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GASDYNAMIC SHOCK WAVES
by

" R.D. ANDREWS.




CHAPTER 1, Introduction,

In this dissertationy we discuss briefly the
phenomena leading to discontimuities in one-dimensional
gasdynamic flows, and then go on to discuss the end states
across a stationary wave., The functions of the Rayleigh
and Fanno lines are examined to give a qualitative
descriptiop of the relations across the wave and, in
particﬁlar the direction of flow as governed by the Second
Law of Thermodynamics is extracted. The entropy increase
is also briefly demonstrated analytically across a
compressive shock for a polytropic gas, A brief consider-
ation of the stability of a general gas also confirms the
expectation that a steady flow is only possible in the
case of a compressive shock wave, The final chapter
presents a discussion of the structure of a steady standing
plane shock wave., The predictions of the Navier-Stokes
equation are contrasted with those of a promising model
from the realms of the Kinetic Theory. Attention is drawn
to the need for experimental investigation into the totalipy
of variables giving rise to viscosity and, especially, the
immediate need for a clear picture of the dependence of it
upon the velocity gradient,

Throughout this work, we have ignored the

phenomena associated WEEErEOt gases, namely, dissociation,
P
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ionization and chemical reactions at any temperature. This,
of course,'limits us to weak and moderately strong shock
waves, the maximum strength of which ié determined by the
chemical nature of the gas passing through it., Heat
transfer is only allowed by conduction and by convection,

We consider né radiative effects at all,



CHAPTER 2, Discontinuous solutions of the E uations
. for inviseid gas flow,
It is well known that r and s, the Riemann

invariants given by

7= a/(r—:) + 4w 5 5= d/(?'”’) "i"“‘
represent the propagation of small disturbances through a
one-dimensional gas flow in which a is the local speed of
sound and u is its velocity, which is parallel to the
direction of variation of the gas variables spatially,
namely, the x-direction. ) is the ratio of the specific:
heatse Along a disturbance given by r (say) = constant,
all the gas variables remain unchanged in time. Such a
wavelet propogates with a velocity(a + éL which remains
constant in it, This leads to the long<known phenomenon
of the steepening of sound waves of finite amplitude,
illustrated in Fige 2.1, Thus, a discontinuous solution

arises in an inviscid gase
Another way to describe this process is to plot

the disturbances on the x-t plane, where t is the time,
This again gives rise to discontinuities (Fige 2.2).

We note that compressive waves tend to steepen,
whereas expansion waves level out.

From an experimental point of view, there is

no doubt that regions do exist where very rapid changes
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take place in the gas in some flows. In particular, shock
waves are observed in shock tubes in the laboratory with

unfailing regularity.



CHAPTER 3. Conditions across a shock wave and
elementary properties.

The equations of motion for one-dimensional

gas flow are M( e(,_:,_) -0 (3,5)
Dt D(uw) -3 %;(ﬁri?) (>2)
. D (e+dut) =g (Tawd)—gdd (5.) 3

where"one-dimensional" means that all quantities depend
upon x and t only, u is the velocity, @ the density,
e the internal energy, ’rij the stress tensor and g is
the heat flow. A suffix "x" indicates the component of
the vector representéd by the symbol so suffixed, in the
x=-direction., In the steady state these have the first

integralss in the ome - dimensional case :—
pux = Constant = m (3-4)

(3-5)

pUx Ui = Tixn + Conotant

qu(e+§l—u"‘)= e Tix — g x + Conslant <3~L)

We assume the usual definitions for Tix and g, 1.6
Tix= Péix + 7‘&%‘: and q,,;'-'—K%%i ) whare 7\£
is a viscous coefficient taking into account, not only

the classical compression vigeosity, but also the effects
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arising from relaxation phenomena, which we discuss in a
later chapter. 5ix is the Kronecker delta, F the pressure
and K the thermal conductivity., We suppose that the
conditions on either side of a shock, or at least at some
distance on eaéh side from it, are uniform, so that we

may determine relations between these states by putting
?/0x = O. We get, using the coordinate system moving

in the x-direction with the shock wave &=
[eux] = © (>1)
[u"ﬁ_-\ = Eu-z] = O (>-8)
O (3-Q)

(310).

[eus + P]
[e+sut+ple]= O

[' A__l is the difference in A across the shock, A,— As
A,being the value of A upstream of the discontimuity, and

A, is that downstream, For a polytropic gas,
e = CvT (3'”.)
where Cy is the specific heat at constant volume and T is

the temperature. Using equations (3.7) to (3.11) we obtain '
. 2 — .
Mzz _ M, :’ 2/(Y ’) (3.’2)
2% M, /(Y’I) - |

. 2
where M is the local Mach number of the flow. M; 2Qand so

2 t.’_. : 313




~ We may obtain the well known Rankine-Hugoniot

equatiog :-

e (e /5 g] e

from which we deduce that the density ratio QL/CV neﬁer
exceeds 4 for a monatomic gas, 6 for a diatomic one or
7 in the case of a general polyatomic gas (Fige 3.1)e

We now turn to an important alternative method
of determining the end states across a shock wave, namely,
" the concepts of the Rayleigh and Fanno lines. A Rayleigh
process-is one in which the mass flux, m, and the momentum
flux, P, remain constant, but in which the energy flux, E,
changes, for example as a result of heat conduction or
radiation, This is one of several processes investigated
by Rayleigh (1910). A Rayleigh line is the locus of points‘
in a suitable plane which are met with in the Rayleigh
process with particular associated constants. Suitable
planes are p - v; T = s (Saunders 1953; Anderson, 1963)
and h = s (Crocco, 1958) planes, s being the entropy.

A Fanno process is one in which H and m remain
unaltefed, but in which momentum is not conserved. Further,

the processes are carried out in an inviscid fluid, so
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that we have = '
p+ my = P (3.15)

he+ zm'e” = Ele - H . (3-16)

h being the specific. enthalpy, v the specific volume,

b

'/CD s and H the stagnation enthalpy of the gas. The
- Rayleigh and Fanno lines are derived froh equations
'(3.15) and (3.16) respectively and take the forms shown
in Fige 3e2o |

In the initial and final states across a
shock wave, the equations for inviscid flbw are valid,
and so (3.,15) and (3.16) apply. Also, H, my and P are
conserved across the §hoék. Therefore, the upstream and
downstream conditions are given.by the interséctions of
the Rayleigh and Fanno lines.

. We consider the lines to have two parts, viz.,
the part on which the corresponding velocity is supersonic
“ and the part on which it is subsonic. They are positioned
as shown in the figures. Separating them is a sonic point,
-~ at which the entropy is the maximum on that line. We
hefe follow Crocco's argument (1958) to show this for the
Rayleigh line. A similar kind of arggment also applies in
the case of the Fanno line, We may re=write (3.4) and
(3.15) = subject to the restrictiomsof the Rayleigh processe

in the form :-
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defo + duj/u = O (3:18)
-(3.19)

N
@)

d p + eu cdu

Eliminating du we get i-
dp = utde (3-20)

Now, we may express any thermodynamic quantity as a

function of any other appropriate pair. In particular,
the pressure is a function of density and entropy only,

so that :-
dp - (.aa @e)
P se ), 9 + |38 ] ds
il.e0 d = 2 ' D : 2,
p = a*de + ("55)e ds  (e21)
Eliminating de between (3,20} and (3.21) we get :-
Mm2_) 2 (’.61 ) .
o dp= @ ¢ ) ds | (3>22)
On introducing (3.22) into the thermodynamic relationship
Tds = dh- dpjo (>23)

one obtains

d_g oM "aT) 2
(dh)f‘?v'mék T {"" < ("aE JM -

Line

dh faylegh T(XMZ— ‘)
kine
which shows that s is a maximum when M==1, Thus a Rayleigh

i.e.(‘») . M (3-24)

1ine has as its point of maximum entropy the sonic point,
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in whatever plane we choose to construct the line,
We mag write (3.16) in the form :-
dh4+m v dv = dd ;

T (3.25)
and (3.19) as t= dp + m* dv =0 y 7°
along a Rayleigh line, Eliminating dh and dp between
(3.23) and (3.25) we obtain 3=

d o _ 326
(T 6) Rayleigh Line = (dH) Rayieigh. Line ( )

‘Suppose that Pl and Pyare the two end points for a
particular shock in the T = s plane. Now H is conserved
across a shock., Therefore,

o

di = O

P

where the integration is performed over any suitable

contour., In particular, we may integrate along the Rayleigh
line, so that

¥ Tz
dH = <§ Tds = O (3-27)

7, é
B-Line R-Line

Thus, if we are given the conditions in state 1, we construct
the corresponding Rayleigh line and then determine P, by
/means of (3.27). However, the primary use of the Rayleigh
and Fanno lines is in a qualitative investigation of shock
end states,

From the shape of the two lines in the
h = s plane (Fig. 3030) it is easy to see that the flow
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is supersonic on one side and subsonic on the other. For
a rigorous proof of this, from Rayleigh and Fanno line
considerations, see Crocco (1958). This fact is also
evident from (3.12),

We may also deduce from (3.27) in the T = s
plane that, for a polytropic gas, s increases only if
M,>! and M, < | since (3.27) implies that the
vertically and horizontally shaded areas in Fig. 3.t are
equal, and this can only be so if M;>/ and Mz < |
under the demand of the Second Law of Themodynamics that

s should increase across a shock,
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CHAPTER 4, The Direction of variation of quantities

across a shock,

We may easily show analytically that entropy
increases across a shock if and only if M,>/ and M, < |
following Illingworth (1953). We may show from the results
of Chapter 3 -

-[5] - c.,{ Log ( Xz_j; m- 2o ) - xt«x,, [Z(T(?—ﬁ?)'zmi;ﬂ (4-1)

Differentiating this with respect to M7 we get

gl ALl e
i M, {2»’M,-’-- (r-1) }{ 2+ (r-1) M}
which is seen to be positive for ¥> |, so long as (3913)
holds, which it invariably does. When M? = I, (4.1)
shows that [s] = 0 o This completes the analytical proof,
In the above argument it is assumed that Cy
and Y are constant throughout the shock. This is not
necessarily so, for they are both temperature dependent.
In showing the same result using the Rayleigh line, we
made assumptions on the gas variables and so also on the
shape- of the line. We therefore turn to a simple
consideration of the stability of gasdynamic shocks, due
to Landau and Lifshitz (1953). We note (1) In a one~-
dimensional gas flow plane sound waves propogate in both

directions relative to the gas at rest, so that disturbance
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of the gas. produces, in general, two acoustic disturbances.
(ii) If we disturb a shock wave slightly, we may expect an
entrgpy wave to be produced in addition to acoustic waves.

- An entropy wave is a pdrtibn of gas which has a different
entropy from the gas flowing with it in the large. Such a
wave is simply carried with the rest of fluid at the fluid
velocity. (iii) There are three conservation equations
relating quantities across a shock, viz., those of mass,
momentum and energy fluxes.

Bearing in mind (i) and (ii), if we count the
number of waves emitted by a shock when it is impinged upon
by a sound ﬁave, and add one for the movement of £he shock
layer, then we have the numﬁer of amplitudes to be determined
by the three conservation equations of (iii). If this
equals three, then we say that the shock 1s stable, for the
amplitudes are determined uniquely. If there are more waves
emitted than there are equations to determine them and the
movement of the shock wave, then at least one of the
amplitudes may be chosen arbitrarily., In particular, when
the incident »m¥®m sound wave has zero amplitudeg, the wave
of arbitrary amplitude may'have a non=zero value. Thus,
the shock may emit disturbances of arbitrary amplitude
spontaneously; and the shock layer itself may even move
about. This 1s obviously an unstable situation.

The count is shown in Fig. 4.l. We see that
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so longas M, >/ and M,< | then the shock is
stable. In every other case, it is unstable.

Other forms of disturbance should, of course,
be considered. Landau and Lifshitz (1953) report that for
 instability to occur in the cases then investigated, it was
‘required that (2%/Pp*)s  should éhange sign, which is
extremely unlikely to occur in nature.

We conclude that the only type of shock which
can exist in a steady state, and obeying the thermodynamic
demands, is one in which the velocity normal to the plane
of the shock is. supersonic relative to its® upstream and

subsonié downsti'eam of it, i.e. a compressive shock.
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CHAPTER 5, shock Structure.

(1) Preliminary Remarks, In Chapter 2 we saw
that certain solutions

for cpmpressibie, thermally opaque, inviscid fluids contain
discontinuities. At such discontinuities, temperature and
velocity gradients become ;nfinite'and so, however small
they might be in continuous solutions,;viscosity and thermal
conduction may be expected to become important in the régions
where these discontinuities afe expected to form., In
particular, these diffusities may be expected to smooth

the discontinuities. Nevertheless, we still expect to find
regions where very rapid changes do take place, because

these are observed experimentally.

(ii) Validity of the Equations. The rapid

changes in, for
example, the velocity of the gas take place over distances
of the order of the mean free molecular path of the gase.
That is, molecules of the gas undergo only a few collisions
when passing from one steady state to another. The question
therefore arises, is the continuum approach to shock
structuré still valid in view of this fact? The primary
objection is that over the small distances involved, the
continuum concepts, such as density, pressure, etc., are

said to be meaningless., In one-dimensional flow, it is

assumed that all quantities are functions of x alone, soO



21

that an element £ of fluid whose thickness, SX 5 Say,
is small, may be considered to be of very great extent in
the y and z directions. This means that our usual element
of fluid in gasdynamics has an unusual shapey but in €&

we expect to find conditions to be nearly uniform throughout,
so long as we look at adequately large afeas of gas parallel
to the y - z plane and so long as SX isilarge compared to
molecular dimensions. From this point of view, density

is clearly meaningful in a steady shock, as is internal
energy. Because of (3.8) we may choeee axes so‘as to
reduce the transverse bulk velocities to zero through the
shock, Since we have a large number of molecules in our
extensive element, we can in principle find the root mean
square of the transverse molecular velocity, Uiy saye

Then we méy define the pressure by means of an appropriate

kinetic theory equation of the forms-
P oC e U> (581)

where e is defined as above. We have, of course; assumed
isotropy in defining this. There is no objection to doing
this, We show that T is meaningful by the same sort of
argument, or else define it by means of a suitable equation
of state, such as' P = @RT, if the conditions are such as
to allow fhisito be true. We define 7% the stress in

the x—directibn as follows :=
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8 Tx= -(Momentum entering & from upstream.per unit time)

. +(Homentum leaving & downstream per unit time) [5'.2;

&= Assuming that 87x /6X tends to a limit as 8X—>Os

which is nearly reached before SX  becomes comparable with

molecular dimensions, which is a reasonable assumption,

then we may replace §Tx/ §X by d?y/dx s and determine
‘T« by quadrature. We may define the viscous stress, Vx 9

to be :- . .

Vi = 7%+ p : (572

The problem arises of how to determine Vg without having to
work backwards from a known gas flow, whlch we would have
to do under the above definition., We prefer to determine

Vx in terms of, say, the velocity gradient du/dx, so that

we are in a position to be able to calculate flows, as is

our custom in larger scale hydrodynamics.

Thus, there is no a prioti objection to the
continuum approach to shock structure. However, the problem

of determining V:x does remain very important.
" In a localised shock rather: than an extensive

one described above, "steady" presumably means that when

the situation is looked at over lqng periods of time, then

the average conditions in the shock are the same in each

period,

Gilbarg and Paolucei (1953) pointed out that

 the equations of the Navier - Stokes theory do not
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necessarily yield the wrong results when applied over
small distances. The justification for this remark is
that in the field of ultmsonic absorption, where the same
objection was raised, the continuum theory gave very good
agreement with experiment.

An alternative approach to the problem of shock
structure is via the Kinetic Theory of Gases. The important

equatiog in this approach is the Boltzmann Equation (5.4),

(Z+u2)slx, t:v)- GE)+ $LE) ()

where f is the number density of molecules in the x - ¥
phase-space at time t, where (;) is physical space and
(v) is the molecular velocify space. g; (£) and AL (£)
are non-linear integral operators on f, giving respectively
the numbers of molecules gained and 1osf per unit fime at
(xst3%) o g, and of depend for their for;ns upon the inter-
molecular force fields. Unfortunately, little is known
for certain about these; and so vari&ts models need to be
postulated and the one that gives results be;t in agreement
with experiment chqseno

Several objections may be brought to bear upon
the Boltzmann Equation. Any argument against the continuum
approach from the point of view of meaningfulness of the
quantities at some point in a shock wave applies a fortiori

to the kinetic theory methods, for f is not only obtained
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by an averagingfprocess in x=- spacey but also by one in
Y= space. Thé validity of the Boltzmann equatién in
non=-equilibrium states remains somewhat in doubt (Hayes,
1958). Choice of a particular model for G and _/ is
necessarily'somewhat arbitrary. However, we shall discuss
later in this dissertation one model which seems to be
quite promising but which is, nevertheless, due to a
somewhat arbitrary choice of modecular behaviour, namely, °
the Bhatnagar, Gross and Krook ( or B-=G=K) model., For

weak shocks, i.e. when (pz/pl = 1) is small, it gives
complete agreement with the Navier - Stokes solution; but

departs from it for stronger shocks. Another major
drawback of the Boltzmann equation is that it is so highly
intractable that all the work to date using it has been
limited to monatomic gases.

Experimental investigation of shock structure -
is rendered difficult by the small thickness of the shock.
By far the most successful to date was that published in
1955 by Sherman, and reported by Pain and Rogers: (1962),
Liepmann and Roshko in their "Elements of Gasdynamics",
Bradley (1962) and others. Sherman increased the thickness
"of the shock wave by running his wind tunnel at low pressure,
thereby increasing the molecular mean free path. To produce
plane shocks he introduced an open cylinder into the flow.

Measurements were made by means of a hot wire technique.
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Up to Mach numbers of about 2 in the upstream flow,
excellent agreement was obtained with the Navier-Stokes
predictions for shock structure but, at higher speeds,
discrepancies do arise (see Figo. 5.5),
(iii) Viscosity. We shall first of all discuss
| the shock structure given by
the Navier-Stokes equation. However, this must be preceded
by a short discussion on viscosity. We only discuss those
effects due to compression, i.e., we discuss the significance
of the coefficient A in Chapter 3. _
In a monatomic gas, A\ -has the classical value
(4/3Z/t s where ¢ 1is the coefficient of shear viscosity.
This 1s a result of the fact that a monatomic gas molecule
has only three degrees of freedom, viz., those of translation.
~ In gases other than monatomic ones, the molecules
possess degrees of freedom other than translational ones,
for example, vibrational and rotational degrees of freedoms
On changing the state of a gas, the energy in these various
modes will also change, in general. The translational energy
reaches its new level after a few molecular collisions
(Lighthill, 1956)., However, the other modes may need rather
more c§llisions before they finally become settled into their
new state in the molecules. One effect of this lag in
attaining equilibrium is to alter the thermodynamic quantities
from their equilibrium values at points where the fluid
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-particles are undergoing changes. In particular, the
pressure is changed, and this in turn alters the. stress Tx »
We may allow for this effect to a first approximation by
altering A from its classical value, Henceforth, we
always allow for this bulk viscosity in 7\ s unless
otherwise pointed out.

(iv) Weak Shocks, The values of the quantities
Cps Cys A and K ( see
~ Chapter 3) are dependent upon the temperature. In many
circumstances, they are virtually constant. In the case
of all but the weakest shocks, however, the temperature
variles cohsiderably across them, so that we must take these
temperature dependencés:into account.  In the case of weak
shocks, we may neglect the variation in these quantities,
We follow Taylor (1910) in obtaining an analytic solution

for the structure of a weak shock., More detail is given

in Taylor and Maccoll (1935).
We simplify the situation by choosing axes

moving in the shock layer so that uy =u, = 0, which we may
do by (3.8), and so that the solution is independent of

time. We omit the suffix x henceforth in this chapter.

The equations of motibn are s-

Qu = m (3°4)
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pt mu - )5‘;'* =i P = mB (>5)

pit + _7lu3“;€ + :21_.m,,¢2+ ?—?I—-.g—-K'j—:—aE:mA (3-¢

: whéré we have specialized to a polytropic gas. The equation
of state is -

p= eRT &2
From (3.5) we obtain

pu = —mi s M (pama)u (50)

and substituting this into (3.6), using (3.4) and (5.5), get

G ) -] - T

where y = u du/dx. Now the velocitles u, and u, of the

end states are given by the roots qf
2 |
¥+ s _ X BS + A=-0 (5-2)
2 (¥-1) ¥
as may quickly be seen from (3.5) and (3.6), and so the
right=hand side of (5.7) vanishes if u = u, or u. Thus,
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y/u = qu/dx vanishes when u = u; or u,y and so equation
(5.7) represents the transition between two regions where

the veloecities, uy and U,y do not vary with x. For a weak
2 2

shock, u 1 = U, so thatMl 2 M2 andsoMl =~ 1,
This implies that ul2 = D"pl/ P o Then the right-hand
side of (5.7) becomes of order ézmu., where 6 = u; - u
is assumed smalle Assuming (AKy dy/du) /mR to be small
compared with the rest of the right-hand side of (5.7) and
K to be of the same order of magnitude as 7\ s we find
¥ to be of order Sm/A and we deduce that we may indeed

neglect the term AK y dy/fR du). Thus equation (5.7)

reduces to

K ()L _/'\_} - @:Q,,- u-uz) (5+4
%{T{' (I-% ) +327 T = 30D (w-u)(u-uz) (5+9)
which has the solution

D u, = u '
X = log 1 + constant (5.10)

Uy =u u-u,
where

K i A 2“"”)
D= {?—(I b")+ T=i e:(X"H) (5.11)

and uy > u,o We take the constant in (5.10) to be zero,
which just fixes the axes so that u = % (ul + u2) at x = 0,
The shock then has the profile shown in Fig. 5.l. _
One noteworthy feature of the shock profile is
that the v-elocity is asymptoﬁic to the end values for large
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values of fx}. One quantity of great interest to
experimental workers is the thickness of the shock wave.
Because of the profile's form, any definition of shock
wave thickness is nece:;arilf somewhat arbitrary. Taylor
defines it to be the distance over which the middle 80%
of the change in velocity takes place, viz., between

u = (9u; +1u,)/10 and u = (u; + 9u,)/10, Therefore the

Taylor thickness, Ty , is

Tr = %4 p | (5.12)
N,—U.z.
Lighthill (1956) defines it to-be the length of the region
where the middle 90% of the velocity change takes place,
so that the Lighthill thickness, 7T, , is given by

T. = 6 > (5.13).

u.—uz
where he takes log, 19 (= 2,9445) to be 3. Gilbarg and
Paolucei take as their shock thickness, 15 , the length

given by
u, = u
Ta jau/axy pox (5.1%)
In the profile for weak shocks this is easily seen to be
| Is = i (5.15)
¢ 9 - ’

A further definition of shock thickness is that given by
Liepmann et al. (1962). This is defined as :-
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/TS - : u,—u,,_/,_*

v* (5.16)

where v is the maximum value'of the viscous stress which,
in fact, occurs at the sonic point, and /u*is the value
of the classical coefficient of shear _1vis_cc_>sity at the
sonic point, They then show (numericallly) t;.hat this
definition gives very nearly the same thicknesses as
Gilbarg's definifion, ﬁnder various dependences of viscosity
upon temperature, and with different upstream Mach numbers.
Lighthill (1956) extends his definition of
shock thickness from weak shocks to moderately weak shocks
by assuming that in the front and rear outskirts of a
moderately weak shock, the values of D remain virtually
constant and equal to the appropriate énd values of D, Dl

and D2° The thickness thus obt.ained is therefore

7 | D+ D _
Tzﬁ . 2, M (50,17)

iy - Uz

One would expect the thickness of the shock to be over-
estimated in the front part_and under-estimated in the

rear, since, for weak shocks D,/D; is less than unity
leading to a (qualitative) profile as shown in Fig. 5.2

by the broken line. Values for D,/ D, are shown in Table 1,
where it is assumed that ¥ = 1.4, and that viscosity,

thermal conductivity and bulk viscosity all vary as 798 9



Fl'c'y 5-2. Lighthiil's model §or a moderately
weak shock wave
(~ Lighthills model 37 Eypected Real Profile)

P 0 o5l 1 f2|3|5 o] 15| 20

% | 10:92{0-73(0-¢3]0.58|0-55]0-58|0- 640-70

TABLE I. The ratio of di§§vsivities across
shocks of various strengths .

(Lighthill , 1956)
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as a rough guide to what happens in nature.

(v) Stronger Shocks. We shall now turn our

attention away from the
somewhat limited solution for weak shocks to stronger shocks,
where allowance is made for the variation of ;\ and K
with temperature. This problem was first successfully
tackled by Gilbarg in 1951, but we shall quote results from
the later paper by Gilbarg and Paolucci (1953).

We have the following equations :-

eu_. = m (3.4)

p+ pu* - )‘% = P (3.5)

Lurs B) —yndu _pdT _ 6)
eu(e+2u1+ Q) uﬂd& de = E (3:6)
Eliminating e » we obtain

A du =. + b(u—-a)
X P ' | > (5"/8)

K4 - b [e, ~Lu-a)*- c]

where

P . _ E _
a="n 2 b=m s L= 2m?*
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We specialize immediately to polytropic gases, where
p= eRT ; e = CT ; R=Cp-Cx
We define & =3%( ¥-1) and note that & only depends

upon the particular gas being considered, and not upon its

state. We now reduce equations (5.18) to the non-dimensional

forms :-
N
79 = w+8 ) - N(we)

(5.19)
(

___. 6_5[(I—w)1+°(] L(w,0)

X
3
€

J

by means of the substitutions

2
mu RTm
= - ° : e = (5.20)
w 5 ’ ' —P?-
and where
_2Em _; . x_ A . k=K (5.21)
. P+ ! y m ~ Co m

Now, the curves N (w,8) =0 and L (w,8) =0 in
the w - 8 plane are the Rayleigh and Fanno lines,

respectively., They are the parabolas

2 . _ / L
6= 6{(:—W) +°(} 5 6= 2- (2-w)
and therefore have only two intersections in the complex

projective plane. If we start from a real situation where
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we know, say, the upstream state, then we have two real
~intersections at which it is obvious from the equations
and the definitions of o and E that w > 0 at both
end points. If 8 < O at the intersections, then

2 < (¥ =-1)/2Y 4, in violation of (3.13), in whieh
case we cannot set up a standing shock wave. Thus if the
Rayleigh and Fanno lines intersect at one physically
possible point, then they will intersect again at one and
only one other such point. This is so in any other plane
suitable for constructing the iines in, for we can set up
a 1l = 1 correspondence between the planes.

We suppose the intersections to be meaningful
and at 2z, = (wi,ol) and 2, = (w2,02) in the w = 8 plane.
They have the relative positions shown in Fig. 5.3 from
the thermodynamic considerations of Chapters 3 and 4, Then

W, = =
g 20

1

W
. { r-(5,22>
o L {1+ 206+ /T 486+1) f

Thus, the end states depend only upon the parameter o

which, in turn, depends only upon the upstream Mach number

of the flow, thus :-

Q
where

J n

A= Sty (i)
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. P _ 284 2
J, pi 541 M," — Sél (from_(3°7) to (3010))

The next stage, which is crucial, is to prove that the
equations (5019) are, in fact, integrable, subject to the
conditions that (w(x),@(x))=> (w;,8;) as x-& ~ 00 and
(W(x),0(x)) = (W, 85) as X <>+ 00

From (5.19) and the definitions of 2, and 2,
as the intersections of L = 0 and N = 0, we see that Zl
and 22 are singular points of the system. We therefore
investigate the solution trajectories of (5.19) in the
neighbourhoods of Zl and Z,_o The characteristic equation

of (5.19) is

o= & Nw %
A N
Le _ S " Lw (5023)
K

= _§z _'%3"-1-_.); + (Ler—LwNe)/

where the subseripts w and © denote partial differentiation

with respect to those variables. After some algebra, we
find that the roots of the characteristic equation are both

real and positive at Zl and real and of opposite signs at

Z,o Thus, from the theory of solution trajectories, we
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have an unstable node at Z1 and a saddle point at 22.
For a proof of this, see Apbendix A,
'The parabolas divide the w = © plane into the

five regions @ to ® in Fig. 5.3. In reglons @ and
@), @w/av > 0 and 1n 1) , @) ama () , co/av

<< 0, On the parabola L = 0,d6/dw = 0, whereas on N = 0O,
dw/de = 0, Now, there are two integral curves which
approach 22 as x => +o0¢ , and two which approach it-as
X => =00 ( which can be seen by considering (5.24%) and
by considering the signs of L(w,8) and N(w,8) ). The
members of each pair of these curves have the same slopes
at Z2, but approach it from opposite directions. The slopes
"are given by (see Appendix B)

do _ —Lw _ 28(-ws)
-_ - Z - - o‘+
W T T sx (z:)= - S22 Gy

" and since w < 1, d¢/dw < 0 for § negative, so that
one solution trajectory runs into region s the finite
region bounded by the parabolas. On this trajectory,

de/dx > 0 (since N > O in@) and so Z, is approached
as X =>» +co , since @ increases as this happens. From

sign considerations, we may show that no solution

trajectories enter @ across L =0 and N = 0 with x

increasing, between Zl and Zzo Therefore, the integral
curve through Z, which we have just considered must pass
through z', , and can only do so as X > = 0o o Thus the



Fig. 53+ Selvtion Trajeclories of Eguation
(5"q) in the (w-8) plane.
| ~The arrows indicate the direchion
of X 5”6reasin3._ '

(g”Lap% and ?aolucc},l I45'3)
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solution trajectories do take the form shown in Fig. 5.3,
This completes the proof of the integrability
of the equations. It is of interest to note that Taylor
(1910) proved that the integral curve, if it exists, only
intersects the Rayleigh and Fanno lines at the end points
and, further that in the p - @ plane it lies in the finite
region bounded by these two lines and, thérefore, by
topological argument, in the region (::) in the w - 6
plane. If the equations were not integrable, then we
would have to abandon the Navig?-stokés eqﬁation as an
accurate description of gésdynaﬁic flow, although it gives
an adequate deécription of many less violent phenommnas;.
We.now.have at ouf disposal a procedure for
computing the shock profile. We start by choosing a point
close to 2, ih (::) laying on the line through Z, having
the slopé given by (5.24), and integrate the equation
Je 5 wi{o-8(0-wi+ o]
aw ® Wi_ W+ O (5.25)

numerically. Having thus computed the solution trajectory
in the w - @ plane, we may obtain the shock profile in the
u - x, T = x planes or any other suitable ones, by

quadrature of (5.19) and, finally, by the substitution of

(5020) ‘and (5.21).
Typical profiles are shown in Fig, 5.4, for
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(u—uz)/[u.— Mz) !
o4
ﬂ
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melegular mean free path vpstream of
the sheck.

(Liepmann et al., 1962)
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which the quantities used are the viscosity and molecular
weight of argon,but with a Prgndtl Number of 1 instead of
%, with an upstream Mach number of 1.5, We note that the
profile is of the same form as that for a weak shock wave
in that the end values are not quite attained in the finite
part of the fluid, even though they are, for all practical
purposes, reached very quickly.

Thus, we are in a position to determine the
shock thickness from our profile and to compare the results
with experiment, so long as the experimenters know exactly
which thickness they are measuring. Sherman's results are
compared with calculated values of shock thickness in
Figo 505. Sherman's method was sufficiently fine to allow
him to know which thickness he measured, so that this
particular comparison is properly meaningful., Bulk viscosity
was fully allowed for in the computations, where a diatomic
gas is assumed. It is seen that agreement between theory
and experiment is very good up to incident Mach numbers
of two, but it is not so good at higher speeds, as we

have remarked before.

(vi) ihe Mechanism of Viscosity. In this section

we discuss the
_ classicai explanation of gaseous viscosity, and the

" implications of the molecular basis of it in the case of

very great velocity gradients, such as are only met with



——  Nayier— Shokes predfch'ons.

O Shermans Resvits.
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Fig- 5:5. Comparisan of Nayier—Skokes —and
Experimentul Shock Thicknesws ©f
a Diatemic Gas.
(Pain and Rogers, 1962)
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in shocks. We discuss the classical explanation, which
limits the remarks to monatomic gases and we limit ourselves
to compressive viscosity.

- The reason for the existence of viscosity is
that the thermal motion of the molecules in a fluid allows
them to transport momentum from one part of a fluid to
another. In a uniform flow, the momentum carried in one
direction is exactly matched by that carried in the
opposite one. In non-uniform flows, this is no longer so,.
In deriving the linear relation between viscosity and
velocity gradient, it is assumed that the molecular mean
velocity does not change very much over distances of the
order of the mean free path, so that when a molecule

'traverses the boundary between two layers of fluid moving
at different bulk velocities, then after one collision it
is effectively part of the new fluid, having a typical
thermal velocity with respeet to the rest of the molecules.
| In this case, the distribution of path-lengths of molecules
about the mean is not important, and neither i1s the pattern
in which the particles rebound on collision critical.#n

mered;

' In the case of very great velocity gradients,
then this condition is not fulfilled, and so a molecule
penetrating into, say, some fluid moving very much more

slowly than that from which it came, will usually need

e
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more thankone collision to relieve it of its excess
momentum, This evidently is a mechanism which might
cause the linear law to break down. In short, the
momentum carried by a faster molecule into a slower region
is likely tp end up where the linear law does not expect
to find iﬁ, when there is a very large velocity gradient.
The same remarks also apply to the deficit of momentum
carried into a fast portion of fluid by a slow molecule.
&oleculeg in a monatomic gas do not actually
collide. When they pass close to one another, the foreces
acting between them deflect their paths in general. Thus,
the distance one of our fast molecules is likeli to
penetrate the slower gas will depend upon the nature of
the férce field., If this is.such that small deflections
are most likely to occur, and large ones happen only when
the molecules try to pass through one another, then more
encounters will obviously be required to slow our particle
down than if most encounters gave it a pretty large
deflection. Thus, we see that there are many considerations
to be taken into account in detefmining the law of viscosity,
even in the case of a monatomic gas, and so the more likely
| it is that the law is ultimately non-linear in a complete

scheme,

(vii) The Range of Applicability of the Navier-
Stokes Equation to Shock Structure. A
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result of the kinetic theory is that the Navier-Stokes
equation-might no longer apply to monatomic gases when
Vx/p is not small in one-dimensional flow (Liepmann et
al., 1962) presumably as the result of the sort of effects
suggested above. When V/p (we omit the suffix "x" from
Vx from now on) is small, then the fluid is definitely
Néwtonian, but what happens when it is not 1s not clear.
Where V/p is not small, we would not, therefore, be
surprised to find the flow departing from the Navier-
Stokes flow., Liepmann et al., (1962) examine the variation
of this quantity through the shock as follows.

A major simplification is at once introduced
in the case of a monatomic gas. The stagnation enthalpy,
H, does not depart from its upstream value by more than
1.4% of that value throughout the shock wave.

(3.6) may be re-written thus :-

m(H—H,)= u Ndi + K dh (5.26)
dx Cp dX |
wﬁere h is the specific enthalpy. We define a modified
Prandtl number, Pr' , thus,
Prt = '/\CP/K
where 7\, it is recalled, is the total compression viscous

coefficient, If AH = (H - Hl), AH has a maximum when

H has one too. At such a point,
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(/' dH =dh +udu=0
so that (5.26) may be written as

AHmax — -l VYu
: H' ?[‘" H'm (5027)

Since the right-hand side of (5.27) involves the small
parameter (Pr* - 1), for Pr' =% 1, we may evaluate Vu
for Pr' = 1, since any closer evaluation of AH/H,merely

includes terms of order (Pr! - 1)2° To this order of

accuracy, (5.26) gives H = constant, and the maximum

value of IVu l is thus given by

quI,w = {(XH)/Z )’} muz (/.. %_:z )2. (5.28)

(after some algebra) where a® ig the velocity of the sonic

stream with the stagnation enthalpy Hl’ so that

PR :
a* - 2{0’—1)/(7#))} H, (5+29)
Since M;varies between 1 and +OXQ
Z .
X._’ a*l

so that (9.27) may be written,'.using (5.29)
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So Zéti < P%'—'I '
- H, . 20 (8+1)

For a monatomic gas, Pr' = 8/9, and so

AH/H, < 0-0i4

Theréforé; we may take H to be constant throughout the
shock. Using this, we find that V has its maximum value
at the sonic point, using (3.5). Re-writing (3.5) in the
form '

| m(u - uy) +p=p =V (5.30)
and defining W~ =( ¥+1)/( ¥ =-1) and W =u/a- , we
manipulate (3.7) to give

Y o =D (Wi-w)(W-wa) (5.31),
P N7 - w2
remembefing that Wiw2= 1 (which may be obtained from
2 .
(3.12), using M2 = 202/ {( ¥+ 1) = ( ¥=1)W } ), anit
@éﬁéﬁgﬁt@#ﬁ#‘, |

Sample plots of (5.31) are shown in Fig. 5.6,
together with the positions of the sonic points in the
flows which, as we shalk see.., are the points of maximum
stress. (5.30) may be written as

V+ p o+ mdy = %—'M(uf _2‘;)
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and the left-hand side, and therefore V, thus has a

max1mum at the sonic point u = a *'so that

Vias = V* = L pa* (wo- 1)

D Wi
Thus, we see from Figo 5.6 that if the Navier-Stokes
equations do break down somewhere in a shock wave, they
will first of all do so in the low pressure (upstream)

portion of it.

(viii) The Bhatnagar - Gross - Krook Model's
Shock Structure, We saw in Section vi
' above that the roots

of viscosity lay in the molecular nature of fluids. If
- therefofe seems that the Boltzmann equation offers most
scope in detefmining the laws governing viscous effects.
We saw in Section-ii that the gfeat drawback in the
continuum approach to gasdynamics is that this law is not
_yet completely framed. For this reason, we must not be.too
surprised if real shock structurediffers from the Navier-
Stokes structure for strong shocks, but we expect the weak
structures to agree. The problem with all kiﬁetic theory
.approaches is, as we have seen, that the inter-molecular
forces are incompletely known, and this has resulted in
most cases with}a disagreement with the continuum results
not very

at values of Mlkclose to unity. However, the B3G<+K model

gives the required closeness of its predictions to those
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of the Navier-Stokes method for weak shocks, and shows
ﬂﬂe devigtion in the upstream part of the shock shown to
be acceptable in the previous seetion.

| One possibie model for monatomic gas molecules
is that they behave like Maiwellian-molecﬁles,dynamically
speaking, when they are close to one another as in a
molecular "collision" (i.e., they might have force fields
that are such that the dominant forée between molecules
very close to each other is a repulsion proportional to
r'5, where r is the distance between the centres).
However, at larger distances we are at liberty to assume
that other forces become important as well, and to a first
approximation all the forceé cancel each other out.
Therefofe, the molecules behave in between collisions
“as if they are spheres of radius R, where R is the distance
between molecular centres at which the Maxwellian force
first becomes dominang, On collision, the deflection or
" scattering laws are determiﬁed by this force law. This
is the motivation behind the B-G-K model. Thus, the
collisions afe determined by it as if the molecules were

spheres of radius R and they are scattered as if they were
.Maxwellian molecules in this model. Nevertheless, it must
be stressed that the model is just as arbitrarily selected

as ény_other one.
Liepmann et al. (1962) apply the B-G-K model
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to the problem of shock structure., They assume that the
fact that this gives a Prandtl number equal to 1, whereas
i1f it is % in the case of a real monatomic gas, is not
important. The reason for this is that the difference
between the results givén for Prandtl numbers of 1 and %
in the case of a weak shock according to the continuum
appfoach is small, as they show by a sample computation

(Figo 507)0

When introduced into the Boltzmann equation,

the B-G-K model gives

2
] 2

_g_%'+ !;?—;i =An{n(§’—r)exp[-e(1-y_)z.]'§1 (5.32)

where f, v and x are defined as above, n is the local
number density, @ = 2T/R and A = (mean thermal speed)/

(n X mean free path). Li@pmann et al. then compute

'sdlutions to (5.32) for various values of M1 by means of

‘an iterative process. This necessitated the use of a

rough solution to start the process. Liepmann et al.

found that the use of the discontinous solution

. u(x) =uH(-x) + uyH(x), vhere H(x) is the well-known
‘Heavid@ide unit function was unsatisfactory, because of

" the infinite slope at x = 0, but the Navier-Stokes .

solution proved to be adequate. The quantities used were

the molecular weight and viscosity law of Argon but with
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a Prandtl number equal to unity, in the continuum
solution, and where needed in the B-G-K problem. Their
results are illustrated in Figs. 5.8, 5.9,-5°10 and 5,11,
Two important facts immediately stand out. One is that
we have a very good agreement between the two approaches
to the problem_of shock structure at low upstream Mach
| numbers, which is essential to a satisfactory kinetic
theory, and the other is that the possible deviation
from the Navier-Stokes solution at higher speeds in the
part of the wave anticipated, and not elsewhere, is
exhibited. Thus, the B-G-K model might be a suitable
one for use in predicting gasdynamic flows but, until
experimental evidence of the structure of stronger shocks
becomes available, we can only say that ip looks promising,.
The problem oflthe Prandtl number must also be borne in
mind when assessing the'value of this model. This alone
must'throw some suspicion on thé extent of the usefulness
of the B=G-K model in the prediction of shock structure.
(ix) Non-linear viscosity in the Continuum
Theory. oSince it is likely that viscosity
is a non-linear function of velocity
gradient, it is valuable to examine the integrability of
the equations of the continuum approach with allowance
made for non-linear viscosity. We follow Gilbarg and

Paolucei (1953) in the particular case where it is
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as'sumed that the viscous stress depends only upon the
velocity gradient. The argument readily extends to the
case of dependence upon the temperature gradient.
In the non-linear case, V takes the form
V=g, ¢ ,7) ' (5033)
where u' = du/dx and g is subject to the restrictions

(a) g0, ¢ ,T)=0
all e and T,

(b) ?-%(oeﬁ) =N (e;T) >0

(a) indicates that so lon.g as there is no velocity gradient,
there are no vj_.scous forces and (b) shows that for small
velocity gradients, g behaves like w'A s the usual
definition of V. Further, we identify for a particular
fl'oﬂf, guty @ ,T) = g(u',m/u,T) with g(u',u,T). Equatiohs

(5.19) now take the form

p+ b(u - a)
b{e-g(u-a) }

g(du/dx, w ,T)
K dT/dx

(5.34%)

Equations (5.19) now become
@(dw/dx,w,0) = W + 8/w = 1 = N(w,0)
de/dx =0 -.5 {(1 - w2+ a(} = L(w,0) (5.35)

where @(w',w,0) is the non-dimensional function in the

- W - © plane corre-sponding to g(u'yu,T). @& essentially

has the same properties (a) and (b3 namely



57

@(0,w,8) = 0

—g%: (oW, 8) = A o) >0
0,

In some neighbourhood of N(w,6)

oW = [N(W,G);W,Q:] = (b (w,0)
such that }L =0 on N =0, We assume further that y is
defined throughout Region @ in Fig. 5.3, Now,
Y (wy8) =0 =>w'(y,6) =0 => N(w,8) =0
so that ¢ (w,8) = 0 only on N(w,6) =0 and so f is
of constant sign throughout (:) y and is in fact negative,

for
3‘/—-/ ' -%-—Ne/ _ Ne
ot A5 . = - 18 v = - > O
29 y=0 _ Qw: 'W'=0, N=O q)w: w'zo, N=o
If we can. éhow {:he existence 6f an integrél curve for
‘ ) : 4
w
37 =. SL (WJ 9) |
| . (5.36)
de L(w,e)
dx K ]

then, clearly, we have also shown the existence of one

for system (5.39).

We use a proof similar to that used in the

linear case. The characteristic equation of (5.36) is
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Thus, we have precisely the same characteristic equation

as before and so, similarly,

(1) Zl and Z, are, respectively, node and saddle point

of (5.36);

(ii) there is a unique solution trajectory that approaches
Z, from within @ as x — +O0 , This curve
cannot intersect the boundary of (::) for the same
reasons as before, apd so approaches Zl as X =» =00 o

Thus, as before, we have a method at our
disposal for integrating the equations numerically. However,
little work has been performed to determine shock profiles
in the non-linear case. The primary reason is that no
adequate experimental techniques have yet been devised

to measure the non-linearity of compression viscosity.

Indeed, it may well be that observation of shock structure

will be the means of measuring it. It does, in fact, seem

most likely that quantitative investigation of relaxation
phenomena, particularlyéwill benefit from a detailed
examination of shock structure in the laboratory once we
have solved the viscosity problem, including the role

played by these phenomena,
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APPENDIX A. Proof of the forms of the solution
trajectories near to the singular points

1n the w = 0 plane.

. At Z;, L and N are both.zero. 5o, at

z. + 62, where 82 is small

i
' aL' .
1 (z,,+52) 96 - .50 4+ 2t [, Sw(al)

oWz

4+ S82) - 'éﬁ./ .56 4, N
.N(ZL-+52) 20 [z * fa"w'/zt."gw (402)

' Therefore, close to 2

i
dw N '
— = - = A f6 + B &w (4.3)
dx 2
de L
- = =" = C 6. + D 68w (A.k)
dax K
-'whereA-?N/ , B=28[  ¢c=2/ anap-= BL/
90 (z; oWz’ 20 /2, W [z;
 We omit Zi henceforth, it being understood. We translate

the axes parallel to themselves so that Zi lays on the
"origin. We call the new coordinates w' and 6' and henceforth

omit the dashes. Thus,-in the neighbourhood of the origin,
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dw _ AG + Bw

@ . Ce + Du- g (4.5)
We introduce new variables § and ¢ such that
p= A6+ pw and = ¥+ Sw,n-r_".‘i' (4.6)

and

A - 4 (Co+Du)+ @ (h0+B)= Ay

| Z‘fg’. = ¥(co+Dw)+5(A0+Bw) = u¢ (447)

Where &, 8, Y, 6, A and M are constants. For this to
hold for an arbitrary starting point on a solution

trajectory, which it must do, in the @ - w plane,
oA(C =AY + KB =0; oD+ g(B-N)=0

We may obtain a non-trivial solution for o and & if

and only if

A B- 7 = O
- (A.8)

C-A D
Similarly, for 'f and (S 9

A _ B—/u " -- (A.9)
C-m D

]
O
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Our solution is reducible if the A's are real and
distinet, If 2, and '\,_ are the roots, with 2, > Al s
then we may choose
=43 @= ;\,-.C; X=A§:5=;\L - C
” - (4.10)

which gives

A A 5 de Ao 9 (A.11)

d X d X
- 80 thgt |
9 ho® - O (aa12)
d¢ M }l’ ’

7\ are real and dlstinct if and only 1f (B + C)

’:F(BC - AD) > 0. The ’\J have the same sign when

(BC - AD) > 0, and opposite signs when (BC - AD) <L O,
| (A.12) gives. :-

p=Gr i (4.13)

where G is any consta_nt. Thus, when the ;\3 have the

same sign, Zi is a node. When they have opposite signs,

~ then Z; is a saddle point. Both these remarks apply first
‘of all in the ({Z -y ) plane. From the form of the

transifbrmation_between the (@ - ¢ ) plane and the (8,w)

' plane, (A.6), we deduce that saddle points go into saddle
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. p'c_Jints and nodes go into nodes, since. ¢ , @ 9 X and
& are not all zero. -
This concludes the proof of that when the

roots of the characteristic equation

1 N L aN - O
ECL A ow 5

1oL ¥ L oL

X 006 k ©

are real and both of the same sign, then we have a node
at the singular point and,when they have different s;gns,
then we have a saddle point where the derivatives are
evaluated at the singularity. We do not investigate the
case of complex roots here.

Some of this proof was derived from notes
taken at lectures delivered to M.Sc students at the
Uhiversity of Neweastle upon Tyne in_Februéry, 1964,

by Dr. Mitchell,
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APPENDIX Bl Slopes of Solution Trajectories through
the Saddle Point,

We suppose that the slope of the solution
curve through the saddle point may be written in the form,

where we have transformed axes as in Appendix A,

de. —Lw

- = (B.1)
dw Le e VR

which is always possible for-i.w = 0 at Zz'only in the

trivial case where Zl = ZZQ(A.ﬁ) may be re-written as

6’ - Z o .LO el + Lw V:Jher_e e’: g’?v— /Z (302)
K Ne 6’ + Nw ) .z .
evalvated along a sokvhonibeajectory

“and eliminating de/dw between (B.l) and (B.2) we obtain

o—
—

Vz'i- .1:9 + _Q_iv)V + (L-e NW"LWNe) (B°3)

K N ' A K
'ﬁhich is the characteristic equation (9.23) of the system,
with VY as the eigen-number. Thus the slope of the
~solution trajectory through Z, is that quoted in (5.24),
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