

Durham E-Theses

A survey of bubble chamber results on differential cross-sections for high energy $\pi\left({ }^{\wedge}+\right) p$ quasi two body interactions

Wood, I.

How to cite:

Wood, I. (1973) A survey of bubble chamber results on differential cross-sections for high energy $\pi\left({ }^{\wedge}+\right) p$ quasi two body interactions, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10051/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

A survey of bubble chamber results on differential cross-seciions for high energy. $\pi^{+}{ }_{p}$ quasi two body interactions.
by
I. Wood, B.Sco

A Thesis submitted to the University of Durham for the degree of Master of Science.

Errata

P23 line $12 \quad$| For 'indication of mass' read 'indication of the |
| :--- |
| velocity of the particle, which when taken together |
| with the momentum gives an indication of the particle |
| mass'。 |

P23
The rule relating to the exchange of the Pomeron,
sometimes known as the 'Gribov-Morrison' rule, is
by no means finmily established either experimentally
or theoretically and so it would be more correct to
state that it may possibly hold but is not certain.
(Morrison DoR.O. 1968 Phys. Rev. 165 p1690)

CONTENTE

PREFACE(i)
ASSTRACI (ii)
CHPTER ONE
THIRODUCTION i
I. 1 Particles and their intrinsic properties \because
2. 2 Interactions - experimental description 3
1.3 Basic description of transitions 7
1.4 The Mandelstamm variables 8
CHAPTER TWO
INTRGDUCTION 11
2.1 Asymptotic theorems 12
2.2 Peripheral collisions; one particle exchange 13
2.3 Regge Poles 18
Chapter ThREE
INTRODUCTION 19
3.l Quantun numbers of the exchanged particle i9
3.2 Brief account of the handling of data 23
3.3 Physical and analyticai considerations 24
CHAPTER FOUR
INTRODICTION 30
4.1 Channels in which Pomeron exchange can cocur 30
4.2 Channeis in which π-exchange can occur 31
4.3 Channels in whichp-exchange can occur 34
404 Charnels in which other exchanges can occur 36
4.5 Gonclusions 37
APPENDIX ONE 39
APPENDIX TVO 42
APPENDX THEEE 43
GAPTIONS TO EIGURES 44
LIST OF TABIES 46
REEERENGS 47
ACKNORLEDENENIS 49

ASSTPACI

The thesic is based on a survey of differential cross-sections of quasi tho body interactions occurring in $\pi{ }^{\dagger} p$ irteractions studied in hydrogen bubble chamberso The first two chapters outine the theoretical background for the description of such interactions. The third chaptar discusses kinematical and oosəryミtionai effects which can influence the measured shape of the differential crosssection as a function of the jour momentum transfer at smeil values of the latter, and the last chapter surveys, empiricaily the collected data with particular reference to the discussion of the previous chapter.

It is concluded that in general the differential cross-section falls exponentially with increasing megnitude of four momerium
 there is a significant dip as t approaches zero that sannot be explained by either kinematical effects or experimentai bias.

CHPTER ONE

INTRODUCTION

The foilowing work is concerned with a review of the behaviour of differential cross-sections for high energy collisions of the type

$$
\pi^{+} p \not B \div M
$$

where B and M represent a non-strange baryon and meson system respectively. The results are obtained from bubble cramber experiments, and consideration is given to the possible experimental biases that might cause an apparent reduction in the measured differential cross-section in the region of a zero degree production angle. A compilation of total cross-sections for $\pi{ }^{\dagger}$ p interactions in general is given in refol. To see the relevance of the study of such cross-sections chapter two sumarises the general theorems concerning the expected behaviour of these, and discusses some of the predictions of simple one particie exchange modelso In this first chapter an introduction is given to particle properties, this providing a base for the discussion of their strong interactions. In general the review will only be concemed with non-strange hadrons (see Appendix l) but for completeness some mention is made in parts of other types of particle and their interactionso

1.1. Particles and their intrinsic pronerties

Mainly as a result of experiments using proton accelerators many elementary particies other than the proton, neutron and electron have been discovered. 'The known elementary pariticles fall naturaily into two broad categories according to whether their spin is integer or haif-integer, and hence are classified either as Bosons which have integral spin and obey Bose-Einstein statistics, or as Fermions which
have haif-integral spin and obey Fermi-Dirac statisticso These broad categories can then be subdivided; Fermions are either Leptons or Earyons while the Bosons contain the photon (γ), which is the quantum of the electro-magnetic field, and mesons which can be thought of as quanta responsible for the strong or nuclear interactiono

Four basic interactions are thought to occur between elementary particles:-
(i) the gravitational interaction which is very weak and hence its effectis have never been detected in experiments which involve only a small number of elementary particleso
(ii) the electro-magnetic interaction which connects all charged particles; and also those having magnetic dipole moments, via the emission and absorption of photons.
(iii) the weak interaction which is responsible for the majority of the decays of unstabie particles and includes β-decay.
(iv) the strong interaction which connects all the baryons via the emission and absorption of mesens, the family of particles involved in this interaction being called quite generally 'hadrons'.

The relative strengths of these interactions are shown in table 1 , while table 2 lists the non-strange mesons ard baryons that occur in the final states of the interactions that are reviewed later.

Table 1:- Relative strengths of known forceso

Tvpe	Relative strenoth	Approx. ranae (cmis)
Strong	1	10^{-13}
Electro-magnetic*	10^{-2}	∞
Weak	10^{-14}	$\ll 10^{-13}$
Gravitational*	10^{-36}	∞
Proton-proton interaction These are compared at a range of 10^{-13} cnaso		

From table 2 it can be seen that whereas some particies are stable Or have lifetimes $\gg 10^{-23}$ secs, others have very short Iifetimes, and associated with this via the uncertainty principle, masses which are not sharp in value. The very shori lived particies (e.g $\Delta \rho$) are known as resonances, the basic physical differences between particies and resonances being the manner in which they can decayo frereas the shorter lived particles have a strong decay channel open to then, the longer iived particles can oniy decay. by means of the weak interaction, or as in the case of the π° and η decays electro-magnetisailyo 1.20 Interactions - experimental description

It is found that when two given hadrons interact many different final states involving various types and numbers of particles may be formed. There are constraints however on the transitions that are possible from an initial to final state, these being imposed by the conservation of energy, linear and angular monentum and certein quantum numbers (see appendix 2) For example, interactions in when negative pions react with a proton can lead to numerous possible final states, some of which are:-

Table_2 (i) Hadrons stable against decay by strong interaction.

Particle	$I^{G}\left(J^{p}\right) C_{n}$.	Lifetime (secs)	Mass width
\pm	$1^{-}\left(0^{-}\right)^{+}$	2.6×10^{-8}	0.0
π°	$2^{-}\left(0^{-}\right)^{\frac{1}{4}}$	0.84×10^{-16}	$7.8 \pm 0.9 \mathrm{eV}$
η	$1^{-}\left(0^{-}\right)^{+}$	2.53×10^{-19}	$2.6 \pm 0.6 \mathrm{KeV}$
P	$\frac{1}{2}\left(\frac{1}{2}^{+}\right)$	2.10^{28} years	0.0
$n \cdot \cdots$	$\frac{1}{2}\left(\frac{1}{2}^{+}\right)$	935	0.0

(ii) Selection of hadrons unstable against strong decay (resonances).

Particle	$I^{G}\left(J^{p}\right) C_{n}$	Lifetime (secs)	Mass width (MeV)
ρ	$1^{+}\left(1^{-}\right)^{-}$	5.07×10^{-24}	$\cdot 135 \pm 20$
ω	$0^{-}\left(1^{-}\right)^{-}$	6.58×10^{-23}	10 ± 0.6
A_{1}	$1^{-}\left(1^{+}\right)^{t}$	6.6×10^{-24}	$50 \rightarrow 200$
A_{2}	$1^{-}\left(2^{+}\right)^{\top}$	6.58×10^{-24}	100 ± 20
A_{3}	$1^{-1}(.){ }^{+}$	6.6×10^{-24}	$50 \rightarrow 200$
B	$1^{+}\left(1^{+}\right)^{-}$	6.58×10^{-24}	100 ± 20
f	$0^{+}\left(2^{+}\right)^{+}$	4.30×10^{-24}	156 ± 25
Δ.	$3 / 2\left(3 / 2^{+}\right)$	5.98×10^{-24}	$10^{1}+122$

*Footnote:- See Appendix 2 for an explanation of these quantum numbers。

$$
\begin{array}{rlrl}
\pi^{-} p & \rightarrow \pi^{-} \cdot p & (a) \\
& \rightarrow \pi^{0 .} n & & (b) \\
& \rightarrow p \pi^{0} \pi^{-} & (c) \\
& \rightarrow p \pi^{-} \pi^{o} \pi^{0} & & (d)
\end{array}
$$

Each of these transitions is called a whanel for the reactiono Channel (a) is termed the 'elastis' channel since the same particles are present in the final state as are in the initial one, virile charnels (b), (c) and (d) are ail ionelastic:, as are all interactions in which different particles are present in the final states (b) is also known as a charge exchange interaction since the particles in the final state differ from those in the initial one merely because they have exchanged an electric charge between themselves.

It is possible for two or more particles in the final state to result from the rapid decay of an intermediata particle which cannot be observed. This has been deduced to occur by studying the so called 'invariant nass' of the combination of two or sometimes more final state pariicies, which is derined thus :-

$$
\begin{equation*}
m_{n}^{2}=\underset{i=1, n}{\left(\sum_{i} E_{i}\right)^{2}-\left(\underset{i=1, n}{\left(\sum \dot{p i}\right.}\right)^{2} .} \tag{1.1}
\end{equation*}
$$

```
\(E_{i}=\) energy of \(i\) 'th particle in an n-particle combination
\(p_{i}=3\)-momentun! " " " "
```

Considering reactions (c) and (d); if the combined mass of partisular particles, in this case the ($\pi \pi$) or ($\pi \mathrm{p}$), were calculated a smooth curve for the mass frequency distribution would be expecied if this combination vere random. In fact various peaks occur indicating that very shori lived particles are created tnese being called

[^0]```
'resonances'. Thus instead of reactions (o) and (d) occunring as
they initially appear as shown in fige lo
```

Figure 1 Reaction as seen to occur.

reaction (c)

reaction (d)
in a significantly large fraction of cases they arise as shown in fig. 2 where the $\Delta$ and $\rho$ are resonances with lifetimes too shorit to indicate their presence directilyo

Fiqure 2 Reaction as deduced to occurs Note that the lifetimes of $\Delta$ and $p$ are too short to leave visible evidence of their path.

reaction (c)

reaction (d)

In the energy range being discussed, resonances are produced very frequently, and in this review only those reactions wich can be interpreted as having two particies in the final state will be considered, even though one or both of these may be resonances decaying into a number of particles themselves. These channels are said to be 'quasi two body' interactions.

### 1.3. Basic descripion of transitions

The dynamical behaviouz of a quantum-mechanical system develops in a manner which is related to its Hamiltonian, thoug for strong interactions this HaniItonian is difficult to constructo To dascribe interactions, generally perturbation theory is used in which the Hamiltonian is split into two parts $H_{0}$ and $\mathrm{H}_{\mathrm{I}}$ such that:-

$$
\begin{equation*}
H=H_{0}+H_{I} \tag{1.2}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } H_{0} & =\text { Hamiltonian of the free particles } \\
H_{I} & =\text { Hamiltonian of the interaction between the particies. }
\end{aligned}
$$

For electro-magnetic interactions the resuits obtained agree very well with experiment buit for sirong interactions this method is not successful since their strength makes it invalid to treat the interactive part as a perturbationo

An alternative approach has therafore baen used, this being the S-matrix, wose eiements are in princiole directly observable scaitering or decay amplitudes, and hence give the transition probability from a given initial state to one of the possible final states. This matrix is in fact a function of the kinematic variables describing the particies involved in the transitiono The S-ratrix element $\left\langle f^{\prime}\right| S\left|i^{\prime}\right\rangle$ is the amplitude for an initialily observed firee particle state.| $i^{\prime}>$ to be observed as the final free particie state $\left|f^{\prime}\right\rangle$. Included in the $S$ matrix are the elements $\left\langle\left. f^{\prime}\right|^{\prime}{ }^{\prime}>\right.$ representing no interaction. An actual interaction of the particies is described by an amplitude which is $i$ times the I -matrixe (Tne $\mathrm{i}=\sqrt{-1}$ appears solely by convention), Thus:-

$$
\begin{equation*}
\left\langle f^{\prime}\right| S\left|i^{\prime}\right\rangle=\left\langle f \mid i^{2}\right\rangle+i\left\langle f^{2}\right| T\left|i^{\prime}\right\rangle \tag{1,3}
\end{equation*}
$$

The P-matrix then depends on the particle momenta, and aiso on their
spin and isospin and any other internai properties. (ref. 2 \%
The theoretical problem then becomes one of extracting the analytical behaviour of the scattering amplitudes from the experimental measurements, or more usuilly, exploiting the lattar to investigate an assumed theoretical behaviour. Though the iransition amplitudes are in general unknown functions of the kinematic variabies and internal properties (such as spin), the following chapters are mainly concerned with their dependence on the kinematic quantities which are conveniently sunmarised by the Mandelstanm variables $s$, $t$ and $u$ which will now be described.

### 1.40 The Mandelstam variables.

The Mandelstamn variables $s$, $t$ and $u$ are defined in terms of the kinematic quantities shown in figo 3 for the reaction:-

$$
\begin{equation*}
a+b \rightarrow c \div d \tag{1,4}
\end{equation*}
$$

Eigume 3 . Kinematic notation for the quasi two body interation $a+b \rightarrow c+d$ in the centre of mass system

where, $\quad \vec{p}=$ momentum 3-vector
$E=$ Total energy.
$m=r \in s t$ mass
$\mathrm{p}=$ Energy momentum 4-vector ( $E$, p )

$$
P_{a} P_{b}=E_{a} E_{b} \vec{P}_{a} \cdot \vec{p}_{b}
$$

The variables are given by the relations

$$
\begin{equation*}
s=\left(P_{a}+P_{b}\right)^{2}=\left(P_{c}+P_{d}\right)^{2} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
t=\left(P_{c}-P_{a}^{b}\right)^{2}=\left(P_{b}^{c}-P_{d}^{d}\right)^{2} \tag{1.0}
\end{equation*}
$$

$u=\left(p_{a}^{c}-p_{d}^{a}\right)^{2}=\left(p_{c}-p_{b}\right)^{2}$

Thus. in the centre of mass where $\vec{p}_{a}+\vec{p}_{b}=0:-$

$$
\begin{equation*}
s=\left(E_{a}+E_{b}\right)^{2}=(\text { centre of mass energy })^{2} \tag{1.8}
\end{equation*}
$$

In terms of $P_{d}$ and $P_{b}$

$$
\begin{align*}
t & =\left(p_{d}-P_{b}\right)^{2} \\
& =-\left(\vec{p}_{d}-\vec{p}_{b}\right)^{2}+\left(E_{d}-E_{b}\right)^{2}  \tag{1.0}\\
& =\left(m^{2}+m_{b}^{2}\right)-2 E_{d} E_{b}+2 p_{d} F_{b} \cos \theta^{*} \text { cns system } \\
& =\left(m_{d}{ }^{2}+m_{b}^{2}\right)-2 E_{b}^{l a b} m_{d} \quad \text { lab system }
\end{align*}
$$

where particle $b$ is at rest in the laboratory.
Similarly:-

$$
\begin{aligned}
& u=\left(m_{a}^{2}+m_{d}^{2}\right)-2 E_{d} E^{2}+2 p_{d} p_{a} \cos \theta^{*} \text { cns system } \\
& s+t+u=\left(p_{a}+p_{b}\right)^{2}+\left(p_{c}-p_{a}\right)^{2}+\left(p_{a}-p_{d}\right)^{2} \\
& \\
& =m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{aligned}
$$

Now one of the properties of an equilateral triangle is that the sum of the perpendicular distances from its sides to any point is a constant, and this fact can be utilised, enabling the graphical representation shown in fig. 4 to be drawn.

Figure 4

> The plane of the kinematic-invariant variables $s ; t$ and $u$


Since $d \Omega=d\left(\cos \theta^{*}\right)$ and tod $\cos \theta^{*}$ (see equation iog), it can be seen that the differential cross-section in the centre of mess d $\sigma / \mathrm{d} \Omega$, with which this review is manity concerned, is easily expressed as $\alpha \sigma / \alpha t$, and in accordence with normal practice in this field, the latter will be empioyed as a measure of the differentizi cross-section.

## CHAPTERTWO

## Introduction.

The results of the many experiments which have studied high. energy interactions have indicated that the inelastic prociuction processes are characterised by a number of common features:-
(i) In many cases, the inelastic collisions do not proceec diractly to their final state, but rather go throught an intermediate one in which strongly decaying particles are produced (eg $\rho, \omega, \eta$ ) - the feature of the strong decays being that the resonant states have exiremely short lifetimesc
(ii) Up to about $20 \mathrm{GeV} / \mathrm{c}$ incident particle momentum, many of these inelastic reactions appear to be quasi two body interactions. The resulting secondary particles have a tendency to go in the forward-backmard direction in the centre of mass systems this preference generally becoming more pronounced with increasing primary monentum and less pronounced with increasing rumber of secondary particles.

This chapter presents some theoretical considerations which are relevant when trying to explain the resuits obtained from guasi two body irieractions occurring at various energies. The first section deals with asynptotic theorems, valid for $s$ ( the total interaction energy) tending to infinity. The second part of the chapter deals with peripheral collisions and describes theories which involve a single particle exchange between the two interacting particleso This is subdivided into two sections, the first dealing with one
pion exchange, and the second with vector-meson exchange. The last section deals very briefly witr: Regge theory, this approach being an attempt to provide a more satisfactory theoreticall basis for high energy interactions than those described in the preceding sections. 2.1. Asymptotic theorems

At high energies, hadron interactions display certain general properties, such as the energy dependence of their total crosssections $\sigma_{I^{\circ}}$ For elastic cross-sections, the data inaincates that $\sigma_{e l} / \sigma_{T}$ (where $\sigma_{e l}$ is the elastic cross-section) tends to a constant as the interaction energy increases. (i.e. $s \rightarrow \infty)$.

The first of the theorems to describe the asymptotic behaviour of interactions was that postulated by Pomerarchuk in 1958 (ref. 3) which states that if the total cross-section for $a-b$ and $\bar{a}-b$ colifions both tend to constants, then the se constants must be equal:-

$$
\begin{equation*}
\lim _{s \rightarrow \infty}{\underset{s}{T}}(\bar{a} b, s)=\lim _{s \rightarrow \infty} \underset{s}{\sigma_{T}}(\overline{a b}, s) \tag{2.1}
\end{equation*}
$$

thus implying common limiting values for $\sigma_{T}\left(\pi^{\dagger} p\right)$ and $\sigma_{T}\left(\pi^{-} p\right)$ etc.
This theorem can be applied to the elastic scattering case since there is a link between this charnel and the total cross-section, provided by the Optical Theoremo (ref。4) It is assumed that for large s and small $t, T(s, t)$, the elastic scattering ampitude, can be expanded in the form:-

$$
\begin{equation*}
T(s, t)=\sum_{n=0}^{\infty} b_{n}(t) s^{\alpha_{n}(t)} \tag{2.2}
\end{equation*}
$$

where $\alpha_{n}(t)$ are real functions of $t$ ordered such that for fixed, $t$,

$$
\begin{equation*}
\alpha_{0}>\alpha_{1}>\alpha_{2} \tag{2.3}
\end{equation*}
$$

and the functions $b_{n}(t)$ are arbitrary complex functions of io it can be demonstrated that:-

$$
\begin{equation*}
\bar{b}_{n}^{*}=b_{n} e^{i \pi \alpha_{n}} \tag{2,4}
\end{equation*}
$$

where $\overrightarrow{\mathrm{b}}^{*}$ is the complex conjugate of the crossec channel amplitude bo
From $\left|\bar{b}_{0}\right|=\left|b_{0}\right|$, one obtains in the asymptotic region $s \rightarrow \infty$,

$$
\begin{equation*}
\frac{\bar{d}}{d t}(s, t)=\frac{\bar{d}}{d t}(s, t) \tag{2.5}
\end{equation*}
$$

ioe. equality of the elastic differential cross-sections. From the observed constancy of the total cross-sections, at high energy, $\alpha_{0}(t=0)=1$, in which case 204 yielòs for $b_{0}:-$

$$
\begin{equation*}
\operatorname{In} b_{0}=\operatorname{Im} \bar{b}_{0} ; \operatorname{Re} b_{0}=-\operatorname{Re} \bar{b}_{0} \tag{2.6}
\end{equation*}
$$

This then implies Pomeranchuk's Theorem 2ol. As a particular example, the real part of $T(s, t)$ for $\pi \pm p$ elastic scattering has been obtained from its interference with Coulomb scattering at small angles; for both $\frac{1}{\pi} p$ and $\pi^{-p} p$ scattering it is smail and negative, and so it may be concluded that Re $\mathrm{b}_{\mathrm{o}}=0$, ioed that $\mathrm{Re} \mathrm{I}(\mathrm{t}=0)$ comes from the next term in the expansion.

It would therefore be expected that:-

$$
\lim _{s \rightarrow \infty} \frac{\operatorname{Re} I(s, t)}{\operatorname{Im} T(s, t)}=0, \text { for small } \quad\left|t_{0}\right|
$$

Aiso, since $T\left(\pi^{-} p \rightarrow \lim ^{0} n\right)=I-\bar{T}$, the ratio of the charge exchange to the elastic cross-section shouid tend to zero, in good agreenent with experiment.
2.2. Feripheral collisions: one particle exchance
a) One pion exchanoe

A striking feature of high energy interacticns is the peripheral nature of collisions. For meson-nucleon reactions of the type ab $\rightarrow \mathrm{cd}$, the differential cross-sections have a sharp peak near $t=0$, which drops exponentially for increasing $|t|$ (see for example figure 26)

This is most evident for elastic scattering but appies generally to charge exchange and inelastic quasi two body reactions aiso, the momentun transfer from the initial to the final baryong or baryon resonance, neariy always preferring small valueso

A step in the development of the peripherai model was the introduction or the idea of the exchange of a single pion between the
 Uncertainty Principle, the Ionger range interactions are diue to particies with. lower mass energy (ioe. the lighter particles, since it is these that are the most likely to exist further, from the nucieono Therefore it is these particles that are the most likely mechanisms to be in operation for peripheral collisionso A diagram representing one particle exchange is shown in fig. 5 。

## Figure 5:- One particle exchange diagram

1


The matrix element $I_{\pi}$ of a $\pi$-exchange process in momentum space is given by (refo 12):

$$
\begin{gathered}
I_{\pi}\left(a^{\prime} b \rightarrow c d\right)=\frac{1}{\mu^{2}-|t|} I(\pi a \rightarrow c) I\left(\pi b \rightarrow c^{\prime}\right) \\
\text { Where } \mu \text { is the pion mass }
\end{gathered}
$$

The matrix $\in$ lements $T(\pi a \rightarrow c)$, and $T(\overline{\pi b} \rightarrow d)$ refer to colistons of a virtual pion (anti-pion) with a particle a (b)。

In the simplest version of the peripheral nodel（the so－called＇pole－ approximation＇），the pion is treated as being reaig both at the upper and lower vertex（see figure 5）。Replacing $|t|$ by $\mu^{2}$ in I（imarc） and $T(\pi) \rightarrow d)$ in 2.8 ，the differential cross－section is obteined in the form：－

$$
\begin{equation*}
\frac{d \sigma}{d|t| d s_{a b} d s_{c d}}=\frac{1}{64 q^{2} s} \frac{C\left(s_{c d}\right) C\left(s_{a b}\right)}{\left(\mu^{2}-|t|\right)^{2}} \tag{200}
\end{equation*}
$$

where $q$ is the incident particle momentum in the ceritre of mass and $G\left(s_{a b}\right)=\frac{1}{2 \pi} \int d\left[\operatorname{Lips}\left(s_{a b} ; p_{a}, \ldots p\right)\right]|T(a \pi \rightarrow c)|^{2}$ with $a$ similar relation for $G\left(s_{c d}\right)$（ref．i3）。The expression $d\left[\operatorname{Lips}\left(s_{a b} \ldots . . P_{d}\right)\right.$ ］ is a differential element of the Lorentz invariant phase space（refo 14） and is independent of $t$ 。

The main achievment of 2.9 is to reproduce the strong forward peak in $|t|$ due to the pion pole at．$|t|=\mu^{2}$ ．The exchange of other mesons or meson resonances will also contribute；but the corresponding $d \sigma / d|t|$ will become smalier and less peaked as the exchance particle masses get larger，since the mass appears in the denominator of the expression．

Knowing the spins and parities of the resonances；the poie approximation 2.8 may be improved upon by including the appropriate spin factors，and the Born term model（ref．12）approximates the invariant amplitude at each vertex tof its value at the pole of the exchanged particle；i．e．by the reievant coupiing constanto For m－ exchange in the reaction $a b \rightarrow c d$ ，the Born terms are then of the general form：－

$$
\begin{align*}
& T_{\pi}^{B o r n}\left(s, t, m_{c}, \cdot r m_{d}\right)= \\
& \frac{1}{\left(\mu^{2}-|t|\right)} B_{a \pi c}\left(t, m_{a}, m_{c}\right) B_{b \pi d}\left(t, m_{b}, m_{d}\right) \tag{2.10}
\end{align*}
$$

where:- $B_{a_{\pi} c}$ and $B_{b_{\pi} d}$ are the vertex functions in the Born approximation and $m_{a}{ }_{0} m_{d}$ are magnetic quantum numbers.

Considering the implications of 2.10:-
(i) The dependence on the magnetic quartum numbers allows the decay distributions of the rescnances. to be complited.
(ii) The $s$ independence of $I$ is predicted. Consequentiy the differential cross-section should decrease as $\left({ }_{p} 1 \approx b\right)^{-2}$ :-

$$
\begin{align*}
\frac{\hat{a}_{g}}{d t}(s, \dot{t}) & =\frac{\pi}{4 a^{2} s}\left|\frac{T(t)}{4 \pi}\right|^{2} \\
& =\frac{\pi}{\left(2 m_{b} p^{l a b}\right)^{2}}\left|\frac{I(t)}{4 \pi}\right|^{2} \tag{2.11}
\end{align*}
$$

It should be noted that finite mass widths of rescnances are not included in this treatment.
b) Vector meson exchange

In $\pi p$ collisions of the quasi two particle type, due to restrictions on the exchange of quantum numbers between the two vertices (see $3-1$ ), single pion exchange is allowed for $\Delta \dot{f}$ or $\Delta p$ production, but not for $\Delta \omega$ or $\Delta \eta$ channels, which even so are about as peripheral as T - exchange reactions. However for these latter two channels, even though $\pi$-exchange is not allowed, vector meson exchange can occur, and it is quíte possible that these peripheral reactions are related to such vector meson exchange processes.

In the Born term model, the scatiering ampitude is related to the mass. of the exchanged meson, and to the quanturn numbers of the four particles invclved. Quite generally, the number of independent couplings for a given vertex is found from heiicity considerations, and is given by the number of independent helicity amolitudeso

It is possible to write the scattering amolitude $T$ as a sum:-

$$
\begin{equation*}
I=T_{\pi}+T_{v}+\ldots \tag{2.12}
\end{equation*}
$$

where:- $\mathrm{I}_{\pi}$ is the one pion exchange amplitude
and $\quad I_{v}$ is the vector meson exchange amplitude
The differential transition probability due to vector reson exchange for unpolarised particles, is found to be given by a second degree polynomial in s:-

$$
\begin{align*}
m_{a} \cdots m_{d} & T_{V}\left(s, t, m_{a} \cdots d_{d}\right)
\end{aligned} \quad \begin{aligned}
& 2 \\
&  \tag{2,i3}\\
& \\
& =A(t) s^{2}+b(t) s+C
\end{align*}
$$

with $A(t) \neq 0$ (refo 15)
For $s \rightarrow \infty$ 2.13 implies constant do/dt (cf 2.11), but experimantally the cross-sections for inela stic reactions of the type $a b \rightarrow c \alpha$ with vector exchange tend to zero with increasing energy, and this energy dependence probiem is quite a serious difficulty with the Born term model for Vector exchange。

## c) A specific test of the Born term model

As a specific test of the Eorn term model the detailed shape of the peripheral peak can be studiedo in the pole approximation (2.8), the maxinut always occurs at the beginning of the physical region (though where c and $d$ are broad resonances, the depenence of this starting point on the particuler mass of the exchanged parifile must be considereci, since this mass can vary between reiatively wide Iimits). Fowever in the Born term modei (2.10) the maximum of the peripheral paak is moved to a slightiy higher value of $\mid$ t| since the vertex factors, increase with increasing $|t|$ 。 Experimenta!ly, the peripheral peak has a roughiy exponential shape:-

$$
\begin{equation*}
\frac{d \sigma}{d t} \approx \operatorname{constant} x e^{-b|\cdot t|} \tag{2.14}
\end{equation*}
$$

and in many reactions $b$ is of the order $5(\mathrm{GeV} / \mathrm{c})^{-2}$. However, the pole approximation ( 2.9 ) gives a flatter $d_{\sigma} /$ dt, except possibly for very small $t$. . The Born term model fits even less well, but instead of being abandoned, the general $\pi$-exchange matrix element (2.8) is written in the form:-

$$
\begin{align*}
& I_{\pi}(a b+c d)= \\
& \quad T_{\pi} \quad \text { Born }(a b+c d) F\left(M_{a}{ }^{2}, M_{c}{ }^{2}, t\right) F\left(M_{b}{ }^{2}, M_{d}{ }^{2}, t\right) \tag{2.15}
\end{align*}
$$

where the $F$ 's are 'form factors' associated with the two vertices; which give better agreement, (refs. 16,17, 18).

### 2.3. Regge Poles

The one particle exchange model, though reasonably successful, has a number of failures; for instance its energy dependence is entirely governed by the spin of the exchanged particle (i.e. the particular $t$-channel partial wave that is assumed to dominate), and when $s \rightarrow \infty$, and the orbital angular momentum $\ell$ of the exchanged particle is greater than one, this leads to an infinite total cross-section.

A Regge trajectory correlates particles (i.e. bound states and resonances) of the same internal quantum numbers and of the same parity, but with spins that differ by units of two. Provided these requirements are fulfilled, any number of particles may lie on the same trajectory. Regge expanded the partial wave scattering amplitude, which is an analytic function of energy, postulating that the radial Schrödinger Equation should be able to be solved for arbitrary complex $\ell$ values, providing $\operatorname{Re} \ell>-\frac{1}{2}$. A Regge pole is thus a pole.' or the partial wave amplitude in the complex $\ell$ plane, and as the energy varies, the pole moves within this plane. The high energy quasi two body reactions are then predicted to be dominated by the exchange of a few of these Regge trajectories (ref. 19,20).

## GHAPTER THREE

## Iniroduction

The tendency for the secondary particies from a ouasi two body interaction to go in the forward-backward direction in the reaction centre of mass can be observed by studying $d_{\sigma} / \mathrm{dt}$ and, as has aiready been mentioned, experimenteily this leads to an approximately exponentialiy decreasing curve when it is plotied against $|t|$. This curve however sonetimes deviates from an exponential behaviour at very low $|t|$, typically $|t|<0.1(\mathrm{GeV} / \mathrm{c})^{2}$, in that for some reactions the curve changes the sign of its gradients causing a dip at low values of $|t|$

It would not be unreasonable to suppose that such distinctive behaviour might be correlated with the type of excharge particles for each given reaction channel and it is from this point of view that the reaction channels are grouped. in chapter foumo In this chapter (section 3.1) the approach used for deciding which particies can be exchanged is discussed and the ones relevant to the channels. reviewed are tabuizted.

The experimental observation of a dip in $\dot{\sigma} / \mathrm{d}|\mathrm{t}|$ may not; however, only arise from the interaction characteristics. Sections 3.2 and 3.3 are concerned with purely experimental and kiremetical effects respectively that could lead to such an effecto

### 3.1 Quanturn numers of the sxchanged oarticle

In this section the various reaction channels which are siudied in the next chapter are listed and their possible exchange particles tabulated.

To illustrate the method used to determine the possible exchange particles, the reaction $\pi^{\dagger} p \rightarrow \Delta^{++} \pi^{0}$ is considered. From conservation
cif quantum numbers (see Appendix one), viz anguiar momentur, parity, G-parity: isospin and strangeness at each vertex of fiçure 6 , and from the known guantum numbers of the particles, $a, b, c$ and $d$ (which correspond to $\pi^{\dagger}, p, \Delta^{+\dagger}$ and $\pi^{0}$ in this case), a possibie exchange particie can be deduced:-

Fjgure_ó:- One reson excrange diagram for the general two-body reaction ab $\rightarrow$ cd
$a\left(\pi^{+}\right) \cdots c\left(\pi^{*}\right)$
$b\left(F_{F}\right) \quad a\left(\Delta^{+\cdots}\right)$
(i) Strangeness Since $a, b, c$ and $d$ ail have strangeness number zerc, conservation of strangeness at each vertex implies that e must aiso have strangeness zero。
(ii) G-parity This is a multiplicative quantun number having the values +1 . Each perticle with its baryon number and strangeness both zero is in an eigenstate of the G-operators ioe. has definite G-parityo. The pion has $G$-parity $G=-\underline{1}$, and from G-parity conservation $\tilde{a}_{i}$ the meson vertex, where $\pi^{\dagger}+\mathrm{e} \rightarrow \pi^{0}$ it follows $G_{\pi} \cdot G_{e}=G_{\pi}$. Hence $G_{e}=+1$.
(iii) Anqular momentum and parity The collision of the exchange particie with the incoming $\pi^{+}$as seen in the rest system of the outgoing $\pi^{\circ}$ for the meson vertex is shown in figure 7 .

Fioure 7:- Neson vertex

$j^{P}=$ spin parity
I = relative orbital ancular momentun of $\pi$ and $e_{0}$

Due to angular momentum conservation, the vectors $\vec{L}^{2}$ and $\vec{J}_{e}$ must be added to give the zero spin of the $\pi{ }^{0}$; therefore $L=J_{e}$. From parity conservation:-

$$
\begin{aligned}
& P_{\pi^{\prime}} P_{e} \cdot(-1)^{L}=P_{\pi} \\
& P_{e}=(-1)^{L}=(-1)^{J}
\end{aligned}
$$

Therefore the exchanged particle must have natural parity (ie $\left.P=(-1)^{J}\right) ;\left[P\right.$ is unnatural if it equals $\left.(-1)^{\mathrm{J}+1}\right]$; ie $\mathrm{J}_{\mathrm{e}}^{\mathrm{P}}=0^{+}: 1^{-}, 2^{+}, 3^{-} \ldots$ (iv) Isospin Isospin conservation at the baryon vertex demands that the isospin $I_{e}$ of $e$ must be coupled with the nuclear isospin of $\frac{1}{2}$ to give the $\Delta^{++}$isospin $3 / 2$. This is possible if $I_{e}$ equals either 1 or 2。 Similarly for isospin conservation at the meson vertex, $I_{e}=0,1$ or 2 , which obviously contains the baryon: vertex condition.
If the tables of particle quantum numbers are scanned, the p-meson turns out to be the least massive candidate for exchange.

It is possible to find that more than one particle can be exchanged, and in this situation the more probable case may be determined by using Heisenberg's Uncertainty Principle to relate the mass of the exchanged meson to its possible range of influence. According to the Principle:-

$$
\Delta E \Delta t \approx \mathrm{n} / 2
$$

Hence if the meson travels with a velocity close to that of light $c$, a distance $r$, it will be travelling for a time $c / r$. Thus equating'; $\Delta t$ and (chr):-

$$
\Delta E \sim \underset{c}{t}
$$

But $\Delta E=m c^{2}$ $\mathrm{m}=$ exchanged meson mass

Thus:- $\quad r \approx c \frac{\pi}{2} \cdot \frac{1}{m c^{2}}$

It follows from this that the range of the nuclear force is inversely proportional to the mass of the exchanged meson, so that the longer range parts of the interaction will be due to the exchange of tre Iichter mesons. It is therefore expected that the reactions will be dominated by the lower mass exchange particles. Table 3.gives the reactions stidied and the possible exchange perticles for these reactions.

Tabie 3:- List of the reactions studied and the possible exchange particles associated with them.

$$
\begin{aligned}
& \text { React.ion } \\
& \pi^{\dagger} p \rightarrow \pi^{\dagger} p \text {. } \\
& \text { Pomeron, } \rho \\
& \mathrm{pA}_{1}{ }^{+} \\
& \text {Pomeron, } \rho \\
& \text { Pomeron, } \rho \\
& \Delta^{++} p^{c} \\
& \Delta{ }^{++}{ }^{0} \\
& p p^{+} \\
& \mathrm{pg}^{\frac{1}{4}} \\
& \Delta^{+4} w^{\circ} \\
& \pi, A_{1}, A_{2} \\
& \pi, A_{1}, A_{2} \\
& \pi, \omega, A_{i}, A_{2} \\
& \pi, \omega, A_{1},{\dot{A_{2}}}_{2} \\
& \Delta \pi^{+}{ }^{\circ} \\
& \Delta A_{2}{ }^{0} \text {. } \\
& \rho, B \\
& \rho \\
& \mathrm{~A}_{2} \\
& \mathrm{pB}^{+} \\
& 0, B \\
& \bigcirc \\
& \omega, A_{1}, A_{2}
\end{aligned}
$$

Since elastic or diffraction channels do not involve quentum number exchange, to give them the same formal description, the Domeron was proposed (ref. 20) This does no exist as such, but for its exchange to occur the following relation must hold:-

$$
P_{\underline{i}}=P_{\dot{I}}(-\underline{1})^{\Delta J}
$$

where:- $\Delta J=$ change in spin between incident particle, with parity $P_{i}$, and the outgoing resonance with parity $P_{f}$ 。

### 3.2 Brief account of the handling of data

In all the expriments discussed in this review, the resuits were obtained from measurements of tracks ir a bubble chamber. These tracks correspond to the passage of a charged particle through the filuid contained in the chamber, though the uncharged particles remain undetected unless they decay to produce charged particleso The curvature of the tracks gives the charge to momentum ratio of the particle, and the density of bubbles along the track gives an indication of the mas of the particies though above 1.5 ( $G \in V / c$ ) the proton and pion, for instanceg are indistinguishatie so this property cannot always be utilised. If a track is seen to stop in the chamber the initial momentun of the particie can be determined from its range though again this is dependent on the mass of the particle. These tracks are recorded for analysis by taking photographs of them and then using these to reconstruct the original event. The actuai sequence of the anaiysis procedures is shown in figure 8 。

Figure 8:- Chart showing basic procedures used in the analysis of an event.


Initially the photograph taker is projected onto a screen and the inage scanned for events and trecks leadirig from these events.

The tracks are then measured by noting the coordinates of several points on the track and also the range and bubble density of the track. These events are then reconstructed using a computer, and those which do not fit are returned for re-scanning. Once the geonetry of the events have been reconstructed they are then analysed for particular reaction channels by constraining the measurements to fit the kinematical recuirements of conservation of energy and momentumo

### 3.3 Physical and anaiytical considerations

The question arises as to whether the dips at low $t$ are of a physical nature or are produced by the techniques used in the analysis of the film and resulting data。

Since in some channeis (eg $\pi^{\dagger} p \rightarrow \Lambda^{+i} \pi^{\circ}$ see graphs 51 to 59) there is a variation in the shape of the $d \sigma / d t$ versus $t$ curve, at Iow t, from one graph to another it would seem likely that the curve shape may be affected not only by statistical fiuctuations but also by the actual analysis techniques used from one iaboratory to anothero If the experimental aralysis is producing the dip, it could be due to:-
(i) loss of events on the scanning table
(ii) loss of eventis due to selection techniques used in the obtaining of resonances.

In these cases there is a distinction to be drewn between the two and four prong final states (triose in which two and four charced particles are produced respectively). The former could be genuinely missed, particularly for low four-momentum transfers (ste figure 9 ) since the incident and final particle tracks could appear to be one and the sane, noticeably wher the second track coming from the vertex
is shorto For four prong interactions the dip could be produced by Figure 9:- 2 prong interaction involvirg a low t ixansfer.

missing a very shorit track and interpreting the event as a three pronged one. Though these three pronged events are not allowed by charge conservation, nevertheless, some are obtained but are likely to be misidentified four prong events. Obviously if one track is so short that it. cannot be seen easily, it indicates that the particle with the short track had a very small four momentum transfer to $i t$, and since the number of interactions within a given $t$ range will be small, the omission of one event will be of significance in deternining the shape of the graphe It is very easy to miss a short proton track in the scanning process; since one bubble corresponds to a protion momentum of 85 ( $\mathrm{MeV} / \mathrm{c}$ ) o Furthermore in two prong interactions associated with small t-transfers, the pion only suffers a small deflection in path directiong making it difficult to see an interaction hes occurred, and in four or more pronged interactions short tracks are often obscured by the other tracks coming out from the interaction.

When such events are processed by the various fitting progranges in the computer, either the event is incorrectiy fitted or does not fit at all and so are distorted or eiffectively lost in the subsequent analysiso Since the azimuthal angle distribution with respect to the axis of the bubble chamber should be uniform for all interactions and for all values of four momentum transfer for any two paticular

FIG. 10
$q$ vs. $\phi$ IN THE REACTION $\Pi^{\wedge} p \Rightarrow \Pi^{\wedge} p$
A. $11.5 \mathrm{Gov} / \mathrm{c}$

8. $5 \mathrm{GGO} / \mathrm{s}$

particies (eg proton-proton), it is of interest to see if this is so inthe data that is used in the anaiysis. The results for $\pi \pi^{\dagger} p \rightarrow \frac{1}{p}$ fititing elastic scattering are dispiayed in figure io (rễo 2I) o It is interesting to note that many events are being lost vien $\phi$, the azimuthal angle, is $\sim 90^{\circ}$. (ie when the tracks are coming tovards or way from. the cameras), especially for low values of indicating that the analysis could contribute towards the dip if it were not corrected for. For the elastic channel this correction is easily ascertained empirically and applied to the data.

For $\pi$ p interactions in which a deita is produced the t-trans is not only a function of the three-momentum of the delta but alsc of its mass, and hence there is a lower (and upper) limit on the momenta of the proton and pion resulting from the separation of the delta into its constituent particleso The followirg caicuiation was thus used in order to determine the maximum and minimum values of the secondary proton momentum in the laboratory for given values of four momentum transfer from the target proton to the delta, and hence from these monenta it can be determined whether the proton is visible on the 1 scanning table or not.

Fiaure il:- Diagram showing the break up of a deita in its centre of mass to a proton (secondary) and pion.


- stow picre.,

In the centre of mass system of the delta (see fig. 11)

$$
\text { The total erergy } \begin{aligned}
E & =m_{\Lambda} \\
& =E_{: i}+E_{p_{s}} \\
& =\left(m_{\pi}^{2}+p_{\pi}^{2}\right)^{\frac{1}{2}}+\left(m_{p_{s}}+p_{p_{s}}\right)^{2}
\end{aligned}
$$

But since it is in the cnso system:-

$$
\underline{p}_{\pi}=p_{p_{s}}
$$

Hence for a given energy, ie a given delta mass, the momente of the proton and pion can be calculated. These must then ine transformed into the laboratory sysiemo

To caiculate $p_{\pi}$, and $p_{p_{s}}$ in the delta crs. system:-

$$
E_{\Delta} \div E_{\pi} \div E_{p_{s}}=m_{\Delta}
$$

Therefore: $=$

$$
m^{2}=\left(E_{\pi}+E_{p_{s}}\right)^{2}
$$

$$
\text { so:- } \quad m_{\Delta}^{2}-m_{\pi}^{2}-m_{p}^{2}-p_{\pi}^{2}-p_{p_{s}}^{2}=2 E_{\pi} E_{p_{s}}
$$

Since $p_{\pi}=p_{p_{s}}$, on squaring the above equation and making $p_{\pi}$ the subject, this yields:-

$$
p_{\pi}=\left[\frac{\left(m_{\Delta}^{4}+m_{\pi}^{4}+m_{p}^{4}-2 m_{\Delta}^{2} m_{\pi}^{2}-2 m_{\Delta}^{2} m_{D}^{2}-2 m_{\pi}^{2} m_{0}^{2}\right)}{4 m^{2}}\right]^{\frac{1}{2}}
$$

Now transfoming to the laboratory system using the conventional Lorentz transforms:-

$$
\begin{aligned}
& \gamma=\frac{1}{\left(1-\beta^{2}\right)^{\frac{1}{2}}} \\
& \beta=\text { momantum of delta/energy of delta }
\end{aligned}
$$

The maximum momentur of the proton in the laboratory is given by

$$
P_{\max }=\gamma\left[\underline{p}_{s}+\left(\beta \cdot E_{p_{s}}\right)\right]
$$

and its minimum momentum by:-

$$
p_{\min }=\gamma\left[-p_{p_{s}} \div\left(\beta \times E_{p_{s}}\right)\right]
$$

Similarly the maximum and minimum momenta of the pion in the laboratory are given by the same relationships, with the energy of the pion inserted in place of that of the proton.

The results of this calculation are shown in figure 12 。 It can be seen from this graph that the minimum value of the t-transier from the proton to the delta in order for the secondary proton to be seen is dependent on the mass of the delta but for the lighter deitas the secondary protons would have a range $<3 \mathrm{mn}(<100 \mathrm{Mev} / \mathrm{c}$ ) for $t$ transfers below $0.05(\mathrm{GeV} / \mathrm{c})^{2}$ 。

Now considering events in which a proton is one of the two final state perticles, as opposed to a delta, figure 13 (i) and (ii) shows the laboratory momentur of the secondary proton, and its range resuiting from a given t-iransfer. The cailcuiation for this utilises directly the definition of $i$ (see section io4) puting $\theta=0^{\circ}$, to obtain the minimum $p_{C}$

$$
\begin{aligned}
{ }_{t} & =\left(p_{a}-p_{c}\right)^{2} \\
& =m_{a}^{2}+m_{c}^{2}-2 E_{a} E_{c}+2 p_{c} p_{c}
\end{aligned}
$$

and the results are shown in figure $13(\mathrm{i})$.
This graph shows that a value of $|t|=0.007(\mathrm{GeV} / \mathrm{c})^{2}$ is obtained for a proton momentum of $85 \mathrm{MeV} / \mathrm{c}$ - at wion momentun the track is 1 mone long. Since in most reactions which involve a proton in the intermediate state the dip starts to occur at $\mid \overline{4} \approx 0.04$ to $0.06(\mathrm{GeV} / \mathrm{c})^{2}$ (which corresponds to a secondary proton momentum of 200 to $250 \mathrm{heV} / \mathrm{c}$ or a track length of 3 to 10 cris), it seems extremely unlikely that a significant proportion of these tracks will be missed, or be badly measured.



## RANGE AND ENERGY LOSS IN LIOUID HYDROGEN



Range and energy loss in liquid hydrogen bubble chamber, determined by a $\mu^{+}$range of $1.103 \pm 0.003 \mathrm{~cm}$ from the $\pi^{+} \rightarrow \mu^{+} \nu$ decay. Liquid hydrogen conditions: $T=27.6 \pm 0.1^{\circ} \mathrm{K} ; P=48 \pm 5 \mathrm{psia} ; \rho=(5.86 \pm 0.06) 10^{-2} \mathrm{~g} / \mathrm{cm}^{3}$. (Data by Clark and Diehl, UCRL-3789, 1957.) Bubble chamber. physicists: note that the number of bubbles per cm is proportional to $1 / \beta^{2}$, not to $d E / d x$.

FIG. 13 ii

Another possible cause of the dip at low $t$ is that the masses of the secondary particles have a large width, though in the case of particles such as the proton this will obviously not apply. This effect can be compensated for by calculating the minimum value of $t$-transfer that can occur for a given resonance mass, thus:-

$$
\text { Since } t=m_{a}^{2}+m_{c}^{2}+2 p_{a} p_{c} \cos \theta *-2 E_{a} \cdot E_{c}
$$

a maximum and minimum value of $t$ can be determined,
i.e. when $\cos \theta^{*}= \pm$ 1. This gives:-

$$
\begin{aligned}
t_{\min }^{\max } & =\left(\left[\left(\frac{E^{2}+m_{c}^{2}-m_{d}^{2}}{2 E}\right)^{2}-m_{c}^{2}\right]^{\frac{1}{2}}+\left[\left(\frac{E^{2}+m_{a}^{2}-m_{b}^{2}}{2 E}\right)^{2}-m_{a}^{2}\right]^{\frac{1}{2}}\right)^{2} \\
& -\left[\frac{\left(m_{c}^{2}-m_{a}^{2}\right)-\left(m_{d}^{2}-m_{b}^{2}\right)}{2 E}\right]^{2}
\end{aligned}
$$

The results of this calculation for the channels considered are shown in figures 14 to 25. Now since $t$ is mass dependent, its minimum value $t_{\text {min }}$ will vary from one interaction to another, within a particular reaction channel, depending on the particular máss of the resonance in question. Hence the graph of $d \sigma / d t$ versus $t$ will not contain a unique resonance mass for a given value of $t$, but rather a unique mass is spread over a range of $t$. It follows then that at low values of $t$, when $t$ ' ( $t$ ' being defined to be $t-t_{\text {min }}$ ) is nearly zero, for some masses and at zero for the remainder, there will be no contribution to the distribution from the larger masses and higher momenta since there will be insufficient energy to allow them to occur. Therefore :a dip will occur in graphs of $d \sigma / d t$ versus $t$ 。

However if $t$ ' is used instead of $t$ in these graphs this dip should be lost if.it is the resonance width which is the cause. Though to a certain extent this loss of the dip does occur, it is still noticeable in some of the interactions studied.
PAt REACTION 2
proton mass 0.938 Gev/c ${ }^{2}$
Al mass $1.070 \mathrm{Gev/c}^{2}$
PA3 REACTION 3


| $\Delta 0^{3 \beta}$ | REACTION |  |  |
| :---: | :---: | :---: | :---: |
| ----- | $\triangle$ MASS $=$ | .236 | Gev/c ${ }^{2}$ |
| ...... | $\triangle$ MASS = | 1.186 | Geuls ${ }^{3}$ |
|  | $\triangle$ AAASS $=$ | 1.286 | cev/c ${ }^{2}$ |
|  | - AMASS = | 0.735 | Gev/s |

$\Delta^{+1} 1^{0}$ REACTION







$$
\begin{aligned}
& \text { REACTION } 12 \\
& \begin{array}{l}
\text { Gev/c } \\
\text { Gev/c } \\
\text { Gev/c }
\end{array} \\
& \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& 0^{4+8}+0
\end{aligned}
$$



## CHAPTER FOUR

## Introduction

In this chapter the graphs obtained from various experiments for do/dt versus $t$, and $d \sigma / d t$ versus $t$ ' will be compared, taking each particular reaction in turn, though the chamels with the same lowest mass exchange particles will be grouped together for comparison. Where there are a number of experiments dealing with one chanel, the results are displayed in the text in the form of summery graphs, but ail the original data is coilected together in Appendix III.

Appendix III shows that for ail the channels, the differential cross-section falis sharply with increasing $i(o n t ')$ of speciai concern in this chapter is whether there is a physically meanigeful dip in the differential cross-section as (or $t^{\prime}$ ) approaches zero. A final section sumrarises the conciusions. The approach is entirely empirical and the conclusions are based on the experimental data cione with no consicieration given, to the detailed fits with theoretical models some of which predict decreasing cross-sections at low values of t. Where possible the conclusions arrived at are compared with those or CoIlins (ref. 22\%, which are based on a review of theoretical fits to a much wider selection of interacition channals.

### 4.1. Channels in which Pomeron exchange can occur

The dominant channel in tinis category is $\pi^{\dagger}$ p elastic scattering, but the transitions to the $\mathrm{pA}_{1}$ and $\mathrm{pA}_{3}$ final states can also occur via the sams exchange. The graphs corresponding to these channels are shown in figures 26 and 27. $\pi^{+}{ }^{+} \rightarrow \pi^{\frac{1}{0}}$ channel.

In this, the elastic channel, $t_{\text {min }}$ is identically zero, and hence there is no distinction betveen $t$ and $\dot{t}$ '。 The resuits for this channel



FIG. 26 (i)


FIG. 26 (ii)


FIG. 27 (a)


FIG. 27 (b)
are based on very high statistics and as can be seen from figure 26 there is very good agreement from one experiment to another in that no dip appears at low $t$ ，and $d_{\sigma} / d t$ seems to tend to the same value as $t$ tends to zero，these results being obtained for incident pion momenta in the range 3.63 to $8.0 \mathrm{GeV} / \mathrm{c}$ 。 The difficulties of detecting and measuring the low momentum protons associated with small values of $t$ ，discussed in section 3.4 do not appear to distort the behaviour of $\mathrm{d} \sigma / \mathrm{dt}$ in this channel，since a correction for the effect can be easily appliedo $\pi^{+} p+p A_{i}$ and $\mathrm{AA}_{3}$ channels．

Both these channels are studied in only one experiment，at an incident pion momentum of $8 \mathrm{G} \in \mathrm{V} / \mathrm{c}$ ．Figure 27 b shows the $t^{\prime}$ distribution of both channels，using a narrow bin width，and in neither case is there evidence of a significant dip．Figure 273 shows the elastic channel with the same $t$ bin widths and a comparison of figures 27 a and 7 b shows that for these Pomeron exchange channels，the graphs have similar gradients， but the differential cross－sections at $t^{\prime}=0$ are very different．

It would appear then that there is no evidence of a dip at low $t$ in either the $\pi^{+} p \rightarrow \mathrm{pA}_{1}$ or $\mathrm{pA}_{3}$ channel。

## 4．2 Channels in which $\pi$－exchange can occur．

Of the channels studied in which the lightest exchange particle is the $\pi$ and the initial state contains a proton and $\pi^{+}$，final states containing $\Delta^{++} \rho, \Delta^{++} f^{\circ}, \mathrm{P} \mathrm{\rho}^{+}$and $\mathrm{pg}^{+}$，are obtained，the first two involving chaxige exchange。 $\pi^{+}{ }^{+}{ }^{+}{ }^{+}{ }^{\text {echannel }}$ ．

In this channel，generally speaking a dip occurs in the $\mathrm{d} / \mathrm{dt}$ ． versus $t$ distributions for small values of $t$ ，but not in those wher $t^{\prime}$ is used instead of $t$（see figure 28）．

Considering first the $t$ distributions，all the curves have the same basic shape，though the higher the momentum of the incident pion，


FIG. $28(a, b)$
the narrower the peak of the curve, near $t=0$, becomes, Graph 10 (corresponding to incident pion momenta of $20.95,3.2$, 3.5, 3. 75 and $4008 \mathrm{GeV} / \mathrm{c}), 12(\angle \mathrm{G} \in \mathrm{V} / \mathrm{c}), 13(5045 \mathrm{GeV} / \mathrm{c}), 14(8 \mathrm{GeV} / \mathrm{c})$ ard $15(11.7 \mathrm{GeV} / \mathrm{c})$ ail have a statisticaily significant turnover near toon Graph 1 . ( $4 \mathrm{GeV} / \mathrm{c}$ ) possibly starts to turn over, though the pointis oniy carry on cown to $t=0.075\left(G_{e V} / \mathrm{c}\right)^{2}$, which is not as low as the other graphs obtained for this channel: Graph io staris turnirg over at $i=0.15$ $(G e V / c)^{2}$, wereas $t_{m i n}$ for the corresponding incident oion momentiur is approximety $0.06(G e v / c)^{2}$, this depending on the mass of the ceita produced. At this value of $t_{\text {min }}$, the secondery proton tracks will be easily visible, since the protons will have a minimum and maximum momentum of $\mathrm{C} .1 \mathrm{GeV} / \mathrm{C}$ and $\mathrm{O}_{\mathrm{c}} 6 \mathrm{GeV} / \mathrm{C}$ respectiveIyg assuming that they are travelifing co-linearly with the incident pion, and the delta formed has a mass of I. $236 \mathrm{Gev} / \mathrm{e}^{2}$ 。 The proton track lengits corresponding to these momente are 0.04 cm and 20 cm.

Table 4 sumarises the basic characteristics of these graphs;

$$
\text { Table_4 } \quad \Delta^{+i} \rho \text { channel } i \text { graph summary }
$$

| Graph no. | Incident pion momertum GeV/c | $t_{\text {min }}$ | Posn. dio starts to ocour t (Gey/ci? |
| :---: | :---: | :---: | :---: |
| 1 | $2.95 \rightarrow 4.08$ | - | 0.151 |
| 2 | 4.0 | 0.06 | 0.12 |
| 3 | 4.0 | 0.00 | 0.06 |
| 4 | 5.45 | '0.04 | 0.04 |
| 5 | 8.0 | 0.025 | $0.08{ }^{3}$ |
| 6 | 11.7 | 0.02 | 0.02 |

1. Low momenta are used in this graph, and so $t_{\text {min }}$ can have large values (see figure 16)..

Hence it would be expected that the graph turns over as it does.
2. A large $t$ bin width is used and hence a dip would not be noticed.
3. The position the dip starts to occur corresponds to a minimum and maximum proton path length of 0.8 cm and 22 cm respectively, meaning that it is likely that the particles will be seen, i.e. a significant dip.

However on examination of the t'graphs (figure 28b) none display a dip.

It would appear then that, looking at the position the graphs turn over and the position of $t_{\text {min }}$, the turnover in the $t$ graphs in this particular reaction is due to the width of the resonance masses, and not to a physical mechanism connected with low $t$ transfers. The possible non-visibility of protons associated with low transfers could be reasonably supposed to be unimportant.

## $\pi^{+}{ }^{+}+\Delta^{+}{ }_{f}{ }^{0}$ channel

In this channel, the $t$ distributions (figure 29a) give strong evidence for the occurrence of a dip. However the corresponding $t$ ' graphs (figure 29b) do not show a dip. The graphs are based on experiments at incident pion momenta of $3.5 \mathrm{GeV} / \mathrm{c}$ to $8 \mathrm{GeV} / \mathrm{c}$, and for these values, $t_{\text {min }}$ is large and corresponds to the value at which the dip occurs in the $t$ graphs. A further experiment at $13.1 \mathrm{GeV} / \mathrm{c}$ also shows no evidence of a dip in the $t^{\prime}$ graph.

Since $t_{\text {min }}$ is so large for this channelg there will be no problems concerning the visibility of low momentum protons, and so it would appear



FIG. 29 (a)


FIG. 29 (b)
then that in this channel there is no evidence for a dip at low $t$. other than that associated with the resonance widths. $\Pi^{+} p \rightarrow P p^{+}$channel

Considering the $t$ graphs, which are based on incident pion momenta of $4 \mathrm{GGV} / \mathrm{c}$ and $8 \mathrm{GeV} / \mathrm{c}$, and are summarised in figure 30 a , the graphs of the $4.0 \mathrm{GeV} / \mathrm{c}$ data do not show a statistically significant dip, while those at $8.0 \mathrm{GeV} / \mathrm{c}$ do, the $\operatorname{dip}$ occurring at $t=0.06(\mathrm{GeV} / \mathrm{c})^{2}$. Since $t_{\min }$ is so small relative to the position the dip occurs, it would be expected that the $t^{\prime}$ graphs ( $5 \mathrm{GeV} / \mathrm{c}$ and $8 \mathrm{GeV} / \mathrm{c}$ ) (figure 30 b ) would also show the dip and indeed a dip occurs in all but one of them. Since the dip corresponds to a proton track length of 3 mm , or less, it seems possible that it may be caused by difficulties associated with short proton tracks and is not due to some physical effect. ${ }^{\pi^{+}}{ }^{-} \rightarrow \mathrm{pg}^{+}$channel

The $t$ graph (figure 31) for an incident pion momentum of $8 \mathrm{GeV} / \mathrm{c}$ shows a dip starting at $t=0.1\left(G_{\in} V / c\right)^{2}$, for which $t$ transfer the proton tracks are long enough to be seen. However, this dip occurs near $t_{\text {min }}$, and since the corresponding $t$ 'graph has no dip it indicates that there is no dip of physical origin in this channel, though the experimental evidence is not strong enough to be certain since it is based on only one experiment.

### 4.3. Channels in which p-exchange can occur

Of the channels studied in which the lightest exchange particle is the $\rho$ and the initial state contains a proton and $\pi^{\dagger}$, final states containing $\Delta^{++} \omega^{0}, \Delta^{++} \pi^{\circ}, \Delta^{++} \mathrm{A}_{2}{ }^{\circ}$ and $\mathrm{pA}_{2}{ }^{+}$are obtained, the first three involving charge exchange。


In this channel the $t$ graphs ( $2.92 \mathrm{GeV} / \mathrm{c}$ to $8 \mathrm{GeV} / \mathrm{c}$ ) which are shown in figure 32 a a a the $t^{\prime}$ graphs ( $2.92 \mathrm{GeV} / \mathrm{c}$ to $8 \mathrm{GeV} / \mathrm{c}$ ), which are shown



FIG. $30(a, b)$



FIG.3I $(a, b)$


FIG. 32 ( $\mathrm{a}, \mathrm{b}$ )
in figure 32b, in many cases show a pronounced, statistically significant dip. This dip occurs in all the $t$ graphs except those at $4.0 \mathrm{GeV} / \mathrm{c}$ (graph 41) and appears in the $t^{\text {P }}$ graphs as the incident pion momenta increases, becoming significant above $5.0 \mathrm{Gev} / \mathrm{c}$ (graphs 48, 49, 50). Since the dip appears at $t \approx 0.2(G e V / c)^{2}$ for ail the graphs in wich it occurs, which represents a mirimun seconcary proton track length of 4 cm , it. would seem likely that the turnover is caused by some physical mecharism of the interaction. There may be a momentum dependence for the effect since it is clear from figure 320 , that below $5 \mathrm{GeV} / \mathrm{c}$ (craphs $45,46,47$ ) there is not mach evidence of a dip. The $t^{2}$ curves do not appear to drop to a constant vaiue of $d \sigma / d t^{2}$ at $t^{2}=0$ even though there are reasonable statistics at this value of $t^{*}$, indicating that the normalisation of this channel has not been completely successfui. Even so, this does not. alter the significance of the dip in this channel above $5 \mathrm{GeV} / \mathrm{c}$ which cannot be accounted for aither by the width of the resonance nor by the visibility of the secondary protono $\xrightarrow{\pi^{+}{ }^{+} \rightarrow \Delta^{++} \pi^{0} \text { channel }}$

The results for this channel are based on incident pion momenta of $3.54 \mathrm{GeV} / \mathrm{c}$ to 13 l I $\mathrm{GeV} / \mathrm{c}$ for the $t$ graphs (figure 33 a ) and 5 and $8 \mathrm{GeV} / \mathrm{c}$ for the $t$ ? graphs (figure 33 b ), Generally the $t$ graphs exhibit a dip but the evidence from the $t$ graphs is not so strongo

In five of the six $t$ graphs (the exception being the one at $13 . \mathrm{I} \mathrm{GeV} / \mathrm{c}$ ) a dip occurs, and is in the region $t \approx 0.06(\mathrm{GeV} / \mathrm{c})^{2}$ 。 This is well above $t_{\text {rin }}$, but more significantly corresponds to a proton ranoe of 3 mon which is about the minimum track length to be measured on the scanring tableo of the five graphs with some evidence for dips it should be noted that the one at $4 \mathrm{GeV} / \mathrm{c}$ : as published: exhibits an anomalously high cross-section. The sixth $t$ graph. for $13.1 \mathrm{GeV} / \mathrm{c}$ is at a significantiy hicher monentum than the others, and no dip occurs, possibly indicating


FIG. 33 ( $a, b$ )
that the effect is momentum dependent.
Since $t_{\text {min }}$ is so small relative to the position the dip occurs, it would be expected that the $\dot{\tau}^{2}$ graphs would be almost exactly the same as the t graphs, and this is in fact so.

It would appear then that both the $t$ and the $t^{2}$ graphs turnovers but they do so at a value of $t$ which corresponds to a region of difficulty for measuring proton tracks, and so it is unlikely trat this dip is a feature of the interaction mechanism. ${ }_{\underline{I} 0}+\Delta^{++_{A_{2}}}{ }^{0}$ channel

The $t$ ' graphs (figure 34 ) obtained for this channel is based on an experiment at $8 \mathrm{GeV} / \mathrm{c}$, and does nct show a statisticaily significant dip. At this energy $\tau_{\min } \approx 0.15\left(G_{e} V / c\right)^{2}$ so the secondary protons have reasonably iong ranges.
$\mathrm{T}^{+} \mathrm{D} \rightarrow \mathrm{pA}_{2}^{+}$channel
The results for this chanel are based on incicent pion momenta of $4 \mathrm{GeV} / \mathrm{c}$ and $8 \mathrm{GeV} / \mathrm{c}$ for the $t$ graphs (fig. 35 a ) ard $5 \mathrm{GeV} / \mathrm{c}$ end $8 \mathrm{GeV} / \mathrm{c}$ for the $\dot{t}^{2}$ graphs (fig. 36 b ) . Both $t$ graphs have the same general shape above $t \approx 0.05(\mathrm{GeV} / \mathrm{c})^{2}$ but the one at $8 \mathrm{GeV} / \mathrm{c}$, which has a point below tris value of $t$ shows a significant dip. However this point is near $t_{\text {min }}$, and neither of the two $t^{\circ}$ grephe show 2 dip.

It would appear then that tris channel does not show a dipo Visibility considerations are not important in this channel at the energies considered.

### 4.4 Channels in which other exchanges occur

In this category are two charnels, the $\Lambda^{+\frac{1}{n}} n^{\circ}$ final state firstly wilich has as its lightest exchange particle the $A_{2}$, and aiso invoives charge exchange. The second is the $\mathrm{pB}^{+}$finai state which has $\omega$ excharge。


FIG. 34


FIG. 35 (ब)



FIG. 35 (b)
$x^{+} 0 \rightarrow \Lambda^{++} n^{0}$ channel
This channei is based on experiments at incident pion mementa of $2.95 \mathrm{GeV} / \mathrm{c}$ to $\mathrm{BGeV} / \mathrm{c}$. For both the $t$ graphs (figure 36 i ) a curicus curve shape is obtained since $d \sigma / d t$ is neariy constant from $t=0.02$ to $0.45(\mathrm{GeV} / \mathrm{c})^{2}$. For an incident pion monenturn of $4 \mathrm{GEV} / \mathrm{c}$, the minimum secondary proton track length is 2.5 cm , and for lower momanta this minimun increases so it is unlikely that events will be lost due tc difficulties of measurement. The dip on the lower momentun $t$ graph is partly due to the width of the delta resonance since it occurs at a value of $t$ which is below $t_{\text {min }}$ for all but the highest momentum concerned, ie $4.08 \mathrm{GeV} / \mathrm{c}$. On the $8 \mathrm{ceV} / \mathrm{c}$ t graph; the curve tends to fiatten out rather than to dip.

However considering the $t$ ' graphs (figure 36b), all the curves show a statistically aignificant dip, the two at $5 \mathrm{CoV} / \mathrm{c}(68,0 \%)$ dippeng


It would appear that the dip in the $t^{\prime}$ graphs in this channel cannot be accounted for either by short rances of the secondary proton tracks, nor by the effect of the resonance widtins, and so appears to be physically caused. . $\pi^{+}{ }^{0}+\mathrm{DS}^{+}$channel

Only t' graphs are available for this channel and are displeyed in figure 37. One is at an energy of $5 \mathrm{GeV} / \mathrm{c}$ and the other at $8 \mathrm{Gev} / \mathrm{c}$. The points on neither graph indicate a dip. There is not likely to be a problen with short range trecks for $t$ transfers in the region of $t_{\text {min }}$ since it is large $\left(>0.6(\mathrm{GeV} / \mathrm{c})^{2}\right)$.

## 4. 5 Conclusions

(i) It would appear that bubble chambers are not ideal for the . detamination of the presence or absence of a dip in the majority of quasi iwo body final states resulting from ${ }^{\dagger}{ }^{\dagger} p$ interactions since diteculties


FIG. 36 (a)


FIG. 36 (b)



FIG. 37
may arise from the handing and fitting of short proton tracks
resulting from low t-transfers and the total statistics availabie in any one channel are limited.
(ii) There is no evidence to suggest a cip in the $\pi^{+} p, n^{+}{ }^{+}$,

(iii) There is a statistically significant dip in the pp $p^{+\frac{1}{2}} \Delta^{i+\frac{1}{2}} \pi^{0}$ and $\Delta^{+t_{A}}{ }_{2}$, finai states but this can be at least partially accounted for in each case. Coilins (ref 22 ) suggesis that in the po channel there should be a dip. In the $\Delta^{i+1} \underline{f}^{\circ}$ channel, which is the oniy other chamel common to this survey and his articie, he suggests there shouid be a spike at low to
(iv) In the $\Delta^{++} \omega^{\circ}$ and $\Delta^{+\dagger} \eta^{\circ}$ chamels, a statistically significant dip occurs, these channels having exchange particles 0 and $B$, and $A_{2}$ respectively. $B_{0}$ th the $\omega$ and $\eta$ have isospin $T=O$, and at the meson vertex charge exthange has occurred.

Of the other final states which involve $\rho$ and charge exchance, namely $\Delta^{+!+A_{2}}{ }^{0} \quad \Lambda^{+4}{ }^{0}$, both these channeis have a dip winch can at least partially be accounted for. The other $\rho$ exchange channel which leads to the pA $_{2}^{\frac{1}{4}}$ final state does nut involve charge exchange and does not show a dipo

No chennels are considered other than the $\Delta^{+1+} \eta^{\circ}$ one, which have as their lightest exchange particie the $4_{2}$ 。

## APPEDDIX ONE

1

## Quantum numbers and conservation laus

Besides the classical conservation laws which govern energy, momentum and angular momentum, in nuclear physics others become apperent also, and these control the number of baryons and leptons allowed in any given state。 There are also more conservation iaus which govern the strong interation.
(i) Isospin (I)

This is alsc known as isotopic spin. The observations of charge independence in proten-proton and proton-nauiron interactions (ie the observation that the interaction cross-sections depend on the orbital angular momentum and spins and not the charge) indizated that the inter-nucleon forces are aqual, the proton and neutron being the charged states of a basic particle called the nucleon, the charge depending on the $z$-component of the isospin I (the isospin behaving Iike anguiar momentum 2 in ordinary space, I beirg quantised along the charge axis $I_{z}$, equivalent to $\ell_{z}$ ). Isospin is an additive quantum number.

Since the nucleon has two charged states (ie the proton and neutron), thereforeI $=\frac{1}{2}$, and $I_{3}= \pm \frac{1}{2}$. The charge $Q$ of the nucleon is given by:-

$$
Q=I_{3} \div B / 2
$$

Where $B=$ the baryon number.
Similarly the pion exists in three charged states so $I=1$, and $Y_{3}=+1$, 0 and -l.

## (iii) Parity (P)

The property of the parity operator is that, when it operates on a function; it changes each of the position variables to its negative. Obviously if a function is operated on twice, the original function is left, and hence an eigenfunction corresponding to the eigenfunction tly for the parity operator is said to be a function ô̂ even parity and an eigenvalue -i of̂ odd parityo in strong interactions, the parity of a system must remein unchanged; ie parity is conserved. Since the orbital anguiar momentum part of the total wave function has even parity for even 2 and odd bartoy for odd $l$, the parity is $(-1)^{\ell}$.

Since strong interactions involve the creation and annihilation of particies, the intrinsic parity of the particles must be introduced (this is defined to be even for the nucieon and detemined experimentally for other particles) and hence the parity of a tiwo particle systern, with the particles having intrinsic parities $P_{1}$ and $P_{2}$ and relative orbital anguiar momentum $\ell$ is given by:-

$$
P=P \cdot P_{2}(-1)^{\ell}
$$

## (iii) Charge coniugation (C)

The action of $C$ is to transform a particle intc its own antiparticie, such that the quantum numbers (such as those corresponding to electric charge, baryon number and strangeness) all take on their opposite valueso Only neutral particles can have a definite C-parity (NB C-parity is multiplicative)。

## (iv) G-parity

In strong interactions both $C$ and I are similteneously conserved and this forms the basis for the definition of $G$ thus:-

$$
\theta=C \exp \left(i \pi I_{2}\right)
$$

where $\exp \left(i \pi I_{2}\right)$ represents a rotation of $180^{\circ}$ about the second I-spin axis.
(v) Strangeness (S) and hyperchazo (y)

As the range of known strongly interacting particles increased, it was found that a whole series of transitions which would be expected to occur as strong interactions and which did not violata any of the known conservation laws either did not take place, or if they did occur did so only via the weak or electronagnetic processes:

Therefore $a$ new additive quantun numer $S$, was introduced, this being conserved in strong interactions. The nypericharge is then cefined as:-

$$
Y=B \div S
$$

Since all strong interactions conserve the quantities $I_{0}$ $G, J$ and $p$, ail particles produced in strong interactions can be assigned these numbers, and this is usually done in the fom $I^{G}\left(J^{p}\right)$,

## APPEINIX TWO

## Crossing symmetry

The scattering amplitude $T$, introduced in chapter two, can be expressed generally and symnetrically by the three landelstamn variables $s$, $t$ and $u$ (through only two of them are independent), It follows from general symintiry laws that:-

$$
\begin{aligned}
I(s, t, u) & =T(s, i, t) \\
& =T(u, t, s)
\end{aligned}
$$

Since that only means that some change in the direction of flight of the particies is involved, this type of symetry of the scattering amplitude is called the 'crossing symmetry'。

## APPENDIX THRES

Coilection of all the individual $t$ and $\epsilon^{*}$ graphs for the reactions studied。

Note: the large number below each diagran indicates the number of the graph, while the small super script indicates the reference from which it was obtained。



$5^{28}$

(3) ${ }^{33}$






$12^{26}$
$13{ }^{27}$

$$
\nabla_{p}^{+} \rightarrow \Delta^{\dagger t}(11.7 \mathrm{Gev} / \mathrm{c})
$$




$16^{24}$
$17^{24}$



$22^{27}$


$24^{30}$
25*



$$
\mathbb{S O}^{2 A}
$$

$27^{28}$


$28^{24}$
$29^{33}$

$30^{36}$




$35^{35}$




$38^{42}$
$39^{3}$










$49^{27}$
$50^{33}$




$57^{35}$



$61^{15}$
$62^{20}$


$14(\text { (Gev/c) })^{2}$
$67^{24}$

$|f|(\operatorname{Gev} / c)^{2}$
$68^{32}$





## FIGURES

Ie Reactions $\pi \bar{p} \rightarrow p \pi{ }^{-}$and $\Delta \rho$ as seen to occur
2. " " " " " as deduced to occur
3. Quasi two body interaction $a+b \rightarrow c+d$ in the centre of mass system.
4. The plane of the kinematic"invariant variables $s, t$ and $u$.
5. One particle exchange diagram for the reaction $a+b \rightarrow c+d$.
6. .'One meson exchange diagram for the general two body reaction $a+b \rightarrow c+d$.
7. Meson vertex for the collision of an exchange particle with an incoming' $\pi^{\mp}$ as seen in the rest system of the outgoing $\pi^{\circ}$.
8. Chart showing the basic procedures used in the analysis of an event.
9.. Two prong interaction involving a low t-transfer.
10. $t$ versus $\varnothing$ in the reaction $\pi^{+} p \rightarrow \pi^{+} p$.
11.: The break up of a delta in its centre of mass to a secondary proton, and pion.
12. For a given $t$ transfer to a delta, maximum and minimum proton and pion.momenta on its break-up.
13. (i) Proton momentum resulting from a given transfer to a stationary proton.
(ii) Range and energy loss in liquid hydrogen.
14. $t_{\text {min }}$ for a given incident pion momentum for the reaction $\pi_{p}^{+}{ }_{p} A_{l}{ }^{+}$

24. $t_{\text {min }}$ for a given incident pion momentum for the reaction $\pi{ }^{+}{ }_{\mathrm{p}} \Delta_{\Delta}^{++}$ 25。" " .". ". " ". ". " $\mathrm{pB}{ }^{+}$ 26. $d_{\sigma} / d \cdot|t|$ vs $|t|$ and $d \sigma / d\left|t^{\prime}\right|$ vs $\left|t^{\prime}\right|$ for the reaction $\pi^{+}{ }_{p} \rightarrow \pi^{+}{ }_{p}$ 27. " " " " " for the reactions ${ }_{\pi}^{+}{ }^{+} \pi^{+} p$, $\mathrm{pA}_{1}$, and $\mathrm{pA}_{3}$.
28. $d d / d|t|$ vs $|t|$ and $d \sigma /\left.d|t| v s\right|_{t} \mid$ for the reactions $\pi^{4} p+\Delta+\frac{t}{p} 0$

34. $d d d|t|$ vs $|t|$ for the reaction $\pi^{+} p \rightarrow \Delta^{++} A_{2}{ }^{0}$
35. $d d / d|t| v s|t| \gamma d d / d|t|$ vs $\left|t^{\prime}\right|$ for the reaction $\pi^{\dagger} p \rightarrow p A_{2}+$

37. $d d \mathrm{~d}\left|\mathrm{t}^{\prime}\right|$ vs $\mid t{ }^{1}$ for the reaction $\pi^{+}{ }^{+}{ }^{+} \mathrm{pB}^{+}$.

## TABLES

1. . . Relative strengths of known forces.
2. . (i) Hadrons stable against decay by strong interaction.
(ii) Selection of hadrons unstable against striong decay (resonances).
3. List of the reactions studied and the possible exchange particles associated with them.
4. $\quad \Delta_{\rho}^{++}$channel $t$ graph summary.

## REFERENOES

1．Martin，A．D．and Spearnan，T．D．，Elementary Particle Theory， North Holland，I970．

2．Soviet Physics：－J．E．T．P．，3世，1972，p 725．
3．Bethe，H．A．and Jackiw，R．，Intermediate Quantun Nechanics， Benjamin inc．ig68．

4．Goebel，C．，1958，Phys．Rev．Letto：I，p 337。
5．Bonsignori， $\mathrm{F}_{0}$ and Sellerig E． 1900 ，luovo Cimo，i5，p A0́5．
6．Saizman，$F$ ，and Salzmar，$G_{0}$ ，1960，Dhys，Revo Letito，j，p 377
7．Salman，彐．and Salzman，Go，1960，Phys．Reve 120，p 599
8．Salzman，$F_{0}$ and SaIznan，$G$ ， 1961 ，Phys．Eevo 12i，$p 1541$
9．Drell：i960，Physo Revo Ietto 5，p 278．
10．Drell，1961，Revo Nod，Plysu 33，p 458.

12．Pilkuhn，H．，The Interactions of Hadrons，North Holland，1967，p280
13．Nyborg，R．，1965，Physo Revo，140B，p921。
14．Piliuhn，Ho，The Interactions of Hadrons，North Holland．1967，p290．
15．Ferrari，Ea and Selleri，Fog 1961，Nuovo Cim，21，p 1028.
16．Ferrari，E．and Sellerig Fog 1962，Suppi．Nuovo Cimo 24，p $\leq 53$.
17．Ferrarig，End Seileri，Fi，1903，Nuovo Cin，27，p 1450．
18．Regge；To，1969，Nuovo，Cimo，14，p 951．
19．Regge，To，1960，Nuovo Cimo，18，p 947.
20．Morrison，D．R．O．，1968，Physo Pevo 165，p 1690．
21．Pearsor，Go，Thesis，Durnam Universityo
22．Collins，PoD．E．g 1971．Phys．Reports 1 is p203．
23．Flamirio，Eog Hansens ToDog Morrison，DopoOn，and Tovey，Nog 1970， Compilation of cross－sections iv $\pi$ irduced reactions CERN／HEPA 70－5．

24．2095；3．19；3．74 and 4．08 Gev／c Brown，D．1970，Phys．Pev，Di，p3053．
25． $4.0 \mathrm{GeV} / \mathrm{c}$ Aachen－Berlin－BErmingham－Bonn－Hamburg－iondon（I．C）－ Munchen，1965，Physo Rev．E138，p897．
26：4．0 GeV／c Aderhoiz，1965，Nuovo Ciment，35：p659．
27．5045GeV／c Bloodworth，1971，Nucl．Phys．B35，p79．
28． $8.0 \mathrm{GeV} / \mathrm{C}$ Deutschman，1965，Phys．Lett．，19，p603．
29．II。 $7 \mathrm{GeV} / \mathrm{c}$ Madack，R．O．，1971，Nuovo Cime，5A，pi33．
30． $3.5 \mathrm{GeV} / \mathrm{C}$ Ronat，1972，Nuclo Phys．E38，p2Oc
31． $3.7 \mathrm{GeV} / \mathrm{C}$ Abrams，1970，Phys。 Rev．Iett．，25，0617．
32． $5.0 \mathrm{GeV} / \mathrm{C}$ Pois，C．I．, 1970，Nucl．Phys．E25，plo9。
33． $8.0 \mathrm{G} \in \mathrm{V} / \mathrm{c}$ Aachen－Eerlin－Jern，1968，Nuclo Phys．B8，p45．
34．13．10Gev／c Gaidos，1970，Phys。Rev．Dl，p3i90
35．5．0 GeV／c Schotanus，1970，Nuclo Phys，B22，p 45.
36．13．1 GeV／C Gaidios，1971，Nucl．Phys．B26，p225．
37． $3.5 \mathrm{GeV} / \mathrm{c}$ MacNaughton，1971，Nuclo，Phys．B33，piOl。
38． $4.0 \mathrm{GeV} / \mathrm{C}$ Aachen－Eerlin－Sirmingham－Eonn－Hamburg－Iondon（I．C）－ Winchen，1964，Phys．Lett．10，p248．
39．4．0 GeV／c Aderholz and Bartscì，1964，Nuovo Cim。 34，p495．
40． $8.0 \mathrm{GeV} / \mathrm{C}$ Deutschmann， 1665 ，Phys，Lett． $18, \mathrm{p} 351$.
41．8．0 Gev／c Aderholz and Deutschmann，1968，Dhyso Letto，273，pi74．
42．800．Gev／c Barisch，1970，Nuci。 Phys．B22，0109．
43． $2.54 \mathrm{GeV} / \mathrm{c}$ Abolins，1954，Fhys．Rev．El3́，pl95。
44．4．0 GeV／c Bertisch，1964，Phys．Letto 10，p229。
45． $13.1 \mathrm{GeV} / \mathrm{c}$ Scnarenguivei，1971，NucI。Physo B36，p363．

## ACKNMIEDGENATE

I should like to acknowledge the financial support of Durham University for providing a Research Assistantship which enabled me to do the work, the invaluable help of Dr. D. Evans under whose supervision I carre, the pains-taking praparation of the numerous graphs and diagrams by Doratiny Pickies, Janet Gibson and Thelma Richardson and also the typing of the and product by Dorothy Anson. To these and to many other people who made less diract contributions, I an most graterui.


[^0]:    * Unless otherwise stated natural units are used ( $c=h=i$ )

