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ABSTRACT

The purposé of this wofk is to give some results on the various
Icurﬁaturg measures on manifolds and also have a brief look at minimal
| immérs;ons.of manifolds in Riemgnniah spaces,
. With regard to the former, the first chapter deals with the 1th TAC
. as defired by Chen [9],
In Chapter II we look at minimal immersions of cqmpact manifolds in
Riemahnian.spaces and in particular at pdeudo-umpilical {mmersions - the

- term firat introduced hy Otsuki,

‘The two more familiar curvatures are the scelar curvature and the mean
curvature} and ‘in Chapter III we define the ath scalar curvature, Finally

we look at submanifolds with constant mean curvatufg.

Lastly, in Chapter IV, a differentisl equation is derived for "stable

hypersurfaces", A hypersurfacé is said to be 'stable' if

- B /~ < H,H >n/2 #1 = 0 for any normal variation of the integral. A
Mn- _ .

particlar cese of this problem,(i.e. for surfeces in E®) vas first

considered by Hombu.

A bibliogréphy follows Chapter IV.
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SUMMARY

In the first chapter we collect results concerning the integrals of
various curvature measures on manifolds.
The origin of this theory dates as faf back as 1929 in é paper du: to

Fenchel [1]. ‘He proved that for a closed space curve of class C2

[lklds > on
c

vhere d8 is the line element, k, the curvaturé,-and-the integrai'is taken

over the closed curve, Equality holds only in cases of plane convex

curves (ovaloids) and conversely.

" Since then Chem [1] has generalized this result to closed manifolds -
immérsed;in euclidean spaces. ' | o ) |

The 1B Total Absolute Curvature was defined'bj Chen [9] as

[ 5@V a0 a a
B_D :

and some results concerning this integral are dealt with in this chapter,

The two main curvature measures are the Lipschitz-Killing curvature

and the mean curvature., The former is defined in terms of the determinant

_of the second fundamental form while the latter is its trace.

We also give a few resuits with respect to the intermediary curvature

. measures. However, all these curvature measures have not yet been fully

investigated and much work still remains to be doue.

Having considered immersions in'euclidean'spaces in the seccnd chapter

‘we focus attention on submanifolds immersed in a general riemannian space.

It is well knowﬁ that there do not exist any closed combact crientuble

minimal (in fhe gense of vanishing mean curvature )subménifblds'in a

. euclidean sbace ef Myres [1]. However, when the ambient space is non-
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euclidean the above statement uay no longer be true. ~ In particular we
look at minimal immersions in spheres (i.e. when the ambient space has

constant- curvature).

The term pseudo-umbilical first introduced by Otsuki is also defined
"~ and we have a brief look at pseudo-umbilical immersions. -
Finally we examine minimel immersions of "Clifford manifolds" as
dealt with by Chern, do Carmo and Kobayashi [1].
" The third chapter is partly a continuation of the first. - _We-define
__theaﬁh scalar curvature and also introduce the notion of differenée'
curvature due to Chen [4], And lastly we give a few results on immersions
wifh constant mean curvature. .

~In the last chapter we concentrate on deriving a différentiai eqﬁation

which is a necessary and sufficient condition for a submanifold to be

"stable" in the case when the ambient space is a general Riemannian.




1.

CHAPIER I

So .

Following Chern and Lashcf [1] we consider x- Mn - E™ yhere
x is an immersion of an n-dimensional compact orientable Cé—mnifoid
M® in a euglidean space of dimension (n + N). If x, is non-singuiar
_(:"L.e. . the induced map has full rank) fhen T is called ‘an immer;ion- |

+N
oM > 1, BTV,
* ' p x(p)

'F‘urther if x is one~one then x is called an imbedding.

Let F(M") and F(En+N) be the bundles of orthonormal frames of M"

" and Dn N A frame of F(Enm) consists of a point x(p) together with a

set of (n + N) mutually perpendicular unit vectors,

n+N

Let B be the subset of M® X F(E" ) given by,

n
B = {b = (P, x(P}:‘l"."enl-N) I (p, el)""en) € F(h’l )

n+N ) }

(x(p)el, ces ,en I_N)e F(E

We define the projection map X:B - F(E ) by

- %) = (X(P)f—'l;”')enﬂ\j)
X*
nH) - F(En N)

B » M xF(E
X
Let ]éu be the bundle space of unit normal vectors of x(M?) .then,
= {(o,0) | pe M, ve N M at x(p)} . B, is the bundle of (N-1)-
dimensional spheres over M', For each (p,u-) € B\) the unit normal vector

: - +N .
v at x(p) can be identified to a vector at the origin of En « We define

; TWW .

. odlenar -

q_< 27 JUN1972
E0TI0L
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2,

" the Gauss map

n+N-1 n+N

$:B =~ 8§ CE vy B(p,v) = v(p).

v o

n+N

S;‘*N'l ] the 'unit sphere at the origin of E° ©s According to dhern and
Lashof [1] there is on B, a differentisl form do of degree (N-;l) whose

~ restriction to the fibjre is the volume element of the sphere of unit

" noymal vectors at p € M.  We denote the volume  element -of M® by Vv,

" go that 1t is a form of degree n

~ then, - do A dV is the volume element of B, .

 If é8'= volume element of S?N_l, since do A dV and df are differential
forms on 'BD of maximal degree, we can conclude that they mu.st'_ differ Sy
‘& constant. - -

If 6, and 6 denote the 1-forms and the connection forms on

A AB
F(Enﬂ\l')
then, dx = EGA' &
. .dgA = %eAno eB QAB + 8 = Q.

We will follow the usual convention for the range of the suffixes,

i.es 1,J,k cse =2 1,2’000 n
ry8yt ees = (n+1),(0t2), oo (n¥N)

A,B,C e00 = 1,2 o (n"’N)o

Taking the exterior derivative of the two above equations and simplifying

we obtain the Cartan Structural equ'ationg
deA | = geAB A eB
deAB = %éAc A GCB .

Let @, and wyy be the induced forms on B

i_oec _ . _. = ?"*GA
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W, iy sosy @ i8S a dual basis to € s...35e_, & basis of the tangent
1% n 1 n .

space abt p.

Oon N* we have, ®, = 0

therefore dmr =0 = i AW,
we can write o = 3 Ari j wj
and - A ..=4A_.. o

(It may be remarked that the Ari j's are the coefficients of the second
' fundamental form. cf. §1. The sign here is also negative to that

generally used by Chen. ).

Restricting the forms to M®, we get,

dx = Fo; &

dei = gh)ij E!.j

dw:l- = ?mij Aa)d

dayg = ZWa A Oy

therefore - dwij &= Ewik A askj-i--% kuR 13kl ® (uxk A mz).

Rigie = ~Rpnx Apgr ¥ Apan Aogx
Now an = “’1'\‘" /\ﬂ)no
and Aoy ; = Gpyy Aot A O ne-1

- A . .
T Rl T C-RANCLLIAR WS P |

\ *
therefore T* A2 -1 Py, 1 N 000 N iy nen-1

(-1)" et (A A oo

]

n+1\I,1j)w1 Ao A0 A mn¥m,1

0vo N

ntN,n+N-1

G(p,0) s AV A do




vhere G(p,v) = (-1)", det (An+1\l,i:j)

G(p,0) def TLipschitz-Killing curvature.

1 G(op) = G(p) = Gauss-

Note 1. When M is a hypersurface of E_n+
Kronecker curvature and when n-= 2 and N = 1° G(gp) is just the

classical Geussian curvature.

§1. _Tl?g 10 jean Curvature
_".F.q'r' o pair (p,'er) € B the first fundamental fon'n_.and_th'e -secor'ld-.
.' ﬁxnﬁamental forms, in the direction €. of the .imersion_s are g:lven- by
I :dx.dx
IIr : -dx. der .
The eigenvalues kl(p.,er), ky(pse,) eoo k (pye,) of I, with res-pec_t._ to I

are defined to be the principal curvatures of M" at each point p € M

in the direction e, o

Deﬂnition 1, 10 1

The ith mean curvature in the direction e, denoted by Ki (p,er) is
given by equating the coefficient of t°, 1, ..., t" in the following

equation : _
r ) s( " )k (p,e )t
det (8 Tt AL = ) Kooy

where & 1k is the Kronecker delta

<:>K1(P:er) = & kl(p’er) e .ki(i”e.r) o o l

i = 1,2,...,1’1.
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Note 2 K, = 1
Kl(p,er) = mean curv. of the immersion at p in the direction €.

' I;n(p,er) = Lipschitz-Killing curvature at (p,er).

Deﬁhition 1,1,2

The integral Ki* (p) = [ IKi(p,e)IU/1 do over the sphere unit
' fibre :

normal vectors at x(p) is called the ith TOTAL-ABSOLUTE CURVATURE of the

immersion x at p.

f "KF(p)aV 1is defined to be the 1th TOTAL-ABSOLUTE CURVATURE of W,

M

From (0) it follows that

= T

H = = § Kl(p,er)er .

Z'.A
r,i

= g T3

rii Cr ¢

The Ricei tensor and the scalar curvature R are given by,

R

Ik
R

11
M HM
=

We will denote the length of the mean curvature vector by « i.é.

« = ||H|| and by S the length of the second fundamental form,

»fz(A)

r iJ

. Then if we let s

s =N £ (a..)P

ryl,y T

Rijkz = A Ar;]k “ Ak Ay




)e

Rog = T igki E(Arii_ Ak ™ Ak Ar;]i

| I (2 (Aygy Apyy - Apyy Argy))

=
u
v
&:w
1]

Note  1.1.3 _@‘renet Frame)

| Let (p, €19 Cp soe en’.én+1""’§n+1\r) be'a local cross ‘section of e
in B and for any e € slg-l let |

= Ecos er.er(p) vhere § <:0526r = 1.

e = ey
A, 13 - Zoos 0 oKy, S
‘and . A.rij ) Ari;] I local-cross section
then (:)KZ(P’en+N) = 153 (Arii Arj:i ) A::‘id) . (2)

From (1) and (2) it follows that.

N ' - l
( . ) Kz(P"‘me) = igj { ();‘: cos 6, Arii)(g cos OB- Ks:j;]) - (E A.ti.j)a} .

Choosing a suitable cross-section of B - F(M*) we can write,
. - 5 2
Kg(p,en+N) = ? Mg 0556+ X =N, 2 vee 2N .
Such a cross-section s called the FRENET OROSS-SECTION and the frame
(P, x(p)el,...,en,€n+1,..o,§n+N ) the FRENET FRAME_.
A s = 1,2 600,N is called the «*B curvature of the second kind (later the

a

ot gentar curvatﬁre).
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n
Also, _ H = < . )Kl(p,e) K, (p, § cos Gr . E, )e

Z cos 6. X, (p, & )e

§ cos er . "r-n

p(p) = K.(p, &)
By s @=1,2..0,1 is called the ot curvature of the first kind.
Henceforward we shall denote

the Lipschitz-Killing curvature by L-K curv.
Gauss-Kronecker curvature by G-K curv;

Total Absolute curvature by TAC,

The volume element of an n-dimensional unit sphere will be denoted by c,

"~ and is given by

| or (3)ntl | -

e = ———— (cf. Flanders [1]).
r((n+1)/2) |

§e. Some genez_'al results concerning the value _of the integral of the jth

TAC of M.

Lemma_1,2.1 (ef. Hardy, Littlewood, Polya [1])

Let 8y3000;8, be a set of n-non negative numbers and Si = ith

elementary symmetric function of &;seee &, e

- Let M.=S/<>

. \ |
then )" > (ME)“/ > .02 M (1)
and equality at any stage g==p 8; = 8, = o = 8.0 : (2)
Prqof'

Using Newbon'é inequality on elementary syrmetric functions
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. .2
viz: Mp MP"'2 > MP"'l P = 0,1,2y400;(n-2)

and employing it successively we get (1) and (2) follows quite straight-

forwardly.

Lemma 1,2.2,

Let (fi J)(e) be symmetric (n X n) matrix valued function on the unit -

(w-1) sphefe- in BN given by

(fij-)(e)‘ = §cos e.r"-Ar..’L_,j

wlqere Arij ¢ R and X cos ,ar 1. ]

e = § cos 6 .e, and e, = (0y00091p 0y00050)s = - - .
If (fi j)(e)'has the seme eigenvalues at every point on a non-empty

open set U of Slg-l then it has the same eigenvalues at every point of

&

Proof
Let U= {pe Slg-ll (fi,j)(e) has same elgenvalues) .
lees - Y = {pe slg_l I ki(P,e) = kj(p,e) V i and J} .
Now U is open by hypothesis (1)

Claim: U is closed.
.Cons'ider,ki, k-;j : U= R 143, k, and k 4 &re continuous
functions. Define h:U = K X R by h(p) = (k,(p), k,(p) )e

Let m, t R XR ~ R be given by nl(é,,b)

= a

- and - m, ¢ IR X R - R be given by na(a,b)' = b,
then,. : moh = ky
'n:zoh = kJ o
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h is conbinuous beceuse =, and m, are continuous « Let

2 = {(k(p), k,(p)) € B X R[k;(p) = k,(p) }
then, . _ ' ; o
 we) = {pesy G =xG)) = U
2 i85 closed
o e i- - Uis closed, -  | _I I ) I
. Frop (1) and (2) U nust be all of §_
., Result follows.

Lemna 1.2;2
 Let x s M > E™YV pe as vefore.  If M” is totally umbilical in
"N mpen M® 15 immersed as a hypersphere in an (n+l)-dimensional

linear subspace of Y (> 1),

Let U= {peM | H(p) o0}
Sinée'theié doesg nat exist any closeq nininal subménifoldé in a euclidean
'-_}spac§:U A' .

oy <H,H P exists on U and is non-zero.

- Leb - o ) =
. : &, = T 1
wl <y

't."hen, ASij = 0 . . (1)

8= (n+2),...,(n+_N) i,j = 1,2,;00.311_0
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e.* 0 = day, = 1,n+1 © Tn+l,s
= 0y ntl,

w cw, .
Now __(Imi,n+1 I % A jsntl ¢
also oy ey = dEAG - Codo
= da AW .-(!.,a)i;j ij

. .-——-—-b ao /\(.oi 0
""—"—'-'-‘) « .is constant.

,’.l.‘he 11near spa.n of {en+2, en+.5,...,e N } is 1ndependent of p. and therefore
Mn is immersed as a totally umbilical submanlfold 1n ‘the. (n+1)-d1mensional

linear spsace of E N spanned by €35 voey e and ‘the mean curvature vector.

e M is immersed as a hypersphere in this (n+1)~dimensional

1linear subspacec.

ﬂemu 1,2k
Consider x : M = BV,
If B, the normal bundle is the union of U and V such that °

U = {(pe) € B[, (5s6) = ver = Kk (pye) 4O}

vV = B”-_-,IU and _Ki(p,e) = 0 everywhere on V

fOI' ﬂxed i = 1,2..0(11-1)0

“then,
' U - M is surjective

n(p,e) = P.
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'A.proof- of the above lemma can be found in Chen [9].

‘Theorem’ 1.2,5

_x:Mn—-;En"'l\T .

Then,

/:l K:'{(p)dv ? cn+1\]._1 - i = 1,2,.,[1
M o .
where °n+rt-1 is the volume element of unit (nJ'rl\I-l) sphere, .
" Proof’ |
‘ l - ‘~ n+N-1
As bgfore u.Bu-’ 8o o -
. o S
For a fixed unit vector e=e . € Sg N-1 e.x(p) is continuous on M and.

:°s has at least one maximm and one minimum (because M is closed), say

at pand q resp'ectively.

e'o A is negative definite ‘and positive definite at these
n+N,iJ .

: points,

- Let U* = {(p,e) ¢ Bulkl(p,e), ceoy kn(p,e)- are cither all 20 or all SO}

n+N-1

By the Gauss mep So is covered twi'ce and since,

[ -lKﬁ(P,e)ldo A @V = vol. of im(U*).
U* :

ole We haVe,. _
' 13 > Zea }
[ IKn(p,e)ldO' A dV = ‘cn+N_1 o
U*

but, by lemma 1,2.1 il{i(p,e)]n/i > IKn(p,e)I on U* _

o' e [ IKi(p,e)In/“'L do A &V > IKi(p,e)I.n/1 do A 4V
. B - _

Uk
.0 '
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> f K, (pse)|da A gV,

ntN-1 °
Theorem 1.2.6

. Under the same hypothesis as Theorem 1.,2,5 if [ Kr(p)dv = 2cn+N 1
: : ow

.' . then M” is. imbedded as
(1) a hype'rsph_ere in an (n+1) dimensional linear su'c‘sp"ace.of_l"'l_n_fm if -
i'<n and converse:ly ’ |

(11) ag & convex hypersurface in an (n+1) dunenaional subspace of E

if i = n a,nd conversely.

| For i =-n see Corollory 1.2.8.
Assume i # n,
i._éﬁ- U* be as in Theorem 1.2.5

then, - %, ()" = % (0se)] om U

. :' ) - - _ +
e,nc ) _Ki(p,e) 0 onB, - Uk

.I;,et U = {(pje) e B[k, (pse) = co0 = k (pse) £.'0"}

-In particular K, (pse) =0 on B -U { = 1,2,,00,n-10

W' By lenme 1,24 m:U- M is surjective

e forevery peM 3 non-empty open subset‘ of the fibre SE_I
of B such that all the principal curvatures are equal.
This exists and by lemma 1.2.3 (since the principal curvatures are equal on

. a non—empty subset) the principal curvatures are equal at e.ll points on Mn
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Hence M is immersed as a lwperspher_e in an (n*1)-dimensiopal linear sub-

space of En+N.
° ¢ [] ' = *
. Bu U
and hence [ Ki"'(p)dv = 2€ w1 ¢

Mn
Conversely, if M® is imbedded as a hypersphere in an _(n+1)-dimensiona1

A . - .
linear subspace of E_n N then all the principal curvatures are equal and

the result follows immediately.

.COrollzhry 1,2,7

" The case for i =-1 has also been prbw_red by WiJlmblfe 2]

Corollary 1.2.8
Pheorems 1,2.5 and 1,2.6 are well known theoréms of Fenchel, Chern
and Lashof [1] in the case when i = n, In fact Chern and Lashof [2]

ﬁave further shown that

- n
[ lKn(p,e)Idd AQV 2 Cn+N_1 . Z Bi(M)
=1

B,
where £.B; (M) 1s the sun of Betti mubers of M.

Corollary 1_.2.9

Under the same hypothesis if f K: (p)av <.3°'n+l\l-1 then,

M is homeomorphic to an n-dimensional sphere, For i =n, the same

result has been proved by Chern and Lashof [1].’
It wlll be seen later that the value of the integrals can be improved

in some cases particularly with restrictions on the scaJ.ar curvature of the

immersed manifqld.




by,

In a-series_of papers on TAC Chen [1,6,7] generalizes the L-k.Curv.

%o manifolds in & simply connected Riemannian manifold with nonepositive
'sectional curveture. He proves various results for TAC of manifolds

immersed in a general Riemannian manifold concentrating largely on

: surfaces in real space forms,. " A Riemannian manifold of constant curvature
' is said to be elliptic, hyperbolic or flat (1ocally Euclidean) according |

- as the sectional curvature is positive, negative or zero - such. spaces are'

called space forms,

‘ In the last paper of the series he deals with the TAC of bounded and '
'-1cornered manifolds and also finds a relationship between the TAC of totally
u'geodesic manifohds in & non~-trivial riemannian space. Attached-cornered
'_and product cornered manifolds are also considered from the point of view

If'of obtaining gome results for TAC,

He finally looks at K&hler manifolds and shows that under certain '
conditions there exists some relation between TAC, the_Riemannian curveture

end the second fundamental form.

Prior to Chen's work, Saleemi and Willmore [1] had generalized the .
concept of TAC to manifolds in an arbitrary Riemsnnian space and in the
perticular case when the ambient space was euclldean it reduced to the result

of Chern and lashof [1].

, Theorem 1,2,10

x ¢ Mn ) Eﬂﬂ\T &8 before.

'Then’
[<H,H>/dv > c ,

n
M

' where H 18 the mean curvature vector of immersion.
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Eq_uality holds 1ff M is 1mbedded as an n—dimensmnal hypersphere in

(n+1) dimensional linear subspace of E" N

Proof. _

Choose a frenet frame (p, x(p), e 19 seey en, _n+1’ cooy n+N ) in B

such tha_t §n+1 is p_arallel to the mean curvature vectors

Then, _- L A_, = 0 . s = (n+2),.'..,(n+N).,'.

end - S -n,;_:AnH,ii _.<H,.H>__..

By the choice of frame we also have,

'en+1\T = E cos -er. e, . '
.' e.-0 K (P’ n+N) = U cos er . Kl(p’er) R

= cos 6, {6y ]

[ |IK_..,.(p,en+N)|n do A dV [ cos” 041 I_H_(p)ln do A @V,

B‘D : B'o

ce '
3 [ ) av

Lun Mn

Substitﬂting the value in r.h.s, from theorem 1.2.5 we get after

‘ simplifying

[ <H(p),E@) >Tav = e
1

2 |
[ cos® 6, 40 = *N“1.> o,
X1 %
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Proposition 1.2,11

. Unde? the same hy?othesis as the last theorem and further if n is

even and the mean curvature normel vector does not vanish in any directmn,

} Pai
[ ewas . (L2

M

then,

| nmal‘lw holds: iff M2m is embedded as a sphere in E" n+l .

’ PTOOfo :

‘From Chern ‘and Lashof [2] we have,
[ Immelasnar 2 Eo,00 ey, o
B L '

v

.' Rewriting, we get, '
[K.n(p,e)do‘ AdV - [Kn(p,e)da AdQV 2 (f -51) '°n+N-'1" (1)

wher_e )

U

1}

{(pse) € BIK (pse) 20}

A

{(pse) ¢ BblKn(p,e) < 0} o

“ -Also 'f"rom Gauss-Bonnet theorem,we have,
[K‘.n(p,e)dcr AV = x(M) C el -

’ 1;39 . i
| [Kn(p,é)do‘ A QY+ fKn(p,e)dc AdY = 2;(-1)*,L .Bi_(M).cn,,-_N_l-_ (2)
v : .

o ‘f;rom (1).and (2)

[Kn(p,e)do AdY = (yi 321) cn+1;1_‘-'i . . - (3)
v . A
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Choose a frenet frame in BD .

Then, - e = e = )'i‘..eos er. Ei- ’
nd -
and, K, (pse) = Kl(p,_ );.' cos 6. & )
= Ecos Gr.Kl(p,ér )
N ' * .
= Z cos 6. ua.(p) '. (4)
o= | o
vhere; - (D) = K /(p, &)
s (kn+a’1 + o0 + kn+a,n)-'e!_l"€¢ (5)

9 . - : ;. € -
oo Kl(p,_e) &= (kn+1,1 +ioot K +1,n)c°8 e 1"en+]_. + ?90

*o00t K )COS 9

voo + (K n+N,n n+W’ n+1\I ¢

niN,1

< K (P,e): K (P,e) > = (k 1 1 oql+ kn+1’n)2 coszen+1 + XY

2 .2 .
eoot (kn+N,1 +o00t kn"‘N}n) cos- 6n+N o

, S n/2 N2,a2
., #K:.(P’e)-’ K, (p,e) > = {(kn+1,1 tesot kn_+1,n) cos 6n+1 + 4ee

+ LR
i

2 2
R AL Y

) R ¢ n.

+ eoe

' . n _n
con ¥ (tgyy gt Ky p) cos Open}

ntN, 1

(usihg 1ma 1.2, 1).
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2 {(kn'i-l,l se0 kn+1,n)c0s 9n+1 + 400

. -n . N
seo T (k )COS 9n+N}

nHN,1 °°° kn+I\T,n
(using the hypothesis that, the mean
curvature normal 'does not vanish in any

direction), -
= Kn(P,e).

- o , | _ o : _2
e s .[< K;(P:e)yKl(P:e) >n/ do A &V ?[< Kl(Pae):Kl(P:e). >l_1/ do A 4V

;[ Kn(p,e)dc/.\a\-f
> cn+N-.1I' (§ B21.) | . _. | h (6)
..E.‘rom (lf)..we have,
[< ;.{;(p.,e):Kl(P’e.)l >n/'2do' A GV = é‘ (a},:é I-llld pﬁ .-cfos 9;%,-93,95)!'1/2'% A av,

. - v

. On integrating over-the fiber the integral vanishe's when ¢ # B .

o s We consider only cases for which a =B,

"-.'.'. ' R "I.\ 2. ,n N . n _m :
o o [< Kl(p,e),Kl(p,e) /n/ do A dV =. [(ul cos 91 "'o'o.o"':_l_-ﬁW Cos eN)dUA d“'f
By : B,
| ee o -
+N~
-—‘l—l\l—].' [ (z ug )av .
¢ a

1

' f - : _ ge ,a o - '
" [ <K, (pye) K, (pye) >V 2aon ay = 2L f <pE>Y2q (M)
B'o- o c}n B's
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From‘, (6.)| and (7) we get,

[.1*'H>n/2dv > cn<§.-—-_-1-'

| §3. -More results conce_rning the Integral of the length of'th-'e mean

. curvature vector '

One very important and striking result of surface theory 13 the Gauss-r :
Bonnet theorem which states that: In a siznply connected region A bounded

. by a closed curve C composed of n smooth arcs with exterior angles :
91."'."9n at the vertices

.[:.kgds+f[iccm = 2% - Zei
c A S '

i=1

wh'ere' k. is the geodesic curvature of the arcs and K the Gauss curvature of
the surface, [ [ K dA was first introduced as the 'curvature integra' by -

. Gauss, but 1is better krown as the total curvature.

" Rewriting the Gauss Bonnet theorem in more familiar notet,ion we. know

. that,

Nous?

1 _ 2 ' e
Bn de_.X(M) . (1

' where X(Ma) is the Euler characteristic of M2,

Tt is the topological invariance of the resul‘c. that makes it 80 remquable.

Kuiper [2] has proved that
-1-[|k|ds > 2+ 2g ) (2)

: In v-lew of ‘these two results it seems natural to examine




20,

1

A [ <pu>es o)

H(f) =
and to seek a result analogous to the above results. ._ Unlike the Gaussian

curvature the mean curvaturé is not intrinsie, therefore' (3) is not an

invariant e¢f., Willmore [1]. To overcome this Willmore considered

2) - o
HM®) = fzg H(f)

_ where the 1nfimum is taken over the space of all c°° inmersions of M'2 in a

: euclidean space, In (1,2,3] he proved, '

" n_heo;'»em' 1,31

' I.f X M2 - E3 is an immersion of an oriented compact surface into
o three-dimensional eucl:.dean space, then, the mean curva‘bure vector H(p)
satisfies | N _ | ." _ 
<EE>E = kn ()

| i S
Eq_nality holds iff M2 is embedded as-g euclidean sphere,

Thus for surfaces of gemus zero HMZ) 2 X(M2).

Thegrem l,3.2

' ~Consider now 72 = §' X 8! embedded as an anchor ring wit’h radii of

the. generati_ng circles a and b, then,

<SHH>& = 2 , - (5)

Bquality holds iff a/b = V2.
'.'If.‘(é.,b) = (a+bcosu)eos v, (a+becosu)sinv, bsinu O0Su<2n
- . | oSsv<2rn ,
'He also conjectured that (5) was valid .for '._any torus. .More' recently in

4] he p'i.'oved,'
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Theorem 1;3.5'

x t M. - E° ig such that x(M?) is generated by carrying a small
-,circle in the normal plane to the curve at each pﬁint'theh, again (5)'is
true and equality holds under the same conditions w1th regard to the ratio

of the radii.

Theorem 1, 5.h (Shihoma and Takagi [1])

x ;,M? - ES is an isometric immersion of a cohngéfed compact
orienﬁgﬁle Riemannian manifold of class ¢’ in ES. Suppose one of the
principal normal curvatures of x(M®) is constant k eveiywhere, then,

[.<g,g>ds > 2n2
¥ | |
-and.equality'holds iff x 1s an imbedding and.x(M?) is:congruent £Q the

" standard torus T(~2/[k|, 1/[x]).

' llf_c_)te 1, 3. §

It may be pointed out that one of the prinecipal curvatures of each of
the theorems 1,3.2 and 1. 3 315 a constant.

Recently_Chen (15] proved

Théorem‘ 1.3,6  (cf. Remark 3.1.5)

If x e M? - E4 be an isometric immersion of a flat torus M? intc E%

then, the mean curvature vector H(p) satisfies the fOllGWlng inequality

[<_}j,ﬁ>dV > 27 .
e

Moreover if < E,H > is a constant then equality holds iff M? is iwbedded as
a Clifford flat torus in E.
Finally in an unpublished result due to Homtm [1] where he examines

the normal variation of /;? < H,H > dV he obtains the différential-
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equation _ .
AH + SH(HR -K) = O L (6)
.wl_n'i'ch mst be satisfied for [ <H,H > dV to be stationary.

2

His the ‘mean curvature vector and A the Laplaci'an.

- te 1.2.7 .
The torus J'2b, b) and the Clifford Torus both ‘satisfy (6) and two

' équations 1i_ke- (6) respectively. In view of all these results therefore
- it seems reasonable to believe that the conjectﬁre (5),‘ mist be true for

all d”-immersions of any torus in g2tn (n=1).
Ir the W’Ll]_more conjecture is true for all c —embeddm;:s of surfaces of genus
one & nossible way of seek ng a solution to the integral of the mean curvature
for surfaces of arbitrary genus is to 1nvest1gate for relationshlps beuvnen :
CH(T,), H(TE)_ H(T, ¥ T,),
Mhere £:1, E2
| g: T, ™ E®
M =T, # T, » B> (# is .ﬁhe gonmected sum

| of T, end T,)

For the TAC it is known that
(T, # T,) 2 T(T;) + %(Ta) -2,
A similer result f_or_'ﬁne mean-cﬁrvgturé seems to be rather elusive mainly
be'cause. of its tﬁpologicél invariance., However for surfaces .of genus
sers - | |
CHM, ¥ M) > HO) +HO) - 20

Eﬁ'ua.lity holds. 1ff M, and M, are the euclidean ‘round spheres,

leewise the TAC for product imersions is know'n. ie.e

T(f X 2) = t(f).7(g)y (cf. Kuiper [1]), and one wonders if anyth*ng could
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be gotten for the mean curvature of product immersions.

Remark_1.3.8.

From a theorém of -Tn:nﬁkins 1) we kﬁow that there do not exint any
isometric immersions of compact n-dimensional flat manifolds in a
euclidean space of dimension <2n., . However thefe do exist isometric
flgt immersions in a euclidean space of dimension 22n,

viz: the n fold product of circles in coordinafes

Xpg = 088 @=0,lyu,(n-1)

xg(ﬂ_1 = gin Oa.

For such immersions it seems.that,
o e /2 > o . |
[‘;<§,g . av = °2_n-1 may be true.

Certainly in thé case of n = 2 the above is valid for we know of the
existence of the Cliffordflat Torus which satisfies the above and in fact the
inequality 13 replaced by an equality., This result is only an improvement
in the case of three or four dimensional manifolds, while for higher

dimensional manifolds the result of Theorem 1.2.10 is indeed much stronger.

ex (i x: 18 o B8

given by, (a cos u, a sin u, b cos v, b 8in v, ¢ cos t, ¢ §in t).

Then by direct computation we have,

w, = 8 du , ' w, = b dv, Wy =_ cdt
1 1 . 1
w e owe= du Wayq = =2 dv Wy, = == db
e B B
Wy = 0 _ Wpg = \-’lé- av. Wyy = 'JE“
Wa = du - —i av -- - Uygg = -L at




, 1
[ ) A41.1 = "'J:}":
Agyy = 0

2

Sl
- 3['J3(3+"5+

|
oon
h ]
1
(]

A8_22

ot [<;_{_,§_1>3/2*1 = .....1.._
e 393/ e

o s
. ._.ffns

9.

ex (11) - £:M o E

2k,

A433 = = e

A5!3.'3 ' Jé
c

Aess i

(cos u, sin u, cos v, sin v, cos x, sin x, cos y, sin y)

0Sy, v, X, y<2n -,

Again as in (i) by direct computation

av = ¥1

-y = Wy, = Wyg

dv,

B!

" dudvdxdy.

W18

::dx,
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dx

Wgg = Wzg = ~Wg7 = Wgg = =7

Bas = Pg8 = Pg7. = “Pg = 775
and

Aspp = “hgop = Ap, = Agop .= -3
. . : .
-Asaa' F".-Aleas, = =hgan = Aass =T2
. - o 1
A-_.;«- = hgaq = Ajeq = “hgas = -2
o _ 1 -1
e E —u(-2e5) = -2e5 e
Scalar curv, s O. _
[ ocpms2#1 = [ A1
RIS T ) E !
M ond
= ’]'-.130 16“4
. , | .
S (>e, = =) .

7 5
In the most general case, th_at of an n-dimensional manifoid

Chen- [19) proves

Theorem 1.3.8-

ey "

L‘et Mn be an n-dimensional closed manifold immersed in a euclidean

spacé of dimension (n+ll) with non-negative scalar curvature, ' Then,

[ < H,H 24y 1, B(NP) - (1)
vhere - |

n-% '
. {.:'\-‘-l-n )2 ¢ if n is even
=9 g

n
(@n" e 1 Coy-1

by 1 .
3 (n )2 : o
| )72 ()% € a1 if nis odd,
“and. - B(M') = gim of Betti numbers of i,

It is necessary to first prove,
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Lema 1. o

Let al,...,a be N nonQnegative constants and,sgflithe unit

hypersphere of EN centered at the origin, Let the function f on Sg"l be
defined by | | |
£(x). = 8y X - (2)
i .
i= T

vhere x =_(x_-,_, voey KN)

| For an even pos:.tive integer om (say)
2
<§; S (e
_1 9
. 2m+I\I-1 :

equality holds iff either N = 1 or n = L

Proof

For non—negative even integers 8 s000 ,eN

_ | 1+e, \ 1+
2r'< ,1>...1‘(. N
N-1 ' 2 ) 2

_ e
[t g™ - ——2 Zm
sN__l ' ' r e + eees *+ eN + N
o : - . s > —
(generalised formula using Gemma functions).
Alsoy ' _ R _ _
1+ e l1+e l+e, + 400t .
I'( 1 voe P( _ N> < P( e } . - eN)I‘(%)N—l
2 | _ 2 _
(5)

equa.lity holds in (5) iff (N-l) of @500 ,eN are zeros
From (h) and (5) : . _ .
2\n -1 . 2m  N-1
/;\I-l (‘E?‘i(xi) ) d@ £_1(a x *ees tag Xy ) dS§

) . . oo

< f (281) (xl -“*’&qa)m.dsg;l

N-I
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fl
P
MO
[
| o]
-
[<]
\
o
O-'-K -
T
[]
faary

[}
o
af~1=
[
. (¥
~—%
. m -
o I8
‘%’
oy

(N-1) of the eN's are zero.

| 9;0 . a.x dSN°
() fa e

If equality holds above then,. the inequalities in the last few steps are

all equations, Hence either m = 1 or N=1,

Converse is immediate, '

‘For each normal vector e to M we have,
| 8(e)” = [K ()| VP (8)

Equality sign of (8) holds iff A(e)® = wI ~ for some constant i .
A(e) is the second.fundamental form of the immersion in the direction of e.
Brogt

The second funq.amental form is self-adjoint matrix .'_, choosing &
suiteble frame ) we can.write, |
kl(?')

Ale) = ~ (9)
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n

B - 8(e)® = Zki(e)g
| =
> nEfIkl(e) ..;Hkn(e)]z
- g ()"
N €10 R X | IR

If the equality holds in (8) then,

(e = e =k ()2

===#'A(e) = pI for p = kl(e)z,ﬂ"_?

 Conversely,
i AP -,
and . Ale) is es in (9)
‘then - ._1{;(;)5 e .-'._k.n(e)‘?'
‘= 8 = Y [k ()] .

Lems 1.3.12

N be an-immersign of MF in a euclidean space of

n+

Tet x : M - E"

dim-(n+) and let S, be the sphere of all unit normal vectors to IM at
x €M  Then;

c

< - ]PS(e)n_de,. . -for neven
n . 2cn+N—1 ' '
.8 2
Con n Lo
: L s(e)” as_ for n odd
2c - ' .

-1 Con+N-1 |
(10)
If the equality sign holds in (10)'theﬁ,_

(i) either n'= 2 or N = 1 whenever n is even

and  '(i1) N = 1 vhenever n is odd.
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s(e)? 5 (S cos 6 2
(e) i,j( Z cos 0, Arij)

r?s[,(i?j Agss Arij) cos 6 .cos C | (11)

Choosing & suitable frame field (p,e, eer 9808 Laree sy )

N
: _ n+N _
2 _ . 2 g '
FIO Z e co? 6 (12)
w1 = A = eee = Ny
l:'r '= 12_ Ari:j Arij' = ,sl‘ (13)
2 . -

Using lemmas 1,3.9 and 1.3,10 we get (10) and when the equality sign holds
in (10) from lemma 1.3.9 n = 2 or N = 1 whenever n is'even, and from

lemma 1,3,10 N = 1 vhenever n is odd.

Lenma 1.3.13

. + _ _
- Ifx ¢ M - En N is an immersion with non-negative scalar curvature,

Then, since,

R = o|u|® -8 (cf. D/ 6)
we have, o ||H||2 -8 =0
1.e n ||g|® = 2.
In' particular n|lg] = s.
e .fnn<_§,g nl2 gy af's“dv (1)

e’ .frbm (8), (10) and (1%) we get,
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T : - fK:(p,)dV, n even
" Chin-1 M

[ <gE>Y2ar >
M

c .

20 . ‘K¥(p)av, n odd
20" O 1 Cppupicl T

' S &

Using Chern and Lashof [2] we get,

[ <ngs¥2ar > 2000 (17)

‘A 1is as in Theorem 1,3.8.
If the equality sign holds in (17), then, n||H|| = 8 and therefore the
equality sign holds in (10), Therefore by lemmas 1,3.12 and 1,3,13
' R#Qand.eitherl\r: lorn=2,
Ifn=2 Mise flat torus. .. B(M) ='k

This . ',.__,[<g,_1_{>,dv'-_- c,
. T e . .

==y M is diffeomorphic to §% (Chen [i9}), which is a contradiction
becé.usg R=0,
o' N=1andR=0, This is also impossible becauge there do not exist
1

any closed hypersurfaces in ™! uith scalar curvature = 0 (Remark 1.%.8).

§» -. Intermediary Curvatures

Having dealt with the "first" and "last" curvatures so to speak, we
f»ril]. now look at the intermediary curvatures,
Thgtl:_rgm 1.#,1

X MQm - I:':2m+1 is an immersion of an oriented 2m-dimensional closed

manifold in E?mﬂ such that,

{peMam =0} 2 {pe MnI.KQm(P)_? o}
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Then, N
/N <K m? K >dv =2-¢ (

Eqpallty holds 1ff Xx is a tight 1mbedd1ng. K is the G—K curve and -

g(p) = K (p)? - K, (o)

(NOTE:_ In his paper Chen [15] uses the term "minimal" which is rather
~ misleading for it does not mean vanishing mean curvaturé.
Instead, an immersion is called a "minimal/tight imbedding" if
the result in Cor. 1,2.8 has strict equality). -
* Proof. _
—— o
Let n: M o 82 . Ir a5, is the vol, of 55" , then

n*dx, . = .K(P)dv |

om

and - f#azs, = -K(p)do A av
= -2K(p)dVo

S sz, ] = 2l()|av.

Using Hopi's Index Theoren

fm k(o)W = f'-:-'-“x(xvx?—'") s

also_. _ .
[ kK(p)av > k- (Z8, ) -~ £rom Chern and Lashof [2].
2
o
1 L U = {(pse) € B\)IKEm(p,’e) = K(p) =0)

v = {(pye) € B |K, (p,e) = K(p) <O}

then rewriting the above two equations we get




32,

| [ <(e)ar ¢ ‘/," S L
/‘K(pl)dv +[K(p)dV . Zom (28,)- o (2)

. from(l) and (2) |

But b?:lh.ypothe's'is Km(p)2 > Kém(P‘) .
!4;’“ é?%(P)’Km(P)' > av ; [< Km(p)-,_Km‘_(.é).} .‘i‘i
> [ Kg;n.(P).d'j} |
U .

L, 5B N -
2 ¢ < j;fgi -
2m '2 .

Theorem 1,4.2

If x: Mz S E2m 1 be an immersion of a closed 2m-dimension:l
manifold in E?m 1 with non-negative principal curvature, then,

. e )
[rgm'< k_(2),K (p) > av ks -(fﬁi)_"gg'f

Equality holds iff M" is cmbedded as a hypersphére.

Proof

By lemma i.2,1 K‘:(p)? KPp)= 0 and equality holds iff all the
' .pr_incipal curvatures are equal.

.*. by the previous theorem
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N :
/M;m <K,(),%,(6) >av = ke, (285)
By a theorem of Chern and Lashof [2]_ we know that all the odd dinieﬁsional
‘Betti numbers vanish. Hence, -

&n <K E)K,(0) >V B oy (58)

when equality holds in the above equation, .
. 'K‘:(p)'= Kp)e=4all the p:’*‘lncip_a-l curvatures are e_qual"
‘ 7(='§éve_z"y point is an uinb_iiié_'_
= M? " is embedded as é_,l.uype.rsp-heré.h'
' The,-lx_a'st-reé_ullt (Theorgem_lﬂh}) in this s,ec'tion_' seems to beé g geherélizaticﬁn
. of the Hilbert and Liebmann Theorems.
‘Hilbert: The only compact surfaces with constant Gauss curvature are spheres. -
B e o . B ]

giebmann: The only ovaloids with constant mean éurvatufe are spheres.

Theorem 1.4,3 (Gardner [1])

Let x ¢ Mn - En 1 he an immersion of a compact oriented n-dimensional

manifold in a euclidean space, and if for any i, 1S4 & n-1

o, = constant ( #0) and Oypp = constant (.= 0) then,
it implies that x(M") is a euclidean sphere,
'oi' is the ith elementary symmetric function of the principal curvature, -

NOTE: The case for i = O reduces to the problezh of classifying hyper-
surfaces with constant mean curvature since o, = 1 (and is

therefore dlways a constant).

We will have a brief look at submanifolds with constant mean cumture

in Chapter III.




CHAPTER 1I1I

§o. - Prélivninaries
(Most of the definitions for this chapter and Chapter III are taken.

from Hicks [1], Kobayashi and Nomizu I, TT [1], Singer and Thorpe [1])

’ Let' M be a C" riemannian n-manifold. Then -a connexion on M is an
- _operator V (often also called covariant differentia‘bion) which assigns

: to each x,Y vector fields on M (denoted vy X, T € *(M) ) a vector ﬂem

- _VY in the samé domain.

~X .
If fe #(a), #(a) = {fl £ real valued function on A} , then the

| l."'c:onnexion v satisfies
) @) = (o e (Ge)s + a().
.(11) YZ= fg{Zi. s | '-. | Ze ._*(M).-

' (VxY)p _dei)énds on xp anci the values of Y on' some’ int-egrall:curv_e' tf,hat'
.,".-fit_s".x. I = S I en) is some field about P - |
n | |

| et Ry = ) a0,
] A

(24
I ’
M [=
o'
[N
1]
[N

- Then, (% y) = [ Voo

Z.ai(p)[ v, Ibe

i a;l]p

ma, (0) (oD, ) (e, ), + _(zai@);)(zb-);(v_éiej)p_

(00,), (o), + 20y (0)S0,0)% egdy b
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If (?e ej)p is knowm then (VXY)p can be fully determined,
i V3 o

Given a riemannian manifold M" and < , > (= inner product) there

exists a unique connexion v s
(1) X<YZ> = <YY,2>+<Y,%72>

[x.yY] (torsion free)

- (i1) %Y - X .
 for all C° vector fields X,Y,Z ¢ ¥(M), -

“Induced connexion 2.0.1

Let Mn be an n-dimensional orientable riemannian manifold immersed in
‘a Riemannian manifold of dim-f+k). If ¥ denotes the connexion of I,

“then, %Y .= [3,Y]" is the induced comnexion on M, ‘It is the

projection of the connexion on M,

2 <1 92 >y

X<Y%2> = <%Y, Z

re w1l N
<rva],z>+<Y_, Mzl® >

<YY, Z>+<Y, RZ>

" e - ' o’ T
e %y = Vx> .

"V preserves inner products on TM.

<Y, 2>+ <Y, %2>

'§[§XY]T, 7>+ <Y, [vxz_]T >

<TY, 2>+ <y, 2>

Y <Y, 2>

vx-<Y,z>.

To show that it is torsion free

1 - 9z - k1] = @) - @' - kY]

(9,7)" - @) - el




'36'.

= e T
(%Y - 9x - [x,Y])"
= 0'

{IX,¥] = XY - ¥X (lie bracket of X and ¥)}

v, Y

= (93T + Gl |
= %X+ BX,Y) . (1)

~ (i) 18 called the GAUSS EQUATION. B is called the second

- fundamental fbrm of the immersion and it is a symmetric biiinear mapping

© ofTM X TM - MM .
For Ve ¥(iM)
. ) - 'N'

DV = [vxv]

D is the induced comnection on MM, -

<UL, U, >4 <V, Gy, >

X<V, V>

= N e TS W
<[y, T, v, >+ <V, (Y, 1" >

<DV, Va >+ <V, DV, >
. e ].\I o
_va = [y ]

. " Mo ghow that D defines a connection in the noriial bundle

s Wy <t [gy
<[, TV, >+ <V, [Vv,1 >

KDYV, V, >+ <V, DY, >

L}

<UL, V, >V, G, >

I
q.

no
<

i
&
VAN
<

Yo
<
v

Woeaxedy @

The above -equation is called the VEINGAR?EN_ FO_RIMA. ' A.Nx is the L
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tangent:.al component of VXN and it is a symmetric bllinear map of

TPM X NPM - T pM. (It is also often called ‘the "shape operator'),

A and B are related by the following
< AN(x), Y> = -< B(x,Y),' N>

© The mean curvature of the immersion being the trace of the second

mndamental form is.given by

n+k

H = = B(x,X)v, - - N.¢€ N(M).
' r=n+l -
Proposition- 2.0..2
. L .
If Mn n+k g Mu+k+k is a string of isometric immersions and.

x,:r, € T(Mn), then,

Byo p(XsY) = B(X,¥) + B (X,¥).

Proof

| Let v, ¥ and- V be the induced connections on M and M and the

. co_hnection M respectively. Then,

(X,¥) = nor. cpt. [I(x,¥)]

go f .
= nor, cpt. [V-7(X,Y) + Bg(X,Y)]

- nor.cpt. [905,7) + ByKD)] + BOY)

= B,(%,3) + B(X,Y). |

|||||

§_1.- Definltlons and results on the Lap.acian of a funcf.ion

Definition 2.1.2

Let £ M o B and {e;s 105 e } @ basis of ™",
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- Proposition 2.1.2.
. E . _ B . : .
Tf f: M = E k. is an isometric immersion then Af =H (H is
the mean -curvature).
) Sirice covariant differentiation is the same as partial differentiation
in En+k we haVé,

v, e T = Blege)

'V YV £-V
e. e,
171 ei i

= Hc L

Af = (Afl e Afn)o

" " Definition 2.,1.3

£: M - B is called harmonic if Af = O,

Corollary 2.1.4
. - ' 1
fi@Mt - Ean' is minimal iff .each of the coordinate functiong £

-are harmonic.

gpeqremLé.l.S. (Myres [1], also Kobayashi and Nomizu II (11])

- There does not exist a minimal immersion of'a‘cqmpact menifold in a
euclidean space,
Proof -
Suppose there does exist a minlmal immersion of a compacb munlrold in

a eucli&ean space; then
Af = 0.
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But the__ only harmonic maps on a compact manifold are the .-constant maps,
Hence .sup;bosition mst be false. _
oo | 3 any minimﬁl irmersion of a compeicf manifolci in a euclidean space.
In the case of the_ ambient space being non-euclidean the above
result may no longer be true, sihce |
(1) the Laplacian of the function £ does not coa;.ncide with the mean

curvature normal

'. at_ui (i1) we know of the existence of minimal submanifolds in spaces of

. constant curvature.

§2. Submanifolds of a Buclidean Hypersphere

Theorem 2.2.1 Chen [19]

Lpt Ml be a. closed. (compact mthout boundary) submanifold of EnJrk

Then M is contalned ina hy‘persphere of ED otk centred at ¢ € _En *k iff
either (X - ¢).H = -1 or (X -c)B < -1,

X is Ehe position vector field of M in En+k_ a_mi H 1s the mean curvature
normal,
Let f= (x“c) (x - c) S - (i)

vhere ¢ is‘a fixed vector in E"”'k Thenlthe Laplac_ian' of f is given by -

Af = 2n{1+ (X - ¢).H} . (2)

A(X - ¢). (X - c).

g

V V. <X-cy X-c>
e, ©
i i

v, <V, (X-c)y X-e>
olcv V. (X-c), (X-¢) >+<V (X-¢), V. (X-c) >
® % 8 1




k0.

2{nH (X-¢) + n} | since _A(x-c) =H

2n{1 + (X-c).H} ] ..

If (X-c)H > -1 or (X-c¢).H S -1, then Af = 0 or Af < 0.
'+« By Hopf's Lemma (Kobayashi and Nomizu II _[1].)‘ we get Af =0

=3 [ is a constant , _

.:'——_—)M' 1§ contained in a hypersphere of En+k. centred at c.

Conversely,

if M s contained in a hypersphere cenived at » ‘then, £ 15 a constant. -
.ty AFf =0 and (2) then gives (X-c)H'= -1,

' ‘Hence the theorém.

§3. Minimal Tmmersions in Spheres

The ambient space in this section will be assumed to have non-zero
_ _ . In —-,£n+1: e .
constant curvature. We congider £ : M - ¥ vhere the immersion-is

isometric énd lVIm.k has constant curvature,
- n N n+k ' Y
I£ (X 5 eeey x ) and (y*, .uo, ¥ ) are the local coordinates of M

and M then, locally,

a o ' . '
y = f (xl,...,xn) - . a = 1,2,0.0,(!""})’.}.

Let éaa "be the _métric tensor of M then the indﬁced_ metric gij on M is

given by
: o
B3 = By f?
where the partial tiiffe_rentiation ija is written as fg o We will write
f‘aj for the covariant differentiation Vj .,
} -
| As usual the Greek indices will range from 1 to n+k and the Romaa

from 1 to n.
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If R, are the curvature tensors of M and M, and Pl _IB?

1362 Rapys
the Christoffel symbols, we have the following formulae (Elsenhart (11)

'ijq=fa =3 - fh+'°‘f’fi

1 1,5 5 % %7 ta
o . @, w0 By
V.N = N, = 3, N +T, £ N,
_ J 2d J By fJ .N
NOW,
v, f% = h,, n®
i ij -
v.n® = -nt %+ zn, 0’
31 agd - -
L ) IS p . o B
Riger = (Byghp *hy by +R aByB fi f? fi Ty o
For a space of constant curvature ¢ (say)
Bae.y"s = clEy éﬁr gar 3,35)
o e for immersions in Spheres we have,’
Riger = {85y 85 - gik 8yy) - (11 sk~ Pik hy,)
transvecting the above equation with gl-z we get,
. : i? '
Rjk = c(n—l)gjk - (thJ.‘k - g hy hjz) : (1)

where

H = -]=Z( B gia hy )e (meén curveture normal),
- nr - i,J

COrollgg;L 2431

If a Riemannian manifold adm:.ts a minimal immersion in a space of

constant curvature, then, R - (n-l)g is a pos:.tive seml-defmite uen.;ot'.-

Proof (fo'.L'Lows directly from (1)

Because (g_ ik l) is a positive semi-definite tensor. -

'J.‘heoi;'em 2.;.2_

Ifx: M - ﬁn-+k is an 1sometr1c i'nmersion with Ax = l vhere X
is a non-zero constant then x realizes a mmimal mmersion in the hyper--
sphere Sn +e-1 ( Jﬁ/ A\) and conversely, 17 X realizes a minimal immersion

then Ax = Ax up to a parallel displacement. '




ha.-

Proqf'
Suppose x is a minimal immersion with Ax = Ax then by Proposition

ntk

2.1-2 Ax = Z H(T:r
r=n+l

. +» Wwe have,

. _ .
X = .-XZ‘.H'.er . (2)
Differentiating(2)-ﬁe get,
. . |
b 4 = =(He .
i = Al

1 i
-X{EIIhJ. X, + -Z‘.er hj.-}
Taking the scalar product with x; we get, -

: 1 i '
B.: = X{th gij}" .

TR
= -l-Hb ’
gij = Il' id ¢
Transvecting with gij
R 1 ¢
So from (2) -
2 1 2
=l = L, Jul
' : ' 2 1 ‘n
il-lOE.' ', | ”x" = '):_ nl‘ .= X
‘i.e, =l = 3 = a(say) (&)

e #an) is contained in a sphere of radius «r% .

. o m & ao 0
Now, n.=—hjfm—f‘pf';n.

H
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Sinee x is normal to x{lvf‘) chooze Stk along égs', then

: . k-l . . ’ .
-hs x; + Z h, eq = %xj . (5)

Q=]

Teking scalar product with x; we get,

~

1 o
hyg o= 58y | and h; = 0 = 1,2,.,(1:—1) (6)

Transvecting with g;; it follows that

b= <2 i lH] = -Vmx (7)
ok a

Substituting in (3) we get, k-1

2
) Id® - o
o=1
== I_Ia = 0 a_=,1,2’.g(k"1)

but, H'i-:lz (o = 1,2,..fk~1)) are equai to the second fundamental form of

x M) 1n gl (cf. Lemma 2,0,2). This x reslizes a minimal inmersion

in g1,

Conversely,

nt+k-1

if x(M") is minimally irmersed in S ‘then, by parallel translation

in En+k we can arrange things sc that Sm'k"'1 is centred at the orizin of

ol

. Choose & set of mutually orthogonal normals and let gn WA

_where e |, is the normal to gt*k-1 3 g% mpen (5) and (6) are sabisfied
l-n+k . .

as. before and since haij (¢ = 1,2,..{k~1)) are considered as the second

n+k~1

fundamental form of the induced immersion in §™° s we have

- Ax

i
~1=
-
Q
B T
)

!
2o
17

il
o
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Using_('T) we get Ax = sz .
' a

Corollary 2.3.3 (Hofmmen[1])

: ’ . . f - & e -
For a string of isometric immersions Mn - SrHL - En'l‘ 1 '
M? .is minimal iff A(gof) = A(gog) where A is some real valued

| function on -M'.

Definition 2.3.4
: (1) An ISOMETRY f: M- Mis a-métrié 'plres_e.:rving waAP,. The set-of |
all orienﬁa'tiop~preserving isometries _fo'm's"'é g_f_ogp .called. the group of
igometries 4 say. -
©(1i) % 1is TRANSIIIVE if for eachmmneM ‘Jged 2 gln) =N
' _(ii.i') A space with a transitive group of operators is called
HOMOGENEOUS:
(iv) A LIE GROUP G is a group with a differentiable structure of a
manifold, = The maps 6 : G XG> G
given vy (g,h) = @b
and - 6, : G- G
. -1 C @ .
g g : are ¢ “(smooth).
(v) A homogeneous space G/H vhere G is.a lie group and H a compact

subgroup admits an invariant metric. = G/H is often called a RIEMANNTAN

HOMOGENEOUS SPACE.
" (vi) Let 94 ‘denote the group of all isometries of M. Form € M let
F_ denote the subgroup of § leaving m fixed,

i.e. Foy = {g €4 |g(m) = m}

" then F_is called the TSOTROPY GROUP of M at m.
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(vii) Under the action of an isometry subgroup ¢  ISO(M®) = §

(isometry subgroup) s the total space e splits into.orbits of various

types.  An orbit a(x) & M® is called an EXTREMAL ORBIT if it is an

extremal in "volume" with respect to all orbits of the same type.

As an application to theorem 2,3.2 Takshashi [1] proves

Theorem 2.3%.5
A compact homogeneous Riemannian manifold with ir;'educible:linear

Isotropy group admits & minimal immersioﬁ in a Euclidean sphere.

Gorollary 2.3.6

An irreducible comp_act symmetric space admits a minimal immersion

in a Buclidean sphere.

Theorem 2.3%.7.
Every homogeneous space of a compact Lie. group G/H may be imbedded in

a sufficiently high dimensional evclidean sphere as a homogeneous minimal

submanifold.

The proof of the above theorem is due to Hsiang [1] and is based on yet
- =n+

- another theorem due to him, viz: A submanifold Mt e i k is a homogeneous

minimal submanifold of ﬁn+k iff Mn is an extremal orbit under 1_:he achbion of

a suitable i.sdmetr;y" subgroup Q.

§k, More theorems on Minima) Immersions in Spheres and Pseudo-Umbilical

Immersgions

" Definition 2,L,1

If the mean curvature normel is nowhere zero and the second fundamental
form in the direction of H is proportionai td the identity transformaiion of

the tangent. space of Mt everywhere (i.e. the mean curvature normal has the
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' - . . e +k .
game eigenvalues everywhere ) then the immersion x ¢ M - " k is said to

be PSEUDC-UMBILICAL.

If, will be seen later that pseudo-umbiiical immersions with constant.
mean curvature in a euclidean spacé & a minimal immersion in a hyper-

sphere of the euclidean space.

Lemma 2.4%,2 Chen [11]

X ! Mn. - E*? isa pseudo-umbilical (p.u.) immersion of M* in E" 2,
Then the mean curvature o is a constant iff the form vanishes
: _ n+l,n+2
jidentically.
_1_’roof

Since the immersicn is p.u. and

H = a§n+1 (1)
- | )
O nrr = T4 Yy ()
Sf = O (3)

we have, ‘
. - : )
wi;l'l"'l awi : ()

i = 1’2.‘..n
o'.o - if : wn+1’n+1 = 0

then, taking exterior differentiation of (4) we get,
= Aw, + ﬁ. .
| dwi,n +1 da Wy dwl
but,

= L. N W + W, . A WD
dwi,n&l . 35 * Jyntl i,ntl n+2,nt+l

L. AW, T, AW
aw).a J i,nt2 n+2,n+1

= .+ A °
adml i,n+2 - wn+2,n+1




h7v

e _. de Ao, = ®f o A Opep pel = 0 (6)
=3 o = -constant.
Conversely, if « = constant then from (6)
®; nt2 N Corg,ner = O
# w_i,n"'Q = 0 . ] | (7)

" Let U= {pe Mnlwnﬂ,n-l-a # 0 at p}. Then takiﬁg exterior

differentiation of (7) we have,

®gq A O3 e * O pey 2 “_’n+1_,n¢ 0
,i._e.'-' . | ) nep A wn+1;n+2 = 0 :
if.e' T wn+1,n_+2 = 0 onU
=T 44
el | | wn+1,n+2 = 0.

The sbove lemma was also proved by Otsuki [1] for n =2,

Lemma 2.4,3

' nt2 . .
Ifx: M - E°© ig a p.u. immersion and the mean curvature @ is

. _ . +
a constant (£ 0), then M" is immersed in a hypersphere of e,

Proof

' "
Congider the.mapping y Mn - En 2

1
3 y(p) = x(p) +5 e,y

‘then, ay(p)

. 1

ax(p) + 2 (:1en+1
—dx()-l;l'(w e, + W .- e )
o P o' ntl,i i n+l,n+2 "n+2

= -00
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(dx(p) = Zwi ey and wn.+1,n+2 =0 from lemma 2,4,2)

=3 M" 1s immersed in a hypersphere of En+2 .

.Th_eorem 2. b b

n+2

Let x ¢ Mn - B be an immersion of an n-dimensional manifold Mn

: .
“in BV 2. Then x is p.u. with constant mean curvature iff M is immersed

‘as & minimal hypersurface in & h:ypersphere of En+2 .
Proof-
Assume x : M° o 2 g p.u. with constant mean curvature a (say)
Then by definition H # 0 everywhere, Using the previous lemma we
can assume that M is immersed in a mn‘.t hypersphere, Take a local
c.jro.ss-se.ction (p, el,._..,en+1,en+2) of M » B, 3 B = x(p) and

é.t”" ,ér"l disgonalize the sécond :Efundé.menta.l form at .én_};a o

Then, K. (e) =1d
' : e_n+1 * '
and S A . - o
o I (ei) = hye, i =1,2,..4,n
vhere hi are func-tions on M.
H = & + -1-(2 h, )&
= Tn+l n 1/ n+2

Since the mean curvature a is constent by assumption, we have

Zhi = constant.

A (e,) = A - (ei)
(/o) %(§n+1+?11(zhi)eﬂ+2_)

Lo Cdpgal '
o o A(I{/a)(ei) = o [ 1 + n(zbk)hi] ei .
Since the immersion is p.u. we have

(Zhj)h; - (£h, ), “ve = En,dn, -




49,

Two cases arise

(1) 1£ (Zh,) # 0 then, by = by = cu0 = h y everywhere,  Thus M'

- is immersed in a hypersphere of a hyperplane,

(i-i_)' If Zh = 0, -th_e',n M is immersed as a mini;nai hypersurface of &

2 .

J
hyperspﬁere of En+
Thus in._eithei.-_ case M is im_mez.-'sed as a minimai h'y"persurfb,ce in a hyper-
sphere. . | o
Conversely, .
_ Ir M* is immersed as a minimal hyp_er-surfa'.celin a hypersphere of En+2,
then the mean curvature normal at p is:pa.ralle].: fo_- the vector joining the

centre of the by'persphére. and the point p-oh MR, Thus x is p,u. with

_constant mean curvature.

 Definition 2.),5

If n be a normal vector field on M in a Riemannian manifold Rn+k

n+k

then, the covariant differentiation of 7 in R can be written as the sum

of its tangential and normal components.

| [V_h]]T + D (D = covariant differentiatios

in the normal bundle).

.If the norrr_:al component is zero _then TLi_s said f-o be parallel in the nox_'mal

bundle,
[ e caaad

Theorem 2.h.6

An immersibn X Mn - Er-H_'k is p.u. and the mean curvature normal

field H is parallel in the normal bundle 12f M* is inmersed as a minimal

submanifold in a hypersphere of EM'F,

Proof
-

Choose the unit normal en-,_'1 in the direction of the mean curvature
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normal, then,

o . g = a2n+1 (Z>O. (1)
By definition,
nt1,15 - %013 (2)

o and

ZArﬁ=$ e

for r = (n+2),,;-,,(n+1:)',
Since the ime;-sioﬁ is chosen to be p.u, '-and'sinc_e' ‘the mean curvature

vector field is parallel in the normal bundle, we Ha-ve, from (1)

H = (da)e;nﬂ +aDe. ., ()

(-'Den+1 F %ty ef) . .

o’y o . da e +i + a’mn+1,r-er = 0
=) @ = .constant g_r_z_q. Dnpy,p 0 | (5)

r o= (n+1):-o-*(ﬁ+k)

Consider now,

o+ MP - ptE

\ , 1
Cgiven by o(p) = x(p) + Ze -

Then .
' 1
ae(p) = dx(p) + S de

= O [using the equations of structure and
| o ea, (2)]
Thus x(Mn) is contained in a hypersphere of EY k'centred at c.

Further, x(p) - ¢ is parallel to € i1 everyvhere.. S by (B) MY is

immersed as a minimal submanifold of gitl-1

- Conversely, _
n’ . : ' - n+]
' ._I:E‘_M_n is immersed as a minimal submanifold in a hypersphere of B 'k_,
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n , ' . " ot .
and M" is a p,u. immersion with constant mean curvature &

‘Consider as ‘before,' o : M® = En-l-k_

given by  ¢(p) x(p) +=e

o
and o(p) = ¢ (say).

R I . . oOtk-1
because x(M') is contained in § and x(p) - ¢ 1s parallel to CI

" : ) L
everywhere and o =0 r= (n+2),..s,(ntk)
5 . ntl,r :

o . DH = _(da)_énﬂ +aDe ,;

(da)en+1 * mn"'I_l,r '
-0

' =) H-is parallel in t_'he normal. bundle,

Theorem 2.7 -
.

k , o o .
be an jsometric immersion-of a riemannian manifcld

Let x : M = E
in a -euclidean space of dim-{n+k), If the positicn vector X is parallel
to the mean -curvature vector everywhere on M, then M is immersed as a

minimal submanifold of a hypersphere of En+_k.
Follows from Theorem 2,4.6.
Some mere results on P.u. immersions due to Chen can be found in [17,18]

“and Chen and Yano [1].

Definition 2.4.8
e

A"sui)mani.fold' Mofa Riemannian manifold M is said to be totally

geodesic if every geodesic of M is a geodesic of M.

Theoren '.2. ﬂ__?_
X: M= M is a totally geodesic submanifold iff its second

fundemehtal form vanishes identically.




52,

A proof of this theorem can be found in Bishop and Crittenden [1]

DPEe 19h

Corollary 2,4,10
Every? totally lgeode,s_ic subm_anifbld of a Riemannian manifold is
‘necessarily a minimal submanifold,

This result is immediate from the above theorem,

~ We now look at minimal submanifolds of a sphere with second

fundam'ent_ai form p'f'cbnsta_nt lengtl_i.. I o Mt S _sn+p c En+p+1’ then

e

8 = _1e_ng’iﬁh of the ‘second f‘dndamental fo;fma

it M is compact

If SR L
i o
o-1)g-n =
( p) n 0
1,0 if |
n
§ <
|
2—_
2-1)

then (i) M is ﬁofal]y geodesic (because S_muét be identically zero),

or "('1:1.)' 8 =

' ‘Case-(i)' when M is totally geodesic is not very 1n£exvesting from the
pcinﬁ §f- view of 1ookiné for minimal immersions since we know that all such
manifolds'aré‘ih fact minimai (cf. Corollary 2.’-&_..10).- Chern, do Carmo and
Ko_béyahi [1] have investigated ﬁhle second case and have' determined_. all

_ . +
~ minimal submanifolds of SU'F which satisfy (ii).

They prove e

gm:mn
2 7 JUN 1972
.. Lﬁm’ﬂ‘
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'I‘heore_m 2., 11

' Thé Veronese surface in s% and the Clifford submanifolds -Mm

n+l -

. sn-m
in 8 are the only ~ompact minimal submanifolds of dimension n in gitPp

- gabisfying
: n

T
(2-5)

oy Sm (J_I'D e (@) .

_ An indepeéndent proof of the above theorem for p = 1 is due to Lawson [2].

S =

Below we describe the Veronese surface.

If_'(,x,y,jz) € R°® and (ul;uz,...,us) € R%, then "

w o= —yz Cut s —— (- ¥P)

u2=——xz : S 5 5' 1(}:2+y2-—2z‘-°-)'l.-

35 TR T

1 ' : \
u3'= - Xy ’ . '

V3 .

The map defined is an isometric immersion of S(«3) into $%4(1). {x,y,z)
and (~x;=y,-z) are mapped into the same point.- The Veronese surfoce ia
defined to be this mapping of RP? imbedded into S%.

To prove their theorem Chern et al, first show that when the ambient

space has constant curvature then,

[[(2-%>s-nc]s%-1;o | (1)
M ’ .

. . —n+ .
and if M is compact and minimally immersed in Mz P.,  Moreover if M is not

totally geodesic and S < 5—-_—%5-5 evem-rhere., then in fact
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nc : .
S = m » and then the seco.nd_. :E\mdamental_ form is parallel. They

then assume that the ambient space of constant curvature is in fact the’
unit sphere (hence ¢ = 1) and thexl'efore' the first part of the result follows

jmmediately from (1).

Theorem 2.4.12 (is also necessary for proof)

If M is an n-dimensional manifold immersed minimally in an (ntp)-dim,
' - n .
space of constant: curvature 1, satisfying 8§ = m pand ifp =22
then, n = p = 2 with respect to an adapted dual orthonormal frame field
(w*, o®, 0®, @*) and the connection forms @gp (= wAB) of the ambient

space restricted to M is given by

T S Y

w12 : 0- uml p.w2 - 1

: . -A = g = ) 3

M’z M0y 0 2w2 1 | N
“no;, M, 20 0 (1)

They then compute the structure equations for the Veronese surface

and get,
0 w,, ko, H, ©,
Wy 0 B, Ha, W
. 1
Mo, My 0 2w, 0 “h=k= 3
-, 2, 2“’12 0 0
Y o 0 0 (2)

locally then, the minimal surfaée_ in Theorem 2,4,12 coincides with the

Veronesé surface and if the surface is compact it is then the Veronese itself,

A few examples and applications are given at the end and they indicate

that Mm n-m can be generalized in the following manner,
My ll= )
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uppo m,, 1 ositi i
Suppose My, My cooy m_arep sitive integers

nd = 7 + , +
a n 'nl 00 '.'ﬂk

y A .
then, if x; € S ( =—n-> iceo ﬂx”

. (x 1s considered as a vector in euclidean (mi + 1) space),

Then, X = (::1,,“,xk) has unit lensth in ER'K,

e m, _.
Mo w = IIS“( é) -+ gk
I I3

Its scalar curvature is

The immersicn,

is the~ a minimal irmersion of M 0
Mygooo ,ml_

(n-k):. and
(k - 1)n-
S = oo
(& - 3) .

Kemmotsu {1] has also studied this problem of classifyinz all
minimal submanifolds with the second fundamental form beins a constant
length, However, he consideres only those submanifolds in the unit ¢heve

and R the curvature tensor of the manifold being zero,

He proves that if there is a minimal inmersibn of a compact corimated
smooth manifold M, of dim-n in an (n+p)-dim unit sphere, such that the
normal connexion of M is trivial (i.e, the curveture tensor is zosr) =od
S = n then 3 an (n+l)-dim unit sphere containing M as a Clifford wminlinl

n for n = 1,2yaoq,[n/2] o

- hypersurface Mm,n-.

§5. Minimal_Immersions 91‘:‘*Surface§

Theorem 2,5.1
Let M@ - 82 be a minimal immersion of a complete orientable striace
in a three space. If the Gauss curv., K of M2 does not change sign, thea

M® 1s immersed as an equation or a Clifford torus,
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Since x : M® = $% is & minimal immersion of a complete orientable
surface M in 8%, using théorem_2.’-l-.1+ we can say that x ¢ M® = 8% is a
Doy immersion with constant mean curvature in E* (We. can look upon- s®
as sitting in E")..

Since the Gau?ssién cﬁrvature does _not change sign, M® is immersed either
ag a sphere in the hyperplane of E® or as a Clifford flat torus in E4,
(ef, Itoh Ll] also see next chapter, theorem 2,3.3)s
But since the immersion is minimal in 8%, M must be immersed as the
equatoriai two sphere or as a .Clifford flat tdrﬁs. .

- A generalization of the 'a'bove ‘theorem for cloged surfaces immersed in

a space of higher dimension can be realized in

Tﬁégrgm 2.5;2 . _

_ Let .M be-a ciosed minimel surface .c';f' a-unit n;spflere J-fﬁh-G.—-‘K, curvs
ﬁ €0, If J & unit normal vector fieid. g over ' 3 the LK. curv.
Glp &) wer.t. & is nowhere zero, then, M is a Clifford torus in a unit

three dimensional sphere 8% orf 8%,

Another way of looking upon minimal immersions is by examining the
arca of the immersed manifold and seeking a method of classifiecation for

such manifolds, since a minimal surface is an extremal for area.

Chen [20] has investigated this problem for surfages and he pi-cves

Theorem 2¢5¢3
If M is a compact minimal surface immersed in a euclidean space of

dim-n with Gaussian curvature >0, then, V(M) the volume of M® satisfies,
vO2) = 2@ + (2-7)mX(M).

Equality holds iff M is either the 2-sphere or the Olifford torus,
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and Theorem 2.5,k
E U1.nd_en the same hyéothesis’ as in Theorem 2,5.3 if V(M) < (2+ n)n

theh, M? is homeomorphic to the é-sphere. |

Most knovm results of minimal immersions of covr;pact surfaltces tend to
'.slho_x-r that the 'surfacé considered is either of genus 2é_,ro or one, and it
was unknown whefher fhezfe existed anir min‘imal imniersions_ of compact surfaces
of gemus gr;el.-a_.ter than one, _ IH_owe\.rer, fhi_,s p-rpbl.e;f_n_has_. now .bégn tadﬂ-éd '.by'
Igaqubn-[i]:vmere he sh_ows that there do .exist:' cc‘,:z;npa‘qt griehtab'lg mi:nimal
_surf_aées of arﬁitz‘ary- gemus im;t)édded in S?. - |

In the casé of genus lzero, the eq_uat-oriai *l;wo sphére is the only
pqssﬁiﬁility__, AEgren [1]. But for surfaces of genus éné there exist an

infinity of non-congruent immersionse
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CHAPTER 1III

The notations and fornmlae in the ﬂrst and second sections are the

 same 88 those used in Chapter I,

§1. dth Scalar Curvature

_ We conlider an isomatric innnersion X Mn —»‘"E'-H'N Pake a iocai-
‘eross section (Frenet cross-seotion) of M“ in B and st x(p)o Let

W 2 cos 9 e(q) vhere E(q) is & ﬁmction in the neighbourhood of

'_p ¢ M. Then, -_ _ _ '

o Apr,ay = f. cos .ér Eri:l o . (1)

Haw:lng chosen the Frenet cross-section; |

| Kz(p,enﬂ,) I (p)ocosae | - '(2):
"z, > % S Ay 0

Ay @ = 1,25000,N is defined continuously on the whole of Mn and A,

1< ,-1-_

a?
18 deﬁned to be the ath _SCATAR_ qunvmmn of M“ 1p g0*N
From the above , and previous work, we have,
"% Yx_(p) = i 2y (3)
o) fen'® = rii Kegy ™ Brag

( 2 )ﬁ )‘;'—n(l’) : KZ_) (‘z (Arii rJJ Ari:ia)') '

= Z Rggr = | ()
2y -

r’;' 8(p) the scol,ar curwlrgture'i_s defined ag
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(8(p) is intrinsic i.e. it only depends on the ﬁetriq).

As expected the scalar curvature and the o™ gealar curvature have

. the following relationship
8(p) = M)+ oo+ N(p) . - (5)
NOTE: (i) '.I.‘he scalar curvature is just the bun{ of the principal curvatures

taken two at a time in each normal direction.
_ .(ii)'-With regard to the nofation_ in Chapter I it is the second mean

' curvature, -

When the immersed manifoid'is a two'dmenéionqj, surface, the scalar
wrﬁturé is the'G-K cui'v. and'-a."rema,rk_'ed earlier in the case of co-

d:l._men:'s,ion. Qhe it is the wéll known Gaussian curvature.

: ?heo:;em 3.}1

For an n-dimensional manifold M immersed in EWN,
S e .
[ o(p)ay > —2l
! o . %n
The equality holds iff the co-dim. is ome and . (1) M’ is imbedded es a
hypersphere if n > 2, or (ii) asa convex hypersu?faee if n =2,
where - ' _ ' S
Cple) = max{V]2 (D)%, Vi)
Proof

] ) .
Since }‘1 2 12 Z coe 2 )‘N

o(p) = max{|n @)% Y|y} - (©)
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[

{N i _IKe(P:_Ie)ln/e doy_y

Now,

K3 ()

flil lr_n(p) cosaer|n/2 dop_, using (2)

A

<20 |0/2
flp(p)’i“_cos 6, |™ aoy_

| p(p) .[(%coseer)hlz doy_y

p(P) vy

but,

/M;Kg*'(p)dv 2 2 00 (7')‘
e /;p@)av > 2G,q1 (8)
M

[ o)y > mlel (9)

MB cn

Tf equality holds in (9), then

* o
@ | [ KA = 2o
and from Chern and Lashof [1] we know that M} is imbedded as

(1) a hypersphere if n > 2,

and (ii) as & convex hypersurface if n = 2,

@ KX = elpleg,

but p(p) is always mSitiﬁ, and since A, 3. .es > 1, without loss of
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generality we can let &, >0. Then A, = Ay = ce0 = Ny =0 Hence the

codimension must be one,

cozjolla;x 2.1.2 '
- N (

Let M be a closed manifold immersed in E n=3), Then,

. /2 - |
}/;“1’ @ = ¢ and “2_5'"’*11""’°

&= M is imbedded as & hypersphere in Enﬂ‘ .
'.l‘heo .1.

Let IP be a 2m-dimensional closed manifold immersed in 132‘n 2 with

scalar curvature 8(p) = 0, Thep,
| [anﬂ“av - B ,[m&‘ (p)av

From the hypothesis

8(p) = N(p) +2%(p) = ©
_. en |
U,I' '- . Kz* (P) = [ IKa(p’-eaM.a)lm ae

o

(Ka(p,eam‘,_a-) x cosae * sin e)

2%
o K (p) = l’:(p)[ "lcos 26f™ a6
: o

2¢
+
= ml}\;n(p).

n
° 2 '
. =1 i - [ e,
% M N
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”

. c
leee f A, (P) = [ K (p)av ,
M 261 W

Corollary 3.1l.k
If M is a flat torus immersed in E* , then, [ M (p)av = 2n®
M

and equality holds iff [ K¥ (p)aV = 822 .,
IF .

This follows immediately from Theorem 3.1.3 and the result of Chem and
Lashof [2].. | '
This Corollary has also been proved by Otsuki [1].

.1,

‘A proof of theorem 1,3.6 due to Chen [15] lies along similar lines to
that of the proof of tﬁeorem 30ls30 - Hé considers a Erenét frame and shows

that
b<HEHE> = 42 (p)

(xl(p) 18 the first scalar curvature).

M(p) +2,(p) = 0 solet M(p) = -2(p) = } say

Then ' K(p,e) = A(p)(cos®8 - sin6) .

Using the same technique as before we get,

K*(p) = 41(p)
-[l(p)dV > on®
i

Hence ' f <HHE>@ = [ Mplay = en?,
M . M

The second part he proves by considering a functicn

o : M —» E*
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. |
gefined by . ¢(p) = x(p) + — as in lemma 2,4.3 and showed that it is
. Q .

minimally imbed&ed in 8%, Therefore we can deduce from the hypothesis that

it mst be a Clifford flat toru's;

It appears that these methods of proof for imﬁersions with 8(p) =0
do not lend themselves in the most general cases, i.e, when the imersed
man:lfold is not necessarily even dimensional and vhen the co-dimension is
. not two. .This is probebly one reason. why the problem 1n Remp.rk 1.3.7
cannot be golved so- ;'eadily using these-mei;hods.

The résult of coroilarv_'Eq 1.2_wa,s valid for -c_:iosed_ manifolds of
dimgﬁsion three; however an analogous result for surfaces p,lsé eﬁ;ists and ias

due to Chen [3],

I2 1 - B2V 4 an immersion of a closed compact orientable surface
in 32+N then, ' : -

(1) IN =0 c—-;)' M is embedded as & convex surface in & thfee, dimensional
linear subspace of E2_+N.

(11) The first scalar curvature A =8 (constant) ‘and the last scalar

~ curvature Ay = 0 & mIg is embedded as & sphere in a three dimensionsl

linear subspace of E wlth rad, = 1 °

.The, proof of thigs theorem essentially depends on the two following lemmas

algo due to Chen (31

Lema 3:1.]

1f M E2 ¥ s a8 1n 'the previous $heoren, then 20 1621 18

embedded a8 a convex surfa.ce 1n a three dimensional 1inear su'bepaee of E2+N

and .




Lemma ; .1.8
Tt Y (w31)
g: M - Eaﬂvll -
be '.gi'v?-n'by s(p) £(p)  MrpeM,

Then the L-K curv, l(a(p,e) and ﬁz(p,e) of £ and g satisfy the following
equality
Ka(p,e) = cos®0 K, (p, e')

where e' = unit vector in the direction of the projection of e in E2 N

From these two lemmas the first part of (i) in Theorem 3,1,6 follows
mmediately. | |
" Now, if I\F is inbedded as a convex surface in Es then, we can consider

f‘:Mg-*'ElN

and from lemma 3.1.8,

. K(P:e) = cos?6 K'(p,e') ~m/2 < e < /2

and since K'(p,e’) 20 ¥ (p,e') € B! |
L g =0

I pow Ay =& (conste.nt) and N =0, then, K(p,e) = 2, (p).

Moreover, L-K curve = G—K curve of £% induced by f but M® is compac’s and
embedded mth constant Geuss. curve

. ' ' 1
el M2 is embedded as a sphere with radius :/-_— o
a !

ConverSely 9

1
Af ME- is embedded as a sphere in E° with redius :/-_— , then
G-K curve = K'(p,e) = & ¥ (p,e) € B .

2+N , .
o°e since K'(p,e) = z Mo (p) . cos®6
. ' H} ) ’ -
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we have A e (constant)

1
and )‘1\1 '

Hence the theorem,

0.

St Shiohama (1] has proved

For complete orientable surfaces 'Mz in E
that if all the N scalar curvatures }\1, ceey )N are zero then the surface

is a cylinder,

§2. Difference Curvature of Surfaces in Euclidean Spaces

As. before I = dx.dx

IIr = 'quder

denote f.he first a_.nd second mndamentgi fpms.o:f a closed oriehted surface
| ME immersed in E2+N. |
 Definition 3.2.1

S(pye) = & (k,(pye) - Ky(pye))

18 defined to be the DIFFERENCE CURVATURE of the immersion x at. (pye).

Definition 3.2.2 . - P
L 'A.nalogous to the definition of the TAC 6f thg' inme_rsipn we say that
the inﬁegral._ | o

s*(p) = [S(p,e)dq-

over the sphere of unit normal. vectors at x(p) is the DM' CE CURVATURE

OF THE IMMERSION x at p and define,
-' T 3 R

| [ S%(p)dV to be the DIFFERENCE CURVATURE of M.

If x : M@ — E°'N g an immersion of a closed oriented surface in
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2+N

E then,

[ () > 2g e, N

vhere g is the genus of M2,
Equality holds iff M® is embedded as a sphere in a linear subspace of E2+N. (o)

Proéf
Choosing a Frenet frame, we can write S
' KZ(p’e) = Z 11‘-2.'90529'!‘- kll Z 000 = )N. '
e A . )
) f ;%(p,e)dc_/\dv = [( Z )Lr__;agco_s er>ag/_\av
_ ‘B, _ o T o
= jﬁ‘.ﬂ (z 2 2)@"
an y- r =
But the Gauss-Kronecker Curv.
Glp) = A +eoo t g
o’e using the Gauss Bonnet Theorem, we have,
1 '
K, (pje)do A a7 = === 21, X(¥F)
an S
v | 3
= (2-2g)ey,, (1)
Also from Chern and Lashof II [2] we have,
f K, (pse)ldo A av = (2 +2g)ey,, (2)
B’O - _ |
Then if U= {(pse) € B |K,(pse) >0}

Ve {(pse) ¢ Bullca(pge) < o} -
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(Il) and (2) give

_[Ka(P;e)dc AV 2 2$‘°N+1 | o (3)

[ o)y -

S(p,e)da A dv
M . .

'db:!‘\’.

S(p,e)do A 4V + fé(p,e)da A s
| v

at—

>

o>

a—

S(p,e)do A &V

b, (or0) - Ky (p,e))%a0 n a¥

<—

- [ @e)P - Kloe) o o
U ) ) -
= -[ K, (pse)do A av
Y . .

e w0 W@
M o |
K, (pse) = 3k, (pse) - ky(pse)}

{KZ(P:e) = det-(Ari;]_)

Now suppos‘é,equality holds in’ (0)

| 1.'e. | [ sl*(l))dV' = 28 Cpq
til_en, (i) Kl-(p,e) = 0 on V . ' (5)
(11) S(p,e) = 0 on U - o - (&)
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.’e from (1) and (2) we get,

[ Ka(p,e)dcr A = 20, (7)
U .
."s from the first result of lemma 1.2,6 we know that MW is embedded as

a sphere in a three dimensional linear subspace of E2+N.

Conversely,

if ¥ is embedded as a sphere in a 3-dimensio'né,l linear subspace of

N then by direct computations (0) is true.

§3, Submanifolds with Constant Mean Curvature in a R;emgnnia.n Ma_nifold

In the last ‘section of Chapter II some results were mentioned with

regard to manifolds whose mean curvature normal ﬁeld was parallel in the

normal bundle.

Another :i.mportant consequence of this concept leads to the conclusion

that the mean curvature mist then be a congtant. .

' p__r_ogos_ition 303,1 (Hoffman [11)

£ M- B,

H parallel == |[H|| = constant.

Proof
W .
Let X ¢ ¥ (M)
Then, X<HHE> = <THH>

- < [6}clilN,§ >
= < DHH >
But B is parallel .°» DH = 0
=) X<HEHE> = 0
w=3 [|H|| = constant.
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Remark e 50 2

The converse of this is false except in co-dimension one when H

parallel &= |H] = constant,

For complete oriented surfaces with constant mean curvature Itoh [1]

“has proved

Theorem 3,3,

-A complete oriented pseudo-umbilical surface with constant non-zero -
mean curvature H in E* and Gauss Curvature K which does nbt c‘:han_ée sign is

necessarily either a Clifford flat torus or a sphere in 'Ea wiﬁh radius il-]-'-l- °

- From lemma 2.4.2 we have wg, =0 (because immersion.is pseudo-

_umbilical), and from lemms 2.4.3 M® is contained in 8% ¢ E* vith redius
. .

. TrH] .
He then 'i)roves » that a complete orientable p.u. surface with constant mean-

curvature and Gaussian curv. nowhere positive is a Clifford flat torus

1 1
st < mracm—— > x 8f ( > in E* ., Furthermore, if the Gaussian
N\ N2 )] V2 ||g]| | |

curvature is non-negative then it mmst either be ' Clifford torus (as sbove)

: 1
or a sphere in E® with radius l-l-—-l-l .
o H

The result of the theorem then follows,

For complete surfaces in ES we have,

Proposition 3.3.4
£f: M - ES
(1) 1if the Gaussien curvature K < 0 then it is either a mini.ma.l surface

or a right circular cylinder.

" (ii) if the Gaussian curv. K =0, then it is either a sphere or a plane

or a right circular cylinder.
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Hence,

Theorem 3,3.5 (Klotz and Osserman [1])

A complete orientable surface in E® with constant mean cu.t_'vature'and
Gauss curvature K which does not change sign is necessarily either a sphere,
a minimel surface or a right circular cylinder.

M is a Riemannisn menifold with metric tensor g.

Definilti'o,n 3,26

(1) A transformation ¢ : M - M is said to be CONFORMAL if %g = pg

where p is some positive function on M,
" (11) 1 pis a constant then the t-:r.an_sfdr.matién 15 HOMOTHETIC,
(111) i'f p is one it _is an ISODETRY'(metfié p-resgz.'vi.rig).
If X,Y,% ¢ ¥(M) and Lg denotes the e deJ‘:'ivat:'L\lre of the tensozl"g |

an infinitesimal transformation X of M is said to be

CONFORMAL if Lxg = pg » p function on M,

HOMOTHETIC if Lyg = cg ¢ is a-constant,

0.

KILLING  if L&

Ly <YH,Z2> = X<Y,2>-< [x,¥], 2 > - <7, [X,z2]>
-<Y, 42>+ <Y, VX >

<Xy B>+ <X, YK >

(In coordinates, Lg, g = vixj + iji)

Definition 3.3.7

A one parameter subgroup of a Lie group G is an analytic homomorphisnm

of R into G.
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Yano [1] generalizes to a general Riemannian mr:mif‘ol'dLr

?heorem_S.}.B (Katsuradsa)

'Let M 5e an (m+1)-dimensional orientable Einstein space and M a closed
orientable hypersurface in M whose first mean curvature is constant. If M
admits a one parameter group of conformal transformations such that the
inner product of the generating vector vh and the normal nh to the hypersurface
does not change the-sign (and is pon-iéro) on M, then every point of M is -
wmbilical. o

. Katsurada's Theorem wvas itself a generaliéation of the Liebmann-

' SHiss Theorem (Chapter I).

Yano derives the Minkowski integral formulae valid in a general
Riemannian manifold. Working in the classical notation all the time and
using the standard formulae he gets, under an added assuﬁption, that if the
vector fleld V' on the manifold is conformal then,

[naKlménpa“o' (1)

M

. d 2 . (m . id Lo 1ay =
fn [av" 7, K, + mek, + mo{ok® - (0-1)K, }- K von” + oy nontlav = 0
. .

For)
‘:—

/
and o
i i g |
. [mpi‘n +Kjiv“ lav = © : (3)
M- ' -
which are iespectively the first, second and third integral formulas of

Minkowski.

(n* are the normal vectors).

Letting the first mean curwture K = constant he.recovers th= result of

Katsurada from (1) and (2). -
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Furthermore, assuming that the Rieman’n_ian' manifold admits an

infinitesimsl homothetic transformation, (1), (2)-and (3) simplify to,

[ el -x) + L gy o Ll o
|

arid_ therefore,

. heorem 2 39 (Yano)
I Mn is a closed orientable hypersurface of an (n+1) dimensional
orientab].e Riemannian manifold M, whose first mean curvatune is constant and

(i) M admits a one-parameter group of homothetic transformations such
' that the inner product of the generating vector v and the normal 'l to the
hypers};rfa'ce do.not change the sign (and are _non-ezero__) on M, '
i s (ii)' the Ricel curvature Kji ~WeXots. nh is non.—n'agative on M.
Then every point of S is an umbilical and K Ji ni 'qJ - 0 on Mo '
Yet another generalization of the Liebmann-s{iss theorem to arbitrary

co-.-dimension and any amblent space form is

heorem .3,10 (Smyth [1])

A compact irreducible submanifold M of constant mean curvaturr
(£ # 0) and non-negative sectional curvature mst e minimally in & hyper-
aphcre, ' ' L o S
Deﬁnitlon 2.2.11

A Riemannjan man:.fold is said to be reduci'ble or 1rreducib1e according
ag the linear homogeneous holonomy group at a point p € Mis reducible or

irreducible as a linear group acting on the tangent spece at p.

Finelly a result on submanifolds with constant !qéan curvature; |
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- Theorem 3.3.12 Chen [22]

If there is an ixmnersion of a closed n-—dimensional manifold ina

euclidean space of dim-(n+N) and if the mea_n curvat;ure has constant length

: ¢ 1/n '
given by ||H(p)] = ( -8 , then M" is immersed as a hypersphere

: _ v(M4) \/n . :
with radius ( — > in an (n+1)-dimensional linear subspace of
. c -

Y,
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CHAPTER IV

§1. Introduction

The variational problem for surfacés in E_s_ was first considered by
Hombu . (paper unpu’_blished). He took the variation along the normal -
direction and found that for the integral f -~ <H,H>d8 to be
' x(M)
stationary :
AH + 2H(H® - K) =

(cf, pg._lel Chépter I).

Recently Chen [23] generalized this. result to hypersurfaces in a

euclidean space,. He calls the hypersurface stab_lé if

NETSY
for any normal variation.
Here, u = [[H].
In [23] he chowed that if the hypersurface was steble it was
' necessary for -

A 1, m(m-1)y mtH _m-_l R = 0.
R 13 the scalar curvature of M in Emﬂ.

In this che.pter we show how this result can be further generalized to
mam.folds 1m.mersed in any general Riemannian space, = The meuhods employed
follow a similar pattern to that used by Chen but instead of using the
ordinary vector calculus we now use the tensor ca.]_.cult;s.

(Chen could use the vector calculus because in the euclideen Space covariant

differentiation is the same as partial differentiation)s

We shall see 1a£er that the result reduces to that obtained by Chen when
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the curvature of the ambient space is zero, and for surfaces in E® it is

the same a,é that originally obtained by Hombu.

§e. Fonm:lae and Fundamental Equations

Let £ : M= N be a smooth immersion of a closed orientable m-
dimensional manifold in a smooth (m+1)-dimensional Riemannian manifold M,
Let (xl, veey xm) be a local cdordinate, systen vali_d in some neighbourhood
of a point p € M and let (¥%5 oees ywl) be & local 'co_drdinate system in
some' neighibourhood f(p) of M.  Then,

| R o I ()
' As usual the Roman indices bake values 1,2,.0s,m.and the Greek indices teke

Cvalues 1,2,000,(m+l),

. If "(EGB) is & metric on M, then the induced metric (gij) on M is

given by,

a .af
v@ere fi = S;I
. 2%
: o k o0
- ] - I-'. f )
let fiJ -——s--—axlaxj "

Let n® denote & unit normal vector field on £(M) defined Jocally and

let (hij) denote the second fundamental form corresponding tO'thg" normal

direction, Then,

1. 43 - - ;
H = %" hy (3)
T
Henceforth (,) will mean covariant differentiation and —= will be

: . . v
denoted by Epp e




po "1 7j i
Loe | hyy = éaﬁf:’j P+ R fJ qu
ni_j = "'hlj gtm fg- Fﬁu fg n’
Ripeg = (b b 3t by g By ) + Roprs % f? f17< H

(fhe sign is -ve that used in Chapter I) y
and -th‘e volume element |
W o= %] = 'fdet gij dx? .A'-o'-on A_d.xm
B .

gan n = 0

and'. ' ' | gaﬁ na nB = 1

a ..ota

oy = [Pr,8] = i (gsau as.B-_" 350.5)

All these formulee can be found in Eisenhart [1] .

30 Variation along the Normal Direction
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(+)
(5)
(6)

Ky

)

(9)

(10)

We consider a family of immersions givenby £, : MX I - B

parametrized by t, vhere -e <t < +e
Assume that ft varies differentiably with t and f = T,
a

ft = f +t¢n

¢ is a Cm—function defined on M in terms of (xl,...,xm).
d Yo

t o
Jet & = and denote == |. . by Bf
. 3%t t=0 3t |t=0

Then,

(11)




Then from (11) we get,

8% = en* o (12)
2 ot etle, %+ ent)
L A | )i y17
. e o - a o -
e 8f, = ¢,1n o ¢n,i . (1;)
. and
(44 [+4 o e
, = + Y +on, +¢ _ . 1k
Sfi,J :i,Jn -l-n::l 31 'n)id o (1)
Novr,
o[iten w01 ngre
= f (5gldhj+gjah J)*l +[u Wdu./\ooo Adu
| (15)
P }
8y = % f? €op

. o - (24 - ' 0
bgy; = (af‘; f? A 'Sf?)gaﬁ + 1y :E'? Sgaa.u 8f

""(,in fﬁ+¢n fa"'fi¢ “B"fim )30:6 fagaﬁb

= 4,(,, fB + n fg‘)gaB + ¢f;‘ f‘g gaa"\?:n"_

= -o(n,, g fr‘; fg uv fa + hz;, fg )
 *§F&f§ n)ayp * “1% Bap o

= _lq.a(gh'ji + ng f‘;‘ f? Eop n° + f‘B fg : éaé v fg f‘; Eaﬁ.unu

° | (1
e’ Sgij = -2c1>hia + (=[uv,B] f‘; f? - [uu,a]f f + %gue o £ fg
+- %E_duo.) f‘; f(:)np

0% Bgyy = - 20, - ' (16)
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(The term in the bracket vanishes on further s:lmp;l_.iﬁcation since the first.

and third terms are symmetric .in pu and B while the second and fourth are

gymmetric in « and p).

Now, K
8 &= = 0 14k
. o g, = - 0e,

Transvecting with g'F and substituting for Bg,, we get,

o = +g0" gP20n,,

- 20p® (17) .
. - : . ""Pk-. = pk '
oo L o _«pg By 2¢h:'l5k.. (18)
W = VJaet g:l,'j |
i, W = :il:gij(c_ofac. gi:j)
o = p .
o | 2W. S0 ifd 831.] (cofac gi,j)

15
= -~ & 26h w2
4,3 13 €

oo W = -2mouv (19).

(17) and (19) give the first and third terms in (15)s We nowwork out

the second term in (15).

pr o
hid - (1:1 s f)gclﬁ

I S T +l“°‘ af“f +f 5f f‘;)gaﬁn

o
Shijl = (srij-rrw. 1 %y

B 7 y- B g
*hyyn (gaw 8t’ n *+ gaﬁ Bn") (20)




Using (1%4)

- a -B

« a a a B
] + ¢ + ¢ .+ o -
( 213 " niil, )1 n:J 2d n:i)gqﬁ n
« B
MR IMRLEF I

- B ma"a-- Oy
- Bup 0 [0 ; (B fp* Ly £5 0]

- B m &, 5O v
= Byg I “’,;j(hi ot T f'; n")]

. o L
'°,ijf°n,i EaB 'gaa o ("1 gt )

(21)
. Now,
o =00 _H '0

n,i = -hif —Pp.\)fi

PR = pB £ x i, 0

.F N v - Fa fp nu'.
wo i3 ™ Tl 1 P

. [ B _ _= ﬁ 1} m « o A
e By Bp W = Eyp © l:hl I‘ILm fmf + by hygn +1‘w.mfa £i 0

= = 0 B v _ =& k.

R0 op.m O O H 20 0 B
r‘p fihj £ Fw,fi I‘esfjn]

and,

P et D s ebyp P o g P (e, i e T e £
(I‘uuaf';fd-tl‘u af f)gaB gasn(f'uu Al f. wo *0 4 T

p‘+I"°l v p>
¢jn fi ’in
- B ;iu v U
r (¢ . . H ¢ £,
€ap 1 Pp( _’1n fJ »d a 1)

. B gt n v pr B .60
+ 0gg m Dy (—hi f'; £ - Fef’. £, 0 4
- 1} f"f“ f f“f )

(23)




GB y 0 n® nB- n - %éaﬁo y on nB nr)
. = % apay n* n.B_n7 (2)
Novf substitute from (12, 13, 21'? 22, 23, Qh.) 't'o get, |
s T 0,y ["hr? 5% IZ;.;P.hI: hm:i'nja ' fﬁ% £y ey n
| 'Faxs ng £ fs n- _'Fﬁu by o n’

- 70
-2 f“f w
e i T i™m™J
o 8 v b

e =
- +
Fmresf fan 3 m i

T, e L I - I - B
- T <3 3 B ]gaﬁn .

- B s /rfu/ny,+ : = H R
gaﬁn FIJ-D (¢, T W M &;._— ) }

v los o u% B
?-_ gtbgaB._),n n n .

. .Some_ of the terms cancel out as indicated and we are left with,

' Com =0 poO _ps g 5 D0
- - -1 f‘
Shi.]' = ¢,i',:]' ¢hi hmJ' ¢ [Fuv.m J f o 6% £ fj n
=0 TR R, )
P].l.‘l) hi,j non o Puu,w f}; fj a

B

S50 mp P 0 B
+FDF98 J"11 f,] ]gaﬁ n
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dh... =
13
- B v.n w/ g2 ~a a b a w0
Byg B D £ fa'<ruu.w uw.'o"’fe'of Pewru
+ -%-&@ g o
R o oM BV
¢,1,g ¢hi hrua ¢R;um>f;j fln n- Bug e
° ij _'__ _ m i_ =Q - B v
e o g shi:] = Ad ¢1>hi hm R g gaﬁn n
° ij - m,i - oB B v
o’o g Shy, = A0 - on h - %R n n (25)
1 ij
= I h
ho= mi,] 8 ij
n(dy) = 8¢9 h,, + g o
ij ij

k£ k.4 = u.b

= Ad - ¢hl§ hli - ¢§15' N

Rewriting (7.)

Rger = (Byge Byp ~BygByd * Rupys f: f? g8 -
Trarisve_ctiné f.dth giz g’jk we g_et_,
R = (hlﬁhlf—mzug)+R
iee. h}ihl.; = @ p2 + (R - R) | {26)
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e m(da) = 8¢ + omu® + ¢(R - R - ﬁub o n° (27)
<. 5[ W1 |
Mm :1
- [ (Lo + wA® + o(R-E-R o n2)] - 1™ lne} % 1
i .
o= [ W= 100 + tt’m(m-l)um""1 + ¢um°1(R;_ﬁ-§“5 o 'nb)] * 1,

Applying Green's theorem (cf. Flanders [1] ) to the compact

manifold M, gives,

[ -A(b . um-l *#1 = [ "0 oa'lm_-.'l‘_ #1,
Hence,

° [“m* 1 = [ ol 4 mm-1)u™ + (R-R-Rq M TS LR N

Since this must be valid for all allowable ¢, we have,

a™ !+ m@-1) ™+ (R-R-Bg ot D TR (8)

&

*, (8) 1is the necessary condition for the imbedding of M in M to ve a

stable hypersurface.
Remark 4.3.1
When M is a euclidean space 115 =0 andR=0 and (8) reduces to

m+l -1

2l plp-1)™ TR =00

Ap

which is a result of Chen [23].
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Remark 4,3,2

For the particular case when m = 2 and the co-dimension is-one,
(S) becomes,

M+ -K) = 0.

a result due to Hombu [1] .

§4. Applications

Chooée an orthonormal frame at pe M sq'that ﬁhe_second fundamental
forn ‘is dlagonalized to (A, eeey N)e | | '

Then, since hi hg = trace (h®), we have hé hf = lf-f voo K:..

+*s  (26) can be written as

2 = : 2 2
m2u. + (R"R) ] 11 + ooo-+}__\m
il.e.- l‘ . - R-ﬁ = (2\-)2.- (ZK )
: ' i it
=2 Z A,
i<j 173d

From the inequality on elementary symmetric polynomials we obtain,

(cf. Lemma 1,2,1)
n(m-1)p2 + R-R = 0 S (26

Condition_(s)_can now be written as

A=t e ™ n(m-1)u2 + R - R - ips o n°] (29)

Theorem H.¥.1 
Let M?m’l. be'a compact orientable manifold jmmersed in a Riemsnnian
manifold Mem whose Ricci tensor is negative definite, If M?m'l is a-

stable hypersurface then, it is a minimal hypersurface.




Proof
NP —

Since the manifold is stable,

a2 2‘“’2[(21:1-1)(2m-2)u2 +R - R - Rus # %1 (30)

Since '(1-1';5) is negative definite, o*o using (28) we see that the left
hand side of (30) has the same sign as ~uem2

Bu’cl.tem_2 =z 0

- hence - _Apm_a' < 0.

. - from Hofpf'e, Lemmsa, (Kobeyashi and Nomizu II [1]) we get, Au_zm'e = 0,

- Hence u = constant, _
But from (50) p = 0 is the only possibility. Hence Mzm is a mini!nal

hypersurface.

NOTE b,bk,2 .
The above result contrasts strongly vﬂfh the case when the ambient

space is the euclidean, E2k.

AS before, we get ApZ"C =0

ST 252 (an1) (en-2)i® + B} =

Here we have to reject the solution p = O for it is well knovn that there

_.do not exist any compact or:lentable m:.n:unal ‘submanifolds in e euclidean
space, Hence, the only possibility is that
(2n-1) (2m-2)u® + R = -0
and this ,-_-_-_=) l = s0e = }‘2m 1' at all points.
Hence every point is an umbilic and we recover the result of

Chen [23]..
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Theorem b l,3

Let M ! pe a compact orientable odd dimensional manifold immersed |

in a euclidean space B2, It L 45 o stable hypersurface, then it is
necessarily e sphere,

Results for even dimensional manifolds can also be obtained in a
similar manner on further assumption that the mean curvature, u, does not

change sign. We would have,

Theorem L h L

If an even dimensional compact ori_en_taBle manifold Mam is immersed in
a Riemannian menifold 21 vwhose Ricei tensor is negative definite and the
mean curvature of Man does not change sign, then-if Mam is a stable hyper-

surface,' it is _hecéssarily a hypersphere in Flﬁ.

Methodé used for the variational problem in§3 can be applied in a

' gimilar manner to investigate stable submanifolds of arhitrary co-dimension.

It is indeed clear that the number of equations '('i'.'e._cbnditions for ttie_

gsubmanifold to be stable) thus obtained will depehd' on the co;dimensic-n.
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