
Durham E-Theses

A survey of bubble chamber results on di�erential
cross-sections for high energy π(�+)p quasi two body

interactions

Wood, I.

How to cite:

Wood, I. (1973) A survey of bubble chamber results on di�erential cross-sections for high energy π(�+)p
quasi two body interactions, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/10051/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10051/
 http://etheses.dur.ac.uk/10051/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


A survey of bubble chamber results on d i f f e r e n t i a l 

cross-sections f o r high energy, ̂ "^p 

quasi two body interactions. 

by 

l o Wood, B.Sco 

A Thesis submitted to the 

University of Durham 

f o r the degree of Master of Science. 

June 1973o 

1 NOV 1973 . 
SECT!3!1 , 



Errata 

P23 l i n e 12 For 'indication of mass' read 'indication of the 
ve l o c i t y of the p a r t i c l e , which when taken together 
with the momentum gives an indication of the p a r t i c l e 
mass'o 

P23 The r u l e r e l a t i n g to the exchange of the Pomeron, 
sometimes knovm as the 'Gribov-Morrison' r u l e , i s 
"by no means fiiunly established either experimentally 
or t h e o r e t i c a l l y and so i t would be more correct t o 
state that i t may possibly hold but i s not certain. 
(Morrison D.R.O. 1968 Phys, Rev. 165 pl690) 

P33 I t should be c l a r i f i e d that the width of the resonance 
affects the sharpness of the turnover, and hence this 
has a bearing on the v i s i b i l i t y of the turnover on 
the graphs. 

Figures 1 4 - 2 5 There may be a s l i g h t error i n the calculation f o r 
these diagrams, though the equation on which t h ^ are 
based and the form of the graphs are correct. Caution 
should therefore be exercised when using these graphs. 
The error i s only small and i s systematic. I t does not 
a f f e c t any of the arguments nor their outcome i n the 
thesis. 

2 
P35 Even when a A i s produced with tsO-06 (GeV/c) , 

more than 80^ of the protons from i t s decay w i l l have 
iQomenta above 100 MeV/c , and therefore the argument 
as presented does not provide a convincing explanation 
f o r the dips observed i n fi g u r e 33 • Hence these dips 
could be of a physical nature and not the product of 
experiinental techniques. 
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( i i ) 

ABSTRACT 

The t h e s i s i s based on a survey of d i f f e r e n t i a l cross-sections of 

quasi tv;o body i n t e r a c t i o n s o c c u r r i n g i n TT 'p i n t e r a c t i o n s studied 

i n hydrogen bubble chamberso The f i r s t tv:o chapters o u t l i n e the 

t h e o r e t i c a l background f o r the d e s c r i p t i o n of such i n t e r a c t i o n s . 

The t h i r d chapter discusses kineiTiatical and observational e f f e c t s 

which can influence the measured shape of the d i f f e r e n t i a l cross-

s e c t i o n as a f u n c t i o n of the four momentum t r a n s f e r a t small values 

of the l a t t e r , and the l a s t chapter surveys, e m p i r i c a l l y the 

c o l l e c t e d data w i t h p a r t i c u l a r reference to the discussion of the 

previous chaptero 

I t i s concluded t h a t i n general the d i f f e r e n t i a l cross-section 

f a l l s e x p o n e n t i a l l y w i t h i n c r e a s i n g magnitude of four momentum 

t r a n s f e r , but t h a t i n two r e a c t i o n channels (rr •p->A''A.̂  and Tr'p->A' 'r! ) 

there i s a s i g n i f i c a n t d i p as t approaches zero t h a t cannot be 

explained by e i t h e r kinematical e f f e c t s or experimental bias. 
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II\n:RODlCTION 

The f o l l o w i n g work i s concerned w i t h a review of the behaviour 

of d i f f e r e n t i a l cross-sections f o r high energy c o l l i s i o n s of the 

type 

TT ' p B -r M 

where B and M represent a non-strange baxyon and meson system 

re s p e c t i v e l y o The r e s u l t s are obtained from bubble chamber 

experim.entsj and consideration i s given t o the possible experim.ental 

biases t h a t m.ight cause an apparent reduction i n the m.easured 

d i f f e r e n t i a l cross-section i n the region of a zero degree production 
J. 

angleo A com.pilation of t o t a l cross-sections f o r T, 'p i n t e r a c t i o n s 

i n general i s given i n refo lo To see the relevance of the study 

of such cross-sections chapter two surrinarises the general theorems 

concerning the expected behaviour of these, and discusses som.e of 

the p r e d i c t i o n s of simple one p a r t i c l e exchange modelso I n t h i s 

f i r s t chapter an i n t r o d u c t i o n i s given t o p a r t i c l e p r o p e r t i e s , t h i s 

p r o v i d i n g a base f o r the discussion of t h e i r strong interactionso I n 

general the reviev/ w d l l only be concerned vath non-strange hadrons 

(see Appendix l ) but f o r completeness some mention i s made i n parts 

of other types of p a r t i c l e and t h e i r i n t e r a c t i o n s o 

l o l o P a r t i c l e s and t h e i r i n t r i n s i c p r o p e r t i e s 

teinly as a r e s u l t of experiments using proton accelerators many 

elementary p a r t i c l e s other than the proton, neutron and e l e c t r o n have 

been discovered. ^The known elementary p a r t i c l e s f a l l n a t u r a l l y i n t o 

two broad categories according t o whether t h e i r spin i s integer or 

h a l f - i n t e g e r , and hence are c l a s s i f i e d " e i t h e r as Bosons which have • 

i n t e g r a l s p i n and obey Bose-Einstein s t a t i s t i c s , or as Fermions which 

1 N O V 1 9 7 3 



have h a l f - i n t e g r a l spin and obey Ferm.i-Dirac s t a t i s t i c s o These broad 

categories can then be subdivided; Ferm.ions are e i t h e r Leptons or 

Baryons while the Bosons contain the photon {y ), which i s the quantum 

of the electro-magnetic f i e l d , and mesons v^^.ich can be thought of as 

quanta responsible f o r the strong or nuclear i n t e r a c t i o n o 

Four basic i n t e r a c t i o n s are thought to occur- between elementary 

p a r t i c l e s : -

( i ) the g r a v i t a t i o n a l i n t e r a c t i o n which i s very weak and 

hence i t s e f f e c t s have never been detected i n 

experim.ents Vitiich involve only a small number of 

elementary p a r t i c l e s o 

( i i ) the electro-magnetic i n t e r a c t i o n which connects a l l 

charged p a r t i c l e s ? and also those having m.agnetic dipole 

m.omients, vi a the emission and absorption of photons, 

( i i i ) the v-ieak i n t e r a c t i o n which i s responsible f o r the 

m.ajority of the decays of unstable p a r t i c l e s and 

includes ,S-decayo 

( i v ) the strong i n t e r a c t i o n which connects a l l the 

baryons via the emission and absorption of mesons, 

the fam.ily of p a r t i c l e s involved i n t h i s i n t e r a c t i o n 

being c a l l e d q u i t e g e n e r a l l y 'hadrons'. 

The r e l a t i v e strengths of these i n t e r a c t i o n s are shov/n i n table 1, 

V'/hile t a b l e 2 l i s t s the non-strange m.escns and baryons t h a t occur 

i n the f i n a l s t ates of the i n t e r a c t i o n s t h a t are reviewed l a t e r . 



Table 1;- Relative strengths of known lorceso 

Type Relative strength Aoorox. ranae (cms) 

Strong . 1 lO"''^ 
-A- —2 Electro-magnetic 10 oo 

Weak lO"-^ « 10~-^ 

G r a v i t a t i o n a l * 10""̂ ° . °° 

''Proton-proton i n t e r a c t i o n 
-13 

These are compared at a range of 10 cmso 

From, t a b l e 2 i t can be seen t h a t whereas some p a r t i c l e s are stable 

or have lifetim.es» 10 sees, others have very short, l i f e t i m e s , 

and associated w i t h t h i s v i a the u.ncertainty p r i n c i p l e , masses which 

are not sharp i n value. The very short l i v e d p a r t i c l e s (e.g A p ) 

are known as reso.nances, the basic physical d i f f e r e n c e s between p a r t i c l e s 

and resonances being the m.a.n.ner i n v/hich they can decay. iTnereas the 

s h o r t e r l i v e d p a r t i c l e s have a stro.ng decay channel open to thei -T , the 

longer l i v e d p a r t i c l e s can only decay by m.eans of the weak i n t e r a c t i o n -

or as i n the case of the TT and H decays electro-magneticc-dly. 

1.2o I n t e r a c t i o n s - experimental d e s c r i p t i o n 

I t i s found t h a t vr.en two given hadrons i n t e r a c t rriany d i f f e r e n t 

f i n a l s t a t e s i n v o l v i n g . v a r i o u s types and .numbers of p a r t i c l e s .may 

be formed. There are c o n s t r a i n t s however on the t r a n s i t i o n s t h a t 

are possible from an i n i t i a l to f i n a l s t a t e , these being imposed by 

the conservation of energ/, l i n e a r and angular momentum; and c e r t a i n 

quantum numbers (see appendix 2)o For example, i n t e r a c t i o n s i n whicii 

negative pio.ns r e a c t with a proton can lead to numerous possible 

f i n a l s t a t e s , some of wiTich are:-



Table 2 • ( i ) Hadrons stable against decay by strong 
interaction* 

Particle I*^(jP)C . Lifetime (sees) Mass width 

TT- l"(0~)''' 2,6.x 10"^ 0.0 

^ ° l " ( 0 " ) ' ^ 0«84x lO'-^^ 7,8 + 0.9eV 

^ 1~(0")"'" 2.53x lO"-^^ 2,6 + 0.6KeV 

P -|- {Y) 2.10 years 0.0 

n • •. i - ( i + ) 935 0.0 

( i i ) Selection of hadrons unstable against strong 
decay (resonances). 

Particle , I°(jP)C^ Lifetime (sees) Mass width (MeV) 

p I'^'d")" -24 
5.07x10 ̂  • • 135 + 20 

03 o " ( r ) " .6.58x10 10 + 0.6 
\ -24 

6.6 xlO 50 .->200 

^2 r ( 2 ' ) " 
-24 

6.58x10 100+ 20 

i-i.f . . 
-24 

6.6 xlO 50 -*-200 

B 1^(1^)" 
-24 

6.58x10 100+20 

f ..• 0^(2-^)-^ 
-24 

4.30x10 156+25 •• 

A' • ^/2(V2-^) -24 
5.98x10 100^ 122 

Footnote:- See.Appendix 2 for an explanation of these quantum numberso 

/ 
/ 



7 T " P - > T T ' P 

-> 7T°n (b) 

^ P 11° IT (c) 

p Ti TT TT (a; 

izach of these t r a n s i t i o n s i s c a l l e d a channel f o r the reactiono. 

Channel (a) i s termed the ' e l a s t i c " channel since the 3am.e p a r t i c l e s 

are present i n the f i n a l s t a t s as are i n the i n i t i a l one, vjhile 

channels ( b ) , (c) and (d) are a l l " i n e l a s t i c ' , as are a l l i n t e r a c t i o n s 

i n vifiich d i f f e r e n t p a r t i c l e s are present i n the f i n a l statc-o (b) i s 

also known as a charge exchange i n t e r a c t i o n since the p a r t i c l e s i n 

the f i n a l s t a t e d i f f e r from, those i n the i n i t i a l one merely because 

they have exchanged an e l e c t r i c ; charge bet'^ieen themselves* 

I t i s possible f o r two or miore p a r t i c l e s i n the f i n a l state 

t o r e s u l t from the r a p i d decay of an intermediate p a r t i c l e which 

cannot be observed. This has been deduced to occur by studying 

the so c a l l e d ' i n v a r i a n t mass' o f the comibination of ivio or 

sometimes m̂ ore f i n a l s t a t e p a r t i c l e s , ŵ -;ich i s defined thus":-

m^2= (2 Ei)^- - ( Z p i ) - ' (1.1) 
i = l , n i = i j H 

jnergy of i ' t h p a r t i c l e i n an n - p a r t i c l e combinatior 

p^ = 3-momentum " 

Considering r e a c t i o n s (c) and ( d ) ; i f the com.bined m.ass of p a r t i c u l a r 

p a r t i c l e s , i n t h i s case the (fnT ) or ("m p ) , v./ere calculated a smiooth 

curve f o r the m.ass frequency d i s t r i b u t i o n would be expected i f t h i s 

combination were randomo I n f a c t various peaks occur i n d i c a t i n g 

t h a t very short l i v e d p a r t i c l e s are created these being c a l l e d 

* Unless otherivise stated n a t u r a l u n i t s are used (c = h l ) 



'reso.nances 'o Thus instead of rsactiono (c) a.nd (d) occurring a; 

they i n i t i a l l y appear as shown i n f i g . 1. 

Fiaure 1 Reaction as seen to occur. 

P 

77" (unsii'i^) 

r e a c t i o n (c) 

P TT' I 

V;--

r e a c t i on (d) 

i n a s i g n i f i c a n t l y large f r a c t i o n of cases they a r i s e as shown i n 

f i g . 2 where the A and P are resonances w i t h l i f e t i m e s too short 

to i n d i c a t e t h e i r presence d i r e c t l y ^ 

Fiaure 2 Reaction as deduced to occur. Note t h a t 

the lifeti.m.es of A and p are too short to leave 

v i s i b l e evidence of t h e i r path. 

e 

r e a c t i o n (c) r e a c t i o n (d) 

i n the energy range being discussed, resonances are produced 

very frequently,^ and i n t h i s review only those reactions -M-iich can 

be i n t e r p r e t e d as having tV'io p a r t i c l e s i n the fi . n a l state v.nU be 

considered, even though .one or both of these may be resonances 

decaying i n t o a num.ber of p a r t i c l e s themselves. These channels 

are said to be 'quasi two body' i n t e r a c t i o n s . 



1.3. Bo sic, d e s c r i p t i o n of t r a n s i t i o n s 

The dynamical behaviour of a quantum-mechanical system develops 

i n a m.anner which i s r e l a t e d t o i t s Hamiltonian, though f o r strong 

i n t e r a c t i o n s t h i s Hamiltonian i s d i f f i c u l t t o construct. To describe 

i n t e r a c t i o n s , g e n e r a l l y p e r t u r b a t i o n theory i s used i n which the 

Hamiltonian i s s p l i t i.nto two oarts H and H_ such t h a t : -
0 i 

H - + (1.2) 

where H = Ham.iltonian of the free p a r t i c l e s 
0 

H.|. = Kamiltonian of the i n t e r a c t i o n between the p a r t i c l e s . 

For electro-m.ag.netic i n t e r a c t i o n s the r e s u l t s obtained agree very. 

w e l l w i t h experiment but f o r strong i n t e r a c t i o n s t h i s method i s net 

successful since t h e i r strength makes i t i n v a l i d to t r e a t the 

i n t e r a c t i v e p a r t as a p e r t u r b a t i o n . 

An alter.native approach has t h e r e f o r e been used, t h i s being the 

S-.m.atrix, vhosa elerfie.nts are i n p r i n c i p l e d i r e c t l y observable 

s c a t t e r i n g or decay amplitudes, and hence give the t r a n s i t i o n 

p r o b a b i l i t y from, a given i n i t i a l s t a t e to one of the possible f i n a l 

s t a t e s . This m.atrix i s i n f a c t a f u n c t i o n of the kinem.atic variables 

d e s c r i b i n g the p a r t i c l e s involved i n the t r a n s i t i o n . The S-matrix 

element < f | S | i > i s the smplituds f o r an i n i t i a l l y observsd free 
I 

p a r t i c l e s t a t e j i > t o be observed as the fi. n a l f r e e p a r t i c l e state 

f > . Included i n the S matrix are the elements < f i >representing 

no i n t e r a c t i o n . An a c t u a l i n t e r a c t i o n of ti^e p a r t i c l e s i s described 

by an am;plitude wi"iich i s i ti.mes the T-matrix. (The i = / ^ appears 

s o l e l y by conve.ntion )o Thuss-

< f ' I S I i ' > = < f 'l i ' > -f i < f ' I T I i ' > (1.3) 

The T-matrix then depends on the p a r t i c l e moiTienta, and also on t h e i r 
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spin and i s o s p i n and any other inter.nai propertieso ( r e f * 2)., 

Ihe t h e o r e t i c a l problem, then becom.es one of e x t r a c t i n g the 

a n a l y t i c a l behaviour of the scatteri.ng am.plitudes from the exp3rimental 

mieasurem.ents5 or m.ore usur ^ l i y , e x p l o i t i n g the l a t t e r t o inve.stigate 

an assumied t h e o r e t i c a l behaviouro Though the t r a n s i t i o n amplitudes 

are i n general unknown f u n c t i o n s of the kinematic variables and 

i n t e r n a l p r o p e r t i e s (such as s p i n ) , the f o l l o w i n g chapters are m^ainly 

concerned w i t h th.eir dependence on the kinematic q u a n t i t i e s 'd'iich are 

conveniently sum_marised by the Mandelstamjm v a r i a b l e s Ss t and u which 

w i l l novi be describedo 

1O4D The fendalsta.mm Variableso 

The .Mandelstamjii v a r i a b l e s s? t and u are defined i n terms of the 

kinematic q u a n t i t i e s shov/n i n f i g o 3 f o r the r e a c t i o n : -

a + b ->c + d (1.4) 

iLnn-TB 3 Ki.nematic n o t a t i o n f o r the quasi tyro 

bodv i n t e r a t i o n a+b-»-c+d i n the centre of mass 

sysoem 

wihere, p miom-entum 3-vector 
E = T o t a l energy. 
m = r e s t mass 
P = Energy m.om.e.ntum; 4-vector (E,p) 

P P.̂  = E E.̂  p .p, a b a b - a • b 

The v a r i a b l e s are given bv the r e l a t i o n s 

t . (P^-P^-Z , (P,^-P^)-
,, = (P^_-P.)' . (P^-P^)-

(1.5) 
(1.6) 
(1.7) 



Thus. I n the centre of mass where "p '+"p, = Os-

s = (E .+ E ) = (centre of mass energy)" (1.8) 

in. terms of P, and P̂  d b 

t = (p, - p,) 2 

= -(P, - + (E, - i^f (1.9) 
/ 2 2 * = (m + ) - 2E^Ej^ + 2p^p^ cos S cms system 

= (m̂ .̂ + n^^) - 2Eĵ -̂ '̂̂  lab system 

where p a r t i c l e b i s at rest i n the laboratory. 

S i m i l a r l y : -

2 ' 2 * u = ' (m^ + ) - '2Ê Ê  + 2p^p^ cos Q cms system 

s + t + u = ( P ^ - H P / +(P^.-P^)2+ (p^ - p / -

2 ^ _ 2 ^ _ 2 , „ 2 
a = m_ \ ""̂c • "̂ d 

Now one of the properties of an equilateral triangle i s that the 

sum of the perpendicular distances from i t s sides to any point i s a 

constant J and t h i s f a c t can be utiii.sed, enabling the graphical 

representation shown-in f i g . 4 to be.drawn. 

Figure 4 The plane of the kinematic-invariant 

- variables Sj t and u • 

a>o 
/ Mm. • 

t > 0 



Since dfi = d(cos 9^) and t a ccs (see equation 1 . 9 ) , i t can 

be £-.;en t h a t the d i f f e r e n t i a l cross-section i n the ce.ntre of mess 

d a / dfi J w i t h which t h i s review i s mainly concerned, i s e a s i l y 

expressed as d a / d t , and i n accordance w i t h nor.mal p r a c t i c e i n t h i s 

f i e l d , the l a t t e r w i l l be'em.ployed as a measure of the d i f f e r e n t i a l 

c ross-section. 



C H A P T E R T W 0 

I n t r o d u c t i o n . 

The r e s u l t s of the m.any experim:ents which have studied high 

e.nergy i n t e r a c t i o n s have i n d i c a t e d t h a t the i.nelastic production 

processes are characterised by a .num.ber of comjrion features:-

( i ) I n .m.any cases, the i n e l a s t i c c o l l i s i o n s do .not proceed 

d i r e c t l y t o t h e i r f i n a l s t a t e , but r a t h e r go through 

an interm.ediate one i n vhich s t r o n g l y decaying p a r t i c l e s 

are produced (eg p , u,n ) - the feature of the strong 

decays being t h a t the reso.na.nt states have extre.mely 

s h o r t l i f e t i m e s , 

( i i ) Up to about 20 GeV/c i n c i d e n t p a r t i c l e mom.e.ntum, many 

of these i n e l a s t i c r eactions appear to be quasi two 

body i n t e r a c t i o n s . The r e s u l t i n g secondary p a r t i c l e s 

have a tendency to go i n the forv^'ard-backv.'ard d i r e c t i o n 

i n the ce.ntre of m.ass system, t h i s preference generally 

becom.ing miore pro.nounced w i t h increasing primary miomentum 

and less pro.nounced m t h increasing number of seco.ndary 

p a r t i c l e s . 

This chapter presents som.e t h e o r e t i c a l - considerations v.hich are 

r e l e v a n t when t r y i n g to e x p l a i n the r e s u l t s obtained from quasi two 

body i n t e r a c t i o n s occurring a t various energies. The f i r s t section 

deals with asymptotic theorems, v a l i d f o r s ( the t o t a l i n t e r a c t i o n 

energy) tending to i n f i n i t y . The second p a r t of the chapter deals 

w i t h p e r i p h e r a l c o l l i s i o n s and describes t h e o r i e s v^hich involve a 

s i n g l e p a r t i c l e exchange betv>;een the two i n t e r a c t i n g p a r t i c l s s o 

This i s subdivided i.nto two s e c t i o n s , the f i r s t dealing with one 
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p i c n exchange 5 and the second w i t h vector-meson exchange^ The l a s t 

s e c t i o n deals very b r i e f l y w i t h Regge theory, t h i s approach being an 

attempt t o provide a .more s a t i s f a c t o r y t h e o r e t i c a l basis f o r high 

e.nergy i n t e r a c t i o n s than those described i n the preceding ssctionso 

2olo .Asymptotic theorems 

At high energies, hadron i n t e r a c t i o n s d i s p l a y c e r t a i n general 

p r o p e r t i e s , such as the e.nergy dependence of t h e i r t o t a l cross-

sections a.̂ . For e l a s t i c cross-sections, the data incacates t h a t 

a Va_ (vvhere a ., i s the e l a s t i c cross-section) tends t o a constant e l i e l 

as the i n t e r a c t i o n energy i.ncreases. ( i . e . s " ) . 

The f i r s t of the theorems to describe the asymptotic behaviour 

of i n t e r a c t i o n s v^s t h a t postulated by Pomsranchuk i n 1958 ( r e f . 3) 

which states t h a t i f the t o t a l cross-section f o r a-b a.nd -c-b c o l l i s i o n s 

both tend t o constantsj -che-n these constants .must be equal:-

Lim a (ab, s) = l i m (ab,s) (2.1) 

thus implying comm.on l i m i t i . n g values, f o r (''''p) and '̂ ^ (•" p) etc. 

This theorem can be a p p l i e d to the e l a s t i c s c a t t e r i n g case since 

there i s a l i n k between t h i s chan.nel and the t o t a l cross-section- • 

provided by the O p t i c a l Theorem.o ( r e f o 4) I t - i s assumed t h a t f o r 

large s and s r i B l l t j T ( s s t ) s the e l a s t i c s c a t t e r i n g amplitude, can 

be expanded i n the forms-
oin ( t ) 

T ( s , t ) = ^ b^ ( t ) s (2o2) 
n=o "• 

vjhere a ( t ) are r e a l f u n c t i o n s .of t ordered such t h a t f o r f i x e d , t n 

> a, > 0I2 (2.3) 

and the f u n c t i o n s b ^ ( t ) are a r b i t r a r y co.m.plex functions of to I t 

can be demon.strated t h a t : -
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b = b e " ( 2 , 4 ) n n 

vdiere b i s the complex corijugate of the crossed channel amplitude bo 

From I b^ j = j b^ | s cn^ obtains i n the asymptotic region s-> oo s 

( s , t ) = CP ( s j t ) ... X 
d t d t ^^"^^ 

i . e . e q u a l i t y of the e l a s t i c d i f f e r e n c i a l cross-sections. From the 

observed constancy of the t o t a l cross-sections, at high energvj 

a ^ ( t = - - 0 ) = l , i n which case 2 o 4 y i e l d s f o r b^ :-

Im b = Im b ; Re b = -Re b ( 2 . 6 ) 

0 0 0 0 

This then i m p l i e s Pomeranchuk's Theorem 2 o l o As a p a r t i c u l a r example, 

the r e a l p a r t of T ( s } t ) f o r T T - p e l a s t i c s c a t t e r i n g has been obtained 

from, i t s i n t e r f e r e n c e with Coulom.b s c a t t e r i n g a t small angles; f o r both 

Ti'p and i! p s c a t t e r i n g i t i s small and negative, and so i t may be 

concluded t h a t Re b^ = 0 . i.eo t h a t Re T ( t = 0 ) com.es from the next 

term i n the expansiono 

I t would t h e r e f o r e be expected t h a t : -

l i m Re T(s-.t) = Oj f o r small |to| ( 2 o 7 -
s->- " Im T ( s 5 t ) 

Also J since T('n- p ->Tr°n) = T - T, the r a t i o of the charge exchange 

to the e l a s t i c cross-section should tend to zero, in: good agreement 

w i t h experiments 

2o2o P e r i p h e r a l collisions;.-one p a r t i c l e exchange 

a) 0ns pion exchange 

A s t r i k i n g f e a t u r e of high energy i n t e r a c t i o n s i s the p e r i p h e r a l 

nature of c o l l i s i o n s o For meson-nucleon reactions of the type ab-^-cd, 

the d i f f e r e n t i a l cross-sections have a sharp peak near t = 0 , which 

drops e x p o n e n t i a l l y f o r i n c r e a s i n g t (see f o r example f i g u r e 2&)o 
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This i s most evident f o r e l a s t i c s c a t t e r i n g but applies generally to 
charge exchange and i n e l a s t i c quasi two body rea c t i o n s a i s o j the 
inomentuni t r a n s f e r from the i n i t i a l t o the f i n a l baryonj or baryon 
resonance J nearly'always p r e f e r r i n g small values^ 

A step i n the deveiopment of the p e r i p h e r a l model was the 

i n t r o d u c t i o n of t h e idea of the exchange of a si n g l e pion between the 

i n t e r a c t i n g p a r t i c l e s ( r e f s ^ D J 6 J 7, 8 j 9? 10 and 1 1 B y . the 

Unce r t a i n t y P r i n c i p l e s the longer range i n t e r a c t i o n s are due t o p a r t i c l e s 

v/ith. lower mass energy (ioe. the l i g h t e r p a r t i c l e s s since i t i s these 

t h a t are the most l i k e l y t o e x i s t f u r t h e r , from the hucleon» Therefore 

i t i s these p a r t i c l e s t h a t are the m.ost l i k e l y mechanisms to be i n 

ope r a t i o n f o r p e r i p h e r a l c o l l i s i o n s o A diagram representing one p a r t i c l e 

exchange i s shown i n f i g . 5o 

•b-iaure 5;- One p a r t i c l e exchange diagram 

The maLrix .element T__ of a Ti-exchange process i n m.omentum space 

i s given by ( r o f o 12): 

r^(ab^cd) .= 1 T (7ra-> c) T (rr b»d) 

Vifhere u i s the pion nBss 

(2.8) 

i h e m a t r i x elements T(TTa-> c ) , and TiTib-^ d) r e f e r t o c o l l i s i o n s o f a 

v i r t u a l p i o n ( a n t i - p i o n ) w i t h a p a r t i c l e a ( b ) . 
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I n the simplest version of ths p e r i p h e r a l model (the so-called 'pole-

approxiination') ,the pion i s t r e a t e d as being r e a l s both .at the upper 

and lower v e r t e x (see f i g u r e 5 ) o Replacing] t | by i n Tt/Ta-̂ -c ) 

and T (^D-5-d) i n 2 . 8 3 the d i f f e r e n t i a l cross-section i s obtained i n 

the forms-

d a = 1 

ITT = ( i : d l = (\b' (2-5) d I t ! ds , ds , - . ̂  ̂  
• ! t l . 

where q i s the i n c i d e n t p a r t i c l e m.omentum i n the centre of miass and 
-

^^^ab^ " h J '-^^P^ ^Vb' ̂ a* -̂ d - |T(a^"^ c)]'^- w i t h a 

s i m i l a r r e l a t i o n f o r e(s^^,) ( r e f . l 3 ) o The expression d [ Lips(s^.|^... .F^" 

i s a d i f f e r e n t i a l element of the Lorentz i n v a r i a n t phase space ( r e f . 1 4 ) 

and i s independent of t o 

The m.ain achievm.ent of 2 o 5 i s t o reproduce the strong forward 

peak i n t due t o the picn pole at- |t | = " | j ~ o ^he exchange of other 

mesons or m.eson resonances v d l l also c o n t r i b u t e ; but the corresponding 

d a / d [ t j w i l l become smaller and less peaked as the exchange p a r t i c l e 

m.asses get l a r g e r 5 since the m.ass appears i n the denominator of the 

expression^ 

Knowing the spins ard.parities o f the resonances, the pole 

approximation 2 o 8 m,ay be improved upon by i n c l u d i n g the appropriate 

s p i n f a c t o r s } and the Born term model ( r e f . 1 2 ) approximates the 

i n v a r i a n t amplitude a t each v e r t e x to i t s value at the pole of the 

exchanged p a r t i c l e ; i . e . by the re l e v a n t coupling constant. For TT-

exchang?in the r e a c t i o n ab -^cdj the Born terms are then of the general 

form:-

T̂ '̂"''̂  \s5t5m j..m',)= TT a u 

c^^'"^a'-c^\.d(^'^b^^d^ ^ 2 . 1 0 ) 

t ) 
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where:- B and B , , are the vertex f u n c t i o n s i n the Born approximation a Ti c b TT d • 

and "I] are magnetic quantumi numbers. 

Considering the i m p l i c a t i o n s of 2.10:-

( i ) The dependence on the m.agnetic quantum numbers allows the 

decay d i s t r i b u t i o n s of the resonances to be computed. 

( i i ) The s independence of T i s prcdictedo Consequently the 

d i f f e r e n t i a l cross-section should decrease as ( lab) 
P 

d a ( s 5 t ) = _ i _ I T ( t ) 
S d t ^ 2 

/in r: 
2 

1 _ l i t ) (2.11) 
(2m, p'-'h 

I t should be noted t h a t f i n i t e m.ass widths of resonances are not 

included i n t h i s treatmsnto 

b) Vector meson exchange 

I n T T P c o l l i s i o n s of the quasi two p a r t i c l e t ype, due to r e s t r i c t i o n s 

nn the exchange of quantum numbers between the two v e r t i c e s (see 3-1), 

s i n g l e pion exchange i s allowed f o r Af or Ao production, but not f o r 

A(jj or Ari channels, which even so are about as peripheral as 

;T -exchange r e a c t i o n s . However f o r these l a t t e r two channel.s? even though 

TT -exchange i s not allowed, vector m.eson exchange can occur, and i t i s 

q u i t e possible t h a t these p e r i p h e r a l reactions are r e l a t e d to such vector 

meson exchange processes. 

I n the Born term m.odel, the s c a t t e r i n g amplitude i s r e l a t e d t o the 

mass of the exchanged mfison, and t o the quantum, .numbers of the four 

p a r t i c l e s i.nvclvedo Quite ge.nerally, the number of indepe.ndent 

couplings f o r a given v e r t e x i s found-from h e l i c i t y considerations, 

a.nd i s given by the number cf independent h e l i c i t y a.mplitudeso 
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I t i s possible t o w r i t e the s c a t t e r i n g am.plitude T as a sum:-

T = T^ + T 4- (2ol2) 

li V 

where:- T̂ ^ i s the one pion exchange am.plitude 

and T i s the vector m.eson exchange amplitude 
V 

The d i f f e r e n t i a l t r a n s i t i o n p r o b a b i l i t y due to vector meson exchange 

f o r unpolarised p a r t i c l e s , i s found to be given by a second degree 

poly.nom.ial i n s:-
2 T^ (sjt.m.^ ^d ^ ~ 

m o. m , 
a d „ 

= A ( t ) s H- b ( t ) s 4- C (2.13) 

w i t h A ( t ) 0 (refo 15)o 

For s 2 o l 3 imiolies constant d j / d t ( c f 20 11), but e.xp&rimsntally 

the cross-sections f o r i n e l a s t i c r eactions of the type ab->cd w i t h 

v e c t o r exchange tend to zero w i t h increasing energy, and t h i s e.nergy 

depe.nde.nce problam. i s q u i t e a serious d i f f i c u l t y w i t h the Born te-r.m 

m.odel f o r Vector exchangee 

c) A s p e c i f i c t e s t of the Born term miodel 

As a s p e c i f i c t e s t of the Born term, m^^del the d e t a i l e d shape of the 

p e r i p h e r a l peak can be studiedo I n the pole approximation ( 2 . 8 ) , the 

miaxim.um always occurs a t the beginning of the physi c a l region (though 

where c and d are broad resonances, the depe.ndence cf t h i s s t a r t i n g 

p o i n t on the p a r t i c u l a r mass o f , t h e exchanged p a r t i c l e must be considered, 

since t h i s mass can vary between r e l a t i v e l y wide l i . m i t s ) . Howsver i n 

the Born term .model (2.10) the .maximum of the p e r i p h e r a l peak i s m.oved 

to a s l i g h t l y higher value of { t | since the vertex f a c t o r s , increase 

w i t h i n c r e a s i n g j t | o Experimenta.'ly, the p e r i p h e r a l peak has a 

roughly exponential shape:-
da ~ constant x e ^- -̂ (2.14) 
d t 
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and i n many reactions b" i s of the order 5(GeV/c)"^ o However, the pole 
approximation (2.9) gives a f l a t t e r d a / d t , except possibly f o r very 
small t . . The Born term model f i t s even less w e l l , but instead of being 
abandoned, the general 7r-exchange matrix element (2.8) i s written i n 
the form:-

.\(ab-^cd) = 
Born ' n o 

T (ab->cd) F(Ma^, M^^,t) F(M^^, M^^,t) (2.150 

where the F 's are 'form factors' associated with the two ve r t i c e s j 

which give better agreement, (refs. 16,17, 18). 

2.3, Regge Poles | 

The one p a r t i c l e exchange model, though reasonably successful, has 

a number of f a i l u r e s ; f o r instance i t s energy dependence i s e n t i r e l y 

governed by the spin of the exchanged pa r t i c l e ( i . e . the particular 

t-channel p a r t i a l wave that i s assumed to dominate), and v^en s-»- oo , 

and the o r b i t a l angular momentum I of the exchanged par t i c l e i s greater 

than one, t h i s leads to an i n f i n i t e t o t a l cross-section. 

A Regge tr a j e c t o r y correlates particles ( i . e . bound states and 

resonances) of the same int e r n a l quantum numbers and of the same 

.p a r i t y j but with spins that d i f f e r by units of two.Provided these 

requirements are f u l f i l l e d , any number of particles may l i e on the • 

same t r a j e c t o r y . Regge expanded the p a r t i a l wave scattering amplitude, 

which i s an analytic function of energy, postulating that the radial 

Schrodinger Equation should be able to be solved for arbitrary 

\complex l v a l u e s , providing Reil ^-i".- A Regge pole i s thus a pole' 

or the p a r t i a l wave amplitude i n the complex I plane-, and as the 

energy varies, the-pole moves within t h i s plane. The high energy 

quasi two body reactions.are then predicted to be dominated by the 

exchange of a fev/ of these Regge tr a j e c t o r i e s (ref. 19,20). 

/ 
/. 

/ 
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CHAPTER THREE 

I n t r o d u c t i o n 

The tendency f o r the secondary p a r t i c l e s from a quasi two body 

i n t e r a c t i o n t o go i n the forward-backward d i r e c t i o n i n the r e a c t i o n 

centre o f mass can be observed by studying c^/dt and, as has already 

been mentioned, experim.entally t h i s leads to an approximately 

e x p o n e n t i a l l y decreasing curve when i t i s p l o t t e d agai.nst j t | . This 

curve however sometimes deviates from: an exponential behaviour a t 

very low I t I , t y p i c a l l y ! t | < 0 o 1 (GeV/c)'^, i n t h a t f o r some reactions 

the curve changes the sign of i t s g r a d i e n t , causing a d i p a t low 

values of I t I o \ 

I t would .not be unreasonable to suppose t h a t such d i s t i n c t i v e 

behaviour might be c o r r e l a t e d w i t h t.he type of excha.nge p a r t i c l e s 

f o r each given r e a c t i o n channel and i t i s from, t h i s p o i n t of view-

t h a t the r e a c t i o n channels are grouped' i n chapter f o u r . I n t h i s 

chapter ( s e c t i o n 3 . l ) the approach used f o r deciding which p a r t i c l e s 

can be excha.nged i s discussed and the ones relevant t o the channels • 

reviewed are t a b u l a t e d . 

The experimental observation of a d i p i n d j / d j t | may .not; 

however, only a r i s e from the i n t e r a c t i o n c h a r a c t e r i s t i c s . Sections 

3 . 2 and 3 o 3 are concer.ned w i t h purely e.vperimental and kinematical 

e f f e c t s r e s p e c t i v e l y t h a t could lead t o such an e f f e c t . 

3 , 1 Qua .nt um numbers^.pf.Jr-he., exchanqed _pa r t . i cle 

I n t h i s s e c t i o n the v a r i o u s r e a c t i o n channels which are studied 

i n the next chapter are l i s t e d and t h e i r possible exchange p a r t i c l e s 

t a b u l a t e d . 

To i l l u s t r a t e the m.ethod used to determine the possible exchange 

p a r t i c l e s , the r e a c t i o n iTp-*- A'' TT ° i s considered. From conservation 



c f quantum r.umbers (see Appendix one), v i z angular momentur;!, p a r i t y ; 

G - p a r i t y , i s o s p i n and strangeness at each ve r t e x of f i g u r e 6 j and 

from the known quantum numbers of the p a r t i c l e s , a.j b. c and d 

(v/hich correspond t o rr ' , p, A '"̂  and 7r° i n t h i s case), a possible 

exchange p a r t i c l e can be deduced:-

£is.yre_£*~ Oî ie meson exchange diagram f o r the general 

two-body r e a c t i o n ab-> cd 

c: (rr) 

( i ) Strangeness Since a, b, c and d a l l have strangeness number 

zero 5 conservation of strangeness a t each vertex implies t h a t 

e must also have strangeness zeroo 

( i i ) G-parity This i s a m u l t i p l i c a t i v e quantum number having 

the values ± lo Each p a r t i c l e w i t h i t s baryon number and 

strangeness both zero i s i n an eigenstate of the G-operator<, 

ioe- has d e f i n i t e G-parityo • The pion has G-parity G = - 1 , and 

•from G-parity conservation â t the meson v e r t e x , where ^r'-re^ir" 

i t f o l l o w s G,, o G = G_o Hence G = -;-l. 

( i i i ) A nqular momentum_ _and_ par j, t v The c o l l i s i o n of the exchange 

p a r t i c l e viith the incom.ing I T ' as seen i n the r e s t system of the 

outgoing 7r° f o r the meson ver t e x i s sno-ivn i n f i g u r e 7. 

Fi o i j r e 7 :- Meson vertex 

G 

j " = sDin p e r i t v 

L = r e l a t i v e o r b i t a l angular momentum of 
Ti' and ec 



21 

Due to angular momentum conservation, the vectors L and must 

- be added to give the zero spin of the 11°; therefore L = J^. From 

p a r i t y conservations-

Therefore the exchanged p a r t i c l e must have natural p a r i t y 
« 

( i e P = (-1)'^);[ P i s unnatural i f i t equals (-l)'^'*'^]; 
^e • - + -ie Jg = 0 . 1 ,2 , 3 .... 

( i v ) Isospin Isospin conservation at the baryon- vertex 

demands that the isospin 1^ of e must be coupled with the 

nuclear isospin of to give the isospin 3/2. This i s 

' • •' . possible i f 1^ equals either 1 or 2. Similarly for isospin 

conservation at the meson vertex, = 0, 1 or 2, which 

obviously contains the baryon vertex condition. 

I f the tables of p a r t i c l e quantum numbers are scanned, the 

P-meson turns out to be the least massive candidate for exchange. 

I t i s possible to f i n d that more than one particle can be 

exchanged, and i n t h i s s i t u a t i o n the more probable case may be 

determined by using Heisenberg's Uncertainty Principle to relate 

. the mass of the exchanged meson to i t s possible range of influence. 

According to the P r i n c i p l e s -

AE A t « • 

Hence i f the meson travels with a velocity close to that of l i g h t c, 

'a distance r , i t w i l l be t r a v e l l i n g f o r a time c/r. Thus equating , 

At and ( c / r ) s - ^ 
i . 

A E • -> , t . 
• 2 

But ^ E '.a mc m = exchanged meson mass 

Thus s - ' r s: c i1 . _l_ 2 2 mc 
/. 
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I t f o l l o w s from t h i s t h a t the range of the .nuclear force i s i n v e r s e l y 

p r o p o r t i o n a l to ihe m.ass of the exchanged m.eson, so t h a t the longer 

range p a r t s of the i n t e r a c t i o n v . l l l be due to the exchange of the l i g h t 

mssonso I t i s t h e r e f o r e expected t h a t the r e a c t i o n s w i l l be dominated 

by the lower miass exchange p a r t i c l e s . Table 3 gives the reactions 

studied and the possible excha.nge p a r t i c l e s f o r these reactions. 

Table 3;- L i s t of the reactions studied a.nd the possible 

exchange p a r t i c l e s associated w i t h themv 

Reaction Possible exchange p a r t i c l e s 

•?! p "' p • Pom.ero.n, p 

pÂ "̂  • Pom^ercn, p 

Po.meron, p 
--I- 0 A p . 71 ,• A. , A 

A "^V TT , A, , A., 
1 z 

PP ' TT 5 U, A , A^ 

pg' i ! , w, A^, .Â_ 

A u) 0 5 B 
o 

A IT p • 

A " ^ 2 ° • . P p B 

pÂ "" p 

A^ 

pB"" 03 , A^, A^ 

Since e l a s t i c or d i f f r a c t i o n channels do not i.nvolve quantum 

numiber exchange, to give them, the sa.nrfi formal d e s c r i p t i o n , the Po.mercn 

was proposed ( r e f . 2Q)o This does .nd: e x i s t as such, but f o r i t s 

exchange to occur the followi.ng r e l a t i o n must hold:-
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P, = (-1) 

where:- AJ = change i n spin between i n c i d e n t p a r t i c l e , V'/ith p a r i t y 

P. , and the outgoing resonance with p a r i t y P_̂o 

302 B r i e f account of the handling of data 

I n a l l the experiments discussed i n t h i s revieiw. the r e s u l t s were 

obtained from measurements of tracks i n a bubble chambero These tracks 

correspond to the passage of a charged p a r t i c l e through the f l u i d 

contained i n the cham-ber, though the uncharged p a r t i c l e s remain 

undetected unless they decay to produce charged particleso The 

curvature of the tr a c k s gives the charge to mom.entum r a t i o of the 

p a r t i c l e , and the density of bubbles along the t r a c k gives an 

i n d i c a t i o n of the rra ss of the p a r t i c l e j though above 1.5 (GeV/c) 

the proton and p i o n , f o r i n s t a n c e , are i n d i s t i n g u i s h a b l e so t h i s 

p r o p e r t y cannot always be u t i l i s e d ^ I f a t r a c k i s seen to stop 

i n the chamber the i n i t i a l m.omentum of t h e p a r t i c l e can be determined 

from i t s range though again t h i s i s dependent on the mass of the p a r t i c l e . 

These t r a c k s are.-recorded f o r analysis by t a k i n g photographs of them 

and then using these to rec o n s t r u c t the o r i g i n a l e'vent. The actual 

sequence of the an a l y s i s procedures i s shown i n f i g u r e So 

Figure ,8;- Chart showing basic procedui-es used i n the 

analysis of an event. 

b c a n n i n q Measurem.ent ! 

Re CO ns t r u c t i c n 
1 
j Kinematici 

(Geometric) rj.n,±ng i 

I n i t i a l l y the -photograph taken i s projected onto a screen and 

the lira06 scanned f o r events and tracks leading from these events. 
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The t r a c k s are then measured by noting the coordinates of several 

p o i n t s on the t r a c k and also the range and bubble density of the 

t r a c k o These events are then reconstructed using a computer, 

and those which do not f i t are returned f o r re-scanning. Once the 

geometry of the events have been reconstructed they are then 

a.nalysed f o r p a r t i c u l a r r e a c t i o n channels by con s t r a i n i n g the 

m.easurements to f i t the ki.aem.3tiGal requirements of conservation 

of energy and m.om,entumo 

3c3 Physical and a n a l y t i c a l considerations 

The question a r i s e s as to I'^iiether the dips a t low t are of a 

p h y s i c a l nature or are produced by the techniques used i n the 

a.nalysis of the f i l m and r e s u l t i n g datao 

Since in.so.me channels (eg IT ' P - > A " ^TT'^ see graphs 5 1 to 5 9 ) 

there i s a v a r i a t i o n i n the shape of the d cj/dt versus t curve, 

at low t , from o.ne graph to a.aother i t would seem li. k e i y t h a t the 

curve shape may be a f f e c t e d not only by s t a t i s t i c a l f l u c t u a t i o n s 

but also by the a c t u a l a n a l y s i s techniques used fro.m o.ne laboratory 

t o a.nothero I f the experime.ntal analysis i s producing the d i p , 

i t could be due t o s -

( i ) lass of events on the scanning t a b l e 

( i i ) loss of events due t o s e l e c t i o n techniques used i n the 

ob t a i n i n g of resonances. 

I n these cases there i s a d i s t i n c t i o n to be drawn between the two 

and f o u r pro.ng f i n a l states (those i n which tm a.nd four charged 

p a r t i c l e s are produced r e s p e c t i v e l y ) . The fornvsr could be genuinely 

m.issed, p a r t i c u l a r l y f o r low four-mom.entu.m t r a n s f e r s (see f i g u r e 9 ) 

since the i n c i d e n t and f i n a l p a r t i c l e t racks could appear to be o.ne 

and the same, no t i c e a b l y when the second t r a c k coming fro.m the vertex 
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i s shorto For four prong i n t e r a c t i o n s the d i p could be produced by 
Figure 9:- 2 prong i n t e r a c t i o n i.nvolvi.ng a low t t r a n s f e r . 

->-
c 

miissing- a very short t r a c k and i n t e r p r e t i n g the event as a three 

pro.nged one. Though these three pronged events are not allcwed by 

charge conservation, nevertheless, so.ms are obtained but are l i k e l y 

t o be m i s i d e n t i f i e d four prong events. Obviously i f one track i s 

so s h o r t t h a t i t cannot be seen e a s i l y , i t i n d i c a t e s t h a t the 

p a r t i c l e w i t h the short t r a c k had a very smiall four mom.e.ntu.m t r a n s f e r 

t o i t s and since the num.ber of i n t e r a c t i o n s w i t h i n a given t range 

w i l l . b e s m a l l , the o.m.ission of one eve.nt w i l l be of s i g n i f i c a n c e i n 

determining the shape of the grapho I t i s very easy to miss a short 

proton t r a c k i n the scsnni.ng process, since o.ne bubble corresponds 

to a proton mio.mentum of 85 (.MeV/c)c. Furthermore i n tvjo pro.ng 

i n t e r a c t i o n s associated w i t h srriall t - t r a n s f e r s , the pion only s u f f e r s 

a small d e f l e c t i o n i n path d i r e c t i o n , .m.aking i t d i f f i c u l t to see an 

i n t e r a c t i o n has occurred, and i n four or miore pronged i n t e r a c t i o n s 

s h o r t t r a c k s are o f t e n obscured by the other tracks comdng out from, 

the i n t e r a c t i o n , 

V'/r;en such events are processed by the v a r i o u s f i t t i n g programj.^es 

i n the comiputer, e i t h e r the event i s i n c o r r e c t l y f i t t e d or does not 

f i t a t a l l and so are d i s t o r t e d or e f f e c t i v e l y l o s t i n the subsequent 

analysiso Since the azimuthal angle d i s t r i b u t i o n w ith respect to the 

axi s of the bubble chamber should be uniform f o r a l l i n t e r a c t i o n s 5 

and f o r a l l values of four .mom.entum t r a n s f e r f o r any twp p a r t i c u l a r 
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p a r t i c l e s (eg p r o t o n - p r o t o n ) , i t i s of i.nternst t o sec i f t h i s i s so 

i n t h e data t h a t i s used i n the analysis= The r e s u l t s f o r 7r'p-> ir'p 

f i t t i n g e l a s t i c s c a t t e r i n g are displayed i n f i g u r e 10 ( r e f o 21)o I t i s 

i n t e r e s t i n g to note t h a t many eve.nts are being l o s t v/hen the azi.muthai 

angle, i s 'l.90^^ ( i e vtien the t r a c k s are coming towards or away from 

the cameras), e s p e c i a l l y f o r low values of t i n d i c a t i n g t h a t the a.nalysis 

could c o n t r i b u t e towards the dip i f i t were .not corrected f o r . For the 

e l a s t i c chan.nel t h i s c o r r e c t i o n i s e a s i l y ascertained e m p i r i c a l l y a.nd 

a p p l i e d to the data. 
J . 

For Til 'p i n t e r a c t i o n s i n which a d e l t a i s produced the t - t r a n s f e r 

i s not only a f u n c t i o n of the three-m.o.ment-am of the d e l t a but also of 

i t s m.ass, and hence there i s a lov^/er (a.nd upper) l i m i t on the miomenta 

of the proton and pion r e s u l t i n g from the separation of the delta i r i t o 

i t s c o n s t i t u e n t p a r t i c l e s o The followi.ng c a l c u l a t i o n was thus used 

i n order t o determine the maxim:um and minimum values of the secondary 

proton mom.entum. i n the l a b o r a t o r y f o r given values of four miomicnt'on! 

t r a n s f e r from the t a r g e t proton t o the d e l t a , and hence from ti^ese 

miom:enta i t can be determined v/hether the proton i s v i s i b l e on the 

scanning t a b l e or not. 

Figure 11:- Diagram! showing the break up of a d e l t a i n i t s 

ce.ntre of m.ass t o a proton (seco.n.dary)and pion. 

4 O > 
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I n the centre of mass system of the de l t a (see f i g . 11) 

The t o t a l energy E = mA 

D 

/ 2 2-^ . • 2 , 2^? 

• s ' s 

But since i t i s i n the cmso svstems-

p = p 

Hence f o r a given energy, i s a given d e l t a mass, the mcmenta of the 

proton and pion can be calculatedo .These must then be transformed 

i n t o the la b o r a t o r y systemo 

To c a l c u l a t e p and P i n the delt a cms. system:-

E =- E.. 4- E ._ = m 

Therefore s= ma A ' - ^ ^ P ) 
•..2 

S O i 
2 2 2 2 m, - m - m - p - P ^ =. 2E o E A . TT P -7! -p. TT P, 

Since p^ = p̂ ^ , on squaring the above equation and n:3king p̂ ^ the 

s u b j e c t , t h i s y i e l d s s -

(m^ • 4- m^ • + m " - 2mA ^-n 
2 2 2 „ 2 

2mA m 2m, 

Now transforming^ t o the l a b o r a t o r y system using the conventional 

Lorentz transforms:-

( 1 - 32)2 

3 = momentum of delta/energ\/ of de l t a 

The maximum momentum of the proton in' the lab o r a t o r y i s given by 

ma: 
= Y D . -:- (3 E„, ) 
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and i t s irdnimum morrientum by:-

o . = Y 
• m m 

•Po ^ ( e x ) 
' s ' s 

Similarly the msxiirium and minirrrurr! njcmenta of the pion in the laboratory 

are given by the san-ie relationships $ ivith the eneroy of the pion 

inserted in place of that of the protono 

The results of this calculation are shown in figure 12o> I t can 

be seen from this graph that the minirrram value of the t-transfer from 

the proton to the delta in order for the secondary proton to be seen 

i s dependent on the mass of the delta but for the lighter deltas the 

secondary protons wuld have a range <3nm ( <'100 MeV/c) for t -

transfers below 0.05 (GeV/c 

Now considering events in v\;hich a proton is one of the f/vo 

f ina l state pert ic lesj as opposed to a deltaj figure 13 ( i ) and ( i i ) 

sYiCW's the laboratory iriomenturr; of the secondary proton, and i t s range 

resulting from a given t-transfero -he calculation for this ut i l i ses 

directly the definition of t (see section lo4) putting 8 = 0 ^ , to 

obtain the minim.um o 
• c 

2 2 n-! + m - 2E H -!- 2p c a c a c • a • c 

and the results are shown in figure 13(i)o 
/ 2 

This graph shows that a value of j t j = 0.007 (GeV/c) i s obtained 

for a proton momentum of 85 MeV/c - at which momentum the track is 

1 rffi-iic long. Since in most reactions which involve a proton in the 

intermediate state the dip starts to occur at | ^ a:0«C4 to 0o06 (GeV/c) 

(which corresponds to a.secondary proton motnentum of 200 to 250 ^iev/c 

or a track length of 3 to 10 cms)? i t seems extremely unlikely that a 

significant proportion of these tracks wi l l be missed, or be badly 

measured. 
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RANGE AND ENERGY LOSS IN LIQUID HYDROGEN 

10.0 |-i 

O 0.8 
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g 0.10 
5 0.08 

^ 0.06 
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2.000 

Range and energy loss in liquid hydrogen bubble chamber, determined by 
• a u+ range of 1.103 ± 0 . 0 0 3 cm from the n+ - ji+v decay. Liquid hydrogen 

conditions: T = 27.6 ± 0.1 °K: P = 4 8 ± 5 psia; p = (5.86 ± 0 . 0 6 ) l O - Z g / c m 3 . 
(Data by Clark and Diehl, U C R L - 3 7 8 9 , 1957.) Bubble chamber, 
physicists: note that the number of bubbles per cm is proportional to 
l /p^ , not to dE/dx . 
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Another possible cause- of the dip at low t is that the masses of 

the secondary particles have a large width, though In the case of particles 

such as the proton this w i l l obviously not apply. This effect can be 

compensated for by calculating the minimum value of t-transfer that can 

occur fo r a given resonance massj thus:-

Since t = m ^ + m + 2p p cos 0* - 2E .E 
a c . '̂ a c a c . . 

a maximum and minimum value of t can be determined, 

i.eo vhen cos 6 = + lo This gives:-
2 

min 
max 

2E 
-m 

21 + m^̂  -
2E 

2 _^ 21 2 -m a "1 * ' 
4 

f 2 2s I 2 

2E 

The results of this calculation for the channels considered are shov/n 

in figures 14 to 25o Now since t is mass dependent, i t s minimum value 

t . w i l l vary from one interaction to another, within a particular 
nixn 

reaction channel, depending on the particular mass of the resonance 

i n question. Hence the graph of dc/dt versus t w i l l not contain a 

unique resonance mass for a given value of t , but rather a unique 

mass is spread over a range of to I t follows then that at low values 

of t , when t ' ( t ' being defined to be t ~ t . ) is nearly zero, for 

some masses and at zero f o r the remainder, there w i l l be no contribution 

to the dis t r ibut ion from the larger masses and higher momenta since 

there w i l l be insuff ic ient energy to allow them to occur. Therefore 

a dip w i l l occur i n graphs of dc/dt versus to 

However i f t ' is used instead of t in these graphs this dip 

should be lost i f . i t is the resonance width which is the cause. Though 

to a certain extent this loss of the dip does occur, i t is s t i l l 

noticeable in some of the interactions studiedo/ 
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CKiAFTER- FQIJR 

Introduction 

In this chapter the graphs obtained from various experiments 

for d j /d t versus t , and da/dt'versus t ' w i l l be compared = taking 

each particular reaction in turn , though the channels vrlth the same 

lowest mass exchange particles w i l l be grouped together for comparison. 

Where there are a number of experiments dealing with one channel, the 

results are displayed in the text in the form of surrunary graphs, but 

a l l the original data is collected together in Appendix I I I . 

Appendix I I I shows that for a l l the channels> the d i f fe rent ia l 

cross-section f a l l s sharply with increasing t (or t ' ) . Of special 

concern in this chapter is v/hether there is a physically m.eaningful 

dip in the d i f fe ren t i a l cross-section as t (or t ' ) approaches zero. 

A f i n a l section summ:arises the conclusions, -he approach is entirely 

empirical and the conclusions are based on the experimental data aione 

with no consiceration given to the detailed f i t s v.dth theoretical m.odels 

some of vi/hich predict decreasing cress-sections at low values of t . 

Where possible tAe conclusions arrived at are compared with those of 

Collins (refo 22'). j which are based on a review of theoretical f i t s to 

a miuch wider selection of interaction channels. 

4.1c Channels in which Pomieron exchange can occur' 

The dominant channel in this category is " fp elastic scattering j 

but the transitions to the pA.̂  and pA^ f i n a l states can also occur via 

the sam;S exchange. The graphs corresponding to these channels are 

shovm i n figures 26 and 27o 

TT 'D- TT 'd channel.' 

In this 5 the elastic channels t„̂ .. is identically zero;, and hence 

there is no distinction between t and t"o The results for this channel 
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are based on very high s tat is t ics and as can be seen from figure 26 there 
' is very good agreement from one experiment to another in that no dip 

appears at low t , and d ( j / d t seems to tend to the same value as t tends 
to zero, these results being obtained for incident pion momenta in the 
range 3.63 to 8oO GeV/co The d i f f i c u l t i e s of detecting and measuring 
the low momentum protons associated with small values of t , discussed 
in section 3o4 do not appear to distort the behaviour of da /dt in this 
channel, since a correction for the effect can be easily applied* 
it"''p •> yk^ and- pA^ channels. 

Both these channels are studied in only one experiment, at an 

incident pion momentum of 8 GeV/c. Figure27b shows the t ' distribution 

of both channels, using a narrow bin width, and in neither case is there 

evidence (f a significant dip. Figure 27a shows the elastic channel with 

the same t bin widths and a comparison of figures27a and27b shows that 

for these Pomeron exchange channels, the graphs have similar gradients, 

but the d i f f e r en t i a l cross-sections at t ' = 0 are very different . 

I t would appear then that there is no evidence of a dip. at low t 

in either the ir"*'p •* pA^ or pA^ channelo 

4o2 Channels in which ir-exchange can occur. 

Of the channels studied in v\*iich the lightest exchange particle 

is the TT and the i n i t i a l state contains a proton and T T ^ , f i n a l states 

containing A ^ p ° , A ^ f ° , Pp """ and pg^, are obtained, the f i r s t two 

involving change exchange. 

7r D g Ochannel. 

'., In ' th i s channel, generally speaking a dip occurs in the da/dt ' 

versus t distributions for small values of t , but not in those where 

t ' is used instead of t (see figure 28)o 

Considering f i r s t the t distributions, a l l the curves have the 

same'basic shape, though the higher the momentum of the incident pion. 

/ 
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the narrower the peak of the curve? near t = Oo beoorreso Graph 1 0 

(corresponding to incident pion momenta of 2 c 9 5 5 3 ,2s ^ o O , 3 . 7 5 and 

4cOS GeVy'c), 1 2 ( 4 GeV/c), 1 3 ( 5 = 4 5 GeV/c), 1 4 ( 8 GeV/c) and 1 5 ( i l o 7 Gê V̂ c) 

a l l have a s ta t i s t ica l ly significant turnover near t = 0 = Graph 1 1 

(4 GeV/c) possibly starts to turn over, though the points only carry 

on down to t = 0 . 0 7 5 (GeV/c)^, v/hich is not as low as the other graphs 

obtained for th is channels Graph iO starts turning over at t = OdS 

(Gey/c)^, whereas t̂ .̂ ^̂ ^ for the corresponding incident pion m.cmentu!"!; is 

apprcxim-tely 0 . 0 6 (GeV/c)~s this depending on the mass of the delta 

producedo At this value of t_^^p^3 the secondary proton tracks w i l l be 

easily visibles since the protons w i l l have a minimum and maximum 

momentum of G.l GeV/c and 0 c 6 GeV/c respectivelyj assuming that they 

are t ravel l ing co-linearly with the incident pion5 and the delta formed 

has a mass of l o 2 3 6 Gev/c'o The proton track lengths corresponding 

to these momenta are 0 = 0 4 cm and 2 0 cm. 

Taole 4 sumLmarises the basic characteristics of these graphs; 

Table 4 A' 'p channel t graph surrmiary 

Graph no. 

5 

6 

Incident oion "mi n Posn. dio 
momentum GeV/c "mi n 

to occur t 

2 o 9 5 - > 4 . 0 s - 0 . 1 5 -

4 o 0 0 . 0 6 Oci 2 

4 . 0 0 . 0 6 O0Q6 

5o45 ' 0 = 0 4 0 . 0 4 

3 . 0 O0O25 O.OS ̂  

l l o 7 0 . 0 2 0 . 0 2 

^ , 2 



3 3 

1 . Low momenta are used in this graph, and so t . 
^ • ^ -• • min 

•can have large values (see figure 1 6 ) 9 ;̂  _ 

• Hence i t would be expected that the graph turns .. 

over as i t does. 

' . 2. A large t bin width i s used and hence a dip 

would not be noticed. 

3 , The position the dip starts to. occur corresponds 

to a minimum and maximum proton path length of 

0.8cm and 22cm respectively, meaning that i t is 

l i ke ly that the particles w i l l be seen, i . e . a' 

s ignificant dip. 

However on examination of the t'graphs (figure 28b) none display 

a dipo 

I t would appear then that , looking at the position the graphs 

turn over and the position of ^^^^f the turnover in.the t graphs 

in this particular reaction is due to the width of the resonance 

masses, and not to a physical mechanism connected with low t transfers. 

The possible non-vis ibi l i ty of protons associated with low t transfers 

could be reasonably supposed to be unimportant. 

•ff"̂ p ^ A"^f° ghannel 

In th is channel, the t distributions (figure 29a) give strong 

evidence for.the occurrence of a dip. However the corresponding t ' 

graphs (figure 29b) do not show a dip.. ' The graphs are based on 

experiments at incident pion momenta of 3 o 5 GeV/c to 8 HeV/c, and for 
•, • ! 

these values, t .• is large and corresponds to the value at which the 
min • • i 

dip occurs i n the t graphs. A further experiment at l 3 o l GeV/calso 
I 

shows no evidence of a dip in the t .graph. • 
Since t . is so large for this channel> there w i l l be no problems 

-min- " — • 
concerning, the' v i s i b i l i t y of low momentum protons, and so i t muld appear 

/ 
/ 
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then that in this channel there is no evidence for a dip at low t,^ . 

other than that associated with the resonance widthso 

7r"*'p -»• p0^ channel 

Considering the t graphs, which are based on incident pion 

momenta of 4 GeV/c and 8 GeV/c, and are summarised in figure 30a, the 

gjraphs of the 4.6 GeV/c data do not show a s ta t i s t ica l ly significant 

dip, w^iile those at 8.0 GeV/c do, the dip occujring at t = 0.06 (GeV/c>^. 

. Since, t ^ j ^ ^ . is • so small relative to the position the dip occurs, i t would 

be expected that the t ' graphs (5 GeV/c and 8 GeV/c) (figure 3Qb) 

would also show the dip and indeed a dip occurs i n a l l but one of them. 

Since the dip corresponds to a proton track length of 3mm, or less, i t 

seems possible that i t may be caused by d i f f i c u l t i e s associated with 

short proton tracks and is not due to some physical effect . 

TT'̂ P -»• pq'*' ghannej. 

The t graph (figuTe3l) fo r an incident pion momentum of 8 GeV/c 

shoves a dip starting at t = 0.1 (GeV/c)^, for which t transfer the 

proton tracks are long enough to be seen. However, this dip occurs 

near t^-^^^j and since the corresponding t ' graph has no dip i t indicates 

that there is no dip of physical origin in this channel, though the 

experimental evidence is not strong enough to be certain since i t is 

based on only one experiment. 

4.3. Channels in which P-exchange can occur 

Of the channels studied i n which the lightest exchange particle is 

the p and the i n i t i a l state contains a proton and TT"^, f i n a l states . 

containing A w , A ir , A 'A^ and pA^ are obtained, the f i r s t 

three involving charge exchange. 

ir D -» A 0) channel • ' 

In this channel the t graphs (2.92 GeV/c to .8 GeV/c) which are shown 

in figure 32a, and the t ' graphs (2.92 GeV/c to 8 GeV/c), which are shown 

• / 

:.• ' J ' 
• / . • 
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•so 

i n figure32b5 i n many cases shov̂  a pronounced} s t a t i s t i c a l l y s ign i f i can t 

dipo This dip occurs i n a l l the t graphs except those at 4oQ GeV/c 

(graph 41) and appears i n the t ' graphs as the incident pion momenta 

increases, becorriing s i g n i f i c a n t above 5.0 GeV/c (graphs 48^ 49, cO)<= 

Since the dip appears at t ~ 0o2 (Gey/c)"^ f o r a l l the graphs i n which 

i t occurss which represents a minimum secondary proton track length 

of 4 cm, i t . would seem l i k e l y that the turnover i s caused.by some 

physical mechanism of the interactiono There may be a momentum 

dependence f o r the e f f e c t since i t is clear from figui:-e32b, that below 

5 GeV/c (graphs 45, 46, 47) there i s not much evidence of a d ip . The 

t " curves do not appear to drop to a constant value of do/'cit' at t " = 0 

even though there are reasonable s t a t i s t i c s at t h i s value of t S 

ind ica t ing that the normalisation of t h i s channel has not been completely 

successfulo Even so, t h i s does not. a l t e r the significance of the dip 

i n t h i s channel above 5 GeV/c which cannot be accounted f o r either by 

the vi/idth of the resonance nor by' the v i s i b i l i t y of the secondary protono 

channel 

The results f o r th i s channel are based on incident pion m-omenta 

of 3c,54 Gev/c to i S d Gev/c f o r the t graphs ( f igure 33a) and 5 and 

8 GeV/c f o r the t.v graphs ( f igure 33b)o Generally the t graphs exhibi t 

a dip but the evidence from the t ' graphs i s not so strong. 

i n f i v e of the s ix t graphs ( the exception being the one at 

13oi GeV/c) a dip occurs, and i s i n the region t ~ 0.0& (GeV/c)'^o This 

i s wel l above t . , but m.ore s i a n i f i c a n t l v corresponds to a proton ranoe mm " . • • 

of Smifio J which i s about the minimum track length to be measui-ed on the 

scanning tab le . Of the f i v e graphs wi th som.e evidence f o r dips i t should 

be noted that the one at 4 GeV/c .• as published, exhibi ts an anomalously 

high cross-section. The s ix th t graph, f o r l 3 o l GeV/c i s at a s i g n i f i c a n t l y 

higher mcmientum, than t're others, and no dip occurs, possibly indicat ing 
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that the e f f e c t is momentuiri dependento 

Since t . i s so small r e l a t ive tc the posi t ion the dip occurs> nnn 

i t would be expected that the- t ' graphs v.'ould be almost exactly the 

saiTie as the t graphs, and t h i s i s i n f a c t soo 

I t v/ould appear then that both the t and the t ' graphs turnovers 

but they do so at a value of t which corresponds to a region of 

d i f f i c u l t y f o r measuring proton tracks 5 and so i t is unl ike ly that 

t h i s dip i s a feature of the in te rac t ion m.echanism, 
-V -{-1- Q 

Ti'n A channel 

The t ' graphs (figure34} obtained f o r t h i s channel i s based on 

an experiment at 8 GeV/c, and does net shov; a s t a t i s t i c a l l y s ign i f i can t 

dipc At th i s energy t^..^ ~0.15 (GeV/c)^ so the secondary protons have 

reasonably long ranges. 
J . -1. 

Ti ' D pA„ '̂ channel 

The results feir t h i s channel are based on incident pion momenta 

of 4 GeV/c and 8 GeV/c f o r the t graphs (f igo 35a) and 5 GsV/c and 

S GeV/c f o r the t ° graphs ( f ig . . 33b)o Both t graphs have the same 

general shape above t ~ Oo05 (GeV/c)'^ but the one a t 8 Gev /c , \«hich 

has a point below th i s value of t shows a s i gn i f i can t dipc However 

t h i s point i s near t^^^s and neither of the two t ' graphs show a 

dipo 

I t would appear then tha t t h i s channel does not show a dip . 

V i s i b i l i t y considerations are not important i n t h i s channel at the 

energies consideredo 

4o4 Chanriels i n \''jhich other exchanges occur 

In t h i s category are tv/o channels-5 the. A 'Ti° f i n a l state f i r s t l y wliich 

has as i t s l i gh tes t exchange pa r t i c l e the A^ .̂ and also involves charge 

exchange. The second i s the pB' f i n a l state which has£j exchangeo 
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TT p -v A n channel 

This channel i s based on experiments at incident pion momenta of 

2«"95 GeV/c to 3 GeV/Co For both the t graphs ( f igure 36-'̂ ) a curious 

curve shape i s obtained since d<S'/dt i s nearly constant from t =̂  0.02 

to 0-45 (GeV/c)~. For an incident pion miomentum of 4 GeV/cj the 

minim;um secondary proton track length is 2=5cm, and f o r lov/er momenta 

th i s minimium'increases so i t is un l ike ly that events w i l l be lost due 

to d i f f i c u l t i e s of m.easuremento The dip on the lower miomentum: t graph 

i s p a r t l y due to the v/idth of the delta resonance since i t occurs at a 

value of t which i s belovi/ t . f o r a l l but the hiahest m-omentum; concerned« 
man 

ie 4c,08 GeV/c. On the 3 GsV/c t graph; the curve tends to f l a t t e n out 

rather than to d ip . 

However considering the t ' graphs ( f igure 36b), a l l the curves 

show a s t a t i s t i c a l l y s i g n i f i c a n t d i p , the two at 5 .GoV/c (68369) dipping 

at t ' ~0,15(Gey/c)-s while the remaining two dip at t'=: 0.25 (fiev/c)-. 

I t would appear that the dip i n the t ' graphs i n th i s channel 

cannot be accounted f o r e i ther by short ranges of the secondary 

proton tracks J nor by the e f f e c t of the resonance widths, and so 
appears to be physical ly causedo 

-r -;-
-p- p -> p3 channel 

Only t ' graphs are available f o r t h i s channel and are displayed 

i n f i g u r e 37= One i s at an energy of 5 GeV/c and the other at 8 GeV/c. 

The points on neither graph indicate a d ip . There is not l i k e l y to be 

a problem; wi th short range tracks fo r t t ransfers i n the region of t . , 

since i t i s large ( >0 ,6(Gev /c)^)„ 

4,5 Conclusions 

( i ) I t would appear that bubble .chambers are not ideal f o r the -

determination of the presence or absence of a dip i n the majori ty of quasi 

two body f i n a l states resu l t ing from. ^ ' p interactions since d i f f i c u l t i e s 
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may arise from the handling and f i t t i n g of short proton tr^icks 

r e su l t ing from low t - t r ans fe r s . and the t o t a l s t a t i s t i c s available 

i n any one channel are l i m i t e d . 

( i i ) There is no evidence to suggest a dip i n the f r ' p j pA^' , 

pA^' , A^ 'p^ , A ' - f . pg- J pA^" and pB' f i n a l states. 

( i i i ) There i s a s t a t i s t i c a l l y s ign i f i can t dip i n the pp", A 

and A^"^A^°, f i n a l states but t h i s can be at least p a r t i a l l y accounted 

f o r i n each caseo Col l ins (ref 22 ) suggests that i n the pp :;hannal 

there should be a d ip . In the A"" ' f ° channel, which i s the only 

other channel comjrion to th i s survey and his a r t i c l e , he suggests 

there should be a spike at low t . 

( i v ) In the /\'"^cj° and A ' ' n ° channels, a s t a t i s t i c a l l y s ign i f i can t 

dip occurs, these channels having exchange par t ic les p and B, and A.̂  

respect ively . B^th the u and r\ have isospin T = 0 , and at the meson 

vertex charge exchange has occurred. 

Of the other f i n a l states which involve pand charge exchange, 

namely A ' "A^^ A ' " T r ° 5 both these channels have a dip mich can at 

least p a r t i a l l y be accounted f o r . The other p exchange channel -.vhich 

leads to the pA^' f i n a l state does not involve charge' exchange and 

does not show a diPo 

No channels are considered other tlian the A ' ' r i ° one, v\hich 

have as t h e i r l i gh t e s t exchange par t i c le the A^. 
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APPENDIX ONE 

Quantum numbers and conservation lav,'s 

Besides the c lass ical conservation laws which govern energy, 

mom.entum and angular m.omientum, i n nuclear physics others becom:3 

apparent a l so , and these control the num.ber of baryons and leptons 

• allowed i n any given stateo There are also more conservation laws 

which govern the strong in te rac t ion . 

( i ) Isospin ( I ) 

This i s also known as isotopic spin. The observations of 

charge independence i n proton-proton and proton-neutron interactions 

( ie the observation that the in te rac t ion cross-sectiono depend on 

the o r b i t a l angular m-omientum. and spins and not the charge)" indicated 

that the inter-nucleon forces are equal, the proton and neutron 

being the charged states of a basic particle- cal led the nucleon, the 

charge depending on the z-com.ponent of the isospin I (the isospin 

behaving l i k e angular-m.omientumi I i n ordinary space, I being quantised 

along the charge axis I _ ^ , equivalent to I ^1,-. Isospin i s an additive 

quantumi num.ber o 

Since the nucleon has two charged states ( ie the proton and neutron) 

there fore l -•= -g-.̂  and 13 = + '5' '̂ he charge Q of the nucleon i s given 

by : -

Q = I3 V B/2 

Where B = the baryon num:ber= 

Simdlarly the pion exists i n three charged states so I = 1, and I2 = +15 

0 and -lo 
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( i i ) Par i ty (Pi 

The property of the pa r i ty operator i s t h a t , when i t operates 

on a f u n c t i o n j i t changes each of .the posi t ion variables to i t s 

negative. Obviously i f a funct ion i s operated on-tv/ice, the o r i g i n a l 

func t ion is l e f t j and hence an eigenfunction corresponding to the' 

eigenfunction -1-1 f o r the pa r i ty operator is said to be a funct ion 

of even pa r i t y and an eigenvalue -1 of odd pa r i t y . In strong 

in te rac t ions , the pa r i ty of a sy-stemi must remain unchanged;, ie 

p a r i t y i s conserved.. Since the o r b i t a l angular m.omentum part of 

the t o t a l wave funct ion has even pa r i ty fo r . even and odd par i ty 
i 

f o r odd the pa r i t y i s ( - l ) . 

Since strong interact ions involve the creation and annihi la t ion 

of p a r t i c l e s , the i n t r i n s i c pa r i ty of the par t ic les m.ust be introduced 

( th i s i s defined to be even f o r the nuc^eon and determined experimentally 

f o r other pa r t i c l e s ) and hence the pa r i ty of a two par t ic le system, 

wi th the pa r t i c les having i n t r i n s i c pa r i t i e s P., and and re l a t ive 

o r b i t a l angular momentum 5- i s given by: -

P - P^ .P^ol - l )^ 

( i i i ) Charge coniuoation (C) 

The act ion of G is to transform, a pa r t i c le into i t s ov/n a n t i -

p a r t i c l e , such that the quantum, num.bers (such as tnose corresponding 

to e l e c t r i c charge, baryon number and strangeness) a i l take on t he i r 

opposite values. Only neutral par t ic les can have a d e f i n i t e C-parity 

(K8 C-pari ty i s m u l t i p l i c a t i v e ) . 

( i v ) G_^paritv 

In strong interact ions both C and I are simultaneously conserved 

and t h i s form.s the basis f o r the d e f i n i t i o n of G thus:-

C: u = L,^exp ( i 7i 1^ ) 
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y^iere exp(i'f! i ^ ) i-epresents a ro ta t ion of ISO'"'' about the 

second I - sp in axis , 

(v) Strangeness (S) and hypercharqs (Y) 

As the range of known strongly in terac t ing par t ic les increased, 

i t V'/as found that a whole series of t rans i t ions which would! be 

expected to occur as strong interactions and vhich did not violate 

any of the known conservation laws ei ther d id not take place, or 

i f they did occur did so only via the weak or electromagnetic 

processeso 

Therefore a new addit ive quantum number S, was introduced5 

t h i s being conserved i n strong interact ionso The hypercharge is 

•then defined as:-

Y - B 4- S 

Since a l l strong interact ions conserve the quantit ies I? 

G, J and P, a l l par t ic les produced i n strong interactions can be 

assigned these numibersj and th i s i s usually done i n the form 

•1= ( / ) , . 
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APPEiC'IX WrO 

Crossing 5vm.mietry 

. The scat ter ing amiplitude T, introduced i n chapter two, can be 

expressed generally and- symjnetrically by the three I.-andslstamjr! 

variables s» t and u (through only two of them, are i.ndepe.ndent)o 

I t fo l lows fro.m general symjnetry laws t h a t : -

T ( s j t j u ) = T ( s j U j t ) 

= T (up t j s ) 

Since that only mieans that somie change i n the d i rec t ion of f l i g h t 

of the par t i c les i s i.nvolved, t h i s type of symir.etry of the scattering 

amplitude i s called the 'crossing sy.m:m.etry' = 
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APPENDIX THREE 

Co l l ec t ion of a l l the ind iv idua l t and t ' graphs f o r the reactions 

studied. 

Notes the large number below each diagram indicates the nuinber of the 

graph, while the sm.all super scr ip t indicates the reference 

, from, which i t ms obtained. 
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FIGURES 

lo Reactions.ir P P IT. and Ap as seen to occur_ 

. 2o ." . " " " "as deduced to occur. 

.3, Quasi two body interaction a+b-»-c + d i n the centre of mass 
system. 

•4, The plane of the kinematic-invariant variables S j t and u. 

5. One p a r t i c l e exchange diagram for" the reaction a + b c + d. 

6, ' One' meson exchange diagram f o r the general two body reaction 
a + b -»• c + d. 

7o Meson vertex fo^ the c o l l i s i o n of an exchange particle with an 
incoming' TT as seen i n the rest system of the outgoing . 

8. Chart showing the basic procedures used i n the analysis of an event, 

9. Two prong interaction involving a low t-transfer. 

lOo 

11.. 

t versus ^ i n the reaction •rr*'"p ir^p. 

12. 

l3o 

14o 

iSo 

• l6o 

17. 

18. 

• 19. 

20. 

21, 

22. 

23. 

The break up of a delta i n i t s centre of mass to a secondary 
proton, and pion. 

For a given t transfer to a delta, maximum and minimum proton 
and pion.momenta on i t s break-up. 

( i ) Proton momentum resulting from a given t transfer to a 
stationary proton. 

( i i ) Range and energy loss i n l i q u i d hydrogen, 
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TABLES 

1. Relative strengths of known forces, 

2 o . ( i ) Hadrons stable against decay by strong 

inte r a c t i o n , 

( i i ) Selection of hadrons unstable against 

strong decay (resonances). 

3 o L i s t of the reactions studied and the possible 

exchange particles associated with them. 

4 , A p channel t graph summary. 
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