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ABSTRACT.

In recent years, digital filters for the processing of s1gnals have
déVeloped rapidly. The aim of this project was to study. the de51gn
~and impiéﬁentation of digital filters in terms of hardware, rather
ihan by software programming of a general purpose digital computer,

A digitgl fi1ter has heen designed and built with 8 bit accuracy
intended espart of a high order filter. It is intended té perform’
as a lowpass, highpass or bandpass fiiter by multiplexing and

frequency transformation.
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Chapter 1.

Introduction.

1.1. Introduction to digital filtering.

- A digital filter-is defined (1) as the computational procese or -
alrorithm by which a sampled eignal or sequence of number, acting as
an iuput, is transformed into.a second sequence of number, terued the
output, using digital-compcnents as.the basic elements for |
implementation. The process may be that of lorpase filtering,
highfass filtering or ﬁaudpass filtering; etc.,.and if essumedlto:ee
linear may be designed by a difference equation. This equatiou -'.
definee the output eignal as a function of the present input signal‘
and any number of past input and output signals. .

If the output signal is a furiction of only the present and ﬁaét
1nput signals, the filter is called nonrecursive.

If the past output signals are included as well, the filter is -
caelled recursive.

As digital filtering is a.computational-process, it can also be
performed by a software program on a digital c0mputer. Either. a |
general-purp0se couputer or special-purpOSe computer can be used-"
with a special interface, To reslize a digital filter in real time,.
the digital technique must be fast enough to complete the
computational process within the available time.

Digital filters have wide applications and these have been’

B discussed in the literature. Kaiser (2) has classified the

applications of digital filters in three maJOr areas of activity as




féllows :

- Used as a signal §r data processing element in the reduction
of éxperimenfal test data on the performance éf_communication égd _
speech-processing system. .

--ﬂséd as an element in the similation of speech and in signal
précessing syéfems, to study new techniqﬁes by detailed performancé
analysié, and to defelop promiging system configurations by
déterﬁining the best choice of parameters.

- Uéed as an integral part of a communicafion or signal

processing system which is realized as actual hardware.



1.2. History and development of digital filters.

The study of digitsl filteriné_étarted in the early 1600's frOm
_.the work df mathematicians in the forms of the processing of discrete
systems by classical_numerical ahalysis techniques. Until recgptly,
the'development of digital filtering was limited to the mathematics
of disqféte systeﬁs. The adveét of digitQI computers acceleraiéd':
this deQelopment making it possible to pepform rapidly more exfeﬁsive
‘computation procedures on more complex prpblems. Kaiser has inﬁesfigatéa
the early development of digitalnfiltering and several references:.
were'given in reference (1). |

Various s&nthesis methods have been discussed and published iﬁ
the literature. 1In general; digital filteré can be sypthesized;ffoﬁ
.the time domain or the frequency domain. Rader and Gold.(B) haye--
investigated and published various freduency-domain techniques.-.Aiso
R. M. Colden (4) (5) hag synthésizea digital filters by sampled-data
transférmation,taking advantagé of the_iell-known design techniqﬁgé
developed for-continuous filters.. Many articles have also heen:
publishéd on.éynthesié in the time ddmain. T. C. Hsia (6) has
proposed a method for synthesizing digital filters by assuming that
the pulsed transfer function of a digital filter is the ratio of two
rational polynomials. The coefficients can then be determined by '
least-square fitting the digital filters to the corresponding |
continuous filter's sampled input and output déta.

A recent trend in-the synthesis of digital filters'has been-by
the method of frequency seléctivity, where - the design is not by

~ reference to continuous filters, but by synthesis from the desired



frequgnéy response., This method may be called the frequgncy sampling
technique, Sonderegger (7) has demonstratea tﬂié technique, usihgfa'
nonrécursive apﬁroach to_develop a 1iﬁear phase high quality
Lbandpass filter;_ L. R. Rabiner has published the desigﬁ technidueé
and reglizétién of frequency sampling filters. For example; see
references (8). |

Yost practical digital filters have been realized by COmpﬁ@ef:
-piogramé. These can be used to work as on-line digitai filters (9).
for whiph a special interface.is needed transferring the data to;a'
" remote genefal-purpOSe computer. _Wﬁite_and Nagle (1C) have also
proposed the realization éf'digital filters by a special-purpose':'
computer..' |

.HoﬁeVer, the:realization of diéitgl filters in ﬁardware héé'
also developed rapidiy, the growth.of large scélé'integrated circuit
(LSlj cuts down the cost and increases the speéd of the components;
The.gomponents and techniques required for the.high_speed '
implementation of digital filters.havé been discussed in the
literature. (11) (12). | | _

The cost of a digital filter depends on the word length of the -
,coeffipients. But a séall wﬁrd length willlcause inaccuracy in the
digital filtering. A suitable strﬁc?ure to realize a digital filtér
with a reduced word length but without losiné accuracy has been .
‘investigated by Avenhaus. (13) (14). By stud&ing the density of
allowable root positions of the polyn6m1a1 in the transfer functibn:-
of a digital filter and plotting_them into the Z-plane, he has beéﬁ
able to realize a dig;tal filter with the Opti;al word length.

Digital filters have now become an accepted tool in signal .



wn

. processing. Tables and graphs for deéigning'digitél Chebyshev
filters and digital Butterworth filters sre now available (1%) (16)
1th the cont1nu1ng advance of ulgltal technology and -
'avajlability of iarge scale iptegrated circuits,-one can predicf
that a diéital filter will soon be available on only one chip. This
will'reaﬁe; £hgicost_of digital filters until they can replace ﬁany

of:the continuous filters used.in.bomhunication systems.

1.3, Digital filters and continuous filters.

The aims-ofldigital filtering are the same as.continuOus -
filtering, but the physical rea-lizatio'n is dii‘ferent. Linear-
continﬁous filtgr theory is based on ijnear differential.équationg'
and the Laplace transform while:linear digital filter theory isf
bﬁsed én i;near difference equatiors and the Z-trﬁnsform. ?owévgr,
digital filters are matheﬁatical]y equivalent to continuous filfers
with sémpied'data-inppts and outputs. |

By uéiﬁg'digital techniques in implementation, digital filters
have_sevcrél adventages ovef continuous filters. Some of thesé.T. |
aévantagés-are as follows : |

- the absence of impedance-matching problems.

- tﬁe frequency response can be changed easgily by varying the
proper stored coefficients. |

- any type of filter can be performed'with the same hardwaré
by ﬁsing mu]tiplexihg and_frequency transformation.

© < potenttdlly small-sized integrated circuit‘implementation; 

- there are no drift problems which arise in the realization



of stable filters with very high Q's.

- the digital technology make it possible to produce a filter
méeting the exact design requiremenfs.

However, digital filters also have limitations. The limited
word length leads to a Quantization error., Round off error; overflow
and underflow problems in the computational process also have
effects on the system operation. ™uch work has been published on

attempts to overcome these problems, see for example, reference (3).
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Chapter 2.

Digital Filtering.

Tn this chapter, some fundamental principles of digital filtering
will be discussed to provide a basis for the design of a digital
filter. Ve will begin with an introduction of the Z-domain or

7Z-transform which is the basic mathematical tool of digital filtering.

2,1, The Z-transform.

The Z-transform is a transformation that operates on a sequence
of numbers producing a function of the complex variable Z. It is
used as a tool for the solution of linesr constant coefficient
difference equations, just as the Laplace transform is appropriate
for the solution of linesr constant coefficient differential equations.
In otherwords, the Z-transform is the Laplace transform of a sampled
function.

let a function of time X(t) be sampled by the switch, represented
schematically in Fig, 2,1. This switch can be realired as a Dirac
delta function, ( or impulse ), §(t), defined by

(73] =nT
§ (t-n1) =

0 t/nT

aR) 7 )

6(2)

Fig. 2.1,



Vheren and T are the nth sampling time and the time interval 1
respectively, the area under §(%-nT) is unity.

1f x(t) is sampled during tﬁe interval@@,eo], the sampled funétion
xﬁ(t) is a time sequence of approximately weighted impulses and cen

be written as

. .
x*(R) _  x(t) Y 8(t=nT) 2.1.2
Ao ® .
(=]
_ 2 x(nT) 8(t=nT) 2.1.3
woO

Teking the Laplace transform of equation 2.1.3, and recalliné
that -Zga(eqﬂ)}is @-cﬂT , we obtain
‘ Z ) a2 XS ix(méw

Rad ’

or - %ZX(S#]M{Q 2.1.4

where o, is a sampling frequency.

Tt is seen that the inverse Laplace of this equation can be
found - neither in the available table of Laplace transforms, nor
can it be expanded in partial fractions. Thus a new procedure ha;
been developed for - simplifying the inverse transformation procedure.

If we define,

Z = eﬁ- 2,;.5
Therefore, equation 2.1.4 can be expressed as a function of z, and
referred to as the z-transform.

)

ie X(2) 2 3w 2" 2.1.6
Ac®
The operation of taking the z-transform of a sequence may be
denoted by
X(2Z) = Z{xn} 2.1.7
Because the function is being sampled during the interval [O.tb]

equation 2,1.€ can bhe called the one sided z-transform. 3But if the

function is being sampled during the intervnlea,cs], the two sided



Z-transform would result, and the transformstion becomes
(=]

=
XMZ) , Y alaD Z 2,1.8,
Ro=D
It should be noted that the one sided Z-transform is a power
series -in the variable Zmlp so it has all the properties associated

with power series.

For example § To fing the Z-transform of the exponential -

function, #(g) . e.=aﬂr
Mo oo™
®© _anl =0
From equation 2.1.4., Flz2) . E e Z

=arqn
-Z[¢7]
F3
The right-hand term is a geometric series having the first

)
term 1 and geometric ratio of & . Therefore,
2

Flz) 1
T &t =1

l=0¢ =z

The essential properties of the Z-transform are given below .

1. Linearity : zgagmb@n} ; azgﬁna . bz{n}

where & and b are constants.

?. Shifting (delay) s Z{gmk} . Zekzgﬁ‘n}

ego Z{utn=tIT} z %%z
3. Convolution : z {ﬁkanO @n} - Z{{Fn}o Zgn}
O .
eg. zgz@fl(k=n»1rno(n1r)} = F(2).G(2)
Ao .
A. Inverse Z-transform s x(aT) _ _i_ & X2) z"™'dz
Zﬂ'i e
where ¢ is a closed curve in the Z-plane whiclk “.:loses all*the

poles of X(Z) and the origin.

Purther details of the 7-transform can be found in the 1iterature

(17).
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Relationship between the %-domain and the B-domain.

Consider the complex variable %, from the definition

sT
2 = @

oT _jol
=06 @

where S o o¢jw

@ and ¢ are the real part and imaginary part of § respectively,

therefore, z has magnitude, |Z]|= il

and phase angle ¥ o ol
It can be seen that :
a0 =) IZlgng the entire left half of the B-plane can be mapred into
the interior of the unit circle of the Z-plane
050 =3 |1Z},15 the imaginary axis of the S-pl'ane can he mapped on the
circumference of the unit circle of the Z-plane.
{0 =3 |ZI<1; the entire right half of the B-wlane .can be mapped into
the exterior of the unit circle of the Z-plane.
It should be noted that points on the 8-plane do not map into
the Z-plane in a one-to-one manner, because the unit circle on the
Z-plane repeats at interval of the sampling frequency wg . For-

example, the points 3w,1.30,2.3w,,...... etc will map to .3e, as shown.

in Fig. 2.2 jw . Imaginary

| 3 \ '
’1////{‘// //14;230- —> Real
7707777, r/
-3
2
~5Wg : wg Z<plane
-

S -
o}

FIG. 2.2
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7,2, Difference equations and digital transfer functions.

Difference equations (17) are a mathematical language used to
represent a linear discrete system in time domsin, and are the’
counterpart of the differential equations in linear continuous
systems.

For a linear discrete system having input x(hT) and output y(aT)
8 hfaorder'difference equation can be written, with constant

coefficients, as

y (e b, Y [(R-0T ] ..... PO (€07 f I () PO + @, x[(n-0)T]
2,2.1

Taking the Z-transform; yields

- -0 -f - ‘
Y@ IV ooomnabyd YUE) @, X(2)sQ,Z X(Z)o----00,ZX(2)
2.2.2
© -t o -t
Y(Z)[ u.?; b, Z ] - X@Y a2 2.2.3
or YZ) _ H@XQ) 2.2.4
where 5
ney _ %t L
te €07 2.2,5

_101

H(Z) is a proper rational function of z."l and may be called the
digital trsnsfer function of the system. Therefore, if the input
signal X(Z) and the digital transfer function H(Z) are known, the
output signsl Y(Z) can bé@ determined. So it is obvious that the |
first stage in the design of a digital filter is to find the coefficients
. of the transfer function

Equation 2.2.1 can be rearranged as

Y(l) _ a,xtnNegxl(n-)T)e--- - & a, x[(n-p) T}

—b,Yl(n-T) = b,Yl(n-0)T)- - - - ¥(n1)T]  2.2.6



=]?w

and it is seen that if the input signal x(t) is sampled, ther the’
filtering reduces to a computationsl process, which may be déne with

a digital computer.

2.3. Frequency response of digital filters.

Tn continuous filtering, the frequency response is determined
by the values of the transfer function of the filters on the
imaginary axis. Similarly, the frequency responce of a digital
filter can be obtained from values of W{Z) on the unit circle
[z 1)

To determine the amplitude and phase characteristics, the poles
and zeros of the digital transfer function are plotted in the Z-
plane, as shown in Fig. 2.3. The magnitude response at a particular.
frequency Ur can be determined from the product of the magnitudes
of the zero vectors, drawn to Ur on the unit circle, divided by the

procduct of the ragnitudes of the pole veotors.

Let 2,,Z,,........ Z, be the zero vectors, &n¢
P,P,......P be the pole vectors.

Therefore, the magnitude response

[N
Z.
Il o e
T#
for any ®p Lot



> Real

Z-plane

Pig. 2.3,

The phase response is ohtaincé by combining the angles which
the pole and zero vectors make with respect to the positive real
axis. The totnl phase nngle at a frequency ®r is tﬁe summation 01"-
the zero angles minus the summation of the pole angles.

let @',@2, ..... @y be the zero angles, enrd

Gy Pys.. ... B be the vpole angles.

2] [
Therefore, the total phase angle V¥ _ ZGi—Z‘ﬁ’i

lot iof
It is also possible to obtain the magnitude ané phase responée
directly from the transfer function with the following substitution,

~i _jin . o .
Z - ¢ = COSIwT =JSIN[UJT

Note that
1. The magnitude response charactcristic is seen to repeat after

renchin/ @g ,2Wgand so on, and is symmetrical about ws,
2

2. The phase response characteristic may repeat after reaching'
wp, 2wg,... but this is often not the case.
Purther details of the amplitude and phase charscteristics

can be found from Fowek and Schmid. ( 18 ).



2.4. Realization of digital filters.

2.4.1. Terminology.

The terminology shown in Fig. 2.4. is recommended (19) to be
used in the block diagrams of realizations of digital filters.

unit delay
Y(aT) = xUn-nT]

x(nly 7 yual)

Adder/subtractor
r(aT) - x(aT)2Y(nT)

xmn et .

congtant multiplier

Y(AT) _ k X(nT) ”(nT)

Branching operation o } e

Fig. 2.4. THE RECOMENDED TERIFINOLOGY USED* IV DICITAL FILTERTMNG.

2.4.2, Realization of recursive digital filters.

Assume that a digital filter has been designed having the

transfer function.

=] -t
.2
K(Z) = oq‘ .
i+ 2 b 2 2,401,
Thus, in the z-domain, we have
-t ~ -
YZ) =¥ aXQ2) - b 2YQ) 2,4.2.
HY - tat

or in the time domain

M) o § 0 x(l-iT) - 3 b NT-iT) 2.4.3.

L2 Lot

A recursive digital filter, (bi#’ o)gcan be realized in the

following forms.



1., Direct form 1.

Equation 2,4.3. can be realized directly as in Fig. 2.5. .
_ ynn)

(NT) =1
> Y4

)
L, qx(nT-iT)

th

Fig. 2.% Block diagram representation of direct form 1 for an N

order filter.

If we define the intermediate state W(Z)

14y bZ : 2.4.4.
: . i=g T . ’
Therefore, equation 2.4.2. can be written as,
: . ' " -t ) .
- Y2) = qlIw@ ' 2.4.5. .
or in the time domain .
i sewinT) - x(nT)-—i. b, w(nT-iT) - 246
Y(nT) = ¥ qw(nT-(T) 2.4.7. -
le0 ’ - .

. Therefore equa.tion 2.4.3. can also be realized as shown in Fig. :

2. 6.
X(NT) -
+ 7

-°-T

Fig. 2.6.
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2, Direct form Il of the canonic form.

From the Fig. 2.6, it is seen that signals at the points marked

g are identical. Therefore, Fig. 2.6 may be simplified to Fig. 2.7.

wam
+- + - + = +
a, ag ' a
Z" _______ z -{
B Bed-r
+ 4 poeeee- +

Pig. 2.7 Block diagram representation of direct form I1 for an Nth

order filter.

Since this form has the minimum number of multipliers, adders

and delay elements, it is called canonic.

3, Parallel form.

A digital transfer function H(Z) can be written in the form of
equation 2.4.1 , for example,

HZ) o C+ H(D)+HJD) + - +H(2)

&
= C+ Z HL(Z)

lat

where H(Z) is ratio of polynomials.

Tn this form, the output Y(nT) is the summation of the outputs
of several subfilters. Each of these subfilters can be realized in
either of the direct forms and second-order filters are recommended
(24) If the canonic forms are used, it will be called the parallel
canonic form. This form tends to be less sensitive to quantizatioﬁ

effect than the direct form (24), and can be realized as in Pig. 2.8.



_1,?..

x(nh) . Hl(Z)

-

Rl D)

Pig. 2.8 Block diagram representation of the parallel form.

A, Cascade form.

Another form of H(Z) can be written =s

H(2) o C(Z-Z)Z-Z)........(7-Z4)
(Z-P)(Z-R)........ (z-8,)
&
- cITw(
iat i.S

There H{(Z) represents a subfilter, and againirecomrended to
be second-o;der. (24). Because H(Z) is the product of the subfilter
functions, this is called the cascade form. Again, if canonic
forms are used as subfilters, this is referred to as the cascade-

caronic form. This form can be depicted in Fig. 2.9

x(nT) (AT
—<>—{>-—c Hi(2) HoZ) =------ Hu(2) '—L

Fig. 2.7 Block diasgram representation of the cascade form.



2.4.% Realization of nonrecursive digital filters.

For a nonrecursive filter, the trsnsfer function H(Z) is a
-
polynomial in Z rather than a ratio of polynomials, (all b;’s in
the equation 2.4.1. are zero ). Therefore, the output is a simple

lineer weighting of the present and previcus samples of the input,

and the filter can be realized as in Fig. 2.10.

X(nﬁi
— Z Z T- ------------- Z

Fig. 2.10 Block diagram representation of a nonrecursive filter.

Each of the forms discussed above has its own advantages and
limitetions, and the choice depends on the requirement. But, the
direct forms are not recommended for a hish-order filter because of_
their sensitivity to quantization effects. !nstgad the parallel
form or the cascade form is preferahle. This topic has been

discussed and illustrated in the literatures, see for examples (1),

(7Y, (25).
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2.5 Frequency transformation for digital filters.

Frequency transformation is a method of synthesising a desired
filter from a given normalized filter. The idea of the
transformation ig to change the transfer function of a given filter.
to the desired filter. A, G. Constantinides has develored a theor& of
these transformations for digital filters on the Z-plane, without |
reference to the frequency transformations for analogue filters.

The transformations from a normalized lowpass filter to any other
type of filter (20) and at any cut off frequency (21) are given,

and can be summerized as follows ¢

Lowpags-to- Lowpass-to—. Lowpass-to-
highpass bandpass bandstop
-4 | ] -1 -~ -1 -t =t
Transformation y U ] 7 %-Z(Z-O() YA Z(Z-u
- =
-7 107
cut off frequencies Wiy = gs-wm W, o W,— W, W, =¥§£lg_ (Wy-w,)
centre frequencies Ws Wo Wo
2

where (K =cos(21i'Wo), and
Wy

Wer 1is the cut off frequency of lowpass filter
Wew 1is the cut off frequercy of highpass filter
Wg is the centre frequency

W, is the lower cut off frequency

W; is the upper cut off frequency.
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2.6 Quantization effects.

On programming a digital filter with a limited word-length,
all data and parameters are qusntized to a finite set of allowable
values resulting in the introduction of an error vhich is referred
to as the quantization effect. Here, the quantizatior has been-
defined (3) as the rerlacement of the exact value of a quantity
by the value of the nearest of a set of levels, ( the quantization
levels ), differing by steps of the width £(q-n » whereq is
the word-length. This width may be considered as the width of
quantization.

The results of the quantization effect are quantization
noises, - degeneration in performance and perhaps instabilitity
of the filter. As an approximation, the noises mey be assumed
statistically independent with zero rean, and will be treated as
randon quantities.

fongider the difference equation of a dirital filter

C .
YO = § apx(n-KT— 5" b, Yin-K)T 2.6.1.
&m0 {ot

It is seen that the sources of error due to the limited
word-length can be

1. the inaccuracy of input signal x(nT) , referred to as
input quantization noise ;

2. the effect of rounding and truncation in aritl..etic
operstions, referred to as roundoff noise ;

3. the inaccuracy of the coefficierts, a,’s ard by 'S

referred to as coefficient rounding effect.



-2

Input quantization noisge.

The input quantization noise is introduced by the analogue-
to-dirital converter. Tt is regarded as white noise, ( having

infinite bardridth and its amplitude can assume a completely

different value in an infinitesimelly short period of time ) , and

being independent on the input signals. The mean-square value

used in assessing this noise in the A/ converter is readily

2
shown (22) as &

12
mean-square value at the output of the filter can be determined

, where A is the width of quantization, and its

by using the discrete form of Parseval's theorem (17) and the
properties of random signal. For example, in the canonical formed

filter, it can be deduced as ( see section 4.7 )

_1_@ H2) H(z")_@f dz_ 2.6.2.

_ anj 12 2
There H(Z) is the transfer function of the filter.

Round off noise.

The rourd off noise is generated in the arithmetic unit when
maltiplication is performed, and the term "round off" has been used
to include the case of truncation as well ag rounding. It is
assumed to be uncorrelated from sample to sample and from
multirlier to multiplier, From this assumption, it follows that
the mean-square values of this noise produced at each
multinlication ere é and %z s for rounded operntion and

truncated operation respectively.

Liu (23) has analysed the round off noise for each form of
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realization, and, for a fixed-point filter, a general expression
of the mean-square value of this noise at tha output of the filter

has been given as

] ,‘ y4 2.6.3,
= @eem% 3

wy

where ®ee(Z) ig the power spectrum density of the round off noise
term for each form of realization, { see slso section 4.7 ).

It has been shorn that the accuracy obtained by a direct
form of realization of a high-order filter is considerably less
than with either cascade or parallel forms of the same filter.
Therefore? the first or second-order subfilters are recomrended

to be used as basic building blocks for higher-order filters.

Coefficient rounding effect.

Because the coefficients determine the performance of a filter,
inaccuracy of the coefficients can cause degeneration in the
frequercy response of the filter. TFor example, the cut off
frequency, attenuation rates and ripple may all be affected.
Tortunately, the stability of the filter is hardly affected by
the coefficient rounding. The loss of stability in a realization
will normally occur only after the deviation hetween the actual
and ideal frequency responses has become intolerable,

Knowles and Olcayto (25) have ziven a measure of the
degeneration in filter performance due *o this effect hy

following statistical mean-square convergence criterion 3

g 27
% =1/*
2%
0

2
F*(Jw| dw 2.6. 4.




where F(jw) represents the difference of the frequency responses of
the actusl and ideal filters and T is the sampling period.

In the z-domain, eg. 2.6.4., can be rewritten as

@ _ 1 & FFrdh ¢ _
w = 27 'zz‘ 2.6.5.

A7 j

To calculate the minimum word-length, the expression

3 \‘/}:—2 < |Acceptab1e Cain Fluctuationl 2.6,
must be satisfied, provided that the output noise due to the other
errors ‘is also acceptable with this word-length, and the minimm -
word-length can bYe found from graphs plotted betweer J%E and word-
length for each form of realization. (25) For example, a filtér
with 1 dBripple in the passband and -12dB attenuation in the
rejection band is to be designed. For a worst case design, 2 dB
fluctuation is allowable in the rejection bYand. Using the Knowles
and Olcayto's method, for a parallel form of realization, this
specification can be programmed with a minimum 8 b%it word.

Fnowles and Olcayto have also indicated that the actual
degeneretion in performance of a filter for the cascade form of

realization is less than that of the direct form but greater than

that of the parallel form.

The othrer sources of error that may cause a serious defeneration
in performance and instability of the filter are overflow and |
underflow, Their effects are obvious, and can be cur~d by using an
appropriate number representation, ( the signed 2's complement
representation is recommended ), the tyve of arithmetic used, and,
if necessery, appropriate scaling factors.

It can be gaid that quantization effects are an important
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consideration in designing a filter. Many workers using different
approaches, have analysed and discussed these effects in the

literature, see for example (23) (25) (29).



Ghapter 3.

Basic Design of Digital Filters.

7.1. Approximation of Digital Filters.

As it is a computational process defined by lirear difference
equptioné with constant coefficients, the desimm of digital filtérs is
essentially the process of determining the value of *hese coefficients.

The design of digital filters can he ~pproached from twe direétions :
First, they can be referred to the well-known analomefiltersand second,
they can be designed directly from the specification without referance
to snalogvefilters by the method of frequency selectivity. Roth
methods hrve their own advartares and hoth have several different
aprroaches., See for example, Rader and Gold (3). The recert cesigus
of dirital filters have mostly used the second method to meet a high
specificaticn, However, in this project, the Tirst -ethod is chorcen.

The digital filter is referved to the well-krown Chebyshev prototype.

The sampled-data tr:neformrtion ir used to decign digital filtere
from analoguefilters. A digital filter obtained from this transformation
can he cal’ed a sampled-data filter and can be defined as a “ilter
which accepts input and rroduces outputs only at specific instants of
time called sarple points. The sampléd-data method is widely uced in
linear ¢iscrete systems and control systems.

Tr: this chapter, the sampled-data transformati-n will he
introduced and briefly discussed. Further details of this transformation

crt be found in the literature. 1) (5).



%.2. Sampled-data transformation.

Sampled-deta transformation is an important tool in the design
of digital filters. It changes the analomefilter function, deséribed
in terrs of the Laplace transform complex variable s, to a digital
filter function, described in term of the unit delay variable zfl.
This @ransformation is usually used in the case of recursive
realization and at least three different transformations are widely
used. They are 3 the standard z-trasnsformation, the bilinear
z-transformation and the matched z-transformation. Each of thése
transformations has its own advantages and limitations and it is not
immediately clear from the literature which is the best. The
selection depends on the requirements and the type of the gelected
prototype analoguefilter. FHowever, for any particular design
requirement, one of these transformations can be used successfully.
See for example, R. M. Colden (4) (5).

In this section, the standard z-transformation and the matched
z-transformation will be briefly introduced end discussed but the
bilinear z-transformation will be discussed in detail in the

succeeding section.

The standard z-trsnsformation.

The standard z-transformetion, ( or impulse invarient
transformation ), is based on the fact that the discrete responses
of the derived digital filter to an impulse function will be the

samples of the continuous impulse response of the correspornding



cortinuous ( analogve) filter. In other words, a system with sampled
inputs is equivalent to a continuous system with sampled outputém
Congider for example, a given continuous trsnsfer function,

having a simple pole,

H(S) - _A 3.1,
S+ Q

This can be transformed to a digital transfer function, by
teking the inverse laplace transform of H(S) to obtain the impulse
response and then applying the Z-transformation, ( see chapter 2 ),

to both sides of the equation, gives

H(Z) - _A 30 2,
- |
It should be noted here that the gain A in equation 3.2. is
not compensated to account for the gain reduction, 1_ , in the
Fourier transform.
A limitation of the standard Z-transformation is the aliasiné-
effect, caused by a signal which is not bandlimited. This can be

shown from the equation,

F(Z) repeats itself every sampling frequency Wg , and the

spectra of a band limited signal and 2 non-band limited signal
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can be depicted in Fig. 3.1,

F(S)
Fig. 3.1
(a) A bandlimited signal.
0 w
F(2)

(b) Spectrum of a

bandlimited signal. /\ /\ .
w

-y -wy 0 %b @y

(c) A non-bandlimited sigmal,

0 w
F(2)
(d) Spectrum of a non-
bandlimited signal.
- W, ~Wgs 0 Wg Wy w
2 2

Thus, the standerd Z-transformation is only satisfactory when F(2)
ies bardlimited. However, this problem can be avoided by passing the
input signal through a band limiting lowpass filter, ( sometimes

called a guard filter ).

An advantage of this transformation is that it preserves the
shape of the impulse-time response. The-use of this .ransformation

is demonstrated for exampled by R. ™. Golden (5).



The matched Z-transformation,

The matched Z-transformation is a transformation generating
a digital transfer function with poles and zeros matched to those
of the continuous transfer function. The mapping transformation

for the poles and zeros of the continuous function is given by

sl

Yor example, a real pole or zero could be traneforred according to

S-U—— —i'eUT
Tt should be noted that the poles of H(Z) are identical to
those obtained by the standard Z-transformation, but the zeros -do
not correspondo- This transformation preserves the shape of the
frequency response characteristic and can be used for all types
of filters, but may require modification by insertion of
additional zeros, ({+ Z—')N , at the half-sampling frequency,

where Nis the order of the half-sampling frequency zero desired

(5).

3,3, The Bilinear Z-transformation.

The disadvantage of the standard Z-transformation producing the
aliasing effect led to the development of the bilinear 2Z-
transformation. As we are going to use this transforrmation, it
ijg worthwhile considering it in detail.

Tn deriving this transformation, it should be recelled that a

digital filter is defined by a set of difference equations with



constant coefficients and a recursive filter is one whose output
is a furction of the inputs and the previous outputs,

Consider the trapesoidal rule integrator for example, which
é.pproximates the integral of the input signal by & summation of
trapeséids whose width is equal to the sampling interval T , as

shown in Fig. 3.2.

X(N) _
Fig. 3.2.
x(n=2)

] 1 =1

X 1)
q area of trapesoid -abcd

2 XMT & %.T. [x(n=l) - x(n)]
p 2 |b LI [x(n)<>x(n-=n]
2

0?, n2 n-1n N

If Y(n) , the output, is defined as an area pbcq , and
Y(n-1) , a previous output, is defined as zn area padq ,

a difference equation can be

Y(n) _ I[X(n)+x(n-1)] s 7(n=3) 3030 1o
2

Taking the Z-transform of both sides of the equatiorn, yields

v(z) =%[x(2) +z"X(Z)] LI'va) 3.3.2.

or -d
HZ) | Y2) DI[HZ] 3030 3

X2y 2L -7t

Since this equation is a good approximation to an integrator, 1
Jo
or 1, it follows that (30)
S
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ér -' S__I,- L["-Z-']- - L{anh(s.T)

is a good approximation for S orjuu o . -
Thus, the_biiinéar“Zstransformatioﬁ is given by equation

( 353.4,2),-in'whichls ‘inea gontianus transfer function is

: : C = , : o
replaced by . 2 [i -1 " to obtain the digital transfer functiom.’
o TU+Z ' ' S

Tow consider equation ( 3.3.4. ), it can he written as
w = 2 tan(u_J_LI) _ _ 303.2¢

and being dépicfe& in Fig." 3.3.2.

}

Ws Wg T W,

ri§

"'?;J._ '___'_.._-_

- - -t e mmen o e e s E W = -
-——em vm et mm e m e v e - - -

Fig. 3.3.2.

Since a transfer function H(Z) must also be periodic in w .



period wWg , this transformation will cause H(S) to be mapped
jdentically in each of the other verticel strips bounded by the
line Wi =(n-%)Wg and W, c(n %)ws in Wy plane, wheren

is an integer. In other words, in term of iJ , this transformation
will_uniquely map the left half of the S-plane into the exterior

of the unit circle in the 3 plane, or into the interior of the
unit circle in Z-plane. Then aliasing effects are eliminated, -
since no folding occurs.

This transformation is an algebraic transformation which is
easy to use and can preserve a flat magnitude gain-frequency
response characteristics, It is suitable for all filter types
especially wide bandwidth filter and can be realized in either
parallel or sefial form,

Fowever, this transformation has the disadvantare that there
is distortion on the frequency axis when the critical frequencies
are near the half-sampling frequency. This can be seen from
equation ( 3.3.5. ) and in Pig, 3.3.2.

However, this problem can be eliminated by correcting the
eritical frequencies or prewarping the continuous filter design
in the opposite sense such that when we apply the 7Z-transformation
the critical frequencies will be shifted back to the desired

values. This prewarping process can be applied by the equation

We = '%‘ tan(wTJ_) 3.3. 6.

where We is a computed cut off frequency, and
Wwe is a desired cut off frequency

or
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f =__%tcm(%]‘) - 3030 To

Tt should be noted that R, 1, Golden has shown (5) that the
digital filter designed using the bilinear Z-transformation
epplied to a warped continuous bandstop filter yields a steeper
attenuation slope on the high-frequency side of the bandstop
and also changes the frequencies at which the minima and maxima

of the in-band and out-of-band ripple occur.

3.4, Determination of the coefficients.

Consifler a continuous filter of order N , having transfer

function

&k
HS) - i 3, 4o 1o
Let (5—(G;ijb,§»

R
where (Giijbf,) are the | complex and its conjugate pole
positions, having d; as the real part and b;
as the imaginary part, and k is the integer-

part of N+ .
2

In parallel form, equation ( 3.4.1.) . can be written as

) k (€ £d0) 3,402, |
HE) - Ci2jdg) _
Z (5-(a:¢jbt)

iat

. & ™
where (Cigjdq) are the residues evaluated at the { pole

and its conjugate, having €; as the real part and d; 2s the



imaginary part. Alternatively, H(S) can be expressed as a
parallel combination of second order subfilters, as suggested

by Cold-and Rader (24).

k
HS) = Co+ Z H;(S)  3.4.3

iat

where Hi(S) is a second order subfilter, and C, is constant.
Such a second order subfilter, referring to equation

( 3.4.2. ), can be written as

Hi(S) = (¢ jdr) +(ct‘jdi) 3.4. 4.
(S-iejb)  (S-(@c-iby)

Tsing the bilinear Z-transformation, S will be replaced

-
by L['- Z' and this gives the digital filter transfer
Ths7

function, ( see Appendix A ),

-1
HL(Z) = Co + 0C°+0€,Z 3:4.5.

=1 =2
i+ B +p,2

where Co = A
P
olo - A, By-Y

P2

ol - A°+A.(i-'£;’_' )

a

Ao — oI _geT*_ bdt*_1[°(-F)-d(2])]
D 2D 2D D —

A - —eT_geT bl _—1[c(9)+9(8)]
D 2D 2 D
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B = i["(gg)a"(g)zln
D

o . (E] ()

30 4o 6o

O
i
v
-
+
<

Yote that this has a normalized frequency W of | , and S

has to be replaced by S, where W is the desired cut off

We
frequency. Then equation 3.4.5. will be

H(2) = wc[co +0Co+0C|Z .
{4 P +Pal

and all d’s and b’s in equation 3.4.6. are replaced by a’’s

and [’ 3 s where

4 /

a = d.wc b

b. wc

3.% Number representation.

M understanding of number representation is necessary in
the design of digital filters, not only because it enters into
the implementation, but also because of quantization effects. |
Thus, it ie worthvhile introducing the basic ideas of number

represertation here. For more detail see, for example, Y. Chu

(31)



A number N can be represented by an expression

i
Now ) dr 04 di§(r-1)

where d; is the { digit,
P is the radix or base,
N is the nurber of digits, and
M is the number of fractional digits.
Tn dirital computation, the radix & corresponds to the
binary system is used in the implementstion. ¥hen the sism of
& binary number is defined by one of its digits, { usually the
moet significant digit ), it is called a signed binary nurber.
" Signed binary numbérs can be represerted in 3 forms as follows :
1, Signed magnitude representation. Here the number digits
represent the magnitude or absolute value of the number.,
2, Signed 2's complement representation. Here the number digi%s
are in 2's complement form when the number is negative.
3, Signed 1's complement representation. As above, except that
the number digits are in 1's complement form.
Tt should be noted that if the numbe? is positive, the three
representations are identical.
In general, if X is the given binary number of m¢+n digits,
the three representations can be written as below 3

2igned magnitude representation

. N={ i
X = (—1)xn{z xiz]

ta-M

where Xn is a signed digit, @ for a positive number and { for a



negative number.

Signed - 2's - complemen.t representation

n i
X = 022 +Z X2 when X is positive
{o=m
n M am
X - —1:2 + Z X2 +2 : when X is negative,
ie-m

and Y( = 1-X;

Signed - 1's - complement representation

n n-{ i )
X = Ox2 +z Xi? vhen X is positive
i=-m
O I
X = -1« + Z‘ X; 2 when X is negative
i==-m

An example of three representations of signed hinary number is

Depresentation Tumber (+10) Tumber (-6)

Sirned magnitude 0,1010 1,0110

ified=25-
Signed-2's 0,1010 1,1010
complement

. e
Signed-1's ¢,1010 1,1001
comrlement

2z € 1, Signed 2's complement represertation.

'8 0

The 2's complement representation of a rumber is preferahle
ir Aipital filter implementation using serial eri thretic because in

addjtion and subtraction the sismed bit can be treated as s number



hit an? there is no need for advance knowledge of the sifns or
relative magnitudes of the numbers being operated. Using this
representation, the overflow problems in the addition of more thar.
two numbers having the total sum in the range-14X{{ can be
ignored. (11). Tn other words, no information is lost if overflow
or underflow occur in any of the partial sums, and the correct
total sum will be obtained.

Towever, although the signed bit can he treated as a number bit,
the convention of signed bit for this representation should Ye noted.
" The negative and positive signed bits are | and O respectively.

Tn shifting processes, such as occur in multiplication; the signed
bjt must not be altered, This means that when shifting a positive
number, all the added bits will be 0’s . But, for a negative
number,.shifted to the left, added bits are 0’8 ; and when shifted
to the right, added bits must be 1's.

Example, for a given negative number

X _ 1,001
1

X2 _ 1,010 shifted to the left.
2

X2 _ 1,100 shifted to the left.

X2 _ 1,100 shifted to the right.
-2

X2 _ 1,100 shiftcd to the right.

As the numbers used in digital filters are fractional nurmbers
in the ranre —1§{X{{ , the smallest number we can represent
using an B bit word length is 0.0078125 ( decimal ‘, and the

larcest is 0.99218750 ( decimal ).
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Chapter 4.

Design of a programmable digital filter.

4.1. Specification.

A prototype programmable digital filter is to be designed and
constructed with en 8 bit word-length. It should perform as a
loxpass, highpass or bandpass filter, and havirg cut off frequencies
at anyrhere in the Wyquist interval. Here, the design of a bandpass
f51ter vill be considered as our limiting example with the following
specification j

1. the lower cut off frequency at 100HZ anc¢ the upper cut off
frequency at 10 KHz ,

2. the rominal slopes above and below the cut off frequencieé
are to‘;e 12dB per octave,

3, maximum riprle in the passband of 1 ds .

4. A sampling frequency of 4C KHz .

4.2. Digital bandpacss filter obtained by mul tiplexing.

Tn continuous filter design, a bandpass filter can be achieved
by cascading a lowpass filter and a highpass filter rrovided they dre
ndequately isolated. Tn digital filtering, the usc of time sharing
tectniques or multiplexing makes it possible to perform this operation
with the same hardware used as a lowpass filter or a highpass

filter alternately provided that the availeble time is long enourh,
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Then digitel bandpass filtering is performed, the arithmetic .
unit must represent both a lowpass and a highpass filter apparently
at the same time. Tor a filter having the lower cut off frequency
et fi and the upper cut off frequency at fa , 2 lowpass filter
with cut off frequency fy and a highpass filter with cut off |
frequency fy will be required. The output signal of the lowpass '
filter is stored and fed back to become the input of the high pass
filter by multiplexing. 1In other words, the data stream going.ta the
arithmetic uvnit must be at a clock frequency of twice that for the
gampling frequency, or at least four times that for the signal

frequency. This technique is depicted in Fig. 4.1.

SMORACE 24
/P TMUX.
'b—“",'s CO“T" .l"“, . O/P
f LL‘!‘;JITFZI’. T{&'IIEEEITIC 28 2'S COIP-—=
) LEM=NTER

¥IC. 4.1. ™IE DIAGRAM SHOWK TNE MMLTTPLEXING TECTMNIAUE,

Thus fer, it is obvious that a digital bandpass filter is
obtained from lowpass and highpass filters of the same order. Eﬁt
usine the frequency transformation, a highrass filter can be
desirmned from o lowpass filter. Therefore, the desifm of » digitél

bandpass filter becomes simply the design of two digital lovpmse

mn

filters,
For thig example, the specification con We ret with the type

1 M-ehyshev filters.
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1.%. Design of a digital lowpase filter.

fonsider a digitel lowpass filter with cut off frequency at
1€ KHz , which will be the vpper cut off frequency of the desired
digital bandpass filter. Tts specification rus? he as riven in
gection 2.1, oznd can Ye depicted in Fig. 4.2

dB gain or attenuation
o

1dB {|

Fig:: 40 20

-12

We Wg

According to the prewarping procesé, the critical frequencies

are trensformed to correspondirg analogue frequencies by the

relation
W, = 2 tan Wyl As3. 1.
T 2

%o for the dersired cut off frequencies, we have

We = 49421904 radisns/second  4.3.2.
and ms o 2 wc 40 3. 30

For a Chebyshev filter with ripple coefficient. e, the riprle -
is given by

Ripple = Peak magniiude 4.3%. 4.
Valley magnitude

or - zoloqm(we’)* d® 4.3.5.



T™us, 1 d® ripple corresponds to € = %0.509
mo find the required order, consider the Chebyshev filter

transfer function

. .
My = d_ 4.%.6,
|+€ Vn(-%‘)

-]

2 3 _
For high frequencies, € VY g_;_) )) { , and then the gain in
We

the stop band can be written as

H(S) =« i 437
(L)

For large value of X , the Chebyshev polynomial

N=t N
VolX) g 2 X 4. 3.8,
Then- H(S) ™ i 40 3: 9o
ez""(g )“
We

™e gain in the stopband is approximately

Ay - -20 log, '[ezn-'(%:)'] dB 4.3, 10,
- n- n
Therefore, ~12 = -20 log,, [0.509x2 (%%) ]
‘ n =2

So a second order filter will satisfy the specification and

the corresponding transfer function is

H(S) . | 403011,
[ s-@+jb)[s ~@-jb)] '

where
G - 0.5488672

40 3: 120

b 0.8951286
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T'sing the bilinear Z-transformation, and referring to procedure

-in Appendix A
-1

HZ) = Co 4 Herotil 4.3.13.
“*PcZ*Pz -
where Co =A_
Ps
A _ weT®
4D
2 rr o 8
D . [1-dT EI]
l 2 ] +-[ 2
o = A|lI_L
[ ﬁa]
K, - A [Z-JEL]
4. 3.14.

P1=‘Z[‘— g_T (bT) ]

Ps = 1497 +[b—zT;]

D

= a-wc

S

= D.we

Thus, from the equation { 4.3.2. ), ( 4.3.12. Y and ( 4.3.14 ),
the coefficients are
Co = 0.99520
oco = =0.68274

o, - 0.56123

Pi = 0.06399 403.15.

P2 = 0.31396



-44-

and the desired lowpass filter transfer function is

-1
CH(Z) = 0.99520¢|:=0.68274 +0.56123 2
120.06399Z 120.313967 2

4.4. Design of & digital highpass filter.

A digital highrass filter is to be designed with cut off
frequency at 100 Hz , which is the lower cut off frequency of the
desired bandpass filter, and having the same specification as given

in section 4.1.

From the frequency transformetion, a digital highpass filter
transfer function can be obtained by changing ﬁ4to -241n a lowpass
filter transfer function, and the resviting cut off frequency is given

by

According to the specification, the original digitel lowpase
filter must have the cut off frequency zt

foo = 40KHZ — 100HZ . 19,9 KHZ
2

ard the corresponding prewarping critical frequency

We . 10124405 4,3;,16.;
Uaing the equations ( 4.3.16.-), ( 4.%.13. ) and ( 4.3.13. ),

tl.e coefficients can be written as
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Co = 0.91416
Ky — =0.01427
o0y _ =0.01406 4.3.17.
Pr = 1.98416
P2 = - 0.98438

anc the original digital lowpass filter transfer function is

-
HIZ) _ 0.91416 4 | =0.01427 -0.014062Z )
14 1.98416Z ' 40.98438Z

Therefore, the desired digital highpass filter transfer function is

-1
1 - 1.98416 Z +0.98438 2 2

The frequency response of these filters can be depicted in Fig.

4.3. and Fig. 4.4,
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Table of the coefficients at different cut off frequencies.

4050

For the Chebyshev digital lowpass filter of order 2, 1ds ripple

and the sampling rate is 40 yyz
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4.6, Realization of a second order digital filter.

a
From the designed example, the second ‘order filter has!transfer

function
-4
H(Z) - Co +_qg_ﬁ-cc.2_' _ Y@ 4.6.1.
YA WL X(2)
By introducing  W(Z) _ __ X(2)

{ +P| Z-"ﬁ- [5; Z-z
af -
= X(2)=pZ WD) =Py W(z)

4_5 6o 2o

then we have

Y(Z) - CoX(D) +(cososZ IW(2) 4.6.3.

and this car. be realized with block diagrams as shown in Fig. 4.5.

X(2)

Fig. 4.%

This circuft needs five multiplications, five coefficients and
four adders. WYowever, for a single second order filter, one
multiplication can be reduced by algebraical modification. Equation

4.f,1. can he rewritten as




v 2 6.4
M@ = [(Coto) +(Copt®)Z + CoPy ] 4.0.4

bapd e Pl

- -2
Therefore,  Y(Z) o (Co%o)W(Z) 4 (Copy+®1)Z W(Z) 4CoPyl WIZ)

o =i -2 .
or 4 Y(2) o oCoW(Z) 4 o) Z WIZ) 4 PpgZ WD) 4.6, 5.
Co
where o« = Co+6Co
Co
and ctf _ C°E.+0f|
Co

The realization of the equation ( 4.6.5. ) can be depicted in
Fig. 1.6, |

Tn practical use, the designed values of oc,' ard 3, may be more
than 1 , but the number representation used is restricted to the
range -§§ X (1 , see chapter 3.5, However, this problem can be
solved by scaling the coefficients o, and Py by é , and then
doubling the results of the multiplier. These multi plications by

2 can be done easily without using extra components, see chepter £.2.
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4.7. Foise congsideration.

In the following section, the noises of our system due to the

quantization effect will be considered.

Eere, we assume that the

degeneration of the filter performance due to the coefficient

rounding effect is tolerable. Therefore; the only noises to be '

considered are the input quantization noise and the round off noise.

Input quantization noi se.

Tet E(Z) ve the input quahtization noise due to the A-D

converter injected to the filter as shown in Fig. 4.7. , and having

the steady-state mean squared value of

-1

G

¢tr

HZ) . O CiZ s prZ

=

g

-2

1+ TPl

P(2)

Q@)

Fig. 4.7. TIE YODEL SHOVING THE INFUT QUANTIZATION MOISE.

It is seen that,

W(Z) _ X(Z)—PZ WD) —py 2 W(2) +ED)

X(Z) + E(Z)

{e P.Z..re' P;Z-z

X(2) +E(2)
Q(2)

and



’ 0 =t -2
%Y(Z) o BeW(Z) +66Z W(2) 4 P2 W(Z)

= PQYW)

Cw m)[ X2) & E(2) ]

Q(2)
_ P@ x(2) . E(2)P(2)
Q@) Q(2)

_ H(Z) X(2) + EQ@HQ@)

Therefore, the noise term is E(Z) HIZ) , and the mean squared

value of this noise at the output of the filter will be (3)

MSONI _ _t & vy ) EED) d2

2w j z
Tt hags been shown (3) that ERQETY s equal to ':
This,  MSONI . i @ HDHE)A d2
27 ]
or = .Az d % H(Z)H(Z-')dl]
’ 12 | 24 Z

For the designed example, the transfer finction in the equation

( 4.3.17. ) we have, (28)

A f HOHE) dz -  1118.5463
2 j z

and then the root mean squared vslue of this noise is plotted vefsus
the number of bits as shown in Fig. 4.8.

Tt should be noted that the value of the noise in Fig. 4.8.
is a normelized value to a unit output signal level. However, B.
Cold and Nader (3) have given a useful relation, for canonic ?orm;

as
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Bo: = -0.166F —1.79 + 1.5sloqw[ 4 f H@HZ) Q]
' 1] Z

where, By is the number of bits which must be retained below the
unit signal level ; an additional 3 to 5 bits should be retained
above the unit signal level.to protect against overflow, and
F (dB) is the mean-squared output noise below a unit output
signsl level.
Therefore, for the designed example, this relation can be

plotted as shown in Fig. 4.9.

Round off noise.

lLet WM(Z) be the round off noise gererated at each multiplication,
For unrounded operations, Knowles (2€) has given that the steady-
state mean squared value of this noise is _%f pver multiplication.
™hig noise is injected into the filter as the model shown in Fig.

4.10,

4
V(2)ATRV(D)

X(2) = - RN E v
+ ‘ L C k
iy L Z '7<>

V(Z)

VN 22
+
S

Pig, 4.10, THE YODEL SEOUIYG TTF ROM™ OFF TOTE,

V)

It is seen that,

-4 -2
W2 X@) —(BZ WZ) +VZ) —(PZ WD) 2D
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F (dB)

-=100

2 4 ¢ 8 0 12 4 16 B 0 2 %

FIG4.9 A GRAPH SHOWING THE INPUT QUANTIZATION NOISE
IN dB o



-f -
WZ) . X(D) - WZ) - PyZ WZ) - £W(2)

= XZ) - 2Y(2)
1epiZepaZ
X(Z) - 2V(2)
Q(2)

-t -2
CoW(Z) 46 Z WZ) + BaZ WIZ) & V(T) +W(T)WV(Z)

and, 4 Y(@) 5
Co

PIW(Z) + 3 W(Z)

P2 | X(Z)-2V(2) | + 3V(D)
z)

XDHD - [ 2YDHD) - 3V(D) ]

Therefore, the mean squared output found off noise is given by

MSORN _ i_ f SVV(Z ) M) dZ — A f 3V ) dz
21j z a2 Z

-1 1
3ecause V(ZIWV(Z) = % , and

f@znzm‘
b4

Thus, ' .
MSORN _ 24" [_1_ ﬁmzmm ng] - A
Zz

2 -f
2A { HZHEZ) dz -3
B [z'trj % z z]

ut 4 f H@HEZ) dz %) 3
297j z 2

P |
Therefore, MSORN _ ﬂ? [_L_ H(Z)H(Z)(i;]
3 2] z
For the designed example, equation ( 4.1.17. ), this noise can

be plotted against the number of bits as shown, by, dotiedline, in Fig.
the :

4.8.



Chapter Se

Tmplementation.

'£,1., Input and output units.

Tn section 3.5;1, y 1t has been pointed.out that the filter will
operate cn a binary number in the signed 2's COmplément representation.
mut a binary number in-a dicital system is usually in the signed
magni tude representation. Therefore, ?'s complementers are required
as'input and oﬁtput devices to encole and.decode thg ﬁumber J

respectively.

£,1.1. 2's complementers.

A 2's complemeﬁter ¢an be implemented with a sequential ciréﬁif
folloving the algorithm as below : -

Starting from fhe least significant hit df a number,
1. for a positive gumber, transmit unchangéd all bits,
2. for a negative number, transmit unchanged all bite vn to and
including the first "1" and then invert al%.subsequént number bits,. -

2, transmit the sign bhit unchanged,

AN

The cireuits and time table of the inﬁﬁt 2's complementer and
the output 2's compleémenter can be depicted ir Fig. %.15.
The J-k flip-flop € and the cross-coupled gateé 3 and 4 are:’

initially reset closing gates & and 8. Tf a positive number is

loaded, therc is no change in these gates, and the datn passes
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unchanged through gates 7 and 9 to the output. 'When a negative .
number is loaded, the least significant bit passes unohéngéd to thg
output. In the-meantime, the sign bit has opeﬁed gate 5. -If.the_
least significant bit ig "O" , the flip-flop 6 remains at the loy.
level leading to the succeeding bit passing unchgnged to the output.
But, 1f the least significant bit is "1" , the f1ip-flop € changes
to the high level closing gate 7 and opening gate 8. Then all the
succeéding number bits are complemented and a number in signed
representation is obtained at the output. ( or a number in eigned
magni tude representation is achieyed if the complementer operates
on a number in signed 2's complement representation. )

To keep a sign bit unchanged, thé J-K flip-flop 6 must be.reset
at the last number bit,“w, . The J-K flip-flop 6 operates at the
négative-gding edge of clock pulées. Therefore, an inverter, gate
10, is added.

It shduld be observed here that thé contrdi signals and clock
frequencies for the input ané output 2's complementers differ only

when multiplexing is performed.

£,2. Arithmetic unit.

The implementation of the a:ithme£ic unit for & digital filter
consists of the interconnection of delays, addérs, subtractors aﬁd: '
multipiiers in the way descfibed in chapter 4. Farallel arithmétié'
may be used for the fast operations but the price is rather high. "
Congiderable economy can be achieved by using serial arithmetic )

with the sppropriate techniques. But the operatiéns in the
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. arithmetic unit have to be déne withinia giVén-sampling interval,
and the use of serial arithmetic with multiplexing results in a .
demand for high speed digital components.

In the following sections, the in@ividual components in thg

arithmetic unit ahd their circuits wili be discuased.

5,2.1. Unit sample delays.

The use of serial arithmetic allows the easy implementation-of
semple delays as serial-in gerial-out shift registers. For exampie,
a SN 7491 can be used to jmplement a unit sample delay z—l, as
shown in Fig. 5;2. (a). Wﬁen miltiplexing is included, a unit
sample delay can be jimplemented ae a cascade of two serial-in serial-
out shift registers and a multiplexer, as shown in Fig. 5.2. (b).

Alternatively, a parallel form could be used.

x(t) _ x(t-T)
= e SN7491 p——
a)
mux
. SN 7491 SN7491 -:_-D__,_
(b)

Fiz. 5.2. TUnit delay elements.

<

£,2.2. Serial adders and subtractors.

A gerial adder for a number in sigred 2's complement represeﬁtét&on

is identical to that for signed magnitude representation, It
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consiste of a full binary adder end a delay flip-flop, which is
initially reset, to transfer the carry output back to the carry

fnput. A circuit of a serial adder is depicted in Fig. 5.3 (a).

) s i
Q D
C
A-—-——_~>-a° c, X
B—-D>->b Z"—‘>—
X.A-B X-.A-B
Fig. S5.3{a)A SERTIAL ADDER. Fig.5.3{b)A SERIAL SUBTRACTOR.

A serial subtractor for a number in signed 2's complement
representation can be jmplemented basically as a serial aner. But:
the subtrahend must de inverted and the carry delay flip-flop is
initially preset to the high level, according to the ﬁrocess of
subtraction of a number in this representation. A circuit of a
subtractor is depicted in Fig. 5.3. (b).

Tt should be noted that,. using serial arithmetic, the proceésiné
rate is normelly limited only by the speed of the full adders and
not the carry delay flip-flop. Therefore, the high speed full
adders, SN 74H183 with a propagation delay time of 18 ns , is .
used for both adders and subtractors, and the D-type flip-flop,

SN7474 , can be utilised as the carry delay element.

£,2.3. Serial multipliers.

The Booth's method of multiplicetion for number in signed 2's
complement representation is chosen becesuse-it gives the correct

product, whatever the sign of the numbers, without any correction.



This method was suggested by A. D. Booth and K. IL. V. Sooth (32) _.
(31) and has the scheme of operation as follows 1 |
let @; and by be the i%bits of-the number A and B , see
gection 3.5.1. , respectively. Then the algOritﬁm for the product
AxBis: | .
Starting froﬁ the least significant end, for all numbér bits,:
i40.
1. 1f byby,, are 00 or 11, shift partial product to the right 1 bit.
2. 1f byby, are 10, subtract A from the partial product, and then
ghift the latter to the right 1 bit.
3. If b by, are 01, add A into the partisl product, and then shift
the latter to the right 1 bit.
Repeat until 1 is the sign bit,(i z0) . Here, the process is
exactly as above except that the shift is omitted. L
Yote that for the least significant multiplier bit bj , we'mﬁ,st
take  bjaq to be 0.

Booth has given the recursion for the above process as t
Gij = 10ju + (b —bij)-m
J e t,2,.....-Li-1)

where is the contents of the accumulator after the.j

Ai-je
stage of the process, and M represents the maltiplicand.
From the recursion formula, it is seen that the factor (b,  -b)

has the values :

0 if byby,, are 00 sor 11
1 if byby,, are 01

-1 if bk bk“ are '10
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as réﬁuired by the algorithﬁ described previously.

Purther deteil of this method, including a proof of its
validity and examples of its use can be found in references (31)
(32).

The circuit of a serial multiplier tsing the Booth's method .
ard the time diagram are shown in Fig. 5.4. Tt comsists of tﬁo
registers, one full adder, three D-type flip-flops, two_AND-OR;.
INVER™ gates, two NAMD gates, two AND gates and one multiplexer.l

A coefficient.is treated as a ﬁultiplicand and a data word
as a multiplier., The two least significant bits, b; and biay »
are shifted serially into the bistables M and E . lThe outpﬁts 6f
M and E control the operntions through the AND-OR-ITVERT gates
~and AND gates. If an addition is required, the contents of the
multiplicand reéister are fed to the full adder with the carry '
delay flip-flop initiaslly reset. If a subtraction is to be
performed, thg inveftedloutputs of the multiplicand register aré“ g
.used, the carry delay flip-flop is initially presét to the high-.
level by gates 3 aﬁd 4. 'The contents of the circulating multiplicand
register 1s.shiffed'to the right by 8 places, and the accumulator _ -
ié shifted by 9 places, for every bit time from w, to w, , but at
bit time wg, both sﬁift right 8. places. |

A multiplexer is used at the most significant bYit of the
gccumu]ator for the purpose of shifting the partial product to the .
riéht 1 bit. From the exarple in chapter 3.5%.2. , it is seer th;t,“
when shifting to the right, the new most significant bit is the |
original sign bit, but the sign bit is retained unchanged.

The use of the high speed components, SN 74H183 , SN74H51.
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and SN74H]-’I , makes it possible 1;.0 _peﬂ'orm the mult'iplication of .-
fwo 8 bit worda within as. | o
It should be obsei'ved that, in this multiplication, truncaf:lon
1s used to eiiminaté the l.p-wer 8 least 'siénificant bit of the
product, retaining &n 8 bit word throughout the arithmetic unit.

this L
In; inplementation of the arithmetic unit, beestse the serial

the operation on

multiplication gives the angwer after, the most signif ficant bit has been
perf‘ormed. This means the result is delayed by one word, whlch is
' eguivalent to a unit sample dela;_(_. Therefore, the realization .
sho;m hin Fig. 4.6. must be rewritten as in Fig. 5.5.(a). It is
geen, from Fig. 5.5.(a) , that the output will be delayed by onie |
word. | |

A circuit of the arithmetic unit can Ye depicted in Fig. 5.5.
(b). Tote that two buffer registers, SN74165 and SN7491 , an'd_._ '
a data selector are required in each n-mlt_iplier to buffer answe;'-- '
from the multiplication to the.next stage. When multiplexing is
performed, the output of this cascade is utilized, otherwise, the
content of SN 74165 will be required. A multiplexer and a |
demul tiplexer are included at the input and output of the a'rithme{:ic.
unit respectively, see Fig. 4.1. Because ®, and P. have been
gcaled, the answer needs multiplying by 2 which can be done when-‘
the contents of the accumulators z;re loaded to the buffer registers.:
The first number bit of the accumulator is rejected and the seco;;d
number bit is loaded to the first number bit- of the huffer regiétér.,
and so on, see Fig. 5,5 (b). Obviously, this process is equ1valent :

the b.Y
tc shifting contentsin the buffer register to the left]l bit.
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5.3. Coefficient storage.

Coefficient storage can be implemented by random access
memories, ( R. A, ¥.'s ) and/or recad only memories, (R. 0. ¥'s )o
But serial arithmetic with multiplexing needs either a very high speed
memory or a set of R. A, H's with buffer registers. Both solutions
are expensive at the moment, but they will become possible in??utureo
Howewer, at present storage can be ecomomically realized from
bistable latches and multiplexers, which will be utilized as seratch
pad memories. This form of memory is slso easy to extend for a high-
order filter.

Tor a sccond order digital filter, having eight coefficients;
the coefficient storage consists of eight sets of bistable latches,
2-input data selectors, ( multiplexers ), and WOR gates. Its
circuit is shown in Fig. 5.6.

For test purposes andeight bit word coefficient is written into
the appropriate address in the storage from the data switches, Dy to
Dy s as soon as the "grite™ is opersted. It is read into the
arithmetic unit from the data selector by the selecting sigral * éw?o
Thus, the delay time in-changing the coefficients is only the
propogation delay time of the data selectors which is typicallyléns.

In practical use, a R. 0. Mo and/or a calculator chip may be
incorporated to determine the values of the coefficients. Calculator

chips are now available in a cheap form. Although they are not fast:

enough to be used in the arithmetic unit they can be used here.
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£, 1, Control unit.

The control unit of the digital filter supplies all the
synchronization and control rulses to the complementers and arithmetic
unit. Tt consists of a fundamental clock, sample clock, bhinery
counter, decade counter, D-type flip-flogr, J-K flip-flor anc
timine level generator. A circuit of the control unit and & part
of the timing disgram is shown in Fig. 5.6. , ( see also the tinme
diagram of the multiplier and the 2's complementers Y, The
orsanizstion and function of each of these elements is self-

explanrt .ry, Wowevsr, their functiors can Me summarized as follows :

cymhol  Polarity Function.
CK + Tundamental clocl:
U4
B & shift the accurmlators,
&
B + Shift the coefficients.
Ea - flear the carry-delay flip-flops in the

multiplications.

W + “hift the unit delay elements ;
shif€t the huffer regirters in the muliipliertion
shift the buffer registers in the 2's
complementers j
clock the multiplier hits ;
clock the D-flip-flops in adders rnd subtractors j;
clock the J-¥ flip-flop used ta producr w.

W - flock the D-flir-flop in the input 2's
corplementers.

L - Load the bufer register in the input 2's
complerenters.

A - flesT the cross-coupled gates in the inpnt 2's

complementers.
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Function.

flear the J-K flip-flop in the input 2's
complericniar,

anift the second buffer resister in the output
2tgs corplcmenter,

Clock the J-Kf1ip-flor in the ou*put 2's
complementcr.

load the second buffrr regirter in the output
2's complementer.

Cleer the cross-coupled gates in the output
"'s complementer. |

Clear the J-V flip-flcp in the output 2's
corplenenter.

joad the coefficients.

the
Load the buffer registers injmultirliers.

flear tle accurmleators.

*ultiplezing switche
5 = 0 ; for bandrasc filter
§ = 1 ; for lowpass or highoass filter.

Select the nev sign bits of the accumulators.

Select input deta going to the arithretic pnit]
select the coefficients, :

Select output data going out fror the arithmetic
unit. the
X =1, the ouptit data roes tolfeed hack loop.
Y = 1, the outpit dats goes to the output
?'s complementer, :

Trite the coefficients.

*anual clear.
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Chapter 6,

Terformance of the Frototype filter.

Por testirg purpose, an A-D converter and a D-A corverter, whose
circuits are shown in Appendix B, have been Miilt to ailow the f;lter
to be tested with analogue signals. A Brookdeal 471 sigmal gc£eratgr
was used to produce the input sine wave signal to the filter and the

2600

output was detected by a Marconi TF,valve voltmeter. & pilse

generator, Advance TG 58, was used as the fundamentel clock generator.

f.1, lowpzss filters.

The filter hos been set with a range of cnt off frcquencioé,'aé
given in Table €,1. , and the “requency responsces ~re shown in Fir.
€.1. to Pip. 6.f. The attenuation slores-obtained =re approxima%nly
=10 AR rer octave with 1 4R ripple in *the poesband instead of-12 4B
per octave and 1 dB riprle as in the desigr, see also Chapler 4,
This iz probably the result of the quantization effecte and instab{lity
of the fundamental clock generator used, ( approximately % %) )._
Necause of problemswith overflow at the intermediate stage %HZ)
resulting from the 8 bit word length, which will he discussed in-séction

6o4. 5 the cut off frequencies belor 4 KHzcould not be tested.



.

.2, Uigh pass filters.

Por high pass filtering, the problem of overflo§ becomes seriéus,
and, with the 8 it ;ord length, the filter could not be tested_#ith
the calcnlafed coefficients. TYowever, by modifying the goefficiéqts,
as shown in Vable 6.2;, and also reducing the d.cC transient,_td 
reduce.the_overflow rroblem, see algo secition 6;4.; sone result;:ﬁavé
been obfained and the frequency responses are depicted in Fig. 6;7;;'
to Fig, 6,10, It is geén that the cut off frequencieé are shﬁftédh'
and the sttenuation slopes are reduced to approximately £ 4B pef
octave. The ripple.in the pass band is =hout 1 dB. These |

: . the
derenerstions ame resnlts from the modification of" coefficients.: -
(9 LY

€.3. Tani pass filters.

Tging the coefficients for low pass and high pess filters, ﬁanhﬁ
.pass filters implemenied_via multiplexing were ohtained, and thé.f
frequercy Pesponses are shown in Fig. 6.11. to Fig. €.14. The
cbefficiénts used ave given in Tahle 7.3, Tt is seen that the lower
attenuatién elopes_anﬁ'tﬂe upper attenuation slopes are those fofn N
the hi~h pass and low pass filteérs ﬁsed reépectively as expected;-Thé
ripplé in the pass bend is approximately 1 dB.

S : the
Aecause the delay time is incresced by wiring, the arithmetic

unit conld not be used at the designed sampling frequency of 80 KHz. ﬂ
Instead; a sa.mpliln_t frequency of 70.5KHzwas nsed resultinginthe

shifting of the cut off frequencies-as seen in Fig, €.11. to Fig.

.11, Towever, this problem can be solved by recucing the baseband
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mshle .1,

The Lowpras Tilter Ceoefficients.

’ rd
FIG. | F fer oo %é,- B P2
(H2)' | (H2) 2

€.1.| 40K 4.0%- | 0.51862 | ¢.51%62 | -0.59375 | G, 51762
rooaok | acsx | 0.476%6 | 0.47F5€ | —0.540aT | 0. 47656
7.2, 40K Ry, 0. 44531 | 0.44531 | -0.49212 | +C. 44531
cop. | aox 8l 0.722812 | 0.32512 | -0.17187 |- 0.32810
e taow | 10x | o.21250 | 0.71250 | 0.0700C | 0.312%0
a0 a0k | 16F 0.52006 | 0.53906 | 0.r7201 | 0.5390¢
2le ©.2. The Tphase FPilter Coefficients.

Vg

’

FiG. | F, feu 0 qu P [

{H2) (H2) 2
£.7.] 40K cx; 0, 46275 | -0.46875 | -0.28125 | 0.25000
£.8.] 43K AK . 46875 -o.éagoé 46.23437 0. 26718 .:'
£,9,| 40K 10K C.}l?SO -0.18750 | -0, 02125 | 0.3105¢C
crolqor | Arx | c.a4m31 | -1.0 C.4221R | 0.44571
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and modifying the coefficients.

6.4. b;scussion.'

Cdﬁpﬁter simlation of the d.c respoﬁseé of thg low pass a@ﬂ .
high pass-filters, (_the‘programme is given in Appendix c j, shoﬁs
that overflow.i)foblems at the intermediate sfago- w_m become a __' -
limiting factor in the operation of the filters; These reppongeé,
which have been plotted fof 80 sdmple ﬁoints, are shown in Figrif'.j
6.15. and l‘-'i'g. 6.16. Theld.c transient'respbnse become larger.ét
the lower cut off frequencies. In othér words, a filter to be used
at the low range cut off frequ;;cies must hé;e a long word lengfh..
However; for midraﬁge cut off frequencies and above, it is-seeﬁ tﬁat- '
a filter with 2imited word length can be used and this was confirmed
by the resulté in ‘the previous sections.

Some possible solutioné may be suggested to solve the ovefflﬁﬁ}
prbblem;.'Firstly, e non recﬁrsive_realization éf”the f;lter, h
without the intermediate stage wt2) , could be implemented. Wifh f
the use of-the signed 2's complement number répresehtation, ove;fiéw
problem should only appear at the output,'see (11) , and would bé
eliminatéd by adding féw extra bits. Secondly; Secause the ove%éiow
problem is the result of the d.c trﬁnéient input, it could be a
decrenced by reducing the d€ level. This csn be done by the
bipolgr adJustment in the.A-D convefter. Limitétion of the inpﬁt-'
'.signal would also assist. Thie was used for the hiéh pass filtérs_
in section 6.2. But, this solution could be used only for simpléf':

signals. For practical audio input signals, in which transients'--



‘may occur, this solution may not be valid.- Also a ﬁew A-D copvg:fer
capable of éliminating the d.c transient input must be used. N
Thirdly, extré wofd length might bé provide.:d_'for'w(z) , per_}iaps'-
incorporating scaling factors. 3But ther all foliowing'arithmetié ;
operations.will need fhis éxtra'word length tpo. Fiﬁaliy,for
récurSivé filters,-annew intermedigte stage or é new number

represéntation might be defined to overcome this probleni.
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Aggendix A.

Neterrination of the coefficients for high-order dicital filters.

The use of subfilters as basic building blocks for = high;bééer
digitai'filter has been introduced in Ehapters 2 and 3. The parailel
form is prefefable for extension of our filter to a high-order |
filter, so we shall considér the determination of the subfilters for
the parallel form.

N

Tt has been shown in chapter 3 that for an H“h orier

coritinuous filter having the transfer function

K . |
n(s) = T1 1 | A1

i=1 [s -Tafi W)

1y gecond -order subfilter can be writien as
H 3 = 4] + -
(8 = (ej+34,) (6;-3¢;)

[s-(ai+jbi}] [s-(a;-3%;7]

+, . th . . cpr
where (ai-Jbi) are the i complex and its conjugate pole positions

+ -
(ci-jdi) are the residues evaluated at the it pole and its
conjugate, anc

k is the integer part of X + 1
2

Tor convenience in writing, we will ignora the sukscrint’ 1,

ard then rewrite equation ( 4.2. Y as

1(s) = (c+ijd) (c=3d) A3,
s-(a+jb [s-(a- jb) Lo
[ )]



or - r(s) = 2 (cs-ac-bd) - ' Aede

(ERY

L2
=10
——
- -

+
gty
N

4 =
| WS |

~

Teing the bilinear - _transformation, we replace s by

therefore, the numerator of equation ( A.4. ) becomes

-1
2 [ es-ac-bd) = 2|c2 [1-Z l -ac-bd }
T | 1437?
2 [gg - 2¢ 77t —ac-acz™ -bd=baz " ]
= LT T -
R

. [(Ag - 2ac - 2bd) - ( 4c - 2ac + 2ﬁd) Z-i]
T . T

1+?:"1

l"lo 5-

and tle denominator becomes

1 . 2 2
2 1-3'i - a1 + b
{_E[ 1+7 ]

2 2
(s-a) + b

1l
—
=1 ™)
[
—
i
+ 11
NN
1
[ )

]

N
—
3N
St

o
—
[

+ 11
S TN |
1
[

+

[\

*-

o’

~

2, 2142 - - 2, -1 2,0 =I\2
[3] (121 20 2 (1271 (142 Bysad (™) + v a7)
T " L

1.2
(1+2 1)

o - ) | I
4 -8 77144 272 -4a+402 2,02 +262 7 Lia?7 2 son? 7 ley 27
T2 T T2 -

T T

(1+2°7

|

i

i

. 2 _ )

:'4 - 42+3,2+b + 2&2+2b-§ 2 1 +14+ 4a +a,2 +b2) Z
= ('ﬁ T n2 7

2 7 T

' 1.2
! (l+Z 1)



ro (1+4771)2 _ AvE,

Substituting equation ( A5, Y and { 6. ) into ( A.4. ), H(S)

hecores “‘Z)

- D
[(_z-,g-?ac-eba) - (4c+2ac+2bd)7 1} _

‘4"3 .

- - 2 5 2 -
o= e (& o’ ne) - (s ey 7 1]
: -c D 2n 239 T 2D 27



(1 ) (A + Alzfl)
14p.27 +p2

o el L, =2

Ad + Aoz + Alz + Alz

1+p 'lz—l'+p2Z-2

L : ' .4 T
+ +A 24 EA - Ay 4+ ( AP ) - ( )
Aotho? +A1 ! TSI2 'E,lz' B2 P2

14_-.’512 -1 +Pzzi-2

-1

s () (k) [1on (R

I,

T epozT +p2z‘2

(AO-AI) [AO+A1(1 _Ii)] g1
N R Py

-1
_Co+0fo+“1z
iipzlp g '
| |
'oi=f_1_
P
|
| A -4
o= 0 2
| P2



. =100-

Ay, = & -_a_cf - pdT° = T[c_(l -aT) d(bT ]
D 20 2D 2 2
D

|

5 .

' : .
b ;T - T el mth[ 1+a"' « e
-1y 2 2D , )

| .
G IC
=| 2 2 . . Aoeo'_
l K

It should be stressed here that the equation A.8. is va11d only

ib

2

for su'bf11ters of a high-order fllter, (Ny2 ). But, if a second .

order contlnuous filter function is given, as in sect1on 4, equat1on
( A.8. );can be derived directly from the pole positions without U$1n€

the resi@ues.
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AND D-4 CONVERTER.
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Appendix C.

.A FORTRAYN progremme for determination of diec reggpnseé of the £{1ters.

‘m:j.msmr: wz(150), 40(150),31(150),B2(150), Y2(150)
READ 100, ALrEAo, ALPHAI, BETAl, BETA?

100 ‘FORAT ( 4F13.10) |
PRINT 200, ALPEAO, ALPFAl, BETAl, BETA2 |

200 F();RIMLT (///Sx,F13.1o,5x,F13.1o,5x,F13.1o,5x,F13.1o)
| : .

c )
wZ(1)=0
wz(2)=0
w5 (3)=0
X2=0.5
C ! | |
c Xz 15 THE D.C. INPUT.
¢ wz(1) ARE THE INTERMFDIATE STAGE.
c Y:Z(I) ARE TRE OUTPUTS.
i : .

|
D0 1 1=4,104

wlz (1)=XZ-BFTAl @ W2 (I-1)-BETA2 # WZ(I-2)

A:o(I)=wz (1) # ALPHAO
i
A1(1)=wZ(I-1)+ ALPHAL

B1(1)=Wz(I-1) » BETAL
|
82 (1)=W2(I-2) » BETA2

1!rz(1)=Ao(I)+A1 (1)+B2(1)
|



-1_03 -

1 cd'N'mmE
FRINT 300
500 PORIAT (////)
PRINT 400, (x23Wz(1),40(1)3A1(1),31(1),32 (1),"fz(1),1=4,194):
400 FQWAT (2x,mo.5,2x,F10.5,2x,F10.5,2X.F10.5,2x,F10.5..123(.._ _
1710.5,2X,F10.5) |
STOF

END.
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