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Introduction

This thesis is concerned with the first - order impact parameter
method, with and without a cut - off at low impact parameters, as applied to
collisional excitation of atoms.

In the first chapter we describe the method without a cut - off, giving
a proof of its equivalence to the first Born approximation, and also give a
review of previous calculations employing this method. The method is
applied in Chapter -II to the excitation of helium by electron and proton
impact. The results are comparet_i with the available Born approximation and
experimental results.

Chapter I is a review of work on the first order impact par:;.meter
method with cut -.off, applied to atomic excitétion by electron impact.

The theory developed by Stauffer and McDowell (1966), described in

Chapter III, is appliéd in Chapter IV to the calculation of cross - sections for
transitions in hydrogen between states of initial and final quantum numbers

n and n’ re_spectively. The results are compared with those obtained

using versions of the classical impulse approximation.
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CHAPTER 1

The semi-classical impact parameter method. |

§ 1.1 , Introduction.

Consider an inelastic collision between a charged particle and an atomic system.
In the impact parameter formulation tllle projectile and the nucleus of the target atom
are regarded as classical particles. For sufficiently high velocities of relative motion.
transfer of ene;'gy and momentum may be neglected, and the classical trajectories
taken to be rectilinear. The impact parameter e , defined as the distance of closest

approach of projectile and target, plays the part of angular momentum through the

relationship M,‘_ - e _ £ 7&;

The method is semi~classical, since the motions of the atomic electrons must be
treated quantum - mechanically. The projectile perturbs the atom, and the transition
probabilities between various states of the atom are calculated by the method of
variation of constants. Summing the contribution from all impact parameters gives

the cross;-section for a particular transition. In an exact calculation of the probabilities,
Bates (1961) shows that the principle of detailed balancing holds : that is, if ' P"_,F

denotes the probability of the transition from a state ¢ to a state f of the atom then

1.2  The first-order impact parameter method for excitation

For simplicity, let the target system consist of a single electron moving in
the field of an infinitely heavy nucleus of charge Z ' which is located at the fixed |

origin of a coordinate system Ox 33 . Llek v denote the co~ordinatesof the atomic

electron, H the hamiltonian of the unperturbed atom, and ¢S (.'_'_') ) E S the wave



functions and energy values of the stationary states. Then
(H-E5) §s =0 (1.1)
We suppose that the system is perturbed by a potential V (;)t), and that

initidlly (at t= ~o0) the atom is in the state s = L, so that the initial wave

ofF the
function\system is

@ (T, b) = ¢}, (T) axp (- CE; £) (L.2)

If 9 (r ) t) is the wave function of the perturbed system at any subsequent time
then the Schrodinger equation for g is
VI = 939 _
-—2 H I - 1.3)
subject to the initial conditions (1.2).

I may be expanded formally in terms of either of the complete sets ¢ s and T 5

T, ()= ?—““ € § ) axe (-“%6) a0
or, equivalently, | |

'y (f,(:) iq"-’ @) B s, (L.5)

We now make the assumption that I Qg | 2 s equal to the probab111ty that the
atom is in the state § attime & . To calculate the co-efficients q'is (E) s We

substitute (1.4) in the right - hand side of (1.3), obtaining

V.= ¢ SZ %L’LE) ﬁs () exp (-CEt)

(1.6)
Multiplying both sides of (1.6) by any of the functions
* .
(Ps () exp Lt Eg £l
(1.7)
and integrating over all r gives
Ldoag = explif Of Ve U tet) dr
ok . ' (1.8)



The initial conditions give
Q. (~0) = O¢s (1.9)
so, integrating (1.8), we obtain (S# ¢ ) .
*
| o b= - ijcuc axp (L Es ) S(Ps () Ve ) P im0 dr
-

(1.10)

1

This equation is exact but cannot be used to evaluate n,"_s, since the right -
hand ~ side contains the unknown function ‘Q_ . If, However, we may assume
that TL is changed only slightly during the perturbation, we may replace it

by its initial form, and write

¢t .
C_u‘-'s(.b) =L J Vs_c'. () exp (L E5; €) dt (1.11)
-

where VSL(’E) - S(Pt(:y V(T,h) (PLL-S') d_,_\: (1.12)

and . - E ~ L. 1.13
Es¢ = kg E L) (1.13)
which is the first - order approximation.

Let the position of the perturbing particle at time € be R (_ ¢ )
- (X )Y"\ra ,'\r being the (constant) velocity of relative motion, and let (: be
the impact parameter. Changing the variable to Z = '\rt' , the probability

. ‘2
that the atom will be left in the state s after the collision is | Q'L' 3 (cb)

w .
u,‘-'s(.oo) :'-—.-5_"- S VS('.(XJYpZ) e"‘P(\L—E\:—‘Z) dz (1.14)

where
—ad
If (? is the azimuthal angle (defined so that x = e coS qJY:Q S;n¢ ’

the cross-section for excitation from state { to state s 1is then given by

—3—



<D ?..ﬁ
Qis = _g é \Q';_stotﬂ\z(ad,?&?

K Vg s spherically symmetric, this reduces to;

N

q’t’-s

(Gognt, 1927).

. <0
2T S ‘ Q'(-S @)‘2 Q CLQ (in units of
v} q_oz )

The approximation made in obtaining (1.11) will be valid if the
perturbation is ""small" . The significance of this will depend on the
particular. perturbation. For instance, if the perturbation is due to a
positive ion of charge Z , then

V(.'!.',b) = —<4Z,Z4
IR -7

and the wave functions will certainly only be slightly perturbed during the

(115)

(1.16)

(1.17)

collision if Q is large. For large enough 4=, the condition will be satisfied

even if the projectile passes through the atom. The method will also be valid

if Z 2 is small compared with Z,

The general conditions that must be satisfied for the first order impact

parameter method to be valid are (a) that the incident particle moves in a

straight line, with constant velocity relative to the target, (b) that the

Q,LS(Z) are all small, and (c) that electron exchange is unimportant
LyS

incident particle and the atomic nucleus. Bates and Boyd (1962) show that,

Conditiong (a) implies that we neglect the Coulomb repulsion between the

unless very strong Coulomb « forces are involved, this introduces negligible

-4



errors in calculations of excitation and ionization cross - sections, except
at low fmpact velocities.
Condition (b), which ensures that the G..'_s do not vary much from

their original values, is more restricting. Let P(Z) = Z l Q’CS Lz)lz'
| Sk ¢
Then if ZH is the value of Z corresponding to the maximum value of P (Z)

for any given @ , condition (b) holds providing
P(zZy) <<
When V" is sufficiently high, the exponential in (1.14) may be replaced by

unity. Hence, for simple excitation or ionization (when V(r )t) is

independent of v), P (Z") falls off as 'u'-z', so the condition is satisfied

at high velocities of relative motion. At lower velocities, however, it may

be violated, and P (Zy ) may even exceed unity. For any given process it

is impossible to cé.lculate the Q‘Cs(z)f“ all ¢,S and,Z, but taking Zﬂ:co
should give a reasonable approximation. Since optical transitions dominate,
- the condition (b) is likely to be satisfied if the probabilities for these transitions
are all small.

Unless the projectile is a bare nucleus, there is a possibility that ex~

change with the é.’oomic electron will take place. In general, however, this is

unimportant at electron energies for which (a) and (b) are valid.

§ 1.3 Equivalence of the Born approximation and the impact parameter method
. .

Since the 'physical assumptions are the same, we would expect Born's

approximation in the wave treatment and the first - order impact parameter



method to-be equivalent, provided the iﬁcomi.ng particlé may be treated
classically. The mathematical equivalence of the two methods was
, examined by Frame (1931) who calculated cross - sections for the excitation

of hydrogeri ~ like atoms by bare nuclei. He cc;nsidered §= § transitions
only, and found thgt both methods gave the same results in the limit of high
incident energies and weak interactions. An error in his analysis was corrected
by Arthurs (1961), Moiseiwitsch (1966) gengralized the result to apply to any
transition in the wkh order abproximation, and Crothers and Holt (1966)
extended it to the low and medium - energy range.
We give below the proof for excitation due to Mc. Carr611 and Salin (1966), who
consider for simplicity proton - hydrogen atorﬁ collisions.

Suppose a proton B is incident on a hydrogen atom nucleus A, electron
E, and excites it from initial state v to final state . Let

v

s=BE, r=AE , R=AB , r=

(r+ s). Then r/ isthe

(S

position vector of E relativé to the centre of mass of the two protons.
Consider first the impact parameter method, in which the hydrogen atom is

’téken as stationaryand R = L+ 17'6, where @ is the impact parameter
and VU the ( constant) velocity of B. In the centre of mass sysi:em, which
has velocity -—-/ 2 relative to the original frame of reference, the time-
dependent Schrbdinger equation for the wave function of the perturbed system
IZ-”’z vkl = L2 Goiele

dt

=
: (1.18)

—6—



. where, in the notation of § 1.2,

T8 2> T 0= Pl dx

€2-o wxp(-CEt - R L iy

1 . . .
and the B term is retained for convenience.

Also, t_he final state wave function @ is given by

'3
§F = ¢F (2)exp (-7 too’- g Lt -LE(—e) (1.20)

and §L 9 .F SatiSfy
2 .
(% V,‘.,+';::'+ "%)@ -0 (1.21)

By (1.5), the transition amplitude may be written.
% >
R e (D)= ( = S § Q / .
ig () “¢ %) £ ¥ dr (1.22)
E5>w
Now consider the expression

) Sd.g';y:dl:(:z__?t q;(, +§: 3_;%)

(1.23)

Integrating by parts gives

* °° :
[ 5@9 IPL ¢«::L>= @i (oo)-‘:,(i,.:,co Sf_p:@';'d‘f

1.22). ‘Thus, si g-— ; and qz
by ( ) us, since y 7@9 an ¢

' ED-o0
and §F are orthogonal, Q"'_F (oD ) is equal to (1.23).

Using (1.18) and (1.21) in (1.23) gives



Q’L;.. () = ‘:S dy’ _S-eo‘u‘_ ?j \ Ti. (1.24)

We now write T _ in the form
v

Tc, (/€)= ; @J' (' &) F(r' &) (1.25)

J

R P T

where ,!LL . '\j = 0, Since
SR 1
- Jae Jhe et [V €y o

and let

and . (@ -2) 477> ,
= (1.28)
(o 41, S(g'-g) |
thé cross - section is given by

=\ log = _ L °~-
T -1 el <5 DRty

(1.29)

If we substitute (1.24) in (1.26) and use (1.25), (1.19) and 1.20), we may

write R (’_Ty_) in terms of the unperturbed wave functions :

R(mw =§ ':\lr_ j\jd't,d's- P:vqi &KP(CEHE—- i‘_w,g)
| % Fj(_I:E)

(1.30)



We now consider the wave treatment of the problem. In the

Born approximation, the cross ~ section is given by

] 4; & S | T (-_lz d S (1.31)

where k e and k - are respectively the initial and fina] wave vectors
of the incident particle, ‘.\, is the reduced mass, and T"-F is the
transition amplitude. If T, is the position vector of the proton B

relative to the centre of mass of the system (A + E), then

- < $.(x) i&-:} \v- % ‘—.‘E:(:; 7

(1.32)

+ - :
where @ l is the solution of the complete hamiltonian with asymptotic

behaviour
T T S (P (v) & -
':k , "' + Outgoing waves
< | (L.33)

"";-3'30

+
We write @ ‘.‘ in the form

< chig
'?L ::SZ-Q/ ) “Q,'(f) %J T, %¢) (1.34)

and suppose that k o "is sufficiently large for small - angle scattering

only to occur and

‘ }L'\J‘ ~ ‘fﬁ%‘ 277 JZnE o (1.35)

~9-



Choose k O along the Z axis of the cartesian co-ordinates

(X, Y, Z) of ,r": , and let (—&{_ ’9'¢)be the spherical polar

co~ordinates of kF— in the same frame. Then

(& -29). ~; —-(’k..—&,,c«.»se)z (1.36)
’&‘_ Slne (XCOS¢+YS‘“ 1’)

© is small, and we may write

2,
. ﬁ.c__&{_ - ’V‘i:"’&"' ~ Egg (1.37)
| ’&L + B o

so that (1.36) becomes

(,Q_ &{_\ fr =" L;.L _‘.\,'\re(,xca:4>+\'sm¢) (1 38)

v

We may write _@ = TX +3Y and put

IV"- ‘-L'\re( ccsq) which satisfies. '17 . v = 0,
+ﬁ S \n¢
We then obtain

26 . .
Tielg) = SZ‘*"-‘—-c dx ‘PT- q?j Q"‘Y’(LEH %T-- ‘%.£)
x VI3 o,x)

(1.39)

Now

G? B‘-— S?'errl’r.,e (9{49)?9'3\9 46 ‘W’

4T3

(1.40)

~10-
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(o))

Thus, since ‘.L, is large, we have

Swm—

=\

(1.41)

e I G T

o © ‘-\:300

This is the same as (1.29) provided

Lirer 'Tc._'{:. = R(.'\:y)
RS0

and this condition is satisfied in general if -:-1— j @, r ':.) converges
uniformly to Fj (_1_", t) as |-L'900. In particular, this establishes
the equivalence of the first Born approximation and the first order impact

parameter method, for in that case

§ 1.4 Previous calculations employing the first ~ order impact

parameter method

Detailed calculations for the processeé

H(ls) + H "—H@s or 2p) +H *

(1.43)

(1.44)



and
H(ls) + H (lIs )7 H(ZSorZP)"'H('S ) (1.45)
have been performed by Bates (1958), using the first - order impact
pairameter method.
The transition amplitudes concerned may readily be expressed in
terms of modified Bessel. functions of the second kind. For example,

for proton excitation

|3/2_
3* (1416 w?) 3w (1.46)

~ (This 'transition_ amplitude is evaluated in detail by Bates (1961),

page 256). Bateé found that_, as would be expected , disil;ant collisions
are relatively more important for high velocities of relative motion than
for low velocities of relative inotion, for the optica.lly allowed S-p
transitions than for the optically forbidden S =»s transitions, and for
jon - atom collisions than for atom - atom collisions. His calculated
transition probabiliti'es were used to estimate P (Z M ) for the process
(1.44). X we suppose that Born's approximation is good for P £ O.1
and bad for P 7 0.5, his results show that for proton impact Born's
approximation should be accurate for impact energies greater than 200

Kev and unreliable for energies below 50 Kev.

=12~



Bell (1961) has carried out a similar study of

He C's) + H+-—7 He (2'P or 3‘p) + H+ (1.47)
L+ t 2+ '
and H&(Us) w4, > H, (2 P or 9" p)+ Ho, (1.48)
anq Bell and Skinner (1962) studied
H*s Na(3s5%5) HY 4 Na, (3p°P) (1.49)

The excitation probabilities for processes (1.47) and (1.48) are all small
( £0.03 for proton impact and O.08 for alpha particle impact)., but
for process (1.49) which is a strong transition, they exceed unfty for @

. ‘Lout: '
less than)\5a, . Replacing P Q) by O.5 whenever it exceeded ) 0.5
gave cross -sections in better accord with higher order approximations
in this case. The method, chowever, cannot be expected to give good

results for process (1.49) since it ignores back - coupling, which

is of particular importance in strong transitions.



CHAPTER 2

Collisional excitation of heljgjm in the impact parameter. method

§ 2.1 ' Introduction.

We use the first order impact parameter method ( €, Chapter 1)

to calculate cross - sections for the processes

HY v Mo (2'P) 5 H—‘--\-Hc(fw‘fb) @.1)

HY 4 He (2'5) 5 0 +He (n'D) @2
for n = 3, 4 in the energy range 25 ~ 375 Kev. Cross ~ sections for
electron excitation of tﬁe same states may be estimated, since these cross ~
sections are close to those for protons of the same velocity when the electron
energy is above ten times threshold.
The cross - sections for process (&.1) will be compared with those
obtained using the same 'wave—functions by Stauffer and Mc Dowell (1966),
who employ the impact parameter method with a cut - off. (See Chapter II).
The wave formulation of Born's approximation has been used by Fox
(1966) to calculate cross - sections for electron excitation of HQ, q] 'S)
= (3 ‘:D) -' His results lie more than a factor of two
below the exper_imental data (Gabriel and Heddle (1960), Heddle and Lucas

(1963), St. John et. al. (1964)) , which agree among themselves to within

30%. Fox found that coupling with 3 "'P as an intermediate state was un~

-15



important but, according to Somerville (1963), coupling to 2' P may be
of importance. In our treatment we ignore this coupling. Fox also shows
that using the/"velocity" formulation of the matrix element instead of the
"length" formulation (which.is equivalent if exact wave furictions are
used) may change the resulting cross - sections by 50% if approximate
wave functions are used. This is because the "velocity". formulation gives

greater weight to smaller radial distances, since it involves derivatives

of the wave functions.

§ 2.2 Theory

The cross - section for excitation from an initial state ¢ to a
final state F is

Que L) = 2 S Pe lgv)g dg - (meg)

2.3)

Where .'.(_ is the transition probability at 'i_mpact velocity v and impact
parameter e -
On averaging over initial (f'\‘ ) and summing over final (M /X3 )
substates, the theory of § 1.1 gives
oo ! :
?l:-(- = N L | :_Y 'Q:'r‘:(L('lM‘{-lV\L‘.'JM‘L?d'eIZ
(2L, +1) Mc.‘-”r\Lf_ © :

N* Z /P(.(. LML&IM"F)

:—__._-—

2L+ ) Me M @-4)

2=



is -
where P = E;.‘_ - 4@ the energy defect, N the number of electrons
in the outer shell of the target atom, and, since we suppose the -

YA 3 M.7 form a complete orthogonal set, and are independent of R,

-1
V=IR -Tgal @.5)

where Il is the position vector of any of the N equivalent atomic
electrons.

The wave functions are chosen to be of the form

l\ \‘ s =JS_;: { q’ls“JD ¢|S(SJ2.7+ q’us(sa ) q}ts“,zﬁ

(2.6)

‘Zl Pu) __J-%.;_{ .Slz,l)\rzpmt(l,ﬂﬂz,scz,z) %Pm,(',l)} 2.7)

\ N\m M7= '3‘;-: { (P'SLQJ') q),nqu‘(-‘)i)"'wuLzJ '2) (y‘hd "l\q,(‘,ﬂ} 2.8)

where ‘P"Nﬂ.w\ '3 (Z, () is the 'T\"Q'ML hydrogenic wave function of
effective nuclear charge Z for electron L . These helium wave functions
satisfy the orthogonality condition, and are normalised to unity. ¥ and &
are chosen from a variational calculation of the energy to be 2.14 and 1.19
respectively ( Eckhart, 1930 ). This is the choice made by Fox, and the
resulting ground state energy is within 1% of the observed value .

Wave function (2.6) may be interpreted a-s representing one electron in

an inner orbit and the oth.er in an outer orbit ) the values of 6 and ®
cori-esponding to a small negative shielding of the inner electron by the

outer, and nearly complete shielding of the outer electron by the inner.

—3—



Wave functions (2.7) and (2.8) give even better approximations to the
observed energies of ﬁe appropriate excited states than (2.6) does to
the ground state energies. This is because the quantum defects for the
excited states are very small, as can be seen in Table 2.1. We
therefore expect the above choice of wave functions to be satisfactory
fof our calculations.

Since hydrogenic wave~functions are orthogonal, and using

Ya '3/2_
(NDMIVINSY = L F & L j‘P:&,U,rD__l_%@ﬁ

( 3
. 6,3 34‘2‘.\ IR-T,) T,
VYo o (F)
= Z 2'(‘64'33 - \/\'\\ N
%, 5 (2.10)
and X
oM ivi2' ey =% St o)l uelim) de,
IR-T,1 @2.11)
()}
-— V2-'I‘V
TABLE 2.1

Quantum defects for the helium atom states concerned in this chapter.
* They are calculated from the energy levels given by Moore (1949) taking

the Rydberg constant Ry, = 109737-34 cm !




Atomic level quantum defect
'

1S 0.256
2'p ~0.0093
3'p ' 0. 0022
4'D 0. 0032
(2)
Vt ¢ may be transformed by the Fourier involution theorem to
KR
(z) | ~J‘ >
. —_ e %cm w(2,K) dk
VI.(-‘- - 2(7—1—‘-)3 - 7(.@. J -
ois- & 4R 4T
(KY) = e = 3_
where 6- ._\ = R k=&

| LK. X '
and Y (2, K) = 5-@ ‘VNL ($) q’(,(z,"'f) d
‘where we hﬁve -dropped the suffix on r for convenience.
Let (9J¢ ) and (P, ) be the polar angles of r and K
respectively in the frame OD(.&J'V' (defined in Chapter I), and let
/
(@ ) :QF ) be the polar angles of r in a frame z with 3, axis

~ .
along K . 'Thus in frame 2 /

K .+ = K cos ®

— e

(2.12)

(2.13)

2.14)

(2.15)



Now

\va:»d,mt(;r,e,?): (R 4,0 Yf’“"';_(e.l <P) (2.16)

Prp, 10,4 = Rap) Yoo, (0,) 2.1
and (Edmonds, 1957)

i (R)

Y_éhke,cﬁ) = £ % J.«h,m([ﬂ' Yzml((@,@) 2.18)

L Le)
where OL l,m(\'b.) is a matrix element of the operator % (A ) P _,‘6 )

b 12
. /o

which rotates z_ into Oﬁud-y , defined in Edmonds, Chapter 4.

The following quoted results also come from Edmonds.

We evaluate first ?‘Q’ for transitions (2.1). Using (2.17) and

(2.18) in (2.14) gives
Lk ("NI"'“"L,) (" C ,) (z)

79.“,(‘&\: Z ,-Q' CLN"J“\' P CLWa-’sz(P)
) Sb;s.-«_- Rop®R, Y, 10,F) Y;v; (0,9) dr

(2.19)

The integral over E is

. (_m‘l- "“'a.l
_ (2.20)

-6~



which is zero unless "W( = v, Also

* wev, !
Y zm‘l -_ (— ") Yzj_m / (2‘21)

and

Yz—m"®n§) Y‘.,“,‘/(®,Q') =
\S (2_52.4-0] ('_::‘, L)Y* (@@)( ;.;z.)

(2.22)
The Wigner 3 -~ j co-efficients in (2.22) will be non-zero only if
(i) v = 'V‘W"—"IW" -_-O
and (ii) 1, 2, & obey the triangle inequalities, and 1+2+ L is even;
that is L = | or 3.
We now have, using (2.15),
)%
- -~
Yo LB = 2-rrZL ) ! (‘3) oLm,m )
Gl QR 2 15 (2241 (22..-”-) 1 2)\(! 2L
2p Rvg v doe oo o ™m0
s .
\ r
- LKW % '
A S- 2 Yq_ (®) do
o
(2.23)



where @ = Cos@ Integrating over & and summing over L gives
; /! 2)
Y ti) = 6T 56-0 e (B i ()
6 i1+ ‘)"(l~ M2t (- v ! \"'l".(:n
< fok [t Gt o LT N

oo~

- -0 " G-w?) Tzfvnu,k)S
5

(2.24)

where _
s$) o0

¢ :
TL(- (2)= -‘. }QLK '1‘) le‘-' QLLZ, "") QW"Q‘:(T') f\"‘zdl'l‘ (2.25)
(-]

0))

and we have used the fact that the d o'm 2T€ real. Summing over

v ( "‘“’,"$| ) gives finally

. W (3)
AT % EEIL UIET NG W B
where o
' ()
“'“""“'\9_ = d’om‘ dﬂo,‘“
"’J?s A S B R (2.27)
\'m,_+ 1|, d‘\'mz.) |
and w ()
\-smw"mg_ = d’o-mq &?m.,_ ;
» () « ) .
\ 2.28
—J':-s' ( d'-w\ d’“‘“z +J'm. ‘L\-«\a. @0



Now consider the transitions (2.2). Using (2.16) and (2.18) in

2.14), ' Cralk % (2)

(3,k) = L L L C
%lw 2 Fv %\' "'“"'“"z, P')

x (< CKYO R o (8,7) Rt Yo .(®§) dr do I

(2.29)
. . ! . .
and the integral over i vanishes unless w = O On integrating
over the angles wé then obtain
Yl ) =-35 dg () 'T.,, (x K)
(2.30)
(s)
The values of J’-m'm( '3 ) for § =1, 2 are given in
. (€] . :
tables 2.3 and 2.4 respectively, and the Tq-. required are given
in table 2.2,
T_A;BL__Ez-2
Some values of T«.;. (.2 k)
In this table w=5/6b=2 ¢S_= LIS
w=3 v = -q
({})
T LK) 4ok (5a*-3K2) FKCbY4Eb*k*~3Kk4)
3° 5 (afrk?)S 24 5o (h*+k?)$




vz 3 qv::‘l.

2 . 3
- 59 27 5 =l s k212005 + k%)
lm, J a
205 (g e ThE
22 (Pr+k>)®
20 eavsk® S S
3% (a™+k94 | Ias (b*+k2)®
TABLE 2.3
(n
o |
'nv’ + | S o - |

+ | ",%(l-kcosP} —:!-; Sl.nP = ( |"'CesP)

O |- S'mp C.oSP _TQE, S‘mp

— l _‘2_'_ LI-c.osP) -—Jl';'. Smfs _i_ (14 90s'32

-10-



TV
v

—R

TABLE 2.4

I

O

(2)

J«,mlm (F)

2

-2

- | [smp cos™ :E‘
_|£J_:;': S;n’P
‘ Sin P Sm"{

2| st Ple

{"‘( I+Co_sp)z -

Sin F t‘.es’_‘f_

_|5_ (cosp+ coszls')

,_;__E__ sma.P

Sinja co* By,

A |2 Jd%

_;(cos P—coszé .19,:]'% Sin zP

LK S‘l'nzp

"_21: 3_2 sthP

.\iLS ces p -)

%: in Sin? p

-Sinps sin"'_e
2
t(c.os,;- Coszla')

[-L J’i S'm:,P

Snirs CQS'LP/’.

Sin' A

—s;n FflnaPlz

LEP

.:lL-(cos p +¢‘-oslf)‘ -swhp c.os“_g_.

Q
“i (l-\-cosp)

2.
Table 13 is quoted from Edmonds, p 57.

between the

Let

& cK R
9_11-2. JQ"'F ?C‘. c‘-'_‘_, d.E

ts)

& '“VI'W‘

w(p)=LY

- (B) =l"')m B d;t?nmo

J:S)
d'( S)

l

(s)

°L'"'"\'-m (P)

()

so that the transition probability for transitions (2.1) is

11~

lz

Note the symmetry relations

) (2.31)

(2.32)



and that for transitions (2.2) is

| 9,3
va Z z 'Z"— 6 Ig."“’
™, ¥,35 L6+2)

To evaluate the b, we note that in the Oac frame, since
F 33

g__-:_e+lrk and A lies along the 2, axis,
Kl — K
and choose the origin of time so that

’y..-: —'U"'E'

Since .
© _ley, Lk
j 2 v N ¥y J.Y = ‘s‘(K?*x)

—& N

putting Y = P/~ , we have

b, __1_ f d,Kx_J' a.KgL Fop (Ko)

where

|<°q_ = k-_,: + K(‘f--l'- 'X.L
(2.37) is even in K, and Kg& , 80

~12~

(2.33)

(2.34)

(2. 35)

(2. 36)

(2.37)

(2; 38)



L2

. 00
Bq_: 4 5 d,k,,_j gl,k% cos Ky @ ?‘(_Lkﬂ (2.39)
Mo o o Ko™
Since
. a =
cos p =L , Sinpp = (ko +k3°-)°' (2.40)
Ko Ko

) a
the d"\'ﬂ'h(‘%‘) may be written in terms of Ko

From Table 2.4 and (2.40) we have

‘.Lo:ﬂ (P‘) =1 (»7‘7‘1’“::""3&)

2K
(& , (£ &~
d-'o::) (‘b‘) = —dooy (‘3) :J_%_. % (Kod4 k)%
Ko*
(2.41)
(2)

(v
dor (BY=tde, ()L B (KF+Ky?
o2 (p o-a{pi= L 3 __K_:'f}_

Hence, by multiplying together the appropriate terms from (2.41) and

~ and,
table 2.2 ')\ using (2.30) in (2.39) we have expressions for all the

CTVE ) O i f a double integral K K
13 Pig in terms of a double integral over oC. and 3,
. 'm‘“\'l "“"“z
We obtain similar expressions for the b 29 and ba 4
in terms of functions X\.m‘ vn,, 2nd 'Xz.“m)_ where
YO .
% = — 16K P
3 V™) 2.42)

3%( a4 k)5

-] 3=



= LK ,Q_,m
Y2, ORI Vva @.43)

and kmm,“ /&mlml are given in Tables 2.5 and 2.6

respectively.  Then

~ovy v,

b,, =-bal S S k ’?\"mnm;_ ces(KyP) (2.44)
° ° I<° a2+ Ko2)°

and _ .
VT, . o) o0 '
ba.q = -t S d Ku_ S O\.Ki /&.m.m# Cosl K,‘é) (2.45)
2 o o Ko (K> +b>)6
where -% , b = &

-



TABLE 2.5

Ko, w0,

N
Ve —1 O +1
-2 é_ (K:.'-I-K:;')%{Sw"-l(,?. knz-uxz} I51Z %L k;(,’.'-" KU,_) -5 a2
2Ke Ko

3Y {50+ +1 k.a*—ux% 30«,:+\<azf“ { 5o~ 11 k_,f-“k;’-&l‘]‘ﬁ K-,

-1 2, 23T Ko

N e T 1{1;_ sa.*nx;m‘.smj T2 Y £5a* 2K, -2K>4913)| —R-1.0
2K g—_ J g o d ’
]

)
[+
| '-3:)5 (Roch iky?) - Ro,-1 Roeiy
O
2 3/2
2 lf_ (K +K3°'.) R’o,-l "p"“fl
o

§ 2.3 Results and discussion

The units of A were changed to rydbergs, and the cross - sections were
evaluated over a wide range of values of V (= 2~«r), where v% is the

incident energy (in rydbergs for electron impact, but in units of 25 Kev

for proton impact ). In evaluating the

-15-
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.&mlmz

be¥y,

TABLE 2.6

T-1e g - T-fonye o LA M ars | 7
—ls_l.&\ —lso.ﬂ\ - .Kﬂ..dﬂv_f.ﬂdad.u y) .UWO_I- —
0N ° oy ¢ 23 g
Y- LA ALE- H1A90,97 XT B TSI Jo«._ ..n?«.x«ﬁ..._hw M‘fwxf.*J: T O
e ihd o.vkd <
O R LG I A AT @ Gl oh— Pt 4990347 XET -
-y P.unv_+u.xv3xo1 Lot | A DHoT- W EDI I, ._u.«n« S+ j.v\.ﬁ.l Y-
— \ .
\ Q \ — '
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bif , difficulties arose due to the rapid oscillations of cos ( K¢ e )
for large K, and e - These were minimised by chénging the
variables to X = Ry | Y =K Y 5 and the integrals evaluated
by using a double Gauss - Laguerre quadrature with (p, q ) points, (the

p referring to the integral over X ). In the worst case, convergence was

obtained for (15, 10) points.



The final integration over the impact parameter was carried out using

a 31 ~ point repeated Simpson, and the contributions from each (f'm,' ™, )
were added together. In tables 2.7 and 2.8 we give @ \’t"_"; ('“"u"'“‘a.)'z
for each ( vv,, ™o ) and varying @ for the transitions 2"‘P—->4|®
and 'S 3'p respectively at V% = 10 . For ('S > o'
significant contributions occur only for e < Sa, , except for

~v, = ©  when they arise from e<Ta,- Inthe 2'P w‘Q)
- case, however, all (~w, v, ) terms give significant contributions
for @ &\S a, . The oscillations in some of the qu-_ ( TV, v )
correspond to a change in sign of the correspondipg matrix element.

In table 2.9 we compare our 2"p% D ( m= 3,4 )

cross - sections with those of Stauffer and McDowell (1966) mentioned
in the introduction. Considering the simplicity of the cut - off method, the .

two sets of results are in remarkably good

-18~




TABIE 2,

v_wwu (m ,m2)|? for the 2P » 4*D transition at V® = 10

Yg.uaov (-1,2) o. (-1,-1) o (-1,0) o (=1,1) . (=1,2) o AO»INV o AO.IAV ° AO.OV

AT TR

o1 1.92,-5 2,16,6 1,78,k 66,6  8u12,-h  3.23,-6 2,86,k  3.68,-3
o3 6oli1 ,=3 3076,=k  4.o60,=3 3028,=4  8018,=3  1.6h,=h  1.7U4y=5 1031,-2
o5 1025,-2 Bo3ky=l  5.83,=3 2.46,=ly  6.35,=3  1.23,=h% 7.39,=% 2,60,-3
o7 1055,=2 1624y=3  7060,=3 206ly=l  8o77,=3  1.32,=k 7.22,-k 4o56,=3
9 1081,=2 1059,=3 9ol0,=3 349,=k  1016,=2 1,75,k 6o2h,=4 7056,=3
1.2 2,22,~2 1098,-3 1,08,-2 Lo51 y=l 1024y=2  2:25,~4 1.104,=3 60145=3
1.6 2,61,=2 2026,=3  1.06;-2 bolidiy=li  9ok5,=3 2022,k 2,78,=3 9031 y=4
2.0 2,78,=2 2.37,=3  9.38,~3 3o54s=l  5086,=3  1o77,=k 5.06,=3 5046,
2.6 2.71,-2 | 2036,=3 6.83,-3 2,00,=4 1087,=3 9:99,~5 - 8.71,=3 9071,5=3
3.0 2.53,~2 2,26,=3 5016,=3 Tolliy=li  UoThy=l  5.70;=5 1.09,-2 2,01 ,=2
40 1.87,=2 1.86,=3 2,18,=3 548l,-6 30Tyl 2092,=6  1036,-2 Loli3,-2
6.0 7030,=3 1.07,=3 3063,k 4.08,=5  1.47,=3  2.04,-5 8.l49,~3 3.78,~2
8,0 2,47,=3 6e175=k  1038,-h 4o18,=5  4oThy=k  2:09,=5 2,91,=3 1.29,=2
11,0 5061, 2,87,=l  60,84,=5 Bo36,=6  1:81,=5  L4o18,=6  L4o91,=h 10735=3
13,0 2,40, =4 1069,=l  2083,=5  1.9hy=6  9e2hy=6  9o71,=7 2.28,-% 815,

15,0 1006 ,=l 9653,=5  2026,-6 6060,=7  L4o87,=5  3.30,=7 1.92,~4 9.56,=l



TABLE 2,8

m_w&?«v_» at V¥ = 10 for 1*S » 3'D transition

7& 0 1 2

.025 6.46,-9 7.18,-10 1o04,-8
«05 9026,=7 Lo71,=7 108l,=6
075 3.78,-6 506ly=6 1.07,=5
o1 Lo39,~6 10765,=5 2,10,=5
e15 9.03,-7 4003,-5 2,87,=5
o2 3.55,-8 1691 ,=5 2,86,=5
<okt 6019,~7 50975=5 4.02,=5
o6 6.92,~7 8017,=5 5036,=5
8 2,32,=6 9068,~5 5049,=5
1.0 5¢713=6 1401 -4 4,90,-5
1025 1.20,-5 9e575=5 307l 3=5
105 1.98,-5 8.29,-5 2.51,=5
1475 2e775-5 6070,=5 1048,=5
2 3.47,-5 5008,=5 7057,=6
2,5 o2l =5 2:45,~5 - 8eT1,-7
3 Lo17,=5 9009,=6 7.30,~8
A 2.72,=5 1:47,=7 1049,~6
5 1231,=5 6e57,=7 1036,=6
6 5ol1,<6 1436,=6 7:06,=7
7 1:99,-6 1029,=6. . 2,66,=7
8 6030,~7 9,38,~7 60,03,-8
9

aoUUulﬂ WomNulﬂ 141 Wvlao



TABLE 2.9

Cross - sections ("|Tq,°2~ ) for proton impact excitation of
\
the 2 P ~3 v D transitions

(a) this paper (b) Stauffer and McDowell (1966)

2'D 4'D
E (Kev) @) (b) (@) (b)
31.25 10.3 6.1 1.64 1.11
62.5_ 5.69 4.1 8.71)-l - 8.2'—|
93.8 3.91 3.0 5.93,~ | 6.3~
125 2.97 2.4, 4.50 - | 5.2,- 1
188 ?.01 1.7b 3.9 3J -} 4.0)—[
250 1.52 1.3, 2.38, - | 3.2 -
TABLE 2.10
Cross sections (Tr=aq ) for proton and electron impact excitation
of the 1'S = ~'D transitions
Electron energy (Ryd)",‘,g,.'oq 3.2.5 4-60 585 10-85 15.9 5
E (I(ev) '3'l-.z-_5 b2.-5 3. 128 250 23715
Q (3"‘D) ; 3.55"-3 3&1.,)—-3 ‘2693 2273 1393 1.00,~3
Q ('D) ‘|,--8’?{-3 V-72,=3 14373 1aasa 7.33-4 5.397Y

~

(In both tables the figuresfollowing a comma indicate the power of ten by

which that entry is to be multiplied.)
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agreement,
The cross ~ sections for the \ ‘S - -w':b ( =3, 4 ) transitions
are given in table 2,10, Their magnitude is controlled by the quadrupole

matrix element which, in the.quadrupole length representation, may be

written as |
Ri¢™ = 4uN® 5 1< Fe |2 Y, (T, 7R
3 ™ K
Using o )
LIEN7=-0FK <o 48137
. AE..'J de

where ? is any operator (Landau and Lifschitz 1962), we obtain the
equivalent "quadrupole velocity" representation, Stauffer and McDowell (1964)
.found tha.t P::: is quite sensitive both to the choice of the ground - state wave
function and to the choice of the "length" or '"velocity" representation. For

the ground state wave function they write

TP = Nelaxp-lopms bp ™)+ 2xp = (%pry4 byr,)
ERARET N
€hoosing various sets of variational parameters. They also examine

(k = 2) the analytic Hartree-Fock function of Roothaawm et, al, (1960). These

together with the differences they give between the calculated and experimental

ground state energy, are listed in table 2.11.

~20~



TABLE 2,11,

Wave functions and energies for H e I:g S)z 'S ]

(AE = Eexp ~ E(k) calc.)

R g b o Ch -AE&(%.W) )
i z %g_ o 0-0560¢
2 — —_ — 004204
3 2-1® 119 o ©-02830
4 1§50 1.950 0-366 0:01240
5 1-436 2.209 0-292 ©:00230

Note that k = 3 corresponds to the wave~functions used in our calculations.
The quadrupole strengths obtained in the quadrupole length Q&) and quadrupole
velocity (Q.V.) representations by using the ground state wave-functions

of table 2.11 are given in table 2.12,

~21-



TABLE 2,12,

Quadrupole strengths ( anq )

R 1::1,22]0;: r i) Q.L.) R Q.V.)
r(%) :
©- 0b2 I's>3'o
i ©.02090 003759
A Q-:0547| 0:05993
3 0+ 12934
4 0-:-02207 -
s 0. 07139 O: 06506
0-032 Vs> 4'D
l. ©0-o\07 ©-01947
2, ©- 0270l ©-02987
A, ©.0650 >
5 ©:03510 —_—

as uncertain by as much as a factor of two.

(2
Because of these variations in RL‘:.) our results must be regarded

A similar variation (from



- 0,08 to -~ 0,150 in the "length" formulation) occurs in the matrix
element %(O) appearing in Fox's work (Fox 1966). .In each case the
dlosén ground state wave function corresponds to the highest abeolute
calculated value of the matrix element concerned, in the '"length'" fomulation.

For proton impact, there is no significantloss of accuracy in taking the
final proton velocity to be W, , but this is quite inapprop¥riate in the electron
impact case until very high initial velocities are reached. Instead, for a

~

proton velocity vr we choose an electron energy such that

vi= % (V¢_1+Vf)

and Wi (=) = (vE+ig EL@) Ty,
where V;. is the final velocity of the scattered electron. This cannot

be an accurate procedure close to threshold , Where our model is inadequate

in any event , but should give more reliable electron ~ ilﬁpact cross~sections for

WL7 5¢& ‘-G , say. Inthe electron impact case our | '_:S"é., 3 ':i) results

at six times threshold energy are almost a factor of two higher than Fox's results,

but they appear to join smoothly to a reasonable extrapolation of his curve at about

fifteen times threshold.

In Figure 2.1 we compare our calculated values for q ( 'S 4'D ) with

recent experimental values of de Heer and v. d. Bos (1966). We also show on
the graph two experimental values (obtained for electron impact) of Moustafa et. al.

(de Heer, private communication). Allowing for the uncertainties in our computed



values the agreement with experiment is satisfactory. These values, however,
lie a factor of two below the published electron impact measurements, supporting

the suggestion that the published data is too high by perhaps as much as a factor

of two.



FI1G. 2-1

Cross-sections for H'+ He (I'S) H'+He (4' D)

—— This paper
o de Heer and v.d. Bos(1966)

+ Moustafa et.al.
(electron impact)

50 75 100 125
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CHAPTER III

The first - order _impact parameter method with cut-off
§ 3.1 Introduction

In this chapter wé review the work of Seaton (1962), Stauffer and
McDowell (1965) and Stauffer and McDowell (1966) (hereafter referred to as
papers A, B and C respectively), on the excitation of atoms by electron impact.

The first Born approximation, which is shown in § 1.3 to be equivalent
to the first - order impact parameter method, is known to give correct results
at high energies for non—réarrangement. collisions, but at lower energies com~-
parison with experiment shows that Born's Cross~sections are nearly always
too large.

The physical assumptions made in Born's approximati_on (cf. Chapter I)
~ will be valid at all energies for impact parameters Q; 2 d“c( , where

Ty is a length comparable with the atomic dimensions. At low -impact energies,

however, they will be invalid fo_r €. $""q . The equation (1.16 ) for the
excitation cross-section thus includes appreciable contributions from the region
where the approximation is invalid, and one mighf therefore think of introducing

a cut - off in (1.16 ), to obtain

(3-1)

. oo
Q(c-aJ)z ZWS PJ"- (Qi)(’,;, ‘LQ,; (Q'oa')

Ro



fo‘r the cross-section for excitation from initial state i to final state j.
Here the cut-~off Ro is of atomic dimensions, and is chosen to give agreement
with Born's approximation in the limit of high energies.

In _§ 3.2 we give the theory of paper C for electron excitation of a

general transition. A justification of the various approximations made in the

method is given in § 3.3.

§ 3.2.General Theory
In the first -~ order impact parameter method, the transition probability
for excitation from initial state i to final state j is, using the notation of

Chapter I and II,

) oD
P, = N* . c'pb ll'
’ (2ti+r) e Vj dt
T (3.2)

degenerate
states

thr—g‘

% —
VJL &) = JTJ ) | _(QC ) J‘.’f_' (3.3)

IR -l

r .being the position vector of the excited atomic electron, and T& ) F‘_-EJ are
initial and final wave-functions of the target system.

Let 3_ be the frame of reference with respect to which the co-ordinates

of the system are defined. In the frame z , the ? axis lies along . and

the 2C axis along e - The internal wave functions of the target system are
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/
defined with respect to a frame I which is at some arbitrary orientation

with respect to J_ , so that

'y" ,(resTHy) —ZCD (, p;x)? (Ms:m)

M’ Wn;

3. 4)
(3
where :D (R rs % ) are the matrix elements of the rotation operator
"‘\'N\ ) J
(Edmonds 1957).
Now expand
n
R, & ) A
= 2 P(R.T) x,
lg - I\ —_— (3.5)
a~ A+
?
andput 7, =, T = R= le +uit]

Then the transition probability from state

\ne, s, T, ”3'7 tostate AT, 4,37, MSa.? is

R eo)= ) 2 2: :D
2.L +l
' degenerate ') _,. “J 2 '
states )\ I
| 'F' AN

' 2
D D D (am) Mk\"“(j'jtﬂ;‘m‘;>

(3.6)



where

MY (33, M. - '
M ( 3,32 I MSQ - <FR-L2.SLI,_ sz_, H/AH:\T'L‘S'Sl MJ'2(3-7)

W?\}L =T * }\‘.L,('e.:¢.) being a solid spherical Rarmonie

operator. Hence, (Edmonds 1957)

A ’*'"51(:’- A j‘)(?
MM ) M P M, LJL\I%O\)HP.W

3.8
where the fimal matrix element < \13_3,_“ ‘% (A v 3,7 is independent
of M, 4 M, '
s Ja
pt
Al A‘L o0 LP
8o 7T = S &—é—’;ﬂ Yt\}b (6 ,O.) d& (3.9)
— oo

where Cos ® _ '\T;,t

Omet—

R

¢
On averaging over all possible orientations of z ,

B = Num® 5 5 T ug o]

(2,428,473, A (AP (3.10)

where it has been assumed that the degenerates states are those with all values
of J » M:‘ consistant with the given values of L R S.
Using

4



NSy = 5 |Te M SAs7<LmMSMslesTmy o

M.oMg

gives F““(QL) in the (LM,  SMg ) scheme as .

B a = Mty I KRGy, el

a3

-where
1Tl LGN TN 2

-2
L ¢p A
© o o

= 1<e,05,0ly |ne05,071* (

The integral in (3.12) can be evaluated to give

Tl 2 K ()
. ot OO IR VY

.(See Appendix B of paper C)

.where P I gé P

T

Reciprocity must be satisfied : that is we require
. (>
W Ty (§:) = ©;1; (o)

-5=

(3.12)

(3-14)

(3.15)

(3.16)



where Wa is the statistical weight of level a, and (’ J is the impact
parameter of the incident particle velocity V" 3 in the time - reversed situation,
Because energy and total angular momentum are conserved, (J § and 'v'd

will differ from (:L and '\rc . Since

|<Tata NG 2 IR AR, %

the transition probabilities given by (3.12) will satisfy (3.16) if

\TMF(PL_“Q:. M el

Let W, =3 mww and W, =24w®  be the initial and final

energies of the incident electron, so that Eg i = W.i -We o Since E "'J

is small (typically of the order of a few electron volts), we may replace LA and

W g by W = % Wg + W J ), an approximation that will bé valid except at

low impact energies. We also assume that the initial and final orbital angular

momenta of the incident electron are large compared with their difference, so that
Ci Ve o~ (.:3 '“'j . This is valid for all incident energies if

e ¢ 77 G o the expec;tation value of the radius of the initial state ., andat

high energies ¢f Q ‘-,7;:‘,’ . Then reciprocity is satisfied if P C and. [5 j

are replaced by

-+ I () )
P=2J3 w / \%e (3.17)

]

p— .
where —L.H is the ionization potential of atomic hydrogen.

On integrating over impact parameters, the cross - section then becomes



Qv = gan (o (o Y 5 (350)

(ze,x) VWl VAE; x 4T W
X l(f‘,_L?_“_%A“P'LJ‘ Z x' (Po (q'oa.)
A LM_‘_‘.)Z. M- B\l(MP_)I (3-18)

where AE‘;‘. = "E,;:\\,

'X-H,KPJ = Foz {k,P* (-Po) - (, \+ ‘%—;\ K; (Po))

(3.19)

and \30 is @ with R replaced by the cut - off Ro.
If only terms with >\ € 2. are retained in the multipole expansion

(3.5), we obtain

Qlw;) = N Zi_ (I" ( )7S(P°)

- R(ﬁ) .
+ 2 g'gs‘ () (£5) 43 g
(3.20)

v
where |
R = AT 57 gl @ e

2 24\ =0

P (R)= pki(p) Kolp)

wi GUPY = G +TR(P)

i



This is the expression obtained in paper B, where it is used to calculate
. . . (t‘)
cross-sections for electric quadrupole transitions. If AR =| ) R =0

and (3. 20) reduces to Seaton's expression for optically allowed transitions

§ 3.3 Justification- of the method

In order for the introduction of a cut-off to be justified, a sizable contribution
to 'th_e cross - section must come from impact parameters greater than the
chosen cut ~ off R, an'd this is verified for AQ=| and 4AL=2 transitions
in papers A and B respectively. A critical point is the sensitivity of the
calculations to errors in the choice -of Ro , and this is discussed in § 4.3.
Above five times the energy transfer, we may obtain Q to within a factor of
two even if there is an error of 25% in Rg , when AR g2 , although if
AL > 2 we would expect a gre;.ter sensitivity. For 4AQ=| , Seaton
suggests choosing Ry = "1_"-6 as a general procedure. This is also reasonably
satisfactory, m the AL =72 case, but it takes no account of the final state
distribution, and the authors of paper:; B sﬁggest that a suitable weighted mean
is more satisfactory. They adopt

of . and 7,
2 J

,‘-q' - ('ZQ'>+I‘)F<+ (?'Q"-+|)$>

(2R,+1) +(22c+1)

where L( is the lesser and £ ~ the greater of the initial and final orbital

angular momenta of the atom, with a similar definition of '1_'; and ~+ > in terms

of the initial and final average radial distances of the atomic electron from the

( =8~

(3.21)



nucleus. For the six- A = A transitions in hydrogen considered in paper B,
the maximum error in R , is less than 20% if R, is chosenas B Tash
while if R o is chosen to be Fu it can be as large as 60%. For AR =|

transitions, r is a better approximation in about half the cases considered

O
by Seaton but when it is worse, it tends to give errors of: order 60%.

Seaton's justification of the subsidiary approximation of putti_ng Te=7
and. T = R is as follows. .The product \"A! €) I:- .Td will be small
for - q-777|-" , where "F < 18 defined above. Since R?, e . ,the distance

_of closest approé.ch, the replacement is justified if Q¢ 77 "Ti , implying
- tillat Rgo is largef than A, . Infact, this approximation makes the
introduction of a cut - off necessary, since ?J . ®© as Q (Yo - The
approximation is less good for large A than for small A , but it should
not be significanﬂy worse for A =2thanfor A =1 ( AL =] ). It results
inthe A = O term in (3.5) giving a zero coﬁtribution to fhe probability, since
q L and {.Ej are orthogonall and independent of R. If this assumption
~ were not made, the A= O term would give a non-zero contribution, and would
be 'domiha.nt in some cases. This would happen, in particular, whgn AQ =0 )
since the angular parts of @L , mj are then not orthogonal. Also calculations
of R o for 4= 0 transitions in paper B show that .the criterion Ro v 7(

is not satisfied, and so we cannot expect the method to give reliable results

for these transitions.



3.4 Results and discussion

The methodsl described above yield cross - sectional formulae which are
sufficienﬂy simple to be used for the estimation of large numbers of cross-
sections_, and whiqh give low energy cross-sections which are smaller than those
obtaiﬁed in Born's approximation. In particular, they enable us to estimate
.cross - sections between excited W g = W'Q/ states of hydrogen to
within a factor of two, provided € %0’ . Because retaining all terms in the
expansion (3.5) adds a positive amount to the probabilities, cross - sections ob-
tained using (3.18) are higher than those obtained in papers A. and B. They
sti_11, however, lie lower than the Born approximation at low- energies
( -c.f.aFig 4.3). The calculated results for ag =0 using (3.20), and

‘ choosing R  so that the impact parameter croés - sections agree with Born's

values at the highest available energy, are always higher than Born's results at

| . iowe_liaénergies, confirming that the method is unreliable for these transitions.
Equation (3.18) was used in Paper C to calculate cross - sections for some

transitions in helium. The results for the 2'P 3 and 4 ';1_)

transitions are given in table (2. ), and are in good agreement with cross-sections

obtained in the first - order impact parameter method without cut - off. The

application of the methc;d of paper C to transitions in hydrogen is discussed in

~ Chapter E
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CHAPTER IV

4

Electron excitation of Yv = -w' transitions in hydrogen

§ 4,1 Introduction

Collisional excitation of hydrogen by electron impact is of great importance
in many physical problems occurring, for example, in plasma physics and
astrophysics. In a number of cases, theoretical studies require cross - sections

Q.,,,,,;l for ~ >~/ transitions in hydrogen, where ~v and '1\,( respc_ectively
are the initial and final brincipal quantum numbers of the atom. For example,
consider a r-ecombining plasma consisting only of hydrogen atoms, protons, and
free electrons which have a Maxwellian energy distribution of temperature TQ‘ .
Let N (c) be the number density of free electrons, and let N (n), N (o' /)....
be the number densities of hydrogen atoms in levels with principal quantum

numbersn, n’ ....

Bates, Kingston and McWhirter (1962) show that these number densities

are governed by an infinite set of linear equations which may be written as

Nen) EN) CKiw,6) + 2 Kvin) ] + Z At o)}

wXTv wn

= N() J NG K/, ™Y+ 7 N YAl )
w’&'w vV

*Ncc)a [N(c) K (c, ) +P(w\3

@“.1)



for all p=7 \ . Here p (vv) is the rate coefficient for radiative recombination,
A (n, n‘ )isthe Einstein spontaneous emission coefficient and K ( c':i,: n),

K ( E;c) and K (n, n' ) are the electronic rate coefficients for ionization,
three - body recombination and excitation or de-excitation, respectively. The

K's depend on the cross-sections Q n n/ , being given by

N &t
Ktw, iz 8T 1 8 S Qn & EE
m@"m (2.1"3.1'\" _
En-E,/ (4.2)

where me is the electron mass and k is Boltzmann's constant. The electron re-

combination coefficient ok is also dependent on the q nn/ , since it is given by

A NZ(c) = —d N = N (1)

dt
= Ny 2 NGVIKR, 1) + 20 N(wNRVD)
EL w7\
e NG kLe, N+ pN] 4.3)

The infinite set of equations can be reduced to a finite set, and the recombination
coefficients obtained from (4.1) and (4.3) will be exact for a wide range of Te and
N (c) if the A)o, ‘p' s and K's are exact (c.f. Bates et. al., 1962). The A's and

P's are known to a high degree of accuracy and so, in order to calculate the

recombination coefficients, we need to be able to calculate large numbers of Q nn’

to a fair degree of accuracy.



In the past the values of thé § nn’

‘used have been based on the classical
foﬁnulae of Gryzinski (1959, 1966), but these have the wrong high ~ energy
behaviour. Because of the large number of transitions involved (approximately
nn / for large n ), detailed quantal calculations on all of them are extremely
lengthy, even in Born's approximation. We use the semi~empirical formulae
developed by Stayffer and McDowell (1966), henceforth referred to as Paper I
(see Chapter III ), which give a comparétively quick method of estimating semi~
classical total cross-sections (with the correct high - energy behaviour) for

setsof n ~ n ! transitions, to within a factor of two. The results are

compared with Born and classical estimates.

§4.2 The Classicai Impulse Approximation

In the classical impulse approximation, the following assumptions are
made :
1. The projectile is treated as a classical particle following a classical
trajectory with impact parameter @ , and initial energy E.
2. The binding forces in the target do not affect the interaction between the
target and the projectile.
3. The target electrons do not interact with eagh other during the collision,
and their interactions: with the projectile may be treated independently, the
resulting cross-sections being summed to give the total cross-section.

4, The interactions of the projectile with the target are Coulombic.



. mass m,, and an l;\c;dﬂ.ne leckron
Consider the interaction between a bound electrorb(nass mg . Let ¥,

and <, respectively be their initial velocities in the laboratory frame, ©

be the angle between v, and vV, and @ be the angle the plane of '_\_f'
and V= Yy -1, " makes with the plane of W, and <, . Letprimes
indicate the same quantities after the collision. From the laws of conservation

of energy and angular momentum :

‘ / - 4.4)

L v rZah o, _—_"‘2'_' m\f\r.’a'-f'é:ﬁw:_'\r&’z (4.5)
Let Vg be the (constant) velocity of the centre of mass. Then

TN + vy T, = MVT ) 4.6)

where M=m‘+ m, .

Putting M; = o L= ,2)
M
we obtain
’.E"\=--Y}"“m¥ y Yo "‘-\-l‘}"'"’-l—’ (4.7)

so that, if _§_ is the angle between V and Vg ,

4.8
’U'\q':. V«; -2 ﬂ;V%\, COST " Mz.z v* 4.8)

and Afp = \LV?V (ccs@' -cos P ) (4.9)

v, Vg

is the energy transfer, where |-L = 7



From (4.4) and (4.6)
Using this in (4. 8) gives

CQS‘§ = f““a.'\f':" '«\,‘f\)-"' +('m|-'m.3_\'\r, 5, Cas 93

MVq V

(4.11)

The classical deflection, © , is given by

e = "IT'—ZT

¥ (4.12)

FLET )] R

QD

I

_where g‘ 3/

'rm,“

.\<

Figure 4.1

For interactions of the form V (r) = ﬁ r -v it is convenient to change

i
4=£ , %=r¢ ()

the variables to



so that, in particular, for coulomb potentials (¥ = 2),

- ® d+ | L |\ -2 -1 -Z
EX ‘:E““ ~ yfi Tﬁ,‘} ]

A AT ~ ol Rl

o
\ 1 '/2.
where *Mu\. = ‘y; + ( H'a’o )
On integrating, we obtain

Cos E? = .__‘_-l*.__‘a'o_&
= (1~ (ZTEQ)Z)"';Z

= E |+ ( t:f!&)zl-‘li

.19
From figure 4.1,
Cos §‘ = CosP cas (W —ZQ})

+ 5§ si m—zT}) cos ( @) i
| 4.14)
Using (4.11) and (4.14) :.in (4.9)

A = - Q_P_V}Vccs"ﬁ C coSE -Sl.ni C.o$§ bqvxw})
_ 3’ (4.15)

+



'
gives, ,from (4.12 )

Clx®) 2 ()2
_Hence _
ADE = —Z\-LVXV EN,_'\r - M2 4 (’m!-mg\ v, 0, Cos©
c\+m1)v1\/ M

— T,V SIn© Cos B ]

or

: \ :

AE = — K, E.E,_—'E| gz o, f Gy, -m, ) 05O
4ot

- (m\q-"m,a_] s S1n® QoS @3]

where Wi = 4™, | | .14
Crvyemn, Y

The differential cross~section for a collision in which the incident particle
loses energy E is then obtained on integrating over ® (Stabler, 1964). |

Since the differential cross - section must be real and positive, we have from (4.17)

da (s, v7,) ='W(5k) , (225 - %)
d. (AE) val4El £ 4.18)
where
Q, = \-L'\r"v,_ sin G,
b - \<‘Q_ E E:__ E\ :“' ";‘ L"W\""“';_)‘\r"\rl Cos ®J
(4.19)



This is real provided - TU £ ® < , which, by (4.17) occurs if

W= 4a% sin™ Cos” ~(AE vb*ces? 2
Cb' n T? T} oS Tg/\ 7/0 (4.20)

We can re~write this condition as

fat ot — [ Q4x*) A+ Y 0

which is true if ¢

We now assume that the distribution of V is isotropic, and obtain the
differential cross - section in the form

cos©,
V_O_LI(‘“',,\T,_\ = _1 V do (v,,v,) 4 cosd

dag 2 d.AE
cose

] |
(4.22)

where the bounds on cos © are obtained from (4.21) The ionization cross-

seetion for particles of energy Eg incident on particles of energy E ) bound

by U is then

Qo LE,,E,V) = _L. S Y, dov (v, ) LOE
Lag
(4.23)

Upon integration, this becomes
Ruon ¢ €y, B V) = A(E "U) Ug &3 ¢E,4U
BEWER

W

(4.24)
-8-



\ 28,43V . 3

3E, vz Et.‘E.] ,  Eu E_H'U @.24)

I

Excitation to a descreté state is in a sense alien fo classical th;.aories,
'which give directly only the cross -~ section for a colliéion in which an energy
between E and E +d E is transferred to the target electron. The choice of
which classical energy band is taken to represent the final quantum state is,
to some extent, arbitrary. It is c_:l_lstomary to assign to the final quantum state
the energ‘y band lying between it and the level with the next highest quantum numbér,

80 thaf, for excitation from initial state n to final state n’ ,

A Ew,wl S T AR < AE’N,W‘-ﬁ-I
" (4.25)
where N -
AL, o T 2 (. - ;‘,7'&
Using this , and (4.24') gives Stabler's expressions for the excitation
cross - section at impact energy W N
S 3 :
- W, - AE .
qw (Wil 2¢ " NW) ) A'E"vn/ LWe SAE'N;‘J-H
YWE P AES
(4.26)
3, - 3
2 %,
- [‘w“ —AE’NN‘) - LWL"AE“.W‘-G-J
2 [ .
A E A EN. W‘*l-‘
AE, i, €W & Em BB v o

-9~



3

: /.
= 2 2E+3AEnn - 3 - (w¢ "AE'hm:‘q-l) =
W
3We 2AE2, 2 (Wi ~En) E.: ABZ ., ?
Ew+AEna! £ w._ < E"'-v"" A&, 4 (4.28)
WL [. AGnn/ A& 'y AE“!\'*AE!“\'-“\*-I] J
Wi 7, En+ QK vy, (4.29)
Since A\ =T AE,\ i is small, almost the whole incident energy

spectrum is spanned by (4.27) and (4.29).

Gryzinski (1959, 1965) expresses (4. 24) as

q CE,, E'LJ V) = S %(.'V.) E ')"{ LE) SO

ac=)

“+ \—g‘_-\r (\- .)eose§] g.(eu.e
Eq 'u-ﬂ- €=\
1a€)

(4.30)

by integrating over d (& E),

3
g = V) ( ) 7 (4.31)
(S AGFEN -'L\r,-\r cor®

and @—( © ) is the angular distribution of the relative velocity, normally taken

to be isotropic. Gryzinski (1959) replaces g.. (V) by

%ot\l'\ = VW

3 )
L ™) 2 @.32)
_ and, using (4.25), obtains the excitation cross - section
G
q LWL\ = Q C AE““I \ - Q C AE“.“I_‘.‘.)
' (4.33)

~10-



where

3, | o
W =T (i [ 8 (T8 (&)
i VUiE < W,
Sl (&) (l)
KE(H- '2‘;‘)( ‘-#:\] g (4.33)
(i s of T o ) 2 U+E . 5 W
 For large n!, AE__.—-AE, oy —;;',-3 (4.34)

and so, by Taylor's theorem

&
T =5 [ 8 nne,,, +O ()

(4.35)
Taking the first term only in this expansion gives Kingston's (1964)
approximation to Gryzinski's formulae :
1< . 3
Q N (W) = ! We A\
~' 3 w‘,' AE':L.“,‘ w' —
- / .
A TEW-3kny . &Ew, ‘¢ 2 - E,.. & W,
BAE, ¢ W

l
,_'_. QEN\--EN (SE-N ’ E ~ - -
R ()

& AE"“
1\ 2B E ,Nl ), W'L
4.36)

~11-



A symptotically

\ P ~J ‘.7E““ 35"',)
~ wiaw 3W:Wae_ )’

Q

(4.37)

whereas, from (4.29)

s ' i (-75,,,—32 N - ( 2E~ 4
N — d ¥
qw‘hv. w..; D 3W; (“,AE ) E 2_ A, )]

(4.38)

S0 tha_t Q:“, and Qi “; will agrée at high energ'iés only if n / is large,
and n is small compared with n ¢
Gryzinski's (1959) cross - sections, given by (4.33) are in good agreement
with experiment at moderate energies for a variety of inelastic processes.
Stabler, however, points out that Gryzinski's work is a modification of the
mexact" classical impulse approximation, because the subsidiary approximation
of averaging over the initial angular distribution of the atomic elect rons has
‘been made. Although in general this approximation improves the agreement with ex-
periment (due to the decreased weighting given to collisions with long interaction
times), it complicates the form of the .cro ss-sections, and makes the equations
behave improperly uncier time.- reversal.
A major defect in classical theories is that the cross - sections behave
as WL— ' instead of W c'..—‘ log W, forlarge W; . Ina second
attack on the problem. Gryzinski (1965) averages Q 6 °veT a velocity distribution.

~12-



v,

o
~ -
.%_GL‘\"‘-_ ) = _ | ( s o) L i
et Ly (4.39)
where '\T"b is adjusted to mormalize his distribution. When n = 3, a log ;

term appears in QG_ , 'so his expression then has the correct high ~ energy
behaviour. The velocity distribution in an atom is, however, never of the

form (4.39), being given by

Qler) db> = 16 &€
T et 4

where 2

(Mapleton 1966). Gryzinski's (1965) - final expression for Q ¢ is

therefore essentially empirical, and is unjustified from a theoretical point of

view.

_§ 4.3 'Application of the impact parameter method Wiﬂ.l cgt ~ off
Using .the first order impact parameter method with a cut - off Ro,
Stauffer and McDowell (1966) obtain equation (3.18) for the créss - éection for
excitation of an atom from initial state a to final state b . When the atom
concerned is hydrogen-like this equation becomes much simpler, since the

reduced matrix element may be written

-13~



<Ml Y, i 71

= (‘Q‘\ Qz )\ -% |<F2_2-,_'h'vz.l=o ‘ Lj/,m | P. 2.’“"2.,:07\2-

O o o
(4.41)

(Edmonds 1957), where \Y‘| L, mvg|7 isthe ( "W, L, we, ) hydrogep

atom wave function and

N
"X?\o = v Yao(0,9), (4.42)

9, ? being the spherical polar co-ordinate of the atomic electron in a
suitable reference frame.

Noting that

g Y™ (0,4) NaolS,$) No (©,4) &2

/

= L")WJEM|XQ+|‘)(2Q’+|) (2 A —Q',) ( L AN L )

L\—ﬁ' © 0 O - O W
(4.43)
we obtain
) }
Q'tvﬂ.,\'\'l"(w")-A(zn'-H’)x L A
A-2 2 ( )
AL N MR e )
2 L2A-2
i A+ % 3 ~rev (e - a)" (A-R)! (A t.44)
(8]
where "*Q'
%//\.UL' ::-° (R, ('r')@. ,z,("") oLvr-
(4.45)

-14-



v = W

X (4. 46)
and XH’ ( Po ) is given by equation (3.1_9) , ‘30 being the "5 of
equation (3.17) with R replaced by the cut - off Ro.

Following Stauffer and McDowell (3.21) (1965$ we chose
' ?
L2 7 41) + (2241) | (4.47)

where £ < is the lesser and 2,7 the greater of the orbital angular momenta
Q and Q¢ , with a similar definition for T, and - interms of the

| initial and final average radial distances of the atomic electron from the nucleus.
We examined the s:ansitivity of Q (W¢ ) to changes of up to 50% in the above
choice of Ro for the transitions |Ser 235> 3p or 3d -evaluating

the cross - sectionsat m =1, 5, 10, 50 and 100. The results for 138> 3P
and V% ©1d, are shown in figure 4.1. Below m = 5, the cross - sections
are extremely sensitive to choice of Ro. Changing Ro by a factor of two alters Q
by more than an order of magnitude for the forbidden transitions, and by as much
as two orders of magnitude for the allowed transitions. Above m = 5, the
forbidden transitions are the more sensitive but in no case does q change

by mofe than a factor of four. Errors of 25% in Ro give q correct to within a

factor of two. We would, however, expect larger errors when the lowest con-

tributing multipole is 7, 3.

-15-~



B . S K
For comparison with Qmm' and Q wn! Ve must calculate the

total cross - section @/ , defined by

wolow e
2K+ ¢
Q\thwc’\ = C?"\Qu““-’ we)
: %
) . N ': 'Q.f-
V- Q=0 ° (4.48)
Equation (3. ), however, was derived using the approximation that the radial

distance of the incoming electron is always greater than that of the atomic
electron. This means that (4.44) is a poor approximation if L==~7%. We

therefore define

"V'" M / L
p— 24 .
% (wy) = L i Z_ ) q)wz,'.“tq_, (W)
"~/ w -0 -0 :
\ (4.49)
where the prime indicates 2 4 Q! , and suppose there exists a function
%- .( W ¢ ), independent of n and n4 , such that
Q. W) = Lis gWVY @, (we) -

We can check this by using Omidvar's (1965) Born cross - sections for (2, 3) and
@, 4) to caleulate. 23, Q 23, Qatand Qs

G-(W;' ) for the two sets of transitions is shown in figure 4.2, and we take the av-
eragé of these curves to give the adopted values of 6-(W ¢ ) shown in table 4.1.

Somerville's (1963) Born results for the (1, 3) and (1, 2) transitions give values of



e— (w l.') somewhat lower than these , but we expect our adopted values
to be accurate to within 10% for transitions not involving the ground state

( n = 1) where the contribution from forbidden transitions is anomolously

low.

TABLE 4.1

Correction Function %- (m) calculated from Born cross sections

m 2 10 60 100 . 1000

g. (m) 0.24 0.13 0.075 0.067 0.046

§ 4.4 Results and discussion

The individual cross - sections Qmﬂ.,w’ Y, (.W;,) and the total cross ~
section Q,““, (We ) were calculated from (4.4), (4.8 ) and (4.10) for
a number of (n, n! ), with Ro = ra. Contributions from the allowed transitions
dominate the sum Q nn’ at high energies. These contributions have the
correct high - energy behaviour (see Paper I), and are related to the oscillator
strength e 3¢ for the particular L-’a J transition by equations (3. ) and
3. ). They are individually in close agreement with the Born results except

when the ratio %.'N'. is small ; that is, when the coupling between the

initial and final states is very weak. (Seaton, 1962). The ratio is large

compared with unity for Am = w/-n £2 , the limiting case being

‘A n =2 when (Allen, 1955) both 6'3(, and QE, s are proportional

-17-



to n” 3 . Forlarge A n the ratio is proportional to n-

\

and is normally
small, We can therefore expect our method to be reliable o_nly for &n =1lor2,
and this is confirmed by the detailed calculations. For example in the (2, 6)
case, ( A n =4), Q nn/ (W ) lies more than an order of magnitude below
the total Born cross-section ann( (Omidvar 1965) at the peak, and only
joins on to-a reasonable extrapolation of the Born curve at energies above
1000 e.v. |
| In figures 4.3, (a), (b) and (c) we compare Qg_q_) 4qa’ (WL ) for all
the nine AL X0 trg.nsitions with the Born approximation results of McCoyd ‘
et. al. (1960), also including their values for the A& = o case. Except for |
3d —,4s (where in any case the contribution to Q'sq is negligible), Q'n&, IR
always lies below the Born value at low energies and approaches it at high energies.
In figures .4'.4, 4.5 and 4.6 we give the ratios of Q’ Q 5 and Qg to
Omidvar's .qe’ for the (3, 4), (4, 6) and (4, 5) cases respectively. (We
found that Omidvar's values for Qz 5 were inconsistant, and smoothed them
to give a constant value of W; QW ¢) . Omidvar's high ~ energy results for
T Wi |
the (4, 5) and (4, 6) cases are too high by comparison with the results given
in the two papers by Kingston and Lauer (1!966). Using the latter results has
the effect of increasing the ratios at high energies by 10% in the (4, 5) case and
by 5% in the (4, 6) case.) ~ When A n=\, neither ;:lassical apprc->ximation
isa 'reliable as ours at energies above 0.5 rydbergs, while below this energy

we are in much closer agreement with Stabler's model than with Kingston's ,

-]18~



pa;r'ticlilarly at the extrem_ely low impact energies of interest in plasma physics.
For 4\ 'n= 2 transitions, our results are very close to Stabler's in this region,
while they lie almost a factor of ten below Kingston's values. Our results do

not show the large peak appearing in Stabler's model, buil: in any case McDowell
(1966) shows this is smoothed out when the model is averé,ged over the correct
energy' distribution (4.40). We feel therefore that the uncertainty in Kingston's

results at low energies may be much higher than his estimate of a factor of two.

Figure Captions for CHAPTER IV

Figure 4.1 Cross-sections for electron impact excitation of H s = 3p,
Is > 3d for different choices of Ro. The solid curves refer to H (3p),
the dashed curves to H (3d), and in each set the lowest has Ro = 1.5 ry, and

successively 1.25 r,, r,, 0.75 r, upwards.

g_l e~
Figure 4.2  Calculated values of the function - for the (2, 3) and (3, 4)

sets of transitions
3 5 4

————— - - -2 3

’
Figure 4.3 Cross-sections for individual 2 9 & transitions in the (3, 4)
case, calculated by the method of this paper (solid curves) and in the Born

approximation (dashed curves), from McCoyd et. al. (1960)

. L B
43@: M 10x Qs p 2)Qs549 32 @sos | (ozlr;
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4.30): MIOXQesyd &) 5x Qpsp (Born only)

® % Qe W) YaQpss

4.3(0) 1) Vg . (2) Qg.ad (Bornonly) (3)Q dop
@ VRdss
N.B. Curve (2) of figure 4.3 (c) should be dashed.

Figure 4.4  The ratios of Q> Q'Nh’ Q,“m toq,v",

the (3, 4) set of transitions, the three ratios being denoted by dot~dashed solid,

and dashed curves respectively.
Fig1_1re 4.5 The same ratio for the (4, 6) set of transitions

Figure 4.6 The same ratio for the (4, 5) set of transitions.
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Electron-impact—induced n--n transitions in
H atoms

K. M. PLUTA and M. R. C. McDOWELL
Mathematics Department, University of Durham
MS. recetved 18th May 1966

Abstract. A semi-classical impact parameter treatment with a cut-off is used to
estimate the cross-sections for electron-impact-induced transitions between sets
of levels of principal quantum numbers 7z and n’ (n’ > n) in atomic hydrogen. The
results are in closer accord at moderate and low energies with classical calculations
based on Stabler’s model than with those of Kingston, and agree closely with the
Born approximation values at high energies, provided " —n < 2.

1. Introduction

The process of collisional radiative recombination in plasmas may be studied in terms
of the elementary atomic processés occurring (Bates and Dalgarno 1962). In hydrogen-
like plasmas the resultant equations involve as parameters the cross sections for electron-
induced transitions between groups of degenerate levels with principal quantum numbers
nand #’. The values used for these have in the past been based on the classical formulae
of Gryzinski (1959, 1965). Since for large # there are approximately nn’ possible transi-
tions between the groups of levels, detailed quantal calculations on all of these are
scarcely possible even in Born’s approximation. The classical values adopted cannot
be correct at high energies in the absence of E~* log E terms in such expressions for the
cross sections. Their overall validity has been estimated to be within a factor of 2, by
comparison with Born calculations and available experimental data (Kingston 1964).
In this paper we use the semi-empirical formulae developed by Stauffer and McDowell
(1966, to be referred to.as I) to calculate cross sections for several sets of values of
and #’, and compare these with Born and classical estimates.

2. Theory

Stauffer and McDowell (1966) show that in the impact parameter formulation of
first-order time-dependent perturbation theory the cross section for a transition
IT'yL, > to another state |[',L,, by electron impact at W, averaged over initial degenerate
(M) sub-states and summed over final degenerate sub-states, is

647N (W)(IH)2 & 1 KDL @@Ly [P

2L, +1)\W/J\AE] & (2A+1)

AE? \* Xu(ﬁo) 2 .
x(4IHW) %(A—,L)!(H,L)!"% (1

where the notation is established in I, and B, depends on a cut-off R, the sensitivity
to which is discussed in I.

o(w)
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When the atom or ion concerned is hydrogen-like this greatly simplifies. We note
that (Edmonds 1957)

L L
| OITLDE = (& 2 ) <Takab, = 08Il = OO (2

0 0
where |T',/;M, > is the n,;,M,, hydrogen-atom wave function and
Yo =1*Y20(0, ¢) 3)

in which (, 0, ¢) are the spherical polar coordinates of the active electron in a suitable
reference frame. Thus

Ornitrnats( W) = 24(;;) (_AIiE)z 2,\' %_;;_)*_lé;—“"’lz

(l1 Iy )\)2( AE? )" . Xu(BO) (4)
X
0 0 0/ \4,W/ T A—p)(A+p)!
where

fui = [ PR RN )

0
where R,() is the radial part of |I'/M,), normalized such that
f r2|Ry|?dr = 1. (6)
0

Equation (4) is a poor approximation if [, = I, (cf. I). We wish to calculate Q,,.(W)),
defined by

Oun(W) = — "i S @4 1)Qum(W). )
Let i o
an’(Wi) s lgo z= (21+ I)in n’l’ (Wl) (8)

where the prime indicates / # [/’. Then suppose there exists a function f(W)) such that

Onn(W) = {1+ f(W)}Qnn(W)) 9
and f(W)) is independent of n, n’. We can check this by using Omidvar’s (1965) Born
calculations for (2, 3) and (3, 4) to calculate Q,;, Os3; Oz, and Qg4 The resulting
values of f(W)) as a function of m = W,/AE,,. are shown in figure 1. The known Born
(Somerville 1963) values for the (1, 3) transitions yield somewhat lower values of f(¥))

06
0-4}
™~
02
~ o1}
s -
Y
0-0iL__ . e
| 10 100 1000
W, IAE

Figure 1. Calculated values of the function f(W,) for the 2 — 3 and 3 — 4 sets of
transitions: full curve, 3 — 4; broken curve, 2 — 3.
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for m < 20, but the adopted values of f(W,) given below are expected to be good to
within 10%, for transitions not involving the ground state (n = 1), where the contribu-
tion from forbidden transitions is anomalously low.

Correction function f{m) calculated from
Born cross sections

m 2 10 60 100 1000
f(m) 0-24 0-13 0-075 0067  0-046

3. Results and discussion

The cross sections calculated using (4) and (9) are to be compared with the classical
estimates of Kingston (1964), based on an approximation to Gryzinski’s (1959) results,

(K) 1 ( W, )3’2(7En—3En' En) 10
" ¥ WP WAES, \W,+E,) \ 38E.. W, (10)
for W, > 1. Asymptotically
(X)
W) ~ ——(7E,-3E,).
an ( 1) W, © 24Wi(n'AE,m,)3( ) (11)

Stabler (1964) has given an improved version of the Gryzinski model (in which the
bound electrons have an energy distribution f(E) = 8(E - E;)). For our case Stabler’s
result may be written (except in the neighbourhood of threshold)

08 = (- ) (Bt @
6Wl AEun’ AEn.n’+1 AEnn' AE1l.n'+1 2

! {7E 3E,’ 3( 2E, +1)} 13
W;;co 24Wi(n’AEnn’)3 " " 2n’® En_En' . ( )

which will agree with Kingston’s expression only if " is large and # is small compared
with #’. Both (10) and (12) have incorrect asymptotic behaviour (W,*) for large W.

The cross section Q,; ,(W,) given by (4) may be calculated without difficulty, for
a particular choice of R,. We choose R, = 7, (see I and Stauffer and McDowell 1965).
The sum Q,,(W,) given by (7) is dominated at high energies by the contributions from
the allowed transitions, and (Seaton 1962) these are individually in close accord with
the Born values if for the i — j transition the ratio f;;/AE,; of the oscillator strength to the
energy difference is large compared with unity. This is the case if An = n'—n does
not exceed 2 (since in that case AE,,- ccn™?and f;; o n~3 (Allen 1955)). For large An this
ratio is proportional to #~! and is normally small. Our method is therefore expected to
be reliable for Az = 1 or 2 only, and this is verified by the detailed calculations.

In figure 2(a), (b) and (¢) we compare Qy,-(W;) for all nine transitions of the
n=3,.n =4 set, for which Al # 0, with the Born approximation calculations of
McCoyd et al. (1960), also including their values for the Al = 0 cases for comparison.
With the exception of 3d-4s, Qpy - is always less than the Born value at low energies
(where in any case the contribution of Q34-45 to Qg4 is negligible) and approaches the
Born value at high energies.
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Figure 2. Cross sections for individual / — !’ transitions in the (3, 4) case calculated

by the method of this paper (full curves) and in the Born approximation calculations

(broken curves) of McCoyd et al. (1960). (a) Curve A,10 x Q, _,; curve B, Q. .a;

curve C, $Q; .. (Born only); curve D, 0-1 x Q5 .r. () Curve A, 10 xQ, 4; curve

B, 5xQ;.p (Born only); curve C, 3Q; .r; curve D, $Q; 5. (c) Curve A, Qq.s;
curve B, Qq .a (Born only); curve C, Q4 .p; curve D, Qq _,.
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In figures 3, 4 and 5 we give the ratios of Q, O® and Q™ to the Born approximation
values (McCoyd et al. 1960, Omidvar 1965%) for the (3, 4), (4, 6) and (4, 5) casés re-
spectlvely When Az = 1 neither classical approximation is as reliable as our method
at energies above 0-5 rydbergs, while below this energy we are in much closer agreement
with Stabler’s model than with Kingston’s, particularly at the extremely low impact

-or

log W, (W inAu.)

Figure 3. The ratios of O, O%, O to O forjthe (3, 4) set of transitions,
the three ratios being denoted by chain, full and broken curves respectively.

l.
i ./'/"._
L "\ e
R 4
s AN N
os 7
s ,/” \\\
- /¢ Teel
R A—— 2
o ———0is > 0 .
log W, (W in A.U) : fog W, (W in A.0)
Figure 4. The same ratios for the Figure 5. The same ratios for the
(4, 6) set of transitions. (4, 5) set of transitions.

energies of interest in plasma applications. For Az = 2 transitions we approach Stabler’s
result closely in this region, and lie almost a factor of 10 lower than Kingston’s values.
We do not reproduce the large peak obtained in Stabler’s model, which in any case is
smoothed out, when his model is averaged over the correct classical energy distribution
(McDowell 1966). We feel therefore that the uncertainty in Kingston’s results at low
energies may be much higher than his estimate of a factor of 2.

+ Omidvar’s values for Q4. s(W)) in the Born approximation are inconsistent, and have been
smoothed to give a constant value of W,Q(W)/log W, for large W,. This value is 20% higher than
that obtained from Fisher et al. (1960) who calculate only the allowed transitions. (See Kingston
(1966) for comments on Omidvar’s jonization results.) A referee has pointed out that the correct
h:gh-energy Born approxlmatlon values-for Q.. s(W;) have been given by Kingston and Lauer
(1966). Our results are in good agreement with these values, and the ordinate scale in figure 5

should be multiplied by approximately 1-2.
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Proton impact excitatipn of the n 'D states of He

M. R. C. McDOWELL and K. M. PLUTA
Mathematics Department, University of Durham
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Abstract. The impact parameter version of Born’s approximation is used to
calculate cross sections for proton impact excitation of the n D states of He
(n = 3,4) from 1S and 2 'P. The results for 1 >S —4 *D are in satisfactory
accord with experiment.

1. Introduction

Several calculations on
e +He(11S) -e+He(3 1D_) ¢))

have been reported (Massey and Mohr 1933, Fox 1966). Fox’s recent paper points out
that large uncertainties occur owing to the approximate nature of the atomic wave
functions employed and, further, he finds that for a given wave function equivalent
formulations of the matrix element may change the results by 50% (cf. Stauffer and
McDowell 1964). Fox uses the wave formulation of Born’s approximation, and finds
that his adopted values lie a factor of 2 below the reported absolute experimental results
of Heddle and Lucas (1963) (normalized to the value at 108 ev of Gabriel and Heddle
(1960)) and of St. John et al. (1964) which agree-among themselves to within 309%,.
Inclusion of the intermediate 3p state has little effect on the calculated values.

It is of interest to examine the situation for proton impact. In this case the impact
parameter version of Born’s approximation may be used, and is equivalent to the wave
treatment at energies above a few tens of volts for total cross sections (Moiseiwitsch
*1966, Crothers and Holt 1966, McCarroll and Salin 1966).

We employ it to calculate cross sections for the processes

4 H* +He(1'S) - H* +He(n'D) (2)
an

H* +He(2'P) - H* +He(n'D) 3)
for n = 3 and 4. p
2, Theory

We assume that the incident proton passes at an impact parameter p and constant
velocity v from the target atom. The cross section Qy(v) for excitation from an initial
state i to a final state f is

0u() =2 | Pulp, vl dolras?) *)
0
where -
v f Pt (L, My |V|L M, > dt (5)
P, ’ = P ’
1e(p 'U)' 2L, +1 M’%{h e'P Ly, M, My,

793
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on averaging over initial (M) and summing over final (M) substates. Here

1 1

V=E—_; . (6)

where R is the incident proton-nucleus distance, and 7 the incident proton-active-
electron distance, while N is the number of electrons and p is the energy difference
between final and initial states. The wave functions are chosen to be of the form

No
1185 = VE{‘#IS(Y: Dif1s(8, 2) +1s(y> 2)y16(8, 1)}
1
[2'PM, ) = W{'ﬁls(z’ Webom (1, 2) +4115(2, 2)bapm(1, 1)} (7)

1 . '
|” DM, ) = 72‘{':015(2’ 1)‘/’ndm.(1: 2) +14(2, 2)‘/’ndm.(1v 1)}

where 1,1, (Z, ) is an nlm, hydrogenic function of effective nuclear charge Z for electron
i, and N, is 2 normalization constant. We take y = 2-14, B = 1-19 (Eckhart 1930), in
agreement with Fox, for the ground state. The quantum defects for 2 1P, 31D and 4D

are small, so that (7) should provide an accurate representation for the excited states for
the purpose of this paper.

The method is essentially the same as that of Bell (1961) who studied
H* +He(11S) -~ H* +He(2 'P or 3 1P) 8)
and need not be described in detail. The matrix elements involved are of the form

NN
Voo = [des gty — o)

where i, ¥, are hydrogenic wave functions, and may be transformed by the Fourier
involution theorem to '

Ar IK.R
Vo =E efRg, ,dK %)

where
Zon = [ €S (E)hy(r) dr.

The transition probability P,,(p, v) is then a sum of squares of terms of the form

{K.-R

afon K dZ. (10)

[+ ]
Aa.b = f e ipEly
-

On putting R = p+ vt and choosing v along the Z axis, the g, ,, integrals are reduced
by transforming the wave functions to a frame with polar axis along K, while the
remaining integral in (10) may be evaluated by noting that

K.R=K,p+K.Z
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while
© ipZ P
f exp(— —+szz)dz - zna(K_,,— -) (11)
—w v L/

which reduces it to a two-dimensional integral over K, and K. The resulting expressions
for the (M,,, My,) components of Py(p,v) are lengthy, especially for the 2P »n'D
case, and are given elsewhere (Pluta 1966, M.Sc. Thesis, University of Durham).

3. Results and discussion
The integrals 4, , were reduced to the form

1 [ ] [-+]
Ay =—| k. f dK, c0s (K+p) fun (K s K)
0 1]

v

and after changing the variable to X = K,p, evaluated by a double Gauss-Laguerre
quadrature, the final integration over impact parameter being carried out by a 31-point
repeated Simpson rule. For 1!S->n'D significant contributions occurred only for
p < 5a, except for M;, = 0 when they arose from p < 7ay. In the 2P - nD case
all (M, M) integrals gave significant contributions for p as large as 13a,. The cross
sections for 21P —n1D (n = 3, 4) were evaluated for comparison with those obtained
with the same wave functions, but using an impact parameter method with a cut-off,
by Stauffer and McDowell (1966). Stauffer and McDowell’s work refers to electron
impact, but above ten times threshold the cross sections are close to those for protons
of the same velocity. Both sets of results are shown in table 1 and, considering the
simplicity of the cut-off method, are in remarkably good agreement.

Table 1. Cross sections (may?) for proton-impact excitation of the
21P - p 1D transitions

3D 4:D
E (kev) M) ) @ @
31-25 10-3 61 1-64 1-11
62-5 5-69 41, 8:71-* 8:2-1
93-8 KR 305 593 6:3s71
125 2:97 244 4-50-1 5-2-%
188 2:01 1-7¢ 3-03- 40,71
250 1-52 1:37 2281 32,7t

(1) this paper, (2) Stauffer and McDowell 1966 (see text).
The superscript indicates the power of 10 by which the number is to be multiplied.

Table 2. Cross sections (ra,?) for proton-impact excitation of the
118 - n 1D transitions

E (kev) 3125 | 625 93-8 125 250 375
0(3 D) 3:55-9 3-24-3 2:69-° 2:27-3-  1-39-3 1.00-3
O(4 D) 1.87-3 1:72-3 1-43-3 1:21-° 7-33 -4 5:30-¢

The superscript indicates the power of 10 by which the number is to be multiplied.
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The results for 1S - nD (rn = 3,4) are displayed in table 2. They must be
regarded as uncertain by as much as a factor of 2, as the quadrupole matrix element

|2 Yau(®) [ >

which controls their magnitude is quite sensitive to the choice of initial-state wave
function and to the choice of equivalent ‘length’ or ‘velocity’ formulations (Stauffer and
McDowell 1964). Stauffer and McDowell (1964) found that for 1S — 31D it ranged
from 0-021 to 0-129 (the formulation adopted here corresponding to the latter value)
with a probable value of 0-062, depending on the choice of wave functions, while
for 1*S - 41D it ranged from 0-011 to 0-060 (the latter value corresponding to the
functions used in this paper) with a probable value of 0-032. A similar variation
is apparent in the matrix element f(0) occurring in Fox’s work (Fox 1966). Again
the choice of wave function made by Fox (and by us) corresponds to the highest
calculated value.

xi018+

*

5

N
T

Q (s?'S —1s4d 'D) (cm?)

=3
T
°

N N0

50 75 100 725
E; (H") (kev)

Cross sections for H* +He(1 !S) > H* +He(4'D): full curve, this paper;
circles, de Heer and van den Bos 1966.

Our calculated values for Q(1*S — 4'D) are compared in the figure with recent
experimental values of de Heer and van den Bos (1966). The reported experimental
value at 100 kev is probably too low, since it would indicate an unacceptably high rate
of fall-off of cross section with increasing impact energy. Ignoring this value and the
uncertainty in our computed values the agreement with experiment is satisfactory.
A comparison with the electron-impact results of Fox at equivalent velocities indicates
that for 3 2D our results at six times threshold energy (electron-impact scale) are almost
a factor of 2 higher, but would appear to join smoothly to a reasonable extrapolation of
his curve at about fifteen times threshold. Above 100 ev equivalent energy, while the
4D results are in reasonable agreement with the proton impact measurements of de Heer
and van den Bos, they lie a factor of 2 below the reported electron-impact measure-
ments. Further experimental work on electron-impact excitation of the #!D states
would appear desirable.
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