4 + 3.9 = 9
Group II 2768b4 + 154b2 = 1593 )
154by  +  264by, = 133 g
Group III : 134b1  +  26b2 = 105 ;
26b, + 10.80, = 6.2)
Group IV 788b4 - 99bo = 241.8)
- 99b, +  206b, = 403;
by 0.135 0.438 1.26 0.588
b, 2.58 2.47 - 2.46 2.2,

\ The analyses of variance for the four groups are shown in Table L4.D.

TABLE

oDe

ANALYSIS OF VARIANCE FOR FOUR GROUES

Variation Group 1 Group II Group III Group IV
DF SS MS DF SS NS DF SS S DF 85 M3
Regression 2 287.8 2 1025.8 2. 117.2 2 1173.81
‘ Residual 5 23%4.2 46.8 | 7 1132.6 161.8 | 2 3.6 1.8 | 6 1817.75 303
|
‘ Total -7 522.0 9 2158.4 L 120.8 8 2991.5%

We want now to combine these four analyses into one analysis but it is first

necessary to test whether the four residual variances are compatible.
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Accordingly Bartlett's Test was applied and the value

]Kz = 8.81 on 3 degrees of freedom
was determined. The value is Jjust significant at the 5% level. Now
Bartlett's Test is very susceptible to data which is even slightly non-
normal and coupled wi@h the fact that there are only 2 small number of
degrees of freedom in the estimates of residuzl variances it was decided
that this significance could possible Be spurious and so the analyses were

combined as shown in Table 4.E.

TABLE 4.E.
COMBINED ANALYSIS OF VARIANCE.

Variation DF SS MS
4 Regressions . 8 260L.61

Residual 20 3188.15 159.4
Total . 28 5792.76

To determine the pooled estimates of the regression coefficients it was
necessary to add together the four sets of equations which were used to

determine the individual group regressions. This gave
4508b; -+ 167.8b, = 2242 2
167.8b, + 275.1by 671.8 §

from which the pooled estimates b, = 0.4159 and b, = 2.1885 were derived.

The more detailed analysis of wvariance is shown in Table 4.F.
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TABLE 4.J,

OVERALL ANALYSIS OF VARIANCE

Variation DF SS MS

Regression 2 2402.83
Differences in

coefficients 6 201,78 33,63
Sum of 4 regressions 8 2604.61

Residual 20 3188.15 159.41
Total 28 5792.76

The variance ratio testing the differences in regression coefficients is
less than unity so it was concluded that the type of dependence of
cyclone dust on stone fines and stone hardness was the same in all groups,
that is to say the individual regression planes for the four groups were
parallel,

To test whether these planes were coincident the analyses of
variance given in Table 4.B. and Table L.E. were combined and the final

anelysis is as shown in Table 4,G.
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TABLE  4oGe

FINAL ANALYSIS OF VARIANCE

Variation DF SS MS F
Ascribable to regression 2 5747.71 |2872.86 18.03
Difference in coefficients | 6 201.78 33.63 44
Distance between planes 3 L554.08 [1518.02 9.52
Residual 20 3188.15 159.41

Total 31 13, 691.72

The variance ratio testing the distances bétween the regression planes
for individual groups is highly significant, greater than 0.1% level
and therefore warrants further investigation.

The data should thus be represented by the four following

regression planes:-

Group I Ty = 0.4159x + 2.1885t + 51.1
Group II ty = 0.,4159x + 2,1885t + 30.3
Group III y = 0.4159x + 2.1885t + 17.6
Group IV Py = 0.4159x + 2.1885t + 13.1

It was not sufficient to show that the regression planes for the
four groups were different, it was also necessary to try to determine why
they were different. The obvious explanation was there must be some
other factor, or factors, which affected the amount of dust loss from the
kiln., This factor would apparently be fairly constant within each of the

groups, eapecially in groups I and III, but would vary appreciably
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between the groups. Accordingly reference was mede to the record sheets

‘compiled during the test period and it appeared likely that the kiln speed

might be the missing factor as it showed the sort of variation which was

being looked for. Table 4.H. shows the values of kiln speed (no. of secs./

rev.) corresponding to the previous data.

TABLE L.H,

KILN SPEED gseCS.‘ X 02

Group 1 , Group II Group III Group IV
L7.1 48,1 50.7 50.8
46.8 48.0 LIk 51.3
46.9 48.3 49.9 50.6
47.0 4L8.5 49.6 474
47.0 48.5 50.6 L7.5
50.0 48.1 47.4
48.2 48.3 L7.1
48,0 49.8 LI

504 48.5
51.1

A preliminary analysis was carried out to see whether there was a

significant variation of kiln speed between the four groups as shown in

Table 4.1.

]



/
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TABLE 4.1

ANALYSIS OF VARIANCE FOR KILN SPEED

Variation oF SS MS
Between Groups 3 19.6558 6.5519
Within Groups 28 43.5529 1.5555

Total 31 63,2087

The variance ratio testing between groups variation was 4.21 on 3 and 28
degrees of freedom, which is significant at the 5j level. This crude
analysis showed that the variation in kiln speed between the four groups
was signifiéantly greater than the variation within the groups.
Comparison of the average dust loss and the average kiln speed for each
group suggested that the cyclone dust-increased as the kiln speed increased
i.e. as the number of seconds per revolution decreased. From a practical
point of view this is quite likely as the faster the kiln rotates the
more disturbance there is in the stone in the kiln and therefore a
greater breakdown in the stone.

It was decided therefore to include kiln speed in the analysis and
a regression plane of the type

() =01 B+ B 68« PyluT)
where w. represents kiln speed, was set up as a model,

An overall regression ignoring any possible differences between
the groups was carried out and this gave rise to the following equation:

¥y = 0.4334x + 0.8909t -~ 6.9581u + 394.34 = ——em—mmme- (2)
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An analysis of variance testing the goodness of fit of this line and the

additional improvement of including the kiln speed was as follows:

TABLE 4.J.

ANALYSIS OF VARIANCE TESTING LINEAR REGRESSION

Variation DR S8 MS

Regression (x,t) 2 S5Th7.74

Remainder to u 1 2897.61 2897.61
| Regression (x,60) | 3 | Bu5.357 | 2881.79

Residual 28 5046 .35 180.23

Total 31 13,691.72

The variance-ratio testing the adequacy of the fit is very highly
significant and so is the variance ratio testing the inclusion of kiln
speed in’the analysis. It éppears then that the kiln speed does affect
the amount of dust loss from the kiln an&?%act that the b3 is negative
verifies that the dust loss increases with the kiln speed.

A graph was then plotted of observed values and values predicted
from Equation (2) and this is shown in Pigure 4.2. The fitted points
although in better agreement with observed values than before still exhibit
a discrepancy inasmuch as the marked similarity in trend and displacement
in Groups I and III are still obvious. It was decided therefore to break.

the analysis down as before and to test whether the regression planes for
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the four groups were the same. This is shown in Table 4.XK.

TABLE 4.K.
FINAL, ANALYSIS OF VARIANCE.

Variation .DF SS MS
Overall regression 3 8645,37 2881.79
Differences in coefficients 9 400.96 L4.55
Differences in distances 3 1841.43 613,81
Residual 16 2803.96 175.25

Total 34 13,691.72

The variance-ratio testing the differences in the regression coefficients
is less than unity while the variance-ratio testing the differences between
the planes is significant at the 5% level. It was concluded therefore that
although the regression planes were still parallel for the four groups they
were also still displaced.

The situation was still therefore very much as it was before
insofar as the differences between the groups were concerned and accordingly
it seemed likely that there must be some other factor(s) affecting the dust
loss from the kiln which had not yet been considered. In a further
discussion on what the factor(s) might possibly be it was decided to
investigate the amount of coal used during the test period. This had
fortunately been recorded for one of the other tests which had been carried

out at the same time.
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It had been noticed on looking through the record sheets that

the rate of feeding the stone into the kiln had not been constant throughout

the test period, though the variation had only been small and it was decided
that it would be better to change the units of measurement to allow for
this. Accordingly the amount of stone fines in the feed to the kiln and
the amount of dust loss from the kiln were now transformed to percentages
of the total feed to the kiln. It had been assuped earlier that the amount
of partly calcined material in the dust loss was negligible but chemical
analysis of the dust loss samples showed that this was not‘true. It was
possible however from this chemical analysis to convert the measured dust
loss into actual dolomite and therefore as a true percentage of the feed

to the kiln,

The revised observations are shown in Table 4,L.
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TAHLE
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.L.

REVISED OBSERVATIONS

Stone Stone Kiln Speed | Coal Consumption Dust Loss
Fines Hardness | (secs./rev.) | (coal worms revs. b
% min.)
X T U v Y
3.2 17 47.1 113.9 17.27
Sels 17 46.8 119.6 17. 30
6.3 17 46.9 107:0 19.09
4.7 14 47.0 109.3 15.58
GROUP I S5els 14 47.0 113.8 16.22
5.1 14 50.0 99.4 17.81
7.7 19 48.2 110.5 19.02
6.2 19 48.0 105.8 16.26
I _ _ _| _ASH RING |(_ _ _ _ _ _ _ o
4e2 17 48,1 131,0 15.10
9.2 17 48.0 117.5 17.27
7.1 19 48.3 122,2 12,29
3.9 15 48, 121.0 15.43
GROUP IX 8.0 15 48.1 117.3 15.45
5.3 14 L4LB.3 114.1 11.93
4.5 14 49.8 126.9 12,55
3.5 14 50.4 126.5 10.51
24 14 51.1 116434 11.32
ASH RING
3.2 15 50.7 132.6 9.75
be3 15 49.4 127.0 11.56
GROUP III| 4.0 16 49.9 129.6 11.27
5.1 19 49.6 128.4 11496
5.1 16 50.9 1354 4 13.61
- - - - _ _ _ _| _aASH RING_ R A
1 842 22 50.8 115.3 12.86
6.7 29 51.3 107 .4 17.60
9.7 28 50.6 117.9 21.82
GROUP IV | 6.3 38 474 112.0 20.80
7.0 37 47.5 118.9 17.13
6.2 32 47.1 114.9 19.06
6.9 32 L4 117.7 17.93
8.4 3 48.5 12641 15.21
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It was again suspected that if coal was going to have an effect then the
variation between the four groups would be greater than the variation
within the groups. An analysis of variance was carried out initially to
confirm this, as shown in Table 4.M.

TABLE 4 .M,

ANALYSIS OF VARIANCE FOR COAL.

Variation Dr 5SS MS
Between Groups 3 1428.89 4L76.30
Within Groups 28 799.92 28.57

Total 31 2228, 81

The variance-ratio testing between the groups variation is 16.67 on 3 énd

28 degrees of freedom which is significant at the 1% level., Comparison

of the means of coal consumption and the average percentage loss from

the kiln for each of the four groups suggested that the percentage lost

from the kiln decreased as the coal increased. -
It was decided therefore to include coal consumption in the

analysis and a regression plane of the type

(Y "Y) =e1(x '?‘) + (52('15 "-E) + G’}(u '-1-1) + (31‘(" ";)

was estimated. This gave rise to the following equation:-
¥ = 0.3740x + 0.1525¢% - 0.5859u -0:,150w + 56,62 ———--em (3)
The overall analysis of variance {esting the significance of this

regression plane, ignoring any possible differences between the groups, is
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shown in Table 4.N.
TABLE 4 .M.

ANALYSIS OF VARIANCE FOR OVERALL REGRESSION

Variation oF 58 MS
Due to Regression 4 215.1245 | 53.781
Residual 27 98.6001 3,652
Total 31 313. 7246

The variance-ratio testing the adequacy of the fit of the regression plane
'is 14.7 on 4 and 27 degrees of freedom which is very highly significant.
The observed Qalues of percentage of feed lost from the kiln and the
corresponding values predicted from equation (3) are shown in Figure 4.3.
The discrepancies between the observed and predicted values are no longer
so obvious, visually, as they had been before but it was nevertheless
decided to carry out an analysis to see whether or not the regression planes
for the four groups were the same.

Following the same procedure as before the analysis testing
group differences was carried out as shown in Table 4.0.

TAELE 4.0
FINAL ANALYSIS OF VARTANCE

- Variation DF SS MS

Regression L 215.1245 53.781

Differences in Coefficients 12 28.1097 2.343

Differences in Distances 3 12.3689 4.123

Residual 12 58,1215 L.843
Total 3 | 313.7246
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The variance-ratio tesfing the differences between the regression
coefficients and the distences between the.regression planes is less

than unity in both cases. It was then concluded that the overall
regression equation, ignoring any possible differences between the groups,
was valid as a representation of the data.

By calculating the inverse matrix of the coefficients of the
equations used to estimate the regression coefficients it is possible to
determine estimates of the standard errors of the four regression co-
efficients. As there was no evidence that the four groups differed it was
decided to use the residual variance of Table 4.N., namely 3.652 on 27
degrees of freedom as the estimate of c—z.

This procedure gave rise to the following:

0.3740 + 0.2260

1 =

b2 = 0.1525 + 0.0500
by = =0.5859 & 0.2535
b4 = -0.1503 + 0.0438

It can be seen that the standard error of b1 is large compared
with the value of b, but it nevertheless cannot be concluded that b, does
not differ significantly from zero as the estimated regression coefficients
are not independent of one another. The correlations between the pairs of
regression coefficients were determined from the inverse matrix and it was
seen that a negative correlation existed between b1 and bz which waé
highly significant. No other correlations were significent. This highly

negative correlation between b1 and b2 indicates that if b1 is an over-
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estimate of the true value then b2 is probably an under-estimate, and vice
versa. Considering that there was very little variation in stone hardness
over most of the test period and that it was only in the final stages when
the level of stone hardness distinctly changed, it is f'easible to assume
that b, is over-est iméted .and correspondingly b, is under-estimated,

As stated earlier, the dust loss from the kiln was not made up
solely of dolomite dust but also contained a certain amount of dolime and
partl;calcined material. From a chemical analysis of the dust it was
possible to assess the relative amounts of dolime and dolomite plus partly
calcined material, both being expressed as a percentage of the stone feed
to the kiln., Statistical analysés, similar to that described above, were
carried out on the dust loss from the kiln in the form of dolime and also
on the dolomite plus partly calcined material, and it was seen that the latter

was significantly affected by the four factors but the dolime loss was

independent of the amount of stone fines fed into the kiln.

e Js___CONCLUSIONS
It has been shown that over the test period the amount of dust

loss from the kiln, measured as a percentage of the stone feed to the kiln,
was directly dependent upon: -
(a) Stone fines in feed, - percentage - 100 B.S. mesh (x)
(v) Sfone hardness - percentage bz;eakdown in standard milling
Test (T)
(e) Kiln Speed - no. of secs./revolution {U)

(@) Coal consumption - revs./min. (V)
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The relationship may be expressed mathematically as follows:-
¥ = 0.3740x + 0,1525t - 0.5859u = 0.1503v + 56.562
where y is the estimated percentage of the feed which is lost from the kiln,

The dust from the kiln was shown from chemical considerations
to be composed of dolomite, partly calcined material and dolime,
Statistical analysis showed that the amount of dust lost from the kiln as
dolome depended upon stone hardness, kiln speed and coal consumption but
not on stone fines while the remainder, dolomite plus partly calcined
material, was significantly dependent on all the four factors.

This implies that as the amount of stone fines in the feed to
the kiln increases the amount of dolomite plus partly calcined material in
the dust loss from the kiln increases, whereas the amount of dolime in the
dust loss is unaffected. It had been expected that an increase in stone
hardness would cause & reduction in the amount of dust loss from the kiln
and this was borne out in the analysis. An increase in the kiln speed
caused an increase m the dust loss and this again is what one would expect
as the faster the kiln rotates the more movement there is of the material
in the kiln and consequently more breakdown. The affect of the stone
hardness and the kiln speed was the same for both dolime and dolomite plus
partly calcined materiale The effect of increasing the coal consumption was
to cause a marked decrease in the amount of dust loss., This is due to the
fact that the stone is more quickly calcined amd as calcined material is
much harder than dolomite there is less breakdown in the kiln and as a

result the percentage of the feed lost from the kiln decreases. Also the
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calcined material itself becomes substentially harder as the amownt of
coal used is increased and this gives a corresponding reduction in break-
down in the kiln, |

The actual effect of all the factors can be assessed from a
consideration of the appropriate regression coefficient and the units of
measurement of each of the factors.

Having shown that these factors do affect the amount of dust
loss, the question arises what can be done about it? Stone hardness cannot
be controlled as the stone must be used as it comes, irrespective of whether
it is hard or soft. The amount of stone fines arriving at the kiln depends
on the efficiency of the initial screening and the hardness of the stone.
The stone hardness is uncontrollable and the screening is in general as
efficient as could be hoped for in practice so that there is little
opportunity of making a saving in the dust loss from a consideration of
either of these factors.

The remaining two factors, kiln speed and coal consumption, .can
both be varied and controlled within certain limits. In the case of coal
these limits are governed by certainproduct quality specifications which
must be maintained, i.e. there must be sufficient heat to drive off the
carbon dioxide whilst at the same time there must not be too much heat or
els¢ the slakeability of the dolime would fall outside the specification.
It was seen that over the test period the whole range of coal consumption,
for which these physical properties were maintained, was actually covered.
Bearing in mind that 1 rev./min. of the coal worms is equivalent to a coal

consumption of O.7 lb/min., it can be shown from a consideration of the
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regression equation (3) that 1% of the feed can be saved, other factors
remaining constant, for an increase in coal consumption of 4.7 1bs/min,
The average feed rate to the kiln is about 20 tons/hour so that broadly
speaking 4 cwt. of dolomite could be saved by using an extra 2% cwt. of
coal. Now the market Iirice of dolomite is about 11 shillings per ton
whereas for coal it is £5 per ton, so that an expenditure of an extra £5
for coal would result in a saving of approximately 17 shillingsworth of
dolomite. It would therefore be inadvisable to put on e:_c.tra coal in order
to decrease the dust loss from the kiln and instead the minimum amount
of coal, for which the target figures for carbon dioxide content and
slakeability would s8till be maintained, should be used.

The indication of the analysis ié that the kiln speed should be
slowed down to reduce the amount of dust loss from the kiln, but here
again there is a limit to how far the speed can be reduced. The minimum
kiln speed is determined by the amount of material the kiln will pass and
still maintain the set production figure. However it seems likely that a
saving can be made here as it does not appear that the kiln speed has

hitherto been governed very exactly.
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CHAPTER 5.

THE ESTIMATICON OF MISSING OBSERVATIONS.

In the course of carrying out experiments which are to be
analysed statistically, complications oftey; arise when some of the
observations are "missing", The most common difficulty is when one or
more of the experimental units are accidently lost, but the situation:
also occurs in which the validity of some observation(s) is- suspect due to
some disturbing outside factor. This latter problem arose in connection
with the investigation of the rotary kiln st Hartlepool, (see Chapter 2),
where the last three recordings were to be distrusted to some extent due
to the large time lag which existed between them and the rest of the
experiment. Consideration was giﬁen to omitting these values and deriving
the appropriate least squares estimates for them in order to retain the
balance of the design and thus make the computation easy. During this
work a technique was developed for estimating a missing value, in two lgvei-
factorial experiments, which, although not very original in principle, ﬁas
" the distinction of being as quick, or quicker than the already established
methods. Before explaining this method it is proposed to review some of

the present means of dealing with this problem of miSSiing data.

There is olvo e case where an obssrvalion Moy be MSQ('YQ,G\ bacause ¥ fals

oufside teasonable Umirs and TWis leads % problems of Funcakion. This sifuatien
IS not oy relevant Yo TRe work which follows , which is cazembioMy on Mme¥Rodo

of @vmrina N'u'b&\'ns da¥Yq .
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5.1.  HISTORICAL

In the statistical analysis of any experiment a mathematical
model is postulated from which it is possible to derive the least squares
normal equations, which, when the experiment is complete, allow the
appropriate tests of significance to be carried out very simply. When
certain of the observations are missing, the orthogonality or symmetry
of the design is disrupted and the correct procedure is to write dovn the
mathematicél model for all the observations that are present and then .
construct the least squares normal equations, which are now more difficult"
to solve. This is in fact the method of fitting constants as explained
by Yates (20). Complications arise in the analysis of varisnce due to
the effect of the various factors becoming entangled so that for a
Randomized Block experiment, for example, the treatments sum of squares
would have to be computed after allowing for block effects. This method,
sometimes referred to as the "correct least squares procedure", would prove
a troublesome task to many experimenters, who, although quite competent
in the analysis of a complete set of data, may find difficulty when faced
with an unbalanced design.

Before any methods for desling with incomplete data were developed,
the occurrence of a missing observation or a ruined plot in an experiment
usually meant that the column, row or treatment containing the missing
unit had to be totally omitted in order that the experiment could be

analysed. This was a very wasteful course of action as much valuable

information was sacrificed. The problem of extracting the maximum amount
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of information from the available data was first tackled by Allen and

Wishart (21) for the case of a single missing plot occurring in a

Randomized Block experiment or a Liatin Square arrangement. Their method

was to "apply the linear law which is the foundation of the analysis of
variance procedure" to derive an estimate, this being the well-known
technique of fitting constants. Xor example, in a Randomized Block experiment

the linear law states that Y = b, + tq, where Y is the supﬁbsed true

|3
deviation from the mean yield of the plot having treatment q in block p.
They proposed setting up the model Y = bP + tq + k where k is a constant
throughout, and put b = 0 end t = 0 for the plot which was absent. This
meens that k is actually the estimated value of the missing unit. The
constants, in particular k, are determined by minimising (y—bp-tq —k)2{
which is of course minimising the residual sum of squares, A proviso
in the final analysis of variance table is that the number of degrees of
freedom for total and error is decreased by one due to fitting the value k.
Much of the basic theory for dealing with missing data has been
derived .by Yates (22) who, following a suggestion by R.A. Fisher, proved
rigorously that a simple solution could be effected by minimising the
error variance obtained when fictitious values were substituted for the
missing yields. For the case of a single missing observation for which

the value x is substituted, calculation of the analysis of variance leads

to an expression for the error sum of squares of the form

sz + &Bx + C,
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where A,B,C are constants determined by the type of design and the values
of the observations, and A is always positive., The value of x for which
" this expression is a minimum, is easily seen to be x = - B/A. When
several values are absent, substitution of the algebraic symbols x,y,z, ...
lead to a set of simultaneous equations the solutions of which are the best
linear estimates of the missing experimental units. Mor the particular
cases of Randomized Block experiments and Latin Square arrangements Yates
showed that simple formulae existed from which the value of x could be
evaluated without going through the whole process of calculating the residual
sum of squares.
The formulae given by Yates for estimating the value of a single
missing unit in a Latin Square experiment is :-
x=r(R+C+1T) -2

(r=1)(r-2)

where R,C,T are respectively the totals of the rows, column and treatment
containing the m;ssing value and G is the grand total. This formula
agrees with that derived by Allen and Wishart except that an error in sign
had been made in the latters' derivation,

Yates suggested that it would be convenient for the case in which
several observations are absent to use repeated applications of the formula
for a single missing value and to substitute approximate values f;r the
remaining missing data., This is solving the simultaneous equations by
the Gauss-Seidel iterative procedure. The analysis is then performed in

the usual way, using the fictikious estimates, and the number of missing
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observations is then subtracted from the total and the residual degrees
of freedom. »

He showed that when the above technique was adopted, the treatment
sum of squares is always over-estimated but may be corrected by subtracting
the bias. He gives a generalized formula for the bias in a Randomized
Block experiment and for the bias in a Latin Square when a single plot
is absent, but in practice this bias is usually small enough to be neglected.
He also gives formulae dealing with the variance of treatment means with
missing units.

In two later articles Yates (23)., (24) describes methods for
dealing with Latin Squares in which one or more treatments, rows or columns
are missing; the principle of these methods being that of fitting by
constants. In the first of these two papers he deals with the case of one
missing row, column or treatment and he showed how the normal equations
could be made orthogonal without any difficulty. PFor example, when one
row is missing, row effects are orthogonal to column and treatment effects,
while the normal equations for the ci's and ti's, where ¢ and t represent
column and treatment constants respectively, fall into pairs end can thus
be solved easily. He showed that incomplete latin squares of this type
give rise to unbiased estimates of error and are therefore valid experiment
designs. Youden later generalised the situation to éne in which several
rows (or columns) are absent and thus gave rise to what are now known as
Youden Squares. For the case when several treatments are missing, the

normal least squares equations are such that the rows and columns are no
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longer orthogonal.

A method of estimating missing values, which is theoretically
identical with that of Yates, was introduced by Bartlett (25) in which
an analysis of covariance is carried out on a number of pseudo-variates,

Xys Xpeeee, each of which takes the value unity for one of the missing
units and zero for the remeining units. The estimates of the missing values
are then given by the appropriate regression coefficient. For example,

in an experiment in which a simgle plot is absent let a be substituted

for the missing observation as a first approiimation. From the analysis

of covariance table tﬁe regression coefficient, b, of y on x, is calculated
from the error sum of squares and the sum?groducts. The value which
minimises the error variance is then given by (a-b).

Anderson (26) developed a formuias for missing observations in
split-plot experiments b& minimising the error variance. He used an analysis
of covariance to derive his formula, which, also facilitated the estimation
of the bias in the treatment sums of squares., Consider a split-plot
experiment with % whole plot treatments, $> sub-plot treatments and r
replications, Suppose that the result for a single sub-unit is absent and
this sub-unit receives the treatment combination (ajby) in the Kth replication.
Let (Ai) and (Bj) be the total yield of all existing units with treatments,
(ai) and (bj) respectively, and let (Aiﬁj) be the total of all sub-units
with the treatment combination (.aibj). Let (RkAi) be the sum of the

remaining observations in the xth replicate which receive the treatment aj.

Let the pseudo-variate, x = -1 and y = 0 for the missing value
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and let x = 0 and y be the actual yield for the existing units. Then
the best estimate, which minimises the sub-plot error, is simply the
regression coefficient of y on x, which is equal to

ro(RA;) + ((aB)) - A,

(r=1) (} -1)

This is of course identical in principle to Bartlett's general
technique and is a special case when the value zero is substituted for
the missing datum, in the initial analysis.

For the case when a whole-plot is absent, Anderson fecOmnends
that the analysis be made on a Randomized Block basis using the same
missing-plot formula, and he also draws attention to the fact that the
analysis of the sub-plots is unaffected in this instance.

The question of incomplete data in confounded factorial designs
has been investigated by Cochran= (27). For the case of 2™ ang Bm factorial
designs in which one or more effects are completely confounded, and the
same design is repeated in all replications, the préblem is essentially
the same as for Randomized Blocks and is therefore relatively simple.
When the confounding is only partial, however the situation becomes much
more complex. Cochrans has developed a formula which is valid when a
diff'erent arrangement of the plan is used for each replication of the
experiment and when no treatment comparison is confounded more than once.

In this latter case the estimate of the missing yield is given by

¥ = ket(r-1) T + tr{r-1) B + KG ¥V - kR - t(r-1) U - tr. Sb,

(r-1){ t(r-1)(k-1) - (t-k)j
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where 1T = total yield of all other units having the same treatments as

the missing unit.

B = total yield of all other units in the same block as the missing
wmit,
R = sum of all existing yields in the same replication as the

missing unit
Sb = sum of all the blocks which contain the same treatmentsas the

missing unit in the other replications.

G = total of all existing yields in the experiment.

U = sum of the observations for all other treatments which appear
in the same block as the missing treatment unit.

V = sum of the observations for all other treatments which appear
in the same block as the missing treatment unit in the other

- replications.
Yt = number of treatments.
r = number of replications.
k = number of units per block.

In experiments in which the partial confounding is unbalanced and
in single replications of 2™ and 3™ factorial designs, Cochrane
recommends the application of the general methods of Yates (22).

Methods of dealing with the various incomplete block experiments,
when some results are absent, have been developed by Cornish and these with
the exception of two specisl cases are rather complex. These particular

instances arise (2) when the incomplete blocks are ineffective so that
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the analysis reduces to one of the randomized blocks, or, (b§ when the
variation between blocks is so large that the intewx-block information is
negligible, In this latter case the correct procedure is to minimise the
intra-block error variance.

Cornish has developed formulae for a single missing value in
incomplete randomized blocks (28), and in square lattices, cubic lattices
and lattice squares (29). 1In every case minimising the intra-block mean
square was the criterion for estimating the absent datum, but, wiﬁh the
exception of the first-mentioned design, the formulae are necessarily
complicated. In two subsequent papers (30), (31), he investigates the
problem of missing sets of data, i.e. a whole block or a treatment, in
balanced incomplete blocks and lattice squares. Again he minimises the.
intra-block variation and the method of deriving the appropriate estimates
is that of fitting by constants. In his last two papers, (32), Cornish
deals with lattice séuare experiments in which the inter-block information
is also used to assess the error variance but here the situation becomes
very complex indeed.

It has been shown that in general two estimates are required
for the missing plot, and correspondingly two analyses of variance; one
to obtain the correct inter-block error mean square, and one to get the
intra-block estimate of error. In order to reduce the labour involved in
using this involved procedure it has been decided to calculate the intra-

block estimate only. This has been shown to serve the purpose quite well




- 127 -

and does not bring in the bias that could possibly be introduced by the
other estimate. The worst possible situation which could arise would be
when the blocks are ineffective, and the problem is thus one of randomized
blocks.

With the introduction of automatic computers, new ways of dealing
with incomplete results had to be devised. The techniques already
described are not particularly suitable to these modern machines as they
involve algebra rather than arithmetic, or else they would require a
different programme for every design, so that too much time and effort
would be expended on a small proportion of the data unless the procedure
for dealing with missing observations is standardised.

In a paper by Tocher (33), the idea was put forward of considering
the difficult experimental designs in matrix notation, this system being
particularly adept when the analysis is performed on an automatic
computer. It also faci;itates the estimation of missing data as only a
slight extension of the basic programme is needed. The general method of
attack is to substitute zero values for the missing observations and to
estimate the corresponding expected values from an application of the
basic programme. These estimates are then "corrected" by a matrix factor,
which naturally depends upbn the experimental design, and the experiment
finally analysed with the corrected values substituted for the missing data,
When only one result is absent the multiplying matrix reduces to a scalar
and Tocher suggests it may be quicker when several plots are missing to
apply the procedure for a single missing observation repeatedly. This

technique is equivalent to deriving and solving the simultaneous equations
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obtained when the residual variances is minimised.

A general missing plot formula was proposed by Hartley ( 34)
for the case of a single missing value. Three values 8,584 and 85 unity
apart, are substituted in turn for the absent result and the cﬁrresPonding
error sums of squares, Qo, Q1, Qz derived from the basic programme.

The best linear estimate is theh given by
_‘ a=a, +(Q,) / 29~ 2,+Q,)
which is the value at which the parabola through the three points (ao,QO),
(q1,Q1) and (ag,Qz) attains its minimum value. For several missing plots
the customary iterative procedure is recommended. This method is fairiy
satisfactory for one absent result but for several missing units it will
be inefficient as three applications of the basic programme are necessary
for each missing.value in every cycle of iteration.

Healy and Westmacott ( 35), put forward another technique for use
on automatic computers. This is based on the fact tﬂat the supplied items
are their own expected values derived from the least squares estimates
of the block, treatment, etc., constants, so that the residuals for these
wnits are zero., In their use of electronic computers it has been common
practice for them to evaluate the residual for each plot as a comprehensive

check on their calculations. When missing data occur therefore, guessed

values are inserted from which the corresponding residuals are subtracted

to give more accurate estimates of the absent data. The process is then
repeated until the residuals for the ficticious values are zero. This
technique is only a little slower than Hartley's for.a single missing value,

and considerably quicker when more of the data is missing.
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502, MISSING DATA IN TWO-LEVEL FACTORTAL DESIGNS.

It can be seen from the previous section that there are several
methods for estimating missing observations. For many experimental
designs formulae have been derived for use when a single result is
missing but, rather surprisingly, no such formulae exist for Factorial
designs. The problem of missing data arose in this instance in a

single replication of a 2“

Factorial experiment. The method commonly
"used in such a case, see Quenouille (36), is one in which a guessed
value is substituted and a better estimate derived from the basic model,
This new estimate is then used as a better approximation, and the process
repeated until the estimates attain steady values.

This iterative procedure can be laborious in practice and
another method is described in this sediony which is similar to that of
Tocher (33), but which was derived independently. This method is used
to obtain a formula for estimating a single missing result in a two-level

Factorial experiment, and is then extended to all complete balanced .

block designs to give an slternative method of deriving known formulae.

SINGLE MISSING RESULT IN A TWO-LEVEL FACTORIAL EXPERIMENT.

Consider a two level Factorial experiment in which there are
N trials and suppose it is required to estimate L( <N) constants,
corresponding to the mean, main effects, and interactions. The (NxL)
design matrix, X, will consist of L mutually orthogonal column vectors,

each element of the first column being unity end the elements of the
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remaining columns being + 1. If Y is the (N x 1) vector of observed
responses then the least squares estimate of the vector of predicted

responses is given by

T = x(xx) "y —— (1)

But X'X = NI, where I is the unit matrix, so that equation (1) reduces to

<
n

1/N.  XX'Y

1i/N. TY, say. ———(2)

The diagpnal elements of the matrix T are the sums of squeres
of the elements in the rows of X and are clearly all equal to L. If
§p is the guessed value for the missing observation-in the pth trial

and §p is the expected value, it follows that

o = yp + C, N (3)

L
N
where C is a constant depending on the experimental design and the

observed responses, The least squares estimate of the missing result, y,

is its own expected value, so that we have

y=Ly+¢C
N
icee y=N. C -—em= (k)
N-L

But C is the expected response when zero is substituted for

the missing result. Hence the best estimate of the missing value can
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be found by substituting zero for the missing datum and multiplying
the expected response by N/N-L, thus dispensing with the need f&r
successive approximations.

This result applies to the fractional factorial designs and
to the multifactorial designs of Plackett and Burman, as well as the

complete factorials.

Following from this, it is possible to find a second formula
for estimating the missing result in two cycles of iteration. If y,
is the expected response when Yo, is the initiel guessed value for the

missing observation, we have from equation (3),

y1 =L yo+¢C —==== (5)
N

Similarly, if y4 is then substituted the expected value, y, , is
given by

yp=L yy+C e (6)
N

¥Eliminating C, L and N from equations (4), (5) and (6) we have

y = Yo¥2 - ¥42 e (7
Yo =2¥y1 + ¥2

which is the same answer as that given by applying the exponential

extrapolation formula to the three points Yyo Yp and Yoo




- 132 -

EXTENSION TO THE BALANCED COMFLETE BLOCK DESIGNS.

The method of estimating missing data described above can
be ex tended to the balanced complete block designs as an alternative
general method of deriving known formulae. It is shown below how a
single missing result can be estimated by substituting zero and multiplying
the expected response by a constant depending on the dimensions of the |
design.

Consider an experiment of N trials designed to estimate L(‘-N)
constants and suppose {he result of oneaof the trials is missing. Let
there be r independent groupings, corresponding to treatments and
'blocks’, and lgt there be (ni-1) independent constants to estimate
in the i®h grouping. Since the r groupings are independent this implies
that K/ni is an integer and

1+ Z (ni-1) =1L e '(a)
i _

efter allowing for the estimation of the mean,
~ Consider the (nj X nj) orthogonal matrix, Sj, with the elements
of the first column all equal to unitq such that
S8 =8'S =n3.I, 00 a=—-- (9)
where I is the unit matrix, The (n; x W;-1) matrix, B , comprising
the last n;-1 colums of Si can be used to accommodate the (ni=1)

constants in the ith groupe The (N x L) orthogonel design matrix, X,
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"can then be defined as
-= ‘= |
X = 1.6 ‘e, e, ' —=e—= (10)
= 1 1 1 | 2| sy i| co o) -
| , i f ,
where 1 is an (N x 1) vector with each element unity, and G; is an

(N x T=T) matrix in which each row of P; is repeated N/n; times.

Since S54'Sj = nj.lI

i '][:tin

where 4 is an (n; x 1) vector with all elements equal to mits, it

follows that _
RPi' Py = njl -—=== (12)

Any column in G; is orthogonal to any other colum in G,,
and as the groupings are independent it follows that any column in Gj

is orthogonal to any column in Gj' We have, therefore,

N ! o .0
0 | G4'Gq i 0
XX = ‘ T S 3% Q— (13)
| : |
[ I i
___I—_——:—___+___

i

0 i i ’Gr'GrJ
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Hence,

= x(x'x) " Mxy

>
]

1/N. XX'Y — (14)

By definition, S;S;' = n;I, from which it follov-vs that the
sum of squares of the elements in any row in Pj, and consequently G;,
is equal to (nj-1). The diagonal terms of XX' are thus clearly all
eéual to 1 + &(n -1) = L. R

If -the observation in the pth trial is missing and yp, 'y‘p

are the guessed and expected values respectively, then
A
yp=WNy,+Cc = - (15)

where C is a constant depending on the experimental design and the
observed responses. As with the two-level factorial designs, the least
squares estimate of the missing result is found by substituting zero

and multiplying the expected response by N/N-L.

As an example consider a split plot experiment in which there
are r replications of o whole plots, each of which contains Gsub-
units. Let the treatment combination of the jth sub-plot in the ith

whole plot in the Kt

replication be missing and substitute zero for
it. It is intended to derive an estimate for the missing datum such
that the sub-plot error variance is minimised.

Let G- = sum of all existing umits

"Ai = sum of all units receiving treatment ai
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By = sum of all units receiving treatment by
AjBj= total of all sub-units with treatment combination ajbj
R = total of remaining units in the kth replicate
RAj=  sum of all units in kth replicate which receive treatment aj
The response, when zero is substituted for the missing
experimental unit, is given by
G gg_jf_'Gg'(A,-ijﬂ-1_33+G;(_R_k,-s
= - + — —— + — — —
1 alr rd  afpr * (a® ofr

(r rf ra &%r

r(RAs) + (4383 -4  mmeeee- (17)

= f

The correct least squares estimate, y, is given by

y = i, eeee——— (18)

N
N-L
Where N = ot (Sr and (N-L) =u(r-1)(c.> -1), the number of degrees of

freedom in the sub-plot error

y= _albr . r(Rkhi) + (AiBy)-Ai

cl(r-a)((&-;) Qar
re(RiAy) + (AiBy-Ai,  =—e——- (19)
(r=1)(® -1)

which is the formula due to Anderson (26),
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