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ABSTRACT 

The purpoBe of this work is to give some results on the various 
curvature measures on manifolds and also have a brief look at minimal 
Imnersiotts of manifolds i n Siemannian spaces. 

.With regard to the former, the f i r s t chapter d,eals with the i*'^ TAG 

as defined by Chen [ 9 ] , 

In Chapter I I we look at minimal immersions of compact manifolds in 

Riemannian spaces and in particular at pseudo-umbilical immersions the 

term f i r s t introduced by Otsuki. 

The two more familiar curvatures are the scalar curvature, and the mean 

curvature, and in C^iapter I I I we define the a^^ scalar curvature, Finally 

\r& look at submanifolds with constant mean curvature,. 

Lastly, in Chapter IV, a differential equation is derived for "stable 

hypersurfaces". A hypersurfiace i s said to be 'stable' i f , 

B < H , H >"^^ * 1 as 0 for any normal variation of the integral. A 

particvCLar case of this problem, (i. e . for surfaces i n E®) XT&a f i r s t 

considered by Hombu. 

A bibliography follows Chapter IV. 
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SUMMARY 

In the f i r s t chapter we collect results concerning the integrals of 
various curvature measures on manifolds. 

The origin of this theory dates as far back as I929 in a paper du: to 
Fenchel [ l ] . He proved tha,t for a closed space curve of class 

IkldS ^ 271 
C 

where dS is the line element) k, the curvature, and the integral is taken 
over the closed curve. Equality holds only in cases of plane convex 
curves (ovaloids) and conversely. 

Since then Chan [ l ] has generalized this result to closed manifolds 

immersed:in euclidean spaces. 
The 1**^ Total Absolute Curvature was defined by Chen [9] as 

f |Kjpe)|'^SaA dV 

and some results concerning this integral are dealt with i n this chapter. 

The two main curvature measures are the Lipschitz-Killing curvature 
and the mean curvature. The former is defined in terms of the determinant 
of the second fundamental form while the la t t e r is i t s trace. 

We also give a few results vriLth respect to the Intermediary curvature 
measures. However, a l l these curvature measures have not yet been f u l l y 
investigated and much work s t i l l remains to be done. 

Having considered immersions i n euclidean spaces in the second chapter 

vre focus attention on submanifolds immersed in a general riemannian space. 
I t i s well known that there do not exist any closed compact orientable 

minimal (in the sense of vanishing mean curvature )submanifolds i n a 
euclidean space ct H^^res [l]. However, when the ambient space is non-
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euclidean the above statement may no longer be true. In particular we 
look at minimal immersions in spheres (i.e. vrtxen the ambient space has 
constant curvature). 

The term pseudo-umbilical f i r s t introduced by Otsuki is also defined 
and we have a brief look at pseudo-umbilical immerisions. 

Finally we examine minimal immersions of "Clifford manifolds" as 
dealt \dth by Chern, do Carmo and Kobayashi [ l ] . 

The t h i r d chapter is partly a continuation of the f i r s t . We define 
t h e s c a l a r curvature and also introduce the notion of difference 
curvature due to Chen [h]. And lastly we give a few results on immersions 
with constant mean curvature. 

In the last cliapter we concentrate on deriving a differential equation 
which is a necessary and sufficient condition for a submanifold to be 
"stable" i n the case when the ambient space is a general Riemannian. 



1. 

CHAPTER I 

§ 0 . 

Following Chern and Lashof [ l ] we consider x : M" E " * ^ vrtiere 
X is an inmiersion of an n-dimensional compact orientable c"-manifold 
M" in a euclidean space of dimension (n + W). I f x^ is non-singular 
(i . e . the induced map has f u l l rank.) then f is called an immersion 

Further i f x is one-one then x is called an imbedding. 

Let F(M") and F(E"'^^) be the bundles of orthonoimal frames of M" 

and E^"^^. A frame of F(E"'^) consists of a point x(p) together with a 

set of (n + N) mutually perpendicular unit vectors. 

Let B be the subset of M" X F(E""^^^) given by, 

B = {b = (p, x(p).-^,...,e^,.jj) I (p, e^,...,e^) € F(M") 

(x(p)e^,...,e^^.,jj)€ F(E"'"^^) } . 

We define the projection map x : B F(E"^^") by 

x(b) = (x(p)>^3.,...,e ) 

B ' C M"XF(E"-^^^) F(E«"") 

Let B^ be the bundle space of unit normal vectors of X(M") then, 
B̂^ = {(P,U) I P e M", V G KpM at x(p) } . B̂  is the bundle of (N-l)^ 
dimensional spheres over M". For each (p,u) € B̂  the unit normal vector 
u at x(p) can be identified to a vector at the origin of E"*^. We define 

1 2 7JUNI972 



2 . 

the Gauss map 

^ ' \ ^ C""^ C E"^^ by S(p,v) = o(p). 

gn+N-1 ^jjg ^ j j j ^ ^ sphere at the origin of E""*"̂ . According to Chern and 

Lashof [ 1 ] there is on B̂  a differential form do of degree (N-1) whose 

restriction to the fibre i s the voliime element of the sphere of unit 

normal vectors at p e I ^ ^ . We denote the volume element of I ^ * by 6V, 

so that i t is a form of degree n 

then, do A dV i s the volume element of B^ . . 

I f c!£ ta volume element of s j * ^ ~ ^ , since do A dV and dS are differential 

fozns on 6^ of maximal degree, we can conclude that they must differ by 

a constant. 

I f e. and 0 ,_ denote the 1-foims and the connection forms on A AB 

then, dx o LO^. e^ 

^^A'^^AB'h ^AB^ V = °-
We w i l l follow the usual convention for the range of the suffixes, 

i.e* " 1 , 2 , . » . n 

r,s,t ... « (n+l),(n+2) , ... (n+N) 

A,B,C ... « 1,2 ... (n+N). 

Taking the exterior derivative of the tvio above equations and simplifying 

we obtain the Cartan Structural equations 

^'a S^AB'^^B 

'AB = g^AC 'CB • 

Let and co^ l̂ e the induced forms on B 

i.e. 0)̂ . » x*ie^ 

"kB " ^* ̂ AB • 



ta^fO^i .«., oijj i s a dual basis to ê . ..,,e^, a basis of the tangent 
space at p. 

On NP we have, = 0 

therefore doi^ a 0 = Sto^j^ A oj^ 

we can write oj . = - £ A .. oj. 
r i j r i j 3 

^ r i j = - ^ r j i ' 

( i t may be remarked that the A^^j's are the coefficients of the second 

fundamental fbrm. cf. §!• The sign here i s also negative to that 

generally used by Chen.). 

Restricting the forms to Ĵ *, we get, 

dx = e^ 

^ " i = f'U 

therefore doj^^ = gtu^j^ A O^^+^ ̂ £^R i j k i • (\ ^ 

hiia =• - ^ i k ^ j i - " ^ r i i V • 

Now dVjj = OJĵ  A ,., A cô  , 

and dOjj^^ « ^ ^ Vir,n+N-1 

<^n+N-l " V l , l ̂  VK,S'' VN,n+W-l * 

therefore «*dS^+I,_i % + N , 1 % + N , n + N - l 

•;**'^VN,n+H-l 

a Q(P,\)) . dV A da P 



where G(p,v) = ( - i f . det (A^^j^^. j ) 

Q(P>'O) def Lipschitz-Killing curvature. 

Note 1. When M" is a hypersurface of E"^^ Gdjp) = G(p) = Gauss-
Kronecker curvature and when n = 2 and N = 1 G(5p) is just the 
classical Gaussian curvature. 

§1. The i^^ mean Curvature 

For a pair (p,e^) e B^ the f i r s t fundamental form and the second 

fundamental forms, i n the direction e^, of the immersions are given by 

I : dx. dx 

11^ : -dx. de^ . 
r r 

The eigenvalues kj^Cp^e^), kg(p,e^) ... k^(p,ey) of il^ with respect,to I 
are defined to be the principal curvatures of M'̂  at each point p € M*̂  

i n the direction e„ . 
r 

Definition 1 .1 .1 

The i^'^ mean curvature i n the direction e^ denoted by K^(p,e^J is 

given by equating the coefficient of t°, t ^ , t " in the follov/ing 

equation 

where 6 . , is the Kronecker delta 

( i ) ^ i ^ P * ^ ^ " Skjp,e^) ... k.(p,e^) ( 0 ) 

i 3 1}2,••.,n. 
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Note 2 KQ = 1 

Kj^(p*ej.) = TUQ&n curv. of the immersion at p in the direction ê  
K^(p,e^) = Lipschitz-Killing cuiT^ture at (p,e^). 

Definition 1 . 1 . 2 

The integral K * (p) = J" |Kj^(Pje)|'^^ da over the sphere unit 

fibre 
normal vectors at x(p) is called the i*^ TOTAL-ABSOLUTE CURVATURE of the 
immersion x at p. 

f K*(p)dV is defined to be the i^^ TOTAL-ABSOLUTE CURVATURE of M̂  . 
M" 

From (O) i t follows that 

s - s 5 • 

The Ricci tensor and the scalar curvature R are given by. 

We \ri11 denote the length of the mean curvature vector by « i.e. 
a = ||H|| and by S the length of the second fundamental form. 

Then i f we l e t Ŝ  = ^ ^ i j ^ ^ 
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- f «ijki = I ^ i i ^ dk - \ i k A r j i ) ^ 

R = n^o^ - Ŝ  . 

Note 1 . l i ^ (Frenet Frame) 

Let (p, e^, eg ... %*®n+l'***'^n+N^ * local cross section of M" 
i n B and for any e e l e t 

e e e .„ = £ cos 0 . e (p) where ,2 cos^0^ = 1. n+N r r r y r 

r i j i-i-j I local-cross section 

then ( 2 ) 
( 2 ) ' ^ ^ ' ^ •= ( * r i i - A ^ j ) • 

From ( 1 ) and ( 2 ) i t follows that 

Choosing a suitable cross-section of B F(l^^) xre can write, 

^̂ '̂̂  V N ^ = f V n «°̂ ®̂r • ^ ̂  > ^ • 

Such a cross-section is called the PRENET CROSS-SECTION and the frame 

(p, x(p)ej_,...,e^,e^^j,...,e^^jj ) the PRENET FRAME. 

, a = 1 ,2 , ...,N is called the o*^ curvature of the second kind (later the 

o scalar curvature). 



Also, H = ( " ) K i ( p , e ) = K^(p, E cos e^. e^ ). 

= Z cos e^. K^(p, e^ ). 

= E COB e . Ji„ „ i» r r-n 

, a a 1 ,2 , .,.,N is called the a*^ curvature of the f i r s t kind. 

Henceforuard we shall denote 

the Lipschitz-Killing curvature by L-K curv. 
Gauss-Kronecker curvature by G-K curv. 
Total Absolute curvature by TAC. 

The volume element of an n-dimensional unit sphere w i l l be denoted by 

and i s given by 

c B ' (cf. Flanders [ l l ) . 
" r ( ( n + l ) / 2 ) 

§2. Some general results concerning the value of the integral of the i^^ 

TAC of M. 

Lemma 1 . 2 . 1 (cf. Hardy, Littlewood, Polya [ l ] ) 

Let a^f,,of&^ be a set of n-non negative numbers and = i*'^ 
elementary symmetric function of â .̂..., a^ . 

then (M^)" ̂  ( I ^ ) " / ^ Mn ( l ) 

and equality at any stage^ss^ â^ « a^ = ... = a • ( 2 ) 

Proof 
Using Newton's inequality on elementazy symmetric functions 
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viz: ^PVS^VI^ P = 0,1,2,... >(n-2) 

and employing i t successively -are get ( l ) and (2) follows quite straight­

forwardly. 

Lcamna 1.2.2. 

Let ( f j j ) ( e ) be symmetric (n X n) matrix valued function on the unit 

(N-1) sphere i n E"̂  given by 

(f.^)(e) - Seose^.A^^ 

where A . . e 3R and I coŝ Q = 1 . 
r l j r 

e = ^ cos Sy»ej^ and e^ a ( 6 , . 6 . , l y 0,(».,,0). 

I f (fj^j)(e) has the same eigenvalues at every point on a non-empty 

open set U of Ŝ'"'' then i t has the same eigenvalues at every point of 
gN-1 
^0 • 

Proof 
Let U ts { p e Ŝ ~̂  | same eigenvalues} 

u =. {p e S^'M kjp^e) = kj(p,e) V i and d} , 

Now U i s open by hypothesis (1) 
Claim: U i s closed. 

Consider k^, k^ : U H i 4 3* k^ and k^ are continuous 

functions. Define h : U -» ]R X E by h(p) = (k^(p), k^(p) ). 

Let : IR XIR -* B. be given by itj^(a,b) = a 

and iTg : IB X 3R m be given by T^(a,b) P b, 

then,. Tt^oh = kj^ 

Ttg o h a k j . 



h is continuous because and TJ^ are continuous . Let 
Z = {(k.(p), k.(p)) e H X ]R|k.(p) = k^(p)} 

then, » ̂  
h-^(Z) = {p G sJ"M.ki(p) = k^.(p)} = U. 

Z is closed 

U is closed. 

Frop (1) and (2) U must be a l l of gN-l 

Result follows. 

9. 

(2) 

Lemma 1.2.^ 

Let X : M" -* E""*'̂  be as before. I f M" is tota l l y umbilical in 

E"̂ ^̂ . Then M" is immersed as a hypersphere i n an (n+l)-dimensional 

linear subspace of E""̂ ^ (n > l ) . 

Proof 
Let U » {p 6 M" I H(p) ^0} 

Since therfe does not exist any closed minimal submanifolds in a eaclidean 

space U 
,', <H,H 

Let 

then. 

> exists on U and' is non-sero. 
H 

"•n+l 

^sid = ' CD 

s = (n+2),...,(n+N) i , j = l,2,...,n. 

CO. = 0 is 
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0 a dco^^ = %nn''Vl,s 

=̂  Vl,s = ° 

% n n = " ' " i 

% n + l ='>id '^^j,n+l • 

also dojĵ  ^^j^ = da A 0)̂  -• o.dco^ 

s do A COĵ  - 0 . OJ^j ^ 

do A ojĵ  = 0 • 

o i s constant. 

The linear span of {e^^g, independent of p. and therefore 

M"̂  i s immersed as a t o t a l l y umbilical submanifold in the (n+l)-dimensional 
linear space of E*̂"*"̂  spanned by ê ,̂ e^ and the mean curvature vector. 

.*. M" is immersed as a tiypersphere i n this (n+l)-dimensional 

linear, subspace. 

Lemma ,1>2.̂  

Consider x s M̂  Ê"*'̂. 

I f B^ the normal bundle is the union of U and V such that 

U = {(p,e) e B^|k^(p,e) = ... « k^(p,e) o} 

V a B^ - U and K^(p,e) = 0 everywhere on V 
for fixed i = 1,2...(n-l). 

then, 

Tc : U M is surjective 

it(p,e) = p. 
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A proof of the above lemsia can be found i n Chen [9]* 

Theorem l«g«5 

Then, 
jT (p)dV ^ VN-1 ^ = 

where ^j^+jj.^ i s the voltime element of unit (n+N-l) sphere, . 

Proof 
As before u : -» s""̂ "̂"̂  . 

For a fixed unit vector e = e^^^ e 8°^^"^ e.x(p) i s continuous on M and 

i ' , has at least one maximum and one minimum (because M is closed), say 

at p and q respectively. 

»' • A ^„ ,. is negative definite and positive definite at these n+w^ij 
points. 

Let U* =.{(p,e) e B^|kj^(p,e), k^(p,e) are either a l l >0 or a l l <o}. 

By the (Jauss map ' is covered twice and since, 

J" |K^(p*e)|dg A dV « vol. of im(U*). 

.*. we have, 
/ |K„(P,e)|daAdV > £Vu.i . 

but, by lemma 1.2.1 |K^(p,e)I"''^ > |K^(p,e)l on U* . 

/ . f |K^(p,e)|"/^ dcJ AdV ^ f K^(p,e)|'^^ da AdV 
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^ r |K̂ (p,e)|da A av . 

Theorem 1«2«6 

Under the same hypothesis as Theorem 1.2,5 i f / K*(p)dV = 2 c ^ ^ j j _ j , 

then W is. imbedded as 

( i ) a hypersphere i n an (n+i) dimensional linear subspace of E*̂ *̂  i f 
i < n and conversely > 

( i i ) as a convex hypersurface i n an (n+l) dimensional subspace of E°*^ 

i f i a n.arid conversely. 

Proof 
For i B n see Corollory 1.2,8, 

Assume i 4 n» 

Let U* be as in Theorem 1.2,5 

then, |Kjp,e)|" = |K^(p,e)| on U* 

and K^(p»e) = 0 on - U*. 

Let U a {(p,e) e B^Ikj^Cp^e) « ... = k^(p,e) ̂  o} . 

In particular Kj^(p>e) = 0 o n B - U i n l,2;,,,,n-l, 
.*, By lemma 1.2.** n : U M i s surjective 

for every p e M 3 non-empty open subset of the fibre Ŝ ~̂  
of B^ such that a l l the principal curvatures are equal. 
This exists and by lemma 1,2.3 (since the principal curvatures are equal on 
a non-empty subset) the principal curvatures are equal at a l l points onM?̂ , 
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Hence M is immersed as a hypersphere i n an (n+l)-dimensional linear sub-
,n+N space of E 

and hence / K?(p)dV = ^^n+N-l * 

Conversely, i f M° i s imbedded as a hypersphere i n an (n+i)-dimensional 
Tl+W 

linear subspace of E then a l l the principal curvatures are equal and 

the result follows immediately. 
CoroUaiy l.g.T 

The case for i = 1 has also been proved by Willnore [2]. 

Corollary 1.2,8 

Theorems 1.2,5 and 1.2.6 are well known theorems of Penchel, Chem 

and Lashof [1] i n the case when i = n. In fact Chern and Lashof [2] 

have further shown that 
n 

T |K^(p,e)|da AdV 5 c ^ ^ j j _ j . ^ P̂ CM) 
B i = l 
15 

where S P̂ CM) is the sum of Betti numbers of M. 

Corollary 1,2.9 

Under the same hypothesis i f / (p)d7 < 3Cjj+jj_j^ then, 

is homeomorphie to an n-dimensional sphere. For i = n, the same 

result has been proved by Chern and Lashof [ l ] . 

I t w i l l be seen later that the value of the integrals can be improved 

i n some cases particularly with restrictions on the scalar ciirvature of the 

Immersed manifold. 



In a series of papers on TAG Chen [1,6,?] generalizes the L-K Curv, 
to manifolds In a simply connected Riemannian manifold with non-^positive 
sectional curvature. He proves various results for TAG of manifolds 
immersed i n a general Rieraannian manifold concentrating largely on 
surfaces i n real space foima. A Riemannian manifold of constant curvature 
is said to be e l l i p t i c , hyperbolic or f l a t (locally Euclidean) according 
as the sectional curvature is positive, negative or zero - such spaces are 
called space forais* 

In the last paper of the series he deals with the TAG of bounded and 

cornered manifolds and also finds a relationship between the TAG of to t a l l y 

geodesic manifolds in a non-trivial riemannian space, , Attached cornered 

and product cornered manifolds are also considered from the point of view 

of obtaining some res^^lts for TAG. 

He f i n a l l y looks at Kfihler manifolds and shows that under certain 

conditions there exists some relation betxireen TAG, the Rieraannian curvature 

and the second fundamental form. 

Prior to Chen's work, Saleemi and Willmore [ l ] had generalized the . 

concept of TAG to manifolds in an arbitrary Riemannian space and i n the 

particular case when the ambient space was euclldean I t reduced to the result 

of Chern and Lashof [1], 

Theorem 1,2,10 

X : M" -» E"̂"*"̂  as before. 

Then, 

r < H,H >"'^ dV ^ e , 

wliere H is the mean curvature vector of Immersion, 
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Equality holds i f f is imbedded as an n-dimensional hypersphere in 
(n+l) dimensional linear subspace of E"̂ .̂ 

Proof. 

Choose a frenet frame (p, x(p), ê ,̂ e^, e^^+j* ••o, e^^jj ) i n B 

such that e^^j is parallel to the mean curvature vector. 

Then. f ^ s i i " 0 s = (n+2),...,(n+N), 

By the choice of frame we also have. 

n+N r r 

0 
» • 0 

= cos e^^j |H(P)|. 

/ |Ki(P,Vw^l" '^^''•^ = / °°^"Vl |H(p)rdaAdV, 

n+N-l ; iTT/'—II" / |H(p)|" 
*n l l " 

Substituting the value i n r.h.s, from theorem 1.2.5 vre get after 

simplifying 
r <H(p),H(p) >^dV > 

( / QOS 
^ > 1 

2c 
0 
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Proposition 1.2.11 

Under the same hypothesis as the last theorem and further i f n is 
even and the mean curvature normal vector does not vanish in .any direction, 
then, 

Bfflality holds i f f is embedded as a sphere in E . 

Proof. 
From Ghern and Lashof [2] we have, 

f |K^(p,e)|d(y AdV > (f )- VN-1 • 

Rewriting, we get, 

|'K„(p,e)do A dV - |'lC^(p,e)da A dV 5» (£ P̂ ) ( l ) 

where, 

U a {(p,e) e B^|Kj^(p,e) ̂  O} 

V a {(p,e) e B^|Kj^(p,e) < 0} . 

Also from Gauss-Bonnet theorem, we have. 

K^(p,e)da A av = X(M) o^^^^^ 

loe, 
^Kjp,e)d«; A d7 + IK^(p,e)da A dV = S(-l ) ^ P^M) c^^^_^ (2) 

,'. from (1) and (2) 

/'K^(p,e)do A av ^ (2 Pgĵ ) c ^ ^ j j _ j , (3) 



17-

Choose a frenet frame i n B^ . 

Then, e =, e^^.jj = S cos 0^. e^ , 

K^(p,e) - K^(P, Scos 0^0 e^ ) 

= S cos 9^.K^(p,ej. ) 
r 
N 

• I 

where, Hj,(p) = \(Vf 

= ('^n+«,l-^--^Va,nJVa ^5) 

0 •« Kjp,e) = (Vl,l-^-'-'Vl,n^°°^ V l - V l ^ 

(VN,1 VN,n^°°^ W n̂+N ' 

< K^(p,e), Kjp,e) > ^ ( V l , l V l , n ^ ^ '^^^''Vl - * 

/. < Kjp,e), K^(p,e) >°/2 = ^(^1,1 Vl,n)^°°^^ V ^ 

+ ... 

^{(k^^l^l+,..-Hk^^l^/cos°0^,l + ,.. 

+ ... 

(using lesnma lo2«l). 
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> {(k^,.^^^... k̂ ,̂ „̂)cos'̂ 0̂ ĵ + ,.. 

(VN,1 - VN,n>°°^\+N^ ..0 + 

(using the hypothesis that, the mean 

curvatiire normal does not vanish in any 

direction). 

= K^(p*e). 

r< K^(p,e),Kj^(p,e) >^ha A dV > < K^(p,e),K^(p,e) >"/^dff A d7 

^ y K^(p,e)do A dV 
U 

Proiri (h) we have. 

J< K3^(p,e),Kj^(p,e) >"^^dff A = ̂  (̂ S Hp cos 9^ COB 9^)^'^da A dV. 

On Integrating over the fiber the Integral vanishes tAien a ̂  

.*• we consider only cases for 'which o = p. 

I"< K3^(p,e),K3^(p,e) >^ha A dV = J" (HJ COS"9^ coB"0ĵ ,)daA d7 

n+N' 2 : i f (2|i;)av 

f < Kjp,e),Kjp,e) >"/2daAdV = /̂ ^ < H,H (?) 
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Prom (6) and (?) we get, 

2 
/ , < , . H > ^ ^ . . c „ ( l J i ) . 

§5, More results concerning the Integral of the length of this mean 

curvature vector 

One very important and striking result of surface theory i s the Gauss? 

Bonnet theorem which states that: In a simply connected region A bounded 

by a closed curve C coiiiposed of n smooth arcs with exterior angles 

0,.....0 at the vertices 

J + dA = 27t ̂  
i = i 

xvhere i s the geDdesic curvature of the arcs and K the Gauss curvature of 

the surface, j^j"K dA was f i r s t Introduced as the 'curvature Integra' by 

Gauss, but is better known as the t o t a l curvature, 

Rewiting the Gauss Bonnet theorem i n more familiar notation we. know 

that, 

^ r K dS = X(m2) (1) 
if . 

where X(M^) i s the Euler characteristic of M̂ , 

I t i s the topological invariance of the result that makes i t so remarkable, 

Kuiper [2] has provod that 

IkldS. ^ 2 + 2g (2) 

In view of these two results i t seems natural to examine 
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( f ) = 55i / < M > ^ (3) H 
• ' c:7i 

M' 
and to seek a result analogous to the above results. Unlike the Gaussian 
curvature the mean curvature i s not intrinsic, therefore (5) is not an 
Invariant cf. Willmore [ l ] . To overcome this WllLmore considered 

H^2) = i n f H(f) 
f e# 

where the Infimum is taken over the space of a l l (f* immersions of 1^ i n a 

. eudidean space. In [1,2,3] he proved, 

Theorem 1.^.1 
i f :c : 1^ -» E^ is an Immersion of an oriented compact surface into 

a three-dimensional euclidean space, then, the mean curvature vector H(p) 

satisfies 
< H,H > dV > l*Ti , . (k) 

Equality holds i f f 1^ is embedded as a euclldean sphere. 
Thus for surfaces of genus zero H(M^) ^ X(M^). 

Theorem 1»3«2 
Consider now = S' X S' embedded as an anchor ring with radii of 

the generating circles a and b, then, 

r < H,H > dV ^ 271? , (5) 
T̂  

Equality holds i f f a/b = >^. 

T(a,b) o (a + b cos u)cos v, (a + b cos u)sin v, b sin u 0 < u < 27i 
0 ^ V < 2n . 

He also conjectured that (5) was valid for any torus* Hore recently in 

[U] he proved, 
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Theorem̂  W^»3 

X : -» Ê  is such that x{M'') is generated by carrying a small 

circ l e , i n the normal plane to the curve at each point then, again (5) is 

true and equality holds under the same conditions with regard to the ratio 

of the r a d i i . 

,Theorem l.g.^ (Shihoina and Takagi [ l ] ) 

\ : } ^ -* Ê  i s an isometric immersion of a connected compact 

orientable Biemannian manifold of class c" in Ê . Suppose one of the 

principal normal curvatures of x ( l f ) is constant k everyvrtiere, then, 

'.< H,H > dS ^ 2fl? 

and equality holds i f f x i s an imbedding and x(^^) is congruent to the 

standard torus T('s/2/|k|, l / | k | ) . 

Note 1.5.5 
I t may be pointed out that one of the principal curvatures of each of 

the theorems 1.3.2 and 1,3*3 is a constant. . 

Recently Chen [I5] proved 

Theorem̂  1.̂ .6 (cf. Remark 3.1.5) 

I f X : E* be an isometric immersion of a f l a t torus Vf- into E* 

then, the mean curvature vector H(p) satisfies the following inequality 

< H,H > dV > 271̂  . 
if 

Moreover i f < g,H > is a constant then equality holds i f f HF is iicbedded as 

a Clifford f l a t torus in E*. 

Finally in an unpublished result due to Horabu [ l ] where he examines 

the normal variation of / < H,H > dV he obtains the differential 
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equation 
AH + 2H(H^ - K) = 0 (6) 

which must be satisfied for / < H,H > dV to be stationary. 
. If ' ' ' 

H is the mean curvature vector and A the Laplaclan. 

Note 1.3.7 
The torus ('V2b, b) and the Clifford Torus both satisfy (6) and tvro 

equations l i k e (6) respectively. In view of a l l these results therefore 

I t seems reasonable to believe that the conjecture (5), must be true for 

a l l C^-imraei'sions of .any torus i n Ê "̂ (n > l ) . 

I f the Willmore conjecture is true for a l l C*-embeddings of surfaces of genus 

one a; possible way of seeking a solution to the integral of the mean curvature 

for surfaces of arbitrary genus is to investigate for relationships between • 

HCTJ, H(Tg) H(Tj_ # Tg), 

trhere f : T̂  , 
g J Ê  

= Tj^ # Tg Ê  ( is the connected sua 
• . of 7, and Tg.) 

For the TAG i t is knotffl that 

t(T^ ̂  Tg) > T(T^) t(T^) - 2. 

A similar result for tiae mean curvature seems to be rather elusive laiainly 

because of i t s topological InvBriance, However for surfaces of genus . 

zero 
H(M^# Mg) > H(M^) + H(^^) - 2. . 

Equality holds i f f and are the euclidean roimd spheres, 

Like'vd.se the TAG for product immersions is know. i.e. 
T(f X g) = T(f).T(g), (cf. Kuiper [ l ] ) , and one wonders i f anything could 



23. 

be gotten for the mean curvature of product immersions. 

Rana rh; l.^.S. 

From a theorem of Tnnipkins [ l ] we know that there do not (?.y.ir.t any 

isometric immersions of compact n-dimensional f l a t manifol.ds in a 

euclidean space of dimension <2n. , However there do exist isometric 

f l a t immersions in a euclidean space of dimension 2s 2n, 

viz: the n fold product of circles i n coordinates 

Xg^ = cos 0 = 0,l,.,,,(n-l) 

V+1 = 

For such immersions i t seems that. 

< ^ ^ Co^.i may be true. 2n-l 

[" 

Certainly ip the case of n a 2 the above Is valid for we kno\7 of the 

existence of the Cliffordlflat Torus which satisfies the above and in fiact the 

inequality i s replaced by an equality. This result i s only an improvement 

in the case of three or four dimensional manifblds, vMle for higher 

dimensional maiiilfolds the result of Theorem 1.2.10 is indeed much stronger, 

ex ( l ) X : T̂  -> E® 

given by, (a cos u, a sin u, b cos v, b sin v, c cos t , c sin t ) . 

Then by direct computation we have, 

ta a dU , tt>g a b dV, (Ug a c dt 

1 1 1 
<0i4 « - r r du 0:̂ 4 a r - r dv " ^ 7 - d t 

>f3 V3 V3 

(ô e « du a^e = dv % b « 
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A, 
1 1 

V3b 
A433 1 

1 
>^b ^ 5 3 3 

1 
^ C 

2 
"""̂ ^ ° /6b 

Ae33 
1 

= - t r -
/6c 

dV = * 1 = abc du dv dt. 

when a 3 b = ! C. 

1 
s r e, . 

^3 * 

* 1 
rn3 

8/3 
4 - «3 0 C, = 7 ^ ) ^ 
9 ^ 

ex (11) f : M* -» E® 

(cos u, sin u, cos v, sin v, cos x, sin x, cos y, sin y) 
,0 ̂  u, V, X, y < 2n . 

Again as i n ( i ) by direct computation 

(Uĵ  a du, 0^ = dv, a:̂  a dx, cô  a dy, 

dV a *1 a dudvdxdy. 
du 

= CD ta -' 28 
dv 
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and 

A522 =, -^622 = -̂ 722 - ^822 = 

Ag33 F Aggg = " A733 = Aggg = , " 

As44 = Ae44 = >744 = "^844 = 

\ \ S = ^ ( - 2 e g ) = - i e g . 

Scalar cur v. =f 0, 

1 

t4 
( > c , = f ) . 

In the most general case, that of an n-r-diinensional manifold 

Chen. [ISJ proves 

Theorem 1.3.8• 

Let M"̂  be an n-dim.ensional closed manifold immersed in a euclldsa;.! 

space of dimension (n+N) with non-negative scalar curvature. Then, 

<H,H >"/^dV> X. P(M") (1) 
L 

where ^ „ i 
^ . 2 c i f n is ev-n . '(ii-n"] 

V,(2n .f2n" c c fc« )^ P ,T 1 i f n is odd. ^ n-1 2n+N-l^ ^ 2n' ̂ n+N-1 

and ^i^y .= s\m of Betti numbers of li" . 

I t is necessary to f i r s t prove, 
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Lemma, 1.3.g 
Let aj^,..,,a^ be N non-negative constants and.So"^ t̂ ê unit 

hypersphere of E^ centered at the origin. Let the fVinction f on Ŝ"*̂  be 

defined by 
• • N 

f(x) a y a^ x̂ ^ (2) 

vrfiere x = (xj^, ..., x̂ )̂ 

For an even positive integer 2m (say) 

1 ^ ' ""^+N-1 * i = l 

equality holds i f f either N a 1 or n = 1, 

Proof 
For non-negative even integers e^^.f^e^ 

f ... A as"-! = , ^ ^ ^ ' ^ \ / 

(generalised formula using Gamma fahctions). 

Also, 
...r(ip).r(ili^)r,|)« 

(5) 

equality holds i n (5) i f f , (N-1) of e^f,o,,e^ are zero. 

From (h) and (5) 

f ( Z . , ( . , ) - f d f a r (a, x f + ... + a, ^ f 6^^' 

'0 . 

^ f (Za,)Nx,^ + ... -̂ :̂ )̂".d4'-' 
"o 
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(iai)'»2r(i^)r(i)''-i 
s r I I I i j I \ I I » • « l i w i • . 1 I I 

r 

N 

(W-l) o f the ejj*s are zero* 

I f e q i i a l i t y holds above then, the inequalities i n the l a s t few steps are 

a l l equations. Hence either m a 1 or IT a 1« 

Converse i s immediate. 

Lemma 1.3.11 

For each normal vector e to M we have, 

S(e)" ^ |K„(e)Knn , (8) 

Equality sign of (8) holds i f f A(e)^ « f o r some constant |i . 

A(e) i s the second fundamental form o f the iamersion i n the direction of e. 

Proof 

The second fundamental form i s self-adjoint matrix o'. choosing a 

suitable frame, we can w r i t e , 

1^(0) 
A(e) a 1 j (9) 
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i = l 

= n|K^(e) 2/n 

(S(e))" > i V e ) ! . .; 

I f the equality holds i n (8) then, 

k j e ) 2 = ... =k^(e)2 . 

« ^ A ( e ) = iil^ f o r n = k^(e)2, 

Conversely, 

i f . A(e)2 = 

iand . A(e) i s as i n (9) 

then k^(e)^ k^(ef 

^ S(ef = / n " | K j e ) | . . 

Lemma 1.5.12 
Let X : -» E"^^ be an iramei'Siqn of i n a euclidean space of 

dim-(n+N) and l e t S be the sphere of a l l unit normal vectors to M at 

X |e Then> 

2c 
2 — / s ( e ) " dS. for n even 

n+N-1 

'2n dS X f o r n odd 

(10) 

I f the equality sign holds i n (lO) then, 

( i ) either n '= 2 or N = 1 whenever n i s even 

and ( i i ) N = 1 T^henever n i s odd. 
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Proof 

S(e)2 = Z ( S cos e A 
i , j r " J 

Choosing a suitable frame f i e l d (p,e, ,.,,e >e ,,,...,§ ,̂.) 

n+N 

>an+l 

V l ^ W ^ ^ V w 

Using lemmas 1,3.9 and 1.5. IQ ^re get (10) and ̂ e n the equality sign holds 

i n (10) from lennaa 1.3.9 n = 2 or N = 1 whenever n i s even, and from 

lenpa 1.3.10 N = 1 lAienever n i s odd. 

Lemma 1.3.13 

I f X : M*̂  E*̂ *̂  i s an immersion with non-negative scalar curvature. 

Then, since, 
R = n^ ||Hf - S2 (cf. pg, 6) 

we have, \\n\f - ^ 0 

i . e . n^Wnf ^ S2. 
I n p a r t i c u l a r n||H|| > S. 

I n " <H,H >"/2 dy 5= J' S° dV (Ih) 

. from ( 8 ) , (10) and ( l l ^ ) we get. 
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c 
• ' n even 

r < H.H w * / 
'n+N-l M?̂  

°2n ^ /K*(P)'3V, n odd 

Using Chern and Lashof [2] we get. 

/ <H,H>"/^ dV > X, 3(M") (17) 

X i s as i n Theorem 1,3.8. 

I f the equality sign holds i n (1?), then, n ||H|| = S and therefore the 

equality sigh holds i n (10). Therefore by lemmas 1.3»12 and 1,3»13 

R 0 and either N a 1 or n = 2. 

I f n a 2 M i s a f l a t torus. / , ^(M) » 

£<H,H ' ^ ",H > 37 a 
mm ^ 

1 ^ i s diffeomorphic t o (Chen ClSij), vrtiich i s a contradiction 

because! R a 0. 

.'. IT a 1 and R a 0. This i s also impossible becaui?e there do not exist 

any closed hypersurfaces i n E*̂ *̂  vdth scalar curvature a o (Remark 1.3»8). 

Intermediary Curvatures 

paving dealt with the " f i r s t " and " l a s t " curvatures so to speak, we 

i r i . l l now look at the intermediaiy curvatures. 

Theorem 1.̂ .1 

X : -» E^^^ i s an immersion of an oriented 2m-dimensional closed 

manifold i n E^*^ such th a t . 

{p?M"|g(p)S»0} 2 {peM " | K 2 ^ ( p ) > 0 } 
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Then, 

j ^ < V K m > ^ ^ - 2 m ( - l ^ ) 

Equality holds i f f x i s a t i g h t imbedding. K i s the G-K curv. and 

g(p) = K j p ) 2 - Kgj^Cp). 

(NOTE! I n hie paper Chen [15] uses the term "minimal" which i s rather 

misleading f o r i t does not mean vanishing mean curvature. 

Instead, an immersion I s called a " m i n i m a l / t i ^ t Imbedding" i f 

the result i n Cor. Io2o8 has s t r i c t equality). 

Proof 

Let n : ' ®̂ "^^^ °^ ̂ o" f 

Ti*dEgj^ ?= K(p)d7 

and ^* dZ^j^ = - K(p)dff A dV 

= -2K(p)dV. 

then 

.% I^*'^^2m' " 2|K(p)|dV. 

Using Hopf's Index Theorem 

also 

r K(p)dV = X(M^) , . 

r K(p)dV > ~ ( Z 3 ) from Chem and Lashof [ 2 l . 

I f U = {(p,e) e B^|K2jp,e) » K(p) ^ O} 

V = {(p,e) e B^|K2jjj(p,e) « K(p) < O} 

then r e w r i t i n g the above two equations we get 
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y'K(p)c3V + f K(p)dV ^ ( 2 (-if P^). . (I) 

y'K(p)dV -̂ f K(p)dV = (Zip.). (2) U 

from (1) and (2) 

K(p)dV ^ Cĝ ^ - " 
U 

But by hypothesis ^^(v)^ ^ ^2ra^^^ ' 

jT < Kj^(p),K^(p) > dV S« | < K^(p),Kjp) > dV 

U 

Theorem 1.̂ 1.2 

I f X : M̂ ^ -» Ê '̂ "̂^ be an ijnmersion o f a cloSv?d 2m-dimensior3.v..I 

manifold i n with non-negative p r i n c i p a l curvature, then, 

vr 

Equality holds i f f i s embedded as a hypersphere. 

Proof . . 

By lemr& 1.2.1 K ^ ) ^ K§0^ 0 ' and equality holds i f f a l l the 

p r i n c i p a l curvatures are equal, 

by the previous theorem 
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By a theorem of Chern and Lashof [2] we know that a l l the odd dimensional 

B e t t i number£5 vanish. Hence, 

•when equality holds i n the above equation.' 

K,-fl(P̂  - the p r i n c i p a l curvatures are equal 

• every jjoint i s an tunbilic . V 

M̂"'̂  i s embedded as a l-iypersphere,' 

The.last result (Theorem l.h,^) i n t h i s section seems to be a generalization 

of the Hilbert and Liebriiann Theorems. 

Hi l b e r t : The only compact surfaces with constant Gauss curvature are spheres. 

Liebmann? The only ovaloids with constant mean curvature are spheres. 

Theorgm (Gardner [ l ] ) 

Let X : M ~» E be an immersion of a compact oriented n-dimensional 

manifold i n a euclidean space, and i f f o r any i , 1 < i ^ n-1 

a constant ( 5̂  O) and a^^^ = constant ( ? O) then, 

i t implies that X(M") i s a euclidean sphere, 

i s the i elementary Byrmnetric ftmction of the p r i n c i p a l curvature, 

NOTE: The case f o r 1 = 0 reduces to the problem of classifVing hypsr-

surfaces vrlth constant mean curvature since ^ ^^^^ 

therefore always a constant). 

We w i l l have a b r i e f look at submanifolds \dth constant mean curvature 

i n Chapter I I I , 



CHAPTER I I 

§0. Preliminaries 

(Most of the d e f i n i t i o n s f o r t h i s chapter and Chapter I I I are taken 

from Hicks [ l ] , Kobayashi and Nomizu I , I I [ l ] . Singer and Thorpe t i l ) . 

Let M be a c" rieiKiannian n-manifold. Then a connexion on M i s an 

operator V (often also called eovariant d i f f e r e n t i a t i o n ) which assigns 

to each X,Y vector f i e l d s on M (denoted by X,Y.e 96(M) ) a vector f i e l d 

7j^Y i n the same domain. 

I f f € ? (A), "^/A) = { f | f real valued function on A) , then the 

connexion V s a t i s f i e s 

( i ) V ^ ( f r + gZ) = (Xf)Y + + (Xg)Z + g ( 7 j ^ ) . . 

(7jjY)p depends on X^ and the values of Y on some integral, curve that 

f i t s X. . I f (e^, e^) i s some f i e l d about P . • 

n 

l e t " Z ^ i ^ ^ ^ ^ ^ i ^ P 
i = l 

n 

3=1 

Then, ( V > P ° ' X ' ^ K 'r 

= Sai(p)l\»3^3 'p 

ZaJp)(e,bj)(=j)p-('^l(?»'^WV^'' 
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I f (7 e.) i s knOT-m then (V Y) can be f u l l y determined, e^ J p A p 

Given a riemannian manifold M"̂  and < , > (=. inner product) there 

exists a unique connexion V 3 

( i ) X < Y,Z > = < Vj^y,Z > + < > 

( i i ) Vĵ Y - = [X,Y] (torsion free) 

fo r a l l C* vector f i e l d s X,Y,Z e !K(M ) . 

Induced connexion 2,0.1 
' I • » - . 1 . . I . • . . .1 

Let M" be an n-diraensional orientable rieraannian manifold immersed i n 

a Riemannian manifold of dim4»+k). I f V denotes the conne?clot» of M, 
— T 

then, .- [^jfY] i s the induced connexion on M. I t i s the 

projection of the connexion on M. 

X < y,Z > = < VjjY, Z >jj + < Y, >jj. 

= < fV^Yf, Z > + < Y, rVjjZf > 

= < Vj^Y, Z > + < Y, 7 ^ > 

V preserves inner products on TM. 

< Vj^Y, Z > + < Y, > = < [ ^ ^ Y f , Z > + < Y, [ V ^ f > 

= < VjjY, Z > + < Y^-^^ > 

= 7x < Y,Z > 

= < Y,Z > . 

To show that i t i s torsion free 

V̂ Y - - [X,Y] = i\Yf - i^^f - [x,y] 

NT / f t „^T r v -iriT = (V^Y)" - (VjjX)' - [X,Yr 
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= (Vĵ Y - VyX - [ x , y ] ) ^ 

= 0. 

{ [ X , Y ] = XY - YX ( l i e bracket of X and Y) } 

VjjY = [\Yf + [Vj^yf 

= VxY + B(X,Y) (1) 

( i ) i s called the GAUSS EQUATION. B. i s called, the second 

fundamental form of the immersion and i t i s a symmetric b i l i n e a r mapping 

of TM X TM MM . 

For V e i{m) 

D.is the induced connection on KM. 

= < [V^V^f, Vg > + < V^, i ^ f s f > 

To show t l i a t D defines a connection i n t}ie normal bundle 

The above equation i s called the WEINGABTEN 'FOmJLk, i s the 
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tangential component of and i t i s a symmetric b i l i n e a r map of 

T M X N M -» T M. ( I t i s also often called the 'shape operator*)• 
P ' P P 
A and B are related by the following 

< A^/X), Y > = - < B(X,Y), N > 

The mean curvature of the immersion being the trace of the second 

fundamential form i s given by 

n+k 
H = i ^ B(X,X)N^ , II^?N(M). 

r=slH-l 

Prppps i t i on.2.0.2. 

I f M" i ii""^^^ ^ '̂̂ "'•1̂ +̂ ' i s a s t r i n g of isometric immersions and-

X,Y e T(M°), then, 

\of^^'^^ = V^'^^ ^ Bg(X,Y). 

Proof 

Let V, V and 7 be the induced connections on M and M and the 

connection M respectively. Then, 

Bg^^.(X,Y) a nor.cpt.P(X,Y)] 

a nor.cpt.[V(x,Y).+,B„(X,Y)] 

= nor.cpt.[7(X,Y) + B^(X,Y)] + fig(X,Y) 

= B^(X,Y) + Bg(X,Y). 

§li Definitions and results on the Laplacian of a function 

D e f i n i t i o n 2.1.2 

Let f : M" ^ M"*̂  and {e^^, e^} a basis of T M " . 
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Then Af = E V V f - ^ f i s called the Laplacian of f. 
. . i ®i i ^i ^ 

I n l o c a l coordinates (y" = f°'(u''-.... u") o = 1,2,,,., (n-k). 

hf 

Proppsitlon 2,1.2 

I f f : M" -• E""*"̂  i s an isometric immersion th^n A f = H (H i s 

the mean curvature). 

Since covariant d i f f e r e n t i a t i o n i s the same as p a r t i a l d i f f e r e n t i a t i o n 

i n E we have, 

" " i ^ i e . ^i . . 

= H. . . • 

A f = (Af^ ... A f " ) . 

D e f i n i t i o n 2.1.5 

f : M" E°"̂ ^ i s called harmonic i f A f = 0. 

Corollaty 2.1.U 

f : M" E*̂ *̂ ^ i s minimal i f f each of . the coordinate functions f"'" 

are harmonic. 

Theorem 2.1.5 (%res [ l ] , also Kobayashi and Ncmizu I I ( l ] ) 

There does not exist a minimal immersion of a compact manifold i n a 

euclidean space. 

Proof 
Suppose there does exist a minimal immersion of a compact manifold i n 

a euclidean space> then 
. A f = 0. 
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But the only harmonic maps on a compact manifold are the constant maps. 

Hence supposition must be false. 

,*, ^ any minimal immersion of a compact manifold i n a eudidean space. 

I n the case of the ambient space being non-euclidean the above 

resul t may no longer be true, since 

( i ) the Laplacian of the function f does not coincide with the mean 

curvature normal 

and ( i i ) we know of the existence of minimal submanifolds i n spaces of 

constant curvature. 

§?» Submanifolds of a Euclidean Hypersphere 

Theoran 2.2.1 Chen [lO] 

Let be a closed (compact vriLthout boundary) submanifold of E*̂ ^̂ , 
n+k ' n+k Then M i s contained i n a hypersphere of E centred at c e E i f f 

either (x - c).H ^ - 1 or (X - c).H ^ - 1 . 

n+k 

X i s the position vector f i e l d of M i n E and H i s the mean curvature 

normal. 

Proof 

Let f - (X - c).(X - c) ( i ) 

where c i s a fix e d vector i n E'̂ "̂ ^̂  Then the Laplacian of f i s given by 
Af = 2n{l + (X - C).H} (2) 

A f = A(X - c).(X - c ) . 

= V V < X- c, X- c > •e. e^ ' 

= 27 < V ( X - c ) , X - c > 
®i ^ i 

a 2{<7 7^ ( X - c ) , (X-c) > + <.7 ( X - c ) , 7 (X-c) > 
®i h ^ 
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= 2{nH.(X-c) + n} since A(X - c) = H 

= 2nfl + ( X - C ) . H } . 

I f (X - c).H ^ -1 or (X - c).H ^ - 1 , then A f ^ 0 or Af ^ 0. 

,*. By Hopf's Lemma (Kobayashi and Noraizu I I [ l ] ) \te get A f = 0 

> f i s a constant 
n+k 

T- . > M i s contained i n a hypersphere pf E .centred at c. 

Conversely, 

i f M i s contained i n a hypersphere cenv.ved at c then, f i s a constant. 

.% A f = 0 and (2) then gives (X - c).H^= - 1 . 

Hence the theorem. 

§?• 3^}^^^^:^^"^^:^^^^^^.'^P_ Spheres 

The ambient space i n t h i s section -t-rill be assumed to have non-zero 

constant curvature. We consider f where the imjuersion i s 

isometrit and has constant curvature. 

I f (x , x") and (y^, y"^^) are the lo c a l coordinates of M 

and M then, l o c a l l y , 
y° = f"(x^,...,x"') a = 1,2,.,,, (n+k). 

Let be the metric tensor of M then the induced metric g^^ on M i s 

given by 

where the p a r t i a l d i f f e r e n t i a t i o n S.f° i s written as f° , We ^ d l l w i t e 

f ^ . f o r the covariant d i f f e r e n t i a t i o n V f " . 

As usual the Greek indices w i l l range from 1 to n+k and the Roman 

from 1 to n. 
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\^kl* ^a&yb curvature tensors of M and M, and r ^ j ^ , f ^ ^ 

the C h r i s t o f f e l symbols, vre have the following formulae (Eisenhart [ l ] ) 

Now, 
7. f« h.. n" 

7. n" = - h ^ f? + Zh 'n^ . . ' 
,3 d 1 opJ , • 

For a space of constant curvature c (say) 

K&yb " ^^^06 ^Py ~ .̂ cty 

.', f o r immersions i n spheres we have, 

^ i d k i = Sjk " hk SjP - V • ^ i k ̂ il^ . 

transvecting the above equation with g^^ we get, 

R^I, = c ( n - l ) g . ^ - (nHh.j^ - g ^ ^ h . j ^ h . p (1) 

where 
H a L ĝ '' h. .)e (mean curvature normal). 
- n r i , j i j " i " 

Corollary 2.3»1 

I f . a Rieraannian manifold adroits a minimal immersion i n a space of 

constant curvature, then, R - (n - i ) g i s a positive semi-definite tensor. 

Proof (follows d i r e c t l y from ( l ) 

Because (g^^ ĥ ^̂  h^^) i s a positive semi-definite tensor. 

Theorem 2.^.2 

I f X : -> ii"*^ i s an isometric immersion with Ax a X ^rtiere X 

i s a non-rzero constant then x realizes a minimal immersion i n the hyper­

sphere s"*̂ "''' (>/n/x) and conversely, i f x realizes a minimal immersion 

then Ax a xx up to a p a r a l l e l displacement. 
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Proof 

Suppose X i s a minimal immersion with Ax = Xx then by Proposition 

n+k 

r=i 

.'. we have, 

2,1.2 Ax = 
r=h+l 

X = r SH.e^ (2) 

D i f f e r e n t i a t i n g ( 2 ) v r e get. 

Taking the scalar product with x^ we get. 

i.e. 

ks ' i hi' • 

Transveeting viith g^^ 

So from (2) 

n = ^ I I H I I ^ (3) 

I i2 1 , n i.e. | x| = Ta = I 

i . e , llxll = f .= a (say) (M 

.*. X ̂ M") i s contained i n a sphere of radius ̂  . 



Since X i s normal to x j j / ' ) choose e , along |x*then 

k-1 

Otsl 

Taking scalar product v4th x. we get, 

° a^a* '̂̂ ^ " ° a = 1,2,.,(k-1) (6) 

Transvecting vi.th i t fol].ows that 

h. = -2 i . e . ||H|| = -VTx (7) 

Substituting i n (5) we get, ^ 

= 0 

« 0 0 = 1,2,.,(k-1) 

but> H^j (a B 1,2,.,/k-1)) are equal to the second fundamental form of 

x ^ ' ) i n s"'*"̂ "̂"-̂  (cf. Leimoa 2.0.2). This X realizes a minimal immersion 

i n s"-^^-l . 

Conversely, 

i f X(M") i s minimally immersed i n S*̂^̂ '̂̂  then, by p a r a l l e l translation 

i n E""'̂ '̂' we can arrange things so that s"̂ '̂ "̂  i s centred at the o r i i j l n of 

E"̂ *̂ . Choose a set of nnituany orthogonal normals and 1st ê ^̂ ^ = |x 

where e^^^j^ i s the normal to s""*"̂ '̂  i n E""*"̂ . Then (5) and (6) are s a t i s f i e d 

as before and since ĥ ^̂ ^̂  (a = l , 2 , , . / k - l ) ) are considered as the second 

fundamental form of the induced inversion i n s"^^^"^, we have 

n 
Ax =5 

0=1 

= «k^k 

llHil 



Using (7) we get Ax = x . 
a . 

eorollary P.,3.3 (lIofftiian[l]) 

For a s t r i n g of isometric immersions l / ^ ̂  s"̂ '' r* E"''̂ "̂''' , 

M" i s minimal i f f A ( g o f ) = X(gog) where X i s some real valued 

function on M. 

De f i n i t i o n 2.3.1̂  

• ( i ) An ISOMETRY f : M -»,M i s a metric preserving map.. The set of 

a l l orientation-preserving isometriqs forms a group ^called the. group of 

isometries •% say. 

Cii) i s TRMSITIVE i f f o r each m,n e M ' 3 g e -ft a g(m) •= N. 

. ( i i i ) A space'with a t r a n s i t i v e group of operators i s called 

HOMOGmOUS:. 

( i v ) A L I E GrROUP G i s a group vrith a differentiable structure of a 

manifold. The maps 9̂^ : G X G G ' 

given by (g,h) gh 

and : G G 

g g are G* (smooth). -1 

(v) A hom.ogeneous space G/H v/here G i s a l i e group and H a compact 

subgroup admits an invariant metric. G/H i s often called a RIEMAMIp:ArT 

HOIjDGEI\IEOUS SPACE. 

( v i ) Let ̂  denote the group of a l l isometries of f l . For m e M l e t 

F denote the subgroup of •% leaving m fixed. 

i. e . -̂m .̂S e | g ( m ) = m} 

then F i s called the ISOTROPy GROUP of M at m. 
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( v i i ) Under the action of an isometry subgroup G ISO(M") = % 

(isometiy subgroup), the t o t a l space I ^ " s p l i t s i n t o orbits of various 

types. An o r b i t G(x) 6 M° i s called an EXTREt-lAL ORBIT i f i t i s an 

extremal i n "volume" with respect to a l l o r bits of the same type. 

As an application t o theorem 2.5,2 Takahashi [ l ] proves 

Theorgg 2.?.^ 

A compact homogeneous Rieraannian manifold with irreducible linear 

isotropy group admits a minimal immersion i n a Euclidean sphere. 

Cprpllaiy 2.3.6 

An irreducible compact symmetric space admits a minimal immersion 

i n a Euclidean sphere. 

Theorem 2.3.7. 

Every homogeneous space of a compact Lie.group G/H may be imbedded i n 

a s u f f i c i e n t l y high dimensional erclidean sphere as a homogeneous minimal 

subraanifold. 

The proof of the above theorem i s due to Hsiang [ l ] and i s based on yet 

another theorem due to him, v i z : A submanifold M'̂  £ i f ^ * ^ i s a homogeneous 

minimal submanifold of f^^^ i f f i s an extremal o r b i t under the acr4on of 

a suitable isometry subgroup G. 

^k. More theorems on Minimal Immersions i n Spheres and Pseudo-Umbilical 

Immersions 

D e f i n i t i o n 2.1m 

I f the mean curvature normal i s nowhere zero and the second .fundaaiental 

form i n the direction of H i s proportional to the i d e n t i t y transformation of 

the tangent space of M*̂  everywhere ( i . e . the mean curvature normal haa the 
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same eigenvalues everi'vjhere ) then the immersion x : M*̂  -» E"^^ i s said to 

be PSEUDO-UMBILIGAL. 

I t v i l l be seen l a t e r that pseudo-umbilical immersions with constant 

mean curvature i n a euclidean space <;—^ a minimal immersion i n a hyper-

sphere o f the euclidean space. 

Lemma 2,k,2. Chen [ l i ] 

X : }ip -» E""*"̂  i s a pseudo-umbilical (p.u. ) immersion of i n E°^^, 

Then the mean curvature a i s a constant i f f the form co ̂ , ^- vanishes 
n+l,n+2 

i d e n t i c a l l y . 

Proof 
Since the.imraersion i s p.u, and 

H = ae^^^ (1) 

we have. 

2f, - 0 . (3) 

i = 1,2..,n 

then, taking exterior d i f f e r e n t i a t i o n of (h) we get. 

but, 

do). .1 - da A CO. + a. do), i,n+l 1 1 
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- ^ " ^ " ^ i = %nH-2 V 2 , n + 1 = 

o = constant. 

Conversely, i f a = constant then from (6) 

"'i,n+2 ̂  "^n+2,n+l = ^ 

Let U = {p e M" OÔ ^̂  ^ 0 at p} , Then taking exterior 

d i f f e r e n t i a t i o n of (7) we have, 

" ^ i j ^ ' " j , n + 2 - ' % n + l ' ^ V l , n + 2 = • ° 

%n4-2 V l , n + 2 = . ° . 

i - ^ - %+l,n+2 = ° 

U 0 

0) s 0. n+l,n+2 

The above leinma v/as also proved by Otsvdci [ l ] f o r n = 2, 

Lemma 2.1|.3_ 

I f X : E * i s a p.u. immersion and the mean curvature a is 

a constant (^ O), then M" i s immersed i n a hypersphere of E'̂"''"̂. 

Proof 
— — 

Consider the mapping y : M" -> E" 

9 y(p) = ^ ( p ) + i v i 

then, dy(p) = dx(p) + ^ de^^^ 

= cbc(p) + ^(co^^^^. e^ + co^^i^^^g e^^2^ 

- 0. 
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. (dx(p) = and tu^^^^ ^̂ 2̂ = 0 from lemma 2.1t,2) 

==7> Hp i s immersed i n a Iriypersphere of E"^^ . 

Theorem 2,h,k 

Let X : M" -» E'̂ ^̂  be an immersion of an n-dimensional manifold 1̂ " 

i n E*̂ ^̂ . Then x i s p.u. with cons.tant mean curvature i f f i s immersed 

as a minimal hypersurface i n a hypersphere of E"^^ . 

Proof 

Assume i s p.u. with constant mean curvature o (say). 

Then by d e f i n i t i o n K 4 0 everywhere. Using the previous lemma we 

can assume that M" i s immersed i n a un i t hypersphere. Take a l o c a l 

cross-section (p, ^x^'" ~* ̂ ' ^ n̂+1 "^^^^ 
e^,...,e^ diagonalize the second fundamental form at .ê _j_g . 

Tljen, A- (e.) .= i d 
V l ^ 

and . A-%+2 , i = l * 2 , . . , , n 

where h^ are functions on M. 

Since the mean curvature a i s constant by assumption, we havs 

Zh^ = constant. 

A/„/„\(e.) = A, 1 (e.) 
a ^ V l * n ^ ^ \ ^ V 2 ^ 

Since the immersion i s p.u. xre have 

{Z\x^)\ = (Sh^hg = ... = ^h ^ ) h j ^ 
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Two cases arise 

( i ) I f (Zh^) 4 0 then, hj^ =» hg = .,. = h^, everyiAere, Thus M" 

i s immersed i n a hypersphere of a hyperplane, 

( l i ) I f Shj = 0, then l - l " i s immersed as a minimal hypersurface of a 

hypersphere of E*̂ ^̂  . 

Thus i n either case i s inmersed as a minimal hypersurface i n a hyperr 

sphere. 

Conve,rsely, 

I f M" i s immersed as a minimal hypersurface i n a hypersphere of E"*^, 

then the mean curvature normal at p i s p a r a l l e l , t o the vector j o i n i n g the 

centre of the hypersphere and the point p on Thus X i s p.u. \Ath 

constant mean curvature. 

D e f i n i t i o n 2.'i-.^ 

I f Tj be a normal vector f i e l d on M" i n a Riemannian manifold R""*̂^ 

then, the covariant d i f f e r e n t i a t i o n of TJ i n R can be vn-itten as the smi 

of i t s tangeptial and normal components. 

— — T 
Vr) = [Vr)] + DT| (D = covariant d i f f e r e n t i a t i o n 

i n the normal bundle). 

I f the normal component i s zero then T| i s said to be p a r a l l e l i n the normal 

bundle. 

Theorem 2.U.6 

An immersion x : M'̂  -• E"^^ i s p.u. and the mean curvature normal 

f i e l d H i s p a r a l l e l i n the normal bundle i f f M" i s immersed as a minimal 

subraahifold i n a tiypersphere of E'̂ '"̂ . 

Proof 
Choose the u n i t normal e ̂ , i n the direction of the mean curvature 

n+i 
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normal, then. 

By d e f i n i t i o n , 

and 

H = ote^+i a > 0 ( l ) 

V l , i o = . f2) 

I ^ i i = ° f5) 
i = l 

for r = (n+2),,.^,(n+k), 

Since the immersion i s chosen to be p.u, and since .the mean curvature 

vector f i e l d i s p a r a l l e l i n the normal bundle, we have, from ( l ) 
DH = (d«x)ê .̂̂  + a]?e^^j (h) 

, da e ., + a.o) ̂ , e = 0 f n+1 n+l,r r 

constant and. = 0 (5) 

r = ( n i-l ) , . , . ^ ( n+k) 

Consider now. 

given by 0(p) = x(p) + ^ e^^^ . 

Then . 
dHp) = clx(p) + i de^.^j 

= 0 [using the equations of structure and 
eq.,(2)] 

Thus X(M") i s contained i n a hypersphere of E"^^ centred at c. 

Further, x(p) - c i s p a r a l l e l to ê ^̂ ^ everyt/here. .', by (̂ i-) I I " i s 

immersed as a jninimal subroanifold of ŝ'̂'*'̂ "̂-'- . 

Conversely, 
I f I ^ " i s immersed as a. minimal submanifold i n a hypersphere of E"^^, 
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and M" i s a p.u. immersion with constant raean curvature a 

Consider as before, • : M" -• E"^^ 

given by 0(p) = x(p) + i ê .̂ ^ 

and <l>(p) = c (say). 

because X(M") i s contained i n g""̂ ^̂ ""̂  and x(p) - c i s p a r a l l e l to ê _̂ , 

everyifhere and cû .̂ ^̂  r ~ ̂  ^ ~ (^'''^) f»> (^'^^) 

, \ DH (da)e„,i -I-aDe^,^ 

= (-^"^Vl ^ % n , r ^ r 

= 0 

e = ^ H i s p a r a l l e l i n the normal bundle, 

Theorem 2J1.7 
•'•'•'v . ^ 

Let X : E"̂ ^̂  be an isometric immersion of a riemannian manifold 

i n a euclidean space of dim-(n+k). I f the position vector X i s p a r a l l e l 

to the mean curvature vector everyvrhere on M, then M'̂  i s immersed as a 

minimal submanifold of a hypersphere of E'̂"'"'̂, 

Follov/s from Theorem 2,'+,6i 

Some more results on p.u. immersions due to Chen can be found i n [l7,16] 

and Chen and Yano [ l ] . 

D e f i n i t i o n 2.k»e 

A submanifold M of a Riemannian jnanifold M i s said to be t o t a l l y 

geodesic, i f every geodesic of M i s a geodesic of M. 

Theorem 2.̂ 1-.9 

X : M -» M i s a t o t a l l y geodesic subinanlfold i f f i t s second 

fundamental form vanishes i d e n t i c a l l y * 
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A proof of t h i s theorem can be found i n Bishop and Crittenden [ l ] 

pg. 1?^. 

Corollaiy 2.hA0 

Eveiy t o t a l l y geodesic subinanifold of a Riemannian manifold i s 

necessariiy a minimal submanifold. 

This result i s immediate from the above theorem. 

We now look at minimal submanifolds of a sphere \dth second 

fundamental form of constant length.. I f f : M" s"*-̂  C E"*^^, then 

i f M i s conrpact 

J ^2 - i ̂  S - n S* 1 ^ 0 
. M 

S = length of the second fundamental form. 

I f (-0 S - n S O 
V P/ 

l , e , i f 
n 

S 

then ( i ) M i s t o t a l l y geodesic (because S must be i d e n t i c a l l y zero), 

n 
or (11) S = : r — • 

Case ( i ) when M i s t o t a l l y geodesic i s not ve.ry interesting from the 

point of view of looking f o r minimal immersions since \re know that a l l such 

manifolds are i n fact minimal (cf. Corollary 2,'i-, 10), Chern, do Carmo and 

Kobayashi [ l ] have investigated the second case and have determined a l l 

minimal submanifolds of s""*"̂  which sa t i s f y ( i i ) . 

They prove . 

2 7 JUMW2 
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Theorem 2 . ^ u l l 

The Veronese surface i n S* and the C l i f f o r d submanifolds 11̂ ^ 

i n s"*^ are the only 'iompact minimal subraanifolds, of dimension n i n s'̂ ^̂  

s a t i s f y i n g 
n 

S = 

M . = s ' ^ f r ^ ' j x s " - " / ^ / ! ^ ^ 

m,n-m \^ " / \'v n y , 

An independent proof of the above theorem .for p = 1 i s due to Lawson [2]. 

Below we describe the Veronese surface. 

I f (x,y,z) e R̂  and (u^,u^,..,,u^) e R̂ , then 

= — yz . u* = - i - (x^ - y2) 
V j 2/3 

~ x z u= - I (x2 + y^ - 2z2) 

3 ^ 
u = xy 

The map defined i s an isometric immersion of S('/3) i n t o S ^ ( l ) , fx,yj,2:) 

and C-x,-y,-z) are mapped int o the same point. The Veronese surface, i s 

defined t o be t h i s mapping of IRP^ imbedded int o S*. 

To prove t h e i r theorem Chern et a l . f i r s t show that when the ambient 

space has constant curvature then, y ̂  2 - i ^ S - nc 1 ^ 0 (1) 
M 

and i f M i s compact and minimally immersed i n M"^^ . Moreover i f M i s not 
nc 

t o t a l l y geodesic and S ^ 2*"- (i/p) every^-rfiere, then i n fact 
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S = 2 - ' ^ p ) * second fundamental foim i s p a r a l l e l . They 

then assume that the ambient space of constant curvature i s In fact the 

u n i t sphere (hence c = l ) and therefore the f i r s t part of the result follows 

immediately from (1). 
Theorem 2.^.12 ( i s also necessary f o r proof) 
"ii • • ' " 

I f M i s an n-dimensional manifold immersed minimally i n an (n+p)-dim, 

space of constant curvature 1, s a t i s f y i n g S = g V^'iyp*] » i f p > 2 

thepj, n = p = 2 with respect to an adapted dual orthonormal frame f i e l d 

(cD"*", o^f 0)®, 0)*) and the connection forms (= a^^) of the ambient 

space r e s t r i c t e d to M i s given by 

0 (0^^ \Ma^ V 

-X = K = /T 

-liOjjL yjJi^ 2(a 0 / (1) 

They then compute the structure equations f o r the Veronese surface 

and get. 

" 0 03 21 -HOJĵ  

<"12 0 JiO)̂  

0 203 21 0 

-Xfljj, 2ca 
12 

0 0 

-0)1 -03 2 0 0 0 

- - i f 
(2) 

l o c a l l y then, the minimal surface i n Theorem 2,l|-,12 coincides with the 

Veronese surface and i f the surface i s compact i t i s then the Veronese i t s e l f . 

A few examples and applications are given at the end and they indicate 

that can be generalized i n the following manner, 
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Suppose m̂ ,̂ m̂ , .oo, mj, are positive integers 

and n = m̂  + , 9 0 + m̂  

then, i f X. e S ^ ^ ^ J ^ ^ i . e , ||x|| = 

(x i s considered as a vector i n euclidean (m. + l ) space). 

The immersion, 

Then, x = (xj^,ooo,x ) has u n i t length i n E"*^. 

i s the- a minimal imsnersipn of II ^ » I t s scalar curvature i s 
m̂^ , 0 0 0 ,m._ 

(n-k)-.; and 
(k - l ) n 

S = = 
(2k - 3) 0 

Keamotsu [ l ] has also studied t h i s problem of classifying a l l 

jninlmal subsianifolds v/ith the second fundamental form bein^ a constant 

Icngtho However, he consideras only those submanifolds i n the unit s •.••.icve 

and R the curvature tensor of the manifold being zsroo 

He proves that i f there i s a minimal immersion of a compact coni.'.cctcd 

smooth manifold l-I, of dlm-n i n an (n+p)-dim u n i t sphere, such that tbs 

normal connexion of M i s t r i v i a l (ioe, the curveture tensor i s zcrr) •.•;.'(•. 

S a n then 3 an (n+l)-dim u n i t sphere containing M as a C l i f f o r d Kip.Linl 

hypersurface l - I ^ f or n = l,2,ooo,[n/2] » 

§5, Minimal Immersions of Surfaces 

Theorem 2,5»1 w ." • ' 

Let if -> S'̂  be a minimal immersion of a complete orientablc s^^rfaeu 

i n a three space. I f the Gauss curv, K of if does not change sign, theo 

IJp I s immersed as an equation or a C l i f f o r d toruso 
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Proof — r * " 
Since x : -» Ŝ  i s a minimal immersion of a complete orientable 

surface }/F i n Ŝ , using theorem.2,^l•,^^ \re can say that x : I i ^ -» S® i s a 

p,u^ ijamersion with constant mean curvature i n E*. (We can look upon S® 

as s i t t i n g i n E*). 

Since the Gaussian curvature does not change sign, i s immersed either 

as a sphere in. the hyperplane of E** or as a C l i f f o r d jp.at torus i n E* « 

(cf , I t o h [1] also see next chapter, theorem 3.3,3). 

But since the immersion i s minimal i n S®, vF must be immersed as the 

equatorial two sphere or as a C l i f f o r d f l a t torus, 

A generalization of the above theorem for.closed surfaces immersed i n 

a space of higher dimension can be realized i n 

Theorem 2.5.2 . 

Let M be a closed minimal surface of a u n i t n-sphere with GrK, a i r v , 

K ^ 0, I f 3 a u n i t normal vector f i e l d 5 over 3 the L-K, curv, 

G(P e) w.r.t. e i s nowhere zero, then, M i s a C l i f f o r d torus i n a u n i t 

three dimensional sphere S® of S"̂. 

Another way of looking upon minimal immersions i s by examining the 

area of the immersed manifold and seeking a method of c l a s s i f i c a t l f t n f o r 

such manifolds, since a minimal surface i s an extremal for area. 

Chen [20] has investigated t h i s problem f o r surfaoes and he proves 

Theorem 2.5.3 

I f M i s a compact minimal surface immersed i n a eudidean space of 

dim-n with Gaussian curvature ^ 0 , then, V(J^) the volume of ^ f s a t i s f i e s , 

V(M2) ^211^+ (2-,7l:)1t.X(^f). 

Equality holds i f f M i s either the 2-sphere or the C l i f f o r d torus. 
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and Theorem 2.5.U 

Under the same hypothesis as i n Theorem 2,5.5 i f V(^^) ̂  (2+ 7I)TI 

then i s homeomorphic to the 2-sphere. 

Most knovm results of minimal immersions of compact surfaces tend to 

shovr that the surface considered i s either of genus zero or one, and i t 

vjas unknown whether there existed any minimal immersions of C03iipact surfaces 

of genus greater than one. However, t h i s problem has. now been tackled by 

Lawson [1] \/here he shows that there do exist cpmpaict orientablq minimal 

surfjaces of a r b i t r a r y genus imbedded i n S®. . 

In the case of genus zero, the equatorial two sphere i s the only 

p o s s i b i l i t y , Almgren [ l ] . But f o r surfaces of genus one there exist an 

i n f i n i t y of non-congruent immersions. 
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CHAPTER I I I 

Th^ notations and formulae i n the f i r s t and second ^ection^ are the 

sane those used In Chapter I * 

§1. a^^ Scalar Curvature 
111 •! 11 l l . l n i l I I | W . • I . I I I I I 

We consider an isoiaetric lomersipn x Take a local* 

ctoa^ lection (Frenet cross-^sectlon) of In B and at x(p). Let 

n̂+N ^ r ̂ '̂̂  '^r ̂ ^^^ ^ e r e €(q) Is a function i n the neighbourhood of p e I I . Then, 

Havl-ng chosen the Prenet crosfi-seetion, 

• . . ^ Xg ^ 5 -J 

X̂ , ot = l , 2 , . * * , i r is defined continuously on the whole of # and X̂  

is defined to be the ot^^ SCAIAR CUHVATIIRE bf M"̂  i n B"*^ 

Prom the above, and previous work> we have, 

i < d 

^ • i < d 

_ *iddi 
i<6 

*̂* S(p) the scalar curvature iis defined a$ 
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1 

(S(p) is in t r i n s i c i.e. i t only depends on the metric). 

As escpected the scalar curvature and the a^^ scalar curvature have 

the ^olloving relationship 

S(p) = \Jv) + ... + y p ) . (5) 

ITOTE; ( i ) The scalar curvature i s just the sum of the principal curvatures 
taken two at a time i n each normal direction. 

( i i ) With regard to the notation i n Chapter I i t Is the second mean 

curvature. 

When the immersed manifold i s a two dimensionall. surface, the scalar 
curvature i s the Q-K cury. and as remarked earlier in the case of co-
dimension one i t i s the well known Gaussian curvature. 

Theorem ^.1.1 
For ifin n-dimensional manifold 1^ immerse^ in Ê *̂ , 

I* P(p)d7 
if. 'n . 

The equality holds i f f the co-dim. i s one and , ( i ) M° i s imbedded as a 
hypersphere i f n > 2, or ( i i ) as a convex hypersurface i f n = 2, 

where 
: p(p) - max{/|xJp)|V..,/|yp)|n}. 

Proof 
—TT* • . 

Since > Xg ^ ... ^ >jj 

p(p) . max{^^|x,(p)|^ / l y p ) ! " } . (6) 
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but 
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= Vn^P^ eos^e^l"^^ dgjj^^ using (2) 

^ f |p(p)Ecos2e^|"/2 ^^^^^ 

= P ( p ) j r ( £ c o s 2 0 / / 2 ^ a j j _ ^ 

= PfP^ Vn-1 

r K̂ *Cp)<iV ^ 2c„̂ jj,i (7) 

i ^ ^ ^ ^ ^ ^ ̂ Vn-I 

, r p(p)av ̂  ( 9 ) 

I f equality holds i n ( 9 ) , then 

® |K*(p)dV 

and from (Thern and Lashof f l } we know that i s imbedded as 

( i ) a hjTpersphere i f n > 2 , 

and ( i i ) as a convex hypersurface i f n t= 2. 

^ Kg*(p) = P(p)c^_l 

but p(p) i s alTMays positive, and since X̂^ ^. ... ^ y^, without loss of 
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generality ve can l e t > 0. Then X g ? « XgB , , , » i > ^ » 0 . Hepce the 

codimiension mast be one. 

Gorollary ^#1.2 

l e t l^* be a closed nanifold inmepsed i n b'*'"̂  (n 5? 3)» Then, 

p (\)^^ dV = and a ... o B 0 

M** i s inbedded as a hypersphere i n E°*^ . 

Theorem 3»1*3 

l e t be a 2m-dljnenslonal closed nanifold liBjnersed i n 1^"°^ with 

scalar curvature S(p) • Q. Thepj, 

Proof 

Prom the hypothesis 

S(p) = X^(p) + XgCp) « 0 

2TI 
a t « 

o 

I^*(P) = / |K3(p,eaa,2)rde 
0 

2w 
Kg*(p) = X > ) / | c o s 2 e r d0 

0 

c 
. m 

e a o J ' (p)dy - J K^ivW 
M H 
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i,e. f Xf (p)dy « r K* (p)dV , 

Corollary ^.1.^ 

I f i s a f l a t torus Immersed i n E* , then, Xj^(p)d7 5 2T^ 

and equality holds i f f ^ (p)dy = STT^ . 

This follows immediately from Theorem J.I.J and the result of Chein and 

Lashof [2]. 

This Corollary has also been proved hy Otsuki [ l ] . 

Remark 3.1.5 

A proof of theorem If 3 . 6 due to Chen [13] l i e s along similar lines to 

that of the proof of theorem 3,1.3, He considers a Frenet frame and shovre 

that 

h < g,S > = Uxjp) 

(^^(p) i s the f i r s t scalar curvature). 

Xi(p) + XgCp) a 0 so l e t Xj^(p) - -^^(p) = X say 

Then K(p,e) =» X(p)(cos^0 - sin^e) . 
Using the same technique as before we get, 

K*(p) = I^X(p) 

y x(p)dy ^ 21^ 

Hence f < H,H > dV ^ T X(p)dV ^ . 
If W 

The second part he proves by considering a function 

4. : i f -» E-* 
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defined by Ĉp) a x(p) + as i n lemsna 2,1 .̂3 and showed that i t i s 

minimally imbedded i n Ŝ . Therefore we can deduce fjTom the hypothesis that 

I t xoust be a Clifford f l a t torus. 

I t appea?rs that these methods of proof for immersions with S(p) a 0 

do not lend themselves i n the most general cases, i.e. when the immersed 
manifold i s not necessarily even dimensional and \Aien 1;he cordimension i s 
not two. This i s probably one reason why the problism In Remark 1.3.7 

cannot be solved so readily using these methods. 

The result of Corollary 3oU2 weis valid fpr closed manifolds of 

dimension thre^; however an analogous result for surfletces also exists and i s 

due to Chen [3]. 

Theorem 3.1*6 

I f i f -» Ê*''' i s an immersion of a dosed compact orlentable surface 

i n B̂"*"̂  then, 

( I ) >u a 0 » if i s esibedded as a convex surface i n a three dimensional 

linear subspace of E?*"̂ . 

( I I ) The f i r s t scalar curvature X̂  «a a (constant) and the last scalar 
curvature ̂  ^ 4=^ ̂  embedded as a spl^ere i n a three dimensional 
linear subspace of with rad. c 

The proof of this theorem essentially depends on the two following lemsoas 

ali^o due to Chen [3]. 

lewBa 3*1*7 

I f i f -* Ê'*'*' i s as i n the previous theorem, then ̂  > 0 i f f i f i s 

enbedde^ as a convex surface i n a three dimensional linear subspace of 

and 



Lemma 3.1.8 

f : -> ( N ^ 1) 

g : l ^ - » E 5 ^ 

be given by g(p) = f(p) V P e . 

p̂hen the L-K curv, I^(p>e) and Kg(p,e) of f and g satisfy the following 

equality 
^(p,e) = cos^e Ka(p,e») 

where ̂ * » unit vector i n the direction of the projection of e i n 

From these two lemmas the f i r s t part of ( i ) i n Theorem 5»lo6 follows 

immediately. 

Now, i f if i s imbedded as a convex surf&ce i n E° then, we can consider 

f» : if -¥ Ê"*"̂  and from leBana 3.1,8, 

K(p,e) = cos^e K'(p,e') - TI/2 ^ 9 < n/2 

and since (p,e«) ̂ 0 V (p»e») e 
» 
. 0 

I f pow Xĵ  =» a (constant) and ^ = 0, then, K(p,e) «» Xi(p). 

llbreover, L-K curv. » G-K curv, of f» induced by f but i f i s oompae-i; and 

embedded with constant Gauss, curv. 
,', i s embedded as a sphere with radius , 

Conversely, 
i f i f i s embedded as a sphere i n E^ \j l t h radius ^ , then 

. Va 
G-K curv. « K»(p,e) =. a V (p,e) e . 

2+N 
since K'(p,e) - ^ X^_2(p). cos^e 

• r=3 
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we have X̂^ = a (constant) 

and = 0. 

Hence the theorem. 

For complete orientable surfaces i f in Ê *̂  Shiphama [l,] bias proved 

that i f a l l the N scalar curvatures X̂ , \^ are zero then the surface 

is a cylinder. 

§2, Difference Curvature of Surfaces i n Euclidean Spaces 

As before I = dx.dx 
I I = -dx.de^ r r 

denote the f i r s t and second jEVindamental forms of a closed oriented surface 

i f immersed i n Ê"*"̂, 

Definition 3.2.1 

S(p,e) = i ( k j ( p , e ) - k2(p,e))2 

is defined to be the DIFFERENCE CUHVATURE of the immersion x at (p;,e). 

Definition 3.2.2 

Analogous to the definition of the TAG of the immersion we say that 

the integral 

S*(p) = I" S(p,e)dcJ 
over the sphere of unit normal vectors at x(p) i s the DjLi?'yi!a<E!NC!E CURVATORE 
OF THE IMMEIRSION x at p and define, -r — ' •- "• •••'̂  

r S*(p)dV to be the DIFFERENCE CURVATUBE of i f . 
I f 

i f X : i f -» Ê ^̂  i s an immersion of a closed orient^ed surface i n 
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Ê "̂ ^ then, 

J's»(p)d7 > 2gCjj^j (0) 
H ' 

where g i s the genus of i f . 
Equality holds I f f i f i s embedded as a sphere i n a linear subspace of E^^ (0)' 

Proof 
Choosing a Frenet firame, we can write 

2+N 

r^3 
KgCp̂ e) « ^ ^r-2* °°®^T 

• % y K2(p,e)d<T A dV « r ( ^ V2 • *̂ °®̂ r̂ 

. V i r ( z x , ^ ) e t . 

But the GauBS-Kronecker Curv, 

G(p) « \ + -co + . 

• using the Gauss Bonnet Theorem, we have, 

r K2(p,e)dO A dV o - r ^ . 271. X ( l f ) 

« (2-2g)Vl ( I ) 

Also from Chern and Lashof I I [2] ve have, 

f |K^(p,e)|d(i AdV > (2 +2g)Cj^^.j (2) 

Then i f U a {(p,e) e B^lKgCp,^) ^ O) 

V - { ( p , e ) e B j K g ( p , e ) < 0 } 
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(1) and (2) give 

- f Kg(p,e)do A dV ^ 2g c^^j (3) 
U 

J" S*(p)dy = J" S(p,e)dq A dV 
M B^ 

= jTS(p,e)dcT A dV + y S(p,e)d(r ̂  dV 
U V 

> s(p,e)d(T A ay 
u 

= f ¥(k^(p,e) - kg(p,e))2dff A dV 
V 

= |'[Kjp,e))2 - Kg(p,e)]<J<J AdV 

u 

1^ S*(p)dV ^ 2g c^+j (k) 

M 

K^(p,e) = ifc3^(p,e) - k2(p,e)}. 

^ K2Cp,e) = l e t (A^^j) 

Now suppose,equality holds in"(O) 

i.e. I" S*(p)dV = 2g ĉ ^̂  
M 

then, ( i ) K^(p,e) = 0 on V (5) 

( i i ) S(p,e) = 0 on U (6) 
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from ( l ) and ( 2 ) tre get, 

f Kg(p,e)d(J A dV = 2c^^^ (7) 
U 

from the f i r s t result of lemma 1.2,6 we know that i f is embedded as 

a sphere i n a three dimensional linear subspace of 

Conversely, 
i f i f i s embedded as a sphere i n a 3--illinensional linear subspace of 

then by direct computations (o) i s true. 

§ 3 . Submanifolds with Constant Mean Curvature i n a Rlemannlan Manifold 

In the last section of Chapter I I some results were mentioned with 

regard to manifolds vhose mean curvature nprmal f i e l d was parallel i n the 

normal bundle. 

Another important consequence of this concept leads to the conclusion 

that the mean curvature must then be a constant. 

Proposition 3.3.1 (Hofftaan [ 1 ] ) 

f : i P ^ ^ . 

H parallel |Ih|| = constant. 

Proof 
Let X 6 ^ (M) 

Then, X < H,H > =» < V^H > 

= < Ĉ xŜ V > 

But B i s parallel Dĵ g 0 

X < H,H > = 0 
|h|| s constant. 
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Remark 3«3,2 
The converse of this is false except i n co-dimension one when H 

parallel J|Hf « constant. 

For complete oriented surfaces with constant mean curvature Itph [ l ] 

has proved 

Theorem 3.?.^ 
A complete oriented pseudo-umbilical surface with constant non-zero 

mean curvature H in E* and Gauss Curvature K \jhich does not change sign is 
necessarily either a Clifford f l a t torus or a sphere i n E with radius 

liHl 

From lemma 2,̂ .2 we have (u^^ = 0 (because immersiqia.is pseudo-
\imbilical), and from lemma 2.U,3 i f i s contained i n C E* with radius 

He then proves, that a cosiplete orientable p.u, surface with constant mean 

curvature and Gaussian curv. nowhere positive i s a Clifford f l a t torus 

S* f •'=*"-•! ̂  X 3* ( -1 ^ i n E* , Furthermore, i f the Gaussian 

curvature Is non-negative then i t mast either be a Clifford torus (as above) 

or a sphere i n E® xdth radius , 
llHll 

The result of the theorem then follows. 
For complete surfaces i n E® we have, 

Proposition 3.3.̂  

f : i f -» E^ 

( i ) i f the Gaussian curvature TH ̂  0 then I t is either a minimal surf&ce 

or a right circular cylinder. 
( i i ) i f the Gaussian curv. K 55 0, then i t is either a sphere or a plane 

or a right circular cylinder. 
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Hence, 

Theorem 3«3«5 (KLotz and Osseiman [ l ] ) 

A complete orientable surface i n Ê  with constant mean curvature and 
Gauss curvature K which does not change sign i s necessarily either a sphere, 
a minimal surface or a right circular cylinder. 

M is a Riemannian manifold with metric tensor g. 

Definition ^.3.6 

( i ) A transformation * t M -» M is said to be COMPORMAL i f «!>*g = pg 

where p i s some positive function on M, 

( i i ) I f p i s a constant then the transformation is HOITOTHETIC. 

( i l l ) I f p is one i t is an ISOMETRY (metric preserving). 

I f X,Y,Z e X(M) and L^Q denotes the l i e derivative of the tensor g 

an infinitesimal transformation X of M is said to be 

COMFOBML i f Lj^g = Pg , P function on M, 

HOMOIffiiTIC i f Ljjg = eg c is a constant, 

KILLING i f Lj^g = 0. 

< Y,Z > = X < Y,Z > - < [X,Y], Z > - < Y, [X,Z] > 

= X < Y,Z > - < Vĵ Y, Z > + < V^, Z > 
- < Y, > + < Y, VgX > 

= < V^, Z > + < Y, V̂ X > 

(In coordinates, Lgj^^ =3 V̂ X̂ . + V^X^) 

Definition 3.3.7 

A one paraifieter subgroup of a Lie group (3 i s an analytic homomorphism 

of jR into G. 
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Yano [ 1 ] generali.zes to a general Riemannian manifold^ 

Theorem 3.3.8 (Katsurada) 

Let M be an (m+l)-dimensional orientable Einstein space and M a closed 
orientable hypersurface i n M whose f i r s t mean curvature is const^ant. I f M 
admits a one parameter group of confonnal transformations such that the 
inner product of the generating vector v and the normal T] to the hypersurface 
does not change the sign (and i s non-zero) on M, then every point of M is 
umbilical. 

Katsiirada's Theorem was i t s e l f a generalization of the Liebaann-

Sfiss Theorem (Chapter l ) . 

Yano derives the Minkov/ski integral formulae valid in a general 
Riemannian manifold. Working i n the classical notation a l l the time and 
using the standard formulae he gets, under an added assumption, that i f the 
vector f i e l d v^ on the manifold i s conforaial then, 

r a K dV + / P dV = 0 ( l ) 

r [ipv*^ Kĵ  + mpK̂  + mafmK̂ ^ - (n i - l ) l ^ } - K^j^'^l^ + OK^^TJ^TJ^ ]dV = 0 

. 

and 
(5) 

ir 

vhich are respectively the f i r s t , second and thi r d integral foi;milas of 

Minkowski. 

(T]^ are the normal vectors). 

Letting the f i r s t mean curvature K = constant he.recovers th=̂  result of 

Katsurada from ( l ) and ( 2 ) . 
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Furthermore, assuming that the Riemahnian manifold admits an 

infinitesimal homothetic transformation, ( l ) , (2) and (3) simplify to. 

a[(m-l)(K^'' - I ^ ) +iK^^TiS^3dV - 0 
M 

and therefore. 

Theorem 3.p»9 (Yanp) 

I f i s a closed orientable hypersurface of an (n+l) dimensional, 
orientable Rlemannian manifold M, whose f i r s t mean curvature i s constant and 

(1) M admits a one-parameter group of homotjietlc transfozmatlons such 
that the inner product of the generating vecto:p;v ^rid the normal tj to the 
hypersurface do not change the sign (and are non-rzero) on 

^31 ( i i ) the Ricd curvature K.. w.r.t.. TJ*̂  i s nonrnegatlve on M. 

Then every point of S i s an umbilical and n*" H'' *« 0 on M, • 

Yet another generalization of the Liebmann-Sfiss theorem to arbitrary 

co-^dlmension and any ambient space form is 

Theorem 3.3.10 (Smyth [1]) 

A coorpact Irreducible submanifold M of cpnstant mean curvature. 

(H ̂  0) and non-negative sectional curvature must l i e minimally i n a hyper­

sphere. 

Definition 3.3.11 

A Rlemannian manifold i s said to be reducible or Irreducible according 

ai? the linear homogeneous holonomy group at a point p e M i s reducible or 

irreducible as a linear group acting on the tangent fitpace at p. 

Finally a result on submanifolds with constant mean curvature. 
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Theorem 3.3.12 Chen [22] . 

I f there is an immersion of a closed n-dimensibr»al manifold i n a 
euclldean space of dim-(n+N) and i f the mean curvature has constant length 

/ c \ 1/n 
given by IH(P)|| « ( — ) , then IT is immersed as a hypersphere 

^ V(M) / 
/ V(M) \ 1/n 

with radius ( — ) In an (n+l)-dimensional linear subsjpace of 
. • n 

_n+N 
fie 



CHAPTER IV 

§1. Introduction 

The variational problem for surfaces i n E^ was f i r s t considered by 
Hombu (paper unpublished). He took the variation along the normal 

direction and found that for the integral / < H,H > dS to be 
i(*f) 

stationary 
m + 2H(H^ - K) = 0 

(ef, pg. 2 1 Chapter I ) , 

Recently Chen [ 2 3 ] generalized this, result to hypersurfaces i n a 

eudidean space. He calls the hypersurface stable i f 

dV a 0 

for any normal variation. 
Here, |i a [|H|| . 

In [ 2 5 ] he showed that i f the hypersurface was stable i t ̂ vas 

necessary for 

An"""̂  + m(m-l)n"'*^ + v!^'^ R a 0. 

R i s the scalar curvature of M i n 

In this chapter we show hovr this result can be further generaliaed to 
manifolds immersed i n any general Riemannian space. The methods employed 
follow a similar pattern to that used by Chen but Instead of using the 
ordinary vector calculus we now use the tensor calculus. 
(Chen could use the vector calculus because i n the euclidean space covariant 
differentiation is the same as part i a l differentiation), 

We shall see later that the result reduces to that obtained by Chen when 
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the curvature of the eunbient space i s zero, and for surfaces i n i t is 

the same ̂ s tliat originally obtained by Hombu. 

§2. FoCTulae and Fundamental Eguations 

Let f ; M -» M be a smooth immersion of a closed orientable m-
dimensional manifold in a smooth (m+l)-dimensional Riemannian manifold M. 
Let (x-^, x"') be a local coordinate system valid in some neighbovirhood 
of a point p e M and l e t (y^, y ) be a local coordina^ system in 
some neighbourhood f (p) of M. Then, 

y" » f«(xS x^) (1) 

As usual the Roman indices take values 1,2,.,,,m and the Greek indices take 

values 1,2,..,,(m+l). 

I f (Sf^^) is a metric on M, then the induced metric (g^^^) on M is 

given by, 

h3 ^ i ^ap 

vrtiere f. « r 
1 Sx^ 

l e t f " , = - n ^ - r j . f j . 

Let n" denote a unit normal vector f i e l d on f(M) defined locally and 

l e t (h..) denote the second fundamental form corresponding to the normal 

direction. Then, 

H . i ^ g ^ ^ h , . (3) 

Henceforth (,) w i l l mean covariant differentiation and • vri.ll be 
ay denoted by g, 
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Also, 

(the sign i s <-ve that used i n Chapter X) 

aiid the volume element 

W = « 1 = /det dx» A A dx** , 

and g^p n" n^ « 1 (9) 

f ^ , - f ' [ ^ . 5 ] o i g " ^ i p 5 , , * - g p , , , ) (10) 

A l l these formulae can he found i n Eisenhart [ 1 ] . 

§3, yariation along the Normal Direction 

We consider a family of immersions given by f^ ! M X I M 

paraiaetrized by t , \*ere -6 < t < +€ , 
Assume that f ^ varies dlfferentiabJy with t and fp » f. Then, 

f j - f V t * n " ( 11 ) 

* i s a C^-function defined on M i n teims of (x̂ ,...,x°')» 

and denote — 
t=0 St taO 

l,et ^ ° 1^ ̂  denote by 5 f " , 
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Then from (11) ve get, 
Bf" = (12) 

and 

5f? o *.nV<!.n" (13) 1 * i »i 

^ n"+ *.n^ + •.n", + *n^, . (ih) 

Now, 
8 / u ' -^ l = 8 f^""*! = BjT (g^^ \ ^ f * l 

= Jmv^'^ (5g^^ h j ^ + g^^Bh^j)*l.+ I"a"' 8t? du» A A dû ' 

(15) 

g..- = So ' i j - i *d âp 

= ( * , i ^ ^ - : i ^ ^ < < ^ < % . y 

,= - ( h , , g ^ ^ ^ f : ^ ^ r - f^n-f^.h,,g^^/,f« 

5g^^ = -2<t.h^^ + (-[m^,3]f? f ^ - [Iî ,«]f5 < + i i ^ p ^ ^ 

A 
0 s 
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(The tern i n the bracket vanishes on further simplification since the f i r s t 

and t h i r d tezns are synmetrlc i n \i and P vhlle the second and fourth are 

synmetrle i n a and p). 

Transvecting with g^^ and substituting for ^g^^ w get, 

SgP^ - +gJ^g^P2*hj^ 

2 f b (17) 

• ^ 2 ^ ^ ^ K . ( 18 ) 

= £gĵ (̂cofac g^j) a 0 

• 0 2W.5W « 8g^^ (cof&c g^^) 

B - E 24>h,. ĝ '' 
1,J 

• « 8W a -2m«nW (19) 

(17) and (19) giv« the f i r s t and t h i r d terms In (I5)t We nov vrork out 

the second term i n (15), 

* " i d »X3.r * 8„p 6,.̂ ) (20) 
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Usliig (Ih) 

_ a 6 # a a a a . B 

= Vo- *Vj n^ 

V ^ a p n V ^ ? f > r - f? n ^ ) ] 

= ^ l J * * ^ l d S a ^ ^ ' - v » ' n ' C ^ ^ l ^ ^ ^ J ^ ^ > 

(21) 

Now, 
a . m -a pa \i 

-F" f^^ h"' f'' - f^" F̂  f® n^ l (22) 

and. 

(23) 



Finally, 
a p 

Sap " 

8 0 . 

2g^p 5n^ n" + g„„ 5f^ n° n^ =. 0. 

I.e. 

1 A - a P 7 a-tgap.^ n. n. n (21*) 

Nov; substitute from ( l 2 , 15, 2 1 , 22, 25. f̂ Ô to get, 

HU 65 i 0 

1*.-. ot p 7 
+ ^'^gap.7 " " ^ • 

Some of the terras cancel out as indicated and we are l e f t with. 

id , i > j i mj 
r" r"" - f'^ f® f^ n^ 

+ r'̂  f ^ f"" X? 

2 bccfĵ y 
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5h.^ » A* - ĥ̂ " h^ - ORp̂  n^ n̂ .; (25) 

1 V M ^ 
^ S i f j ^ \ z 

m(S|i) = 5g^^ h.^ + g"" Shj^j 

k , je k ,J -1̂  5 = 2* h^ + A* - <l>h" h,: - R̂.̂  n'- n 

A* - <!>ĥ  hj^ - *R̂ 5 n^ n^ 

Rewriting (7) 

\ i \ l 

i£ ik 
Tran^tvecting with g g'' we get, 

R = (hj[ h^ - m̂ tx̂ ) + R 

I ,1c h^ = m̂  n2 + (R - R) 
k 

(26) 
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m(6o) = A* + *m2|i2 + <D(R - R - R _ n»* n^) (27) 

Jm 

f + Om̂ nS + 4>(R-R-B^g n*̂  n^)] - M̂ ^̂ m*} * 1 

r [ t i ^ - ^ A * + •m(m-l)n'̂ '"̂  + •tx"'"^(R-R-R,g n*" n^)3* 1. 

Applying Green's theorem (of, Flanders [ l ] ) .to the conipact 

manifold M, give^^, 

^ence, 

b J^ir"*! « jT 4>[An"'-l + m(m-l)n°-'̂  + (R-R-B^g n^ n V ' ^ J ^ l . 

Since this must be valid for a l l alloxrable we have, 

An^-^ + m(m-l) + (R-R-R|^g n*" n\^-^ = 0 (S) 

(S) i s the necessary condition for.the imbedding of M i n M to be a 

stable hypersurface. 

Remark <̂-.3.1 

When M i s a euclidean space = 0 and R ?= 0 and (S) reduces to 

An"'-̂  + m(m-l)|i''''^ + R = 0 

which i s a result of Chen [ 2 5 ] . 



83. 

Remark ^ .^ .2 

For the particular case T̂ hen m = 2 iand the co-dimension i s one, 

(S) becomes, 

£^1 + 2\i(\i^ - K) = 0 

a result due to Hombu [1] . 

§iv, Ajjpllcations 

Choose an orthonoraal frame at p e M so that the second fundamental 

form is diagonalized to (X^, X^). 

Then, since h^ h^ = trace (h^), we have ^ = + • 

^•, (26) can be written as 

^ • • X = m 

i.e. 

n^ix^ + (R - R) = X̂" + ... + 

. R-R,= ( f X i ) 2 - ( p . ^ ) 

i < 0 i J 

From the inequality on elementary symmetric polynomials vre obtain, 

(cf, lierawa 1.2,1) 

m(m-l)fi^ + R-R ^ 0 (28) 

Condition (s) can noxr be w i t t e n as 
AV^~^ = -Ii''~^[m(m-l)|i2 + R - R - n^ n̂ 3 (29) 

Theorem h.k.l 
. ... I , ... I .... » , • 

Let 1^^-^ be a canipact orientable manifold immersed in a Siems-nnian 

manifold whose Ricci tensor is negative definite.. I f 

stable liypersurface then, i t i s a minimal hypersurfacie. 



Proof 
Since the manifold is stable, 

An^-2 = -n2^-2[ (2m-l ) (2m-2)ti2+R-.R-^gn^'n^] (50) 

Since (l^g) is nejgative definite, ,*, using (28) we see that the l e f t 

hand side of (50) has the same sign as 

But > 0 

hence /bii^"^ ^ 0, 

,*, from Hppf'$ Lemma (Kobayashi and Nomizu I I [ l ] ) we get, A|4 ~ = 0. 

Hence n. » constant. 

But from (50) n = 0 i s the only possibility. Hence is a minimal 

hypersurface. 

HOTE h,k,2 . 
m m . f . . i i , . ! I . • I. 

The above result contrasts strongly vdth the case T'jhen the ambient 

space i s the euclidean, Ê '̂ , 

As before, we get A j i * ^ " = 0 

jx2°^-^{(2m-l)(2m-2)jx2 +R} = 0, 

Here we have to reject the solution | i = 0 for i t i s \rell knoT-m that there 

dp not exist any compact orientable minimal submanifolds in a euclidean 

space. Hence, the only possibility is that 

(2rfl-l)(2m-2)n2 + R = 0 

and tliiS' = ,,. = points. 

Hence every point is an umbj-lic and we recover the result of 

Chen [ 2 5 ] . 
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Theorem h,h,3 

Let be a coztrpact orientable odd dimensional manifold immersed 

in a euclidean space E^. I f i s a stable hypersurface, then i t i s 

necessarily a sphere. 

Results for even dimensional manifolds can also be obtained in a 

similar manner on further assiwiption that the mean curvature, H, does not 

change sign. We xrould have, 

Theorem h,k,k 

I f an even dimensional compact orientable manifold is Immersed in 

a Rlemannian manifold 
^ + 1 

vAiose Ricci tensor i s negative definite and the 

mean curvature of does not change sign, then i f is a stable hyper-

surfhce, i t i s necessarily a hypersphere i n 
Methods used for the variational problem i n §3 can be applied in a 

similar manner to investigate stable submanifblds of arbitrary co-dimension. 
I t i s indeed clear that the nujnber of equations (i.e. conditions for the 
submanifold to be stable) thus obtained w i l l depend on the co-dimension. 
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